© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel of 49

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

ANTHONY K. LEE (CA Bar No. 156018)
alee@hosielaw.com

DARRELL R. ATKINSON (CA Bar No. 280564)
datkinson@hosielaw.com

HOSIE RICE LLP

600 Montgomery Street, 34™ Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
MASTEROBJECTS, INC.

UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT OF CALIFORNIA

MASTEROBJECTS, INC.,
Plaintiff,

V.

GOOGLE INC.,

Defendant.

COMPLAINT AND JURY DEMAND

Case No.

COMPLAINT AND DEMAND FOR
JURY TRIAL

Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page2 of 49

. INTRODUCTION

Plaintiff MasterObjects, Inc. (“MasterObjects” or “Plaintiff”) hereby files its
complaint against defendant Google Inc. (“Google” or “Defendant”), for patent infringement.
For its complaint, Plaintiff alleges, on personal knowledge as to its own acts and on
information and belief as to all other matters, as follows:

PARTIES

1. MasterObijects is a corporation organized under the laws of the State of
Delaware, with its principal place of business in San Francisco, California, prior to January 1,
2010, and now Utrecht, Netherlands.

2. Google is a corporation organized under the laws of the State of Delaware,
with its principal place of business in Mountain View, California.

JURISDICTION AND VENUE

3. This complaint asserts a cause of action for patent infringement under the
Patent Act, 35 U.S.C. § 271. This Court has subject matter jurisdiction over this matter by
virtue of 28 U.S.C. § 1338(a). Venue is proper in this Court by virtue of 28 U.S.C. § 1391(b)
and (c) and 28 U.S.C. § 1400(b), in that Google may be found in this district, has committed
acts of infringement in this district, and a substantial part of the events giving rise to the
claim occurred in this district.

4, This Court has personal jurisdiction over Google because Google has a place
of business in, and provides an infringing product or service in, the Northern District of
California.

INTRADISTRICT ASSIGNMENT

5. Pursuant to Civil LR 3-2(c), this case should be subject to district-wide

assignment because it is an Intellectual Property Action.

COMPLAINT AND JURY DEMAND 1 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page3 of 49

1. STATEMENT OF FACTS

A. The Plaintiff MasterObijects and its Instant Search Technology.

6. From the earliest days of Internet search, the search process has been
hampered by what is known as the “request-response loop.” The user would type a query
into a static input field, click a “submit” or “search” button, wait for the query to be sent to a
remote database, wait for the result set to be returned to the server, wait for the server to
build an HTML page, wait for the page to load into the browser, and then wait for the client
window to be redrawn so that the result set could be viewed.

7. Inherent in the “request-response loop” is the pragmatic reality that, if the
result set did not match user expectations, the entire process had to be repeated, recursively,
until the results satisfied the user.

8. In 2000, Mark Smit, the founder of Plaintiff MasterObjects, invented a novel
approach to search, an approach that solved the “request-response loop” problem. Smit
envisioned a system where a dynamic and intelligent search field would immediately begin
submitting a search query as soon as the user began typing characters into the query field.
Using asynchronous communications technology, as the user typed more characters, the
results in the drop-down box would change dynamically, becoming increasingly relevant as
the string of characters lengthened. In essence, search would become effective and granular,
not the block request submit level. More, this would happen real-time, as the user typed in
characters, and not be dependent on hitting a “search” or “submit button.”

9. MasterObjects’ U.S. Patent No. 8,539,024 (the “‘024 Patent™), entitled
“System and Method for Asynchronous Client Server Session Communication,” issued on

September 17, 2013. Under claim 1, for example, a client object sends query messages to the

COMPLAINT AND JURY DEMAND 2 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page4 of 49

server system, with the term “query messages” representing the lengthening string of
characters. See Claim 1, ‘024 Patent (“a server system, including one or more computers,
which is configured to receive query messages from a client object . . . whereby the query
messages represent the lengthening string). A true and correct copy of the ‘024 Patent is
attached hereto as Exhibit A. MasterObjects makes and sells products that practice the ‘024
Patent, and MasterObjects has been selling these products from approximately 2004 forward.
MasterObjects remains a going concern today, selling products that practice its patented
technology.

B. The Infringing Google Product.

10. Google’s Google Instant (alone or in combination with other components of
Google Search) infringes the claims of MasterObjects’ ‘024 Patent.

11. On September 8, 2010, Google launched Google “Instant.” Google
introduced Google Instant “as a new search enhancement that shows results as you type.”
Unlike the prior technology, where “you had to type a full search term, hit return, and hope
for the right result,” Google Instant uses asynchronous communication technology to begin
sending results to the user as the user types. Google describes the benefit of Google Instant
as follows:

The most obvious change is that you get to the right content
much faster than before because you don’t have to finish
typing your full search term, or even press “search.”
Another shift is that seeing results as you type helps you
formulate a better search term by providing instant
feedback. You can now adapt your search on the fly until
the results match exactly what you want. In time, we may

wonder how search ever worked in any other way.

Google: About Google Instant, http://www.google.com/instant.

COMPLAINT AND JURY DEMAND 3 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page5 of 49

12. In this fashion, Google Instant provides search results to users as the users
type the queries. Search results are changed based on the user’s input, that is, as the query
character string lengthens.

13. Google executives described Google Instant as representing “a fundamental
shift in search,” and otherwise recognized the innovative features of Google Instant in its
release in September 2010.

C. Google Knew Of The MasterObjects Patent.

14, Google has known that MasterObjects sought to protect its search technology
through patents since at least June 2008, when MasterObjects’ patent counsel sent to then
Google Vice-President, Marissa Mayer, and Google General Counsel, Kent Walker, a letter
introducing Google to MasterObjects, which enclosed then pending patent applications.

15. Since the June 2008 letter there has been litigation between Google and
MasterObijects involving MasterObjects patents and Google has even filed Information
Disclosure Statements with the U.S. Patent & Trademark Office that disclose MasterObjects
patents with respect to Google’s own predictive search technology patent applications.

16. On September 17, 2013 MasterObjects filed in this very Court a complaint
for infringement of the ‘024 Patent against Google. The ‘024 Patent was attached to the
September 17, 2013 complaint. The September 17, 2013 complaint was sent to Google
counsel as part of a request for waiver of service for summons on September 19, 2013.
Google was on notice of the ‘024 Patent and its infringing activities as of at least September

2013.

! The case initiated by the filing of the September 17, 2013 complaint was voluntarily
dismissed by MasterObjects without prejudice prior to Google filing an answer.

COMPLAINT AND JURY DEMAND 4 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page6 of 49

COUNT |

PATENT INFRINGEMENT
(The ‘024 Patent)

17. MasterObjects incorporates and re-alleges, as though fully set forth herein, the
allegations contained in paragraphs 1-16 above.

18. On September 17, 2013, United States Patent No. 8,539,024, entitled “System
and Method for Asynchronous Client Server Session Communication,” was duly and legally
issued. A true and correct copy of the ‘024 Patent is attached hereto as Exhibit A.

19. Mark Smit and Stefan van den Oord are the inventors of the ‘024 instant
search patent. The ‘024 Patent has been assigned to Plaintiff. Plaintiff MasterObjects is the
sole legal and rightful owner of the ‘024 Patent.

20. Google makes, uses, and/or sells a product or service that infringes the *024
Patent, as further explained in Paragraphs 10-13 above. This conduct constitutes
infringement under 35 U.S.C. § 271(a).

21. Google’s infringement of the ‘024 Patent is willful. While Google has been
on notice of the ‘024 Patent and its infringing activities since at least September 2013, it
continues to make, use and/or sell a product/service that infringes the ‘024 Patent.

22. Asaresult of the infringement by Google, Plaintiff has been damaged, and
will continue to be damaged, until Google is enjoined from further acts of infringement.

23. Google will continue to infringe unless enjoined by this Court. Plaintiff faces
real, substantial and irreparable damage and injury of a continuing nature from infringement

for which Plaintiff has no adequate remedy at law.

COMPLAINT AND JURY DEMAND 5 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page7 of 49

PRAYER FOR RELIEF
WHEREFORE, Plaintiff prays for entry of judgment:

A. that the ‘024 Patent is valid and enforceable;

B. that Defendant has infringed one or more claims of the ‘024 Patent;
C. that Defendant’s infringement of the claims of the ‘024 Patent was willful;
D. that Defendant account for and pay to Plaintiff all damages caused by the

infringement of the ‘024 Patent, which by statute can be no less than a reasonable royalty;

E. that the damages to Plaintiff be increased by three times the amount found or
assessed pursuant to 35 U.S.C. 8 284 and that the Defendant account for and pay to Plaintiff
the increased amount;

F. that this Court issue a preliminary and final injunction enjoining Google, its
officers, agents, servants, employees and attorneys, and any other person in active concert or
participation with them, from continuing the acts herein complained of, and more
particularly, that Google and such other persons be permanently enjoined and restrained from
further infringing the ‘024 Patent;

G. that Plaintiff be granted pre-judgment and post-judgment interest on the
damages caused to them by reason of Defendant’s infringement of the ‘024 Patent;

H. that this Court require Defendant to file with this Court, within thirty (30)
days after entry of final judgment, a written statement under oath setting forth in detail the
manner in which Defendant has complied with the injunction;

l. that this be adjudicated an exceptional case and the Plaintiff be awarded its
attorneys’ fees in this action pursuant to 35 U.S.C. § 285;

J. that this Court award Plaintiff its costs and disbursements in this civil

action, including reasonable attorney’s fees; and

COMPLAINT AND JURY DEMAND 6 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page8 of 49

K. that Plaintiff be granted such other and further relief as the Court may

deem just and proper under the current circumstances.

Dated: April 20, 2015

Of Counsel:

LESLIE V. PAYNE
Ipayne@hpcllp.com
NATHAN J. DAVIS
ndavis@hpcllp.com

ALDEN G. HARRIS
aharris@hpcllp.com

HEIM, PAYNE & CHORUSH, LLP
600 Travis Street, Suite 6710
Houston, Texas 77002

(713) 221-2000 Tel.

(713) 221-2021 Fax

Attorneys for Plaintiff
MasterObjects, Inc.

COMPLAINT AND JURY DEMAND

Respectfully submitted,

/sl Spencer Hosie

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

ANTHONY K. LEE (CA Bar No. 156018)
alee@hosielaw.com

DARRELL R. ATKINSON (CA Bar No. 280564)
datkinson@hosielaw.com

HOSIE RICE LLP

Transamerica Pyramid

600 Montgomery Street, 34™ Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
MasterObjects, Inc.

7 Case No.

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:15-cv-01775 Documentl Filed04/20/15 Page9 of 49

DEMAND FOR JURY TRIAL

Plaintiff, by its undersigned attorneys, demands a trial by jury on all issues so triable.

Dated: April 20, 2015

Of Counsel:

LESLIE V. PAYNE
Ipayne@hpcllp.com
NATHAN J. DAVIS
ndavis@hpcllp.com

ALDEN G. HARRIS
aharris@hpcllp.com

HEIM, PAYNE & CHORUSH, LLP
600 Travis Street, Suite 6710
Houston, Texas 77002

(713) 221-2000 Tel.

(713) 221-2021 Fax

Attorneys for Plaintiff
MasterObjects, Inc.

COMPLAINT AND JURY DEMAND

Respectfully submitted,

/s/ Spencer Hosie

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

ANTHONY K. LEE (CA Bar No. 156018)
alee@hosielaw.com

DARRELL R. ATKINSON (CA Bar No. 280564)
datkinson@hosielaw.com

HOSIE RICE LLP

Transamerica Pyramid

600 Montgomery Street, 34" Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
MasterObjects, Inc.

8 Case No.

Case3:15-cv-01775 Documentl Filed04/20/15 PagelO of 49

EXHIBIT A

casesttewarr® oeum R AR

US008539024B2

a2 United States Patent

Smit et al.

(10) Patent No.:

(45) Date of Patent:

US 8,539,024 B2
*Sep. 17, 2013

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

(56)

SYSTEM AND METHOD FOR 5,444,823 A 8/1995 Nguyen
ASYNCHRONOUS CLIENT SERVER SESSION g,gzé,gg 2 1 51;; }ggg E_e\mg etal.
,659, irsc
COMMUNICATION 5,715,443 A 2/1998 Yanagihara
Inventors: Mark H. Smit, Maarssen (NL); Stefan g’;ig’gg 2 g;}ggg E,lilr(ginma
M. van den Oord, Best (NL) 5765168 A 6/1998 Burrows
. . 5,778,381 A 7/1998 Sandifer
Assignee: MasterObjects, Inc. (NL) 5,802,292 A 9/1998 Mogul
5,805,911 A * 9/1998 Miller 715/234
Notice: Subject to any disclaimer, the term of this 5,845,300 A * 12/1998 Comeretal. 715/203
patent is extended or adjusted under 35 5,896,321 A 4/1999 Miller
U.S.C. 154(b) by 0 days. 5,978,800 A 11/1999 Yokoyama et al.
. 6,006,225 A 12/1999 Bowman et al.
This patent is subject to a terminal dis-)
claimer. (Continued)
FOREIGN PATENT DOCUMENTS
Appl. No.: 13/366,905
EP 1054329 11/2000
. Jp 8075272 5/1983
Filed: Feb. 6,2012 P H10-105562 4/1998
Jp 2001-154789 6/2001
Prior Publication Data
US 2012/0284329 A1l Nov. 8, 2012 OTHER PUBLICATIONS

Related U.S. Application Data

Continuation of application No. 09/933,493, filed on
Aug. 20, 2001, now Pat. No. 8,112,529.

Andrew Clinick, Remote Scripting, Apr. 12, 1999, MSDN, pp. 1-6.*

(Continued)

Primary Examiner — Barbara Burgess
(74) Attorney, Agent, or Firm — Fliesler Meyer LLP

Int. Cl1.

GO6F 15/16 (2006.01)

U.S. CL

USPC ... 709/203; 709/224; 709/227; 709/228;

Field of Classification Search

USPC

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,255,796 A
4,648,044 A
4,823,310 A

3/1981 Gabbe et al.
3/1987 Hardy
4/1989 Grand

709/203, 217, 219, 224, 227, 228,

7091229 (7

709/229

ABSTRACT

The invention provides a session-based bi-directional multi-
tier client-server asynchronous information database search
and retrieval system for sending a character-by-character
string of data to an intelligent server that can be configured to

immediately analyze the lengthening string character-by-
character and return to the client increasingly appropriate
database information as the client sends the string.

20

- 203 ” - 204
Questler LI

Client

205
207 208

EZRN

Controller
20 241
Persistent P

Server

=

Session

27 203

213~ 216 Ll/ i

X
set Trofarence Tsage
Manager | | Mansger || Sutistios Store

Syndicator

214~ -218
220, ot [']/ 322
=
ey Tontent ToRent
Manager | {Acocss Module] |-based Cache

Content Charnat

223 219
o

fo)
et
Engine

228

Sarvice

37 Claims, 17 Drawing Sheets

Case3:15-cv-01775

Documentl Filed04/20/15 Pagel?2 of 49

US 8,539,024 B2
Page 2
(56) References Cited 7,856,432 B2 12/2010 Tesch et al.
7,890,516 B2 2/2011 Zarzar Charur et al.
7,890,526 Bl 2/2011 Brewer
U.S. PATENT DOCUMENTS 7,900,228 B2 3/2011 Stark et al.
6,070,184 A 5/2000 Blount 7,941,819 B2 5/2011 Stark et al.
6,078914 A 6/2000 Redfern 8,131,258 B2 3/2012 Smith et al.
6,169,986 Bl 1/2001 Bowman 8,135,729 B2 3/2012 Brewer et al.
6,253,228 Bl 6/2001 Ferris 2001/0049676 Al 12/2001 Kepler
6,275,820 Bl 8/2001 Navin-Chandra 2002/0049756 Al* 4/2002 Chuaetal.ccocvverennennn. 707/4
6,278,992 Bl 8/2001 Curtis etal. 707/711 2002/0065879 Al 5/2002 Ambrose et al.
6,292,806 Bl 9/2001 Sandifer 2002/0069122 Al 6/2002 Yunetal.
6,347,312 Bl 2/2002 Byrne 2002/0129012 Al* 9/2002 Greencccvoneene. 707/3
6,356,905 Bl 3/2002 Gershman etal. 705/26.8 2002/0138571 Al 9/2002 Trinon et al.
6,381,593 Bl 4/2002 Yano 2002/0138640 Al 9/2002 Razetal.
6,397,212 Bl 5/2002 Biffar 2003/0033288 Al 2/2003 Shanahan et al.
6,408,294 Bl 6/2002 Getchius 2003/0041058 Al 2/2003 Ibuki et al.
6,421,675 Bl 7/2002 Ryan 2003/0061200 Al 3/2003 Hubert et al.
6,434,547 Bl 8/2002 Mishelevich et al. 2003/0071850 Al 4/2003 Geidl
6,484,162 Bl 11/2002 Edlund 2003/0120554 Al 6/2003 Hogan et al.
6,496,833 Bl 12/2002 Goldberg et al. 2004/0093562 Al 5/2004 Diorio et al.
6,539,379 Bl 3/2003 Voraetal. ..o 1/1 2004/0141011 Al 7/2004 Smethers et al.
6,539,421 Bl 3/2003 Appelman et al. 2004/0142720 Al 7/2004 Smethers
6,564,213 Bl 5/2003 Ortegaetal. ..o 1/1 2004/0205448 Al 10/2004 Grefenstette et al.
6,578,022 Bl 6/2003 Foulger 2005/0022114 Al 1/2005 Shanahan et al.
6,629,092 Bl 9/2003 Berke 2005/0055438 Al 3/2005 Matti
6,629,132 Bl 9/2003 Ganguly 2005/0120005 Al 6/2005 Tesch et al.
6,633,874 Bl 10/2003 Nusbickel 2005/0283468 Al 12/2005 Kamvar et al.
6,647,383 Bl 11/2003 August 2006/0004843 Al 1/2006 Tafoya et al.
6,671,681 Bl 12/2003 Emens et al. 2006/0026636 Al 2/2006 Stark et al.
6,687,696 B2 2/2004 Hofmann 2006/0026638 Al 2/2006 Stark et al.
6,697,849 Bl 2/2004 Carlson 2006/0031880 Al 2/2006 Stark et al.
6,704,727 Bl 3/2004 Kravets 2006/0041927 Al 2/2006 Stark et al.
6,704,906 Bl 3/2004 Yankovich et al. 2006/0184546 Al* 82006 Yanoetal ... 707/10
6,732,090 B2 5/2004 Shanahan et al. 2007/0050351 Al 3/2007 Kasperski et al.
6,772,150 Bl 8/2004 Whitman 2007/0050352 Al 3/2007 Kim
6,778,979 B2 8/2004 Grefenstette et al. 2007/0143262 Al 6/2007 Kasperski
6,801,190 Bl 10/2004 Robinson et al. 2007/0288648 Al 12/2007 Mehanna et al.
6,820,075 B2 11/2004 Shanahan et al. 2008/0071561 Al 3/2008 Holcombe
6,823,514 Bl 11/2004 Degenaro 2008/0147788 Al 6/2008 Omoigui
6,829,607 Bl 12/2004 Tafoyaetal. ..o /1 2010/0267362 Al 10/2010 Smith et al.
6,832,218 Bl 12/2004 Emens 2011/0106831 Al 5/2011 Zarzar Charur et al.
6,859,908 Bl 2/2005 Clapper 2011/0173217 Al 7/2011 Kasperski
6,862,713 Bl 3/2005 Kraft 2011/0320472 Al 12/2011 Griffith et al.
6,912,715 B2 6/2005 Gao
6,915,279 B2 7/2005 Hogan et al. OTHER PUBLICATIONS
6,928,425 B2 8/2005 Grefenstette et al.
6,981,215 Bl 12/2005 Lindhorst Anonymous, Ajax (Programming), Wikipedia.org, XP-002401064,
7,000,179 B2 2/2006 Yankovich et al. Retrieved from the Internet: <http://www.en.wikipedia.org/wiki/
7,039,635 B1 5/2006 Morgan Ajax,sub,g(progra_mming)>,
7,043,530 B2 5/2006 Isaacs International Searching Authority, International Search Report for
7,058,944 Bl 6/2006 Sponheim PCT/US02/25729, Nov. 5, 2002, 3 pages.
7,089,228 B2 82006 Arnold Harless, Membership Database on USA Gymnastics Online, 1996, 5
7100116 Bl 22006 Shafrir arless, Membership Database on ymnastics Online, | ,
7’1 17’432 Bl 10/2006 Shanahan et al. pages Retrieved from the Internet: URL: http://usa-gymnastics.org/
7:177:818 B2 2/2007 Nair publications/technique/1996/9/membership-query.html.
7,181,459 B2 2/2007 Grant Nareddy, Introduction to Microsoft Index Server, Oct. 15, 1997, 9
7,185,271 B2 2/2007 Lee pages Retrieved from the Internet: URL: http://msdn.microsoft.com/
7,216,292 Bl 5/2007 Snapper en-us/library/ms951563(printer).aspx.
7,240,045 B1 7/2007 Bushee Clinick, Remote Scripting, Apr. 12, 1999, Microsoft Corporation, 6
7,251,775 Bl 7/2007 Astala et al. pages Retrieved from the Internet: URL: http://msdn.microsoft.com/
7,284,191 B2 10/2007 Gre_:fenstette et al. en-us/library/ms951563(printer).aspx.
7,308,439 B2 12/2007 Baird Masterobjects, Inc., Introducing QuestObjects, 2006, XP002496891,
7,383,299 Bl 6/2008 Hailpern etal. 709/203 25 pages Retrieved from the Internet: URL: http://www.questobjects.
7,424,510 B2 9/2008 Gross et al. : . .
7467131 Bl 12/2008 Gharachorloo masterobjects.com/documents/go-introducing.pdf.
7’ 499’9 40 Bl 3/2009 Gibbs European Patent Office, European Search Report for European Patent
7:512:654 B2 3/2009 Tafoya et al. Application No. EP08252534.6-1225, Oct. 14, 2008, 9 pages.
7.5726.481 Bl 4/2009 Cusson European Patent Office, European Examination Report for European
7:559:018 B2 7/2009 Matti Patent Application No. EP02763441.9, 4 pages.
7,610,194 B2 10/2009 Bradford European Patent Office, European Search Report for European Patent
7,647,225 B2 1/2010 Bennett et al. Application No. EP02763441.9, 3 pages.
7,647,349 B2 1/2010 Hubert et al. Widjaja, Communication Networks, Fundamental Concepts and Key
7,672,932 B2 3/2010 Hood Architecture, 2004, pp. 315-316 and 611-612, McGraw-Hill, 2nd Ed.
7,676,517 B2 3/2010 Hurst-Hiller Marsch, Remote Scripting, XP002401062, Retrieved from the
7,769,757 B2 8/2010 Grefenstette et al. Internet: <http://www.microsoft. com/germany/msdn/library/web/
7,788,248 B2 8/2010 Forstall RemoteScripting. mspx?pf-=true>.
7,836,044 B2 11/2010 Kamvar et al. Anonymous, Using the XML HTTP Request Object,
7,840,557 B1 11/2010 Smith XP-002401063, Retrieved from the Internet: <http://www.jibbering.
7,840,589 Bl 11/2010 Holt com/2002/4/httpre quest.2002 html>.

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel3 of 49

US 8,539,024 B2
Page 3

Doherty, Web-based E-Mail, May 29, 2000, 3 pages. Retrieved from:
http://www.networkcomputing.com/1110/1110£3 html?Is=NCIJS__
1110bt.

Cheong, et al., A Boolean Query Processing with a Result Cache in
Mediator Systems, Advances in Digital Libraries, May 22-24, 2000,
10 pages.

Jakobsson, Autocompletion in Full Text Transaction Entry: A
Method for Humanized Input, 1986, vol. 17.

Livingston, Windows 98 Secrets, 1998, pp. 232-235.

Markatos, et al., On Caching Search Engine Results, May 2000, 23
pages.

Krishnamurthy, et al., Web Protocols and Practice : HTTP/1.1, Net-
working Protocols, Caching and Traffic Measurement, 2001.
Kientzle, A JAVA Applet Search Engine, Feb. 1999.

Homer, XMLin IE5 Programmers Reference, 1999.

Xia, et al.. Supporting Web-Based Database Application Develop-
ment, 1999, 8 pages.

Chen, et al., The Implementation and Performance Evaluation of the
ADMS Query Optimizer: Integrating Query Result Caching and
Matching, Oct. 1993, 21 pages.

Unknown Author, Netscape Communicator for Solaris 4.7 Release
Notes, Aug. 20, 1999, 5 pages.

Oracle International Corporation, iPlanet Directory Server 4.11
LDAP Setup and Configuration Guide, Chapter 3, 2001, 14 pages.
Netscape Communications Corporation, Netscape Directory Server
4.1 Deployment, Administrators Guide, 1999.

Kapitskaia, et al., Evolution and Revolution in LDAP Directory
Caches, Advances in Database Technology—EDBT, 2000, pp. 202-
216.

Glick, Global Address Book and LDAP UI Proposal, 2001.
Unknown Author, Mozilla 0.9.1 Release Notes, 2001, 23 pages.
Giovetti, Microsoft Money, COMPUTE!, Jul. 1992, p. 105, Issue
142.

Microsoft Corporation, MSN Hotmail: From Zero to 30 Million
Members in 30 Months, Feb. 8, 1999.

Qualcomm, Inc., Qualcomm Extends Internet E-mail Presence to the
Web, Dec. 10, 1997.

Johnson, et al., A Hypertextual Interface for a Searcher’s Thesaurus,
Jun. 11-13, 1995, 15 pages.

Deadmond, Address Book: What a Concept!, Jun. 1, 1999, 2 pages.
Hassan, Stanford Digital Library Interoperability Protocol, 1997, 42
pages.

Buyukkoten, Focused Web Searching with PDAs, May 15-19, 2000,
21 pages.

O’Brien, The New Domino R5 Directory Catalog: An Administra-
tor’s Guide, Nov./Dec. 1998.

Beaulie, et al., Okapi at TREC-S, Jan. 31, 1997, 23 pages.

Jones, Graphical Query Specification and Dynamic Result Previews
for a Digital Library, 1998, 9 pages.

Jones, Dynamic Query Result Previews for a Digital Library, Jun.
1998, 3 pages.

Unkown Author, Using Netscape Communicator at Lehigh, 15 pages,
retrieved from the World Wide Web: http://web.archive.org/web/
2000100222473 1/http:/www.lehigh.edu/~inhelp/faq/qa/nsfiles/
nsfall2000-2 htm.

* cited by examiner

Case3:15-cv-01775 Documentl Filed04/20/15

U.S. Patent Sep. 17, 2013 Sheet 1 of 17
‘ *
17 BN
1 QuestObjects %
Chient .,»"'i

;.-*‘“““ 33
o - - g .'
1T R |
Cuestihjecis }

Server
o $04

3

FEER RN
QuestOhjects
Servios

W ‘

FIG. 1

Pagel4 of 49

US 8,539,024 B2

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel5 of 49

U.S. Patent Sep. 17, 2013 Sheet 2 of 17 US 8,539,024 B2

; e 302

T
ST ‘$ F
S

{oonirolier

o 308

Tine Server

Narvey

Praferencs
Managoer

\ \ i
Ly Content antent
Manager 1§ Avcesa Module] Pbased Cachie

%

Contont Charmel L

N R
}/}A‘_ﬂw"““' & gﬁ 230
T R

Content

Fogine

R
o
e IV
tug

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel6 of 49

U.S. Patent Sep. 17, 2013 Sheet 3 of 17 US 8,539,024 B2

o~ 30/

302~ /
302 _)

e)

- 308

303 —

N y
|

304 =
|

307 _[Nebraska - +
|

00— Nevada "
|

J07=——_ INevada Y

FIG. 34

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel7 of 49

U.S. Patent Sep. 17, 2013 Sheet 4 of 17 US 8,539,024 B2
309
Y1 North Carolina
311—| | United States of Ameri
~ |USA
H
] v
LINC -
S |United States of Ameri
E|Charlotte
312— | |Greensboro
Raleigh
be| cardinal (bird)
Last of the Mohicans
Thesa_{Sounds(f Prefs/
FIG. 3B
/—313
@
314—| North Carolina Al5%SINC [a] =355
United States of Ameri| [ig|United States of Ameri -3
USA E|Charlotte — T
Greensboro
Raleigh
E cardinal (bird) 1
I~ |Last of the Mohicans
319— | Recent Terms IEIH@ [Thesa {Sounds {Prefs/” |=-—320

\—311 \—312

FIG. 3C

US 8,539,024 B2

Sheet 5 0f 17

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel8 of 49
Sep. 17,2013

U.S. Patent

¢ LT

13
Faressansasan

A

2.

% e et TV T v
i N e P et

Togs iisnh L2 pddyasypdn
S - L an rnsaaib s

il

\wﬁxwﬁmx\
far empdrpstymens a

v TaF Agen
GY] 3 AETgAER
e henks
Sp e | U S sy

e L1

wtereees 71

B - .
LT S
ey -
) M.g AN w4 paigsiiel o
{Hr el gy " 2P
FOEHIT grvicy a4 Tt .
FByiasl e.,m Jriatinn » ‘muﬁnmwm nwwAnmﬁ\mw J% “ovidat
“ Eiaha? PEIRIRE
;] e 1
: iy
AT ina sty P PN ANV T TN IS . D gy >, . P
AZANI]3 S AR GO0l RO IBATNE S smsRelHRndy] BRsusdnoeanavel)

Case3:15-cv-01775 Documentl Filed04/20/15 Pagel9 of 49

U.S. Patent

(A::iiv@ {f@am@nﬁfﬁ)

HIEN

initializeChent
uester

Sep. 17,2013

Sheet 6 of 17

US 8,539,024 B2

ST
" vompanent s
“GJestrayed? e

destroy Client
{haester

\% f}ﬁ' "W“\

S ,S{}j

send evart o

Clent Questor

504
&

-

O

{roactivate
gyant rsostver

(: Bvent Recsive)

Y

walt for ovent fom

Cliont Quaster

Toavent S
o, ToCRIVRAT

process event from
Clhient Quester

FIG. 5B

Case3:15-cv-01775 Documentl Filed04/20/15 Page20 of 49

U.S. Patent

Sep. 17,2013

Sheet 7 of 17

{ CHent Qs,zastt':i }

601

regisier using
Client Controller

US 8,539,024 B2

" guester ™

g ;};3

) chiaracior ™,
o, Gvent?

S destroyed?

Z

803

deregistor using
Clent Controller

TSTOP

/606

&

handle svent §

update input buffor and
notify dependent Quaesters §

“resulix

gat results
from cache

notify aclive
component

S client cache?

61

send wput baffer

e change message

642

{redactiveie
resull retnievey

FIG. 64

Case3:15-cv-01775 Documentl Filed04/20/15 Page2l of 49

U.S. Patent Sep. 17, 2013 Sheet 8 of 17

(Result Regﬁﬁvﬁr'}

£ 3 \

wait for resulz
from server

614 AN
o0 rosults The
o Teceived? .

7 remalts NN
., usable?

naiify active component
ansd dependent Questers

store vesulin
i oanhe
STO

P}

FIG. 6B

US 8,539,024 B2

Case3:15-cv-01775 Documentl Filed04/20/15 Page22 of 49

U.S. Patent Sep. 17, 2013 Sheet 9 of 17 US 8,539,024 B2

(“?&"w‘c @y { 3&1\, i)

TN,

rextors froam
= {‘ﬁz ostor Store and 1
YO8 frepmister with Service

can be
restoridy

results atill
Jp-lo-date?

76~

m‘} FEEYS

intttaliee and register PED0ERS
A 5 Dervios

with Servic query resultef bﬁm

{.)‘.‘.
r-('w

FOF

Crusster ™,
wdestroyed . :
NP 10 T

sand guery
2ty o Sarvice

FOE

“has valid s
o QueryString?

o

et | DEOCOSH
query rexalis

wait for nput bufliy
SHEngEe mesaage
upscate input
bufter

FIG. 74

US 8,539,024 B2

Sheet 10 of 17

Case3:15-cv-01775 Documentl Filed04/20/15 Page23 of 49
Sep. 17,2013

U.S. Patent

qe DIA

Pt 10
e

ISy YU
3} §3ngar pues

o pmanve

) m.@\.k oo &..N.\
"o, Busgsnd e A
L g iy

o @}‘mwwm)
| DDIARS O BOUSINS e’
vavsn puas
9if~" w_ B gnsey wE
symr e | »

SYNSRE QIS

A‘r_.ﬁwmmam. Ay mm@w@m@

e

Case3:15-cv-01775 Documentl Filed04/20/15 Page24 of 49

U.S. Patent Sep. 17, 2013 Sheet 11 of 17 US 8,539,024 B2

QoReyulSat Qonery

~strings osuingl] b -quarySiing: Siring
~rowmnns: iatf} ol ~guatifen Siing

~gervice: Qolervics ; ~rownamy: nif}

~grery Sy ~sognssted Types Qulypel
~somplte: byte ~timest: Date
SotaiNumberOQfSinings: long ~wantsPushing: bosleay
~ardered: boolsan <pushingintervel: it
~sedootad: m]

~currend it
~rosuitSetid: Righecimeal

£, % sfm;;@steiﬂ“y;}es
FOoResliSa(y QaType
R 1 & resulfSet

typoindicsion byt I
6% ¥ strines -typeStrmg: Sring %

0

H

QuinternalSiring ¢l ?wp& 1.5 & types

~mepirstionTime: Date : ‘ 1§ quester
Feotsdr Provacey TRl
~ftol Timer Tde Q{}Qﬁ@&{&r
<eafue; Sring —
Jeoy: Strive seyaltSet QolosuliSet
~metadata; Limited XML -service: Qulervige
~qualifien Being
“types: GoTypesi] RN
N I e A
~rpanBuailon StingBoifer -
= R vi‘
~autolipdatedntervalt it o
—niminnenHatoh Dies i SR

{oSinng - S o
: sostHSetBachSire fut ":j

-fvper Qolype ~paxinamBatchTime o
~chentdaximomlateney int
-changelistenars: QoQuesterChangedlastoner{}
- apphicatiFraction: Sweing
service: QoService ,qé apphicationPrexyRequired: hoolesn
) service | -highestBrostvedBendiSetld: BigDecimal
o % service - latestReguasted BigDecimad

taddQuesterThangelistener{l void

Qod ey Validator ra—

i NEEVE 0% stors
~ervie) Qoleree 3. sters

tisvaldy bookean

elisnt A nClieniGooser 34 servers(oSorvarthanster |

CnTransformingQueryVatidatw

HransformifVelied(h String

FIG, 84-1

Case3:15-cv-01775 Documentl Filed04/20/15 Page25 of 49

U.S. Patent Sep. 17, 2013 Sheet 12 of 17 US 8,539,024 B2

Obiject Model: base

-IPUT_BUFFER {“§§ '02.
“i"‘“__SET‘ CURRENT

I INT
RESUL] '

< yateviace >
QothsstorThangelistoner

CoBssudtalacheBn

....... i SRSt Changrdh void ~qusySiting: ?*mﬁé?
e - ~qushifien Sering

 changelistone oo o
MR srasaltSel QolesuliSet

§,.¢ 8 resubisCachePadrics

GoRssulisCUache
sesultsCacheRutries: QoReaitsCacheBainyt]
1 % RSN AL SChe

(Sen Fig, B4-13

QoControtisy

~resuitsCache: QoRexultaCrche

s Qoffuesterf]

sBuffer: QollmgeRes mdi’j
-statistasPusiforFlashTime: i
~address: URL

chentfaChomContratier servernQoServalontrolier

FIG. 84-2

Case3:15-cv-01775 Documentl Filed04/20/15 Page26 of 49

U.S. Patent Sep. 17, 2013 Sheet 13 of 17 US 8,539,024 B2

Object Model: client

baserQoCentrolier bagenQuQuester
QollicatController CoCHentQuester

i.¥ ? chentQuester

ActiveComponent

~chientQuasters: {oCHeniQuestar(}

FIG. 8B

U.S.

Vit

b 4

+
v

oot Model

<7

Ob

Case3:15-cv-01775 Documentl Filed04/20/15 Page27 of 49

Patent Sep. 17, 2013 Sheet 14 of 17 US 8,539,024 B2

=2
=
e
=3
3"§
R
-
=
wt
N
v
= P
b =
o 3
= &
e
= ot
& FRCE RN
3 o .
< RN R
R S EE .
o P T
=2 el A
e S I koA . >
e iy @ " 3
Y D E o W 3] e
- o3 o ot 2D R o
i 3 > . oot »x‘
b 33 S ;“‘-: NES 3
R =3 o
8 T as 5O »
= & Ery 8 B >3
LR a4 2
<) w ¥
o Wil
2
5 e 3
o § 9
Y& ViR
Y fre g
s ¥,
= PN
b ca RE
3 ; ¥
r‘. 8 3 oxx
2 R
k : 5
w PN 38 =
R L &
283
oo TV ®
o A
&1 o
Qo hay
3
-
o -
P]
fan LR 2
) o B o=
— %R ES
e = Ny & 3.
Py ;.-."\‘ 4 Bl S
2 bl Wi
& ;I bR Y
N v
T o R
s o §
&3
kS
e
S
RS
&3
R T
8§
R [y
™y
T
o
b 3>
ey
&8
3
4
%
N
8

P

N
o
b

Case3:15-cv-01775 Documentl Filed04/20/15 Page28 of 49

U.S. Patent Sep. 17, 2013 Sheet 15 of 17 US 8,539,024 B2

.~

& sNynchoator

| SECCERERMVPRTVIVVRREVIVSN

-nsne Sirhg
~URETES {‘}i;ﬁ..%'ﬁar{ H

AR

srontentChanne K x\m{ mﬁmi{ ‘h'mm}ii o ndiente

contentChannely

{

CodontentChannel e
costent

-nime Nring

~Jeseription: Sng Channel
~QUORY %tz’:m{f‘ef;ﬁi,m sthe int
<guerySteingReguluBxprassions: Stringd}
~querySuringFilters: Ruingl] e
gueryValidator: QoQuery Validaior &
~pesuliDescrpiton Sring b
~types: QoTypell w‘
imeMmnmumBeotominterval i ﬁ}

~statizticsSore: GollsageRntistiosSue
coe

coptentdcomshadnle: QollmgentAccessdodule]
SRS
FORRUY sn(?m:m} QoResulthat Koy uE
fd %qu eryVakidator 1Y@ typas

'ia secQoTiype

base: t}ot}\mwk alidaty

I ¥ condenticooashMaodule

QoContemtAceaasMadale

FexeauteQuery(y QoHesultSat
+atrtConteniSessiond b i

FIG. 8031

Case3:15-cv-01775 Documentl Filed04/20/15 Page29 of 49

U.S. Patent Sep. 17, 2013 Sheet 16 of 17 US 8,539,024 B2

{Object Model: service

Qollser

0.7 oo Snag

8 password: String

T e conTIITL e T
~subsuriptions: CaSubsoription}

QuoServics A
S P QL3 waer
~syndicator: Qodyadiator
~contentChannel Qollonicathannct .
-{istable: boolean] e
~pricinglnfor XML o o
H§ name: String STV
~contenitinginelaginhame: String -stariliate: Date
PR S TSNS SR + TEUVUNPIT S TV i R o
wsniui‘iii-:\ig};u_mgmi assword: Mrng -expirstionate: Date
ssubscriptionReguired: hoolean ~queryLinmit int
~quesyl iR eset ing
o U
~resulifdnat ing
syt imitReset wt
~pushAllowed: boolean
~pushintervalldmit mt
historyAHowed: boolean
~storyLinah wt

sabinoriphions

ee Fig, A001

!

Pl
-,

i OnollsageNatishosNiors

aerords: QolisageRecond]]

: o bocdean
Statisticy hookean
s boolean

SBeoplliontHaSuristes: bookoan

R

QolisageRecod

1 -siingRey: String
-siving Vel String
~rowinResuliSat it
~totaiRowsinRosaliBet: it
~dateRotuenFirst: Date
~fareBeturniast Date
~cheatDisplaved: boolean
~olientiized: boolsan
~shen e bogisan
-applicationMame: String
~gofivetlarponent Dy Snag
~users Callsse

FIG. 82

Case3:15-cv-01775 Documentl Filed04/20/15 Page30 of 49

U.S. Patent

Sep. 17,2013

Sheet 17 of 17

US 8,539,024 B2

App'Web

Rerver

Qe
Adaptor

&

Applioation’
Web Host

AppHost
yuchironizer

17

& b
;
»ﬁ SEE
H
i
H

xf”“§§3

Cordralier

Onesios

CuestObiectaServer

e o o e e e o o

.

i

Chrenter

MY

7
\J
RPNV AUUMINRIFNSININ WRSA— o
Applivation/Webs FoRi2 s
Wb Form e !
Subenst {

. N
Batton 3
¥

006

K ¥
H *

Contralier

{hent App'Browsaer

FIG. 9

Case3:15-cv-01775 Documentl Filed04/20/15 Page31 of 49

US 8,539,024 B2

1
SYSTEM AND METHOD FOR
ASYNCHRONOUS CLIENT SERVER SESSION
COMMUNICATION

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 09/933,493, filed on Aug. 20, 2001 entitled:
“SYSTEM AND METHOD FOR ASYNCHRONOUS CLI-
ENT SERVER SESSION COMMUNICATION”, by Mark
H. Smit, et al, now U.S. Pat. No. 8,112,529, issued on Feb. 7,
2012, which is incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The invention relates generally to client-server communi-
cation systems, and particularly to a session-based bi-direc-
tional multi-tier client-server asynchronous search and
retrieval system.

BACKGROUND OF THE INVENTION

A primary task of computer systems is to manage large
quantities of information, generally referred to as data. The
first computers typically stored data using off-line methods,
for example by using punch cards and other primitive means.
As built-in or on-line storage solutions became more afford-
able, data were instead stored in central memory banks. The
first enterprise-wide computer systems consisted of central
computers containing central data storage, and a large num-
ber of'user terminals that accessed this server data by sending
input and receiving output as characters to be displayed or
printed at the terminal. Although these systems had a primi-
tive user interface and data access became increasingly
slower as the number of users grew, these systems neverthe-
less handled enterprise data with ease and great security.

The first servers, often referred to as mainframes or mini
computers, ran on proprietary operating systems. Terminals
usually had large input buffers where input was only checked
against or committed to the server after entering text into a
page or form. Many systems only displayed the character
entered after it was received and confirmed by the server.
Faster servers and more modern server operating systems,
such as Unix and VMS, offered several advantages in that
users could receive immediate feedback after each character
was typed.

At the beginning of the 1980s decade, the growing popu-
larity of microcomputers and personal workstations made it
possible to store data locally. Enterprise data was distributed
over networks of computer systems. To access information it
was no longer necessary to have a continuous connection to
central databases, and instead it was possible to copy infor-
mation to a personal computer, edit and work with it, and then
save it back to a file or database server later. Most microcom-
puters worked with data in logical chunks or files. This
brought a lot of power to end users, but introduced problems
in managing the large quantity of enterprise data that was no

10

20

25

30

35

40

45

50

55

60

65

2

longer stored as a unique entity in one place. For example, a
file that was being edited by one user could not usually be
accessed or modified by other users at the same time. It was
also difficult to manage multiple copies of the same data.

Toward the end of the 1980’s faster microcomputers and
networks made it practical to work with enterprise data in
smaller chunks than files. One example of this new technol-
ogy was the development of Structured Query Language
(SQL) relational databases which made it possible to divide
software programs into a ‘Client’ tier and a ‘Server’ tier, that
communicated with each other over a network. Client-server
computing thus made it possible to store information cen-
trally, yet manage and work with it locally. In the client-server
paradigm, the client systems concentrated on offering a user-
friendly interface to server data, while the server systems
were able to handle many client systems at once while safely
managing enterprise data.

However, the increasing client-server computing intro-
duced its share of problems. Protocols used to communicate
between client and server became increasingly complex and
difficult to manage. Enterprise IT departments needed
increasingly greater resources to manage the proprietary
implementations of client operating systems, server database
systems and middleware protocols connecting the various
‘tiers’ of client-server systems. Data was no longer stored in
one place but was required to be managed within a distributed
network of systems. Client-server systems also lacked a
major advantage of mainframes: in a client-server system any
changes to the data on the server weren’t immediately
updated on the client.

Starting in the 1990s, the Internet has allowed businesses,
organizations, and other enterprises to easily make informa-
tion available to users without the complex architecture that
client-server systems typically require. Today, an increasing
number of software applications are moving their data and
logic or functional processes back to the server tier, from
which they can be accessed from the Internet by a wide
variety of clients, including thin and very thin-clients, which
typically consist of Internet browsers or small applications
(applets) whose sole responsibility is providing an interface
to the user. In many ways, Internet computing (often referred
to as e-commerce) has brought back the data-handling advan-
tages of mainframes. Within the e-commerce environment
data that change on the server are immediately available to
clients that access the data through the Internet (world-wide)
or through an intranet (enterprise-wide).

Unfortunately, the rise of Internet commerce has also given
rise to some of the disadvantages associated with mainframe
technology. Most Internet connections that present data to the
user or client process use the Hyper Text Transfer Protocol
(HTTP) which is inherently “session-less.” This means that,
for example, there is no totally reliable way for the server to
automatically update the client display once the server data
change. It also means that the server only checks the validity
of'the client or user input after the user sends back or submits
an entire input form. This apparent disadvantage has also
played an important role in the success of the Internet:
because HTTP connections are session-less, they require
much less processing power and much less memory on the
server while the user is busy entering data. Thus, Internet
applications running on web servers can be accessed by mil-
lions of people. Because HT'TP and related Internet-based
client-server systems do not provide continuous access to
server data, systems sometimes incorporate lookup tables and
pre-defined values that are cached locally. For example, a list
of'possible countries to be selected by auser ofa web page can
be sent to the user’s computer when that page is first sent to

Case3:15-cv-01775 Documentl Filed04/20/15 Page32 of 49

US 8,539,024 B2

3

the user and used thereafter for subsequent country selec-
tions. Client-server applications often pre-read the data from
the server the moment an application or application window
is opened, in order to present users with selection lists the
moment they need them. This poses problems for data that
frequently changes over time since the client system may
allow users to select or enter data that is no longer valid. Italso
poses problems for large selection lists whose transmission to
the client may take a long time.

To address this some systems incorporate a local cache of
the data frequently accessed by the user. A web browser may,
for example be configured to remember the last pages a user
visited by storing them in a local cache file. A clear disadvan-
tage of keeping such a local cache is that it is only useful as
long as the user stays on the same client computer system.
Also, the local cache may include references to web pages
that no longer exist.

Some other systems with limited network bandwidth (like
cell phones or personal organizers) can be deployed with
built-in databases (such as dictionaries and thesauri), because
it would be impractical to wait for the download of an entire
database, which is needed before the data is of any use. This
has the disadvantage that data stored in the device may no
longer be up-to-date because it’s really a static database.
Also, the cost of cell phones and personal organizers is greatly
increased by the need for megabytes of local storage. Another
important consideration is that keeping valuable data in any
local database makes it vulnerable to misuse and theft. What
is needed is a mechanism that addresses these issues that
allows a client-server system to retain some clement of a
session-based system, with its increase in performance, while
atthe same time offering a secure communication mechanism
that requires little, if any, local storage of data.

Other attempts have been made to tackle some of the prob-
lems inherent with traditional computer system interfaces,
and particularly with regard to user session administration
and support. These attempts include the auto-complete func-
tion systems such as used in Microsoft Internet Explorer, the
spell-as-you-go systems such as found in Microsoft Word,
and the wide variety of client-server session managers such as
Netopia’s Timbuktu and Citrix Winframe.

Auto-Complete Functionality

Many current systems provide a mechanism to auto-com-
plete words entered into fields and documents. This ‘auto-
complete’ functionality is sometimes called ‘type-ahead’ or
‘predictive text entry’. Many web browsers such as
Microsoft’s Internet Explorer application will automatically
“finish’ the entry of a URL, based on the history of web sites
visited. E-mail programs including Microsoft Outlook will
automatically complete names and e-mail addresses from the
address book and a history of e-mails received and sent.
Auto-completion in a different form is found in most graphi-
cal user interfaces, including operating systems such as
Microsoft Windows and Apple Mac OS, that present lists to
the user: When the user types the first character of a list entry,
the user interface list will automatically scroll down to that
entry. Many software development tools will automatically
complete strings entered into program source code based on a
known taxonomy of programming-language dependent key
words and ‘function names’ or ‘class names’ previously
entered by the developer. Some cell phones and personal
organizers also automatically type-ahead address book
entries or words from a built-in dictionary. Auto-complete
functionality facilitates easy entry of data based on prediction
of what options exist for the user at a single moment in time
during entry of data.

20

25

30

35

40

45

50

55

60

65

4

Checking as You go

More and more word processing programs (most notably
Microsoft Word and certain e-mail programs) include so-
called spell checking as you type’. These programs auto-
matically check the spelling of words entered while the user
is typing. In a way, this can be seen as ‘deferred auto-com-
plete’, where the word processor highlights words after they
were entered, if they don’t exist in a known dictionary. These
spell checking programs often allow the user to add their own
words to the dictionary. This is similar to the ‘history lists’
that are maintained for the auto-completion of URLs in a web
browser, except that in this case the words are manually added
to the list of possible ‘completions’ by the user.

Software Component Technologies

Software component technologies have provided a mea-
sure of component generation useful in client/server systems.
One of these technologies is OpenDoc, a collaboration
between Apple Computer, Inc. and IBM Corporation
(amongst others) to allow development of software compo-
nents that would closely interact, and together form applica-
tions. One of the promises of OpenDoc was that it would
allow small developers to build components that users could
purchase and link together to create applications that do
exactly what the users want, and would make existing ‘bloat-
ware’ applications (notably Microsoft Office and Corel’s
WordPerfect Office/Corel Office) redundant, but the technol-
ogy was dropped several years ago in favor of newer tech-
nologies such as CORBA (Common Object Request Broker
Architecture), developed by the Object Management Group
to allow transparent communication and interoperability
between software components.

Object-oriented languages and even non-object-oriented
(database) systems have used component technologies to
implement technical functionality. The NeXTstep operating
system from NeXT Computer, Inc. (which was later acquired
by Apple Computer, Inc. and evolved into the Mac operating
system Mac OS X) had an object-oriented architecture from
its original beginnings, that allowed software developers to
create applications based on predefined, well-tested and reli-
able components. Components could be ‘passive’ user inter-
face elements (such as entry fields, scroll areas, tab panes etc)
used in application windows. But components could also be
active and show dynamic data (such as a component display-
ing a clock, world map with highlight of daylight and night,
ticker tape showing stock symbols, graphs showing computer
system activity, etc.). The NeX T operating system used object
frameworks in the Objective C language to achieve its high
level of abstraction which is needed for components to work
well. Later, Sun Microsystems, Inc. developed the Java lan-
guage specification in part to achieve the same goal of
interoperability. To date, Java has probably been the most
successful ‘open’ (operating system independent) language
used to build software components. It is even used on certain
web sites that allow ‘Java applets’ on the user’s Internet
browser to continuously show up-to-date information on the
client system.

WebObjects, an object-oriented technology developed by
Apple Computer, Inc. is an Internet application server with
related development tools, which was first developed by
NeXT Computer, Inc. WebObjects uses object oriented
frameworks that allow distribution of application logic
between server and client. Clients can be HTML-based, but
can also be Java applets. WebObjects uses proprietary tech-
nology that automatically synchronizes application objects
between client and server. The layer that synchronizes data
objects between the client and the server is called the ‘Enter-
prise Object Distribution’ (EODistribution), part of Apple’s

Case3:15-cv-01775 Documentl Filed04/20/15 Page33 of 49

US 8,539,024 B2

5

Enterprise Objects Framework (EOF), and is transparent to
the client software components and the server software com-
ponents.

Session Management

Both Netopia’s Timbuktu remote access systems, and Cit-
rix, Inc.’s Winframe terminal server product, allow some
element of remote access to server applications from a client
system. These products synchronize user data and server data,
transparently distributing all user input to the server and
return all server (display) output to the client. Timbuktu does
this with very little specific knowledge about the application
and operating system used. This allows it to transparently
work on both Microsoft Windows and Mac OS platforms.
Technologies similar to Timbuktu do exist and perform the
same kind of ‘screen sharing’. For example, the Virtual Net-
work Computing (VNC) system is one example of an open
source software program that achieves the same goals and
also works with Linux and Unix platforms.

Citrix Winframe has taken the same idea a step further by
incorporating intimate knowledge of the Microsoft Windows
operating system (and its Win32 APIs) to further optimize
synchronization of user input and application output on the
server. It can then use this detailed knowledge of the
Microsoft Windows APIs to only redraw areas of the screen
that it knows will change based on a user action: for example,
Winframe may redraw a menu that is pulled down by the user
without needing to access the server application because it
knows how a menu will work.

Software Applications

Several application providers have also built upon these
technologies to provide applications and application services
of'use to the end-user. These applications include computer-
based thesauri, on-line media systems and electronic ency-
clopediae.

The International Standards Organization (as detailed fur-
ther in ISO 2788-1986 Documentation—Guidelines for the
Establishment and Development of monolingual thesauri and
ISO 5964-1985 Documentation—Guidelines for the Estab-
lishment and Development of multilingual thesauri) deter-
mines suggested specifications for electronic thesauri, and
thesaurus management software is now available from
numerous software vendors world-wide. However, most sys-
tems have clear limitations that compromise their user-friend-
liness. Most commonly this is because they use a large third-
party database system, such as those from Oracle Software,
Inc. or Informix, Inc. as a back-end database. This means that
any thesaurus terms that are displayed to the user are fetched
from the database and then presented in a user interface. If one
user changes the contents of the thesaurus, other users will
only notice that change after re-fetching the data. While of
little concern in small or infrequently changing environ-
ments, this problem is a considerable one within larger orga-
nizations and with rapidly updated content changes, for
example in media publishing applications when thesaurus
terms are being linked to new newspaper or magazine articles.
This type of work is usually done by multiple documentalists
(media content authors) simultaneously. To avoid ‘mixingup’
terms linked to articles, each documentalist must be assigned
a certain range of articles to ‘enrich’ (which in one instance
may be the act of adding metadata and thesaurus terms to a
document). Clearly, in these situations there is a great need for
live updates of data entered by these users, but a similar need
exists for all client-server database programs.

SUMMARY OF THE INVENTION

The invention provides a system that offers a highly effec-
tive solution to the aforementioned disadvantages of both

20

25

30

35

40

45

50

55

60

65

6

client-server and Internet systems by providing a way to
synchronize the data entered or displayed on a client system
with the data on a server system. Data input by the client are
immediately transmitted to the server, at which time the
server can immediately update the client display. To ensure
scalability, systems built around the present invention can be
divided into multiple tiers, each tier being capable of caching
data input and output. A plurality of servers can be used as a
middle-tier to serve a large number of static or dynamic data
sources, herein referred to as “content engines.”

The present invention may be incorporated in a variety of
embodiments to suit a correspondingly wide variety of appli-
cations. It offers a standardized way to access server data that
allows immediate user-friendly data feedback based on user
input. Data can also be presented to a client without user
input, i.e. the data are automatically pushed to the client. This
enables a client component to display the data immediately,
or to transmit the data to another software program to be
handled as required.

The present invention can also be used to simply and
quickly retrieve up-to-date information from any string-based
content source. Strings can be linked to metadata allowing
user interface components to display corresponding informa-
tion such as, for example, the meaning of dictionary words,
the description of encyclopedia entries or pictures corre-
sponding to a list of names.

Embodiments of the present invention can be used to create
a user interface component that provides a sophisticated
“auto-completion” or “type-ahead” function that is extremely
useful when filling out forms. This is analogous to simple,
client-side auto-complete functions that have been widely
used throughout the computing world for many years. As a
user inputs data into a field on a form, the auto-complete
function analyzes the developing character string and makes
intelligent suggestions about the intended data being pro-
vided. These suggestions change dynamically as the user
types additional characters in the string. At any time, the user
may stop typing characters and select the appropriate sugges-
tion to auto-complete the field.

Today’s client-side auto-complete functions are useful but
very limited. The invention, however, vastly expands the use-
fulness and capabilities of the auto-complete function by
enabling the auto-complete data, logic and intelligence to
reside on the server, thus taking advantage of server-side
power. Unlike the client-side auto-complete functions in cur-
rent use, an auto-complete function created by the present
invention generates suggestions at the server as the user types
in a character string. The suggestions may be buffered on a
middle tier so that access to the content engine is minimized
and speed is optimized.

The simple auto-complete schemes currently in popular
use (such as email programs that auto-complete e-mail
addresses, web browsers that auto-complete URLs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the suggestions be stored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. The present invention, however,
stores and retrieves the auto-complete suggestions from data-
bases on the server. Using the present invention, the sugges-
tions generated by the server may, at the option of the appli-
cation developer, be cached on the middle tier or on the client
itself to maximize performance.

The present invention provides better protection of valu-
able data than traditional methods, because the data is not
present on the client until the moment it is needed, and can be
further protected with the use of user authentication, if nec-

essary.

Case3:15-cv-01775 Documentl Filed04/20/15 Page34 of 49

US 8,539,024 B2

7

The present invention is also useful in those situations that
require immediate data access, since no history of use needs
to be built on the client before data is available. Indeed, data
entered into an application by a user can automatically be
made available to that user for auto-completion on any other
computer, anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
builtinto programming languages, user interface components
or web components. The present invention can be integrated
into and combined with existing applications that access
server data. Using content access modules, the present inven-
tion can access any type of content on any server.

In the detailed description below, the present invention is
described with reference to a particular embodiment named
QuestObjects. QuestObjects provides a system for managing
client input, server queries, server responses and client out-
put. One specific type of data that can be made available
through the system from a single source (or syndicate of
sources) is a QuestObjects Service. Other terms used to
describe the QuestObjects system in detail can be found in the
glossary given below.

QuestObjects is useful for retrieval of almost any kind of
string-based data, including the following QuestObjects Ser-
vice examples:

Intranet Us

Access system for database fields (for lookup and auto-
complete services)

Enterprise thesauri system.

Enterprise search and retrieval systems.

Enterprise reference works.

Enterprise address books.

Control systems for sending sensor readings to a server that
responds with appropriate instructions or actions to be taken.
Internet Use

Client access to dictionary, thesaurus, encyclopedia and
reference works.

Access to commercial products database.

Literary quotes library.

Real-time stock quote provision.

Access to real-time news service.

Access to Internet advertisements.

Access to complex functions (bank check, credit card vali-
dation, etc).

Access to language translation engines.

Access to classification schemes (eg, Library of Congress
Subject Headings).

Access to lookup lists such as cities or countries in an order
form.

Personal address books.

Personal auto-complete histories.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a general outline of a system incorporating
the present invention.

FIG. 2 shows a schematic of a system in accordance withan
embodiment of the invention.

FIG. 3A shows a variety of stages in the usage of a sample
Questlet implementation in accordance with an embodiment
of the invention.

FIG. 3B shows an expanded view of a sample Questlet
implementation in accordance with an embodiment of the
invention.

FIG. 3C shows an expanded view of a sample Questlet
implementation in accordance with an embodiment of the
invention.

20

25

30

35

40

45

50

55

60

65

8

FIG. 4 shows a sequence diagram illustrating the use of a
system in accordance with an embodiment of the invention.

FIG. 5A shows a first thread flow chart illustrating the
interface between an active component and an embodiment of
the invention.

FIG. 5B shows a second thread flow chart illustrating the
interface between an active component and an embodiment of
the invention.

FIG. 6A shows a first thread flow chart illustrating the
client side of an embodiment of the invention.

FIG. 6B shows a second thread flow chart illustrating the
client side of an embodiment of the invention.

FIG. 7A shows a first thread flow chart illustrating the
server side of an embodiment of the invention.

FIG. 7B shows a second thread flow chart illustrating the
server side of an embodiment of the invention.

FIG. 8A shows an object model of an embodiment of the
present invention, displaying the base part.

FIG. 8B shows an object model of an embodiment of the
present invention, displaying the client part.

FIG. 8C shows an object model of an embodiment of the
present invention, displaying the server part.

FIG. 8D shows an object model of an embodiment of the
present invention, displaying the service part.

FIG. 9 shows a schematic of an application proxy system
that enables the use of the invention in various client environ-
ments.

DETAILED DESCRIPTION

Roughly described, the invention provides a session-based
bi-directional multi-tier client-server asynchronous informa-
tion database search and retrieval system for sending a char-
acter-by-character string of data to an intelligent server that
can be configured to immediately analyze the lengthening
string character-by-character and return to the client increas-
ingly appropriate database information as the client sends the
string.

The present invention includes a system that offers a highly
effective solution to an important disadvantage of both client-
server and Internet systems: The present invention provides a
standardized way to immediately synchronize the data
entered or displayed on a client system with the data on a
server system. Data input by the client is immediately trans-
mitted to the server at which time the server can immediately
update the client display. To ensure scalability, systems built
around the present invention can be divided into multiple
‘tiers” each capable of caching data input and output. Any
number of servers can be used as a middle-tier to serve any
number of static or dynamic data sources (often referred to as
“Content Engines”).

The present invention is useful for an extremely wide vari-
ety of applications. It offers a standardized way to access
server data that allows immediate user-friendly data feedback
based on user input. Data can also be presented to a client
without user input, i.e. the data is automatically ‘pushed’ to
the client. This enables a client component to display the data
immediately or to transmit it to another software program to
be handled as required.

The present invention is also particularly useful for assis-
tance in data entry applications, but can also be used to simply
and quickly retrieve up-to-date information from essentially
any string-based content source. Strings can be linked to
metadata allowing user interface components to display cor-
responding information such as the meaning of dictionary
words, the description of encyclopedia entries or pictures
corresponding to a list of names.

Case3:15-cv-01775 Documentl Filed04/20/15 Page35 of 49

US 8,539,024 B2

9

In some embodiments, the present invention can be used to
create a user interface component that provides a sophisti-
cated “auto-completion” or “type-ahead” function that is
extremely useful when filling out forms. Simple, client-side
auto-complete functions have been widely used throughout
the computing world for many years. As a user inputs data
into a field on a form, the auto-complete function analyzes the
developing character string and makes “intelligent” sugges-
tions about the intended data being provided. These sugges-
tions change dynamically as the user types additional char-
acters in the string. At any time, the user may stop typing
characters and select the appropriate suggestion to auto-com-
plete the field.

Today’s client-side auto-complete functions are very lim-
ited. The present invention vastly expands the usefulness and
capabilities of the auto-complete function by enabling the
auto-complete data, logic and intelligence to reside on the
server thus taking advantage of server-side power. Unlike the
client-side auto-complete functions in current use, an auto-
complete function created by the present invention pushes
suggestions from the server as the user types in a character
string. Using the present invention, the suggestions may be
buffered on a middle tier so that access to the content engine
is minimized and speed is optimized.

The simple auto-complete schemes currently in popular
use (such as email programs that auto-complete e-mail
addresses, web browsers that auto-complete URLs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the suggestions be stored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. The present invention, however,
stores and retrieves the auto-complete suggestions from data-
bases on the server. Using the present invention, the sugges-
tions generated by the server may, at the option of the appli-
cation developer, be cached on the middle tier or one the client
itself to maximize performance.

The present invention provides better protection of valu-
able data because the data is not present on the client until the
moment it is needed and can be further protected with a user
authentication mechanism, if necessary.

The present invention is useful for immediate data use,
since no use history must be built on the client before data is
available. Indeed, data entered into an application by a user
can automatically be made available to that user for auto-
completion on any other computer anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
builtinto programming languages, user interface components
or web components. The present invention can be integrated
into, and combined with, existing applications that access
server data. Using Content Access Modules, the present
invention can access any type of content on any server.

In the detailed description below, an embodiment of the
present invention is referred to as QuestObjects, and provides
a system of managing client input, server queries, server
responses and client output. One specific type of data made
available through the system from a single source (or syndi-
cate of sources) is referred to as a QuestObjects Service.
Other terms used to describe the QuestObjects system in
detail can be found in the glossary below:

GLOSSARY

Active Component—DPart of a software program that accesses
the QuestObjects system through one or more Questers.
Active Components may provide a user interface, in which
case they’re referred to as Questlets.

20

25

30

35

40

45

50

55

60

65

10

AppHost Synchronizer—Part of the QuestObjects Server that
allows the Application Proxy access to data in Server
Questers.

Application Proxy—An optional method implemented by the
QuestObjects Server allowing the use of the QuestObjects
system in client systems that do not allow the
QuestObjects—Client components to communicate to the
application server or web server directly. Uses the AppHost
Synchronizer on the QuestObjects Server to send selected
strings and metadata to the application server or web server
using a QuestObjects Adaptor.

Client Controller—A QuestObjects Controller on a QuestO-
bjects Client.

Client Quester—A Quester on a QuestObjects Client that has
a Server Quester as its peer.

Client Session—A temporary container of information
needed to manage the lifespan of Server Questers in a
QuestObjects Server.

Content Access Module—A part of a Content Channel that
provides a standardized API to access specific types of Con-
tent Engines.

Content-based Cache—A persistent store of Queries and cor-
responding Result Sets executed by a Content Engine for a
specific Content Channel.

Content Channel—A part of the QuestObjects system that
provides one type of information from one Content Engine.
Consists of a Query Manager and a Content Access Module,
linking a Content Engine to the QuestObjects system.
Content Engine—A dynamic data source that provides data
to a Content Channel by accessing its own database or by
querying other information systems.

Query Filter—A filter specified by a Query Manager in a
specific Service used to tell the Server Quester to interpret
incoming strings before they are sent to the Service as a
QuestObjects Query.

Query Manager—An intelligent part of a Content Channel
that interprets QuestObjects Queries and sends them to a
Content Engine (through a Content Access Module) or
retrieves results from the Content-based Cache in a standard-
ized way. The Query Manager can also send a list of Query
Patterns and Query Filters to the Server Quester, allowing the
Server Quester to match and filter new Queries before they are
sent to the Content Channel.

Query Pattern—A string-matching pattern (such as a unix-
style grep pattern) specified by a Query Manager in a specific
Service used to tell the Server Quester to interpret incoming
strings before they are sent to the Service as a QuestObjects
Query.

Persistent Quester Store—A dynamic database of Questers
that is maintained on the QuestObjects Server, allowing
Questers to be stored across Client sessions whereby the state
and contents of the Client are automatically restored when a
new Client Session is started.

Quester—An intelligent non-visual object contained by an
Active Component that links a QuestObjects Stringl ist to an
input buffer. Questers exist on both the QuestObjects Client
and the QuestObjects Server and can be specifically referred
to as Client Quester and Server Quester. Questers communi-
cate with each other through a QuestObjects Controller.
Questlet—A User Interface Element that accesses the
QuestObjects system through one or more Questers. A visual
Active Component.

QuestObjects Adaptor—An optional software component for
existing application servers and web servers that allows these
servers to use data entered into the QuestObjects system by
users of client systems and web browsers that require an
Application Proxy.

Case3:15-cv-01775 Documentl Filed04/20/15 Page36 of 49

US 8,539,024 B2

11

QuestObjects Client—Part of the QuestObjects system that
functions as the client tier consisting of one or more Client
Questers and a Client Controller that communicates to a
QuestObjects Server.

QuestObjects Controller—An intelligent non-visual compo-
nent that provides the interface between Questers on QuestO-
bjects Clients and QuestObjects Servers. QuestObjects Con-
trollers implement the protocol of the present invention.
QuestObjects Query—A string created by the Server Quester
with optional qualifier and the requested row numbers form-
ing a query to be executed by a specified QuestObjects Ser-
vice.

QuestObjects Result Set—A set of Stringlists with corre-
sponding Query returned from the QuestObjects Service,
returned in batches to the Client Quester by the Server
Quester.

QuestObjects Server—Central part of the QuestObjects sys-
tem that provides the link between any number of QuestOb-
jects Clients, any number of QuestObjects Services, and any
number of other QuestObjects Servers. Maintains Client Ses-
sions that QuestObjects Clients communicate with through
the Server Controller. Provides services such as caching, rep-
lication and distribution.

QuestObjects Service—One of the Content Channels pro-
vided by a specific Syndicator. A logical name for a Syndi-
cator, a Content Channel and its corresponding Content
Engine.

QuestObjects String—Sequence of Unicode characters with
standardized attributes used by the QuestObjects system.
QuestObjects Stringl.ist—Container for a set of QuestOb-
jects Strings retrieved from a QuestObjects Service with stan-
dardized attributes needed by the QuestObjects System.
QuestObjects User—Person or process accessing the
QuestObjects system from the QuestObjects Client, option-
ally authorized by the Syndicator.

Server Controller—A QuestObjects Controller on a QuestO-
bjects Server.

Server Quester—A Quester on a QuestObjects Server that has
a Client Quester as its peer.

Syndicator—A part of the QuestObjects system that offers
one or more Content Channels to be used by QuestObjects
Servers, performing user-based accounting services based on
actual data use such as billing, collection of statistics and
management of preferences.

User Interface Element—A visual and optionally interactive
component in a software program that provides an interface to
the user.

The present invention provides a system that allows clients
or client applications to asynchronously retrieve database
information from a remote server of server application. The
terms “client” and “server” are used herein to reflect a specific
embodiment of the invention although it will be evident to one
skilled in the art that the invention may be equally used with
any implementation that requires communication between a
first process or application and a second process or applica-
tion, regardless of whether these processes comprise a typical
client-server setup or not. The invention includes a Server,
that handles requests for information from clients, and a
communication protocol that is optimized for sending single
characters from a Client to the Server, and lists of strings from
the Server to the Client. In one embodiment, as the Server
receives a single character from the Client, it immediately
analyzes the lengthening string of characters and, based on
that analysis, returns database information to the Client in the
form of a list of strings. Clients are not restricted to programs
with a user interface. Generally, any process or mechanism
that can send characters and receive string lists can be con-

20

25

30

35

40

45

50

55

60

65

12

sidered a client of the system. For example, in an industrial or
power supply setting, the control system of a power plant
could send sensor readings to the system, and in return receive
lists of actions to be taken, based on those sensor readings.

The system’s protocol is not restricted to sending single
characters. In fact, Clients can also use the protocol to send a
string of characters. For example, when a user replaces the
contents of an entry field with a new string, the Client may
then send the entire string all at once to the Server, instead of
character by character.

In accordance with one embodiment of the invention the
system is session-based, in that the server knows or recog-
nizes when subsequent requests originate at the same Client.
Thus, in responding to a character the Server receives from a
Client it can use the history of data that has been sent to and
from the current user. In one embodiment, the system stores
user preferences with each Service, so that they are always
available to the Client, (i.e., they are independent of the physi-
cal location of the client). Furthermore, client authentication
and a billing system based on actual data and content use by
Clients are supported. For faster response, the Server may
predict input from the Client based on statistics and/or algo-
rithms.

The system is bi-directional and asynchronous, in that both
the Client and the Server can initiate communications at any
moment in time. The functionality of the system is such that
it can run in parallel with the normal operation of clients.
Tasks that clients execute on the system are non-blocking, and
clients may resume normal operation while the system is
performing those tasks. For example, a communication initi-
ated by the Client may be a single character that is sent to the
Server, that responds by returning appropriate data. An
example of a communication initiated by the Server is updat-
ing the information provided to the client. Because the system
is session-based it can keep track of database information that
has been sent to the Client. As information changes in the
database, the Server sends an updated version of that infor-
mation to the Client.

Embodiments of the system may be implemented as a
multi-tier environment This makes it scalable because the
individual tiers can be replicated as many times as necessary,
while load balancing algorithms (including but not limited to
random and round robin load-balancing) can be used to dis-
tribute the load over the copies of the tiers. One skilled in the
art would appreciate that it is not necessary to replicate the
tiers. Indeed, there may be only a single copy of each tier, and
that all tiers (Client, Server, and Service) may be running on
a single computer system.

FIG. 1 illustrates the general outline of a system that
embodies the present invention. As shown in FIG. 1 there may
be various Clients 101 using the system. These Clients use a
communication protocol 102 to send information, including
but not limited to single characters, and to receive informa-
tion, including but not limited to lists of strings and corre-
sponding metadata. At least one Server 103 receives informa-
tion from the Client, and sends information to the Client. In a
typical embodiment if there is a plurality of Servers, then the
system can be designed so that each Client connects to only
one of them, which then relays connections to other Servers,
possibly using load-balancing algorithms. Servers have a
communication link 104 to a Service 105, which they use to
obtain the information that they send to the Client.

FIG. 2 is a schematic illustrating an embodiment of the
present invention, and displays a five-tier system that has a
user interface in which user interface elements use the present
invention to assist the user in performing its tasks. For pur-
poses of illustration, FIG. 2 displays just one session and one

Case3:15-cv-01775 Documentl Filed04/20/15 Page37 of 49

US 8,539,024 B2

13

content Service. In an actual implementation there may be
multiple concurrently active sessions, and there may be more
than one content Service that Clients can use. As shown
herein, the first of the five tiers is a Client tier 201. The Client
tier contains the user interface and the Client components that
are needed to use the system. The second tier is a Server or
server process 206, which handles the queries that Clients
execute, and in return displays results to the Client. Service
213, which corresponds to 105 of FIG. 1, is a logical entity
consisting of three more tiers: a Syndicator 214, a Content
Channel 219 and a Content Engine 224. The Syndicator pro-
vides access to a number of Content Channels and performs
accounting services based on actual data use. The Content
Channel provides a specific type of information from a spe-
cific source (i.e. the Content Engine). The Content Engine is
the actual source of any content that is made available through
the QuestObjects system. The Client tier 201 corresponds to
the client 101 in FIG. 1. In this example, the Client may be an
application (and in some embodiments a web application)
with a user interface that accesses the system of the present
invention. As used in the context of this disclosure a user
interface element that uses the present invention is referred to
as a “Questlet.” A Client can contain one or more Questlets
202 (e.g. an input field or a drop down list. FIG. 3 described
later contains three examples of such Questlets. A Questlet is
always associated with at least one Client Quester 203.
Questers are objects that tie a QuestObjects input buffer (con-
taining input from the Client) to a QuestObjects Result Set
returned from a QuestObjects Server. Questers exist on both
the Client and Server, in which case they are referred to as a
Client Quester and a Server Quester, respectively. Every Cli-
ent Quester has one corresponding Server Quester. In accor-
dance with the invention, any event or change that happens in
either one of them is automatically duplicated to the other so
that their states are always equal. This synchronization
mechanism is fault-tolerant so that a failure in the communi-
cation link does not prevent the Questers from performing
tasks for which they do not need to communicate. For
example, a Client Quester can retrieve results from the cache,
even if there is no communication link to the Server. Each
single Quester accesses exactly one QuestObjects Service,
i.e. one specific Content Channel offered by one specific
Syndicator. At initialization of the Client, the Questlet tells its
Quester which Service to access. In one embodiment a Ser-
vice is stored or made available on only one Server within a
network of Servers. However, this is transparent to the Client
because each Server will forward requests to the right com-
puter if necessary. The Client does not need to know the exact
location of the Service.

To communicate with its Server Quester 208, each Quester
in a session uses a controller 204. The system contains at least
one Client Controller 204 and a Server Controller 209, which
together implement the network communication protocol 205
of'the present invention. Client Controllers may cache results
received from a Server, thus eliminating the need for network
traffic when results are reused.

Client Questers are managed by a Questlet, which create
and destroy Questers they need. In a similar fashion, Server
Questers are managed by a Session 207. When a Client
Quester is created, it registers itself with the Client Controller.
The Client controller forwards this registration information
as a message to the Session using the Server Controller. The
Session then checks if the Persistent Quester Store 210 con-
tains a stored Quester belonging to the current user matching
the requested Service and Query Qualifier. If such a Quester
exists, it is restored from the Persistent Quester Store and

20

25

30

35

40

45

50

55

60

65

14

used as the peer of the Client Quester. Otherwise, the Session
creates a new Server Quester to be used as the Client
Quester’s peer.

A Time Server 211 provides a single source of timing
information within the system. This is necessary, because the
system itself may comprise multiple independent computer
systems that may be set to a different time. Using a single-
time source allows, for example, the expiration time of a
Result Set to be calibrated to the Time Server so that all parts
of the system determine validity of its data using the same
time.

Server communication link 212 is used by the Server to
send requests for information to a Service, and by a Service to
return requested information. Requests for information are
Query objects that are sent to and interpreted by a specific
Service. Query objects contain at least a string used by the
Service as a criterion for information to be retrieved, in addi-
tion to a specification of row numbers to be returned to the
Client. For example, two subsequent queries may request row
numbers 1 through 5, and 6 through 10, respectively. A query
object may also contain a Qualifier that is passed to the
appropriate Service. This optional Qualifier contains
attributes that are needed by the Service to execute the Query.
Qualifier attributes may indicate a desired sort order or in the
example of a thesaurus Service may contain a parameter
indicating that the result list must contain broader terms of the
Query string. Services use the communication link to send
lists of strings (with their attributes and metadata) to Servers.
Server communication link 212 is also used by Server
Questers to store and retrieve user preferences from a Syndi-
cator’s Preference Manager.

Questers use Services to obtain content. A Service is one of
the Content Channels managed by a Syndicator. When a
Quester is initialized, it is notified by its Active Component of
the Service it must use. The Service may require authentica-
tion, which is why the Syndicator provides a User Manager
215. If a Client allows the user to set preferences for the
Service (or preferences needed by the Active Component), it
may store those preferences using the Syndicator’s Prefer-
ence Manager 216. The Server (i.e. Server Quester) only uses
the Syndicator for authentication and preferences. To obtain
content, it accesses the appropriate Content Channel directly.
The Content Channel uses its Syndicator to store usage data
that can be later used for accounting and billing purposes.
Usage data is stored in a Usage Statistics Store 217.

Content communication link 218 is used by Content Chan-
nels to send usage data to their Syndicator, and to retrieve user
information from the Syndicator. The Content Channel is a
layer between the QuestObjects System, and the actual con-
tent made available to the system by a Content Engine 224.
Each Content Channel has a corresponding Query Manager
220 that specifies the type of query that can be sent to the
corresponding Content Engine, and defines the types of data
that can be returned by the Content Channel.

Specification of query type comprises a set of Query Pat-
terns and Query Filters that are used by the Server Quester to
validate a string before the string is sent to the Content Chan-
nel as a QuestObjects Query. For example, a query type
“URL” may allow the Server Quester to check for the pres-
ence of a complete URL in the input string before the input
string is sent to the Content Channel as a query. A query type
“date” might check for the entry of a valid date before the
query is forwarded to the Content Channel.

The Query Manager optionally defines the types of string
datathat can be returned to the Client by the Content Channel.
Specific Active Components at the Client can use this infor-
mation to connect to Services that support specific types of

Case3:15-cv-01775 Documentl Filed04/20/15 Page38 of 49

US 8,539,024 B2

15

data. Examples of string types include: simple terms, defini-
tional terms, relational terms, quotes, simple numbers, com-
pound numbers, dates, URLs, e-mail addresses, preformatted
phone numbers, and specified XML formatted data etc.

The Query Manager 220 retrieves database information
through a Content Access Module 221. The Content Access
Module is an abstraction layer between the Query Manager
and a Content Engine. It is the only part of the system that
knows how to access the Content Engine that is linked to the
Content Channel. In this way, Query Managers can use a
standardized API to access any Content Engine. To reduce
information traffic between Content Channels and Content
Engines, Content Channels may access a content-based cache
222 in which information that was previously retrieved from
Content Engines is cached. Engine communication link 223
is used by Content Access Modules to communicate with
Content Engines. The protocol used is the native protocol of
the Content Engine. For example, if the Content Engine is an
SQL based database system then the protocol used may be a
series of SQL commands. The Content Access Module is
responsible for connecting the Content Engine to the QuestO-
bjects System.

Content Engines 224 are the primary source of information
in the system. Content Engines can be located on any physical
computer system, may be replicated to allow load balancing,
and may be, for example, a database, algorithm or search
engine from a third-party vendor. An example of such an
algorithm is Soundex developed by Knuth. Content Engines
may require user authentication, which, if required, is
handled by the Syndicator (through the Content Access Mod-
ule).

The invention uses Content Engines as a source of strings.
One skilled in the art would understand that a string may, for
example, contain a URL of] or a reference to any resource,
including images and movies stored on a network or local
drive. Furthermore, strings may have metadata associated
with them. In one embodiment, strings might have a language
code, creation date, modification date, etc. An entry in a
dictionary may have metadata that relates to its pronuncia-
tion, a list of meanings and possible uses, synonyms, refer-
ences, etc. A thesaurus term may have a scope note, its nota-
tion, its source and its UDC coding as metadata, for example.
Metadata of an encyclopedia entry may include its descrip-
tion, references, and links to multi-media objects such as
images and movies. A product database may have a product
code, category, description, price, and currency as metadata.
A stock quote may have metadata such as a symbol, a com-
pany name, the time of the quote, etc. Instructions to a control
system may contain parameters of those instructions as meta-
data. For example, the instruction to open a valve can have as
metadata how far it is to be opened.

FIGS. 3A-3C contain three examples of the Questlets that
can be used with the system, i.e., the User Interface Elements
that access the QuestObjects system. In FIG. 3A, a series of
representations of an auto-completing entry field are shown,
such as might be used in an application window or on a web
form, that accesses a single QuestObjects Service, and allows
for auto-completion of; in this example, a U.S. state name.
FIGS. 3B and 3C depict two different presentation forms of
the same complex Questlet that access a number of QuestO-
bjects Services simultaneously.

Users should be able to clearly recognize the availability of
QuestObjects Services in an application. As shown in FIG.
3 A, and particularly in the auto-complete entry field example
screen element 302, clear symbols are displayed at the right
end ofthe field. A small disclosure triangle 308 is displayed in
the lower right-hand corner, and serves as an indicator to the

20

25

30

45

50

55

16

user that a QuestObject is being used. A reserved space herein
referred to as the “status area”, and located above the disclo-
sure triangle 301 is used to display information about the state
of the QuestObjects system. The successive shots of this
screen element 302 through 307 show some of the different
kinds of states in this status area. Screen element 302 depicts
an empty data field with an empty status area. The screen
element 303 shows the same field immediately after the user
enters a character “N”. On receiving the “N”input, the Quest-
let immediately checks its internal entry cache for available
auto-complete responses. I[f the cache does not contain a valid
string (either because the cache is empty, because the cache is
incomplete for the entry character, or because one or more
cached strings have expired) the QuestObjects system sends a
query to the QuestObjects Service. This sending process is
indicated by a network access symbol in the status area 304
which is in this embodiment takes the form of a left and right
facing arrows.

Screen element 305 shows the entry field after the Server
has sent one or more auto-complete strings back to the Quest-
let. This example situation is typical of these instances in
which the user did not enter a second character after the
original “N” before the QuestObjects system responded. The
QuestObjects system is inherently multi-threaded and allows
the user to continue typing during access of the QuestObjects
Service. The screen element status area of 305 now displays
a small downward facing arrow indicating that there are more
available auto-complete answers. In this case, the entry field
has displayed the first one in alphabetic order.

Screen element 306 shows the same entry field after the
user has hit the down arrow key or clicked on the arrow
symbol in the status area. The next available auto-complete
response in alphabetical order is displayed. The double up
and down pointing arrows in the status area now indicate that
both a previous response (in this example, “Nebraska”) and a
next response are available.

Screen element 307 shows the same entry field after the
user has typed two additional characters, “e” and “v”. As
shown in this example, the status area changes to a checkmark
indicating that there is now only one available auto-complete
match for the characters entered. The user can at any point use
the backspace key on their keyboard (or perform other actions
defined in the Questlet) to select different states, or can leave
the entry field to confirm his selection. At this time, the system
may do several things. It can automatically accept the string
“Nevada” and allow the user to move on with the rest of the
entry form; or if it has been configured such it may decide to
replace the string “Nevada” by the two-character state code.
The QuestObjects Service not only returns strings, but also
any corresponding metadata. This example of an auto-com-
plete entry field Questlet is based on showing the response
string, but other Questlets (and even invisible Active Compo-
nents) may perform an action invisible to the user. In addition,
a response sent to one Questlet can trigger a response in other
Questlets that have a pre-defined dependency to that Questlet.
For example, entering a city into one Questlet can trigger
another Questlet to display the corresponding state. It will be
evident to one skilled in the art, that although left, right, up
and down arrows are used to indicate usually the status of the
QuestObject field, other mechanisms of showing the status
within the scope and spirit of the invention.

Interdependent data (which in the context of this disclosure
is that data originating from a multitude of QuestObjects
Services) can be combined into a complex Questlet.
Examples 309 shown in FIG. 3B and example 313 shown in
FIG. 3C show a complex user interface element (Questlet)
that makes multiple QuestObjects Services available to the

Case3:15-cv-01775 Documentl Filed04/20/15 Page39 of 49

US 8,539,024 B2

17

user. In both examples the upper part of the Questlet is an
entry field that may offer the auto-complete functionality
described in FIG. 3A. By clicking on the disclosure triangle
308 shown in the earlier FIG. 3A (or by another action), the
user can disclose the rest of the Questlet, which in this
example comprises two functional areas 311 and 312. In this
example, the user interface allows the user to choose a vertical
presentation mode 309, shown in FIG. 3B or a horizontal
presentation mode 313, shown in FIG. 3C for the Questlet. A
close box 310 replaces the disclosure triangle in the entry
field, allowing the user to close areas 311 and 312. In FIG. 3C
Area 314 shows a certain QuestObjects Service, in this case a
list of “Recent Terms” accessed by the user. This Questlet
allows the user to select a different QuestObjects Service for
area 314 by selecting it from a popup list 319. In this example,
an appropriate second Service might be “Alphabetic Listing”.

In both examples of FIGS. 3B and 3C, area 312 displays a
QuestObjects “Thesaurus Service” (Thesa) that has been
selected. Additionally, in FIG. 3C areas 315 through 318
display four different Questers that take their data from a
QuestObjects Thesaurus Service. These Questers all access
the same Thesaurus and all have a dependency on the selected
string in the main list of area 314. Once the user clicks on a
string in area 314 the thesaurus lists 315 through 318 are
automatically updated to show the corresponding “Used For
terms” UF, “Broader Terms” BT, “Narrower Terms” NT, and
“Related Terms” RT from the Thesaurus Service. Questers
315 through 318 thus have a different Qualifier that is used to
access the same QuestObjects Service. It will be evident to
those skilled in the art that this example is not intended to be
acomplete description of features that a thesaurus browser (or
any other Service) provides. Most thesauri offer a multitude
of term relationships and qualifiers. A Questlet or part of a
Questlet may provide access to a multitude of QuestObjects
Services. A possible way to do this is to show multiple tabbed
panes accessible through tab buttons named after the Services
they represent 320.

Data from the QuestObjects Services can be displayed by a
Questlet in many forms. Thesaurus browser Questlets gener-
ally display interactive lists of related terms. Questlets can
also allow users to lookup data in a reference database (dic-
tionary, encyclopedia, product catalog, Yellow Pages, etc.)
made available as a QuestObjects Service. Furthermore,
Questlets can access QuestObjects Services that provide a
standardized interface to search engines. These search
engines may be Internet-based or can be built into existing
database servers. Questlets can also access pre-defined func-
tions made available as QuestObjects Services (such as a
bank number check, credit card validation Service or encryp-
tion/decryption Service). Questlets can even access transla-
tion Services allowing on-the-fly translation of entry data. In
some embodiments Questlets can retrieve multi-media data
formats by receiving a URL or pointer to multi-media files or
streaming media from a QuestObjects Service. In other
embodiments Questlets can be used to display current stock
quotes, news flashes, advertisements, Internet banners, or
data from any other real-time data push Service. Questlets can
provide an auto-complete or validity checking mechanism on
the data present in specific fields or combinations of fields in
relational database tables.

As described above, Questlets are well suited to represent
QuestObjects data visually. However, a QuestObjects Client
system can also contain non-visual Active Components, such
as function calls from within a procedure in a program to
access a QuestObjects Service. A program that needs to dis-
play a static or unchanging list of strings can use a Quester in
its initialization procedure to retrieve that list from a QuestO-

20

25

30

40

45

50

55

60

65

18

bjects Server. By calling a Quester, a stored procedure in a
database can make a QuestObjects Service available to any
database application. By encapsulating a Quester into an
object supplied with a programming language, a QuestOb-
jects Service can be made available to its developers. Another
example of how QuestObjects Services may be accessed is
through a popup menu that a user can access by clickingon a
word, phrase or sentence in a document. The popup menu can
include one or more QuestObjects Services by calling one or
more Questers. In an application that is controlled by speech,
a sound conversion engine that translates speech input into
phonemes can be used to send these phonemes to a QuestO-
bjects speech recognition Service through a Quester. As yet
another example, a control system can use a Quester to send
sensor readings to a Server, which then queries a special
purpose content engine to return actions that the control sys-
tem must perform given the sensor readings.

FIG. 4 shows a simplified event life cycle illustrating what
happens in a QuestObjects system using an auto-complete
Service. The protocol of the present invention is implemented
in the Client Controller and the Server Controller 400. In an
initial phase an Active Component on the Client tells its
Quester to start or initialize 401 a corresponding Client Ses-
sion on the current QuestObjects Server by sending a Register
message to its Client Controller. The Server Controller starts
a Client Session if it has not been started already. For sim-
plicity the event trace of FIG. 4 does not show typical error
handling that normally occurs, for instance when a Session
cannot be started. If the Quester was used before in the same
Active Component and application, the Session may restore
the Quester from a Persistent Quester Store, which may even
cause a Query to be triggered immediately if the Result Set in
the Quester is out of date.

The Server Quester looks up the Service in the Server’s list
of known QuestObjects Services, which may or may not be
located on the same computer. Once the Service is found, the
Client is registered and optionally authenticated by the Ser-
vice. At this time, the Service 402 returns information to the
Server Controller at which time the Client receives a confir-
mation that it was registered successfully. The Active Com-
ponent can now start using the Quester it has just initialized.
If the Active Component has a user interface (i.e. it is a
Questlet) then it will now allow the user to start entering
characters or cause other user events.

The next step in the process is to capture user input. As
shown in FIG. 4, at point 403 a character event is generated to
indicate the user has typed a character ‘a’ into the Questlet.
The Quester sends a message to its Client Controller telling it
that character ‘a’ must be appended to the input buffer (it will
be evident to one skilled in the art that if the cursor is not at the
end of the input string, typing ‘a’ would, for example, gener-
ate a different event to insert the character instead of append
it). The Client Controller uses the protocol to synchronize the
input buffer in the Server Quester by communicating to the
Server Controller. The Server Controller may look up query
‘a’ in its Result Set cache, in which case it can return a
previous Result Set to the Client without accessing the Ser-
vice. Also, depending on any rules specified by the Service (as
specified by a list of Query Patterns and Query Filters defined
in the Query Manager of the Content Channel) and depending
on the time interval between input buffer changes, the Server
Quester may decide not to immediately send the (perhaps
incomplete) string to the Service, as shown here.

An additional character event 404 is generated when the
user has typed a second character ‘b’ into the Questlet. As
before, a corresponding event arrives at the Server Quester. In
this case, the Server Quester may deduct that the input string

Case3:15-cv-01775 Documentl Filed04/20/15 Page40 of 49

US 8,539,024 B2

19

represents a valid query and send the appropriate query mes-
sage ‘ab’ to the Service. After receiving a query, the Service
executes it by accessing its Content Engine through the Con-
tent Access Module unless the Query Manager was able to
lookup the same Query with a Result Set in the Content-based
Cache. After an appropriate Result Set 405 is retrieved, the
Service will return it to the Client. In some embodiments, a
large Result Set may be returned to the Client in small
batches. In other embodiments an incomplete Result Set may
also be returned if the Content Engine takes a long time to
come up with a batch of results. A QuestObjects Service may
automatically ‘push’ updated information matching the pre-
vious query to the Client as it becomes available. A Query can
also be set to auto-repeat itself 406 if necessary or desired.

At step 407 the user types a third character ‘¢’ into the
Questlet. While this character is being sent to the Server, a
second and possibly third result set from the previous query is
on its way to the Client. When the Client Controller decides
408 that the received Result Set ‘ab’ no longer matches the
current input string ‘abc’, the second update of ‘ab’ is not
transmitted to the Active Component. Depending on the sort
order and sort attributes of the Result Set, the Client Control-
ler may still send the second and third Result Sets to the
Active Component if the second query ‘abc’ matches the first
string ofthe Result Set for the first query ‘ab’409. In that case,
the user typed a character that matched the third character in
the second or third Result Set, thus validating the Result Sets
for the second query. Eventually the Server Quester receives
notice of the third character appended to the input buffer, and
sends a new query ‘abc’ to the Service. The Server Quester
will stop the ‘repeating’ of query ‘ab’ and the Service will now
execute 410 the new query ‘abc’ at the Content Engine, or
retrieve it from the Content-based Cache.

FIG. 5 depicts a flow chart illustrating the interface
between an Active Component and the present invention. As
shown therein a Client Quester is initialized (step 501) in
which each active component is associated with one or more
Client Questers. A loop is then entered that exits when the
Active Component is destroyed (step 502). In the loop, events
are sent to the Client Quester (step 503), such as keyboard
events, click events and focus events (i.e. events that tell the
system which user interface element currently has input
focus). When events are sent to the Client Quester, they may
result in return events from the Client Quester, such as events
informing that the Result Set of the Client Quester has
changed. Those events are received by the event receiver (step
504). The event receiver waits for events from the Client
Quester (step 506) and—if events have been received (507)
—rprocesses them (step 508). It will be evident to one skilled
in the art that the Active Component can be multi-threaded, in
that the event receiver can work concurrently with the rest of
the Active Component. The Active Component may also use
a cooperative multi-threading scheme where it actively
handles client events and server responses in a continuous
loop.

FIG. 6 shows a flow chart illustrating the Client side of the
present invention. First, the Client Quester registers itself
with the Client Controller (step 601). It then enters a loop that
exits when the Client Quester is destroyed (step 602). When
that happens, the Client Quester deregisters itself from the
Client Controller (step 603). During the loop the Client
Quester handles events from the Active Component it belongs
to. First, it waits for an event and receives it (step 604). Then
the type of the event is checked (step 605). If it is not a
character event, it is handled depending on the type and
content of the event (step 606). An example of'a non-character
event is a double-click on the input string, the click of a button

20

25

30

35

40

45

50

55

60

65

20

that clears the input buffer, the addition of characters to the
input buffer by a paste-action etc. If the event is a character
event, the input buffer is updated accordingly and Client
Questers that have dependencies with the input buffer or the
Result Set also are notified (step 607).

The next step is to get results based on the new input butfer.
First, the Client Quester checks ifthe results are present in the
client-side cache, which usually is a fast short-term
in-memory buffer (step 608); if so, they are retrieved from the
cache (step 609) and the Active Component is notified of the
results (step 610). If the results are not found in the cache, the
Client Quester uses the Client Controller to send the new
input buffer to the Server Quester, so that a new query can be
executed (step 611). To support this, the protocol of the
present invention provides a number of messages that allow
the Client Quester to send just the changes to the input buffer,
instead of sending the entire input buffer. These messages
include but are not limited to: inputBufferAppend, input-
BufferDeleteCharAt, inputBufferInsertCharAt, inputBufter-
SetCharAt, inputBufferSetLength, and inputBufferDelete.
After thus updating the Server Quester’s input buffer, the
Client Quester activates the result retriever to wait for new
results and process them (step 612).

The Client Quester is intended to be multi-threaded, so that
it can continue providing its services to its Active Component
while it waits for results from the QuestObjects Server. There-
fore, the Result Retriever can be implemented to run in a
separate thread of execution. In this embodiment the Result
Retriever waits for results from the Server Quester (step 613).
If results have been received (step 614), it checks whether
they are usable (step 615). Results are usable if they corre-
spond to the latest query. If results are from a previous query
(which can occur because the system is multi-threaded and
multi-tier), they may also still be usable if the Client Quester
can filter them to match the new input buffer (this depends on
the sort flags in the Result Set). If results are usable, the Active
Component is notified of the new results. This notification is
also sent to other Client Questers that have dependencies on
the originating Client Quester (step 616). Received results are
stored in the client-side cache, regardless of whether they
were found to be usable (step 617).

FIG. 7 is a flow chart illustrating the Server side of the
present invention. The first thing a Server Quester does when
it is created, is to check whether its attributes can be restored
from the Persistent Quester Store (step 701), based on the
parameters with which it is created. If the attributes can be
restored, they are restored and registered with its correspond-
ing Service (step 702). In accordance with one embodiment,
one of the restored attributes is a Result Set attribute; the
Server Quester checks whether it is still up to date (step 703).
If not, a query is sent to the corresponding Service if it is a
pushing service or if the Query was originally set to be auto-
repeating (step 704) and (in a separate thread of execution)
the Server Quester waits for the results of that query and
processes them (step 705).

If the Server Quester’s attributes could not be restored, it
initializes itself and registers itself with the correct service
which is one of the initialization parameters (step 706). If the
Client Quester was created with a default input buffer, the
Server Quester may automatically send the corresponding
Query to the Service. At this point, the initialization process is
complete and the Server Quester enters a loop that exits when
the Quester is destroyed (step 707). During the loop, the
Server Quester checks whether the Query String is valid,
using the validation attributes of the Service (Query Pattern
and Query Filter) (step 708). If the query is valid, the Server
Quester checks if the server-side cache has the results for the

Case3:15-cv-01775 Documentl Filed04/20/15 Page4l of 49

US 8,539,024 B2

21

Query String (step 709). If not, a new Query is sent to the
Service (step 710). After that, the results are retrieved (either
from cache or from the Service) and processed (step 711).

After validating (and possibly processing) the Query
String, the Server Quester waits for messages from the Client
Quester notifying of changes to the input buffer (step 712). If
such a message is received, the input buffer is updated accord-
ingly (step 713), and the loop is re-entered (step 708).

The processing of query results is performed in a separate
thread of execution. The process performed in this thread
starts by obtaining the Result Set (step 714), either from the
server-side cache or from the Service depending on the result
of the decision in step 709. When these results are obtained
(step 715), they are sent to the Client Quester (step 716) either
as part of the Result Set or as the entire Result Set, depending
on parameters set by the Client Quester and are stored in the
server-side cache (step 717). In addition, the Service is noti-
fied of actual results that have been sent to the client (step
718). If the results were pushed by the Service (step 719), this
thread starts waiting for new results to be processed; other-
wise, the thread stops.

FIGS. 8A-8D illustrate and object model of an embodi-
ment of the present invention. FIG. 8A illustrates the base
portion of the model containing the entities that are not spe-
cific to either QuestObjects Clients, QuestObjects Servers, or
QuestObjects Services. FIG. 8B displays the entities that are
specific to the QuestObjects client. FIG. 8C contains the
entities specific to the QuestObjects Server. FIG. 8D shows
the entities specific to the QuestObjects Service.

Each of FIGS. 8A through 8D show object models of one
particular embodiment of the present invention, using UML
(Unified Modelling Language) notation. Note that in the fig-
ures some of the entities have a name that starts with one of
the words “base’, “client’, ‘server’, and ‘service’, followed by
two colons. Those entities are merely references to entities in
the subfigure indicated by the word before the two colons. For
example, the entity named ‘service::QoService’ in FIG. 8A is
a reference to the ‘QoService’ entity in the figure of the
service part, namely FIG. 8D. It will be evident to one skilled
in the art that the model shown is purely an illustrative
example of one embodiment of the invention and that other
models and implementations may be developed to practice
the invention while remaining within the spirit and scope of
the this disclosure.

The base part of the system—depicted in FIG. 8 A-com-
prises entities that are not specific to one of the tiers of the
QuestObjects system. One of the most important entities
shown in FIG. 8A is QoString, the QuestObjects String. QoS-
tring models the strings that the QuestObjects System
handles. A QoString has at least a value, which is the
sequence of (Unicode) characters itself. To guarantee a mini-
mum performance level, i.e. one in which the communication
takes as little time as possible, this value has a limited length
(e.g. of 256 characters). Furthermore, a QoString may have a
key and metadata. The key (if any is present) is the identifier
(i.e. the primary key) of the QuestObjects String in the data-
base from which it originates. This key can be used to retrieve
data from the database that is related to the QuestObjects
String. Metadata of a QoString can be any additional data that
is provided with the QoString’s value. Metadata of a QoString
is XML formatted and has a limited length (e.g. 2048 bytes),
in order to ensure that QoStrings can be exchanged between
the tiers of the QuestObjects System without compromising
efficiency. If the QoString originates from a Content Channel,
it may also have a fetchTime, namely the timestamp of when
the QoString was retrieved from the underlying content pro-
vider. Italso may have an expirationTime indicating how long

20

25

30

35

40

45

50

55

60

65

22

the data in the QoString is to be considered valid. Optionally
a QoString can have a type, which is a reference to a QoType
object. (Note that for maximum efficiency the types are not
actually stored in the QoStrings, because it is very likely that
many QoStrings in a QoResultSet have the same type. Storing
the types in the strings would unnecessarily increase network
traffic.)

The QoType object models the concept of a string’s type. It
has a string typeString that contains the description of the type
and an indicator typelndicator that defines the meaning of the
description (typeString). Examples of string types are: the
DTD or Schema of the string’s value in these cases in which
it is XML formatted (or, alternatively, the URL of'the DTD or
Schema), the number formatter in the case it is a number, and
the date (and/or time) formatter in the case it is a date (and/or
time). Table 1 shows an example of the use of types, espe-
cially type indicators.

TABLE 1
Value of
typelndicator Meaning of typeString
0 typeString contains the name of the type
64 typeString contains a string formatter
65 typeString contains a number formatter
66 typeString contains a date formatter
128 typeString contains a DTD
129 typeString contains a Schema
160 typeString contains the URL of a DTD
161 typeString contains the URL of a Schema
255 custom type; typeString is the type’s name

In the example shown in Table 1, bit 7 of the typelndicator
is on if typeString is XML related, bit 6 is on if typeString is
some formatter, and bit 5 is on when typeString is a URL. This
name must follow the same naming scheme as Java packages:
They must use the Internet domain name of the one who
defined the type, with its elements reversed. For example,
custom types defined by MasterObjects would begin with
“com.masterobjects.”.

The QoQuery entity models the specification of a QuestO-
bjects Query. It includes a queryString that contains the value
the Content Channel is queried for (which is named que-
ryString in the figure). In addition to the queryString,
QoQuery has a property ‘qualifier’ that can hold any other
attributes of the query. The format and meaning of the quali-
fier’s contents is defined by the Content Channel that executes
the query. Furthermore, it can be specified which row num-
bers of the total result set must be returned using the property
‘rownums’. The property ‘requestedTypes’ can optionally
hold a list of QoTypes, limiting the types of the strings that
will result from the query. The ‘timeout’ property can be used
to specify a maximum amount of time execution of the query
may take.

Queries may include a type (QoQuerytype). Query types
are similar to QoType (i.e. String Types), and can be used by
QuestObjects Clients to find all QuestObjects Services that
support a certain kind of Query.

The result of a query is represented by the QoResultSet
entity. QuestObjects Result Sets are collections of QuestOb-
jects Strings that are sent from a QuestObjects Server to a
QuestObjects Client in response to a query. QoResultSets are
created and filled by a QuestObjects Service (to which QoRe-
sultSet has a reference named ‘service’), based on the
QoQuery to which the QoResultSet has a reference. Actual
results are stored as an array of QoStrings in the ‘strings’
property. Elements of the QuestObjects Result Set (i.e. QoS-
trings) may be selected, as indicated by the ‘selected’ prop-

Case3:15-cv-01775 Documentl Filed04/20/15 Page42 of 49

US 8,539,024 B2

23

erty that is a list of indices in the strings array of selected
strings. Also, one of the QoStrings may be marked as current
as indicated by the ‘current’ property. (When a QoString is
marked as current it means that all operations are performed
on that QoString, unless another one is explicitly specified.)
QuestObjects Result Sets include an attribute ‘ordered’ that
indicates whether the QoStrings in the QoResultSet are
ordered. Sometimes, especially when a QuestObjects Result
Set is narrowed down by a new Query, the fact that the
QoResultSet is ordered may mean that the QuestObjects Cli-
ent does not need to actually execute a new Query; instead, it
can filter the previous QuestObjects Result Set itself accord-
ing to the new queryString.

As further described below, Server Questers may have a
QuestObjects Result Set, of which only a part is sent to the
QuestObjects Client. At all times, the ‘rownums’ property of
QoResultSet indicates the row numbers of QoStrings that are
actually present in the QoResultSet. The rownums property
may have different values for corresponding QoResultSets on
the QuestObjects Server and the QuestObjects Client. The
same holds for the ‘strings’ property. The ‘complete’ property
is the percentage of the QoStrings in the server-side QoRe-
sultSet that is present in the corresponding client-side QoRe-
sultSet as well. The property ‘totalNumberOfStrings” indi-
cates the total number of QoStrings in the QoResultSet,
whether actually present or not. For server-side QoResultSets
this number is always equal to the length of the strings’ array,
but for client-side QoResultSets the number may be smaller.

Finally, result sets include an identifier ‘resultSetld’. Every
time a Client Quester uses the protocol of the present inven-
tion to send something to the Server Quester that may resultin
anew QuestObjects Result Set, it includes a request identifier.
This identifier is then copied in the resultSetld when the
QuestObjects Result Set is sent to the Client Quester. In this
way Client Questers know which request the QuestObjects
Result Set belongs to. (This is important because the system
is asynchronous and on occasions it may occur that a newer
QuestObjects Result Set is sent to the client before an older
one. The request identifier and QuestObjects Result Set iden-
tifier allow the Client Quester to detect and handle this.)

The core entity in the figure is QoQuester. QoQuester is the
superclass of both QoClientQuester (part of the client and
thus depicted in FIG. 8B) and QoServerQuester (depicted in
FIG. 8C). The QoQuester entity models the Quester concept.
Its primary task is to maintain an input buffer, to make sure
that QuestObjects Queries are executed and to store and pro-
vide access to the QuestObjects Result Sets returned by
QuestObjects Services in reply to QuestObjects Queries. At
all times, a QoQuester holds one QoResultSet that contains
the results of the latest QuestObjects Query. (Note that a
QoQuester may hold other QoResultsSets as well, for
example for optimization purposes.) Client Questers and
Server Questers exist in a one-to-one relationship with each
other: for every Client Quester there is exactly one corre-
sponding Server Quester, and vice versa. All properties listed
in QoQuester are present and equal, both in the Client Quester
and in the corresponding Server Quester. An important excep-
tion is the resultSet property. In the Server Quester, this is
always the entire QuestObjects Result Set of the latest Query.
However, in order to minimize network traffic the Server
Quester is intelligent about the portion it actually sends to the
Client Quester. Questers include a property ‘minimumBatch-
Time’ that indicates the minimum amount of time that should
pass before the Server Quester sends results to the Client
Quester. This allows the Server Quester to accumulate results
and send them as a single action instead of as a separate action

20

25

30

35

40

45

50

55

60

65

24

for each result. There are two situations in which the Server
Quester may ignore this minimum batch time:

(a) when the result set is complete before the minimum
batch time has passed, and

(b) when the number of accumulated results exceeds the
number indicated by the ‘resultSetBatchSize’ property before
the minimum batch time has passed.

If, for whatever reason, the Server Quester postpones send-
ing the accumulated results to the Client Quester, the (op-
tional) ‘maximumBatchTime’ property indicates how long it
may postpone the sending. Even if no results are available yet,
when the maximumBatchTime passes, the Server Quester
must notify the Client Quester thereof.

Results are sent to the Client Quester in batches, the size of
which is indicated by the ‘resultSetBatchSize’ property.
Occasionally, the Server Quester may deviate from this batch
size, notably when the number of results that is not present on
the client is smaller than the batch size or when the maxi-
mumBatchTime has passed. This concept can be taken even
further, for example when the batch size is 10 results and the
Server Quester has 11 results, the Server Quester may send
them all, even though it exceeds the batch size, because send-
ing one extra result with the other 10 is probably more effi-
cient than sending a single result in a separate batch at a later
point. The Server Quester can use the ‘clientMaximuml.a-
tency’ to make such decisions; it indicates the maximum
expected amount of time that elapses between sending a
message and receiving its response. The higher this value, the
more likely it is that sending the eleventh result with the other
ten is more efficient.

Questers include an input buffer. The content of the input
buffer is what the QuestObjects Service will be queried for. In
the Client Quester, the input buffer is controlled by the appli-
cation that uses the QuestObjects system. For example, an
application with a graphical user interface may update the
input buffer according to key presses in one of its input fields.
The Client Quester keeps the input bufter of its corresponding
Server Quester up to date using the protocol of the present
invention.

Properties ‘highestReceivedResultSetld’ and ‘latestRe-
questld’ are used to detect when QuestObjects Result Sets are
received out of order. As with the ‘resultSetld’ property of the
QoResultSet, every QuestObjects Result Set includes an
identifier. The ‘highestReceivedResultSetld’ property stores
the highest of all received QuestObjects Result Set identifiers.
If'a Client Quester only needs the latest results, it can simply
discard received QuestObjects Result Sets that have a lower
identifier than ‘highestReceivedResultSetld’. The ‘latestRe-
questld’ is the identifier of the latest request. The QuestOb-
jects Result Set with an identifier that matches ‘latestReques-
tld’ holds the results of the latest request.

The remaining properties of QoQuester store the QuestO-
bjects Service the Quester uses (‘service’), the optional quali-
fier that Queries to this QuestObjects Service need (‘quali-
fier’), the types the Quester can handle (‘types’), whether an
application proxy is needed, and the optional function of the
Quester in the application (‘applicationFunction’, used by the
application proxy mechanism to determine how the value of
the Quester is to be passed to the application/web server). In
addition, if the update interval property ‘autoUpdatelnterval’
is set to a non-zero value, the Server Quester will automati-
cally repeat the last Query with that interval. This is useful for
QuestObjects Services that are not capable of pushing results
themselves. A mechanism is required to allow any other entity
to be notified of changes in the Quester. There are many ways
this can be done. As an example in the embodiment shown in
FIGS. 8A-8D an event mechanism is included that involves

Case3:15-cv-01775 Documentl Filed04/20/15 Page43 of 49

US 8,539,024 B2

25

event listeners and event handlers, very similar to the Java2
event mechanism. An entity that wants to be notified of
changes must implement the QoQuesterChangel.istener
interface and then be added to the Quester’s ‘changelisten-
ers’ property (using the method ‘addQuesterChangelis-
tener’). When the Quester changes, it will call the ‘quester-
Changed’ method of all registered
QoQuesterChangel isteners with a QoQuesterChangeEvent
as a parameter. The QoQuesterChangeEvent holds a descrip-
tion of the changes of the Quester; it has a reference to the
Quester that raised the event and an event type. In FIG. 8 three
event types are displayed (INPUT_BUFFER_CHANGED
indicates that the Quester’s input buffer has changed,
RESULT_SET_CURRENT_CHANGED indicates that the
current item of the Quester’s Result Set has changed, and
RESULT_SET_SELECTED_CHANGED indicates that the
list of selected results in the Quester’s Result Set has
changed). More event types can be added as desired.

Another important entity in FIG. 8A is QoController.
QoController is the entity that implements the protocol of the
present invention. In addition, it knows how to buffer usage
statistics and also handles the caching of result sets. QoCon-
troller includes two subclasses (QoClientController and QoS-
erverController), depicted in FIG. 85 and FIG. 8¢, respec-
tively. Buffering of usage statistics is an optimization that
eliminates the need of exchanging usage data between the
layers of the system every time a result is used. Instead, the
QuestObjects Controller buffers that data and flushes the
buffer when the statisticsBufterFlushTime has passed. Cach-
ing is an optimization as well. Caching is done by the QoRe-
sultsCache entry, to which the QuestObjects Controller has a
reference. The QoResultsCache has a list of cached entries
(‘resultsCacheEntries’). The entry of the cache is modeled as
QoResultsCacheEntry, an entity that has a list of QuestOb-
jects Result Sets for combinations of query strings and quali-
fiers (as defined in QoQuery).

The last entity in FIG. 8A is QoQuery Validator. QoQuery-
Validator is an abstract class that defines the method ‘is
Valid’. This method has a query string as a parameter and
returns either ‘true’ or ‘false’. QuestObjects Services may
declare and publish a QoQueryValidator. By doing so, they
allow the QuestObjects Server to verity the validity of a query
string without actually having to send it to the QuestObjects
Service, thus eliminating network traffic for invalid query
strings.

FIG. 8B displays the minimal entities every QuestObjects
Client must have. Every client of the QuestObjects System at
least has a Client Controller QoClientController. QoClient-
Controller is a subclass of QoController that implements the
client side of the protocol of the invention. Applications using
the QuestObjects System do so through Client Questers,
modeled as QoClientQuester. QoClientQuester is the sub-
class of QoQuester that implements client-specific Quester
functionality. The figure contains the entity ‘ActiveCompo-
nent’. It represents some entity that uses the QuestObjects
System through one or more Client Questers.

FIG. 8C shows the server part of the embodiment of the
present invention, and includes the QoServerQontroller, one
of the subclasses of QoController. QoServerController
implements the server-side part of the protocol of the present
invention. In addition, it maintains a list of sessions running
on the server, and it has references to a Persistent Quester
Store, an optional Service Directory and a list of optional
Application Host Synchronizers. For security reasons, one
implementation of the QuestObjects System may require that
only certified clients can connect to the system. A boolean
‘requiresCertification’ indicates this.

20

25

30

35

40

45

50

55

60

65

26

The QuestObjects System is session-based. This means
that clients that use the system are assigned to a session,
modeled by the QoSession entity. Every session has a unique
identifier, the ‘sessionld’. The QoSession entity maintains a
list of Server Questers that are active in the session (stored in
the ‘serverQuesters’ property). Furthermore, it has a refer-
ence to the Server Controller through which a QuestObjects
Client is using the session.

QoServerQuester is the server-side subclass of QoQuester.
It includes a reference to the session it is being used in (the
‘session’ property). Furthermore, when the QuestObjects
Service that the Quester uses has a Query Validator, QoServ-
erQuester has (a reference t0) a copy of that Query Validator,
so that query strings can be validated before they are actually
sent to the QuestObjects Service. The QoPersistentQuester-
Store is an entity that is able to store a user’s session and to
restore it at some other time, even when the session would
normally have expired or even when the same user is con-
necting from a different client machine. To this end, QoServ-
erQuester has two methods ‘store’ and ‘restore’. The first,
‘store’, returns a QoStoredQuester, which is a (persistent)
placeholder of the Server Quester that contains all relevant
data of that Server Quester. The second, ‘restore’, needs a
QoStoredQuester as an argument. The two are each other’s
inverse, which means calling ‘store’ on a QoServerQuester
and then calling ‘restore’ on the result creates a new QoServ-
erQuester that is an exact copy of the original QoServer-
Quester.

QoServiceDirectory acts as a Yellow Pages or directory of
QuestObjects Services. For each QuestObjects Service it
stores the name and address, as well as the address of the
QuestObjects Server through which the Service can be
accessed. Furthermore, Services’ profiles are additionally
stored to allow clients to find all QuestObjects Services sat-
isfying desired criteria.

Finally, QoAppHostSynchronizer is the AppHost Syn-
chronizer. Qo AppHostSynchronizer has its address as a prop-
erty (‘appHostAddress’).

FIG. 8D depicts the service part of the embodiment of the
present invention. Content is disclosed through Content
Channels (the QoContentChannel entity). Content Channels
use Content Access Modules (QoContentAccessModule) to
obtain their data in a standardized way, so only the Content
Access Module knows how to communicate with the under-
lying data source. Content Channels are organized in Syndi-
cators (the QoSyndicator entity), and each syndicator
includes a list of Content Channels. Each Quester in the
QuestObjects System uses a specific Content Channel of a
specific Syndicator. This is called a QuestObjects Service,
namely one of the Content Channels of a Syndicator. The
property ‘subscriptionRequired’ indicates whether the user
needs to be a registered user to be allowed to use the Service.
If it is false, only users listed in “users’ may use the Service.
Users can be subscribed to QuestObjects Services, which is
modeled by the QoSubscription entity. Statistics are kept per
Content Channel using the QoUsageStatisticsStore entity.
Content Engines optionally have a Query Validator that the
QuestObjects Server may use to validate Query Strings
before sending them off to the QuestObjects Service. In addi-
tion, Content Channels have a profile that consists of a Con-
tent Channel’s description, a list of types (QoType) of
QuestObjects Strings the Content Channel can provide, an
optional list of DTDs of that metadata of QuestObjects
Strings from the Channel conforms to, and an optional list of
Query Types the Content Channel accepts.

Case3:15-cv-01775 Documentl Filed04/20/15 Page44 of 49

US 8,539,024 B2

27

QuestObjects Servers communicate with QuestObjects
Services through the QoServiceSession. The QoServiceSes-
sion has a static reference to the QuestObjects Service it
belongs to, as well as a static array of IP addresses of QuestO-
bjects Servers that are allowed to connect to the QuestObjects
Service. In some versions of the QoServiceSession the array
of IP addresses can be replaced by a list of addresses and
netmasks, or by IP address ranges. Every instance of QoSer-
viceSession has the IP address of the server that is using the
session (‘serverAddress’), a connectionTimeout indicating
the maximum period of idle time before the Service Session
is automatically ended, and a serviceSessionld that can be
used to refer to the Service Session.

As described above, a QuestObjects Service is one of the
Content Channels of a Syndicator, so QoService has a refer-
ence to both (‘syndicator’ and ‘contentChannel’). The prop-
erty ‘listable’ indicates whether the Service may be listedin a
Service Directory (server::QoServiceDirectory). If not, the
Service can only be used if the application writer (i.e. the
programmer using the QuestObjects to develop an applica-
tion) knows that it exists and where it is available. The prop-
erty ‘name’ is the Service’s name, used in the Service Direc-
tory amongst others. This name must use the same naming
scheme as the names of custom types. The boolean ‘subscrip-
tionRequired’ indicates whether users must be subscribed
(modeled by QoSubscription) to the Service in order to be
allowed to use it. If the Content Engine of this Service’s
Content Channel requires login, ‘contentEnginel.oginName’
and ‘contentEnginel.oginPassword’ are the name and pass-
word with which is logged in. Finally, ‘pricingInfo’ contains
information about the costs involved in using the Service. Itis
formatted as XML, conforming to a well-defined structure
(i.e. DTD or Schema).

A Content Channel has a name (the ‘name’ property) and a
profile (QoContentChannelProfile). The profile provides
information about the Content Channel, namely about the
Query Types it accepts (‘queryTypes’), the types of the
Strings it can provide (‘types’), and the DTDs that QuestO-
bjects Strings’ metadata conforms to. In addition, it has a
textual ‘description’ of the content the Content Channel dis-
closes.

Content Channels also have properties that define the cri-
teria Query Strings have to satisfy. The property ‘que-
ryStringMinLength’ defined the minimum length a valid
query has. Alternatively or additionally, ‘queryStringRegu-
larExpressions’ may contain a list of regular expression
describing valid Query Strings (meaning that Query Strings
have to match at least one of the regular expressions). The
property ‘queryStringFilters” may hold a list of regular
expressions and replacement strings that can transform Query
Strings in a well-defined manner (for example the way the
standard Unix utility ‘sed’ does it). Instead of using these
three properties, Content Channels may define a QoQuery-
Validator (described above in FIG. 8A). If there is a Query
Validator, ‘queryStringMinLength’, ‘queryStringRegularEx-
pressions’, and ‘queryStringFilters’ are ignored.

As described above, Syndicators may have a list of users.
Users (QoUser) have a name and a password, as well as a list
of subscriptions (QoSubscription). QoSubscription models a
user’s subscription to a Service (the ‘service’ property). The
properties ‘startDate’ and ‘expirationDate’ define the time
frame during which the subscription is valid. Outside that
time frame the user will be denied access through the sub-
scription. The maximum number of queries the user may run
in the Service is stored in the ‘queryLimit’ attribute. The
‘queryLimitReset’ defines when the query counter is reset.
For example, if queryLimit is 10 and queryLimitReset is 7

20

25

30

35

40

45

50

55

60

65

28

days, the user may run 10 queries per week. (If queryLimit
equals zero the number of queries is unlimited and que-
ryLimitReset is ignored.) The property ‘resultlLimit’ stores
the maximum number of results the user may receive from the
subscription. Similar to ‘queryLimitReset’, ‘resultLimitRe-
set’ defines how often the result counter is reset. If
‘resultLimit’ equals zero the number of results is unlimited
and ‘resultLimitReset’ is ignored. The property ‘pushAl-
lowed’ indicates whether the user may use the Service in
pushing mode. If so, ‘pushlntervall.imit’ indicates the mini-
mum amount of time that has to pass between two pushes. A
‘historyAllowed’ variable indicates whether a history is kept
of the use of the subscription; if so, ‘historyLimit’ indicates
the maximum size of the history. If the maximum size is
exceeded, the oldest history data is deleted so that the size of
the history is below the maximum size again. If ‘histo-
ryLimit’ equals zero, the size of the history is unlimited.
Finally, a ‘usageAnonymous’ variable indicates that the
QoUsageRecords that are generated for this subscription
must not contain user information (this is necessary because
of privacy issues).

If “keepServiceStatistics’ is true, then the QoUsageStatis-
ticsStore can store three kinds of statistics:

statistics about Strings that have been displayed on the
client; the ‘keepClientDisplayedStatistics’ indicates whether
this kind of statistics are kept.

statistics about Strings that have actually been selected on
the client; the ‘keepClientSelectedStatistics’ indicates
whether this kind of statistics are kept.

statistics about Strings that have a used on the client; the
‘keepClientUsedStatistics’ indicates whether this kind of sta-
tistics are kept.

The Client Quester determines the exact meaning of the
three kinds of statistics. In the case of web applications, a
string is generally considered displayed when the Client
Quester accesses it in its QuestObjects Result Set. It is con-
sidered selected when a new Query is executed with the String
as Query String. Itis considered used when the form on which
the Client Quester is active is submitted with that String. The
actual data is stored as a list of QoUsageRecords in the prop-
ery ‘records’.

A QoUsageRecord holds usage information about a
QuestObjects String or a number of QuestObjects Strings. If,
in one Service Session, a Quester gets the same Result Set
more than once (consecutively), the usage data of each of the
Strings in the Result Set is grouped in one QoUsageRecord.
However, if ‘stringKey’, ‘stringValue’, ‘rowlnResultSet’, or
‘totalRowsInResultSet” changes, a new QoUsageRecord
must be used from that point on. The properties of
QoUsageRecord mean the following:

stringKey: if available, this is the unique key of the
QuestObjects String as provided by the Content AccessMod-
ule.

stringValue: the value of the QuestObjects String.

rowInResultSet: the row of the QuestObjects String in its
QuestObjects Result Set.

totalRowsInResultSet: the number of rows the QuestOb-
jects String’s Result Set had.

dateReturnFirst: the timestamp of the first time the
QuestObjects String was returned by the Content Channel.

dateReturnLast: if the QoUsageRecord represents a group
of' usage events, this is the timestamp of the last event.

clientDisplayed: indicates whether the QuestObjects Cli-
ent that received the QuestObjects String considers it to be
displayed.

Case3:15-cv-01775 Documentl Filed04/20/15 Page45 of 49

US 8,539,024 B2

29

clientSelected: indicates whether the QuestObjects Client
that received the QuestObjects String considers it to be
selected.

clientUsed: indicates whether the QuestObjects Client that
received the QuestObjects String considers it to be used.

applicationName: the name of the application to which the
Quester that received the QuestObjects String belongs.

appliationFunction: the function (if available) of the
Quester that received the QuestObjects String.

activeComponentld: the identifier of the Active Compo-
nent that received the QuestObjects String.

user: the identifier of the user that saw/selected/used the
String. If the user’s subscription has ‘false’ as value of ‘usag-
eAnonymous’, then this property is empty.

Queries are executed by QoQueryExecutors. A Query
Executor has a reference to the Service Session in which the
Query is executed, it has a reference to the Query itself, and it
also has a reference to the Server Quester that has the Query
executed. This reference may be a remote object when Corba
is being used, for example. If some proprietary protocol is
used, it may just be the unique identifier of the Server Quester.

FIG. 9 shows a method for using the present invention in
systems that have limited technical capabilities on the Client
side, such as, for example, web browsers with embedded Java
applets. If developers of client systems have not integrated
Client components of the present invention into their client
software, then Client components needed for the present
invention must be present as Plug-Ins, DLL’s, or an equiva-
lent device, or they must be downloaded to the client com-
puter as applets. These applets can be written in the Java
language, when they are needed. For security reasons, such
Client systems including web browsers usually do not allow
‘foreign’ software (i.e. software that is not an integral part of
the web browser) to influence or change data entered by the
user before it is sent to the application server (in this case the
web server). Without an additional infrastructure on the
server side, the present invention could not easily be used to
enter data by users of systems with such limited technical
capabilities on the client, because data entered and selected
using the present invention would not be communicated to the
existing application/web server. However, the modified
invention and method described in FIG. 9, referred to as an
Application Proxy, offers a solution.

Although the system depicted in FIG. 9 can be used to
support clients in practically any server-based application
server, and particularly in the case of a web server hosting an
application used by end users to enter data that is partially
retrieved using the present invention, the system is not limited
to the web. The system provides an ideal solution for current
web-based applications that consist of web browsers 903 on
the client side and web host computers 901 with web server
software 917 on the server side. To allow the web server 917
to access data selected using the present invention, this sys-
tem provides a link between the web server and the QuestO-
bjects Server 902. In this case, QuestObjects Server acts as a
data-entry proxy between the existing client system (web
browser) and the existing web server. Data entered by the
client is submitted to the QuestObjects Adaptor instead of to
the web server. The QuestObjects Adaptor then fills in the
values of the Questers and passes the data to the web server.
An Application Proxy is not required if the QuestObjects
Client components can directly insert data into the client
entry form on the web browser, as is the case on certain
platforms that allow integration between Java applets or other
components and JavaScript in the web browser.

In FIG. 9, the web server runs on a host computer 901
typically associated with a fixed IP address or an Internet host

20

25

30

35

40

45

50

55

60

65

30

name. The web server is accessed by any number of clients
using web browsers 903. To allow users to enter data and send
data to the server, web pages make use of HTML forms 904.
To use the present invention, user interface elements such as
entry fields in these HTML forms are associated with
Questers 905 in the form of browser Plug-Ins or Java Applets.
Through a QuestObjects Controller 906 those Questers allow
the user to access one or more QuestObjects Services hosted
by a QuestObjects Server 902 using the protocol of the
present invention 907. The Server Controller 908 forwards
user actions generated in the Client Questers 905 to their
corresponding Server Questers 909 that thus are always
aware of data selected in the Client. When a Server Quester is
first activated, it checks whether it is being used by a client
system that requires the use of an Application Proxy. If the
answer is yes, then the Quester creates a corresponding
AppHost Synchronizer 911 that contacts the QuestObjects
Adaptor 914 on the host computer 901 using a standardized
protocol 915. The QuestObjects Adaptor then knows which
QuestObjects Server to contact to retrieve QuestObjects data
915 after the user submits form data 912 to the application
host using the existing application protocol 913, such as
HTTP POST or HTTP GET. The QuestObjects Adaptor then
replaces the appropriate form field data with the strings
selected in the Server Questers 909 before forwarding this
form data, now including data selected using the present
invention, to the web server 917.

Design Implementation

The preceding detailed description illustrates software
objects and methods of a system implementing the present
invention. By providing a simple and standardized interface
between Client components and any number of Content
Engines that accept string-based queries, the present inven-
tion gives content publishers, web publishers and software
developers an attractive way to offer unprecedented interac-
tive, speedy, up-to-date and controlled access to content with-
out the need to write an access mechanism for each content
source.

In addition to acting as a standardized gateway to any
content engine, the present invention can intelligently cache
query results, distribute Services over a network of Servers,
validate user and other client input, authorize user access and
authenticate client software components as needed. These
and other optional services are provided by the present inven-
tion without requiring additional work on the part of software
developers or content publishers. Publishers can also keep
track of usage statistics, on a per-user basis as required allow-
ing flexible billing of content access. Content Access Mod-
ules allow software developers and vendors of Content
Engines such as database vendors and search engine vendors
to create simplified ways for developers and implementers of
such content engines to disclose information through the
present invention.

End users of the present invention experience an unprec-
edented level of user-friendliness accessing information that
is guaranteed to be up-to-date while being efficiently cached
for speedy access as the number of simultaneous users grows.

The present invention can be implemented on any client
and server system using any combination of operating sys-
tems and programming languages that support asynchronous
network connections and preferably but not necessarily pre-
emptive multitasking and multithreading. The interface of the
present invention as it appears to the outside world (i.e. pro-
grammers and developers who provide access to end users
and programmers who provide Content Access Modules to
Content Engines used by content publishers) is independent
of both the operating systems and the programming lan-

Case3:15-cv-01775 Documentl Filed04/20/15 Page46 of 49

US 8,539,024 B2

31

guages used. Adapters can be built allowing the tiers of the
system to cooperate even if they use a different operating
system or a different programming language. The protocol of
the present invention can be implemented on top of network-
ing standards such as TCP/IP. It can also take advantage of
inter-object communication standards such as CORBA and
DCOM. The object model of the present invention can be
mapped to most other programming languages, including
Java, C++, Objective C and Pascal.

Third-party vendors of software development and database
management tools can create components that encapsulate
the present invention so that users of those tools can access its
functionality without any knowledge of the underlying pro-
tocols and server-side solutions. For example, a 4GL tool
vendor can add an ‘auto-complete field’ to the toolbox of the
development environment allowing developers to simply
drop a Questlet into their application. In order to function
correctly, the auto-complete field would only need a reference
to the QuestObjects Server and one or more QuestObjects
Services, but it would not require any additional program-
ming.

Examples of Applications in which the invention may be
used include: Access system for database fields (for lookup
and auto-complete services); Enterprise thesauri system;
Enterprise search and retrieval systems; Enterprise reference
works; Enterprise address books; Control systems for send-
ing sensor readings to a server that responds with appropriate
instructions or actions to be taken; Client access to dictionary,
thesaurus, encyclopedia and reference works; Access to com-
mercial products database; Literary quotes library; Real-time
stock quote provision; Access to real-time news service;
Access to Internet advertisements; Access to complex func-
tions (bank check, credit card validation, etc); Access to lan-
guage translation engines; Access to classification schemes
(eg, Library of Congress Subject Headings); Access to lookup
lists such as cities or countries in an order form; Personal
address books; and, Personal auto-complete histories.

The foregoing description of preferred embodiments of the
present invention has been provided for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Obvi-
ously, many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were
chosen and described in order to best explain the principles of
the invention and its practical application, thereby enabling
others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited
to the particular use contemplated. It is intended that the
scope of the invention be defined by the following claims and
their equivalence.

What is claimed is:

1. A system comprising:

aserver system, including one or more computers, which is

configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

the client object that, while a user is providing input com-

prising a lengthening string of characters, sends query
messages to the server system;

whereby the query messages represent the lengthening

string as additional characters are being input by the
user; and

wherein the server system, while receiving said query mes-

sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input; and

20

25

30

35

40

45

50

55

60

65

32

wherein, upon receiving a return message of the return
messages from the server system, the client object tests
the usability of the results in the return message by
checking that the return message corresponds to the
latest query, and if usability is established, the client
object displays or returns at least some result data to the
user.

2. The system of claim 1, wherein, upon testing the usabil-
ity of the server system results, at least some result data is
displayed as an auto-completion inside of an input field.

3. The system of claim 1, whereby the lengthening string is
entered into an input field, and wherein upon testing the
usability of the server system results, at least some result data
is displayed in a separate area that is associated with the input
field or that pops up near said input field.

4. The system of claim 1, whereby the lengthening string is
entered into an input field, and wherein one or more symbols
displayed inside of the input field indicate(s) to the user one or
more of whether or not said system is present, whether the
system is available for use, the current state of the system,
whether a query has been sent to the server system, whether
more results are available, whether a previous result is avail-
able, whether a next result is available, or whether the current
result is the only available match.

5. The system of claim 1, wherein the server system sends
return messages to the client object containing results both in
response to the input and associated with a string contained
elsewhere on the same client object to which the input has a
predefined dependency.

6. The system of claim 1, wherein the server system
retrieves the results from one or more of a database, a search
and retrieval system, a thesaurus, a reference work, an address
book, a control system, a dictionary, an encyclopedia, a prod-
ucts database, a quotes library, a stock quote system, a news
service, internet advertisements, a catalog, a complex func-
tion, a translation engine, a classification scheme, a lookup
list, an auto-complete history, an algorithm, a directory, a
search engine, a database retrieval engine, or a cache.

7. The system of claim 1, wherein the server system caches
query results and subsequently determines results by looking
up the query in said cache so that it can avoid performing a
query for the same input on a data source or looking up said
query in a second cache.

8. The system of claim 1, wherein the client object trans-
mits an associated query message to the server system upon
each detected change to the input.

9. The system of claim 1, wherein the client object accu-
mulates input before transmitting an associated query mes-
sage to the server system.

10. The system of claim 1, wherein the client object com-
bines the input string with additional information, whereby
said additional information includes one or more of an indi-
cation of whether or not results should be sorted, whether
results should be in response to both the user input and a
qualifier, how many results should be returned, or which
selection of results should be returned.

11. The system of claim 10, whereby said qualifier identi-
fies a user to the server system whereby the server system
returns messages containing results in response to said user.

12. The system of claim 1, wherein the results returned by
the server system include suggestions for the user input; and

wherein these suggestions change dynamically while the

user is providing input.

13. The system of claim 1, wherein selections of results
returned by the server system are related to the user input
through predefined relationships; and

Case3:15-cv-01775 Documentl Filed04/20/15 Page47 of 49

US 8,539,024 B2

33

wherein an indicator of the corresponding relationship is
displayed or returned alongside each of said result selec-
tions.

14. The system of claim 13, wherein said relationships are
organized according to a dictionary or thesaurus system that
includes one or more of broader term relationships, narrower
term relationships, related term relationships, synonym rela-
tionships, used-for term relationships, meaning relationships,
or uses relationships.

15. The system of claim 1, wherein results returned by the
server system comprise result sets consisting of zero or more
string values.

16. The system of claim 1, wherein results returned by the
server system comprise a set of zero or more results;

wherein each result consists of one or more of a string, key,

fetch time, expiration time, metadata, logical link to
other data sources, or a Uniform Resource Identifier.

17. The system of claim 1, wherein the client object deter-
mines the usability of each server system response by com-
paring an original input to a then-current input; and

wherein the client object deems the results usable if they

match.

18. The system of claim 1, wherein the query message sent
to the server system includes a request identification that is
included by the server system in the corresponding server
response message.

19. The system of claim 18, wherein the usability of a
server system response is determined by the client object by
matching the request identification received in the server
response message against a request identification on the cli-
ent.

20. The system of claim 1, wherein the client object caches
results received from the server system and reuses said
cached results when Previously Presented queries match que-
ries contained in the cache or if cached query results can be
filtered to match the Previously Presented queries, instead of
sending messages representing those Previously Presented
queries to the server system.

21. The system of claim 1, wherein one or more filters are
used to validate or transform the input string using a type,
pattern, or minimum length; and

wherein no query is performed if the input string is found

not to conform to or does not transform using said type,
pattern, or minimum length.
22. The system of claim 1, wherein the server system is
capable of returning results from multiple data sources;
wherein the client object selects which ofthe available data
sources at the server system is to be queried; and

wherein the system selects one or more data sources based
on a name associated with each data source, on types of
queries accepted by each data source, or on string types
that can be returned by each data source.

23. The system of claim 1, wherein the input on the client
object represents speech and is generated by a sound conver-
sion engine.

24. The system of claim 1, wherein return messages
include suggestions and related data relevant to the sugges-
tions, and wherein the related data is displayed in a user
selectable manner; wherein a selection of the related data
displayed to the user causes additional data to be obtained
from the server system and be displayed.

25. The system of claim 1, wherein the client object is run
by a web browser.

26. The system of claim 1, wherein the client object is run
on a mobile device.

20

25

30

35

40

45

50

55

60

65

34

27. The system of claim 1, wherein the client object tests
the usability of the results in the return message by matching
an ID for the user query.

28. The system of claim 27, wherein the client object tests
the usability of the results in the return message by matching
an ID included in one of the query messages sent to the server
system and returned as part of the return message.

29. The system of claim 1 wherein the client object uses a
pre-defined query and automatically transmits a correspond-
ing message to the server as the client object is first run, and
wherein user input is not required before server responses are
sent to the client object.

30. The system of claim 1, wherein the server system
automatically sends messages containing Previously Pre-
sented results to the client object as updated data in response
to a previous query becomes available.

31. The system of claim 1, wherein the client object auto-
matically repeats a query to retrieve updated information
from the server system.

32. A system including at least one computer comprising:

a server system using a communication protocol that
enables asynchronous communication between the
server system and a client object; and

wherein the client object that, while a user is providing
input comprising a lengthening string of characters,
sends query messages to the server system;

whereby the query messages represent the lengthening
string as additional characters are being input by the
user; and

wherein the server system, while receiving said query mes-
sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input

wherein upon receiving corresponding return messages
from the server system, the client object tests the usabil-
ity of each return message by checking that the return
message corresponds to the latest query, and if usability
is established, provides feedback to the user based onthe
contents of the return message.

33. The system of claim 32, wherein the client object is run

using a web browser.
34. The system of claim 32, wherein the client object is run
on a mobile device.
35. A system comprising:
a client object adapted to receive input comprising a
lengthening string of characters from a user, the client
objectasynchronously sending multiple query messages
corresponding to multiple versions of said input to a
server system while a user modifies the input, compris-
ing a lengthening string of characters, the client object
receiving return messages with results in response to the
multiple versions of the input;
whereby the query messages represent the lengthening
string as additional characters are being input by the
user; and

wherein the server system, while receiving said query
messages, uses the input to query data available to the
server system and send return messages to the client
object containing results in response to the input

wherein upon receiving one of the return messages from
the server system, the client object checks the usabil-
ity of the results of the one of the return messages
using a more recent version of the input to determine
whether to display at least some of the results of the
one of the return messages to the user.

Case3:15-cv-01775 Documentl Filed04/20/15 Page48 of 49

US 8,539,024 B2

35

36. A system comprising:

aserver system, including one or more computers, which is
configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

wherein the client object, while a software process is pro-
viding input comprising a lengthening string of charac-
ters, sends query messages representing said input, to
the server system;

whereby the query messages represent the lengthening
string as additional characters are being input by the
software process;

wherein the server system, while receiving said query mes-
sages, uses the input to query data available to the server
object and send return messages to the client object
containing results in response to the input; and

wherein, upon receiving a return message of the return
messages from the server system, the client object tests
the usability of the results in the return message by
comparing the return message to the then-current input
or matching it with a request identification maintained
on the client object, and if usability is established, the
results are returned to the software process.

20

36

37. A system comprising:

a server system, including one or more computers, which is
configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

the client object that, while a user is providing input com-
prising a lengthening string of characters, sends query
messages representing said input to the server system;

whereby the query messages represent the lengthening
string as additional characters are being input by the
user;

wherein the server system, while receiving said query mes-
sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input; and

wherein, upon receiving a return message of the return
messages from the server object, the client object tests
the usability of the results in the return message by
matching an ID associated with the input sent to the
server system with an ID maintained in the client object,
and if usability is established, the client object displays
or returns at least some of the result data to the user.

#* #* #* #* #*

Case3:15-cv-01775 Documentl Filed04/20/15 Page49 of 49

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,539,024 B2 Page 1 of 1
APPLICATION NO. : 13/366905

DATED : September 17, 2013

INVENTOR(S) : Smit et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the Claims
Column 33, line 34, Claim 20, delete “Previously Presented” and insert --new--.
Column 33, line 36, Claim 20, delete “Previously Presented” and insert --new--.
Column 33, line 37, Claim 20, delete “Previously Presented” and insert --new--.

Column 34, line 14, Claim 30, delete “Previously Presented” and insert --new--.

Signed and Sealed this
Eighth Day of April, 2014

Decbatle X Loa

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

