Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 1 of 17

IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS

AUSTIN DIVISION
LUCIO DEVELOPMENT LLC, §
Plaintiff, § Case No: 1:17-cv-1148
Vs. § PATENT CASE
ADVANCED MICRO DEVICES, INC., §
Defendant. §
§

COMPLAINT

Plaintiff Lucio Development LLC (“Plaintiff” or “Lucio”) files this Complaint against
Advanced Micro Devices, Inc. (“Defendant” or “AMD?”) for infringement of United States
Patent No. 7,069,546 (hereinafter “the ‘546 Patent”).

PARTIES AND JURISDICTION

1. This is an action for patent infringement under Title 35 of the United States
Code. Plaintiff is seeking injunctive relief as well as damages.

2. Jurisdiction is proper in this Court pursuant to 28 U.S.C. §§ 1331 (Federal
Question) and 1338(a) (Patents) because this is a civil action for patent infringement arising
under the United States patent statutes.

3. Plaintiff is a Texas limited liability company with its office address at 555
Republic Dr., Suite 200, Plano, Texas 75074.

4. On information and belief, Defendant is a Delaware corporation with a place of
business at One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453. Defendant may be

served with process in this judicial district by serving its registered agent for service of

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 1

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 2 of 17

process: The Corporation Trust Company, Corporation Trust Center, 1209 Orange St.,
Wilmington, DE 19801.

5. This Court has personal jurisdiction over Defendant because Defendant has
committed, and continues to commit, acts of infringement in this District, has conducted
business in this District, and/or has engaged in continuous and systematic activities in this
District.

6. On information and belief, Defendant’s instrumentalities that are alleged herein
to infringe were and continue to be used, imported, offered for sale, and/or sold in this District.
VENUE

7. Venue is proper in this District pursuant to 28 U.S.C. §1400(b) because acts of
infringement are occurring in this District and Defendant has a regular and established place of
business in this District. For instance, on information and belief, Defendant has a regular and
established place of business at both 7171 Southwest Parkway, Austin, TX 78735 and 1340

Airport Commerce Dr, Suite 500, Austin, TX 78741.

COUNT I
(INFRINGEMENT OF UNITED STATES PATENT NO. 7,069.546)
8. Plaintiff incorporates paragraphs 1 through 7 herein by reference.
0. This cause of action arises under the patent laws of the United States and, in

particular, under 35 U.S.C. §§ 271, et seq.

10. Plaintiff is the owner by assignment of the ‘546 Patent with sole rights to
enforce the ‘546 Patent and sue infringers.

11. A copy of the ‘546 Patent, titled “Generic Framework for Embedded Software
Development,” is attached hereto as Exhibit A.

12. The ‘546 Patent is valid, enforceable, and was duly issued in full compliance

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE |2

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 3 of 17

with Title 35 of the United States Code.

13. On information and belief, Defendant has infringed and continues to infringe
one or more claims, including at least Claim 1, of the ‘546 Patent by making, using, importing,
selling, and/or offering for sale a software platform for embedded software development,
which is covered by at least Claim 1 of the ‘546 Patent. Defendant has infringed and continues
to infringe the ‘546 Patent directly in violation of 35 U.S.C. § 271.

14. Defendant, sells, offers to sell, and/or uses embedded software development
packages including, without limitation, AMD Accelerated Parallel Processing (APP) SDK, and
any similar products (“Product”), which infringe at least Claim 1 of the ‘546 Patent.

15. The Product is a framework (e.g., a software development kit) that is configured
to create embedded software for multiple hardware modules (e.g., versions of a graphic
processing unit (GPU), such as ATI Radeon HD 5780 GPU, or a CPU such as the AMD
Phenom IIx4 processor or other similar processors). Defendant and/or its customers use the
Product to produce embedded software. Certain elements of this limitation are illustrated in
the screenshots below and in the screenshots referenced in connection with other elements

herein.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE |3

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 4 of 17

1 Overview

The AMD APP SDK v2.8 is provided to the developer community to accelerate the programming
in a heterogeneous environment. The package consists of samples that serve as examples for a
wide class of developers on different facets of heterogeneous programming.

The AMD APP SDK package contains the runtime for CPU hardware only. The GPU runtime is
included in the Catalyst driver.

There are no changes to the SDK 2.8 Developer or Sample packages installation.

For Microsoft® Windows® platforms, the AMD APP SDK installer installs the following packages
on your system by default (unless you choose to customize the install):

1. AMD APP SDK CPU Runtime package.
2. AMD APP SDK Developer package. This includes:
— the OpenCL™ compiler,

— pointers to the latest versions of the developer documentation. (See the AMD APP SDK

v2 folder in the All Programs panel of Windows Start. This also contains links to the AMD
Math Libraries.)

3. AMD APP SDK v2 Samples package. This includes:
— sample applications,

- sample documentation.

Source: http://developer.amd.com/download/AMD _APP_SDK_Installation_Motes.pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 4

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 5 of 17

1.2 OpenCL Overview

The OpenCL programming model consists of producing complicated task graphs
from data-parallel execution nodes.

In a given data-parallel execution, commonly known as a kernel launch, a
computation is defined in terms of a sequence of instructions that executes at
each point in an N-dimensional index space. It is a common, though by not
required, formulation of an algorithm that each computation index maps to an
element in an input data set.

The OpenCL data-parallel programming model is hierarchical. The hierarchical
subdivision can be specified in two ways:

= Explicitly - the developer defines the total number of work-items to execute
in parallel, as well as the division of work-items into specific work-groups.

« |Implicitly - the developer specifies the total number of work-items to execute
in parallel, and OpenCL manages the division inte work-groups.

OpenCL's API also supports the concept of a task dispatch. This is equivalent to
executing a kernel on a compute device with a work-group and NDRange
containing a single work-item. Parallelism is expressed using vector data types
implemented by the device, enqueuing multiple tasks, and/or enqueuing native
kermnels developed using a programming model orthogonal to OpenCL.

Source: http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL Programming_User Guide2.pdf

1.3 Programming Model

The OpenCL programming model is based on the notion of a hosl device,

supported by an application API, and a number of devices connected through a T
bus. These are programmed using OpenCL C. The host API is divided into Compute DEVICE
platform and runtime layers. OpenCL C is a G-like language with extensions for
paraliel programming such as memory fence operations and barriers, Figure 1.1 . . D e l:l
illustrates this model with queues of commands, reading/writing data, and
executing kemels for specific devices. Host § oA el e
_kemal foo(...}{ _kemetfool.){ || — !i .
Wi, Wi, W, W | | [[' P . I I | :
P | e - [o-§o-d T-0
£14 4 Compute Unit -
S Y Processing Element
[Local Memory | [Local Memary |
[3
3 h 4 Figure 2: OpencCL Platform Model
L | Global/Constant Memary |) r

Figure 1.1 OpenCL Programming Model

Source: http-//developer amd com/wordpress/media/2013/11/MediaSDK_User_Guide pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE |5

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 6 of 17

The AMD APP SDK CPU runtime installation for Windows adds the variable AMDAPPSDKROOT to
your environment. This points to the location where you have installed the SDK development
package. The Windows installer also adds the locations of the OpenCL dynamic libraries to your
system PATH variable, so applications know where to find it.

The AMD APP SDK Samples installation includes the following folders:

e bin - This includes pre-built binaries and dynamic libraries for running AMD APP samples.
e 1lib- This contains AMD APP SDK utility libraries to which sample applications link.
* include - This contains the header files for utilities and tools used by the samples.

e samples - This contains sample applications for OpenCL 1.1 and OpenCL 1.2, C++ AMP,
Bolt, and Aparapi.

¢ make - This contains the definitions and rules for make.

The AMD APP SDK Samples installer for Windows adds the variable AMDAPPSDKSAMPLESROOT to
your environment. This points to the location where you have installed the SDK Samples
package.

Source: http://developer. amd.comiwordpress/media/2013/11/MediaSDK_User_Guide. pdf

16. The Product provides one or more generic application handler programs (AMD
APP SDK provides a Compute Abstraction Layer (CAL) to optimize Graphic Processing Unit
(GPU) such as the ATI Radeon™ HD 5870 GPU which further includes a Hardware
Abstraction Layer(HAL) for device specific and driver like interface. CAL also includes
Compute Kernels to provide data parallelism and generic functions.) The generic programs
comprise computer program code for performing generic application functions common to
multiple types of hardware modules used in a communication environment (e.g., the generic
code provides common and generic functions to multiple hardware modules, such as versions
of a graphic processing unit (GPU), such as ATI Radeon HD 5780 GPU, or a CPU such as the
AMD Phenom IIx4 processor or other similar processors). Certain elements of this limitation
are illustrated in the screenshots below and in the screenshots referenced in connection with

other elements herein.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 6

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 7 of 17

Straam Applications
Compllers Libraries Eco System
| Jod
Stroam |y |1 et 2
Extensions | !E 5
for €, C++ i3 ok Fa S
i Ragecdming™

AMD Runtime

AMD Compute Abstraction
Layer (CAL)

Pardivyg

CTH HAL

| Multicons AMD
CPUs - Framm
Proceancdn

Source: https://developer.amd.com/wordpress/media/2013/02/07-CTM-
overview.pdf

AMD AcceELERATED PARALLEL PROCESSING

Figure 1.3 CAL Device and Memory

Source:http://developer.amd.com/wordpress/media/2012/10/AMD _CAL Program
ming_Guide v2.0.pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE |7

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 8 of 17

Kernels

As mentioned, OpenCL kernels provide data parallefism. The kernel execution model is based on a hierarchical abstraction of the computation being performed. OpenCL
kernels are executed over an index space, which can be 1. 2 or 3 dimensicnal. in Figure 3, we see an example of a 2 dimensional index space. which has Gx * Gy elements. For
every element of the kernel index space, a work-itemn will be executed. All work items execute the same program, although their execution may differ due to branching based
on data characteristics or the index assigned to each work-item.

\ﬁ pis
\

S
work group (we, uy)
5 =1 se=8. -1
sy, =10 s, =0
\\'lllk item o \\'IHR i”'!l]
- (2.8 + 82 (e Sy + 8,
try Sy + 8y) thy Sy + 5y)
.
.
g, =10 i = 1
Sy -1 sy, =8,—1
work item i work item
(1,5, 4+ 8 (1eSy -8z,
wr, Sy + 5y Sy + 8,

Source: http://developer.amd.com/resources/articles-whitepapers/opencl-and-the-amd-a pp-sdk/

17. The Product includes generating specific application handler code to associate

the generic functions with the specific functions at a device driver for at least one of the types

of hardware modules. For example, in addition to the Compute Kernels provided by CAL,

AMD APP SDK also includes specific application generic function code that is specific to the

application (device Graphic Processing Unit (GPU) such as the ATI Radeon™ HD 5870 GPU,

or a CPU, such as the AMD Phenom™ II x4 processor, or other similar processors). Certain

elements of this limitation are illustrated in the screenshots below and in the screenshots

referenced in connection with other elements herein.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC.

PAGE | 8

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 9 of 17

CAL

Compute Abstraction Layer. A device-driver library that provides a forward-compatible
interface to AMD Accelerated Parallel Processing compute devices. This lower-level
API gives users direct control over the hardware: they can directly open devices, allo-
cate memory resources, fransfer data and initiate kernel execution. CAL also provides
a JIT compiler for AMD IL.

1.1 CAL System Architecture

A typical CAL application includes two parts:
=« a program running on the hast CPU (written in C/C++), the application, and

* @ program running on the stream processor, the kernel (written in a high-level
language, such as AMD IL).

The CAL APl comprises one or more stream processors connected to one or
mare CPUs by a high-speed bus. The CPU runs the CAL and controls the stream
processor by sending commands using the CAL API. The stream processor runs
the kemei specified by the application. The stream processor device driver
program (CAL) runs on the host CPU.

Figure 1.2 is a block diagram of the various CAL system components and their
interaction. Both the CPU and stream processor are in close proximily to their
Iocal memory subsystems. In this figure:

» Local memory subsystem - the CAL local memory. Thig is the memory
subsystem attached to each stream processor, (From the perspective of
CAL, the Stream Processor is local, and the CPU is remote.)

» System memaory — the single memory subsystem attached to all CPUs.

CPUs can read from, and write to, the system memary direclly, however, sliream
processors can read from, and write 1o:

Source: hitp://developer amd com/wordpress/media/2012/10/AMD_CAL Programming_Guide v2 0 pdf

6322 AMD APP SDK example

In the AMD APP SDK sample, addMul2d is a generic function that uses generic
address spaces for its operands. The function computes the convolution sum of
two vectors. Two kemnels compute the convolution: one uses data in the global
address space (convolution2DUsingGlobal); the other uses the local
address space (sepiaToning2DUsinglLocal). The use of a single function
improves the readability of the source.

float4 addMul2D (uchard4d *src, float *filter, int2 filterDim, int
width)

{ 1int 1, 3;
floatd sum = (floatd) (0);
for(i = 0; i = (filterDim.y); i++)
{

for(j = 0; 3 < (filterDim.x); J++)

{

Source: http://developer amd.com/wordpressimedia/2013/11/MediaSDK_User_Guide._pdf

18. The Product generates specific application handler code and defines a specific

element in the specific code to be handled by one of the generic application functions for that

hardware module. For example, AMD APP generates system-specific application handler code

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC.

PAGE |9

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 10 of 17

by defining a specific element such as functions and data structures corresponding to specific
GPU such as the ATI Radeon™ HD 5870 GPU, or a CPU, such as the AMD Phenom™ II x4
processor, or other similar processors. When specific functions are written for handling defined
specific elements, the specific functions must be registered. APP SDK accordingly contains data
structures that register and embed the required functions. Certain elements of this limitation are
illustrated in the screenshots below and in the screenshots referenced in connection with other
elements herein.

1.3 Programming Model

The OpenCL programming model is based on the notion of a host device,
supporied by an application API, and a number of devices connecled through a
bus. These are programmed using OpenCL C. The host APl is divided into
platform and runtime layers. OpenCL C is a C-like language with extensions for
parallel programming such as memory fence operations and barriers. Figure 1.1
ilustrates this model with queues of commands, readingfwriting data, and
executing kemels for specific devices.

_kemel foof...) { kemel foo(...) { .
wowwwi | || Wowww] [|
% % %.-;% Eaﬂ}ﬁf{}}mi ARDEDN
i‘ 1 ~i i CRMAREICS
+ 4 4 : 3 b AMDE
| SN W I ! } | S Context
[Local Memory | [Local Memory | S
! i
[Global/Constant Memory | ¥
. o

Figure 1.1 OpenCL Programming Model

Source; http://developer.amd.com/wordpress/imedia/2013/M12/AMD_OpenCL_Programming_User_Guide2 pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 10

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 11 of 17

For example, consider an application that must perform CPU computations in the
application thread and also run another kermel on the stream processor. The
following code shows one way of doing this.

J/ Laumch GPU kernel

Asynchronous Cperations £3

Groprpi © 2510 Agvanced Miom Dewtes, inc A1 Aphtr msenee

AMD ACCELERATED PARALLEL PROCESSING

CAlevent a;
if{calCexPumProgram (e, ctx, fime, &rect) != CAL RESULT OE})
fprintfi{stderr, "Error in nm kermel\n"};

A/ Hait for cthe GFU kermel to Linish

while (calCrxTsZventDone (ctx, &) == CAL RESULT_PEXDDNG) ;

// Perform CPU cperations _after the GPU kermel is complete
performCPiOperations () 7

// Map the cutput rescurce to application data pointer
calRestap | (CALvoidv*) sfdata, spitch, ourputfas, 0);

The following code implements the same operations as above, but probably
finishes more quickly since it executes the CPU operations in parallel with the
stream kemel.

/{ Launch GPT kermel
CAlevent =:
if{calCexPumProgram (e, ctx, func, frect) != (AL PESULT OF)

Source: hitp.//developer.amd.comfwordpress/imedia/2013/12/AMD_OpenCL_Programming_User_Guide2 pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 11

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 12 of 17

OpenNI Libraries -

The GestureRecognition AMD APP SDK OpenCV-CL sample makes use of OpenNI| libraries to
extract video frames. OpenNI framework is an open source SDK used for the development of 3D
sensing middleware libraries and applications. The OpenNI SDK can be downloaded from
http://structure_ io/openni.

You must set the following environment variables:

1. For 32-bit builds, add OPENNIZ REDIST to the FATH environment variable.
For 64-bit builds, add CPENNIZ REDISTE4 to the EATH environment variable.

2. Header and library paths will be added by the OpenNI Windows installer. If those paths are
missing from the system, then the user must set the following environment variables:

i. For 32-bit platiorms:
Set OPENNIZ INCLUDE to <<CPENNI-INSTALL PATH>>\Include
Set OPENN 2 LIB to <<OPENNI-INSTALL PATH>>\Redist

Add OFENNIZ LIE to the PATH environment variable
ii. For 64-bit platforms:

Set OPENNIZ INCLUDE64 to <<CPENNI-INSTALL PATH>>\Include
Set OPENNI2 LIB6E4 to <<OPENNI-INSTALL PATH>>\Redist
Add OPENNIZ_LIB&4 to the BATH environment variable

The GestureRecognition sample currently works on only Windows platforms.

Source: http://developer. amd.com/wordpress/mediaf201 3/11/MediaSDK_User_Guide. pdf

19. When a specific application is needed for a particular hardware, the generic
functions and the specific functions are compiled together to yield a machine readable code.
AMD and/or its customers compile the generic functions using OpenCL compiler and the
specific functions are then build using CL Build program supported by APP SDK. Certain
elements of this limitation are illustrated in the screenshots below and in the screenshots

referenced in connection with other elements herein.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 12

Case 1:17-cv-01148 Document1 Filed 12/11/17 Page 13 of 17

3222 Compiling and linking the program separately

In this method, two separate steps are performed to generale the device The software includes the following components

executable. First, program objects are compiled by using the ciCompileProgram _)

API (for details, see the OpenCL specification); then the compiled programs are ¢ OpenCL compiler and runtime

linked together to generate the final executable by using the ciLinkProgram API * Debugging and Performance Profiling Tools - AMD CodeXL.

(for detals, see the OpenCL specification). This method is particularly useful- « Performance Libraries — ciMath and other OpenCL accelerated libraries for
and is the only way-to link a previously-compiled program. By using this method, optimized NDRange-specific algorithms.

users can link their program objects with external program bjects to build the

final program object. The latest generations of AMD GPUs use unified shader architectures capable

of running different kernel types interleaved on the same hardware.
Both the APls support similar options (depends on whether one is compiling or
linking) as the options in clBuildProgram, 1o control the compiler and linker, For
details about the options supported by each API see the respective API
description section in the OpenCL specification.

Compiling the program -

The user must compile each program object separately. This step may be a little
tedious if a source program depends on other header files. In that case, separate
program objects coresponding each header file must be created first. Then,
during compilation, those header programs must be passed as embedded
headers along with the intended program object

Source: http:/ideveloper.amd.comiwordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2 pdf

322 Building the program executable from the program objects

Afer the program object is created (from either sources of binaries), the program
must be buill for the targeted devices and the device executables must be
generated. The executables are generated mainly in two ways

« Building (compile and fink) the program in a single step {using
clBuildProgram}

« Compiling and linking the program separalely (using clCompileProgram
and clLinkProgram)
3221 Building the program in a single step

The most common way of building program objects, this method uses a single
AFI, clBuildProgram, for both compiling and linking the program. For additional
details about this API, see the OpenCL specification

Example(s):
Suppose a program object has been created as follows

cl_program program = clCreatePrograsiithSource (context, 1, Lsource,
Elength, NULL) ;

Next, the program object can be built for all the devices in the context or for a
st of selacled devices.

= To build the program for all the devices, "NULL" must be passed against
the target dewvice list argument, as shown below:
clBulldProgram (program, ©, NULL, NULL, NULL, NULL);

= T build for any particular GPU device or a list of devices..
int nbevices = 0;
cloatboviceIDe (platform, CL_DEVICE TYPE GPU, 0, NULL,
nbevices) :

Source: http://developer.amd com/wordpressimedia/2013/12/AMD_OpenCL_Programming_User_Guide2 pdf

20. Defendant’s actions complained of herein will continue unless Defendant is
enjoined by this court.

21. Defendant’s actions complained of herein are causing irreparable harm and

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 13

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 14 of 17

monetary damage to Plaintiff and will continue to do so unless and until Defendant is enjoined
and restrained by this Court.

22. Plaintiff is in compliance with 35 U.S.C. § 287.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 14

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 15 of 17

PRAYER FOR RELIEF

WHEREFORE, Plaintiff asks the Court to:

(a) Enter judgment for Plaintiff on this Complaint on all causes of action asserted
herein;

(b) Enter an Order enjoining Defendant, its agents, officers, servants, employees,
attorneys, and all persons in active concert or participation with Defendant who receive notice
of the order from further infringement of United States Patent No. 7,069,546 (or, in the
alternative, awarding Plaintiff a running royalty from the time of judgment going forward);

(c) Award Plaintiff damages resulting from Defendant’s infringement in
accordance with 35 U.S.C. § 284;

(d) Award Plaintiff pre-judgment and post-judgment interest and costs; and

(e) Award Plaintiff such further relief to which the Court finds Plaintiff entitled

under law or equity.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 15

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 16 of 17

Dated: December 11, 2017 Respectfully submitted,

/s/ Jay Johnson

JAY JOHNSON

State Bar No. 24067322

D. BRADLEY KIZZIA
State Bar No. 11547550
KIZZIA JOHNSON, PLLC
1910 Pacific Ave., Suite 13000
Dallas, Texas 75201
(214)451-0164

Fax: (214) 451-0165
jay@kjpllc.com
bkizzia@kjpllc.com

ATTORNEYS FOR PLAINTIFF

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 16

Case 1:17-cv-01148 Document 1 Filed 12/11/17 Page 17 of 17

EXHIBIT A

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT ADVANCED MICRO DEVICES, INC. PAGE | 17

