O o0 N N B AW -

N N N N N N N DN N = e e e e e e e e e
o+ TN BN« N, B SN US B O B e =N =R <IN B W &, B S U'S T N6 I]

»

BENEDICT O’MAHONEY (Bar No.152447)
TERRA LAW

177 Park Avenue, Third Floor

San Jose, California 95113

Telephone: 408-299-1200

Facsimile: 408-998-4895

Email: bomahoney@terralaw.com ADR

JONATHAN T. SUDER (Pro Hac Vice To Be Filed)
CORBY R. VOWELL (Pro Hac Vice To Be Filed)
TODD 1. BLUMENFELD (Pro Hac Vice To Be Filed)
FRIEDMAN, SUDER & COOKE

Tindall Square Warehouse No. &~

604 East 3“‘ Street, Suite 200 -F“_\N(A

Fort Worth, Texas 76102

Telephone: (817) 334-0400

Facsimile: (817) 334-0401

Email: jts@fsclaw.com

Email: vowell @fsclaw.com

Email: blumenfeld @fsclaw.com

Attorneys for Plaintiff
SOFTVAULT SYSTEMS, INC.

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

SAN JOSE DIVISION
Al '™
SOFTVAULT SYSTEMS, INC., C VAS]_PB._ O 3 \/ 7 4 EDL
Plaintiff,
COMPLAINT FOR INFRINGEMENT
VvS. OF U.S. PATENT NOS. 6,249,868 AND
6,594,765
DELL INC.,
Defendant. JURY TRIAL DEMANDED

1176717

Filed@%f

A 2 7013

RICHARD W. WIEKING
CLERK, U.S. DISTRICT COURT
NORTHERN DISTRICT OF GALIFORN

SAN JOSE

o
Fee /Ml @

sT

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 N N W bW -

NN N N N N N N N = o e e e e e e e e
00 N N W AW = O O 0NN RAWND =R, D

Plaintiff SOFTVAULT SYSTEMS, INC. files its Complaint against Defendant DELL
INC., alleging as follows:

THE PARTIES

1. Plaintiff SOFTVAULT SYSTEMS, INC. (“SoftVault”) is a corporation organized
and existing under the laws of the State of Washington with its principle place of business in the
State of Washington.

2. Upon information and belief DELL INC. (“DELL”) is a corporation organized
and existing under the laws of the State of Delaware, with its principal place of business in
Round Rock, Texas. DELL may be served with process through its registered agent Corporation
Service Company, 2711 Centerville Road, Suite 400, Wilmington, DE 19808.

JURISDICTION AND VENUE

3. This is an action for infringement of United States patents. This Court has
exclusive jurisdiction of such action under Title 28 U.S.C. § 1338(a).

4. Upon information and belief, DELL is subject to personal jurisdiction by this
Court. DELL has committed such purposeful acts and/or transactions in the State of California
that it reasonably knew and/or expected that it could be hailed into a California court as a future
consequence of such activity. DELL makes, uses, and/or sells infringing products within the
Northern District of California and has a continuing presence and the requisite minimum
contacts with the Northern District of California, such that this venue is a fair and reasonable
one. Upon information and belief, DELL has transacted and, at the time of the filing of this
Complaint, is continuing to transact business within the Northern District of California. For all
of these reasons, personal jurisdiction exists and venue is proper in this Court under 28 U.S.C.
§§ 1391(b)(1), (2) and (c)(2) and 28 U.S.C. § 1400(b).

PATENTS-IN-SUIT

5. On June 19, 2001, United States Patent No. 6,249,868 BI (“‘the ‘868 Patent’) was
duly and legally issued for “METHOD AND SYSTEM FOR EMBEDDED, AUTOMATED,
COMPONENT-LEVEL CONTROL OF COMPUTER SYSTEMS AND OTHER COMPLEX

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 N9 N AW =

NN NN N DN N N N = o e e e b e e e
00 N O W AW = O WO 00NN RNWN= O

A -/

SYSTEMS.” A true and correct copy of the ‘868 Patent is attached hereto as Exhibit A and
made a part hereof.

6. On July 15, 2003, United States Patent No. 6,594,765 B2 (“the ‘765 Patent”) was
duly and legally issued for “METHOD AND SYSTEM FOR EMBEDDED, AUTOMATED,
COMPONENT-LEVEL CONTROL OF COMPUTER SYSTEMS AND OTHER COMPLEX
SYSTEMS.” A true and correct copy of the “765 Patent is attached hereto as Exhibit B and
made a part hereof.

7. The ‘868 Patent and the ‘765 Patent are sometimes referred to herein collectively
as “the Patents-in-Suit.”

8. As it pertains to this lawsuit, the Patents-in-Suit, very generally speaking, relate to
a method and system of protecting electronic, mechanical, and electromechanical devices and
systems, such as for example a computer system, and their components and software from
unauthorized use. Specifically, certain claims of the ‘868 and ‘765 Patents disclose the
utilization of embedded agents within system components to allow for the enablement or
disablement of the system component in which the agent is embedded. The invention disclosed
in the Patents-in-Suit discloses a server that communicates with the embedded agent through the
use of one or more handshake operations to authorize the embedded agent. When the embedded
agent is authorized by the server, it enables the device or component, and when not authorized
the embedded agent disables the device or component.

FIRST CLAIM FOR RELIEF
(Patent Infringement)

9. SoftVault repeats and realleges every allegation set forth above.

10. SoftVault is the owner of the Patents-in-Suit with the exclusive right to enforce
the Patents-in-Suit against infringers, and collect damages for all relevant times, including the
right to prosecute this action.

11. Upon information and belief, DELL is liable under 35 U.S.C. §271(a) for direct

infringement of the Patents-in-Suit because it manufactures, makes, has made, uses, practices,

COMPLAINT FOR INFRINGEMENT OF PATENT

O 0 NN N AW -

[T NG T NS T NG T G TN G T S T NS R N R S O T e e e T e e T
00 ~J ON W B W NN = O YW NN PR WD = O

A ~/

imports, provides, supplies, distributes, sells, and/or offers for sale products and/or systems that
practice one or more claims of the Patents-in-Suit.

12. More specifically, DELL infringes the Patents-in-Suit because it makes, uses,
sells, and offers for sale products and systems which prevent unauthorized use of a computer
system through the ability to enable or disable the operation of a device’s components through an
authorization process performed by an embedded agent in the component device and a server.
By way of example only, DELL’s Credant Enterprise Edition system, including its Credent
Mobile Guardian software, at a minimum, in the past directly infringed and continues to directly
infringe at least claims 1 and 44 of the ‘868 Patent, as well as at least claim 9 of the ‘765 Patent.

13. DELL’s Credant Enterprise Edition system, including its Credent Mobile
Guardian software includes the capability to enable or disable a mobile device (the “Credant
Shielded Devices™), such as a laptop or smart phone, to prevent misuse of the system by rogue
devices and/or rogue servers. The Credent Mobile Guardian software includes an agent (the
“Credent Mobile Guardian Shield”) that is installed on a mobile device and communicates with a
server (the “Credant Mobile Guardian Enterprise Server”). This communication includes a series
of message exchanges constituting a handshake operation between the agent and the server.
Through these exchanges the Credant Mobile Guardian Enterprise Server and the Credant
Mobile Guardian Shield mutually authenticate one another. Through this process, a device in
which the Credent Mobile Guardian Shield is embedded is authorized. When the agent is
authorized by the Credant Mobile Guardian Enterprise server, the mobile device operates
normally and when the agent is not authorized, the mobile device is remotely locked and
disabled.

14. DELL has actual notice of the Patents-in-Suit at least as early as the filing of this
Complaint.

15. SoftVault has been damaged as a result of DELL’s infringing conduct. DELL is,
thus, liable to SoftVault in an amount that adequately compensates SoftVault for DELL’s
infringement, which, by law, cannot be less than a reasonable royalty, together with interest and

costs as fixed by this Court under 35 U.S.C. § 284.

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 N N kW -

NN N N N N N NN = e e e e e e e e e
0 ~1 N W b W= O WO 00NN DWW N-= O

o -

PRAYER FOR RELIEF

SoftVault requests that the Court find in its favor and against DELL, and that the Court

grant SoftVault the following relief:

a.

Judgment that one or more claims of the Patents-in-Suit have been infringed,
either literally and/or under the doctrine of equivalents, by DELL;

Judgment that DELL account for and pay to SoftVault all damages to and costs
incurred by SoftVault because of DELL’s infringing activities and other conduct
complained of herein;

That DELL, its officers, agents, servants and employees, and those persons in
active concert and participation with any of them, be permanently enjoined from
infringement of the Patents-in-Suit. In the alternative, if the Court finds that an
injunction is not warranted, SoftVault requests an award of post judgment royalty
to compensate for future infringement;

That SoftVault be granted pre-judgment and post-judgment interest on the
damages caused to it by reason of DELL’s infringing activities and other conduct
complained of herein;

That this Court declare this an exceptional case and award SoftVault its
reasonable attorney’s fees and costs in accordance with 35 U.S.C. § 285; and
That SoftVault be granted such other and further relief as the Court may deem just

and proper under the circumstances.

JURY DEMAND
Plaintiff hereby requests a trial by jury pursuant to Rule 38 of the Federal Rules of Civil
Procedure.
DATED: July 2, 2013. /s/ Benedict O’Mahoney

Benedict O’Mahoney

(Bar No.152447)

TERRA LAW

177 Park Avenue, Third Floor
San Jose, California 95113
Telephone: 408-299-1200
Facsimile: 408-998-4895

COMPLAINT FOR INFRINGEMENT OF PATENT

O o0 NN N AW N -

B RN NN N N N N N e e e e e e e e e e
00 NN N U bW NN = O O 0NN BAW N = O

-/
Email: bomahoney@terralaw.com

Attorney for Plaintiff
SOFTVAULT SYSTEMS, INC.

Of Counsel:

Jonathan T. Suder
Corby R. Vowell
Todd Blumenfeld

FRIEDMAN, SUDER & COOKE
Tindall Square Warehouse No. 1
604 East 4™ Street, Suite 200
Fort Worth, Texas 76102
Telephone: (817) 334-0400
Facsimile: (817) 334-0401
Email: jts@fsclaw.com
Email: blumenfeld@fsclaw.com
Email: vowell @fsclaw.com

COMPLAINT FOR INFRINGEMENT OF PATENT

Exhibit A

- WL R o0 Q0 SN
US006249868B1

United States Patent

(12) (10) Patent No.: US 6,249,868 B1
Sherman et al. @5) Date of Patent: Jun. 19, 2001
(54) METHOD AND SYSTEM FOR EMBEDDED, 6,148,333 * 11/2000 Guedalia et al.ccoor........ 709/219
AUTOMATED, COMPONENT-LEVEL 6,157,953 * 12/2000 Chang et al. 7097225
CONTROL OF COMPUTER SYSTEMS AND 6,158,010 * 12/2000 Moriconi et al.cceoerren..n 7137201
OTHER COMPLEX SYSTEMS
* cited by examiner
(75) Inventors: Edward G. Sherman, London (GB);
Mark P. Sherman, Seattle, WA (US);
George M. Reed, Saratoga, CA (US); Primary Examiner—Thomas R. Peeso
Larry Saunders, San Diego, CA (US); 74) Attorney, Agent, or Firm—Robert W. Bergstrom
€y, gs
Wayne Goldman, Sausalito, CA (US);
Simon Whittie, Gladesville (AU) 7 ABSTRACT
73) Assi : Softvault Systems, Inc., Seattle, WA A method and system for protecting and controlling persanal
™3 1gnce (US) auit Sy S Tne © computers (“PCs”) and components installed in or attached
to PCs. The method and system may be used to protect PCs
(*) Notice: Subject to any disclaimer, the term of this from use after being stolen. An exemplary embodiment of
patent is extended or adjusted under 35 the system includes a server running on a remote computer
U.S.C. 154(b) by 0 days. and hardware-implemented agents embedded within the
circuitry that controls the various devices within a PC. The
(21) Appl. No.: 09/163,094 agents intercept all communications to and from the devices
. into which they are embedded, passing the communications
(22) Filed: Sep. 29, 1998 when authorized to do so, and blocking communications
when not authorized, effectively disabling the devices.
Related U.S. Application Data Embedded agents are continuously authorized from the
(63) Continuation-in-part of application No. 09/047,975, filed on remole server com.pul'er by handshake operations imple-
Mar. 25, 1998. mented as communications messages. When the PC is stolen
7 or otherwise disconnected from the remote server, the
(:;) gts %l """" T13/168: 713/1 69(;‘,)7611:: /;g:)o embedded agents within the PC fail to receive further
(52) US.Choo ’ 713 /201' . 380 /255’ authorizations, disable the devices into which they are
58) Field of S h 180, /255"713 /168 embedded, and effectively prevent any use of the stolen or
(€IC O SEATCH ovsrrssrrsne 13 /169’ 200 201’ disconnected PC. The method and system may also be used
P to control and manage access to software stored within the
(56) References Cited PC and to control and manage operation of hardware and
software components within the PC.
U.S. PATENT DOCUMENTS
6,148,083 * 11/2000 Fieres et al.ccccrurercurncrnnse 3807255 73 Claims, 21 Drawing Sheets
318
34 /306
EASS N
SERVER 5%
304
K—— 7@ 0
316 SCEA CLIENT N
7 326
310 302
RENOTE
SERVER
CONPUTER CIRCUIT BOARD

4

322

AR

e -

U.S. Patent Jun. 19, 2001 Sheet 1 of 21 US 6,249,868 B1
126
- 108
/
va
124
PLEASE ENTER YOUR PASSWORD 122
N
150 128 114 ’13 120
O D08 /
\———_—J% D
”< -— 12
110
118
104
106
116

Fig. 1

US 6,249,868 B1

Sheet 2 of 21

Jun. 19, 2001

U.S. Patent

=X=X=]}

01z
| ﬁ
v v
02z ayvoarax! | 3snow
2 z7
swe” JL_ree”]| 722
ASI0 QYVH QM.N\ — —‘ \
ALY e
SAV3904d Asia u%_mw - (mé:m
aN0LS (| gref—{osy + Toisy
S i | ~
AALINDYID k0
sy m‘w SAVI20Yd
0524 Y3ITIOYINOD ~p6Z
IV | gz e RYONIA-N
o
sl Kv4Q
4
P17 9z’
07—

90¢

US 6,249,868 B1

Sheet 3 of 21

Jun. 19, 2001

U.S. Patent

9t

(1] 59%

ayvos 1indy1d

41/3
)

Z
— 1 INI9Y |

BM_W‘“ JFA

sV

£

oL

0i€

1

Z

" ININD VIS

905/

S0

443

9i€

NOILYNYOANI IN3JV (30d38n3
(NY NOILVZIJOHLAY ONI¥OLS
30IA30 3OVHOLS TNLVIOA-NON

431NdH0D
LETLEN
J10NH

L
ST

43 d

YIA43S
ssvl

218

U.S. Patent Jun. 19,2001 Sheet 4 of 21 US 6,249,868 B1
SUCCESSFUL SEND
HANDSHAKE SAVE ME

420

NOT
AUTHORIZED

AUTHORIZED 408

SUCCESSFUL
422 HANDSHAKE

430

SUCCESSFUL
HANDSHAKE

432

TIME
ouT

SUCCESSFUL
HANDSHAKE

POWER-ON 404

GRACE PERIOD NON-INITIAL
BACKDOOR POWER UF
MECHANISM
424

INITIAL
POWER-ON
GRACE PERIOD

428

402

SEND
SAVE ME

INITIAL
POWER UP

410

412

SEND Fig. 4

SAVE ME

~

-’
U.S. Patent Jun. 19, 2001 Sheet 5 of 21 US 6,249,868 B1
RECEIVE SUCCESSFUL
SAVE ME HANDSHAKE

510

516
504 SUCCESSFUL
HANDSHAKE 574

KNOWLEDGE AGENT
OF

AUTHORIZED 506

UNSUCCESSFUL
518 HANDSHAKE

512
RECEIVE SEND ME

WITH INITIAL PASSWORD
508

RECEIVE
\\/\520 SAVE ME

IGNORANT 502

Fig. 5

US 6,249,868 B1

Sheet 6 of 21

Jun. 19, 2001

U.S. Patent

W%
80941 00:Z]
ONINIVIRY N1
9091 1043008V |
Q4OMSSYd SNOIARNd
$09— 1043008V |

QYOMSSYd INIHIND

{

0/ .om

/
r€9
AN3OV 030038M3 SSV3

4L

/

¥i9

1043008Y —~c79
1043008V ——~079
IN 3AVS 89

V9 o1f
WG
819 | ~ce9
// ..ﬂzmm.e
Sk | VEIBLZ | BIVISRD | A0S TDOAS-OIZLIN |-~469
SU| 21723461 | JOVIE9d | NOJGO00AANII—10EAIVAS 059
U0 010 IN3aano SS3800V
|~
970 N obg MW 570 779/ 029’
{
959 AINIS SSV3

US 6,249,868 B1

Sheet 7 of 21

Jun. 19, 2001

U.S. Patent

m%

_ 551]
ONINIVAGY ML _
I

QYOMSSYd_SNOIATHd

1043008V

]

QYOMSSYd IN3RIND

IN39v Q30038M3 SSY3

g9 ‘dif
wm
g19| 99 | 9
819))
\. ON | V033008V | vo13a0ev WD XOT IV It—2£9
SIN| VeleZizz | 8Ivi9esd | A09 13e3ns-01ZLN
SIh| 2122336 | 1OVIS9L | WODG00@AYYIr- bOSILVOS
QIR0 410 IN3San) SSIU00V
MG ~HINV
1043028V
oo | T
I IAVS
YIS SSV3

US 6,249,868 B1

Sheet 8 of 21

Jun. 19, 2001

U.S. Patent

v&
L 66+]
ONINIVAZY JNILL
L 1043008 |

QYOMSSVd SNOIARNd

_ 1043038v _

O4OMSSVd IN3¥END

INIOV Q3QQ3N3 SSV3

{
474

720
w&
ON | 1043608V | 1043008V NOD X@31dNVX
Snf vsiezizz | 82vi988) A0 1383nS-01ZL3N
Sa| zizzaset | 1avicedd | moD'@DI@ANMIr- 10EILYIS
GZ0 @0 IN3W¥ND SSAAY
80(-HLOV
/
9044_A—6L¥e 491
0144——6LV519} =
JZNOHLNY
YINIS SSV3

US 6,249,868 B1

Sheet 9 of 21

Jun. 19, 2001

U.S. Patent

_ 651]
ONINIVATY AL
[_lodoay |
G4OASSYd SNOIA3ad

[1043008 _
QYOMSSYd INIH¥NI

1 6LVEI91

N3OV (30038M3 SSV3

L

80/

/

014

6LVE491
\H_zozi

/0

ON | 1043024Y | 1043008V NOJ'XOT1dNVX
SIA| VEIBLITE | BLVI9BED A09'1130INS-01 1IN
SIA| 21223461 | LIVIE944 | NOD GDDOANNIAM-10€31YIS
Q3ZzHo @io INIAND Ssaay
-HiNY
YA LSLT

HINNIS SSV3

US 6,249,868 B1

Sheet 10 of 21

U.S. Patent Jun. 19, 2001

-

VQ\
L 6G:1]
ONINIVAZY 3NIL
_ 1043008V _
Q4OMSSYd SNOIAJYd
0zt H 1043008V _

GY4OMSSYd INI¥¥ND

BLVE9)

N

91/

/
91/

1043008V
/2%.._@ |
NOILYZIJOHLNY
NAIINOD

INIOV (30038n3 SSv3

0
W@N
ON | 1043028vY | 1043q08Y NOJ'XOT1dNVX
S3IAi VEIBLIZL | 8.V19880 A09" $1363nS-01Z1N
SIA | C1eZ3d6l | 1IVIE4d | NOJ'AIJOANNIr-10€31YVIS
Qizpo @o INIWND SSIAav
-HiNY
6/VE191
J3AN3S SSY3

US 6,249,868 B1

Sheet 11 of 21

Jun. 19, 2001

U.S. Patent

| 66°1]
ONINIVAZY 3NIL
[1043008V]
QYOMSSYd SNOIAJYd

_ 1033008Y _
QYOMSSVd IN3¥dND

6Lve 491

INIOV (30038n3 SSv3

a I
oL | au
92/))
\ ON | 1013008V | 62v619} NOJ XOTINVX
S| VEI8ZIZZ | 8IV19880 | AG9'113@3nS-01ZLN
Sk | Zhzzade) | 1OVISOdd | NOD'00D0AINIT- 105V S
QIR0 Q0 INI®D SSIU00Y
w: ~H1nV
90/—1 T 6LvE491
d k//_eusa
6549} | ——
NOLLVZISOHLNY
KU1INOD
HINGIS SSV3

US 6,249,868 B1

Sheet 12 of 21

Jun. 19, 2001

U.S. Patent

L 86:4

ONINIVNIY INIL

L 1043098

QYOMSSYd SNOIATYd

[1043008V _

QYOMSSYd INI¥INI

6LVE491

IN39v @30038M3 SSV3

T oL
ON | 1043@08Y | 6LvE€d49l NOJ X@T1dNVX
S3A| VEISLITT | 8419882 A0 11363NS-0I 13N
SIA} CicZ3d6l | LIVIS944 | OO QD0 NYIr—10E31VIS
azno @10 INFZ¥NI SSaAay
w& -HlAV

00:02} AH”_

6.VE191

30

dIANIS SSvi

US 6,249,868 Bl

Sheet 13 of 21

Jun. 19, 2001

U.S. Patent

4785 00°0Z1 |
ONINIVH3Y 3RIL
AY4® o 1043008V]
Q4OMSSYd SNOIATYd
0z 6LVE19) |

(YOMSSYd INIHIND

L/

9L

95L
0
00-0¢1
6L¥E49]
X0

INI9V 030038N3 SSv3

S

(1,94 mW\

i

00-0Z1}S3A | 1043008V | 6/vedal N0 XOT1dNVX
SIA) VEIBLITT | 8LV1988) A0Y F13e3InS—~01Z1N
SIA) TICT3d6l | 1IVIE94d | KOD'AId0ANNIr-10£31VIS
qQZI¥0 @0 - IN3¥¥ND ss3daay
-Hiny

JIANIS SSv1

US 6,249,868 B1

Sheet 14 of 21

Jun. 19, 2001

U.S. Patent

508

/

L 00-¢ |
ININIVAIY IniL
| 1043008v |
QYOMSSYd SNOIATYd

_ 648491 _
QYOMSSYd INFYND

IN39V (30038N3 SSV1

Ve “dld
108
\
00-7} S3A| 1043008 | 6/VE49l N0 X@TTdNVX
SIA| VEI8/ZITL | 8/V1988) A0 11303NS-01Z1IN
SIA| THZZ3d6L | 1IVIE94d | WOJ'AI0OANNIN-10LILYIS
@80 @0 LNGRIND Ss3yaay
v% -HLNY
208 _1—¢8119vv¢
ca419vve “
JZINOHLNY
dIAY3IS SSv1

US 6,249,868 B1

Sheet 15 of 21

Jun. 19, 2001

U.S. Patent

L 002 J
ONINIVAZY 3NLL

1043008
q4OMSSVd SNOIAIYd

QUOMSSVd INIWIND

[evessl]

908~ 1£8419W¢

IN39v (030Q38A3 SSV3

q9 ‘o]
00°7| SIA | 1043008V | 6LvEd9l ROJ XOTIdAVX
SIA! VEIS/ILL | 8/V1984D A09° §1383NS-01Z13N
SIA{ ¢1TT3464 | LIVIC94d | NOD'GIIOANYI-10LILVIS
@GzN0 Q0 INTNEND Ssyaay
v% -HIAY
ca419vve
cadi9vve
JZINOHLNY
43AY3S SSV3

US 6,249,868 B1

Sheet 16 of 21

Jun. 19, 2001

U.S. Patent

—

651

ONINIVATY_INIL

1043008Y

J4OMSSYd SNOIA3Yd

_ 6LVE491 _

QYOMSSYd INIHIND

£8419vv¢

N3OV (300383 SSv3

28 oIy
6G:1[SA | 1033008V | 6LV519) NOD'X8T1dMVX
SIA| VEI8L122 | 8LVI988D | AQ9'13@3NS-0IZLN
SIA| 2Z2aI6) | 1OVIS9d | NODTOD0@ANEI—10EILVAS
QGZN0 M0 IN3aam $S3400V
w% -HinY
718 ca419vve
\-6Lve9!
ea19WEt~—p.9
NOILYZISOHLAY
N4LINOD
IS SSV3

US 6,249,868 B1

Sheet 17 of 21

Jun. 19, 2001

U.S. Patent

ag ‘st
918 18
[65°) _ ; ;
ONINIVR3Y INIL))

[Tonaav | 65:)| SIA| 6Lv5491 | a119vve KOO XOT1dNVX
Eo;m%%mm__o_a& SIA| veleLizz | 8v1988) A09" 1303NS-01ZLIN
TSSFRTERET SIA| TITT3I6) | 1OV1€944 | WO GD0OANNI- 1053LVIS

QGIZM0 @10 INIWHND SSIHAQY
808 -HInV
£4419YVS /
6LYS49)
e8I19WE | ——>
NOILYZI4OHLAY
AYLINOD
IN39V Q30038M3 SSV3

dIAN3S SSv3

o

US 6,249,868 B1

Sheet 18 of 21

Jun. 19, 2001

U.S. Patent

| BS:1 |
ININIVA3Y 3NIL

_ 1043008V |
(YOMSSVd SNOIATNd

_ 6LVEL9| |
Q4OMSSYd INIHIND

£8419vve

N3OV (30038N3 SSV3

A9 g
nm“_ SIA| 6VEd9l | £A119VVE KOJ X8I 1dNVX
SIA| VEISLITT | 8LV1988D A0 11383nS-01ZION
SIA| THCTa461 | 1IVIE94d | NOD'GDD0AYNYIM-10E31VIS
izo @10 INFRIND SS3yaay
818 ~-HiNY
/
618
/oonoﬂ ———
ga419vve
X0
4INY3S SSV3

US 6,249,868 B1

Sheet 19 of 21

U.S. Patent Jun. 19, 2001

00:021

|

ONINIVNIY 3NIL

28 H

bLVE4S!

Q40MSSYd_SNOIAJYd

44 £8419VvE _

(Q4OMSSYd INIHIND

818
/

A8

00-0Z1
¢8119vve
X0

N33V 030038M3 SSv3

T
Qmm
00-0Z1{SIA| 6LvE49) | £E4L9VVE N0J'X@T1dNVX
SIA | VEIBLITT | 8LV1988D A0Y 1303NS-01Z 1IN
SIA| ChTE3d6) | JVIE94d | K0O'GDJeANNIN-10831VaS
@Z¥0 @0 INININD SS3¥aav
~HlNV
§IAYIS Ssv3

US 6,249,868 B1

Sheet 20 of 21

Jun. 19, 2001

U.S. Patent

Y061
016
806

206
4

1 020]
ONINIVA3Y_3AIL

2 1043098V |
(QHOMSSYd_SNOIATNd

3 6LVE491 _
(YOMSSYd NN

906
/

V6

140

1043@08v
JAE]
IN 3AVS

IN39v Q30038N3 SSV3

L]
Nw 16
.&R.
)
00:0Z1) SIA| 6/VE491 | cA419VVE NOD XO31dNYX
SIA] VEIBLITT | 8LY1988) A9 11303NS-01 1N
S3A| TICTai6l | 1IVIE94d | NOD'QDJ0ANN3r~10E3LVIS
G3Zz0 aio INTND SS3uaay
-Hiny
JINIS SSv3

US 6,249,868 B1

Sheet 21 of 21

Jun. 19, 2001

U.S. Patent

06

/

L 020 |
ONINIVAZY_3MIL

_ 1043038V |
(YOMSSYd SNOIATYd

_ bLVE49) |
Q4OMSSYd INININD

906

/

g6 o]

1043008
JAE]
N 3AVS

IN39Y (030038M3 SSY3

743 916

) |)
S3A[1043008V | 6.vE491 N0 XOT1dNVX
SIA| VEIBLITT | 81v1988) A0Y §1383NS-04ZIN
SIA| TITTI61 | 1IVICI44 | NOI'GIOOANYI-10SILVIS
(3ZM0 010 IN3¥ND SSaav
-HinY

JIAYIS SSV3

US 6,249,868 B1

1

METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL
CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

RELATED APPLICATIONS

This application is a continuation-in-part of co-pending
U.S. application Ser. No. 09/047,975 that was filed on Mar.
25, 1998.

TECHNICAL FIELD

The present invention relates to control of computer
systems and other types of complex systems at the compo-
nent level and, in particular, to a method and system for
securing a complex system by embedding agents within one
or more components of the complex system in order to
control access to components within the complex system.

BACKGROUND OF THE INVENTION

Computer security is a very broad and complex field
within which, during the past several decades, a number of
important sub-fields have developed and matured. These
sub-fields address the many different problem arcas in
computer security, employing specialized techniques that
are particular to specific problems as well as general tech-
niques that are applicable in solving a wide range of prob-
lems. The present application concerns a technique that can
be used to prevent the theft and subsequent use of a personal
computer (“PC”) or of various PC components included in,
or attached to, a PC. This technique may make use of certain
security-related techniques which have been employed pre-
viously to address other aspects of computer security, and
this technique may itself be employed to address both
computer security problems other than theft as well as
various aspects of computer reliability, computer
administration, and computer configuration. In addition, this
technique may be applied to protecting other types of
complex electronic and mechanical systems as well as
computer software and other types of information encoded
on various types of media.

PCs are ubiquitous in homes, offices, retail stores, and
manufacturing facilities. Once a curiosity possessed only by
a few hobbyists and devotees, the PC is now an essential
appliance for business, science, professional, and home use.
As the volume of PCs purchased and used has increased, and
as PC technology has rapidly improved, the cost of PCs has
steadily decreased. However, a PC is still a relatively
expensive appliance, especially when the cost of the soft-
ware installed on the PC and the various peripheral devices
attached to the PC are considered. PCs, laptop PCs, and even
relatively larger server computers have all, therefore,
become attractive targets for theft.

FIG. 1 illustrates various types of security systems com-
monly employed to prevent theft of PCs and PC compo-
nents. A PC 102 is mounted on a table 104 and is connected
to a keyboard-input device 106 and a display monitor 108.
The PC 102 js physically secured to the table 104 with a
hinged fastening device 110, which can be opened and
locked by inserting a key 112 into a lock 114. The display
monitor 108 is physically attached to the table via a cable
116 and cylindrical combination lock 118 system. Serial
numbers 120 or 122 are attached to, or imprinted on, the side
of the PC 102 and the side of the display monitor 108,
respectively. Finally, there is a software-implemented lock
and key system for controlling access to the operating

10

20

25

35

40

45

50

55

60

65

2

system and hence to the various application programs avail-
able on the PC 102. Typically, a graphical password-entry
window 124 is displayed on the screen 126 of the display
monitor 108. In order to use the computer, the user types a
password via the keyboard 106 into the password sub-
window 128 of the password-entry window 124. The user
then depresses a keyboard key to indicate to a security
program that password entry is complete. As the user types
the password, each letter of the password appears at the
position of a blinking cursor 130. The characters of the
password are either displayed explicitly, or, more
commonly, asterisks or some other punctuation symbol are
displayed to indicate the position within the password in
which a character is entered so that an observer cannot read
the password as it is entered by the user. The security
program checks an entered password against a list of autho-
rized passwords and allows further access to the operating
system only when the entered password appears in the list.
In many systems, both a character string identifying the user
and a password must be entered by the user in order to gain
access to the operating system.

The common types of security systems displayed in FIG.
1 are relatively inexpensive and are relatively easily imple-
mented and installed. They are not, however, foolproof and,
in many cases, may not provide even adequate deterrents to
a determined thief. For example, the key 112 for the hinged
fastening device 110 can be stolen, or the fastening device
can be pried loose with a crowbar or other mechanical tool.
A clever thief can potentially duplicate the key 112 or jimmy
the lock 114. The cable 116 can be cut with bolt cutters or
the cylindrical combination lock 118 can be smashed with a
bammer. Often, the combination for the cylindrical combi-
nation lock 118 is written down and stored in a file or wallet.
If that combination is discovered by a thief or accomplice to
theft, the cylindrical combination lock will be useless. In the
situation illustrated in FIG. 1, if the table is not bolted to the
floor, a thief might only need to pick up the display monitor
108, place it on the floor, slide the cable down the table leg
to the floor, and lift the table sufficiently to slip the cable
free. While this example might, at first glance, seem silly or
contrived, it is quite often the case that physical security
devices may themselves be more secure than the systems in
which they are installed, taken as a whole. This commonly
arises when security devices are installed to counter certain
obvious threats but when less obvious and unexpected
threats are ignored or not considered.

While the serial numbers 120 and 122, if not scraped off
or altered by a thief, may serve to identify a PC or compo-
nents of the PC that are stolen and later found, or may serve
as notice to an honest purchaser of second-hand equipment
that the second-hand equipment was obtained by illegal
means, they are not an overpowering deterrent to a thief who
intends to use a purloined PC or PC component at home or
to sell the purloined PC to unsavory third parties.

Password protection is commonly used to prevent mali-
cious or unauthorized users from gaining access to the
operating system of a PC and thus gaining the ability to
examine confidential materials, to steal or corrupt data, or to
transfer programs or data to a disk or to another computer
from which the programs and data can be misappropriated.
Passwords have a oumber of well-known deficiencies.
Often, users employ easily remembered passwords, such as
their names, their children’s names, or the names of fictional
characters from books. Although not a trivial undertaking, a
determined hacker can often discover such passwords by
repetitive trial and error methods. As with the combination
for the cylindrical combination lock 118, passwords are

\

US 6,249,868 B1

3

often written down by users or revealed in conversation.
Even if the operating system of the PC is inaccessible to a
thief who steals the PC, that thief may relatively easily
interrupt the boot process, reformat the hard drive, and
reinstall the operating system in order to use the stolen
computer.

More elaborate sccurity systems have been developed or
proposed to protect various types of electrical and mechani-
cal equipment and to protect even living creatures. For
example, one can have installed in a car an electronic device
that can be remotely activated by telephone to send out a
homing signal to mobile police receivers. As another
example, late model Ford and Mercury cars are equipped
with a special electronic ignition lock, which is activated by
a tiny transmitter, located within a key. As still another
example, small, integrated-circuit identification tags can
now be injected into pets and research animals as a sort of
internal serial number. A unique identification number is
transmitted by these devices to a reading device that can be
passed over the surface of the pet or research animal to
detect the unique identification number. A large variety of
different data encryption techniques have been developed
and are commercially available, including the well known
RSA public/private encryption key method. Devices have
been built that automatically generate computer passwords
and that are linked with password devices installed within
the computer to prevent hackers from easily discovering
passwords and to keep the passwords changing at a sufficient
rate to prevent extensive access and limit the damage
resulting from discovery of a single password.

While many of these elaborate security systems are imple-
mented using highly complex circuitry and software based
on complex mathematical operations, they still employ, at
some level, the notion of a key or password that is physically
or mentally possessed by a user and thus susceptible to theft
or discovery. A need has therefore been recognized for a
security system for protecting PCs and components of PCs
from theft or misuse that does not depend on physical or
software implemented keys and passwords possessed by
users. Furthermore, a need has been similarly recognized for
intelligent security systems to protect the software that runs
on PCs and to protect other types of complex electronic and
mechanical systems, including automobiles, firearms, home
entertainment systems, and creative works encoded in media
for display or broadcast on home entertainment systems.

SUMMARY OF THE INVENTION

One embodiment of the present invention provides a
security system for protecting a PC and components
installed in or attached to the PC from use after being stolen.
Agents are embedded within various devices within the PC.
The agents are either hardware-implemented logic circuits
included in the devices or firmware or software routines
running within the devices that can be directed to enable and
disable the devices in which they are embedded. The agents
intercept communications to and from the devices into
which they are embedded, passing the communications
when authorized to do so in order to enable the devices, and
blocking communications when not authorized, effectively
disabling the devices. Embedded agents are continuously
authorized from a remote server computer, which is coupled
to embedded agents via a communications medium, by
handshake operations implemented as communications mes-
sages. When the PC is disconnected from the communica-
tions link to the remote server, as happens when the PC is
stolen, the devices protected by embedded agents no longer
receive authorizations from the remote server and are there-

20

25

30

35

45

50

55

60

65

4

fore disabled. User-level passwords are neither required nor
provided, and the securily system cannot be thwarted by
reinstalling the PC’s operating system or by replacing pro-
grammable read only memory devices that store low-level
initialization firmware for the PC.

Alternative embodiments of the present invention include
control and management of software and hardware on a
pay-to-purchase or pay-per-use basis, adaptive computer
systems, and control and security of electrical and electro-
mechanical systems other than computers. A computer sys-
tem may be manufactured to include various optional hard-
ware and software components controlled by embedded
agents and initially disabled. When the purchaser of the
computer system later decides to purchase an optional,
preinstalled but disabled component, the manufacturer can
enable the component by authorizing an associated embed-
ded agent upon receipt of payment from the owner of the
system. Similarly, the owner of the computer system may
choose to rent an optional component for a period of time,
and that component can then be authorized for the period of
time by the manufacturer upon receipt of payment. Software
may be manufactured to require authorization from a server
via an embedded agent either located within the disk drive
on which the software is stored or located within the
software itself. Computer systems may automatically adjust
their configuration in response to changes in workload by
enabling and disabling components via embedded agents.
Finally, systems other than computers, including industrial
machine tools, processing equipment, vehicles, and firearms
may be controlled and secured by embedding agents within
one or more components included in the systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various types of security systems com-
monly employed to prevent theft of PCs and PC compo-
nents.

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server.

FIG. 3 is a block diagram of example hardware and
software components and communications pathways that
implement a single embedded agent connected to a client
that is, in turn, connected to a security authorization server.

FIG. 4 is a state diagram for an example embedded agent.

FIG. 5 is an example state diagram for the interaction of
a security authorization server with one embedded agent.

FIG. 6A illustrates an example initiation of the sending of
a SAVE ME message by an embedded agent.

FIG. 6B illustrates an example receipt of a SAVE ME
message by a security authorization server.

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state.

FIGS. 8A-F illustrate a second example handshake opera-
tion that follows the original handshake operation of FIGS.
7A-F by some period of time less than the original autho-
rization period.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent.

DETAILED DESCRIPTION OF THE
INVENTION

One embodiment of the present invention is an embedded
agent security system (“EASS”) for protecting a PC, and,

-

US 6,249,868 B1

5

more particularly, the internal components of a PC, from
misuse or misappropriation. The EASS includes a server
component, one or more embedded agents, and, optionally,
a client component The server component is a centralized
repository and control point that provides authorizations to
agents embedded within PC components and connected to
the server component via a communications connection. The
server authorizations allow the embedded agents to enable
operation of the components within which the embedded
agents reside for a period of time. The server component
runs on a separate server computer, which is connected by
a communications medium to the PC. An embedded agent is
embedded as a logic circuit within the circuitry that controls
operation of an internal component of the PC or is embedded
as a firmware or software routine that runs within the
internal component of the PC. The client component, when
present, runs as a software process on the PC. The client
component of the EASS primarily facilitates communica-
tions between the server component and the various embed-
ded agents. For example, when multiple embedded agents
are included in the PC, the client component may serve as
a distribution and collection point for communications
between the server component and the multiple embedded
agents.

Because embedded agents enable operation of the internal
components in which they are embedded, and because
embedded agents require frequent authorizations from the
server component in order to enable the internal
components, if the communications connection between the
server component and an embedded agent is broken, the
internal component in which the embedded agent resides
will be disabled when the current period of authorization
expires. The communications connection between the server
and all embedded agents within the PC will be broken when
the PC is powered down or disconnected from the external
communications medium by which the PC is connected to
the server. Thus, any attempt to steal the PC will result in the
theft of a PC that will not be operable once the current period
of authorization expires. In order to subsequently operate the
PC, the thief would need to reconnect the PC to the server
and invoke either client or server utilities to reinitialize the
embedded agents. These utilities are themselves protected
by password mechanisms. The thief cannot circumvent the
embedded agents by reinstalling the operating system or by
replacing programmable read only memories (“PROMs”).
The stolen PC is therefore essentially worthless to the thief,
and, perhaps more important, the data stored within the PC
is inaccessible to the thief as well as to any other party.

Certain implementations of this embodiment may rely on
one or more internal password identification mechanisms.
However, unlike the other well-known security systems
discussed above, the user of a PC protected by the EASS
does not need to possess a password and is, in fact, not
allowed to know or possess the passwords used internally
within the EASS.

In a preferred implementation of this embodiment, the
server and client components are implemented in software
and the embedded agents are implemented as hardware logic
circuits. However, all three of these components may be
implemented either as software routines, firmwave routines,
hardware circuits, or as a combination of software, firmware,
and hardware.

EASS Hardware and Software Configuration

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server. The remote server 202

20

25

30

35

45

50

55

60

65

6

is connected to the PC 204 via a connection 206 that
represents a local area network which is possibly itself
connected to a wide area network and which supports one of
any number of common network protocols or combinations
of protocols to transfer messages back and forth between the
server component 202 and the PC 204. Messages may be
transmitted, for example, via the Internet. The PC 204 is
connected to an external output device, in this case a display
monitor 208, and to two input devices, a mouse 210 and a
keyboard 212. Internal components of the PC include a
central processing unit (“CPU”) 214; a random access
memory 216; a system controller 218; a hard disk 220; and
a number of device controllers 222, 224, 226, 228, and 230
connected to the system controller 218 directly through a
high speed bus 232, such as a PCI bus, or through a
combination of the high speed bus 232, a bus bridge 234,
and a low speed bus 236 such as an ISA bus. The CPU 214
is connected to the system controller 218 through a special-
ized CPU bus 238 and the RAM memory 216 is connected
to the system controller 218 through a specialized memory
bus 240. FIG. 2 represents one possible simple configuration
for the internal components of a PC. PCs having different
numbers or types of components or employing different
connection mechanisms other than PCI or ISA buses may
have quite different internal configurations.

The device controllers 222, 224, 226, 228, and 230 are
normally implemented as printed circuit boards, which
include one or more application specific integrated circuits
(“ASICs”) 242, 244, 246, 248, and 250. The ASICs, along
with firmware that is normally contained in various types of
ROM memory on the printed circuit boards, implement both
a communications bus interface and a command interface.
The communications bus interface allows for data and
message communication with operating system routines that
run on the CPU 214. The command interface enables the
operating system to control the peripheral device associated
with the device controller. For example, the hard disk 220
comprises a number of physical platters on which data is
stored as tiny magnetized regions of the iron oxide surface
of the platters (not shown), a motor for spinning the platters
(not shown), and a printed circuit board 228 which imple-
ments circuitry and firmware routines that provide a high-
level interface to operating system drivers. In modern disks,
there is often a printed circuit board that includes an ASIC
that is packaged within the disk as well as a printed circuit
board card that is connected via a bus to other internal
components of the PC, including the system controller 218
and the CPU 214,

Programs that run on the CPU 214, including the oper-
ating system and the EASS client, are permanently stored on
a bard disk 252 and are transiently stored in RAM 254 for
execution by the CPU 214. Logic circuitry that implements
the embedded agents of the EASS is included within the
ASICs that implement the various device controllers 242,
244, 246, 248, and 250. The device controller may control
such devices as optical disk devices, tape drives, modems,
and other data sources and communications devices. EASS
embedded agents can be additionally included within the
circuitry that implements RAM 216, the system controller
218, and even the CPU 214. One skilled in the art will
recognize that any circuit in which communications can be
intercepted may reasonably host an embedded agent and that
many other locations may therefore host embedded agents.
Further, a PC 204 may include only a single embedded agent
or may include a number of EASS embedded agents.

FIG. 3 is a block diagram of example hardware and
software components and communications pathways that

w

US 6,249,868 B1

7

implement a single embedded agent connected to a client
which is, in turn, connected to a security authorization
server. In one embodiment, the EASS embedded agent 302
is a logic circuit embedded within an ASIC 304 which is
included on a printed circuit board 306 that implements a
particular device controller. The device controller is con-
nected through one or more internal communications buses
308 to an EASS client program 310 implemented as a driver
within the operating system 312 running on the CPU 314 of
the personal computer. The CPU 304 is, in turn, connected
through one or more internal buses, such as a PCI bus, and
external communication lines, such as a LAN or a LAN
combined with a WAN 316, to the server computer 318. The
components of the server computer that implement the
EASS server include an EASS server program 320 and a
non-volatile storage device 322 in which the EASS server
program 320 stores anthorization and embedded agent infor-
mation. The EASS server program 320 exchanges informa-
tion with the non-volatile storage device 322 via internal
buses 324 of the server computer 318. There are a varicty of
ways in which the embedded agent and authorization infor-
mation can be stored by the EASS server 320 on the
non-volatile storage device 322. In one implementation of
the described embodiment, this data is stored within a
commercial database management system, such as a rela-
tional database.

Messages and commands that are passed to the device
controller 306 for a particular internal or peripheral device
over the communications bus 308 first pass through the
EASS embedded agent logic 302 before entering the ASIC
circuitry 304 that implements the device controller. The
EASS embedded agent 302 is associated with a number of
non-volatile registers 326 that store authorization state infor-
mation. When the embedded agent has been authorized by
an EASS server 320, or during a short grace period follow-
ing power up, the EASS embedded agent passes messages
and commands through to the ASIC 304 that implements
normal message handling and the device controller.
However, when the EASS embedded agent 302 is not
authorized by the EASS server 320, or when an initial
power-on grace period has expired, the EASS embedded
agent blocks messages and commands to the ASIC 304
thereby disabling the device controlled by the device con-
troller 306. The EASS embedded agent thus serves as a
hardware-implemented control point by which a device is
enabled or disabled. Authorization messages pass from the
EASS server 320 through communications pathways 316
and 308 to the EASS embedded agent 302. The EASS
embedded agent 302 can also initiate a message and pass the
message through pathways 308 and 316 to the EASS server
320. For example, the EASS embedded agent 302 may
request authorization from the EASS server 320.

In the described embodiment, the EASS client 310 facili-
tates communications between the EASS server 320 and the
EASS embedded agent 302. When a PC includes more than
one EASS embedded agent, the EASS client 310 handles
routing of messages from the EASS server 320 to individual
EASS embedded agents 362 and collects any messages
initiated by EASS embedded agents 302 and forwards them
to the EASS server 320. In addition, the EASS client 310
may support a small amount of administrative functionality
on the PC that allows the EASS to be reinitialized in the
event of loss of connection or power failure. The EASS
client 310 may not be a required component in alternative
embodiments in which an EASS server 320 communicates
directly with EASS embedded agents 302.

In alternative embodiments, the EASS server may com-
muricate with EASS embedded agents by a communications

10

15

20

25

35

40

45

50

55

60

65

8

medium based on transmission of optical or radio signals
rather than on electrical signals. Moreover, alternate
embodiments may employ multiple EASS servers that may
be implemented on remote computers or that may be
included within the same computer that hosts the EASS
embedded agents.

EASS Server and Embedded Agent State
Transitions

FIG. 4 is a state diagram for an example embedded agent.
FIG. 4 shows four different states that an EASS embedded
agent may occupy: (1) an Initial Power-On Grace Period
state 402; (2) a Power-On Grace Period state 404; (3) an
Authorized state 406; and (4) a Not Authorized state 408.
Transitions between these states arise from three types of
events: (1) 4 successful handshake between the embedded
agent and the EASS server that results in transfer of an
authorization by the EASS server to the embedded agent to
permit operation of the device associated with the EASS
embedded agent for some period of time; (2) a time out that
occurs when the EASS embedded agent has exhausted its
current authorization period prior to receiving a subsequent
re-authorization from the EASS secrver; and (3) a special
back-door mechanism that allows an entity such as the
EASS client to reinitialize an EASS embedded agent so that
the EASS embedded agent can reestablish contact with an
EASS server following interruption of a previous connec-
tion.

Following an initial power up 410 of the device hosting an
EASS embedded agent, the EASS embedded agent enters an
Initial Power-On Grace Period 402. The Initial Power-On
Grace Period allows operation of the device controlled by
the EASS embedded agent for some short period of time
following power up of the PC necessary for initialization of
the PC that contains the device and embedded agent and
allows for establishment of contact between the EASS
embedded agent and an EASS server. When in the Initial
Power-On Grace Period 410, the EASS embedded agent
contains one of a certain number of initial passwords that are
recognized by EASS servers as belonging to EASS embed-
ded agents in the Initial Power-On Grace Period. These
initial passwords allow an EASS server to distinguish a valid
request for handshake operation from an attempt to solicit
authorization by an embedded agent that has been previ-
ously authorized by an EASS server. In the latter case, the
embedded agent may well be hosted by a stolen or misused
device. From the Initial Power-On Grace Period state, the
EASS embedded agent may send a solicitation message, for
example, a “SAVE ME” message to an EASS server to
announce that the EASS embedded agent has been powered
up for the first time, as indicated by transition arrow 412, and
to solicit a handshake operation. Sending of the SAVE ME
solicitation message does not, by itself, cause a state tran-
sition. When an EASS server receives a SAVE ME message
from an EASS embedded agent, the EASS server undertakes
sending of an authorization to the EASS embedded agent
through a handshake mechanism, to be described below. The
handshake may either fail or succeed. If a handshake fails,
the EASS embedded agent remains in the state that it
occupied prior to initiation of the handshake.

When an EASS embedded agent is in the Initial Power-On
Grace Period, a successful handshake operation results in the
EASS embedded agent transitioning 414 to an Authorized
state 406. At regular intervals, the EASS server continues to
reauthorize the EASS embedded agent through successive
handshake operations 416 which result in the EASS embed-
ded agent remaining in the Authorized state 406. In the

US 6,249,868 Bl

9

Authorized state 406, the EASS embedded agent passes
through commands and data to the device that it controls
allowing that device to operate normally. If, for any number
of reasons, the EASS embedded agent does not receive
reauthorization prior to the expiration of the current autho-
rization that the embedded agent has received from an EASS
server, a time out occurs causing transition 418 of the EASS
embedded agent to the Not Authorized state 408.

In the Not Authorized state 408, the EASS embedded
agent blocks commands and data from being transmitted to
the device controlled by the EASS embedded agent, effec-
tively disabling or shutting down the device. Alternatively,
the EASS embedded agent may actually power down a
device that can be powered down independently from other
internal components of the PC. When in the Not Authorized
state 408, the EASS embedded agent may send a SAVE ME
message 420 to an EASS server. Sending of this message
does not, by itself, cause a state transition, as indicated by
arrow 420. However, if an EASS embedded agent receives
the SAVE ME message and initiates a handshake operation
that is successfully concluded, the EASS embedded agent
transitions 422 from the Not Authorized state 408 back to the
Authorized state 406.

The EASS embedded agent and the device that the EASS
embedded agent controls can be powered up any number of
times following an initial power up. The EASS embedded
agent stores enough information in a number of non-volatile
registers associated with the EASS embedded agent (e.g.,
registers 326 in FIG. 3) to differentiate a normal or non-
initial power up from an initial power up. Following a
non-initial power up 424, the EASS embedded agent tran-
sitions 426 to a Power-On Grace Period state 404. When
occupying the Power-On Grace Period state 404, the EASS
embedded agent may send a SAVE ME message to an EASS
server. The sending of the SAVE ME message 428 does not,
by itself, cause a state transition, as indicated by arrow 428.
The Power-On Grace Period lasts a short period of time
sufficient for the PC to be booted and all of the internal
components to be initialized and for the EASS embedded
agents controlling those components to establish contact
with an EASS server. If an EASS server, upon receiving the
SAVE ME message, successfully completes a handshake
operation, the EASS embedded agent transitions 430 from
the Power-On Grace Period 404 to the Authorized state 406.
If a successful handshake operation is not completed before
the short Power-On Grace Period authorization period
expires 432, the embedded agent transitions 432 from the
Power-On Grace Period 404 to the Not Authorized state 408.

A special mechanism is provided for reinitialization of an
EASS embedded agent following normal power on. That
mechanism is referred to as the “back door” mechanism. The
back door mechanism may be initiated, at the direction of a
user or administrator, by an EASS client running on the
same PC that includes the embedded agent, or may be
initiated by an EASS server upon discovery by the EASS
server of a failed or interrupted connection. When the EASS
embedded agent reccives a message that implements the
back door mechanism, the EASS embedded agent transi-
tions 434 from the Power-On Grace Period 404 back 10 the
Initial Power-On Grace Period 402. In alternative
embodiments, the back door mechanism might allow for
transitions from either of the other two states 406 and 408
back to the Initial Power-On Grace Period state. In more
complex embodiments, the back door mechanism might
allow for transitions to states other than the Initial Power-On
Grace Period.

FIG. § is an example state diagram for the interaction of
a security authorization server with one embedded agent.

20

25

30

35

45

50

55

60

65

10

‘With respect 1o an EASS embedded agent, the EASS server
may occupy any one of three states at a given instant in time:
(1) the EASS server may be in an Ignorant of Agent state
502; (2) the EASS server may be in a Knowledgeable of
Agent state, aware of but not having authorized the agent
504; and (3) the EASS server may be in an Agent Authorized
state 506. Initially, an EASS server is ignorant of the
embedded agent, and thus occupies the Ignorant of Agent
state 502. When the EASS server receives a SAVE ME
message from the EASS embedded agent that is in the Initial
Power-On Grace Period state (402 in FIG. 4), the EASS
server transitions 508 from the Ignorant of Agent state 502
to the Knowledgeable of Agent state 504. As part of this
traosition, the EASS server typically makes an entry into a
database or enters a record into a file that allows the EASS
server to preserve its awareness of the EASS embedded
agent. The EASS server may receive SAVE ME messages
from the EASS embedded agent when occupying either the
Knowledgeable of Agent state 504 or the Agent Authorized
state 506. As indicated by arrows 510 and 512, receipt of
SAVE ME messages by the EASS server in either of states
504 and 506 does not, by itself, cause a state transition.

The EASS server may initiate and complete a successful
handshake operation with the EASS embedded agent while
the EASS server occupies the Knowledgeable of Agent state
504 with respect to an agent. Completion of a successful
handshake operation causes the EASS server to transition
514 from the Knowledgeable of Agent state 504 to the Agent
Authorized state 506 with respect to the agent. This transi-
tion may be accompanied by the saving of an indication in
a database or a file by the EASS server that indicates that the
embedded agent is authorized for some period of time.
When occupying the Agent Authorized state, the EASS
server may continue to initiate and complete successful
handshake operations with the embedded agent and, by
doing so, continue to occupy the Agent Authorized state.
However, if a handshake operation is unsuccessful, the
EASS server transitions 518 from the Agent Authorized state
506 back to the Knowledgeable of Agent state 504.

In some embodiments of the present invention, there may
be an additional transition 520 from the Knowledgeable of
Agent state 504 back to the Ignorant of Agent state 502. This
transition corresponds to a purging or cleaning operation
that allows an EASS scrver to purge database entries or file
records corresponding to a particular EASS embedded agent
if the EASS server is unsuccessful in authorizing that EASS
embedded agent for some period of time. Such a purging
operation allows the EASS server to make room in a
database or file to handle subsequent entries for EASS
embedded agents that announce themselves using SAVE ME
messages from an Initial Power-On Grace Period state.

EASS Messages

FIGS. 6A-9B illustrate details of the sending and receiv-
ing of SAVE ME messages and of the EASS server-initiated
handshake operation. In each of these figures, example
contents of the non-volatile registers associated with an
EASS embedded agent, contents of a message, and contents
of a portion of the database associated with an EASS server
are shown. FIG. 6A will be numerically labeled and
described in the discussion below, but the labels will be
repeated in FIGS. 6B-9B only when the labels are relevant
to an aspect of the EASS in the figure referenced in the
discussion of the figure.

FIG. 6A illustrates initiation of the sending of a SAVE ME
message by an EASS embedded agent. The EASS embedded

US 6,249,868 B1

11

agent 602 is associated with three non-volatile registers that
contain: (1) the current password 604; (2) the previous
password 606; and (3) the time remaining for the current
authorization period 608. Passwords may comprise com-
puter words of 56 bits, 64 bits, or a larger number of bits that
provide a sufficiently large number of unique initial pass-
words. The direction of propagation of the SAVE ME
message is indicated by arrow 610. The SAVE ME message
612 being transmitted is displayed along with its informa-
tional content 614. The EASS server 616 contains a repre-
sentation of a portion of a database that contains information
about EASS embedded agent authorizations 618. This data-
base contains columns that indicate the communications or
network address of the EASS embedded agent 620, the
EASS embedded agent’s current password 622, the EASS
embedded agent’s previous password 624, and an indication
of whether the EASS embedded agent is currently autho-
rized or not 626. Additional or alternative columns may be
present. For example, the next column 628 is used in
subsequent figures to store the amount of time for which the
EASS embedded agent is authorized. Each row in the
database 630633 represents one particular EASS embed-
ded agent. Rows 630 and 631 contain information for
previously authorized EASS embedded agents (not shown).
EASS embedded agent 602 of FIG. 6A is in the Initial
Power-On Grace Period state (402 of FIG. 4) and the EASS
server 616 of FIG. 6A is, with respect to the embedded agent
602, in the Ignorant of Agent state (502 of FIG. 5). Rect-
angular inclusions 634 and 636 represent the implementa-
tion of, and any volatile storage associated with, the EASS
embedded agent and the EASS server, respectively.

In one embodiment, when the EASS embedded agent 602
is in the Initial Power-On Grace Period, it has an initial time
remaining period of two minutes, as indicated by the con-
tents of the time remaining non-volatile register 608, This
initial time remaining period is chosen to be sufficient for the
EASS embedded agent 602 to establish a connection with
the EASS server 616, to solicit a handshake operation, and
to complete the solicited handshake operation and may vary
in duration for different types of computers. Both the current
password register 604 and the previous password register
606 contain a default initial password that is recognized by
EASS servers as corresponding to an EASS embedded agent
in the Initial Power-On Grace Period state. It should be noted
that there may be a great number of different such default
passwords. In the described embodiment, the circuitry that
implements the EASS embedded agent notes that the autho-
rization time remaining is two minutes, and that it is
therefore necessary for the EASS embedded agent 602 to
send a SAVE ME message 612 to an EASS server to request
continuation of authorization. Thus, the EASS embedded
agent 602 initiates sending of the SAVE ME message 612.

The SAVE ME message 612 contains an indication or
operation code 638 designating the message as a SAVE ME
message, the contents of the current password register 640,
and the contents of the previous password register 642. In
the case of an EASS embedded agent in the Initial Power-On
Grace Period state, both the current password and previous
password registers contain the same initial password in the
present embodiment. Alternative embodiments might use
different initial current and previous passwords. In general,
sending both the current password and the previous pass-
word provides sufficient information for the EASS server
that receives the SAVE ME message to correct any errors or
discrepancies that may have arisen during a previous failed
handshake. An example of a recovery from a failed hand-
shake operation will be described below with reference to
FIGS. 9A-B.

20

25

30

35

40

45

50

55

60

65

12

FIG. 6B illustrates receipt of a SAVE ME message by an
EASS server. In this case, the EASS server 616 was, prior
to receipt of the SAVE ME message, in the Ignorant of Agent
state (502 of FIG. 5) with respect to the EASS embedded
agent 602. Receipt of the SAVE ME message 612 causes the
EASS server 616 to transition to the Knowledgeable of
Agent state (504 of FIG. 5). In making this transition, the
EASS server 616 enters information gleaned from the SAVE
ME message 612 into row 632 of the database 618 associ-
ated with the EASS server 616. The address from which the
message was received can be determined from fields con-
tained within a message header (not shown in FIG. 6B). This
address may be the communications address of an individual
EASS embedded agent, a combination of the communica-
tions address of the client and an internal identification
number of the device hosting the EASS embedded agent, or
some other unique identifier for the EASS embedded agent
that can be mapped to a communications address. The
details of the formats of message headers are specific to the
particular types of communications mechanisms and imple-
mentations. In this example, the addresses are stored as
Internet addresses. The stored Internet address is the address
of the EASS client running on the PC in which the EASS
embedded agent is resident. This address may be enhanced
by the EASS server 616 by the addition of characters to the
address or subficlds within either the address or in the
message header to provide sufficient information for the
receiving EASS client to identify the particular EASS
embedded agent to which the message is addressed.
Alternatively, a different address might be established for
each EASS embedded agent or an internal address field
might be included in each message sent from the EASS
server to an EASS client that further specifies the particular
EASS embedded agent to which the message is addressed.
Thus, receipt of the SAVE ME message has allowed the
EASS server 616 to store the address “example@x.com”
632 to identify the EASS embedded agent 602 from which
the message was received, to store the current and previous
passwords 644 and 646 taken from the received SAVE ME
message 612, and to store an indication that the EASS
embedded agent 602 is not authorized 648.

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state. The handshake
operation is initiated, as shown in FIG. 7A, by the EASS
server 702. The EASS server 702 generates a new, non-
initial password for the EASS embedded agent 704 and
stores the new password in volatile memory 706. The EASS
server then sends an authorization message 708, for example
an “AUTHORIZE” message, to the EASS embedded agent
704 that contains the newly gencrated password 710 along
with an indication 712 that this is an AUTHORIZE message.

FIG. 7B illustrates receipt of an example AUTHORIZE
message by an example EASS embedded agent. The EASS
embedded agent 704 stores the newly generated password
710 contained in the AUTHORIZE message 708 into a
volatile memory location 714 implemented in the circuitry
of the EASS embedded agent 704.

FIG. 7C illustrates sending, by an example EASS embed-
ded agent, of an authorization confirmation message, for
example a “CONFIRM AUTHORIZATION” message. The
EASS embedded agent 704 sends a CONFIRM AUTHO-
RIZATION message 716 back to the EASS server 702 from
which an AUTHORIZE message was received. The CON-
FIRM AUTHORIZATION message 716 contains the new
password sent in the previous AUTHORIZE message by the

US 6,249,868 B1

13
EASS server 718 as well as the contents of the current
password register 720. The CONFIRM AUTHORIZATION
message confirms receipt by the EASS embedded agent 704
of the AUTHORIZE message 708.

FIG. 7D illustrates receipt of the CONFIRM AUTHORI-
ZATION message 716 by an example EASS server. The
EASS server 702 updates the current password and previous
password 722 and 724 within the associated database 726 to
reflect the contents of the CONFIRM AUTHORIZATION
message 716 after checking to make sure that the new
password retumned in a CONFIRM AUTHORIZATION
message is identical to the in-memory copy 706 of the new
password. If the new password contained in the CONFIRM
AUTHORIZATION message is different from the new pass-
word stored in memory 706, then the handshake operation
has failed and the EASS server 702 undertakes a new
handshake operation with the EASS embedded agent 704.

FIG. 7E illustrates sending by the EASS server of a
completion message, for example an “OK” message, in
response to receipt of the CONFIRM AUTHORIZATION
message in order to complete the handshake operation. The
EASS server 702 prepares and sends an OK message 728
that contains both the new password and an indication of the
time for which the EASS embedded agent 704 will be
authorized upon receipt of the OK message.

FIG. 7F illustrates receipt of the OK message 728 by an
example EASS embedded agent. Once the EASS server 702
has sent the OK message, the EASS server 702 updates the
database 726 to indicate that the client is authorized 729 as
well as to store an indication of the time 730 for which the
EASS embedded agent has been authorized. At this point,
the EASS server 702 has transitioned from the Knowledge-
able of Agent state (504 in FIG. 5) to the Agent Authorized
state (506 in FIG. 5). Upon receipt of the OK message 728,
the EASS embedded agent 704 updates the current password
register 720 to reflect the new password sent to the EASS
embedded agent in the original AUTHORIZE message 708
after placing the contents of the current password register
720 into the previous password register 732. The EASS
embedded agent 704 also updates the time remaining reg-
ister 734 to reflect the authorization time 736 contained in
the received OK message. At this point, the EASS embedded
agent transitions from the Initial Power-On Grace Period
state (402 in FIG. 4) to the Authorized state (406 in FIG. 4).

If the handshake operation fails after sending of the OK
message by the EASS server to the EASS embedded agent,
but prior to reception of the OK message by the EASS
embedded agent, the connection between the EASS embed-
ded agent and the EASS server can be reestablished and
authorization reacquired by the sending by the EASS
embedded agent of a SAVE ME message to the EASS server.
The SAVE ME message will contain, as the current
password, the value that the BASS server has stored as the
previous password. From this, the EASS server can deter-
mine that the previous handshake operation failed, can
update the database to reflect the state prior to the failed
handshake operation, and can then reinitiate a new hand-
shake operation.

FIGS. 8A-F illustrate a second handshake operation that
follows the original handshake operation by some period of
time less than the original authorization period. By under-
taking additional handshake operations, the EASS server
801 continues to initiate handshake operations to maintain
the EASS embedded agent 805 in the Authorized state (406
in FIG. 4). The EASS server 801 generates a new, non-initial
password 802 and sends this password in an AUTHORIZE

[

0

20

25

30

35

60

65

14

message 804. The EASS embedded agent receives the
AUTHORIZE message 804 and stores the newly generated
password in memory 806. The EASS embedded agent 805
then sends a CONFIRM AUTHORIZATION message 808
back to the EASS server 801 containing both the newly
generated password 810 and the contents of the current
password register 812. Upon receipt of the CONFIRM
AUTHORIZATION message 808, the EASS server 801
updates the database entries for the current and previous
passwords 814 and 816 and then sends an OK message 818
back to the EASS embedded agent 805 that contains the new
password and the new time period 809 for which the EASS
embedded agent 805 will be authorized. After sending the
OK message 818, the EASS server 801 updates the database
to reflect the new time of authorization 820 and, upon receipt
of the OK message by the embedded agent, the non-volatile
registers of the EASS embedded agent are updated to reflect
the new current password and the now previous password,
822 and 824, respectively.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent. In this case, the time
remaining continues to decrease and the EASS embedded
agent 902 determines from the time remaining register 904
that sending of a SAVE ME message 906 is necessary to
initiate another handshake operation. Because the final OK
message 818 is not received by the EASS embedded agent
902, the values of the current password register 908 and the
previous password register 910 have not been updated and
are the same as the values that were established as a result
of the first authorization, as shown in FIG. 7F. However, the
EASS server 912 has updated its internal database 914 to
indicate the new password generated during the previous
handshake operation 916. Thus, the EASS server database
914 does not reflect the actual state of the EASS embedded
agent 902. However, when the EASS server 912 receives the
SAVE ME message 906, the EASS server 912 can imme-
diately determine that the previous handshake operation did
not successfully complete and can update the current pass-
word entry and the previous password entry 916 and 918 in
the associated database 914 to reflect the actual current state
of the EASS embedded agent 902. Thus, upon receipt of the
SAVE ME message, the EASS server and the EASS embed-
ded agent are again synchronized, and the EASS server can
initiate a new handshake operation to reauthorize the EASS
embedded agent.

The above-illustrated and above-described state diagrams
and message passing details represent one of many possible
different embodiments of the present invention. A different
communications protocol with different attendant state dia-
grams and messages can be devised to accomplish the
authorization of EASS embedded agents by EASS servers.
Depending on the communications pathways employed,
different types of messages with different types of fields and
different types of header information may be employed.
Moreover, the EASS embedded agent may contain addi-
tional non-volatile registers and may maintain different
values within the associated non-volatile registers. As one
example, rather than passing passwords, both the EASS
server and each EASS embedded agent may contain linear
feedback registers that electronically generate passwords
from seed values. The communications protocols between
the EASS server and the EASS embedded agents could
ensure that, during transition from the Initial Power-On
Grace Period state, the EASS embedded agent receives an
initial seed for its linear feedback register that is also used

\ 4

US 6,249,868 Bl

15

by the EASS server for the EASS server’s linear feedback
register. Ratber than passing passwords, both the EASS
embedded agents and the EASS servers can depend on
deterministic transitions of their respective linear feedback
registers to generate pew, synchronized passwords at each
authorization point.

A clever thief who has stolen a PC, who has managed to
discern the need to establish connections between EASS
embedded agents and an EASS server, and who possesses

the necessary passwords to gain entry to client and server 10

utilities that enable a connection between an EASS client
and an EASS server to be initialized, will still fail to
overcome the EASS and may, in fact, broadcast the location
and use of the stolen PC to the EASS. A different EASS

server to which a connection is attempted will immediately 15

detect the attempt by the thief to connect the stolen PC to the
EASS server by detecting non-initial passwords in the SAVE
ME message sent by the EASS embedded agent in order to
solicit a handshake operation. The reconnection attempt will

be readily discernible to a sccurity administrator using 20

utilities provided to display database contents on the EASS
server. Connection to a different EASS server will fail

16

because the EASS embedded agents will power up to the
Power-On Grace Period state, rather than the Initial Power-
On Grace Period state. The passwords sent to the different
EASS server will thercfore not be identified as initial
passwords. The different EASS server may then notify a
centralized management or administrative facility of the
fraudulent attempt to connect along with the network
address from which the attempt was made. An attempt to
connect to the same EASS server will also fail, because the
address of the EASS embedded agents within the PC will
have changed.

Pseudo-Code Implementation

A pseudo-code example implementation of an example
EASS server and EASS embedded agent is given below.
Although the EASS embedded agent will normally be
implemented as a logic circuit, that logic circuit will imple-
ment in hardware the algorithm expressed below as pseudo-
code. Software and firmware implementations of the EASS
embedded agent may, in addition, represent alternate
embodiments of the present invention.

1 enum MSG_TYPE {AUTHORIZE, CONFIRM_AUTHORIZE, OK, SAVE_ME, DEVICE};
2

3 enum ERRORS {QUEUED_AND_SAVE_ME, MULTIPLE_OKS_ 1OST ALARM,
4 CONFIRM__AUTHORIZE__SYNC, NO__ENTRY, QUEUE_ERROR};
5

6 type PASSWORD;

7 type ADDRESS;

8 type TIME;

9

10 const TIME initGrace = 2:00;

11 const TIME saveMe = 0:20;

12

13 class Error

14

15 Error (int err, ADDRESS add);

16

17

18 class DeviceMessage

19

20 Device Message ();

21 }

22

23 class Device

2% |

25 Device ();

26 Void enable ();

27 Void disable ();

28 Void send (Device Message & dvmsg);
29 Bool receive (Device Message & dvmsg);
3o 1}

31

32 class Timer

33 {

34 timer (TIME ¢t);

35 void set (TIME t);

36

37

38 class Timerinterrupt

39 {

40 Timerlnterrupt ();

41 }

42

43 class TimeServer

4“4

45 TimeServer ();

45 TIME nextAuthorizationPeriod (Address add);
47 }

48

49 class Messages

US 6,249,868 B1
17 18

-continued

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
11
112
13
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

}

Messages();

Bool getNext ();

MSG_TYPE gelType ();

PASSWORD getNewPassword ();

PASSWORD getCurrentPassword ();

PASSWORD getPreviousPassword ();

TIME getTime ();

ADDRESS getAddress ();

Bool sendAuthorize (PASSWORD npwd, ADDRESS add);

Bool sendConfirmAuthorize (PASSWORD npwd, PASSWORD cpwd, ADDRESS sdd);
Bool sendOK (Time t, PASSWORD npwd, ADDRESS add);

Bool sendSaveMe (PASSWORD cpwd, PASSWORD ppwd, ADDRESS add);

class AgentMessages:Messages

}

DeviceMessage & getDeviceMsg ();
Bool sendDeviceMsg (DeviceMessage & msg);

class Passwords

Passwords ();

Bool initialPassword (PASSWORD pwd);

PASSWORD generateNewPassword ();

void quene(ADDRESS add, PASSWORD npwd, PASSWORD ppwd);

Bool dequeue (ADDRESS add, PASSWORD & npwd, PASSWORD & ppwd);

}

class Database

{
Database();
Bool newAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Bod suthorized,Time t);
Bool updateAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Bool authorized, Time t);
Bool retrieveAgent (ADDRESS add, PASSWORD & cur, PASSWORD & prev, Bool & Authorized,

TIME & t);

Bool deleteAgent (ADDRESS add);

}

agent (PASSWORD current, PASSWORD previous)
{

PASSWORD tpwd;

Timer time (init, Grace);
AgentMessages msg ();
Device dv ();
DeviceMessage dvmsg ();
Bool authorized = FALSE;
Bool enabled =« TRUE;

do
{
try
{
while (msg.getNext ()
?wiu:h (msg.getType ()
case AUTHORIZE:

tpwd = msg.getNewPassword ();
msg.sendConfirmAuthorize (tpwd, current, msg,getAddress ());
break;
caseOK:
if (tpwd =~ msg.getNewPassword ())

time.set (msg.getTime () - saveMe);
authorized = TRUE;

previous = current;

current = tpwd;

if (tenabled)

dv.cnable ();
cnabled = TRUE;

}
break;
caseDEVICE:
if (cnabled) dv.send (msg.getDeviceMsg ());
break;
default;

US 6,249,868 B1
19 20

-continued

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
19
200
201
202
203
204

206

208

break;

}
while (dv.receive (dvmsg))

if (enabled) msgsendDeviceMsg (dvmsg);

}

catch (TimerInterrupt)
if (authorized)
{

authorized = FALSE;
msg.sendSaveMe (current, previous, msg.getAddress ());
time.set (saveMe);

}

clse

{
enabled = FALSE;
msg.sendSaveMe(current, previous, msg.getAddress ());
time.set(SaveMe);
dv.disable ();

}
}
}

server()

Messages msg();

PASSWORD current, previous, dcur, dprev, newp;
PASSWORD queuedNew, queuedCurrent, newpass;
Passwords pwds ();

TIME t;

Database db ();

ADDRESS add;

TimeServer ts ();

Bool auth;

while (msg.getNext ()
{
switch (msg.getType ())
caseSAVE_ME:
current = msg.getCurrentPassword ();
previous =~ msg.getPreviousPassword ();
if (pswds.dequeuc(msg.getAddress (), queuedNew, queuedCurrent))
if (queuedCurrent == current)
newp = pswds.gencrateNewPassword ();
pswds.queue(msg.getAddress (), newp, current);
msg.sendAuthorize(newp, msg.getAddress ());

}
) else throw (Error (QUEUED__AND__SAVE_ ME, msg.getAddress ());

else

if (pswds.initialPassword(current) && pswds.initialPassword
(previous))

{
db.deleteAgent (msg.getAddress ());
newp = pswds.generateNewPassword ();

pswds.queue (msg.getAddress(), newp, current);
msg.sendAuthorize(newp, msg.getAddress ());

if (db.retrieveAgent (msg.getAddress (), deur, dprev, auth,tm)
if (deur == current && tm >= getSystemTime ()
newp=pswds.generateNewPassword ();
pswds.quene(msg.getAddress (), newp, current)
msg.sendAuthorize(newp, msg.getAddress ());
clse if (dprev == current && tm >w= getSystemTime ()

msg.sendOK (ts.nextAuthorizationPeriod(msg. getAddress (),

US 6,249,868 B1

21

-continued

22

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240 }
241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260 }
261 }

262}

}

case CONFIRM_AUTHORIZE:
newpass = msg.getNewPassword (),
cumrent = msg.getCurrentPassword ();

if (dcur == current)

else

else

break;
default;
break;

deur, msg.getAddress ());
4}:lse if (dprev == current && tm < getSystemTime ()
throw (Error (MULTIPLE_OKS_LOST, msg.getAddress ());
else throw (Error (ALARM, msg.getAddress ());

}
clse throw (Eror (ALARM, msg.getAddress ());

if(paswds.dequeuc (msg.getAddress (), quenedNew, quenedCurment))
if(newpass == queuedNew && current == quenedCurrent)

if (db,retrieveAgent(msg.getAddress (), dcur,dprev,auth,tm))
{

tm = ts.nextAuthonzationPeriod(msg.getAddress ());
db.updateAgent(msg.getAddress (),newpass,current,
tm + getSystemTime ());
msg.SendOK (tm, newpass, msg.getAddress ());

throw (Error (CONFIRM_AUTHORIZE_ SYNC,
msg.getAddress ());

if(pswds.initialPassword (current))
tm - is.nextAuthorizationPeriod (msg.getAddress ());
db.newAgent(msg.getAddress (),newpass,current,
tm + getsystemTime ());
msg.sendOK(tm, newpass, msg.getAddress ());

else throw(Error(NO_ENTRY, msg.getAddress ()));
}

}
else throw (Error (QUEUE_ERROR, msg.getAddress()));

}
else throw (Error (ALARM, msg, getAddress ());

Lines 1-11 of the above program include definitions of
constants and types used in the remaining lines of the 50
program. Line 1 defines the enumeration MSG_TYPE that
includes five enumerated constants to describe the five
different types of messages used to implement the EASS.
These types of messages include the AUTHORIZE, CON-
FIRM AUTHORIZE, OK, and SAVE ME messages
described in FIGS. 6A-B and 7A-F, as well as DEVICE
messages which are exchanged between the CPU (214 in
FIG. 2) and the device controllers (242, 244, 246, 248, and
250 in FIG. 2) via the system controller (218 in FIG. 2) and
via any EASS embedded agents residing in the device
controllers. On lines 3 and 4, an enumeration is declared for
various types of errors and potentially insecure conditions
that may arise during operation of both the EASS server and
EASS embedded agents. These errors and conditions will be
described below in the contexts within which they arise. On
lines 6-8, three basic types used throughout the implemen-
tation are declared. These types may be implemented either

55

60

65

using predefined types, such as integers and floating point
numbers, or may be more elaborately defined in terms of
classes. These types include: (1) PASSWORD, a consecu-
tive number of bits large enough to express internal pass-
words used within the EASS, commonly 56, 64, or 128 bits;
(2) ADDRESS, a number of consecutive bits large enough to
hold communications addresses for EASS servers and EASS
embedded agents; and (3) TIME, a time value expressed in
hours, minutes and seconds, possibly also including a date
and year. On lines 10 and 11, the constants “interface” and
“saveMe” are defined to be two minutes and 20 seconds,
respectively. The constant “interface” is the initial grace
period following power up during which an EASS embed-
ded agent passes device messages to and from the device
controller into which it is embedded without authorization.
The constant “saveMe” is the interval at which an EASS
embedded agent sends SAVE ME messages to an EASS
server in order to reestablish authorization. In an alternative
embodiment, both the initial grace period and the SAVE ME

US 6,249,868 Bl

23

interval may be configurable by a user, by the EASS server,
by an administrator, or by some combination of users, EASS
servers, and administrators.

On lines 13-88, a number of classes are declared that are
used in the routines “agent” and “server” that follow. Pro-
totypes for these classes are given, but the implementations
of the methods are not shown. These implementations are
quite dependent on the specific computer hardware
platforms, operating systems, and communications proto-
cols employed to implement the EASS. Much of the imple-
mentations of certain of these classes may be directly
provided through operating system calls. The class Error,
declared on lines 13-16, is a simple error reporting class
used in the server routine for exception handling. Only the
constructor for this class is shown on line 15. An instance of
this class is initialized through the arguments passed to the
constructor. These include an integer value representing the
particular error that has been identified and an address value
that indicates the network or communications address of the
EASS embedded agent that the error relates to.

The class DeviceMessage, declared on lines 18-21,
encapsulates methods and data that implement the various
kinds of device messages exchanged between the CPU and
the device controllers of a PC. The methods and data for this
class depend on the types of communications buses
employed within the PC and are, therefore, not further
specified in this example program. The class Device,
declared on lines 23-30, represents the functionality of the
device controller within which an EASS embedded agent is
embedded. In general, the methods shown for this class
would be implemented as hardware logic circuits. The
methods include optional methods for enabling and dis-
abling the device declared on lines 26 and 27, a method for
sending device messages to the device, declared on line 28,
and a method for receiving device messages from the device,
declared on line 29.

The class Timer, declared on lines 32-36, is an asynchro-
nous timer used in the agent routine. An asynchronous timer
can be initialed for some time period either through the
constructor, declared on line 34, or through the method
“set,” declared on line 35. If the time period is not reini-
tialized before the timer expires, the asynchronous timer
throws an exception or, when implemented in hardware,
raises a signal or causes an interrupt that may then be
handled either by the agent routine or the logic circuit that
implements the agent routine. The class Timerlnterrupt,
declared on lines 3841, is essentially a place holder class
used in the exception handling mechanism to indicate expi-
ration of a timer. The class TimeServer, declared on lines
43-47, is a class used by the server routine for determining
the next authorization period for a particular EASS embed-
ded agent. The method “nextAuthorizationPeriod,” declared
on line 46, takes the network or communications address of
an EASS embedded agent as an argument and returns a time
period for which the EASS embedded agent will be next
authorized. This authorization period may, in some
implementations, be a constant or, in other implementations,
the authorization period may be calculated from various
considerations, including the identity of the particular EASS
embedded agent or the previous authorization history for the
EASS embedded agent.

The class Messages, declared on lines 49-63, is a gener-
alized communications class that allows an EASS server to
exchange messages with EASS embedded agents. The
method “getNext,” declared on line 52, instructs an instance
of the Messages class to return a Boolean value indicating
whether there are more messages queued for reception. If so,

20

25

30

35

40

45

50

55

60

65

24

getNext makes that next message the current message from
which information can be obtained by calling the methods
declared on lines 53—58. These methods allow for obtaining
the type of the message, the address of the sender of the
message, and the contents of the message, depending on the
type of the message, including new passwords, current
passwords, previous passwords, and authorization times.
The methods “sendauthorize” and “sendOK” declared on
lines 89 and 61 are used in the server routine to send
AUTHORIZE and OK messages to EASS embedded agents,
respectively. The methods “sendConfirmAuthorize” and
“sendSaveMe” declared on lines 60 and 62 are used in the
agent routine 10 secnd CONFIRM AUTHORIZE and SAVE
ME messages to an EASS server, respectively. The class
“AgentMessages,” declared on lines 6569, derived from
the class “Messages,” allows an EASS embedded agent to
communicate both with an EASS server as well as with the
CPU. In other words, the two methods “getDeviceMsg” and
“sendDeviceMsg,” declared on lines 6768, allow an EASS
embedded agent to intercept device messages sent by the
CPU to the device controller in which the EASS embedded
agent is embedded and to pass device messages from the
device controller back to the CPU.

The class Passwords, declared on lines 71-78, is used
within the server routine for queuing certain password
information as well as for generating passwords and deter-
mining whether a password is an initial password. The
method “initialPassword,” declared on line 74, takes a
password as an argument and returns a Boolean value
indicating whether the password is an initial password or
pot. The method “generateNewPassword,” declared on lines
75, generates a new, non-initial password to pass to an EASS
embedded agent as part of an AUTHORIZE message. A
more sophisticated implementation of generateNewPass-
word might use an input argument that identifies a particular
EASS embedded agent for generating new passwords spe-
cific to particular EASS embedded agents. The methods
“queue” and “dequeue,” declared on lines 76-77, are used in
the server routine for temporarily storing address/new
password/previous password triples. The class Database,
declared on lines 8088, represents the database (618 in
FIG. 6A) used by the server to track EASS embedded agents
that are authorized by the server. The methods declared on
lines 8387 allow for adding new agents into the database,
updating a database entry corresponding to an agent, retriev-
ing the contents of an entry corresponding to an agent, and
deleting the entry for an agent. The address of an EASS
embedded agent is used as the unique identifier to identify
that agent’s entry in a database. In other implementations, a
unique identifier may be generated and stored in the data-
base for each EASS embedded agent authorized by the
server routine rather than using the address of the EASS
embedded agent.

The routine “agent,” declared on lines 90-155, is an
example implementation of an EASS embedded agent. The
agent routine takes two passwords, “current” and
“previous,” as arguments. These two input arguments rep-
resent the non-volatile current and previous password reg-
isters 604 and 606 shown in FIG. 6A. Various local variables
are declared on lines 92-98. These include a temporary
password “tpwd,” an asynchronous timer “time,” an instance
of the AgentMessages class “msg,” an instance of the device
class “dv” that represents the device controller into which
the EASS embedded agent is embedded, a device message
“dvmsg,” and two Boolean variables “authorize” and
“enabled.” The agent routine is implemented within a single
“do” loop starting at linc 100 and ending at line 154. Within

o

US 6,249,868 B1

25

this “do™ loop, the agent routine continuously receives and
responds to messages from a remote EASS server as well as
passes messages exchanged between the CPU and the device
controller in which the EASS embedded agent is embedded.

A large portion of the message handling logic is enclosed
within a try block that begins on line 102 and ends on line
137. Exceptions generated during execution of the code
within the try block are handled in the catch block beginning
on line 138 and extending to line 153. In the case of the
agent routine, exceptions are generated by the asynchronous
timer “time.” Within the “while” loop that begins on line 104
and extends through line 132, the agent routine handles any
messages received from a remote EASS server and responds
to those messages as necessary. The “while” statement on
line 104 iteratively calls the getnext method of the Agent-
Messages instance “msg” to retrieve each successive mes-
sage that has been received and queued internally by msg.
‘When the member “getNext” returns a TRUE value, msg has
set an internal pointer to make the next queued message the
current message. When the member “getNext” returns a
FALSE value, there are no further messages that have been
received and queued. Thus, any members of msg called
within the “while” loop on lines 106-130 that retrieve values
from messages retrieve those values from the current mes-
sage.

If the current message is an AUTHORIZE message, as
detected on line 108, the agent routine saves the mew
password contained in the AUTHORIZE message in the
local password variable “tpwd,” on line 109, and returns a
CONFIRM AUTHORIZE message to the EASS server on
line 110. If the message received from the EASS server is an
OK message, as detected on line 112, the routine agent first
checks, on line 113, if the new password contained within
the OK message is the same as the new password stored in
the local password variable “tpwd.” If so, the routine agent
reinitializes the asynchronous timer on line 115, sets the
local variable “authorized” to the value TRUE on line 116,
transfers the contents of the password variable “current” into
the password variable “previous” on line 117, transfers the
new password from the local password variable “tpwd” into
the local password variable “current,” and, if the local
variable “enabled” contains the value FALSE, enables the
device by calling the member “enable” on line 121 and sets
the local variable “enable” to TRUE on line 122. If, on the
other hand, the new password contained in the OK message
is not equal to the new password contained in the local
password variable “tpwd,” then the agent routine simply
ignores the received OK message. If the message received is
a device message, as detected on line 126, and if the local
variable “enabled” has the value TRUE, then the agent
routine passes that received device message on to the device
by calling the device member “send” on line 127. If the
received message is not of the type AUTHORIZE, OK, or
DEVICE, the agent routine simply ignores the message.

Once all the received and queued messages have been
handled in the “while” block starling on line 104 and
continuing to line 132, the agent routine passes any mes-
sages sent by the device to the CPU if the local variable
“enable” has the value TRUE. Messages are received from
the device by calling the receive member of the Device
instance “dv” and are transmitted by the agent routine to the
CPU by calling the member “sendDeviceMsg” of the Agent-
Messages instance “msg.”

If the asynchronous timer “time” expires and generates an
interrupt, that interrupt is handled on lines 140-152. If the
local variable “authorized” has the value TRUE, then autho-
rized is set to the value FALSE on line 142, a SAVE ME

10

20

25

30

35

40

45

50

55

60

65

26

message is sent by the agent routine to the EASS server on
line 143, and the asynchronous timer “time” is reinitialized
on line 144. However, if the local variable “authorized” has
the value FALSE, then the asynchronous timer has already
once expired after the agent routine failed to acquire autho-
rization from the remote EASS server. In that case, the agent
routine sets the local variable “enable” to FALSE on line
148, sends another SAVE ME message to the EASS remote
server on line 149, reinitializes the asynchronous timer on
line 150, and finally disables the device on line 151 by
calling the member “disable” of the Device instance “dv.”

The routine “server” on lines 157-264 implements the
EASS server. Local variables are declared on lines 159-167,
including an instance of the Messages class “msg,” an
instance of the Passwords class “pwds,” an instance of the
Database class “db,” and an instance of the TimeServer class
“ts.” A number of local PASSWORD variables are declared,
including the local variables “current,” “previous,” “dcur,”
“dprev,” “pewp,” “queucdNew,” “queuedCurrent,” and
“newpass.” In addition, a local TIME variable “tm,” a local
ADDRESS variable “add,” and a local Boolean variable
“auth” are declared.

The server routine continuously receives messages from
EASS embedded agents and, as necessary, responds to those
messages in the “while” loop beginning on line 169 and
ending on line 262. The server routine receives only two
types of messages: SAVE ME messages as detected on line
173, and CONFIRM AUTHORIZE messages, as detected on
line 220.

If the next received message is a SAVE ME message, the
server routine first extracts the current and previous pass-
words from the SAVE ME message and places them into the
local PASSWORD variables “current” and “previous,”
respectively. The server routine then attempts to dequeue an
address/new password/current password triple from the
“pswds” instance of the Passwords class. The address of the
EASS embedded agent that sent the SAVE ME message is
used as a unique identifier to locate the queued triple. If a
triple is found, as detected on line 176, and if the current
password extracted from the SAVE ME message is equal to
the current password saved within the triple, as detected on
line 178, then the server routine must have previously sent
an AUTHORIZE message to the EASS embedded agent, but
the handshake mechanism must have failed after the
AUTHORIZE message was sent. In this case, the server
routive simply generates a new password on line 180,
queues the address/new password/current password triple on
line 181, and sends a new AUTHORIZE message to the
EASS embedded agent on line 182. If, on the other hand, the
current password extracted from the SAVE ME message is
not equal to the current password dequeued from pswds, a
more serious error has occurred and the routine server
throws a QUEUED__AND_SAVE_ ME exception on line
184. The exception handlers are not shown in this example
program because they are quite dependent on implementa-
tion details and detailed error handling strategies that may
vary depending on the use to which the EASS has been
applied.

If there is no queued entry for the EASS embedded agent,
then, on line 188, the server routine calls the ipitialPassword
member of pswds in order to determine whether both the
current and previous passwords that were included in the
SAVE ME message are special initial passwords. If these
passwords are initial passwords, then, beginning on line 191,
the server routine deletes any database entries for the EASS
embedded agent, generates a new password, queues a new
address-new password-current password triplet, and sends

-

US 6,249,868 B1

27

an AUTHORIZE message to the EASS embedded agent on
line 194. This is done because the SAVE ME message was
sent from an EASS embedded agent in the Initial Power-On
Grace Period state (410 in FIG. 4), or, in other words, from
an EASS embedded agent that is attempting to connect to the
server either for the first time or for the first time following
a reinitialization. If, on the other hand, the current and
previous passwords in the SAVE ME message are not initial
passwords, then the server routine attempts, on line 198, to
retrieve from the database an entry corresponding to the
EASS embedded agent identified by the address of the agent.
If an entry exists in the database, then the server routine
attempts to identify, on lines 200217, a scenario by which
the SAVE ME message was scnt by the EASS embedded
agent. If no entry is present in the database for the EASS
embedded agent, then the server routine throws an alarm
exception on line 217. This alarm exception indicates a
potential attempt by a stolen or otherwise misused PC to
establish a connection and authorization with the EASS
server represented by the server routine.

On line 200, the scrver routine compares the current
password stored within the retrieved database entry to the
current password retrieved from the SAVE ME message and
compares the expiration time stored in the database to the
current time as retrieved by the operating system routine
“getSystemTime.” If the current password in the database
entry is the same as the current password in the SAVE ME
message and authorization has not yet expired for the EASS
embedded agent, then a likely explanation for the SAVE ME
message is that a previous CONFIRM AUTHORIZE mes-
sage sent from the EASS embedded agent to the server
routine was lost. Therefore, the server routine, on lines
202-204, generates a new, non-initial password, queues a
new address-new password-current password triple, and
sends a new AUTHORIZE message to the EASS embedded
agent. If, on the other hand, the previous password from the
database entry equals the current password in the SAVE ME
message and authorization has not expired, then an OK
message from the server routine to the EASS embedded
agent was probably lost, and the server routine resends the
OK message on lines 208-209. If the previous password
from the database entry equals the current password in the
SAVE ME message and authorization has expired, probably
multiple OK messages have been lost indicating some error
in communications, and the server routine throws a
MULTIPLE__OKS_ LOST exception on line 213. Finally, if
the contents of the database entry do not refiect one of the
above three scenarios handled on lines 200-214, the
received SAVE ME message most likely indicates an
attempt to establish a connection and acquire authorization
by a stolen or misused EASS embedded agent and the server
routine therefore throws an alarm exception on line 218.

When the server routine receives a CONFIRM AUTHO-
RIZE message, it first extracts the new password and current
password from the CONFIRM AUTHORIZE message on
lines 221 and 222. The server routine then attempts to
dequeue an address-new password-current password triple
on line 223 corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message. If a quened
triple is found, then the code contained in lines 225-255 may
be executed in order to properly respond to the CONFIRM
AUTHORIZE message. If there is no queued triple, then, on
line 256, the server routine throws an alarm exception to
indicate a potential attempt to connect to the server and to
acquire authorization from the server by a stolen or misused
EASS embedded agent. After dequeuing a triple, the server
routine checks, on line 227, whether the new password and

20

25

30

35

40

45

60

65

28
current password retrieved from the CONFIRM AUTHO-
RIZE message correspond to the new password and current
password that were queued in the dequeued triple. If so, then
the server routine attempts, on line 227, to retrieve a
database entry for the EASS embedded agent. If a database
entry is retrieved, then the server routine tests, on line 229,
whether the current password in the database entry is equal
to the current password in the CONFIRM AUTHORIZE
message. If so, the CONFIRM AUTHORIZE message is a
valid response to a previous AUTHORIZE message sent by
the server routine to the EASS embedded agent, and, on
lines 231-234, the server routine updates the database entry
for the EASS embedded agent and sends an OK message to
the agent. If, on the other hand, the current password
retrieved from the database entry is not equal to the current
password that was retrieved from the queue, the server
routine throws a CONFIRM__AUTHORIZE_ SYNC excep-
tion on line 238. If there was no database entry correspond-
ing to the EASS embedded agent, but if the current password
included in the CONFIRM AUTHORIZE message was an
initial password, then this CONFIRM AUTHORIZE mes-
sage came from a EASS embedded agent in the Initial
Power-On Grace Period (410 in FIG. 4) and the server
routine creates a new database entry for the EASS embedded
agent and sends an OK message to the EASS embedded
agent. However, if the password included in the CONFIRM
AUTHORIZE message is not an initial password, then the
server routine throws a NO_ENTRY exception indicating a
serious problem in the handshake. If no triple was found in
the queue corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message, the server
routine, on line 256, throws a QUEUE__ERROR exception
indicating a potential problem with the queuing mechanism.

One skilled in the art will recognize that the above-
described implementation of an example EASS server and
EASS embedded agent describes one potential embodiment
of the present invention and that other implementations may
be realized. For example, the EASS server can be imple-
mented in any number of programming languages for any
number of different operating systems and hardware plat-
forms. The EASS embedded agent is preferably imple-
mented as a hardware logic circuit within the device con-
troller for the device into which the EASS embedded agent
is embedded. A hardware logic circuit cannot be removed
without destroying the device controller. A firmware or
software routine can, by contrast, be removed or re-installed.
The handshake mechanism can be implemented with any
number of different communication message protocols, with
any number of different types of databases, and with any
number of different strategies for handling potential error
and alarm exception. Furthermore, additional error and
alarm conditions might be detected by a more elaborate
implementation. The database may itself be encrypted or
protected by additional security mechanisms.

In the above-described embodiment, an EASS embedded
agent can only receive authorization by first sending a SAVE
ME message to an EASS server. In alternative embodiments,
the EASS server or a user of the system hosting the EASS
embedded agents may be provided with the capability to
initiate authorization of an EASS embedded agent.
Moreover, the EASS embedded agents may be manufac-
tured to contain an initial unlock password and to initially
have an unlimited period of authorization. Once the system
hosting the EASS embedded agent is powered up and
running, the EASS embedded agent can then be identified by
an EASS server and controlled by the EASS server by
sending the EASS embedded agent an authorization for a

r

US 6,249,868 B1

29

period of time which overrides the unlock password and
initial unlimited period of authorization and which requires
the EASS embedded agent to be e-authorized prior to
expiration of the period of time of authorization.

Additional EASS Components and Additional
Applications for the EASS

The EASS server may include a package of system
administration utilities that allow a system administrator to
configure and monitor the EASS server’s authorization
activities. These utilities can be used to graphically display
the contents of the database associated with the EASS server
and to allow the system administrator to manipulate those
contents. Also, the EASS client and EASS server may
contain additional utilities that allow a privileged user to
reinitialize EASS embedded agents in the event of discon-
nections or corruptions so that the EASS embedded agents
can reconnect to EASS servers to reestablish authorization.

The embodiments of the present invention described
above are directed towards providing component-level secu-
rity for a PC. The EASS does not require users to know or
remember passwords. All password information is internally
generated and internally manipulated by the EASS. The
EASS cannot be easily thwarted by reconfiguring the sofi-
ware on a PC or even by replacing a firmware component
such as a PROM. This is because the EASS embedded
agents are contained within the ASICs that implement the
various device controllers. If those EASS embedded agents
do not quickly establish a connection to an EASS server and
do not quickly transition from an Initial Power-On Grace
Period state or a Power-On Grace Period state to an Autho-
rized state, the devices controlled by the EASS embedded
agents will fail to operate.

In the special case of an EASS embedded agent that is
embedded within the circuitry of a hard disk controller, the
EASS embedded agent may additionally encrypt data that is
received over a communications bus for storage on the
physical platters of the disk and may decrypt data read from
those physical platters before sending the data back through
the communications bus. In this fashion, even if a thief were
to steal the hard disk and remove the disk controller
circuitry, the data contained on the disk would not be
available for use. The data can be encrypted by any of many
well-known techniques, including RSA-based encryption
and password-based encryption.

In addition, embodiments of the present invention have
applications in other areas related to security and in many
areas not related to security. One area in which the present
invention can be applied is that of enabling hardware or
software components of a PC from a remote site on a
pay-per-use or pay-for-purchase basis. It is increasingly
common that the actual incremental costs of installing a
specialized hardware device or specialized software pro-
gram during the manufacturing process is quite small for a
given PC. For example, the cost of installing a software
program on a hard disk during the manufacturing process
may have an incremental cost of well under a dollar.
Likewise, the actual physical circuitry that implements
many specialized devices can be mass produced at a very
low cost per unit. However, the cost of installing the
specialized hardware components or software once the PC
has been manufactured and sold may be much higher. For
this reason, it is desirable for PC manufacturers to include
popular specialized hardware devices and software pro-
grams at the time of manufacture in a disabled state. The
purchaser of the PC can then pay a fee either for using the

10

20

25

30

35

40

45

50

55

60

65

30

hardware components or software programs or can later
purchase the hardware components or software programs. In
the former case, the device or program can be enabled, or
authorized, for some time period. In the latter case, the
device or software program can be enabled on a permanent
basis. Embodiments of the present invention, including a
server, client, and a number of embedded agents, could be
used as a basis to provide for selectively enabling and
disabling both hardware components and software pro-
grams. In the case of software programs, for example, the
embedded agent within the disk controller could selectively
make available data stored on the disk, including a non-
volatile copy of the software program to be enabled.

In a slightly different application of the present invention,
the EASS may be employed to protect software manufac-
turers from software pirates. Software programs, including
operating system software, can be manufactured to require
authorization by EASS embedded agents, or software-
implemented EASS embedded agents may be incorporated
into the software programs themselves. Thus, for example,
a running database management system or operating system
may incorporate software-implemented EASS embedded
agents that require periodic authorization from an EASS
server. Alternatively, an EASS embedded agent within the
disk controller on which the programs are stored may be
controlled by an EASS server to selectively enable and
disable particular programs.

Another application for embodiments of the present
invention is in the ficld of adaptive systems. Such systems
automatically reconfigure themselves to adapt to changing
demands placed on their components. The protocol for
communications between a server and embedded agents can
be expanded to allow for general information exchange
relating to the load experienced by a particular device and
the throughput achieved by the device. The server can
collect such information and direct the embedded agents to
enable additional components where needed or to fine tune
and adjust the operation of components to better handle the
demands placed on the components. For example, additional
CPUs or disk drives can be enabled and configured into the
system when processing bottlenecks and non-volatile stor-
age space becomes scarce. System components can be
enabled and disabled in order to effect load balancing,

The present invention may be applied to security systems
for devices other than PCs, including more complex com-
puter systems or even to electromechanical systems such as
airplanes, automobiles, diesel locomotives, and machine
tools. The present invention could also be applied in indus-
trial control processes to start and stop production compo-
nents and machine tools.

Embodiments of the present invention also may be
applied to protecting firearms. Electromechanical devices
that include EASS embedded agents may be incorporated
into electromechanical trigger locks or firing mechanisms.
Authorization of the EASS embedded agents might be
controlled from a centralized EASS server to insure that
only licensed firearms within predetermined geographical
locations can be fired. In such cases, the communications
medium that allow exchange of messages between an EASS
server and an EASS embedded agent may be a microwave
or satellite link.

Diagnosing and correcting defects in complex systems is
yet another problem area in which the present invention may
find application. In the embodiment discussed above, the
EASS server can easily determine when a particular EASS
embedded agent is no longer functioning, indicating that the

o

US 6,249,868 B1

31

EASS embedded agent and the device controller into which
it is embedded have been powered down or damaged. A
system administrator or a diagnostician can use a graphical
display of contents of the database associated with the EASS
server to identify powered-down or defective devices. In this
case, the database could be expanded to include more
specific information about the geographical location of each
EASS embedded agent, as well as the identity and type of
device that the EASS embedded agent is controlling. The
data included in the database can be presented in many
different fashions with a variety of different graphical user
interfaces allowing, for example, information about all the
EASS embedded agents within a particular computer to be
displayed within a diagram of that computer. As another
example, EASS embedded agents may be incorporated into
control points within utility energy grids to provide diag-
nostic and maintenance capabilities.

EASS embedded agents may be embedded into home
entertainment systems to protect the home entertainment
systems from theft and misuse. EASS embedded agents may
also serve to obtain identification information from media
containing recorded audio and/or video data inserted into a
home entertainment system, or similar broadcast or display
device, and provide the identification information to a
remote server in order to receive authorization from the
remote server for broadcast or display of the recorded audio
and/or video data. Similarly, EASS embedded agents may
serve to obtain identification information from an electronic
card or key in order to obtain authorization from a remote
server for the operation of a motorized vehicle or fircarm.
EASS embedded agents may even be embedded in paper
currency or cash machines to monitor cash transactions and
prevent acceptance of counterfeit currency. The fact that, in
all of these applications, an EASS embedded agent is
involved in obtaining identification information from media,
electronic cards, or keys, provides for remote monitoring of
the use of protected systems and flexible remote control of
the authorization for use of the protected systems. For
example, although a thief may steal both a car and the key
to the car, the owner can still contact the administrator of the
remote server to discontinue authorization of the use of the
car.

Although the present invention has been described in
terms of preferred embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
skilled in the art, and in alternate scenarios as described
above. For example, while EASS embedded agents are
preferably implemented as hardware circuitry, software
implementations could be devised to provide an EASS that
can be implemented on existing computers without special-
ized circuitry built into device controller ASICs. As pointed
out above, the EASS client could possibly be omitted in
certain embodiments where it is possible to directly establish
communications between EASS embedded agents and
EASS servers. The method in which the EASS server stores
and manipulates stored authorization and embedded agent
information may differ widely in different embodiments. A
relational database, a flat file, record-based database, or an
object-oriented database could be used to store the
information, and any number of hybrid systems can be
devised using combinations of these types of databases. The
handshake mechanism, the mechanism for announcing the
presence of embedded agents, and the mechanism for reini-
tializing embedded agents can differ markedly in different
embodiments, as can the formats and contents of the mes-
sages exchanged between EASS servers and EASS embed-

20

25

30

35

40

45

55

60

65

32

ded agents. Certain embodiments may allow a particular
EASS embedded agent to communicate with several EASS
servers in order to provide additional reliability or geo-
graphical flexibility. An EASS server may be owned and
operated by an entity protecting its own, on-site computers
or machines, or an EASS server service may be provided by
specialized security providers over the Internet or other
communications media. Any number of different types of
devices can be controlled by EASS embedded agents imple-
mented either as hardware circuitry within the devices, as
specialized programs within other programs that control the
device, or implemented as hardware/software hybrids. The
present invention can be applied not only to the problem of
securing PCs and components within PCs, but also to
problems of fault tolerance, adaptive systems, reconfigura-
tion of systems, monitoring of components within systems,
and otber similar systems or environments.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough under-
standing of the invention. However, it will be apparent to
one skilled in the art that the specific details are not required
in order to practice the invention. The foregoing descriptions
of specific embodiments of the present invention are pre-
sented for purpose of illustration and description. They are
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Obviously many modifications and
variations are possible in view of the above teachings. The
embodiments are shown and described in order to best
explain the principles of the invention and its practical
applications, to thereby enable others skilled in the art to
best utilize the invention and various embodiments with
various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalents:

What is claimed is:

1. A system for preventing theft or misuse of a computer
system, the system comprising:

a computer system having a device;

an agent embedded in the device that, when authorized,

enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-

ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

2. The system of claim 1 wherein the device contains a
logic circuit and the embedded agent is implemented as a
logic circuit within the logic circuit of the device.

3. The system of claim 1 wherein the device transmits and
receives data and contro] signals via a bus and wherein the
embedded agent intercepts the data and control signals
transmitted to the device prior to reception by the device and
intercepts the data and control signals transmitted from the
device prior to transmission of the data and control signals
to the bus.

4. The system of claim 3 wherein the embedded agent
enables the device by passing the data and control signals
intercepted by the embedded agent to and from the device
and wherein the embedded agent disables the device by not
passing the data and control signals intercepted by the
embedded agent to and from the device.

S. The system of claim 4 wherein the embedded agent is
embedded in a disk drive and wherein, when authorized by
the remote server, the embedded agent encrypts all inter-
cepted data before passing the data to the disk for storage
and decrypts all data intercepted from the disk drive before
passing the data to the bus.

\

US 6,249,868 B1

33

6. The system of claim § wherein the server continuously
authorizes the embedded agent by undertaking handshake
operations and wherein, when the coupling between the
server and the embedded agent is interrupted or broken so
that the embedded agent cannot receive additional messages
from the server, the embedded agent disables the device by
preventing access to the disk drive via the disk drive and by
not providing decryption of the encrypted data stored on the
disk drive, thereby disabling the computer system and
preventing use of the computer system.

7. The system of claim 1 wherein the handshake operation
comprises:

an authorization message sent from the server to the

embedded agent;
following reception of the authorization message by the
embedded agent, a confirm authorization message sent
from the embedded agent to the server; and

following reception of the confirm authorization message
by the server, completion message sent from the server
to the embedded agent.

8. The system of claim 7 wherein the server authorizes the
embedded agent to enable operation of the device for a
certain period of time by including in the completion mes-
sage the period of time for which the server authorizes
operation of the device.

9. The system of claim 8 wherein the embedded agent
includes a timer that is set to expire prior to expiration of the
period of time of authorization received by the embedded
agent in a completion message and wherein, when the timer
expires, the embedded agent sends a solicitation message to
the server requesting that the server undertake a handshake
operation in order that the embedded agent receives an
additional authorization period from the remote server to
enable continuous operation of the device.

10. The system of claim 9 wherein the server repeatedly
undertakes a handshake operation prior to expiration of the
current period of time for which the embedded agent is
authorized to enable operation of the device so that opera-
tion of the device is not disabled during the time that the
computer system is powered on and the embedded agent is
coupled to the server.

11. The system of claim 10 wherein, when the device is
powered on, the timer is set to a period of time sufficient for
the embedded device to request a handshake operation by
sending a solicitation message to the remote server and
sufficient for completion of the handshake operation and
wherein the embedded agent is authorized to enable opera-
tion of the device until expiration of the timer, after which
the embedded agent disables the device.

12. The system of claim 11 wherein the embedded agent
maintains a current password and a previous password,
wherein the server maintains a current agent password and
a previous agent password that correspond to the current
password and previous password maintained by the embed-
ded agent following detection of the embedded agent by
receiving a solicitation from the embedded agent that
includes the embedded agent’s current and previous pass-
words; wherein the server generates a new password for the
embedded agent when the server undertakes a handshake
operation and includes the new password in the authoriza-
tion message; wherein the embedded agent includes the new
password received from the server in the authorization
message as well as the current password maintained by the
embedded agent in the confirm authorization message;
wherein the server, upon reception of the confirm authori-
zation message, replaces the previous agent password with
the current agent password and replaces the current agent

10

20

25

30

35

40

45

50

55

60

65

34

password with the new password; and wherein, upon recep-
tion of the completion message, the embedded agent
replaces the previous password with current password and
replaces the current password with the new password.

13. The system of claim 12 wherein the embedded agent
is constructed to maintain a special initial password as both
the current password and the previous password so that the
server can detect when the embedded agent sends a solici-
tation message to the remote server for the first time.

14. The system of claim 13 wherein, when a handshake
operation fails, the server can synchronize the current agent
password and previous agent password maintained by the
server with the current and previous passwords maintained
by the embedded agent by receiving from the embedded
agent a solicitation message that contains the current and
previous passwords maintained by the embedded agent.

15. The system of claim 14 wherein the server continu-
ously authorizes the embedded agent by undertaking hand-
shake operations and wherein, when the coupling between
the remote server and the embedded agent is interrupted or
broken so that the embedded agent cannot receive additional
messages from the server, the embedded agent disables the
device thereby disabling the computer system and prevent-
ing usc of the computer system.

16. The system of claim 15, further including a client
component that receives messages from the server and
forwards those messages to the embedded agent and that
receives messages from the embedded agent and forwards
those messages to the server.

17. The system of claim 16 wherein embedded agents are
embedded within several device within the computer system
and wherein the client component receives messages from
the embedded agents and forwards those messages to the
server and wherein the client component receives messages
from the server and distributes those messages to the embed-
ded agents.

18. The system of claim 1 wherein embedded agents are
embedded in additional components of the computer system
including a CPU and memory devices, and wherein embed-
ded agents are implemented as one of hardware logic
circuits, firmware routines, and software routines that run
within the device or component within which the embedded
agents are embedded.

19. A method for enabling and disabling operation of a
component of a system, the method comprising:

embedding an agent within the component;

establishing a communications link between the embed-

ded agent and a server; and

when the component is to be enabled, exchanging a

number of messages between the server and the embed-
ded agent that together compose a handshake operation
that results in authorization of the embedded agent to
enable operation of the component for a period of time.

20. The method of claim 19, further including:

when the last period of time for which the embedded

agent has been authorized to enable operation of the
component will expire within a period of time sufficient
for sending a second solicitation message and for
completing a handshake operation, sending a solicita-
tion message from the embedded agent to the server in
order request a handshake operation.

21. The method of claim 19, further including:

including a timer in the embedded agent;

when the component is powered-up or initialized for

operation, setting the timer for a period of time suffi-
cient for the embedded agent to establish the commu-

-

US 6,249,868 B1

35

nications link with the server, to send a solicitation
message to the server requesting a handshake
operation, and to complete the handshake operation;

after establishing a communications link between the
embedded agent and the server, sending a solicitation
message from the embedded agent to the server
requesting a handshake operation;

when the handshake operation is completed, resetting the
timer to expire prior to expiration of the period of time
for which the embedded agent is authorized to enable
operation of the component to allow the embedded
agent sufficient time to send a second solicitation
message o the server requesting a second handshake
operation and to complete a second handshake opera-
tion prior to expiration of the period of time for which
the embedded agent is authorized to enable operation of
the component;

when the timer expires prior to expiration of the period of
time for which the embedded agent is authorized to
enable operation of the component, sending the second
solicitation message from the embedded agent to the
server in order to request the second handshake opera-
tion and resetting the timer to expire after a period of
time sufficient to send a third solicitation message to the
server requesting a third handshake operation and to
complete the third handshake operation; and

when the timer expires following expiration of the period
of time for which the embedded agent is authorized to
enable operation of the component, disabling the com-
ponent.

22. The method of claim 19, further including:

after establishing a communications link between the
embedded agent and the server, sending a solicitation
message from the embedded agent to the server
requesting a handshake operation;

when the server receives the solicitation message from the
embedded agent, undertaking, by the server, a hand-
shake operation in order to authorize the embedded
agent.

23. The method of claim 22 wherein the handshake

operation further includes:

sending an authorization message from the server to the
embedded agent;

receiving the authorization message by the embedded
agent and returning by the embedded agent a confirm
authorization message to the server; and

receiving the confirm authorization message by the server
and returning by the server an completion message to
the embedded agent.

24. The method of claim 23, further including:

maintaining a current password and a previous password
within the embedded agent; and

maintaining a current agent password and a previous
agent password within the sever.

25. The method of claim 24, further including:

prior to sending the authorization message by the server,
generating a new password, storing the new password
within the server, and including the new password in
the authorization message;

upon receiving the authorization message by the embed-
ded agent, storing the new password within the embed-
ded agent and including both the new password and the
maintained current password in the confirm authoriza-
tion message that the embedded agent retumns to the
server;

20

30

35

40

45

50

55

60

65

36

upon receiving the confirm authorization message by the
server,
comparing the new password and the current password
contained in the confirm authorization message with
the new password stored within the server and the
current agent password maintained within the server;
and
when the new password contained in the confirm
authorization message is identical to the new pass-
word stored within the server and the current pass-
word contained in the confirm authorization message
is identical to the current agent password maintained
within the server,
setting the previous agent password maintained
within the server to the current agent password
maintained within the server; and
setting the current agent password maintained within
the server to the new password stored within the
server; and

upon receiving the completion message by the embedded

agent,

setting the previous password maintained within the
embedded agent to the current password maintained
within the embedded agent, and

setting the current password maintained within the
embedded agent to the new password stored within
the embedded agent.

26. The method of claim 28, further including:

constructing the embedded agent to maintain initial pass-

words as the current and previous passwords.

27. The method of claim 24, further including:

maintaining a linear feedback mechanism within the

server that is initialized with a seed value and that
successively and deterministically generates new pass-
words; and

maintaining a linear feedback mechanism within the

embedded agent that is initialized with the seed value
and that successively and delerministically generates
the same new passwords that are generated by the
linear feedback mechanism within the server.

28. The method of claim 27, further including;

prior to sending the authorization message from the

server, generating by the server a new password and
including a value related to the new password in the
authorization message; and

upon receiving the authorization message by the embed-

ded agent,

generating a new password within the embedded agent,

comparing a value related to the newly generated
password within the embedded agent with the value
related to the new password contained in the autho-
rization message, and

when the value related to the newly generated password
within the embedded agent is identical with the value
related to the new password contained in the autho-
rization message, sending the confirm authorization
message from the embedded agent to the server.

29. The method of claim 27, further including exchanging
the seed value between the server and the embedded agent
when the embedded agent first establishes the communica-
tions link with the server.

30. The method of claim 19 wherein the component of the
system is a component of a computer system and wherein
the embedded agent is embedded in the component of the
computer system, and further including:

running a software program that implements the server on

a remote computer to provide a remote server; and

US 6,249,868 Bl

37

enabling operation of the computer system that contains
the component by the remote server authorizing the
embedded agent to enable operation of the component.
31. The method of claim 30, further including disabling
the computer system causing the embedded agent to disable
the component.
32. The method of claim 30 wherein the embedded agent
is a sofiware program within a controller software program
that controls the component, the embedded agent commu-
nicating with the remote server via internal buses within the
computer system and via external communication media
between the computer system and the remote server, includ-
ing at least one of local area networks, wide area networks,
and combinations of local area networks and wide area
networks.
33. The method of claim 30 wherein the embedded agent
is a logic circuit within an application specific integrated
circuit that implements the controller of a disk drive; and
further including:
intercepting by the embedded agent all data transfers to
the disk drive and, when authorized, encrypting the
data prior to passing the data to the disk drive; and

intercepting by the embedded agent all data transfers from
the disk drive and, when authorized, decrypting the
previously encrypted data prior to passing the data from
the disk drive.

34. The method of claim 33, further including disabling
and enabling specific data stored on the disk drive by
including an identification of the data to be enabled and
disabled in an authorization message that is sent from the
server to the embedded agent.

3S. The method of claim 30 wherein the component
exchanges data and messages with the computer system, and
further including:

intercepting by the embedded agent all messages and data

exchanged between the component and the computer
system;

when the embedded agent is authorized, enabling the

component by passing messages and data from the
computer system to the component and by passing
messages and data from the component to the computer
system; and

when the embedded agent is not authorized, disabling the

component by not passing messages and data from the
computer system to the component and by not passing
messages and data from the component to the computer
system.

36. The method of claim 30, further including protecting
the computer system from theft or misuse by requiring the
remote server to repeatedly authorize the embedded agent.

37. The method of claim 30, further including selectively
enabling and disabling multiple components of the computer
system by embedding a plurality of agents within the
multiple components and selectively authorizing the mul-
tiple components from the remote server.

38. The method of claim 37, further including exchanging
additional information between the plurality of embedded
agents and the remote server, including information con-
cerning workloads placed on the components in which the
embedded agents are embedded, in order to allow the
computer system to enable and disable components to adjust
operation of the components to operate more efficiently
based upon the workload information.

39. The method of claim 37, further including enabling
components of the computer system in response to receiving
payments for operation of the components.

10

15

20

25

30

35

40

45

50

55

60

65

38

40. The method of claim 19 wherein the component of the
system is an executing software program, wherein the sys-
tem is a computer system, and wherein the embedded agent
is implemented as a software subcomponent of the software
program, the method further including:
running a software program that implements the server on
a remote computer to provide a remote server; and

enabling execution of the software program by authoriz-
ing the embedded agent subcomponent of the software
program.

41. The method of claim 19, further including controlling
use of a firearm by embedding an agent into a component of
the firearm required to discharge the firearm.

42. The method of claim 19, further including controlling
use of a firearm by embedding an agent into a component of
the firearm required to load the firearm.

43. The method of claim 19, further including diagnosing
a powered-down or disabled component by detecting when
the embedded agent within the component does not respond
to authorization messages sent from the server.

44. A control system for controlling operation of compo-
nents within a multi-component system, the control system
comprising:

an agent embedded in a component of the multi-

component system that, when authorized, enables
operation of the component and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-

ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the compo-
nent.

45. The control system of claim 44 wherein the multi-
component system is a computer system, wherein the
embedded agent is embedded within a disk drive of the
computer system, wherein the embedded agent selectively
enables and disables reading and transmission of software
programs stored on the disk drive to other components of the
computer system, and wherein the control system imple-
ments a pay per use control system that enables software
programs pre-installed in the computer system when pay-
ment is received for use of the software programs.

46. The control system of claim 44 wherein the multi-
component system is a firearm, wherein the embedded agent
is embedded within the firing mechanism of the firearm, and
wherein the control system implements a gun control system
that selectively enables use of the firearm.

47. The control system of claim 44 wherein the server
monitors successful handshake operations in order to detect
interruption or loss of operation of the component within
which the embedded agent is embedded, thereby diagnosing
interruption or loss of operation of the component.

48. The control system of claim 44 wherein the server
exchanges additional informational messages with the
embedded agent that enables the server to instruct the
embedded agent to adjust and modify operational charac-
teristics of the device in which the embedded agent is
embedded.

49. A method for enabling the operation of a system upon
receiving, by the system, a valid identifier, the method
comprising:

embedding an agent within a component of the system

that can receive an identifier and that can enable
operation of the system;

establishing a communications link between the embed-

ded agent and a server;

L

US 6,249,868 B1

39

exchanging a number of messages between the embedded

agent and the server that results in authorization of the

embedded agent to subsequently enable operation of

the system upon receiving a valid identifier; and

when an identifier is received by the component of the

system,

obtaining the received identifier from the component of
the system by the embedded agent;

exchanging a number of messages between the embed-
ded agent and the server that transfer the received
identifier from the embedded agent to the server and
that results in the embedded agent receiving autho-
rization from the server to enable operation of the
system when the server determines that the identifier
is valid and that results in the embedded agent not
receiving authorization from the server to enable
operation of the system when the server determines
that the identifier is invalid; and

enabling operation of the system by the embedded
agent upon receiving authorization from the server to
enable operation of the system.

50. The method of claim 49 wherein the embedded agent
is linked to the server via the Internet.

51. The method of claim 49 wherein the system is a
computer system, wherein the identifier is included within a
software computer program, and wherein the embedded
agent is authorized by the server to enable the computer
system to run the software computer program when the
server determines that the identifier is valid.

52. The method of claim 49 wherein the system is an
entertainment system that reads entertainment information
from a medium and presents the entertainment information,
wherein the identifier is included in the medium, and
wherein the embedded agent is authorized by the server to
enable the entertainment system to read the entertainment
information from the medium and present the read enter-
tainment information when the server determines that the
identifier is valid.

53. The method of claim 52 wherein the entertainment
system reads audio information from the medium and pre-
sents the audio information by converting the audio infor-
mation into an audio signal, amplifying the audio signal, and
broadcasting the audio signal through one or more loud-
speakers.

54, The method of claim 53 wherein the medium is DVD
disc.

55. The method of claim 53 wherein the medium is a
compact disk.

56. The method of claim 53 wherein the medium is a
magnetic tape.

87. The method of claim 53 wherein the medium is a
broadcast electronic signal.

58. The method of claim 52 wherein the entertainment
system reads video information from the medium and pre-

25

30

45

50

40

sents the video information by converting the video infor-
mation into a visual display signal and broadcasting visual
display signal through one or more visual display devices.

59. The method of claim 58 wherein the medium is DVD
disc.

60. The method of claim 58 wherein the medium is a
magnetic tape.

61. The method of claim 58 wherein the medium is a
broadcast electronic signal.

62. The method of claim 49 wherein the system may be
occupied by a human and is entered by a door, wherein the
identifier is included in an electronic key, and wherein the
embedded agent is authorized by the server to enable a door
lock to open when the server determines that the identifier is
valid.

63. The method of claim 62 wherein the system is a
residence.

64. The method of claim 62 wherein the system is an
automobile or truck.

65. The method of claim 62 wherein the system is an
airplane.

66. The method of claim 62 wherein the system is a boat.

67. The method of claim 62 wherein the system is a
tractor.

68. The method of claim 49 further including:

periodically reacquiring the identifier by the embedded

agent, exchanging a number of messages between the
embedded agent and the server, and, when the server
determines that the reacquired identifier is valid,
re-enabling operation of the system by the embedded
agent upon receiving authorization from the server to
enable operation of the system; and

when the server determines that the system has been

misappropriated or is being misused, not sending 10 the
embedded agent and further authorizations from the
server to enable operation of the system so that the
system becomes disabled.

69. The method of claim 68 wherein the system is an
automobile or truck.

70. The method of claim 68 wherein the system is an
airplane.

71. The method of claim 68 wherein the system is a boat.

72. The method of claim 68 wherein the system is a
tractor.

73. The method of claim 49 wherein the system is a
transaction system that accepts currency, wherein the iden-
tifier is embedded within the currency, and wherein the
embedded agent is authorized by the server to accept the
currency during a transaction when the server determines
that the identifier is valid, and wherein the server monitors
invalid identifiers in order to detect and signal fraudulent
transactions and counterfeited currency.

¥ ¥ ¥ ¥ ¥

- ~

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,249,868 Bl Page 1 of 1
APPLICATION NO. : 09/163094

DATED : June 19, 2001

INVENTOR(S) : Edward G. Sherman et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In column 38, claim 44, line 27, delete the word “device” and insert the word
-- component --.

Signed and Sealed this

Eighteenth Day of July, 2006

JON W.DUDAS
Director of the United States Patent and Trademark Office

Exhibit B

-

a2 United States Patent

Sherman et al.

US00659476582

US 6,594,765 B2
Jul. 15, 2003

10) Patent No.:
(45) Date of Patent:

9

(75)

(73)

*)

@)
2
(65)

(63)

(1)
(52

METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL
CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

Inventors:;

Assignee:

Notice:

Appl. No.:
Filed:

Edward G. Sherman, London (GB);
Mark P. Sherman, Seattle, WA (US);
George M. Reed, Saratoga, CA (US);
Larry Saunders, San Diego, CA (US);
Wayne Goldman, Sausalito, CA (US);
Simon Whittle, Gladesville (AU);
Richard N. Hunter, Jr., Littleton, CO

Us)

Softvault Systems, Inc., Seattle, WA
s)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

09/847,536

May 1, 2001

Prior Publication Data

US 20020073334 A1 Jun. 13, 2002
Related U.S. Application Data

Continuation-in-part of application No. 09/163,094, filed on
Sep. 29, 1998, now Pat. No. 6,249 ,868.

Int. Cl.7 ..
US.Cl ..

202 ~

.. GOGF 1/24
..................... 713/202; 713/150; 713/153;

713/168; 713/200; 713/201

(58) Field of Search ... 713/150, 153,

713/161, 168, 200, 201, 202

(56) References Cited
U.S. PATENT DOCUMENTS
5,276,728 A * 1/1994 Pagliaroli et al. 1807287
5912615 A * 6/1999 Kretzmar et al. 1807287
6,144,848 A * 11/2000 Walsh et al. ...cccecvueeenns 235/379
6,170,014 BL * 1/2001 Darago et al. 709/217

* cited by examiner

Primary Examiner—Thomas R. Peeso
(74) Auorney, Agent, or Firm—Olympic Patent Works,
PLLC

(&Y)] ABSTRACT

A method and system for protecting and controlling personal
computers (“PCs”), components installed in or attached to
PCs, and other electronic, mechanical, and electromechani-
cal devices and systems. An exemplary embodiment of the
system includes a server running on a remote computer and
hardware-implemented agents embedded within the cir-
cuitry that controls the various devices within a PC. The
agents intercept all communications to and from the devices
into which they are embedded, passing the communications
when authorized to do so, and blocking communications
when not authorized, effectively disabling the devices.
Embedded agenis are continuously authorized from the
remote server compuler by handshake operations imple-
mented as communications messages.

29 Claims, 21 Drawing Sheets

/*204 /208
Yaill o [
DRAM
IP‘ZJ& rzm Y =
SSTEM |-—218
- o ooy fol_zs
«“0 ChReuithy
L ~232 l
1 [230)| 228
242 BUS @"W 252
ETHERNET BRIDGE DisK
CARD
222

210

o

U.S. Patent Jul. 15, 2003

Sheet 1 of 21

&”4 @_/"20
L

US 6,594,765 B2

108

126
)
7
—{
[724
PLEASE ENTER YOUR PASSWORD 122
130 - N~128
oo0oo
102 /// Q—-—‘JQ{

Fig. 1

- 112

US 6,594,765 B2

Sheet 2 of 21

Jul, 15, 2003

U.S. Patent

[-X-1-]

80¢ -/

012
) v
we4] Ch—#r2
02z awvoaky| | snon
\}w/ 9zz” J[__rez” | 222
Y10 QAVH sz’ [/
e LREHE o0z
390148
SNVHI04d
C50] aois || gpzd ~ousy snd re s MH,
= e T e] T C
RHLIDUD l_ cke~
ply w& SHV490Ud
05% ¥ | 5z
MY | gz T RYON3M-NI [75
0577
g5 | VY0
nz— W 517°
y07—"

US 6,594,765 B2

Sheet 3 of 21

Jul. 15, 2003

U.S. Patent

& ol
awvod LInou
205 018
] 4
&m —1"IN39Y NEE LEN
143003813 ﬁl=h 80§ 9
TLY | AT R | Ay
yo£_ A T o
. 025
A My pis’

NOLLYMNOINI INIOV 030038K3
ONY HOLLYZRIOHLAY INNOIS
77| 30IA30 JOVHOIS 3MLIVIOA-NON

-

431ndN0J
LELVEN
JI0N3Y

43A3S
sv3

g1s”

U.S. Patent Jul. 15, 2003 Sheet 4 of 21 US 6,594,765 B2
SUCCESSFUL SEND
HANDSHAKE SAVE ME

NOT
AUTHORIZED

AUTHORIZED 408

SUCCESSFUL
422 HANDSHAKE

430

SUCCESSFUL
HANDSHAKE

432

TIME
out

SUCCESSFUL
HANDSHAKE

POWER-ON

GRACE PERID | 04

NON-INITIAL
POWER UP

BACKDOOR
MECHANISM

424

INITIAL
POWER-ON
GRACE PERIOD

428

402

SEND
SAVE ME

INITIAL
POWER UP

410

412

SEND Fig. 4

SAVE ME

- -/

U.S. Patent Jul. 15, 2003 Sheet 5 of 21 US 6,594,765 B2
RECEIVE SUCCESSFUL
SAVE ME HANDSHAKE

510

504 SUCCESSFUL
HANDSHAKE 514

516

AGENT
AUTHORIZED

KNOWLEDGE
OF
AGENT

506

UNSUCCESSFUL
518 HANDSHAKE

312

RECEIVE SEND ME
WITH INITIAL PASSWORD

508

RECEIVE
SAVE ME

IGNORANT
OF
AGENT

502

Fis. 5

e

US 6,594,765 B2

~ Sheet 6 of 21

Jul. 15, 2003

U.S. Patent

V9 "Ly
919
7 2
o -z]

%06 ONINIVN NI s/m/)M,w
H— waow] 1
yog | HRAESYd SO SIN| VEIBLIZZ | SIVISRED | AQD T1303NS-0LZLIN Hi—~/£9

~H_ o0y] _
aoa_mﬁﬁmga SIN| 20223361 | JOVIS9A) | OO 000OANAIT 105 IIVOS 1059
Z19 |~ \SE@ a0 1NN SSAaY
N 929 ™MW yz9/ 2297 029~
/829
MMVASEQQJ)N%
1043008V 079
99" A1 U an mvs tgrs
219
(
]
7569 ,
N3OV 43038
Y (0 S 99 LTS SV

US 6,594,765 B2

Sheet 7 of 21

Jul. 15, 2003

U.S. Patent

209

/

L

051

ONINIVH3Y N1

[1043008Y _

QYOMSSYd SNOIAIHd
[1043034Y |

QYOMSSYd INIRIND

INIOV (3003813 SSV3

—~C£9

g9 ot
MG
89| 919 rr9
219)))
/ ON | 104308y | 1043008 N0 X@TWNVX |-
S| veissizz | seviosey A0 11393NS-01ZIN
SIA| TIZTAI6) | 1VIS94S | NOD'AD00AMNIr - 108 3LVIS
QZ¥0 10 NI SS3uaay
MG -HLW
1043028 —
1043008V
IN VS
¥IANIS SSV3

US 6,594,765 B2

Sheet 8 of 21

Jul. 15, 2003

U.S. Patent

(174

/

—

651 1

ONINIVASY 3Nl

{ 1043008V]

GYOMSSYd SNOAIYd

| 1043008V |

GHOMSSVd INJHNND

INI9V (3eaIgn3 Ssv3

V. alf
Wﬁ
ON | 1043008V | 1043008V Ao XO11dnvX
S| VEISLLIZL | 8LVI9EHD AOY 113830S-01Z1ON
S} ZIZZ346) § LOVIE94d | KOD'AJJ@AMHIr-10€31VIS
3l Qg INFHIND SSyaay
ME —Hiw
90/3_4—6/ve 191
0144 —61¥s191 “
JZI0HINY
|
Y474
YIS SSv3

US 6,594,765 B2

Sheet 9 of 21

Jul. 15, 2003

U.S. Patent

g, o
[) i
NNV INIL
[onoe) ON | 1043008 | 1043a08v 0D YO TIANVX
QYOMSSYd SNOIATYd SIA| VEI8L4ZT | 84v1988) A0S S303NS-01ZLN
_ ae,_mﬁu._oﬁﬁau SIN| 21223361 | 10V1E93] | NOD'GI0GNNNI- 10831V 9S
a0/ GO G0 DN R
iz eivessn /
6LVE191
AHH_N P
0L 1 3740m10v
N3OV Q30038M3 SSV3

4INIS SSV3

US 6,594,765 B2

Sheet 10 of 21

Jul. 15, 2003

U.S. Patent

Yol

/

0L

[661 |

ONINIVAIY 3L
[1043008V]
QYOMSSYd_SNOIATYd

{ 1043008V |
QUOMSSVd INININD

6LvE434

INIOV 030038n3 SSV3

A1
w&
ON | 1043006V | 1053008 NOD XeT1dNVX
SIA| VEIBZ127 | 91V19880 | AO9 TI@INS-0IZON
SIh| 21223361 | 1OVIT91] | NOD Q0OANIT - 0SS
Q0 G0 INIeEm STV
wm -Hiny
6LVE19)
Efmesoa
61VE 9]
NOLLYZRIOHLOV
NALINO)
HINIZS SSV3

US 6,594,765 B2

Sheet 11 of 21

Jul. 15, 2003

U.S. Patent

| 66:1 |

ONINIVAZY 3n1L

f 1043098y _
(Q4OMSSYd SNOARYd

| 1043008Y |

QUOMSSYd INT¥HND

6LYEL91

91/

/

8i/

1043008V
-

6LVe491
NOLLVZI¥OH1INY

N¥LINOD

INI9Y 030038M3 SSV3

@ I
wWN NWN
9z/))
// ON | 1043008V | 6LVE191 NOJ'XOJ1dNVX
SIL| VEIBLITT | 8Lv1988D AQY 11383NS-01Z1IN
SIA| ZITT336) | YVIE944 | KOD'AIIBANYI-10S11YIS
QGIZM0 {0 IN3¥dND SS3uaav
~Hinv
90/—1 T 648491
—
JIA3S SSV3

US 6,594,765 B2

Sheet 12 of 21

Jul. 15, 2003

U.S. Patent

L 86:1 j
ONINIVIGY 3L
Y
QHOASSYd_SNOIATA
|___1043008Y |
QUOMSSYd INIZHND

6LvE491

INIOV (30038A3 SSY3

T o0
ON | 1043008Y | 6.VE491 NOJ X8 NdRVX
SI| veigLize | aLviegn) A0S 11303NS-0LZ1IN
S} LIZZA61 | 1IVIC94d | NODQDJ0AYNIr-10831YaS
z aze Qo INIRNND SS3yaay
W\ -HiY
00021 AHU
L TA X]
X0
YIANIS SVl

US 6,594,765 B2

Sheet 13 of 21

Jul. 18, 2003

U.S. Patent

74"
AT
0CL-

gl 00071 |
ONINIVAGY_IMIE
1043008V |
Q40ASSYd_SNOIATA

3/ 64¥¢ 491 }
(4OMSSVd IN3¥IND

0/

9L

95/

(

00-0Z1
6Lv¢191
%0

N3OV 030038N3 SSV

gLy

(1,94 mwm

i

00-0Z11 SIA{ 1043008y | 6/v€d9l NOD X0 T1dNYX
SIA| VEI8Z1TT | 8/v1988) A0Y 1139INS-01 21N
SIA| TITT3461 | 1IVILI4d | WO QDOANNIF-10E11YIS
azyo o INTHAND SSNaaqy
-HiOY

YIAYIS SSV3

US 6,594,765 B2

Sheet 14 of 21

Jul. 15, 2003

U.S. Patent

508

/

[0z]

ONINWIY I

[wonosy |

QAOMSSYd

| SNOIAINd

L 3L

£ 491

QUOMSSYd INJNNND

N33V (30038K3 SSv3

Ve Sl
108
e
00°7) S3A | 1043008V | 6.¥E191 ROD X8I WA
SIA| VEIBLIZT | 91v1988) AOY 1130INS-0IZIIN
SIL] ZiCZ3d68 | 1IVICI4d | MOD QIBANNIr-10E31VIS
508 a3z 4o INREND SSaQy
\ -HinY
208y _A%4419vv¢
¢ai19vve “
JZINOHINY
YINIIS SSV3

US 6,594,765 B2

Sheet 15 of 21

Jul. 15, 2003

U.S. Patent

908

r 00]

ONINIVAZY INu

[1043008V |

QYOMSSVd SNOIAI¥d

[elvedr |

GYOMSSVd INFH4ND

-

£8419W¢

g8 oy

N33V Q30Q3am3 SSV3

00| SU | 108008V | 6iveRl NOJ X0 1dNVX
SI| vei8Lizz | v19880 | A09'113@3NS-01ZLN
SI| 71223161 | 1OVIE943 [NOD'GOD0ANII- 10SILYIS
(M0 @0 IN3WHND SS3400Y

‘\% -Hinv

£8419WE

£a119Vv¢

IZWOHLAY

NINSIS SSY3

US 6,594,765 B2

Sheet 16 of 21

Jul. 15, 2003

U.S. Patent

r 651 |
ONINIV3Y INIL
o0 |
QYOMSSVd SNOIATYd
[6/¥¢191]
GYOMSSYd IN3WIND

£8119vV¢

28 ‘L]

808

/
713

\-62v5491
£8419Wei~0y9
NOLLYZISOHLOY
HYLINOD

IN39V (30038M3 SSV3

6611 SIA| 1043008V | 648491 NOJ'XOTNdNVX
SIA| VEIBLLTT | 84v1988D A0Y"413830S-01 71N
SIA| 24203461 | LOVIE94] | KOD'I)OANYIN-10£31VIS
IO dI0 IN3WND SS3¥aav
-Hiny
cai19vve
YIAHIS S

US 6,594,765 B2

Sheet 17 of 21

Jul. 15, 2003

U.S. Patent

f 65:1 |
ONINIVIIY 3L
[1043008V |
QUOMSSYd SROIATYd

6/vE191
QYOMSSYd INTIND

£a119vve

808

/

6/vE191
£aiiovve
NOLLYZINoH1NY
N3LINOD

IN39V (30039K3 SSV3

a8
918 ri8
))
661} SIA| 64vE49l | £B419WVE RO X@I1dNVX
SIA| VEIBLIZZ | 8V1988D ACY 11303NS-01Z1N
SIA| THZedel | LIVIE9H | MOJ'GIDOANYIr-108I1VIS
@Qzie Q0 LGN SS3yaav
~HInY
——>
YIS SVl

US 6,594,765 B2

Sheet 18 of 21

Jul. 15, 2003

U.S. Patent

L 85°1 1
SNINIVAIH INIL
i 1033008V |
QIOMSSYd SROIAINd
[evsdt |
QUOMSSVd INTHIND

£8119VVE

818
/

618

/ccuom |

£8119vve

X0

IN39v (30038M3 SSV3

Hq8 oLy

BS:1{SIA| 6LVE49l | SHIOWS ROJX@T1dNVX
SIA| VELBLITT | 8LY19880 AQY' 13030S-01Z13N
S| 71223461 | LVIE94] | NOD'AIIOAYNI- 10EILVIS
G230 @0 NI SSIAav
“HUW
—
§3IA3S SSV3

US 6,594,765 B2

Sheet 19 of 21

Jul. 15, 2003

U.S. Patent

} 041
228

| 00:01 |
ONINIVNZY 3NL
6VEi91
GYOMSSYd_SNOIATYd

Al £a119vve]
Q4OMSSYd INI¥¥ND

A8

00:0Zi
£8il9vve
%0

N3OV 03Q03am3 SSV3

cww%
00-0Z1}SIA| 6LvEi91 | £8II9VVE KODX@T1dNVX
SIA| VEIBLITT | BLY1988) A0 31303NS-01Z13N
SIA| Z1ZT1461 | 1IVIS944 | NOD'GIdOANAIN-10831VIS
70 10 IN3¥AND SSyaav
-Hiny
YINIS Ssv3

US 6,594,765 B2

Sheet 20 of 21

Jul. 15, 2003

U.S. Patent

V6 ILf
2i6
206 B
/
_ 916
06 000] h
ONINIYAG N 416)

06 100N] 00020 SIA| 6LVEASH | SEalowvs NOJX@T 1NV
QUOMSSYd_SNOIAIYd S| veisLizz | 84v1988) A09'J1363
806—{___blvElL] S| Z1zzakel | 1ovieel as.saﬁuhmm__ﬁ“

GUONSSVd INTHAM)
| QIR0 00 INIAIm) SSIHa0V
906 ~Hinv
/
—— 1043008V
6LVE191
I IS
INIOV 030038N3 SSV3

YIN3S SSV3

US 6,594,765 B2

Sheet 21 of 21

Jul. 15, 2003

U.S. Patent

206

/

L 070 i
ININIVA3Y INiL
1043008V
GJOMSSY4 SNOIATYd

v 62ve491

G30MSSYd IN38dND

N3OV 030038M3 SSY3

g6 ‘s
816 916
¥16))
/ SIA| 1043008V | 6Lvei9l NOD XOT 1AV
S| ve18212z | 8Lvi988) A0 10INS-0IZLIN
SIA| 21223361 | 19VI£94d | NOD'GDIOANNIr-10§31VOS
M0 a0 INFWNND SSIUaAV
W& -Hiny
I0S008Y |
BLVEL91
N IAYS
IS Ssv3

US 6,594,765 B2

1

METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL
CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

RELATED APPLICATIONS

This application is a continuation-in-part of U.S. appli-
cation Ser. No. 09/163,094 filed Sep. 29, 1998 now U.S. Pat.
No. 6,249,868.

TECHNICAL FIELD

The present invention relates to control of computer
systems and other types of electrical, mechanical, electro-
mechanical systems and devices at the component level and,
in particular, to a method and system for securing such
systems and devices by embedding agents within one or
more components of the systems in order 0 control access
to components within the systems. .

BACKGROUND OF THE INVENTION

Computer security is a very broad and complex field
within which, during the past several decades, a number of
important sub-fields have developed and matured. These
sub-ficlds address the many different problem arcas in
compuler security, employing specialized techniques that
arc particular to specific problems as well as gencral tech-
niques that arc applicable in solving a wide range of prob-
lems. The present application concerns, in part, a technique
that can be used to prevent the theft and subsequent use of
a personal computer (“PC”) or of various PC components
included in, or atiached to, a PC. This technique may make
use of certain securily-related techniques which have been
employed previously to address other aspects of computer
security, and this technique may itself be employed to
address both computer security problems other than theft as
well as various aspects of computer reliability, computer
administration, and computer configuration. The present
application also concerns similar techniques that may be
applied to protecting other types of electronic, mechanical,
and electromechanical systems as well as computer software
and other types of information encoded on various types of
media.

PCs are ubiquitous in homes, offices, retail stores, and
manufacturing facilities. Once a curiosity possessed only by
a few hobbyists and devotees, the PC is now an essential
appliance for business, science, professional, and home use.
As the volume of PCs purchased and used has increased, and
as PC technology has rapidly improved, the cost of PCs has
steadily decreased. However, a PC is still a relatively
expensive appliance, especially when the cost of the soft-
ware installed on the PC and the various peripheral devices
attached to the PC are considered. PCs, laptop PCs, and even
relatively larger server computers have all, therefore,
become attractive targets for theft.

FIG. 1 illustrates various types of security systems com-
monly employed to prevent theft of PCs and PC compo-
nents. A PC 102 is mounted on a table 104 and is connected
to a keyboard-input device 106 and a display monitor 108.
The PC 102 is physically secured to the table 104 with a
hinged fastening device 110, which can be opened and
locked by inserting a key 112 into a lock 114. The display
monitor 108 is physically attached to the table via a cable
116 and cylindrical, combination-lock 118 system. Serial
numbers 120 or 122 are attached to, or imprinted on, the side
of the PC 102 and the side of the display monitor 108,

10

2!

"

30

40

60

65

2

respectively. Finally, there is a software-implemented lock
and key system for controlling access to the operating
system and bence to the various application programs avail-
able on the PC 102. Typically, a graphical password-entry
window 124 is displayed on the screen 126 of the display
monitor 108. In order to use the computer, the user types a
password via the keyboard 106 into the password sub-
window 128 of the password-entry window 124. The user
then depresses a keyboard key to indicate to a security
program that password cntry is complete. As the user types
the password, cach letter of the password appears at the
position of a blinking cursor 130. The characters of the
password are ecither displayed explicitly, or, more
commonly, asterisks or some other punctuation symbol are
displayed to indicate the position within the password in
which a character is entered so that an observer cannot read
the password as it is entered by the user. The security
program checks an entered password against a list of autho-
rized passwords and allows further access to the operating
system only when the entered password appears in the list.
In many systems, both a character string identifying the user
and a password must be entered by the user in order to gain
access to the operating system.

The common types of security systems displayed in FIG.
1 are relatively inexpensive and are relatively easily imple-
mented and installed. They are not, however, foolproof and,
in many cases, may not provide even adequate deterrents to
a determined thicf. For example, the key 112 for the hinged
fastening device 110 can be stolen, or the fastening device
can be pried loose with a crowbar or other mechanical tool.
Aclever thief can potentially duplicate the key 112 or jimmy
the lock 114. The cable 116 can be cul with bolt cutters or
the cylindrical combination lock 118 can be smashed with a
hammer. Ofien, the combination for the cylindrical combi-
nation lock 118 is written down and stored in a file or wallet.
If that combination is discovered by a thief or accomplice to
theft, the cylindrical combination lock will be useless. In the
situation illustrated in FIG. 1, if the table is not bolted to the
fioor, a thief might only need to pick up the display monitor
108, place it on the floor, slide the cable down the table leg
to the floor, and lift the table sufficiently to slip the cable
free. While this example might, at first glance, seem silly or
contrived, it is quite often the case that physical security
devices may themselves be more secure than the systems in
which they are installed, taken as a whole. This commonly
arises when security devices are installed to counter certain
obvious threats but when less obvious and unexpected
threats are ignored or not considered.

While the serial numbers 120 and 122, if not scraped off
or altered by a thief, may serve to identify a PC or compo-
nents of the PC that are stolen and later found, or may serve
as notice to an honest purchaser of second-hand equipment
that the second-hand equipment was obtained by illegal
means, they are not an overpowering deterrent to a thief who
intends to use a purloined PC or PC component at home or
to scll the purloined PC to unsavory third partics.

Password protection is commonly used to prevent mali-
cious or upauthorized users from gaining access to the
operating system of a PC and thus gaining the ability to
examine confidential maierials, to steal or corrupt data, or to
transfer programs or data to a disk or to another computer
from which the programs and data can be misappropriated.
Passwords have a number of well-known deficiencies.
Often, users employ casily remembered passwords, such as
their names, their children’s names, or the names of fictional
characters from books. Although not a trivial undertaking, a
determined hacker can often discover such passwords by

US 6,594,765 B2

3

repetitive trial and crror methods. As with the combination
for the cylindrical combination lock 118, passwords are
often written down by users or revealed in conversation.
Even if the operating system of the PC is inaccessible to a
thief who steals the PC, that thief may relatively easily
interrupt the boot process, reformat the hard drive, and
reinstall the operating system in order lo use the siolen
computer.

More claborate security systems have been developed or
proposed to protect various types of electrical and mechani-
cal equipment and to protect even living creatures. For
cxample, onc can have installed in a car an electronic device
that can be remotely activated by telephone to send out a
homing signal to mobile police receivers. As another
example, late model Ford and Mercury cars are equipped
with a special electronic ignition lock, which is activated by
a tiny transmitter, located within a key. As still another
example, small, integrated-circuit identification tags can
now be injecied into pets and rescarch animals as a sort of
internal serial number. A unique identification number is
transmitted by these devices to a reading device that can be
passed over the surface of the pet or research amimal to
detect the unique identification number. A large variety of
different data encryption techniques have been developed
and are commercially available, including the well-known
RSA public/private encryption key method. Devices have
been built that automatically generate computer passwords
and that are linked with password devices installed within
the computer to prevent hackers-from easily discovering
passwords and to keep the passwords changing at a sufficient
rate to prevent extensive access and limit the damage
resulting from discovery of a single password.

While many of these elaborate security systems are imple-
mented using highly complex circuitry and software based
on complex mathcmatical operations, they still employ, at
some level, the notion of a key or password that is physically
or mentally possessed by a user and thus susceptible to theft
or discovery. A need has therefore been recognized for a
sccurity system for protecting PCs and components of PCs
from theft or misusc that does not depend on physical or
software implemented keys and passwords possessed by
users. Furthermore, a need has been similarly recognized for
intelligent security systems to protect the sofiware thai runs
on PCs and to protect other types of electronic, mechanical,
and electromechanical systems and devices, including
sutomobiles, firearms, home entertainment sysiems, and
creative works encoded in media for display or broadcast on
home entertainment systems.

SUMMARY OF THE INVENTION

Onc embodiment of the present invention provides a
security system for protecting a PC and components
installed in or attached to the PC from usc after being stolen.
Agents are embedded within various devices within the PC.
The agents are either hardware-implemented logic circuits
included in the devices or firmware or software routines
running within the devices that can be directed to enable and
disable the devices in which they are embedded. The agents
intercept communications to and from the devices into
which they are embedded, passing the communications
when authorized 1o do so in order lo enable the devices, and
blocking communications when not authorized, effectively
disabling the devices. Embedded agents are continuously
authorized from a remote server computer, which is coupled
to embedded agents via a communications medium, by
handshake operations implemented as communications mes-
sages. When the PC is disconnected from the communica-

20

35

45

S0

60

65

4

tions link to the remote server, as happens when the PC is
stolen, the devices protected by embedded agents no longer
receive authorizations from the remote server and are there-
fore disabled. User-level passwords are neither required nor
provided, and the security system cannot be thwarted by
reinstalling the PC’s operating system or by replacing pro-
grammable read only memory devices that store low-level
initialization firmware for the PC.

Altemnative embodiments of the present invention include
control and management of software and hardware on a
pay-to-purchase or pay-per-use basis, adaptive computer
systems, and control and security of mechanical, electronic,
and electro-mechanical systems and devices other than
computers. A computer system may be manufactured to
include various optional hardware and software components
controlled by embedded agents and initially disabled. When
the purchaser of the computer system later decides to
purchase an optional, preinstalled but disabled component,
the manufacturer can enable the component by authorizing
an associated embedded agent upon receipt of payment from
the owner of the system. Similarly, the owner of the com-
puter sysiem may choose 10 rent an optional component for
a period of time, and that component can then be authorized
for the period of time by the manufacturer, upon receipt of
payment. Software may be manufactured to require autho-
rization from a server via an embedded agent either located
within the disk drive on which the software is stored or
located within the software itself. Computer systems may
automatically adjust their configuration in response to
changes in workload by enabling and disabling components
via embedded agents.

Alternative embodiments may include embedded agents
that receive authorization messages based on proximity to,
or location within, a defined physical space. For example,
such embedded agents may receive authorization messages
through a communications medium ineffective outside
defined ranges and distances from an authorizing server or
message dissemination point, such as an antenna.
Alternatively, the embedded agent may include distance or
proximity sensing circuitry in order to actively compute a
distance from, or relative location with respect to, a server
or message dissemination point. Thus, a device containing
such an embedded agent may become inoperable when
removed from within a defined region or further away from
a server or dissemination point than a threshold distance.

Finally, systems other than computers, including indus-
trial machine tools, processing equipment, vehicles, and
firearms may be controlled and secured by embedding
agents within one or more components included in the
systems. Examples include automobiles, airplanes, water
craft, ships, submarines, spacc vehicles, automatic teller
machines, building and building environmental systems,
weapons systems, power generation systems, fuel storage
and dispcnsing systems, information and entertainment
broadcast and reception systems and devices, industrial
process systems and devices, robots, medical devices and
instrumentation, all kinds of computer peripheral devices,
personal digital assistants, electronic cards and documents,
security systems and devices, and telecommunications sys-
tems and devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various types of security systems com-
monly employed to prevent theft of PCs and PC compo-
nents.

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server.

US 6,594,765 B2

§

FIG. 3 is a block diagram of example bardware and
software components and communications pathways that
implement a single embedded agent connected to a client
that is, in turn, connected to a security authorization scrver.

FIG. 4 is a state diagram for an example embedded agent.

FIG. § is an example state diagram for the interaction of
a security authorization server with one embedded agent.

FIG. 6A illustrates an example initiation of the scnding of
a SAVE ME message by an embedded agent.

FIG. 6B illustrates an example receipt of a SAVE ME
message by a security authorization server.

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an cxample EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state.

FIGS. 8A-F illustrate a second example handshake opera-
tion that follows the original handshake operation of FIGS.
7A-F by some period of time less than the original autho-
rization period.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent.

DETAILED DESCRIPTION OF THE
INVENTION

One embodiment of the present invention is an embedded
agent security system (“EASS™) for protecting a PC, and,
more particularly, the internal components of a PC, from
misuse or misappropriation. The EASS includes a server
component, one or more embedded agents, and, optionally,
a client component. The scrver component is a centralized
repository and contro] point that provides authorizations to
agents embedded within PC components and connected to
the server component via a communications connection. The
server authorizations allow the embedded agents to enable
operation of the components within which the embedded
agents reside for a period of time. The server component
runs on one of more server computers, one or more of which
are connected by a communications medium to the PC. An
embedded agent is embedded as a logic circuit within the
circuitry that controls operation of an iniernal component of
the PC or is embedded as a firmware or software routine that
runs within the internal component of the PC. The client
component, when present, runs as a software process on the
PC. The client component of the EASS primarily facilitates
communications between the server component and the
various embedded agents. For example, when multiple
embedded agents are included in the PC, the client compo-
nent may serve as a distribution and collection point for
communications between the scrver component and the
multiple embedded agents.

Because embedded agents enable operation of the internal
components in which they are embedded, and because
embedded agents require frequent authorizations from the
server component in order to cnable the internal
components, if the communications connection between the
server component and an embedded agent is broken, the
internal component in which the embedded agent resides
will be disabled when the current period of authorization
expires. The communications connection between the server
and all embedded agents within the PC will be broken when
the PC is powered down or disconnected from the externsal
communications medium by which the PC is connected to
the scrver. Thus, any attempt to steal the PC will result in the

10

15

20

25

30

35

40

45

50

60

6

thefi of a PC that will not be operable once the current period
of authorization expires. In order to subsequently operate the
PC, the thief would need to reconnect the PC to the server
and invoke cither client or server utilities to reinitialize the
embedded agents. These utilities are themselves protected
by password mechanisms. The thief cannot circumvent the
embedded agents by reinstalling the operating system or by
replacing programmable read only memories (“PROMs”).
The stolen PC is therefore essentially worthless 1o the thief,
and, perhaps more important, the data stored within the PC
is inaccessible to the thicf as well as to any other party.

Certain implementations of this embodiment may rely on
one or more internal password identification mechanisms.
However, unlike the other well-known security systems
discussed above, the user of a PC protected by the EASS
docs not need to possess a password and is, in fact, not
allowed 1o know or possess the passwords used internally
within the EASS.

In a preferred implementation of this embodiment, the
server and client components are implemented in software
and the embedded agents are implemented as hardware logic
circuits. However, all three of these components may be
implemented either as software routines, firmwave routines,
hardware circuits, or as a combination of software, firmware,
and hardware.

EASS Hardware and Software Configuration

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server. The remote server 202
is connected to the PC 204 via a connection 206 that
represents a local area network which is possibly itself
connected to a wide area network and which supports one of
any number of common network protocols or combinations
of protocols to transfer messages back and forth between the
server component 202 and the PC 204. Messages may be
transmitted, for example, via the Internet. The PC 204 is
connected to an external output device, in this case a display
monitor 208, and to two input devices, & mouse 210 and a
keyboard 212. Intemal components of the PC include a
central processing unit (“CPU”) 214; a random access
memory 216; a system controller 218; a hard disk 220; and
a number of device controllers 222, 224, 226, 228, and 230
connected to the system controller 218 direcily through a
high speed bus 232, such as a PCI bus, or through a
combination of the high speed bus 232, a bus bridge 234,
and a low speed bus 236 such as an ISA bus. The CPU 214
is connected 10 the system controller 218 through a special-
ized CPU bus 238 and thc RAM memory 216 is connccted
to the system controller 218 through a specialized memory
bus 240. FIG. 2 represents one possible simple configuration
for the internal components of a PC. PCs having different
numbers or types of components or employing different
connection mechanisms other than PCI or ISA buses may
have quite different internal configurations.

The device controllers 222, 224, 226, 228, and 230 are
normally implemented as printed circuit boards, which
include one or more application specific integrated circuits
(“ASICs™) 242, 244, 246, 248, and 250. The ASICs, along
with firmware that is normally contained in various types of
ROM memory on the printed circuit boards, implement both
a communications bus interface and a command interface.
The communications bus interface allows for data and
message communication with operating system routines that
run on the CPU 214. The command interfacc enables the
operating system to contro] the peripheral device associated
with the device controller. For example, the hard disk 220

US 6,594,765 B2

7

comprises a number of physical platters on which data is
stored as tiny magnetized regions of the iron oxide surface
of the platters (not shown), a motor for spinning the platiers
(pot shown), and a printed circuit board 228 which imple-
ments circuitry and firmware routines that provide a high-
level interface 1o operating system drivers. In modern disks,
there is often a printed circuit board that includes an ASIC
that is packaged within the disk as well as a printed circuit
board card that is connected via & bus to other internal
components of the PC, including the system controlier 218
and the CPU 214,

Programs that run on the CPU 214, including the oper-
ating system and the EASS client, arc permanently stored on
a hard disk 252 and are transiently stored in RAM 254 for
execution by the CPU 214. Logic circuitry that implements
the embedded agents of the EASS is included within the
ASICs that implement the various device controliers 242,
244, 246, 248, and 250. The device controller may control
such devices as optical disk devices, tape drives, modems,
and other data sources and communications devices. EASS
embedded agents can be additionally included within the
circuitry that implements RAM 216, the system controller
218, and even the CPU 214. One skilled in the art will
recognize that any circuit in which communications can be
intercepted may reasonably host an embedded agent and that
many other components may therefore host embedded
agents. Further, a PC 204 may include only a single embed-
ded agent or may include a number of EASS embedded
agents.

FIG. 3 is a block diagram of example hardware and
software componcnts and communications pathways that
implement 2 single embedded agent connected to a client
which is, in turn, connccted to a security authorization
server. In one embodiment, the EASS embedded agent 302
is a logic circuit embedded within an ASIC 304 which is
included on a printed circuit board 306 that implements a
particular device controller. The device controller is con-
nected through one or more interpal communications buses
308 to an EASS client program 310 implemented as a driver
within the operating system 312 running on the CPU 314 of
the personal computer. The CPU 304 is, in turn, connected
through one or more internal buses, such as a PCl bus, and
external communication lines, such as 8 LAN or a LAN
combined with a WAN 316, to the server computer 318. The
components of the server computer that implement the
EASS server include an EASS server program 320 and a
non-volatile storage device 322 in which the EASS server
program 320 stores authorization and embedded agent infor-
mation. The EASS server program 320 exchanges informa-
tion with the non-volatile storage device 322 via internal
buses 324 of the server computer 318, There are a varicty of
ways in which the embedded agent and authorization infor-
mation can be stored by the EASS server 320 on the
non-volatile storage device 322. In one implementation of
the described embodiment, this data is stored within a
commercial database management system, such as a rela-
tional database.

Messages and commands that are passed to the device
controller 306 for a particular internal or peripheral device
over the communications bus 308 first pass through the
EASS embedded agent logic 302 before entering the ASIC
circuitry 304 that implements the device controller. The
EASS embedded agent 302 is associated with a number of
non-volatile registers 326 that store authorization state infor-

mation. When the embedded agent has been authorized by
an EASS server 320, or during a short grace period follow-
ing power up, the EASS embedded agent passes messages

20

30

35

4

w

55

65

8

and commands through to the ASIC 304 that implements
normal message handling and the device controller.
However, when the EASS embedded agent 302 is not
authorized by the EASS server 320, or when an initisl
power-on grace period has expired, the EASS embedded
agent blocks messages and commands to the ASIC 304
thereby disabling the device controlled by the device con-
troller 306. The EASS embedded agent thus serves as a
hardware-implemented control point by which a device is
cnabled or dissbled. Authorization messages pass from the
EASS server 320 through communications pathways 316
and 308 to the EASS embedded agent 302. The BASS
embedded agent 302 can also initiate a message and pass the
message through pathways 308 and 316 to the EASS server
320. For example, the EASS embedded agent 302 may
request authorization from the EASS scrver 320.

In the described embodiment, the EASS client 310 facili-
tates communications between the EASS server 320 and the
EASS embedded agent 302. When a PC includes more than
one EASS embedded agent, the EASS client 310 handles
routing of messages from the EASS server 320 1o individual
EASS embedded agents 302 and collects any messages
initiated by EASS embedded agents 302 and forwards them
to the EASS server 320. In addition, the EASS client 310
may support a small amount of administrative functionality
on the PC that allows the EASS to be reinitialized in the
event of loss of connection or power failure. The EASS
client 310 may not be a required component in alternative
embodiments in which an EASS server 320 communicates
directly with EASS embedded agents 302.

In alternative embodiments, the EASS server may com-
municate with EASS embedded agents by a communications
medium based on transmission of optical or radio signals
rather than on electrical signals. Moreover, alternate
embodiments may employ muitiple EASS servers that may
be implemented on remote computers or that may be
included within the same computer that hosts the EASS
embedded agents.

EASS Server and Embedded Agent State
Transitions

FIG. 4 is a slate diagram for an example embedded agent.
FIG. 4 shows four different states that an EASS embedded
agent may occupy: (1) an Initial Power-On Grace Period
state 402; (2) a Power-On Grace Period state 404; (3) an
Authorized state 406; and (4) a Not Authorized state 408.
Transitions between these states arise from three types of
events: (1) a successful handshake between the embedded
agent and the EASS server that results in transfer of an
authorization by the EASS server to the embedded agent to
permit operation of the device associated with the EASS
embedded agent for some period of time; (2) a time out that
occurs when the EASS embedded agent has exhausted its
current authorization period prior to receiving a subsequent
re-authorization from the EASS server; and (3) a special
back-door mechanism that allows an entity such as the
EASS client to reinitialize an EASS embedded agent so that
the EASS embedded agent can reestablish contact with an
EASS server following interruption of a previous connec-
tion.

Following an initial power up 410 of the device hosting an
EASS embedded agent, the EASS embedded agent enters an
Initial Power-On Grace Period 402. The Initial Power-On
Grace Period allows operation of the device controlled by
the EASS embedded agent for some short period of time
following power up of the PC necessary for initialization of

US 6,594,765 B2

9

the PC that contains the device and embedded agent and
allows for establishment of contact between the EASS
embedded agent and an EASS server. When in the Initial
Power-On Grace Period 410, the EASS embedded agent
contains onc of a certain number of initial passwords that arc
recognized by EASS servers as belonging to EASS embed-
ded agents in the Initial Power-On Grace Period. These
initial passwords allow an EASS server to distinguish a valid
request for handshake operation from an attempt to solicit
authorization by an embedded agent that has been previ-
ously authorized by an EASS scrver. In the latter case, the
embedded agent may well be hosted by a stolen or misused
device. From the Initia] Power-On Grace Period state, the
EASS embedded agent may send a solicitation message, for
cxample, 8 “SAVE ME” message to an EASS server to
announce that the EASS embedded agent has been powered
up for the first time, as indicated by transition arrow 412, and
to solicit a handshake operation. Sending of the SAVE ME
solicitation message does not, by itself, cause a state tran-
sition. When an EASS scrver reccives a SAVE ME message
from an EASS embedded agent, the EASS server undertakes
sending of an authorization to the EASS embedded agent
through a handshake mechanism, to be described below. The
handshake may either fail or succeed. If a handshake fails,
the EASS embedded agent remains in the state that it
occupied prior to initiation of the handshake.

When an EASS embedded agent is in the Initial Power-On
Grace Period, a successful handshake operation results in the
EASS embedded agent transitioning 414 to an Authorized
state 406. At regular intervals, the EASS server continues to
reauthorize the EASS embedded agent through successive
handshake operations 416 which result in the EASS embed-
ded agent remaining in the Authorized state 406. In the
Authorized state 406, the EASS embedded agent passes
through commands and data to the device that it controls
allowing that device to operate normally. If, for any number
of reasons, the EASS embedded agent does not receive
reauthorization prior to the expiration of the current autho-
rization that the embedded agent has received from an EASS
server, a time out occurs causing transition 418 of the EASS
embedded agent to the Not Authorized state 408.

In the Not Authorized state 408, the EASS embedded
agent blocks commands and data from being transmitted to
the device controlled by the EASS embedded agent, effec-
tively disabling or shutting down the device. Alternatively,
the EASS embedded agent may actually power down a
device that can be powered down independently from other
internal components of the PC. When in the Not Authorized
state 408, the EASS embedded agent may send a SAVE ME
message 420 to an EASS server. Sending of this message
does not, by itself, cause a state transition, as indicated by
arrow 420. However, if an EASS embedded agent receives
the SAVE ME message and initiates a handshake operation
that is successfully concluded, the EASS embedded agent
transitions 422 from the Not Authorized state 408 back to the
Authorized state 406.

The EASS embedded agent and the device that the EASS
cmbedded agent controls can be powered up any number of
times following an initial power up. The EASS embedded
agen stores enough information in a number of non-volatile
registers associated with the EASS embedded agent (c.g.,
registers 326 in FIG. 3) to differentiate 2 normal or non-
initial power up from an initial power up. Following a
non-initial power up 424, the EASS embedded agent tran-
sitions 426 to a Power-On Grace Period state 404. When
occupying the Power-On Grace Period state 404, the EASS
embedded agent may send 8 SAVE ME message to an EASS

15

25

30

35

40

4

w»m

50

55

60

10

server. The sending of the SAVE ME message 428 does not,
by itself, causc a state transition, as indicated by arrow 428.
The Power-On Grace Period lasts a short period of time
sufficient for the PC to be booted and all of the internal
components to be initialized and for the EASS embedded
agents controlling those components to establish contact
with an EASS server. If an EASS server, upon receiving the
SAVE ME message, successfully completes a handshake
operation, the EASS embedded agent transitions 430 from
the Power-On Grace Period 404 to the Authorized state 406.
If a successful handshake operation is not completed before
the short Power-On Grace Period authorization period
expires 432, the embedded agent transitions 432 from the
Power-On Grace Period 404 to the Not Authorized state 408.

A special mechanism may be provided for reinitialization
of an EASS embedded agent following normal power on.
That mechanism is referred to as the “back door” mecha-
nism. The back door mechanism may be initiated, at the
direction of a user or administrator, by an EASS client
running on the same PC that includes the embedded agent,
or may be initiated by an EASS server upon discovery by the
EASS server of a failed or interrupted connection. When the
EASS embedded agent receives a message that implements
the back door mechanism, the EASS embedded agent tran-
sitions 434 from the Power-On Grace Period 404 back to the
Initial Power-On Grace Period 402. In alternative
cmbodiments, the back door mechanism might allow for
transitions from either of the other two states 406 and 408
back to the Initial Power-On Grace Period state. In more
complex embodiments, the back door mechanism might
allow for transitions to states other than the Initial Power-On
Grace Period.

FIG. 5 is an cxample state diagram for the interaction of
a security authorization server with onc embedded agent.
With respect to an EASS embedded agent, the EASS server
may occupy any onc of three states at a given instant in time:
(1) the EASS server may be in an Ignorant of Agent state
502; (2) the EASS server may be in a Knowledgeable of
Agent state, aware of but not having authorized the agent
504; and (3) the EASS server may be in an Agent Authorized
state 506. Initially, an EASS server is ignorant of the
embedded agent, and thus occupies the Ignorant of Agent
state 502. When the EASS server receives a SAVE ME
message from the EASS embedded agent that is in the Initial
Power-On Grace Period stale (402 in FIG. 4), the EASS
server transitions 508 from the Ignorant of Agent state 502
to the Knowledgeable of Agent state 504. As part of this
transition, the EASS server typically makes an entry into a
database or enters a record into a file that allows the EASS
server to preserve its awareness of the EASS embedded
agent. The EASS server may reccive SAVE ME messages
from the EASS embedded agent when occupying either the
Knowledgeable of Agent state 504 or the Agent Authorized
state 506. As indicated by arrows 510 and 512, receipt of
SAVE ME messages by the EASS server in either of states
504 and 506 does not, by itself, cause a slate transition.

The EASS server may initiate and complete a successful
handshake operation with the EASS embedded agent while
the EASS server occupies the Knowledgeable of Agent state
504 with respect to an agent. Completion of a successful
handshake operation causes the EASS server to transition
514 from the Knowledgeable of Agent state 504 to the Agent
Authorized state $06 with respect to the agent. This transi-
tion may be accompanied by the saving of an indication in
a databasc or a file by the EASS server that indicates that the
embedded agent is authorized for some period of time.
When occupying the Agent Authorized state, the EASS

US 6,594,765 B2

11
server may continue to initiste and complete successful
handshake operations with the embedded agent and, by
doing s0, continue to occupy the Agent Authorized state.
However, if a handshake operation is unsuccessful, the
EASS server transitions 518 from the Ageat Authorized state
506 back to the Knowledgeable of Agent state 504,

In some embodiments of the present invention, there may
be an additional transition 520 from the Knowledgeable of
Agent state 504 back to the Ignorant of Agent state 502. This
transition corresponds to a purging or cleaning operation
that allows an EASS server to purge database entries or file
records corresponding to 2 particular EASS embedded agent
if the EASS server is unsuccessful in authorizing that EASS
embedded agent for some period of time. Such a purging
operation allows the EASS scrver to make room in a
database or file to handle subsequent entries for EASS
embedded agents that announce themselves using SAVE ME
messages from an Initial Power-On Grace Period state.

EASS Messages

FIGS. 6A-9B illustrate details of the sending and receiv-
ing of SAVE ME messages and of the EASS scrver-initiated
handshake operation. In ecach of these figures, example
contents of the non-volatile registers associated with an
EASS embedded agent, contents of a message, and contents
of a portion of the database associated with an EASS scrver
are shown. FIG. 6A will be numerically labeled and
described in the discussion below, but the labels will be
repeated in FIGS. 6B-9B only when the labels are relevant
10 an aspect of the EASS in the figure referenced in the
discussion of the figure. ‘

FIG. 6A illustrates initiation of the sending of a SAVEME
message by an EASS embedded agent. The EASS embedded
agent 602 is associated with three non-volatile registers that
contain: (1) the current password 604; (2) the previous
password 606; and (3) the time remaining for the current
authorization period 608. Passwords may comprise com-
puter words of 56 bits, 64 bits, or a larger number of bits that
provide a sufficiently large number of unique initial pass-
words. The direction of propagation of the SAVE ME
message is indicated by arrow 610. The SAVE ME message
612 being transmitted is displayed along with its informa-
tional content 614. The EASS server 616 contains a repre-
sentation of a portion of a database that contains information
about EASS embedded agent authorizations 618. This data-
base contains columns that indicate the communications or
network address of the EASS embedded agent 620, the
EASS embedded agent’s current password 622, the EASS
embedded agent’s previous password 624, and an indication
of whether the EASS embedded agent is currently autho-
rized or not 626. Additional or alternative columns may be
present. For example, the next column 628 is used in
subsequent figures to store the amount of time for which the
EASS embedded agent is authorized. Each row in the
database 630-633 represents one particular EASS embed-
ded agent. Rows 630 and 631 contain information for
previously authorized EASS embedded agents (not shown).
EASS embedded agent 602 of FIG. 6A is in the Initial
Power-On Grace Period state (402 of FIG. 4) and the EASS
server 616 of FIG. 6A is, with respect to the embedded agent
602, in the Ignorant of Agent state (502 of FIG. 5). Rect-
angular inclusions 634 and 636 represent the implementa-
tion of, and any volatile storage associated with, the EASS
embedded agent and the EASS server, respectively.

In on¢ embodiment, when the EASS embedded agent 602
is in the Initial Power-On Grace Period, it has an initial time

30

35

40

4

w

50

55

60

65

12

remaining period of two minutes, as indicated by the con-
tents of the time remaining non-volatile register 608. This
initial time remaining period is chosen to be sufficient for the
EASS embedded agent 602 to establish a connection with
the EASS server 616, to solicit a handshake operation, and
to complete the solicited handshake operation and may vary
in duration for different types of computers. Both the current
password register 604 and the previous password register
606 contain a default initial password that is recognized by
EASS servers as corresponding to an EASS embedded agent
in the Initial Power-On Grace Period state. It should be noted
that there may be a great number of different such default
passwords. In the described embodiment, the circuitry that
implements the EASS embedded agent notes that the autho-
rization time remaining is ftwo minutes, and that it is
therefore necessary for the EASS embedded agent 602 to
send a SAVE ME message 612 to an EASS server to request
continuation of authorization. Thus, the EASS embedded
agent 602 initiates sending of the SAVE ME message 612.

The SAVE ME message 612 contains an indication or
operation code 638 designating the message as a SAVE ME
message, the contents of the current password register 640,
and the contents of the previous password register 642. In
the case of an EASS embedded agent in the Initial Power-On
Grace Period state, both the current password and previous
password registers contain the same initial password in the
present embodiment. Alternative embodiments might use
different initial current and previous passwords. In general,
sending both the current password and the previous pass-
word provides sufficient information for the EASS server
that receives the SAVE ME message 10 correct any errors or
discrepancies that may have arisen during a previous failed
handshake. An example of a recovery from a failed hand-
shake operation will be described below with reference to
FIGS. 9A-B.

FIG. 6B illustrates receipt of a SAVE ME message by an
EASS server. In this case, the EASS server 616 was, prior
to receipt of the SAVE ME message, in the Ignorant of Agent
state (502 of FIG. 5) with respect to the EASS embedded
agent 602. Receipt of the SAVE ME message 612 causes the
EASS server 616 to transition to the Knowledgeable of
Agent state (504 of FIG. 5). In making this transition, the
EASS server 616 enters information gleaned from the SAVE
ME message 612 into row 632 of the database 618 associ-
ated with the EASS server 616. The address from which the
message was received can be determined from fields con-
tained within a message header (not shown in FIG. 6B). This
address may be the communications address of an individual
EASS embedded agent, a combination of the communica-
tions address of the client and an internal identification
number of the device hosting the EASS embedded agent, or
some other unique identifier for the EASS embedded agent
that can be mapped to a communications address. The
details of the formats of message headers are specific to the
particular types of communications mechanisms and imple-
mentations. In this example, the addresses are stored as
Internet addresses. The stored Internet address is the address
of the EASS client running on the PC in which the EASS
embedded agent is resident. This address may be enbanced
by the EASS server 616 by the addition of characters to the
address or sub-fields within either the address or in the
message header to provide sufficient information for the
receiving EASS client to identify the particular EASS
embedded agent to which the message is addressed.
Alternatively, 8 different address might be established for
cach EASS embedded agent or an internal address field
might be included in cach message sent from the EASS

US 6,594,765 B2

13

server to an EASS client that further specifies the particular
EASS embedded agent to which the message is addressed.
Thus, receipt of the SAVE ME message has allowed the
EASS scrver 616 to store the address “xample@x.com” 632
to identify the EASS embedded agent 602 from which the
message was received, to store the current and previous
passwords 644 and 646 taken from the received SAVE ME
message 612, and to store an indication that the EASS
embedded agent 602 is not authorized 648.

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state. The handshake
operation is initiated, as shown in FIG. 7A, by the EASS
scrver 702. The EASS server 702 generates a new, non-
initial password for the EASS embedded agent 704 and
stores the new password in volatile memory 706. The EASS
server then sends an authorization message 708, for example
an “AUTHORIZE” message, to the EASS embedded agent
7704 that contains the newly generated password 710 along
with an indication 712 that this is an AUTHORIZE message.

FIG. 7B illustrates receipt of an example AUTHORIZE
message by an example EASS embedded agent. The EASS
embedded agent 704 storcs the newly generated password
710 contained in the AUTHORIZE message 708 into a
volatile memory location 714 implemented in the circuitry
of the EASS embedded agent 704.

FIG. 7C illustrates sending, by an example EASS embed-
ded agent, of an authorization confirmation message, for
example a “CONFIRM AUTHORIZATION” message. The
EASS cmbedded agent 704 sends a CONFIRM AUTHO-
RIZATION message 716 back to the EASS server 702 from
which an AUTHORIZE message was received. The CON-
FIRM AUTHORIZATION message 716 contains the new
password sent in the previous AUTHORIZE message by the
EASS server 718 as well as the contents of the current
password register 720. The CONFIRM AUTHORIZATION
message confirms receipt by the EASS embedded agent 704
of the AUTHORIZE message 708.

FIG. 7D illustrates receipt of the CONFIRM AUTHORI-
ZATION message 716 by an example EASS server. The
EASS server 702 updates the current password and previous
password 722 and 724 within the associated database 726 to
reflect the contents of the CONFIRM AUTHORIZATION
message 716 after checking to make surc that the new
password returned in a CONFIRM AUTHORIZATION
message is identical to the in-memory copy 706 of the new
password. If the new password contained in the CONFIRM
AUTHORIZATION message is differcnt from the new pass-
word stored in memory 706, then the handshake operation
has failed and the EASS server 702 undertakes a new
handshake operation with the EASS embedded agent 704.

FIG. 7E illustrates sending by the EASS server of a
completion message, for example an “OK” message, in
response to receipt of the CONFIRM AUTHORIZATION
message in order to complete the handshake operation. The
EASS server 702 prepares and sends an OK message 728
that contains both the new password and ap indication of the
time for which the EASS embedded agent 704 will be
authorized upon receipt of the OK message.

FIG. 7F illustrates receipt of the OK message 728 by an
example EASS embedded agent. Once the EASS server 702
has sent the OK message, the EASS server 702 updates the
database 726 to indicate that the client is authorized 729 as
well as to store an indication of the time 730 for which the
EASS embedded agent has been authorized. At this point,

15

20

25

30

35

40

4

>

55

60

65

14
the EASS server 702 has transitioned from the Knowledge-
able of Agent state (504 in FIG. S) to the Agent Authorized
state (506 in FIG. S). Upon receipt of the OK message 728,
the EASS embedded agent 704 updates the current password
register 720 to reflect the new password sent to the EASS
embedded agent in the original AUTHORIZE message 708
after placing the contents of the current password register
720 into the previous password register 732. The EASS
embedded agent 704 also updates the time remaining reg-
ister 734 to reflect the authorization time 736 contained in
the received OK message. At this point, the EASS embedded
agent transitions from the Initial Power-On Grace Period
state (402 in FIG. 4) to the Authorized state (406 in FIG. 4).

If the handshake operation fails after sending of the OK
message by the EASS server to the EASS embedded agent,
but prior 1o reception of the OK message by the EASS
embedded agent, the connection between the EASS embed-
ded agent and the EASS server can be reestablished and
authorization reacquired by the sending by the EASS
embedded agent of a SAVE ME message (o the EASS server.
The SAVE ME message will contain, as the current
password, the value that the EASS server has stored as the
previous password. From this, the EASS server can deter-
mine that the previous handshake operation failed, can
update the databasc to reflect the state prior to the failed
handshake operation, and can then reinitiate 2 new hand-
shake operation.

FIGS. 8A-F illustrate a second handshake operation that
follows the original handshake operation by some period of
time less than the original authorization period. By under-
taking additional handshake operations, the EASS server
801 continues to initiatc handshake opcrations to maintain
the EASS embedded agent 805 in the Authorized state (406
in FIG. 4). The EASS scrver 801 generates a new, non-initial
pessword 802 and sends this password in an AUTHORIZE
message 804. The EASS cmbedded egent reccives the
AUTHORIZE message 804 and stores the newly generated
password in memory 806. The EASS embedded agent 805
then sends a CONFIRM AUTHORIZATION message 808
back to the EASS server 801 containing both the newly
generated password 810 and the contents of the current
password register 812. Upon receipt of the CONFIRM
AUTHORIZATION message 808, the EASS server 801
updates the database entries for the current and previous
passwords 814 and 816 and then scnds an OK message 818
back to the EASS embedded agent 805 that contains the new
password and the new time period 809 for which the EASS
embedded agent 805 will be authorized. After sending the
OK message 818, the EASS server 801 updates the database
to reflect the new time of authorization 820 and, upon receipt
of the OK message by the embedded agent, the non-volatile
registers of the EASS embedded agent are updated to reflect
the new current password and the now previous password,
822 and 824, respectively.

FIGS. 9A-B illustrate the recovery mechanism that is
cmployed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent. In this case, the time
remaining continues to decrcase and the EASS embedded
agent 902 determines from the time remaining register 904
that sending of a SAVE ME message 906 is necessary to
initiate another handshake operation. Because the final OK
message 818 is not received by the EASS embedded agent
902, the values of the current password register 908 and the
previous password register 910 have not been updated and
are the same as the values that were established as a result
of the first authorization, as shown in FIG. 7F. However, the

w

US 6,594,765 B2

15

EASS server 912 has updated its internal database 914 to
indicate the new password generated during the previous
handshake operation 916. Thus, the EASS server database
914 does not reflect the actual state of the EASS embedded
agent 902, However, when the EASS server 912 receives the
SAVE ME message 906, the EASS server 912 can imme-
dintely determine that the previous handshake operation did
not successfully complete and can update the current pass-
word entry and the previous password entry 916 and 918 in
the associated database 914 to reflect the actual current state
of the EASS embedded agent $02. Thus, upon receipt of the
SAVE ME message, the EASS server and the EASS embed-
ded agent are again synchronized, and the EASS server can
initiste a new handshake operation to reauthorize the EASS
embedded agent.

The above-illustrated and above-described state diagrams
and message passing details represent one of many possible
different embodiments of the present invention. A different
communications protocol with different attendant state dia-
grams and messages can be devised to accomplish the
authorization of EASS embedded agents by EASS scrvers.
Depending on the communications pathways cmployed,
different types of messages with different types of fields and
different types of header information may be employed.
Moreover, the EASS embedded agent may contain addi-
tional non-volatile registers and may meintain different
values within the associated non-volatile registers. As one
exasmple, rather than passing passwords, both the EASS
server and each EASS embedded agent may contain linear
fecdback registers that electronically gencrate passwords
from seed values. The communications protocols between
the EASS server and the EASS embedded agenis could
ensure that, during transition from the Initial Power-On
Grace Period state, the EASS embedded agent receives an
initial seed for its linear feedback register that is also used
by the EASS server for the EASS server’s linear feedback
register. Rather than passing passwords, both the EASS
embedded agents and the EASS servers can depend on
deterministic transitions of their respective linear feedback
registers to generate new, synchronized passwords at each
authorization point.

For some systems and devices, an initial grace period,
during which a device or system containing an embedded
agent is initially authorized, may not be required. In such
systems, the embedded agent may be somewhat autonomous
wilth respect to the device or sysiem in which it is located,
and may be self-contained with regard to communications
with an EASS server or servers. For example, the EASS
embedded agent may be separalely powered by a batlery or
other independent power source, and contain a transceiver
and transceiver circuitry to allow the EASS embedded agent

10

15

20

30

35

45

16

to communicaie with one or more EASS servers. In such
systems, it may be appropriate for the EASS embedded
agent to power on into a Not Authorized state, and transition
to an Authorized state upon completion of & successful
handshake. In such systems, there may be no backdoor
mechanism, and no capability of directly communicating or
interacting with the EASS embedded agent. Example appli-
cations include a firearm containing an EASS embedded
agent that communicates with an EASS server located on the
person of a police officer or soldier, in a nearby vehicle, or
in a command station or centralized communications facil-
ity. The EASS embedded agent has no initial grace period of
operation, because even a short grace period might enable an
unauthorized user to discharge the firearm.

A clever thief who has stolen 8 PC, who has managed to
discern the need to establish connections between EASS
embedded agents and an EASS server, and who possesses
the necessary passwords to gain entry to client and server
utilities that enable a connection between an EASS client
and an EASS scrver to be initialized, still fails (o overcome
the EASS and may, in fact, broadcast the location and use of
the stolen PC to the EASS. A different EASS server to which
a connection is attempted immediately detects the attempt
by the thief to connect the stolen PC to the EASS server by
detecting non-injtial passwords in the SAVE ME message
sent by the EASS embedded agent in order to solicit a
handshake operation, The reconnection attempt is readily
discernible to a security administrator using utilities pro-
vided to display database contents on the EASS server.
Connection to a different EASS server fails because the
EASS embedded agents power up to the Power-On Grace
Period state, rather than the Initial Power-On Grace Period
state. The passwords sent to the different EASS server are
therefore not identified as initial passwords. The different
EASS server may then notify a centralized management or
administrative facility of the fraudulent attempt to connect
along with the network address from which the attempt was
made. An attempt to connect to the same EASS scrver also
fails, because the address of the EASS embedded agents
within the PC has changed.

Psecudo-code Implementation

A pseudo-code example implementation of an example
EASS server and EASS embedded agent is given below.
Although the EASS embedded agent will normally be
implemented as a logic circuit, that logic circuit will imple-
ment in hardware the algorithm expressed below as pseudo-
code. Software and firmware implementations of the EASS
embedded agent may, in addition, represent alternate
embodiments of the present invention.

type PASSWORD;
type ADDRESS;
type TIME;

[y
OO IR UNAWN

ol <3 ol
R S

class Error
{

[
s

enum MSG._TYPE {AUTHORIZE, CONFIRM_AUTHORIZE, OK, SAVE_ME, DEVICE};

enum ERRORS {QUEUED_AND__SAVE_ME, MULTIPLE__OKS_1OST, ALARM,
CONFIRM_AUTHORIZE_ SYNC, NO__ENTRY, QUEUE_ERROR};

const TIME initGrace = 2:00;
const TIME saveMe = 0:20;

- -/

US 6,594,765 B2

17
-continued

15 Error (int err, ADDRESS add);
16
17
18 class DeviceMessage
19 {
20 Device Message (;
2
22
23 class Device
24 {
25 Device (;
26 Void enable ();
27 Void disable ();
2 Void send (Device Message & dvmsg);
2) Bool receive (Device Message & dvmsg);
30
31
32 class Timer
33
34 timer (TIME t);
35 void set (TIME t);
%6}
37
38 class TimerInterrupt
39
40 Timerintermpt (;
41 }
42
43 class TimeServer
“4 |
45 TimeServer ();
46) TIME nextAuthorizationPeriod (Address sdd);
47
48
49 class Messages
so {
51 Messages();
52 Bool getNext (;
53 MSG_TYPE getType (%
54 PASSWORD getNewPassword ();
55 PASSWORD getCurrentPassword ();
56 PASSWORD getPreviousPassword ();
57 TIME getTime ();
58 ADDRESS getAddress ();
59 Bool sendAuthorize (PASSWORD npwd, ADDRESS add);
60 Bool sendConfirmAuthorize (PASSWORD npwd, PASSWORD cpwd, ADDRESS edd);
61 Bool sendOK (Time t, PASSWORD npwd, ADDRESS add);
62 Bool sendSaveMe (PASSWORD cpwd, PASSWORD ppwd, ADDRESS add);
63 }
64
65 class AgeniMessages:Mossages
66
67 DeviceMessage & getDeviceMsg ();
68 Bool sendDeviceMsg (DeviceMessage & msg);
6]
70
71 class Passwords
n
73 Passwords ();
74 Bool initialPassword (PASSWORD pwd);
75 PASSWORD generateNewPassword ();
76 void queue (ADDRESS 2dd, PASSWORD npwd, PASSWORD ppwd);
77 : Bool dequeuc (ADDRESS add, PASSWORD & npwd, PASSWORD & ppwd);
78
79
80 class Datsbase
81
82 Database();
83 Bool newAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Bad suthorized,Time t);
84 Bool updateAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Bool authorized, Time t);
8s Bool retrieveAgent (ADDRESS add, PASSWORD & cur, PASSWORD & prev, Bool & Authorized,
86 TIME & t);
87 Boo! deleteAgent (ADDRESS add);
8}
89
90 agent (PASSWORD curent, PASSWORD previous)
91
92 PASSWORD tpwd,
93 Timer time (init, Grace);

18

US 6,594,765 B2
19
~continued
94 AgentMessages msg (;
95 Device dv ();
96 DevicoMessage dvmsg ();
97 Bool euthorized = FALSE;
98 Bool enabled = TRUE;
9
100 do
101 {
102 try
103 {
104 while (msg.getNext ()
105
106 switch (msg.getType)
107
108 casc AUTHORIZE:
108 tpwd = msg.getNewPassword ();
110 msg.sendConfirmAuthorize (t(pwd, current, msggetAddress ();
111 break;
112 case OK:
113 if (tpwd == mug.getNewPassword ()
114
115 time.set (msg.getTime () - saveMe);
116 suthorized = TRUE;
117 Pplevious = current;
118 current = tpwd;
119 if (Jenabled)
120
121 dv.enable ();
122 epabled = TRUE,
123 }
124 }
125 break;
126 case DEVICE:
127 if (ensbled) dv.send (msg.getDeviceMsg ());
128 break;
129 default;
130 break;
131 }
132 }
133 while (dv.receive (dvimsg))
134
135 if (enabled) msg.sendDeviceMsg (dvmsg),
136
137
138 catch (TimerInterrupt)
139 {
140 if (authorized)
141 {
142 suthorized = FALSE;
143 msg.sendSaveMe (current, previous, msg.getAddress ();
144 time.set {saveMe);
145
146 else
147
148 ensbled = FALSE;
149 msg sendSaveMe (curent, previous, msg.getAddress 0);
150 time.set (SaveMe);
151 dv.disable (),
152 }
153 }
154 }
155 }
156
157 server ()
156
159 Messages msg (;
160 PASSWORD current, previous, deur, dprev, newp;
161 PASSWORD queuedNew, queusdCurrent, newpass;
162 Passwords pwds ();
163 TIME t;
164 Database db ();
165 ADDRESS add;
166 TimeScrver ts ();
167 Bool auth;
168
169 while (msg.getNext ()
170

m switch (msg.gefType ()
172 {

US 6,594,765 B2

21 22
-continued
173 case SAVE_ME:
174 current = msg.getCurrentPassword ();
175 previous = mag.getPreviousPassword 0;
176 if (pswis.dequeue (meg.getAddress (), queuedNew, queuedCurrent))
1
178 if (queuedCurrent == current)
1
180 newp = pewds. g NewP! d 0;
181 pswids.queue (msg.getAddress (), newp, corrent);
182 mag.sendAuthorize (newp, mag.getAddress ()
183 }
184 ¢lse throw (Esror (QUEUED_AND_SAVE_ME, msg getAddress ();
185 }
186 else
187 {
188 if (pswds initialPassword (current) & & pswds.initialPassword
189 (previous))
190 {
191 db.deletoAgent (msg.getAddress ();
192 newp = pswds. g JewP: d ();
193 pawds. queue (msg.getAddress (), newp, current);
194 msg.sendAuthorize (newp, msg.getAddress ()
195
196 clse
197
198 if (db.retrieveAgent (msg.getAddress (), dour, dprev, auth,tm)
199
200 if (dcur == current && tm >= getSystemTime ()
201
202 newp=pswds. g NewPassword ();
203 pswds.queuc (msg.getAddress (), newp, current)
204 meg.sendAuthorize (newp, msg.getAddress ();
205 }
206 elsc if (dprev == current && tm >= getSystemTime 0)
207
208 msg sendOK (ts.nextAuthorizationPeriod (msg.getAddress (),
209 deur, msg.getAddress ();
210 }
211 clse if (dprev == current && tm < getSystemTime ()
212 {
213 throw (Error (MULTIPLE_OKS._LOST, msg.getAddress [0)3
214 }
215 elsc throw (Error (ALARM, msg.getAddress ();
216 }
217 else throw (Error (ALARM, msg.getAddress ();
218 }
219 }
220 case CONFIRM_AUTHORIZE:
221 newpass = msg.getNewPassword (),
222 current = meg.getCurrentPassword ();)
223 if (paswds.dequeue (msg.getAddress (), queucdNew, queuedCurrent))
224
225 if (newpass == queucdNew && current == queuedCurrent)
226
227 if (db,retrieveAgent(msg.getAddress (), deur,dprev,suth,tm))
228
229 if (deur == current)
230
23 tm = ts pextAuthorizationPeriod (msg.getAddress 0);
232 db.updateAgent(msg.getAddress (),newpass,current,
233 tm + getSystemTime Q);
234 msg.SendOK (tm, newpass, msg.getAddress 0);
235
236 clse
237
238 throw (Error(CONFIRM_AUTHORIZE_SYNC,
239 msg.getAddress ();
240
241 }
242 clse
243
244 if (pswds.initialPassword (current))
245
246 tm - ts.nextAuthorizationPeriod (msg.getAddress ());
247 db.newAgent (msg.getAddress (),newpass,current,
248 tm + getsystemTime ());
249 msg.sendOK (tm, newpass, msg.getAddress ();
250

251

elll throw (Error (NO__ENTRY, msg.getAddress ());

US 6,594,765 B2

23
-~continued

252 }
253 }
254 ¢lse throw (Brror (QUEUE_ERROR, msg.getAddress ())),
255 .
256 llle throw (Error (ALARM, msg.getAddress ()));
257 break;
258 default;
259 break;
260 }
261 }
262 }

Lines 1-11 of the above program include definitions of
constants end types used in the remaining lines of the
program. Line 1 defines the enumerstion MSG_TYPE that
includes five enumerated constants to describe the five
different types of messages uscd to implement the EASS.
These types of messages include the AUTHORIZE, CON-
FIRM AUTHORIZE, OK, and SAVE ME messages
described in FIGS. 6A-B and 7A-F, as well as DEVICE

15

messages which are exchanged between the CPU (214 in

FIG. 2) and the device controllers (242, 244, 246, 248, and
250 in FIG. 2) via the system controller (218 in FIG. 2) and
via any EASS embedded agents residing in the device
controllers. On lines 3 and 4, an enumeration is declared for
various types of errors and potentially insecure conditions
that may arise during operation of both the EASS server and
EASS embedded agents. These errors and conditions will be
described below in the contexts within which they arise. On
lines 6-8, three basic types used throughout the implemen-
tation are declared. These types may be implemented either
using predefined types, such as integers and floating point
numbers, or may be more elaborately defined in terms of
classes. These types include: (1) PASSWORD, a consecu-
tive number of bits large enough to express internal pass-
words used within the EASS, commonly 56, 64, or 128 bits;
(2) ADDRESS, a number of consccutive bits large enough 1o
hold communications addresses for EASS servers and EASS
embedded agents; and (3) TIME, a time value expressed in
hours, minutes and seconds, possibly also including a date
and year. On lines 10 and 11, the constants “initGrace” and
“saveMe” are defined to be two minutes and 20 seconds,
respectively. The constant “initGrace” is the initial grace
period following power up during which an EASS embed-
ded agent passes device messages to and from the device
controller into which it is embedded without authorization.
The constant “saveMe” is the interval at which an EASS
embedded agent sends SAVE ME messages to an EASS
server in order to reestablish authorization. In an alternative
embodiment, both the initial grace period and the SAVE ME
interval may be configurable by a user, by the EASS server,
by an adminisirator, or by some combination of users, EASS
servers, and administrators.

On lines 13-88, a number of classes are declared that are
used in the routines “agent” and “server” that follow. Pro-
totypes for these classes are given, but the implementations
of the methods are not shown. These implementations are
quite dependent on the specific computer hardware
platforms, operating systems, and communications proto-
cols employed to implement the EASS. Much of the imple-
mentations of certain of these classes may be directly
provided through operating system calls. The class Error,
declared on lines 13-16, is a simple error reporting class
used in the server routine for exception handling. Only the
constructor for this class is shown on line 15. An instance of

235

30

35

40

45

50

55

65

this class is initislized through the arguments passed to the
constructor. These include an integer value representing the
particular crror that has been identified and an address value
that indicates the network or communications address of the
EASS embedded agent that the error relates to.

The class DeviceMessage, declared on lines 18-21,
encapsulates methods and data that implement the various
kinds of device messages exchanged between the CPU and
the device controllers of a PC. The methods and data for this
class depend on the types of communications buses
employed within the PC and are, therefore, not further
specified in this example program. The class Device,
declared on lines 23-30, represents the functionality of the
device controller within which an EASS embedded agent is
embedded. In general, the methods shown for this class
would be implemented as hardware logic circuits. The
methods include optional methods for enabling and dis-
abling the device declared on lines 26 and 27, a method for
sending device messages to the device, declared on line 28,
and a method for receiving device messages from the device,
declared on line 29.

The class Timer, declared on lines 32—36, is an asynchro-
nous timer used in the agent routine. An asynchronous timer
can be initialed for some time period either through the
constructor, declared on line 34, or through the method
“set,” declared on line 35. If the time period is not reini-
tialized before the timer expires, the asynchronous timer
throws an exception or, when implemented in hardware,
raises a signal or causes an interrupt that may then be
handled either by the agent routine or the logic circuit that
implements the agent routine. The class Timerlnterrupt,
declared on lines 38—41, is essentially a placeholder class
used in the exception handling mechanism to indicate expi-
ration of a timer. The class TimeServer, declared on lines
4347, is a class used by the server routine for determining
the next authorization period for a particular EASS embed-
ded agent. The method “nextAuthorizationPeriod,” declared
on line 46, takes the network or communications address of
an EASS embedded agent as an argument and returns a time
period for which the EASS embedded agent will be next
authorized. This authorization period may, in some
implementations, be a constant or, in other implementations,
the authorization period may be calculated from various
considerations, including the identity of the particular EASS
embedded agent or the previous authorization history for the
EASS cmbedded agent.

The class Messages, declared on lines 4963, is a gener-
alized communications class that allows an EASS server to
exchange messages with EASS embedded agents. The
method “getNext,” declared on line 52, instructs an instance
of the Messages class to return a Boolean value indicating
whether there are more messages queucd for reception. If so,
getNext makes that next message the current message from

u

US 6,594,765 B2

25

which information can be obtained by calling the methods
declared on lines 53—58. These methods allow for obtaining
the type of the message, the address of the sender of the
message, and the contents of the message, depending on the
type of the message, including new passwords, current
passwords, previous passwords, and authorization times.
The methods “sendAuthorize” and “sendOK™ declared on
lines 59 and 61 are used in the server routine to send
AUTHORIZE and OK messages to EASS embedded agents,
respectively. The methods “sendConfirmAuthorize” and
“sendSaveMe” declared on lines 60 and 62 are used in the
agent routine to send CONFIRM AUTHORIZE and SAVE
ME messages to an EASS server, respectively. The class
“AgentMessages,” declared on lines 6569, derived from
the class “Mcssages,” allows an EASS embedded agent to
communicate both with an EASS server as well as with the
CPU. In other words, the two methods “getDeviceMsg” and
“sendDeviceMsg,” declared on lines 6768, allow an EASS
embedded agent to intercept device messages sent by the
CPU 1o the device controller in which the EASS embedded
agent is embedded and to pass device messages from the
device controller back to the CPU.

The class Passwords, declared on lines 71-78, is used
within the server routine for queuing certain password
information as well as for generating passwords and deter-
mining whether a password is an initial password. The
method “initialPassword,” declared on line 74, takes a
password as an argument and returns a Boolean value
indicating whether the password is an initial password or
not. The method “generateNewPassword,” declared on lines
75, generates a new, non-initial password to pass to an EASS
embedded agent as part of an AUTHORIZE message. A
more sophisticated implementation of generateNewPass-
word might usc an input argument that identifies a particular
EASS embedded agent for gencrating new passwords spe-
cific to particular EASS embedded agents. The methods
“queue” and “dequeue,” declared on lines 76-77, are used in
the server routine for temporarily storing address/new
password/previous password triples. The class Database,
declared on lines R0-88, represents the dalabase (618 in
FIG. 6A) used by the server to track EASS embedded agents
that are authorized by the server. The methods declared on
lines 83-87 allow for adding new agents into the database,
updating a database entry corresponding to an agent, retriev-
ing the contents of an cntry corresponding to an agent, and
deleting the entry for an agent. The address of an EASS
embedded agent is used as the unique identifier to identify
that agent’s entry in a database. In other implementations, a
unique identifier may be gencrated and stored in the data-
base for each EASS embedded agent authorized by the
server routine rather than using the address of the EASS
ecmbedded agent.

The routine “agent,” declared on lines 90-155, is an
example implementation of an EASS embedded agent. The
agent routine takes two passwords, “current” and
“previous,” as arguments. These two input arguments rep-
resent the non-volatile current and previous password reg-
isters 604 and 606 shown in FIG. 6A. Various local variables
are declared on lines 92-98. These include a temporary
password “tpwd,” an asynchronous timer “time,” an instance
of the AgentMessages class “msg,” an instance of the device
class “dv” that represents the device controller into which
the EASS embedded agent is embedded, a device message
“dvmsg,” and two Boolean variables “authorize” and
“enabled.” The agent routine is implemented within a single
“do” loop starting at line 100 and ending at line 154. Within
this “do” loop, the agent routine continuously receives and

15

25

35

40

45

50

55

60

65

26

responds to messages from a remote EASS server as well as
passcs messages exchanged between the CPU and the device
controller in which the EASS embedded agent is embedded.

A large portion of the message handling logic is enclosed
within a try block that begins on line 102 and ends on line
137. Exceptions gencrated during execution of the code
within the try block are handled in the caich block beginning
on line 138 and extending to line 153. In the case of the
agent routine, exceptions arc gencrated by the asynchronous
timer “time.” Within the “while” loop that begins on line 104
and extends through line 132, the agent routine handles any
messages received from a remote EASS server and responds
to those messages as necessary. The “while” statement on
line 104 iteratively calls the getNext method of the Agent-
Messages instance “msg” to retrieve each successive mes-
sage that has been received and queued internally by msg.
‘When the member “getNext” returns a TRUE value, msg has
sct an internal pointer to make the next queved message the
current message. When the member “getNext” returns a
FALSE value, there are no further messages that have been
received and queued. Thus, any members of msg called
within the “while” loop on lines 106130 that retrieve values
from messages retrieve those values from the current mes-
sage.

If the current message is an AUTHORIZE message, as
detected on line 108, the agent routine saves the new
password contained in the AUTHORIZE message in the
local password variable “tpwd,” on line 109, and returns a
CONFIRM AUTHORIZE message to the EASS server on
line 110. If the message received from the EASS server is an
OK message, as detected on line 112, the routine agent first
checks, on line 113, if the pew password contained within
the OK message is the same as the new password stored in
the local password variable “tpwd.” If so, the routine agent
reinitializes the asynchronous timer on line 115, sets the
local variable “authorized” to the value TRUE on line 116,
transfers the contents of the password variable “current” into
the password variable “previous” on linc 117, transfers the
new password from the local password variable “tpwd” into
the local password varisble “current,” and, if the local
variable “enabled” contains the value FALSE, enables the
device by calling the member “enable” on line 121 and sets
the local variable “enable” to TRUE on line 122. If, on the
other hand, the new password contained in the OK message
is not equal to the new password contained in the local
password variable “tpwd,” then the agent routine simply
ignores the received OK message. If the message received is
a device message, as detected on line 126, and if the local
variable “enabled” has the value TRUE, then the agent
routipe passes that received device message on to the device
by calling the device member “send” on line 127. If the
received message is not of the type AUTHORIZE, OK, or
DEVICE, the agent routine simply ignores the messagc.

Once all the received and queued messages have been
handled in the “while” block starting on line 104 and
continuing to line 132, the agent routine passes any mes-
sages sent by the device to the CPU if the local variable
“enable” has the value TRUE. Messages are received from
the device by calling the receive member of the Device
instance “dv” and are transmitted by the agent routine to the
CPU by calling the member “sendDeviceMsg” of the Agent-
Messages instance “msg.”

If the asynchronous timer “time” expires and generates an
interrupt, that interrupt is handled on lines 140-152. If the
local variable “authorized” has the value TRUE, then autho-
rized is set to the value FALSE on line 142, a SAVE ME
message is sent by the agent routine to the EASS server on

u

US 6,594,765 B2

27
line 143, and the asynchronous timer “time” is reinitialized
on line 144, However, if the local variable “authorized” has
the value FALSE, then the asynchronous timer has already
once expired after the agent routine failed to acquire autho-
rization from the remote EASS server. In that case, the agent
routine scts the local variable “cnable” to FALSE on line
148, sends another SAVE ME message to the EASS remote
server on line 149, reinitializes the asynchronous timer on
line 150, and finally disables the device on line 151 by
calling the member “disable” of the Device instance “dv.”

The routine “server” on lines 157-264 implements the
EASS scrver. Local variables are declared on lines 159-167,
including an instance of the Messages class “msg,” an
instance of the Passwords class “pwds,” an instance of the
Database class “db,” and an instance of the TimeServer class
“ts.” A number of loca] PASSWORD variables are declared,
including the local variables “current,” “previous,” “deur,”
“dprev,” “newp,” “qucuedNew,” “queuedCurrent,” and
“newpass.” In addition, a Jocal TIME veriable “tm,” a local
ADDRESS variable “add,” and a local Boolean variable
“auth” are declared.

The server routine contimuously receives messages from
EASS embedded agents and, as necessary, responds to those
messages in the “while” loop beginning on line 169 and
ending on line 262. The server routine receives only two
types of messages: SAVE ME messages s detected on line
173, and CONFIRM AUTHORIZE messages, as detected on
line 220.

I the next received message is a SAVE ME message, the
server routine first extracts the current and previous pass-
words from the SAVE ME message and places them into the
local PASSWORD variables “current” and “previous,”
respectively. The server routine then attempts to dequeue an
address/new password/current password triple from the
“pswds” instance of the Passwords class. The address of the
EASS embedded agent that sent the SAVE ME message is
used as a unique identifier to locate the queued triple. If a
triple is found, as detected on line 176, and if the current
password extracted from the SAVE ME message is equal to
the current password saved within the triple, as detected on
line 178, then the server routine must have previously sent
an AUTHORIZE message to the EASS embedded agent, but
the handshake mechanism must have failed after the
AUTHORIZE message was sent. In this case, the server
routine simply generates a new password on line 180,
queues the address/new password/current password triple on
line 181, and sends a new AUTHORIZE message (o the
EASS embedded agent on line 182. If, on the other hand, the
current password extracted from the SAVE ME message is
not equal to the current password dequeued from pswds, a
more serious error has occurred and the routine server
throws a QUEUED_AND__SAVE_ME exception on line
184. The exception handlers are not shown in this example
program because they are quite dependent on implernenta-
tion details and detailed error handling strategies that may
vary depending on the use to which the EASS has been
applied.

If there is no queued entry for the EASS embedded agent,
then, on linc 188, the scrver routine calls the initialPassword
member of pswds in order to determine whether both the
current and previous passwords that were included in the
SAVE ME message are special initial passwords. If these
passwords are initis] passwords, then, beginning on line 191,
the server routine deletes any database entries for the EASS
cmbedded agent, gencrates a8 ncw password, queues a new
address-new password-current password triplet, and sends
an AUTHORIZE message o the EASS embedded agent on

10

30

35

45

50

55

60

65

28

line 194. This is done because the SAVE ME message was
sent from an EASS embedded agent in the Initial Power-On
Grace Period state (410 in FIG. 4), or, in otber words, from
an EASS cmbedded agent that is attempting to connect to the
server cither for the first time or for the first time following
s reiaitialization. If, on the other hand, the current and
previous passwords in the SAVE ME message are not initial
passwords, then the server routine attempts, on line 198, to
retricve from the database an entry corresponding to the
EASS embedded agent identified by the address of the agent.
I an entry exists in the database, then the server routine
attempts to identify, on lines 200~217, a scenario by which
the SAVE ME message was sent by the EASS embedded
agent. If no entry is present in the database for the EASS
embedded agent, then the server routine throws an alarm
exception on line 217. This alarm exception indicates a
poiential attempt by a stolen or otherwisc misused PC 1o
establish a connection and authorization with the EASS
server represented by the server routine,

On line 200, the server routine compares the current
password stored within the retrieved database entry to the
current password retrieved from the SAVE ME message and
compares the expiration time stored in the database to the
current time as retrieved by the operating system routine
“getSystemTime.” If the current password in the database
entry is the same as the current password in the SAVE ME
message and authorization has not yet expired for the EASS
embedded agent, then a likely explanation for the SAVE ME
message is that a previous CONFIRM AUTHORIZE mes-
sage sent from the EASS embedded agent to the server
routine was lost. Therefore, the server routine, on lines
202-204, generates a new, non-initial password, queues a
new address-new password-current password triple, and
sends a new AUTHORIZE message to the EASS embedded
agent. If, on the other hand, the previous password from the
database entry equals the current password in the SAVE ME
message and authorization has not expired, then an OK
message from the server routine to the EASS embedded
agent was probably lost, and the server routine resends the
OK message on lines 208-209. If the previous password
from the database entry equals the current password in the
SAVE ME message and authorization has expired, probably
multiple OK messages have been lost indicating some error
in communications, and the server routine throws a
MULTIPLE__OKS_ LOST exception on line 213. Finally, if
the contents of the databasc entry do not refiect one of the
above three scenarios handled on lines 200-214, the
received SAVE ME message most likely indicates an
atternpt 1o establish a connection and acquire authorization
by & stolen or misused EASS embedded agent and the server
routine therefore throws an alarm exception on line 215.

When the server routine receives a CONFIRM AUTHO-
RIZE message, it first extracts the new password and current
password from the CONFIRM AUTHORIZE message on
lines 221 and 222. The server routine then atiempts to
dequeue an address-new password-current password triple
on line 223 corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message. If a queued
triple is found, then the code contained in lines 225-255 may
be executed in order to properly respond to the CONFIRM
AUTHORIZE message. If there is no queued triple, then, on
line 256, the server routine throws an alarm exception to
indicate a potential attempt to connect to the server and to
acquire authorization from the server by a stolen or misused
EASS embedded agent. After dequeuing a triple, the server
routine checks, on line 227, whether the new password and
current password reirieved from the CONFIRM AUTHO-

o

US 6,594,765 B2

29

RIZE message correspond to the new password and current
password that were queued in the dequeued triple. If so, then
the server routine atiempts, on line 227, to retrieve a
database entry for the EASS embedded agent. If a database
entry is retricved, then the server routine tests, on line 229,
whether the current password in the database eatry is equal
(o the current password in the CONFIRM AUTHORIZE
message. If so0, the CONFIRM AUTHORIZE message is a
valid response to a previous AUTHORIZE message sent by
the server routine to the EASS embedded agent, and, on
lines 231-234, the server routine updates the database entry
for the EASS embedded agent and sends an OK mecssage 1o
the agent. If, on the other hand, the current password
retrieved from the database entry is not equal to the current
password that was retrieved from the queuc, the server
routine throws a CONFIRM_AUTHORIZE__SYNC excep-
tion on line 238, If there was no database entry correspond-
ing to the EASS embedded agent, but if the current password
included in the CONFIRM AUTHORIZE message was an
initial password, then this CONFIRM AUTHORIZE mes-
sage came from a EASS embedded agent in the Initial
Power-On Grace Period (410 in FIG. 4) and the server
routine creates a new database entry for the EASS embedded
agent and sends an OK message to the EASS embedded
agent. However, if the password included in the CONFIRM
AUTHORIZE message is not an initial password, then the
server routine throws a NO__ENTRY exception indicating a
serious problem in the handshake. If no triple was found in
the queue corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message, the server
routioe, on line 256, throws a QUEUE_ERROR exception
indicating a potential problem with the queuing mechanism.

One skilled in the art will recognize that the above-
described implementation of an example EASS server and
EASS embedded agent describes one potential embodiment
of the present invention and that other implementations may
be realized. For example, the EASS server can be imple-
mented in any number of programming languages for any
number of different operating systems and hardware plat-
forms. The EASS embedded agent is preferably imple-
mented as a hardware logic circuit within the device con-
troller for the device into which the EASS embedded agent
is embedded. A hardware logic circuit cannot be removed
without destroying the device controller. A firmware or
software routine can, by contrast, bc removed or re-installed.
The bandshake mechanism can be implemented with any
number of different communication message protocols, with
any number of different types of databases, and with any
number of different strategies for handling potential error
and alarm exception. Furthermore, additional error and
alarm conditions might be detected by a more elaborate
implementation. The database may itself be encrypted or
protected by additional security mechanisms.

In the above-described embodiment, an EASS embedded
agent can only receive authorization by first sending a SAVE
ME message to an EASS server. In alternative embodiments,
the EASS server or a user of the system hosting the EASS
embedded agents may be provided with the capability to
initiate authorization of an EASS embedded agent.
Moreover, the EASS embedded agenis may be manufac-
tured to contain an initial unlock password and to initially
have an unlimited period of authorization. Once the system
hosting the EASS embedded agent is powered up and
running, the EASS embedded agent can then be identified by
an EASS server and controlled by the EASS server by
sending the EASS embedded agent an authorization for a
period of time which overrides the unlock password and

5

10

15

25

30

35

40

45

50

55

650

65

30
initial unlimited period of authorization and which requires
the EASS cmbedded agent to be re-authorized prior to
cxpiration of the period of time of authorization.

Additional EASS Components and Additional
Applications for the EASS

The EASS server may include a package of system
administration utilities that allow a system administrator to
configure and monitor the EASS server’s authorization
activities. These utilities can be used to graphically display
the contents of the databasc associated with the EASS server
and to allow the system administrator to manipulate those
contents. Also, the EASS client and EASS server may
contain additional ufilities that allow a privileged user to
reinitialize EASS erbedded agents in the event of discon-
nections or corruptions so that the EASS embedded agents
can reconnect to EASS servers to reestablish authorization.

The embodiments of the present invention described
above are directed towards providing component-level secu-
rity for a PC. The EASS does not require users to know or
remember passwords. All password information is internally
gencerated and internally manipulated by the EASS. The
EASS cannot be casily thwarted by reconfiguring the sofi-
ware on a PC or cven by replacing a firmware component
such as a PROM. This is because the EASS embedded
agents are containcd within the ASICs that implement the
various device controllers. If those EASS embedded agents
do not quickly establish a connection to an EASS server and
do not quickly transition from an Initial Power-On Grace
Period state or a8 Power-On Grace Period state to an Autho-
rized state, the devices controlled by the EASS embedded
agents will fail to operate.

In the special case of an EASS embedded agent that is
embedded within the circuitry of a hard disk controller, the
EASS cmbedded agent may additionally encrypt data that is
received over a communications bus for storage on the
physical platters of the disk and may decrypt data read from
those physical platters before sending the data back through
the communications bus. In this fashion, even if a thief were
to steal the bard disk and remove the disk controller
circuitry, the data contained on the disk would not be
available for use. The data can be encrypted by any of many
well-known techniques, including RSA-based encryption
and password-based encryption.

In addition, embodiments of the present invention have
applications in other areas related to security and in many
areas not related to security. One area in which the present
invention can be applied is that of enabling hardware or
software components of a PC from a remote site on a
pay-per-use or pay-for-purchase basis. It is increasingly
common for the incremental costs associated with installa-
tion of a specialized hardware device or specialized software
program during the manufacturing process to be quite small
for a given PC. For example, the cost of installing a software
program on a hard disk during the manufacturing process
may have an incremental cost of well under a dollar.
Likewise, the actual physical circuitry that implements
many specialized devices can be mass-produced at a very
low cost per unit. However, the cost of installing the
specialized hardware components or software once the PC
has been manufactured and sold may be much higher. For
this reason, it is desirable for PC manufacturers to include
popular specialized hardware devices and software pro-
grams at the time of manufacture in a disabled state. The
purchaser of the PC can then pay a fee cither for using the
hardware components or software programs or can later

US 6,594,765 B2

31

purchase the hardware components or software programs. In
the former case, the device or program can be ensbled, or
authorized, for some time period. In the latter case, the
device or software program can be enabled on a permanent
basis. Embodiments of the present invention, including a
server, client, and a number of embedded agents, could be
used as a basis to provide for selectively enabling and
disabling both hardware components and software pro-
grams. In the case of software programs, for example, the
embedded agent within the disk controller could selectively
make available data stored on the disk, including a non-
volatile copy of the software program to be enabled.

In a slightly different application of the present invention,
the EASS may be employed to protect software manufac-
turers from software pirates. Software programs, including
operating system software, can be manufactured to require
authorization by EASS embedded agents, or software-
implemented EASS embedded agents may be incorporated
into the software programs themselves. Thus, for example,
a running database management system or operating system
may incorporate software-implemented EASS embedded
agents that require periodic authorization from an EASS
server. Alternatively, an EASS embedded agent within the
disk controller on which the programs are stored may be
controlled by an EASS server to selectively enable and
disable particular programs.

Another application for embodiments of the present
invention is in the field of adaptive systems. Such systems
automatically reconfigure themselves to adapt to changing
demands placed on their components. The protocol for
communications between a server and embedded agents can
be expanded to allow for general information exchange
relating to the load experienced by a particular device and
the throughput achieved by the device. The server can
collect such information and direct the embedded agents to
enable additional components where needed or to fine tune
and adjust the operation of components to better handle the
demands placed on the components. For example, additional
CPUs or disk drives can be enabled and configured into the
system when processing bottlenecks and non-volatile stor-
age space becomes scarce. System componenis can be
enabled and disabled in order to effect load balancing.

The present invention may be applied to security systems
for devices other than PCs, including more complex com-
puter systems or even to clectromechanical systems such as
airplanes, automobiles, diesel locomotives, and machine
tools. The present invention could also be applied in indus-
trial control processes to start and stop production compo-
nents and machine tools.

Embodiments of the present invention also may be
applicd to protecting fircarms. Electromechanical devices
that include EASS embedded agents may be incorporated
into electromechanical trigger locks or firing mechanisms.
Authorization of the EASS embedded agents might be
controlled from a centralized EASS server to insure that
only licensed firearms within predetermined geographical
locations can be fired. In such cases, the communications
medium that allow exchange of messages between an EASS
server and an EASS embedded agent may be a microwave
or satellite link.

Diagnosing and cormrecting defects in complex systems is
yet another problem area in which the present invention may
find application. In the embodiment discussed above, the
EASS server can casily determine when a particular EASS
embedded agent is no longer functioning, indicating that the
EASS embedded agent and the device controller into which

15

20

30

35

40

45

50

55

60

65

32

it is embedded have been powered down or damaged. A
system administrator or a diagnostician can use a graphical
display of contents of the databasc associated with the EASS
server to identify powered-down or defective devices. In this
case, the database could be expanded to include more
specific information about the geographical location of each
EASS embedded agent, as well as the identity and type of
device that the EASS embedded agent is controlling. The
data included in the database can be presented in many
different fashions with a variety of different graphical user
interfaces allowing, for example, information about all the
EASS embedded agents within a particular computer to be
displayed within a diagram of that computer. As another
cxample, EASS embedded agents may be incorporated into
control points within utility energy grids to provide diag-
nostic and maintenance capabilitics.

EASS embedded agents may be embedded into home
entertainment systems to protect the home entertainment
systems from theft and misuse. EASS embedded agents may
also serve to obtain identification information from media
containing recorded audio and/or video data inseried into a
home cntertainment system, or similar broadcast or display
device, and provide the identification information to a
remote scrver in order to receive authorization from the
remote server for broadcast or display of the recorded audio
and/or video data. Similarly, EASS embedded agents may
serve to obtain identification information from an electronic
card or key in order to obtain authorization from a remote
server for the operation of a motorized vehicle or fircarm.
EASS embedded agents may even be embedded in paper
currency or cash machines to monitor cash transactions and
prevent acceptance of counterfeit currency. The fact that, in
all of these applications, an EASS embedded agent is
involved in obtaining identification information from media,
clectronic cards, or keys, provides for remote monitoring of
the use of protected systems and flexible remote contro] of
the authorization for use of the protected systems. For
example, although a thief may steal both a car and the key
to the car, the owner can still contact the administrator of the
remote server to discontinue authorization of the use of the
car.

The list of devices and systems that may be protected and
made secure by hosting EASS embedded agents is almost
limitless, as arc the specific messaging protocols, states
inhabited by EASS embedded agents, and mechanisms by
which EASS embedded agents deactivate or disable their
host. For example, in some cases, an EASS embedded agent
may electromechanically block, disable, disarm, or other-
wise actively disrupt operation of a host. In other cases, the
EASS embedded agent may simply fail to pass messages
needed by the host to maintain a state of operability. A partial
list of system and device categories that may be secured via
embedded EASS agents follows:

Automotive

EASS embedded agents may be included within ignition
systems of cars, trucks, and other types of vehicles, as well
as in mechanical components including fuel delivery
components, engine components, drive train components,
and steering components. Additionally, audio and video
components, GPS systems, and other electronic devices
installed in cars, trucks or other types of vehicles may host
EASS embedded agents. The EASS server or servers may be
located within the vehicle, in some cases, or may be located
in one or more fixed locations, providing coverage for a
region in which the EASS embedded agents are meant to be
authorized.

US 6,594,765 B2

33

Aviation

EASS embedded agents may be included within ignition
systems of airplanes, helicopters, and perhaps even space
vehicles, as well as in electrical and mechanical components
including fuel delivery components, engine components,
audio and video components, GPS systems, avionics, com-
munications and navigation systems, and other such com-
ponents. The EASS server or servers may be located within
the vehicle, in some cascs, or may be located in one or more
fixed locations, providing coverage for a region in which the
EASS embedded agents are meant to be authorized.
Banking and Financial Systems

EASS embedded agents may be included within auto-
matic teller machines and other clectronic payment systems
that enable automated transfer of funds, bank safes and safe
deposit box rooms, teller drawers, and in credit cards, debit
cards and similar devices that permit clectronic or manual
financial transactions. The EASS server or servers may be
located within bank branch offices, in some cases, or may be
located in more central locations, such as regional or
national offices. Allernatively, EASS servers may be hier-
archically organized, with lower-level EASS servers in
branch offices themselves hosting EASS embedded agents
authorized by higher-level EASS servers in regional or
national offices.
Building and Construction

EASS embedded agents may be included within security
systems that control access to buildings, that monitor the
interior and exterior environments of buildings, and that
provide warnings through various mechanisms and media.
Additionally, tools and equipment used to construct and
repair buildings may host EASS embedded agents, with
EASS servers located within the building, in some cases,
and in more centralized locations, in other cases. When
EASS servers are located in the building, authorization of an
EASS embedded agent may directly or indirectly depend on
thc EASS embedded agent being located within the
building, or within some threshold distance from the build-

ing.
Computer Hardware and Peripheral Devices

Any computer component or peripheral device containing
an integrated circuit that is a part of or connected to a
computer, including personal digital assistants, hand held
devices, tablet and pen-based computers, laptops, desktops,
workstations, servers, mini-computers, and mainframes,
may be protected by one or more EASS embedded agents.
Consumer Electronics

Any consumer electronics device containing an integrated
circuit may be secured by hosting an EASS embedded agent.
Examples include audio and video equipment, photographic
equipment, appliances, and game devices.
Defensc Systems, Weapons, and Armaments

Defense systems, weapons, and armaments represent an
cspecially suitable area for EASS-based sccurity. EASS
embedded agents may be included in a wide range of
devices, including firearms, missiles, bombs, ordinance,
launching, targeting, tracking, and delivery systems,
armored vehicles, and other types of weapons sysicms.
Complex and fault-tolerant hierarchies and networks of
EASS servers may be employed to exert multi-tiered autho-
rization control within regions, sub-regions, and local areas
of interest.
Energy

Power generation systems, fuel and energy storage and
dispensing facilities, oil refinerics and gas distillation
facilities, and other encrgy-related devices and systems
represent an increasingly critical and valuable societal

15

20

30

35

40

45

50

55

60

65

34

resource and an ever-present danger to surrounding com-
munities and regions. Subsystems, components, and trans-
port and intercommunication media for such systems may be
protected by EASS embedded agents.

Entertainment

Cable and satellite technology-bascd delivery systems,
including pay per view services, may be secured and con-
trolled by EASS embedded agents.

Manufacturing

Motors, pumps, generators, COMPpressors, CONVeyors,
shaping, cutting, drilling, and welding systems, robotic
systems, process instrumentation, sensors, and other com-
ponents of industrial manufacturing facilitics may be pro-
tected by EASS embedded agents.

Marine

EASS embedded agents may be included within ignition
systems of personal watercraft, boats, ships, submarines, and
other types of watercraft, as well as in mechanical compo-
nents including fuel delivery components, engine
components, drive train components, and stecring compo-
nents. Additionally, audio and video components, GPS
systems, navigation systems, radar and sonar systems, and
other electronic devices installed in boats, ships,
submarines, and other types of watercraft may host EASS
embedded agents. The EASS server or servers may be
located within the watercraft, in some cascs, or may be
located in one or more fixed locations, providing coverage
for a region in which the EASS embedded agents are meant
to be authorized.

Medical and Scientific

EASS embedded agents may be hosted by a wide variety
of scientific, technical, and medical instrumentation, includ-
ing diagnostic equipment, measurement and monitoring
equipment, therapeutic devices, devices that dispense
medication, medical information storage systems, radiation
sources, and other such devices and systems.

Personal Identification

EASS embedded agents may be hosted by smart, elec-
tronic passports, driver’s licenses, and other personal iden-
tification documents and devices
Sccurity Systems

Standard, non-EASS security systems may be addition-
ally secured via EASS embed agents and EASS servers,
including sensors, monitors, video equipment, alarm
systems, card keys, smart cards, retinal scanners, finger-print
identification systems, and other biometric devices. By
embedding EASS agents in such devices, and additional
level of security is obtained. As discussed above, EASS
security is different from such methods in that passwords
and keys are not exposed, and constant authorization is
required to maintain operability. Thus, EASS security may
complement other types of sccurity mechenisms.
Telecommunications Equipment

EASS embedded agents may be hosted by any device
containing an integrated circuit that is used &s part of a cable
or wireless telecommunication network to transmit audio,
video, and/or encoded data. For example, EASS embedded
agents may be hosted by cellular phones, personal digital
assistants, pagers, radios, high-end communications switch-
ing and distribution systers, video conferencing systems,
and broadcast facilities and equipment.

Although the present invention has been described in
terms of preferred embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
skilled in the art, and in alternate scenarios as described
above. For example, while EASS embedded agents are

US 6,594,765 B2

35

preferably implemented as hardware circuitry, software
implementations could be devised to provide an EASS that
can be implemented on existing computers without special-
ized circuitry built into device controller ASICs. As pointed
out above, the EASS client could possibly be omitted in
certain embodiments where it is possible to directly establish
communications between EASS embedded agents and
EASS servers. The method in which the EASS server stores
and manipulates stored authorization and embedded agent
information may differ widely in different embodiments. A
relational database, a flat file, record-based database, or an
object-oriented database could be used to store the
information, and any number of hybrid systems can be
devised using combinations of these types of databases. The
handshake mechanism, the mechanism for announcing the
presence of embedded agents, and the mechanism for reini-
tializing embedded agents can differ markedly in different
embodiments, as can the formats and contents of the mes-
sages cxchanged between EASS servers and BASS embed-
ded agents. Certain embodiments may allow a particular
EASS embedded agent to communicate with several EASS
servers in order 1o provide additional reliability or geo-
graphical fiexibility. An EASS server may be owned and
operated by an entity protecting its own, on-site computers
or machincs, or an EASS scrver service may be provided by
specialized security providers over the Internet or other
communications media. In the above specification, simple
single or multiple EASS scrver and EASS embedded agent
applications are described, but a much more complex
network, or graph, of EASS servers may be implemented for
specialized applications. For example, EASS servers may be
hierarchically organized, with lower level EASS servers
authorizing subsets, perhaps overlapping with subsets autho-
rized by other lower level EASS servers, while the low-level
EASS servers are thcmselves authorized by higher-level
EASS servers. Graph-like authorization networks may be
exploited to avoid single-point failurc within such systems.
Any number of different types of devices can be controlled
by EASS embedded agents implemented either as hardware
circuitry within the devices, as specialized programs within
other programs that control the device, or implemented as
bardware/software hybrids. The present invention can be
applied not only 10 the problem of sccuring PCs and com-
ponents within PCs, but also to problems of fault tolerance,
adaptive systems, reconfiguration of systems, monitoring of
components within systcms, and other similar systems or
environments,

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough under-
standing of the invention. However, it will be apparent to
one skilled in the art that the specific details are not required
in order to practice the invention. The foregoing descriptions
of specific embodiments of the present invention are pre-
sented for purpose of illustration and description. They are
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Obviously many modifications and
variations are possible in view of the above teachings. The
embodiments are shown and described in order 1o best
explain the principles of the invention and its practical
applications, to thereby ensble others skilled in the art to
best utilize the invention snd various embodiments with
various modifications as are suited 1o the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalents:

5

10

30

40

50

55

60

65

36
What is claimed is:
1. Asystem for securing an automotive system, the system
comprising:

an automotive system including a device;

an agent embedded in the device that, when authorized,
cnables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

2. The system of claim I wherein the automotive system

is one of:
an automobile;
a truck;
a fuel delivery component of an automobile;
an enginc component of an automobile;
a drive train compopent of an automobile;
a steering component of an automobile;
an audio component of an automobile
a video component of an sutomobile; and
a GPS systems installed in an automobile.
3. A system for securing an aircraft system, the system
comprising:
an aircraft including a device;
an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.
4. The system of claim 3 wherein the aircraft system is
one of:
an airplane;
a helicopter;
an ignition system;
a fuel delivery component;
an engine component;
audio and video components;
an audio and video components;
a GPS system;
an avionics; and
a communications and navigation system.
5. A system for securing a banking sysiem, the system
comprising:
8 banking system including a device;
an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.
6. The system of claim 8 wherein the banking system is
one of:
an automatic teller machine;
a bank safe;

US 6,594,765 B2

37

a safe deposit box room;
a teller drawer;
a credit card; and
a debit card.
7. A system for securing a building system, the system
comprising;
a building including a device;
an agent embedded in the device that, when authorized,
cnables operation of the device and that, when not
authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the cmbedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.
8. The system of claim 3 wherein the building system is
one of:
a building;
a security system that controls access to a building;
a security system that monitors the interior environment
of a building;
a security system that monitors the exterior environment
of a building;
a security system within a building that provides warn-
ings; and
equipment used to construct and repair a building.
9. A system for sccuring & computer-related system, the
system comprising:
a computer-related system including a device;
an agent embedded in the device that, when authorized,
cnables operation of the device and that, when not
authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, suthorizes
the embedded agent to enable operation of the device.
10. The system of claim 9 wherein the computer-related
system the is one of:
a personal digital assistant;
a hand-held device;
a tablet-based computer;
a pen-based computer;
a laptop;
a desktop;
a workstation;
a server;
2 mini-computer;
a mainframe;
a printer;
networking equipment, including a hub, a router, and a
concentrator;
a display device; and
an input device,
11. A system for securing a consumer electronics device,
the system comprising:
a consumer electronics device including a subcomponent;
an agent embedded in the subcomponent that, when
authorized, enables operation of the subcomponent and
that, when not authorized, disables operation of the
subcomponent; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that

5

10

15

25

30

35

40

50

55

60

38
together compose a handshake operation, authorizes
the embedded agent to enable operation of the subcom-
ponent.
12. The system of claim 11 wherein the consumer elec-
tronics device is one of:
an audio device;
a video device;
a photographic device;
a fax machine;
a copy machine;
an appliance, and
a game device.
13. A system for securing a weapons system, the system
comprising:
a weapons system, including a device;
an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.
14. The system of claim 13 wherein the weapons system
is one of:
a firearm;
a missile;
a bomb;
ordinance;
a launching system;
a tracking system;
a largeting system;
a weapons delivery system; and
an armored vchicle.
15. A system for securing an energy system, the system
comprising:
an energy system including a device;
an egent embedded in the device that, when authorized,
ensbles operation of the device and that, when not
authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.
16. The system of claim 15 wherein the is one of:
a power gencration system;
a fuel storage facility;
an energy storage facility;
a fuel dispensing facility;
an encrgy dispensing facility;
an oil refinery; and
a gas distillation facility.
17. A system for securing an entertainment-related
system, the system comprising:
an entertainment-related system including a device;
an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

\ 7

US 6,594,765 B2

39

a scrver coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

18. The system of claim 3 wherein the entertainment-

related system is one of:

a cable delivery system;

a satellite delivery system; and

a wireless delivery system.

19. A system for sccuring a manufacturing system, the

sysiem comprising:

a manufacturing system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-
ing & number of messages with the cmbedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

20. The system of claim 19 wherein the manufacturing

system is one of:

a motor;

& pump;

a gencrator;

2 Compressor;

a conveyor;

a shaping system;

a cutting system;

a drilling system;

a welding system;

a robotic system;

a process instrument; and

a sensor.

21. A system for securing a marine system, the system

comprising:

a marine system including a device;

an agent embedded in the device that, when authorized,
cnables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

22. The system of claim 21 wherein the marine system is

ope of:

a personal watercraft,

a boat;

a ship;

a submarine;

an ignition system of a watercraft;

a fuel delivery component of a watercraft;

an engine component of a watercraft;

a drive train component of a watercraft;

a steering component of a watercrafi;

an audio component of a watcrcraft;

a video component of a watercraft;

a GPS system of a watercraft;

a navigation system of a watercraft;

a radar system of a watercraft; and

a sonar system of a watercraft.

40
23, A system for securing medical equipment, the system
comprising:
medical! equipment including a device;

s an agent embedded in the device that, when authorized,
cnables operation of the device and that, when not
suthorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

24. The system of claim 23 wherein the medical equip-

ment is one of:

diagnostic equipment;

measurement equipment;

monitoring equipment;

o0 therapeutic equipment;

medication dispensing equipment;
medical information storage equipment;
radiation source equipment; and
25 injectable or implantable electronic medical devices.
25. Asysiem for securing a personal identification device,
the system comprising:
a personal identification device including a subcompo-
30 nent;
an agent embedded in the subcomponent that, when
authorized, enables operation of the subcomponent and
that, when not authorized, disables operation of the

35 subcomponent; and

a server coupled to the embedded agent that, by exchang-
ing a number of messages with the cmbedded agent that

together composc a handshake operation, authorizes
the embedded agent to enable operation of the subcom-
ponent.
26. The system of claim 3 wherein the personal identifi-
cation device is one of:
an electronic passport;
an electronic driver’s license; and
an clectronic personal identification document.
27. A system for securing a security device, the system
comprising:
a security device including a subcomponent;
an agent embedded in the subcomponent that, when
authorized, enables operation of the subcomponent and
that, when not authorized, disablcs operation of the
55 subcomponent; and
a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
togetber compose a bandshake operation, avtborizes
the cmbedded agent to enable operation of the subcom-

ponent.
28. The system of claim 27 wherein the security device is
one of:

4 5ensor;
a monitor;
a video device;

10

S0

60

65

US 6,594,765 B2

41

an alarm system;

a card key;

a smart card;

a retinal scanning device;

a finger-print identification device; and

an embedded agent security system server.

29. A system for securing a telecommunications network,
the system comprising:

42

a telecommunications network including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang-
ing a number of messages with the embedded agent that
together compose & handshake operation, authorizes
the embedded agent to enable operation of the device.

o’ -/

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,594,765 B2 Page1 of 1
DATED : July 15, 2003
INVENTOR(S) : Sherman et al,

it is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 37,

Line 1, delete the numeral “3” and insert the numeral ~ 7 --.

Column 39,
Line 1, delete the numeral “3” and insert the numeral - 17 --,

Column 40,

Line 1, delete the numeral “3” and insert the numeral -- 25 --,

Signed and Sealed this

Twentieth Day of July, 2004

WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

