IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE | P | 'n | Α | Gl | M | ΑT | U | S | Τ | \mathbf{E} | LE | C | O. | M | [,] | L | С. | | |---|----|---|----|---|----|---|---|---|--------------|----|---|----|---|------|---|----|--| Plaintiff, JURY TRIAL DEMANDED Civil Action No. 14-cv-359-RGA v. ASPECT SOFTWARE, INC. Defendant. ## FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT Plaintiff Pragmatus Telecom, LLC ("Pragmatus") complains and alleges as follows against Defendant Aspect Software, Inc. ("Aspect Software"): ### THE PARTIES - 1. Pragmatus is a limited liability company organized and existing under the laws of the Commonwealth of Virginia with its principal place of business at 601 North King Street, Alexandria, Virginia 22314. - 2. Pragmatus is informed and believes that Aspect Software is a Delaware Corporation with its principal place of business located at 2325 East Camelback Road (suite 700), Phoenix, Arizona 85016. ## **JURISDICTION AND VENUE** 3. This is an action for patent infringement arising under the patent laws of the United States, United States Code, 35 U.S.C. § 271 et seq. This Court has subject matter jurisdiction over this action under Title 28 United States Code, §§ 1331 and 1338. - 4. Pragmatus is informed and believes that this Court has personal jurisdiction over Aspect Software because Aspect Software has committed, and continues to commit, acts of infringement in Delaware. - 5. Venue is proper under 28 U.S.C. §§ 1391 and 1400 because Aspect Software has committed acts of infringement in this district. # **THE PATENTS-IN-SUIT** - 6. On October 30, 2001, the United States Patent and Trademark Office ("USPTO") duly and legally issued United States Patent No. 6,311,231 ("the '231 Patent"), entitled "Method and System for Coordinating Data and Voice Communications Via Customer Contract Channel Changing System Using Voice Over IP." Pragmatus holds all right, title, and interest in and to the '231 Patent. A true and correct copy of the '231 Patent is attached as Exhibit A. - 7. On December 23, 2003, the USPTO duly and legally issued United States Patent No. 6,668,286 ("the '286 Patent"), entitled "Method and System for Coordinating Data and Voice Communications Via Customer Contact Channel Changing System Over IP." Pragmatus holds all right, title and interest in and to the '286 Patent. A true and correct copy of the '286 Patent is attached as Exhibit B. - 8. On January 2, 2007, the USPTO duly and legally issued United States Patent No. 7,159,043 ("the '043 Patent"), entitled "Method and System for Coordinating Data and Voice Communications Via Contact Channel Changing System." Pragmatus holds all right, title and interest in and to the '043 Patent. A true and correct copy of the '043 Patent is attached as Exhibit C. 9. On May 7, 2013, the USPTO duly and legally issued United Stations Patent No. 8,438,314 ("the '314 Patent"), entitled "Method and System for Coordinating Data and Voice Communications Via Customer Contact Channel Changing System." Pragmatus holds all right, title and interest in and to the '314 Patent. A true and correct copy of the '314 Patent is attached as Exhibit D. #### COUNT 1 ## (INFRINGEMENT OF THE '231 PATENT) - 10. Pragmatus incorporates by reference herein the averments set forth in paragraphs 1 through 9 above. - 11. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has directly infringed and continues to directly infringe, literally and/or under the doctrine of equivalents, at least claim 9 of the '231 Patent by making, using, selling, offering for sale and providing live chat services and systems over the Internet. The series of screen shots are examples of and demonstrate Aspect Software's infringement of each of the patents-in-suit. Aspect Software itself calls the accused service/system "live chat" "Welcome to Our Live Chat." 12. Pragmatus is informed and believes, and thereon alleges, that Aspect Software also has and continues to indirectly infringe at least claim 9 of the '231 Patent by inducing others to infringe or contributing to the infringement of others, including customers of its live chat services and systems in this judicial district and elsewhere in the United States. - 13. Specifically, Pragmatus is informed and believes, and thereon alleges, that Aspect Software has actively induced and continues to induce the infringement of at least claim 9 of the '231 Patent at least by actively inducing third party customers like Trupanion and customers that receive similar live chat services in the United States and this District to infringe. - 14. For example, per Aspect Software's website and customer case studies, Aspect provides Trupanion live chat technology and services. On Trupanion's website, these services and technology are clearly displayed at the top of the splash page (www.trupanion.com) where the customer can select "Chat Now." The foregoing is depicted below: 15. When a customer indicates he/she would like to use this technology by clicking on the "Chat Now" portion of Trupanion's webpage, the customer is then asked to enter their name, email and the department of Trupanion they would like to chat with: 16. Once the customer provides this information and clicks on "Chat Now," the customer enters a live chat with Trupanion where the customer can – among other things – have questions answered or apply for health insurance in real time via the live chat technology and services provided by Aspect Software: 17. Upon completion of the live chat – for example, when the customer clicks on "End Chat" – the transcript of the chat remains available for the customer to review and the customer is informed that Trupanion's live chat technology is "Powered by Aspect Software": The foregoing demonstrates Trupanion's infringement of the '231 patent that is and continues to be induced by Aspect Software. 18. Pragmatus is informed and believes, and thereon alleges, that Aspect Software knew or should have known that its conduct and its continued provision of this technology and instructions and assistance with respect to this technology would induce others – like Trupanion and customers that receive similar live chat services – to use its software and/or hardware for providing live chat services in a manner than infringes the '231 Patent. Pragmatus is informed and believes, and thereon alleges, that these third parties – like Trupanion – have infringed and continue to infringe at least claim 9 of the '231 Patent in violation of 35 U.S.C. § 271(a) by using the infringing system/service ("Direct Infringers"). Pragmatus is informed and believes, and thereon alleges, that Aspect Software through at least the sale and/or license of live chat software and hardware and related services as well as support and instructions to provides related to the software and hardware and related services actively induced and continues to induce its customers to infringe at least claim 9 of the '231 Patent. - 19. Pragmatus is informed and believes, and thereon alleges, that at least since it knew of the '231 Patent, Aspect Software specifically intended to induce the Direct Infringers to use the its live chat software in a manner that directly infringes at least claim 9 of the '231 Patent because, among other things, it instructs the Direct Infringers on the use of its live chat products to use the products in an infringing manner. - 20. Pragmatus is informed and believes, and thereon alleges, that as a proximate result of Aspect Software's inducement, the Direct Infringers directly infringed and continue to directly infringe at least claim 9 of the '231 Patent at least by using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet. - 21. Pragmatus is informed and believes, and thereon alleges, that at least since Aspect Software knew of the '231 Patent, Aspect Software knew or was willfully blind to knowing that the Direct Infringers were using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet in a way that directly infringes at least claim 9 of the '231 Patent as a result of its inducement of infringement. - 22. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has contributorily infringed and continues to contributorily infringe at least claim 9 of the '231 Patent by providing, selling or offering to sell within the United States infringing software, systems and services to third party customers like Trupanion that constitute a material part of the claimed invention and are not staple articles of commerce suitable for substantial non-infringing use. Pragmatus is informed and believes, and thereon alleges, that these third parties have infringed and will continue infringe the '231 Patent in violation of 35 U.S.C. § 271(a) by using the infringing live chat software, hardware, and/or related services ("Direct Infringers"). - 23. Pragmatus is informed and believes that Aspect Software provides a component of the patented machine and/or material or apparatus for practicing a patented process to the Direct Infringers of at least claim 9 of the '231 patent by providing its live chat software, hardware, and/or services in conjunction with instructions to Direct Infringers. For example, as set forth above, Aspect Software provides material parts of the invention that have no substantial non-infringing use other than to infringe the '231 patent such as the software that "powers" the live chat technology that Aspect Software provides to its customers like Trupanion as set forth in detail above. - 24. Aspect Software has received written notice of its infringement from Pragmatus in at least a letter dated March 14, 2014 from counsel for Pragmatus to Stephen Beaver, Senior Vice President & General Counsel at Aspect Software. The letter
explains that Aspect Software is infringing the '231 patent, the '286 patent, the '043 patent and the '314 patent. The letter further explains that Aspect Software is infringing by offering its own live chat services as well as inducing and contributing to the infringement of its customers by providing software and/or hardware for customers to use the accused services. Aspect Software also has written notice of its infringement by virtue of the filing and service of this Complaint. - 25. Pragmatus is informed and believes that at least as a result of the foregoing notice and the filing and service of this Complaint, Aspect Software has knowledge of its infringement of the '231 Patent. - 26. Pragmatus is informed and believes, and thereon alleges, that the live chat software, hardware, and/or related services that Aspect Software provides to its customers constitute a material part of the invention of the '231 patent at least because the invention cannot be practiced without these components as set forth above. - 27. Pragmatus is informed and believes that the live chat software, hardware, and/or related services that Aspect Software provides to its customers are not staple articles of commerce, and have no substantial non-infringing uses, at least for the reason that the accused aspects of Aspect Software's live chat products are designed to only substantially perform in a manner that infringes as set forth above. - 28. Pragmatus has suffered damages as a result of Aspect Software's infringement of the '231 Patent in an amount to be proven at trial. #### **COUNT II** # (INFRINGEMENT OF THE '286 PATENT) - 29. Pragmatus incorporates by reference herein the averments set forth in paragraphs 1 through 9 above. - 30. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has directly infringed and continues to directly infringe, literally and/or under the doctrine of equivalents, at least claim 18 of the '286 Patent by making, using, selling, offering for sale and providing live chat services and systems over the Internet. The series of screen shots are examples of and demonstrate Aspect Software's infringement of each of the patents-in-suit. Aspect Software itself calls the accused service/system "live chat" "Welcome to Our Live Chat." 31. Pragmatus is informed and believes, and thereon alleges, that Aspect Software also has and continues to indirectly infringe at least claim 18 of the '286 Patent by inducing others to infringe or contributing to the infringement of others, including customers of its live chat services and systems in this judicial district and elsewhere in the United States. - 32. Specifically, Pragmatus is informed and believes, and thereon alleges, that Aspect Software has actively induced and continues to induce the infringement of at least claim 18 of the '286 Patent at least by actively inducing third party customers like Trupanion and customers that receive similar live chat services in the United States and this District to infringe. - 33. For example, per Aspect Software's website and customer case studies, Aspect provides Trupanion live chat technology and services. On Trupanion's website, these services and technology are clearly displayed at the top of the splash page (www.trupanion.com) where the customer can select "Chat Now." The foregoing is depicted below: 30. When a customer indicates he/she would like to use this technology by clicking on the "Chat Now" portion of Trupanion's webpage, the customer is then asked to enter their name, email and the department of Trupanion they would like to chat with: 34. Once the customer provides this information and clicks on "Chat Now," the customer enters a live chat with Trupanion where the customer can – among other things – have questions answered or apply for health insurance in real time via the live chat technology and services provided by Aspect Software: 35. Upon completion of the live chat – for example, when the customer clicks on "End Chat" – the transcript of the chat remains available for the customer to review and the customer is informed that Trupanion's live chat technology is "Powered by Aspect Software": The foregoing demonstrates Trupanion's infringement of the '286 patent that is and continues to be induced by Aspect Software. 36. Pragmatus is informed and believes, and thereon alleges, that Aspect Software knew or should have known that its conduct and its continued provision of this technology and instructions and assistance with respect to this technology would induce others – like Trupanion and customers that receive similar live chat services – to use its software and/or hardware for providing live chat services in a manner than infringes the '286 Patent. Pragmatus is informed and believes, and thereon alleges, that these third parties – like Trupanion – have infringed and continue to infringe at least claim 18 of the '286 Patent in violation of 35 U.S.C. § 271(a) by using the infringing system/service ("Direct Infringers"). Pragmatus is informed and believes, and thereon alleges, that Aspect Software through at least the sale and/or license of live chat software and hardware and related services as well as support and instructions to provides related to the software and hardware and related services actively induced and continues to induce its customers to infringe at least claim 18 of the '286 Patent. - 37. Pragmatus is informed and believes, and thereon alleges, that at least since it knew of the '286 Patent, Aspect Software specifically intended to induce the Direct Infringers to use the its live chat software in a manner that directly infringes at least claim 18 of the '286 Patent because, among other things, it instructs the Direct Infringers on the use of its live chat products to use the products in an infringing manner. - 38. Pragmatus is informed and believes, and thereon alleges, that as a proximate result of Aspect Software's inducement, the Direct Infringers directly infringed and continue to directly infringe at least claim 18 of the '286 Patent at least by using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet. - 39. Pragmatus is informed and believes, and thereon alleges, that at least since Aspect Software knew of the '286 Patent, Aspect Software knew or was willfully blind to knowing that the Direct Infringers were using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet in a way that directly infringes at least claim 18 of the '286 Patent as a result of its inducement of infringement. - 40. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has contributorily infringed and continues to contributorily infringe at least claim 18 of the '286 Patent by providing, selling or offering to sell within the United States infringing software, systems and services to third party customers like Trupanion that constitute a material part of the claimed invention and are not staple articles of commerce suitable for substantial non-infringing use. Pragmatus is informed and believes, and thereon alleges, that these third parties have infringed and will continue infringe the '286 Patent in violation of 35 U.S.C. § 271(a) by using the infringing live chat software, hardware, and/or related services ("Direct Infringers"). - 41. Pragmatus is informed and believes that Aspect Software provides a component of the patented machine and/or material or apparatus for practicing a patented process to the Direct Infringers of at least claim 18 of the '286 patent by providing its live chat software, hardware, and/or services in conjunction with instructions to Direct Infringers. For example, as set forth above, Aspect Software provides material parts of the invention that have no substantial non-infringing use other than to infringe the '286 patent such as the software that "powers" the live chat technology that Aspect Software provides to its customers like Trupanion as set forth in detail above. - 42. Aspect Software has received written notice of its infringement from Pragmatus in at least a letter dated March 14, 2014 from counsel for Pragmatus to Stephen Beaver, Senior Vice President & General Counsel at Aspect Software. The letter explains that Aspect Software is infringing the '231 patent, the '286 patent, the '043 patent and the '314 patent. The letter further explains that Aspect Software is infringing by offering its own live chat services as well as inducing and contributing to the infringement of its customers by providing software and/or hardware for customers to use the accused services. Aspect Software also has written notice of its infringement by virtue of the filing and service of this Complaint. - 43. Pragmatus is informed and believes that at least as a result of the foregoing notice and the filing and service of this Complaint, Aspect Software has knowledge of its infringement of the '286 Patent. - 44. Pragmatus is informed and believes, and thereon alleges, that the live chat software, hardware, and/or related services that Aspect Software provides to its customers constitute a material part of the invention of the '286 patent at least because the invention cannot be practiced without these components as set forth above. - 45. Pragmatus is informed and believes that the live chat software, hardware, and/or related services that Aspect Software provides to its customers are not staple articles of commerce, and have no substantial non-infringing uses, at least for the reason that the accused aspects of Aspect Software's live chat products are designed to only substantially perform in a manner that infringes as set forth above. - 46. Pragmatus has suffered damages as a result of Aspect Software's infringement of the '286 Patent in an amount to be proven at trial. #### **COUNT III** # (INFRINGEMENT OF THE '043 PATENT) - 47.
Pragmatus incorporates by reference herein the averments set forth in paragraphs 1 through 9 above. - 48. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has directly infringed and continues to directly infringe, literally and/or under the doctrine of equivalents, at least claim 1 of the '043 Patent by making, using, selling, offering for sale and providing live chat services and systems over the Internet. The series of screen shots are examples of and demonstrate Aspect Software's infringement of each of the patents-in-suit. Aspect Software itself calls the accused service/system "live chat" "Welcome to Our Live Chat." 48. Pragmatus is informed and believes, and thereon alleges, that Aspect Software also has and continues to indirectly infringe at least claim 1 of the '043 Patent by inducing others to infringe or contributing to the infringement of others, including customers of its live chat services and systems in this judicial district and elsewhere in the United States. - 49. Specifically, Pragmatus is informed and believes, and thereon alleges, that Aspect Software has actively induced and continues to induce the infringement of at least claim 1 of the '043 Patent at least by actively inducing third party customers like Trupanion and customers that receive similar live chat services in the United States and this District to infringe. - 50. For example, per Aspect Software's website and customer case studies, Aspect provides Trupanion live chat technology and services. On Trupanion's website, these services and technology are clearly displayed at the top of the splash page (www.trupanion.com) where the customer can select "Chat Now." The foregoing is depicted below: 51. When a customer indicates he/she would like to use this technology by clicking on the "Chat Now" portion of Trupanion's webpage, the customer is then asked to enter their name, email and the department of Trupanion they would like to chat with: 52. Once the customer provides this information and clicks on "Chat Now," the customer enters a live chat with Trupanion where the customer can – among other things – have questions answered or apply for health insurance in real time via the live chat technology and services provided by Aspect Software: 53. Upon completion of the live chat – for example, when the customer clicks on "End Chat" – the transcript of the chat remains available for the customer to review and the customer is informed that Trupanion's live chat technology is "Powered by Aspect Software": The foregoing demonstrates Trupanion's infringement of the '043 patent that is and continues to be induced by Aspect Software. 54. Pragmatus is informed and believes, and thereon alleges, that Aspect Software knew or should have known that its conduct and its continued provision of this technology and instructions and assistance with respect to this technology would induce others – like Trupanion and customers that receive similar live chat services – to use its software and/or hardware for providing live chat services in a manner than infringes the '043 Patent. Pragmatus is informed and believes, and thereon alleges, that these third parties – like Trupanion – have infringed and continue to infringe at least claim 1 of the '043 Patent in violation of 35 U.S.C. § 271(a) by using the infringing system/service ("Direct Infringers"). Pragmatus is informed and believes, and thereon alleges, that Aspect Software through at least the sale and/or license of live chat software and hardware and related services as well as support and instructions to provides related to the software and hardware and related services actively induced and continues to induce its customers to infringe at least claim 1 of the '043 Patent. - 55. Pragmatus is informed and believes, and thereon alleges, that at least since it knew of the '043 Patent, Aspect Software specifically intended to induce the Direct Infringers to use the its live chat software in a manner that directly infringes at least claim 1 of the '043 Patent because, among other things, it instructs the Direct Infringers on the use of its live chat products to use the products in an infringing manner. - 56. Pragmatus is informed and believes, and thereon alleges, that as a proximate result of Aspect Software's inducement, the Direct Infringers directly infringed and continue to directly infringe at least claim 1 of the '043 Patent at least by using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet. - 57. Pragmatus is informed and believes, and thereon alleges, that at least since Aspect Software knew of the '043 Patent, Aspect Software knew or was willfully blind to knowing that the Direct Infringers were using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet in a way that directly infringes at least claim 1 of the '043 Patent as a result of its inducement of infringement. - 58. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has contributorily infringed and continues to contributorily infringe at least claim 1 of the '043 Patent by providing, selling or offering to sell within the United States infringing software, systems and services to third party customers like Trupanion that constitute a material part of the claimed invention and are not staple articles of commerce suitable for substantial non-infringing use. Pragmatus is informed and believes, and thereon alleges, that these third parties have infringed and will continue infringe the '043 Patent in violation of 35 U.S.C. § 271(a) by using the infringing live chat software, hardware, and/or related services ("Direct Infringers"). - 59. Pragmatus is informed and believes that Aspect Software provides a component of the patented machine and/or material or apparatus for practicing a patented process to the Direct Infringers of at least claim 1 of the '043 patent by providing its live chat software, hardware, and/or services in conjunction with instructions to Direct Infringers. For example, as set forth above, Aspect Software provides material parts of the invention that have no substantial non-infringing use other than to infringe the '043 patent such as the software that "powers" the live chat technology that Aspect Software provides to its customers like Trupanion as set forth in detail above. - 60. Aspect Software has received written notice of its infringement from Pragmatus in at least a letter dated March 14, 2014 from counsel for Pragmatus to Stephen Beaver, Senior Vice President & General Counsel at Aspect Software. The letter explains that Aspect Software is infringing the '231 patent, the '286 patent, the '043 patent and the '314 patent. The letter further explains that Aspect Software is infringing by offering its own live chat services as well as inducing and contributing to the infringement of its customers by providing software and/or hardware for customers to use the accused services. Aspect Software also has written notice of its infringement by virtue of the filing and service of this Complaint. - 61. Pragmatus is informed and believes that at least as a result of the foregoing notice and the filing and service of this Complaint, Aspect Software has knowledge of its infringement of the '043 Patent. - 62. Pragmatus is informed and believes, and thereon alleges, that the live chat software, hardware, and/or related services that Aspect Software provides to its customers constitute a material part of the invention of the '043 patent at least because the invention cannot be practiced without these components as set forth above. - 63. Pragmatus is informed and believes that the live chat software, hardware, and/or related services that Aspect Software provides to its customers are not staple articles of commerce, and have no substantial non-infringing uses, at least for the reason that the accused aspects of Aspect Software's live chat products are designed to only substantially perform in a manner that infringes as set forth above. - 64. Pragmatus has suffered damages as a result of Aspect Software's infringement of the '043 Patent in an amount to be proven at trial. #### **COUNT IV** # (INFRINGEMENT OF THE '314 PATENT) - 65. Pragmatus incorporates by reference herein the averments set forth in paragraphs 1 through 9 above. - 66. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has directly infringed and continues to directly infringe, literally and/or under the doctrine of equivalents, at least claim 1 of the '314 Patent by making, using, selling, offering for sale and providing live chat services and systems over the Internet. The series of screen shots are examples of and demonstrate Aspect Software's infringement of each of the patents-in-suit. Aspect Software itself calls the accused service/system "live chat" "Welcome to Our Live Chat." 68. Pragmatus is informed and believes, and thereon alleges, that Aspect Software also has and continues to indirectly infringe at least claim 1 of the '314 Patent by inducing others to infringe or contributing to the infringement of others, including customers of its live chat services and systems in this judicial district and elsewhere in the United States. - 69. Specifically, Pragmatus is informed and believes, and thereon alleges, that Aspect Software has actively induced and continues to induce the infringement of at least claim 1 of the '314 Patent at least by actively inducing third party customers like Trupanion and customers that receive similar live chat services in the United States and this District to infringe. - 70. For example, per Aspect Software's website and customer case studies, Aspect provides Trupanion live chat technology and services. On Trupanion's website, these services and technology are clearly displayed at the top of the splash page (www.trupanion.com) where the customer can select "Chat Now." The foregoing is depicted below: 71. When a customer indicates he/she would like to use this technology by clicking on the "Chat Now" portion of Trupanion's webpage, the customer is then asked to enter their name, email and the department of Trupanion they would like to chat with: 72. Once the customer provides this information and clicks on "Chat Now," the customer enters a live chat with Trupanion where the customer can – among other things – have questions answered or apply for health insurance in real time via the live chat technology and services provided by Aspect Software: 73. Upon completion of the live chat – for example, when the customer clicks on "End Chat" – the transcript of the chat remains available for the customer to review and the customer is informed that Trupanion's live chat technology is "Powered by Aspect Software": The foregoing demonstrates Trupanion's infringement of the '314 patent that is and continues to be induced by Aspect Software. 74. Pragmatus is informed and believes, and thereon alleges, that Aspect Software knew or should have known that its conduct and its continued provision of this technology and instructions and assistance with respect to this technology would induce others – like Trupanion and customers that receive similar live chat services – to use its software and/or hardware for providing live chat services in a manner than infringes the '314 Patent. Pragmatus is informed and believes, and thereon alleges, that these third parties – like Trupanion – have infringed and continue to infringe at least claim 1 of the '314 Patent in violation of 35 U.S.C. § 271(a) by using the infringing system/service ("Direct Infringers"). Pragmatus is informed and believes, and thereon alleges, that Aspect Software through at least the sale and/or license of live chat software and hardware and related services as well as support and instructions to provides related to the software and hardware and related services actively induced and continues to induce its customers to infringe at least claim 1 of the '314 Patent. - 75. Pragmatus is informed and believes, and thereon alleges, that at least since it knew of the '314 Patent, Aspect Software specifically intended to induce the Direct Infringers to use the its live chat software in a manner that directly infringes at least claim 1 of the '314 Patent because, among other things, it instructs the Direct Infringers on the use of its live chat products to use the products in an infringing manner. - 76. Pragmatus is informed and believes, and thereon alleges, that as a proximate result of Aspect Software's inducement, the Direct Infringers directly infringed and continue to directly infringe at least claim 1 of the '314 Patent at least by using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet. - 77. Pragmatus is informed and believes, and thereon alleges, that at least since Aspect Software knew of the '314 Patent, Aspect Software knew or was willfully blind to knowing that the Direct Infringers were using Aspect Software's live chat software, hardware, and/or related services in connection with the Internet in a way that directly infringes at least claim 1 of the '314 Patent as a result of its inducement of infringement. - 78. Pragmatus is informed and believes, and thereon alleges, that Aspect Software has contributorily infringed and continues to contributorily infringe at least claim 1 of the '314 Patent by providing, selling or offering to sell within the United States infringing software, systems and services to third party customers like Trupanion that constitute a material part of the claimed invention and are not staple articles of commerce suitable for substantial non-infringing use. Pragmatus is informed and believes, and thereon alleges, that these third parties have infringed and will continue infringe the '314 Patent in violation of 35 U.S.C. § 271(a) by using the infringing live chat software, hardware, and/or related services ("Direct Infringers"). - 79. Pragmatus is informed and believes that Aspect Software provides a component of the patented machine and/or material or apparatus for practicing a patented process to the Direct Infringers of at least claim 1 of the '314 patent by providing its live chat software, hardware, and/or services in conjunction with instructions to Direct Infringers. For example, as set forth above, Aspect Software provides material parts of the invention that have no substantial non-infringing use other than to infringe the '314 patent such as the software that "powers" the live chat technology that Aspect Software provides to its customers like Trupanion as set forth in detail above. - 80. Aspect Software has received written notice of its infringement from Pragmatus in at least a letter dated March 14, 2014 from counsel for Pragmatus to Stephen Beaver, Senior Vice President & General Counsel at Aspect Software. The letter explains that Aspect Software is infringing the '231 patent, the '286 patent, the '043 patent and the '314 patent. The letter further explains that Aspect Software is infringing by offering its own live chat services as well as inducing and contributing to the infringement of its customers by providing software and/or hardware for customers to use the accused services. Aspect Software also has written notice of its infringement by virtue of the filing and service of this Complaint. - 81. Pragmatus is informed and believes that at least as a result of the foregoing notice and the filing and service of this Complaint, Aspect Software has knowledge of its infringement of the '314 Patent. - 82. Pragmatus is informed and believes, and thereon alleges, that the live chat software, hardware, and/or related services that Aspect Software provides to its customers constitute a material part of the invention of the '314 patent at least because the invention cannot be practiced without these components as set forth above. - 83. Pragmatus is informed and believes that the live chat software, hardware, and/or related services that Aspect Software provides to its customers are not staple articles of commerce, and have no substantial non-infringing uses, at least for the reason that the accused aspects of Aspect Software's live chat products are designed to only substantially perform in a manner that infringes as set forth above. - 84. Pragmatus has suffered damages as a result of Aspect Software's infringement of the '314 Patent in an amount to be proven at trial. #### PRAYER FOR RELIEF WHEREFORE, Pragmatus respectfully requests the following relief: - a. A judgment that Aspect Software has infringed one or more claims of United States Patent Nos. 6,311,231, 6,668,286, 7,159,043 and 8,438,314; - b. A judgment that United States Patent Nos. 6,311,231, 6,668,286, 7,159,043 and 8,438,314 are valid and enforceable; - c. Pragmatus be awarded damages adequate to compensate Pragmatus for Aspect Software's infringement of United States Patent Nos. 6,311,231, 6,668,286, 7,159,043 and 8,438,314 up until the date such judgment is entered, including prejudgment and post-judgment interest, costs, and disbursements as justified under 35 U.S.C. § 284 and, if necessary adequately to compensate Pragmatus for Aspect Software's infringement, an accounting; - d. A judgment that Pragmatus be awarded attorneys' fees, costs, and expenses incurred in prosecuting this action; - e. An injunction preventing Aspect Software's infringement of United States Patent Nos. 6,311,231, 6,668,286, 7,159,043 and 8,438,314; and - f. A judgment that Pragmatus be awarded such further relief at law or in equity as the Court deems just and proper. #### **DEMAND FOR JURY TRIAL** Pragmatus hereby demands trial by jury on all claims and issues so triable. Dated: July 29, 2014 Respectfully submitted, #### FARNAN LLP /s/ Brian E. Farnan Brian E. Farnan (Bar No. 4089) 919 North Market Street 12th Floor Wilmington, DE 19801 (302) 777-0300 (302) 777-0301 bfarnan@farnanlaw.com Margaret Elizabeth Day (admitted *pro hac vice*) Ian N. Feinberg (admitted *pro hac vice*) David L. Alberti (admitted *pro hac vice*) Clayton Thompson (admitted *pro hac vice*) Marc C. Belloli (admitted *pro hac vice*) Sal Lim (admitted *pro hac vice*) Yakov Zolotorev (admitted *pro hac vice*) FEINBERG DAY ALBERTI & THOMPSON LLP 1600 El Camino Real, Suite 280 Menlo Park, CA 94025 Telephone: (650) 618.4360 Facsimile: (650) 618.4368 eday@feinday.com ifeinberg@feinday.com dalberti@feinday.com cthompson@feinday.com mbelloli@feinday.com slim@feinday.com yzolotorev@feinday.com Attorneys for Plaintiff Pragmatus Telecom LLC ## EXHIBIT A ## (12) United States Patent Bateman et al. (10) Patent No.: US 6,311,231 B1 (45) **Date of Patent:** Oct. 30, 2001 #### (54) METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CUSTOMER CONTRACT CHANNEL CHANGING SYSTEM USING VOICE OVER IP (76) Inventors: Thomas Howard Bateman, 903 Mollins Dr., Saint John, New Brunswick (CA), E2M 4L7; Bruce Edward Kierstead, 9 Wasson Ct., Saint John New Brunswick (CA), E2K 2K6; William Alexander Noble, 516 Champlain St., Saint John New Brunswick (CA), E2M 1S3; Timothy Lee Curry, 115 Lancelot Dr., Gondola Pt. New Brunswick (CA), E2E 1R8; John Alan Lockett, 102 Islandview Dr., Saint John New Brunswick (CA), E2M3Z8; Laurie Edward Mersereau, 22 Lecroix Dr., Westfield New Brunswick (CA), E0G 3J0; Robert James Ouellette, 132 Josselyn Rd., Saint John New Brunswick (CA), E2J (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 09/239,701 (22) Filed: Jan. 29, 1999 #### Related U.S. Application Data | (62) | Division of application No. 08/532,537, filed on Sep. 23 | 5, | |------|--|----| | 1 1 | 1995, now Pat. No.
5,884,032. | | | (51) | Int. Cl. ⁷ |
G06F 13/10 ; G06F 13/14 | |------|-----------------------|------------------------------------| | (52) | IIS CL | 710/5: 710/6: 710/36: | #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,969,185 | 11/1990 | Dorst et al | |-----------|-----------|--------------------------| | 5,001,710 | 3/1991 | Gawrys et al 370/110.1 | | 5,155,806 | 10/1992 | Hoeber et al 395/157 | | 5,157,768 | 10/1992 | Hoeber et al 395/157 | | 5,175,812 | 12/1992 | Krieger 395/156 | | 5,361,361 | 11/1994 | Hickman et al 395/700 | | 5,384,771 | 1/1995 | Isidoro et al 370/58.2 | | 5,428,608 | 6/1995 | Freeman et al 370/60.1 | | 5,444,774 | 8/1995 | Friedes | | 5,479,487 | * 12/1995 | Hammond | | 5,500,891 | 3/1996 | Harrington et al 379/265 | | 5,535,323 | 7/1996 | Miller et al | | 5,557,668 | 9/1996 | Brady 379/212 | | 5,563,805 | * 10/1996 | Arbuckle et al 364/514 C | | 5,619,508 | 4/1997 | Davis et al 370/495 | | 5,694,546 | * 12/1997 | Reisman | | 5,884,032 | 3/1999 | Bateman et al 395/200.34 | | | | | ^{*} cited by examiner Primary Examiner—Thomas Lee Assistant Examiner—Rehana Perveen (74) Attorney, Agent, or Firm—Burns, Doane, Swecker & Mathis, L.L.P. #### (57) ABSTRACT This invention (The Customer Contact Channel Changer) enables the integration of different Customer Contact Channels such as live call centre ACD (Automatic Call Distribution) agents, ADSI (Analog Display Services Interface) enhanced IVR (Interactive Voice Response) systems and WWW (World Wide Web) servers. The world wide web servers are used to allow customers with computer equipment to access information from an organizations databases in a self service mode. Frequently these customers have questions best answered by human ACD agents. With this invention the connection between the customer with the question and the agent with the answer is done quickly and efficiently with both parties sharing screens of common information. Also control is retained by the customer to make the call happen when they want it. #### 16 Claims, 11 Drawing Sheets **Patent** Oct. 30, 2001 Sheet 10 of 11 US 6,311,231 B1 1 #### METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CUSTOMER CONTRACT CHANNEL CHANGING SYSTEM USING VOICE OVER IP This application is a divisional, of Application Ser. No. 08/532.537, filed Sep. 25, 1995, U.S. Pat. No. 5884032. #### FIELD OF THE INVENTION This invention relates to accessing remote information 10 network services such as those of the WWW (World Wide Web) and particularly, but not exclusively to the manner in which help is enlisted when needed. #### BACKGROUND OF THE INVENTION Some telephone companies (e.g., NBTel, New Brunswick, Canada) have been heavily involved with the development and use of both call centre services and Internet services. More specifically, efforts have been underway to utilize CTI (Computer Telephony Integration) within call centres to improve the productivity and service levels within call centres. CTI uses integration capabilities in various manners to assist telephone users who have access to computer equipment to improve the process of making or receiving phone calls. Call centre technology generally uses both computer equipment and telecommunications equipment with CTI being a key element of productive call centres. The use of new Internet services such as WWW servers to allow organizations to interact with their customers in a self service mode is also being promoted. These WWW 30 servers utilize hypertext and multimedia content to allow customers to see text, images, etc. associated with products and services. Due to human nature and other factors these customers frequently need human assistance to completely satisfy their needs and would likely jot down an 800 35 telephone number with a pencil and paper. They would then call the 800 number to gain access (if the 800 zone coverage was appropriate) to an ACD (Automatic Call Distribution) centre belonging to that organization. Under many circumstances today they would then sit frustrated in an ACD queue $\,^{40}$ awaiting the availability of a live agent. Thus, there are at least two disadvantages of current systems. First, the need for the customer to physically record and dial the 800 number is a disincentive to making the call. Secondly, the likelihood of waiting in long ACD queues is also a disin- 45 centive to making the call. Once the call is made, the queue may also result in the call being a terminated before successful completion because of the delay experienced. A recent improvement in the integration of computers and is disclosed which lets telemarketing agents who are answering calls for multiple campaigns simultaneously, to be set up automatically in their computing environment at the correct campaign based upon the phone number dialed by the customer, and to receive caller related information automatically. However, the user is required to physically dial an 800 number, and likely must wait in an ACD queue. Furthermore, although the agent is set up at the correct campaign, a more accurate initial setup, which for example incorporates the specifics of the customer's queries, is not possible. Finally, this system is not designed for helping users of the Internet. #### SUMMARY OF THE INVENTION It is an object of the invention to provide a means for 65 tance. integrating WWW services with live ACD agents in a manner that mitigates the above mentioned disadvantages. 2 It is another object of the invention to make this process faster and simpler so as to improve the likelihood of a successful connection to a live agent. The invention provides a method of quickly enabling the changing of customer contact channels under control of the calling customer. A customer contact channel is a specific means of communication between the customer and a sales/ service provider. Examples of customer contact channels include verbal phone conversations between customers and human ACD agents of the service/sales organization, IVR (interactive voice response) interactions between customers and IVR servers associated with the service/organization. ADSI (analog display services interface) enhanced IVR interactions between customers and associated servers, and WWW interactions between customers and associated WWW servers. These channels use various communications appliances or terminals such as a regular touch tone telephone, ADSI enhanced telephone (such as Nortel Vista 350), multimedia PC's or multimedia set-top boxes (such as Philips/Zenith/CLI Media Access Terminals) and television sets. The invention provides a series of methods for integrating WWW services with live ACD agents. These methods include establishment of two-way voice connectivity between a customer and a human ACD agent while sharing common screens of information on a WWW page. This connectivity provides requested "LIVE HELP" when a problem is encountered or when an alternate channel is preferred for various reasons. These methods deploy CTI, IVR and related techniques involving the use of computer software and hardware working in conjunction with telephone systems. The specific methods best suited for an individual customer will depend on a number of factors such as the call centre's telephony architecture, the call centre's computing architecture and organizational philosophy and approaches regarding inbound and outbound calling and customer contact concepts. IVR allows for automated handling of scripted or routine telephone conversations. The customer, once connected to an IVR system, is verbally provided with information and options by a computer generated or recorded voice. The customer is able to make selections with the telephone keypad. An ADSI (analog display services interface) enhanced IVR system (e.g., NBTel Express or NBTel CallMall) also provides a text screen that allows easier navigation to the user. These are accessed by ADSI capable telephone sets equipped with a screen. The invention provides methods for integrating and contelephones is disclosed in U.S. Pat. No. 5,001,710. A system one ting a human ACD agent and a customer who is using the WWW and wishes human assistance. Furthermore, the invention provides a customer in voice conversation with an ACD agent an option to enhance that conversation with shared screens of information (images, text, etc.). The inven-55 tion is intended to be used by organizations or individuals with WWW servers and ACD agents. The invention was initially developed to illustrate the joint use of two powerful marketing channels (WWW and ACD agents) and that their combination produces an even more powerful channel than either alone. The main features of this invention are the ability to link and integrate customers (who may have obtained product awareness information or directory information via a WWW server) and appropriate ACD agents or individuals to provide supplementary information or assis- > According to a first broad aspect, the invention provides in a communications system comprising a server on a ic 1 network, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer preparing a help request form comprising the number of the customer's telephone; the system transferring the help request to the call centre; and the call centre setting up a call over the public switched telephone network between the customer telephone and the help channel. According to a second broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at
least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the information network to the computer, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer computer automatically preparing a help request form comprising a network address; the system automatically transferring the help request to the call centre; and the call centre setting up a virtual audio channel on the data network between the channel and the customer computer. According to a third broad aspect, the invention provides in a communications system comprising a server on a $_{30}$ network, means for connecting the server to at least one of either a computer or a set-top box and television in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps the customer selecting a remote help option from the page; the customer set-top box or computer signalling a telephone switch to ring the cus-40 tomers telephone line (with a normal ring or a distinctive ring) in response to the customer selecting the help option; the telephone switch dialing the call centre automatically when the customer the picks up the handset; and the call centre transferring the call to the help channel. According to a fourth broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable 50 through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the 55 customer computer automatically passing a help phone number listed within the page to communications software running on the customer's computer; and the communications software dialing the help phone number with a modem and line connected to the customer's computer and telephone; whereby a voice connection is established between the customer telephone and the help channel. According to a fifth broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one 65 computer equipped with an SVD (simultaneous voice data) modem in a remote customer premises, a help channel one computer equipped with an SVD modem, and a call centre connected to the help channel, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps: establishing a voice connection between a customer telephone and an agent telephone over the PSTN; the agent connecting the agent computer to the server if not already connected; the customer disconnecting the customer computer from the server if connected unless equipped to handle more than one connection; both the customer and ACD agent activating their SVD (Simultaneous Voice Data) comprising a live agent workstation equipped with at least Modems (or ISDN units) such that data and voice connections are established where previously only a voice connection existed in such a way that the agent who is already connected to the desired server acts as a host and the caller acts as a remote connected to the agent's host and in communication with the host over the data portion of the connection and the caller is able to view the same pages as the agent, and the agent can provide the caller with assistance by walking the customer through the information from the server, and discuss it over the voice connection. #### BRIEF DESCRIPTION OF THE DRAWING FIG. 1 shows a block diagram of the first embodiment of the invention; FIG. 2 shows a process flow diagram for the first embodiment of the invention; FIG. 3 shows a process flow diagram for a variation of the first embodiment of the invention; FIG. 4 shows a process flow diagram for another variation of the first embodiment of the invention; FIG. 5 shows a process flow diagram for another variation of the first embodiment of the invention; FIG. 6 shows a block diagram of the second embodiment of the invention: FIG. 7 shows a process flow diagram for the second embodiment of the invention; FIG. 8 shows a block diagram of the third embodiment of the invention: FIG. 9 shows a process flow diagram for the third embodiment of the invention; FIG. 10 shows a block diagram of the fourth embodiment 45 of the invention; and FIG. 11 shows a process flow diagram for the fourth embodiment of the invention. ## DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION In a first preferred embodiment of the invention, illustrated schematically in FIG. 1, a method and apparatus, herein referred to as the Customer Contact Channel Changer, is provided for automatically providing a live telephone connection between a customer using an organization's multimedia services to the organization's ACD agent. Four main components are illustrated, these being the customer premises 2, an ACD agent workstation 12, a call centre 24 and the call centre's multimedia server 28. The multimedia server 28 may be a WWW server 28, and will be referred to herein as such. The call centre's 24 WWW server 28 may actually be located at the call centre, or it could be located remotely. Likewise, the ACD agent workstation 12 may be located in the call centre. Alternatively, the ACD agent workstation may be in locations remote from the call centre such as in an individual agent's home or remote workplace. The components of a customer premises 2 are illustrated in FIG. 1. This includes a PC 4 capable of supporting a graphical WWW HTML (Hypertext Markup Language) browser and supporting generation of a URL (Uniform Resource Locator) of the organization's product and service database, an Internet line 6 (either via LAN or WAN-dial-up via modems), and a telephone 8 connected to the PSTN (public switched telephone network) 9 via a telephone line 10. The URL provides a snapshot indication of where in the hypertext environment of the organization's WWW services the user is at a given time. Numerous commercial WWW browsers are available to assist in navigation through the Internet and WWW servers. These browsers use HTML and HTTP (Hypertext Transport Protocol). In a typical page received via the Internet from an organization providing information or services on a WWW server, words or key phrases may be underlined or bolded to indicate that more information is available. This is referred to as hypertext. If the user is interested in obtaining this additional information, he can click on the word with a mouse, and the additional information is displayed. The typical configuration for an agent workstation 12 is also shown in FIG. 1. An agent workstation 12 is equipped with an ACD telephone set 14 from which a variety of calls can be answered, a Personal Computer 18 capable of supporting a graphical WWW/HTML browser, a telephone line 20 and computer communications line 22 for communicating with the call centre 24 and the WWW 28 via a data network 44 comprised of either a LAN (local area network) or via a dedicated or dial-up WAN (Wide Area Network). Typically a plurality of agent workstations 12 would be 30 employed, depending on the volume of business to be handled. The call centre 24, which handles requests for help from customers after they are received by the WWW server 28, subsequent call back of customers, and live connections 35 with ACD agent workstations 12, is also depicted in FIG. 1. The call centre 24 includes an outbound dialing system 32 capable of setting up a blended inbound/outbound call environment. This outbound dialing system 32 contains a HOTLIST of telephone Numbers of HOT leads (qualified or $_{40}$ interested leads) which are to be called as soon as an agent becomes available or at a time preferred by the customer. The call centre 24 also includes an ACD system 34 (on a digital switch—either PBX, centrex or computer based) calls from the agent 12 to the customer via the PSTN 9 and line 10. It may also include a CTI server 36, an ACD-MIS (ACD management information system) system 38 connected to the ACD system 34, an IVR server 40, a call centre customer information system 42 and a data network 44 for 50 interconnecting various components of the call centre 24. The WWW server 28 (complying to HTTP and HTML) is equipped with information pertaining to an organizations products and services, directory information, etc. The server access line 47 for receiving requests for help, and CGI (Common Gateway Interface) programs 48 for communicating with the call centre 24. It may also include a multimedia message management system 50 which will be described in detail below, and a store of numerous text, graphics and multimedia files 52 in various multimedia file formats (such as GIF, JPEG, MPEG, WAV, AUPCX, PDF, POSTSCRIPT). Not shown between the customer's Internet access line 6 and the WWW server's Internet access line 47 is the Internet itself. A typical session will be described with reference to FIGS. 1 and 2. Process steps are contained in boxes in FIG. 2. The session starts when a customer 2 calls via its Internet access line 6 into the WWW server 28 and commences a self-serve session with an organization which subscribes to Customer Contact Channel Changer service (box 2-1). The customer browses through information regarding products and
services with the graphical WWW browser. This browsing is often achieved by viewing HTML pages 53 and associated multimedia files 52. There may be on-line help which addresses some questions which may arise. At some 10 point additional details or assistance are needed and the customer chooses a "Live Help" option from within an HTML page (box 2-2). This may be done by using a mouse to click on a "Live Help" button on the screen, or by entering a command at the keyboard. This prompts an additional HTML form 54 to pop up which the customer must fill in (box 2-3). The form 54 asks the caller for the phone number at which they can be reached at that time. The URL which the customer was viewing (prior to selecting help) is automatically filled in to indicate the page from which help was 20 requested, but the customer also has the option of providing a different URL. In one embodiment, the customer also has an option of specifying a preferred time to be called back with the default being to request call back as soon as possible. The customer then sends this completed HTML help request off to the WWW server 28 where it is received by the HTTP server 46 and time-stamped. The request may be sent by either E-mail or TCP/IP (transmission control protocol/Internet protocol) client to server HTTP interaction At the call centre 24, the help request messages are received and initially processed by the HTTP server 46. The telephone number, time stamp and URL are passed to the outbound preview dialing system 32 in the call centre 24 via the CGI interface 48 and data net 44. Should agents not be available, messages may be sent back via the CGI interface 48 and HTTP server 46 to the customer with anticipated wait time (derived from the ACD-MIS system 38) and call setup and scheduling options may be presented to the customer in conjunction with the multimedia message management system 50 to be described further below. An active timestamped HOTLIST is maintained to feed the outbound dialing system 32 with numbers to call while also providing the next available agent the URL of where the question arose. The information received from the customer, includwhich makes the actual calls and via line 20 connects the 45 ing a CLID (caller identity) which is the 10 digit customer phone number, and the URL is entered on this HOTLIST (box 2-4). The agent workstation computer 18 is set up to preview the HTML page associated with the caller's URL before or while the outbound call is being made. This allows the agent to be better prepared to answer the question(s) which may arise. The call is then made to the customer automatically without any need for the agent to key any telephone numbers into either their phone 14 or computer 18 (box 2-5). After the customer answers the phone call from 28 includes an HTTP server 46 connected to an Internet 55 the agent, the two parties will be in full voice communication and will be viewing the same multimedia screen which prompted the customers question. The agent can then assist or guide the caller to the solution or answer sought, or can take orders and/or provide technical support (box 2-6). > In a modification of this embodiment, the customer is not required to fill out an HTML page. Upon selection of the "Live Help" option, default values together with the relevant URL are filled in automatically, and the request is immediately sent off. > When it is desired to establish voice communications over the data network rather than the PSTN, instead of sending a telephone number at which the user can be reached, an 7 HTML form including the user's IP (internet protocol) address and URL is filled in automatically and forwarded to the outbounding system through the same channels as before. The process diagram for this is shown in FIG. 3. The rest of this process is similar to that described above except 5 that the outbound call is placed over the Internet using IP based voice communications packages running on the user's PC enabling voice communications. These use originating and terminating IP addresses to set up virtual (packet based) circuits for use as voice channels for the duration of the call. 10 This assumes that the caller and agent have compatible hardware and software configurations on their PC's. When the option is provided to the customer of selecting a time preferred for call-back, a more sophisticated message management system is required. For this purpose, the invention provides a method of managing the integration or connection of customers using various services (WWW servers, voice-mail, IVR, e-mail, etc) to an ACD call centre agent. This multimedia message management system 50 will be referred to herein as the "Multimedia Message Manager" 20 (MMM) 50. A process flow diagram which incorporates the MMM 50 is shown in FIG. 4. This figure is very similar to FIG. 2 with the exception of the addition of the MMM which is connected to the organization's V-mail servers 80 and E-mail servers 81 and the WWW server 28. The MMM 50 acts as an intermediary between the traditional call centre related systems and the new WWW related server systems. Specifically, it communicates with the call centre ACD-MIS system 38 to get estimated anticipated caller wait times (or other parameters) and passes this information to the caller via the HTTP server 46 and related CGI programs 48. It may be used to allow Web browsing of information sources related to the call centre such as the voice mailbox associated with a call centre agent. Overflow calls may be routed to voice mail. The MMM 50 allows the agent or supervisor to scan large volumes of voice-mail messages, E-mail messages, WWW form request etc. and prioritize and schedule call backs from a combined HOT-LIST. The MMM 50 acts as a clearing house point to assist in scheduling calls between customers and ACD agents and vice versa. This allows customers who may not be able or willing to converse with an agent at Time T0 to schedule the 45 call for Time T2 which is the customer's preferred time. The HOTLIST is then updated to include both calls which are to be completed as soon as possible and calls which are due to be completed in the very near future. There are many ways in which the HOTLIST may be maintained. Calls requesting 50 immediate call back can be ordered according to the time stamp of when they were received, which will always be in the immediate past. Calls with future time stamps may be appended to the list prior to the arrival of the time indicated by the future time stamp, or alternatively, they can be given 55 priority and placed at the top of the list when the time arrives. The MMM 50 also handles the notification through the E-mail servers 81 of customers of the fact that delays are expected, and is able to provide an indication of when a return call might be expected. Alternative to connecting a multimedia user to a live agent, with a slight modification of the first embodiment described above the invention can be used to connect a multimedia user (WWW, voice mail, IVR, E-mail) to an IVR call back system, in which help is available on a variety of topics, and in which the user further has the option of being connected to other ADSI enhanced IVR applications such as 8 home shopping systems. This is illustrated in FIG. 5. This is particularly useful in situations where a portion of the call centre's business may have self service options in different mediums. For example, both IVR self service channels and WWW self service channels might be available, and this aspect of the invention allows a quick change from one medium to the other. By selecting the IVR channel, the customer is connected to the IVR channel in an outbound manner as above. FIG. 6 illustrates a second embodiment of the invention. While the first embodiment and its modifications described above are directed towards call centres equipped with outbound calling capabilities, in this second embodiment, the call centre is equipped with inbound call processing capabilities, handling calls as they come in from customers. This provides a method for integrating or connecting a customer who has a SAT (screen assisted telephony) capable configuration and wishes to be connected to a live agent 106. The figure is very similar to FIG. 1, but with much of the detail of the call centre and WWW server removed. There are again four main components illustrated, one of these being the customer premises 100 equipped with a telephone (or a screen assisted telephone set) 110 and line 107, a set-top box (a special purpose computing device which allow access to network services through the television set with user input being achieved through the television remote control) and TV 108 or PC 111, and a CTI/SCAI (switch to computer application interface) enabled line 107. The other main components include the multimedia or WWW server 102, call centre 104 and an agent workstation 106 equipped with a computer 112 and a telephone 114, or a screen assisted telephone. Also shown is the PSTN 116, a broad band multimedia data network 117 and a SAT server 109. The interconnections between the customer premises 100, WWW server 102, call centre 104, agent workstation 106 and PSTN 116 are the similar to before with the exception that all customer PC connections are via a broadband data network 117, and the customer telephone 110 connection is implemented with a line 107 to the PSTN 116 and a subsequent connection to the broadband data network 117. The process followed in the second embodiment will be described with reference to FIGS. 6 and 7. The box numbers refer to boxes shown in FIG. 7. Initially, the customer makes a "multimedia call" in order to be connected to XYZ's multimedia server 102 and to run a multimedia application on the set-top box/TV 108 or PC 111 (box 7-1). The user selects on the set-top box remote or the PC mouse a "MAKE CALL" feature from within the multimedia application (box 7-2). This selection
initiates a series of steps to set up a call to either an ACD group or an individual. The request first signals through the broadband multimedia data net 117 to a PSTN telephone switch 116 specially equipped with CTI techniques (such as SCAI) to ring the customer's line 107 (with a distinctive ring similar to ring-again) prompting the customer to pick up the handset (box 7-3). The PSTN based switch 116, having sensed that the customer has indeed picked up the set, then dials the destination party automatically, which in this case is the call centre 104, where an ACD system distributes the call to an ACD agent workstation 106 (box 74). When an ACD agent answers the call, the customer's URL and/or CLID are forwarded so that a customer relevant screen is appearing on the agent's PC or terminal 114 at the same time (box 7-5). The customer relevant screen is set up on the agent's screen via one of several known CTI techniques. These include first party call control techniques and third party call control techniques. First party call control techniques use various CLID (Calling Line Identification—not shown) boxes and associated screen-pop software. The CLID is transmitted over the telephone line and the CLID box detects this and passes it to the agent's PC over a serial RS232 communications port. The CLID box may be integrated as a part of the telephone, or it may be a standalone unit connected to the telephone line together with the telephone. by the CLID box and looks up the corresponding customer records in a database, and displays them on the screen. Alternatively, using third party call control techniques, the digital switch has a shared data circuit to a "Third Party" CTI server which understands a common protocol such as SCAI. This server then associates various calls with various agents and delivers CLID and/or customer relevant data to the agents workstation as the phone is ringing. Under either of the scenarios described above for transmitting the CLID, the URL information is transmitted in one $\,^{20}$ of two ways. Firstly, upon answering the call and viewing the customer relevant data simultaneously (obtained by looking up the CLID in a customer database), the agent greets the caller and the caller verbally mentions the associated product or subject matter area which causes the agent 25 to hot key to the relevant or related HTML page. A more sophisticated alternative to this is for the WWW server to sense all users querying it in real time (i.e. which URL's are being read and from which IP addresses or E-mail addresses) and then do a look-up into its database to determine corresponding CLID's. As calls from CLID's come in, the database can correlate the associated caller and URL. Should all agents be busy, an IVR system can be used to provide additional information options to the customer while an agent becomes available. This method does not avoid ACD queues, but does make placing the call easier. In addition, the use of the URL and/or CLID makes the provision of help by the agent more efficient. As in the first embodiment, the agent is now in a position to help the customer with the WWW server or other multimedia application with which they require assistance (box 7-6). As in the first embodiment, instead attempting to put the call through to a live agent, the call can be automatically connected to an IVR system. Screen-based telephony and associated SAT telephone switches may be employed in this case, allowing the customer to interact with an ADSI enhanced IVR system. FIG. 8 illustrates a third embodiment of the invention which is quite similar to that shown in FIG. 6, with the 50 exception of the configuration at the customer premises. Again, an inbound call processing capability is required at the call centre, as in the second embodiment. This embodiment provides a method for integrating or connecting a customer 100 who has a telephone 120, a PC 124 with DDE 55 (dynamic data exchange) capabilities and two modems 122, 126 and lines 127, 128 and wishes to be connected to a live agent 104. DDE allows data to be passed dynamically between different applications running on the PC. In this embodiment, the PC 124 is equipped with communications software and modems 122, 126 able to place the call between the customer's telephone 120 and the ACD agent itself, automatically, instead of requiring the telephone switch to set up the call as in FIG. 6. FIG. 9 shows a process diagram showing the steps which 65 occur when this method is used. Initially, the customer makes a multimedia call to connect to company XYZ's 10 multimedia server (box 9-1). The customer then selects the "MAKE CALL" or "HELP" button which may appear on an HTML page (box 9-2). The customer request initiates a PC based DDE whereby the telephone number in the HTML page to be called is passed dynamically to another PC based communications software package where an outbound call is dialed over a regular modem 122 and line 127 (boxes 9-3 and 9-4). When an ACD agent answers, a voice connection between the customer's telephone 120 and the ACD agent's Screen-pop software takes the telephone numbers provided 10 telephone 112 is completed, and a customer relevant screen is appearing on the agent's PC 114 or terminal at the same time (box 9-5) based on incoming CLID and using first part or third party CTI techniques as described previously. > As before, an IVR connection could be established instead of using live agents, and screen assisted telephones and associated servers could be employed to enhance this type of connection. > FIG. 10 illustrates a fourth embodiment of the invention in which a method and apparatus is provided for integrating WWW information from a caller who is already talking to a live ACD agent. In this embodiment either an inbound call processing capability or an outbound call processing capability is required at the call centre. > The customer site 210 is equipped with a computer 212 and a telephone 214 both connected to a SVD (simultaneous voice data) modem 216 with external connections 218 to the PSTN 219 which may be analog, or ISDN (integrated services digital network) format. SVD modems allow both voice and data to be transmitted over the same standard telephone line at the same time. > The agent site 220 is similarly equipped with a computer 222, telephone 224 and SVD 226 and connections to the PSTN 219. It is also connected to a digital switch 230 with ACD functionality for distributing calls to various agents. The agent's computer 222 is also connected to a WWW server 232 and may be connected to a multimedia message management system 234. The process flow diagram for this embodiment is shown 40 in FIG. 11. The customer has been previously connected to an ACD agent either according to the traditional method wherein the customer physically dials an 800 number, or according to one of the methods described above (box 11-1). This includes all of the inbound and outbound call set-up 45 methods and associated hardware described in the first three embodiment and their variants, although it is assumed that a live agent exists, and not an IVR system. Both parties are conversing and desire to be viewing identical screens of information simultaneously, and so decide to go into collaborative mode (box 11-2). This may be due to the fact that simple verbal explanations are insufficient to solve the caller's problems. If the calling party is not yet WWW connected, the two parties activate their SVD Modems 216, 226 (or ISDN units) and activate their remote control software packages (box 11-3). This sets up a data connection over the same telephone line as they were previously using for voice. Then voice and data can be transmitted over the same telephone line. The agent who is already connected to the desired WWW server 132 acts as HOST and the caller acts as a REMOTE allowing the caller to view the same WWW pages (or other Information Systems) as the agent (box 11-4). The agent can then walk the customer through information and supplement it verbally, thereby sharing a multimedia call with the customer (box 11-5). Screens appearing on the agents computer appear on the customer's computer, as what the customer sees is an exact duplicate of what the agent sees. This may result in immediate sales and 11 service or assist in further sales and service. The next time the caller, having become more comfortable and familiar with the system, may opt to use the self serve channel with no human assistance for increased likelihood of repeat business. The above combining of ACD, SVD and WWW building blocks allows collaborative screen sharing between customers and ACD agents. In addition, agent integration via the MMM 234 allows increased agent productivity. If the caller is already logged onto the WWW server, he must disconnect before being able to go into collaborative mode, unless he is equipped to handle two connections at once. In order to implement this embodiment, several configuration (hardware and software) modifications to existing ACD setups would be required. Most current PC's will not successfully support high speed (14.4 KBPS) communications on their serial ports due to the older UART (Universal Asynchronous Receiver Transmitter) chips. Communications with these units is error prone and unreliable. PC's need a smarter faster UART to make this configuration reliable. These are supplied by installing high speed serial input/output boards in the ISA (Industry Standard Architecture) slots on the motherboard of the PC. Software reconfiguration is required to disable the lower speed communications ports. An alternative here it to use new simultaneous voice and data modem technology which utilizes the parallel port of the PC which (for most PC's) currently supports speeds equal to or greater than 28.8 KBPS. At the agent end, the type of line choice (2500-type analog ACD line or digital ACD line) must be made and depending on this additional
hardware and software is required. If a digital ACD line is used, a hardware adaptor is required to convert the digital signaling which may be proprietary in nature into signals recognized by analog based SVD modems. Also, these adaptor units must be modified to handle high speed (14.4 KBPS) data transmission. If 2500-type analog lines are used, software is required on the PC to allow easy access and use of sophisticated feature activation codes. The line choice here depends largely on which features the call centre agent would be using. We claim: - 1. In communications systems comprising a server connected to the Internet-, customer premises equipment in a remote customer premise comprising a customer computer connectable to the Internet and having a customer IP addres, a call center having a plurality of help agent computers connected to the Internet, a method for the customer to obtain help in relation to a WWW page having a URL (universal resource lacator) from the server displayed by the customer computer comprising the steps: - a) the customer selecting a remote help option from the page: - b) the customer computer automatically preparing a help request form comprising the customer IP address; - c) the system automatically transferring the help request 55 to the call center; and - d) the call center setting up a virtual audio channel on the Internet between one of said help agent computers and the customer computer using IP based voice communications. - 2. The method according to claim 1 wherein the request form further comprises a field for filling in a customer preferred time for call-back and wherein the call center further comprises means for recording the help request forms and associated preferred call-back times, and is 65 adapted to place calls at specified times according to the times in the recorded requests. 12 - 3. The method according to claim 1 wherein the means for transferring the request to the call center is one of TCP/IP HTTP or E-mail. - 4. The method according to claim 1 further comprising the step of the call center sending a message back to the customer with an anticipated wait time when no help agent is available for immediate help. - 5. The method according to claim 1, wherein said one of said help agent computers is also provided with customer relevant information. - 6. The method according to claim 1 in which said agent computer is further provided with a URL indicating from which page the customer has requested help and with which the agent computer can be set up at the same page. - 7. A method according to claim 1 further comprising: providing for the selection between a plurality of contact channels. - **8**. A method according to claim **7** wherein the plurality of contact channels include voice over IP and PSTN channels. - 9. An automated call distribution system comprising a server and a call center, the server being for providing network service to a customer terminal, the server comprising one or more pages downloadable to the customer terminal operable to provide a remote help option selectable by a user of the customer terminal, and upon selection of the remote help option, send a help request to the call center identifying a contact channel through which the user of the customer terminal can be reached; - the call center comprising means operable to receive the help request and to contact the user of the customer terminal using the contact channel identified in the help request. - 10. An automated call distribution system according to claim 9 wherein said means operable to receive the help request and contact the user of the customer terminal using the contact channel identified in the help request comprises a live agent workstation. - 11. An automated call distribution system according to claim 9 wherein said means operable to receive the help request and contact the user of the customer terminal using the contact channel identified in the help request comprises an IVR callback system. - 12. An automated call distribution system according to claim 9 wherein: - the server is operable to receive an identification of a web page the user is visiting and to provide this to the call center; - the call center is operable to set up the live agent workstation to the web page the user is visiting. - 13. An inbound call processing system for processing calls from customer premises equipment comprising a telephone with a telephone line, and a network access device connected with a CTI enabled line, the inbound call processing system comprising: - a multimedia server, a call center; - at least one an agent workstation; - a CTI enabled switch: - a broad band multimedia data network wherein customer network access devices are connectable to the multimedia server are over the broadband data network to run a multimedia application provided by the server, and the customer telephone connections are over the PSTN and a subsequent connection to the broadband data network; - the multimedia application comprising a make call option which when selected initiates a series of steps to set up a call to an ACID system by signaling to the CTI enabled switch to ring the customer's telephone line 13 prompting the customer to pick up the handset, and upon sensing that the customer has indeed picked up the set, then dials the call center automatically, where an ACD system distributes the call to an ACD agent workstation. - 14. The inbound call processing system of claim 13 wherein I the CTI enabled switch is SCAI (switch to computer application interface) or other third party call control enabled. - 15. The inbound call processing system of claim $13\,$ 10 comprising: 14 - in each agent workstation, a calling line ID system for identifying a telephone number of an inbound call; - a customer information database queriable on the basis of the telephone number for information related to a customer which is then made available to the agent. - 16. The inbound call processing system of claim 15 further comprising screen pop-up software in the agent work station which presents said customer information. * * * * # EXHIBIT B US006668286B2 ## (12) United States Patent Bateman et al. ### (10) Patent No.: US 6,668,286 B2 (45) **Date of Patent:** *Dec. 23, 2003 # (54) METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CUSTOMER CONTACT CHANNEL CHANGING SYSTEM OVER IP (75) Inventors: Thomas Howard Bateman, Saint John (CA); Bruce Edward Kierstead, Saint John (CA); William Alexander (Sandy) Noble, Saint John (CA); Timothy Lee Curry, Gondola PT. (CA); John Alan Lockett, Saint John (CA); Laurie Edward Mersereau, Westfield (CA); Robert James Ouellette, Saint John (CA) (73) Assignee: Innovatia, Inc., St. Johns (CA) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal disclaimer. (21) Appl. No.: 09/950,801 (22) Filed: Sep. 13, 2001 (65) Prior Publication Data US 2002/0032809 A1 Mar. 14, 2002 #### Related U.S. Application Data - (60) Continuation of application No. 09/239,701, filed on Jan. 28, 1999, now Pat. No. 6,311,231, which is a division of application No. 08/532,537, filed on Sep. 25, 1995, now Pat. No. 5,884,032. - (51) **Int. Cl.**⁷ **G06F** 13/10; G06F 13/14 #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,789,962 A
4,969,185 A | 12/1988
11/1990 | Berry et al | |----------------------------|--------------------|--------------------------| | 5,001,710 A | 3/1991 | Gawrys et al 370/110.1 | | 5,155,806 A | 10/1992 | Hoeber et al 395/157 | | 5,157,768 A | 10/1992 | Hoeber et al 395/157 | | 5,175,812 A | 12/1992 | Krieger 395/156 | | 5,361,361 A | 11/1994 | Hickman et al 395/700 | | 5,384,771 A | 1/1995 | Isidoro et al 370/58.2 | | 5,428,608 A | 6/1995 | Freeman et al 370/60.1 | | 5,444,774 A | 8/1995 | Friedes 379/266 | | 5,479,487 A | 12/1995 | Hammond 379/67 | | 5,500,891 A | 3/1996 | Harrington et al 379/265 | | 5,535,323 A | 7/1996 | Miller et al 395/155 | | 5,557,668 A | 9/1996 | Brady 379/212 | | 5,563,805 A | 10/1996 | Arbuckle et al 364/514 | | 5,619,508 A | 4/1997 | Davis et al 370/495 | | 5,694,546 A | 12/1997 | Reisman 395/200.9 | | 5,706,507 A | * 1/1998 | Schloss 707/104.1 | | 5,884,032 A | 3/1999 | Bateman et al 395/200.34 | | | | | ^{*} cited by examiner Primary Examiner—Rehana Perveen (74) Attorney, Agent, or Firm—Burns, Doane, Swecker & Mathis, L.L.P. #### (57) ABSTRACT This invention (The Customer Contact Channel Changer) enables the integration of different Customer Contact Channels such as live call center ACD (Automatic Call Distribution) agents, ADSI (Analog Display Services Interface) enhanced IVR (Interactive Voice Response) systems and WWW (World Wide Web) servers. The world wide web servers are used to allow customers with computer equipment to access information from an organizations databases in a self service mode. Frequently these customers have questions best answered by human ACD agents. With this invention the connection between the customer with the question and the agent with the answer is done quickly and efficiently with both parties sharing screens of common information. Also control is retained by the customer to make the call happen when they want it. #### 29 Claims, 11 Drawing Sheets Dec. 23, 2003 Sheet 1 of 11 Dec. 23, 2003 Sheet 2 of 11 U.S. Patent Dec. Dec. 23, 2003 Sheet 3 of 11 Dec. 23, 2003 Sheet 4 of 11 Dec. 23, 2003 Sheet 5 of 11 Dec. 23, 2003 Sheet 6 of 11 Dec. 23, 2003 Sheet 7 of 11 Dec. 23, 2003 Sheet 8 of 11 Dec. 23, 2003 Sheet 9 of 11 U.S. Patent Dec. 23, 2003 **Sheet 10 of 11** US 6,668,286 B2 U.S. Patent Dec. 23, 2003 **Sheet 11 of 11** US 6,668,286 B2 1 #### METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE **COMMUNICATIONS VIA CUSTOMER** CONTACT CHANNEL CHANGING SYSTEM OVER IP This application is a continuation of U.S. application Ser. No. 09/239,701, filed on Jan. 28, 1999, now U.S. Pat. No. 6,311,231, which was
a divisional of Ser. No. 08/532,537, on Mar. 16, 1999. #### FIELD OF THE INVENTION This invention relates to accessing remote information network services such as those of the WWW (World Wide 15 Web) and particularly, but not exclusively to the manner in which help is enlisted when needed. #### BACKGROUND OF THE INVENTION Some telephone companies (e.g., NBTel, New 20 Brunswick, Canada) have been heavily involved with the development and use of both call centre services and Internet services. More specifically, efforts have been underway to utilize CTI (Computer Telephony Integration) within call centres to improve the productivity and service levels within 25 call centres. CTI uses integration capabilities in various manners to assist telephone users who have access to computer equipment to improve the process of making or receiving phone calls. Call centre technology generally uses both computer equipment and telecommunications equipment with CTI being a key element of productive call The use of new Internet services such as WWW servers to allow organizations to interact with their customers in a self service mode is also being promoted. These WWW servers utilize hypertext and multimedia content to allow customers to see text, images, etc. associated with products and services. Due to human nature and other factors these customers frequently need human assistance to completely satisfy their needs and would likely jot down an $800_{\ 40}$ customer contact concepts. telephone number with a pencil and paper. They would then call the 800 number to gain access (if the 800 zone coverage was appropriate) to an ACD (Automatic Call Distribution) centre belonging to that organization. Under many circumstances today they would then sit frustrated in an ACD queue 45 customer is able to make selections with the telephone awaiting the availability of a live agent. Thus, there are at least two disadvantages of current systems. First, the need for the customer to physically record and dial the 800 number is a disincentive to making the call. Secondly, the likelihood of waiting in long ACD queues is also a disin- 50 telephone sets equipped with a screen. centive to making the call. Once the call is made, the queue may also result in the call being terminated before successful completion because of the delay experienced. A recent improvement in the integration of computers and telephones is disclosed in U.S. Pat. No. 5,001,710. A system 55 is disclosed which lets telemarketing agents who are answering calls for multiple campaigns simultaneously, to be set up automatically in their computing environment at the correct campaign based upon the phone number dialed by the customer, and to receive caller related information automatically. However, the user is required to physically dial an 800 number, and likely must wait in an ACD queue. Furthermore, although the agent is set up at the correct campaign, a more accurate initial setup, which for example incorporates the specifics of the customer's queries, is not 65 mation via a WWW server) and appropriate ACD agents or possible. Finally, this system is not designed for helping users of the Internet. 2 #### SUMMARY OF THE INVENTION It is an object of the invention to provide a means for integrating WWW services with live ACD agents in a manner that mitigates the above mentioned disadvantages. It is another object of the invention to make this process faster and simpler so as to improve the likelihood of a successful connection to a live agent. The invention provides a method of quickly enabling the changing of customer contact channels under control of the filed on Sep. 25, 1995, now U.S. Pat. No. 5,884,032, issued 10 calling customer. A customer contact channel is a specific means of communication between the customer and a sales/ service provider. Examples of customer contact channels include verbal phone conversations between customers and human ACD agents of the service/sales organization, IVR (interactive voice response) interactions between customers and IVR servers associated with the service/organization, ADSI (analog display services interface) enhanced IVR interactions between customers and associated servers, and WWW interactions between customers and associated WWW servers. These channels use various communications appliances or terminals such as a regular touch tone telephone, ADSI enhanced telephone (such as Nortel Vista 350), multimedia PC's or multimedia set-top boxes (such as Philips/Zenith/CLI Media Access Terminals) and television > The invention provides a series of methods for integrating WWW services with live ACD agents. These methods include establishment of two-way voice connectivity between a customer and a human ACD agent while sharing common screens of information on a WWW page. This connectivity provides requested "LIVE HELP" when a problem is encountered or when an alternate channel is preferred for various reasons. These methods deploy CTI, IVR and related techniques involving the use of computer software and hardware working in conjunction with tele-35 phone systems. The specific methods best suited for an individual customer will depend on a number of factors such as the call centre's telephony architecture, the call centre's computing architecture and organizational philosophy and approaches regarding inbound and outbound calling and IVR allows for automated handling of scripted or routine telephone conversations. The customer, once connected to an IVR system, is verbally provided with information and options by a computer generated or recorded voice. The keypad. An ADSI (analog display services interface) enhanced IVR system (e.g., NBTel Express or NBTel CallMall) also provides a text screen that allows easier navigation to the user. These are accessed by ADSI capable The invention provides methods for integrating and connecting a human ACD agent and a customer who is using the WWW and wishes human assistance. Furthermore, the invention provides a customer in voice conversation with an ACD agent an option to enhance that conversation with shared screens of information (images, text, etc.). The invention is intended to be used by organizations or individuals with WWW servers and ACD agents. The invention was initially developed to illustrate the joint use of two powerful marketing channels (WWW and ACD agents) and that their combination produces an even more powerful channel than either alone. The main features of this invention are the ability to link and integrate customers (who may have obtained product awareness information or directory inforindividuals to provide supplementary information or assis- 3 According to a first broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer preparing a help request form comprising the number of the customer's telephone; the system transferring the help request to the call centre; and the call centre setting up a call over the public switched telephone network between the customer telephone and the help channel. According to a second broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the information network to the computer, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer computer automatically preparing a help request form comprising a network address; the system automatically transferring the help request to the call centre; and the call centre setting up a virtual audio channel on the data network between the channel and the customer computer. According to a third broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one of either a computer or a set-top box and television in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps the customer selecting a 40 remote help option from the page; the customer set-top box or computer signalling a telephone switch to ring the customers telephone line (with a normal ring or a distinctive ring) in response to the customer selecting the help option; the telephone switch dialing the call centre automatically 45 when the customer the picks up the handset; and the call centre transferring the call to the help channel. According to a fourth broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one 50 computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the 55 server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer computer automatically passing a help phone
number listed within the page to communications software running on the customer's computer; and the communications software dialing the help phone number with a modem and line connected to the customer's computer and telephone; whereby a voice connection is established between the customer telephone and the help channel. According to a fifth broad aspect, the invention provides 65 in a communications system comprising a server on a network, means for connecting the server to at least one 4 computer equipped with an SVD (simultaneous voice data) modem in a remote customer premises, a help channel comprising a live agent workstation equipped with at least one computer equipped with an SVD modem, and a call centre connected to the help channel, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps: establishing a voice connection between a customer telephone and an agent telephone over the PSTN; the agent 10 connecting the agent computer to the server if not already connected; the customer disconnecting the customer computer from the server if connected unless equipped to handle more than one connection; both the customer and ACD agent activating their SVD (Simultaneous Voice Data) Modems (or ISDN units) such that data and voice connections are established where previously only a voice connection existed in such a way that the agent who is already connected to the desired server acts as a host and the caller acts as a remote connected to the agent's host and in communication with the host over the data portion of the connection and the caller is able to view the same pages as the agent, and the agent can provide the caller with assistance by walking the customer through the information from the server, and discuss it over the voice connection. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a block diagram of the first embodiment of the invention: FIG. 2 shows a process flow diagram for the first embodiment of the invention; FIG. 3 shows a process flow diagram for a variation of the first embodiment of the invention; FIG. 4 shows a process flow diagram for another variation ³⁵ of the first embodiment of the invention; FIG. 5 shows a process flow diagram for another variation of the first embodiment of the invention; FIG. 6 shows a block diagram of the second embodiment of the invention: FIG. 7 shows a process flow diagram for the second embodiment of the invention; FIG. 8 shows a block diagram of the third embodiment of the invention; FIG. 9 shows a process flow diagram for the third embodiment of the invention; FIG. 10 shows a block diagram of the fourth embodiment of the invention; and FIG. 11 shows a process flow diagram for the fourth embodiment of the invention. ## DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION In a first preferred embodiment of the invention, illustrated schematically in FIG. 1, a method and apparatus, herein referred to as the Customer Contact Channel Changer, is provided for automatically providing a live telephone connection between a customer using an organization's multimedia services to the organization's ACD agent. Four main components are illustrated, these being the customer premises 2, an ACD agent workstation 12, a call centre 24 and the call centre's multimedia server 28. The multimedia server 28 may be a WWW server 28, and will be referred to herein as such. The call centre's 24 WWW server 28 may actually be located at the call centre, or it could be located remotely. Likewise, the ACD agent workstation 12 may be located in the call centre. Alternatively, the ACD agent workstation may be in locations remote from the call centre such as in an individual agent's home or remote workplace. The components of a customer premises 2 are illustrated 5 in FIG. 1. This includes a PC 4 capable of supporting a graphical WWW HTML (Hypertext Markup Language) browser and supporting generation of a URL (Uniform Resource Locator) of the organization's product and service database, an Internet line 6 (either via LAN or WAN-dial-up via modems), and a telephone 8 connected to the PSTN (public switched telephone network) 9 via a telephone line 10. The URL provides a snapshot indication of where in the hypertext environment of the organization's WWW services the user is at a given time. Numerous commercial WWW browsers are available to assist in navigation through the Internet and WWW servers. These browsers use HTML and HTTP (Hypertext Transport Protocol). In a typical page received via the Internet from an organization providing information or services on a WWW server, words or key phrases may be underlined or bolded to indicate that more information is available. This is referred to as hypertext. If the user is interested in obtaining this additional information, he can click on the word with a mouse, and the additional information is displayed. The typical configuration for an agent workstation 12 is also shown in FIG. 1. An agent workstation 12 is equipped with an ACD telephone set 14 from which a variety of calls can be answered, a Personal Computer 18 capable of supporting a graphical WWW/HTML browser, a telephone line 20 and computer communications line 22 for communicating with the call centre 24 and the WWW 28 via a data network 44 comprised of either a LAN (local area network) or via a dedicated or dial-up WAN (Wide Area Network). Typically a plurality of agent workstations 12 would be employed, depending on the volume of business to be handled. The call centre 24, which handles requests for help from customers after they are received by the WWW server 28, subsequent call back of customers, and live connections with ACD agent workstations 12, is also depicted in FIG. 1. The call centre 24 includes an outbound dialing system 32 capable of setting up a blended inbound/outbound call HOTLIST of telephone Numbers of HOT leads (qualified or interested leads) which are to be called as soon as an agent becomes available or at a time preferred by the customer. The call centre 24 also includes an ACD system 34 (on a digital switch—either PBX, centrex or computer based) which makes the actual calls and via line 20 connects the calls from the agent 12 to the customer via the PSTN 9 and line 10. It may also include a CTI server 36, an ACD-MIS (ACD management information system) system 38 connected to the ACD system 34, an IVR server 40, a call centre 55 customer information system 42 and a data network 44 for interconnecting various components of the call centre 24. The WWW server 28 (complying to HTTP and HTML) is equipped with information pertaining to an organizations products and services, directory information, etc. The server 60 28 includes an HTTP server 46 connected to an Internet access line 47 for receiving requests for help, and CGI (Common Gateway Interface) programs 48 for communicating with the call centre 24. It may also include a multimedia message management system 50 which will be 65 take orders and/or provide technical support (box 2-6). described in detail below, and a store of numerous text, graphics and multimedia files 52 in various multimedia file 6 formats (such as GIF, JPEG, MPEG, WAV, AUPCX, PDF, POSTSCRIPT). Not shown between the customer's Internet access line 6 and the WWW server's Internet access line 47 is the Internet itself. A typical session will be described with reference to FIGS. 1 and 2. Process steps are contained in boxes in FIG. 2. The session starts when a customer 2 calls via its Internet access line 6 into the WWW server 28 and commences a self-serve session with an organization which subscribes to Customer Contact Channel Changer service (box 2-1). The customer browses through information regarding products and services with the graphical WWW browser. This browsing is often achieved by viewing HTML pages 53 and associated multimedia files 52. There may be on-line help which addresses some questions which may arise. At some point additional details or assistance are needed and the customer chooses a "Live Help" option from within an HTML page (box 2-2). This may be done by using a mouse to click on a "Live Help" button on the screen, or by entering 20 a command at the keyboard. This prompts an additional HTML form 54 to pop up which the customer must fill in (box 2-3). The form 54 asks the caller for the phone number at which they can be reached at that time. The URL which the customer was viewing (prior to selecting help) is automatically filled in to indicate the page from which help was requested, but the customer also has the option of providing a different URL. In one embodiment, the customer also has an option of specifying a preferred time to be called back with the default being to request call back as soon as possible. The customer then sends this completed HTML help request off to the WWW server 28 where it is received by the HTTP server 46 and time-stamped. The request may be sent by either E-mail or TCP/IP (transmission control protocol/Internet protocol) client to server HTTP interaction At the call centre 24, the help request messages are received and initially processed by the HTTP server 46. The telephone number, time stamp and URL are passed to the outbound preview dialing system 32 in the call centre 24 via 40 the CGI interface 48 and data net 44. Should agents not be available, messages may be sent back via the CGI interface 48 and HTTP server 46 to the customer with anticipated wait time (derived from the ACD-MIS system 38) and call setup and scheduling options may be presented to the customer in environment. This outbound dialing system 32 contains a 45 conjunction with the multimedia message management system 50 to be described further below. An active timestamped HOTLIST is maintained to feed the outbound dialing system 32 with numbers to call while also providing the next available agent the URL of where the question arose. The
information received from the customer, including a CLID (caller identity) which is the 10 digit customer phone number, and the URL is entered on this HOTLIST (box 2-4). The agent workstation computer 18 is set up to preview the HTML page associated with the caller's URL before or while the outbound call is being made. This allows the agent to be better prepared to answer the question(s) which may arise. The call is then made to the customer automatically without any need for the agent to key any telephone numbers into either their phone 14 or computer 18 (box 2-5). After the customer answers the phone call from the agent, the two parties will be in full voice communication and will be viewing the same multimedia screen which prompted the customers question. The agent can then assist or guide the caller to the solution or answer sought, or can > In a modification of this embodiment, the customer is not required to fill out an HTML page. Upon selection of the 7 "Live Help" option, default values together with the relevant URL are filled in automatically, and the request is immediately sent off. When it is desired to establish voice communications over the data network rather than the PSTN, instead of sending a telephone number at which the user can be reached, an HTML form including the user's IP (internet protocol) address and URL is filled in automatically and forwarded to the outbounding system through the same channels as before. The process diagram for this is shown in FIG. 3. The rest of this process is similar to that described above except that the outbound call is placed over the Internet using IP based voice communications packages running on the user's PC enabling voice communications. These use originating and terminating IP addresses to set up virtual (packet based) circuits for use as voice channels for the duration of the call. This assumes that the caller and agent have compatible hardware and software configurations on their PC's. When the option is provided to the customer of selecting a time preferred for call-back, a more sophisticated message management system is required. For this purpose, the invention provides a method of managing the integration or connection of customers using various services (WWW servers, voice-mail, IVR, e-mail, etc) to an ACD call centre agent. This multimedia message management system 50 will be referred to herein as the "Multimedia Message Manager" (MMM) 50. A process flow diagram which incorporates the MMM 50 is shown in FIG. 4. This figure is very similar to FIG. 2 with the exception of the addition of the MMM which is con- $_{30}$ nected to the organization's V-mail servers 80 and E-mail servers 81 and the WWW server 28. The MMM 50 acts as an intermediary between the traditional call centre related systems and the new WWW related server systems. Specifically, it communicates with 35 the call centre ACD-MIS system 38 to get estimated anticipated caller wait times (or other parameters) and passes this information to the caller via the HTTP server 46 and related CGI programs 48. It may be used to allow Web browsing of information sources related to the call centre such as the voice mailbox associated with a call centre agent. Overflow calls may be routed to voice mail. The MMM 50 allows the agent or supervisor to scan large volumes of voice-mail messages, E-mail messages, WWW form request etc. and The MMM 50 acts as a clearing house point to assist in scheduling calls between customers and ACD agents and vice versa. This allows customers who may not be able or willing to converse with an agent at Time T0 to schedule the 50 call for Time T2 which is the customer's preferred time. The HOTLIST is then updated to include both calls which are to be completed as soon as possible and calls which are due to be completed in the very near future. There are many ways in which the HOTLIST may be maintained. Calls requesting 55 immediate call back can be ordered according to the time stamp of when they were received, which will always be in the immediate past. Calls with future time stamps may be appended to the list prior to the arrival of the time indicated by the future time stamp, or alternatively, they can be given priority and placed at the top of the list when the time arrives. The MMM 50 also handles the notification through the E-mail servers 81 of customers of the fact that delays are expected, and is able to provide an indication of when a return call might be expected. Alternative to connecting a multimedia user to a live agent, with a slight modification of the first embodiment 8 described above the invention can be used to connect a multimedia user (WWW, voice mail, IVR, E-mail) to an IVR call back system, in which help is available on a variety of topics, and in which the user further has the option of being connected to other ADSI enhanced IVR applications such as home shopping systems. This is illustrated in FIG. 5. This is particularly useful in situations where a portion of the call centre's business may have self service options in different mediums. For example, both IVR self service channels and WWW self service channels might be available, and this aspect of the invention allows a quick change from one medium to the other. By selecting the IVR channel, the customer is connected to the IVR channel in an outbound manner as above. FIG. 6 illustrates a second embodiment of the invention. While the first embodiment and its modifications described above are directed towards call centres equipped with outbound calling capabilities, in this second embodiment, the call centre is equipped with inbound call processing capabilities, handling calls as they come in from customers. This provides a method for integrating or connecting a customer who has a SAT (screen assisted telephony) capable configuration and wishes to be connected to a live agent 106. The figure is very similar to FIG. 1, but with much of the detail of the call centre and WWW server removed. There are again four main components illustrated, one of these being the customer premises 100 equipped with a telephone (or a screen assisted telephone set) 110 and line 107, a set-top box (a special purpose computing device which allow access to network services through the television set with user input being achieved through the television remote control) and TV 108 or PC 111, and a CTI/SCAI (switch to computer application interface) enabled line 107. The other main components include the multimedia or WWW server 102, call centre 104 and an agent workstation 106 equipped with a computer 112 and a telephone 114, or a screen assisted telephone. Also shown is the PSTN 116, a broad band multimedia data network 117 and a SAT server 109. The interconnections between the customer premises 100, WWW server 102, call centre 104, agent workstation 106 and PSTN 116 are the similar to before with the exception that all customer PC connections are via a broadband data network 117, and the customer telephone 110 connection is implemented with a line 107 to the PSTN 116 and a prioritize and schedule call backs from a combined HOT- 45 subsequent connection to the broadband data network 117. The process followed in the second embodiment will be described with reference to FIGS. 6 and 7. The box numbers refer to boxes shown in FIG. 7. Initially, the customer makes a "multimedia call" in order to be connected to XYZ's multimedia server 102 and to run a multimedia application on the set-top box/TV 108 or PC 111 (box 7-1). The user selects on the set-top box remote or the PC mouse a "MAKE CALL" feature from within the multimedia application (box 7-2). This selection initiates a series of steps to set up a call to either an ACD group or an individual. The request first signals through the broadband multimedia data net 117 to a PSTN telephone switch 116 specially equipped with CTI techniques (such as SCAI) to ring the customer's line 107 (with a distinctive ring similar to ring-again) prompting the customer to pick up the handset (box 7-3). The PSTN based switch 116, having sensed that the customer has indeed picked up the set, then dials the destination party automatically, which in this case is the call centre 104, where an ACD system distributes the call to an ACD agent work-65 station 106 (box 7-4). When an ACD agent answers the call, the customer's URL and/or CLID are forwarded so that a customer relevant (screen is appearing on the agent's PC or terminal 114 at the same time (box 7-5). The customer relevant screen is set up on the agent's screen via one of several known CTI techniques. These include first party call control techniques and third party call control techniques. First party call control techniques use various CLID (Calling Line Identification—not shown) boxes and associated screen-pop software. The CLID is transmitted over the telephone line and the CLID box detects this and passes it to the agent's PC over a serial RS232 communications port. The CLID box may be integrated as a part of the telephone, or it may be a standalone unit connected to the telephone line together with the telephone. Screen-pop software takes the telephone numbers provided by the CLID box and looks up the corresponding customer records in a database, and displays them on the screen. Alternatively, using third party call control techniques, the digital switch has a shared data circuit to a "Third Party" CTI server which understands a common protocol such as SCAI. This server then associates various calls with various agents and delivers CLID and/or customer relevant data to the agents workstation as the phone is ringing. Under either of the scenarios described above for transmitting the CLID, the URL information is transmitted in one of two ways. Firstly, upon answering the call and viewing the customer relevant data simultaneously (obtained by looking up the CLID in a customer database), the agent greets the caller and the caller
verbally mentions the associated product or subject matter area which causes the agent to hot key to the relevant or related HTML page. A more sophisticated alternative to this is for the WWW server to sense all users querying it in real time (i.e. which URL's are being read and from which IP addresses or E-mail addresses) and then do a look-up into its database to determine corresponding CLID's. As calls from CLID's come in, the database can correlate the associated caller and URL. Should all agents be busy, an IVR system can be used to provide additional information options to the customer while an agent becomes available. This method does not avoid ACD queues, but does make placing the call easier. In addition, the use of the URL and/or CLID makes the provision of help by the agent more efficient. As in the first embodiment, the agent is now in a position to help the customer with the WWW server or other multimedia application with which they require assistance (box 7-6). As in the first embodiment, instead attempting to put the call through to a live agent, the call can be automatically connected to an IVR system. Screen-based telephony and associated SAT telephone switches may be employed in this case, allowing the customer to interact with an ADSI 50 enhanced IVR system. FIG. 8 illustrates a third embodiment of the invention which is quite similar to that shown in FIG. 6, with the exception of the configuration at the customer premises. Again, an inbound call processing capability is required at 55 the call centre, as in the second embodiment. This embodiment provides a method for integrating or connecting a customer 100 who has a telephone 120, a PC 124 with DDE (dynamic data exchange) capabilities and two modems 122,126 and lines 127,128 and wishes to be connected to a live agent 104. DDE allows data to be passed dynamically between different applications running on the PC. In this embodiment, the PC 124 is equipped with communications software and modems 122, 126 able to place the call between the customer's telephone 120 and the ACD agent 65 itself, automatically, instead of requiring the telephone switch to set up the call as in FIG. 6. **10** FIG. 9 shows a process diagram showing the steps which occur when this method is used. Initially, the customer makes a multimedia call to connect to company XYZ's multimedia server (box 9-1). The customer then selects the "MAKE CALL" or "HELP" button which may appear on an HTML page (box 9-2). The customer request initiates a PC based DDE whereby the telephone number in the HTML page to be called is passed dynamically to another PC based communications software package where an outbound call is 10 dialed over a regular modem 122 and line 127 (boxes 9-3 and 9-4). When an ACD agent answers, a voice connection between the customer's telephone 120 and the ACD agent's telephone 112 is completed, and a customer relevant screen is appearing on the agent's PC 114 or terminal at the same time (box 9-5) based on incoming CLID and using first part or third party CTI techniques as described previously. As before, an IVR connection could be established instead of using live agents, and screen assisted telephones and associated servers could be employed to enhance this type of connection. FIG. 10 illustrates a fourth embodiment of the invention in which a method and apparatus is provided for integrating WWW information from a caller who is already talking to a live ACD agent. In this embodiment either an inbound call processing capability or an outbound call processing capability is required at the call centre. The customer site 210 is equipped with a computer 212 and a telephone 214 both connected to a SVD (simultaneous voice data) modem 216 with external connections 218 to the PSTN 219 which may be analog, or ISDN (integrated services digital network) format. SVD modems allow both voice and data to be transmitted over the same standard telephone line at the same time. The agent site 220 is similarly equipped with a computer 222, telephone 224 and SVD 226 and connections to the PSTN 219. It is also connected to a digital switch 230 with ACD functionality for distributing calls to various agents. The agent's computer 222 is also connected to a WWW server 232 and may be connected to a multimedia message management system 234. The process flow diagram for this embodiment is shown in FIG. 11. The customer has been previously connected to an ACD agent either according to the traditional method 45 wherein the customer physically dials an 800 number, or according to one of the methods described above (box 11-1). This includes all of the inbound and outbound call set-up methods and associated hardware described in the first three embodiment and their variants, although it is assumed that a live agent exists, and not an IVR system. Both parties are conversing and desire to be viewing identical screens of information simultaneously, and so decide to go into collaborative mode (box 11-2). This may be due to the fact that simple verbal explanations are insufficient to solve the caller's problems. If the calling party is not yet WWW connected, the two parties activate their SVD Modems 216, 226 (or ISDN units) and activate their remote control software packages (box 11-3). This sets up a data connection over the same telephone line as they were previously using for voice. Then voice and data can be transmitted over the same telephone line. The agent who is already connected to the desired WWW server 132 acts as HOST and the caller acts as a REMOTE allowing the caller to view the same WWW pages (or other Information Systems) as the agent (box 11-4). The agent can then walk the customer through information and supplement it verbally, thereby sharing a multimedia call with the customer (box 11-5). Screens 11 appearing on the agents computer appear on the customer's computer, as what the customer sees is an exact duplicate of what the agent sees. This may result in immediate sales and service or assist in further sales and service. The next time the caller, having become more comfortable and familiar 5 with the system, may opt to use the self serve channel with no human assistance for increased likelihood of repeat business. The above combining of ACD, SVD and WWW building blocks allows collaborative screen sharing between customers and ACD agents. In addition, agent integration 10 via the MMM 234 allows increased agent productivity. If the caller is already logged onto the WWW server, he must disconnect before being able to go into collaborative mode, unless he is equipped to handle two connections at once In order to implement this embodiment, several configuration (hardware and software) modifications to existing ACD setups would be required. Most current PC's will not successfully support high speed (14.4 KBPS) communications on their serial ports due to the older UART (Universal Asynchronous Receiver Transmitter) chips. Communications with these units is error prone and unreliable. PC's need a smarter faster UART to make this configuration reliable. These are supplied by installing high speed serial input/output boards in the ISA (Industry Standard 25 Architecture) slots on the motherboard of the PC. Software reconfiguration is required to disable the lower speed communications ports. An alternative here it to use new simultaneous voice and data modem technology which utilizes the parallel port of the PC which (for most PC's) currently supports speeds equal to or greater than 28.8 KBPS. At the agent end, the type of line choice (2500-type analog ACD line or digital ACD line) must be made and depending on this additional hardware and software is required. If a digital ACD line is used, a hardware adaptor is required to convert the digital signaling which may be proprietary in nature into signals recognized by analog based SVD modems. Also, these adaptor units must be modified to handle high speed (14.4 KBPS) data transmission. If 2500-type analog lines are used, software is required on the PC to allow easy access and use of sophisticated feature activation codes. The line choice here depends largely on which features the call centre agent would be using. We claim: 1. A system for connecting a call center to a customer computer having a customer IP address the system comprising: means for presenting a page having a URL on the remote customer computer, the page including a remote help option which when selected generates a help request form including the customer IP address; means for forwarding the help request form to the call - 2. The system according to claim 1 wherein the request $_{55}$ form further comprises a field for filling in a customer preferred time for call-back. - 3. The system according to claim 1 in which the request form further comprises said URL. - 4. A call center comprising: - a means for receiving a help request form containing a customer's IP address; means for establishing a voice over IP connection to the IP address identified in the help request. 5. The system according to claim 4 wherein the request 65 form further comprises a field for filling in a customer preferred time for call-back and wherein the call center 12 further comprises means for recording the requests and associated preferred call-back times, and is adapted to establish the voice over IP connections at specified times according to the times in the recorded requests. - 6. The system according to claim 4 further comprising means for sending a message back to the customer with an anticipated wait time when no live agent is available for immediate help. - 7. The system according to claim 4 further comprising means for providing a call center agent with customer relevant information. - 8. The system according to claim 4 in which the request form further comprises a URL indicating from which page the customer has requested help and with which the agent can set up the agent computer at the same
page. - 9. An automated call distribution system comprising a server and a call centre, the server being for providing network service to a customer terminal, the server comprising one or more pages downloadable to the customer terminal operable to provide a remote help option selectable by a user of the customer terminal, and upon selection of the remote help option, send a help request to the call centre identifying a contact channel through which the user of the customer terminal can be reached; - the call centre comprising means operable to receive the help request and to contact the user of the customer terminal using the contact channel identified in the help request; - wherein the remote help option provides for the selection of one of a plurality of different contact channels. - 10. An automated call distribution system comprising a server and a call centre, the server being for providing network service to a customer terminal, the server comprising one or more pages downloadable to the customer terminal operable to provide a remote help option selectable by a user of the customer terminal, and upon selection of the remote help option, send a help request to the call centre identifying a contact channel through which the user of the customer terminal can be reached; - the call centre comprising means operable to receive the help request and to contact the user of the customer terminal using the contact channel identified in the help request; - wherein the remote help option provides for the selection of either a voice over IP connection or a PSTN connection as the contact channel. - 11. A call center comprising: - an outbound dialing system capable of setting up a blended inbound/outbound call environment containing a list of telephone numbers and IP addresses; - an ACD (automated call distribution) system which distributes actual calls on the basis of the list connecting agent workstations to some customers via the PSTN and some customers via voice over IP; - a CGI (common gateway interface) adapted to collect help requests from a web server and feeds them to the outbound dialing system or ACD. - 12. A call center comprising: - an outbound dialing system capable of setting up a blended inbound/outbound call environment containing a list of telephone numbers and IP addresses; - an ACD (automated call distribution) system which distributes actual calls on the basis of the list connecting agent workstations to some customers via the PSTN or voice over IP; - a CGI (common gateway interface) adapted to collect help requests from a web server and feeds them to the outbound dialing system or ACD; 13 - wherein the help requests include a URL with respect to which help was requested which is provided to the agent workstation connected to a given customer. - 13. The call center of claim 12 further comprising: - an ACD-MIS (ACD management information system) ⁵ system connected to the ACD system for determining anticipated wait times for response; - a multi-media message manager for prioritizing callbacks and for generating messages to be sent back via the CGT to be sent to the customer with an anticipated wait time (determined by the ACD-MIS). - 14. The call centre of claim 13 further comprising a call centre customer information system queriable on the basis of contents of the help request for information pertaining to a given customer to be presented to a help agent when 15 providing help to the given customer. - 15. The call centre of claim 14 wherein the call centre customer information system is queriable on the basis of a customer telephone number. - 16. A call centre comprising: - a CGI (computer telephony interface) server adapted to collect help requests from one or more customer contact channels including the WWW; - an IVR (interactive voice response) callback system; - an ACD (automatic call distribution system); and - an outbound dialing system for making calls to the customers and connecting them to the IVR callback system or to an ACD system. - 17. The call center of claim 16 wherein the contact ³⁰ channels comprise at least WWW, voice mail, IVR and E-mail. - **18**. A help requesting apparatus for conveying help requests to a call centre, the apparatus comprising: - a WWW server comprising means for providing access by customers to a web page including a help request interface for receiving requests for help from customers; - CGI (Common Gateway Interface) programs for communicating the requests for help to the call centre. 40 - 19. An apparatus according to claim 18 wherein the help request comprises a URL and a phone number or IP address. - **20.** An apparatus according to claim **18** further adapted to receive anticipated wait times from the call centre through the CGI interface and to send messages back to the customers with anticipated wait times. - 21. A multi-media message management system comprising a server, a multi-media message manager and a call centre, wherein: - the server is adapted to provide information content to users through a data network and for receiving help requests from users through the data network; 14 - the multi-media message manager is connected to a plurality of contact channels of at least two different types, to collect help requests received through each of these channels and produce a combined list of contacts that need to be made; and - the multi-media message manager is also connected to the call centre for coordinating the delivery of help responses on the basis of the combined list. - 22. A multi-media message management system according to claim 21 wherein the multi-media message manager further comprises means allowing an agent or supervisor to review all of the help requests and prioritize and schedule the combined list. - 23. A multi-media message management system according to claim 21 wherein at least one of the help requests includes a preferred callback time specified by a user, wherein the multi-media message manager prioritizes the combined list taking the preferred callback time into account. - 24. A multi-media message management system according to claim 21 adapted to receive help requests through contact channels comprising one or more of voice mail, E-mail, WWW, IVR, and ADSI IVR. - 25. A multi-media message management system according to claim 21 wherein the call centre is adapted to make calls through the PSTN and voice over IP channels. - 26. A multi-media message management system according to claim 21 further comprising: - means in the call centre for making an estimate of an anticipated caller waft time (or other parameters) and passing this to the multi-media message manager which coordinates forwarding the information to the caller through an appropriate contact channel. - 27. The inbound call processing system for processing calls from users of web pages having URLs, the system comprising: - a CLID lookup database containing telephone numbers of customers; - an ACD system for handling calls from users by distributing them to one of a plurality of agent workstations; means for sensing all users querying different URLs in real time and doing a look-up into the CLID database to correlate CLIDs with URLs, and for providing for each call the URL to the agent handling the call from a given CLID. - 28. The call center of claim 16 wherein the contact channels comprise http form exchange. - 29. A system according to claim 1 further comprising: - an HTTP form exchange mechanism through which to provide help to the customer. * * * * * ## UNITED STATES PATENT AND TRADEMARK OFFICE ## **CERTIFICATE OF CORRECTION** PATENT NO. : 6,668,286 B2 Page 1 of 1 DATED : December 23, 2003 INVENTOR(S): Thomas Howard Bateman et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: #### Title page, Item [60], **Related U.S. Application Data**, change the filing date of application No. 09/239,701 to -- Jan. 29, 1999 --. Signed and Sealed this Twenty-third Day of March, 2004 JON W. DUDAS Acting Director of the United States Patent and Trademark Office ## UNITED STATES PATENT AND TRADEMARK OFFICE ## **CERTIFICATE OF CORRECTION** PATENT NO. : 6,668,286 B2 Page 1 of 1 DATED : December 23, 2003 INVENTOR(S) : Tom Bateman et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: Column 13, Line 10, "... CGT..." should read -- ... CGI... --. Signed and Sealed this Twenty-seventh Day of December, 2005 JON W. DUDAS Director of the United States Patent and Trademark Office # EXHIBIT C ## (12) United States Patent Bateman et al. US 7,159,043 B2 (10) **Patent No.:** (45) Date of Patent: *Jan. 2, 2007 (54) METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE **COMMUNICATIONS VIA CONTACT** CHANNEL CHANGING SYSTEM (75) Inventors: **Thomas Howard Bateman**, Saint John (CA); Bruce Edward Kierstead, Saint John (CA); William Alexander (Sandy) Noble, Saint John (CA); Timothy Lee Curry, Gondola Pt. (CA); John Alan Lockett, Saint John (CA); Laurie Edward Mersereau, Westfield John (CA) (73) Assignee: Innovatia, Inc., St. Johns, CA (US) Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal dis- (CA); Robert James Ouellette, Saint claimer. Appl. No.: 10/663,740 Filed: Sep. 17, 2003 (65)**Prior Publication Data** > US 2004/0059841 A1 Mar. 25, 2004 #### Related U.S. Application Data (60) Continuation of application No. 09/950,801, filed on Sep. 13, 2001, now Pat. No. 6,668,286, which is a continuation of application No. 09/239,701, filed on Jan. 29, 1999, now Pat. No. 6,311,231, which is a division of application No. 08/532,537, filed on Sep. 25, 1995, now Pat. No. 5,884,032. (52) U.S. Cl. 710/6 (51) Int. Cl. (2006.01)G06F 3/00 Field of Classification Search 710/6, 710/36, 39; 709/203, 204, 206, 227; 370/356;
379/210.01, 265.02, 265.09 See application file for complete search history. #### **References Cited** (56) #### U.S. PATENT DOCUMENTS | 4,789,962 A | 12/1988 | Berry et al. | |---------------|----------|-----------------------| | 4,969,185 A | 11/1990 | Dorst et al. | | 5,001,710 A | 3/1991 | Gawrys et al. | | 5,155,806 A | 10/1992 | Hoeber et al. | | 5,157,768 A | 10/1992 | Hoeber et al. | | 5,175,812 A | 12/1992 | Krieger | | 5,185,782 A * | * 2/1993 | Srinivasan 379/210.01 | | 5.361.361 A | 11/1994 | Hickman et al. | #### (Continued) Primary Examiner—Lynne H. Browne Assistant Examiner—Stefan Stoynov (74) Attorney, Agent, or Firm—Buchanan Ingersoll & Rooney #### (57)ABSTRACT This invention (The Customer Contact Channel Changer) enables the integration of different Customer Contact Channels such as live call center ACD (Automatic Call Distribution) agents, ADSI (Analog Display Services Interface) enhanced IVR (Interactive Voice Response) systems and WWW (World Wide Web) servers. The world wide web servers are used to allow customers with computer equipment to access information from an organizations databases in a self service mode. Frequently these customers have questions best answered by human ACD agents. With this invention the connection between the customer with the question and the agent with the answer is done quickly and efficiently with both parties sharing screens of common information. Also control is retained by the customer to make the call happen when they want it. #### 3 Claims, 11 Drawing Sheets ## US 7,159,043 B2 Page 2 | U.S | . PATENT | DOCUMENTS | 5,563,805 A 10/1996 Arbuckle et al. | | |-------------|----------|-------------------|---|---| | | | | 5,619,508 A 4/1997 Davis et al. | | | 5,384,771 A | 1/1995 | Isidoro et al. | 5,621,789 A * 4/1997 McCalmont et al 379/265.06 | j | | 5,428,608 A | 6/1995 | Freeman et al. | 5.694.546 A 12/1997 Reisman | | | 5,444,774 A | 8/1995 | Friedes | 5,706,507 A 1/1998 Schloss | | | 5,479,487 A | 12/1995 | Hammond | 5,715,314 A * 2/1998 Payne et al | Ł | | 5,500,891 A | 3/1996 | Harrington et al. | 5.884.032 A 3/1999 Bateman et al. | | | 5,535,323 A | 7/1996 | Miller et al. | 3,00 1,032 11 3/1999 Batchian et al. | | | 5,557,668 A | 9/1996 | Brady | * cited by examiner | | U.S. Patent Jan. 2, 2007 Sheet 1 of 11 US 7,159,043 B2 U.S. Patent US 7,159,043 B2 Jan. 2, 2007 Sheet 8 of 11 XYZ'S CO.'S CALL CENTER! XYZ'S CO.'S MULTI-MEDIA WWW SERVER/SYSTEMS SYSTEMS ∞ DATA NET **~106** TXYZ CO. AGENT WORKSTATION **CUSTOMER PREMISES** U.S. Patent Jan. 2, 2007 **Sheet 10 of 11** US 7,159,043 B2 5 1 #### METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CONTACT CHANNEL CHANGING SYSTEM #### RELATED APPLICATIONS This Application is a continuation of application Ser. No. 09/950,801 filed Sep. 13, 2001 now U.S. Pat. No. 6,668,286 which is a continuation of application Ser. No. 09/239,701 10 filed Jan. 29, 1999, now U.S. Pat. No. 6,311,231, which is a divisional of U.S. application Ser. No. 08/532,537 filed Sep. 25, 1995, now U.S. Pat. No. 5,884,032. #### FIELD OF THE INVENTION This invention relates to accessing remote information network services such as those of the WWW (World Wide Web) and particularly, but not exclusively to the manner in which help is enlisted when needed. #### BACKGROUND OF INVENTION Some telephone companies (e.g., NBTel, New Brunswick, Canada) have been heavily involved with the development and use of both call centre services and Internet services. More specifically, efforts have been underway to utilize CTI (Computer Telephony Integration) within call centres to improve the productivity and service levels within call centres. CTI uses integration capabilities in various manners to assist telephone users who have access to computer equipment to improve the process of making or receiving phone calls. Call centre technology generally uses both computer equipment and telecommunications equipment with CTI being a key element of productive call 35 centres. The use of new Internet services such as WWW servers to allow organizations to interact with their customers in a self service mode is also being promoted. These WWW servers utilize hypertext and multimedia content to allow 40 customers to see text, images, etc. associated with products and services. Due to human nature and other factors these customers frequently need human assistance to completely satisfy their needs and would likely jot down an 800 telephone number with a pencil and paper. They would then 45 call the 800 number to gain access (if the 800 zone coverage was appropriate) to an ACD (Automatic Call Distribution) centre belonging to that organization. Under many circumstances today they would then sit frustrated in an ACD queue awaiting the availability of a live agent. Thus, there are at 50 least two disadvantages of current systems. First, the need for the customer to physically record and dial the 800 number is a disincentive to making the call. Secondly, the likelihood of waiting in long ACD queues is also a disincentive to making the call. Once the call is made, the queue 55 may also result in the call being terminated before successful completion because of the delay experienced. A recent improvement in the integration of computers and telephones is disclosed in U.S. Pat. No. 5,001,710. A system is disclosed which lets telemarketing agents who are answering calls for multiple campaigns simultaneously, to be set up automatically in their computing environment at the correct campaign based upon the phone number dialed by the customer, and to receive caller related information automatically. However, the user is required to physically dial an 800 65 number, and likely must wait in an ACD queue. Furthermore, although the agent is set up at the correct campaign, 2 a more accurate initial setup, which for example incorporates the specifics of the customer's queries, is not possible. Finally, this system is not designed for helping users of the Internet. #### SUMMARY OF THE INVENTION It is another object of the invention to make this process faster and simpler so as to improve the likelihood of a successful connection to a live agent. The invention provides a method of quickly enabling the changing of customer contact channels under control of the calling customer. A customer contact channel is a specific means of communication between the customer and a sales/ 15 service provider. Examples of customer contact channels include verbal phone conversations between customers and human ACD agents of the service/sales organization, IVR (interactive voice response) interactions between customers and IVR servers associated with the service/organization, 20 ADSI (analog display services interface) enhanced IVR interactions between customers and associated servers, and WWW interactions between customers and associated WWW servers. These channels use various communications appliances or terminals such as a regular touch tone telephone, ADSI enhanced telephone (such as Nortel Vista 350), multimedia PC's or multimedia set-top boxes (such as Phllps/Zenith/CLI Media Access Terminals) and television The invention provides a series of methods for integrating WWW services with live ACD agents. These methods include establishment of two-way voice connectivity between a customer and a human ACD agent while sharing common screens of information on a WWW page. This connectivity provides requested "LIVE HELP" when a problem is encountered or when an alternate channel is preferred for various reasons. These methods deploy CTI, IVR and related techniques involving the use of computer software and hardware working in conjunction with telephone systems. The specific methods best suited for an individual customer will depend on a number of factors such as the call centre's telephony architecture, the call centre's computing architecture and organizational philosophy and approaches regarding inbound and outbound calling and customer contact concepts. IVR allows for automated handling of scripted or routine telephone conversations. The customer, once connected to an IVR system, is verbally provided with information and options by a computer generated or recorded voice. The customer is able to make selections with the telephone keypad. An ADSI (analog display services interface) enhanced IVR system (e.g., NBTel Express or NBTel Call-Mall) also provides a text screen that allows easier navigation to the user. These are accessed by ADSI capable telephone sets equipped with a screen. The invention provides methods for integrating and connecting a human ACD agent and a customer who is using the WWW and wishes human assistance. Furthermore, the invention provides a customer in voice conversation with an ACD agent an option to enhance that conversation with shared screens of information (images, text, etc.). The invention is intended to be used by organizations or individuals with WWW servers and ACD agents. The invention was initially developed to illustrate the Joint use of two powerful marketing channels (WWW and ACD agents) and that their combination produces an even more powerful channel than either alone. The main features of this invention are the ability to link and integrate customers (who may have obtained product awareness information or directory information via a WWW server) and appropriate ACD agents or individuals to provide supplementary information or assis- According to a first broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the
computer comprising the steps of the customer selecting a remote help option from the page; the customer preparing a help request form comprising the number of the customer's telephone; the system transferring the help request to the call centre; and the call centre setting up a call over the public switched telephone network between the customer telephone and the help channel. According to a second broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the information network to the computer, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer computer automatically preparing a help request form comprising a network address; the system automatically transferring the help request to the call centre; and the call centre setting up a virtual audio channel on the data network between the channel and the customer computer. According to a third broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one of either a computer or a set-top box and television in a remote customer premises, a help channel and a call centre con- 40 of the first embodiment of the invention; nected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps the customer selecting a 45 remote help option from the page; the customer set-top box or computer signalling a telephone switch to ring the customers telephone line (with a normal ring or a distinctive ring) in response to the customer selecting the help option; the telephone switch dialing the call centre automatically 50 embodiment of the invention; when the customer the picks up the handset; and the call centre transferring the call to the help channel. According to a fourth broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one 55 computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the 60 server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer computer automatically passing a help phone number listed within the page to communications software running on the customer's computer; and the communications software dialing the help phone number with a modem and line connected to the customer's computer and tele- phone; whereby a voice connection is established between the customer telephone and the help channel. According to a fifth broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer equipped with an SVD (simultaneous voice data) modem in a remote customer premises, a help channel comprising a live agent workstation equipped with at least one computer equipped with an SVD modem, and a call centre connected to the help channel, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps: establishing a voice connection between a customer telephone and an agent telephone over the PSTN; the agent connecting the agent computer to the server if not already connected; the customer disconnecting the customer computer from the server if connected unless equipped to handle more than one connection; both the customer and ACD agent activating their SVD (Simultaneous Voice Data) Modems (or ISDN units) such that data and voice connections are established where previously only a voice connection existed in such a way that the agent who is already connected to the desired server acts as a host and the caller acts as a remote connected to the agent's host and in communication with the host over the data portion of the connection and the caller is able to view the same pages as the agent, and the agent can provide the caller with assistance by walking the customer through the information from the server, and discuss it over the voice connection. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a block diagram of the first embodiment of the invention; FIG. 2 shows a process flow diagram for the first embodiment of the invention; FIG. 3 shows a process flow diagram for a variation of the first embodiment of the invention; FIG. 4 shows a process flow diagram for another variation FIG. 5 shows a process flow diagram for another variation of the first embodiment of the invention; FIG. 6 shows a block diagram of the second embodiment of the invention; FIG. 7 shows a process flow diagram for the second embodiment of the invention; FIG. 8 shows a block diagram of the third embodiment of the invention: FIG. 9 shows a process flow diagram for the third FIG. 10 shows a block diagram of the fourth embodiment of the invention; and FIG. 11 shows a process flow diagram for the fourth embodiment of the invention. #### DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION In a first preferred embodiment of the invention, illustrated schematically in FIG. 1, a method and apparatus, herein referred to as the Customer Contact Channel Changer, is provided for automatically providing a live telephone connection between a customer using an organization's multimedia services to the organization's ACD agent. Four main components are illustrated, these being the customer premises 2, an ACD agent workstation 12, a call centre 24 and the call centre's multimedia server 28. The 5 multimedia server 28 may be a WWW server 28, and will be referred to herein as such. The call centre's 24 WWW server 28 may actually be located at the call centre, or it could be located remotely. Likewise, the ACD agent workstation 12 may be located in the call centre. Alternatively, the ACD 5 agent workstation may be in locations remote from the call centre such as in an individual agent's home or remote workplace. The components of a customer premises 2 are illustrated in FIG. 1. This includes a PC 4 capable of supporting a 10 graphical WWW HTML (Hypertext Markup Language) browser and supporting generation of a URL (Uniform Resource Locator) of the organization's product and service database, an Internet line 6 (either via LAN or WAN-dial-up via modems), and a telephone 8 connected to the PSTN 15 (public switched telephone network) 9 via a telephone line 10. The URL provides a snapshot indication of where in the hypertext environment of the organization's WWW services the user is at a given time. Numerous commercial WWW browsers are available to 20 assist in navigation through the Internet and WWW servers. These browsers use HTML and HTTP (Hypertext Transport Protocol). In a typical page received via the Internet from an organization providing information or services on a WWW server, words or key phrases may be underlined or bolded to 25 indicate that more information is available. This is referred to as hypertext. If the user is interested in obtaining this additional information, he can click on the word with a mouse, and the additional information is displayed. The typical configuration for an agent workstation 12 is also shown in FIG. 1. An agent workstation 12 is equipped with an ACD telephone set 14 from which a variety of calls can be answered, a Personal Computer 18 capable of supporting a graphical WWW/HTML browser, a telephone line 20 and computer communications line 22 for communicating with the call centre 24 and the WWW 28 via a data network 44 comprised of either a LAN (local area network) or via a dedicated or dial-up WAN (Wide Area Network). Typically a plurality of agent workstations 12 would be employed, depending on the volume of business to be 40 handled. The call centre 24, which handles requests for help from customers after they are received by the WWW server 28, subsequent call back of customers, and live connections with ACD agent workstations 12, is also depicted in FIG. 1. 45 The call centre 24 includes an outbound dialing system 32 capable of setting up a blended inbound/outbound call environment. This outbound dialing system 32 contains a HOTLIST of telephone Numbers of HOT leads (qualified or interested leads) which are to be called as soon as an agent 50 becomes available or at a time preferred by the customer. The call centre 24 also includes an ACD system 34 (on a digital switch—either PBX, centrex or computer based) which makes the actual calls and via line 20 connects the calls from the agent 12 to the customer via the PSTN 9 and 55 line 10. It may also include a CTI server 36, an ACD-MIS (ACD management information system) system 38 connected to the ACD system 34, an IVR server 40, a call centre customer information system 42 and a data network 44 for interconnecting various components of the call centre 24. The WWW server 28 (complying to HTTP and HTML) is equipped with information pertaining to an organizations products and services, directory information, etc. The server 28 includes an HTTP server 46 connected to an Internet access line 47 for receiving requests for help, and CGI 65 (Common Gateway Interface) programs 48 for communicating with the call centre 24. It may also include a multi- 6 media message management system 50 which will be described in detail below, and a store of
numerous text, graphics and multimedia files 52 in various multimedia file formats (such as GIF, JPEG, MPEG, WAV, AUPCX, PDF, POSTSCRIPT). Not shown between the customer's Internet access line 6 and the WWW server's Internet access line 47 is the Internet itself. A typical session will be described with reference to FIGS. 1 and 2. Process steps are contained in boxes in FIG. 2. The session starts when a customer 2 calls via its Internet access line 6 into the WWW server 28 and commences a self-serve session with an organization which subscribes to Customer Contact Channel Changer service (box 2-1). The customer browses through information regarding products and services with the graphical WWW browser. This browsing is often achieved by viewing HTML pages 53 and associated multimedia files 52. There may be on-line help which addresses some questions which may arise. At some point additional details or assistance are needed and the customer chooses a "Live Help" option from within an HTML page (box 2-2). This may be done by using a mouse to click on a "Live Help" button on the screen, or by entering a command at the keyboard. This prompts an additional HTML form 54 to pop up which the customer must fill in (box 2-3). The form 54 asks the caller for the phone number at which they can be reached at that time. The URL which the customer was viewing (prior to selecting help) is automatically filled in to indicate the page from which help was requested, but the customer also has the option of providing a different URL. In one embodiment, the customer also has an option of specifying a preferred time to be called back with the default being to request call back as soon as possible. The customer then sends this completed HTML help request off to the WWW server 28 where it is received by the HTTP server 46 and time-stamped. The request may be sent by either E-mail or TCP/IP (transmission control protocol/Internet protocol) client to server HTTP interaction At the call centre 24, the help request messages are received and initially processed by the HTTP server 46. The telephone number, time stamp and URL are passed to the outbound preview dialing system 32 in the call centre 24 via the CGI interface 48 and data net 44. Should agents not be available, messages may be sent back via the CGI interface 48 and HTTP server 46 to the customer with anticipated wait time (derived from the ACD-MIS system 38) and call setup and scheduling options may be presented to the customer in conjunction with the multimedia message management system 50 to be described further below. An active timestamped HOTLIST is maintained to feed the outbound dialing system 32 with numbers to call while also providing the next available agent the URL of where the question arose. The information received from the customer, including a CLID (caller identity) which is the 10 digit customer phone number, and the URL is entered on this HOTLIST (box 2-4). The agent workstation computer 18 is set up to preview the HTML page associated with the caller's URL before or while the outbound call is being made. This allows the agent to be better prepared to answer the question(s) which may arise. The call is then made to the customer automatically without any need for the agent to key any telephone numbers into either their phone 14 or computer 18 (box 2-5). After the customer answers the phone call from the agent, the two parties will be in full voice communication and will be viewing the same multimedia screen which prompted the customers question. The agent can then assist 7 or guide the caller to the solution or answer sought, or can take orders and/or provide technical support (box 2-6). In a modification of this embodiment, the customer is not required to fill out an HTML page. Upon selection of the "Live Help" option, default values together with the relevant 5 URL are filled in automatically, and the request is immediately sent off. When it is desired to establish voice communications over the data network rather than the PSTN, instead of sending a telephone number at which the user can be reached, an 10 HTML form including the user's IP (internet protocol) address and URL is filled in automatically and forwarded to the outbounding system through the same channels as before. The process diagram for this is shown in FIG. 3. The rest of this process is similar to that described above except 15 that the outbound call is placed over the Internet using IP based voice communications packages running on the user's PC enabling voice communications. These use originating and terminating IP addresses to set up virtual (packet based) circuits for use as voice channels for the duration of the call. 20 This assumes that the caller and agent have compatible hardware and software configurations on their PC's. When the option is provided to the customer of selecting a time preferred for call-back, a more sophisticated message management system is required. For this purpose, the invention provides a method of managing the integration or connection of customers using various services (WWW servers, voice-mail, IVR, e-mail, etc) to an ACD call centre agent. This multimedia message management system 50 will be referred to herein as the "Multimedia Message Manager" 30 (MMM) 50. A process flow diagram which incorporates the MMM 50 is shown in FIG. 4. This figure is very similar to FIG. 2 with the exception of the addition of the MMM which is connected to the organization's V-mail servers 80 and E-mail 35 servers 81 and the WWW server 28. The MMM 50 acts as an intermediary between the traditional call centre related systems and the new WWW related server systems. Specifically, it communicates with the call centre ACD-MIS system 38 to get estimated anticipated caller wait times (or other parameters) and passes this information to the caller via the HTTP server 46 and related CGI programs 48. It may be used to allow Web browsing of information sources related to the call centre such as the voice mailbox associated with a call centre agent. Overflow 45 calls may be routed to voice mail. The MMM 50 allows the agent or supervisor to scan large volumes of voice-mail messages, E-mail messages, WWW form request etc. and prioritize and schedule call backs from a combined HOT-LIST. The MMM 50 acts as a clearing house point to assist in scheduling calls between customers and ACD agents and vice versa. This allows customers who may not be able or willing to converse with an agent at Time T0 to schedule the call for Time T2 which is the customer's preferred time. The 55 HOTLIST is then updated to include both calls which are to be completed as soon as possible and calls which are due to be completed in the very near future. There are many ways in which the HOTLIST may be maintained. Calls requesting immediate call back can be ordered according to the time 60 stamp of when they were received, which will always be in the immediate past. Calls with future time stamps may be appended to the list prior to the arrival of the time indicated by the future time stamp, or alternatively, they can be given priority and placed at the top of the list when the time 65 arrives. The MMM 50 also handles the notification through the E-mail servers 81 of customers of the fact that delays are 8 expected, and is able to provide an indication of when a return call might be expected. Alternative to connecting a multimedia user to a live agent, with a slight modification of the first embodiment described above the invention can be used to connect a multimedia user (WWW, voice mail, IVR, E-mail) to an IVR call back system, in which help is available on a variety of topics, and in which the user further has the option of being connected to other ADSI enhanced IVR applications such as home shopping systems. This is illustrated in FIG. 5. This is particularly useful in situations where a portion of the call centre's business may have self service options in different mediums. For example, both IVR self service channels and WWW self service channels might be available, and this aspect of the invention allows a quick change from one medium to the other. By selecting the IVR channel, the customer is connected to the IVR channel in an outbound manner as above. FIG. 6 illustrates a second embodiment of the invention. While the first embodiment and its modifications described above are directed towards call centres equipped with outbound calling capabilities, in this second embodiment, the call centre is equipped with inbound call processing capabilities, handling calls as they come in from customers. This provides a method for integrating or connecting a customer who has a SAT (screen assisted telephony) capable configuration and wishes to be connected to a live agent 106. The figure is very similar to FIG. 1, but with much of the detail of the call centre and WWW server removed. There are again four main components illustrated, one of these being the customer premises 100 equipped with a telephone (or a screen assisted telephone set) 110 and line 107, a set-top box (a special purpose computing device which allow access to network services through the television set with user input being achieved through the television remote control) and TV 108 or PC 111, and a CTI/SCAI (switch to computer application interface) enabled line 107. The other main components include the multimedia or WWW server 102, call centre 104 and an agent workstation 106 equipped with a computer 112 and a telephone 114, or a screen assisted telephone. Also shown is the PSTN 116, a broad band multimedia data network 117 and a SAT server 109. The interconnections between the customer premises 100, WWW server 102, call centre 104, agent workstation 106 and PSTN 116 are the similar to before with the exception that all customer PC connections are via a broadband data network 117, and the customer telephone 110 connection is implemented with a line 107 to the PSTN
116 and a subsequent connection to the broadband data network 117. The process followed in the second embodiment will be described with reference to FIGS. 6 and 7. The box numbers refer to boxes shown in FIG. 7. Initially, the customer makes a "multimedia call" in order to be connected to XYZ's multimedia server 102 and to run a multimedia application on the set-top box /TV 108 or PC 111 (box 7-1). The user selects on the set-top box remote or the PC mouse a "MAKE CALL" feature from within the multimedia application (box 7-2). This selection initiates a series of steps to set up a call to either an ACD group or an individual. The request first signals through the broadband multimedia data net 117 to a PSTN telephone switch 116 specially equipped with CTI techniques (such as SCAI) to ring the customer's line 107 (with a distinctive ring similar to ring-again) prompting the customer to pick up the handset (box 7-3). The PSTN based switch 116, having sensed that the customer has indeed picked up the set, then dials the destination party automati9 cally, which in this case is the call centre 104, where an ACD system distributes the call to an ACD agent workstation 106 (box 7-4) When an ACD agent answers the call, the customer's URL and/or CLID are forwarded so that a customer relevant 5 screen is appearing on the agent's PC or terminal **114** at the same time (box **7-5**). The customer relevant screen is set up on the agent's screen via one of several known CTI techniques. These include first party call control techniques and third party call control techniques. First party call control techniques use various CLID (Calling Line Identification—not shown) boxes and associated screen-pop software. The CLID is transmitted over the telephone line and the CLID box detects this and passes it to the agent's PC over a serial RS232 15 communications port. The CLID box may be integrated as a part of the telephone, or it may be a standalone unit connected to the telephone line together with the telephone. Screen-pop software takes the telephone numbers provided by the CLID box and looks up the corresponding customer 20 records in a database, and displays them on the screen. Alternatively, using third party call control techniques, the digital switch has a shared data circuit to a "Third Party" CTI server which understands a common protocol such as SCAI. This server then associates various calls with various 25 agents and delivers CLID and/or customer relevant data to the agents workstation as the phone is ringing. Under either of the scenarios described above for transmitting the CLID, the URL information is transmitted in one of two ways. Firstly, upon answering the call and viewing 30 the customer relevant data simultaneously (obtained by looking up the CLID in a customer database), the agent greets the caller and the caller verbally mentions the associated product or subject matter area which causes the agent to hot key to the relevant or related HTML page. A more 35 sophisticated alternative to this is for the WWW server to sense all users querying it in real time (i.e. which URL's are being read and from which IP addresses or E-mail addresses) and then do a look-up into its database to determine corresponding CLID's. As calls from CLID's come in, the 40 database can correlate the associated caller and URL. Should all agents be busy, an IVR system can be used to provide additional information options to the customer while an agent becomes available. This method does not avoid ACD queues, but does make placing the call easier. In 45 addition, the use of the URL and/or CLID makes the provision of help by the agent more efficient. As in the first embodiment, the agent is now in a position to help the customer with the WWW server or other multimedia application with which they require assistance (box 7-6). As in the first embodiment, instead attempting to put the call through to a live agent, the call can be automatically connected to an IVR system. Screen-based telephony and associated SAT telephone switches may be employed in this case, allowing the customer to interact with an ADSI 55 enhanced IVR system. FIG. 8 illustrates a third embodiment of the invention which is quite similar to that shown in FIG. 6, with the exception of the configuration at the customer premises. Again, an inbound call processing capability is required at 60 the call centre, as in the second embodiment. This embodiment provides a method for integrating or connecting a customer 100 who has a telephone 120, a PC 124 with DDE (dynamic data exchange) capabilities and two modems 122,126 and lines 127,128 and wishes to be connected to a 65 live agent 104. DDE allows data to be passed dynamically between different applications running on the PC. In this 10 embodiment, the PC 124 is equipped with communications software and modems 122, 126 able to place the call between the customer's telephone 120 and the ACD agent itself, automatically, instead of requiring the telephone switch to set up the call as in FIG. 6. FIG. 9 shows a process diagram showing the steps which occur when this method is used. Initially, the customer makes a multimedia call to connect to company XYZ's multimedia server (box 9-1). The customer then selects the "MAKE CALL" or "HELP" button which may appear on an HTML page (box 9-2). The customer request initiates a PC based DDE whereby the telephone number in the HTML page to be called is passed dynamically to another PC based communications software package where an outbound call is dialed over a regular modem 122 and line 127 (boxes 9-3 and 9-4). When an ACD agent answers, a voice connection between the customer's telephone 120 and the ACD agent's telephone 112 is completed, and a customer relevant screen is appearing on the agent's PC 114 or terminal at the same time (box 9-5) based on incoming CLID and using first part or third party CTI techniques as described previously. As before, an IVR connection could be established instead of using live agents, and screen assisted telephones and associated servers could be employed to enhance this type of connection. FIG. 10 illustrates a fourth embodiment of the invention in which a method and apparatus is provided for integrating WWW information from a caller who is already talking to a live ACD agent. In this embodiment either an inbound call processing capability or an outbound call processing capability is required at the call centre. The customer site 210 is equipped with a computer 212 and a telephone 214 both connected to a SVD (simultaneous voice data) modem 216 with external connections 218 to the PSTN 219 which may be analog, or ISDN (integrated services digital network) format. SVD modems allow both voice and data to be transmitted over the same standard telephone line at the same time. and then do a look-up into its database to determine corresponding CLID's. As calls from CLID's come in, the database can correlate the associated caller and URL. Should all agents be busy, an IVR system can be used to provide additional information options to the customer while an agent becomes available. This method does not avoid ACD queues, but does make placing the call easier. In 45 The process flow diagram for this embodiment is shown in FIG. 11. The customer has been previously connected to an ACD agent either according to the traditional method wherein the customer physically dials an 800 number, or according to one of the methods described above (box 11-1). This includes all of the inbound and outbound call set-up methods and associated hardware described in the first three embodiment and their variants, although it is assumed that a live agent exists, and not an IVR system. Both parties are conversing and desire to be viewing identical screens of information simultaneously, and so decide to go into collaborative mode (box 11-2). This may be due to the fact that simple verbal explanations are insufficient to solve the caller's problems. If the calling party is not yet WWW connected, the two parties activate their SVD Modems 216, 226 (or ISDN units) and activate their remote control software packages (box 11-3). This sets up a data connection over the same telephone line as they were previously using for voice. Then voice and data can be transmitted over the same telephone line. The agent who is already connected to the desired WWW server 132 acts as HOST and the caller acts as a REMOTE allowing the caller to view the same 11 WWW pages (or other Information Systems) as the agent (box 11-4). The agent can then walk the customer through information and supplement it verbally, thereby sharing a multimedia call with the customer (box 11-5). Screens appearing on the agents computer appear on the customer's 5 computer, as what the customer sees is an exact duplicate of what the agent sees. This may result in immediate sales and service or assist in further sales and service. The next time the caller, having become more comfortable and familiar with the system, may opt to use the self serve channel with 10 no human assistance for increased likelihood of repeat business. The above combining of ACD, SVD and WWW building blocks allows collaborative screen sharing between customers and ACD agents. In addition, agent integration via the MMM 234 allows increased agent productivity. If the caller is already logged onto the WWW server, he must disconnect before being able to go into collaborative mode, unless he is equipped to handle two connections at In order to implement this embodiment, several configu- 20 ration (hardware and software) modifications to existing ACD setups would be required. Most current PC's will not successfully support high speed (14.4 KBPS) communications on their serial ports due to the older UART (Universal Asynchronous Receiver Transmitter) chips. Communica- 25 tions with these units is error prone and unreliable. PC's need a smarter faster UART to make this configuration
reliable. These are supplied by installing high speed serial input/output boards in the ISA (Industry Standard Architecture) slots on the motherboard of the PC. Software recon- 30 form further comprises said URL. figuration is required to disable the lower speed communications ports. An alternative here it to use new simultaneous 12 voice and data modem technology which utilizes the parallel port of the PC which (for most PC's) currently supports speeds equal to or greater than 28.8 KBPS. At the agent end, the type of line choice (2500-type analog ACD line or digital ACD line) must be made and depending on this additional hardware and software is required. If a digital ACD line is used, a hardware adaptor is required to convert the digital signaling which may be proprietary in nature into signals recognized by analog based SVD modems. Also, these adaptor units must be modified to handle high speed (14.4 KBPS) data transmission. If 2500type analog lines are used, software is required on the PC to allow easy access and use of sophisticated feature activation codes. The line choice here depends largely on which 15 features the call centre agent would be using. The invention claimed is: - 1. A system for connecting a call center to a customer computer having a customer IP address, the system comprising a server configured to transmit a page having a URL for presentation on a remote customer computer, the page including a remote help option which when selected generates a help request form including the customer IP address, and the server further configured to forward the generated help request form to the call center. - 2. The system according to claim 1 wherein the request form further comprises a field for filling in a customer preferred time for call-back. - 3. The system according to claim 1 in which the request ## UNITED STATES PATENT AND TRADEMARK OFFICE ### **CERTIFICATE OF CORRECTION** PATENT NO. : 7,159,043 B2 Page 1 of 1 APPLICATION NO.: 10/663740 DATED: January 2, 2007 INVENTOR(S) : Thomas Howard Bateman et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: Please correct the title Item (54) to read as follows: --METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CUSTOMER CONTACT CHANNEL CHANGING SYSTEM-- Please correct the Assignee Item (73) to read as follows: --Innovatia, Inc. St. Johns, Canada-- Please correct the Abstract Item (57) line 3 to read as follows: "as live center ACD" should read --as live call centre ACD-- Signed and Sealed this First Day of May, 2007 JON W. DUDAS Director of the United States Patent and Trademark Office # EXHIBIT D ## (12) United States Patent Bateman et al. (10) Patent No.: US 8,438,314 B2 (45) Date of Patent: May 7, 2013 #### (54) METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CUSTOMER CONTACT CHANNEL CHANGING SYSTEM (75) Inventors: Thomas Howard Bateman, Saint John (CA); Bruce Edward Kierstead, Saint John (CA); William Alexander Noble, Saint John (CA); Timothy Lee Curry, Gondola Pt. (CA); John Alan Lockett, Saint John (CA); Laurie Edward Mersereau, Westfield (CA); Robert James Ouellette, Saint John (CA) Assignee: Pragmatus Telecom, LLC, Alexandria, VA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1167 days. (21) Appl. No.: 11/636,904 (22) Filed: Dec. 12, 2006 (65) Prior Publication Data US 2007/0083678 A1 Apr. 12, 2007 #### Related U.S. Application Data (60) Division of application No. 10/663,740, filed on Sep. 17, 2003, now Pat. No. 7,159,043, which is a continuation of application No. 09/950,801, filed on Sep. 13, 2001, now Pat. No. 6,668,286, which is a continuation of application No. 09/239,701, filed on Jan. 29, 1999, now Pat. No. 6,311,231, which is a division of application No. 08/532,537, filed on Sep. 25, 1995, now Pat. No. 5,884,032. (51) Int. Cl. G06F 3/00 (2006.01) H04M 1/64 (2006.01) (52) U.S. Cl. #### (56) References Cited #### U.S. PATENT DOCUMENTS 4,789,962 A 12/1988 Berry et al. 4,924,496 A 5/1990 Figa et al. 4,969,185 A 11/1990 Dorst et al. 5,001,710 A 3/1991 Gawrys et al. (Continued) #### OTHER PUBLICATIONS Heylighen, F., "World-Wide Web: a distributed hypermedia paradigm for global networking," SHARE Europe Spring Conference, Apr. 18, 1994, pp. 355-368. #### (Continued) Primary Examiner — Henry Tsai Assistant Examiner — Titus Wong (74) Attorney, Agent, or Firm — Buchanan Ingersoll & Rooney PC #### (57) ABSTRACT This invention (The Customer Contact Channel Changer) enables the integration of different Customer Contact Channels such as live call center ACD (Automatic Call Distribution) agents, ADSI (Analog Display Services Interface) enhanced IVR (Interactive Voice Response) systems and WWW (World Wide Web) servers. The world wide web servers are used to allow customers with computer equipment to access information from an organizations databases in a self service mode. Frequently these customers have questions best answered by human ACD agents. With this invention the connection between the customer with the question and the agent with the answer is done quickly and efficiently with both parties sharing screens of common information. Also control is retained by the customer to make the call happen when they want it. #### 10 Claims, 11 Drawing Sheets ## US 8,438,314 B2 Page 2 | U.S. PATENT I | DOCUMENTS | 5,715,314 A 2/1998 Payne et al. | |----------------------|--|---| | | Hoeber et al.
Hoeber et al.
Krieger | 5,884,032 A 3/1999 Bateman et al.
5,991,394 A 11/1999 Dezonno et al.
6,463,149 B1* 10/2002 Jolissaint et al 379/26. | | | Srinivasan
Hickman et al. | OTHER PUBLICATIONS | | | Isidoro et al.
Freeman et al. | Stevens, W. Richard, TCP/IP Illustrated: The Protocols, vol. | | 5,444,774 A 8/1995 1 | | Addison-Wesley Professional Computing Series, 1994, pp. 34,38. Messmer, E., "Standards groups fail to create int'l pact", Networ | | 5,500,891 A 3/1996 1 | Harrington et al. | World, Apr. 13, 1992, p. 25. Request for Ex Parte Reexamination of U.S. Patent No. 6,311,23 filed Sep. 14, 2012, Control No. 90/012,617. | | 5,535,323 A 7/1996 1 | Henley et al.
Miller et al. | | | 5,563,805 A 10/1996 | buckle et al. filed Sep. 14, 2012. Control No. 95/002-320. | Request for Inter Partes Reexamination of U.S. Patent No. 7,159,04
filed Sep. 14, 2012. Control No. 95/002 320. | | | Davis et al.
McCalmont et al. | Request for Inter Partes Reexamination of U.S. Patent No. 6,668,2 | | | Reisman
Voit | filed Sep. 14, 2012, Control. No. 95/002,317. | | 5,706,507 A 1/1998 : | | * cited by examiner | U.S. Patent May 7, 2013 Sheet 1 of 11 US 8,438,314 B2 U.S. Patent May 7, 2013 Sheet 2 of 11 US 8,438,314 B2 U.S. Patent May 7, 2013 Sheet 4 of 11 US 8,438,314 B2 May 7, 2013 Sheet 5 of 11 May 7, 2013 Sheet 6 of 11 May 7, 2013 Sheet 7 of 11 May 7, 2013 Sheet 8 of 11 May 7, 2013 Sheet 9 of 11 May 7, 2013 Sheet 10 of 11 May 7, 2013 Sheet 11 of 11 ### METHOD AND SYSTEM FOR COORDINATING DATA AND VOICE COMMUNICATIONS VIA CUSTOMER CONTACT CHANNEL CHANGING SYSTEM ### RELATED APPLICATIONS This application is a divisional application of application Ser. No. 10/663,740, filed Sep. 17, 2003, now allowed, which is a continuation of application Ser. No. 09/950,801 filed Sep. 10 13, 2001, now U.S. Pat. No. 6,668,286, which is a continuation of application Ser. No. 09/239,701 filed Jan. 29, 1999, now U.S. Pat. No. 6,311,231, which is a divisional of U.S. application Ser. No. 08/532,537 filed Sep. 25, 1995, now U.S. Pat. No. 5,884,032. ### FIELD OF THE INVENTION This invention relates to accessing remote information network services such as those of the WWW (World Wide Web) 20 and particularly, but not exclusively to the manner in which help is enlisted when needed. ### BACKGROUND OF THE INVENTION Some telephone companies (e.g., NBTel, New Brunswick, Canada) have been heavily involved with the development and use of both call centre services and Internet services. More specifically, efforts have been underway to utilize CTI (Computer Telephony Integration) within call centres to 30 improve the productivity and service levels within call centres. CTI uses integration capabilities in various manners to assist telephone users who have access to computer equipment to improve the process of making or receiving phone calls. Call centre technology generally uses both computer 35 equipment and telecommunications equipment with CTI being a key element of productive call centres. The use of new Internet services such as WWW servers to allow organizations to interact with their customers in a self service mode is also being promoted. These WWW servers 40 utilize hypertext and multimedia content to allow customers to see text, images, etc. associated with products and services. Due to human nature and other factors these customers frequently need human assistance to completely satisfy their needs and would likely jot down an 800 telephone number 45 with a pencil and paper. They would then call the 800 number to gain access (if the 800 zone coverage was appropriate) to an ACD (Automatic Call Distribution) centre belonging to that organization. Under many circumstances today they would then sit frustrated in an ACD queue awaiting the availability 50 of a live agent. Thus, there are at least two disadvantages of current systems. First, the need for the customer to physically record and dial the 800 number is a disincentive to making the call. Secondly, the likelihood of waiting in long ACD queues is also a disincentive to making the call. Once the call is made, 55 necting a human ACD agent and a customer who is using the the queue may also result in the call being terminated before successful
completion because of the delay experienced. A recent improvement in the integration of computers and telephones is disclosed in U.S. Pat. No. 5,001,710. A system is disclosed which lets telemarketing agents who are answer- 60 ing calls for multiple campaigns simultaneously, to be set up automatically in their computing environment at the correct campaign based upon the phone number dialed by the customer, and to receive caller related information automatically. However, the user is required to physically dial an 800 num- 65 ber, and likely must wait in an ACD queue. Furthermore. although the agent is set up at the correct campaign, a more 2 accurate initial setup, which for example incorporates the specifics of the customer's queries, is not possible. Finally, this system is not designed for helping users of the Internet. #### SUMMARY OF THE INVENTION It is another object of the invention to make this process faster and simpler so as to improve the likelihood of a successful connection to a live agent. The invention provides a method of quickly enabling the changing of customer contact channels under control of the calling customer. A customer contact channel is a specific means of communication between the customer and a sales/ service provider. Examples of customer contact channels include verbal phone conversations between customers and human ACD agents of the service/sales organization, IVR (interactive voice response) interactions between customers and IVR servers associated with the service/organization, ADSI (analog display services interface) enhanced IVR interactions between customers and associated servers, and WWW interactions between customers and associated WWW servers. These channels use various communications appliances or terminals such as a regular touch tone telephone, ADSI enhanced telephone (such as Nortel Vista 350). multimedia PC's or multimedia set-top boxes (such as Phllps/ Zenith/CLI Media Access Terminals) and television sets. The invention provides a series of methods for integrating WWW services with live ACD agents. These methods include establishment of two-way voice connectivity between a customer and a human ACD agent while sharing common screens of information on a WWW page. This connectivity provides requested "LIVE HELP" when a problem is encountered or when an alternate channel is preferred for various reasons. These methods deploy CTI, IVR and related techniques involving the use of computer software and hardware working in conjunction with telephone systems. The specific methods best suited for an individual customer will depend on a number of factors such as the call centre's telephony architecture, the call centre's computing architecture and organizational philosophy and approaches regarding inbound and outbound calling and customer contact concepts. IVR allows for automated handling of scripted or routine telephone conversations. The customer, once connected to an IVR system, is verbally provided with information and options by a computer generated or recorded voice. The customer is able to make selections with the telephone keypad. An ADSI (analog display services interface) enhanced IVR system (e.g., NBTel Express or NBTel CallMall) also provides a text screen that allows easier navigation to the user. These are accessed by ADSI capable telephone sets equipped with a screen. The invention provides methods for integrating and con-WWW and wishes human assistance. Furthermore, the invention provides a customer in voice conversation with an ACD agent an option to enhance that conversation with shared screens of information (images, text, etc.). The invention is intended to be used by organizations or individuals with WWW servers and ACD agents. The invention was initially developed to illustrate the Joint use of two powerful marketing channels (WWW and ACD agents) and that their combination produces an even more powerful channel than either alone. The main features of this invention are the ability to link and integrate customers (who may have obtained product awareness information or directory information via a WWW 3 server) and appropriate ACD agents or individuals to provide supplementary information or assistance. According to a first broad aspect, the invention provides in a communications system comprising a server on a network. means for connecting the server to at least one computer in a 5 remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the 10 computer comprising the steps of the customer selecting a remote help option from the page; the customer preparing a help request form comprising the number of the customer's telephone; the system transferring the help request to the call centre; and the call centre setting up a call over the public 15 switched telephone network between the customer telephone and the help channel. According to a second broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one com- 20 puter in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the information network to the computer, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the 25 steps of the customer selecting a remote help option from the page; the customer computer automatically preparing a help request form comprising a network address; the system automatically transferring the help request to the call centre; and the call centre setting up a virtual audio channel on the data 30 network between the channel and the customer computer. According to a third broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one of either a computer or a set-top box and television in a remote customer 35 premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the customer premises, an apparatus method for the customer to obtain help in relation to a page from the server displayed by the computer comprising 40 the steps the customer selecting a remote help option from the page; the customer set-top box or computer signalling a telephone switch to ring the customers telephone line (with a normal ring or a distinctive ring) in response to the customer selecting the help option; the telephone switch dialing the call 45 centre automatically when the customer the picks up the handset; and the call centre transferring the call to the help channel. According to a fourth broad aspect, the invention provides in a communications system comprising a server on a net- 50 work, means for connecting the server to at least one computer in a remote customer premises, a help channel and a call centre connected to the help channel connectable through the public switched telephone network to a telephone in the cusobtain help in relation to a page from the server displayed by the computer comprising the steps of the customer selecting a remote help option from the page; the customer computer automatically passing a help phone number listed within the page to communications software running on the customer's 60 computer; and the communications software dialing the help phone number with a modem and line connected to the customer's computer and telephone; whereby a voice connection is established between the customer telephone and the help channel. According to a fifth broad aspect, the invention provides in a communications system comprising a server on a network, means for connecting the server to at least one computer equipped with an SVD (simultaneous voice data) modem in a remote customer premises, a help channel comprising a live agent workstation equipped with at least one computer equipped with an SVD modem, and a call centre connected to the help channel, an apparatus and method for the customer to obtain help in relation to a page from the server displayed by the computer comprising the steps: establishing a voice connection between a customer telephone and an agent telephone over the PSTN; the agent connecting the agent computer to the server if not already connected; the customer disconnecting the customer computer from the server if connected unless equipped to handle more than one connection; both the customer and ACD agent activating their SVD (Simultaneous Voice Data) Modems (or ISDN units) such that data and voice connections are established where previously only a voice connection existed in such a way that the agent who is already connected to the desired server acts as a host and the caller acts as a remote connected to the agent's host and in communication with the host over the data portion of the connection and the caller is able to view the same pages as the agent, and the agent can provide the caller with assistance by walking the customer through the information from the server, and discuss it over the voice connection, #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a block diagram of the first embodiment of the invention; FIG. 2 shows a process flow diagram for the first embodiment of the invention; FIG. 3 shows a process flow diagram for a variation of the first embodiment of the invention; FIG. 4 shows a process flow diagram for another variation of the first embodiment of the invention; FIG. 5 shows a process flow diagram for another variation of the first embodiment of the invention; FIG. 6 shows a block diagram of the second embodiment of the invention; FIG. 7 shows a process flow diagram for the second embodiment of the invention; FIG.
8 shows a block diagram of the third embodiment of the invention: FIG. 9 shows a process flow diagram for the third embodiment of the invention; FIG. 10 shows a block diagram of the fourth embodiment of the invention; and FIG. 11 shows a process flow diagram for the fourth embodiment of the invention. ### DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION In a first preferred embodiment of the invention, illustrated tomer premises, an apparatus and method for the customer to 55 schematically in FIG. 1, a method and apparatus, herein referred to as the Customer Contact Channel Changer, is provided for automatically providing a live telephone connection between a customer using an organization's multimedia services to the organization's ACD agent. Four main components are illustrated, these being the customer premises 2, an ACD agent workstation 12, a call centre 24 and the call centre's multimedia server 28. The multimedia server 28 may be a WWW server 28, and will be referred to herein as such. The call centre's 24 WWW server 28 may actually be located at the call centre, or it could be located remotely. Likewise, the ACD agent workstation 12 may be located in the call centre. Alternatively, the ACD agent workstation may 5 be in locations remote from the call centre such as in an individual agent's home or remote workplace. The components of a customer premises 2 are illustrated in FIG. 1. This includes a PC 4 capable of supporting a graphical WWW HTML (Hypertext Markup Language) browser and supporting generation of a URL (Uniform Resource Locator) of the organization's product and service database, an Internet line 6 (either via LAN or WAN-dial-up via modems), and a telephone 8 connected to the PSTN (public switched telephone network) 9 via a telephone line 10. The URL provides a snapshot indication of where in the hypertext environment of the organization's WWW services the user is at a given time. Numerous commercial WWW browsers are available to assist in navigation through the Internet and WWW servers. 15 These browsers use HTML and HTTP (Hypertext Transport Protocol). In a typical page received via the Internet from an organization providing information or services on a WWW server, words or key phrases may be underlined or bolded to indicate that more information is available. This is referred to 20 as hypertext. If the user is interested in obtaining this additional information, he can click on the word with a mouse, and the additional information is displayed. The typical configuration for an agent workstation 12 is also shown in FIG. 1. An agent workstation 12 is equipped 25 with an ACD telephone set 14 from which a variety of calls can be answered, a Personal Computer 18 capable of supporting a graphical WWW/HTML browser, a telephone line 20 and computer communications line 22 for communicating with the call centre 24 and the WWW 28 via a data network 44 comprised of either a LAN (local area network) or via a dedicated or dial-up WAN (Wide Area Network). Typically a plurality of agent workstations 12 would be employed, depending on the volume of business to be handled. The call centre 24, which handles requests for help from 35 customers after they are received by the WWW server 28. subsequent call back of customers, and live connections with ACD agent workstations 12, is also depicted in FIG. 1. The call centre 24 includes an outbound dialing system 32 capable of setting up a blended inbound/outbound call environment. 40 This outbound dialing system 32 contains a HOTLIST of telephone Numbers of HOT leads (qualified or interested leads) which are to be called as soon as an agent becomes available or at a time preferred by the customer. The call centre 24 also includes an ACD system 34 (on a digital 45 switch-either PBX, centrex or computer based) which makes the actual calls and via line 20 connects the calls from the agent 12 to the customer via the PSTN 9 and line 10. It may also include a CTI server 36, an ACD-MIS (ACD management information system) system 38 connected to the 50 ACD system 34, an WVR server 40, a call centre customer information system 42 and a data network 44 for interconnecting various components of the call centre 24. The WWW server 28 (complying to HTTP and HTML) is equipped with information pertaining to an organizations 55 products and services, directory information, etc. The server 28 includes an HTTP server 46 connected to an Internet access line 47 for receiving requests for help, and CGI (Common Gateway Interface) programs 48 for communicating with the call centre 24. It may also include a multimedia 60 message management system 50 which will be described in detail below, and a store of numerous text, graphics and multimedia files 52 in various multimedia file formats (such as GIF, JPEG, MPEG, WAV, AUPCX, PDF, POSTSCRIPT). Not shown between the customer's Internet access line 6 and 65 the WWW server's Internet access line 47 is the Internet itself. 6 A typical session will be described with reference to FIGS. I and 2. Process steps are contained in boxes in FIG. 2. The session starts when a customer 2 calls via its Internet access line 6 into the WWW server 28 and commences a self-serve session with an organization which subscribes to Customer Contact Channel Changer service (box 2-1). The customer browses through information regarding products and services with the graphical WWW browser. This browsing is often achieved by viewing HTML pages 53 and associated multimedia files 52. There may be on-line help which addresses some questions which may arise. At some point additional details or assistance are needed and the customer chooses a "Live Help" option from within an HTML page (box 2-2). This may be done by using a mouse to click on a "Live Help" button on the screen, or by entering a command at the keyboard. This prompts an additional HTML form 54 to pop up which the customer must fill in (box 2-3). The form 54 asks the caller for the phone number at which they can be reached at that time. The URL which the customer was viewing (prior to selecting help) is automatically filled in to indicate the page from which help was requested, but the customer also has the option of providing a different URL. In one embodiment, the customer also has an option of specifying a preferred time to be called back with the default being to request call back as soon as possible. The customer then sends this completed HTML help request off to the WWW server 28 where it is received by the HTTP server 46 and time-stamped. The request may be sent by either E-mail or TCP/IP (transmission control protocol/Internet protocol) client to server HTTP interaction etc. At the call centre 24, the help request messages are received and initially processed by the HTTP server 46. The telephone number, time stamp and URL are passed to the outbound preview dialing system 32 in the call centre 24 via the CGI interface 48 and data net 44. Should agents not be available, messages may be sent back via the CGI interface 48 and HTTP server 46 to the customer with anticipated wait time (derived from the ACD-MIS system 38) and call setup and scheduling options may be presented to the customer in conjunction with the multimedia message management system 50 to be described further below. An active time-stamped HOTLIST is maintained to feed the outbound dialing system 32 with numbers to call while also providing the next available agent the URL of where the question arose. The information received from the customer, including a CLID (caller identity) which is the 10 digit customer phone number, and the URL is entered on this HOTLIST (box 2-4). The agent workstation computer 18 is set up to preview the HTML page associated with the caller's URL before or while the outbound call is being made. This allows the agent to be better prepared to answer the question(s) which may arise. The call is then made to the customer automatically without any need for the agent to key any telephone numbers into either their phone 14 or computer 18 (box 2-5). After the customer answers the phone call from the agent, the two parties will be in full voice communication and will be viewing the same multimedia screen which prompted the customers question. The agent can then assist or guide the caller to the solution or answer sought, or can take orders and/or provide technical support (box 2-6). In a modification of this embodiment, the customer is not required to fill out an HTML page. Upon selection of the "Live Help" option, default values together with the relevant URL are filled in automatically, and the request is immediately sent off. When it is desired to establish voice communications over the data network rather than the PSTN, instead of sending a telephone number at which the user can be reached, an HTML form including the user's IP (internet protocol) address and URL is filled in automatically and forwarded to the outbounding system through the same channels as before. The process diagram for this is shown in FIG. 3. The rest of this process is 5 similar to that described above except that the outbound call is placed over the Internet using IP based voice communications packages running on the user's PC enabling voice communications. These use originating and terminating IP addresses to set up virtual (packet based) circuits for use as 10 voice channels for the duration of the call. This assumes that the caller and agent have compatible hardware and software configurations on their PC's. When the option is provided to the customer of selecting a time preferred for call-back, a more sophisticated message 15 management system is required. For this purpose, the invention provides a method of managing the integration or connection of customers using various services (WWW servers, voice-mail, IVR, e-mail, etc) to an ACD call centre agent. referred to herein as the "Multimedia Message Manager" A process flow diagram which
incorporates the MMM 50 is shown in FIG. 4. This figure is very similar to FIG. 2 with the exception of the addition of the MMM which is connected 25 to the organization's V-mail servers 80 and E-mail servers 81 and the WWW server 28. The MMM 50 acts as an intermediary between the traditional call centre related systems and the new WWW related server systems. Specifically, it communicates with the call 30 centre ACD-MIS system 38 to get estimated anticipated caller wait times (or other parameters) and passes this information to the caller via the HTTP server 46 and related CGI programs 48. It may be used to allow Web browsing of information sources related to the call centre such as the voice mailbox 35 associated with a call centre agent. Overflow calls may be routed to voice mail. The MMM 50 allows the agent or supervisor to scan large volumes of voice-mail messages. E-mail messages, WWW form request etc. and prioritize and schedule call backs from a combined HOTLIST. The MMM 50 acts as a clearing house point to assist in scheduling calls between customers and ACD agents and vice versa. This allows customers who may not be able or willing to converse with an agent at Time T0 to schedule the call for Time T2 which is the customer's preferred time. The HOT- 45 LIST is then updated to include both calls which are to be completed as soon as possible and calls which are due to be completed in the very near future. There are many ways in which the HOTLIST may be maintained. Calls requesting immediate call back can be ordered according to the time 50 stamp of when they were received, which will always be in the immediate past. Calls with future time stamps may be appended to the list prior to the arrival of the time indicated by the future time stamp, or alternatively, they can be given priority and placed at the top of the list when the time arrives. 55 The MMM 50 also handles the notification through the E-mail servers 81 of customers of the fact that delays are expected, and is able to provide an indication of when a return call might be expected. Alternative to connecting a multimedia user to a live agent, 60 with a slight modification of the first embodiment described above the invention can be used to connect a multimedia user (WWW, voice mail, IVR, E-mail) to an IVR call back system. in which help is available on a variety of topics, and in which the user further has the option of being connected to other 65 ADSI enhanced IVR applications such as home shopping systems. This is illustrated in FIG. 5. This is particularly 8 useful in situations where a portion of the call centre's business may have self service options in different mediums. For example, both IVR self service channels and WWW self service channels might be available, and this aspect of the invention allows a quick change from one medium to the other. By selecting the IVR channel, the customer is connected to the IVR channel in an outbound manner as above. FIG. 6 illustrates a second embodiment of the invention. While the first embodiment and its modifications described above are directed towards call centres equipped with outbound calling capabilities, in this second embodiment, the call centre is equipped with inbound call processing capabilities, handling calls as they come in from customers. This provides a method for integrating or connecting a customer who has a SAT (screen assisted telephony) capable configuration and wishes to be connected to a live agent 106. The figure is very similar to FIG. 1, but with much of the detail of the call centre and WWW server removed. There are again four main components illustrated, one of these being the This multimedia message management system 50 will be 20 customer premises 100 equipped with a telephone (or a screen assisted telephone set) 110 and line 107, a set-top box (a special purpose computing device which allow access to network services through the television set with user input being achieved through the television remote control) and TV 108 or PC 111, and a CTI/SCAI (switch to computer application interface) enabled line 107. The other main components include the multimedia or WWW server 102, call centre 104 and an agent workstation 106 equipped with a computer 112 and a telephone 114, or a screen assisted telephone. Also shown is the PSTN 116, a broad band multimedia data network 117 and a SAT server 109 > The interconnections between the customer premises 100, WWW server 102, call centre 104, agent workstation 106 and PSTN 116 are the similar to before with the exception that all customer PC connections are via a broadband data network 117, and the customer telephone 110 connection is implemented with a line 107 to the PSTN 116 and a subsequent connection to the broadband data network 117. The process followed in the second embodiment will be 40 described with reference to FIGS. 6 and 7. The box numbers refer to boxes shown in FIG. 7. Initially, the customer makes a "multimedia call" in order to be connected to XYZ's multimedia server 102 and to run a multimedia application on the set-top box/TV 108 or PC 111 (box 7-1). The user selects on the set-top box remote or the PC mouse a "MAKE CALL" feature from within the multimedia application (box 7-2). This selection initiates a series of steps to set up a call to either an ACD group or an individual. The request first signals through the broadband multimedia data net 117 to a PSTN telephone switch 116 specially equipped with CTI techniques (such as SCAI) to ring the customer's line 107 (with a distinctive ring similar to ring-again) prompting the customer to pick up the handset (box 7-3). The PSTN based switch 116, having sensed that the customer has indeed picked up the set, then dials the destination party automatically, which in this case is the call centre 104, where an ACD system distributes the call to an ACD agent workstation 106 (box 7-4). When an ACD agent answers the call, the customer's URL and/or CLID are forwarded so that a customer relevant screen is appearing on the agent's PC or terminal 114 at the same time (box 7-5). The customer relevant screen is set up on the agent's screen via one of several known CTI techniques. These include first party call control techniques and third party call control techniques. First party call control techniques use various CLID (Calling Line Identification-not shown) boxes and associated screen-pop software. The CLID is transmitted over the 9 telephone line and the CLID box detects this and passes it to the agent's PC over a serial RS232 communications port. The CLID box may be integrated as a part of the telephone, or it may be a standalone unit connected to the telephone line together with the telephone. Screen-pop software takes the 5 telephone numbers provided by the CLID box and looks up the corresponding customer records in a database, and displays them on the screen. Alternatively, using third party call control techniques, the digital switch has a shared data circuit to a "Third Party" CTI server which understands a common protocol such as SCAI. This server then associates various calls with various agents and delivers CLID and/or customer relevant data to the agents workstation as the phone is ringing. Under either of the scenarios described above for transmitting the CLID, the URL information is transmitted in one of 15 two ways. Firstly, upon answering the call and viewing the customer relevant data simultaneously (obtained by looking up the CLID in a customer database), the agent greets the caller and the caller verbally mentions the associated product or subject matter area which causes the agent to hot key to the 20 relevant or related HTML page. A more sophisticated alternative to this is for the WWW server to sense all users querying it in real time (i.e. which URL's are being read and from which IP addresses or E-mail addresses) and then do a look-up into its database to determine corresponding CLID's. As 25 calls from CLID's come in, the database can correlate the associated caller and URL. Should all agents be busy, an IVR system can be used to provide additional information options to the customer while an agent becomes available. This method does not avoid ACD 30 queues, but does make placing the call easier. In addition, the use of the URL and/or CLID makes the provision of help by the agent more efficient. As in the first embodiment, the agent is now in a position to help the customer with the WWW server or other multimedia application with which they 35 require assistance (box 7-6). As in the first embodiment, instead attempting to put the call through to a live agent, the call can be automatically connected to an IVR system. Screen-based telephony and associated SAT telephone switches may be employed in this 40 case, allowing the customer to interact with an ADSI enhanced IVR system. FIG. 8 illustrates a third embodiment of the invention which is quite similar to that shown in FIG. 6, with the exception of the configuration at the customer premises. 45 Again, an inbound call processing capability is required at the call centre, as in the second embodiment. This embodiment provides a method for integrating or connecting a customer 100 who has a telephone 120, a PC 124 with DDE (dynamic data exchange) capabilities and two modems 122,126 and 50 lines 127,128 and wishes to be connected to a live agent 104. DDE allows data to be passed dynamically between different applications running on the PC. In this embodiment, the PC 124 is equipped with communications software and modems 122, 126 able to place the call between the customer's telephone 120 and the ACD agent itself, automatically, instead of requiring the telephone switch to set up the call as in FIG. 6. FIG. 9 shows a process diagram showing the steps which occur when this method is used. Initially, the customer makes a multimedia call to connect to company XYZ's multimedia 60 server (box 9-1). The customer then
selects the "MAKE CALL" or "HELP" button which may appear on an HTML page (box 9-2). The customer request initiates a PC based DDE whereby the telephone number in the HTML page to be called is passed dynamically to another PC based communications software package where an outbound call is dialed over a regular modem 122 and line 127 (boxes 9-3 and 9-4). 10 When an ACD agent answers, a voice connection between the customer's telephone 120 and the ACD agent's telephone 112 is completed, and a customer relevant screen is appearing on the agent's PC 114 or terminal at the same time (box 9-5) based on incoming CLID and using first part or third party CTI techniques as described previously. As before, an IVR connection could be established instead of using live agents, and screen assisted telephones and associated servers could be employed to enhance this type of connection FIG. 10 illustrates a fourth embodiment of the invention in which a method and apparatus is provided for integrating WWW information from a caller who is already talking to a live ACD agent. In this embodiment either an inbound call processing capability or an outbound call processing capability is required at the call centre. The customer site 210 is equipped with a computer 212 and a telephone 214 both connected to a SVD (simultaneous voice data) modem 216 with external connections 218 to the PSTN 219 which may be analog, or ISDN (integrated services digital network) format. SVD modems allow both voice and data to be transmitted over the same standard telephone line at the same time. The agent site 220 is similarly equipped with a computer 222, telephone 224 and SVD 226 and connections to the PSTN 219. It is also connected to a digital switch 230 with ACD functionality for distributing calls to various agents. The agent's computer 222 is also connected to a WWW server 232 and may be connected to a multimedia message management system 234. The process flow diagram for this embodiment is shown in FIG. 11. The customer has been previously connected to an ACD agent either according to the traditional method wherein the customer physically dials an 800 number, or according to one of the methods described above (box 11-1). This includes all of the inbound and outbound call set-up methods and associated hardware described in the first three embodiment and their variants, although it is assumed that a live agent exists, and not an IVR system. Both parties are conversing and desire to be viewing identical screens of information simultaneously, and so decide to go into collaborative mode (box 11-2). This may be due to the fact that simple verbal explanations are insufficient to solve the caller's problems. If the calling party is not yet WWW connected, the two parties activate their SVD Modems 216, 226 (or ISDN units) and activate their remote control software packages (box 11-3). This sets up a data connection over the same telephone line as they were previously using for voice. Then voice and data can be transmitted over the same telephone line. The agent who is already connected to the desired WWW server 132 acts as HOST and the caller acts as a REMOTE allowing the caller to view the same WWW pages (or other Information Systems) as the agent (box 11-4). The agent can then walk the customer through information and supplement it verbally, thereby sharing a multimedia call with the customer (box 11-5). Screens appearing on the agents computer appear on the customer's computer, as what the customer sees is an exact duplicate of what the agent sees. This may result in immediate sales and service or assist in further sales and service. The next time the caller, having become more comfortable and familiar with the system, may opt to use the self serve channel with no human assistance for increased likelihood of repeat business. The above combining of ACD, SVD and WWW building blocks allows collaborative screen sharing between customers and ACD agents. In addition, agent integration via the MMM 234 allows increased agent productivity. 11 If the caller is already logged onto the WWW server, he must disconnect before being able to go into collaborative mode, unless he is equipped to handle two connections at once. In order to implement this embodiment, several configuration (hardware and software) modifications to existing ACD setups would be required. Most current PC's will not successfully support high speed (14.4 KBPS) communications on their serial ports due to the older UART (Universal Asynchronous Receiver Transmitter) chips. Communications with these units is error prone and unreliable. PC's need a smarter faster UART to make this configuration reliable. These are supplied by installing high speed serial input/output boards in the ISA (Industry Standard Architecture) slots on the motherboard of the PC. Software reconfiguration is required to disable the lower speed communications ports. An alternative here it to use new simultaneous voice and data modem technology which utilizes the parallel port of the PC which (for most PC's) currently supports speeds equal to or 20 greater than 28.8 KBPS. At the agent end, the type of line choice (2500-type analog ACD line or digital ACD line) must be made and depending on this additional hardware and software is required. If a digital ACD line is used, a hardware adaptor is required to convert the digital signaling which may be proprietary in nature into signals recognized by analog based SVD modems. Also, these adaptor units must be modified to handle high speed (14.4 KBPS) data transmission. If 2500-type analog lines are used, software is required on the PC to allow easy access and use of sophisticated feature activation codes. The line choice here depends largely on which features the call centre agent would be using. The invention claimed is: 1. An automated call distribution system comprising a server and a call center, the server providing network service to a customer terminal, with the server being operable to receive data provided by the customer upon selection of a remote help option provided from one or more pages downloadable to the customer terminal where the data provided to the server includes a contact channel through which the user of the customer terminal can be reached and an Internet Protocol (IP) address; the server being operable to receive the data and forward the data, including the contact channel and IP address, to the call center; the call center being operable to receive the data from the server and automatically establish communication 50 between the call center and the user of the customer terminal through the contact channel specified in the 12 received data and wherein the established communication is based at least in part on the IP address within the received data. - The automated communication distribution system according to claim 1 wherein the communication other is than a voice communication. - The automated communication distribution system according to claim 1 wherein the communication includes text. - 4. The automated communication distribution system according to claim 1 wherein the established communication between the call centre and the user of the customer terminal is performed in real-time. - An automated communication distribution system comprising: - a call center terminal comprising a user interface; - a first server adapted to provide one or more pages downloadable to a customer terminal wherein at least one of the one or more downloadable pages includes a remote help option for requesting live help from the call center terminal; and - a second server adapted to - provide interaction over a network between the customer terminal and the call center terminal; - (2) establish communication between the customer terminal and the call center terminal to provide live help to the customer terminal in response to the customer's selection of the remote help option; and (3) pass data from the call center terminal to the customer terminal in response to the customer's selection of the remote help option; wherein the customer terminal has an associated Internet Protocol (IP) address and the second server establishes communication between the customer terminal and the call centre terminal at least in part based through the IP address. - The automated communication distribution system according to claim 5 wherein the communication is other than a voice communication. - 7. The automated communication distribution system according to claim 5 wherein the communication includes level. - The automated communication distribution system according to claim 5 wherein the first server and the second server are separate from each other. - The automated communication distribution system according to claim 5 wherein the first server and the second server are geographically remote from each other. - 10. The automated communication distribution system according to claim 5 wherein the communications between the customer terminal and the call centre terminal and the data passed from the call centre terminal to the customer terminal are carried over the Internet. * * * * *