Charles M. Lizza

William C. Baton
Sarah A. Sullivan
SAUL Ewing LLP
One Riverfront Plaza, Suite 1520
Newark, New Jersey 07102-5426
(973) 286-6700
clizza@saul.com
Attorneys for Plaintiffs
Gilead Sciences, Inc.
and Royalty Pharma Collection Trust

UNITED STATES DISTRICT COURT
 DISTRICT OF NEW JERSEY

Plaintiffs Gilead Sciences, Inc. ("Gilead") and Royalty Pharma Collection Trust
("Royalty Pharma") (collectively, "Plaintiffs"), for their Complaint against Defendants Watson Laboratories, Inc. ("Watson"), Actavis Inc., and Actavis plc (together with Watson,
"Defendants"), hereby allege as follows:

NATURE OF THE ACTION

1. This is an action for patent infringement under the patent laws of the United

States, 35 U.S.C. $\S 100$, et seq., arising from Watson's filing of an Abbreviated New Drug
Application ("ANDA") with the United States Food and Drug Administration ("FDA") seeking
approval to commercially market a generic version of Gilead's LETAIRIS ${ }^{\circledR}$ drug product prior to the expiration of United States Reissue Patent No. RE42,462 ("the '462 patent" or "the patent-insuit"). The ' 462 patent is owned by Royalty Pharma and exclusively licensed to Gilead.

THE PARTIES

2. Plaintiff Gilead is a company organized and existing under the laws of the State of Delaware, having its principal place of business at 333 Lakeside Drive, Foster City, California 94404.
3. Plaintiff Royalty Pharma is a Delaware trust, having its principal place of business at Rodney Square North, 1100 North Market Street, Wilmington, Delaware 19890.
4. On information and belief, Defendant Watson Laboratories, Inc. is a corporation organized and existing under the laws of the State of Nevada, having its principal place of business at Morris Corporate Center III, 400 Interpace Parkway, Parsippany, New Jersey, 07054.
5. On information and belief, Defendant Actavis, Inc. is a corporation organized and existing under the laws of the State of Nevada, having its principal place of business at Morris Corporate Center III, 400 Interpace Parkway, Parsippany, New Jersey 07054.
6. On information and belief, Defendant Watson is a wholly-owned subsidiary of Defendant Actavis, Inc.
7. On information and belief, Defendant Actavis plc is a corporation organized and existing under the laws of Ireland, having its principal place of business at 1 Grand Canal Square, Docklands, Dublin 2, Ireland.
8. On information and belief, Defendant Actavis, Inc. is a wholly-owned subsidiary of Defendant Actavis plc.
9. On information and belief, the acts of Watson complained of herein were done
at the direction of, with the authorization of, or with the cooperation, participation, or assistance of, or at least in part for the benefit of, Actavis, Inc. and Actavis plc.
10. On information and belief, Defendants manufacture and/or distribute generic drugs for sale and use throughout the United States, including in this Judicial District. On information and belief, Defendants also prepare and/or aid in the preparation and submission of ANDAs to the FDA.

JURISDICTION AND VENUE

11. This Court has jurisdiction over the subject matter of this action pursuant to 28 U.S.C. §§ 1331, 1338(a), 2201, and 2202.
12. This Court has personal jurisdiction over Watson by virtue of, inter alia, its systematic and continuous contacts with the State of New Jersey. On information and belief, Watson has its principal place of business in Parsippany, New Jersey, conducts business in this District, and purposefully avails itself of this forum by, among other things, making, shipping, using, offering to sell or selling, or causing others to use, offer to sell, or sell, pharmaceutical products in the State of New Jersey and deriving revenue from such activities. Also, on information and belief, Watson has customers in the State of New Jersey. Further, Watson is a wholly-owned subsidiary of Actavis, Inc., which has substantial contacts with the State of New Jersey.
13. On information and belief, Watson has been sued for patent infringement in this District and did not contest personal jurisdiction in this District in at least the following cases: Jazz Pharmaceuticals, Inc., et al. v. Watson Laboratories, Inc., No. 14-7757; Amarin Pharma, Inc., et al. v. Watson Laboratories, Inc., No. 14-3259; Celgene Corporation v. Natco Pharma Limited, et al., No. 14-3126; Supernus Pharmaceuticals, Inc. v. Actavis Inc., et al., No. 14-1981;
and Bayer Pharma AG, et al. v. Watson Laboratories, Inc., et al., No. 14-1804. Further, on information and belief, Watson has purposefully availed itself of the benefits of this forum by filing counterclaims in at least four (4) of those actions: Jazz Pharmaceuticals, Inc., et al. v. Watson Laboratories, Inc., No. 14-7757; Amarin Pharma, Inc., et al. v. Watson Laboratories, Inc., No. 14-3259; Celgene Corporation v. Natco Pharma Limited, et al., No. 14-3126; and Bayer Pharma AG, et al. v. Watson Laboratories, Inc., et al., No. 14-1804.
14. This Court has personal jurisdiction over Actavis, Inc. by virtue of, inter alia, its systematic and continuous contacts with the State of New Jersey. On information and belief, Actavis, Inc. has its principal place of business in Parsippany, New Jersey, conducts business in this District, and purposefully avails itself of this forum by, among other things, making, shipping, using, offering to sell or selling, or causing others to use, offer to sell, or sell, pharmaceutical products in the State of New Jersey and deriving revenue from such activities. On information and belief, Actavis, Inc. is registered to do business in the State of New Jersey. Also, on information and belief, Actavis Inc. has customers in the State of New Jersey.
15. On information and belief, Actavis, Inc. has been sued for patent infringement in this District and did not contest personal jurisdiction in this District in at least the following cases: Bayer Pharma AG, et al. v. Watson Laboratories, Inc., et al., No. 14-1804; Noven Therapeutics, LLC v. Actavis Laboratories FL, Inc., et al., No. 14-6414; and AstraZeneca AB, et al. v. Andrx Labs, LLC, et al., No. 14-8030. Further, on information and belief, Actavis, Inc. has purposefully availed itself of the benefits of this forum by filing counterclaims in at least one (1) of those actions: Bayer Pharma AG, et al. v. Watson Laboratories, Inc., et al., No. 14-1804.
16. This Court has personal jurisdiction over Actavis plc by virtue of, inter alia, its systematic and continuous contacts with the State of New Jersey. On information and belief,

Actavis plc conducts business in this District, and purposefully avails itself of this forum by, among other things, making, shipping, using, offering to sell or selling, or causing others to use, offer to sell, or sell, pharmaceutical products in the State of New Jersey and deriving revenue from such activities. Also, on information and belief, Actavis plc has customers in the State of New Jersey.
17. On information and belief, Defendants plan to continue to maintain continuous and systematic contacts with the State of New Jersey, including, but not limited to, their aforementioned business of preparing generic pharmaceuticals (including Watson's Proposed Products, as defined in paragraph 23, infra) to distribute in the State of New Jersey.
18. On information and belief, Defendants share common officers and directors and are agents of each other and/or work in concert with each other with respect to the development, regulatory approval, marketing, sale, and distribution of pharmaceutical products throughout the United States, including into New Jersey.
19. Venue is proper in this Judicial District pursuant to 28 U.S.C. $\S \S 1391$ and 1400(b).

THE PATENT-IN-SUIT

20. On June 14, 2011, the United States Patent and Trademark Office ("USPTO") duly and lawfully issued the '462 patent, entitled "Carboxylic Acid Derivatives, Their Preparation and Use." The '462 patent is a reissue of United States Patent No. 5,932,730, issued on August 3, 1999. A copy of the ' 462 patent is attached hereto as Exhibit A.

THE LETAIRIS ${ }^{\circledR}$ DRUG PRODUCT
21. Gilead holds an approved New Drug Application ("NDA") under Section 505(a) of the Federal Food Drug and Cosmetic Act ("FFDCA"), 21 U.S.C. § 355(a), for
ambrisentan tablets (NDA No. 22-081), which it sells under the trade name Letairis ${ }^{\circledR}$. The claims of the patent-in-suit cover, inter alia, carboxylic acid derivatives, including the compound ambrisentan.
22. Pursuant to 21 U.S.C. § 355(b)(1) and attendant FDA regulations, the patent-insuit is listed in the FDA publication, "Approved Drug Products with Therapeutic Equivalence Evaluations" (the "Orange Book"), with respect to LETAIRIS ${ }^{\circledR}$.

ACTS GIVING RISE TO THIS ACTION

23. Pursuant to Section 505 of the FFDCA, Watson filed ANDA No. 208-252
("Watson's ANDA") seeking approval to engage in the commercial use, manufacture, sale, offer for sale or importation into the United States of ambrisentan tablets 5 mg and 10 mg ("Watson's Proposed Products"), before the patent-in-suit expires.
24. In connection with the filing of its ANDA as described in the preceding paragraph, Watson has provided a written certification to the FDA, as called for by Section 505 of the FFDCA, alleging that the claims of the patent-in-suit are invalid, unenforceable, and/or will not be infringed by the activities described in Watson's ANDA.
25. On or about February 23, 2015, Plaintiffs received written notice of Watson's ANDA certification ("Watson's Notice Letter"). Watson's Notice Letter alleged that the claims of the ' 462 patent are invalid, unenforceable, and/or will not be infringed by the activities described in Watson's ANDA. Watson's Notice Letter also informed Plaintiffs that Watson seeks approval to market Watson's Proposed Products before the '462 patent expires.

COUNT FOR INFRINGEMENT OF THE ' 462 PATENT

26. Plaintiffs repeat and reallege the allegations of paragraphs 1-25 as though fully set forth herein.
27. Watson's submission of its ANDA to obtain approval to engage in the commercial use, manufacture, sale, offer for sale, or importation of ambrisentan tablets into the United States, prior to the expiration of the ' 462 patent, constitutes infringement of one or more of the claims of that patent under 35 U.S.C. § 271(e)(2)(A).
28. There is a justiciable controversy between the parties hereto as to the infringement of the ' 462 patent.
29. Unless enjoined by this Court, upon FDA approval of Watson's ANDA, Defendants will infringe the '462 patent under 35 U.S.C. § 271(a) by making, using, offering to sell, importing into the United States, and/or selling Watson's Proposed Products in the United States.
30. Unless enjoined by this Court, upon FDA approval of Watson's ANDA, Defendants will induce infringement of the '462 patent under 35 U.S.C. § 271(b) by making, using, offering to sell, importing into the United States, and/or selling Watson’s Proposed Products in the United States. On information and belief, upon FDA approval of Watson's ANDA, Defendants will intentionally encourage acts of direct infringement with knowledge of the '462 patent and knowledge that their acts are encouraging infringement.
31. Unless enjoined by this Court, upon FDA approval of Watson's ANDA, Defendants will contributorily infringe the ' 462 patent under 35 U.S.C. § 271(c) by making, using, offering to sell, importing into the United States, and/or selling Watson's Proposed Products in the United States. On information and belief, Defendants have had and continue to have knowledge that Watson's Proposed Products are especially adapted for a use that infringes the '462 patent and that there is no substantial noninfringing use for Watson's Proposed Products.
32. Plaintiffs will be substantially and irreparably damaged and harmed if Defendants' infringement of the ' 462 patent is not enjoined.
33. Plaintiffs do not have an adequate remedy at law.
34. This case is an exceptional one, and Plaintiffs are entitled to an award of their reasonable attorneys' fees under 35 U.S.C. § 285.

PRAYER FOR RELIEF

WHEREFORE, Plaintiffs respectfully request the following relief:
(A) A Judgment that Defendants have infringed the ' 462 patent by submitting ANDA No. 208-252;
(B) A Judgment that Defendants have infringed, and that Defendants' making, using, selling, offering to sell, or importing into the United States Watson's Proposed Products will infringe one or more claims of the ' 462 patent;
(C) An Order that the effective date of FDA approval of ANDA No. 208-252 be a date which is not earlier than the later of the expiration of the '462 patent, or any later expiration of exclusivity to which Plaintiffs are or become entitled;
(D) Preliminary and permanent injunctions restraining and enjoining Defendants, their officers, agents, attorneys and employees, and those acting in privity or concert with them, from making, using, selling, offering to sell, or importing into the United States Watson's Proposed Products until after the expiration of the ' 462 patent, or any later expiration of exclusivity to which Plaintiffs are or become entitled;
(E) A permanent injunction, pursuant to 35 U.S.C. § 271(e)(4)(B), restraining and enjoining Defendants, their officers, agents, attorneys and employees, and those acting in privity or concert with them, from practicing any claim of the ' 462 patent, or from actively inducing or
contributing to the infringement of any claim of the '462 patent, until after the expiration of the '462 patent, or any later expiration of exclusivity to which Plaintiffs are or becomes entitled;
(F) A Declaration that the commercial manufacture, use, importation into the United States, sale, or offer for sale of Watson's Proposed Products will directly infringe, induce, and/or contribute to infringement of the ' 462 patent;
(G) To the extent that Defendants have committed any acts of infringement with respect to the inventions claimed in the ' 462 patent, other than those acts expressly exempted by 35 U.S.C. § 271(e)(1), that Plaintiffs be awarded damages for such acts, together with interest;
(H) If Defendants engage in the commercial manufacture, use, importation into the United States, sale, or offer for sale of Watson's Proposed Products prior to the expiration of the '462 patent, a Judgment awarding damages to Plaintiffs resulting from such infringement, together with interest;
(I) A Judgment declaring that the '462 patent remains valid and enforceable;
(J) Attorneys' fees in this action as an exceptional case pursuant to 35 U.S.C. § 285;
(K) Costs and expenses in this action; and
(L) Such further and other relief as this Court may deem just and proper.

Dated: April 3, 2015

OF COUNSEL:
F. Dominic Cerrito

Eric C. Stops
Evangeline Shih
Gabriel Brier
Daniel C. Wiesner
Ashley M. Fry
Quinn Emanuel Urquhart
\& Sullivan, LLP
51 Madison Avenue
New York, NY 10010
(212) 849-7000

Attorneys for Plaintiff
Gilead Sciences, Inc.
Marshall Schmitt
Michael Best \& Friedrich LLP
Two Prudential Plaza, 180 North Stetson Avenue
Suite 2000
Chicago, Illinois 60601
(312) 596-5828

Attorneys for Plaintiff
Royalty Pharma Collection Trust

Respectfully submitted,

By: s/ Charles M. Lizza
Charles M. Lizza
William C. Baton
Sarah A. Sullivan Saul Ewing
One Riverfront Plaza, Suite 1520
Newark, New Jersey 07102-5426
(973) 286-6700
clizza@saul.com
Attorneys for Plaintiffs
Gilead Sciences, Inc.
and Royalty Pharma Collection Trust

CERTIFICATION PURSUANT TO LOCAL CIVIL RULES 11.2 \& 40.1

Pursuant to Local Civil Rules 11.2 and 40.1, I hereby certify that the matter in controversy is related to Gilead Sciences, Inc., et al. v. Watson Laboratories, Inc., et al., Civil Action No. 15-289 (D. Del.). I further certify that, to the best of my knowledge, the matter in controversy is not the subject of any other action pending in any court, or of any pending arbitration or administrative proceeding.

Respectfully submitted,

Dated: April 3, 2015

OF COUNSEL:

F. Dominic Cerrito

Eric C. Stops
Evangeline Shih
Gabriel Brier
Daniel C. Wiesner
Ashley M. Fry
Quinn Emanuel Urquhart
\& Sullivan, LLP
51 Madison Avenue
New York, NY 10010
(212) 849-7000

Attorneys for Plaintiff
Gilead Sciences, Inc.
Marshall Schmitt
Michael Best \& Friedrich LLP
Two Prudential Plaza, 180 North Stetson Avenue
Suite 2000
Chicago, Illinois 60601
(312) 596-5828

Attorneys for Plaintiff
Royalty Pharma Collection Trust

By: s/ Charles M. Lizza
Charles M. Lizza
William C. Baton
Sarah A. Sullivan
Saul Ewing
One Riverfront Plaza, Suite 1520
Newark, New Jersey 07102-5426
(973) 286-6700
clizza@saul.com
Attorneys for Plaintiffs
Gilead Sciences, Inc.
and Royalty Pharma Collection Trust

EXHIBIT A

(19) United States
(12) Reissued Patent Riechers et al.
(10) Patent Number:
(45) Date of Reissued Patent:

US RE42,462 E
Jun. 14, 2011
(54) CARBOXYLIC ACID DERIVATIVES, THEIR PREPARATION AND USE
(75) Inventors: Hartmut Riechers, Neustadt (DE); Dagmar Klinge, Heidelberg (DE); Wilhelm Amberg, Friedrichsdorf (DE); Andreas Kling, Mannheim (DE); Stefan Muller, Speyer (DE); Ernst Baumann, Dudenhofen (DE); Joachim
Rheinheimer, Ludwigshafen (DE); Uwe
Josef Vogelbacher, Ludwigshafen (DE);
Wolfgang Wernet, Hassloch (DE);
Liliane Unger, Ludwigshafen (DE);
Manfred Raschack, Weisenheim (DE)
(73) Assignee: Abbott GmbH \& Co. KG, Wiesbaden (DE)
(21) Appl. No.:

12/481,594
(22) PCT Filed:

Oct. 7, 1995
(86) PCT No.:

PCT/EP95/03963
§ 371 (c)(1),
(2), (4) Date: Mar. 27, 1997
(87) PCT Pub. No.: WO96/11914

PCT Pub. Date: Apr. 25, 1996
Related U.S. Patent Documents
Reissue of:
(64) Patent No.:

1ssued:
Appl. No.:
5,932,730

Filed:
Aug. 3, 1999
08/809,699
Mar. 27, 1997
(51) Int. Cl.

C07D 239/60	(2006.01)
C07D 239/96	(2006.01)
C07D 251/30	(2006.01)
C07D 403/12	(2006.01)

(52) U.S. Cl. 544/298; 544/299; 544/300; 544/301; $544 / 302 ; 544 / 309 ; 544 / 310 ; 544 / 312 ; 544 / 314 ;$ 544/315; 544/316; 544/317; 544/318; 544/319; $544 / 322 ; 544 / 326 ; 544 / 327 ; 544 / 328 ; 544 / 329$; 544/335
(58) Field of Classification Search 544/298, $544 / 299,300,301,302,309,310,312,314$, $544 / 315,316,317,318,319,322,326,327$, 544/328, 329, 335
See application file for complete search history.
(56)

References Cited

U.S. PATENT DOCUMENTS

5,178,663	A	$1 / 1993$	Harada et al.
5,270,289	A	$12 / 1993$	Harde et al.
5,318,945	A	$6 / 1994$	Baumann et al.
5,326,744	A	$7 / 1994$	Rheinheimer et al.
5,376,620 A	$12 / 1994$	Abe et al.	
5,387,575 A	$2 / 1995$	Harada et al.	
5,389,601 A	$2 / 1995$	Abe et al.	
5,541,148 A	$7 / 1996$	Glock et al.	
5,661,106 A	$8 / 1997$	Baumann et al.	

$5,703,017$	A	$12 / 1997$	Baumann et al.
$5,840,722$	A	$11 / 1998$	Baumann et al.
$5,969,134$	A	$10 / 1999$	Riechers et al.
$6,030,975$	A	$2 / 2000$	Romerdahl et al.
$6,197,780$	B 1	$3 / 2001$	Munter et al.
$6,197,958$	B 1	$3 / 2001$	Riechers et al.
$6,329,384$	B 1	$12 / 2001$	Munter et al.
$6,352,992$	B 1	$3 / 2002$	Kirchengast et al.
$6,559,338$	B 1	$5 / 2003$	Bernard et al.
$6,600,043$	B 2	$7 / 2003$	Riechers et al.
$6,677,465$	B 2	$1 / 2004$	Jansen
$7,109,205$	B 2	$9 / 2006$	Riechers et al.
$7,119,097$	B 2	$10 / 2006$	Riechers et al.
$2006 / 0276474$	A1	$12 / 2006$	Riechers et al.
$2007 / 0203338$	A1	$8 / 2007$	Riechers et al.

FOREIGN PATENT DOCUMENTS

	4029648	A1	$3 / 1992$
DE	4035758	A1	$5 / 1992$
DE	4035758	A1	$5 / 1992$
DE	4123469	A1	$1 / 1993$
DE	4201875	A1	$7 / 1993$
DE	4313412	$10 / 1994$	
DE	4313412	A1	$10 / 1994$
DE	4313413	A 1	$10 / 1994$
DE	4335950	$4 / 1995$	
DE	4335950	A	$4 / 1995$
DE	4313413	$10 / 1995$	
DE	341225	A 1	$10 / 1995$
DE	347811	$12 / 1989$	
EP	400741	$12 / 1989$	
EP	409368	A 2	$12 / 1990$
EP		$1 / 1991$	
EP			

(Continued)

OTHER PUBL1CAT1ONS

Advanced Organic Chem., Third Ed., Jerry Mar. 1985, pp. 750, 863. Agr. Biol. Chem., 40(5), 993-1000, 1976, on the Sterochemistry . . . Kogure et al.
Ciba-Geigy AG "Neue Selektiv-herbizide Mittel" Research Disclosure Journal (1994).
Chung, Vo Van et al., "Photochemical Reaction of Ethyl 3-Methyl-3-phenylgycidate in Methanol and Ether Solvents", Bulletin of the Chemical Society of Japan, vol. 49(1), 341-342 (1976).
Raschack et al., Journal of Cardiovascular Pharmacology (1995), 26 (Suppl. 3), S397-S399.
(Continued)
Primary Examiner - Bruck Kifle
(74) Attorney, Agent, or Firm - Lisa V. Mueller; Polsinelli Shughart PC

(57)

ABSTRACT
Carboxylic acid derivatives

where $R-R^{6}, \mathrm{X}, \mathrm{Y}$ and Z have the meanings stated in the description, and the preparation thereof, are described. The novel compounds are suitable for controlling diseases.

23 Claims, No Drawings

	FOREIGN PATENT DOCUMENTS	
EP	481512	$4 / 1992$
EP	481512 A	$4 / 1992$
EP	517215	$12 / 1992$
EP	517215 A	$12 / 1992$
EP	548710	$6 / 1993$
EP	567014 A 1	$10 / 1993$
EP	581184 A 1	$2 / 1994$
EP	695295 B 1	$2 / 1996$
EP	695296	$2 / 2007$
JP	SHO-51-4135 A1	$1 / 1976$
JP	$H 03-031266$	$2 / 1991$
JP	H03-240777 A	$10 / 1991$
JP	2730021	A 1
WO	$94 / 00987$	$12 / 1992$
WO	$1 / 1994$	
WO	$94 / 00987$	A 3

	6716	0/
O	96/00219 A1	1/1996
	00	7/2
OTHER PUBLICATIONS Riechers et al., Journal of Medicinal Chemistry (1996), 39(11), 21238. Yanagisawa et al., Nature, 332:411-415 (1988). Yanagisawa et al., FEBS Letters, 231-440-444 (1988). Hirata et al., Biochem. Biophys. Res. Commun., 154:868-875 (1988). Japan J. Hypertension 12:79 (1989). J. Vascular Med. Biology, 2:207 (1990). Kanno et al., J. Am. Med. Association, 264, 2868b (1990). Raschack et al. (J. Cardiovasc. Pharmacol. (1995), 26 (Suppl. 3), S397-S399. Riechers et al. (J. Med. Chem. (1996), 39(11), 2123-8).		

CARBOXYLIC ACID DERIVATIVES, THEIR PREPARATION AND USE

Abstract

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

Two (2) reissue applications have been co-filed for the reissue of U.S. Pat. No. 5,932,730. The reissue applications are U.S. Ser. No. 12/481,594 (the present application) and U.S. Ser. No. 12/481,598 (a co-filed reissue application), all of which are co-filed reissues of U.S. Pat. No. 5,932,730.

The present invention relates to novel carboxylic acid derivatives, their preparation and use.

Endothelin is a peptide which is composed of 21 amino acids and is synthesized and released by the vascular endothelium. Endothelin exists in three isoforms, ET-1, ET-2 and ET-3. In the following text, "endothelin" or "ET" signifies one or all isoforms of endothelin. Endothelin is a potent vasoconstrictor and has a potent effect on vessel tone. 1t is known that this vasoconstriction is caused by binding of endothelin to its receptor (Nature, 332, (1988) 411-415; FEBS Letters, 231, (1988) 440-444 and Biochem. Biophys. Res. Commun., 154, (1988) 868-875).
lncreased or abnormal release of endothelin causes persistent vasoconstruction in the peripheral, renal and cerebral blood vessels, which may lead to illnesses. It has been reported in the literature that elevated plasma levels of endothelin were found in patients with hypertension, acute myocardial infarct, pulmonary hypertension, Raynaud's syndrome, atherosclerosis and in the airways of asthmatics (Japan J. Hypertension, 12, (1989) 79, J. Vascular Med. Biology 2, (1990) 207, J. Am. Med. Association 264, (1990) 2868).

Accordingly, substances which specifically inhibit the binding of endothelin to the receptor ought also to antagonize the various abovementioned physiological effects of endothelin and therefore be valuable drugs.

We have found that certain carboxylic acid derivatives are good inhibitors of endothelin receptors.

The invention relates to carboxylic acid derivatives of the formula 1

I
where R is formyl, tetrazole [[sic]], nitrile [[sic]], [a COOH group] -COOH or a radical which can be hydrolyzed to -COOH , and the other substituents have the following meanings:
R^{2} is hydrogen, hydroxyl, $-\mathrm{NH}_{2},-\mathrm{NH}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$-alkyl), $-\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text {-alkyl }\right)_{2}$, halogen, C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio;
X is nitrogen or CR^{14} where R^{14} is hydrogen or $\left[\mathrm{C}_{1-5}\right]$ $C_{1}-C_{5}$-alkyl, or CR^{14} forms together with CR^{3} a 5 -or 6 -membered alkylene or alkenylene ring which can be

2
substituted by one or two [C_{1-4}] $C_{1}-C_{4}$-alkyl groups and in which in each case a methylene group can be replaced by oxygen, sulfur, $-\mathrm{NH}-$ or $-\mathrm{N}\left[\mathrm{C}_{1-4}\right]\left(C_{1}-C_{4}-\right.$ alkyl)-;
R^{3} is hydrogen, hydroxyl, $-\mathrm{NH}_{2},-\mathrm{NH}\left(\mathrm{C}_{1}-\mathrm{C}_{4}-[\right.$ Alkyl] alkyl), $-\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text {-alkyl }\right)_{2}$, halogen, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy, -NH O [$\left.\mathrm{C}_{1-4}\right] C_{7}-C_{4}$-alkyl, C_{1}-C C_{4}-alkylthio or CR^{3} is linked to CR^{14} as indicated above to give a 5 - or 6 -membered ring;
R^{4} and R^{5} (which can be identical or different) are:
phenyl or naphthyl, which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, C_{1}-C C_{4}-haloalkoxy, phenoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, amino, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino or C_{1} - C_{4}-dialkylamino; or phenyl or naphthyl, which are connected together in the ortho positions via a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom or an $-\mathrm{SO}_{2}-, \mathrm{NH}-$ or N -alkyl group, or $\mathrm{C}_{3}-\mathrm{C}_{7}-$ cycloalkyl;
R^{6} is hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl, C_{3} - C_{6}-alkenyl, C_{3} - C_{6}-alkynyl or $\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl, where each of these radicals can be substituted one or more times by: halogen, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, C_{3} - C_{6}-alkenyloxy, C_{3} - C_{6}-alkynyloxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, C_{1}-C C_{4}-haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylcarbonyl, C_{1} - C_{4}-alkoxycarbonyl, [C_{3-8}] C_{3} - C_{8}-alkylcarbonylalkyl, $\quad \mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino, \quad di- $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkylamino, phenyl or phenyl or phenoxy which is substituted one or more times, [eg.] e.g., one to three times, by halogen, [mitro] nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, C_{1}-C C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy or C_{1} - C_{4}-alkylthio;
phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, C_{1} - C_{4}-haloalkoxy, phenoxy, C_{1} - C_{4}-alkylthio, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino, $\mathrm{C}_{1}-\mathrm{C}_{4}$-dialkylamino, dioxomethylene [[sic]] or dioxoethylene [$[\mathrm{sic}]$]; or
a five- or six-membered heteroaromatic moiety containing one to three nitrogen atoms and/or one sulfur or oxygen atom, which can carry one to four halogen atoms and/or one or two of the following radicals: C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy and/or C_{1} - C_{4}-alkylthio;
with the proviso that R^{6} can be hydrogen only when Z is not a single bond;
Y is sulfur [or], oxygen or a single bond;
Z is sulfur [or], oxygen or a single bond.
The compounds, and the intermediates for preparing them, such as IV and Vl, may have one or more asymmetrical substituted carbon atoms. Such compounds may be in the form of the pure enantiomers or pure diastereomers or a mixture thereof. The use of an enantiomerically pure compound as active substance is preferred.

The invention furthermore relates to the use of the abovementioned carboxylic acid derivatives for producing drugs, in particular for producing endothelin receptor inhibitors.

The invention furthermore relates to the preparation of the compounds of the formula 1V in enantiomerically pure form. Enantioselective epoxidation of an olefin with two phenyl
substituents is known (J. Org. Chem. 59, 1994, 4378-4380). We have now found, surprisingly, that even ester groups in these systems permit epoxidation in high optical purity.

The preparation of the compounds according to the invention where Z is sulfur or oxygen starts from the epoxides IV, which are obtained in a conventional manner, [eg.] e.g., as described in J. March, Advanced Organic Chemistry, 2nd ed., 1983, page 862 and page 750, from the ketones 11 or the olefins 111:

II

IV

III
Carboxylic acid derivatives of the general formula Vl can be prepared by reacting the epoxides of the general formula IV ([eg.] e.g., with $\mathrm{R}=\operatorname{ROOR}^{10}$ [[sic]]) with alcohols or thiols of the general formula V where R^{6} and Z have the meanings stated in claim 1 .

To do this, compounds of the general formula IV are heated with compounds of the formula V , in the molar ratio of about $1: 1$ to $1: 7$, preferably 1 to 3 mole equivalents, to $50-200^{\circ} \mathrm{C}$., preferably $80-150^{\circ} \mathrm{C}$.

The reaction can also take place in the presence of a diluent. All solvents which are inert toward the reagents used can be used for this purpose.

Examples of such solvents or diluents are water, aliphatic, alicyclic and aromatic hydrocarbons, which may in each case be chlorinated, such as hexane, cyclohexane, petroleum ether, naphtha, benzene, toluene, xylene, methylene chloride, chloroform, carbon tetrachloride, ethyl chloride and trichloroethylene, ethers such as diisopropyl ether, dibutyl ether, methyl tert-butyl ether, propylene oxide, dioxane and tetrahydrofuran, ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone, nitriles such as acetonitrile and propionitrile, alcohols, such as methanol, ethanol, isopropanol, butanol and ethylene glycol, esters such as ethyl acetate and amyl acetate, amides such as dimethylformamide, dimethylacetamide and N -methylpyrrolidone, sulfoxides and sulfones, such as dimethyl sulfoxide and sulfolane, bases such as pyridine, cyclic ureas such as 1,3 -dim-ethylimidazolidin-2-one and 1,3-dimethyl-3,4,5,6-tetrahy-dro-2(1H)-pyrimidinone.

The reaction is preferably carried out at a temperature in the range from $0^{\circ} \mathrm{C}$. to the boiling point of the solvent or mixture of solvents.
The presence of a catalyst may be advantageous. Suitable catalysts are strong organic and inorganic acids, and Lewis acids. Examples thereof are, inter alia, sulfuric acid, hydrochloric acid, trifluoroacetic acid, p-toluenesulfonic acid, boron trifluoride etherate and titanium(IV) alcoholates.

Compounds of the formula Vl where R^{4} and R^{5} are cycloalkyl can also be prepared by subjecting compounds of the formula V1 where R^{4} and R^{5} are phenyl, naphthyl, or phenyl or naphthyl substituted as described above, to a nuclear hydrogenation.

Compounds of the formula V1 can be obtained in enantiomerically pure form by starting from enantiomerically pure compounds of the formula IV and reacting them in the manner described with compounds of the formula V.

It is furthermore possible to obtain enantiomerically pure compounds of the formula V1 by carrying out a classical racemate resolution on racemic or diastereomeric compounds of the formula Vl using suitable enantiomerically pure bases such as brucine, strychnine, quinine, quinidine, chinchonidine [[sic]], chinchonine [[sic]], yohimbine, morphine, dehydroabietylamine, ephedrine $(-),(+)$, deoxyephedrine $(+),(-)$, threo-2-amino-1-(p-nitrophenyl)-1,3-propanediol (+), (-), threo-2-(N,N-dimethylamino)-1-(p-nitrophenyl)-1,3-propanediol $(+)$, (-) threo-2-amino-1-phenyl-1,3-propanediol $(+),(-), \alpha$-methylbenzylamine (+), (-), $\alpha-(1$-naphthyl)ethylamine (+), (-), $\alpha-(2$-naphthyl)ethylamine (+), (-), aminomethylpinane, N, N-dimethyl-1-phenylethylamine, N -methyl1 -phenylethylamine, $\quad 4$-nitrophenylethylamine, pseudoephedrine, norephedrine, norpseudoephedrine, amino acid derivatives, peptide derivatives.

The compounds according to the invention where Y is oxygen, and the remaining substituents have the meanings stated under the general formula 1 , can be prepared, for example, by reacting the carboxylic acid derivatives of the general formula V1 where the substituents have the stated meanings with compounds of the general formula V11

where R^{15} is halogen or $\mathrm{R}^{16}-\mathrm{SO}_{2}-$, where R^{15} can be $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl or phenyl. The reaction preferably takes place in one of the abovementioned inert diluents with the addition of a suitable base, [ie.] i.e., of a base which deprotonates the intermediate Vl , in a temperature range from room temperature to the boiling point of the solvent.

Compounds of the formula Vll are known, some of them can be bought, or they can be prepared in a generally known manner.
It is possible to use as a base an alkali metal or alkaline earth metal hydride such as sodium hydride, potassium hydride or calcium hydride, a carbonate such as an alkali metal carbonate, [eg.] e.g., sodium or potassium carbonate, an alkali metal or alkaline earth metal hydroxide such as sodium 5 or potassium hydroxide, an organometallic compound such as butyllithium, or an alkali metal amide such as lithium diisopropylamide.

The compounds according to the invention where Y is sulfur, and the remaining substituents have the meanings stated under the general formula 1 , can be prepared, for example, by reacting carboxylic acid derivatives of the general formula Vlll, which can be obtained in a known manner from compounds of the general formula Vl and in which the substituents have the abovementioned meanings, with compounds of the general formula $I X$, where R^{2}, R^{3} and X have the meanings stated under general formula 1 .

IX

The reaction preferably takes place in one of the abovementioned inert diluents with the addition of a suitable base, [ie.] i.e., a base which deprotonates the intermediate IX, in a temperature range from room temperature to the boiling point of the solvent.
lt is possible to use as a base, besides those mentioned above, organic bases such as triethylamine, pyridine, imidazole or diazabicycloundecane [[sic]].

Carboxylic acid derivatives of the formula Vla (z in formula $\mathrm{Vl}=$ direct linkage) can be prepared by reacting epoxides of the formula IV with cuprates of the formula XI :

The cuprates can be prepared as described in Tetrahedron Letters 23, (1982) 3755.

Compounds of the formula 1 can also be prepared by starting from the corresponding carboxylic acids, [ie.] i.e., compounds of the formula 1 where R is COOH , and initially converting these in a conventional manner into an activated form, such as a halide, an anhydride or imidazolide, and then reacting the latter with an appropriate hydroxy compound HOR^{10}. This reaction can be carried out in the usual solvents and often requires addition of a base, in which case those mentioned above are suitable. These two steps can also be simplified, for example, by allowing the carboxylic acid to act on the hydroxy compound in the presence of a dehydrating agent such as a carbodiimide.

In addition, it is also possible for compounds of the formula 1 to be prepared by starting from the salts of the corresponding carboxylic acids, [ie.] i.e., from compounds of the formula 1 where R is $C O R^{1}$ and R^{1} is $O M$, where M can be an alkali metal cation or the equivalent of an alkaline earth metal cation. These salts can be reacted with many compounds of the formula R^{1}-A where A is a conventional nucleofugic leaving group, for example halogen such as chlorine, bromine, iodine or aryl- or alkylsulfonyl which is unsubstituted or substituted by halogen, alkyl or haloalkyl, such as toluenesulfonyl and methylsulfonyl, or another equivalent leaving group. Compounds of the formula $\mathrm{R}^{1}-\mathrm{A}$ with a reactive substituent A are known or can be easily obtained with general
expert knowledge. This reaction can be carried out in conventional solvents and advantageously takes place with the addition of a base, in which case those mentioned above are suitable.
The radical R in formula 1 may vary widely. For example, R is a group

where R^{1} has the following meanings:
a) hydrogen;
b) succinylimidoxy [[sic]];
c) a five-membered heteroaromatic moiety linked by a nitrogen atom, such as pyrrolyl, pyrazolyl, imidazolyl and triazolyl, which may carry one or two halogen atoms, in particular fluorine and chlorine and/or one or two of the following radicals:
C_{1} - C_{4}-alkyl such as methyl, ethyl, 1-propyl, 2-propyl, 2-methyl-2-propyl, 2-methyl-1-propyl, 1-butyl, 2-butyl;
$\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, in particular $\mathrm{C}_{1}-\mathrm{C}_{2}$-haloalkyl such as fluoromethyl, difluoromethyl, trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, trichloromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl;
$\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy, in particular $\mathrm{C}_{1}-\mathrm{C}_{2}$-haloalkoxy such as difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-1,1,2-trifluoroethoxy and pentafluoroethoxy, in particular trifluoromethoxy;
C_{1} - C_{4}-alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy, in particular methoxy, ethoxy, 1-methylethoxy;
$\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio such as methylthio, ethylthio, propy1thio, 1-methylethylthio, butylthio, 1-methylpropy1thio, 2-methylpropylthio, 1,1-dimethylethylthio, in particular methylthio and ethylthio;
d) R^{1} is furthermore a radical

where m is 0 or 1 and R^{7} and R^{8}, which can be identical or different, have the following meanings:
hydrogen;
$\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl, in particular $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl as mentioned above;
$\mathrm{C}_{3}-\mathrm{C}_{6}$-alkenyl such as 2-propenyl, 2-butenyl, 3-butenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-2-propenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-me-
thyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl and 1-ethyl-2-methyl-2-propenyl, in particular 2-propenyl, 2-butenyl, 3-methyl-2-butenyl and 3-methyl-2-pentenyl;
C_{3} - C_{6}-alkynyl such as 2-propynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1-methyl-2-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-2pentynyl, 1-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3-methyl-4-pentynyl, 4-methyl-2-pentynyl, 1,1-dim-ethyl-2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dim-ethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 1-ethyl-2butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1-ethyl-1-methyl-2-propynyl, preferably 2-propynyl, 2-butynyl, 1-methyl-2-propynyl and 1-methyl-2-butynyl, in particular 2-propynyl; or
$\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl [and], cycloheptyl, and cyclooctyl, where these alkyl, cycloalkyl, alkenyl and alkynyl groups can each carry one to five halogen atoms, in particular fluorine or chlorine and/or one or two of the following groups:
C_{1}-C C_{4}-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ haloalkoxy as mentioned above, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkenyloxy, $\quad \mathrm{C}_{3}$ - C_{6}-alkenylthio, $\quad \mathrm{C}_{3}$ - C_{6}-alkynyloxy, C_{3} - C_{6}-alkynylthio, where the alkenyl and alkynyl constituents present in these radicals preferably have the abovementioned meanings;
$\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylcarbonyl such as, in particular, methylcarbonyl, ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl, butylcarbonyl, 1- methylpropylcarbonyl, 2-methylpropylcarbonyl, 1,1dimethylethylcarbonyl;
C_{1}-C C_{4}-alkoxycarbonyl such as methoxycarbonyl, 45 ethoxycarbonyl, propyloxycarbonyl, 1-methylethoxycarbonyl, butyloxycarbonyl, 1-methylpropyloxycarbonyl, 2-methylpropyloxycarbonyl, 1,1dimethylethoxycarbonyl;
C_{3} - C_{6}-alkenylcarbonyl, $\quad \mathrm{C}_{3}-\mathrm{C}_{6}$-alkynylcarbonyl, $\mathrm{C}_{3}-\mathrm{C}_{5}$-alkenyloxycarbonyl and C_{3} - C_{6}-alkynyloxycarbonyl, where the alkenyl and alkynyl radicals are preferably defined as detailed above;
phenyl, unsubstituted or substituted one or more times, [eg.] e.g., one to three times, by halogen, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy or C_{1} - C_{4}-alkylthio, such as 2-fluorophenyl, 3-chlorophenyl, 4-bromophenyl, 2-methylphenyl, 3-nitrophenyl, 4-cyanophenyl, 2-trifluoromethylphenyl, 3-methoxyphenyl, 4-trifluoroethoxyphenyl, 2-methylthiophenyl, 2,4dichlorophenyl, 2-methoxy-3-methylphenyl, 2,4dimethoxyphenyl, 2-nitro-5-cyanophenyl, 2,6-difluorophenyl;
di-C $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino such as, in particular, dimethylamino, dipropylamino, N-propyl-N-methylamino, N -propyl-N-ethylamino, diisopropy-
lamino, $\quad \mathrm{N}$-isopropyl-N-methylamino, N -isopropyl-N-ethylamino, N -isopropyl- N -propylamino;
R^{7} and $[\mathrm{R} 8] R^{8}$ are furthermore phenyl which can be substituted by one or more, [eg.] e.g., one to three, of the following radicals: halogen, nitro, cyano, C_{1} - C_{4}-alkyl, $\quad \mathrm{C}_{1}$-C C_{4}-haloalkyl, $\quad \mathrm{C}_{1}$-C C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy or $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, as mentioned above in particular;
or R^{7} and R^{8} together form a $\mathrm{C}_{4}-\mathrm{C}_{7}$-alkylene chain which is closed to form a ring, is unsubstituted or substituted, [eg.] e.g., substituted by $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, and may contain a heteroatom selected from the group consisting of oxygen, sulfur or nitrogen, such as - $\left(\mathrm{CH}_{2}\right)_{4}-,-\left(\mathrm{CH}_{2}\right)_{5}-$, $-\left(\mathrm{CH}_{2}\right)_{6}-$, $-\left(\mathrm{CH}_{2}\right)_{7}-,-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}-,-\mathrm{CH}_{2}-$ $\begin{array}{ll}\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{3}-, & -\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{3}- \\ -\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{3}-, & -\mathrm{CH}_{2}-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{2}-\end{array}$, $\rightarrow \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-, \quad-\mathrm{CH}=\mathrm{CH}-$ $\left(\mathrm{CH}_{2}\right)_{3}-$;
e) R^{1} is furthermore a group

where k is 0,1 and 2[,];
p is $1,2,3$ and 4 ; and
R^{9} is $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, C_{3} - C_{6}-alkenyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkynyl or unsubstituted or substituted phenyl, as mentioned above in particular[.];
f) R^{1} is furthermore a radical OR^{10}, where R^{10} is:
hydrogen, the cation of an alkali metal such as lithium, sodium, potassium or the cation of an alkaline earth metal such as calcium, magnesium and barium or an environmentally compatible organic ammonium ion such as tertiary $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylammonium or the ammonium ion;
$\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl as mentioned above, which may carry one to three $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl groups;
$\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl such as, in particular, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1dimethylpropyl, 2,2-dimethylpropyl, 1 -ethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3 -dimethylbutyl, 2,3-dimethylbuty 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1 -ethylbutyl, 2-ethylbutyl, 1-ethyl-2-methylpropyl, which can carry one to five halogen atoms, in particular fluorine and chlorine and/or one of the following radicals:
$\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylcarbonyl, C_{3} - C_{8}-cycloalkyl, C_{1} - C_{4}-alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the aromatic radicals in turn can carry in each case one to five halogen atoms and/or one to three of the following radicals: nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, C_{1}-C C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy and/or $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, as mentioned above in particular;
[a] $\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl as mentioned above, which can carry one to five halogen atoms, in particular fluorine and/or chlorine, and carries one of the following
radicals: a 5-membered heteroaromatic moiety containing one to three nitrogen atoms, or a 5 -membered heteroaromatic moiety containing a nitrogen atom and an oxygen or sulfur atom, which can carry one to four halogen atoms and/or one or two of the following radicals:
nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkoxy, phenyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy and/or $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkylthio. Particular mention may be made of: 1-pyrazolyl, 3-methyl-1-pyrazolyl, 4-methyl-1pyrazolyl, 3,5-dimethyl-1-pyrazolyl, 3-phenyl-1-pyrazolyl, 4-phenyl-1-pyrazolyl, 4-chloro-1pyrazolyl, 4-bromo-1-pyrazolyl, 1-imidazolyl, 1-benzimidazolyl, 1,2,4-triazol-1-yl, 3-methyl-1,2,4-triazol-1-yl, $\quad 5$-methyl-1,2,4-triazol-1-yl, 1-benzotriazolyl, 3 -isopropyl-5-isoxazolyl, 3-methyl-5-isoxazolyl, 2-oxazolyl, 2-thiazolyl, 2-imidazolyl, 3-ethyl-5-isoxazolyl, 3-phenyl-5isoxazolyl, 3-tert-butyl-5-isoxazolyl;
[a] $\mathrm{C}_{2}-\mathrm{C}_{6}$-alkyl [group] which carries one of the following radicals in position 2: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxyimino, C_{3} - C_{6}-alkynyloxyimino, C_{3} - C_{6}-haloalkenyloxyimino or benzyloxyimino; or
[a] $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkenyl or $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkynyl [group], it being possible for these groups in turn to carry one to five halogen atoms;
R^{10} is furthermore a phenyl radical which can carry one to five halogen atoms and/or one to three of the following radicals: nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1}-C C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy and/or $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, as mentioned above in particular;
a 5 -membered heteroaromatic moiety which is linked via a nitrogen atom, contains one to three nitrogen atoms and can carry one or two halogen atoms and/or one or two of the following radicals: $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, phenyl, C_{1} - C_{4}-haloalkoxy and/or C_{1} - C_{4}-alkylthio. Particular mention may be made of: 1-pyrazolyl, 3-me-thyl-1-pyrazolyl, 4-methyl-1-pyrazolyl, 3,5-dim-ethyl-1-pyrazolyl, 3-phenyl-1-pyrazolyl, 4-phenyl-1-pyrazolyl, \quad-chloro-1-pyrazolyl, 4-bromo-1-pyrazolyl, 1-imidazolyl, 1-benzimidazolyl, 1,2,4-triazol-1-yl, 3-methyl-1,2,4-triazol-1yl, 5 -methyl-1,2,4-triazol-1-yl, 1-benzotriazolyl, 3,4-dichloro-1-imidazolyl;
R^{10} is furthermore a group

where R^{11} and R^{12}, which can be identical or different, are:
C_{1} - C_{8}-alkyl, $\quad \mathrm{C}_{3}$ - C_{6}-alkenyl, $\quad \mathrm{C}_{3}$ - C_{6}-alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl, it being possible for these radicals to carry a $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio and/or an unsubstituted or substituted phenyl radical, as mentioned above in particular;
phenyl which can be substituted by one or more, [eg.] e.g., one to three, of the following radicals: halogen, nitro, cyano, C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy or
$\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, where these radicals are, in particular, those mentioned above;
or R^{11} and R^{12} together form a $\mathrm{C}_{3}-\mathrm{C}_{12}$-alkylene chain which can carry one to three $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl groups and contain a heteroatom from the group consisting of oxygen, sulfur and nitrogen, as mentioned in particular for R^{7} and $\mathrm{R}^{8}[\cdot]$;
g) R^{1} is furthermore a radical

where R^{13} is:
C_{1} - C_{4}-alkyl, C_{3} - C_{6}-alkenyl, C_{3} - C_{6}-alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl as mentioned above in particular, it being possible for these radicals to carry a $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio and/or a phenyl radical as mentioned above; or
phenyl, unsubstituted or substituted, in particular as mentioned above[.]:
h) R^{1} is a radical

where R^{13} has the abovementioned meaning.
R can furthermore be:
tetrazole [[sic]] or nitrile [[sic]].
In respect of the biological effect, preferred carboxylic acid derivatives of the general formula l, both as pure enantiomers and pure diastereomers or as mixture thereof, are those where the substituents have the following meanings:
R^{2} is hydrogen, hydroxyl, $\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text {-alkyl }\right)_{2}$, [the] $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkyl, $\quad \mathrm{C}_{1}$ - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio groups and halogen atoms mentioned in detail for R^{1}, especially chlorine, methyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy;
X is nitrogen or CR^{14} where
R^{14} is hydrogen or alkyl, or CR^{14} forms together with CR^{3} a 4 - to 5-membered alkylene or alkenylene ring in which, in each case, a methylene group can be replaced by oxygen or sulfur, such as $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$, $-\mathrm{CH}=\mathrm{CH}-\mathrm{O}-, \quad-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$, $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{O}-$, in particular hydrogen, $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-,-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-$, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-,-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-$ or $-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{S}$-;
R^{3} [the] is hydrogen, hydroxyl, $\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text {-alkyl }\right)_{2}, \mathrm{C}_{1}-\mathrm{C}_{4}-$ alkyl, $\quad \mathrm{C}_{1}$ - C_{4}-haloalkyl, $\quad \mathrm{C}_{1}$ - C_{4}-alkoxy, $\quad \mathrm{C}_{1}$ - C_{4}-haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio groups and halogen atoms mentioned for R^{1}, especially chlorine, methyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy or R^{3} is linked to R^{14} as mentioned above to give a 5- or 6-membered ring;
R^{4} and R^{5} are phenyl or naphthyl, which can be substituted by one or more, [eg.] e.g., one to three, of the following radicals: halogen, nitro, cyano, hydroxyl, mercapto, amino, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy, C_{1} - C_{4}-alkylthio, C_{1} - C_{4}-alkylamino, di- $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino, $\quad \mathrm{C}_{1}$ - C_{4}-alkylcarbonyl, $\quad \mathrm{C}_{1} \mathrm{C}_{4}-$
alkoxycarbonyl; phenyl or naphthyl, which are connected together in the ortho positions by a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom or an - $\mathrm{SO}_{2}-,-\mathrm{NH}-$ [or], N -alkyl group, or $\mathrm{C}_{3}-\mathrm{C}_{7}$-cycloalkyl;
R^{6} is $\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl, C_{3} - C_{6}-alkenyl, C_{3} - C_{6}-alkynyl or $\mathrm{C}_{3}-\mathrm{C}_{8}-$ cycloalkyl as mentioned above in particular, it being possible for these radicals in each case to be substituted one or more times by: halogen, hydroxyl, nitro, cyano, C_{1} - C_{4}-alkoxy, C_{3} - C_{6}-alkenyloxy, C_{3} - C_{6}-alkynyloxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, C_{1} - C_{4}-haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylcarbonyl, hydroxycarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxycarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkylamino, di- $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino or unsubstituted or substituted phenyl or phenoxy, as mentioned above in particular;
phenyl or naphthyl, which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy, phenoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio, $\mathrm{C}_{1}-\mathrm{C}_{4}$-[akylamino [sic]] alkylamino or C_{1} - C_{4}-dialkylamino, as mentioned in particular for R^{7} and R^{4}; or
a five- or six-membered heteroaromatic moiety which contains one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry one to four halogen atoms and/or one or two of the following radicals: $\quad \mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\quad \mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals: C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ haloalkoxy and/or $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, as mentioned for R^{4} in particular;
Y is sulfur, oxygen or a single bond;
Z is sulfur, oxygen, - $\mathrm{SO}-,-\mathrm{SO}_{2}-$ or a single bond.
Particularly preferred compounds of the formula l, both as pure enantiomers and pure diastereomers or as mixture thereof, are those in which the substituents have the following meanings:
R^{2} is C_{1} - C_{4}-alkyl, or $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy;
X is nitrogen or CR^{14}, where
R^{14} is hydrogen or alkyl, or CR^{14} forms together with CR^{3} a 4- or 5-membered alkylene or alkenylene ring such as $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-, \quad \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-, \quad$ in which in each case a methylene group can be replaced by oxygen or sulfur, such as $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$, $-\mathrm{CH}=\mathrm{CH}-\mathrm{O}-, \quad-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$, $-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{O}-$, in particular hydrogen, $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-,-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-$, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-,-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-$ or $-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{S}-;$
R^{3} [the] is $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-alkylthio groups mentioned for R^{1}, or R^{3} is linked to R^{14} as mentioned above to give a 5 - or 6-membered ring;
R^{4} and R^{5} are phenyl (identical or different) which can be substituted by one or more, [eg.] e.g., one to three, of the following radicals: halogen, nitro, hydroxyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkyl, C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio; or
R^{4} and R^{5} are phenyl groups which are connected together in the ortho positions by a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom or an $\mathrm{SO}_{2}, \mathrm{NH}$ or N -alkyl group; or
R^{4} and R^{5} are $\mathrm{C}_{3}-\mathrm{C}_{7}$-cycloalkyl;
R^{6} is $\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkenyl or $\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl, it being possible for these radicals in each case to be sub-
stituted one or more times by: halogen, hydroxyl, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, C_{3} - C_{6}-alkenyloxy, C_{1} - C_{4}-alkylthio; or
R^{6} is phenyl or naphthyl, which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, C_{1}-C C_{4}-haloalkoxy, phenoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, $\mathrm{C}_{1}-\mathrm{C}_{4}$-akylamino [[sic]] or $\mathrm{C}_{1}-\mathrm{C}_{4}-$ dialkylamino; or
R^{σ} is a five- or six-membered heteroaromatic moiety which contains a nitrogen atom and/or a sulfur or oxygen atom and which can carry one to four halogen atoms and/or one or two of the following radicals: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy and/or $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio;
Y is sulfur, oxygen or a single bond;
Z is sulfur, oxygen, $-\mathrm{SO}-,-\mathrm{SO}_{2}-$ or a single bond.
The compounds of the present invention provide a novel therapeutic potential for the treatment of hypertension, pulmonary hypertension, myocardial infarct, angina pectoris, acute kidney failure, renal insufficiency, cerebral vasospasms, cerebral ischemia, subarachnoid hemorrhages, migraine, asthma, atherosclerosis, endotoxic shock, endot-oxin-induced organ failure, intravascular coagulation, restenosis after angioplasty, benign prostate hyperplasia, or hypertension or kidney failure caused by ischemia or intoxication.

The good effect of the compounds can be shown in the following tests:

Receptor binding studies

Cloned human ET_{A} receptor-expressing CHO cells and guinea pig cerebellar membranes with $>60 \% \mathrm{ET}_{B}$ compared with $E T_{A}$ receptors were used for binding studies.

The ET_{A} receptor-expressing CHO cells were grown in F_{12} medium containing 10% fetal calf serum, 1% glutamine, 100 U / ml penicillin and 0.2% streptomycin (Gibco BRL, Gaithersburg, Md., USA).

After 48 h , the cells were washed with PBS and incubated with 0.05% trypsin-containing PBS for 5 min . Neutralization was then carried out with F_{12} medium, and the cells were collected by centrifugation at $300 \times \mathrm{xg}$. To [lyze] lyse the cells, the pellet was briefly washed with lysis buffer (5 mM TrisliCl, pll 7.4 with 10% glycerol) and then incubated at a concentration of 107 cells $/ \mathrm{ml}$ of lysis buffer at $4^{\circ} \mathrm{C}$. for 30 min . The membranes were centrifuged at $20,000 \times \mathrm{g}$ for 10 min , and the pellet was stored in liquid nitrogen.

Guinea pig cerebella were homogenized in a Potter-Elvejhem homogenizer and [[lacuna]] obtained by differential centrifugation at $1000 \times \mathrm{g}$ for 10 min and repeated centrifugation of the supernatant at $20,000 \times \mathrm{g}$ for 10 min .

Binding assays

For the ET_{A} and ET_{B} receptor binding assay, the membranes were suspended in incubation buffer (50 mM Tris$\mathrm{HCl}, \mathrm{pH} 7.4$ with $5 \mathrm{mMMnCl}_{2}, 40 \mu \mathrm{~g} / \mathrm{ml}$ bacitracin and 0.2% BSA) at a concentration of $50 \mu \mathrm{~g}$ of protein per assay mixture and incubated with $\left.25 \mathrm{pM}[[1251]] /^{125} I\right]-\mathrm{ET}_{1}\left(\mathrm{ET}_{A}\right.$ receptor assay) or $\left.25 \mathrm{pM}[[1251]] /^{I 25} I\right]-\mathrm{RZ}_{3}\left(\mathrm{ET}_{B}\right.$ receptor assay) in the presence and absence of test substance at $25^{\circ} \mathrm{C}$. The nonspecific binding was determined using $\left[10^{-7}\right] 10^{-7} \mathrm{M}$ ET_{1}. After 30 min , the free and bound radioligand were separated by filtration through GF/B glass fiber filters (Whatman, England) on a Skatron cell collector (Skatron, Lier, Norway) and the filters were washed with ice-cold Tris- HCl buffer, pH
7.4 with 0.2% BSA. The radioactivity collected on the filters was quantified using a Packard 2200 CA liquid scintillation counter.
Functional in vitro assay system to look for endothelin receptor (subtype A) antagonists

This assay system is a functional, cell-based assay for endothelin receptors. When certain cells are stimulated with endothelin 1 (ET1) they show an increase in the intracellular calcium concentration. This increase can be measured in intact cells loaded with calcium-sensitive dyes.

1-Fibroblasts which had been isolated from rats and in which an endogenous endothelin receptor of the A subtype had been detected were loaded with the fluorescent dye [Fura 2-an] Fura 2-am as follows: after trypsinization, the cells were resuspended in buffer A ($120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 1.5$ $\mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM} \mathrm{CaCl}_{2}, 25 \mathrm{mM}$ HEPES, 10 mM glucose, pH 7.4) to a density of $2 \times 10^{6} / \mathrm{ml}$ and incubated with Fura 2-am ($2 \mu \mathrm{M}$), Pluronics F-127 (0.04%) [und] and DMSO (0.2%) at $37^{\circ} \mathrm{C}$. in the dark for 30 min . The cells were then washed twice with buffer A and resuspended at $2 \times 10^{6} / \mathrm{ml}$.

The fluorescence signal from 2×10^{5} cells per ml with $\mathrm{Ex} / \mathrm{Em} 380 / 510$ was recorded continuously at $30^{\circ} \mathrm{C}$. The test substances and, after an incubation time of 3 min , ET1 [[lacunal] to the cells, the maximum change in the fluorescence was determined. The response of the cells to ET1 without previous addition of a test substance was used as control and was set equal to 100%.
Testing of ET antagonists in vivo
Male SD rats weighting $250-300 \mathrm{~g}$ were anesthetized with amobarbital, [artifically] artificially ventilated, vagotomized and pithed. The carotid artery and jugular vein were [cathetized [sic]] catheterized.
ln control animals, intravenous administration of $1 \mu \mathrm{~g} / \mathrm{kg}$ ET1 led to a distinct rise in blood pressure which persisted for a lengthy period.

The test animals received an i.v. injection of the test compounds ($1 \mathrm{ml} / \mathrm{kg}$) 5 min before the administration of ET1. To determine the ET-antagonistic properties, the rise in blood pressure in the test animals was compared with that in the control animals.
Endothelin-1-induced sudden death in mice
The principle of the test is the inhibition of the sudden heart death caused in mice by endothelin, which is probably induced by constriction of the coronary vessels, by pretreatment with endothelin receptor antagonists. Intravenous injection of $10 \mathrm{nmol} / \mathrm{kg}$ endothelin in a volume of $5 \mathrm{ml} / \mathrm{kg}$ of body weight results in death of the animals within a few minutes.

The lethal endothelin-1 dose is checked in each case on a small group of animals. If the test substance is administered intravenously, the endothelin-1 injection which was lethal in the reference group usually takes place 5 min thereafter. With other modes of administration, the times before administration are extended, where appropriate up to several hours.

The survival rate is recorded, and effective doses which protect 50% of the animals (ED 50) from endothelin-induced heart death for 24 h or longer are determined.

Functional test on vessels for endothelin receptor antagonists

Segments of rabbit aorta are, after an initial tension of 2 g and a relaxation time of 1 h in Krebs-Henseleit solution at 37° C. and $\mathrm{pH} 7.3-7.4$, first induced to contract with K^{+}. After washing out, an endothelin dose-effect plot up to the maximum is constructed.

Potential endothelin antagonists are administered to other preparations of the same vessel 15 min before starting the endothelin dose-effect plot. The effects of the endothelin are

Methyl 2-(4,6-dimethoxy-pyrimidin-2-yloxy)-3-methoxy-3, 3-diphenylpropionate
$2.86 \mathrm{~g}(10 \mathrm{mmol})$ of methyl 2-hydroxy-3-methoxy-3,3diphenylpropionate were dissolved in 40 ml of dimethylformamide, and $0.3 \mathrm{~g}(12 \mathrm{mmol})$ of sodium hydride was added. The mixture was stirred for 1 h and then $2.2 \mathrm{~g}(10 \mathrm{mmol})$ of 4,6-dimethoxy-2-methylsulfonylpyrimidine were added. After stirring at room temperature for 24 h , cautious hydrolysis was carried out with 10 ml of water, the pH was adjusted 5 to 5 with acetic acid, and the solvent was removed by distillation under high vacuum. The residue was taken up in 100 ml of ethyl acetate, washed with water and dried over magne-

16

Example 8
Methyl 2-hydroxy-3,3-diphenylbutyrate
$1.5 \mathrm{~g}(5.9 \mathrm{mmol})$ of methyl 3,3-diphenyl-2,3-epoxypropi5 onate dissolved in 10 ml of absolute ether were added dropwise to a cup-rate solution which had been prepared from 635 $\mathrm{mg}(7 \mathrm{mmol})$ of copper(1) cyanide dissolved in 10 ml of absolute ether and $8.14 \mathrm{ml}(13 \mathrm{mmol})$ of a 1.6 normal methyllithium solution and had been cooled to $-78^{\circ} \mathrm{C}$. The solu10 tion was stirred at $-78^{\circ} \mathrm{C}$. for 1 h and then allowed to warm to room temperature. It was subsequently diluted with 100 ml of ether and 100 ml of water, and the ether phase was washed with dilute citric acid and with sodium bicarbonate solution and dried over magnesium sulfate. The crude product was purified by chromatography on silica gel with cyclohexane/ ethyl acetate mixtures to result in $250 \mathrm{mg}(16 \%)$ of a pale yellow oil.

Example 9

 sulfate and removal of the solvent by distillation, the residue was mixed with an ether/hexane mixture, and the precipitate which formed was filtered off with suction. After drying, 1.85 $\mathrm{g}(90 \%)$ of a white powder remained.Melting point $167^{\circ} \mathrm{C}$.

Example 5

2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3diphenyl sodium [sic] propionate
1.68 g (4 mmol) of 2-(4,6-dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3-diphenylpropionic acid are dissolved in 4 ml of $1 \mathrm{~N} \mathrm{NaOH}+100 \mathrm{ml}$ of water. The solution is freeze-dried, and the sodium salt of the carboxylic acid used is obtained quantitatively.
$10 \mathrm{~g}(34.9 \mathrm{mmol})$ of methyl 2-hydroxy-3-methoxy-3,3diphenylpropionate were dissolved in 50 ml each of methanol and glacial acetic acid, 1 ml of $\mathrm{RuO}(\mathrm{OH})_{2}$ in dioxane was added, and hydrogenation was carried out with H_{2} in an autoclave at $100^{\circ} \mathrm{C}$. under 100 bar for 30 h . The catalyst was filtered off, the mixture was concentrated, mixed with ether and washed with NaCl solution, and the organic phase was dried and concentrated. 10.1 g of methyl 3,3-dicyclohexyl-2-hydroxy-3-methoxypropionate were obtained as an oil.

Example 7

Methyl 2-[(4,6-dimethoxy-pyrimidin-2-yl)thio]-3-methoxy-3,3-diphenylpropionate [[sic]]
$7.16 \mathrm{~g}(25 \mathrm{mmol})$ of methyl 2-hydroxy-3-methoxy-3,3diphenylpropionate were dissolved in 50 ml of dichloromethane, $3 \mathrm{~g}(30 \mathrm{mmol})$ of triethylamine were added, and 3.2 g (28 mmol) of methanesulfonyl chloride were added dropwise while stirring. The mixture was stirred at room temperature for 2 h , washed with water, dried over magnesium sulfate and concentrated under reduced pressure. The residue was taken up in DMF and added dropwise at $0^{\circ} \mathrm{C}$. to a suspension of $12.9 \mathrm{~g}(75 \mathrm{mmol})$ of 4,6 -dimethoxypyrimi-dine-2-thiol and $8.4 \mathrm{~g}(100 \mathrm{mmol})$ of sodium bicarbonate in 100 ml of DMF. After stirring at room temperature for 2 h and at $60^{\circ} \mathrm{C}$. for a further 2 h , the mixture was poured into 1 liter of ice-water, and the resulting precipitate was filtered off with suction. After drying, $3.19 \mathrm{~g}(29 \%)$ of a white powder remained.

2-Hydroxy-3-methoxy-3,3-diphenylpropionic acid

$91.11 \mathrm{~g}(0.5 \mathrm{~mol})$ of benzophenone and $45.92 \mathrm{~g}(0.85 \mathrm{~mol})$ of sodium methoxide were suspended in 150 ml of methyl tert-butyl ether (MTB) at room temperature. After cooling to $-100^{\circ} \mathrm{C} ., 92.24 \mathrm{~g}(0.85 \mathrm{~mol})$ of methyl chloroacetate were added in such a way that the internal temperature rose to 40° C . while continuing to cool in a bath at $-10^{\circ} \mathrm{C}$. The mixture was then stirred without cooling at the autogenous temperature for one hour. After addition of 250 ml of water and brief stirring, the aqueous phase was separated off. The MTB phase was washed with 250 ml of dilute sodium chloride solution. After the solvent had been changed to methanol (250 ml), a solution of 1 g of p -toluenesulfonic acid in 10 ml of methanol was added at room temperature. The mixture was stirred at autogenous temperature for one hour and then heated to reflux. While distilling out the methanol, 400 g of a 10% strength sodium hydroxide solution was added dropwise, and finally 60 ml of water were added. The methanol was distilled out until the bottom temperature reached $97^{\circ} \mathrm{C}$. After cooling to $55^{\circ} \mathrm{C}$., 190 ml of MTB were added and the mixture was acidified to pH 2 with about 77 ml of concentrated HCl . After cooling to room temperature, the aqueous phase was separated off and the organic phase was concentrated by distilling out 60 ml of $[\mathrm{MtB}[\mathrm{sic}]]$ MTB. The product was crystallized by adding 500 ml of heptane and slowly cooling to room temperature. The coarsely crystalline solid was filtered off with suction, washed with heptane and dried to constant weight in a vacuum oven at $40^{\circ} \mathrm{C}$.

Yield: 108.9 g (80%), HPLC $>99.5 \%$ area.

Example 10

S-2-Hydroxy-3-methoxy-3,3-diphenylpropionic acid (racemate resolution with L-proline methyl ester)
148.8 g of a 30% strength methanolic sodium methanolate solution (0.826 mol) were added dropwise to 240 g of a 57% strength methanolic L-proline methyl ester hydrochloride solution $(0.826 \mathrm{~mol})$ at room temperature, and 2.41 of MTB and $225 \mathrm{~g}(0.826 \mathrm{~mol})$ of 2-hydroxy-3-methoxy-3,3-diphenylpropionic acid were added. After 2680 ml of MTB/methanol mixture had been distilled out with simultaneous dropwise addition of 2.41 of MTB, the mixture was slowly cooled to room temperature, the crystals (R-2-hydroxy-3-methoxy-3,3-diphenylpropionic acid \times L-proline methyl (ester) were filtered off with suction, and the solid was washed with 150 ml of MTB. The filtrate was concentrated by distilling out 1.5 1 of MTB, and 1.01 of water was added. The pH was adjusted
to 1.2 with concentrated hydrochloric acid at room temperature and, after stirring and phase separation, the aqueous phase was separated off and extracted with 0.41 of MTB. The combined organic phases were extracted with 0.41 of water. The residue after the MTB had been stripped off was dissolved in 650 ml of toluene under reflux, and the product was crystallized by seeding and slow cooling. Filtration with suction, washing with toluene and drying in a vacuum oven resulted in 78.7 g of S-2-hydroxy-3-methoxy-3,3-diphenylpropionic acid (yield 35% based on the racemate).

Chiral HPLC: 100% pure; HPLC: 99.8%

Example 11

S-2-Hydroxy-3-methoxy-3,3-diphenylpropionic acid (racemate resolution with (S)-1-(4-nitrophenyl)ethylamine)
30.5 g (0.184 mol) of (S)-1-(4-nitrophenyl)ethylamine were added to $100 \mathrm{~g}(0.368 \mathrm{~mol})$ of 2-hydroxy-3-methoxy-3, 3-diphenylpropionic acid in 750 ml of acetone and 750 ml of MTB under reflux, the mixture was seeded, boiled under reflux for one hour and slowly cooled to room temperature for crystallization. The crystals (S-2-hydroxy-3-methoxy-3,3diphenylpropionic acid x (S)-1-(4-nitrophenyl) ethylamine) were filtered off with suction and washed with MTB. The residue was suspended in 500 ml of water and 350 ml of MTB and then the pH was adjusted to 1.2 with concentrated hydrochloric acid at room temperature, and, after stirring and phase separation, the aqueous phase was separated off and extracted with 150 ml of MTB. The combined organic phases were extracted with 100 ml of water. 370 ml of MTB were distilled out and then 390 ml of n -heptane were added under reflux, and the mixture was slowly cooled to room temperature while the product crystallized. Filtration with suction, washing with n -heptane and drying in a vacuum oven resulted in 35.0 g of S-2-hydroxy-3-methoxy-3,3-diphenylpropionic acid (yield 35% based on the racemate).

Chiral HPLC: 100% pure; HPLC: 99.8%

Example 12

Benzyl 3-methoxy-2-(4-methoxy-6,7-dihydro-5H-cyclopen-tapyrimidin-2-yloxy)-3,3-diphenylpropionate
24.48 g (90 mmol) of 3-methoxy-3,3-diphenyl-2-hydroxypropionic acid were dissolved in 150 ml of DMF, and 13.7 g (99 mmol) of potassium carbonate were added. The suspension was stirred at room temperature for 30 min . Then 10.7 ml (90 mmol) of benzyl bromide were added dropwise over the course of 5 min , and the mixture was stirred for 1 h , during which the temperature rose to $32^{\circ} \mathrm{C}$.

To this mixture were successively added 24.84 g (180 $\mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $20.52 \mathrm{~g}(90 \mathrm{mmol})$ of 2-methanesulfo-nyl-4-methoxy-6,7-dihydro-5 H -cyclopentapyridine [[sic]], and the mixture was stirred at $80^{\circ} \mathrm{C}$. for 3 h .

For workup, the contents of the flask were diluted with about 600 ml of $\mathrm{H}_{2} \mathrm{O}$ and cautiously acidified with concentrated HCl , and 250 ml of ethyl acetate were added. 31.4 g of pure product precipitated and were filtered off.

The ethyl acetate phase was separated from the mother liquor, the aqueous phase was extracted again with ethyl acetate, and the combined organic phases were concentrated. The oily residue (19 g) was purified by chromatography (cyclohexane/ethyl acetate $-9 / 1$) to result in a further 10.5 g of pure product.

Total yield: $41.9 \mathrm{~g}(82.2 \mathrm{mmol})=91 \%$; Melting point $143-$ $147^{\circ} \mathrm{C}$.; MS: $\mathrm{MH}^{+}=511$

Example 13
3-Methoxy-2-(4-methoxy-(6,7-dihydro-5H-cyclopentapyri-midin-2-yl-oxy)-3,3-diphenylpropionic [[sic]] acid
$40 \mathrm{~g}(78.4 \mathrm{mmol})$ of benzyl 3-methoxy-2-(4-methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yloxy)-3,3-diphenylpropionate were dissolved in 400 ml of ethyl acetate/methanol (4:1), about 500 mg of palladium on active carbon (10\%) were added, and the mixture was exposed to a hydrogen atmosphere until no further gas was taken up. The catalyst was filtered off, the solution was evaporated, and the residue was crystallized from ether.

Example 14

Ethyl 2S-3,3-diphenyloxirane-2-carboxylate
2.57 g (10.2 mnol) of ethyl 3,3-diphenylacrylate and 464 mg of 4-phenylpyridine N -oxide were dissolved in 24 ml of methylene chloride, and $432 \mathrm{mg}(6.5 \mathrm{~mol} \%$) of (5,5$)-(+)-\mathrm{N}$, N^{\prime}-bis(3,5-ditert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(111) chloride were added. While cooling in ice, 6.4 ml of a 12% strength sodium hypochloride [[sic]] solution were added, and the mixture was stirred while cooling in ice for 30 min and at room temperature overnight. The solution was diluted to 200 ml with water, extracted with ether, dried and evaporated. 2.85 g of a colorless oil were obtained. Purification by [NPLC [sic]] HPLC (cyclohexane:ethyl acetate $=9: 1$) resulted in 1.12 g of oil with an enantiomer ratio of about 8:1 in favor of the S configuration.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right], \delta=1.0(\mathrm{t}, 3 \mathrm{H}) ; 3.9(\mathrm{~m}, 3 \mathrm{H}) ; 7.3(\mathrm{~m}, 10 \mathrm{H})$

Example 15

2-Methylsulfonyl-6,7-dihydro-5H-cyclopentapyrimidin-4ol [[sic]]
46.9 g (330 mmol) of methyl cyclopentanone-2-carboxylate and $53.5 \mathrm{~g}(192 \mathrm{mmol})$ of 5 -methylisothiourea [[sic]] sulfate were successively added to $29.6 \mathrm{~g}(528 \mathrm{mmol})$ of KOH in 396 ml of methanol, and the mixture was stirred at room temperature overnight, acidified with 1 N hydrochloric acid and diluted with water. The crystals which separated out were filtered off with suction and dried. 20 g of crystals were obtained.

Example 16

[sulfanyl] Sulfanyl 4-[Chloro] chloro-2-methyl-6,7-dihydro-5H-cyclopentapyrimidine [[sic]]

255 ml of phosphorus oxychloride were added to 20 g (110 mmol) [[lacuna]], and the mixture was stirred at $80^{\circ} \mathrm{C}$. for 3 hours. Phosphorus oxychloride was evaporated off, ice was added to the residue, and the crystals which separated out were filtered off with suction. 18.5 g of a brownish solid were obtained.

Example 17

4-Methoxy-2-methylsulfonyl-6,7-dihydro-511-cyclopentapyrimidine [[sic]]
18.05 g (90 mmol) of 4-chloro-2-methylsulfonyl-6,7-dihy-dro-5H-cyclopentapyrimidine [[sic]] were dissolved in 200 ml of methanol. At $45^{\circ} \mathrm{C}$., 16.7 g of sodium methoxide (as 30% strength solutions [[sic]] in methanol) were added dropwise, and the mixture was stirred for 2 hours. The solution was evaporated, taken up in ethyl acetate and acidified with dilute hydrochloric acid, and the ethyl acetate extract was evaporated. 15.5 g of an oil remained.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ [DMSO], $\delta=2.1$ (quintet, 2H); 2.5 (s, 3H); 2.8 (dt, 4H); 3.9 ($\mathrm{s}, 3 \mathrm{H}$) ppm

Example 18

2-Methylsulfonyl-4-methoxy-6,7-dihydro-5H-cyclopentopyrimidine [[sic]]

15 g (76.2 mmol) of 4-methoxy-2-methylsulfonyl-6,7-di-hydro-5H-cyclopentapyrimidine [[sic]] were dissolved in 160 ml of glacial acetic acid/methylene chloride (1:1), and 1.3 g of sodium tungstate were added. At $35^{\circ} \mathrm{C}$., $17.5 \mathrm{ml}(170 \mathrm{ml}$ [[sic]]) of a 30% strength $\mathrm{H}_{2} \mathrm{O}_{2}$ solution were added dropwise. The mixture was then diluted with 500 ml of water and 100 ml of methylene chloride, and the organic phase was separated off, dried and evaporated. 14 g of oil remained and were crystallized from ether.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right], \delta=2.2$ (quintet, 2 H); 3.0 (dt., 4H); 3.3 (s, 3H); 4.1 (s, 3H) ppm

Example 19

1-Benzenesulfonyl-3-(4,6-dimethoxy-2-pyrimidinyloxy)-4-methoxy-4,4-diphenyl-2-butanone
0.37 g (2.4 mmol) of phenyl methane [[sic$]$] sulfone were dissolved in 10 ml of dry THF and then, at $-70^{\circ} \mathrm{C} ., 2$ eq. of butyllithium ($2.94 \mathrm{ml} ; 1.6$ molar solution in hexane) were added dropwise. After $1 \mathrm{hat}-70^{\circ} \mathrm{C} ., 1 \mathrm{~g}(2.4 \mathrm{mmol})$ of methyl 2-(4,6-dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3-diphenylpropynoate [[sic]] dissolved in 5 ml of THF was added dropwise. The reaction mixture was then stirred at $-70^{\circ} \mathrm{C}$. for 1 h and at $-10^{\circ} \mathrm{C}$. for 1 h and then warmed to room temperature. For workup, about 10 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution were added dropwise, thorough extraction with ethyl acetate was carried out, and the combined organic phases [[lacuna]] with-saturated $\mathrm{N}-\mathrm{Cl}[[\mathrm{sic}]]$ solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue obtained after drying and concentration was purified by chromatography on silica gel (n-heptane/ethyl acetate $15 \% \rightarrow 30 \%$) and subsequently [MPLC] HPLC on RP silica gel (acetonitrile/ $\mathrm{H}_{2} \mathrm{O}+\mathrm{TFA}$); 0.3 g of a white amorphous powder was obtained as product.

Example 20

3,3-Diphenyloxiram-2-carbonitrile [|sic]]

$3.1 \mathrm{~g}(54.9 \mathrm{mmol})$ of sodium methoxide were suspended in 20 ml of dry THF and then, at $-10^{\circ} \mathrm{C}$., a mixture of $5 \mathrm{~g}(27.4$ $\mathrm{mmol})$ of benzophenone and $4.2 \mathrm{~g}(54.9 \mathrm{mmol})$ of chloroacetonitrile was added dropwise.

The reaction mixture was stirred at $-10^{\circ} \mathrm{C}$. for about 2 h , then poured into water and extracted several times with ethyl acetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by chromatography on silica gel (n-heptane/ethyl acetate).

Yield: $1.2 \mathrm{~g}(20 \%)$
${ }^{1} \mathrm{H}$-NMR $\left[\mathrm{CDCl}_{3}\right], \delta=3.9(\mathrm{~s}, 1 \mathrm{H}) ; 7.4-7.5(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$

Example 21

2-Hydroxy-3-methoxy-3,3-diphenylpropionitrile
6.5 [[lacuna]] $g(29.4 \mathrm{mmol})$ of 3,3 -diphenyloxirane-2carbonitrile were dissolved in 60 ml of methanol and, at $0^{\circ} \mathrm{C}$., about 2 ml of boron triffuoride etherate solution were added. The mixture was stirred further at $0^{\circ} \mathrm{C}$. for 1 h and then at room temperature overnight. For workup it was diluted with diethyl ether and washed with saturated NaCl solution, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The residue comprised 7.3 g of a white amorphous powder which was used directly in the subsequent reactions.
$\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left[\left[\mathrm{CDC}_{13}\right]\right] / \mathrm{CDCl}_{3}\right], \delta=2.95$ (broad s, OH), 3.15 (s, 3H), $5.3(\mathrm{~s}, 1 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 10) \mathrm{ppm}$

Example 22
2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3diphenylpropionitrile
7.3 g (28.8 mmol) of 2-hydroxy-3-methoxy-3,3-diphenylpropionitrile were dissolved in 90 ml of DMF, and $4 \mathrm{~g}(28.8$ $\mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $6.3 \mathrm{~g}(28 \mathrm{mmol})$ of 2-methanesulfonyl-4,6-dimethoxypyrimidine were added. The mixture was stirred at room temperature for about 12 h , then poured into water and extracted with ethyl acetate. The combined organic phases were washed again with $\mathrm{H}_{2} \mathrm{O}$, dried and concentrated. The residue obtained in this way was then purified by chromatography on silica gel (n -hepane/ethyl acetate).
Yield: 6.9 g of white amorphous powder
FAB-MS: $392\left(\mathrm{M}+\mathrm{H}^{+}\right){ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}\right], \delta=3.3(\mathrm{~s}, 3 \mathrm{H})$; $4.95(\mathrm{~s}, 6 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}) ; 6.3(\mathrm{~s}, 1 \mathrm{H}) ; 7.3-7.5(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$

Example 23

5-[2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3-diphenyl)propyl]-1H-tetrazole [[sic]]
$0.5 \mathrm{~g}(1.3 \mathrm{mmol})$ of nitrile was dissolved in 10 ml of toluene, and $85 \mathrm{mg}(1.3 \mathrm{mmol})$ of NaN_{3} and $460 \mathrm{mg}(1.4$ mmol) of $\mathrm{Bu}_{3} \mathrm{SnCl}$ were successively added, and then the mixture was refluxed for about 40 h . Cooling was followed by dilution with ethyl acetate and washing with 10% aqueous KF solution and with NaCl solution. After drying over MgSO_{4} and concentration there remained 1.0 g of a yellow oil, which was purified by chromatography on silica gel (n-heptane/ ethyl acetate).

Concentration of the fractions resulted in 60 mg of the 1 H -tetrazole and 110 mg of the 1 -methyltetrazole, each as amorphous white solids.
5-[2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3-diphenyl)propyl]-1H-tetrazole [[sic]]

Electrospray-MS: $435\left(\mathrm{M}+\mathrm{H}^{+}\right){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ (ppm) 3.28 (s, 3H), $3.85(\mathrm{~s}, 6 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.40(\mathrm{~m}$, $10 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$.
5-[2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methoxy-3,3-diphenyl)propyl]-1-methyltetrazole [[sic]]
Electrospray-MS; $471\left(\mathrm{M}+\mathrm{H}^{+}\right){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm}) 3.0(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}[9])[[\mathrm{sic}]], 3.80(\mathrm{~s}, 6 \mathrm{H}), 5.75(\mathrm{~s}$, $1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 11 \mathrm{H})$.

Example 24
2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methylsulfinyl-3,3diphenylpropionic acid
1.2 g (2.9 mmol) of 2-(4,6-dimethoxy-2-pyrimidinyloxy)-3-methylsulfonyl-3,3-diphenylpropionic [[sic]] acid were introduced into 15 ml of glacial acetic acid at $0^{\circ} \mathrm{C}$. and $294 \mu \mathrm{l}$ of 30% strength $\mathrm{H}_{2} \mathrm{O}_{2}$ were added dropwise. The mixture was stirred at room temperature overnight, poured into water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sodium thiosulfate solution and brine. After drying, 1 g of substance was isolated as a white foam.

21
Example 25
2-(4,6-Dimethoxy-2-pyrimidinyloxy)-3-methylsulfonyl-3, 3-diphenylpropionic acid
0.6 g (1.45 mmol) of 2-(4,6-dimethoxy-2-pyrimidiny- 5 loxy)-3-methyl-sulfonyl-3,3-diphenylpropionic [[sic]] acid was introduced into 15 ml of glacial acetic acid at room

22
temperature, and $294 \mu \mathrm{l}$ of 30% strength $\mathrm{H}_{2} \mathrm{O}_{2}$ were added dropwise. The mixture was stirred at room temperature overnight, heated at $50^{\circ} \mathrm{C}$. for a further 3 h , poured into water and washed with sodium thiosulfate solution and brine. After drying, 400 mg were isolated as a white solid.

The compounds listed in Table 1 [[sic]] can be prepared in a similar way.

TABLE 1

No.	R^{1}						Y Z		$\begin{aligned} & \mathrm{m} . \mathrm{p} . \\ & {\left[{ }^{\circ} \mathrm{C} .\right.} \end{aligned}$
				R^{2}	R^{3}	X		Z	
[I-195]I-I	[OMe] OCH_{3}	Phenyl	Methyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}		O	O	81
[[-196] $1-2$	OH	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	167
[[-197] $1-3$	OH	Phenyl	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{3}$	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[[-198]1-4	OH	Phenyl	Ethyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	81 (decomp.
[[-199]1-5	OH	Phenyl	iso-Propyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	182
[I-200]I-6	OH	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	S	168
[I-201]I-7	OH	Phenyl	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}- \\ & \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-202]I-8	OH	Phenyl	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}- \\ & \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	S	0	
[I-203]I-9	OH	Phenyl	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}- \\ & \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	[OMe] OCH_{3}	[OMe] OCH_{3}	$\mathrm{C}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	O	O	
[I-204] 1 -10	OH	Phenyl	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}- \\ & \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	[OMe] OCH_{3}	[OMe] OCH_{3}	$\mathrm{C}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	O	O	
[I-205]I-11	OH	Phenyl	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}- \\ & \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	[OMe] OCH_{3}	$\mathrm{NH} \cdot \mathrm{OCH}_{3}$	CH	O	O	
[I-206]1-12	OH	Phenyl	n-Propyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	174
[[-207]I-13	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	Phenyl	n-Propyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	\bigcirc	\bigcirc	
[I-208]I-14	OH	Phenyl	n-Propyl	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5}$	[OEt] $O C C_{2} \mathrm{H}_{5}$		O	O	
[I-209]1-15	OH	Phenyl	n-Butyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-210]I-16	OH	Phenyl	iso-Butyl	[OMe] OCH_{3}	[OMe] OCH_{3}		O	O	
[I-211]I-17	OH	Phenyl	iso-Butyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	$\mathrm{O}-\mathrm{CH}$	2-CH2-C	O	O	
[I-212]I-18	OH	Phenyl	tert.-Butyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-213]I-19	OH	Phenyl	Cyclopropyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	0	
[I-214]I-20	OH	Phenyl	Cyclopentyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-215]I-21	OH	Phenyl	Cyclohexyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-216]I-22	OH	Phenyl	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5}$	[OEt$] \mathrm{OC}_{2} \mathrm{H}_{5}$	CH	O	O	
[I-217]I-23	OH	Phenyl	$\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}- \\ & \mathrm{CH}_{2}-\mathrm{CH}_{2} \end{aligned}$	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	O	173
[[-218]I-24	OH	Phenyl	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	O	
[[-219] 1 -25	OH	Phenyl	$\left.\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}\right)_{2}-$	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	O	
[[-220]I-26	OH	Phenyl	Cyclopropylmethylene [$[\mathrm{sic}]$]	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	115
[I-221]I-27	OH	Phenyl	H	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	0	
[I-222] 1 -28	OH	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O		
[I-223]I-29	OH	Phenyl	Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}		O	O	136
[I-224]I-30	OH	Phenyl	Phenyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	$\mathrm{O}-\mathrm{CH}(\mathrm{C}$	$\left.\mathrm{H}_{3}\right)-\mathrm{CH}_{2}-\mathrm{C}$	O	O	
[I-225]I-31	OH	Phenyl	Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-226]1-32	OH	Phenyl	4-Isopropyl-Phenyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	O	
[I-227] 1 -33	OH	Phenyl	4-Methyl-S-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[[-228]I-34	OH	Phenyl	4-Methyl-O-Phenyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	O	
[I-229]I-35	OH	Phenyl	3-Ethyl-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-230]I-36	OH	Phenyl	2-Methyl-Phenyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	[OMe] OCH_{3}	CH	O	O	
[[-231] 1 -37	OH	Phenyl	2-Cl-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-232] 1 -38	OH	Phenyl	$3-\mathrm{Br}-\mathrm{Ph}$ nyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-233] 1 -39	OH	Phenyl	4-F-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	0	
[I-234] 1 -40	OH	Phenyl	4-F-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	S	O	
[I-235]1-41	OH	Phenyl	$4-\mathrm{CH}_{3}$-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-236]1-42	OH	Phenyl	3-NO2-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-237]I-43	OH	Phenyl	2-HO-Phenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[[-238]I-44	OH	Phenyl	3,4- Dimethoxyphenyl	[OMe] OCH_{3}	[OMe] OCH_{3}	CH	O	O	
[I-239] $1-45$	OH	Phenyl	3,4- Dioxomethylene-phenyl-[[sic]]	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	CH	O	O	

TABLE 1-continued

No.	R^{1}							$\begin{aligned} & \text { m.p. } \\ & {\left[\left[^{\circ} \mathrm{C} .\right]\right.} \end{aligned}$
		$\mathrm{R}^{4}, \mathrm{R}^{5}$	R^{6}	R^{2}	$\mathrm{R}^{3} \quad \mathrm{X}$	Y	Z	
[[-240]I-46	OH	Phenyl	$\begin{aligned} & 3,4,5- \\ & \text { Triimethoxyphenyl } \end{aligned}$	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-241] 1 -47	OH	Phenyl	Benzyl	[OMe] OCH_{3}	$\left[\mathrm{OMe} \mathrm{OCH}_{3} \mathrm{CH}\right.$	O	O	
[I-242] 1 -48	OH	Phenyl	2-Cl-Benzyl	$\left[\mathrm{OMe} \mathrm{OCH}_{3}\right.$	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-243] 1 -49	OH	Phenyl	$3-\mathrm{Br}-\mathrm{Benzyl}$	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-244]I-50	OH	Phenyl	4-F-Benzyl	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-245]1-51	OH	Phenyl	2-Methyl-Benzyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-246] 1 -52	OH	Phenyl	2-Methyl-Benzyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$	0	O	
[I-247]1-53	OH	Phenyl	3-Ethyl-Benzyl	[$\mathrm{OMe} \mathrm{OCH} \mathrm{OH}_{3}$	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-248]I-54	OH	Phenyl	4-iso-Propyl-Benzyl	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-249] 1 -55	OH	Phenyl	4- NO_{2} - PropylBenzyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[$\mathrm{I}-250]$]-56	OH	Phenyl	2-Methyl-5-PropylBenzyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-251] 1 -57	OH	Phenyl	2-Methyl-5-PropylBenzyl	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5}$	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{CH}$	O	O	
[I-252] 1 -58	OH	Phenyl	4-Methyl-2-PropylBenzyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[[-253] 1 -59	OH	Phenyl	3,4-Dioxomethylenebenzyl [[sic]]	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	0	O	
[I-254]I-60	OH	4-F-Phenyl	4-Methyl-2-PropylBenzyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	163-165 (decomp.)
[$\mathrm{I}-255]$]-61	[OMe] OCH_{3}	4-F-Phenyl	Methyl	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5}$	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{CH}$	O	O	
[I-256]I-62	OH	4-Cl-Phenyl	Methyl	[$\mathrm{OMe} \mathrm{OCH} \mathrm{OH}_{3}$	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-257] 1 -63	OH	4-Methyl-O-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-258]-64	OH	4-Methyl - O-Phenyl	Ethyl	[OMe] OCH_{3}	$\left[\mathrm{OMe} \mathrm{OCH}_{3} \mathrm{CH}\right.$	O	O	
[I-259]1-65	OH	4-Methyl-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-260]-66	OH	4-Methyl-Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	O	O	
[I-261] 1 -67	OH	3-CF3-Phenyl	n-Propyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-262]I-68	OH	3-CF3-Phenyl	n-Propyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}-\mathrm{C}$	O	O	
[I-263] 1 -69	OH	$4-\mathrm{NO}_{2}$-Phenyl	Methyl	[$\mathrm{OMe} \mathrm{O} \mathrm{OCH}_{3}$	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-264]I-70	OH	4- NO_{2}-Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$	O	O	
[I-265]I-71	OH	3-Cl-Phenyl	Ethyl	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-266] $]$-72	OH	2-F-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	0	O	$\begin{aligned} & \text { 193-194 } \\ & \text { (decomp.) } \end{aligned}$
[I-267] 1 -73	OH	2-F-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	S	O	
[I-268]1-74	OH	2-Methyl O-Phenyl	Methyl	[OMe] OCH_{3}	$\left[\mathrm{OMe} \mathrm{OCH}_{3} \mathrm{CH}\right.$	O	O	
[I-269] 1 -75	OH	2-Methyl-O-Phenyl	Methyl	[$\mathrm{OMe} \mathrm{O} \mathrm{OCH}_{3}$	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	S	
[I-270]1-76	OH	3,4-Dimethoxyphenyl	Methyl	[$\mathrm{OMe} \mathrm{OCH} \mathrm{OCH}_{3}$	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[-271]I-77	OH	3,4-Dioxmethylenephenyl [[sic]]	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-272]I-78	OH	p- CF_{3}-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[I-273]1-79	OH	Phenyl	Methyl	[OMe] OCH_{3}	[OEt] $O C_{2} H_{5} \mathrm{CH}$	O	O	
[I-274]I-80	[OMe] OCH_{3}	Phenyl	Methyl	[OMe] OCH_{3}	[OEt] $\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{CH}$	O	O	
[1-275] 1 -81	OH	Phenyl	Ethyl	[OMe] OCH_{3}	$\underset{\mathrm{NH}}{\mathrm{NH}} \underset{3}{ }$	O	O	
[I-276]I-82	OH	p-Methyl-O-Phenyl	n-Propyl	[OMe] OCH_{3}	$\mathrm{OCF}_{3} \mathrm{CH}$	O	O	
[I-277]I-83	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{CF}_{3} \quad \mathrm{CH}$	O	O	
[I-278]I-84	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{CF}_{3} \quad \mathrm{~N}$	O	O	
[I-279]1-85	OH	3,4-Dimethoxyphenyl	Benzyl	Methyl	Methyl	O	O	
[I-280]I-86	OH	3,4-Dimethoxyphenyl	Methyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}$	O	O	
[$\mathrm{I}-281]$ - 87	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	0	O	126 (decomp.)
[[-282] $1-88$	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}-\mathrm{C}$	O	O	
[I-283]1-89	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$	O	O	118
[I-284]I-90	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{S}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{C}$	O	O	
[I-285]1-91	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}-\mathrm{C}$	O	O	
[I-286]I-92	OH	Phenyl	Methyl	Methyl	$\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}-\mathrm{C}$	O	O	
[I-287]]-93	OH	Phenyl	Methyl	Methyl	$\mathrm{O}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$	O	O	
[I-288]I-94	OH	4-F-Phenyl	Methyl	Methyl	$\mathrm{S}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$	O	O	
[I-289]]-95	OH	4-F-Phenyl	H	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	S	
[$1-290] 1$-96	OH	Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	O	O	149-151 (decomp.)
[I-291]I-97	OH	Phenyl	Methyl	Methyl	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	0	O	$\begin{aligned} & 157 \\ & \text { (decomp.) } \end{aligned}$
[I-292]I-98	OH	Phenyl	Methyl	Ethyl	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	0	O	

TABLE 1-continued

TABLE 1-continued

No.	[$\mathrm{R}^{6}-\mathrm{Z} .$$R^{4}, R^{5}$						$\begin{aligned} & \text { m.p. } \\ & {\left[{ }^{\circ} \mathrm{C} .\right]} \end{aligned}$
			R^{6}	R^{2}	$\mathrm{R}^{3} \quad \mathrm{X}$	Y	Z	
[[-351] 1 -157	$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}$	Phenyl	Phenyl	OCH_{3}	$\mathrm{OCH}_{3} \quad \mathrm{~N}$	S	S	
[1-352]-158	OH	Phenyl	Phenyl	CF_{3}	$\mathrm{CF}_{3} \mathrm{CH}$	O	S	
[[-353] 1 -159	OCH_{3}	Phenyl	Phenyl	OCF_{3}	$\mathrm{OCF}_{3} \mathrm{CH}$	O	O	
[[-354] 1 -160	$\mathrm{OC}_{2} \mathrm{H}_{5}$	Phenyl	2-Dimethylaminophenyl	CH_{3}	$\mathrm{CH}_{3} \mathrm{CH}$	O	O	
[1-355]1-161	$\mathrm{ONC}\left(\mathrm{CH}_{3}\right)_{2}$	Phenyl	3-Hydroxyphenyl	Cl	$\mathrm{Cl} \quad \mathrm{CH}$	O	O	
[I-356]1-162	$\mathrm{ON}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	Phenyl	4-Trifluoromethylphenyl	OCH_{3}	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$	S	O	
[I-357]I-163	$\mathrm{NH}-\mathrm{SO}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	Phenyl	2-Oxazolyl	OCH_{3}	$\mathrm{CF}_{3} \quad \mathrm{~N}$	S	S	
[I-358]1-164	OH	Phenyl	Methyl	CH_{3}	$\mathrm{CH}_{3} \quad \mathrm{CH}$	O	O	
[[-359]1-165	OH	Cyclohexyl	Methyl	OCH_{3}	$\mathrm{OCH}_{3} \quad \mathrm{CH}$	O	O	
[1-360]/-166	OH	Cyclohexyl	Methyl	OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{C}$	O	O	
[1-361]1-167	OH	Phenyl	Methyl	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \quad \mathrm{CH}$	O	O	
[1-362]1-168	OH	Phenyl	Methyl	OCH_{3}	$\mathrm{OCH}_{3} \mathrm{CH}$	O	SO_{2}	
[1-363] 1 -169	OH	Phenyl	Methyl	OCH_{3}	$\mathrm{OCH}_{3} \quad \mathrm{CH}$	O	SO_{2}	
[I-364] 1 -170	OH	3-F-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[1-365]1-171	OH	3-F-Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	O	O	
[I-366]-172	OH	4-F-Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}$	O	O	142-143
[[-367]1-173	OH	3-Methyl-O-Phenyl	Methyl	[OMe] OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	O	O	$\begin{aligned} & 191^{\circ} \mathrm{C} . \\ & 158-161 \\ & \text { (decomp.) } \end{aligned}$
[I-368]1-174	OH	3-Methyl-O-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[1-369]1-175	OH	3-Methyl O-Phenyl	Ethyl	[OMe] OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	\bigcirc	O	
[1-370]1-176	OH	Phenyl	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$	[OMe] OCH_{3}	$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$	O	O	
[1-371]1-177	OH	Phenyl	Methyl	[NMe_{2}]	[NMe_{2}] N	O	O	181
				$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$			
[1-372]1-178	OH	Phenyl	Methyl	[OMe] OCH_{3}	[$\mathrm{OMe}^{\text {O }} \mathrm{OCH}_{3} \mathrm{~N}$	O	O	
[1-323]1-179	OH	3-F-Phenyl	Methyl	OCH_{3}	$\mathrm{CH}_{3} \quad \mathrm{CH}$	o	O	
[[-374]1-180	$\begin{aligned} & \mathrm{NH}-\mathrm{SO}_{2}- \\ & \text { Phenyl } \end{aligned}$	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[1-375]1-181	$\begin{aligned} & \mathrm{NH}-\mathrm{SO}_{2}-[\mathrm{Me}] \\ & \mathrm{CH}_{3} \end{aligned}$	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[1-376]-182	$\begin{aligned} & \mathrm{CH}_{2}-\mathrm{SO}_{2}- \\ & \text { Phenyl } \end{aligned}$	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[1-377]1-183	$\begin{aligned} & \mathrm{NH}-\mathrm{SO}_{2}-[\mathrm{Me}] \\ & \mathrm{CH}_{3} \end{aligned}$	Phenyl	Methyl	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[1-378]1-184	$-\mathrm{CN}$	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[[-379]1-185	Tetrazole[[sic]]	Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[[-380]1-186	$\begin{aligned} & \mathrm{NH}-\mathrm{SO}_{2}- \\ & \text { Phenyl } \end{aligned}$	Phenyl	Methyl	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	O	O	167
[1-381]1-187	N -Methyltetrazole[[sic]]	Phenyl	Methyl	[OMe] OCH_{3}	$[\mathrm{OMe}] \mathrm{OCH}_{3} \mathrm{CH}$	O	O	
[-1-382]-188	ONa	Phenyl	Methyl	[OMe] OCH_{3}	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-$	O	O	$\begin{aligned} & 122-139 \\ & (\text { decomp. }) \\ & \text { (zers.)] } \end{aligned}$
[1-383]1-189	OH	o-F-Phenyl	Methyl	[OMe] OCH_{3}	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-$	O	O	140-144 (decomp.)
[[-384]1-190	OH	m-Methyl-Phenyl	Methyl	[OMe] OCH_{3}	[OMe] $\mathrm{OCH}_{3} \mathrm{CH}$	O	O	169-177
[1-385]1-191	OH	m-Methyl-Phenyl	Methyl	[OMe] OCH_{3}	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-$	O	O	$\begin{aligned} & 119-135 \\ & \text { (decomp.) } \end{aligned}$
[[-386]1-192	OH	p-F-Phenyl	Methyl	$[\mathrm{OMe}] \mathrm{OCH}_{3}$	$[\mathrm{Me}] \mathrm{CH}_{3} \mathrm{CH}$	O	O	137-140 (decomp.)
[[-387]1-193	OH	m-F-Phenyl	Methyl	Methyl	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-$	O	O	150-152
[[-388]1-194	OH	p-F-Phenyl	Methyl	Methyl	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-$	O	O	169-170

TABLE 11

Example 35

Receptor binding data were measured by the binding assay described above for the compounds listed below. The results are shown in Table 2 [[sic]].

TABLE 2
Receptor binding data (K_{i} values)

Compound	$\mathrm{ET}_{\boldsymbol{A}}[\mathrm{nM}]$	$\mathrm{ET}_{\boldsymbol{B}}[\mathrm{nM}]$
$\mathrm{I}-2$	6	34
$\mathrm{I}-29$	86	180
$\mathrm{I}-5$	12	160
$\mathrm{I}-4$	7	2500
$\mathrm{I}-87$	1	57
I 89	86	9300
$\mathrm{I}-103$	0.4	29
$\mathrm{I}-107$	3	485
$\mathrm{I}-12$	19	1700
$\mathrm{I}-26$	23	2000
$\mathrm{I}-23$	209	1100
$\mathrm{I}-47$	150	1500
$\mathrm{I}-60$	33	970
$\mathrm{I}-96$	0.6	56
$\mathrm{II}-3$	107	7300
$\mathrm{II}-1$	28	2300

-

We claim:
40 1. A compound of the formula 1

45

50
where
R is formyl, tetrazole, nitrile, [a COOH group] $-\mathrm{CO}_{2} \mathrm{H}$ or a radical which can be hydrolyzed to $[\mathrm{COOH}$, and the other substituents have the following meanings:] $\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is hydrogen, hydroxyl, $-\mathrm{NH}_{2}$, $-\mathrm{NH}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$-alkyl $)$, $-\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text {-alkyl }\right)_{2}$, halogen, C_{1} - C_{4}-alkyl, or C_{1} - C_{4}-haloalkyl[, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy or $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkylthio];
$60 X$ is $C R^{14}$, where R^{14} is hydrogen or $C_{1}-C_{5}$-alkyl,
R^{3} is hydrogen, hydroxyl, $-\mathrm{NH}_{2},-\mathrm{NH}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$-alkyl $)$, $-\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{4} \text {-alkyl }\right)_{2}$, halogen, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, or $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl[, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, C_{1} - C_{4}-haloalkoxy, $\mathrm{NH}-\mathrm{O}$ -$\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio or CR^{3} is linked to CR^{14} as indicated above to give a 5 - or 6 -membered ring];
R^{4} and R^{5}, which can be identical or different, are phenyl or naphthyl, which can be substituted by one or more of the
following [radicals] selected from the group consisting of: halogen, nitro, cyano, hydroxyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ haloalkyl, C_{1}-C C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy, phenoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, amino, C_{1} - C_{4}-alkylamino [or] and $\mathrm{C}_{1}-\mathrm{C}_{4}$-dialkylamino; or R^{4} and R^{5} are
phenyl or naphthyl, which are connected together in the ortho position via a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom [or], an $\mathrm{SO}_{2}, \mathrm{NH}$ or N -alkyl group[;] or $a \mathrm{C}_{3}-\mathrm{C}_{7}-$ cycloalkyl group;
R^{6} is hydrogen, or R^{6} is $\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl, C_{3} - C_{6}-alkenyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkynyl or $\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl, where each of these [radicals] can be substituted by one or more [times by] substituents selected from the group consisting of: halogen, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkenyloxy, C_{3} - C_{6}-alkynyloxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy, C_{1} - C_{4}-alkylcarbonyl, C_{1} - C_{4}-alkoxycarbonyl, $\mathrm{C}_{3}-\mathrm{C}_{8}$ alkylcarbonylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino, di- $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino, phenyl [or] and phenoxy which phenyl or phenoxy is substituted by one or more [times by] substituents selected from the group consisting of: halogen, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy [or] and $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio; or phenyl or naphthyl, each of which can be substituted by one or more of the following [radicals] selected from the group consisting of: halogen, nitro, cyano, hydroxyl, amino, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, C_{1} - C_{4}-haloalkoxy, phenoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylamino, C_{1} - C_{4}-dialkylamino, dioxomethylene [or] and dioxoethylene; or
a five or six-membered heteroaromatic moiety containing (i) one to three nitrogen atoms, [and/or one sulfur or oxygen atom] (ii) one sulfur atom, (iii) one oxygen atom, (iv) one to three nitrogen atoms and one sulfur atom, or (v) one to three nitrogen atoms and one oxygen atom, which heteroaromatic moiety can carry one or more substituents selected from the group consisting of: one to four halogen atoms [and/or], and one or two of the following [radicals] selected from the group consisting of: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, phenyl, phenoxy [or] and phenylcarbonyl, it being possible for the phenyl [radicals] in turn to carry one or more substituents selected from the group consisting of: one to five halogen atoms [and/or], and one to three of the following [radicals] selected from the group consisting of:
C_{1} - C_{4}-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy and[/or] C_{1} - C_{4}-alkylthio[;],
Y is sulfur [or], oxygen or a single bond; and
Z is sulfur, oxygen, - $\mathrm{SO}-$ or $-\mathrm{SO}_{2}-$.
2. The compound of the formula 1 as defined in claim 1, wherein X is CR^{14} and R^{14} is hydrogen.
3. The compound of the formula 1 as defined in claim 2, wherein R is $\mathrm{CO}_{2} \mathrm{H}$.
[4. The compound of the formula 1 as defined in claim 2, wherein R^{2} and R^{3} each is methoxy.]
5. The compound of the formula 1 as defined in claim 2, wherein R^{4} and R^{5} each is phenyl.
6. The compound of the formula 1 as defined in claim 2, wherein R^{6} is $\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl.
7. The compound of the formula 1 as defined in claim 2, wherein Y is oxygen.
8. The compound of the formula 1 as defined in claim 2 , wherein Z is oxygen or sulfur.
9. The compound of the formula 1 as defined in claim 8 , wherein Z is oxygen.
e) a radical

where k is 0,1 and $2, \mathrm{p}$ is $1,2,3$ and 4 , and R^{9} is $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, C_{3} - C_{6}-alkenyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ alkynyl or phenyl, which can be substituted $b y$ one or more [times by] substituents selected from the group consisting of: halogen, nitro, cyano, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkenylcarbonyl, C_{3} - C_{6}-alkynylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy [or] and C_{1} - C_{4}-alkylthio;
f) a radical $O R^{10}$, where R^{10} is
hydrogen, the cation of an alkali metal or an alkaline earth metal or an environmentally compatible organic ammonium ion;
$\mathrm{C}_{3}-\mathrm{C}_{8}$-cycloalkyl which may carry one to three $\mathrm{C}_{1}-\mathrm{C}_{4}-$ alkyl groups;
$\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl which may carry one or more substituents selected from the group consisting of: one to five halogen atoms [and/or], and one of the following [radicals] selected from the group consisting of: C_{1} - C_{4}-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylcarbonyl, C_{3} - C_{8}-cycloalkyl, C_{1} - C_{4}-alkoxycarbonyl, phenyl, phenoxy [or] and phenylcarbonyl, where the aromatic [radicals] substituents in turn may carry one or more substituents selected from the group consisting of: one to five halogen atoms [and/or], and one to three of the following [radicals] selected from the group consisting of: nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy and[/or] $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio;
$\mathrm{C}_{1}-\mathrm{C}_{8}$-alkyl which may carry one to five halogen atoms and which carries one of the following [radicals] selected from the group consisting of: a 5-membered heteroaromatic ring containing one to three nitrogen atoms [or], a nitrogen atom and an oxygen [or] and a nitrogen atom and a sulfur atom, which may carry one or more substituents selected from the group consisting of: one to four halogen atoms [and/or], and one or two of the following [radicals] selected from the group consisting of: nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}-$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, phenyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy and[/or] $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio;
$\mathrm{C}_{2}-\mathrm{C}_{6}$-alkyl which carries one of the following [radicals] in position 2: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxyimino, $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkynyloxyimino, $\mathrm{C}_{3}-\mathrm{C}_{6}$-haloalkenyloxyimino or benzyloxyimino;
C_{3} - C_{6}-alkenyl or $\mathrm{C}_{3}-\mathrm{C}_{6}$-alkynyl which may carry one to five halogen atoms;
phenyl which may carry one or more substituents selected from the group consisting of: one to five halogen atoms [and/or], and one to three of the following [radicals] selected from the group consisting of: nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy and[/or] $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio;
a 5 -membered heteroaromatic ring which is bonded via a nitrogen atom and containing one to three nitrogen atoms, which may carry one or more substituents selected from the group consisting of: one or two halogen atoms, and [or] one or two of the following [radicals] selected from the group consisting of:
$\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, C_{1} - C_{4}-alkoxy, phenyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkoxy and[/or] C_{1} - C_{4}-alkylthio; a radical

where $\left[\mathrm{R}^{1}\right] R^{I I}$ and R^{12}, which may be identical or different are:
C_{1}-C8-alkyl, C_{3} - C_{6}-alkenyl, C_{3} - C_{6}-alkynyl, C_{3} - C_{8} cycloalkyl, it being possible for these [radicals] to carry [a] one or more substituents selected from the group consisting of: $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio, and[/or] phenyl, which may carry one or more substituents selected from the group consisting of: one to five halogen atoms [and/or], and one to three of the following [radicals] selected from the group consisting of: nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, C_{1} - C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy and[/or] $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio;
phenyl which may carry one or more of the following [radicals] selected from the group consisting of: halogen, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy [or] and $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio; or R^{11} and R^{12} together form a $\mathrm{C}_{3}-\mathrm{C}_{12}$-alkylene chain which may carry one to three $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl groups and which may contain a hetero atom selected from the group consisting of: a nitrogen, oxygen and sulfur;
g) a radical

where R^{13} is
C_{1} - C_{4}-alkyl, C_{3} - C_{6}-alkenyl, C_{3} - C_{6}-alkynyl, C_{3} - C_{8}-cycloalkyl, it being possible for these [radicals] to carry one or more substituents selected from the group consisting of: a $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkoxy, $a \mathrm{C}_{1}-\mathrm{C}_{4}$-alkylthio [and/or a phenyl radical,] and a phenyl; or
phenyl which may carry one or more of the following [radicals] selected from the group consisting of: halogen, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{4}$-alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$-haloalkyl, C_{1} - C_{4}-alkoxy, C_{1} - C_{4}-haloalkoxy [or] and $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylthio.
12. The compound of the formula I as defined in claim 1, wherein
R is $-\mathrm{CO}_{2} \mathrm{H}$ or a radical which can be hydrolyzed to $\mathrm{CO}_{2} \mathrm{H}$;
R^{4} is phenyl; and
R^{5} is phenyl.
13. The compound of the formula I as defined in claim 12, wherein
X is CH ;
Y is oxygen;
Z is oxygen;
R is $-\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is $C_{1}-C_{4}$-alkyl;
R^{3} is $C_{1}-C_{4}$-alkyl; and
R^{σ} is C_{1} - $C_{\mathcal{8}}$-alkyl.
14. The compound of the formula I as defined in claim 13, wherein
R^{2} is methyl; and
R^{3} is methyl.
15. The compound of the formula as defined in claim 1, 5 wherein
R is formyl, $-\mathrm{CO}_{2} \mathrm{H}$ or a radical which can be hydrolyzed to $-\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is $C_{1}-C_{4}$-alkyl;
X is C^{14}, where R^{14} is hydrogen or $C_{1}-C_{5}$-alkyl;
R^{3} is $C_{1}-C_{4}$-alkyl;
R^{4} and R^{5} which can be identical or different, are phenyl, which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, hydroxyl, $C_{7}-C_{4}$-alkyl, C_{1}-C C_{4}-alkoxy and C_{7}-C C_{4}-alkylthio; or
phenyl which are connected together in the ortho positions by a direct linkage, methylene, ethylene, ethenylene, oxygen, sulfur, SO_{2}-, NH - or N -alkyl group; or
$C_{3}-C_{7}$-cycloalkyl;
R^{6} is $C_{1}-C_{8}$-alkyl, C_{3}-C C_{6}-alkenyl or C_{3} - C_{8}-cycloalkyl, where each of these can be substituted by one or more substituents selected from the group consisting of: halogen, hydroxyl, nitro, cyano, C_{1} - C_{4}-alkoxy, C_{3} - C_{6}-alkenyloxy and $C_{5}-C_{4}$-alkylthio; or
phenyl or naphthyl, each of which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, cyano, hydroxyl, amino, C_{1} - C_{4}-alkyl, C_{1}-C C_{4}-haloalkyl, C_{1} - C_{4}-alkoxy, $C_{1}-C_{4}-$ haloalkoxy, phenoxy, C_{1}-C C_{4}-alkylthio, C_{1} - C_{4}-alkylamino and C_{1}-C C_{1}-dialkylamino; or
a five- or six-membered heteroaromatic moiety containing (i) a nitrogen atom, (ii) a sulfur atom, (iii) an oxygen atom, (iv) a nitrogen atom and a sulfur atom, or (v) a nitrogen atom and an oxygen atom, which heteroaromatic moiety can carry one or more substituents selected from the group consisting of: one to four halogen atoms, and one or two of the following selected from the group consisting of: $C_{1}-C_{4}$-alkyl, C_{1}-C C_{4}-haloalkyl, $\quad C_{1}$-C C_{4}-alkoxy, $\quad C_{1}$-C C_{4}-alkylthio, phenyl, phenoxy and phenylcarbonyl, it being possible for the phenyl in turn to carry one or more substituents selected from the group consisting of: one to five halogen atoms, and one to three of the following selected from the group consisting of: $C_{1}-C_{4}$-alkyl, $\quad C_{1}$-C C_{4}-haloalkyl, C_{1}-C C_{4}-alkoxy and $C_{1}-C_{4}$-alkylthio;
Y is sulfur, oxygen or a single bond; and
Z is sulfur, oxygen, SO or SO_{2}.
16. The compound of the formula I as defined in claim 15 , wherein

R is $-\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is $C_{1}-\mathrm{C}_{4}$-alkyl;
X is $C R^{14}$, where R^{14} is hydrogen;
R^{3} is C_{1} - C_{4}-alkyl;
R^{4} and $R^{5^{4}}$ which can be identical or different, are phenyl, which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, hydroxyl, C_{1}-C C_{4}-alkyl, C_{1}-C C_{4}-alkoxy and $C_{1}-C_{4}$-alkylthio;
R^{σ} is $C_{1}-C_{8}$-alkyl, which can by substituted by one or more substituents selected from the group consisting of: halogen, hydroxyl, nitro, cyano, C_{7} - C_{4}-alkoxy, C_{3}-C C_{6}-alkenyloxy and $C_{1}-C_{4}$-alkylthio,
Y is oxygen; and
Z is oxygen.
17. The compound of the formula I as defined in claim 16, where R^{4} and R^{5} are each phenyl.
18. The compound of the formula I as defined in claim 1, wherein

R is $-\mathrm{CO}_{2} \mathrm{H}$ or a radical which can be hydrolyzed to $-\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is $C_{1}-C_{4}$-alkyl;
X is $C R^{14}$, where R^{14} is hydrogen;
R^{3} is C_{1} - C_{4}-alkyl;
R^{4} and R^{5} which can be identical or different, are phenyl, which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, hydroxyl, C_{1}-C C_{4}-alkyl, C_{1} - C_{4}-alkoxy and $C_{1}-C_{4}$-alkylthio;
R^{σ} is $C_{1}-C_{8}$-alkyl, which can be substituted by one or more substitutents selected from the group consisting of: halogen, hydroxyl, nitro, cyano, $C_{1}-C_{4}$-alkoxy, $C_{3}-C_{6}$-alkenyloxy and $C_{1}-C_{4}$-alkylthio;
Y is oxygen; and
Z is oxygen.
19. The compound of the formula I as defined in claim 18 , where R^{4} and R^{5} are each phenyl.
20. The compound of the formula I as defined in claim 1, 5 wherein

R is $-\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is $C_{4}-C_{4}$-alkyl;
X is $C R^{14}$, where $R^{I 4}$ is hydrogen or $C_{I}-C_{5}$-alkyl;
R^{3} is $C_{1}-C_{4}$-alkyl;
R^{4} and R^{5} are phenyl which can be substituted by one or more halogen atoms;
R^{6} is C_{1} - C_{8}-alkyl or C_{3}-C C_{8}-cycloalkyl, where each of these can be substituted one or more times by phenyl, or phenyl;
Y is oxygen; and
Z is sulfor or oxygen.
21. The compound of the formula I as defined in claim 1, wherein

R is $-\mathrm{CO}_{2} \mathrm{H}$ or a radical which can be hydrolyzed to $\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is halogen, $C_{1}-C_{4}$-alkyl or $C_{1}-C_{4}$-haloalkyl;
X is $C R^{14}$, where R^{14} is hydrogen or C_{1} - C_{5}-alkyl;
R^{3} is halogen, $C_{7}-C_{4}$-alkyl or $C_{1}-C_{4}$-haloalkyl;
R^{4} and R^{S} are phenyl, which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, $C_{1}-C_{4}$-alkyl, $C_{1}-C_{4}$-haloalkyl, $C_{1}-C_{4}-$ alkoxy, C_{7} - C_{4}-alkylamino and C_{2} - C_{4}-dialkylamino;
R^{6} is hydrogen, or R^{6} is $C_{1}-C_{8}$-alkyl or $C_{3}-C_{8}$-cycloalkyl, where each of these can be substituted by one or more substituents selected from the group consisting of: halogen, hydroxyl, $C_{1}-C_{4}$-alkoxy, $C_{1}-C_{4}$-alkylthio and phenyl which is substituted by one or more substituents selected from the group consisting of: halogen, $C_{1}-C_{4}-$ alkyl, $C_{1}-C_{4}$-haloalkyl, C_{1} - C_{4}-alkoxy and $C_{1}-C_{4}$-alkylthio; or
phenyl which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, hydroxyl, $C_{1}-C_{4}$-alkyl, C_{1}-C C_{4}-alkoxy, C_{1}-C C_{4}-alkylthio and dioxomethylene; or
a five or six-membered heteroaromatic moiety containing (i) one to three nitrogen atoms, (ii) one sulfur atom, (iii) one oxygen atom, (iv) one to three nitrogen atoms and one sulfur atom, or (v) one to three nitrogen atoms and one oxygen atom which heteroaromatic moiety can carry one to four halogen atoms;
Y is sulfur or oxygen; and
Z is sulfur or oxygen.

37
22. The compound of claim 21, wherein
$R \quad$ is $-\mathrm{CO}_{2} \mathrm{H},-\mathrm{COOCH}_{3},-\mathrm{COON}\left(\mathrm{CH}_{3}\right)_{2}$, $-\mathrm{COOCH}_{2} \mathrm{C} \equiv \mathrm{CH}, \quad \mathrm{COOC}_{2} \mathrm{H}_{5}, \quad \mathrm{COON}=$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{COONH}-\mathrm{phenyl},-\mathrm{COOCH}=\mathrm{CH}_{2}$ or $-\mathrm{CONH}-\mathrm{SO}-\mathrm{C}_{6} \mathrm{H}_{5}$;
R^{2} is $-\mathrm{Cl},-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3}$ or $-\mathrm{CF}_{3}$;
X is $C R^{14}$, where R^{14} is hydrogen;
R^{3} is $-\mathrm{Cl},-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3}$ or $-\mathrm{CF}_{3}$;
R^{4} and R^{5} are phenyl, which can be substituted by one or
more groups selected from the group consisting of: $-F$,
$-\mathrm{Cl},-\mathrm{Br},-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CF}_{3},-\mathrm{OCH}_{3},-\mathrm{NO}_{2}$ and $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$;
R^{6} is $-\mathrm{H},-\mathrm{CH}_{3}, \quad-\mathrm{CH}_{2} \mathrm{CH}_{3}, \quad-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \quad-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \quad$ cyclopropyl,
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \quad-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{3}$,
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, phenyl, trifluoroethyl, p-isopropyl-phe-
nyl, p-methyl-S-phenyl, p-methyl-O-phenyl, m-ethylphenyl, o-methyl-phenyl, o-Cl-phenyl, m-Br-phenyl,
p-F-phenyl, p-methyl-phenyl, m-NO ${ }_{2}$-phenyl, o-HOphenyl, 3,4-dimethoxy-phenyl, 3,4-dioxomethylenephenyl, 3,4,5-trimethoxy-phenyl, benzyl, o-Cl-benzyl, m-Br-benzyl, p-F-benzyl, o-methyl-benzyl, m-ethyl-benzyl or p-isopropyl-benzyl;
Y is sulfur or oxygen; and
Z is sulfir or oxygen.
23. The compound of claim 22 , wherein R^{4} and R^{5} are each phenyl.

38

24. A compound of the formula I:

where
R is $-\mathrm{CO}_{2} \mathrm{H}$;
R^{2} is $C_{1}-C_{4}$-alkyl;
X is $C R^{14}$, where R^{14} is hydrogen;
R^{3} is $C_{7}-C_{4}$-alkyl; lthio; alkenyloxy and $C_{1}-C_{4}$-alkylthio;
Y is oxygen; and
Z is oxygen. wherein R^{4} and R^{5} are each phenyl.
(I)
R^{4} and R^{5} which can be identical or different, are phenyl, which can be substituted by one or more of the following selected from the group consisting of: halogen, nitro, hydroxyl, $C_{1}-C_{4}$-alkyl, C_{1} - C_{4}-alkoxy and $C_{1}-C_{4}$-alky-
R^{6} is a C_{1} - C_{8}-alkyl, which can be substituted by one or more substituents selected from the group consisting of: halogen, hydroxyl, nitro, cyano, $C_{1}-C_{4}$-alkoxy, $C_{3}-C_{6}-$
25. The compound of the formula I as defined in claim 24,
