Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 1 of 132 PagelD #: 679

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

UNILOC 2017 LLC,
Plaintiff,
V. C.A. No. 19-cv-179-CFC
BITMOVIN, INC., JURY TRIAL DEMANDED
Defendant.

SECOND AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff Uniloc 2017 LLC (“Uniloc™), by and through the undersigned counsel, hereby
files this Second Amended Complaint and makes the following allegations of patent
infringement relating to U.S. Patent Nos. 6,628,712 (the “’712 patent”), 6,895,118 (the “’118
patent”), 6,519,005 (the “’005 patent”) and 6,470,345 (the “’345 patent”) (collectively “the
Asserted Patents”) against Defendant Bitmovin, Inc. (“Bitmovin”) and alleges as follows upon
actual knowledge with respect to itself and its own acts, and upon information and belief as to
all other matters.

NATURE OF THE ACTION

1. This is an action for patent infringement. Uniloc alleges that Bitmovin has
infringed and/or is infringing one or more of the 712 patent, the ’118 patent, the *005 patent and
the *345 patent, copies of which are attached as Exhibits A-D, respectively.

2. Uniloc alleges that Bitmovin directly infringes and/or has infringed the Asserted
Patents by making, using, offering for sale, selling, and/or importing various products and
services that: (1) dynamically switch and transcode program video and advertisement videos, (2)

perform a method of coding a digital image comprising macroblocks in a binary data stream, (3)

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 2 of 132 PagelD #: 680

perform a method for motion coding an uncompressed (pixel level) digital video data stream
perform a method for providing content via a computer network and a computer system and (4)
perform a method for replacing substrings in file and directory pathnames with tokens in a
computer-implemented file system, such as the Bitmovin DASH compatible video player.
Uniloc seeks damages and other relief for Bitmovin’s infringement of the Asserted Patents.

THE PARTIES

3. Uniloc 2017 LLC is a Delaware corporation having places of business at 1209
Orange Street, Wilmington, Delaware 19801 and 620 Newport Center Drive, Newport Beach,
California 92660.

4. Upon information and belief, Bitmovin is a Delaware corporation with a place of
business at 301 Howard Street, Suite 1800, San Francisco, California 94015. Bitmovin may be
served through its registered agent at The Company Corporation, 251 Little Falls Drive,
Wilmington, Delaware 19808.

JURISDICTION AND VENUE

5. This action for patent infringement arises under the Patent Laws of the United
States, 35 U.S.C. § 1 et. seq. This Court has original jurisdiction under 28 U.S.C. §§ 1331 and
1338.

6. This Court has both general and specific personal jurisdiction over Bitmovin
because Bitmovin is a Delaware corporation that has committed acts within this District giving
rise to this action and has established minimum contacts with this forum such that the exercise of
jurisdiction over Bitmovin would not offend traditional notions of fair play and substantial
justice. Bitmovin, directly and through subsidiaries and intermediaries (including distributors,

retailers, franchisees and others), has committed and continues to commit acts of infringement in

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 3 of 132 PagelD #: 681

this District by, among other things, making, using, testing, selling, importing, and/or offering
for sale products that infringe the Asserted Patents.

7. Venue is proper in this District and division under 28 U.S.C. §§1391(b)-(d) and
1400(b) because Bitmovin is incorporated in this District, transacts business in this District and
has committed and continues to commit acts of direct infringement in this District.

COUNT I: INFRINGEMENT OF THE 712 PATENT

8. The allegations of paragraphs 1-7 of this First Amended Complaint are
incorporated by reference as though fully set forth herein.
0. Uniloc owns by assignment the entire right, title, and interest in the *712 patent.
10. The *712 patent, titled “Seamless Switching of MPEG Video Streams,” issued on
September 30, 2003. A copy of the *712 patent is attached as Exhibit A. The priorty date for the
’712 patent is November 23, 1999. The inventions of the 712 patent were developed by an
inventor at Koninklijke Philips Electronics N.V.
11. Pursuant to 35 U.S.C. § 282, the 712 patent is presumed valid.
12. Claim 4 of the *712 patent reads as follows:
4. A method of switching from a first compressed data input stream to a
second compressed data input stream, resulting in a compressed data

output stream, said method of switching comprising the steps of:

buffering, in which the data contained in the first and the second input
stream are stored,

controlling the storage of the input streams during the buffering step in
order to switch, at a switch request, from the first input stream to the
second input stream,

transcoding the stream provided by the control step, the transcoding
includes controlling occupancy of a buffer by feedback to DCT coefficient

quantization in order to provide the output stream in a seamless way.

13. The invention of claim 4 of the *712 patent concerns a novel method for

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 4 of 132 PagelD #: 682

switching from a first compressed data input stream to a second compressed data input stream,
resulting in a compressed data output stream. ’712 patent at 1:6-9. Such an invention is useful
in switching and editing MPEG compressed video signals. *712 patent at 1:10-11.

14. At the time of invention of the *712 patent, encoding/decoding systems included a
method of switching from a first encoded video sequence to a second one. ’712 patent at 1:15-
19. In order to avoid underflow or overflow of the decoded buffer, transcoding of the input
streams is used to shift the temporal position of the switching point and to obtain at the output of
the transcoders, streams containing an identical entry point and the same decoder buffer
characteristics. 1d. at 1:19-24. This prior art method has several major drawbacks. According to
the background art, the output bit rate of each transcoder is equal to its input bit rate, which
makes the switching method not very flexible. 1d. at 1:15-28. Finally, the solution of the
background art is rather complex and costly to implement as the switching device needs two
transcoders. Id. at 1:32-35.

15. As demonstrated below, the claimed invention of claim 4 of the *712 patent
provides a technological solution to the problem faced by the inventors—transcoding the stream
provided by the controlling of two input streams where the transcoding includes controlling the
occupancy of a buffer by feedback to DCT coefficient quantization in order to provide the output
stream in a seamless way. This technological solution of claim 4 of the *712 patent provides an
improved method of switching between encoded video streams that is “both flexible and easy to
implement” and overcomes the disadvantages of the prior art. Id. at 1:38-40. For example, the
solution of the *712 patent allows switching from a first compressed data stream encoded at a bit
rate R1 to a second compressed data stream encoded at a bit rate R2, the output stream resulting

from the switch being encoded again, using the transcoding system, at a bit rate R where R may

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 5 of 132 PagelD #: 683

be different from R1 and R2. Id. at 1:52-59. Thus, the patented solution has greater flexibility
than the prior art and its “implementation will be less complex and less expensive” than the prior
art in addition to being more flexible. Id. at 1:39-40, 1:52-59, 2:9-10, 2:33.

16. A person of ordinary skill in the art reading the *712 patent and its claims would
understand that the patent’s disclosure and claims are drawn to solving a specific, technical
problem arising in the field of video compression. In particular, the present invention relates to
the technical problem involved in switching from a first compressed data input stream to a
second compressed data input stream, resulting in a compressed data output stream, and is
applicable, for example, to switching and editing MPEG compressed video signals. 1d. at 1:6-12.

17. As detailed in the specification, the invention of claim 4 of the 712 patent
provides a technological solution to the specific technological problems faced by the inventor
that existed at the time of the invention. First the specification describes the prior art and the
drawbacks associated with the prior art:

International patent application WO 99/05870 describes a method and device
of the above kind. This patent application relates, in encoding/decoding
systems, to an improved method of switching from a first encoded video
sequence to a second one. In order to avoid underflow or overflow of the
decoded buffer, a transcoding of the input streams is used to shift the temporal
position of the switching point and to obtain at the output of the transcoders,
streams containing an identical entry point and the same decoder buffer
characteristics.

The previously described method has several major drawbacks. According to
the background art, the output bit rate of each transcoder is equal to its input bit
rate, which makes the switching method not very flexible. Moreover, said
method implies that the first picture of the second video sequence just after the

switch will be an Intra-coded (I) picture.

Finally, the solution of the background art is rather complex and costly to
implement as the switching device needs two transcoders.

712 patent at 1:15-35.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 6 of 132 PagelD #: 684

18. In light of the drawbacks with the prior art, the inventor of the *712 patent
claimed a new method where transcoding of the output stream is provided by the controlling of
two input streams where the transcoding includes controlling the occupancy of a buffer by
feedback to DCT coefficient quantization in order to provide the output stream in a seamless
way:

To prevent overflow or underflow of this buffer, a regulation REG is
performed; the buffer occupancy is controlled by a feedback to the DCT
coefficient quantization. When switching from a video sequence encoded at
a bit rate R1 to another one that has been separately encoded at a bit rate
R2, the respective decoder buffer delays at the switching point do not match.
The role of the transcoder is to compensate the difference between these
buffer delays in order to provide the output stream OS in a seamless way.
Furthermore, the encoded bit rate R of the output stream can be chosen by
the user.

| 1
1S1 COM<> ! ,L__ REG l¢— |
ﬁ, BUFL | 1@ 7 ' 08
I

? BUF2 10 L e e ———————
> <

IS

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 7 of 132 PagelD #: 685

fremmmmmemmmm---ssms-ssssssSSssEmmmT 7
. 1
' REG l¢— !
I1S1 COM_
sﬁ = i I | _0s
BUFL (@ ! i <
:\I_I.VLD_.DQ »—»Q—IVLC—>BUF:
(A -]
BUF2 @ || :
152 : oer oQ |
1
|
! 1 R :
l MC \
: s2 I
:) :
I MEM |e¢—— IDCT :
TRANS ~ \
e eemmmmm———mm———————————— s
e o o o o = s e e e e e R e e e e e e e S
e e e ':
I
IS1 coM : s1 REG |¢ :
i. BUF1 | ! ‘ ', 0S
:\'vam,oq.,mcr *_ ocT ol Q@ -;vn.c..aur.i_s.
g. BUF2 | e || :
152 ; MC DQm :
1 A l :
TRANS MEM “O4— 10cT,, E
I
1 I
; s2 _____E
*712 patent at 4:15-25, Figs. 2-4.
19. The claimed invention of claim 4 of the *712 patent improves the functionality of

switching from a first compressed data input stream to a second compressed data input stream,
resulting in a compressed data output stream. ’712 patent at 1:5-2:37; 2:66-4:32. The claimed

invention of claim 4 of the ’712 patent also was not well-understood, routine or conventional at

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 8 of 132 PagelD #: 686

the time of invention. Rather, the claimed invention was a departure from the conventional way
of switching from a first encoded video sequence to a second one.

20. In light of the foregoing, a person of ordinary skill in the art would understand
that the claimed subject matter of the 712 patent presents advancements in the field of image
compression. A person of ordinary skill in the art would understand that claim 4 of the 712
patent is directed to a method of transcoding a stream provided by the controlling of two input
streams where the transcoding includes controlling the occupancy of a buffer by feedback to
DCT coefficient quantization in order to provide the output stream in a seamless way.
Moreover, a person of ordinary skill in the art would understand that claim 4 of the 712 patent
contains the inventive concept of transcoding a stream provided by the controlling of two input
streams where the transcoding includes controlling the occupancy of a buffer by feedback to
DCT coefficient quantization in order to provide the output stream in a seamless way.

21. Upon information and belief, Bitmovin has directly infringed at least claim 4 of
the 712 patent by making, using, testing, selling, offering for sale, importing and/or licensing in
the United States without authority products and services that dynamically switch and transcode
program videos and advertisement videos (collectively “the 712 Accused Infringing Devices™)
in an exemplary manner as described below.

22. The *712 Accused Infringing Devices, including a Server-Side Ad Insertion
(SSAI) algorithm, practice the method of switching from a first compressed data input stream to
a second compressed data input stream, resulting in a compressed data output stream.

23. The *712 Accused Infringing Devices implement a Server-Side Ad Insertion

(SSAI) algorithm that switches from the programming video to the ad video at the beginning of

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 9 of 132 PagelD #: 687

an ad break and from the ad video back to the programing video at the end of an ad break. The

output video is a compressed video data stream encoded in, for example, the H.264 standard.

R
;

g

Server-Side Ad Insertion

\ B .g\"ﬂnd Server

Adblock Protection

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

The solution

Server-side ad insertion incorporates your ads into the
content stream itself during the encoding stage, so the
ads not only come from the same server as the rest of the
content, but they are actually part of the same file. This
makes it virtually impossible for ad blocking software to
differentiate between normal content and advertising.

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 10 of 132 PagelD #: 688

Encoding

The Bitmovin encoding service is a multi cloud
(AWS, Google Cloud, etc.) encoding service that
encodes 100x faster than realtime. It supports
various input (HTTP, FTP, AWS-S3, GCS, Aspera,
Akamai NetStorage, etc.) and output formats
and multiple codecs (H264, H265, AAC, etc.) for
VoD and live streaming. State of the art
streaming protocols like MPEG-DASH and HLS
are also supported and integrated with DRMs
like Widevine, Playready, Marlin, PrimeTime,
Fairplay, etc.

Source: https://bitmovin.com/docs/encoding/api-reference#/reference/encoding, last accessed
Nov. 29, 2018.

24. The *712 Accused Infringing Devices buffer and store the data contained in the
first and second input streams. The programming videos, both live and on demand, and the ad
videos are buffered, in which they are also stored before they are encoded by Bitmovin’s

encoding products.

-10 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 11 of 132 PagelD #: 689

sl=l=
- e
===
Customer Backend Ad ContentStore Ad Provider
Video Ingest Video RESTiul AP| Ad 4
Assat {e.q. for out of Assett
Including Ad band as signaling)
Tri_qij(-r-s.
(eg. SCTE 35) Ad Ad
Request Response
Bitmovin Em:nder
{,
Mamhﬂ'&uwla
ABR Encoded Manifest and Aszet Hequest
Content t" Ad Content I hading cirstam data)
o Storage/CDN
_’P tﬂ =
|'“ ts) —
B
Key -

Azsot Roquest
{Irchuding custom data)

Analytics Data ABR Encoded Content

® Orchestrationf Control
® Vided Content
® fid Content
(including ads)

HAud Tractmq Data

Ad Tracking Server Player

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

-11 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 12 of 132 PagelD #: 690

:_ B Server-Side Ad Insertion
'-___g—;.ﬁ.d Server

Adblock Protection

Encoder

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

——— ——————

*

MB i Rate i
Mode ! 1 Control |
Decision j tmmmmmmmnee
J'- ----------.“I I"'------- -------- L Smmmmsmmmmees - goTTTTTTTTTTTTT d l‘------------“l
i Input | Intra/Inter i ! Transform | : CA(??C ;
F 1 L] . !
i Buffer i : Prediction ' :&Quantlzei | cavLc i
M R L S -
I
R [——
T 1 Decoded | g =,
o K
R Pictures je——

Aot]
. - { i
2y] h i Output |
o | Buffer j gt ST i Buffer !_
\-..---.I i Inverse M 4

" 1 Quantize B |
Input images s = i i

i Deblocking ! ..‘Transform]
i Filter 'E 1101011%1101
’[T Ireree Output bit-stream
: IntrafInter ;
_Prediction } pecoder

Source: https://ieeexplore.ieee.org/document/7080395, last accessed Nov. 29, 2018.

25. The *712 Accused Infringing Devices, including a Server-Side Ad Insertion
(SSAI) algorithm, control the storage of the input streams in the buffer system in order to switch,
at a switch request, from the first input stream to the second input stream for its server-side

dynamic ad insertion or ad stitching.

-12 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 13 of 132 PagelD #: 691

sl=l=
- e
===
Customer Backend Ad ContentStore Ad Provider
Video Ingest Video RESTiul AP| Ad 4
Assat {e.q. for out of Assett
Including Ad band as signaling)
Tri_qij(-r-s.
(eg. SCTE 35) Ad Ad
Request Response
Bitmovin Em:nder
{,
Mamhﬂ'&uwla
ABR Encoded Manifest and Aszet Hequest
Content t" Ad Content I hading cirstam data)
o Storage/CDN
_’P tﬂ =
|'“ ts) —
B
Key -

Azsot Roquest
{Irchuding custom data)

Analytics Data ABR Encoded Content

® Orchestrationf Control
® Vided Content
® fid Content
(including ads)

HAud Tractmq Data

Ad Tracking Server Player

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

-13 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 14 of 132 PagelD #: 692

Server-Side Ad Insertion

Adblock Protection

w3 & -
i MIrrnpIrnnrs EITErTIETIEY T
‘o |AD5 ||HD5I —_—
L) s oo arosconan
p O B

® 0 ||
Encoder

L

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

How do ads get into the content?

The content video is fed into the encoder from a content
store or a live ingest. The ad break markers—e.g., inband
SCTE-35 triggers or programmatically inserted triggers via
the APl—are recognized by the encoder and the information
is forwarded to the manifest service. The encoded segments
are then written to storage or to a CON directly.

When a client starts a streaming session, the manifest file

is requested from the content storage or CON. The request
contains personalized custom data about the viewer and is
forwarded to the manifest service. Based on this information,
gathered from cross-site tracking and other personalization
techniques, the manifest service creates the appropriate
playlist (including ad content) for this streaming session.

The chosen ad content is also placed on the same servers

as the content video itself. Once playback starts and an ad
break is reached, the ad content is presented to the viewer

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

-14 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 15 of 132 PagelD #: 693

What does Bitmovin offer?

Bitmovin enables 55Al, using Bitmovin's Cloud Encoding
System and Bitmovin's Adaptive Streaming Player in
combination with third-party ad providers, in an end-to-
end scenario. It is also possible to use either productin
combination with a 3rd party encoder or player. For video
delivery, both MPEG-DASH and HLS, aswell as progressive
download, can be used. Ad markers can either be set using
in-band techniques like SCTE triggers or via a RESTful API.
Ad assets are presented with Bitmovin's Adaptive Streaming
Player in the same way as the video content itself 1o ensure
smooth and transition-free playback.

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

26. The switch request in the 712 Accused Infringing Devices, including a Server-
Side Ad Insertion (SSAI) algorithm use the Society of Cable Telecommunications Engineers
(SCTE) triggers for identifying an impending ad break. The Society of Cable
Telecommunications Engineers standard 35 defines a family of markers (or triggers), such
#EXT-X-SCTE35, #OATCLS-SCTE35, #ASSET, #CUE-OUT, #CUE-OUT-CONT, and #CUE-

IN that are associated with switching between different video streams.

SCTE 35 2016

1. Introduction
1.1. Executive Summary

SCTE 35, Digital Program Insertion Cueing Message for Cable, is the core signaling standard for
advertising and distribution control (ex. blackouts) of content for content providers and content
distnbutors. SCTE 35 1s bemng applied to QAM/IP, Title VITVE (TV Everywhere), and live/tune shufted
(DVE. VOD, ete.) delivery. SCTE 35 signals can be used to identify advertising breaks, advertising
comtent, and progranmuming content (ex. specific Programs and Chapters within a Program).

Source: https://www.scte.org/SCTEDocs/Standards/SCTE%2035%202016.pdf, Page 7, last
accessed Oct. 1, 2018.

- 15 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 16 of 132 PagelD #: 694

12.2.1. HLS cue tags

The #EXT-X-SCTE35 15 the only tag defined by this standard.

Table 27 - Tag #EXT-X-SCTE35

Tag Name Artributes Description
#EXT-X-SCTE35 CUE Tag representing an embedded SCT35

DURATION message as a binary representation as

ELAPSED described in section 7.4 The binary

D representation shall be encoded in Base64 as

TIME defined in section 7.4 of [RFC 4648] with

TYFE W3C recomumendations. The chent or mamifest
mampulator showld decode the Base6d
encoded string, then apply Table 1to mterpret
the message,

Table 28 - Tag attributes

Attribute Name Attribute Tyvpe | Required Description
CUE String Required The SCTE 35 binary message encoded in
Basef4 as defined 1n section 7.4 of [RFC
4648] with W3C recommendations.
DURATION Double Optional The duration of the signaled sequence defined
by the CUE. The duration is expressed in
seconds to millisecond accuracy.

Attribute Name Attribute Tvpe Required Description
ELAPSED Double Optional Offset from the CUE (typically a start
segmentation type) of the earliest presentation
time of the HLS media segment that follows.
If an implementation removes fragments from
the manifest file (ex. live application), the
ELAPSED wvalue shall be adjusted by the
duration of the media segments removed.
Elapsed is expressed in seconds to millisecond
ACCUracy.

Source: https://www.scte.org/SCTEDocs/Standards/SCTE%2035%202016.pdf, Pages 70-71,
last accessed Oct. 1, 2018.

27. The *712 Accused Infringing Devices, including a Server-Side Ad Insertion
(SSAI) algorithm, provide a transcoding system (TS) including a quantization block and a buffer,
wherein occupancy of the buffer in the transcoding system is controlled by feedback to the
quantization block to provide the output stream in a seamless way from the output of the

commutation device.

-16 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 17 of 132 PagelD #: 695

28. The *712 Accused Infringing Devices, including a Server-Side Ad Insertion
(SSAI) algorithm, transcode the compressed ad videos retrieved from 3rd party ad servers so that

the ad break and ad content are “presented to the viewer in a smooth and transition-free manner.”

When a client starts a streaming session, the manifest file

is requested from the content storage or CON. The request
contains personalized custom data about the viewer and is
forwarded to the manifest service. Based on this information,
gathered from cross-site tracking and other personalization
techniques, the manifest service creates the appropriate
playlist (including ad content) for this streaming session.

The chosen ad content is also placed on the same servers

as the content video itself. Once playback starts and an ad
break is reached, the ad content is presented to the viewer

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

' ",
e e

{) Server-Side Ad Insertion
% Ad Server

Adblock Protection

Source: https://bitmovin.com/server-side-ad-insertion-datasheet/, last accessed Nov. 19, 2018.

-17 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 18 of 132 PagelD #: 696

29. The H.264 video codec supported in the 712 Accused Infringing Devices
controls occupancy of the encoded bit stream buffer by feedback to DCT coefficient quantization

as part of rate control and rate distortion optimization in the video encoders.

ENCODER INTERFACES)
A l.ﬁ.:tual Bits
BasicUnit -
Residuals QP Hﬂ'd;:ﬂ ;?t? I
ﬂQP—lelter “inwal op QPjntlahzer
QP-demand | I :
|
Rate-Quantization Model :
F A F 3 |
; i
MAD Target Bits I Virtual
| Buffer : Buffer
i H _ Fullness |
ompledty | | et feritei— | Meds
Estimation T [
|
.
|
: * &
GOP Bit Allocation | ! :
RATE CONTROLLER T | 2
l H |
I Buffer |
Dé&':::tied ------- » Capacity Il
Initial Buffe
USER INTERFACES Occupancy

Source: https://www.researchgate.net/figure/Rate-control-structure-of-H264-AVC-JM-
reference-model figl 260585793, last accessed Oct. 1, 2018.

30. Bitmovin has thus infringed at least claim 4 of the *712 patent by making, using,
testing, selling, offering for sale, importing and/or licensing the *712 Accused Infringing
Devices, and operating them such that all steps of at least claim 4 are performed.

31. Bitmovin has induced infringement of least claim 4 of the 712 patent since the

filing of this action on January 30, 2019. See, e.g., DermaFocus LLC v. Ulthera, Inc., 201 F.

-18 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 19 of 132 PagelD #: 697

Supp. 3d 465, 470-472 (D. Del. Aug. 16, 2016); Softwview LLC v. Apple Inc., 2012 WL
3061027, at *7 (D. Del. July 26, 2012); Apeldyn Corp. v. Sony Corp., 852 F. Supp. 2d 568, 573-
74 (D. Del. 2012). Bitmovin’s customers are direct infringers of claim 4 of the *712 patent when
customers use the *712 Accused Infringing Devices (i.e., Bitmovin’s Server-Side Ad Insertion
(SSAI) algorithm) as described above in connection with Bitmovin’s own direct infringement.
Having knowledge of its own infringement, Bitmovin has, since the filing of the complaint,
knowingly induced infringement and possessed the specific intent to encourage infringement of
its customers by intentionally instructing its customers to infringe through videos,
demonstrations, brochures and user guides, such as those located at

https://bitmovin.com/encoding-service/; https://bitmovin.com/docs/encoding/tutorials;

https://bitmovin.com/docs/encoding/fags; https://bitmovin.com/docs/encoding/api-reference;

https://bitmovin.com/docs/encoding/sdks; https://bitmovin.com/docs/encoding/releases;

https://bitmovin.com/server-side-ad-insertion-datasheet/; and related domains and subdomains.

Bitmovin is thereby liable for infringement of the 712 patent under 35 U.S.C. § 271 (b). See,
e.g., DermaFocus, 201 F. Supp. 3d at 471 (“Service of the original complaint in 2015, of course,
gave defendant actual knowledge of the *559 patent. Defendant argues that, nevertheless, the
FAC contains insufficient facts relating to whether defendant has the additional knowledge that
third parties (its customers) are infringing the patent. (D.I. 13 at 5) Having determined, however,
that plaintiff adequately pled direct infringement, and given the information contained in the
FAC regarding defendant’s promotional and educational materials (D.I. 11, exs. B, C and E), as
well as use of the accused Ulthera System by a local physician, it is plausible to infer that
defendant knew that the intended use of the Ulthera System (for which defendant’s customers

received instructions) was infringing. The court finds these allegations sufficient to plead

-19-

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 20 of 132 PagelD #: 698

induced infringement, that is, the FAC contains facts from which it is plausible to infer that
defendant knew that its conduct would induce infringement by its customers, and had the
specific intent to make it s0.”).

32. Bitmovin is also liable for contributory infringement of least claim 4 of the *712
patent since the filing of this action on January 30, 2019 for the same reasons it is liable for
induced infringement and the following reasons. The portion of the 712 Accused Infringing
Devices that performs the functionality of Bitmovin’s Server-Side Ad Insertion (SSAI) algorithm
in the manner described above (which is herein incorporated by reference) is a component of the
"712 Accused Infringing Devices and is a material part of the invention of the *712 patent. Since
the filing of the complaint, Bitmovin has knowledge that this component is especially adapted
for infringement of the *712 patent based on Uniloc’s infringement allegations and is not a staple
article suitable for substantial non-infringing use of Bitmovin’s Server-Side Ad Insertion (SSAI)
algorithm and necessarily infringes when used in the manner described above. DermaFocus,
201 F. Supp. 3d at 471-72 (“With respect to contributory infringement, the FAC alleges that
defendant: (1) had (at least post-suit) knowledge of the patent; (2) is selling its Ulthera System
which is especially made for infringing use; (3) had knowledge of the infringing use; (4) the
Ulthera System has no substantial non-infringing use: and (5) there is direct infringement. (D.I.
111 at 99 15, 16. Such allegations have passed muster under Twombley, Igbal, and their progeny
in the past.”). Bitmovin is thereby liable for infringement of the 712 patent under 35 U.S.C. §
271(c).

33. Bitmovin’s acts of direct and indirect infringement have caused damage to
Uniloc, and Uniloc is entitled to recover damages sustained as a result of Bitmovin’s wrongful

acts in an amount subject to proof at trial.

-20 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 21 of 132 PagelD #: 699

COUNT II: INFRINGEMENT OF THE °118 PATENT

34. The allegations of paragraphs 1-7 of this First Amended Complaint are
incorporated by reference as though fully set forth herein.

35. The ’118 patent, titled “Method Of Coding Digital Image Based on Error
Concealment,” issued on May 17, 2005. A copy of the *118 patent is attached as Exhibit B. The
priority date for the *118 patent is March 6, 2001. The inventions of the *118 patent were
developed by inventors at Koninklijke Philips Electronics N.V.

36. Pursuant to 35 U.S.C. § 282, the ’118 patent is presumed valid.

37. Claim 1 of the *118 patent addresses a technological problem indigenous to
coding macroblocks in a binary digital stream where certain macroblocks have been excluded.

38. Claim 1 of the *118 patent reads as follows:

1. A method of coding a digital image comprising macroblocks in a
binary data stream, the method comprising:

an estimation step, for macroblocks, of a capacity to be reconstructed via
an error concealment method,

a decision step for macroblocks to be excluded from the coding, a decision
to exclude a macroblock from coding being made on the basis of the
capacity of such macroblock to be reconstructed,
characterized in that it also includes a step of inserting a resynchronization
marker into the binary data stream after the exclusion of one or more
macroblocks.

39. The invention of claim 1 of the *118 patent concerns a novel method for digital

coding of macroblocks within a data stream.
40. Just prior to the invention of the *118 patent, in June 1999, a then novel method

for coding involved the exclusion of certain macroblocks in a digital image based upon the

capacity of the macroblocks to be reconstructed via error concealment (“the June 1999

-21 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 22 of 132 PagelD #: 700

Method”). ’118 patent at 1:14-21. In the June 1999 Method, the excluded macroblocks were
replaced with “uncoded blocks with constant blocks, black blocks for example, subsequently
detected by the receiver.” ’118 patent at 1:21-25. Alternatively, the June 1999 Method provided
for allocating bits to communicate the address of the excluded blocks in interceded macroblocks
that were not excluded. 118 patent at 1:26-32.

41. Both means of replacing the excluded blocks in the June 1999 Method suffered
from significant drawbacks. For example, if constant blocks or black blocks were used as
replacements for the excluded macroblocks there would be “graphical errors on most receivers.”
"118 patent at 1:62-67. Likewise, allocating bits to communicate the address of excluded blocks
gave “rise to graphical ‘lag’ errors of image elements if macroblocks have been excluded.” 118
patent at 1:56-62.

42. As demonstrated below, the claimed invention of claim 1 of the 118 patent
provides a technological solution to the problem faced by the inventors— using
resynchronization markers after the exclusion of a macroblock rather than replacing macroblocks
with constant blocks, black blocks or bits allocated to communicate the address of the excluded
blocks. This technological solution resulted in reduction in lag and graphical errors and
improved bandwidth because of a reduction in the binary data stream.

43. As detailed in the specification, the invention of claim 1 of the 118 patent
provides a technological solution to the specific technological problems faced by the inventors
that existed at the time of the invention. First, the specification describes the June 1999 Method
and the drawbacks associated with that method.

A coding method of such type is known from the document “Geometric-
Structure-Based Error Concealment with Novel Applications in Block-

Based Low-Bit-Rate Coding” by W. Zeng and B. Liu in IEEE Transactions
on Circuits and Systems For Video Technology, Vol. 9, No. 4, Jun. 1999.

-22 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 23 of 132 PagelD #: 701

That document describes exclusions of blocks belonging to macroblocks,
block combination, said macroblocks being capable of being intercoded or
intracoded. That document proposes harmonizing this block exclusion with
video coding standards, either, in a first solution, by replacing uncoded
blocks with constant blocks, black blocks for example, subsequently
detected by the receiver, or, in a second solution, by modifying the word
that defines which blocks are coded within a macroblock, such modification
taking place at the same time as a modification of the address words of the
macroblocks when all the blocks in a macroblock are excluded. A certain
number of bits are allocated to communicate the address of the excluded
blocks in the interceded macroblocks.

"118 patent at 1:14-31 (emphasis added).

44, Both of these means of dealing with the excluded macroblocks in the June 1999
Method were disadvantageous and suffered from serious drawbacks that thwarted the purpose of
excluding macroblocks (i.e., to further compress the data stream):

In this case it is therefore impossible to change the addresses of the
macroblocks or indicate which blocks are not coded, according to the
second solution proposed in the document cited in the foregoing. All
macroblocks are thus decoded and placed sequentially, giving rise to
graphical “lag” errors of image elements if macroblocks have been
excluded. The first solution proposed in the document cited involves
detection by the decoder of the constant blocks replacing the excluded
blocks. No provision for such detection is made in the MPEG-4 syntax, and
this will cause graphical errors on most receivers.

"118 patent at 1:56-67 (emphasis added).

45. In light of the drawbacks with the June 1999 Method, the inventors of the 118
patent claimed a new method where resynchronization markers included in header elements were
used instead of constant blocks, black blocks and bits allocated to communicate the address of
the excluded blocks:

It is an object of the present invention to suggest a coding method that
includes an exclusion of macroblocks having a certain capacity to be

reconstructed from the coding compatible with coding standards which
include point resynchronization means.

-23 .

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 24 of 132 PagelD #: 702

Indeed, a coding method as defined in the introductory paragraph is
characterized according to the invention in that it also includes a step of
inserting a resynchronization marker into the binary data stream after the
exclusion of one or more macroblocks.

The resynchronization marker represents a certain number of bits in the data
stream (at least between 17 and 23 bits). It is a further object of the present
invention to reduce the binary data stream associated with the transmission
of digital images by excluding macroblocks.

"118 patent at 2:1-15 (emphasis added).
46. The reduction in the data stream using the claimed method—as opposed to the
June 1999 Method which added constant blocks, black blocks and other bits for excluded

macroblocks—is depicted in Figure 2 and described in the specification:

VP
~ iy I
N FIG.2a
MA
H MB, MBooy MBryisy MBosm
""" FIG.2b
—-+ ‘+_
MBn MBnH MBnH-c-‘-.;-l
| E, ... FIG.2c
t- Pt - o
MBp MBr.ﬂ Manﬂ)ll
MA

— &, FG2d

MB;, MBa+i MBasisje

The resulting binary data stream in such case is shown inFIG. 2d. A
resynchronization marker MA and the associated header element have been
inserted in the stream at the point where the first one of the excluded macroblocks
should have been, and before macroblock MBn+i+j+1. Here, the reduction in the size
of the binary data stream caused by the insertion of resynchronization marker MA
and the associated header element is not zero according to FIG. 2: the bloc
representing excluded macroblocks MBn+i+1 to MBn+itjis larger than the size of the

-4 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 25 of 132 PagelD #: 703

inserted header element.
k %k %k

Since the binary data stream includes coded data of a digital image comprising
macroblocks, said binary data stream being such that macroblocks MBhn+i+ito
MBAh+i+ are not coded in the binary data stream for at least one point in the binary

data stream and since such uncoded macroblocks are capable of being reconstructed

by an error concealment method, said binary data stream is thus characterized

according to the invention in that a resynchronization marker MA is present in the

binary data stream at the location in the binary data stream where the macroblocks

are not coded.

’118 patent at 5:37-46.

47. The claimed invention of claim 1 of the *118 patent improves the functionality of
coding macroblocks in a binary digital stream where certain macroblocks have been excluded.
The claimed invention of claim 1 of the 118 patent also was not well-understood, routine or
conventional at the time of invention. Rather, the claimed invention was a departure from the
conventional way of performing coding macroblocks in a binary digital stream where certain
macroblocks have been excluded.

48. A person of ordinary skill in the art reading claim 1 of the *118 patent and the
corresponding specification would understand that claim 1 improves the functionality of coding
macroblocks in a binary digital stream where certain macroblocks have been excluded. This is
because, as noted above, the June 1999 Method suffered from drawbacks including (1) lag
errors; (2) graphical errors; and (3) no reduction in the size of the data stream because of the use
of constant blocks, black blocks and allocating bits to communicate the address of the excluded
blocks. A person of ordinary skill in the art would further understand that the claimed invention
of claim 1 of the *118 patent resolved these problems by using resynchronization markers in a
way they had not been used before—as replacements for excluded blocks.

49. A person of ordinary skill in the art reading claim 1 of the *118 patent and the

corresponding specification would further understand that claim 1 of the *118 patent represents a

-25 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 26 of 132 PagelD #: 704

departure from convention by (1) coding a data stream with excluded macroblocks in a way that
is different from the recent June 1999 Method and (2) using resynchronization markers in a
manner that had not been used before—as replacements for excluded macroblocks.

50. In light of the foregoing, a person of ordinary skill in the art reading the 118
patent and its claims would understand that the patent’s disclosure and claims are drawn to
solving a specific, technical problem arising in achieving more efficient video compression.
Moreover, a person of ordinary skill in the art would understand that the claimed subject matter
of the *118 patent presents advancements in the field of digital image coding.

51. In light of the foregoing, a person of ordinary skill in the art would understand
that claim 1 of the *118 patent is directed to a method of coding macroblocks in a binary digital
stream where certain macroblocks have been excluded. Moreover, a person of ordinary skill in
the art would understand that claim 1 of the *118 patent contains the inventive concept of using
resynchronization markers after the exclusion of a macroblock rather than replacing macroblocks
with constant blocks, black blocks or bits allocated to communicate the address of the excluded
blocks.

52. Upon information and belief, Bitmovin makes, uses, offers for sale, and/or sells
in the United States and/or imports into the United States products and services such as H.264
encoders that practice a method for coding a digital image comprising macroblocks in a binary
data stream (collectively the “’118 Accused Infringing Devices”).

53. Upon information and belief, the 118 Accused Infringing Devices infringe at
least claim 1 in the exemplary manner described below.

54. The *118 Accused Infringing Devices use H.264 (AVC) streams for coding video

data (digital images) including macroblocks embedded in a binary stream.

-26 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 27 of 132 PagelD #: 705

55. H.264 is a widely used video compression format with decoder support on web
browsers, TVs and other consumer devices. Moreover, H.264 codes digital images comprising
macroblock streams.

56. The *118 Accused Infringing Devices receive input video streams which are then
encoded and/or transcoded using at least the H.264 standard. This is a widely used video
compression format with decoder support on web browsers, TVs and other consumer devices.

Moreover, H.264 uses motion compressor and estimator for motion coding video streams.

-27 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 28 of 132 PagelD #: 706

Bitmovin encodes video streams using H.264 encoders

Encoding

The Bitmovin encoding service is a multi cloud
(AWS, Google Cloud, etc.) encoding service that
encodes 100x faster than realtime. It supports
various input (HTTP, FTP, AWS-S3, GCS, Aspera,
Akamai NetStorage, etc.) and output formats
and multiple codecs (H264, H265, AAC, etc.) for
VoD and live streaming. State of the art
streaming protocols like MPEG-DASH and HLS
are also supported and integrated with DRMs
like Widevine, Playready, Marlin, PrimeTime,
Fairplay, etc.

Source: https://bitmovin.com/docs/encoding/api-reference#/reference/encoding, last accessed
Nov. 29, 2018.

-28 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 29 of 132 PagelD #: 707

Introduction

The Bitmovin cloud encoding service is a powerful tool for live streaming, and our APl makes it easy to implement. This tutorial
concentrates on feeds contributed with the RTMP protocol, which are the simplest to setup. There are basically 4 steps involved when it
comes to our live streaming service in the cloud.

>

RTMP Stream BITMOVIN

Output location @ s o - S s

1. Ingest RTMP Stream to our Live Encoder

Usuclly o mezzonine or "contribution® encoder that is processing the live signal will transcode this signal to o high quality mezzonine
format and ingest it at the RTMP ingest point in our live encoder, You can now use such an encoder from Elemental, Teradek, Teracue, or
ony other vendor, or use software like the popular OBS studio or ffmpeg.

2. Encoding of the Input Stream to MPEG-DASH and HLS

You can define multiple output resolutions and bitrates for MPEG-DASH and HLS, define if you want to encode to H.264 (AVC) or H.265
(HEVC). There are literally no limits in defining what output you wont from our live encoder, e.g. it can easily handle multiple 4k 60FPS
streams encoded to HEVC.

Source: https://bitmovin.com/docs/encoding/quickstarts/create-a-live-encoding-from-an-rtmp-
stream

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting, internet
streaming, and communication. It is also designed to enable the use of the coded video representation in a flexible manner
for a wide variety of network environments. The use of this Recommendation | International Standard allows motion video
to be manipulated as a form of computer data and to be stored on various storage media, transmitted and received over
existing and future networks and distributed on existing and future broadcasting channels.

Source: https://www.itu.int/rec/T-REC-H.264-201704-I/en , p. i

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block of
luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video decoding
process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the quantity

-29.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 30 of 132 PagelD #: 708

Source: https://www.itu.int/rec/T-REC-H.264-201704-1/en, section 0.6.3

Annex B

Byte stream format

(This annex forms an integral part of this Recommendation | International Standard.)

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or
all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need
to be identifiable from patterns in the data, such as Rec. ITU-T H.222.0 | ISO/IEC 13818-1 systems or Rec. ITU-T H.320
systems. For bit-oriented delivery. the bit order for the byte stream format is specified to start with the MSB of the first
byte, proceed to the LSB of the first byte. followed by the MSB of the second byte, etc.

Source: https://www.itu.int/rec/T-REC-H.264-201704-1/en, Annex B

57. H.264 coding in the 118 Accused Infringing Devices supports skipped
macroblocks. Before a macroblock is coded, an estimation is made of whether that macroblock
can be reconstructed with an error concealment method by examining its motion characteristics,
and checking to see that the resulting prediction contains no non-zero (i.e. all zero) quantized
transform coefficients. This estimation provides an indication of the capacity for the macroblock
to be reconstructed from properties of neighboring macroblocks, allowing the missing block to

be concealed by inferring its properties.

Skipped Mode:

In addition to the macroblock modes described above, a P-slice macroblock can also be coded in the
so-called skip mode. If a macroblock has motion characteristics that allow its motion to be effectively
predicted from the motion of neighboring macroblocks, and it contains no non-zero quantized
transform coefficients, then it is ﬂz;ggcd as skipped. For this mode, neither a quantized prediction
error signal nor a motion vector or reference index parameter are transmitted. The reconstructed
signal is computed in a manner similar to the prediction of a macroblock with partition size 16 x 16
and fixed reference picture index equal to 0. In contrast to previous video coding standards, the
motion vector used for reconstructing a skipped macroblock is inferred from motion properties of
neighboring macroblocks rather than being inferred as zero (i.e., no motion).

Source: http://mrutyunjayahiremath.blogspot.com/2010/09/h264-inter-predn.html

-30 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 31 of 132 PagelD #: 709

58. H.264 encoders in the 118 Accused Infringing Devices perform a decision step
to determine if a macroblock should be excluded from coding (skipped), with the decision to
exclude made on the basis of its capacity to be reconstructing by inferring its motion properties

from neighboring macroblocks, and based on all zero quantized transform coefficients.

Skipped Mode:

In addition to the macroblock modes described above, a P-slice macroblock can also be coded in the
so-called skip mode. If a macroblock has motion characteristics that allow its motion to be effectively
predicted from the motion of neighboring macroblocks, and it contains no non-zero quantized
transform coefficients, then it is flagged as skipped. For this mode, neither a quantized prediction
error signal nor a motion vector or reference index parameter are transmitted. The reconstructed
signal is computed in a manner similar to the prediction of a macroblock with partition size 16 x 16
and fixed reference picture index equal to 0. In contrast to previous video coding standards, the
motion vector used for reconstructing a skipped macroblock is inferred from motion properties of
neighboring macroblocks rather than being inferred as zero (i.e., no motion).

Source: http://mrutyunjayahiremath.blogspot.com/2010/09/h264-inter-predn.html

59. Skipped macroblocks are communicated with a mb_skip flag=1
(resynchronization marker at the point where the macroblocks are not coded (skipped)) in the

binary data stream.

3.139 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

Source: https://www.itu.int/rec/T-REC-H.264-201704-1/en, p13

3.139 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped”. This indication may be common to several macroblocks.

Source: https://www.itu.int/rec/T-REC-H.264-201704-1/en, p13

231 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 32 of 132 PagelD #: 710

Shca

Slhice layer Shntries

Slice Data

Skip Indication

e |
o el elll=] = (== E’
MH“‘“‘-“__‘__
g

~——_

~—
Macroblock layer Type | Prediction “ P;m"s:f(* QP Resxual

Po— ! \

Source: https://www.safaribooksonline.com/library/view/the-h264
advanced/9780470516928/ch05.html#macroblock layer

60. Bitmovin has thus infringed at least claim 1 of the *118 patent by making, using,
testing, selling, offering for sale, importing and/or licensing the 118 Accused Infringing
Devices, and operating them such that all steps of at least claim 1 are performed.

61. Bitmovin’s acts of direct infringement have caused damage to Uniloc, and
Uniloc is entitled to recover damages sustained as a result of Bitmovin’s wrongful acts in an

amount subject to proof at trial.

COUNT III: INFRINGEMENT OF THE °005 PATENT

62. The allegations of paragraphs 1-7 of this First Amended Complaint are
incorporated by reference as though fully set forth herein.

63. The *005 patent, titled “Method of Concurrent Multiple-Mode Motion
Estimation For Digital Video,” issued on February 11, 2003. A copy of the *005 patent is
attached as Exhibit C. The priority date for 005 patent is April 30, 1999. The inventions of the
’005 patent were developed by inventors at Koninklijke Philips Electronics N.V.

64. Pursuant to 35 U.S.C. § 282, the 005 patent is presumed valid.

-32 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 33 of 132 PagelD #: 711

65. Claim 1 of the *005 patent addresses a technological problem indigenous to
motion coding in uncompressed digital video streams.
66. Claim 1 of the *005 patent reads as follows:

1. A method for motion coding an uncompressed digital video data stream,
including the steps of:

comparing pixels of a first pixel array in a picture currently being coded with
pixels of a plurality of second pixel arrays in at least one reference picture and
concurrently performing motion estimation for each of a plurality of different
prediction modes in order to determine which of the prediction modes is an
optimum prediction mode;

determining which of the second pixel arrays constitutes a best match with
respect to the first pixel array for the optimum prediction mode; and,

generating a motion vector for the first pixel array in response to the
determining step.

67. The invention of claim 1 of the 005 patent concerns “digital video compression”
and, more particularly, “a motion estimation method and search engine for a digital video
encoder that is simpler, faster, and less expensive than the presently available technology
permits, and that permits concurrent motion estimation using multiple prediction modes.” *005
patent at 1:6-11.

68. Data compression is the encoding of data using fewer “bits” than the original
representation. Data compression is useful because it reduces the resources required to store and
transmit data, and allows for faster retrieval and transmission of video data.

69. In the context of digital video with which the 005 patent is concerned, a video
codec is electronic circuitry or software that compresses and/or decompresses digital video for
storage and/or transmission. Video codecs refer to video encoders and decoders.

70. Prior to digital video, video was typically stored as an analog signal on magnetic

tape. Then, around the time of the development of compact discs (CDs), it became more feasible

-33.-

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 34 of 132 PagelD #: 712

to store and convey video in digital form. However, a large amount of storage and
communications bandwidth was needed to record and convey raw video. Thus, what was needed
was a method to reduce the amount of data used to represent the raw video. Accordingly,
numerous engineers and many companies worked to develop solutions for compressing digital
video data.

71. “Practical digital video compression started with the ITU H.261 standard in
1990.” A Brief History of Video Coding, ARC International, Marco Jacobs and Jonah Probell
(2007). Numerous other video compression standards thereafter were created and evolved. The
innovation in digital video compression continues to this day.

72. In April 1999, at the time of the invention of claim 1 of the 005 patent,
“different compression algorithms ha[d] been developed for digitally encoding video and audio
information (hereinafter referred to generically as the ‘digital video data stream’) in order to
minimize the bandwidth required to transmit this digital video data stream for a given picture
quality.” ’005 patent at 1:11-17.

73. At the time of the invention of claim 1 of the 005 patent, the “most widely
accepted international standards [for compression of digital video for motion pictures and
television were] proposed by the Moving Pictures Expert Group (MPEG).” 005 patent at 1:20-
24. Two such standards that existed at the time of the invention were MPEG-1 and MPEG-2.

74. In accordance with MPEG-1 and MPEG-2—and other compression standards for
digital video—the video stream is “encoded/compressed . . . using a compression technique
generally known as ‘motion coding.”” ’005 patent at 1:40-44. More particularly, rather than

transmitting each video frame in its entirety, the standards at the time used motion estimation for

-34 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 35 of 132 PagelD #: 713

only those parts of sequential pictures that varied due to motion, where possible. 005 patent at
1:45-48.

75. In general, the picture elements or “pixels” within a block of a picture are
specified relative to those of a previously transmitted reference or “anchor” picture using
differential or “residual” video, as well as so-called “motion vectors” that specify the location of
an array (e.g., 16-by-16) of pixels or “macroblock” within the current picture relative to its
original location within the anchor picture. *005 patent at 1:48-55. A macroblock is a unit in
image and video compression that typically consists of 16x16 samples of pixels. A motion
vector is used to represent a macroblock in a picture based on the position of that same or similar
macroblock in another picture (known as the reference picture).

76. At the time of the invention, there were various “prediction modes” that could be
used for each macroblock that was to be encoded. 005 patent at 3:7-11. Prediction modes are
techniques for predicting image pixels or groups of pixels, and examples of prediction modes in
MPEG include frame and field prediction modes. ’005 patent at 4:64-67. Moreover, at that
time, motion coding allowed for the use of different prediction modes within the same frame, but
required one prediction mode to be specified for a macroblock in advance of performing the
motion estimation that results in a motion vector. 005 patent at 3:12-15. Given that there are
multiple prediction modes, the optimum prediction mode could not be known prior to encoding
unless multiple motion estimations were performed on each macroblock sequentially. *005
patent at 3:15-20. Then, after determining the optimum prediction mode based on multiple and
sequential motion estimations, the optimal prediction mode would be selected and only then

would the motion estimation that results in the generation of a motion vector occur.

-35.-

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 36 of 132 PagelD #: 714

77. In this prior art method, numerous and sequential motion estimations would have
to run to find the optimal prediction mode. Only after these sequential motion estimations have
been run and the optimal prediction mode selected could the motion estimation that results in the
motion vector for the macroblock be carried out. Because “motion estimation usually consists of
an exhaustive search procedure in which all 256 pixels of the two corresponding macroblocks are
compared, and which is repeated for a large number of macroblocks,” having to sequentially run
numerous motion estimations to find the optimal prediction mode and only then performing the
motion estimation using the optimal prediction mode to generate the motion vector is very
computationally intensive, complex, inefficient, lengthy and cost ineffective. ’005 patent at
3:20-43.

78. As demonstrated below, the claimed invention of claim 1 of the *005 patent
provides a technological solution to the problem faced by the inventors, namely concurrently
determining the optimal prediction mode while performing motion estimation along with
generating the motion vector more simply, faster and in a less expensive way.

79. As detailed in the specification, the invention of claim 1 of the 005 patent
provides a technological solution to the problems faced by the inventors.

Based on the above and foregoing, it can be appreciated that there presently
exists a need in the art that overcomes the disadvantages and shortcomings of
the presently available technology. The present invention fulfills this need in
the art by performing motion coding of an uncompressed digital video sequence
in such a manner that the prediction mode for each individual macroblock is
determined as part of the motion estimation process, along with the actual
motion vector(s), and need not be specified in advance; only the type of picture
currently being coded need be known. Since the latter must be determined at a
higher level of video coding than the macroblock layer, this method makes
possible a much more efficient, as well as optimal, degree of video compression
than would otherwise be possible using conventional methods of motion
estimation. Further, the present invention provides a novel scheme for

concurrently searching for the optimum macroblock match within the
appropriate anchor picture according to each of a plurality of motion prediction

-36 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 37 of 132 PagelD #: 715

modes during the same search operation for the given macroblock, without the
need for a separate search to be performed on the same macroblock for each
such mode. Since this search procedure is the single most complex and
expensive aspect of motion estimation, in both time and hardware, such a
method as the present invention will clearly result in a more efficient video
image coding and compression than would otherwise be possible given the
aforementioned practical limitations of the presently available technology.

’005 patent at 3:40-67 (emphasis added).
80. The technological solution of claim 1 of the 005 patent is further shown in
Figure 3 which visually depicts a motion estimation process for concurrently performing motion

estimation for frame prediction mode and field prediction modes for frame pictures:

SEARCH a‘?s‘ .
%8 PIEL -
ANCHOR PICTURE 0006) y
TOPFELD AU | | GRG0
SEARCK NGE e .
BIBFELS |e 5 &
) BEST NATCH]
. 13 SRANE >
—— MV VN BEST MATCH
RTTy BEST MATCH <" Faae pED
—— INRL CODED MB FRAME
M LD MACROBLOCX Y000
cUTIOM rELl RBOTIO N—
| oo D o Y
) 15 ELS — L 0
BXEPIELS |e ST 0
B 10P FELD |——> R
3 P TP FELD BEST MATCH
= s < |—>rEDHED
BESTMATCH Sl
VB 109 FELD f——» (ioe FEL
PIC BT FELD
ERROR METAICS P =
FOR CUBRENT MATCH v L
ESTMRTCH |- A
| VB BT FEL) |——» —
POXT0PFIEL) ST MATCH
- < f—>FELDPIED
FlG 3 BEST MATCH (207 FELD)
. > U3 BJ1 FIELD f——
~{POB0T FELD L
81. Claim 1 of the 005 patent improves the functionality of motion coding in video

compression by performing the concurrent determination of the optimal prediction mode while
performing motion estimation along with generating the motion vector. The claimed invention

of claim 1 of the *005 patent also was not well-understood, routine or conventional at the time of

-37 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 38 of 132 PagelD #: 716

the invention. Rather, as set forth below, the claimed invention was a departure from the
conventional ways of performing motion coding in video compression.

Based on the above and foregoing, it can be appreciated that there presently
exists a need in the art that overcomes the disadvantages and shortcomings of
the presently available technology. The present invention fulfills this need in
the art by performing motion coding of an uncompressed digital video sequence
in such a manner that the prediction mode for each individual macroblock is
determined as part of the motion estimation process, along with the actual
motion vector(s), and need not be specified in advance; only the type of picture
currently being coded need be known. Since the latter must be determined at a
higher level of video coding than the macroblock layer, this method makes
possible a much more efficient, as well as optimal, degree of video compression
than would otherwise be possible using conventional methods of motion
estimation. Further, the present invention provides a novel scheme for
concurrently searching for the optimum macroblock match within the
appropriate anchor picture according to each of a plurality of motion prediction
modes during the same search operation for the given macroblock, without the
need for a separate search to be performed on the same macroblock for each
such mode. Since this search procedure is the single most complex and
expensive aspect of motion estimation, in both time and hardware, such a
method as the present invention will clearly result in a more efficient video
image coding and compression than would otherwise be possible given the
aforementioned practical limitations of the presently available technology.

’005 patent at 3:40-67 (emphasis added).

The present invention relates generally to digital video compression, and, more
particularly, to a motion estimation method and search engine for a digital video
encoder that is simpler, faster, and less expensive than the presently available
technology permits, and that permits concurrent motion estimation using
multiple prediction modes.

’005 patent at 1:7-11 (emphasis added).

In either case, the methods and architectures of the present invention result in a
means of significantly improving the video compression efficiency and, hence, the
resulting picture quality, without the need for ecither greater hardware costs or
higher computational complexity.

’005 patent at 14:62-67 (emphasis added).

In all known motion estimation methods, the prediction mode must be specified
for every macroblock before the motion estimation, with its constituent search, is
performed. However, in accordance with the present invention, in one of its

-38 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 39 of 132 PagelD #: 717

aspects, the motion estimation may be performed, in a frame picture, forth both
frame and field prediction modes simultaneously, during the same search for the

anchor picture.

’005 patent at 8:6-13 (emphasis added).

82. In light of the foregoing, and the general knowledge of a person of ordinary skill
in the art, a person of ordinary skill in the art reading the 005 patent and its claims would
understand that the patent’s disclosure and claims are drawn to solving a specific, technical
problem arising in the field of digital video compression. Moreover, a person of ordinary skill in
the art would understand that the claimed subject matter of the *005 patent presents
advancements in the field of digital video compression, and more particularly to a motion
estimation method and search engine for a digital video encoder that is simpler, faster, and less
expensive than prior art technology, and that permits concurrent motion estimation using
multiple prediction modes. A person of ordinary skill in the art would understand that claim 1 of
the 005 patent is directed to a method for motion coding an uncompressed digital video data
stream, which provides concurrent motion estimation using multiple prediction modes along with
the generation of motion vectors. Moreover, a person of ordinary skill in the art would
understand that claim 1 of the 005 patent contains that corresponding inventive concept.

83. Upon information and belief, Bitmovin makes, uses, offers for sale, and/or sells
in the United States and/or imports into the United States products and services such as its H.264
encoders that practice a method for motion coding an uncompressed digital video data stream
(collectively the “’005 Accused Infringing Devices”).

84. Upon information and belief, the 005 Accused Infringing Devices infringe at

least claim 1 in the exemplary manner described below.

-39

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 40 of 132 PagelD #: 718

85. The *005 Accused Infringing Devices provide a method for motion coding an
uncompressed (pixel level) digital video data stream. The 005 Accused Infringing Devices
receive input video streams which are then encoded and/or transcoded using at least the H.264
(AVC) standard. The H.264 standard is a widely used video compression format with decoder
support on web browsers, TVs and other consumer devices. Moreover, H.264 uses motion

compressor and estimator for motion coding video streams.

Bitmovin encodes video streams using H.264 encoders

Encoding

The Bitmovin encoding service is a multi cloud
(AWS, Google Cloud, etc.) encoding service that
encodes 100x faster than realtime. It supports
various input (HTTP, FTP, AWS-S3, GCS, Asperg,
Akamai NetStorage, etc.) and output formats
and multiple codecs (H264, H265, AAC, etc.) for
VoD and live streaming. State of the art
streaming protocols like MPEG-DASH and HLS
are also supported and integrated with DRMs
like Widevine, Playready, Marlin, PrimeTime,
Fairplay, etc.

Source: https://bitmovin.com/docs/encoding/api-reference#/reference/encoding, last accessed
Nov. 29, 2018.

- 40 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 41 of 132 PagelD #: 719

Introduction

The Bitmovin cloud encoding service is a powerful tool for live streaming, and our APl makes it easy to implement. This tutorial
concentrates on feeds contributed with the RTMP protocol, which are the simplest to setup. There are basically 4 steps involved when it
comes to our live streaming service in the cloud.

>

RTMP Stream BITMOVIN

s i i o

1. Ingest RTMP Stream to our Live Encoder

Usuclly o mezzonine or "contribution® encoder that is processing the live signal will transcode this signal to o high quality mezzonine
format and ingest it at the RTMP ingest point in our live encoder, You can now use such an encoder from Elemental, Teradek, Teracue, or
ony other vendor, or use software like the popular OBS studio or ffmpeg.

2. Encoding of the Input Stream to MPEG-DASH and HLS

You can define multiple output resolutions and bitrates for MPEG-DASH and HLS, define if you want to encode to H.264 (AVC) or H.265
(HEVC). There are literally no limits in defining what output you wont from our live encoder, e.g. it can easily handle multiple 4k 60FPS
streams encoded to HEVC.

Source: https://bitmovin.com/docs/encoding/quickstarts/create-a-live-encoding-from-an-rtmp-
stream

H.264 Uses Predictive Coding
0.6 Overview of the design characteristics
This subclanse does not form an mtegral part of this Recommendation | International Standard.

The coded representation specified in the syntax 15 designed fo enable a high compression capabality for a desired imape
quality. With the exception of the transform bypass mede of operation for lossless coding m the High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 444 Predictive profiles, and the I_PCM mode of operation in all profiles, the algorithm
15 typically not lossless, as the exact source sample values are typically not preserved through the encoding and
decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding algonithms
(not specified m this Recommendation | International Standard) may select between wnter and intra coding for block-
shaped regons of each picture. Inter coding uses motion vectors for block-based nter prediction to explodt temporal
statistical dependencies between different pictures, Intra coding uses vanious spatial prediction modes to exploit spatial
statistical dependencies in the source signal for a single picture. Motion vectors and intra predietion modes may be
specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a transform
to remove spatial correlation nside the transform block before it 1s quantised, producing an irreversible process that
typically discards less important visnal information while forming a close approximation to the source samples, Fmally,
the motion vectors or intra prediction modes are combined with the quantised transform coefficient information and
encoded using either vanable length codng or anthmetic coding.

-4] -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 42 of 132 PagelD #: 720

6.1 Predictive coding
This subclause does not form an integral part of this Recommendation | Infernational Standard

Because of the conflicting requirements of random access and highly efficient compression, two nmin coding types are
specified. Intra coding i1s done without reference to other pictures. Intra coding may provide access pomts to the coded
sequence where decoding can begmn and contime comectly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) 15 more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
prctures coded using bi-predictive inter predichion may also be used as references for nter coding of other pictures

The appheation of the three coding types to pictures in a sequence 15 flexible, and the order of the decoding proeess 15
generally not the same as the order of the source picture capture process i the encoder or the output order from the
decoder for display. The chowce 1s left to the encoder and will depend on the requirements of the application. The

decoding order 15 specified such that the decoding of pictures that wse mter-prcture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

Source: H.264 Standard (03-2010) at pp. 3-4

Ingut Videg 1 N— e
v 1 tansterm | % 5 s
— * ® BeawyiCuant | - m
I — | o
; L |
- iy ! L
Bealing! v Cuant : .
tere, Tempsiees : :
! »
5 oy |
i d
B -
Intra {Seaiial) |-
Srmctcaoe d
Dablechry -
r o
— 1 cticn [¥ i -
Dwcded dides B
= \.lp,‘.-rlﬂl [1
L .
T st EdbLmator r
H.264/AVC Encoder [2]

Source: https://courses.cs.washington.edu/courses/csep590a/07au/lectures/rahullarge.pdf

86. The *005 Accused Infringing Devices provide a method for comparing pixels of
a first pixel array (e.g., a macroblock) in a picture currently being coded with pixels of a plurality
of second pixel arrays in at least one reference picture and concurrently performing motion
estimation for each of a plurality of different prediction modes in order to determine which of the
prediction modes is an optimum prediction mode.

87. H.264 uses different motion estimation modes in inter-frame prediction. These
modes are commonly referred to as inter-frame prediction modes, or inter modes. Each inter

mode involves partitioning the current macroblock into a different combination of sub blocks,

-42 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 43 of 132 PagelD #: 721

and selecting the optimum motion vector for the current macroblock based on the partition. The
inter-frame prediction modes, or inter modes, can be further categorized by the number and
position of the reference frames, as well as the choice of integer pixel, half pixel and quarter
pixel values in motion estimation. The Bitmovin H.264 encoders concurrently perform motion
estimation of a macroblock for all inter-modes and select the most optimum prediction mode

with least rate distortion cost.

Mode Decision

16x16 luma Macroblock

il 1
Intra Modes Inter Modes (Only
(For all frames) for P and B-frames)
. » Macroblock partitions:
- Nine 4x4 Modes 16x16,16x8,8x16,

» Four 16x16 Modes 8x8,8x4,4x8 Axd4

« Use of reference frames
« Use of integer, half and
quarter pixel motion
estimation

» Each mode (inter or intra) has an associated Rate-Distortion (RD)
cost.

* Encoder performs mode decision to select the mode having the least
RD cost. This process is computationally intensive.

Source: https://courses.cs.washington.edu/courses/csep590a/07au/lectures/rahullarge.pdf, p. 30

88. H.264 provides a hierarchical way to partition a macroblock, with the available
partitions shown in the following two figures. An exemplary inter-frame prediction mode, or
inter mode, can be for a macroblock to be partitioned to encompass a 16x8 sub block on the left,

and two 8x8 sub blocks on the right.

-43 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 44 of 132 PagelD #: 722

Macroblock partitions for inter-frame prediction modes

Macroblock Partitions

8x16 16x16 blocks can
8x8 8x8 168 be broken into
X 16x8 blocks of sizes
o8 | 8 6x16 8x8, 16x8, or 8x16.
16x16 16x16 16x16
8x8 blocks can be
4x4 4x4 4x8 broken into blocks
8x4 8x4 1 of sizes 4x4, 4x8,
4x4 4x4 4x8 or x4
8x8 8x8 8x8

Source: https://courses.cs.washington.edu/courses/csep590a/07au/lectures/rahullarge.pdf, p. 4

H.264 provides macroblock partitions for inter-frame prediction modes

1 macroblock partinon of | 2 macroblock partitons of | 2 macroblock partions of 4 sub-macroblocks of
16*16 luma samples and 16*8 luma samples and 8* 16 luma samples and 8*8 luma samples and
assocated chroma samples | associated chroma samples | associated chroma samples | associated chroma samples

Macroblock 0] i
partitions 1 2 3

1 sub-macroblock partition | 2 sub-macroblock partitons | 2 sub-macroblock partitons | 4 sub-macroblock partions
of §*& luma samples and of 8*4 luma samples and of 4*8 huma samples and | of 4*4 luma samples and
associated chroma samples | associated chroma samples | associated chroma samples | asseciated chroma samples

o 0 1
Sub-macroblock i 0 1
partitions 1

bt

3

H2844000)_Fe-d

Figure 6-9 - Macroblock partitions, sub-macroblock partitions, macroblock partition scans,
and sub-macroblock partition scans

Source: H.264 Standard (03-2010) at p. 26
89. The optimum prediction mode as chosen for the current macroblock is embedded

in the compressed bit stream of H.264, as shown in the following two syntaxes.

-44 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 45 of 132 PagelD #: 723

Macroblock prediction syntax in H.264
7.3.5.1 Macroblock prediction syntax

mb_pred(mb_type) { C | Descriptor
if{ MbPartPredMode(mb_type, 0) = = Intra_4x4 ||
MbPartPredMode(mb_type, 0) == Intra_l6x16) {
if{ MbPartPredMode(mb_type, 0) == Intra_4x4)
for(lumadx4BIkIdx=0; lumad4x4Blkldx<16; lumadx4Blkldx++) {
prev_intradxd_pred_mode_flag| lumadx4Blkidx |
if{ 'prev_intradx4_pred_mode_flag| lumadx4Blkldx |)
rem_intradx4_pred_mode| lumadx4Blkldx |

L]

u(l) | ae(v)

L]

u(3) | ae(v)
!
intra_chroma_pred_mode
} else if{]MbPartPredMode(mb_type, 0)| != Direct) {
for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type): mbPartldx++)
if{ (num_ref idx_l0_active_minusl >0 ||

|Mb1>a?11>md'Modq mb_type, mbPartldx)| '= Pred _L1)
rel_idx_I0T m X

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)
if{ (num_ref idx_I1_active_minusl > 0 ||

L

ue(v) | ae(v)

L]

te(v) | ae(v)

MbPartPredMode(mb_type, mbPartldx)| = Pred L0)
ref_idx_T[mbPartldx’] 2 | te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

ift MbPartPredMode (mb _type, mbPartldx]]'= Pred L1)

or(compldx = 0; compldx < 2; compldx++)

[mvd_10[mbPartidx | 0] compldx | | 2 | se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)
if{ MbPartPredMode(mb_type, mbPartldx)| = Pred_L0)

for(compldx = 0; compldx < 2; compldx++)

mvd_I1[mbPartldx || 0]| compldx | 2 | se(v)]ae(v)

Source: H.264 Standard (03-2010) at p. 57

- 45 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 46 of 132 PagelD #: 724

Sub-macroblock prediction syntax in H.264
7.3.5.2 Sub-macroblock prediction syntax

sub mb pred(mb type) { C | Descriptor
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
{sub_mb_type[mbPartldx]| 2 | ue(v) | ae(v)

for MBPAFTAX = 07 MBPArtIdx < 4; mbPartldx++)
if{ (num_ref idx_l0_active_minusl > 0 || mb_field_decoding flag) &&
mb_type != P_8x8ref0) &&
1o i &
SubMbPredMode(sub mb type] mbPartldx]) |'= Pred L1)

(¥]

te(v) | ae(v)

1
for(mbPartldx = 0; mbPartldx < 4: mbPartldx++)
if{ (num_ref idx_I1_active_ minusl > 0 || mb_field decoding flag) &&

1= 1 &
|SubePrchode; sub_mb_type[mbPanldx])i!= Pred LO)
ref_idx mbPartldx 2 | te(v)]ae(v)

foz{ mbPartldx = 0; mbPartldx < 4; mbPanldxﬁ)

subMbPartldx < NumSubePart(sub_mb_type[mbPartldx]);
subePan]dxH}

2 | se(v)]ae(v)

for(mbP:m x = 0; : mbPartldx++)

1 Yo 1 &
iSubePrchodc{ sub mb_type[mbPartldx 1)i!= Pred LO)
oTTSubMBParTaT ™ J

LS
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)
for(compldx = 0;: compldx < 2: compldx++)
i mvd 11| mbPartldx][subMbPartldx || compldx | ! se(v) | ae(v)

H

L]

Source: H.264 Standard (03-2010) at p. 58
90. The *005 Accused Infringing Devices provide a method for determining which
of the second pixel arrays (e.g., macroblock) constitutes a best match with respect to the first

pixel array (e.g., macroblock) for the optimum prediction mode.

- 46 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 47 of 132 PagelD #: 725

PEVIRTS Reference frame

@ﬁ

Fig. 2.4: Motion estimation. For each MB the best matching block in the refer-
ence frame is found. The encoder codes the differences (errors) between the MBs
and their best matching blocks. Arrows indicate motion vectors and are labeled by
the vector coordinates. In this example the shapes are identical but their colors are
slightly larger/darker.

-61 +18

Source: B. Juurlink et al., Scalable Parallel Programming Applied to H.264, Chapter 2:
Understanding the Application: An Overview of the H.264 Standard, p. 12

91. For example, the encoder performs mode decision to select the most optimum

prediction mode with least rate distortion cost.

Macroblock layer semantics
The followmng semantics are assigned to the macroblock types in Table 7-13:

= P _LO0_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

— P L0 L0 _MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using
two luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated
chroma samples, respectively.

— P_Bx&: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartIdx] with mbPartTdx being
the macroblock partition index for the corresponding sub-macroblock) is present in the bitstream thar specifies the
type of the corresponding sub-macroblock (see subclause 7.4.5.2).

— P _BxBrefd: has the same semantics as P_8x8 but no swotax element for the reference mdex
(ref_idx_10[mbPanTdx] with mbPartIdx = 0..3) is present in the bitstream and ref idx W[mbPanTdx] shall be
inferred to be equal to 0 for all sub-macroblocks of the macroblock (with indices mbPartTdx = 0._3).

— P_Skip: no further data 1s present for the macroblock in the bitstream

Source: H.264 Standard (03-2010), p. 100

-47 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 48 of 132 PagelD #: 726

Mode Decision

Mode Decision

16x16 luma Macroblock

! I
Intra Modes Inter Modes (Only
(For all frames) for P and B-frames)

» Macroblock partitions:
16x16,16x8,8x16,
8x8,8x4,4x8,4x4

= Use of reference frame)
+ Use of integer, half ang
quarter pixel motion
estimation

= Nine 4x4 Modes
» Four 16x16 Modes

» Each mode (inter or intra) has an associated Rate-Distortion (RD)
cost.

» Encoder performs mode decision to select the mode having the least
RD cost. This process is computationally intensive.

Source: https://courses.cs.washington.edu/courses/csep590a/07au/lectures/rahullarge.pdf, p. 30

92. The *005 Accused Infringing Devices provide a method for generating a motion
vector for the first pixel array in response to the determining step. The encoder calculates the

appropriate motion vectors and other data elements represented in the video data stream.

Reference frame

- E

Fig. 2.4: Motion estimation. For each MB the best matching block in the refer-
ence frame is found. The encoder codes the differences (errors) between the MBs
and their best matching blocks. Arrows indicate motion vectors and are labeled by
the vector coordinates. In this example the shapes are identical but their colors are

slightly larger/darker.

Source: B. Juurlink et al., Scalable Parallel Programming Applied to H.264, Chapter 2:
Understanding the Application: An Overview of the H.264 Standard, p. 12

- 48 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 49 of 132 PagelD #: 727

Motion Vector Derivation is described below

1. The derivation process for motion vector components and reference indices as specified in subclause 84.1 is
invoked.

Inputs to fhis process are

— amacroblock partition mbPartTdx,

— asub-macroblock partition subMbPartTdx.
Outputs of this process are:

= luma motion vectors mvL0 and mvL] and when ClromaAmayType is not equal to 0, the chroma motion
vectors mvCLO and meCL1

— reference indices refldxL.0 and refldxI.1
= prediction list utilization flags predFlagl.0 and predFlagl.1
~ the sub-macroblock partition motion vector count subMvCnt.

Source: H.264 Standard (03-2010), p. 151

H.264 Encoder Block Diagram

Input Yideo C
» » ':) »| Transform! o . o
+ Sealing’ Cuant. v v m
I
p
[v ! r
' 1 e
; Sealing/ Inv .Quant./ E -
: Inv. Transform '
! ; Entrapy s
i v | Coder 3
: i
- (OB >
: ¢ ! v
b e Intra (Spatial) ¥ : i
: Prediction _ | d
: Deblocking : e
: : o
. ™ Motion Comp. - ¥ A > .
: Decoded "J:'icleo :
b |..i.....‘..‘|..| Lo w e o s s e s w1 e a i . L
¥ | ¥ Mation Vectar Info .
‘!!’_—*‘ Motion Estimation 1——“
H.264/AVC Encoder [2]

Source: https://courses.cs.washington.edu/courses/csep590a/07au/lectures/rahullarge.pdf, p. 2

-49 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 50 of 132 PagelD #: 728

93. Bitmovin has thus infringed at least claim 1 of the 005 patent by making, using,
testing, selling, offering for sale, importing and/or licensing the 005 Accused Infringing
Devices, and operating them such that all steps of at least claim 1 are performed.

94. Bitmovin’s acts of direct infringement have caused damage to Uniloc, and
Uniloc is entitled to recover damages sustained as a result of Bitmovin’s wrongful acts in an

amount subject to proof at trial.

COUNT1V: INFRINGEMENT OF THE °345 PATENT

95. The allegations of paragraphs 1-7 of this First Amended Complaint are
incorporated by reference as though fully set forth herein.

96. Uniloc owns by assignment the entire right, title, and interest in the *345 patent.

97. The ’345 patent, is titled “Replacement of Substrings in File/Directory
Pathnames With Numeric Tokens.” issued on October 22, 2002. A copy of the 345 patent is
attached as Exhibit D. The priority date for the *345 patent is January 4, 2000. The inventions
of the ’345 patent were developed by IBM.

98. Pursuant to 35 U.S.C. § 282, the 345 patent is presumed valid.

99. Claim 1 of the *345 patent addresses a technological problem indigenous to data
processing systems and file systems in a networked environment—specifically in the computer
science field of canonicalization. https://en.wikipedia.org/wiki/Canonicalization.

100. Claim 1 of the *345 patent reads as follows:

1. A method for replacing substrings in file and directory pathnames with
tokens in a computer-implemented file system, comprising the acts of:

reading a name string to be converted into a list of tokens;

canonicalizing a current working directory and the name string to form a
pathname containing a plurality of substrings;

-50-

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 51 of 132 PagelD #: 729

parsing the pathname and replacing each substring with an associated
token; and

validating the parsed pathname containing the list of tokens.

101. The invention of claim 1 of the ’345 patent concerns a novel method for
canonicalization where substrings are replaced in file and directory pathnames with tokens in the
computer-implemented file system.

102. At the time of invention of the *345 patent, in the field of data processing
systems and file systems in a networked environment, canonicalization was a task used in file
systems to identify file system resources, such as files, directories or other types of resources.
’345 patent at 1:11-19. Another important task at the time is the semantic validation of a path,
made up of the root, intermediate directories, and file or directory specification. Id. at 1:20-22.
All intermediate directories must be valid for a pathname to refer to a valid file system resource.
Id. at 1:22-27. Canonicalization and validation are often intertwined in a single function or set of
functions. Id. at 1:28-29. The combination of these two functions can effect some savings by
being more efficient. Id. at 1:34-35. If the current working directory for a given process is taken
to be always valid, then validation of a path can start with the partial information specified by the
user of the file system. Id. at 1:35-40. However useful this method of combining these two
functions can be, the two tasks must always be considered separately, or severe penalties could
occur. Id. at 1:41-44.

103. As demonstrated below, the claimed invention of claim 1 of the *345 patent
provides a technological solution to the problem faced by the inventors—replacing substrings in
file and directory pathnames with tokens in a computer-implemented file system by parsing
pathnames and replacing each substring with an associated token and validating the parsed

pathname containing a list of tokens. This technological solution resulted in a significant and

-51 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 52 of 132 PagelD #: 730

substantial improvement in the performance of storage of strings as well as in the performance of
comparing substrings and savings in the amount of storage needed to implement a file system as
only one copy need be kept of any substring. ’345 patent at 2:24-41.

104. As detailed in the specification, in designing a file system that is structured on a
client/server split, where the client portion keeps track of a current working directory and therefore
has to perform the canonicalization, the path validation can often only be efficiently done by the
server. ld. at 1:52-56. The inventors discovered that in most cases even where there is no
client/server split, it is advantageous to separate canonicalization from validation and perform
these two operations in a close sequence, but not interleaving validation of intermediate path
information with a forming of a canonical name. Id. at 1:56-62. This results in a simpler
implementation and superior performance, especially in a network environment. Id. at 1:62-63.

105. In dealing with file/directory pathnames, the number of sometimes quite lengthy
strings poses a significant problem, especially when these are broken into substrings which then
are constantly compared to other substrings. Id. at 2:24-27. According to the invention of the
’345 patent, parsing the strings into their semantically correct substrings and replacing those
substrings with unique numeric tokens provides a significant improvement in the storage of the
strings as well as better performance in comparing those substrings. 1d. at 2:27-31. Since each
substring (e.g., a subdirectory, filename or extension) is replaced with a numeric value, these
numeric values can be arithmetically compared (e.g., is a ==b) instead of string compared (i.e.,
are all characters the same, what about uppercase vs. lowercase, etc.). 1d. at 2:32-36. This
represents a substantial improvement in performance. Id. at 2:36-38. In addition, by keeping a

string dictionary, which the token uniquely indexes, only one copy is kept of any substring. 1d.

-52 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 53 of 132 PagelD #: 731

at 2:38-39. This too can represent a substantial savings in the amount of storage needed to
implement a file system. Id. at 2:40-41.
106. The foregoing is set forth in Figures 4-7 and the accompanying text:

FIG. 4 illustrates a high-level flowchart of the token replacement process of the
present invention. The process starts in entry block 400 in which the current
working directory and filename (e.g., current-work-
dir=.backslash.dir1.backslash.dir2; name=filename) are input to the
canonicalization process as indicated by logic block 402. This action results in the
canonical form such as
pathname=.backslash.dir1.backslash.dir2.backslash.filename. This is followed in
logic block 404 with parsing of the pathname and replacement of substrings with
tokens. The substrings in this small example are "dirl", "dir2", and "filename".
The result of this action are tokens t1, t2, and t3. The validation of the path is the
next act in the process as indicated by logic block 406. From this act the process
continues in decision block 408 with a determination of the validity of the path. If
the path is found to be invalid an error is returned as indicated by termination
block 410. Otherwise, the path is found to be valid and a file system operation is
performed as indicated in logic block 412.

-53 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 54 of 132 PagelD #: 732

FIG. 4

400

(ENTER l“

402
CANONICALIZE |/
NAME
404
PARSE
PATHNAME &
REPLACE
SUBSTRINGS
WITH TOKENS
406
|/
VALIDATE PATH

408

PATH VALID?)—No—+ RETURN ERROR

Yes

o 412

PERFORM FILE /
SYSTEM

OPERATION

(CREATE,

DELETE, OPEN,

ETC.

’345 patent at 10:58-65, Fig. 4.

FIG. 5 illustrates the specific acts of the canonicalization process 402 of FIG. 4. It
begins in decision block 500 with a determination if the name starts with a root
substring. If it does, then processing jumps to logic block 508 for resolution of
special characters in the name. If the name does not start with a root substring, then
in logic block 502 the current working directory is copied to a work buffer. The
content of the work buffer at this point in the process is
.backslash.dir1.backslash.dir2. Next, the name (i.e., filename) is added to the work
buffer as indicated in logic block 504. The content of the work buffer at this point

-54 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 55 of 132 PagelD #: 733

is .backslash.dirl.backslash.dir2.backslash.filename. In logic block 506, the name
is replaced with the work buffer contents. The process concludes in logic block 508
with the resolution of special characters such as ".." or ".". The canonicalization
process exits back to the many processing logic in termination block 510.

FIG. 5
402
CANONICALIZE [
NAME
(ENTER)

NAME START WITH

ROOT SUBSTRING?
Yes
No 502
copycwo 1o
WORKBUFFER
1 504
ADDNAME TO |/
WORKBUFFER
506
REPLACE NAME |/
WITH
WORKBUFFER
508
Resolve |/
» SPECIAL
CHARACTERS
‘ 510

(RETURN NAMQ/

’345 patent at 10:66-11:14, Fig. 5.

FIG. 6 illustrates a flowchart of the parsing process 404 of the present invention. It
commences with the entry of decision block 600 which initiates an iterative routine
to perform as long as the pathname contains substrings. The iterative routine begins
in logic block 602 in which a substring is looked up in the string dictionary. If the

-55 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 56 of 132 PagelD #: 734

substring does not exist then a new token is created to represent that substring. In
logic block 604, the token representing the substring is added to a list of output
tokens for the pathname. The next act is to get the next substring from the pathname
as indicated in logic block 606. The iterative routine loops back to decision block
600. After the entire pathname has been parsed into substrings and replaced with
tokens (DONE indication out of decision block 600), the parsing process retuns the
tokens found as indicated in termination block 608.

FIG. 6

PARSE
PATHNAME
(ENTER)

PATHNAME
CONTAIN
SUBSTRINGS?

LOOKUP
SUBSTRING IN
STRING
DICTIONARY

| 604
ADDTOKEN V
REPRESENTING
SUBSTRING TO
OUTPUT
TOKENS

;

GET NEXT
SUBSTRING
FROM
PATHNAME

3

608

RETURN
TOKENS

’345 patent at 11:15-11:30, Fig. 6.

FIG. 7 illustrates a flowchart of the validation process 406 of the present invention.
The token list is input to logic block 700 in which the current directory is set to the
root directory. In logic block 702, the directory table is accessed for the current
directory. This is followed in logic block 704 with the act of getting a token from
the token list. Next, in logic block 706, a search is performed to locate the token in
the directory table. In decision block 708, a test is made to determine if the token
was found in the directory table. If the search failed, then an invalid pathname

- 56 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 57 of 132 PagelD #: 735

indication is returned to the main processing logic via termination block 710. If the
search was successful, processing continues in decision block 712, in which a test
is made to determine if the token list is empty. If not, the processing continues in
decision block 714 in which a determination is made as to whether or not the
directory table entry found is for a file (rather than for a directory). If the directory
table entry is for a directory, then processing continues in logic block 716 in which
the current directory is set to the table entry data; processing then returns to logic
block 702. If the directory table entry found in decision block 714 is for a file, then
processing ends in termination block 720 with an invalid pathname indication. If,
in decision block 712, the token list was found to be empty (i.e., all tokens have
been processed) then processing exits in termination block 718 with the return of
an valid pathname.

406
VALIDATE PATH
FIG. 7

700
SET CURRDIR |/
TO ROOT
DIRECTORY
1 }“2 716
ACCESS SET CURRDIR
DIRECTORY O TRELE
TABLE FOR ENTRY DATA
CURRDIR
l 704
GETTOKEN |/
FROM TOKEN
LIST
: 706
SEARCH |/
DIRECTORY
TABLE

710

718

RETURN INVALID

RETURN INVALID

’345 patent at 11:31-11:56, Fig. 7.

-57-

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 58 of 132 PagelD #: 736

107. Figures 8A and 8B contrast the prior art with the inventions of the *345 patent
and the accompanying text explains the advantages of the inventions of the *345 patent over the
prior art:

FIGS. 8A-8B indicate both the prior art and the inventive method of storing
directory and file names on a storage device, such as a disk. FIG. 8 A shows a linked
list structure with dirl stored in root block memory location 80, dir2 stored in
subdirectory block memory location 82, the filename stored in subdirectory block
memory location 84, and the actual file stored at memory location 86. FIG. 8B
indicates the method of storing directory and pathnames according to the present
invention. Token t1 is stored in root block memory location 90, token t2 is stored
in subdirectory block memory location 92, token t3 is stored in subdirectory block
memory location 94 which contains a pointer to the file stored at memory location
96. Also shown in FIG. 8B is the string dictionary 98 corresponding to this simple
example.

FIG. 8A
__moor 2@
__ swor 22
— u
dirt —t— SubDir /s
a2 T B | e 86
o | || fiename
| T_J._______ B
FIG. 8B
poor 90
N o
= o4 -
n ol @2 ."_"rmr_i 96 f:ur:gﬁ"l =
File / 2| ar2
— ! _3,1’- 13 | floname
3

- 58 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 59 of 132 PagelD #: 737

.“\s.'implc example of the use of the invention demonstrat-
ing its advantages is described below:
The filenames
Stringl=\test__1\Source\filenamel.text
String2=\test__1'Source\filename2.text
String3=\test__1\Source\filename1.0utput
Stringd=\test__1'Source\filename2.Output
StringS=\test__1'Output\filename1.binary
String6=\test__1\Output\filename2 binary
i contain 7 unique semantically significant substrings:
“Test_1 ", “Source”, “filenamel”, “filename2 ”, “text”,
“output” and “binary”.
If placed into a table (or dictionary) as illustrated in FIG.
9, it is casy lo see that a representation of the original
) substrings based on their position in the table would be
(given the assumption that a “." is inserted in place of the *\”
in front of the final token):
Stringl={11, 12,13, 14 }
String2={1l, 12, 15, 14 }
String3={11, 12, 13, 16 }
String4={11, 12, 15, 16 }
StringS={t1, 16, 13,17 }
String6={11, 16, 15,17 }
y Asimple comparison of the amount of storage to hold this
information is as follows:

. Traditional method New Method
»
String 1 = 646+ 9+ 4«25 bytes 8 bytes
String 2 = 6464944 =25 byles 8 bytes
String 3 = 64+6+9+6m=27 bytes 8 bytes
String 4 = 646+94+06=27bytes 8 bytes
String § = 6+6+9+6=27bytes 8 bytes
) String 6 = 646494+ 6=27byles 8 bytes
158 total bytes 48 total bytes

FIG. 9

1({2 10\4 10\6

token | substring size

t1 "Test_1" 6
12 "Source" 6
13 “filename1” 9
t4 "text" 4
t5 *filename2" 9
t6 "Output” 6
t7 "binary” 6

-59 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 60 of 132 PagelD #: 738

However, this greater than 3 to 1 comparison ratio is not quite entirely complete
in that there is an "overhead" of 81 bytes to store the substrings in a dictionary (as
null-terminated strings) along with the pointers to locate them. This overhead,
while not negligible, is not as significant as the savings in replacing substrings
with 2-byte numeric tokens.

The difference in speed of comparison is not quite so readily calculated. It is clear
that comparing a new string:
StringN=.backslash.Test 1.backslash.Output.backslash.filename2.binary. NEW

with String6, character by character, would involve 32 comparisons of single
bytes until a mismatch is found. A simple comparison of the two strings using the
token-scheme would require four comparisons of 2-byte tokens.

Again, this 8 to 1 ratio is not entirely complete in that the conversion of the
strings into substrings and proper insertion into the table require some overhead,
but in a file system where locating information is much more frequent than
inserting, removing or renaming it, this overhead is not as significant as the
savings in numeric comparisons verus string comparisons.

A third advantage that is usually involved whenever data compression is present
is the additional security for a file system that uses the new method. Several
schemes could be easily applied to prevent the string dictionary from being
accessed even though the file and directory names may be available. This is the
"shared-secret" type of security and is the most difficult to decrypt. While the
substrings themselves can also be encrypted, it would be easier to take advantage
of the clean split between the semantic information embodied in the tokens and
the human-readable form of the strings to deter someone from locating secure
information in a file system.

The fourth advantage is that of the additional flexibility that tokenizing the
substrings provides. Since the actual substrings are stored in a separate place from
the directory and file information in the native file system, limits on the length of
a substring, overall length of a path (composed of many substrings) as well as the
permissible characters in any substring can be much different than those imposed
by the native file system. As long as the sequence of tokens can be uniquely
mapped to a native file system resource practically any string can be
accommodated. The tokens are used only to uniquely represent the substrings,
wherever they may be used in a file system name. A clear example is the above
use of "Output" as both a sub-directory name and as a file "extension" in String3
and String5 for instance.

’345 patent at 11:57-13:23, Figs. 8A, 8B and 9.

- 60 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 61 of 132 PagelD #: 739

108. As set forth above, claim 1 of the *345 patent presented an unconventional
method for canonicalization for computers that led to better performance of computers and
enhanced storage. In light of the foregoing, a person of ordinary skill in the art would
understand that claim 1 of the *345 patent is directed to a method for replacing substrings in file
and directory pathnames with tokens in a computer-implemented file system. Moreover, a
person of ordinary skill in the art would understand that claim 1 of the *345 patent contains that
corresponding inventive concept of replacing substrings in file and directory pathnames with
tokens in a computer-implemented file system by parsing pathnames and replacing each
substring with an associated token and validating the parsed pathname containing a list of tokens.

109. Upon information and belief, Bitmovin has directly infringed at least claim 1 of
the *345 patent by making, using, testing, selling, offering for sale, importing and/or licensing in
the United States without authority products and services that perform a method for replacing
substrings in file and directory pathnames with tokens in a computer-implemented file system,
including an MPEG-DASH compatible video player (collectively “the 345 Accused Infringing
Devices”) in an exemplary manner as described below.

110. The ’345 Accused Infringing Devices perform a method for replacing substrings
in file and directory pathnames with tokens in a computer-implemented file system. The *345
Accused Infringing Devices include a MPEG-DASH compatible video player. DASH video
streams include a media presentation description (MPD) which is a manifest of the media
segments that make up the complete media presentation. The MPD contains file and directory

pathnames to access these segments in the form of HTTP URLs.

-61 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 62 of 132 PagelD #: 740

Every Browser & Device

We know the challenges and amount of work required to play HLS & MPEG-

DASH streams smoothly across all the different browsers, operating systems

and devices. DRM makes it even more complicated.

Compatibility across all platforms is a goal we strive for. It's much more than
just the web player. We have developed SDKs for Android, iOS, tvOS, Roku and
SmartTVs as well as desktop apps to help to deliver video to your users,

regardless of which platform they are using.

Source: https://bitmovin.com/video-player/

111. MPEG DASH in the ’345 Accused Infringing Devices has a mechanism whereby
URLSs to access segment files can use a SegmentTemplate to specify file and pathnames. This
mechanism allows DASH video players to replace specific substrings (identifiers) in the template

with dynamic numbers (tokens) in a computer implemented file system (URLSs).

The structure of an MPEG-DASH MPD
March 20, 2015

The MPEG-DASH Media Presentation Description (MPD) is an XML document
containing information about media segments, their relationships and information
necessary to choose between them, and other metadata that may be needed by
clients.

Source: https://www.brendanlong.com/the-structure-of-an-mpeg-dash-mpd.html

The Media Presentation Description (MPD) describes a Media Presentation, i.e. a bounded or
unbounded presentation of media content. In particular, it defines formats to announce resource
identifiers for Segments and to provide the context for these identified resources within a Media
Presentation. These resource identifiers are HTTP-URLs possibly combined with a byte range.

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats”, p7

-62 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 63 of 132 PagelD #: 741

5.3.9.4 Segment template
5.3.9.4.1 Overview

The Segment template is defined by the SegmentTemplate element. In this case, specific identifiers that are
substituted by dynamic values assigned to Segments, to create a list of Segments. The substitution rules are
provided in 5.3.9.4 4.

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats”, p53

5.3.9.44 Template-based Segment URL construction

The SegmentTemplatelmedia attribute, the SegmentTemplatefindex attribute, the
SegmentTemplatelinitialization attribute and the SegmentTemplatefbitstreamSwitching
attribute each contain a string that may contain one or more of the identifiers as listed in Table 16.

In each URL, the identifiers from Table 16 shall be replaced by the substitution parameter defined in Table 16.
Identifier matching is case-sensitive. If the URL contains unescaped $ symbols which do not enclose a valid
identifier then the result of URL formation is undefined. In this case it is expected that the DASH Client ignores
the entire containing Representation element and the processing of the MPD continues as if this
Representation element was not present. The format of the identifier is also specified in Table 16.

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats”, p53

-63 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 64 of 132 PagelD #: 742

Table 16 — Identifiers for URL templates

$<Identifier>$

Substitution parameter

Format

58

Is an escape sequence, i.e. "$3" is replaced with a
single "$"

not applicable

$RepresentationID$ | This identifier is substituted with the value of the

attribute Representation@id of the containing

The format tag shall not be
present.

SegmentTimeline@t attribute for the Segment
being accessed. Either $Number$ or $Time$ may
be used but not both at the same time.

Representation.
SNumber$ This identifier is substituted with the number of the | The format tag may be present.
corresponding Segment.
If no format tag is present, a
default format tag with width=1
shall be used.
$Bandwidth$ This identifier is substituted with the value of | The format tag may be present.
Representation@bandwidth attribute value.
If no format tag is present, a
default format tag with width=1
shall be used.
$Time$ This identifier is substituted with the value of the | The format tag may be present.

If no format tag is present, a
default format tag with width=1
shall be used.

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats”, p55

112. The ’345 Accused Infringing Devices name a string to be converted into a list of
tokens. For example, the 345 Accused Infringing Devices read DASH MPD files to play media.
MPD files can include SegmentTemplates with name strings according to the ISO IEC 23009-1

specification.

-64 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 65 of 132 PagelD #: 743

! MPD ! I mMpD |
== pDelivery k=== =T ———— -
I Function | : | I
. I | : l
T m m——— |
| I
|
Y
| ! DASH ! |
I DASH | Segment ! '
Media Le _ | Delivery | Segments | 3| [DAsH
! presentation | Function I ! Client
! Preparation | (HTTP I |
| [Server) , FHT_TP I
| . _l;jt,t_&.’_]
Figure 1 — Example system for DASH formats

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats,” p8

113. The ’345 Accused Infringing Devices canonicalize a current working directory
and the name string to form a pathname containing a plurality of substrings. For example, the
’345 Accused Infringing Devices use a canonicalization process which converts the partial
path/file name in the template into a complete path/file name using the MPEG DASH BaseURL
mechanism. The MPEG-DASH specification requires that URL references in an MPD use
reference resolution (canonicalization) for each URL in the MPD, including those related to

media segments.

5.6 Base URL Processing

5.6.1 Overview

The BaseURL element may be used to specify one or more common locations for Segments and other
resources. Reference resolution as defined in 5.6.4 shall be applied to each URL in the MPD. Handling of
multiple alternative base URLs is addressed in 5.6.5.

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats”, p64

- 65 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 66 of 132 PagelD #: 744

114. The ’345 Accused Infringing Devices, according to the required behavior in the
MPEG-DASH specification, parse the pathname and replace the substrings in Table 16 with the
associated token.

115. The ’345 Accused Infringing Devices validate the parsed pathname and should

ignore invalid pathnames within the context (Representation) in which they were defined.

5.3.9.44 Template-based Segment URL construction

The SegmentTemplatelmedia attribute, the SegmentTemplate@index attribute, the
SegmentTemplatelinitialization attribute and the SegmentTemplatefbitstreamSwitching
attribute each contain a string that may contain one or more of the identifiers as listed in Table 16.

In each URL, the identifiers from Table 16 shall be replaced by the substitution parameter defined in Table 16.
Identifier matching is case-sensitive. If the URL contains unescaped $ symbols which do not enclose a valid
identifier then the result of URL formation is undefined. In this case it is expected that the DASH Client ignores
the entire containing Representation element and the processing of the MPD continues as if this
Representation element was not present. The format of the identifier is also specified in Table 16.

Source: ISO IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming over
HTTP (DASH) —Part 1: Media presentation description and segment formats,” p. 54

116. Bitmovin has thus infringed at least claim 1 of the 345 patent by making, using,
testing, selling, offering for sale, importing and/or licensing the ’345 Accused Infringing
Devices, and operating them such that all steps of at least claim 1 are performed.

117. Bitmovin has induced infringement of least claim 1 of the *345 patent since the
filing of this action on January 30, 2019. See, e.g., DermaFocus LLC v. Ulthera, Inc., 201 F.
Supp. 3d 465, 470-472 (D. Del. Aug. 16, 2016); Softwview LLC v. Apple Inc., 2012 WL
3061027, at *7 (D. Del. July 26, 2012); Apeldyn Corp. v. Sony Corp., 852 F. Supp. 2d 568, 573-
74 (D. Del. 2012). Bitmovin’s customers are direct infringers of claim 1 of the *345 patent
when the customers use the *345 Accused Infringing Devices (i.€., Bitmovin’s MPEG-DASH
compatible video players) as described above in connection with Bitmovin’s own direct
infringement. Having knowledge of its own infringement, Bitmovin has, since the filing of the

complaint knowingly induced infringement and possessed the specific intent to encourage

- 66 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 67 of 132 PagelD #: 745

infringement of its customers by intentionally instructing its customers to infringe through
videos, demonstrations, brochures and user guides, such as those located at

https://bitmovin.com/video-player/; https://bitmovin.com/docs/player/tutorials;

https://bitmovin.com/docs/player/quickstarts; https://bitmovin.com/docs/player/fags;

https://bitmovin.com/docs/player/api-reference; https://bitmovin.com/docs/player/sdks;

https://bitmovin.com/docs/player/releases; and related domains and subdomains. Bitmovin is

thereby liable for infringement of the *345 patent under 35 U.S.C. § 271 (b). See, e.g.,
DermaFocus, 201 F. Supp. 3d at 471 (“Service of the original complaint in 2015, of course, gave
defendant actual knowledge of the 559 patent. Defendant argues that, nevertheless, the FAC
contains insufficient facts relating to whether defendant has the additional knowledge that third
parties (its customers) are infringing the patent. (D.I. 13 at 5) Having determined, however, that
plaintiff adequately pled direct infringement, and given the information contained in the FAC
regarding defendant’s promotional and educational materials (D.I. 11, exs. B, C and E), as well
as use of the accused Ulthera System by a local physician, it is plausible to infer that defendant
knew that the intended use of the Ulthera System (for which defendant’s customers received
instructions) was infringing. The court finds these allegations sufficiently to plead induced
infringement, that is, the FAC contains facts from which it is plausible to infer that defendant
knew that its conduct would induce infringement by its customers, and had the specific intent to
make it s0.”).

118. Bitmovin is also liable for contributory infringement of least claim 1 of the ’345
patent since the filing of this action on January 30, 2019 for the same reasons it is liable for
induced infringement and the following reasons. The portion of the 345 Accused Infringing

Devices (i.e., Bitmovin’s MPEG-DASH compatible video players) that replaces substrings in file

-67 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 68 of 132 PagelD #: 746

and directory pathnames with tokens in the manner described above (which is herein
incorporated by reference) is a component of the *345 Accused Infringing Devices and is a
material part of the invention of the *345 patent. Since the filing of the complaint, Bitmovin has
knowledge that this component is especially adapted for infringement of the *345 patent based on
Uniloc’s infringement allegations and is not a staple article suitable for substantial non-infringing
use of MPEG-DASH compatible video players and necessarily infringes when used in the
manner described above. DermaFocus, 201 F. Supp. 3d at 471-72 (“With respect to contributory
infringement, the FAC alleges that defendant: (1) had (at least post-suit) knowledge of the
patent; (2) is selling its Ulthera System which is especially made for infringing use; (3) had
knowledge of the infringing use; (4) the Ulthera System has no substantial non-infringing use:
and (5) there is direct infringement. (D.I. 111 at 99 15, 16 Such allegations have passed muster
under Twombley, Igbal, and their progeny in the past.””). Bitmovin is thereby liable for
infringement of the *345 patent under 35 U.S.C. § 271(c).

119. Bitmovin’s acts of direct and indirect infringement have caused damage to
Uniloc, and Uniloc is entitled to recover damages sustained as a result of Bitmovin’s wrongful

acts in an amount subject to proof at trial.

- 68 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 69 of 132 PagelD #: 747

PRAYER FOR RELIEF

WHEREFORE, Uniloc 2017 respectfully requests the following relief:

A. A judgment that Bitmovin has infringed the ’712 patent;

B. A judgment that Bitmovin has infringed the ’118 patent;

C. A judgment that Bitmovin has infringed the 005 patent;

D. A judgment that Bitmovin has infringed the 345 patent;

E. A judgment that Uniloc be awarded damages adequate to compensate it for
Bitmovin’s past infringement and any continuing or future infringement of the ’712 patent,
the *118 patent, the 005 patent and the ’345 patent, including pre-judgment and post-judgment

interest costs and disbursements as justified under 35 U.S.C. § 284 and an accounting;

F. That this be determined to be an exceptional case under 35 U.S.C. § 285;
G. That Uniloc be granted its reasonable attorneys’ fees in this action;
H That this Court award Uniloc its costs; and
L That this Court award Uniloc such other and further relief as the Court deems
proper.
DEMAND FOR JURY TRIAL

Uniloc hereby demands trial by jury on all claims and issues so triable.

-69 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 70 of 132 PagelD #: 748

DATED: July 22, 2019 Respectfully submitted,
FARNAN LLP

/s/ Michael J. Farnan

Brian E. Farnan (Bar No. 4089)
Michael J. Farnan (Bar No. 5165)
919 North Market Street, 12th Floor
Wilmington, DE 19801

phone 302-777-0300

fax 302-777-0301
bfarnan@farnanlaw.com
mfarnan@farnanlaw.com

M. Elizabeth Day (admitted pro hac vice)
David Alberti (admitted pro hac vice)
Sal Lim (admitted pro hac vice)
Marc Belloli (admitted pro hac vice)
Feinberg Day Kramer Alberti Lim
Tonkovich & Belloli LLP

1600 E1 Camino Real, Suite 280
Menlo Park, CA 94025

Tel: 650.618.4360

Fax: 650.618.4368
eday@feinday.com
dalberti@feinday.com
slim@feinday.com
mbelloli@feinday.com

Attorneys for
Uniloc 2017 LLC

-70 -

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 71 of 132 PagelD #: 749

EXRHIBIT A

case Lraronrrerere Booment T R R IR G IR IR AR TSR T

US006628712B1

a2z United States Patent (10) Patent No.: US 6,628,712 B1
Le Maguet 5) Date of Patent: Sep. 30, 2003
(54) SEAMLESS SWITCHING OF MPEG VIDEO WO WP 97 08898 * 3/1997 HO4N/7/26
STREAMS WO WQ09905870 2/1999 HO4N/7/58

(75) Inventor: Yann Le Maguet, Paris (FR) OTHER PUBLICATIONS
(73) Assignee: Koninklijke Philips Electronics N.V., Youn et al., “Adaptive motion vector refinement for high
Eindhoven (NL) performance transcoding”, IEEE, International Conference

on Image Processing, vol. 3, pp. 596-600.*

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 456 days.

* cited by examiner

Primary Examiner—Vu Le

(21) Appl. No.: 09/708,165 (74) Attorney, Agent, or Firm—Russell Gross
. No.: X
(22) Filed: Nov. 8, 2000 G7) ABSTRACT
(30) Foreign Application Priority Data A switching device SW allows to switch from a first com-
pressed data input stream IS1 to a second compressed data
NoV. 23, 1999 (EP) ovvvovveveenmereessssenesnseseneennnns 99402911 input stream IS2, resulting in a compressed data output
(51) Ite CL7 oo HO4N 7/12 Stream OS. This switching device comprises a buffer system

BS intended to store the data contained in the first and
second input streams, and control means CONT which
controls the storage of the input streams in the buffer system
in order to switch, at a switch request SWR, from the first
input stream to the second input stream, using a commuta-
tion device COM.

(52) US.CL 375/240.12; 375/240.26
(58) Field of Searchcc........... 375/240.02, 240.1,
375/240.12, 240.16, 240.13, 240.14, 240.15,

240.25, 240.26; 348/423.1, 425.1, 425.3,

416.1; 386/111; 382/235-236, 238; 358/261.2,

430

. A transcoding system TS is intended to receive the data
(56) References Cited stream at the output of the commutation device and to

U.S. PATENT DOCUMENTS provide the output stream in a seamless way. The use of a
transcoding system allows to avoid an underflow or an

6,208,759 B1 * 3/2001 Wells ..occocevvrvrrnnenn. 382/232 :
CASIS B - 1o s ISR eonofthe il s de e e
6,393,057 BL * 5/2002 Thoreau et al. 375/240 P : ; : &5y
6,483,543 Bl * 11/2002 Zhang et al. 3483001 0 encode the output stream at a bit rate R, where R may be
6,529,555 Bl * 3/2003 Saunders et al. 375/240.26 different from the bit rate R1 of the first input stream and the
6,542,546 B1 * 4/2003 Vetro et al. 375/240.12 bit rate R2 of the second input stream.
FOREIGN PATENT DOCUMENTS
EP 001079630 A1 * 2/2001 HO4N/7/24 8 Claims, 6 Drawing Sheets
r151
BUF1
, c0M2e
|_.> VLD1 |p{ DQ1 |p| IDCT1 —;'—_?'" K
.
: s1 REG |«
: v 0s
vLD2 [» DcT | @ » vic |p| BUF -jp
Po-
[.
BUF2 | | Me DQn
t
t/‘ -+« T A&
152 e \ 4
MEM IDCT,,

s2

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 73 of 132 PagelD #: 751

]
2
2 n
= ¢ OId
-]
& SNVl W ZSI
e e N e
= | 177 @ zang A\.\u
1 1
! 1
|
i ®— 14ng A.M
1S1
\&
[T
el
y—
3
=]
N

Sep. 30, 2003
=
S-(I)
O
l
:‘V

U.S. Patent
1
|
I
1
|
:
|
g :
3
N
I
|
:
L

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 74 of 132 PagelD #: 752

US 6,628,712 Bl

Sheet 2 of 6

Sep. 30, 2003

U.S. Patent

7))
Q

p
:

rd-)
3 oW
i v
“da 10a
o3/ Hl 0 0a [+ a1A

;
-t

=
o
o

cdng

S

T4N8

\

/\I

T

SI

SI

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 75 of 132 PagelD #: 753

US 6,628,712 Bl

Sheet 3 of 6

Sep. 30, 2003

U.S. Patent

S
“10a1 PO WaK
“da o] |
u_:mA.u._>A|H|aA..Gc i 1oar

oa

aiA

"
|
}
—Ill'
i ®— zdng
! i
i\ !
@ 14ng
|
| SWOD
|
|

/\j

T

SI

SI

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 76 of 132 PagelD #: 754

U.S. Patent Sep. 30, 2003 Sheet 4 of 6 US 6,628,712 B1
)
o]
N LN
=)
‘ - O)
4 —
L
0] @)
W sad
e >
—p{ O

DCT,

=@ 1 | .c i "
i o = = ()
o (e O w >
a S Le/ | |B = 12]
S kY
2] 3] ¢
=l - =
> > @)
&)
&
- o
L L
=) =
(as] (48]
.-('\/T N/\I
7)) 7))
P []

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 77 of 132 PagelD #: 755

U.S. Patent Sep. 30, 2003 Sheet 5 of 6 US 6,628,712 B1

7))
o

[5

REG

> Q -—I—P VLC
DQm
+

s2

FIG. 6

MEM |¢«—— IDCT

f
f

comze

s !

1

|

\

|

I

t

I

I

C 1

L A
DCT,

r
—® | © o
i o b i
o o |! B —>U-+
7 S SR
a 8 —S
| -l =
> > (o]
(&)
X X
- o
[Ty ™
o =
m m
~ o
) 7))
=] []

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 78 of 132 PagelD #: 756

US 6,628,712 Bl

Sheet 6 of 6

Sep. 30, 2003

U.S. Patent

SO

“10da1

["OId

S

“da

ing

J1A

93Y

CSI

Ry

Z4dng

ZaiA

TAlA

e

TdNnd

TSI

N

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 79 of 132 PagelD #: 757

US 6,628,712 B1

1

SEAMLESS SWITCHING OF MPEG VIDEO
STREAMS

FIELD OF THE INVENTION

The present invention relates to a method of and its
corresponding device for switching from a first compressed
data input stream to a second compressed data input stream,
resulting in a compressed data output stream.

Such an invention can be useful, for example, for switch-
ing and editing MPEG compressed video signals.

BACKGROUND OF THE INVENTION

International patent application WO 99/05870 describes a
method and device of the above kind. This patent application
relates, in encoding/decoding systems, to an improved
method of switching from a first encoded video sequence to
a second one. In order to avoid underflow or overflow of the
decoded buffer, a transcoding of the input streams is used to
shift the temporal position of the switching point and to
obtain at the output of the transcoders, streams containing an
identical entry point and the same decoder buffer character-
istics.

The previously described method has several major draw-
backs. According to the background art, the output bit rate
of each transcoder is equal to its input bit rate, which makes
the switching method not very flexible. Moreover, said
method implies that the first picture of the second video
sequence just after the switch will be an Intra-coded (I)
picture.

Finally, the solution of the background art is rather
complex and costly to implement as the switching device
needs two transcoders.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a method of
switching and its corresponding device that is both flexible
and easy to implement.

To this end, the invention relates to a switching device as
described in the field of the invention and comprising:

a buffer system intended to store the data contained in the

first and second input streams,

control means intended to control the storage of the input

streams in the buffer system in order to switch, at a
switch request, from the first input stream to the second
input stream using a commutation device,

and a transcoding system intended to provide the output

stream in a seamless way from the output of the
commutation device.

The present invention allows to switch from a first com-
pressed data stream encoded at a bit rate R1 to a second
compressed data stream encoded at a bit rate R2, the output
stream resulting from the switch being encoded again, using
the transcoding system, at a bit rate R where R may be
different from R1 and R2. Thus, such a switching device has
a flexible behavior.

The switching device according to the invention is also
characterized in that:

the buffer system comprises a first buffer and a second

buffer intended to store the data contained in the first
and the second input stream, respectively,

the transcoding system comprises one transcoder,

the commutation device is controlled to switch from the

output of the first buffer to the output of the second

w

15

20

25

30

35

40

45

50

55

60

65

2

buffer when said first buffer has transmitted a set of M
pictures of the first input stream, said second buffer
being controlled by the control means to transmit an [
picture,

and said switching device comprises means for generating

B pictures without forward predictions for a set of M
pictures of the second input stream including said I
picture.

As this switching device uses only one transcoder, its
implementation will be less complex and less expensive.

Finally, the switching device according to the invention is
characterized in that:

the buffer system comprises a first buffer and a second

buffer intended to store the data contained in the first
and the second input stream, respectively,

the transcoding system comprises, in association with

each input stream, first means for decoding and second
means for decoding,

the commutation device is controlled to switch from the

first input stream after decoding by the first means to
the second input stream after decoding by the second
means when the first buffer has transmitted a set of M
pictures of the first input stream, the second buffer
being controlled by the control means to transmit an [
picture or a P picture, which is re-encoded as an I
picture using decoding-encoding means,

and said switching device comprises means for generating

B pictures without forward predictions for a set of M
pictures of the second input stream including said I
picture.

Such a switching device allows to switch to a second
compressed video stream that is starting with a P picture.
Thus, the flexibility of the system is increased.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described, by way of
example, with reference to the accompanying drawings,
wherein:

FIG. 1 is a block diagram corresponding to a switching
device according to the invention,

FIG. 2 is a block diagram corresponding to a switching
device according to a first embodiment and comprising a
transcoder using only requantization means,

FIG. 3 is a block diagram corresponding to a switching
device according to a first embodiment and comprising a
transcoder using motion compensation means,

FIG. 4 is a block diagram corresponding to a switching
device according to a first embodiment and comprising a
transcoder using improved motion compensation means,

FIG. 5 is a block diagram corresponding to a switching
device according to a second embodiment and comprising a
transcoding system using only requantization means,

FIG. 6 is a block diagram corresponding to a switching
device according to a second embodiment and comprising a
transcoding system using motion compensation means,

FIG. 7 is a block diagram corresponding to a switching
device according to a second embodiment and comprising a
transcoding system using improved motion compensation
means.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention relates to an improved device for
switching and editing of compressed data signals. It relates,

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 80 of 132 PagelD #: 758

US 6,628,712 B1

3

more especially, to MPEG signals but is also applicable to
any type of compressed data such as, for example, those
provided by H-261 or H-263 standards of the International
Telecommunication Union (ITU). The principle of the
switching device according to the invention is depicted in
FIG. 1.

Such a switching device SW allows to switch from a first
compressed data input stream IS1 to a second compressed
data input stream IS2, resulting in a compressed data output
stream OS.

This switching device comprises a buffer system BS
intended to store the data contained in the first and second
input streams, and control means CONT which controls the
storage of the input streams in the buffer system in order to
switch, at a switch request SWR, from the first input stream
to the second input stream, using a commutation device
COM.

A transcoding system TS is intended to receive the data
stream at the output of the commutation device and to
provide the output stream in a seamless way. The use of a
transcoding system allows to avoid an underflow or an
overflow of the buffer of the decoder that will have to decode
the output stream. Moreover, said transcoding system allows
to encode the output stream at a bit rate R, where R may be
different from the bit rate R1 of the first input stream and the
bit rate R2 of the second input stream.

The present invention will now be described more spe-
cifically for MPEG video data switching. FIG. 2 is a block
diagram corresponding to a first embodiment of a switching
device of MPEG video streams. In this first embodiment, the
switching device comprises:

a first buffer BUF1 and a second buffer BUF2 intended to
store the data contained in the first and the second input
stream, respectively,

a commutation device COM, and

a transcoder TRANS.

The switching operation from a first video input stream to
a second video input stream can be performed if the second
input stream starts, in the order of transmission, with a
picture with no reference to the past (Intra-coded (I) picture)
and if the last presented picture of the first input stream, in
the order of display, has no reference to the future (Predicted
(P) picture or I picture). Furthermore, the bidirectional (B)
pictures following, in the order of transmission, the first
inserted picture of the second input stream shall not contain
forward predictions, that is, the first inserted Group Of
Pictures (GOP) of the second input stream has to be a closed
GOP. For this purpose, the switching device according to the
invention also comprises means for generating B pictures
without forward predictions for the first set of M pictures of
the second input stream transmitted after switching, M being
the distance between two consecutively I or P pictures.

As a first consequence, if the second input stream does not
start with a closed GOP, then the first B pictures following
the I picture will be:

either ejected

or replaced by Uniform Color (UC) pictures obtained by
freezing the last picture, in the order of display of the
first input stream, or by freezing the first I picture of the
second input stream.

As a second consequence, the commutation device is
intended to switch from the output of the first buffer to the
output of the second buffer when said first buffer has
transmitted a set of M pictures, said second buffer being
ready to transmit an I picture. To this end, the two buffers are
at least N pictures long, where N is the distance between two

10

15

20

25

30

35

40

45

50

55

60

65

4

consecutive I pictures and are filled using a writing pointer
and read using a reading pointer, the writing and reading
pointers being controlled by a controller. At a switch request,
the reading of the current set of M pictures (P,B, ,B, ; or
I,B, B, , in the order of transmission and B, ,B, P, or
B, ,B, I, in the order of display) in the first buffer is first
completed, then the commutation device switches to the
output of the second buffer while the reading pointer of the
second buffer is positioned at the beginning of the current I
picture.

The transcoder according to the invention comprises a
Variable Length Decoding block VLD and a dequantization
block DQ for decoding the incoming stream, connected in
series to a quantization block Q and a Variable Length
Coding block VLC for re-encoding the stream, and a buffer
BUF. To prevent overflow or underflow of this buffer, a
regulation REG is performed; the buffer occupancy is con-
trolled by a feedback to the DCT coefficient quantization.
When switching from a video sequence encoded at a bit rate
R1 to another one that has been separately encoded at a bit
rate R2, the respective decoder buffer delays at the switching
point do not match. The role of the transcoder is to com-
pensate the difference between these buffer delays in order
to provide the output stream OS in a seamless way.
Furthermore, the encoded bit rate R of the output stream can
be chosen by the user.

In this first embodiment, the first picture of the second
input stream can only be an I picture, as this first picture
must not have reference to previous pictures, which are
included in the first input stream. Moreover, the switching
operation is reversible, which means that, at a switch
request, a switch can also be made from the second input
stream to the first input stream.

The transcoder of FIG. 2 is a simple one which mainly
contains requantization means. FIGS. 3 and 4 show a
switching device comprising more complex transcoders
using motion compensation means. Such motion compen-
sation means are used to correct the error drift on P/B
pictures that occurs when only requantization means are
used.

In FIG. 3, the transcoder comprises:

a decoding channel comprising a Variable Length Decod-
ing block VLD connected in series to a dequantization
block DQ,

an encoding-decoding channel comprising a quantization
block Q connected in series to a Variable Length
Coding block VL.C, the output of the quantization block
also being connected to an extra dequantization block
DQ,,,

an interface sub-assembly connected between the decod-
ing channel and the encoding-decoding channel, and
comprising:

a first subtractor s1, whose positive input receives the
output of the decoding channel and whose output is
connected to the input of the Q block,

a second subtractor s2, whose positive input receives
the output of the DQ,, block and whose negative
input is connected to the output of the first subtractor,

an Inverse Discrete Cosine Transform block IDCT, a
frame memory MEM, a motion compensation block
MC and a Discrete Cosine Transform block DCT, all
connected in series between the output of the second
subtractor and the negative input of the first
subtractor, the motion compensation being per-
formed from motion vectors representing the motion
of each macro-block of the current picture relative to
the corresponding macro-block of a previous picture
in the transmission order.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 81 of 132 PagelD #: 759

US 6,628,712 B1

5

In FIG. 4, the transcoder is more sophisticated and
comprises:

a decoding channel comprising a Variable Length Decod-
ing block VLD connected in series to a dequantization
block DQ and an Inverse Discrete Cosine Transform
block IDCT,

an encoding-decoding channel comprising a Discrete
Cosine Transform block DCT connected in series to a
quantization block Q and a Variable Length Coding
block VLC, the output of the quantization block also
being connected to an extra dequantization block DQ,,
followed by an extra Inverse Discrete Cosine Trans-
form block IDCT,,,

an interface sub-assembly, connected between the decod-
ing channel and the encoding-decoding channel, and
comprising:

a first subtractor s1, whose positive input receives the
output of the decoding channel and whose output is
connected to the input of the DCT block,

a second subtractor s2, whose positive input receives
the output of the IDCT,, block and whose negative
input is connected to the output of the first subtractor,

a frame memory MEM and a motion compensation
block MC connected in series between the output of
the second subtractor and the negative input of the
first subtractor.

FIG. 5 is a block diagram corresponding to a second
embodiment of the switching device. In this second
embodiment, the switching device comprises:

a buffer system comprising a first buffer BUF1 and a
second buffer BUF2, said buffers being at least M
pictures long,

a transcoding system comprising:

a first decoding channel, whose input corresponds to
the output of the first buffer, comprising a first
Variable Length Decoding block VLLD1 connected in
series to a first dequantization block DQ1,

a second decoding channel, whose input corresponds to
the output of the second buffer, comprising a second
Variable Length Decoding block VILD2 connected in
series to a second dequantization block DQ2,

an encoding channel comprising a quantization block Q
connected in series to a Variable Length Coding
block VLC and a buffer BUF providing the encoding
output stream OS, regulation means REG for con-
trolling the buffer occupancy by a feedback to the
quantization block,

a commutation device comprising a first commutator
COM1, whose inputs are the outputs of the dequanti-
zation blocks DQ1 and DQ2 and which is connected,
before switching from the first input stream to the
second input stream, to the output of the DQ2 block,
and a second commutator COM2 having three inputs A,
B and C, whose input A is the output of the dequanti-
zation block DQ1, whose input B is the output of the
dequantization block DQ2 and whose output C is the
input of the encoding channel,

and a decoder comprising
an Inverse Discrete Cosine Transform block IDCT,,
an adder a, whose first input is the output of the IDCT,

block and a subtractor s, whose positive input is the
output of the adder,

a frame memory MEM, and a motion compensation
block MC, connected in series, on the one hand to
the output of the adder and, on the other hand to the
second input of the adder and the negative input of
the subtractor,

10

15

20

25

30

35

40

50

55

60

65

6

and a Discrete Cosine Transform block DCT,, which
receives the output of the subtractor and whose
output is the third input C of the commutator COM2.

In comparison with the previous schemes, the decoder has
been added and allows to switch from a first input stream to
a second input stream at a P picture of said second input
stream. For this purpose, the decoder decodes all the P
picture of the second input stream arriving before the switch
from the first input stream to the second input stream.
During this step, the first input stream is transcoded. Once
the user wants to switch to the second input stream, the last
decoded P picture, provided at the output of the IDCT,
block, is re-encoded as an I picture provided at the output of
the adder. Furthermore, the B pictures following this new I
picture are modified into B pictures having only backward
vectors thanks to the motion compensation means MC, and
the subtractor. B pictures without forward predictions are,
for example, uniform color pictures as previously described
in the first embodiment.

As a consequence, at a switch request, the reading of the
current set of M pictures in the first buffer is completed first.
Then, the commutator COM2 switches from input A to input
C, the decoder being ready to transmit the decoded P picture
that has been re-encoded as an I picture and the rest of the
set of M pictures. Finally, the commutator COM2 switches
from C to B, the reading pointer of the second buffer being
positioned at the beginning of the second set of M pictures.

In this second embodiment, the first picture of the second
input stream can be an I picture or a P picture. The switching
operation is also reversible, which means that a switch can
be made, at a switch request, from the second input stream
to the first input stream, the commutator COM1 being
connected, before the switch, to the output of the DQ1 block
and the commutator COM2 being positioned at input B.

The transcoder of FIG. § is a simple one that mainly
contains a requantization step. FIGS. 6 and 7 show a
switching device comprising more complex transcoders
using motion compensation means.

In FIG. 6, the transcoder comprises:

an interface sub-assembly, connected between the second
commutator and the encoding channel, and comprising:
a first subtractor s1, whose positive input receives the

output of the second commutator and whose output
is connected to the input of the Q block,

a second subtractor s2, whose positive input receives
the output of a dequantization block DQ,, connected
to the output of the Q block, and whose negative
input is connected to the output of the first subtractor,

an Inverse Discrete Cosine Transform block IDCT, a
frame memory MEM, a motion compensation block
MC and a Discrete Cosine Transform block DCT, all
connected in series between the output of the second
subtractor and the negative input of the first subtrac-
tor.

In FIG. 7, the transcoder comprises:

the two decoding channels described in FIG. 5 with, in
addition, an Inverse Discrete Cosine Transform block
IDCT1 or IDCT2 connected between the output of
DQ1 or DQ2 block and the input A or B of the second
commutator, respectively,

the encoding channel described in FIG. 5 with, in
addition, a Discrete Cosine Transform block DCT
located before the Q block,

a third decoding channel connected to the output of the Q
block and comprising an extra dequantization block
DQ,, followed by an extra Inverse Discrete Cosine
Transform block IDCT,,,

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 82 of 132 PagelD #: 760

US 6,628,712 B1

7

an interface sub-assembly, connected between the second

commutator and the encoding channel, and comprising:

a first subtractor s1, whose positive input receives the
output of second commutator and whose output is
connected to the input of the DCT block,

a second subtractor s2, whose positive input receives
the output of the IDCT,, block and whose negative
input is connected to the output of the first subtractor,

a frame memory MEM and a motion compensation
block MC connected in series between the output of
the second subtractor and the negative input of the
first subtractor.

What is claimed is:

1. A device for switching (SW) from a first compressed
data input stream (IS1) to a second compressed data input
stream (IS2), resulting in a compressed data output stream
(08), said switching device comprising:

a buffer system (BS) to store the data contained in the first

and second input streams,

control means (CONT) to control the storage of the input
streams in the buffer system in order to switch, at a
switch request (SWR), from the first input stream to the
second input stream using a commutation device
(com),

and a transcoding system (TS) including a quantization
block and a buffer, wherein occupancy of the buffer in
the transcoding system is controlled by feedback to the
quantization block to provide the output stream in a
seamless way from the output of the commutation
device.

2. A switching device for switching (SW) from a first
compressed data input stream (IS1) to a second compressed
data input stream (IS2), resulting in a compressed data
output stream (OS), said switching device comprising:

a buffer system (BS) intended to store the data contained

in the first and second input streams,
control means (CONT) to control the storage of the input
streams in the buffer system in order to switch, at a
switch request (SWR), from the first input stream to the
second input stream using a commutation device
(COM),

and a transcoding system (TS) to provide the output
stream in a seamless way from the output of the
commutation device,

wherein the buffer system comprises a first buffer (BUF1)

and a second buffer (BUF2) intended to store the data
contained in the first and the second input stream,
respectively,

wherein the transcoding system comprises one transcoder,

the commutation device is controlled to switch from the

output of the first buffer to the output of the second
buffer when said first buffer has transmitted a set of M
pictures of the first input stream, said second buffer
being controlled by the control means to transmit an I
picture,

and said switching device comprises means for generating

B pictures without forward predictions for a set of M
pictures of the second input stream including said I
picture.

3. A switching device for switching (SW) from a first
compressed data input stream (IS1) to a second compressed
data input stream (IS2), resulting in a compressed data
output stream (OS), said switching device comprising:

a buffer system (BS) to store the data contained in the first

and second input streams,

8

control means (CONT) to control the storage of the input
streams in the buffer system in order to switch, at a
switch request (SWR), from the first input stream to the
second input stream using a commutation device
5 (COM),
and a transcoding system (TS) to provide the output
stream in a seamless way from the output of the
commutation device,
wherein the buffer system comprises a first buffer and a
second buffer intended to store the data contained in the
first and the second input stream, respectively,

wherein the transcoding system comprises, in association
with each input stream, first means for decoding and
second means for decoding,

the commutation device is controlled to switch from the

first input stream after decoding by the first means to
the second input stream after decoding by the second
means when the first buffer has transmitted a set of M
pictures of the first input stream, the second buffer
being controlled by the control means to transmit an [
picture or a P picture, which is re-encoded as an I
picture using decoding-encoding means,

and said switching device comprises means for generating

B pictures without forward predictions for a set of M
pictures of the second input stream including said I
picture.

4. A method of switching from a first compressed data
input stream to a second compressed data input stream,
resulting in a compressed data output stream, said method of
switching comprising the steps of:

buffering, in which the data contained in the first and the

second input stream are stored,
controlling the storage of the input streams during the
buffering step in order to switch, at a switch request,
from the first input stream to the second input stream,

transcoding the stream provided by the control step, the
transcoding includes controlling occupancy of a buffer
by feedback to DCT coefficient quantization in order to
provide the output stream in a seamless way.

5. A method of switching from a first compressed data
input stream to a second compressed data input stream,
resulting in a compressed data output stream, said method of
switching comprising the steps of:

buffering, in which the data contained in the first and the

second input stream are stored,

controlling the storage of the input streams during the

buffering step in order to switch, at a switch request,
from the first input stream to the second input stream,
transcoding the stream provided by the control step in
order to provide the output stream in a seamless way,
wherein the transcoding step comprises one transcoding
channel,

the control step allows to switch, at a switch request, from

the first input stream to the second input stream when
the buffering step has transmitted a set of M pictures of
the first input stream, the buffering step being con-
trolled to transmit an I picture,

and said method of switching comprises a step of gener-

ating B pictures without forward predictions for a set of
M pictures of the second input stream including said I
picture.

6. A method of switching from a first compressed data
65 input stream to a second compressed data input stream,

resulting in a compressed data output stream, said method of
switching comprising the steps of:

10

15

20

25

30

35

40

50

55

60

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 83 of 132 PagelD #: 761

US 6,628,712 B1

9

buffering, in which the data contained in the first and the
second input stream are stored,

controlling the storage of the input streams during the
buffering step in order to switch, at a switch request,
from the first input stream to the second input stream,

transcoding the stream provided by the control step in
order to provide the output stream in a seamless way

wherein the transcoding step comprises a first sub-step of
decoding the first input stream and a second sub-step of
decoding the second input stream,

the control step allows to switch, at a switch request, from
the first input stream after the first decoding step to the
second input stream after the second decoding step
when the buffering step has transmitted a set of M
pictures of the first input stream, the buffering step
being controlled to transmit an I picture or a P picture,
which is re-encoded as an I picture using a decoding-
encoding step,

and said method of switching comprises a step of gener-
ating B pictures without forward predictions for a set of
M pictures of the second input stream including said I
picture.

7. A device for switching (SW) from a first compressed
data input stream (IS1) to a second compressed data input
stream (IS2), resulting in a compressed data output stream
(08), said switching device comprising:

a buffer system (BS) intended to store the data contained

in the first and second input streams,

15

20

25

10

control means (CONT) intended to control the storage of
the input streams in the buffer system in order to
switch, at a switch request (SWR), from the first input
stream to the second input stream using a commutation
device (COM),

and a transcoding system (TS) intended to provide the

output stream in a seamless way from the output of the
commutation device,

means for generating B pictures without forward predic-

tions for a set of M pictures of the second input stream
including an I picture.

8. A method of switching from a first compressed data
input stream to a second compressed data input stream,
resulting in a compressed data output stream, said method of
switching comprising the steps of:

buffering, in which the data contained in the first and the

second input stream are stored,

controlling the storage of the input streams during the

buffering step in order to switch, at a switch request,
from the first input stream to the second input stream,
transcoding the stream provided by the control step in
order to provide the output stream in a seamless way,
generating B pictures without forward predictions for a
set of M pictures of the second input stream including
an I picture.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 84 of 132 PagelD #: 762

EXHIBIT B

case traonrrrere Bocoment = RTFTRA N (ARSI >

US006895118B2
a» United States Patent (o) Patent No.: US 6,895,118 B2
Valente et al. 5) Date of Patent: May 17, 2005
(549) METHOD OF CODING DIGITAL IMAGE (56) References Cited
BASED ON ERROR CONCEALMENT U.S. PATENT DOCUMENTS
(75) Inventors: Stephane Edouard Valente, Paris (FR); 5455629 A * 10/1995 Sun et al. 375/240.27
Cecile Dufour, Paris (FR) 6,359,121 B1 * 3/2002 Ebenezer et al. 534/634
6,445,823 B1 * 9/2002 Liangcccecvvivnnnns 382/232
(73) Assignee: Koninklijke Philips Electronics N.V., 6,480,543 B1 * 11/2002 Pau et al. 375/240.16
Eindhoven (NL) 6,658,157 B1 * 12/2003 Satoh et al. 382/239

otice: ubject to any disclaimer, the term of this
*) Noti Subj y disclai h f thi
patent is extended or adjusted under 35

U.S.C. 154(b) by 564 days.

(21) Appl. No.: 10/086,741

(22) Filed: Mar. 1, 2002
(65) Prior Publication Data
US 2003/0031261 Al Feb. 13, 2003

(30) Foreign Application Priority Data

Mar. 6, 2001 (FR) .ooooiiiiiiiiiiiiiiiicccciiee e, 01 03047
(51) Int. CL7 oo GO6K 9/36
(52) US. Cl oo 382/232
(58) Field of Searchc.cccocooveeiiene. 382/232-233,

382/236, 238-239, 240, 248, 250-252;

348/384.1, 390.1, 391.1, 394.1, 395.1, 400.1-404.1,
407.1-416.1, 420.1, 421.1, 425.1, 430.1,

431.1; 375/240, 240.01, 240.02, 240.12-240.2,
240.24-240.28

'S
—

6,690,833 Bl 2/2004 Chiang et al. 382/236
OTHER PUBLICATIONS

“Geometric—Structure—Based Error Concealment with
Novel Applications in Block—Based Low—Bit—Rate Coding”
by W. Zeng and B. Liu in IEEE Transactions on Circuits and
Systems For Video Technology, vol. 9, No. 4, Jun. 1999.

* cited by examiner

Primary Examiner—Jose L. Couso
57 ABSTRACT

The invention relates to a method of coding a digital image
comprising macroblocks in a binary data stream, comprising
an estimation step, for macroblocks, of a capacity to be
reconstructed by an error concealment method, a decision
step for excluding macroblocks from the coding, a decision
to exclude a macroblock from coding being made on the
basis of the capacity of such macroblock to be reconstructed
and a step of inserting a resynchronization marker into the
binary data stream following the exclusion of one or more
macroblocks.

10 Claims, 2 Drawing Sheets

QC(MB)
MV(MB)

EST

™~/

DEC

-/ MARK

v BIN

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 86 of 132 PagelD #: 764

U.S. Patent May 17,2005 Sheet 1 of 2 US 6,895,118 B2
lQC(MB)
MV(MB)
\/EST
CAP(MB)
DEC
Y, AR
N i - MARK
v BIN
FIG.1
VP
/'_ —A -~
= WJ FIG.2a
MA
H MB” MBn+i+1 MBn+i+j MBn+m
————— FIG.2b
t p Lo
MBn MBn+i MBn+i+j+1
T B FiG2c
A— A
MBn MBna+i MBa+i+j+t
MA
=+ L FIGQd

MBx, MBa+i MBn+isj+1

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 87 of 132 PagelD #: 765

U.S. Patent May 17, 2005 Sheet 2 of 2 US 6,895,118 B2

QC(MB)

MB

DR |

ADD

DEC

J
MV(MB)

FIG.3

DFRMT VLD IDCIQ Me N
N) 4&-
VP (B | by M
|——>
DET T

J_.y___
PEC - Ny — P)
EC N\ 1 < T\}EM
scT/ 1 CDEC
SEC |
S FIG. 4

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 88 of 132 PagelD #: 766

US 6,895,118 B2

1

METHOD OF CODING DIGITAL IMAGE
BASED ON ERROR CONCEALMENT

DESCRIPTION

The invention relates to a method of coding a digital
image comprising macroblocks in a binary data stream, the
method comprising:

an estimation step, for macroblocks, of capacity to be
reconstructed via an error concealment method,

a decision step for macroblocks to be excluded from the
coding, a decision to exclude a macroblock from cod-
ing being made on the basis of the capacity of such
macroblock to be reconstructed.

A coding method of such type is known from the docu-
ment “Geometric-Structure-Based Error Concealment with
Novel Applications in Block-Based Low-Bit-Rate Coding”
by W. Zeng and B. Liu in IEEE Transactions on Circuits and
Systems For Video Technology, Vol. 9, No. 4, Jun. 1999.
That document describes exclusions of blocks belonging to
macroblocks, block combination, said macroblocks being
capable of being intercoded or intracoded. That document
proposes harmonizing this block exclusion with video cod-
ing standards, either, in a first solution, by replacing uncoded
blocks with constant blocks, black blocks for example,
subsequently detected by the receiver, or, in a second
solution, by modifying the word that defines which blocks
are coded within a macroblock, such modification taking
place at the same time as a modification of the address words
of the macroblocks when all the blocks in a macroblock are
excluded. A certain number of bits are allocated to commu-
nicate the address of the excluded blocks in the interceded
macroblocks.

The invention is associated with the following consider-
ations:

The MPEG-4 standard defines a coding syntax and pro-
poses a certain number of tools for managing transmission
errors. These tools for managing transmission errors impose
certain constraints. Among these tools the MPEG-4 standard
proposes tools for resynchronizing the binary data stream
which periodically insert resynchronization markers into the
data stream. These markers are used by the receiver which
is resynchronized thanks to them during decoding. When an
error occurs in the data stream, the receiver cannot read the
data any more until it detects a subsequent resynchronization
marker. The set formed by the marker and data between this
marker and the following marker, is called a video packet.
The resynchronization marker is included in a header ele-
ment of the video packet. The header element also contains
the number of the first macroblock of the video packet, to
allow spatial resynchronization, and parameters that permit
the receiver to continue decoding. The numbers of the
subsequent macroblocks are not present in the data stream.
Resynchronization as defined in the MPEG-4 standard can
thus be qualified as point resynchronization, because it only
exists for certain items of data in a stream, the rest of the
stream being interpreted passively. In this case it is therefore
impossible to change the addresses of the macroblocks or
indicate which blocks are not coded, according to the second
solution proposed in the document cited in the foregoing. All
macroblocks are thus decoded and placed sequentially, giv-
ing rise to graphical “lag” errors of image elements if
macroblocks have been excluded. The first solution pro-
posed in the document cited involves detection by the
decoder of the constant blocks replacing the excluded
blocks. No provision for such detection is made in the
MPEG-4 syntax, and this will cause graphical errors on most
receivers.

10

15

20

25

30

35

40

45

50

55

60

65

2

It is an object of the present invention to suggest a coding
method that includes an exclusion of macroblocks having a
certain capacity to be reconstructed from the coding com-
patible with coding standards which include point resyn-
chronization means.

Indeed, a coding method as defined in the introductory
paragraph is characterized according to the invention in that
it also includes a step of inmserting a resynchronization
marker into the binary data stream after the exclusion of one
or more macroblocks.

The resynchronization marker represents a certain num-
ber of bits in the data stream (at least between 17 and 23
bits). It is a further object of the present invention to reduce
the binary data stream associated with the transmission of
digital images by excluding macroblocks. Given the fact that
according to the invention the exclusion of one or, more
generally, several macroblocks leads to the insertion of a
resynchronization marker which represents a certain number
of bits, this exclusion of macroblocks can contribute nothing
in terms of reducing the size of the binary data stream.

In a particularly advantageous embodiment, the coding
method is characterized in that the decision step includes a
substep of evaluation of the reduction of the binary data
stream effected by an exclusion of macroblocks, the decision
to exclude macroblocks being made as a function of the
reduction of the binary data stream resulting from said
exclusion.

The present invention may be implemented in a coder, for
example a video coder. The present invention also relates to
a data stream such as is produced via a method according to
the invention. In consequence, the invention also relates to
a decoding method and a decoder that allows correct decod-
ing of a data stream such as is produced by a method
according to the invention. Finally, the invention relates to
computer programs for implementing the various steps of
the method according to the invention.

These and other aspects of the invention are apparent
from and will be elucidated, by way of non-limitative
example, with reference to the embodiment(s) described
hereinafter.

IN THE DRAWINGS

FIG. 1 is a functional diagram representing the various
steps of a coding method of a digital image comprising
macroblocks in a binary data stream.

FIG. 2 shows the effect of the method according to the
invention on a stream comprising coded data of a digital
image comprising macroblocks.

FIG. 3 is a schematic diagram of a video coder according
to the invention.

FIG. 4 is a schematic diagram of a video decoder accord-
ing to the invention.

FIG. 1 is a functional diagram representing the various
steps of a method of coding a digital image containing
macroblocks MB in a binary data stream according to the
invention. In the embodiment illustrated here, the method
according to the invention relates specifically to the portion
of the coding that is performed on macroblocks MB that
have already been converted in the form of a set of quantized
coefficients QC(MB) and motion vectors MV(MB). It is
these quantized coefficients QC(MB) and these motion
vectors MV(MB) that are inserted at the beginning of the
method in this embodiment. A first estimation step EST
estimates a capacity CAP(MB) of the macroblocks to be
reconstructed by an error concealment method. The estima-
tion of this capacity may include various criteria.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 89 of 132 PagelD #: 767

US 6,895,118 B2

3

These criteria correspond to the error concealment means
available in the decoders. Accordingly, two major classes of
error concealment are possible: spatial error concealment
and temporal error concealment. In particular, the homog-
enous regions and the regions of homogenous motion tend
to manifest a certain capacity to be reconstructed by an error
concealment method.

For example, a first set of criteria relates to the homog-
enous regions and thus performs spatial error concealment:
adjacent repetition of similar macroblocks in a sequence of
macroblocks, or the facility with which a macroblock can be
reconstructed by spatial interpolation from its neighbors.
These two criteria may be practically and simply evaluated,
for example, by calculating a difference between the mac-
roblock that is considered for exclusion and one or more
macroblocks that are either adjacent or spatially interpolated
from the neighboring macroblocks, which calculation is
performed as part of the estimation step EST.

Another set of criteria is associated with the regions of
homogenous motion and performs temporal error conceal-
ment. For example, macroblocks belonging to regions of
homogenous motion can thus be excluded, while the motion
vectors of the neighboring macroblocks can be used to
interpolate the excluded macroblocks. This criterion may be
evaluated by calculating a difference between motion vec-
tors of neighboring macroblocks and between quantization
coefficients of a residual signal of the macroblocks from one
image to the next.

The capacity CAP(MB) may thus be estimated by very
diverse means that are known to one skilled in the art. The
capacity CAP(MB) coming from the estimation step EST,
may be in binary form or may be a number whose value is
determined, for example, by the degree to which the mac-
roblock considered for exclusion differs from an interpolated
macroblock.

The method according to the invention then includes a
decision step DEC regarding exclusion of macroblocks from
coding. This decision is made on the basis of the capacity
CAP(MB) of the macroblocks to be reconstructed. If capac-
ity CAP(MB) is binary, the macroblock is excluded for a
certain bit value, if capacity CAP(MB) is a number, the
macroblock is excluded, for example, for capacity values
that exceed a predetermined threshold. This predetermined
threshold may be fixed or modulated depending on the
resources available for transmission as will be described in
the following. These conditions regarding capacity CAP
(MB) define “good” reconstruction capacity in the following
of the description.

In a particularly advantageous embodiment of the
invention, the decision step comprises a substep wherein the
reduction in size of the binary data stream resulting of an
exclusion of macroblocks is evaluated, the decision on
whether to exclude macroblocks being based on a criterion
of the reduction of the binary data stream such exclusion.
This step is justified by the fact that the insertion of the
resynchronization marker entails insertion of a complete
header element, which represents a certain number of bits in
the data stream (at least between 17 and 23 bits). A further
object of the invention is to reduce the size of the binary data
stream associated with the transmission of images by
excluding macroblocks. Given the fact that according to the
invention the exclusion of one or, more generally, several
macroblocks leads to the insertion of a complete header
element, which represents a certain number of bits, said
exclusion of macroblocks cannot contribute anything to the
reduction of the binary data stream. An evaluation of the

10

15

20

25

30

35

40

45

50

55

60

65

4

reduction of the binary data stream effected by the exclusion
of macroblocks therefore serves a practical purpose. In this
step EVAL, the number of bits saved by the exclusion of a
certain number of macroblocks is evaluated, this number is
then compared, in the decision step DEC for example, with
the number of bits represented by the insertion of a header
element. The decision to exclude is made when the reduction
of the binary data stream caused by the exclusion from
coding of the macroblocks is not zero.

The method according to the invention advantageously
includes a calculation step CAL of an output rate of the
binary data stream, the decision to exclude macroblocks
being made on the basis of this output rate of the binary data
stream. This calculation step CAL is performed in conjunc-
tion with transmission means of the coded macroblocks that
transport the binary data stream.

Said steps CAL, EST and EVAL may also be combined:
for example, the result of the calculation step CAL may
influence the value of the threshold that determines “good”
reconstruction capacity of macroblocks, said threshold
becoming increasingly stringent as the available stream
becomes greater. It is thus possible to consider a step that
combines the results of the evaluation step EVAL and those
of the calculation step CAL for determining a threshold
value for the capacities CAP(MB) beyond which macrob-
locks having a capacity CAP(MB) higher than this threshold
are excluded in the decision step DEC.

Depending on the result of the decision step DEC, the
macroblock is either inserted into the video packet in a step
BC (case N) or excluded from coding in a step EXC (case
Y). In step BC, the bits are counted to trigger the insertion
of a resynchronization marker in a step MARK when the
video packet is of sufficient size. After each step EXC, a
resynchronization marker is inserted into the binary data
stream in step MARK. Here, the term “synchronization
marker” must be interpreted generally to include, for
example in the MPEG-4 standard, such conventional mark-
ers as RESYNC, VOPStart (start of a temporal instance
(plan) of a video object), GOVStart (start of a group of
temporal instances of a video object), EOS (end of video
session). At the end of the method a binary data stream BIN
is thus obtained.

It should be noted that the way of constitution of video
packets may arbitrarily use a data partitioning and that the
invention is generally unaffected by the use or not or not of
a data partitioning.

It should be noted that the MPEG-4 standard already
proposes not to code certain macroblocks in a video object
or, more generally, in a video image, indicating this absence
of coding by the presence of an “uncoded” flag. The
presence of this flag is interpreted by the decoders which
replace the uncoded macroblock with the macroblock
located in the same position in a preceding instance of the
video object. In general, the instance immediately preceding
the instance in question is used. As a consequence, this flag
can only be used for P coded images, for which a preceding
instance is available and implicitly echoed in B coded
images. The insertion of a flag of this nature is therefore only
useful for regions having a motion vector close to zero and
for which the texture has not changed significantly from one
image or instance to the next. The exclusion of macroblocks
from coding according to the invention does not entail the
insertion of any specific flag and the exclusion of macrob-
locks from coding is thus possible for all modes of I, P or B
coding.

FIG. 2 illustrates the effect of the method according to the
invention on a binary data stream comprising coded data of

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 90 of 132 PagelD #: 768

US 6,895,118 B2

5

a digital image or a video object including macroblocks.
FIG. 2a represents a video packet VP with a header element
H including a resynchronization marker MA. The periodic-
ity of the markers may be based on a number of macroblocks
or, more advantageously, on a number of bits. The latter
solution, preferably selected by the MPEG-4 standard,
allows the markers to be distributed uniformly throughout
the stream. In all cases, a resynchronization marker and the
data that follow up to the next resynchronization marker
define a video packet. When the periodicity of the markers
is based on a number of bits, the length of these video
packets is determined by a mechanism according to which,
if the number of bits in the current video packet exceeds a
threshold value, a new video packet is created at the start of
the following macroblock by the insertion of a resynchro-
nization marker.

In the MPEG-4 standard, information necessary for
restarting the decoding procedure in the receiver, as well as
the number n of the first macroblock MB(n) of the video
packet and the quantization parameters necessary for decod-
ing this first macroblock, are included in a header element
that also contains the resynchronization marker. The number
n of the first macroblock allows spatial resynchronization to
be performed and the quantization parameters allow the
differential decoding procedure to be resynchronized. The
numbers of the subsequent macroblocks are not indicated.

In FIG. 2b the macroblocks having good capacity to be
reconstructed are designated by slanted hatching. They are
the j macroblocks MB,,,;,, to MB, ;... When these macrob-
locks are inserted in the method described in the foregoing
and in FIG. 1, the construction of the video packet is
interrupted by the exclusion decision EXC represented sche-
matically in FIG. 2¢. Here, the schematic representation
illustrates a case without data partitioning, where the mac-
roblocks follow one another in a simple, serial stream. Data
partitioning does not contradict the principle of the inven-
tion. The resulting binary data stream in such case is shown
in FIG. 2d. A resynchronization marker MA and the asso-
ciated header element have been inserted in the stream at the
point where the first one of the excluded macroblocks should
have been, and before macroblock MB,,,,, ;. Here, the
reduction in the size of the binary data stream caused by the
insertion of resynchronization marker MA and the associ-
ated header element is not zero according to FIG. 2: the bloc
representing excluded macroblocks MB,,,,, to MB, .. is
larger than the size of the inserted header element. If an
evaluation step EVAL is included in the method, this exclu-
sion of macroblocks is effected; such exclusion would not
take place if an evaluation step EVAL were present and if the
block representing the macroblocks had been smaller than
the block including the header element.

Since the binary data stream includes coded data of a
digital image comprising macroblocks, said binary data
stream being such that macroblocks MB,,, ,,; to MB,, ;. are
not coded in the binary data stream for at least one point in
the binary data stream and since such uncoded macroblocks
are capable of being reconstructed by an error concealment
method, said binary data stream is thus characterized accord-
ing to the invention in that a resynchronization marker MA
is present in the binary data stream at the location in the
binary data stream where the macroblocks are not coded.

FIG. 3 is a schematic diagram of a video coder according
to the invention. The video coder represented in FIG. 3
receives graphic data (images) in the form of macroblocks
MB. These graphic images are converted as part of a first
coding stage ENC in which the information contained in the
macroblocks is coded into quantized coefficients QC(MB)

10

15

20

25

30

35

40

45

50

55

60

65

6

and motion vectors MV(MB) by a series of operations such
as addition ADD, subtraction SUB, transformation DCTQ
and IDCTQ, and motion estimation and compensation
MCE. A memory MEM enables certain of these operations
to be performed and serves to store the data (for example
image data). The macroblocks may be interceded or intra-
coded. The quantized coefficients QC(MB) and the motion
vectors MV(MB) are sent, on the one hand, to a variable
length coder VLC and, on the other, to an estimation module
EST. As is shown in FIG. 3, the estimation module EST is
advantageously coupled to memory MEM of the first coding
stage ENC. In the coder VLC, the quantized coefficients
QC(MB) and the motion vectors MV(MB) are converted to
a first form for subsequent formatting. The capacity of the
macroblocks to be reconstructed via an error concealment
method is estimated in the estimation module EST. The
capacity value is then sent to a decision module DEC
connected to an interrupter INT which belongs to a formatter
FRMT which formats the data it receives in the output
format of the coder VL.C. Depending on the capacity value
CAP(MB) and, advantageously depending on the result of
an evaluation step with respect to the reduction in size of the
binary data stream and of a calculation step with respect to
the output rate of the binary data stream, the decision
module DEC switches interrupter INT between two coding
paths. When the decision module DEC switches the inter-
rupter to position 1, the video packet is constructed in
conventional manner, by counting the bits or the macrob-
locks in a module BC. The insertion of a header element
including a resynchronization marker is then effected by a
marking module MARK when the video packet reaches the
required size. When the decision module DEC switches the
interrupter to position 2, the macroblocks which the decision
module has decided to exclude are excluded from the coding
by a module which carries out an exclusion step EXC. After
each exclusion step EXC, a header element including a
resynchronization marker is inserted in the binary data
stream by module MARK. The video packets VP corre-
sponding to those described in FIGS. 2g and 2d are thus
obtained from formatter FRMT.

The arrangement of the various modules in this coder
corresponds to a specific embodiment, not intended to
exclude other embodiments that may be apparent to one
skilled in the art.

FIG. 4 is a schematic diagram of a video decoder accord-
ing to the invention. The decoder receives the coded binary
data stream, for example in the form of video packets VP
represented in FIG. 2, via a transmission channel (not
shown). It responds by providing a sequence of decoded
macroblocks MB. The decoder includes a deformatter
DFRMT, a variable length word decoder VLD, a decoding
stage CDEC. The decoding stage CDEC includes an inverse
transform IDCTQ , a motion compensator MC and a
memory MEM. Deformatter DFRMT comprises a detection
module DET for the purpose of detecting uncoded macrob-
locks at at least one point in the binary data stream. The
detection module DET is coupled to an error concealment
module EC which is designed to be particularly activated for
uncoded macroblocks that have been detected in the detec-
tion step DET. The error concealment module EC activated
thereby reconstructs the macroblock.

The decoder according to the invention is characterized in
that the detection module DET of uncoded macroblocks
comprises a detection submodule for the purpose of detect-
ing irregular intervals between resynchronization markers.
Accordingly, the substep detects uncoded macroblocks
using a detection of a resynchronization marker at the very

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 91 of 132 PagelD #: 769

US 6,895,118 B2

7

point where macroblocks are not coded. In an embodiment
of the invention relating to video packets formed by count-
ing the macroblocks to achieve the required size, the decoder
according to the invention counts the macroblocks present in
the preceding video packet, starting at each resynchroniza-
tion marker and, using the number of the first macroblock of
the video packet it has just received and the number of the
first macroblock of the video packet that starts, it deduces
that same macroblocks have not been coded, thus detecting
the insertion of a resynchronization marker at the point
where the macroblocks have not been coded. The detection
module DET may also be used for detecting, for example,
errors in the binary data stream, said errors being concealed
by the error concealment module coupled to said detection
module DET. The reconstructed macroblocks are inserted
into the output data of the deformatter DFRMT according to
the corresponding sequence of the image or video object
packet. However, such insertion of reconstructed data may
be effected at several points or steps in the decoding method
depending on the effectively reconstructed data.

The decoder presented here thus implements a method of
decoding a binary data stream including coded data of a
digital image with macroblocks, including a step of detect-
ing macroblocks that are uncoded in at least one point of the
binary data stream, an error concealment step EC principally
activated for uncoded macroblocks detected in the detection
step DET, characterized in that the step of detecting uncoded
macroblocks includes a detection substep for the purpose of
detecting irregular intervals between the resynchronization
markers.

The decoding method described here may be applied to
the standards MPEG-4, H26L and others.

In an advantageous embodiment illustrated in FIG. 4, the
error concealment module EC includes first means PEC for
primary reconstruction, that is to say, for example, temporal
reconstruction of the error, means SCT for appraising this
first reconstruction which decides whether to modify (as in
case 2) the error reconstruction or validate (as in case 1) the
first reconstruction, second means SEC for secondary
reconstruction, that is to say, for example, spatial
reconstruction, which is activated when the appraisal step
decides upon modification of the error reconstruction. For
example, an uncoded macroblock belonging to an internally
coded image (I for Intracoded) will be better corrected by
spatial error concealment, whereas an uncoded macroblock
belonging to an externally coded image (P or B for
interceded) will be better corrected by spatial or temporal
error concealment. The advantageous embodiment pre-
sented here thus allows to obtain optimized reconstruction
by trying and testing various types of error concealment.
One versed in the art may thus employ various means for
reconstruction followed by evaluation tests of the quality of
the reconstruction (spatial continuity tests . . .) according to
combinations of varying complexity without exceeding the
scope of the invention.

There are many ways to implement the functions dis-
closed in the method steps according to the invention by the
use of software and/or hardware available to a person of
ordinary skill in the art. For this reason, the Figures are
schematic in nature. Accordingly, whereas the Figures illus-
trate various functions carried out by various blocks, this is
not to say that a single unit of software and/or hardware may
not carry out several functions. This does not exclude either
that a combination of software and/or hardware means
permits to carry out a single function.

It follows that many modifications may be effected by a
person skilled in the art without thereby exceeding the intent
and scope defined in the following claims.

10

15

20

25

30

35

40

45

50

55

60

65

8

What is claimed is:

1. A method of coding a digital image comprising mac-
roblocks in a binary data stream, the method comprising:

an estimation step, for macroblocks, of a capacity to be
reconstructed via an error concealment method,

a decision step for macroblocks to be excluded from the
coding, a decision to exclude a macroblock from cod-
ing being made on the basis of the capacity of such
macroblock to be reconstructed,

characterized in that it also includes a step of inserting a
resynchronization marker into the binary data stream after
the exclusion of one or more macroblocks.

2. A coding method as claimed in claim 1, characterized
in that the decision step includes a substep of evaluation of
the reduction of the binary data stream effected by exclusion
of the macroblocks, the decision to exclude macroblocks
being made as a function of a reduction of the binary data
stream resulting from such exclusion.

3. A coding method as claimed in one of the claims 1 and
2, characterized in that it includes a calculation step of a
binary data stream output rate, the decision to exclude
macroblocks being made on the basis of this binary data
stream output rate.

4. A coder for the purpose of coding a digital image
comprising macroblocks in a binary data stream, comprising

an estimation module for the purpose of estimating a
capacity of macroblocks to be reconstructed by an error
concealment method,

a decision module intended to decide upon an exclusion
of the coding for macroblocks, a decision to exclude a
macroblock being made on the basis of the capacity of
said macroblock to be reconstructed,

characterized in that it also includes a module for inserting
a resynchronization marker in the binary data stream fol-
lowing the exclusion of one or more macroblocks.

5. A coding method as claimed in claim 3, characterized
in that it includes one or more modules for the purpose of
carrying out the characteristic steps of one of the claims 2
and 3.

6. A coded data of a digital image including macroblocks
embedded in a, binary data stream, the macroblocks are not
coded in the binary data stream in at least one location of the
binary data stream, said uncoded macroblocks having a
capacity to be reconstructed by an error concealment
method,
characterized in that a resynchronization marker is present in
the binary data stream at the point where macroblocks are
not coded.

7. A method of decoding a binary data stream containing
coded data of a digital image including macroblocks, said
binary data stream containing resynchronization markers at
regular intervals, including:

a detection step for uncoded macroblocks in at least one

location of the binary data stream,

an error concealment step notably activated for uncoded
macroblocks which are detected in the detection step,

characterized in that the detection step for uncoded mac-
roblocks includes a detection substep for the purpose of
detecting irregular intervals between the resynchronization
markers.

8. A decoder for decoding a binary data stream containing
coded data of a digital image comprising macroblocks,
including:

a detection module for detecting uncoded macroblocks in

at least one location of the binary data stream,

an error concealment module intended to be notably
activated for the uncoded macroblocks that are detected
by the detection module,

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 92 of 132 PagelD #: 770

US 6,895,118 B2

9

characterized in that the detection module for uncoded
macroblocks includes a detection submodule for the purpose
of detecting irregular intervals between the resynchroniza-
tion markers.

9. A “computer program” product for a coder comprising
a series of functions and a collective resource that the
functions access, characterized in that the “computer pro-
gram” product includes a set of instructions which, when
loaded into such a coder, run the method claimed in one of
the claims 1 to 3 with respect to the coder.

10

10. A “computer program” product for a decoder com-
prising a series of functions and a collective resource that the
functions access, characterized in that the “computer pro-
gram” product includes a set of instructions which, when
loaded into such a decoder, run the method as claimed in
claim 7 with respect to the decoder.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 93 of 132 PagelD #: 771

EXHIBIT C

B | (e T

US006519005B2
a2z United States Patent (10) Patent No.: US 6,519,005 B2
Bakhmutsky et al. 5) Date of Patent: Feb. 11, 2003
(54) METHOD OF CONCURRENT 6,144323 A * 11/2000 WISe wovrvvverrrierrrrrennnns 341/76
?g&gﬁ&%ﬁo‘gg%on(m ESTIMATION FOREIGN PATENT DOCUMENTS

EP 0654946 Al 5/1995 ... HO4N/7/13
(75) Inventors: Michael Bakhmutsky, Spring Valley, EP 0658057 A2 6/1995 HO4AN/7/36
NY (US); Karl Wittig, New York, NY EP 0695097 A2 1/1996 HO4N/7/50
(US) EP 0898426 Al 2/1999 ... HO04N/7/30

(73) Assignee: Koninklijke Philips Electronics N.V., * cited by examiner

Eindhoven (NT) Primary Examiner—Andy S. Rao

(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Russell Gross
patent is extended or adjusted under 35 (57) ABSTRACT
U.S.C. 154(b) by 0 days.
A method for motion coding an uncompressed digital video
(21) Appl. No.: 09/303,316 data stream such as an MPEG-2 digital video data stream.
¢ method 1ncludes the steps of comparing pixels of a first
Th hod includes th f Isofafi
(22) Filed: Apr. 30, 1999 pixel array in a picture currently being coded with pixels of
(65) Prior Publication Data a.plurality of second pixel arrays in at lf?ast one reference
picture and concurrently performing motion estimation for
US 2002/0176500 A1 Nov. 28, 2002 each of a plurality of different prediction modes in order to
7 determine which of the prediction modes is an optimum
(51) Int. CL7 e . HO04N 7/18 prediction mode determining which of the second pixel
gg g"sl‘dClt" S """" h """""""""""" 3‘?7/;‘/1;4’031715/ ;igg arrays constitutes a best match with respect to the first pixel
leld o dearchocoeeveeen. Al=2AU array for the optimum prediction mode, and, generating a
. motion vector for the first pixel array in response to the
(56) References Cited determining step. The method is implemented in a device
U.S. PATENT DOCUMENTS such as a motion estimation search system of a digital video
. encoder. In one embodiment, the method and device are
5,412,435 A 5/1995 Nakajimaccoeees 348/699 capable of concurrently determining performing motion
278127;97 A . g/ 1998 Chanet al. ... - 348/416 estimation in each of the six different possible prediction
573(6)37647% 2 . 10;}333]ng:;;&';l """"""" ;ggggg modes specified by the MPEG-2 standard.
6,049,362 A * 4/2000 Butter et al. 348/699
6,081,622 A * 6/2000 Carretal. ..cccceevuneenene. 382/236 42 Claims, 8 Drawing Sheets
32
—| | :
X
ANCHOR PCTURE oD g
TOPFIELD 34 TOP FIELD
SEARCHENGINE f
16x 8 PIXELS 45 4
BEST MATCH T
- D
A BEST MATCH
SEARCHENGINE [« BEST MATCH < T FRAME PRED
16x8PIXELS |—
CODED + MB FRAME >
ANCHOR PIGTURE MACROBLOCK ¥ MV 0DD
BOTIOM FELD BOTTOM FELD Ny —
< SEARCHENGINE [39
16 x 8 PIXELS R%STTOMQEL% 1A
) il B BET AT
BEST MATCH
| B TOP FIELD |——> (TOPFELD)
PIX BOT FIELD L
ERROR METRICS %
FOR CURRENT MATCH i g
BEST MATCH | 4
p-| B BOTFIELD >
BEST MATCH
PIXTOP FIELD
< |——>FIELD PRED
| MB BOTFIELD >
49— PIXBOTFIELD L

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 95 of 132 PagelD #: 773

U.S. Patent Feb. 11, 2003 Sheet 1 of 8 US 6,519,005 B2

16 PIXELS

-
X

FIG. 1B

16 PIXELS
MACROBLOCK

I
I
l
i*
1

PICTURE

FIG. 1A

d¢ 9l V¢ Il

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 96 of 132 PagelD #: 774

US 6,519,005 B2

Sheet 2 of 8

Feb. 11, 2003

U.S. Patent

0734 WOLLOg 0T34 dOL
$007190UV MO0 T804IV
gx9| 8X9|
Y0904V
INVETHOHONY
X
QT4 WOLLOd Il

N

\

8X91

y

JONVH HOHVIS

JNVH4 HOHONY \

/ 07313 4OL \
N__/

N/

]

8xgl

——»

y

JONVYH HOHVAS

L/

¢ XG>

H

JONVH HOHY3S

NOILJIQ44d a3

NOILJId34d JWVHS

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 97 of 132 PagelD #: 775

US 6,519,005 B2

Sheet 3 of 8

Feb. 11, 2003

U.S. Patent

(@134 109)
1344 (13—
HOLYIW 1S3

N_N\/\

(@134 doD)
Q3Hd 013 —
HOLYW 153

\{\

Ly

(344 INVH
LN IS

\/l\

1y

e
A| A L 4]
HOLYW 1S3 m o_“_
T34 401 Xid
< (T3 109 gN [
A HOLYW 1538
It m HOLYW LNFHND 404
V- SOMLIN HOHH3
1131 108 Xid
«— (1314 40L I [« ’
HOLYW 1539
T3 0L Xid B
——{ (T34 0L G [. \
e (N -
N (734 WOLLOd] (734 WOLLO4
100 AW W0 TH0HIYIN 341191 HOHONY
1 IV AN (3009 STIXId 8 X 0L
HOLYI 1539
Errr m »| INIINT HOHVIS
]
—1 v W ’
HOLYI 1539
mw G » STIXd8X 9!
—_—— — INIONT HOWYIS .
MJ0TG0HIVIN 34N 191d HOHONY
4 03007
& STAXId 8% 91
I 1 1 T S
6

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 98 of 132 PagelD #: 776

Vv Il

13019040VIN
91X91
SAHI4 HOHINY
(71414 N0 L1104 \
91X91
v
JONVH HOUV3IS

d1414 401 \
/

¥

+— 91X9] —>

y

(o]
==}
= :
2 ar 9l
(=
! 47vH WOLL0d 41VH d01
% Y00180HOVIN %9078040YW
5 8x9} 8xg)
SOEERVEY
07314 WOLLOg
2 ~ e
-
- 8xg1
’ y
T9NVE HOEv3S
2
S
= / 734 d0L \
s N/
T/
] 891 |—
~
S y
D]
K JONVY HOBV3S
» NOTLOI034d 8¥9T
-

JONVY HO4V3S

NOILJ1d34d A1

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 99 of 132 PagelD #: 777

US 6,519,005 B2

Sheet 5 of 8

Feb. 11, 2003

U.S. Patent

(4vH 108)
(34d 89X} €—

HILYI 1538

9]

Q74108 Xld |-—12

11vH 104 8N [¢—e
HOLYI 1539

1314401 XId

41YH 108 gN <
HILYW 153

(41vH d0)
(34 89| ——

HOLYW 1534
1

\%

(7314 108 Xid

HILYW IN3HENQ H04
SOI4 1IN HOH

{1¥H dOL dW
HILYIN 1S3

1314 401 Xd

{1VH 0L N 1=
HILYW 153

28

0344 IV
LN IS]

b

(1314 108 Xid
a4 an
HILYIW 1S3

TAHOLNE] g9
073 i
HOLYA 1S

29

)
£

%\

GO

0
5

11vH WOLLOg
A071804IVIN
(3009

L

STIXId 8 X9l
INIONT HOWV3S

———»

>
96—

STIXId 8 X9l
NIINT HHY3S

44 W0LLOE
FNLIId HOHINY

1TYH 401
AJ0180HIYI
(3000

P

PG

STIId 8 X9l
INIINT HOEYAS

STId B X9l
INIONT HOHY3S

(134 d0L
JdNLIId HOHONY

G

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 100 of 132 PagelD #: 778

U.S. Patent Feb. 11, 2003 Sheet 6 of 8 US 6,519,005 B2

DERIVED VECTORS

FIELD VECTOR
FROM BITSTREAM

15
TOP BOTTOM TOP BOTTOM
REFERENCE PICTURE PICTURE BEING

PREDICTED

FIG. 6

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 101 of 132 PagelD #: 779

US 6,519,005 B2

Sheet 7 of 8

Feb. 11, 2003

U.S. Patent

INd-TVN0
HILYIN 1534

o
X} [— < .
HOLYW 1S3 m @_“_
T 0L XId
by
l_waz%_mmg g\ 0 HOLYW LN344N9 404
404 NIAYY L SLIN HOHY3
T 108 XId
X2 le—— 0734 104 G |«
HOLYW 1S34
(T3 d0L Xid]
iy f
> X
¢ 6L~ | s
06 0734 NOLLO R
A0 L0V JHNLOId HOHONY
03009 STIId 8 X 9]
»| INONT HOHYAS
9/
e | B
v_oﬁﬁmmg i 0134401
13009 . J4NL71d HOHONY
L NOvHYS [
2

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 102 of 132 PagelD #: 780

US 6,519,005 B2

Sheet 8 of 8

Feb. 11, 2003

U.S. Patent

8 Il

a1 WOLL08
J4NL31d HOHONY

(T34 109 Xid
() fe—— CHHAN | +
HOLYH 1534
JHSNOLY T) 211 HOLYW IN3HHND HO3
- TH0 g ol SOHLIN HOHHT
HOLYIN 1540 404 INIAYXE
0T dOL Xd ol
a)ole— TN fe—CF f
HOLYI 1538
‘ I o | i
M JTYH WOLLOS —
Y0090
03009 ST 8% 0L
»| INISNT HOHYIS
90—
-’ | sEup
19 doL
yootaouawn | | 7O
03009 STNIdB XYL |
o] ININTHOHYAS
2011

(H440L
FN1IId HOHINY

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 103 of 132 PagelD #: 781

US 6,519,005 B2

1
METHOD OF CONCURRENT
MULTIPLE-MODE MOTION ESTIMATION
FOR DIGITAL VIDEO

BACKGROUND OF THE INVENTION

The present invention relates generally to digital video
compression, and, more particularly, to a motion estimation
method and search engine for a digital video encoder that is
simpler, faster, and less expensive than the presently avail-
able technology permits, and that permits concurrent motion
estimation using multiple prediction modes.

Many different compression algorithms have been devel-
oped in the past for digitally encoding video and audio
information (hereinafter referred to generically as “digital
video data stream”) in order to minimize the bandwidth
required to transmit this digital video data stream for a given
picture quality. Several multimedia specification committees
have established and proposed standards for encoding/
compressing and decoding/decompressing audio and video
information. The most widely accepted international stan-
dards have been proposed by the Moving Pictures Expert
Group (MPEG), and are generally referred to as the
MPEG-1 and MPEG-2 standards. Officially, the MPEG-1
standard is specified in the ISO/IEC 11172-2 standard speci-
fication document, which is herein incorporated by
reference, and the MPEG-2 standard is specified in the
ISO/IEC 13818-2 standard specification document, which is
also herein incorporated by reference. These MPEG stan-
dards for moving picture compression are used in a variety
of current video playback products, including digital versa-
tile (or video) disk. (DVD) players, multimedia PCs having
DVD playback capability, and satellite broadcast digital
video. More recently, the Advanced Television Standards
Committee (ATSC) announced that the MPEG-2 standard
will be used as the standard for Digital HDTV transmission
over terrestrial and cable television networks. The ATSC
published the Guide to the Use of the ATSC Digital Televi-
sion Standard on Oct. 4, 1995, and this publication is also
herein incorporated by reference.

In general, in accordance with the MPEG standards, the
audio and video data comprising a multimedia data stream
(or “bit stream”) are encoded/compressed in an intelligent
manner using a compression technique generally known as
“motion coding”. More particularly, rather than transmitting
each video frame in its entirety, MPEG uses motion esti-
mation for only those parts of sequential pictures that vary
due to motion, where possible. In general, the picture
elements or “pixels” of a picture are specified relative to
those of a previously transmitted reference or “anchor”
picture using differential or “residual” video, as well as
so-called “motion vectors” that specify the location of a
16-by-16 array of pixels or “macroblock” within the current
picture relative to its original location within the anchor
picture. Three main types of video frames or pictures are
specified by MPEG, namely, I-type, P-type, and B-type
pictures.

An I-type picture is coded using only the information
contained in that picture, and hence, is referred to as an
“intra-coded” or simply, “intra” picture.

A P-type picture is coded/compressed using motion com-
pensated prediction (or “motion estimation”) based upon
information from a past reference (or “anchor”) picture
(either I-type or P-type), and hence, is referred to as a
“predictive” or “predicted” picture.

A B-type picture is coded/compressed using motion com-
pensated prediction (or “motion estimation”) based upon

10

15

20

25

30

35

40

45

50

55

60

65

2

information from either a past and or a future reference
picture (either I-type or P-type), or both, and hence, is
referred to as a “bidirectional” picture. B-type pictures are
usually inserted between I-type or P-type pictures, or com-
binations of either.

The term “intra picture” is used herein to refer to I-type
pictures, and the term “non-intra picture” is used herein to
refer to both P-type and B-type pictures. It should be
mentioned that although the frame rate of the video data
represented by an MPEG bit stream is constant, the amount
of data required to represent each frame can be different,
e.g., so that one frame of video data (e.g., Y50 of a second of
playback time) can be represented by x bytes of encoded
data, while another frame of video data can be represented
by only a fraction (e.g., 5%) of x bytes of encoded data.
Since the frame update rate is constant during playback, the
data rate is variable.

In general, the encoding of an MPEG video data stream
requires a number of steps. The first of these steps consists
of partitioning each picture into macroblocks. Next, in
theory, each macroblock of each “non-intra” picture in the
MPEG video data stream is compared with all possible
16-by-16 pixel arrays located within specified vertical and
horizontal search ranges of the current macroblock’s corre-
sponding location in the anchor picture(s). The MPEG
picture and macroblock structure is diagrammatically illus-
trated in FIG. 1.

The aforementioned search or “motion estimation”
procedure, for a given prediction mode, results in a motion
vector(s) that corresponds to the position of the closest-
matching macroblock (according to a specified matching
criterion) in the anchor picture(s) within the specified search
range. Once the prediction mode and motion vector(s) have
been determined, the pixel values of the closest-matching
macroblock are subtracted from the corresponding pixels of
the current macroblock, and the resulting 16-by-16 array of
differential pixels is then transformed into 8-by-8 “blocks,”
on each of which is performed a discrete cosine transform
(DCT), the resulting coefficients of which are each quantized
and Huffman-encoded (as are the prediction type, motion
vectors, and other information pertaining to the macroblock)
to generate the MPEG bit stream. If no adequate macroblock
match is detected in the anchor picture, or if the current
picture is an intra, or “I-” picture, the above procedures are
performed on the actual pixels of the current macroblock
(i.e., no difference is taken with respect to pixels in any other
picture), and the macroblock is designated an “intra” mac-
roblock.

For all MPEG-2 prediction modes, the fundamental tech-
nique of motion estimation consists of comparing the current
macroblock with a given 16-by-16 pixel array in the anchor
picture, estimating the quality of the match according to the
specified metric, and repeating this procedure for every such
16-by-16 pixel array located within the search range. The
hardware or software apparatus that performs this search is
usually termed the “search engine,” and there exists a
number of well-known criteria for determining the quality of
the match. Among the best-known criteria are the Minimum
Absolute Error (MAE), in which the metric consists of the
sum of the absolute values of the differences of each of the
256 pixels in the macroblock with the corresponding pixel in
the matching anchor picture macroblock; and the Minimum
Square Error (MSE), in which the metric consists of the sum
of the squares of the above pixel differences. In either case,
the match having the smallest value of the corresponding
sum is selected as the best match within the specified search
range, and its horizontal and vertical positions relative to the

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 104 of 132 PagelD #: 782

US 6,519,005 B2

3

current macroblock therefore constitute the motion vector. If
the resulting minimum sum is nevertheless deemed to large,
a suitable match does not exist for the current macroblock,
and it is coded as an intra macroblock. For the purposes of
the present invention, either of the above two criteria, or any
other suitable criterion, may be used.

In accordance with the MPEG-2 standard, any of a
number of so-called “prediction modes” may be used for
each individual macroblock that is encoded; the optimum
prediction mode depends both on the type of picture being
encoded and on the characteristics of the portion of the
picture in which the given macroblock being encoded is
located. Currently known methods of motion coding allow
the use of different prediction modes, but generally require
one prediction mode to be specified for a given macroblock
before an actual motion estimation is performed. Although
such a determination can often be made based upon prior
knowledge of the picture or image source characteristics,
there are many cases where the optimum prediction mode
cannot be known unless more than one motion estimation is
performed for the macroblock in question. Since motion
estimation usually consists of an exhaustive search proce-
dure in which all 256 pixels of two corresponding macrob-
locks are compared, and which is repeated for a large
number of macroblocks, the latter is not a practical option.

Computation of the motion vector(s) for a given macrob-
lock is typically performed by means of an exhaustive
search procedure. The current macroblock in question is
“compared” with a macroblock-sized pixel array within the
anchor picture that is offset by an amount less than specified
vertical and horizontal distances, called the “search ranges,”
and an “error” value is computed for this particular “match”
of the macroblock using a specified criterion, or “metric,”
that gives a measure of how large the error is. This is done
for every possible combination of vertical and horizontal
offset values within the respective search ranges, and the
offset pair that yields the smallest error according to the
chosen metric is selected as the motion vector for the current
macroblock relative to the anchor picture. Clearly, this
procedure is very computationally intensive.

Based on the above and foregoing, it can be appreciated
that there presently exists a need in the art that overcomes
the disadvantages and shortcomings of the presently avail-
able technology. The present invention fulfills this need in
the art by performing motion coding of an uncompressed
digital video sequence in such a manner that the prediction
mode for each individual macroblock is determined as part
of the motion estimation process, along with the actual
motion vector(s), and need not be specified in advance; only
the type of picture currently being coded need be known.
Since the latter must be determined at a higher level of video
coding than the macroblock layer, this method makes pos-
sible a much more efficient, as well as optimal, degree of
video compression than would otherwise be possible using
conventional methods of motion estimation. Further, the
present invention provides a novel scheme for concurrently
searching for the optimum macroblock match within the
appropriate anchor picture according to each of a plurality of
motion prediction modes during the same search operation
for the given macroblock, without the need for a separate
search to be performed on the same macroblock for each
such mode. Since this search procedure is the single most
complex and expensive aspect of motion estimation, in both
time and hardware, such a method as the present invention
will clearly result in a more efficient video image coding and
compression than would otherwise be possible given the
aforementioned practical limitations of the presently avail-
able technology.

10

15

20

25

30

35

40

45

50

55

60

65

4

Although the present invention was primarily motivated
by the specific requirements of the ATSC standard, it can
nevertheless be used with any digital video transmission or
storage system that employs a video compression scheme,
such as MPEG, in which motion coding with multiple
prediction modes is used.

SUMMARY OF THE INVENTION

The present invention encompasses a method for motion
coding an uncompressed digital video data stream such as an
MPEG-2 digital video data stream. The method includes the
steps of comparing pixels of a first pixel array in a picture
currently being coded with pixels of a plurality of second
pixel arrays in at least one reference picture and concur-
rently performing motion estimation for each of a plurality
of different prediction modes in order to determine which of
the prediction modes is an optimum prediction mode, deter-
mining which of the second pixel arrays constitutes a best
match with respect to the first pixel array for the optimum
prediction mode, and, generating a motion vector for the first
pixel array in response to the determining step. The method
is implemented in a device such as a motion estimation
search system of a digital video encoder. In one
embodiment, the method and device are capable of concur-
rently determining performing motion estimation in each of
the six different possible prediction modes specified by the
MPEG-2 standard.

The present invention also encompasses a method for
motion coding a digital video data stream comprised of a
sequence of pictures having top and bottom fields which
includes the steps of comparing pixels of a first portion (e.g.,
16-by-8 portion) of a current macroblock (e.g., a 16-by-16
macroblock) of the top field of a current picture with pixels
of each of a plurality of correspondingly-sized portions of a
macroblock of a top field of an anchor picture in accordance
with a prescribed search metric, and producing a first error
metric for each comparison; comparing pixels of the first
portion (e.g., 16-by-8 portion) of the current macroblock of
the top field of the current picture with pixels of each of the
plurality of correspondingly-sized portions of a macroblock
of a bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a second error
metric for each comparison; comparing pixels of a second
portion (e.g., 16-by-8 portion) of a current macroblock (e.g.,
a 16-by-16 macroblock) of the bottom field of the current
picture with pixels of each of the plurality of
correspondingly-sized portions of the macroblock of the top
field of the anchor picture in accordance with the prescribed
search metric, and producing a third error metric for each
comparison; comparing pixels of the:second portion (e.g., a
16-by-8 portion) of the current macroblock of the bottom.
field of the current picture with pixels of each of the plurality
of correspondingly-sized portions of the macroblock of the
bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a fourth error metric
for each comparison; summing the first and fourth error
metrics to produce a first composite error metric; summing
the second and third error metrics to produce a second
composite error metric; and, determining which of the first,
second, third, and fourth error metrics, and first and second
composite error metrics has the lowest value, and selecting
one a plurality of possible motion estimation prediction
modes on the basis of such determination. Preferably and
advantageously, all of the comparing steps are performed
concurrently, and both of the summing steps are performed
concurrently. The plurality of possible motion estimation
prediction modes can include frame and field prediction
modes for frame pictures in accordance with the MPEG-2
standard.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 105 of 132 PagelD #: 783

US 6,519,005 B2

5

The present invention also encompasses a method for
motion coding a digital video data stream comprised of a
sequence of pictures, in which the method includes the steps
of comparing pixels of a first portion (e.g., 16-by-8 portion)
of a top half of a current macroblock (e.g., a 16-by-16
macroblock) of a current picture with pixels of each of a
plurality of correspondingly-sized portions of a macroblock
of a top field of an anchor picture in accordance with a
prescribed search metric, and producing a first error metric
for each comparison; comparing pixels of the first portion
(e.g., 16-by-8 portion) of the top half of the current mac-
roblock of the current picture with pixels of each of the
plurality of correspondingly-sized portions of a macroblock
of a bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a second error
metric for each comparison; comparing pixels of a second
portion (e.g., 16-by-8 portion) of a bottom half of a current
macroblock (e.g., a 16-by-16 macroblock) of the current
picture with pixels of each of the plurality of
correspondingly-sized portions of the macroblock of the top
field of the anchor picture in accordance with the prescribed
search metric, and producing a third error metric for each
comparison; comparing pixels. of the second portion (e.g., a
16-by-8 portion) of the bottom half of the current macrob-
lock of the current picture with pixels of each of the plurality
of correspondingly-sized portions of the inacroblock of the
bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a fourth error metric
for each comparison; summing the first and third error
metrics to produce a first composite error metric; summing
the second and fourth error metrics to produce a second
composite error metric; and, determining which of the first,
second, third, and fourth error metrics, and first and second
composite error metrics has the lowest value, and selecting
one a plurality of possible motion estimation prediction
modes on the basis of such determination. Preferably and
advantageously, all of the comparing steps are performed
concurrently, and both of the summing steps are performed
concurrently. The plurality of possible motion estimation
prediction modes can include field and 16x8 prediction
modes for field pictures in accordance with the MPEG-2
standard.

The present invention also encompasses a method for
motion coding a digital video data stream comprised of a
sequence of pictures having top and bottom fields which
includes the steps of comparing pixels of a first portion (e.g.,
16-by-8 portion) of a current macroblock (e.g., a 16-by-16
macroblock) of the top field of a current picture with pixels
of each of a plurality of correspondingly-sized portions of a
macroblock of a top field of an anchor picture in accordance
with a prescribed search metric, and producing a first error
metric for each comparison; comparing pixels of the first
portion (e.g., 16-by-8 portion) of the current macroblock of
the top field of the current picture with pixels of each of the
plurality of correspondingly-sized portions of a macroblock
of a bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a second error
metric for each comparison; comparing pixels of a second
portion (e.g., 16-by-8 portion) of a current macroblock (e.g.,
a 16-by-16 macroblock) of the bottom field of the current
picture with pixels of each of the plurality of
correspondingly-sized portions of the macroblock of the top
field of the anchor picture in accordance with the prescribed
search metric, and producing a third error metric for each
comparison; comparing pixels of the second portion (e.g., a
16-by-8 portion) of the current macroblock of the bottom
field of the current picture with pixels of each of the plurality

10

15

20

25

30

35

40

45

50

55

60

65

6

of correspondingly-sized portions of the macroblock of the
bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a fourth error metric
for each comparison; producing first, second, third, and
fourth motion vectors on the basis of the first, second, third,
and fourth error metrics, respectively; and, examining the
first, second, third, and fourth motion vectors to determine
whether a prescribed relationship between them is present,
and, if so, selecting a frame picture dual-prime motion
estimation prediction mode. Preferably and advantageously,
all of the comparing steps are performed concurrently.

The present invention also encompasses a method for
motion coding a digital video data stream comprised of a
sequence of pictures, in which the method includes the steps
of comparing pixels of a first portion (e.g., 16-by-8 portion)
of a top half of a current macroblock (e.g., a 16-by-16
macroblock) of a current picture with pixels of each of a
plurality of correspondingly-sized portions of a macroblock
of a top field of an anchor picture in accordance with a
prescribed search metric, and producing a first error metric
for each comparison; comparing pixels of the first portion
(e.g., 16-by-8 portion) of the top half of the current mac-
roblock of the current picture with pixels of each of the
plurality of correspondingly-sized portions of a macroblock
of a bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a second error
metric for each comparison; comparing pixels of a second
portion (e.g., 16-by-8 portion) of a bottom half of a current
macroblock (e.g., a 16-by-16 macroblock) of the current
picture with pixels of each of the plurality of
correspondingly-sized portions of the macroblock of the top
field of the anchor picture in accordance with the prescribed
search metric, and producing a third error metric for each
comparison; comparing pixels of the second portion (e.g., a
16-by-8 portion) of the bottom half of the current macrob-
lock of the current picture with pixels of each of the plurality
of correspondingly-sized portions of the macroblock of the
bottom field of the anchor picture in accordance with the
prescribed search metric, and producing a fourth error metric
for each comparison; summing the first and third error
metrics to produce a first composite error metric; summing
the second and fourth error metrics to produce a second
composite error metric; producing first and second motion
vectors on the basis of the first and second composite error
metrics, respectively; and, examining the first and second
motion vectors to determine whether a prescribed relation-
ship between them is present, and if so, selecting a field
picture dual-prime motion estimation prediction mode. Pref-
erably and advantageously, all of the comparing steps are
performed concurrently, both of the summing steps are
performed concurrently, and both of the producing steps are
performed concurrently.

The present invention further encompasses a device such
as a motion estimation search system for a digital video
encoder that concurrently implements any of the above-
described methods of the present invention in any combi-
nation thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features, and advantages of the
present invention will be readily understood from the fol-
lowing detailed description taken in conjunction with the
accompanying drawings, in which:

FIG. 1 is a diagram that illustrates the MPEG picture and
macroblock structure;

FIG. 2 is a diagram that illustrates motion estimation for
frame pictures using frame and field prediction;

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 106 of 132 PagelD #: 784

US 6,519,005 B2

7

FIG. 3 is a block diagram of a motion estimation search
system constructed in accordance with an exemplary
embodiment of the present invention for concurrently per-
forming motion estimation for frame prediction mode and
field prediction modes for frame pictures;

FIG. 4 is a diagram that illustrates motion estimation for
field (16x16) and 16x8 prediction modes for field pictures;

FIG. § is a block diagram of a motion estimation search
system constructed in accordance with an exemplary
embodiment of the present invention for performing motion
estimation for field prediction and 16x8 prediction modes
for field pictures;

FIG. 6 is a diagram that illustrates motion estimation
using dual-prime prediction;

FIG. 7 is a block diagram of a motion estimation search
system constructed in accordance with an exemplary
embodiment of the present invention for performing frame
picture dual-prime motion estimation; and,

FIG. 8 is a block diagram of a motion estimation search
system constructed in accordance with an exemplary
embodiment of the present invention for performing field
picture dual-prime motion estimation.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 2 diagrammatically depicts the MPEG-2 motion
estimation process for frame pictures using the frame and
field prediction modes, respectively. In frame prediction, the
composite anchor frame is treated as a contiguous picture,
and the composite macroblock is treated as a contiguous
16-by-16 pixel array. The motion estimation procedure is
performed in the manner described hereinabove.

In field prediction, however, the current macroblock is
partitioned into one 16-by-8 array consisting of lines from
the top field (even-numbered lines, starting with 0), and a
second, 16-by-8 array consisting of lines from the bottom
field (odd-numbered lines, starting with 1). The anchor
frame picture is also partitioned into a top-field picture
(even-numbered lines) and a bottom-field picture (odd-
numbered lines). The top-field 16-by-8 array is then
matched, in a manner analogous to that described
hereinabove, with every 16-by-8 pixel array within the
search range in the top-field anchor. picture, in order to find
the best match.

The procedure is then repeated, using the same top-field
16-by-8 array, in the bottom-field picture to find the best
match. The two resulting matches are then compared, and
the better of the two is selected as the best match for the top
field of the macroblock. The match is represented by speci-
fying the anchor field picture (top or bottom) in which it was
found, along with the corresponding motion vector.

The entire procedure is repeated for the bottom-field
16-by-8 array, once again using both the top and bottom
fields of the anchor frame in the manner described above to
determine which of the two fields contains the better opti-
mum match and to give its corresponding motion vector. The
final result is an anchor field selector, motion vector pair for
each of the top and bottom field 16-by-8 arrays of the current
macroblock.

If the current picture is a predicted, or “P,” picture,
forward coding is used exclusively. In the case of a
bidirectional, or “B,” picture, however, the prediction may
be forward, backward, or bidirectional. In the first two cases,
the above motion estimation is performed using the forward
or backward anchor picture, respectively, as required. In the

10

15

20

25

30

35

40

45

50

55

60

65

8

case of bidirectional. coding, however, the same motion
estimation must be performed for both the forward and the
backward anchor picture. In a B picture, the prediction
direction(s) is (are) specified individually for each macrob-
lock of the current picture.

In all known motion estimation methods, the prediction
mode must be specified for every macroblock before the
motion estimation, with its constituent search, is performed.
However, in accordance with the present invention, in one of
its aspects, the motion estimation may be performed, in a
frame picture, for both frame and field prediction modes
simultaneously, during the same search of the anchor pic-
ture.

The observation that, for the same horizontal and vertical
offset, the sum of the motion estimation match criterion, or
metric, for the top-field 16-by-8 array in the top field of the
anchor frame and that of the bottom-field 16-by-8 array in
the bottom field of the anchor frame (in both cases using
field prediction) is equal to the corresponding metric for the
composite 16-by-16 macroblock array in the composite
anchor frame (using frame prediction) illustrates how it is
possible to perform motion estimation for more than one
prediction mode during a single search. In order to accom-
plish this, the optimal match must be determined for each of
the top- and bottom-field 16-by-8 arrays in each of the top-
and bottom-field anchor pictures. If all searches are per-
formed such that, at any given time, the horizontal and
vertical offsets of the current attempted match are the same
(a reasonable assumption in light of the fact that, in a
practical motion estimation system, anchor picture pixels
correspond to memory locations, which in conventional
memory technologies are typically assessed only one at a
time), a metric value is generated for each of the four
attempted matches. If the current metric for the top-field
16-by-8 array in the top-field anchor picture is added to that
for the bottom-field 16-by-8 array in the bottom-field anchor
picture, the result, in the case of an even-numbered vertical
offset is equal to the current metric for the composite
16-by-16 macroblock in the composite anchor frame. Just as
the optimum metric values are determined for each of the
four field prediction searches over the specified search
range, the optimum metric value for frame prediction can
also be determined from the above sum. In the case of an
odd-numbered vertical offset, the top-field 16-by-16 pixel
array is matched in the bottom field anchor picture, and the
bottom-field 16-by-16 pixel array is matched in the top field
anchor picture; the vertical pixel locations within the respec-
tive anchor field pictures will also differ by 1 in this case.

A motion estimation search system 30 that implements the
above-described motion estimation method of the present
invention is depicted in FIG. 3, and will now be described.
More particularly, the motion estimation search system 30
includes four parallel search engines 32, 34, 36, and 38 that
compare respective portions of the coded macroblock top
and bottom fields with appropriate portions of the anchor
picture top and bottom fields in the manner described
hereinabove, in accordance with a prescribed search metric,
¢.g., Minimum Absolute Error (MAE). The search engines
32, 34, 36, and 38 produce respective error metrics for each
comparison operation they perform. In particular, the error
metrics produced by the search engine 32 are applied to an
input of a logic element 39 that determines which of the
anchor picture top field macroblocks constitutes the best
match with respect to the coded macroblock top field, and
then and then produces the best match results at its output.
The error metrics produced by the search engine 34 are
applied to an input of a logic element 40 that determines

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 107 of 132 PagelD #: 785

US 6,519,005 B2

9

which of the anchor picture bottom field macroblocks con-
stitutes the best match with respect to the coded macroblock
top field, and then produces the best match results at its
output. The error metrics produced by the search engine 36
are applied to an input of a logic element 41 that determines
which of the anchor picture top field macroblocks consti-
tutes the best match with respect to the coded macroblock
bottom field, and then produces the best match results at its
output. The error metrics produced by the search engine 38
are applied to an input of a logic element 42 that determines
which of the anchor picture bottom field macroblocks con-
stitutes the best match with respect to the coded macroblock
bottom field, and then produces the best match results at its
output. The error metrics produced by the search engines 32
and 38 are combined by an adder circuit 45, and the resultant
composite error metric is applied to an input of a logic
element 43 that determines which of the anchor picture
macroblocks constitutes the best match with respect to the
coded macroblock for the case of an even-numbered vertical
offset, and then produces the best match results at its output.
The error metrics produced by the search engines 34 and 36
are combined by an adder circuit 46, and the resultant
composite error metric is applied to an input of a logic
element 44 that determines which of the anchor picture
macroblocks constitutes the best match with respect to the
coded macroblock for the case of an odd-numbered vertical
offset, and then produces the best match results at its output.
Parallel comparison logic elements 47 compare the best
match results generated by the logic elements 39-44, and
then determine which of the prediction modes (i.e., the field
or frame prediction mode for frame pictures) is optimum for
the coded macroblock on the basis thereof. The correspond-
ing motion vector for the best match produced by the
selected prediction mode is then output for further process-
ing by the motion estimation search system.

The ATSC standard, which corresponds to the MPEG-2
main profile at high-level, allows as many as six different
prediction modes. Of these, two were considered in the
above description, namely the frame and field prediction
modes in frame pictures, respectively. For field pictures,
there are two analogous modes, namely field prediction, in
which a 16-by-16 pixel macroblock in the current field
picture is matched in one of the two previous anchor field
pictures in a manner similar to that used for frame prediction
in frame pictures; and 16-by-8 prediction, in which the upper
16-by-8 pixel half of the current macroblock is matched in
either of the previous two anchor field pictures (and/or the
following two anchor pictures in the case of backward
coding in B pictures), and the lower half of the same
macroblock is independently matched in either of the two
previous anchor field pictures, this time in a manner similar
to that used for field prediction in frame pictures. These two
prediction modes for field pictures are illustrated diagram-
matically in FIG. 4.

As before, all searches are performed such that, at any
given time, the horizontal and vertical offsets of the four
current attempted matches are the same, and a metric value
is generated for each one. Since the relative offset for the
upper half of the current macroblock with respect to the
upper half of the attempted matching macroblock in either
anchor field is the same as the relative offset for the lower
half of the current macroblock with respect to the lower half
of the same attempted match in either anchor field, separate
metrics can be computed, during the full macroblock search,
for the upper and lower halves of the current macroblock. If
the metric value for the upper 16-by-8 array in the top-field
anchor picture is added to that for the lower 16-by-8 array

10

15

20

25

30

35

40

45

50

55

60

65

10

in the top-field anchor picture, the result is equal to the
metric value for the composite 16-by-16 macroblock in the
top-field anchor picture. The same holds true for the bottom-
field anchor picture. Just as the optimum metric values are
determined for each of the four 16-by-8 prediction searches
over the specified search range, the optimum metric values
for each of the two field prediction searches can also be
determined from the above sums.

A motion estimation search system 50 that implements the
above-described motion estimation method of the present
invention is depcited in FIG. §, and will now be described.
More particularly, the motion estimation search system 50
includes four parallel search engines 52, 54, 56, and 58 that
compare respective portions of the coded macroblock top
and bottom halves with appropriate portions of the anchor
picture top and bottom fields in the manner described
hereinabove, in accordance with a prescribed search metric,
¢.g., Minimum Absolute Error (MAE). The search engines
52, 54, 56, and 58 produce respective error metrics for each
comparison operation they perform. In particular, the error
metrics produced by the search engine 52 are applied to an
input of a logic element 59 that determines which of the
anchor picture top field macroblocks constitutes the best
match with respect to the coded macroblock top half, and
then and then produces the best match results at its output.

The error metrics produced by the search engine 54 are
applied to an input of a logic element 60 that determines
which of the anchor picture bottom field macroblocks con-
stitutes the best match with respect to the coded macroblock
top half, and then produces the best match results at its
output.

The error metrics produced by the search engine 56 are
applied to an input of a logic element 61 that determines
which of the anchor picture top field macroblocks consti-
tutes the best match with respect to the coded macroblock
bottom half, and then produces the best match results at its
output. The error metrics produced by the search engine 48
are applied to an input of a logic element 62 that determines
which of the anchor picture bottom field macroblocks con-
stitutes the best match with respect to the coded macroblock
bottom half, and then produces the best match results at its
output.

The error metrics produced by the search engines 52 and
56 are combined by an adder circuit 65, and the resultant
composite error metric is applied to an input of a logic
element 63 that determines which of the top field anchor
picture macroblocks constitutes the best match with respect
to the coded macroblock, and then produces the best match
results at its output.

The error metrics produced by the search engines 54 and
58 are combined by an adder circuit 66, and the resultant
composite error metric is applied to an input of a logic
element 64 that determines which of the bottom field anchor
picture macroblocks constitutes the best match with respect
to the coded macroblock, and then produces the best match
results at its output.

Parallel comparison logic elements 67 compare the best
match results generated by the logic elements 59-64, and
then determine which of the prediction modes (i.e., the field
or 16-by-8 prediction mode for field pictures) is optimum for
the coded macroblock on the basis thereof The correspond-
ing motion vector for the best match produced by the
selected prediction mode is then output for further process-
ing by the motion estimation search system.

The final remaining MPEG-2 motion prediction mode is
the so-called “dual-prime” mode, which may be used in

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 108 of 132 PagelD #: 786

US 6,519,005 B2

11

cases where the source video is interlaced and where only I
and P pictures are used in the encoding process (i.e., B
pictures are not allowed). In this mode, which may be used
in either frame or field pictures that meet the aforementioned
criteria, advantage is taken of the physical properties of
object motion within an interlaced video sequence to rep-
resent a plurality of motion vectors (four in the case of frame
pictures, two in the case of field pictures) using just one
encoded motion vector. This allows less information to be
transmitted or stored per macroblock and, thereby results in
more efficient video compression.

In interlaced video, each complete frame is partitioned
into two separate fields, the first of which is designated the
top field and consists of all even-numbered lines of the
composite video frame (starting with 0), and the second of
which is designated the bottom field and consists of all
odd-numbered lines (starting with 1). In this mode of
operation, the top-field image of a given frame is generated
in its entirety, and the bottom field image of the same frame
is subsequently generated, also in its entirety. The procedure
is then repeated for the following frame, and then for all
subsequent frames. In a video system with a specified frame
rate (for example, 30 frames per second, with the NTSC
standard, which is used in the United States), the corre-
sponding field rate will be precisely twice this frame rate (60
fields per second in the case of the NTSC standard). This
means that the time difference between two consecutive
video fields is exactly half the time difference between two
consecutive frames. Since most conventional video sources,
such as cameras and recorders, generate lines of video in a
sequential, raster-scan format, the time difference between
corresponding lines (i.e., lines having the same vertical
position) in consecutive fields will always have the same
value, even if the times associated with different lines in the
same field are different due to the constant vertical rate of the
raster scan.

In a video sequence, an object that is moving with a
uniform velocity will move by a finite distance within the
image, vertically and horizontally, during the time interval
between two consecutive frames. In the time between two
consecutive fields, however, it will move by precisely half
the aforementioned distance, according to the principles
explained in the previous paragraph. In the more general
case where the motion is not uniform, however, the small
value of the time interval between subsequent frames (and
the even smaller interval between subsequent fields), gen-
erally ensures that the second and higher-order derivatives
of the object motion may be ignored, and that, over this
small interval, the motion can safely be treated as uniform.
This means that the above relationships concerning the
distances of object motion between consecutive frames and
that between consecutive fields, as well as the constancy of
the motion between such fields, will effectively hold true
even for non-uniform motion. The dual-prime mode of
motion prediction capitalizes extensively on the above rela-
tionships.

The MPEG-2 specification for the dual-prime prediction
modes in both frame and field pictures is diagrammatically
depicted in FIG. 6. As can be seen from the illustration,
motion vectors for fields of a given parity (e.g., top field)
relative to the previous field of the same parity have a certain
length. In a frame picture, where each of the two constituent
fields is motion-coded relative to each of the two constituent
fields of the previous anchor frame, the top-field to top-field
and bottom-field to bottom-field vectors are seen to have the
same length. This is expected according to the above
analysis, since, in both cases, they represent the distance

10

15

20

25

30

35

40

45

50

55

60

65

12

traveled by the object in the course of two video intervals.
The motion vectors for fields of one parity relative to the
opposite parity, however, will represent the distance traveled
in one field interval (in the case of that for a top field relative
to the previous bottom field), or three field intervals (in the
case of that for a bottom field relative to the previous top
field). In the former case, the motion vector will have a
length of one-half the value of the above two motion vectors;
in the latter case, it will have three-halves of this value.

In a field picture, which is motion-coded relative to the
two previous anchor fields, the motion vector for the field of
the same parity, once again, represents the distance traveled
by the object in the course of two video field intervals, and
has a certain length. The motion vector for the field of
opposite parity, however, always refers to the previous field
and, therefore, represents the distance traveled in one field
interval; it will thus have one-half of the value of the above
motion vector.

Upon initial examination, it appears that different fields
must be searched for matches located at different horizontal
and vertical offsets relative to the current macroblock in
order to determine whether the above criteria for dual-prime
representation are satisfied. Consideration of the fact that, in
an interlaced video source, these criteria arise naturally from
the properties of motion in a two-dimensional image, leads
to the conclusion that, if all of the appropriate searches are
performed, using the field prediction mode, for the current
macroblock in the required anchor pictures, the resulting
optimal motion vectors should automatically have the rela-
tive relationships required for dual-prime representation;
that is, motion vectors corresponding to fields of the same
parity should have a length of one-half or three-halves that
of the above motion vector, depending upon the specific
relationship between the fields. It is, therefore, only neces-
sary to perform the conventional motion estimations for field
prediction on either a frame picture or a field picture, and
then examine the resulting motion vectors to determine
whether the relative relationships required for dual-prime
representation are present. If they are, the macroblock is
simply encoded using the dual-prime prediction mode; if
not, the most optimal of the other prediction modes is chosen
instead.

In either a frame picture or a field picture, it is possible,
due either to nonuniformity of motion or simply to spatial
quantization of the image, that the relative relationships
required for the motion vectors are very nearly, but not
exactly, met. In addition, there always is a one-line vertical
offset between the top and bottom fields of a video frame due
to the nature of interlacing. The MPEG-2 standard accom-
modates the first of these situations by allowing a so-called
“differential motion vector” for each of the vertical and
horizontal components of the encoded vector, which is
restricted to the three values -1, 0, and +1. It also accom-
modates the second situation by always providing a vertical
correction for all derived motion vectors, which always
predicts a field of a given parity relative to that of the
opposite parity. In the event that the required relationships
are still not exactly met, it is always possible to choose a
slightly different motion vector value for the case that does
not conform; although not precisely optimal, the overall
superiority of dual-prime coding may nevertheless make this
preferable in such a situation.

Dual-prime prediction for a frame picture consists of field
prediction for the current macroblock relative to both fields
of the previous anchor frame. This means that the top-field
portion of the current macroblock is matched with both the
top and bottom fields of the anchor frame (in contrast with

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 109 of 132 PagelD #: 787

US 6,519,005 B2

13

conventional field prediction of frame pictures, where only
the anchor field yielding the better prediction is chosen), and
the same is done for the bottom-field portion of the current
macroblock. Four motion vectors are therefore needed. The
motion estimation system 30 depicted in FIG. 3, when used
for field prediction, was designed to determine the optimum
motion vectors for precisely the four matches required for
dual-prime prediction in a frame picture. Consequently, the
resultant four motion vectors need only be examined to
determine whether the required relative relationships given
in the above discussion holds among the four vectors. The
same architecture used to simultaneously perform frame and
field prediction in a frame picture, and select the better
mode, can thus implement the dual-prime prediction mode
and choose it over the other two prediction modes if superior
to them as well. The resulting architecture of a motion
estimation system 70 for motion estimation and coding of
frame pictures is depicted in FIG. 7.

With specific reference to FIG. 7, the motion estimation
system 70 includes four parallel search engines 72, 74, 76,
and 78 that compare respective portions of the coded mac-
roblock top and bottom fields with appropriate portions of
the anchor picture top and bottom fields in the manner
described hereinabove, in accordance with a prescribed
search metric, e.g., Minimum Absolute Error (MAE). The
search engines 72, 74, 76, and 78 produce respective error
metrics for each comparison operation they perform. In
particular, the error metrics produced by the search engine
72 are applied to an input of a logic element 79 that
determines which of the anchor picture top field macrob-
locks constitutes the best match with respect to the coded
macroblock top field, and then produces the corresponding
motion vector at its output. The error metrics produced by
the search engine 74 are applied to an input of a logic
element 80 that determines which of the anchor picture
bottom field macroblocks constitutes the best match with
respect to the coded macroblock top field, and then produces
the corresponding motion vector at its output. The error
metrics produced by the search engine 76 are applied to an
input of a logic element 81 that determines which of the
anchor picture top field macroblocks constitutes the best
match with respect to the coded macroblock bottom field,
and then produces the corresponding motion vector at its
output. The error metrics produced by the search engine 78
are applied to an input of a logic element 82 that determines
which of the anchor picture bottom field macroblocks con-
stitutes the best match with respect to the coded macroblock
bottom field, and then produces the corresponding motion
vector at its output. The motion vectors produced by the
logic elements 79-82 are examined by a logic circuit 90 for
a 3:2:2:1 relationship, and if such a relationship is deter-
mined to exist between these motion vectors, then a frame
picture dual-prime motion estimation prediction mode is
selected and the corresponding motion vector generated.

Dual-prime prediction for a field picture consists of field
prediction for the current macroblock relative to the two
previous anchor fields. This means that the current macrob-
lock is matched with the previous top and bottom anchor
fields (in contrast with conventional field prediction of field
pictures, where only the anchor field yielding the better
prediction is chosen). Two motion vectors are therefore
needed. The motion estimation system 50 depicted in FIG.
5, when used for field prediction, was designed to determine
the optimum motion vectors for precisely the two matches
required for dual-prime prediction in a field picture.
Consequently, these two motion vectors need only be exam-
ined to determine whether the required relative relationships
given in the above discussion holds among the two vectors.
The same architecture used to simultaneously perform field

10

15

20

25

30

35

40

45

50

55

60

65

14

and 16-by-8 prediction in a field picture, and select the better
mode, can thus implement the dual-prime prediction mode,
and choose it over the other two modes if superior to them
as well. The resulting architecture of a motion estimation
system 100 for motion estimation and coding of field
pictures is depicted in FIG. 8.

With specific reference to FIG. 8, the motion estimation
system 100 includes four parallel search engines 102, 104,
106, and 108 that compare respective portions of the coded
macroblock top and bottom halves with appropriate portions
of the anchor picture top and bottom fields in the manner
described hereinabove, in accordance with a prescribed
search metric, e.g., Minimum Absolute Error (MAE). The
search engines 102, 104, 106, and 108 produce respective
error metrics for each comparison operation they perform. In
particular, the error metrics produced by the search engine
102 are applied to a first input of a first adder 110, and the
error metrics produced by the search engine 106 are applied
to a second input of the first adder 110, which produces at
its output the sum of the error metrics applied to its first and
second inputs as a first composite error metric. The first
composite error metric is applied to a logic element 111 that
determines which of the anchor picture top field macrob-
locks constitutes the best match with. respect to the coded
macroblock, and then produces the corresponding motion
vector at its output. The error metrics produced by the search
engine 104 are applied to a first input of a second adder 112,
and the error metrics produced by the search engine 108 are
applied to a second input of the second adder 112, which
produces at its output the sum of the error metrics applied to
its first and second inputs as a second composite error
metric. The second composite error metric is applied to a
logic element 113 that determines which of the anchor
picture bottom field macroblocks constitutes the best match
with respect to the coded macroblock, and then produces the
corresponding motion vector at its output. The motion
vectors produced by the logic elements 111 and 113 are
examined by a logic circuit 115 for a 2:1 relationship, and if
such a relationship is determined to exist between these
motion vectors, then a field picture dual-prime motion
estimation prediction mode is selected and the correspond-
ing motion vector generated.

The similarities between the techniques and architectures
described for motion estimation of frame pictures and field
pictures immediately suggests that a unified architecture can
be implemented which supports all three prediction modes
allowed for frame pictures as well as all three prediction
modes allowed for field pictures. Combining all of the
techniques previously described, such an architecture
requires knowledge only of the picture structure (frame or
field) and type (I, P, or B) to determine the optimal predic-
tion mode (i.e., the mode that yields the smallest value of the
error metric) and its corresponding motion vector(s) for any
macroblock, and need only perform a single search opera-
tion to do so. When implemented using custom hardware, as
required for real-time video (e.g., a live broadcast), motion
estimation is the most hardware-intensive and expensive
operation in a digital video coding system. When imple-
mented in computer software, as is usually done when the
coding need not be performed in real-time (e.g., the coding
of a DVD), the motion estimation algorithm is the most
computationally complex and intensive part of the digital
video coding algorithm. In either case, the methods and
architectures of the present invention result in a means of
significantly improving the video compression efficiency
and, hence, the resulting picture quality, without the need for
either greater hardware costs or higher computational com-
plexity.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 110 of 132 PagelD #: 788

US 6,519,005 B2

15

Although preferred embodiments of the present invention
have been described in detail hereinabove, it should be
clearly understood that many variations and/or modifica-
tions of the basic inventive concepts taught herein that may
appear to those skilled in the pertinent art will still fall within
the spirit and scope of the present invention, as defined in the
appended claims.

What is claimed is:

1. A method for motion coding an uncompressed digital
video data stream, including the steps of:

comparing pixels of a first pixel array in a picture cur-

rently being coded with pixels of a plurality of second
pixel arrays in at least one reference picture and con-
currently performing motion estimation for each of a
plurality of different prediction modes in order to
determine which of the prediction modes is an optimum
prediction mode;

determining which of the second pixel arrays constitutes

a best match with respect to the first pixel array for the
optimum prediction mode; and,

generating a motion vector for the first pixel array in

response to the determining step.

2. The method as set forth in claim 1, wherein the first and
second pixel arrays each have a size and structure defined by
an MPEG standard.

3. The method as set forth in claim 1, wherein the method
is implemented using a motion estimation search engine of
a digital video encoder.

4. The method as set forth in claim 3, wherein the digital
video encoder is an MPEG-2 digital video encoder.

5. The method as set forth in claim 1, wherein the motion
coding is performed in accordance with an MPEG standard.

6. The method as set forth in claim §, further comprising
the initial step of providing information identifying a picture
type of the first pixel array and using this information in the
comparing step.

7. The method as set forth in claim 5, wherein the different
prediction modes are:

frame prediction mode for frame pictures;

field prediction mode for frame pictures;

field prediction mode for field pictures;

16x8 prediction mode for field pictures;

dual-prime prediction mode for field pictures; and,

dual-prime prediction mode for frame pictures.

8. The method as set forth in claim 1, wherein the different
prediction modes are:

frame prediction mode for frame pictures; and,

field prediction mode for frame pictures.

9. The method as set forth in claim 1, wherein the different
prediction modes are:

field prediction mode for field pictures; and,

16x8 prediction mode for field pictures.

10. The method as set forth in claim 8, wherein the
different prediction modes further include a dual-prime
prediction mode for frame pictures.

11. The method as set forth in claim 9, wherein the
different prediction modes further include a dual-prime
prediction mode for field pictures.

12. The method as set forth in claim 1, wherein the
different prediction modes are:

frame prediction mode for frame pictures;

field prediction mode for frame pictures;

field prediction mode for field pictures; and,

16x8 prediction mode for field pictures.

10

15

20

25

30

40

55

60

65

16
13. A device that implements the method set forth in claim
1.
14. A device that implements the method set forth in claim
7.
15. A device that implements the method set forth in claim
8.
16. A device that implements the method set forth in claim
9.
17. A method for motion coding a digital video data
stream comprised of a sequence of pictures having top and
bottom fields, the method including the steps of:
comparing pixels of a first portion of a current macrob-
lock of the top field of a current picture with pixels of
each of a plurality of correspondingly-sized portions of
a macroblock of a top field of an anchor picture in
accordance with a prescribed search metric, and pro-
ducing a first error metric for each comparison;

comparing pixels of the first portion of the current mac-
roblock of the top field of the current picture with pixels
of each of the plurality of correspondingly-sized por-
tions of a macroblock of- a bottom field of the anchor
picture in accordance with the prescribed search metric,
and producing a second error metric for each compari-
son;
comparing pixels of a second portion of a current mac-
roblock of the bottom field of the current picture with
pixels of each-of the plurality of correspondingly-sized
portions of the macroblock of the top field of the anchor
picture in accordance with the prescribed search metric,
and producing a third error metric for each comparison;

comparing pixels of the second portion of the current
macroblock of the bottom field of the current picture
with pixels of each of the plurality of correspondingly-
sized portions of the macroblock of the bottom field of
the anchor picture in accordance with the prescribed
search metric, and producing a fourth error metric for
each comparison;

summing the first and fourth error metrics to produce a

first composite error metric;

summing the second and third error metrics to produce a

second composite error metric; and

determining which of the first, second, third, and fourth

error metrics, and first and second composite error
metrics has the lowest value, and selecting one of a
plurality of possible motion estimation prediction
modes on the basis of such determination.

18. The method as set forth in claim 17, wherein all of the
comparing steps are performed concurrently, and both of the
summing steps are performed concurrently.

19. The method as set forth in claim 18, wherein:

the first portion of the current macroblock of the top field

of the current picture comprises a first half-portion of
the current macroblock of the top field of the current
picture; and,

the second portion of the current macroblock of the

bottom field of the current picture comprises a second
half-portion of the current macroblock of the bottom
field of the current picture.

20. The method as set forth in claim 19, wherein the
dimensions of each of the first and second portions of the
current macroblock of the top and bottom fields of the
current picture are 16-by-8 pixels.

21. The method as set forth in claim 20, wherein the
digital video data stream comprises an MPEG-2 digital
video data stream.

22. The method as set forth in claim 18, wherein the
plurality of possible motion estimation prediction modes

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 111 of 132 PagelD #: 789

US 6,519,005 B2

17

includes frame and field prediction modes for frame pictures
in accordance with the MPEG-2 standard.
23. The method as set forth in claim 19, wherein the
plurality of possible motion estimation prediction modes
includes frame and field prediction modes for frame pictures
in accordance with the MPEG-2 standard.
24. A device that implements the method set forth in claim
19.
25. A method for motion coding a digital video data
stream comprised of a sequence of pictures, the method
including the steps of:
comparing pixels of a first portion of a top half of a current
macroblock of a current picture with pixels of each of
a plurality of correspondingly-sized portions of a mac-
roblock of a top field of an anchor picture in accordance
with a prescribed search metric, and producing a first
error metric for each comparison;
comparing pixels of the first portion of the top half of the
current macroblock of the current picture with pixels of
each of the plurality of correspondingly-sized portions
of a macroblock of a bottom field of the anchor picture
in accordance with the prescribed search metric, and
producing a second error metric for each comparison;

comparing pixels of a second portion of a bottom half of
a current macroblock of the current picture with pixels
of each of the plurality of correspondingly-sized por-
tions of the macroblock of the top field of the anchor
picture in accordance with the prescribed search metric,
and producing a third error metric for each comparison;

comparing pixels of the second portion of the bottom half
of the current macroblock of the current picture with
pixels of each of the plurality of correspondingly-sized
portions of the macroblock of the bottom field of the
anchor picture in accordance with the prescribed search
metric, and producing a fourth error metric for each
comparison;

summing the first and third error metrics to produce a first

composite error metric;
summing the second-and fourth error metrics to produce
a second composite error metric; and

determining which of the first, second, third, and fourth
error metrics, and first and second composite error
metrics has the lowest value, and selecting one of a
plurality of possible motion estimation prediction
modes on the basis of such determination.

26. The method as set forth in claim 25, wherein all of the
comparing steps are performed concurrently, and both of the
summing steps are performed concurrently.

27. The method as set forth in claim 26, wherein:

the first portion of the top half of the current macroblock

of the current picture comprises a first half-portion of
the top half of the current macroblock of the current
picture; and,

the second portion of the bottom half of the current

macroblock of the current picture comprises a second
half-portion of the bottom half of the current macrob-
lock of the current picture.

28. The method as set forth in claim 27, wherein the
dimensions of each of the first and second portions of the top
and bottom halves of the current macroblock of the current
picture are 16-by-8 pixels.

29. The method as set forth in claim 28, wherein the
digital video data stream comprises an MPEG-2 digital
video data stream.

30. The method as set forth in claim 25, wherein the
plurality of possible motion estimation prediction modes

10

15

20

25

30

35

40

55

60

65

18

includes field and 16x8 prediction modes for field pictures
in accordance with the MPEG-2 standard.
31. The method as set forth in claim 26, wherein the
plurality of possible motion estimation prediction modes
includes field and 16x8 prediction modes for field pictures
in accordance with the MPEG-2 standard.
32. Adevice that implements the method set forth in claim
26.
33. A method for motion coding a digital video data
stream comprised of a sequence of pictures having top and
bottom fields, the method including the steps of:
comparing pixels of a first portion of a current macrob-
lock of the top field of a current picture with pixels of
each of a plurality of correspondingly-sized portions of
a macroblock of a top field of an anchor picture in
accordance with a prescribed search metric, and pro-
ducing a first error metric for each comparison;

comparing pixels of the first portion of the current mac-
roblock of the top field of the current picture with pixels
of each of the plurality of correspondingly-sized por-
tions of a macroblock of a bottom field of the anchor
picture in accordance with the prescribed search metric,
and producing a second error metric for each compari-
son;
comparing pixels of a second portion of a current mac-
roblock of the bottom field of the current picture with
pixels of each of the plurality of correspondingly-sized
portions of the macroblock of the top field of the anchor
picture in accordance with the prescribed search metric,
and producing a third error metric for each comparison;

comparing pixels of the second portion of the current
macroblock of the bottom field of the current picture
with pixels of each of the plurality of correspondingly-
sized portions of the macroblock of the bottom field of
the anchor picture in accordance with the prescribed
search metric, and producing a fourth error metric for
each comparison;

producing first, second, third, and fourth motion vectors

on the basis of the first, second, third, and fourth error
metrics, respectively; and,

examining the first, second, third, and fourth motion

vectors to determine whether a prescribed relationship
between them is present, and if so, selecting a frame
picture dual-prime motion estimation prediction mode.

34. The method as set forth in claim 33, wherein all of the
comparing steps are performed concurrently.

35. Adevice that implements the method set forth in claim
34.

36. A method for motion coding a digital video data
stream comprised of a sequence of pictures, the method
including the steps of:

comparing pixels of a first portion of a top half of a current

macroblock of a current picture with pixels of each of
a plurality of correspondingly-sized portions of a mac-
roblock of a top field of an anchor picture in accordance
with a prescribed search metric, and producing a first
error metric for each comparison;

comparing pixels of the first portion of the top half of the

current macroblock of the current picture with pixels of
each of the plurality of correspondingly-sized portions
of a macroblock of a bottom field of the anchor picture
in accordance with the prescribed search metric, and
producing a second error metric for each comparison;
comparing pixels of a second portion of a bottom half of
a current macroblock of the current picture with pixels
of each of the plurality of correspondingly-sized por-

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 112 of 132 PagelD #: 790

US 6,519,005 B2

19

tions of the macroblock of the top field of the anchor
picture in accordance with the prescribed search metric,
and producing a third error metric for each comparison;

comparing pixels of the second portion of the bottom half
of the current macroblock of the current picture with
pixels of each of the plurality of correspondingly-sized
portions of the macroblock of the bottom field of the
anchor picture in accordance with the prescribed search
metric, and producing a fourth error metric for each
comparison;

summing the first and third error metrics to produce a first
composite error metric;

summing the second and fourth error metrics to produce
a second composite error metric;

producing first and second motion vectors on the basis of
the first and second composite error metrics, respec-
tively; and,

examining the first and second motion vectors to deter-

mine whether a prescribed relationship between them is
present, and if so, selecting a field picture dual-prime
motion estimation prediction mode.

37. The method as set forth in claim 36, wherein all of the
comparing steps are performed concurrently, both of the
summing steps are performed concurrently, and both of the
producing steps are performed concurrently.

5

10

15

20

25

20

38. Adevice that implements the method set forth in claim
37.

39. A motion estimation search system that concurrently
performs motion estimation using each of a plurality of
different motion estimation prediction modes and then
selects the prediction mode that produces the optimum
result.

40. The motion estimation search system as set forth in
claim 39, wherein the motion estimation search system is
included in an MPEG-2 digital video encoder.

41. A method, including the steps of:

concurrently performing motion estimation using each of

a plurality of different motion estimation prediction
modes;

comparing the results produced using each different pre-

diction mode; and,

selecting the prediction mode that produced an optimum

result; and,

generating one or more motion vectors using the selected

prediction mode.

42. The method as set forth in claim 41, wherein the
prediction modes include at least a plurality of the prediction
modes specified by the MPEG-2 standard.

#* #* #* #* #*

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 113 of 132 PagelD #: 791

EXRIBIT D

Case 1:19-cv-00179-CFC Document 37

a2 United States Patent

" MR RSSO

.
US006470345B1

10y Patent No.: US 6,470,345 B1

Doutre et al. @#5) Date of Patent: Oct. 22, 2002
(549) REPLACEMENT OF SUBSTRINGS IN 6,105,027 A * 82000 Schneider et al. 707/10
FILE/DIRECTORY PATHNAMES WITH 6,185,575 B1 * 2/2001 Orcuttccovvvvvinnnns 707/200
NUMERIC TOKENS 6,195,689 B1 * 2/2001 Bahlmann 709/217
6,199,068 B1 * 3/2001 Carpenter 340/870.03
R R tett 6,266,678 B1 * 7/2001 McDevitt et al. 707/10
(75) Inventors: IFE?V{(ar%I;O.“LreB Ct;‘lry’f {\?gnchhm"an 6,366,988 BL * 4/2002 Skiba et al. 707203
ke, Ralagh, both o (Us) 6,374,250 B2 * 42002 Aitai et al.coomrrveernn... 341/50
(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US)
“Separation of file/directory pathname canonicalization
(*) Notice: Subject to any disclaimer, the term of this ~ from validation”, Research Disclosure, IBM Corporation,
patent is extended or adjusted under 35 Nov. 1999, p. 1.*
U.S.C. 154(b) by O days. Peterson, Larry “The Profile Naming Service”, ACM Trans-
actions on Computer Systems, vol. 6, No. 4, Nov. 1988, pp.
(21) Appl. No.: 09/477,771 341-364.%
) Santry, Douglas J. et al., “Elephant: The File System that
(22) Filed: Jan. 4, 2000 Never Forgets”, Proceedings of Seventh Workshop on Hot
(51) Inte CL7 oo GOGF 17/30 Lopics in Operating Systems, Mar. 29-30, 1999, pp. 2-7.*
(52) US.CL 707/100; 707/102; 707/200; Bach, M.J., “Design of the Unix Operating System,” pp.
"""""""""""" ’ ’, ' 76-88, Prentice—Hall, Inc., 1986.
707/501.1
(58) Field of Searchcc........... 707/3-5, 100-102, (List continued on next page.)
707/501.1, 1, 9, 10, 104.1; 709/219, 220,
102, 106, 201, 223, 224; 713/2; 704/9; Primary Examiner—Jean M. Corrielus
706/45, 49, 58; 710/36; 717/113, 121 Assistant Examiner—Shahid Alam
(74) Attorney, Agent, or Firm—J. Bruce Schelkopf
(56) References Cited

U.S. PATENT DOCUMENTS

(7) ABSTRACT

A method and system for replacing substrings in file and

5,325,001 A . 6/1994 Kaplan et al. 341/51 directory pathnames with numeric tokens. A name string to
5325531 A 6/1994 McKeeman et al. 7177112 be converted is first read; the current working directory and
3,475,743 A+ 12/1995 Nixon el al. woovoee. 379/114.15 name string are canonicalized to form a pathname contain-
5,497,492 A * 3/1996 Zbikowski et al. 709/321 ino th bstri Th th . d and h sub
5525982 A 6/1996 Cheng et al ...ccooo....... 341/51 08 the subsinngs. 1he palname 1s parsed and cach sub-
5574903 A * 11/1996 Szymanski et al. 70771 string is searched in a string dictionary to locate a corre-
5577249 A 11/1996 Califano 707/100 sponding numeric token. The string dictionary that is created
5,608,901 A * 3/1997 Letwincccovvveveveennn. 707/205 associates token values with substrings, so that there is a
5,652,876 A * 7/1997 Ashe et al.cceoeueennen. 703/26 one-to-one correspondence. The returned list of tokens for
5,659,755 A 8/1997 Strohacker 708/203 the parsed pathname are validated through a lookup process
5,006,114 A . 971997 Brodie et al. w..cocvvenenne. 341/50 in a directory table. If the parsed pathname is successfully
5,740,353 A 4/1998 Kreulen et al.ccovvv.e. 714/33 validated, the tokens are then used in subsequent file opera-
5,778,255 A 771998 Clark et al. wovvvvvvvvvvvnnnee. 710/68 tions such as create, delete, open, rename and compare files
5,778,361 A * 7/1998 Nanjo et al.ccee. 707/2 ’ ’ ’ ’
5,873,118 A * 2/1999 Letwin 707/205
6,021,433 A * 2/2000 Payne et al. 340/7.29 48 Claims, 7 Drawing Sheets
20
22\ 24~ 26~ 28~ 30 32~
parent next | xxyy_child | flags | name
0 | #entries | Freelist z dir | null
y4 0 z+1 dir | n+3
Z+1 z z+2 dir n
z+2 | z+1 0 xx | yy | file | n+1

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 115 of 132 PagelD #: 793

US 6,470,345 Bl
Page 2

OTHER PUBLICATIONS “An LR Substring Parser Applied in a Parallel Environ-
ment,” Clarke, G, et al., Journal of Parallel and Distributed
Computing, vol. 35, No. 1, May 25, 1996, pp. 2-17,
(abstract only).

“Complexity of Preprocessor in MPM Data Compression
System,” Kiefer et al., Proceedings DCC °98 Data Com-
pression Conference, Mar. 30-Apr. 1 1998, p. 554 (abstract
only). * cited by examiner

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 116 of 132 PagelD #: 794

U.S. Patent Oct. 22, 2002 Sheet 1 of 7 US 6,470,345 B1
n ThislsALongDirectoryName
n+1 ThislsAl.ongFileName.ThislsALongFileExtension
n+2 ADXLXZTN
n+3 VFS
FIG. 2 /20
22\ 24~ 26~, 28~ 30~ 32~
parent next | xxyy_child | flags | name
0 | #entries | Freelist z dir null
z 0 Z+1 dir | n+3
Z+1 z 2+2 dir n
z+2 z+1 0 XX] yy | file | n+1

hO:vfs/~~00/ files: 00, 01, 02, FE,FF
hQ:vfs/~~01/ files: 00, 01,02, ..., FE, FF
hO:vfs/~~... files: 00, 01,02, ..., FE, FF
hO:vfs/~~FE/ files: 00,01,02, ..., FE, FF
hO:vfs/~~FF/ files: 00,01, 02, ..., FE, FF

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 117 of 132 PagelD #: 795

U.S. Patent Oct. 22, 2002 Sheet 2 of 7 US 6,470,345 B1

FIG. 4

400

| ENTER }

Y 402
CANONICALIZE /
NAME
l 404
PARSE
PATHNAME &
REPLACE
SUBSTRINGS
WITH TOKENS
v 406
|/

VALIDATE PATH

410

PATH VALID? >—No— RETURN ERROR

Yes
¥ 412

PERFORM FILE
SYSTEM
OPERATION
(CREATE,
DELETE, OPEN,
ETC.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 118 of 132 PagelD #: 796

U.S. Patent Oct. 22, 2002 Sheet 3 of 7 US 6,470,345 B1
402
CANONICALIZE L/
NAME
(ENTER)

NAME START WITH

ROOT SUBSTRING?
Yes
502
COPYCWD TO /
WORKBUFFER
l 504
ADD NAME TO /
WORKBUFFER
l 506
REPLACE NAME /
WITH
WORKBUFFER
l 508
RESOLVE /
—— SPECIAL
CHARACTERS
J 510

C RETURN NAMQ/

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 119 of 132 PagelD #: 797

U.S. Patent Oct. 22, 2002 Sheet 4 of 7 US 6,470,345 B1
404
PARSE
PATHNAME
(ENTER)

PATHNAME
CONTAIN
SUBSTRINGS?

LOOKUP /
SUBSTRING IN
STRING
DICTIONARY

604

ADDTOKEN |/
REPRESENTING
SUBSTRING TO

OUTPUT
TOKENS

Y 606

GETNEXT V
SUBSTRING
FROM
PATHNAME

i 608
(RETURN '/

TOKENS

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 120 of 132 PagelD #: 798

U.S. Patent Oct. 22, 2002 Sheet 5 of 7 US 6,470,345 B1
406
VALIDATE PATH
((ENTER))/ FIG. 7
Y 700
SET CURRDIR |/
TO ROOT
DIRECTORY
/702 716
ACCESS SET CURRDIR
DIRECTORY O TABLE
TABLE FOR ENTRY DATA
CURRDIR
1 704
GETTOKEN |/
FROM TOKEN
LIST
706
SEARCH |/
DIRECTORY
TABLE

710

IN DIRECTORY No——CRETURN INVALIDj

No

TABLE
ENTRY INDICATES
TOKEN CORR.
TO FILE?

718
(RETURN INVALID)/ Yes 720

Q{ETU RN INVALIDj

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 121 of 132 PagelD #: 799

U.S. Patent Oct. 22, 2002 Sheet 6 of 7 US 6,470,345 B1
FIG. 8A
root A0
— subDir P2
d'1‘/ —— suDir 24
. dir2 & A 86
File /
p
filename]
FIG. 8B
rootr 0
subDir 2 o8
t1 4 SubDir /94 \ String Dictionary
2 @ 96 t [dirt
File / 12 [dir2
4 {3 | filename
13 '

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 122 of 132 PagelD #: 800

U.S. Patent Oct. 22, 2002 Sheet 7 of 7 US 6,470,345 B1

FIG. 9

100
102 104 / 106
\ \ AN
token | substring size
t1 "Test_1" 6
t2 "Source” 6
t3 "filename1"” 9
t4 "text" 4
t5 "filename2" 9
t6 "Output" 6
t7 "binary" 6

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 123 of 132 PagelD #: 801

US 6,470,345 B1

1
REPIACEMENT OF SUBSTRINGS IN
FILE/DIRECTORY PATHNAMES WITH
NUMERIC TOKENS

BACKGROUND OF THE INVENTION

The present invention is generally related to data process-
ing systems; and more particularly is related to a method and
system for the replacement of substrings in file and directory
pathnames with numeric tokens.

Most file systems will complete a partial file or directory
specification by using the current working directory infor-
mation along with whatever partial information is given.
This process of creating a complete, syntactically correct
specification (the canonical form) is sometimes referred to
as “canonicalization”. This canonical form is important,
since it completely and uniquely identifies the file system
resource, whether a file, directory or some other type of
resource.

Another important task is the semantic validation of a
path, made up of the root, intermediate directories, and file
or directory specification. All intermediate directories must
be valid for a pathname to refer to a valid file system
resource. The exception is that the final term, whether a file,
directory or other name, might not exist at the time of
validation, since the operation requested of the file system
may be to create, or indeed, to check whether it exists.

These two tasks are often intertwined in a single function
or set of functions. This makes sense in some file systems,
such as UNIXs file system (UFS), where all resources are
local and creations, modifications and deletions are all
within the same data scope of an operating system process
and can be easily synchronized.

The combination of these two functions can also effect
some savings by being more efficient. If the current working
directory for a given process is taken to be always valid
(which assumes some method to prevent other processes
from modifying that file system information while a process
is “in it”), then validation of a path can start with the partial
information specified by the user of the file system.

However useful this method of combining these two
functions can be, it should always be remembered that these
are two separate tasks. Severe performance penalties can be
the cost of forgetting this. During recent development of a
Virtual File System (VFS) and related network file system
(NFS) work by the inventors, it was found that some NFS
clients were sending remote procedure call (RPC) requests
to validate each intermediate part of the path (via NFS__
LOOKUP) instead of sending the full path as far as it was
thought to be valid. This means in many cases 12 to 15 RPCs
instead of a single RPC.

In the design of the file system that is structured on a
client/server split, where the client portion keeps track of the
current working directory and therefore has to perform the
canonicalization, the path validation can often only be
efficiently done by the server. The inventors’ research has
shown that in most cases even where there is no client/server
split, it is advantageous to separate canonicalization from
validation and perform these two operations in a close
sequence, but not interleaving validation of intermediate
path information with a forming of a canonical name. This
results in a simpler implementation and superior
performance, especially in a network environment.

SUMMARY OF THE INVENTION

In a network of computers, there is often a need to extend
some operating systems’ file systems to accommodate file

10

15

20

25

30

35

40

45

50

55

60

65

2

and directory names that are not supported natively. When
implementing Java Virtual Machines (JVMs) on file systems
that only support “8.3” names (up to eight characters for the
name and up to three characters for extension or type) this
becomes very apparent. A trivial example is:
“SomelJavaApplication.class”, which violates both the eight
character name and the three character extension limits.
Special characters, DBCS (Double Byte Character Set),
uppercase and lowercase letters, spaces within names and a
host of other limitations can cause problems that limit the
usefulness of an otherwise desirable file system.

A virtual file system (VFS) has been implemented that
allows clients to map many names that use these problem
characters and can far exceed the length of the file or
directory name or total length of a “path”. In general, a VES
is an indirection layer that handles the file-oriented system
calls and calls the necessary functions in the physical file
system code to perform input/output. The VFS consists of a
Name Space Server accessed via TCP/IP sockets and a
run-time VFES client. In a sense the run-time client intercepts
names that are allowed to exceed the limits of the native file
system and sends them to the Name Space Server to be
converted into names that are supported natively.

In dealing with file/directory pathnames, the number of
sometimes quite lengthy strings poses a significant problem,
especially when these are broken into substrings which then
are constantly compared to other substrings. By parsing the
strings into their semantically correct substrings and replac-
ing those substrings with unique numeric tokens, a signifi-
cant improvement is realized in the storage of the strings as
well as better performance in comparing those substrings.
Since each substring (typically a subdirectory, filename or
extension) is replaced with a numeric value, these numeric
values can be arithmetically compared (e.g., is a ==b)
instead of string compared (i.e., are all characters the same,
what about uppercase vs. lowercase, etc.). This alone rep-
resents a substantial improvement in performance. In
addition, by keeping a string dictionary, which the token
uniquely indexes, only one copy is kept of any substring.
This too can represent a substantial savings in the amount of
storage needed to implement a file system.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is better understood by reading the follow-
ing detailed description of the preferred embodiment in
conjunction with the accompanying drawings, wherein:

FIG. 1 illustrates an example of the partial format of a
string dictionary used in the preferred embodiment of the
present invention;

FIG. 2 illustrates an example of the format of a mapping
database used in the preferred embodiment of the present
invention;

FIG. 3 illustrates the structure of a physical directory file
layout;

FIG. 4 illustrates a high level flowchart of the functions of
the token replacement mechanism of the present invention;

FIG. § illustrates a flowchart of the canonicalization
process of the present invention;

FIG. 6 illustrates a flowchart of the parsing process of the
present invention;

FIG. 7 illustrates a flowchart of validation process of the
present invention;

FIGS. 8A-8B depict the prior art method of storing
directory and file names and the mechanism used in the
present invention to store directory and file names using
numeric tokens; and

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 124 of 132 PagelD #: 802

US 6,470,345 B1

3

FIG. 9 illustrates an example of a string dictionary used
in the preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Due to a need for directory and file names that are greater
than can currently be supported in the existing File Alloca-
tion Table (FAT) file system, a Virtual File System (VFS) can
be designed and implemented that can support much longer
path lengths and completely avoid the 8.3 directory and file
name limitations.

The VES can be accessed by programs and users by
referring to a virtual drive, e.g., ‘VFS:’. The Virtual File
Names (VFNs) are of the form:

node::VFS:/directory/ . . . /filename
where ‘node::’ is the machine node network name; and the
‘directory’ and ‘filename’ specifiers are permitted to each be
of up to 255 characters, with a total path length of 270
characters.

Underlying the VFS is the normal physical file system
with all of the usual operating system features and limita-
tions. The Real File Names (RFNs) will be placed under a
system sub-directory on the controller or file server (h0:/
VES/ is the current name) and are of the form:

node::device_ name:VFS/~~X,X,/Y,Y,
where ‘node::’ is the machine network node name; the
‘device_name:’ is the usual ‘h0:” or ‘hl:’ pertaining to a
specific implementation (IBM 4690 OS); hard disk device
name: ‘VFS/’ is the system sub-directory under which all
VES system data files and all of the RFNs lie; ‘~~X, X,/ are
special sub-directories created to hold the actual files that are
in VFS (‘X,,” and ‘X, are the ASCII representations of the
hexadecimal digits from ‘0’ to ‘F’, i.e. one of ‘00°, ‘01°,
‘02°, ... ‘FE’, ‘FF’); “Y,Y,’ gives the physical name of the
file (again the ASCII representation of two hex digits). The
implementation of the invention; however, is not limited to
any particular operating system platform, and those skilled
in the art will readily appreciate that the invention can be
implemented on many other platforms including Microsoft
Corp.” s Windows 95/98 and Windows NT, IBM Corp.’s
0S/2 as well as Sun Microsystems’ Java Virtual Machine
JVM).

This scheme provides for 256*256 (64K) RFNs in a VES
logical volume (i.e. the ‘VFS:” drive). All access to these
physical files is through VFS code via their Virtual File
Names (VFNs) except for certain system routines and utili-
ties. An application or user will never see an RFN.

While actual files are represented as physical files, direc-
tories are only represented in VFS database files, along with
information on the physical files within those directories.
Information is kept as to distribution attributes as well as
which nodes in the networked system actually have the
physical files.

The VFS is implemented using a client/server split, where
each user of the VES accesses the files and directories by
calling functions on their local machine. This is true for
controllers as well as terminals. The client functions open a
TCP/IP socket to the currently active controller in the system
(perhaps even on the same physical machine) and make
requests of the VFS server.

The function of this VFS Name Space Server is analogous
to that of the TCP/IP network Domain Name Server (DNS)
or bind server which maps IP addresses and node names
back and forth. However, the VFS Name Space Server is
involved in many simultaneous operations performed by
numerous applications and therefore has some severe per-

10

15

20

25

30

35

40

45

50

55

60

65

4

formance requirements and also does not have the IP name
restrictions that limit the total number of usable names. The
typical DNS implementation also does not face the dynamic
creation and deletion of names and the attendant manage-
ment problems that entails. Some of these differences are
readily apparent when given some examples. A typical DNS
would map the IP node name “mymachine.mysubnet.my-
domain.net” to an IP address of the (for example) 9.67.5.1
and another IP node name with the same “mysubnet.my
domain.net” would only differ in the least significant number
(the “.1” might for instance become “.27). These restrictions
are documented in various Request For Comments (RFCs)
documents (for example, RFCs 1034/2535) and are tightly
controlled because of their impact on IP routers, which
depend on these addresses to deliver packets to the correct
sub-network.

In the VFS Name Space Server, Virtual File Names
(VFNs) are reusable, in part, as long as different subdirec-
tories make them unique and the real file names (RFNs) that
they map to can be distinguished in some fashion. In
addition, the VFNs can be very long in that they may contain
a large number of subdirectories and there is no direct
correlation between these intermediate components and the
allocation of RFNs. As an example, the VFN
“nodename::devicename:\dirl\dir2\dir3\dir4\dirS\file.name”
can be mapped to the RFN “node name:: C:\xx\yz” where
“xx” is a subdirectory (used to improve performance) and
“yz” is an actual file. At the same time, a VFN of the
“othernode::otherdevice:\otherdirectory\filename.extension”
may map to REN “othernode::otherdevice:\xx\yz”, where
“z” differs from “y” by only one character. In other words,
the allocation of RFNs is totally independent of the logical
proximity of the Virtual File Name.

The VFS Name Space Server is composed of three
distinct parts: the string heap, the mapping database and the
REN allocation subsystem. The parsing of a canonical
file/directory name into its individual component substrings
and replacement with numeric tokens involves the specifi-
cation of the VEN as either a file name (where file name is
of the form “node::device:\directory\. . .
\filename.extension”) or a directory name (where directory
name is of the form “node::device:\directory\. . . ”). The
string is decomposed by a parser which recognizes the
subdirectory delimiters ‘\’ or ‘/* and replaces each compo-
nent of the path with a numeric token which uniquely
specifies the original substring. The VFN is then located in
the mapping database which associates with each VFN, in
the case of an actual file, an RFN that is obtained from the
REN allocation subsystem. Virtual directories are also
placed into the mapping database, but do not map to an RFN
since directory VFNs are virtual.

The VES server creates and maintains a database to
provide information for all clients about the files and direc-
tories in the VS volume. The most frequent request is the
“find’ operation which returns a physical name (i.e., an RFN)
to allow the client code to create, open, delete and otherwise
manipulate the file. Some requests are done completely on
the server side (e.g., the ‘rename’ function) and some require
more than one interaction between the client code and the
server.

However, the application software does not normally use
these client functions directly. Instead, the system-provided
runtime libraries, such as PORTLIB.DLL for 32-bit ‘C’
programs, the Visual Age runtimes for 32-bitC/C*™*
programs, as well as 16-bit link86able.LIB routines, call the
VES client functions “under-the-covers,” providing trans-
parent access to files and directories in the VFS volume.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 125 of 132 PagelD #: 803

US 6,470,345 B1

5

Certain ‘trusted’ code, such as the Java Virtual Machine
(JVM) and the command interpreter (the ‘command prompt’
and .BAT file processing code) can use the functions directly
due to performance and possibly other reasons.

The client portion of the VFES consists of several functions
that access the VFES server via TCP/IP sockets. The typical
interaction between the client and server consists of a
non-binding socketopen call by the client to the VES server.
If a socket is successfully opened, the client performs a send
operation to transmit a request block and the client performs
a receive operation to wait for the server’s reply. If the
non-binding open fails, then error recovery is needed to
attempt to find another controller or to attempt in some other
way to handle the problem. If the error turns out to be
unrecoverable, then an appropriate error return is required.

The client code does more than just route the function
requests to the server code. It also maintains the unique
information that each client process uses, such as the current
drive and working directory. The canonicalization process
which turns each partial path/file name into a complete, fully
qualified path/file name is done on the client, though the
verification must be done on the canonical form at the server
(the TransPath function).

The run-time VFS client contains APIs to deal with files
and directories and passes requests to deal with native file
system compliant names through the native operating sys-
tem. The VFS hooks route the VFNSs to the VES Name Space
Server via an RPC layer similar in some ways to the network
file system (NFS) as described in various documents includ-
ing RFC 1813. Note that file data transfer is not a function
of this mechanism, only virtual file names (VFENs), their
associated real file names (RFNs) and ‘stat ()’ type infor-
mation is transferred. All requests that deal with the data
within a file are passed through the native file system.

The client code provides the following functions to users
of the VFS:

int VFS__isinVFS(VFEN * name);

int VFS_ find(VFN *name, RFN *realname)

int VFS_ create(VEN *name, RFN *realname)

int VFS__delete(VEN *name, RFN *realname)

int VFS__rename(VEN *from, VFN *to)

int VFS_ stat(VFN *name, stat_struct *pstat)

int VFS__mkdir(VFS *dirname)

int VFS__rmdir(VFS *dirname)

int VFS__chdir(VFS *dirname)

char VFS__getewd(VEN *dirname)

int VFS_ readdir(VFSDIR *dir)

Each of these functions is invoked on the client and most
interact with their server counterparts via a TCP/IP socket-
based transport that conveys the request and the parameters
to the server and the response from the server back to the
client. A socket is opened from the client to the server for the
duration of the call. This primitive RPC method is sufficient
for all users of the service. The default port that the server
“listens” on is currently “5555”, but may change and this
will be reflected in the Services TCP/IP configuration file.

Additional function is provided by the client code in
several cases. A canonicalization process first performed on
all VFNSs, using the client’s current working directory infor-
mation to ensure a well-formed fully qualified path and file
name is always provided to the server. Some functions are
mostly or entirely implemented in the client code. The
VES__getewd(Yfunction simply returns the current working
directory string to the caller. The VFS__chdir() function sets
the client-maintained current working directory information
after verifying with the VFS server that the new directory is
valid.

10

15

20

25

30

35

40

45

50

55

60

65

6

Each of the functions are described as follows:

int VFS_isin VFS(VFN *name) returns either true or
false, depending on whether the VFN contains one of
the valid drive letters that indicate whether the specified
file or directory name is in the VFS.

int VFS_ find(VFN *name, RFN *realname) returns a
string pointer (RFN *realname) that is the actual FAT/
8.3 compliant name of the file. If the VFN passed in is
not a file, but is a directory, an error code is returned
that indicates this. If the VFN does not exist in the
mapping database, an appropriate error code is
returned.

int VFS_ create(VFN *name, RFN *realname) allocates
an RFN and associates it with the VFN passed in. It
then returns a string pointer (RFN *realname) that is
the actual FAT/8.3 compliant name of the file. No
physical file is created. The client uses the normal
runtime to actually open the file with the appropriate
flags. Appropriate error codes are returned for condi-
tions such as file already exists, no room available in
file system (64 k file/dir limit) and so forth.

int VFS_ delete(VEN *name, REN *realname) deallo-
cates the RFN and removes the VFN from the mapping
database. It then returns a string pointer (RFN
realname) that was the actual FAT/8.3 compliant name
of the file. The physical file is not deleted. The client
code uses the normal runtime to actually remove the
physical file.

int VFS_rename (VEN *from, VFN *to) locates the first
VEN (VEN *from) in the mapping database, validates
that the second VEN (VFN *to) is valid and changes the
VFN in the mapping database to reflect the changed
name. If the name of a higher level directory in the
*from or *to names (i.e. the path) is different, the file
is moved from the first directory to the second. Error
codes include: (1) error directory does not exist; (2)
error *from file does not exist; (3) error *to file already
exists; (4) error no room available in the file system (64
k file/dir limit). Conflicts in from/to names across
nodes or involving DDA are considered errors as well
and the system will not perform the rename. Alterna-
tively an enhancement enables the client code to do a
sequence of create/copy/delete in those instances.
Rename request across different drive letters (e.g.
‘rename adxlIxztn::h0:\foo adxlIxztn::vfs:/foo *) are also
not permitted in the preferred embodiment but can be
added in alternate embodiments in the same manner.

int VFS__ stat(VFN *name, stat__struct *pstat) works only
on virtual files and directories. The client sees the
regular file system for file stat() information. The VFS
server provides the information for directories. Error
codes include file/directory name does not exist, etc.
The server returns the REN of a file to the client code
if and only if the VFN denotes a file in the VFS,
however, the length of the RFN field is used to return
the mapping database index (used as the inode of
directories) and a null RFN for directories. This is
because there is no “normal” file system information
for virtual directories (i. ¢., no REN exists).

int VFS__mkdir(VFN *dirname) takes the fully qualified
directory name (VFN *dirname) and adds it to the
mapping database. Error codes include error directory
already exists, error in pathname (a higher level direc-
tory does not exist), and error no room available in file
system (64 k file/dir limit).

int VFS__rmdir(VEN *dirname) removes the filly quali-
fied directory name (VFN *dirname) from the mapping

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 126 of 132 PagelD #: 804

US 6,470,345 B1

7

database. Error codes include error in pathname (some
directory in *dirname does not exist) and the directory
is not empty.

int VFS__chdir(VFN *dirname) is not a server-side opera-
tion. The client-side code maintains the concepts of a
current drive and working directory and this function
allows the application code to manipulate the process-
level current working directory. Verification is per-
formed on the target directory name (VFN *dirname)
and error codes include error target directory does not
exist, etc.

char *VFS__getewd(VFN *dirname) is not a server-side
operation. Like the VFS_ chdir() function it deals with
the per-process current working directory. This func-
tion simply returns a pointer to the character string that
contains the current working directory. No error codes
are supported.

int VFS_ readdir(VFSDIR *dir) takes a valid directory

structure which includes a valid directory VFN, and on
the first call will return the structure with information
about the first file/directory within the target directory.
Subsequent calls with the same VFSDIR structure
returns updated information on the next directory entry
within the specified target directory. Error codes
include error directory does not exist.

The VFS server maintains the database of information and
the actual underlying physical files. Communications
between the client and server portions are via IP sockets
using a custom RPC protocol which allows for a synchro-
nous response from the server code to the client code for
each request.

As requests are received for access to files and directories
in the VFS, as indicated by a virtual device/drive (e.g.,
‘VES:’, they are routed to a file name hashing and sub-
allocation scheme. This comprises three (3) parts as follows:

1. A string ‘dictionary’ that contains all strings for direc-

tory and file name identification.

2. A mapping database associating virtual file names

(VFNs) with real file names (RFNs).

3. An RFN allocation scheme that keeps track of what real

files currently exist.

The assumption is made that all files placed on this virtual
drive are subject to name hashing and attendant sub-
allocation, even if the names are valid in the 8.3 FAT file
system. In addition, all directories created on this virtual
drive will have entries in the mapping database. This solves
several problems, including the fast location of files and
certain directory operations.

In order to allow access to the data structures and
algorithms, the following higher level functions are avail-
able on the server:

VFES_ find() given a VEN, locates and returns an RFN.

VES_ create() given a VEN, allocates an RFN, updates the
mapping database information and returns the REN. Fur-
ther calls to normal file system function are needed to
actually create and open the real file.

VES__delete() given a VFN, deallocates the associated RFN
and cleans up the mapping database information.

VFES__rename() given two (2) VENs, changes the mapping
database information to reflect the new name.

VES_stat() given a VFN, locates and returns information
about VES directories.

VFS__mkdir() given a VFN, creates the directory informa-
tion in the mapping database.

VFES__rmdir() given a VEN, removes the directory infor-
mation from the mapping database.

10

15

20

25

30

35

40

45

50

55

60

65

8

VFS__readdir() given a VFN in the passed in VFSDIR
structure, on the first call to this function, locates the first
directory entry and returns the structure with that direc-
tory information as well as the directory’s first VEN/RFN
and other information. On subsequent calls to this func-
tion given the same VFS directory information structure,
returns the structure with the next VFN/RFN and other
information

These functions will be used (sometimes in combination) to

provide to clients (both terminals and controllers) all file

system services.

The string ‘dictionary’ contains all strings that are part of
a fully qualified path and file name, i.e. they are ‘canonical’.
For example:
“ADXLXZTN::VFS:\ThisIsALongDirectoryName\ThisIsA

LongFileName.ThisIsALongFileExtension.”

When this string is parsed into its component parts it appears
in the dictionary 10 as indicated in FIG. 1 where “n” is
simply the index in the dictionary table where the strings are
inserted. String dictionary 10 depicts an index field 12 and
a corresponding string field 14. The entries in the dictionary
are not assumed to be sequential, but may be inserted in
whatever order space is available. If a string already exists
in the table, it is not inserted again, i.e., all strings in the table
are unique in the dictionary. There is no need to delete
entries from the dictionary as file and directory names may
be used in many places and are often created and deleted
repeatedly.

While the case of letters is not significant, it is preserved
as whatever the file or directory name creation indicated.
This allows an efficient hashing function algorithm. An
easily implementable configurable option would be to con-
sider case significant.

The implementation of this layer uses a string hashing
scheme, the current version of which depends on a 4096
entry hash vector and a string summation and shifting hash
function. This gives a very good distribution over the test
sample which consists of 65,534 file and directory names
from the HotJava browser, Jigsaw web server, and the Java
Compatibility Kit (JCK) 1.1.6a. There are 35,369 unique
strings in this test sample which average 11.5 characters
each, producing a 410,191 byte dictionary. The hash func-
tion produces only 54 empty buckets and a maximum bucket
size of 40 items. The simple arithmetic average of all
non-empty buckets is 6 items and the weighted arithmetic
mean is 13 items. An additional enhancement keeps the
items in buckets sorted in a decreasing frequency of use
order that also helps retrieval performance.

The string dictionary is used by the mapping database to
keep very short entries that fully describe the unique,
canonical path and file name associated with a particular file
(virtual name), without having to keep the complete canoni-
cal path and file name in the mapping table.

The mapping database connects a logical name with a
physical name. An entry in the mapping database consists of
a fixed length structure that contains six 16-bit values that
are the indices to other mapping table entries, RFN
indicators, flags and indices into the string dictionary. Fol-
lowing the example provided for the string dictionary, an
example for the mapping database 20 is illustrated in FIG.
2. The mapping database 20 depicts a number of fields
including mapping table entry number 22, parent entry 24,
next entry 26, xx|yy field 28 (described below), flags field 30
and name (index) field 32. In FIG. 2, “0, z, z+1 and z+2” are
simply mapping table entry numbers and “n, n+1, n+3” are
the indices (also referred to as tokens) into the dictionary
table where the complete strings are kept and xx, yy are two
1-byte fields that represent the physical directory and file

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 127 of 132 PagelD #: 805

US 6,470,345 B1

9

that the virtual file name is mapped to. If a table entry is a
directory, then the xx, yy field is reused to indicate the
mapping table entry that contains the first file in the direc-
tory. A free-entry (deleted) list and the number of entries in
the table are maintained to avoid having to reorder table
entries. This linked list is pointed to by the ‘.next’ field in the
root entry of the mapping database (i.e. the zero-th entry)
and the number of entries in use is maintained in the ‘.parent’
field of the same entry.

The virtual “device”, in this case drive “VFS:”, is added
to the table and pointed to by the root entry. This enables
expansion of this scheme to include other virtual drives.

The ‘real’ file name (RFN) allocation scheme is tied
closely into the mapping database. It consists of a bit-map,
logically 256x256 bits (i.e. 256x32 bytes, or 8192 bytes),
where each bit represents a physical file. An example of the
layout on the disk of the physical file allocation scheme is
illustrated in FIG. 3.

There are up to 256 sub-directories under the home (/vfs)
directory, each with a 4 character name from ‘~~00’ to
‘~~FF’ (i.e., ASCII representation of hex 0x00 through
0xff), and up to 256 files in each sub-directory with names
(similar to the sub-directories) from ‘00° through ‘FF’.

As files are created, the bits representing the correspond-
ing files are set to ‘1° and when the file is deleted, reset back
to ‘0’. There is no mapping of virtual sub-directories to
physical sub-directories, the physical sub-directories exist
only to keep performance optimal. Virtual directories are
only retained in the mapping database and have no physical
counterpart.

As RFNs are allocated with this scheme, an extended
attribute file with the same name, but with the added “.A”
extension (e.g. “h0:vfs/~~ab/cd.A”, where ab and cd are the
ASCII representation of a two digit hexadecimal number).
The full, canonical virtual pathname of the file is written into
this extended attribute file to provide both a simple way of
mapping from an RFN back to the associated VFN and a
way of associating other extended attributes with this file
(e.g. icons).

Each time a change is made in one of the in-memory
database tables, a corresponding change is required to the
version of that database table kept on the hard disk. This
serves several purposes, the primary being the reliability of
the VFS function in the operating system. If a machine is
rebooted or a power loss occurs during a directory or file
creation, deletion or rename, unforsecable errors can occur
if the database was being changed and was temporarily
invalid.

Therefore, all VFS directory and file name, create, delete
and rename functions are processed in the following
sequence:

1. a request is received for a create, delete, mkdir, rmdir

or rename function;

2. the transaction log is opened and the request informa-

tion is written into it;

3. the request starts being processed by the server; and

4. as a change is made to the in-memory database tables,

the corresponding change to the database files is deter-
mined;

5. the file changes are written into the transaction log file;

6. after all changes have been made to the in-memory

version and all changes to the file version have been
determined and written to the transaction log, (1) the
result and return code are written into the transaction
log, and (2) the result and return code is sent back to the
client;

10

15

20

25

30

35

40

45

50

55

60

65

10

7. the transaction log is processed, making all changes
necessary to all database files and after all changes are
complete; and

8. the transaction log is reset to zero length and closed.

If a power loss occurs at anytime during this process,
either the transaction can still be cancelled without
problems, or all information is securely written to the disk
so the server can recover when power is restored.

This should allow reasonably stateless file updates to
occur after server function is restored by simply writing all
data in the transaction log to the correct files and therefore
setting the database to a known state. This state would then
agree with all clients who have received results back from
calls to the server.

If a transaction log is incomplete (the final results and
return code are not in the file), when server function is
restored, the transaction log is truncated to zero length and
processing continues.

The format in the transaction log of the VFS client
requests are:

1. client node name (null terminated character array);

2. client VFS request (16-bits);

3. length of VFN #1 (16-bits: value is up to MAXVEN-

LEN bytes);

4. Virtual File Name #1 (null terminated character array);

5. length of VFN #2 (16-bits: value is up to MAXVEN-
LEN bytes);

6. Virtual File Name #2 (null terminated character array);
This format derives directly from the client request block
used to transport the request from the client to the server.

The format in the transaction log of the database file
updates are:

1. database file name manifest (32-bits);

2. file offset at which to write data (32-bits);

3. data block size (32-bits);

4. data block (variable length);

The format in the transaction log of the VFES server reply
will be:

1. return code (16-bits);

2. length of returned RFN (if any. 16-bits: value is up to

MAXRFNLEN),

3. Real File Name (null terminated character array);

The above format derives directly from the server reply
block used to transport the reply from the server back to the
client.

FIG. 4 illustrates a high level flowchart of the token
replacement process of the present invention. The process
starts in entry block 400 in which the current working
directory and filename (e.g., current-work-dir=\dir1\dir2;
name=filename) are input to the canonicalization process as
indicated by logic block 402. This action results in the
canonical form such as pathname=\dirl\dir2\filename. This
is followed in logic block 404 with parsing of the pathname
and replacement of substrings with tokens. The substrings in
this small example are “dirl”, “dir2”, and “filename”. The
result of this action are tokens t1, t2, and t3. The validation
of the path is the next act in the process as indicated by logic
block 406. From this act the process continues in decision
block 408 with a determination of the validity of the path. If
the path is found to be invalid an error is returned as
indicated by termination block 410. Otherwise, the path is
found to be valid and a file system operation is performed as
indicated in logic block 412.

FIG. § illustrates the specific acts of the canonicalization
process 402 of FIG. 4. It begins in decision block 500 with

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 128 of 132 PagelD #: 806

US 6,470,345 B1

11

a determination if the name starts with a root substring. If it
does, then processing jumps to logic block 508 for resolution
of special characters in the name. If the name does not start
with a root substring, then in logic block 502 the current
working directory is copied to a work buffer. The content of
the work buffer at this point in the process is \dir1\dir2. Next,
the name (i.c., filename) is added to the work buffer as
indicated in logic block 504. The content of the work buffer
at this point is \dirl\dir2\filename. In logic block 506, the
name is replaced with the work buffer contents. The process
concludes in logic block 508 with the resolution of special
characters such as “..” or “.”. The canonicalization process
exits back to the many processing logic in termination block
510.

FIG. 6 illustrates a flowchart of the parsing process 404 of
the present invention. It commences with the entry of
decision block 600 which initiates an iterative routine to
perform as long as the pathname contains substrings. The
iterative routine begins in logic block 602 in which a
substring is looked up in the string dictionary. If the sub-
string does not exist then a new token is created to represent
that substring. In logic block 604, the token representing the
substring is added to a list of output tokens for the pathname.
The next act is to get the next substring from the pathname
as indicated in logic block 606. The iterative routine loops
back to decision block 600. After the entire pathname has
been parsed into substrings and replaced with tokens
(DONE indication out of decision block 600), the parsing
process retuns the tokens found as indicated in termination
block 608.

FIG. 7 illustrates a flowchart of the validation process 406
of the present invention. The token list is input to logic block
700 in which the current directory is set to the root directory.
In logic block 702, the directory table is accessed for the
current directory. This is followed in logic block 704 with
the act of getting a token from the token list. Next, in logic
block 706, a search is performed to locate the token in the
directory table. In decision block 708, a test is made to
determine if the token was found in the directory table. If the
search failed, then an invalid pathname indication is
returned to the main processing logic via termination block
710. If the search was successful, processing continues in
decision block 712, in which a test is made to determine if
the token list is empty. If not, the processing continues in
decision block 714 in which a determination is made as to
whether or not the directory table entry found is for a file
(rather than for a directory). If the directory table entry is for
a directory, then processing continues in logic block 716 in
which the current directory is set to the table entry data;
processing then returns to logic block 702. If the directory
table entry found in decision block 714 is for a file, then
processing ends in termination block 720 with an invalid
pathname indication. If, in decision block 712, the token list
was found to be empty (i.e., all tokens have been processed)
then processing exits in termination block 718 with the
return of an valid pathname.

FIGS. 8 A-8B indicate both the prior art and the inventive
method of storing directory and file names on a storage
device, such as a disk. FIG. 8A shows a linked list structure
with dirl stored in root block memory location 80, dir2
stored in subdirectory block memory location 82, the file-
name stored in subdirectory block memory location 84, and
the actual file stored at memory location 86. FIG. 8B
indicates the method of storing directory and pathnames
according to the present invention. Token t1 is stored in root
block memory location 90, token t2 is stored in subdirectory
block memory location 92, token t3 is stored in subdirectory

«@ 2

5

10

20

25

30

35

40

45

50

55

60

65

12

block memory location 94 which contains a pointer to the
file stored at memory location 96. Also shown in FIG. 8B is
the string dictionary 98 corresponding to this simple
example.

A simple example of the use of the invention demonstrat-
ing its advantages is described below:
The filenames

Stringl=\test__1\Source\filename1.text

String2=\test__1\Source\filename2.text

String3=\test__1\Source\filename1.Output

String4=\test__1\Source\filename2.Output

StringS=\test_ 1\Output\filename1 .binary

String6=\test__1\Output\filename2 binary
contain 7 unique semantically significant substrings:
“Test_1 7, “Source”, “filenamel”, “filename2 , “text”,
“output” and “binary”.

If placed into a table (or dictionary) as illustrated in FIG.
9, it is easy to see that a representation of the original
substrings based on their position in the table would be
(given the assumption that a “.” is inserted in place of the “\”
in front of the final token):

Stringl={t1, 2, {3, t4 }

String2={t1, 2, t5, t4 }

String3={t1, 2, t3, t6 }

Stringd={t1, 2, t5, t6 }

String5={t1, t6, t3, 17 }

String6={t1, t6, t5, t7 }

A simple comparison of the amount of storage to hold this
information is as follows:

Traditional method New Method
String 1 = 6+ 6+9+4 =25 bytes 8 bytes
String 2 = 6+ 6+9+4 =25 bytes 8 bytes
String 3 = 6+ 6+9+6=27 bytes 8 bytes
String 4 = 6+ 6+9+6=27 bytes 8 bytes
String 5 = 6+ 6+9+6=27 bytes 8 bytes
String 6 = 6+ 6+9+ 6=27 bytes 8 bytes

158 total bytes 48 total bytes

However, this greater than 3 to 1 comparison ratio is not
quite entirely complete in that there is an “overhead” of 81
bytes to store the substrings in a dictionary (as null-
terminated strings) along with the pointers to locate them.
This overhead, while not negligible, is not as significant as
the savings in replacing substrings with 2-byte numeric
tokens.

The difference in speed of comparison is not quite so
readily calculated. It is clear that comparing a new string:

StringN=\Test__1\Output\filename2 .binary. NEW
with String6, character by character, would involve 32
comparisons of single bytes until a mismatch is found. A
simple comparison of the two strings using the token-
scheme would require four comparisons of 2-byte tokens.

Again, this 8 to 1 ratio is not entirely complete in that the
conversion of the strings into substrings and proper insertion
into the table require some overhead, but in a file system
where locating information is much more frequent than
inserting, removing or renaming it, this overhead is not as
significant as the savings in numeric comparisons verus
string comparisons.

A third advantage that is usually involved whenever data
compression is present is the additional security for a file
system that uses the new method. Several schemes could be

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 129 of 132 PagelD #: 807

US 6,470,345 B1

13

easily applied to prevent the string dictionary from being
accessed even though the file and directory names may be
available. This is the “shared-secret” type of security and is
the most difficult to decrypt. While the substrings them-
selves can also be encrypted, it would be easier to take
advantage of the clean split between the semantic informa-
tion embodied in the tokens and the human-readable form of
the strings to deter someone from locating secure informa-
tion in a file system.

The fourth advantage is that of the additional flexibility
that tokenizing the substrings provides. Since the actual
substrings are stored in a separate place from the directory
and file information in the native file system, limits on the
length of a substring, overall length of a path (composed of
many substrings) as well as the permissible characters in any
substring can be much different than those imposed by the
native file system. As long as the sequence of tokens can be
uniquely mapped to a native file system resource practically
any string can be accommodated. The tokens are used only
to uniquely represent the substrings, wherever they may be
used in a file system name. A clear example is the above use
of “Output” as both a sub-directory name and as a file
“extension” in String3 and String5 for instance.

The file/directory pathnames token replacement mecha-
nism of the present invention has been described as a
computer program that can be resident on one or more host
computers such as a workstation, a network device, or a
server device. As such, the token replacement mechanism
can stored as an application on any network device. It is
important to note, however, that those skilled in the art will
appreciate that the mechanisms of the present invention are
capable of being distributed as a program product in a
variety of forms, and that the present invention applies
equally regardless of the particular type of signal bearing
media utilized to actually carry out the distribution.
Examples of signal bearing media include, without
limitation, recordable type media such as cassettes or CD
ROMS and transmission type media such as analog or
digital communication links.

Additionally, corresponding structures, materials, acts,
and equivalents of all means plus function elements in the
claims below are intended to include any structure, material,
or acts for performing the functions in combination with
other claimed elements as specifically claimed.

While the invention has been particularly shown and
described with reference to a preferred embodiment thereof,
it will be understood by those skilled in the art that various
changes in form and detail may be made without departing
from the spirit and scope of the present invention.

What is claimed is:

1. A method for replacing substrings in file and directory
pathnames with tokens in a computer-implemented file
system, comprising the acts of:

reading a name string to be converted into a list of tokens;

canonicalizing a current working directory and the name

string to form a pathname containing a plurality of
substrings;

parsing the pathname and replacing each substring with

an associated token; and

validating the parsed pathname containing the list of

tokens.

2. The method for replacing substrings in file and direc-
tory pathnames with tokens of claim 1 wherein the act of
canonicalizing includes the acts of:

determining if the read name string starts with a root

substring;

10

15

20

25

30

35

40

45

50

55

60

65

14

if the act of determining indicates that the read name

string does not begin with a root substring, performing

the additional acts of:

copying the current working directory to a working
buffer;

adding the name string to the working buffer; and

replacing the read name string with the contents of the
working buffer.

3. The method for replacing substrings in file and direc-
tory pathnames with tokens of claim 2 wherein the act of
canonicalizing further includes the act of resolving any
special characters contained in the name string.

4. The method for replacing substrings in file and direc-
tory pathnames with tokens of claim 1 wherein the act of
parsing the pathname includes the acts of:

dissecting the pathname into a plurality of substrings;

for each substring in the pathname, performing the addi-

tional acts of:
searching for the substring in a string dictionary; and
adding a token corresponding to the substring to the list
of output tokens representing the pathname; and
returning the list of tokens for further processing in the act
of validating the parsed pathname.

5. The method for replacing substrings in file and direc-
tory pathnames with tokens of claim 4 wherein the act of
parsing the pathname further includes the act of creating a
new token for any substring that is not found in the search
of the string dictionary.

6. The method for replacing substrings in file and direc-
tory pathnames with tokens of claim 1 wherein the act of
validating includes the acts of:

setting the current directory to a root directory;

accessing a directory table to locate the current directory;

getting a token from the list of output tokens;

searching the directory table for the output token; and

while the list of output tokens is not empty and the table

entry data indicates that the token does not correspond
to a file name, setting the current directory to the table
entry data and repeating the acts of accessing, getting
and searching.

7. The method for replacing sub strings in file and
directory pathnames with tokens of claim 6 wherein the act
of validating further includes the act of returning an invalid
pathname if the token is not found in the directory table, or
the list of output tokens is not empty and the table entry data
indicates that the token corresponds to a file name.

8. The method for replacing substrings in file and direc-
tory pathnames with tokens of claim 6 wherein the act of
validating further includes the act of returning a pathname
valid indication after each token from the list of output
tokens has been found in the directory table.

9. A method for enhancing performance related to a
selected file system operation in a computer-implemented
file system, comprising the acts of:

reading a name string on which to conduct a file system

operation;

canonicalizing a current working directory and the name

string to form a pathname containing a plurality of
substrings;

parsing the pathname and replacing each substring with

an associated token;

validating the parsed pathname containing a list of tokens;

and

performing the selected file system operation on the

parsed pathname.

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 130 of 132 PagelD #: 808

US 6,470,345 B1

15

10. The method for enhancing performance related to a
selected file system operation of claim 9 wherein the act of
canonicalizing includes the acts of:

determining if the read name string starts with a root
substring;

if the act of determining indicates that the read name

string does not begin with a root substring, performing

the additional acts of:

copying the current working directory to a working
buffer;

adding the name string to the working buffer; and

replacing the read name string with the contents of the
working buffer.

11. The method for enhancing performance related to a
selected file system operation of claim 10 wherein the act of
canonicalizing further includes the act of resolving any
special characters contained in the name string.

12. The method for enhancing performance related to a
selected file system operation of claim 9 wherein the act of
parsing the pathname includes the acts of:

dissecting the pathname into a plurality of substrings;

for each substring in the pathname, performing the addi-
tional acts of:
searching for the substring in a string dictionary; and
adding a token corresponding to the substring to a list
of output tokens representing the pathname; and
returning the list of tokens for further processing in the act
of validating the parsed pathname.

13. The method for enhancing performance related to a
selected file system operation of claim 12 wherein the act of
parsing the pathname further includes the act of creating a
new token for any substring that is not found in the search
of the string dictionary.

14. The method for enhancing performance related to a
selected file system operation of claim 9 wherein the act of
validating includes the acts of:

setting the current directory to a root directory;

accessing a directory table to locate the current directory;

getting a token from a list of output tokens;

searching the directory table for the output token; and

while the list of output tokens is not empty and the table

entry data indicates that the token does not correspond
to a file name, setting the current directory to the table
entry data and repeating the acts of accessing, getting
and searching.

15. The method for enhancing performance related to a
selected file system operation of claim 14 wherein the act of
validating further includes the act of returning an invalid
pathname if the token is not found in the directory table, or
the list of output tokens is not empty and the table entry data
indicates that the token corresponds to a file name.

16. The method for enhancing performance related to a
selected file system operation of claim 14 wherein the act of
validating further includes the act of returning a pathname
valid indication after each token from the list of output
tokens has been found in the directory table.

17. A computer readable medium containing a computer
program product for replacing substrings in file and direc-
tory pathnames with tokens in a computer-implemented file
system, comprising:

program instructions that read a name string to be con-

verted into a list of tokens;

program instructions that canonicalize a current working

directory and the name string to form a pathname
containing a plurality of substrings;

5

10

15

20

25

30

35

40

45

50

55

60

65

16

program instructions that parse the pathname and replace
each substring with an associated token; and

program instructions that validate the parsed pathname
containing the list of tokens.

18. The computer program product of claim 17 wherein
the program instructions that canonicalize include:

program instructions that determine if the name string

read starts with a root substring;

program instructions that copy the current working direc-

tory to a working buffer;

program instructions that add the name string to the

working buffer; and

program instructions that replace the read name string

with the contents of the working buffer.

19. The computer program product of claim 18 wherein
the program instructions that canonicalize further include
program instructions that resolve any special characters
contained in the name string.

20. The computer program product of claim 17 wherein
the program instructions that parse the pathname include:

program instructions that dissect the pathname into a

plurality of substrings;

program instructions that search for each substring in a

string dictionary;

program instructions that add a token corresponding to the

substring to the list of output tokens representing the
pathname; and

program instructions that return the list of tokens for

further processing by the program instructions that
validate the parsed pathname.

21. The computer program product of claim 20 wherein
the act of parsing the pathname further include program
instructions that create a new token for any substring that is
not found in the search of the string dictionary.

22. The computer program product of claim 17 wherein
the program instructions that validate include:

program instructions that set the current directory to a root

directory;

program instructions that access a directory table to locate

the current directory;

program instructions that get a token from the list of

output tokens;

program instructions that search the directory table for the

output token; and

while the list of output tokens is not empty and the table

entry data indicates that the token does not correspond
to a file name, program instructions that set the current
directory to the table entry data and repeat the program
instructions that access, get and search.

23. The computer program product of claim 22 wherein
the program instructions that validate further include pro-
gram instructions that returns an invalid pathname if the
token is not found in the directory table, or the list of output
tokens is not empty and the table entry data indicates that the
token corresponds to a file name.

24. The computer program product of claim 22 wherein
the program instructions that validate further include the
program instructions that return a pathname valid indication
after each token from the list of output tokens has been
found in the directory table.

25. A computer readable medium containing a computer
program product for enhancing performance related to a
selected file system operation in a computer-implemented
file system, comprising:

program instructions that read a name string on which to

conduct a file system operation;

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 131 of 132 PagelD #: 809

US 6,470,345 B1

17

program instructions that canonicalize a current working
directory and the name string to form a pathname
containing a plurality of substrings;

program instructions that parse the pathname and replace
each substring with an associated token;

program instructions that validate the parsed pathname
containing a list of tokens; and

program instructions that perform the selected file system
operation on the parsed pathname.
26. The computer program product of claim 25 wherein
the program instructions that canonicalize include:

program instructions that determine if the name string
read starts with a root substring;

program instructions that copy the current working direc-
tory to a working buffer;

program instructions that add the name string to the
working buffer; and

program instructions that replace the read name string

with the contents of the working buffer.

27. The computer program product of claim 26 wherein
the program instructions that canonicalize further include
program instructions that resolve any special characters
contained in the name string.

28. The computer program product of claim 25 wherein
the program instructions that parse the pathname includes:

program instructions that dissect the pathname into a
plurality of substrings;

program instructions that search for each substring in a
string dictionary;

program instructions that add a token corresponding to the
substring to a list of output tokens representing the
pathname; and

program instructions that return the list of tokens for
further processing by the program instructions that
validate the parsed pathname.

29. The computer program product of claim 28 wherein
the program instructions that parse the pathname further
include program instructions that creates a new token for
any substring that is not found in the search of the string
dictionary.

30. The computer program product of claim 25 wherein
the program instructions that validate include:

program instructions that set the current directory to a root

directory;

program instructions that access a directory table to locate

the current directory;

program instructions that get a token from a list of output

tokens;

program instructions that search the directory table for the

output token; and

while the list of output tokens is not empty and the table

entry data indicates that the token does not correspond
to a file name, program instructions that set the current
directory to the table entry data and repeat the program
instructions that access, get and search.

31. The computer program product of claim 25 wherein
the program instructions that validate further include pro-
gram instructions that returns an invalid pathname if the
token is not found in the directory table, or the list of output
tokens is not empty and the table entry data indicates that the
token corresponds to a file name.

32. The computer program product of claim 25 wherein
the program instructions that validate further include pro-
gram instructions that returns a pathname valid indication

10

15

30

35

40

45

50

55

60

65

18

after each token from the list of output tokens has been
found in the directory table.

33. Asystem for replacing substrings in file and directory
pathnames with tokens in a computer-implemented file
system, comprising:

an input module that reads a name string to be converted

into a list of tokens;

a module that canonicalizes a current working directory
and the name string to form a pathname containing a
plurality of substrings;

a module that parses the pathname and replaces each
substring with an associated token; and

a module that validates the parsed pathname containing
the list of tokens.
34. The system for replacing substrings in file and direc-
tory pathnames with tokens of claim 33 wherein the module
that canonicalizes includes:

a module that determines if the name string read starts
with a root substring;

a module that copies the current working directory to a
working buffer;

a module that adds the name string to the working buffer;
and

a module that replaces the read name string with the
contents of the working buffer.

35. The system for replacing substrings in file and direc-
tory pathnames with tokens of claim 34 wherein the module
that canonicalizes further includes a module that resolves
any special characters contained in the name string.

36. The system for replacing substrings in file and direc-
tory pathnames with tokens of claim 33 wherein the module
that parses the pathname includes:

a module that dissects the pathname into a plurality of

substrings;

a module that searches for the substring in a string
dictionary;

a module that adds a token corresponding to the substring
to the list of output tokens representing the pathname;
and

a module that returns the list of tokens for further pro-
cessing in the module that validates the parsed path-
name.

37. The system for replacing substrings in file and direc-
tory pathnames with tokens of claim 36 wherein the module
that parses the pathname further includes a module that
creates a new token for any substring that is not found in the
search of the string dictionary.

38. The system for replacing substrings in file and direc-
tory pathnames with tokens of claim 33 wherein the module
that validates includes:

a module that sets the current directory to a root directory;

a module that accesses a directory table to locate the
current directory;

a module that gets a token from the list of output tokens;

a module that searches the directory table for the output
token; and

while the list of output tokens is not empty and the table
entry data indicates that the token does not correspond
to a file name, a module that sets the current directory
to the table entry data and causes a return to the module
that accesses.

39. The system for replacing substrings in file and direc-

tory pathnames with tokens of claim 38 wherein the module
that validates further includes a module that returns an

Case 1:19-cv-00179-CFC Document 37 Filed 07/25/19 Page 132 of 132 PagelD #: 810

US 6,470,345 B1

19

invalid pathname if the token is not found in the directory
table, or the list of output tokens is not empty and the table
entry data indicates that the token corresponds to a file name.

40. The system for replacing substrings in file and direc-
tory pathnames with tokens of claim 38 wherein the module
that validates further includes a module that returns a
pathname valid indication after each token from the list of
output tokens has been found in the directory table.

41. A system for enhancing performance related to a
selected file system operation in a computer-implemented
file system, comprising:

a module that reads a name string on which to conduct a

file system operation;

a module that canonicalizes a current working directory

and the name string to form a pathname containing a
plurality of substrings;

a module that parses the pathname and replaces each

substring with an associated token;

a module that validates the parsed pathname containing a

list of tokens; and

a module that performs the selected file system operation

on the parsed pathname.

42. The system for enhancing performance related to a
selected file system operation of claim 41 wherein the
module that canonicalizes includes:

a module that determines if the entered name string starts

with a root substring;

a module that copies the current working directory to a

working buffer;

a module that adds the name string to the working buffer;

and

a module that replaces the entered name string with the

contents of the working buffer.

43. The system for enhancing performance related to a
selected file system operation of claim 42 wherein the
module that canonicalizes further includes a module that
resolves any special characters contained in the name string.

44. The system for enhancing performance related to a
selected file system operation of claim 41 wherein the
module that parses the pathname includes:

a module that dissects the pathname into a plurality of
substrings;

10

20

25

30

35

40

20

a module that searches for each substring in a string
dictionary;

a module that adds a token corresponding to the substring
to a list of output tokens representing the pathname;
and

a module that returns the list of tokens for further pro-
cessing in the module that validates the parsed path-
name.

45. The system for enhancing performance related to a
selected file system operation of claim 44 wherein the
module that parses the pathname further includes a module
that creates a new token for any substring that is not found
in the search of the string dictionary.

46. The system for enhancing performance related to a
selected file system operation of claim 41 wherein the
module that validates includes:

a module that sets the current directory to a root directory;

a module that accesses a directory table to locate the
current directory;

a module that gets a token from a list of output tokens;

a module that searches the directory table for the output
token; and

while the list of output tokens is not empty and the table
entry data indicates that the token does not correspond
to a file name, a module that sets the current directory
to the table entry data and causes a return to the module
that accesses.

47. The system for enhancing performance related to a
selected file system operation of claim 46 wherein the
module that validates further includes a module that returns
an invalid pathname if the token is not found in the directory
table, or the list of output tokens is not empty and the table
entry data indicates that the token corresponds to a file name.

48. The system for enhancing performance related to a
selected file system operation of claim 46 wherein the
module that validates further includes a module that returns
a pathname valid indication after each token from the list of
output tokens has been found in the directory table.

	Ex. 1 - Second Amended Complaint
	Ex A - US6628712
	Ex B - US6895118
	Ex C - US6519005
	Ex D - US6470345

