Case	2:17-cv-02951-AG-JCG Document 27	Filed 07/14/17	Page 1 of 34	Page ID #:167	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	RUSS AUGUST & KABATMarc A. Fenster, CA SBN 181067mfenster@raklaw.comReza Mirzaie, CA SBN 246953rmirzaie@raklaw.comPhilip X. Wang, CA SBN 262239pwang@raklaw.comKent N. Shum, CA SBN 259189kshum@raklaw.comChristian Conkle, CA SBN 306374cconkle@raklaw.comJames N. Pickens, CA SBN 307474jpickens@raklaw.com12424 Wilshire Boulevard, 12 th FlowLos Angeles, California 90025Tele:310/826-7474Fax:310/826-6991Attorneys for PlaintiffXR COMMUNICATIONS, LLC,dba VIVATO TECHNOLOGIES				
15 16					
10	UNITED STATES DISTRICT COURT CENTRAL DISTRICT OF CALIFORNIA				
18					
19	XR COMMUNICATIONS, LLC, d VIVATO TECHNOLOGIES,	ba Case N	0. 2:17-CV-29	51-AG(JCGx)	
20	Plaintiff,	AMEN	DED COMP	OMPLAINT FOR RINGEMENT	
21	V.	PATE	NT INFRING		
22 23					
23	CISCO SYSTEMS, INC.,				
25	Defendant.				
26	· · · · · · · · · · · · · · · · · · ·				
27					
28					
	AMENDED COMPLA	AIN I FOR PATENT	INFRINGEMENT		

RUSS, AUGUST & KABAT

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

24

JURISDICTION AND VENUE

1. This is an action for patent infringement. This Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and 1338(a) because this action arises under the patent laws of the United States, 35 U.S.C. §§ 101 *et seq*.

II.

I.

THE PARTIES

2. Plaintiff XR Communications LLC d/b/a Vivato Technologies ("Vivato" or "Plaintiff") is a limited liability company organized and existing under the laws of Delaware with its principal place of business at 444 S. Cedros Ave., Solana Beach, CA 92075.

3. Cisco Systems, Inc. ("Cisco" or "Defendant") is a corporation organized and existing under the laws of California with its principal place of business at 170 West Tasman Dr., San Jose, CA 95134. Cisco has a registered agent for service of process at Corporation Service Company, 2710 Gateway Oaks Dr., Ste. 150N, Sacramento, CA 95833.

4. This Court has personal jurisdiction over Cisco because Cisco is incorporated under the laws of California and has its principal place of business in California.

5. Venue is proper in this federal district pursuant to 28 U.S.C.
§§ 1391(b)-(d) and 1400(b) in that Cisco is subject to jurisdiction in this District,
resides in this District, has done business in this District, has regular and
established places of business in this District, has committed acts of infringement
in this District, and continues to commit acts of infringement in this District,
entitling Plaintiff to relief.

III. BACKGROUND OF THE TECHNOLOGY

6. Vivato was founded in 2000 as a \$80+million venture-backed
company with several key innovators in the wireless communication field
including Siavash Alamouti, Ken Biba, William Crilly, James Brennan, Edward
Casas, and Vahid Tarokh among many others. Wi-Fi/802.11 has become the

ubiquitous wireless connection to the Internet and is now integrated into hundreds of millions of mobile devices globally. Vivato was founded to leverage its talent to generate intellectual property and deliver Wi-Fi/802.11 wireless connectivity solutions to service the growing demand for bandwidth.

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

7. Over the years, Vivato has developed proven technology, with over 400 deployments globally, including private, public and government, and has become a recognized provider of extended range Wi-Fi network infrastructure solutions. Vivato's wireless base stations integrate beamforming phased array antenna design with packet steering technology to deliver high-bandwidth extended range connections to serve multiple users and multiple devices.

8. Vivato's patent portfolio includes over 17 issued patents and pending patent applications. The patents-in-suit are directed to specific aspects of wireless communication including adaptively steered antenna technology and beam switching technology.

IV. COUNT ONE: INFRINGEMENT OF UNITED STATES PATENT NO. 7,062,296

9. On June 13, 2006, United States Patent No. 7,062,296 ("the '296
Patent") was duly and legally issued for inventions entitled "Forced Beam
Switching in Wireless Communication Systems Having Smart Antennas." Vivato
owns the '296 Patent and holds the right to sue and recover damages for
infringement thereof. A copy of the '296 Patent is attached hereto as Exhibit A.

10. Defendant has directly infringed and continues to directly infringe
numerous claims of the '296 Patent, including at least claim 33, by manufacturing,
using, selling, offering to sell, and/or importing into the United States WiFi access
points and routers supporting MU-MIMO, including without limitation access
points and routers utilizing the IEEE 802.11ac-2013 standard (e.g. Defendant's
Aironet 1562I, Aironet 1562E, Aironet 1562D, Aironet 1810, Aironet 1810W,
Aironet 1815I, Aironet 1830I, Aironet 1850I, Aironet 1850E, Aironet 3800I,

Case 2:17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 4 of 34 Page ID #:170

Aironet 3800E, Aironet 3800P, Aironet 2800I, Aironet 2800E, MR30H, MR33, MR42, MR52, MR53, MR74, MR84, Aironet 1852E, Aironet 1852I, Aironet 2 1832I, Aironet 1810W, Aironet 2802I, Aironet 2802E, Aironet 3802I, Aironet 3 3802E) (collectively the "Accused Products"). Defendant is liable for infringement 4 of the '296 Patent pursuant to 35 U.S.C. § 271(a). 5

11. Each of the Accused Products comprises an apparatus for use in a wireless communication system. For example, the Cisco Aironet 3800E is an apparatus for use in a wireless communication system.

9 12. Each of the Accused Products comprises at least one smart antenna. 10 For example, the Cisco Aironet 3800E has at least one smart antenna.

11 13. Each of the Accused Products comprises at least one transceiver operatively coupled to said smart antenna and configured to send and receive 12 electromagnetic signals using said smart antenna. For example, the Cisco Aironet 13 14 3800E has a Cisco WiFi radio coupled to the smart antenna to send and receive 15 signals. See, e.g., IEEE 802.11ac-2013 ("802.11ac Standard") Clauses 22.3.4.5(j), 16 22.3.4.6(g), 22.3.4.7(h), 22.3.4.8(p), 22.3.4.9.1(g), 22.3.4.9.2(g), 22.3.4.10.4(e) 17 ("Analog and RF: Up-convert the resulting complex baseband waveform 18 associated with each transmit chain to an RF signal according to the center frequency of the desired channel and transmit."); id. Clauses 22.3.7.4, 22.3.8; id. 19 Clause 22.3.3 and Figure 22-7: 20

- /// 21
- 22 ///
- /// 23
- 24 ///
- 25 ///
- 26 ///
- 27 ///
- 28 ///

3

1

6

7

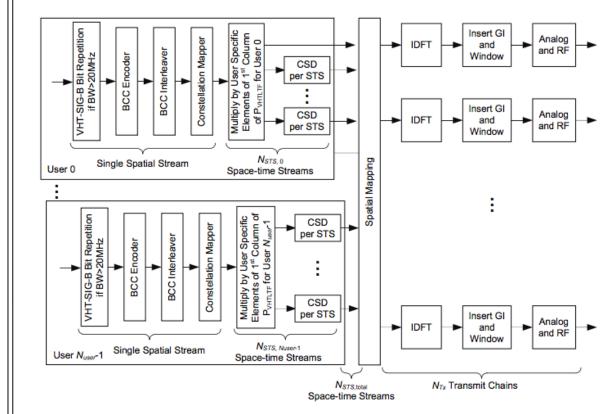
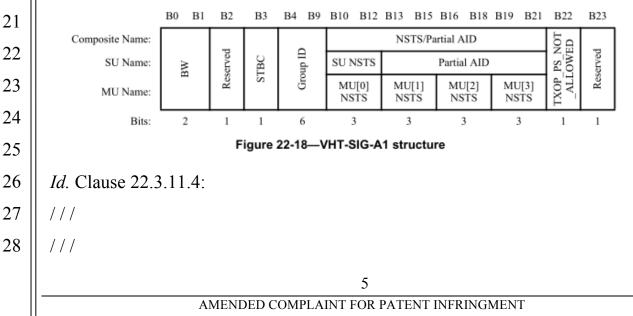


Figure 22-7—Transmitter block diagram for the VHT-SIG-B field of a 20 MHz, 40 MHz, and 80 MHz VHT MU PPDU

14. Each of the Accused Products comprises logic operatively coupled to said transceiver and configured to selectively allow a second device to operatively associate with a beam downlink transmittable to said second device using said smart antenna. For example, the Cisco Aironet 3800E allows a client device to operatively associate with a beam downlink transmittable to that client device using the smart antenna. See, e.g., 802.11ac Standard Clause 8.5.23.3 ("The Group ID Management frame is an Action frame of category VHT. It is transmitted by the AP to assign or change the user position of a STA for one or more group IDs. The Action field of a Group ID Management frame contains the information shown in Table 8-281aj"); id. Clause 8.4.1.51 ("The Membership Status Array field is used in the Group ID Management frame (see 8.5.23.3). The length of the field is 8 octets. An 8 octet Membership Status Array field (indexed by the group ID) consists of a 1-bit Membership Status subfield for each of the 64 group IDs, as shown in Figure 8-80f. * * * Within the 8 octet Membership Status Array field, the



1-bit Membership Status subfield for each group ID is set as follows: — Set to 0 if 1 the STA is not a member of the group — Set to 1 if STA is a member of the group 2 The Membership Status subfields for group ID 0 (transmissions to AP) and group 3 4 ID 63 (downlink SU transmissions) are reserved."); id. Clause 8.4.1.52 ("The User Position Array field is used in the Group ID Management frame (see 8.5.23.3). The 5 length of the field is 16 octets. A 16 octet User Position Array field (indexed by the 6 7 Group ID) consists of a 2-bit User Position subfield for each of the 64 group IDs, as shown in Figure 8-80g. * * * If the Membership Status subfield for a particular 8 9 group ID is 1, then the corresponding User Position subfield is encoded as shown in Table 8-531."); id. Table 8-531: 10

User Position subfield
valueUser position000011102113

Table 8-53I—Encoding of User Position subfield

Id. Clause 22.3.8.3.3 ("The VHT-SIG-A field carries information required to
interpret VHT PPDUs. The structure of the VHT-SIG-A field for the first part
(VHT-SIG-A1) is shown in Figure 22-18 and for the second part (VHT-SIG-A2) is
shown in Figure 22-19."); *id.* Figure 22-18:

11

12

13

14

15

Case 2:17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 7 of 34 Page ID #:173

When a STA receives a VHT MU PPDU where the Group ID field in VHT-SIG-A has the value k and where MembershipStatusInGroupID[k] is equal to 1, then the number of space-time streams for that STA is indicated in the MU[UserPositionInGroupID[k]] NSTS field in VHT-SIG-A. The space-time streams of different users are ordered in accordance to user position values, i.e., the space-time streams for the user in user position 0 come first, followed by the space-time streams for the user in position 1, followed by the space-time streams for the user in position 2, and followed by the space-time streams for the user in position 3.

A STA is also able to identify the space-time streams intended for other STAs that act as interference. VHT-LTF symbols in the VHT MU PPDU are used to measure the channel for the space-time streams intended for the STA and can also be used to measure the channel for the interfering space-time streams. To successfully demodulate the space-time streams intended for the STA, the STA may use the channel state information for all space-time streams to reduce the effect of interfering space-time streams.

8 Id. Clause 9.31.5.1 ("Transmit beamforming and DL-MU-MIMO require 9 knowledge of the channel state to compute a steering matrix that is applied to the 10 transmitted signal to optimize reception at one or more receivers. The STA 11 transmitting using the steering matrix is called the VHT beamformer and a STA for which reception is optimized is called a VHT beamformee. An explicit feedback 12 13 mechanism is used where the VHT beamformee directly measures the channel 14 from the training symbols transmitted by the VHT beamformer and sends back a transformed estimate of the channel state to the VHT beamformer. The VHT 15 16 beamformer then uses this estimate, perhaps combining estimates from multiple 17 VHT beamformees, to derive the steering matrix."); id. Clause 9.31.5.2 ("A VHT 18 beamformer shall initiate a sounding feedback sequence by transmitting a VHT NDP Announcement frame followed by a VHT NDP after a SIFS. The VHT 19 beamformer shall include in the VHT NDP Announcement frame one STA Info 20 21 field for each VHT beamformee that is expected to prepare VHT Compressed 22 Beamforming feedback and shall identify the VHT beamformee by including the VHT beamformee's AID in the AID subfield of the STA Info field. The VHT NDP 23 24 Announcement frame shall include at least one STA Info field."); id. ("A non-AP 25 VHT beamformee that receives a VHT NDP Announcement frame... shall transmit its VHT Compressed Beamforming feedback a SIFS after receiving a 26 27 Beamforming Report Poll with RA matching its MAC address and a nonbandwidth signaling TA obtained from the TA field matching the MAC address of 28

1

2

3

4

5

6

the VHT beamformer."); *id*. Clauses 8.5.23.2, 8.4.1.48, 8.4.1.49; *id*. Clauses 22.3.4.6(d), 22.3.4.7(e), 22.3.4.8(*l*), 22.3.4.9.1(m), 22.3.4.9.2(m), 22.3.4.10.4(a) ("Spatial mapping: Apply the *Q* matrix as described in 22.3.10.11.1."); *id*. Clauses 22.3.10.11.1, 22.3.11.2; IEEE 802.11-2012 Clause 20.3.12.3.6.

15. Each of the Accused Products comprises logic configured to determine information from at least one uplink transmission receivable from said second device through said smart antenna. For example, the Cisco Aironet 3800E determines information from a VHT Compressed Beamforming frame received from a client device through its smart antenna. *See, e.g.*, 802.11ac Standard Clauses 8.4.1.24, 8.4.1.49, 8.5.23.2, 9.31.5.1, 9.31.5.2; IEEE 802.11-2012 Clause 20.3.12.3.6.

16. Each of the Accused Products comprises logic configured to determine if said associated second device should operatively associate with a different beam downlink transmittable using said smart antenna based on said determined information. For example, the Cisco Aironet 3800E determines, based on the information received in a VHT Compressed Beamforming frame, if the client device should operatively associate with a different beam downlink transmittable using the smart antenna. *See, e.g.*, 802.11ac Standard Clauses 8.4.1.24, 8.4.1.49, 8.5.23.2, 9.31.5.1, 9.31.5.2; *id.* Clause 22.3.11.2:

Upon receipt of a VHT NDP sounding PPDU, the beamformee shall remove the space-time stream CSD in Table 22-11 from the measured channel before computing a set of matrices for feedback to the beamformer. The beamforming feedback matrix, $V_{k,u}$, found by the beamformee *u* for subcarrier *k* shall be compressed in the form of angles using the method described in 20.3.12.3.6. The angles, $\phi(k, v)$ and $\psi(k, u)$, are quantized according to Table 8-53e. The number of bits for quantization is chosen by the beamformee, based on the indication from the beamformer as to whether the feedback is requested for SU-MIMO beamforming or DL-MU-MIMO beamforming. The compressed beamforming feedback using 20.3.12.3.6 is the only Clause 22 beamforming feedback format defined.

The beamformee shall generate the beamforming feedback matrices with the number of rows (Nr) equal to the N_{STS} of the NDP.

After receiving the angle information, $\phi(k, u)$ and $\psi(k, u)$, the beamformer reconstructs $V_{k,u}$ using Equation (20-79). For SU-MIMO beamforming, the beamformer can use this $V_{k,0}$ matrix to determine the steering matrix Q_k . For DL-MU-MIMO beamforming, the beamformer may calculate a steering matrix $Q_k = [Q_{k,0}, Q_{k,1}, ..., Q_{k,N_{wer}-1}]$ using $V_{k,u}$ and $SNR_{k,u}$ ($0 \le u \le N_{user} - 1$) in order to suppress crosstalk between participating beamformees. The method used by the beamformer to calculate the steering matrix Q_k is implementation specific.

17. Each of the Accused Products comprises logic configured to allow 1 said second device to operatively associate with said different beam if said 2 associated second device should operatively associate with a different beam and 3 4 selectively identify that said second device is not allowed to operatively associate with said beam. For example, the Cisco Aironet 3800E allows a client device to 5 operatively associate with a beam that is different from the beam with which the 6 7 client was associated previously, and to identify that the client device is not allowed to operatively associate with the prior beam. See, e.g., 802.11ac Standard 8 9 Clause 10.40 ("An AP determines the possible combinations of STAs that can be 10 addressed by a VHT MU PPDU by assigning STAs to groups and to specific user 11 positions within those groups. Assignments or changes of user positions corresponding to one or more Group IDs shall be performed using a Group ID 12 Management frame defined in 8.5.23.3... A VHT MU PPDU shall be transmitted to 13 14 a STA based on the content of the Group ID Management frame most recently 15 transmitted to the STA and for which an acknowledgement was received."); id. 16 Clause 8.5.23.3 ("The Group ID Management frame is an Action frame of category VHT. It is transmitted by the AP to assign or change the user position of a STA for 17 18 one or more group IDs. The Action field of a Group ID Management frame contains the information shown in Table 8-281aj"); id. Clause 8.4.1.51 ("The 19 Membership Status Array field is used in the Group ID Management frame (see 20 21 8.5.23.3). The length of the field is 8 octets. An 8 octet Membership Status Array 22 field (indexed by the group ID) consists of a 1-bit Membership Status subfield for each of the 64 group IDs, as shown in Figure 8-80f. * * * Within the 8 octet 23 Membership Status Array field, the 1-bit Membership Status subfield for each 24 group ID is set as follows: — Set to 0 if the STA is not a member of the group — 25 26 Set to 1 if STA is a member of the group The Membership Status subfields for group ID 0 (transmissions to AP) and group ID 63 (downlink SU transmissions) 27 28 are reserved."); id. Clause 8.4.1.52 ("The User Position Array field is used in the

Group ID Management frame (see 8.5.23.3). The length of the field is 16 octets. A 16 octet User Position Array field (indexed by the Group ID) consists of a 2-bit User Position subfield for each of the 64 group IDs, as shown in Figure 8-3 80g. * * * If the Membership Status subfield for a particular group ID is 1, then the 4 corresponding User Position subfield is encoded as shown in Table 8-531."); id. Table 8-53*l*: 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

24

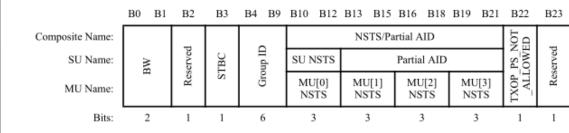
25

26

27

28

5


1

2

Table 8-53I—Encoding of User Position subfield

User Position subfield value	User position
00	0
01	1
10	2
11	3

Id. Clause 22.3.8.3.3 ("The VHT-SIG-A field carries information required to interpret VHT PPDUs. The structure of the VHT-SIG-A field for the first part (VHT-SIG-A1) is shown in Figure 22-18 and for the second part (VHT-SIG-A2) is shown in Figure 22-19."); id. Figure 22-18:

Figure 22-18—VHT-SIG-A1 structure

Id. Clause 22.3.11.4: 22

When a STA receives a VHT MU PPDU where the Group ID field in VHT-SIG-A has the value k and where MembershipStatusInGroupID[k] is equal to 1, then the number of space-time streams for that STA is indicated in the MU[UserPositionInGroupID[k]] NSTS field in VHT-SIG-A. The space-time streams of different users are ordered in accordance to user position values, i.e., the space-time streams for the user in user position 0 come first, followed by the space-time streams for the user in position 1, followed by the space-time streams for the user in position 2, and followed by the space-time streams for the user in position 3.

A STA is also able to identify the space-time streams intended for other STAs that act as interference. VHT-LTF symbols in the VHT MU PPDU are used to measure the channel for the space-time streams intended for the STA and can also be used to measure the channel for the interfering space-time streams. To successfully demodulate the space-time streams intended for the STA, the STA may use the channel state information for all space-time streams to reduce the effect of interfering space-time streams.

Id. Clause 9.31.5.1 ("Transmit beamforming and DL-MU-MIMO require 1 knowledge of the channel state to compute a steering matrix that is applied to the 2 transmitted signal to optimize reception at one or more receivers. The STA 3 transmitting using the steering matrix is called the VHT beamformer and a STA for 4 which reception is optimized is called a VHT beamformee. An explicit feedback 5 mechanism is used where the VHT beamformee directly measures the channel 6 7 from the training symbols transmitted by the VHT beamformer and sends back a 8 transformed estimate of the channel state to the VHT beamformer. The VHT 9 beamformer then uses this estimate, perhaps combining estimates from multiple 10 VHT beamformees, to derive the steering matrix."); id. Clause 9.31.5.2 ("A VHT 11 beamformer shall initiate a sounding feedback sequence by transmitting a VHT NDP Announcement frame followed by a VHT NDP after a SIFS. The VHT 12 beamformer shall include in the VHT NDP Announcement frame one STA Info 13 14 field for each VHT beamformee that is expected to prepare VHT Compressed 15 Beamforming feedback and shall identify the VHT beamformee by including the 16 VHT beamformee's AID in the AID subfield of the STA Info field. The VHT NDP 17 Announcement frame shall include at least one STA Info field."); id. ("A non-AP VHT beamformee that receives a VHT NDP Announcement frame... shall 18 transmit its VHT Compressed Beamforming feedback a SIFS after receiving a 19 Beamforming Report Poll with RA matching its MAC address and a non-20 21 bandwidth signaling TA obtained from the TA field matching the MAC address of 22 the VHT beamformer."); id. Clauses 8.5.23.2, 8.4.1.48, 8.4.1.49; id. Clauses 22.3.4.6(d), 22.3.4.7(e), 22.3.4.8(l), 22.3.4.9.1(m), 22.3.4.9.2(m), 22.3.4.10.4(a) 23 ("Spatial mapping: Apply the Q matrix as described in 22.3.10.11.1."); id. Clauses 24 25 22.3.10.11.1, 22.3.11.2; IEEE 802.11-2012 Clause 20.3.12.3.6.

18. Defendant has been and is now indirectly infringing at least one claim
of the '296 Patent in accordance with 35 U.S.C. § 271(b) in this district and
elsewhere in the United States. More specifically, Defendant has been and is now

actively inducing direct infringement by other persons (e.g., Defendant's customers who use, sell or offer for sale the Accused Products).

19. By at least the filing and service of the original Complaint on April 19, 2017, and May 3, 2017, respectively, Defendant had knowledge of the '296 Patent, and that its actions resulted in a direct infringement of the '296 Patent. Defendant also knew or was willfully blind that its actions would induce direct infringement by others and intended that its actions would induce direct infringement by others.

9 20. Defendant actively induced, and continues induce. to such infringement by, among other things, providing user manuals and other instruction 10 11 material for its Accused Products that induce its customers to use the Accused 12 Products in their normal and customary way to infringe the '296 Patent. For example, Defendant's website provided, and continues to provide, instructions for 13 14 using the Accused Products on wireless communication systems, and to utilize 15 their beamforming and MU-MIMO functionalities. Defendant sold, and continues 16 to sell, the Accused Products to customers despite its knowledge of the '296 Patent. Defendant manufactured and imported into the United States, and continues 17 to do so, the Accused Products for sale and distribution to its customers, despite its 18 knowledge of the '296 Patent. Through its continued manufacture, importation, 19 and sales of its Accused Products, Defendant specifically intended for its 20 21 customers to infringe claims of the '296 Patent. Further, Defendant was aware that 22 these normal and customary activities would infringe the '296 Patent. Defendant performed, and continues to perform, acts that constitute induced infringement, and 23 that would induce actual infringement, with knowledge of the '296 Patent and with 24 the knowledge or willful blindness that the induced acts would constitute direct 25 26 infringement.

27 21. Accordingly, a reasonable inference is that Defendant specifically
28 intended for others, such as its customers, to directly infringe one or more claims

1

2

3

4

5

6

7

of the '296 Patent in the United States because Defendant had knowledge of the '296 Patent and actively induced others (e.g., its customers) to directly infringe the '296 Patent by using, selling, or offering to sell the Accused Products and the MU-MIMO functionality within the Accused Products.

22. Defendant also infringes other claims of the '296 Patent, directly and through inducing infringement, for similar reasons as explained above with respect to Claim 33.

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

23. The '296 Patent is valid and enforceable.

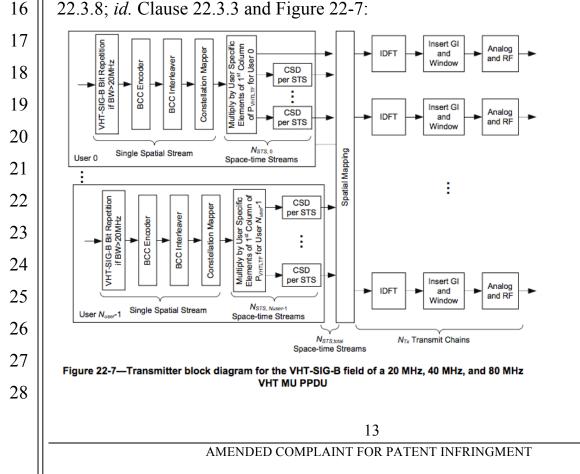
Defendant's infringement of the '296 Patent has damaged Vivato, and Defendant is liable to Vivato in an amount to be determined at trial that compensates Vivato for the infringement, which by law can be no less than a reasonable royalty.

24. As a result of Defendant's infringement of the '296 Patent, Vivato has suffered irreparable harm and will continue to suffer loss and injury.

V. COUNT TWO: INFRINGEMENT OF UNITED STATES PATENT NO. 7,729,728

17 25. On June 1, 2010, United States Patent No. 7,729,728 ("the '728
18 Patent") was duly and legally issued for inventions entitled "Forced Beam
19 Switching in Wireless Communication Systems Having Smart Antennas." Vivato
20 owns the '728 Patent and holds the right to sue and recover damages for
21 infringement thereof. A copy of the '728 Patent is attached hereto as Exhibit B.

22 26. Defendant has directly infringed and continues to directly infringe
23 numerous claims of the '728 Patent, including at least claim 16, by manufacturing,
24 using, selling, offering to sell, and/or importing into the United States the Accused
25 Products. Defendant is liable for infringement of the '728 Patent pursuant to 35
26 U.S.C. § 271(a).


27 || ///

28 ///

27. Each of the Accused Products comprises a wireless communication system. For example, the Cisco Aironet 3800E is a wireless access point for use in a Wi-Fi network.

28. Each of the Accused Products comprises a phased array antenna configured to transmit beam downlinks. *See, e.g.*: 802.11ac Standard Clause 8.4.2.58.6, Table 8-128.

29. Each of the Accused Products comprises a transceiver operatively coupled to the phased array antenna and configured to send and receive electromagnetic signals via the phased array antenna. For example, the Cisco Aironet 3800E has a Cisco WiFi radio that is configured to send and receive electromagnetic signals via the phased array antenna. See, e.g., 802.11ac Standard 22.3.4.5(j), 22.3.4.6(g), 22.3.4.7(h), 22.3.4.8(p), Clauses 22.3.4.9.1(q), 22.3.4.9.2(q), 22.3.4.10.4(e) ("Analog and RF: Up-convert the resulting complex baseband waveform associated with each transmit chain to an RF signal according to the center frequency of the desired channel and transmit."); id. Clauses 22.3.7.4, 22.3.8; id. Clause 22.3.3 and Figure 22-7:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

30. Each of the Accused Products comprises an access point that includes the phased array antenna and the transceiver. For example, the Cisco Aironet 3800E comprises an access point that includes a phased antenna array and a Cisco WiFi radio.

Each of the Accused Products comprises an access point that includes 5 31. the phased array antenna and the transceiver that is configured to selectively allow 6 7 a receiving device to operatively associate with a beam downlink transmitted to the receiving device via the phased array antenna. See, e.g., 802.11ac Standard Clause 8 9 8.5.23.3 ("The Group ID Management frame is an Action frame of category VHT. 10 It is transmitted by the AP to assign or change the user position of a STA for one 11 or more group IDs. The Action field of a Group ID Management frame contains the information shown in Table 8-281aj"); id. Clause 8.4.1.51 ("The Membership 12 Status Array field is used in the Group ID Management frame (see 8.5.23.3). The 13 14 length of the field is 8 octets. An 8 octet Membership Status Array field (indexed 15 by the group ID) consists of a 1-bit Membership Status subfield for each of the 64 group IDs, as shown in Figure 8-80f. * * * Within the 8 octet Membership Status 16 Array field, the 1-bit Membership Status subfield for each group ID is set as 17 18 follows: — Set to 0 if the STA is not a member of the group — Set to 1 if STA is a member of the group The Membership Status subfields for group ID 0 19 (transmissions to AP) and group ID 63 (downlink SU transmissions) are 20 21 reserved."); id. Clause 8.4.1.52 ("The User Position Array field is used in the 22 Group ID Management frame (see 8.5.23.3). The length of the field is 16 octets. A 23 16 octet User Position Array field (indexed by the Group ID) consists of a 2-bit User Position subfield for each of the 64 group IDs, as shown in Figure 8-24 80g. * * * If the Membership Status subfield for a particular group ID is 1, then the 25 26 corresponding User Position subfield is encoded as shown in Table 8-531."); id. 27 Table 8-53*l*:

28

///

1

2

3

Case 2 17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 16 of 34 Page ID #:182 Table 8-53I—Encoding of User Position subfield 1 2 User Position subfield User position value 3 00 0 4 01 1 10 2 5 11 3 6 7 Id. Clause 22.3.8.3.3 ("The VHT-SIG-A field carries information required to interpret VHT PPDUs. The structure of the VHT-SIG-A field for the first part 8 9 (VHT-SIG-A1) is shown in Figure 22-18 and for the second part (VHT-SIG-A2) is shown in Figure 22-19."); id. Figure 22-18: 10 B2 B3 B4 B9 B10 B12 B13 B15 B16 B18 B19 B21 B22 B23 B1 11 XOP PS NOT ALLOWED Composite Name: NSTS/Partial AID Group ID 12 Reserved Reserved SU NSTS SU Name: STBC Partial AID ΒW TXOP 13 MU[0] MU[1] MU[2] MU[3] MU Name: NSTS NSTS NSTS NSTS 14 3 Bits: 2 6 3 3 3 1 1 1 1 Figure 22-18—VHT-SIG-A1 structure 15 16 *Id.* Clause 22.3.11.4: When a STA receives a VHT MU PPDU where the Group ID field in VHT-SIG-A has the value k and where 17 MembershipStatusInGroupID[k] is equal to 1, then the number of space-time streams for that STA is indicated in the MU[UserPositionInGroupID[k]] NSTS field in VHT-SIG-A. The space-time streams of 18 different users are ordered in accordance to user position values, i.e., the space-time streams for the user in user position 0 come first, followed by the space-time streams for the user in position 1, followed by the 19 space-time streams for the user in position 2, and followed by the space-time streams for the user in position 3. 20 A STA is also able to identify the space-time streams intended for other STAs that act as interference. VHT-21 LTF symbols in the VHT MU PPDU are used to measure the channel for the space-time streams intended for the STA and can also be used to measure the channel for the interfering space-time streams. To 22 successfully demodulate the space-time streams intended for the STA, the STA may use the channel state information for all space-time streams to reduce the effect of interfering space-time streams. 23 Clause 9.31.5.1 ("Transmit beamforming and DL-MU-MIMO require 24 Id. knowledge of the channel state to compute a steering matrix that is applied to the 25 transmitted signal to optimize reception at one or more receivers. The STA 26 transmitting using the steering matrix is called the VHT beamformer and a STA for 27 which reception is optimized is called a VHT beamformee. An explicit feedback 28 15

Case 2 17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 17 of 34 Page ID #:183

mechanism is used where the VHT beamformee directly measures the channel from the training symbols transmitted by the VHT beamformer and sends back a transformed estimate of the channel state to the VHT beamformer. The VHT beamformer then uses this estimate, perhaps combining estimates from multiple VHT beamformees, to derive the steering matrix."); id. Clause 9.31.5.2 ("A VHT beamformer shall initiate a sounding feedback sequence by transmitting a VHT NDP Announcement frame followed by a VHT NDP after a SIFS. The VHT beamformer shall include in the VHT NDP Announcement frame one STA Info field for each VHT beamformee that is expected to prepare VHT Compressed 10 Beamforming feedback and shall identify the VHT beamformee by including the VHT beamformee's AID in the AID subfield of the STA Info field. The VHT NDP Announcement frame shall include at least one STA Info field."); id. ("A non-AP VHT beamformee that receives a VHT NDP Announcement frame... shall 14 transmit its VHT Compressed Beamforming feedback a SIFS after receiving a Beamforming Report Poll with RA matching its MAC address and a non-16 bandwidth signaling TA obtained from the TA field matching the MAC address of the VHT beamformer."); id. Clauses 8.5.23.2, 8.4.1.48, 8.4.1.49; id. Clauses 17 18 22.3.4.6(d), 22.3.4.7(e), 22.3.4.8(l), 22.3.4.9.1(m), 22.3.4.9.2(m), 22.3.4.10.4(a) ("Spatial mapping: Apply the *Q* matrix as described in 22.3.10.11.1."); *id*. Clauses 19 22.3.10.11.1, 22.3.11.2; IEEE 802.11-2012 Clause 20.3.12.3.6. 20

21 32. Each of the Accused Products comprises an access point that includes 22 the phased array antenna and the transceiver that is configured to receive an uplink 23 transmission from the receiving device through the phased array antenna. For example, the Cisco Aironet 3800E is configured to receive a VHT Compressed 24 Beamforming Feedback frame from a "receiving device" such as a connected 25 26 laptop or smartphone through its phased-array antenna. See, e.g., 802.11ac Standard Clauses 8.4.1.24, 8.4.1.49, 8.5.23.2, 9.31.5.1, 9.31.5.2; IEEE 802.11-27 28 2012 Clause 20.3.12.3.6.

1

2

3

4

5

6

7

8

9

11

12

13

15

33. Each of the Accused Products comprises an access point that includes the phased array antenna and the transceiver that is configured to determine from the uplink transmission if the receiving device should operatively associate with a different beam downlink transmission. For example, the Cisco Aironet 3800E is configured to determine from information contained in the VHT Compressed Beamforming Feedback frame if the receiving device that sent the VHT Compressed Beamforming Feedback frame should operatively associate with a different beam downlink transmission. *See, e.g.*, 802.11ac Standard Clauses 3.2, 8.4.1.24, 8.4.1.49, 8.5.23.2, 9.31.5, 9.31.5.1, 9.31.5.2; *id.* Clause 22.3.11.2:

Upon receipt of a VHT NDP sounding PPDU, the beamformee shall remove the space-time stream CSD in Table 22-11 from the measured channel before computing a set of matrices for feedback to the beamformer. The beamforming feedback matrix, $V_{k,u}$, found by the beamformee *u* for subcarrier *k* shall be compressed in the form of angles using the method described in 20.3.12.3.6. The angles, $\phi(k, v)$ and $\psi(k, u)$, are quantized according to Table 8-53e. The number of bits for quantization is chosen by the beamformee, based on the indication from the beamformer as to whether the feedback is requested for SU-MIMO beamforming or DL-MU-MIMO beamforming. The compressed beamforming feedback using 20.3.12.3.6 is the only Clause 22 beamforming feedback format defined.

The beamformee shall generate the beamforming feedback matrices with the number of rows (Nr) equal to the N_{STS} of the NDP.

After receiving the angle information, $\phi(k,u)$ and $\psi(k,u)$, the beamformer reconstructs $V_{k,u}$ using Equation (20-79). For SU-MIMO beamforming, the beamformer can use this $V_{k,0}$ matrix to determine the steering matrix Q_k . For DL-MU-MIMO beamforming, the beamformer may calculate a steering matrix $Q_k = [Q_{k,0}, Q_{k,1}, ..., Q_{k,N_{uper}-1}]$ using $V_{k,u}$ and $SNR_{k,u}$ ($0 \le u \le N_{user} - 1$) in order to suppress crosstalk between participating beamformees. The method used by the beamformer to calculate the steering matrix Q_k is implementation specific.

19 34. Each of the Accused Products comprises an access point that includes the phased array antenna and the transceiver that is configured to at least one of: 20 21 (i) allow the receiving device to operatively associate with the different beam 22 downlink if determined that the receiving device should operatively associate with the different beam downlink; (ii) force the receiving device to operatively associate 23 with the different beam downlink if determined that the receiving device should be 24 operatively associated with the different beam downlink. For example, the Cisco 25 Aironet 3800E is configured to transmit a Group ID Management frame or VHT 26 MU PPDU VHT-SIG-A or combination thereof to allow the receiving device to 27 operatively associate with the different beam downlink if determined that the 28

1

2

3

4

5

6

7

8

9

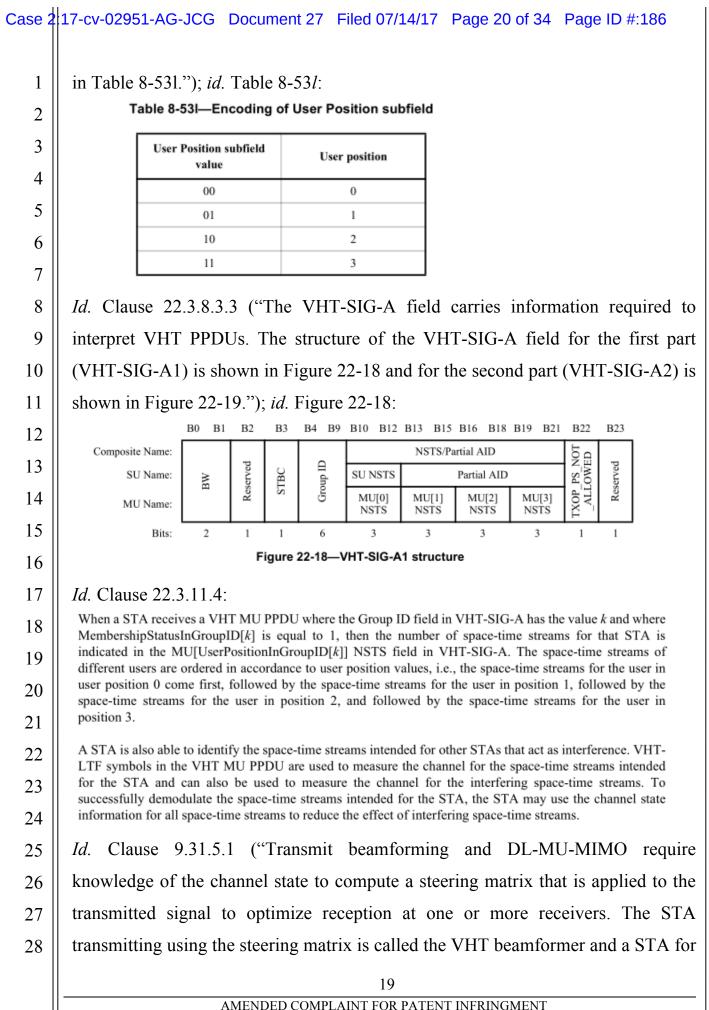
10

11

12

13

14


15

16

17

Case 2 17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 19 of 34 Page ID #:185

1 receiving device should operatively associate with the different beam downlink; (ii) force the receiving device to operatively associate with the different beam 2 downlink if determined that the receiving device should be operatively associated 3 with the different beam downlink. See, e.g., 802.11ac Standard Clause 10.40 ("An 4 AP determines the possible combinations of STAs that can be addressed by a VHT 5 MU PPDU by assigning STAs to groups and to specific user positions within those 6 7 groups. Assignments or changes of user positions corresponding to one or more Group IDs shall be performed using a Group ID Management frame defined in 8 9 8.5.23.3... A VHT MU PPDU shall be transmitted to a STA based on the content of 10 the Group ID Management frame most recently transmitted to the STA and for 11 which an acknowledgement was received."); id. Clause 8.5.23.3 ("The Group ID Management frame is an Action frame of category VHT. It is transmitted by the 12 AP to assign or change the user position of a STA for one or more group IDs. The 13 14 Action field of a Group ID Management frame contains the information shown in 15 Table 8-281aj"); id. Clause 8.4.1.51 ("The Membership Status Array field is used 16 in the Group ID Management frame (see 8.5.23.3). The length of the field is 8 octets. An 8 octet Membership Status Array field (indexed by the group ID) 17 18 consists of a 1-bit Membership Status subfield for each of the 64 group IDs, as shown in Figure 8-80f. * * * Within the 8 octet Membership Status Array field, the 19 1-bit Membership Status subfield for each group ID is set as follows: — Set to 0 if 20 21 the STA is not a member of the group — Set to 1 if STA is a member of the group 22 The Membership Status subfields for group ID 0 (transmissions to AP) and group ID 63 (downlink SU transmissions) are reserved."); id. Clause 8.4.1.52 ("The User 23 Position Array field is used in the Group ID Management frame (see 8.5.23.3). The 24 length of the field is 16 octets. A 16 octet User Position Array field (indexed by the 25 Group ID) consists of a 2-bit User Position subfield for each of the 64 group IDs, 26 as shown in Figure 8-80g. * * * If the Membership Status subfield for a particular 27 28 group ID is 1, then the corresponding User Position subfield is encoded as shown

Case 2 17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 21 of 34 Page ID #:187

which reception is optimized is called a VHT beamformee. An explicit feedback mechanism is used where the VHT beamformee directly measures the channel 2 from the training symbols transmitted by the VHT beamformer and sends back a 3 transformed estimate of the channel state to the VHT beamformer. The VHT 4 beamformer then uses this estimate, perhaps combining estimates from multiple 5 VHT beamformees, to derive the steering matrix."); id. Clause 9.31.5.2 ("A VHT 6 7 beamformer shall initiate a sounding feedback sequence by transmitting a VHT NDP Announcement frame followed by a VHT NDP after a SIFS. The VHT 8 9 beamformer shall include in the VHT NDP Announcement frame one STA Info 10 field for each VHT beamformee that is expected to prepare VHT Compressed Beamforming feedback and shall identify the VHT beamformee by including the VHT beamformee's AID in the AID subfield of the STA Info field. The VHT NDP 12 Announcement frame shall include at least one STA Info field."); id. ("A non-AP 13 14 VHT beamformee that receives a VHT NDP Announcement frame... shall 15 transmit its VHT Compressed Beamforming feedback a SIFS after receiving a 16 Beamforming Report Poll with RA matching its MAC address and a non-17 bandwidth signaling TA obtained from the TA field matching the MAC address of 18 the VHT beamformer."); id. Clauses 8.5.23.2, 8.4.1.48, 8.4.1.49; id. Clauses 22.3.4.6(d), 22.3.4.7(e), 22.3.4.8(l), 22.3.4.9.1(m), 22.3.4.9.2(m), 22.3.4.10.4(a)19 20 ("Spatial mapping: Apply the Q matrix as described in 22.3.10.11.1."); id. Clauses 22.3.10.11.1, 22.3.11.2; IEEE 802.11-2012 Clause 20.3.12.3.6.

22 35. Each of the Accused Products comprises an access point that includes the phased array antenna and the transceiver that is configured to actively probe the 23 receiving device by generating a signal to initiate that the phased array antenna 24 transmit at least one downlink transmittable message over the beam downlinks, 25 26 and gather signal parameter information from uplink transmittable messages received from the receiving device through the phased array antenna. For example, 27 28 the Cisco Aironet 3800E is configured to actively probe the receiving device by

11

21

1

generating a signal to initiate that the phased array antenna transmit a signal, e.g. a VHT null data packet announcement frame over the beam downlinks, and to gather signal parameter information from uplink transmittable messages received from the receiving device through the phased array antenna, e.g. one or more VHT Compressed Beamforming Feedback frames. See, e.g., 802.11ac Standard Clause 9.31.5, 9.31.5.2 ("A VHT beamformer shall initiate a sounding feedback sequence by transmitting a VHT NDP Announcement frame followed by a VHT NDP after a SIFS. The VHT beamformer shall include in the VHT NDP Announcement frame one STA Info field for each VHT beamformee that is expected to prepare VHT Compressed Beamforming feedback and shall identify the VHT beamformee by 10 including the VHT beamformee's AID in the AID subfield of the STA Info field. The VHT NDP Announcement frame shall include at least one STA Info field."); id. ("A non-AP VHT beamformee that receives a VHT NDP Announcement 14 frame... shall transmit its VHT Compressed Beamforming feedback a SIFS after receiving a Beamforming Report Poll with RA matching its MAC address and a non-bandwidth signaling TA obtained from the TA field matching the MAC address of the VHT beamformer."); id. Clause 8.4.1.24; IEEE 802.11-2012 Clause 20.3.12.3.6; 802.11ac Standard Clause 8.5.23.2 (defining format and subfields within the VHT Compressed Beamforming frame); id. Clause 8.4.1.48 (including Tables 8-53(d)-(h)) ("Each SNR value per tone in stream *i* (before being averaged) 20 corresponds to the SNR associated with the column *i* of the beamforming feedback matrix V determined at the beamformee"); id. Clause 8.4.1.49 (including Table 8-53i - MU Exclusive Beamforming Report information); id. Clauses 8.4.1.24, 9.31.5.1, 9.31.5.2; id. Clause 22.3.8.3.5; id. Clause 22.3.11.2. 24

Defendant has been and is now indirectly infringing at least one claim 25 36. of the '728 Patent in accordance with 35 U.S.C. § 271(b) in this district and 26 elsewhere in the United States. More specifically, Defendant has been and is now 27 actively inducing direct infringement by other persons (e.g., Defendant's 28

1

2

3

4

5

6

7

8

9

11

12

13

15

16

17

18

19

21

22

customers who use, sell or offer for sale the Accused Products).

37. By at least the filing and service of the original Complaint on April 19, 2017, and May 3, 2017, respectively, Defendant had knowledge of the '728 Patent, and that its actions resulted in a direct infringement of the '728 Patent. Defendant also knew or was willfully blind that its actions would induce direct infringement by others and intended that its actions would induce direct infringement by others.

8 38. Defendant actively induced, and continues to induce. such 9 infringement by, among other things, providing user manuals and other instruction 10 material for its Accused Products that induce its customers to use the Accused 11 Products in their normal and customary way to infringe the '728 Patent. For example, Defendant's website provided, and continues to provide, instructions for 12 using the Accused Products on wireless communication systems, and to utilize 13 their beamforming and MU-MIMO functionalities. Defendant sold, and continues 14 15 to sell, the Accused Products to customers despite its knowledge of the '728 16 Patent. Defendant manufactured and imported into the United States, and continues to do so, the Accused Products for sale and distribution to its customers, despite its 17 18 knowledge of the '728 Patent. Through its continued manufacture, importation, and sales of its Accused Products, Defendant specifically intended for its 19 customers to infringe claims of the '728 Patent. Further, Defendant was aware that 20 21 these normal and customary activities would infringe the '728 Patent. Defendant 22 performed, and continues to perform, acts that constitute induced infringement, and that would induce actual infringement, with knowledge of the '728 Patent and with 23 the knowledge or willful blindness that the induced acts would constitute direct 24 infringement. 25

39. Accordingly, a reasonable inference is that Defendant specifically
intended for others, such as its customers, to directly infringe one or more claims
of the '728 Patent in the United States because Defendant had knowledge of the

1

2

3

4

5

6

'728 Patent and actively induced others (e.g., its customers) to directly infringe the '728 Patent by using, selling, or offering to sell the Accused Products and the MU-MIMO functionality within the Accused Products.

Defendant also infringes other claims of the '728 Patent, directly and 40. through inducing infringement, for similar reasons as explained above with respect to Claim 16.

7

8

9

10

11

12

13

14

15

21

1

2

3

4

5

6

41. The '728 Patent is valid and enforceable.

Defendant's infringement of the '728 Patent has damaged Vivato, and 42. Defendant is liable to Vivato in an amount to be determined at trial that compensates Vivato for the infringement, which by law can be no less than a reasonable royalty.

As a result of Defendant's infringement of the '728 Patent, Vivato has 43. suffered irreparable harm and will continue to suffer loss and injury.

VI. **COUNT THREE: INFRINGEMENT OF UNITED STATES PATENT NO. 6,611,231**

16 On August 26, 2003, United States Patent No. 6,611,231 ("the '231 Patent") was duly and legally issued for inventions entitled "Wireless Packet Switched 17 18 Communication Systems and Networks Using Adaptively Steered Antenna Arrays." Vivato owns the '231 Patent and holds the right to sue and recover 19 damages for infringement thereof. A copy of the '231 Patent is attached hereto as 20 Exhibit C.

22 Defendant has directly infringed and continues to directly infringe 44. 23 numerous claims of the '231 Patent, including at least claim 1, by manufacturing, using, selling, offering to sell, and/or importing into the United States the Accused 24 Products. Defendant is liable for infringement of the '231 Patent pursuant to 35 25 26 U.S.C. § 271(a).

Each of the Accused Products comprises an apparatus for use in a 27 45. 28 wireless routing network. For example, the Cisco Aironet 3800E is an apparatus

for use in a wireless routing network.

46. Each of the Accused Products comprises an adaptive antenna. For

example, the Cisco Aironet 3800E has at least one adaptive antenna. See, e.g.:

802.11ac Standard Clause 8.4.2.58.6, Table 8-128:

8.4.2.58.6 Transmit Beamforming Capabilities

Change the following rows in Table 8-128:

Subfield	Definition	Encoding
CSI Number of Beamformer Antennas Supported	Indicates the maximum number of beamformer antennas the <u>HT</u> beamformee can support when CSI feedback is required	Set to 0 for single Tx antenna sounding Set to 1 for 2 Tx antenna sounding Set to 2 for 3 Tx antenna sounding Set to 3 for 4 Tx antenna sounding
Noncompressed Steering Number of Beamformer Antennas Supported	Indicates the maximum number of beamformer antennas the <u>HT</u> beamformee can support when noncompressed beamforming feedback matrix is required	Set to 0 for single Tx antenna sounding Set to 1 for 2 Tx antenna sounding Set to 2 for 3 Tx antenna sounding Set to 3 for 4 Tx antenna sounding
Compressed Steering Number of Beamformer Antennas Supported	Indicates the maximum number of beamformer antennas the <u>HT</u> beamformee can support when compressed beamforming feedback matrix is required	Set to 0 for single Tx antenna sounding Set to 1 for 2 Tx antenna sounding Set to 2 for 3 Tx antenna sounding Set to 3 for 4 Tx antenna sounding
CSI Max Number of Rows Beamformer Supported	Indicates the maximum number of rows of CSI explicit feedback from the <u>HT</u> beamformee or calibration responder or transmit ASEL responder that an <u>HT</u> beamformer or calibration initiator or transmit ASEL initiator can support when CSI feedback is required.	Set to 0 for a single row of CSI Set to 1 for 2 rows of CSI Set to 2 for 3 rows of CSI Set to 3 for 4 rows of CSI

90

Copyright © 2013 IEEE. All rights reserved.

47. Each of the Accused Products comprises at least one transmitter 20 operatively coupled to said adaptive antenna and at least one receiver operatively 21 22 coupled to said adaptive antenna. For example, the Cisco Aironet 3800E has a Cisco WiFi radio operatively coupled to the adaptive antenna. See, e.g., 802.11ac 23 Standard Clauses 22.3.4.5(j), 22.3.4.6(g), 22.3.4.7(h), 22.3.4.8(p), 22.3.4.9.1(q), 24 22.3.4.9.2(q), 22.3.4.10.4(e) ("Analog and RF: Up-convert the resulting complex 25 baseband waveform associated with each transmit chain to an RF signal according 26 to the center frequency of the desired channel and transmit."); id. Clauses 22.3.7.4, 27 22.3.8; id. Clause 22.3.3 and Figure 22-7: 28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

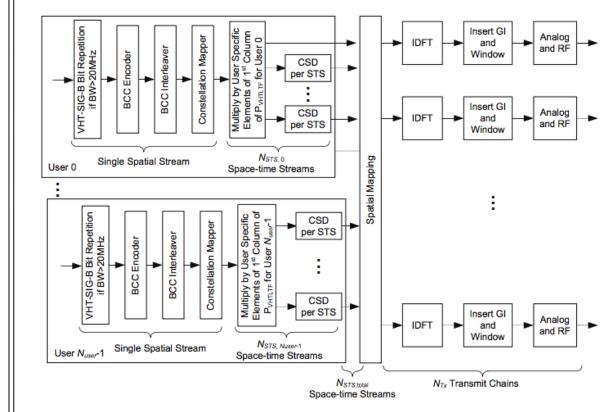


Figure 22-7—Transmitter block diagram for the VHT-SIG-B field of a 20 MHz, 40 MHz, and 80 MHz VHT MU PPDU

48. Each of the Accused Products comprises a control logic operatively coupled to said transmitter and configured to cause said at least one transmitter to output at least one transmission signal to said adaptive antenna to transmit corresponding outgoing multi-beam electromagnetic signals exhibiting a plurality of selectively placed transmission peaks and transmission nulls within a far field region of a coverage area based on routing information. For example, the Cisco Aironet 3800E is configured to output at least one transmission signal to said adaptive antenna. For a further example, the Cisco Aironet 3800E is configured to cause said at least one transmitter to output at least one transmission signal to said adaptive antenna to transmit corresponding outgoing multi-beam electromagnetic signals exhibiting a plurality of selectively placed transmission peaks and transmission nulls within a far field region of a coverage area based on routing information. See, e.g., 802.11ac Standard Clause 9.31.5.1 ("Transmit beamforming and DL-MU-MIMO require knowledge of the channel state to compute a steering

matrix that is applied to the transmitted signal to optimize reception at one or more receivers. The STA transmitting using the steering matrix is called the VHT beamformer and a STA for which reception is optimized is called a VHT beamformee. An explicit feedback mechanism is used where the VHT beamformee 4 directly measures the channel from the training symbols transmitted by the VHT beamformer and sends back a transformed estimate of the channel state to the VHT 6 beamformer. The VHT beamformer then uses this estimate, perhaps combining estimates from multiple VHT beamformees, to derive the steering matrix."); id. 8 9 22.3.4.6(d), 22.3.4.7(e), 22.3.4.8(l), 22.3.4.9.1(m), Clauses 22.3.4.9.2(m), 22.3.4.10.4(a) ("Spatial mapping: Apply the Q matrix as described in 10 22.3.10.11.1."); id. Clause 22.3.10.11.1; IEEE 802.11-2012 Standard Clause 20.3.12.3.6; 802.11ac Standard Clauses 8.4.1.24, 9.31.5.1, 9.31.5.2; id. Clause 12 13 22.3.11.1:

The DL-MU-MIMO steering matrix $Q_k = [Q_{k,0}, Q_{k,1}, ..., Q_{k,N_{user}-1}]$ can be determined by the beamformer using the beamforming feedback matrices for subcarrier k from beamformee $u, V_{k,u}$ and SNR information for subcarrier k from beamformee u, $SNR_{k,u}$, where $u = 0, 1, ..., N_{user} - 1$. The steering matrix that is computed (or updated) using new beamforming feedback matrices and new SNR information from some or all of participating beamformees might replace the existing steering matrix Q_k for the next DL-MU-MIMO data transmission. The beamformee group for the MU transmission is signaled using the Group ID field in VHT-SIG-A (see 22.3.8.3.3 and 22.3.11.4).

Id. Clause 22.3.11.2:

Upon receipt of a VHT NDP sounding PPDU, the beamformee shall remove the space-time stream CSD in Table 22-11 from the measured channel before computing a set of matrices for feedback to the beamformer. The beamforming feedback matrix, $V_{k,u}$, found by the beamformee u for subcarrier k shall be compressed in the form of angles using the method described in 20.3.12.3.6. The angles, $\phi(k, \upsilon)$ and $\psi(k, \upsilon)$, are quantized according to Table 8-53e. The number of bits for quantization is chosen by the beamformee, based on the indication from the beamformer as to whether the feedback is requested for SU-MIMO beamforming or DL-MU-MIMO beamforming. The compressed beamforming feedback using 20.3.12.3.6 is the only Clause 22 beamforming feedback format defined.

The beamformee shall generate the beamforming feedback matrices with the number of rows (Nr) equal to the NSTS of the NDP.

After receiving the angle information, $\phi(k,u)$ and $\psi(k,u)$, the beamformer reconstructs $V_{k,u}$ using Equation (20-79). For SU-MIMO beamforming, the beamformer can use this $V_{k,0}$ matrix to determine the steering matrix Q_k . For DL-MU-MIMO beamforming, the beamformer may calculate a steering matrix $Q_k = [Q_{k,0}, Q_{k,1}, ..., Q_{k,N_{user}-1}]$ using $V_{k,u}$ and $SNR_{k,u}$ $(0 \le u \le N_{user}-1)$ in order to suppress crosstalk between participating beamformees. The method used by the beamformer to calculate the steering matrix Q_k is implementation specific.

27 49. Each of the Accused Products comprises search receiver logic 28 operatively coupled to said control logic and said at least one receiver and

1

2

3

5

7

11

14

15

16

17

18

19

20

21

22

23

24

25

26

Case 2 17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 28 of 34 Page ID #:194

1 configured to update said routing information based at least in part on crosscorrelated signal information that is received by said receiver using said adaptive 2 antenna. For example, the Cisco Aironet 3800E updates the routing information 3 based at least in part on cross-correlated signal information received in a VHT 4 Compressed Beamforming frame. See, e.g., 802.11ac Standard Clause 9.31.5.2 ("A 5 VHT beamformer shall initiate a sounding feedback sequence by transmitting a 6 VHT NDP Announcement frame followed by a VHT NDP after a SIFS. The VHT 7 beamformer shall include in the VHT NDP Announcement frame one STA Info 8 9 field for each VHT beamformee that is expected to prepare VHT Compressed 10 Beamforming feedback and shall identify the VHT beamformee by including the 11 VHT beamformee's AID in the AID subfield of the STA Info field. The VHT NDP Announcement frame shall include at least one STA Info field."); id. ("A non-AP 12 VHT beamformee that receives a VHT NDP Announcement frame... shall 13 14 transmit its VHT Compressed Beamforming feedback a SIFS after receiving a 15 Beamforming Report Poll with RA matching its MAC address and a non-16 bandwidth signaling TA obtained from the TA field matching the MAC address of the VHT beamformer."); id. Clause 8.5.23.2 (defining format and subfields within 17 the VHT Compressed Beamforming frame); id. Clause 8.4.1.48 (including Tables 18 8-53(d)-(h)) ("Each SNR value per tone in stream *i* (before being averaged) 19 corresponds to the SNR associated with the column *i* of the beamforming feedback 20 21 matrix V determined at the beamformee"); id. Clause 8.4.1.49 (including Table 8-22 53i - MU Exclusive Beamforming Report information); id. Clauses 8.4.1.24, 9.31.5.1, 9.31.5.2; id. Clause 22.3.8.3.5; id. Clause 22.3.11.2: 23 24 ///

- 25 ///
- 26 ///
- 27 || ///
- 28 ///

Case 2 17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 29 of 34 Page ID #:195 Upon receipt of a VHT NDP sounding PPDU, the beamformee shall remove the space-time stream CSD in 1 Table 22-11 from the measured channel before computing a set of matrices for feedback to the beamformer. The beamforming feedback matrix, $V_{k,u}$, found by the beamformee u for subcarrier k shall be compressed in 2 the form of angles using the method described in 20.3.12.3.6. The angles, $\phi(k, \upsilon)$ and $\psi(k, \upsilon)$, are quantized according to Table 8-53e. The number of bits for quantization is chosen by the beamformee, based on the 3 indication from the beamformer as to whether the feedback is requested for SU-MIMO beamforming or DL-MU-MIMO beamforming. The compressed beamforming feedback using 20.3.12.3.6 is the only Clause 22 4 beamforming feedback format defined. 5 The beamformee shall generate the beamforming feedback matrices with the number of rows (Nr) equal to the NSTS of the NDP. 6 After receiving the angle information, $\phi(k,u)$ and $\psi(k,u)$, the beamformer reconstructs $V_{k,u}$ using Equation 7 (20-79). For SU-MIMO beamforming, the beamformer can use this $V_{k,0}$ matrix to determine the steering matrix Q_k . For DL-MU-MIMO beamforming, the beamformer may calculate a steering matrix $Q_k = [Q_{k,0}, Q_{k,1}, ..., Q_{k,N_{user}-1}]$ using $V_{k,u}$ and $SNR_{k,u}$ ($0 \le u \le N_{user} - 1$) in order to suppress crosstalk between participating beamformees. The method used by the beamformer to calculate the steering matrix Q_k 8 9 is implementation specific. 10 50. Defendant has been and is now indirectly infringing at least one claim 11 of the '231 Patent in accordance with 35 U.S.C. § 271(b) in this district and 12 elsewhere in the United States. More specifically, Defendant has been and is now actively inducing direct infringement by other persons (e.g., Defendant's 13 14 customers who use, sell or offer for sale the Accused Products). Defendant had knowledge of Vivato's '231 Patent by at least the 15 51. 16 citation of the '231 Patent during the prosecution of Defendant's U.S. Patent No. 8,666,319, "Mitigating effects of identified interference with adaptive CCA 17 threshold." On June 28, 2013, during prosecution of Defendant's U.S. Patent 18 No. 8,666,319, the USPTO examiner cited the '231 Patent. Accordingly, a 19 20 reasonable inference is that Defendant had knowledge of the '231 Patent, and its 21 issued claims, by at least as early as June 28, 2013. Further, by at least the filing 22 and service of the original Complaint on April 19, 2017, and May 3, 2017, 23 respectively, Defendant had knowledge of the '231 Patent.

Based on this knowledge of Vivato's '231 Patent, Defendant also 24 52. 25 knew that its actions resulted in a direct infringement of the '231 Patent. Defendant also knew or was willfully blind that its actions would induce direct infringement 26 27 by others and intended that its actions would induce direct infringement by others. 28 ///

53. induced, and continues to induce, such 1 Defendant actively infringement by, among other things, providing user manuals and other instruction 2 material for its Accused Products that induce its customers to use the Accused 3 Products in their normal and customary way to infringe the '231 Patent. For 4 example, Defendant's website provided, and continues to provide, instructions for 5 using the Accused Products on wireless communication systems, and to utilize 6 7 their beamforming and MU-MIMO functionalities. Defendant sold, and continues to sell, the Accused Products to customers despite its knowledge of the '231 8 9 Patent. Defendant manufactured and imported into the United States, and continues to do so, the Accused Products for sale and distribution to its customers, despite its 10 11 knowledge of the '231 Patent. Through its continued manufacture, importation, and sales of its Accused Products, Defendant specifically intended for its 12 customers to infringe claims of the '231 Patent. Further, Defendant was aware that 13 14 these normal and customary activities would infringe the '231 Patent. Defendant 15 performed, and continues to perform, acts that constitute induced infringement, and 16 that would induce actual infringement, with knowledge of the '231 Patent and with the knowledge or willful blindness that the induced acts would constitute direct 17 18 infringement.

19 54. Accordingly, a reasonable inference is that Defendant specifically
20 intended for others, such as its customers, to directly infringe one or more claims
21 of the '231 Patent in the United States because Defendant had knowledge of the
22 '231 Patent and actively induced others (e.g., its customers) to directly infringe the
23 '231 Patent by using, selling, or offering to sell the Accused Products and the MU24 MIMO functionality within the Accused Products.

25 55. Defendant also infringes other claims of the '231 Patent, directly and
26 through inducing infringement, for similar reasons as explained above with respect
27 to Claim 1.

28

56. The '231 Patent is valid and enforceable.

57. Defendant's infringement of the '231 Patent has damaged Vivato, and Defendant is liable to Vivato in an amount to be determined at trial that compensates Vivato for the infringement, which by law can be no less than a reasonable royalty.

58. As a result of Defendant's infringement of the '231 Patent, Vivato has suffered irreparable harm and will continue to suffer loss and injury.

VII. WILLFUL INFRINGEMENT

59. Defendant had knowledge of Vivato's '231 Patent by at least the citation of the '231 Patent during the prosecution of Defendant's U.S. Patent No. 8,666,319, "Mitigating effects of identified interference with adaptive CCA threshold." On June 28, 2013, during prosecution of Defendant's U.S. Patent No. 8,666,319, the USPTO examiner cited the '231 Patent. Accordingly, a reasonable inference is that Defendant had knowledge of the '231 Patent, and its issued claims, by at least as early as June 28, 2013. Further, by at least the filing and service of the original Complaint on April 19, 2017, and May 3, 2017, respectively, Defendant had knowledge of the '231 Patent.

17 Despite such knowledge, Defendant infringed and continues to 60. infringe the '231 Patent with full and complete knowledge of the '231 Patent's 18 applicability to Defendant's MU-MIMO WiFi access point and router products 19 20 without taking a license and without a good faith belief that the '231 Patent is 21 invalid and not infringed. Defendant's infringement of the '231 Patent occurred, 22 and continues to occur, with knowledge of infringement and objective recklessness. Defendant's infringement was, and continues to be, willful, 23 deliberate, and flagrant. Upon information and belief, Defendant's employees, 24 25 contractors, and agents responsible for the research, development, and 26 manufacturing of its Accused Products collaborated with Defendant's employees, 27 contractors, agents, and attorneys responsible for the procurement and management 28 of Defendant's U.S. Patent No. 8,666,319. As a result of this collaboration,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Defendant deliberately and flagrantly copied and incorporated into its Accused Products the invention claimed in the '231 Patent. Defendant sold, and continues to sell its Accused Products (e.g., Cisco Aironet 3800E) to customers despite its knowledge of the '231 Patent. Defendant also manufactured and imported into the United States, and continues to do so, the Accused Products for sale and distribution to its customers, despite its knowledge of the '231 Patent.

16

17

18

19

20

21

22

23

24

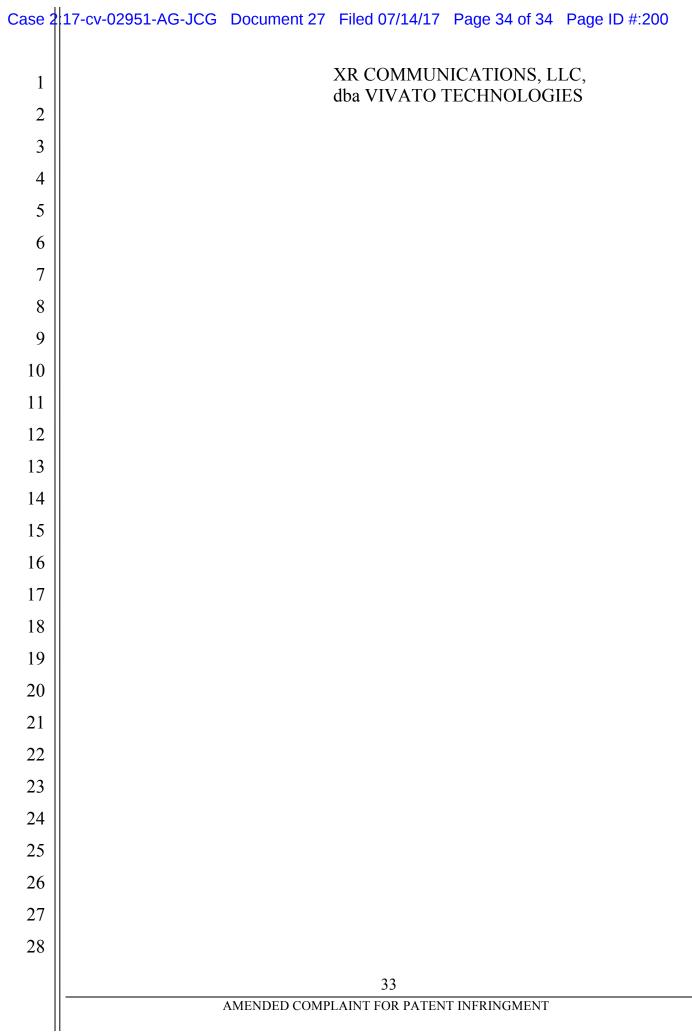
1

2

3

4

5


6

Defendant's infringement of the '231 Patent is egregious because 61. despite its knowledge of the '231 Patent, Defendant deliberately and flagrantly copied the invention claimed in the '231 Patent and implemented that patented invention in its Accused Products. Further, despite Defendant's knowledge of the '231 Patent, Defendant sold, offered for sale, manufactured, and imported, the Accused Products-and continues to do so-without investigating the scope of the '231 Patent and without forming a good-faith belief that its Accused Products do not infringe or that the '231 Patent is invalid. Defendant has not taken any steps to remedy its infringement of the '231 Patent (e.g., by removing the Accused Products from its sales channels). Instead, Defendant continues to sell its Accused Products to customers, such as its continued sale of its Cisco Aironet 3800E. Defendant's behavior is egregious because it engaged, and continues to engage, in misconduct beyond that of typical infringement. For example, in a typical infringement, an infringer would investigate the scope of the asserted patents and develop a good-faith belief that it does not infringe the asserted patents or that the asserted patents are invalid before selling (and continuing to sell) its accused products. An infringer would also remove its accused products from its sales channels and discontinue further sales.

25 62. Thus, Defendant's infringement of the '231 Patent is willful,
26 deliberate, and flagrant, entitling Vivato to increased damages under 35 U.S.C.
27 § 284 and to attorneys' fees and costs incurred in prosecuting this action under 35
28 U.S.C. § 285.

Case 2	17-cv-02951-AG-JCG Document 27 Filed 07/14/17 Page 33 of 34 Page ID #:199			
1	PRAYER FOR RELIEF			
2	WHEREFORE, Vivato prays for the following relief:			
3	(a) A judgment in favor of Vivato that Defendant has infringed and is			
4	infringing U.S. Patent Nos. 7,062,296, 7,729,728, and 6,611,231;			
5	(b) An award of damages to Vivato arising out of Defendant's			
6	infringement of U.S. Patent Nos. 7,062,296, 7,729,728, and 6,611,231, together			
7	with prejudgment and post-judgment interest, in an amount according to proof;			
8	(c) An award of an ongoing royalty for Defendant's post-judgment			
9	infringement in an amount according to proof;			
10	(d) Declaring that Defendant's infringement of the '231 Patent is willful			
11	and that this is an exceptional case under 35 U.S.C. § 285, and awarding enhanced			
12	damages pursuant to 35 U.S.C. § 284 and attorneys' fees and costs in this action.			
13	(e) Granting Vivato its costs and further relief as the Court may deem just			
14	and proper.			
15	DEMAND FOR JURY TRIAL			
16	Vivato demands a trial by jury of any and all issues triable of right before a			
17	jury.			
18				
19	DATED: July 14, 2017 Respectfully submitted,			
20	RUSS AUGUST & KABAT			
21				
22				
23	By: <u>/s/ Reza Mirzaie</u> Reza Mirzaie			
24	Marc A. Fenster			
25	Philip X. Wang Kent N. Shum			
26	Christian Conkle			
27	James N. Pickens			
28	Attorneys for Plaintiff			
	32			
	AMENDED COMPLAINT FOR PATENT INFRINGMENT			

RUSS, AUGUST & KABAT

RUSS, AUGUST & KABAT