Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 1 of 14

IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS

AUSTIN DIVISION
LUCIO DEVELOPMENT LLC, §
Plaintiff, § Case No: 1:17-cv-1154
Vs. § PATENT CASE
NVIDIA CORPORATION, §
Defendant. §
§

COMPLAINT

Plaintiff Lucio Development LLC (“Plaintiff” or “Lucio”) files this Complaint against
NVIDIA Corporation (“Defendant” or “NVIDIA”) for infringement of United States Patent
No. 7,069,546 (hereinafter “the ‘546 Patent”).

PARTIES AND JURISDICTION

1. This is an action for patent infringement under Title 35 of the United States
Code. Plaintiff is seeking injunctive relief as well as damages.

2. Jurisdiction is proper in this Court pursuant to 28 U.S.C. §§ 1331 (Federal
Question) and 1338(a) (Patents) because this is a civil action for patent infringement arising
under the United States patent statutes.

3. Plaintiff is a Texas limited liability company with its office address at 555
Republic Dr., Suite 200, Plano, Texas 75074.

4. On information and belief, Defendant is a Delaware corporation having a place
of business at 2701 San Tomas Expressway, Santa Clara, CA 95050, with a Regional Office at

11001 Lakeline Blvd #100, Austin, TX 78717. On information and belief, NVIDIA is

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE | 1

Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 2 of 14

registered to do business in the State of Texas and may be served with process by delivering a
summons and a true and correct copy of this Complaint to its registered agent for receipt of
service of process, Corporation Service Company, 211 E. 7% Street, Suite 620 Austin, TX
78701.

5. This Court has personal jurisdiction over Defendant because Defendant has
committed, and continues to commit, acts of infringement in this District, has conducted
business in this District, and/or has engaged in continuous and systematic activities in this
District.

6. On information and belief, Defendant’s instrumentalities that are alleged herein
to infringe were and continue to be used, imported, offered for sale, and/or sold in this District.
VENUE

7. Venue is proper in this District pursuant to 28 U.S.C. §1400(b) because acts of
infringement are occurring in this District and Defendant has a regular and established place of
business in this District. For instance, on information and belief, Defendant has a regular and

established place of business at 11001 Lakeline Blvd #100, Austin, TX 78717.

COUNT I
(INFRINGEMENT OF UNITED STATES PATENT NO. 7,069.546)
8. Plaintiff incorporates paragraphs 1 through 7 herein by reference.
0. This cause of action arises under the patent laws of the United States and, in

particular, under 35 U.S.C. §§ 271, et seq.

10. Plaintiff is the owner by assignment of the ‘546 Patent with sole rights to
enforce the ‘546 Patent and sue infringers.

11. A copy of the ‘546 Patent, titled “Generic Framework for Embedded Software

Development,” is attached hereto as Exhibit A.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE |2

Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 3 of 14

12. The ‘546 Patent is valid, enforceable, and was duly issued in full compliance
with Title 35 of the United States Code.

13. On information and belief, Defendant has infringed and continues to infringe
one or more claims, including at least Claim 1, of the ‘546 Patent by making, using, importing,
selling, and/or offering for sale a software platform for embedded software development,
which is covered by at least Claim 1 of the ‘546 Patent. Defendant has infringed and continues
to infringe the ‘546 Patent directly in violation of 35 U.S.C. § 271.

14. Defendant, sells, offers to sell, and/or uses embedded software development
packages including, without limitation, the NVIDIA Capture SDK, and any similar products
(“Product”), which infringe at least Claim 1 of the ‘546 Patent.

15. The Product is a framework (e.g., a software development kit) that is configured
to create embedded software for multiple hardware modules. For example, the Product is a
programmable software development kit (SDK) for multiple operating systems (Such as Linux,
Windows and Mac) and GPU (Graphic Processing Unit) hardware modules such as NVIDIA
Quadro 2000 class or higher, NVIDIA Tesla and/or other kits supported by NVIDIA. Certain
elements of this limitation are illustrated in the screenshots below and in the screenshots

referenced in connection with other elements herein.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE |3

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 4 of 14

Frame Buffer

Render Target

Graphic
Commands
= =
o]
o
@®
i &
HEVC A
H.264 L
Streams

-— NVFBC W

o
g
=%
r
m
=
=
o
0
(1

Front Buffer

NVIDIA Capture SDK Interfaces

Source: hitps://developer.nvidia.com/capture-sdk

The NVIDIA Capture S Develoy LKit, p sly called as GRID SDK is a
comprehensive suite of tools for NVIDIA GPUs that enable high performance graphics
capture and encoding. This Programming Guide describes how to use the various
NVIDIA Capture SDK interfaces available on GRID, Quadro, and specific Tesla
Products.

1.1GPU ACCELERATED READBACK AND ENCODE

The NVIDIA Capture SDK includes two AP interfaces for high performance readback
of rendered content from the GPU and video encoding on the GPU:

144 NVFBC - NVIDIA Framebuffer Capture

The NVIDIA Framebuffer Capture (NVFBC) APl captures and optionally compresses
the entire Windows desktop or full-screen applications running on the supported

Operating Systems (For list of Operating Systems, please refer to the SDK release notes),

It essentially provides the same output as a real connected monitor to the GPU: a full
desktop, with application windows, menu bar, composited overlay and hardware
cursor. Assuch, NVFBC is ideally suited to desktop capture and remoting.

NVFBC has many advantages over existing methods of framel capture. It is
resilient to Aero DWM (enablefdisable) changes and resolution changes. It operates
asynchronously to graphics rendering because it is able to use the dedicated hardware
compression and copy engines on the GPU. It delivers frame dala to system memory
faster than any other display output or other readback mechanisms all while having
minimal impact on the rendering performance.

Source: hitps://developer.nvidia.com/capture-sdk

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION

1.1.2 NVIFR - NVIDIA Inband Frame Readback

The NVIDIA Inband Frame Readback (NVIFR) APl captures and optionally compresses
an individual DirectX or OpenGL graphics render target. Unlike NVFBC, the output
from NVIFR does not include any window manager decoration, composited overlay,
cursor or taskbar; it solely provides the pixels rendered into the render target, as soon as
their rendering is complete, ahead of any compositing that may be done by the windows
manager. In fact, NVIFR does not require that the render target even be visible on the
Windows desktop. It is ideally suited for application capture and remoting, where the
output of a single application, rather than the entire desktop environment, is captured.

NVIFR is intended to operate inband with a rendering application, either as part of the
application itself, or as part of a shim layer operating immediately below the application.
Like NVFBC, NVIFR operates asynchronously to graphics rendering, using dedicated

hard compression and copy engines in the GPU, and delivering pixel data to

1.1. Overviéw

1.1.1. CUDA Programming Model

The CUDA Toolkit targets a class of applications whose control part runs as a process
on a general purpose computing device, and which use one or more NVIDIA GPUs as
coprocessors for accelerating single program, multiple data (SPMD) parallel jobs. Such jobs
are self-contained, in the sense that they can be executed and completed by a batch of
GPU threads entirely without intervention by the host process, thereby gaining optimal
benefit from the parallel graphics hardware.

The GPU code is implemented as a collection of functions in a language that is
essentially C++, bul with some annotations for distinguishing them from the host code,
plus annotations for distinguishing different types of data memory that exists on the
GPU. Such functions may have parameters, and they can be called using a syntax that is
very similar to regular C function calling, but slightly extended for being able to specify
the matrix of GPU threads that must execute the called function. During its life time, the
host process may dispatch many parallel GPU tasks.

Source: http://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver NVCC. pdf

PAGE | 4

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 5 of 14

Key Features of NVIDIA Capture SDK

GAME PROCESS STREAMER PROCESS DESKTOP APPS (AERO] STREAMER PROCESS
I B — | 3 e
e

CSC Shader 30 CSC Shader 30

© 1.264 or HEVC

Capture the full desktop INVIDIA Frame Buffer Capture ks NWFBC]

MvFBC works by capturing the entire centents of the desktop to a GPU buffer without stalling, or interfering with, the other work on the GPU. On Windows, the
capture can occur with the Windows Desktop Manager enabled or disabled. This buffer can then be encoded using H.264 or HEVC via on-chip hardware video

encoder through the NvEncode APL

Source: http:/wnanw. nvidia. com fobject/sdk-9. htm|

Operating Windows 7, 8, 10,
" System Windows Server 2008/2010/2012
What’s new in NVIDIA Capture SDK 6.1 i
. for P Ti P
SUppeftionFaical teser (e OL L8 Dependencies For Kepler/Maxwell/Pascal generations:

« Support for configurable NVFBC diffmap block size (Windows)

« Memory Optimization, footprint reduced by around 15% [Windows)
« RGB388 output support [Linux]

» Addition of time-out for blocking NvFBC capture [Linux]

all NVIDIA Quadro 2000 class or higher are supported
and all NVIDIA Tesla are supported

note: Fermi based GPUs are not supported,
K1/K2/K520/K340 are not supported

Linux drivers 384.59 or newer
Windows drivers 385.05 or newer

Development Windows: Visual Studio 2008/2010/2013
Environment Linux: gee 4.8 or higher

Graphics APls DirectX?.10,11 and OpeniGL

Source: https://developer.nvidia.com/capture-sdk

16. The Product provides one or more generic application handler programs. For
example, NVIDIA Capture SDK provides one or more generic application handler programs
such as NVFBC (NVIDIA Framebuffer Capture) and NVIFR (NVIDIA Inband Frame
Readback) includes code and libraries which are common and uniform across a plurality of

supported NVIDIA GPUs. The generic programs comprise computer program code for

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE |5

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 6 of 14

performing generic application functions common to multiple types of hardware modules used
in a communication environment (e.g., the generic code provides common and generic
functions to multiple hardware modules, as previously identified in paragraph 15). Certain
elements of this limitation are illustrated in the screenshots below and in the screenshots

referenced in connection with other elements herein.

NVIDIA Framebuffer Capture (NVFBC) is a high performance, low latency API for
reading back display frames from one or more GPU display heads, NVIDIA GPUs
typically support at least two display heads, and these are usually associated with a
physical display output such as a DV, DisplayPort, or HDMI connector. NVFBC
provides essentially the same output one would see on a monitor connected to the GP'U:
a full desktop, with application windows, menu bar, composited overlay and hardware
cursor. By operating asynchronously to graphics rendering and using dedicated
hardware compression and copy engines in the GPU, NVFBC delivers frame data to
CPU-based applications faster than any other display output or readback mechanism,
with minimal impact on rendering performance.

Windows 05

Full Sercen
Application

Compositing Window Manager
—

Display Head

]

" Display Connectar

Figure 1 NVFBC framebuffer capture

2.1HEADER FILES AND CODE SAMPLES

This manual provides an overview of how to use NVFBC, Further detadls are contained
in the NVFBC header files and code samples that are included in the NVIDIA Capture
SDK Toolkit:

NVFBC header files are installed in SCASTURESDE PATHYN Lne\NVERC . All NVFBC
applications should include one or more of the mode-specific NVFBC header files,
depending on the functionality desired;

Header file Description

HVFBC.h Top level header file included by all NYFBC applications

HVFBCToSys.h Defines ToSys interface; reads back uncompressed frames to
system memary.

HUFBCCuda. b Defines Cuda reads back frames to

CURA-mapped buffers in the GPU's framebuffer,

Defines the DXIVid interface; reads back uncompressed frames.
to D309-mapped buffers in the GPU's framebuffer,

Defines the capturesencode interface; reads back compressed
video frames to system memaory. Compression is performed
using NVENC HW Encoder engine. Supports H.264 and HEVC
compression.

Definitions for NVENC HW Encoder configuration settings, to be
included with NWFBCHWERC.h in the application.,

WYFBCToDxIvid.h

BVFBCHWERS. B

HVHWEnc. h

Table 1 NVFBC header files

The following NVFBC code samples are installed in ACAPTURESDE_PATHA\samples)

Please refer to the NVIDIA Capture SDK Samples Description document for details
about NVFBC samples included with the SDK.

Source:https //developer nvidia com/sites/defaultfiles/akamai/designworks/docs/NVIDIA_Capture_SDK_6/MNVIDIA%20Capture®%20SDK%20Progr

amming%20Guide pdf

1.1.2 NVIFR - NVIDIA Inband Frame Readback

The NVIDIA Inband Frame Readback (NVIFE) APT captures and optionally compresses
an individual DisectX or OpenGL graphics render targes. Unlike NVFBC, the output
fram NVIFR does not include any window manager decoration, composited overlay,
curior of taskbar; it solely provides the pixels rendered into the render targel, as soon as
thelr rendering ks complete, ahead of any compositing that may be done by the windows
manager. In fact, NVIFR does not require that the render target even be visible on the
Windows desktop. It is ideally suited lor application argdure and remroting, wheere the
output of a single application, rather than the entire desktop envirenment, is captured,

NVIFR is intended to operate inband with a sendering application, either as part of the
application itsell, or as part of a shim layer aperating immediately below the application
Like NVFBC, NVIFR operates asynchrmonously to graphics rendering, using dedicated
hardware compression and copy engines in the GPU, and delivering pixel data to
system memery with minkmal impact on rendering performance,

3.1 HEADER FILES AND CODE SAMPLES

This manual provides an overview of how to use NVIFR. Further details are contained
in the NVIFR header files and code samples that are included in the NVIDIA Capture
SDK Toolkit:

The NVIFR header files, including interface-specific is installed in
ACAPTURESDR_PATHR\inc\NVIFRL. All NVIFR applications don’t need to include
WVIFR, b directly, as the specific versions of the NVIFR interfaces include it .

NVIFR code samples are installed in 8CAPTURESDE_PATHE\samples'

Please refer to the NVIDIA Capture SDK Samples Description document for details
ding the NVIFR samples packaged in the NVIDIA Capture SDK,

Windows 05

A0 Hender

Figure 5 NYVIFR render context capture

Source: http://docs. nvidia.com/cuda/pdf/CUDA_Installation_Guide_Windows. pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION

PAGE | 6

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 7 of 14

17. The Product includes generating specific application handler code to associate

the generic functions with the specific functions at a device driver for at least one of the types

of hardware modules. For example, in addition to the generic application handler code,

NVIDIA Capture SDK also includes specific application handler code that is specific to the

application (such as applications on Windows, Linux and iOS etc.) and specific to particular

GPU hardware (such as GPU display head, display drivers and/or graphic cards supported by

NVIDIA). Certain elements of this limitation are illustrated in the screenshots below and in

the screenshots referenced in connection with other elements herein.

Application using NVFBC
Rndls.l;\j from head 0

qu,-ralilm of NVFBC is straightforward; after doing one-time setup of the NVFBC AF1
on application load, an application creates an NVFBC object for each GPU display head it

Readback from head 2 Readback from head 4
A A

wishes to read back from, and then enters a processing loop on each NVFBC object to
read back frames from each head. Figure 2 provides an overview of the processing flow,

which is described in more detail in the following sections. Gl'l Ad.npler @

GPU A.d-pur b
5 Display Display Display D-apl-r
: _ . ; Head H]-icnd llud
"This mode warks with baremetal, divect attached GPUSs, and all oGPU profiles. This
is the recomntended path when using vGPU profiles that support two or more
virtual machines sharing a single GPU. For such vGPU profiles, the CUDA driver
is not available. We recommend using this NoFBC path so that capture and encode Display (_mmeclms
can be fully accelerated. (mry mot be phepsically populeted ou somsr GPLIs)
*This mode is supported in baremetal, direct attached GPUs, and vGPU profiles) _
that limit one virtual machine. The CUDA driver s available and supported in this PARRCLIER ol Maplet - aey HVEBi: JARGET_ANLETER o fils vidae i
configuration. NVFBC object creation time, to select the head to be associated with the object.

Figure 3 NYFBC objects association with GPU display heads

Source:https://developer.nvidia.com/sites/default ffiles/akamai/designworks/d ocs/NVIDIA_Capture_SDK_6/NVIDIA%%20Capture%: 205 DK% 20Programming%

20Guide. pdf

Windows 08

Application
Kendering

Commands

Cache coherent
system memory

|

[NVIFR-enabled capture

NVIDIA Driviers

Figure 5 NVIFR render context capture

Source:https://developer.nvidia.com/sites/default files/akamai/de signworks/docs/NVIDIA_Capture_SDK_6/NVIDIA%20Capture%20SDK%20Programming%

20Guide. pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION

PAGE |7

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 8 of 14

18. The Product generates specific application handler code and defines a specific
element in the specific code to be handled by one of the generic application functions for that
hardware module. For example, NVIDIA Capture SDK generates system-specific application
handler code by defining a specific element such as functions and data structures corresponding
to specific hardware modules (such as NVFBC and NVIFR “objects” for individual GPU display
heads) that extend or otherwise connect the system-specific application handler code and data
structures made available by the generic application handler code. When specific functions are
written for handling defined specific elements, the specific functions must be registered.
NVIDIA Capture SDK accordingly contains data structures that register and embed the required
functions. Certain elements of this limitation are illustrated in the screenshots below and in the

screenshots referenced in connection with other elements herein.

Operation of NVFBC is straightforward: after doing one-time setup of the NVFBC APl
on application load, an application creates an NVFBC object for each GPU display head it
Readback from head 0 Readback from head 2 Readback from head 4 wishes to read back from, and then enters a processing loop on each NVFBC object to
a 2 g read back frames from each head. Figure 2 provides an overview of the processing flow,
which is described in more detail in the following sections.

Application using NVFBC

Hote:

I
(‘l‘l A{hwr a Gro Atlaptrr.b . VIhis mode works with baremetal, direct attached GPUSs, and all vCPL!p@fte:. This

‘ is the recommended path when using vGPU profiles that support two or more
Display virtual machines sharing a single GPLL For such vGPU profiles, the CUDA driver
- - is not available. We recommend using this NuFBC path so thal caphure and encode
can be fully accelerated.

This mode is supported in baremetal, direct attached GPUs, and vGPU profiles
Display (_nnng:lnrs that limit one virtual machine. The CUDA driver is avallable and supported in this

ey mot be plepsically populsted o seme GPL configuration.

Disect3D9 cudinal mph‘r D set NVFEC_TARGET_RDAFTER o this value at
NVFBC obgect creation time, to select the head to be associated with the object.

Figure 3 NVYFBC objects association with GPU display heads

Source:https://developer. nvidia.com/sites/default/files/akamai/de signworks/docs/NVIDIA_Capture_SDK_6/NVIDIA%20Capture%2050K%20Programming%
20Guide. pdf

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE | 8

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 9 of 14

3.3 CREATING NVIFR OBJECTS

3.3.1 Creating Objects

All NVIFR readback operations are exposed as methods in NVIFR classes. Distinct
classes ane used to support the different readback modes supported by NVIFR {readbackd
to system memory and readback as compressed video).

To crvate an MVIFR object you must creale an Instance of I01zect 3D3Davice OF
103010Device Or 1D3DM1Device. This device interface is passed into
WVIFR_CreateEx () along with the readback format:

WVIFRRESULT (__stdcall *NVIFR_CreateFunctionExType) (void *pParams):

{f Example usage

I03pl0Device * pDevice = NULL;

D3Dl0CreateDeviceAndSwapChainl.., ipDevicel: // Create the device
NVIFR CREATE PARAMS params = {0};

params.version = NVIFR CREATE PARAMS VER;

params .duInterfaceType = NVIFR_TOSYS:

params.pDevice = plavices

WVIFRToSys * toSys = NULL;
WVIFRRESULT res = pinNVIFR_Create |dparams);
if (res == NVIFR SUCCESS)

i
CoSys = (KVIFRToSys *)parame.pNVIFR:

If successful, the wvrs_create () call retums a pointer to the newly-created NVIFR
object, otherwise it returmns ¥ULL,

3.4 CAPTURING TO SYSTEM MEMORY

To capture render targets to system memory, create an NVIFRToSys object by specifying
NVIFR_TOSYS in the NVIFR_Create() call:

// Creare an instance of NVIFRToSys
NVIFRToSys *toSys = pfnNVIFR Create(device, NVIFR TOS¥S, sversionm);

3.4.1 Setting up the target buffers
SetupTargetBufferToSys () must be called before reading back render target buffers.

WVIFRRESULT NVIFRSetUpTargetBufllerTodSys (NWVIFR TOUSYS SETUP PARAMS
*pParams}

// Example usage

#define NUMFRAMESINFLIGRT = 3
unsigned char *buffer;
HANDLE g‘P\JEVRﬂLJ

NVIFRE_TOSYS_SETUP_FARAMS params = (0};
params.dwVersion = NVIFR TOSYS SETUP PARAMS VER:
params.eFormat = NVIFR FORMAT RGE;
params.eSysSterecFormat = NVIFR_SYS_STEREQ _NONE:
params.dwNBuffers = 1:
params.ppPagelockedSysmemBuffers = buffer;
params.ppTransferComplecionEvents = &sgpuEvent;

NVIFRRESULT result = toSys->NVIFRSetUpTargetBufferToSys (kparams);

Source:https://developer. nvidia.com/sites/default files/akamaifdesignworks/docs/NVIDIA_Capture SDK_6/NVIDIA%20Capture®205DK20Programmingd

20Guide. pdf
Application using NVFBC
Rﬂa&:&\l from head 0 Readback from head 2 Readback I'lm:\ll!ad |
! lnd :

[l

GPU Adapter a

GPU Adapter & '

Display Display
ollud ol-!cud
[i i
v W

Display Connectors
(esryy sk b plvyesically popudeied ow some GPLIs)

@ Diirect3D9 ordinal adapter ID: set NVFBC_TARGET_ADAPTER to this value at
NVFBC obyect creation time, 1o select the head to be associated with the object.

Figure 3 NVFBC objects assoclation with GPU display heads

Source:https://developer.nvidia.com/sites/defaul

Display Display
o Head oI lead
v v

3.3 CREATING NVIFR OBJECTS

3.341 Creating Objects

All NVIFR readback operations are exposed as methods in NVIFR classes. Distinct
classes are used to support the different readback modes supported by NVIFR (readback
to system memaory and readback as compressed video).

To create an NVIFR object you must create an instance of 1pirect3090evice or
1p3plfpevice or roipiivevice. This devioe interface is passed into
KVIFR_CreateEx () along with the readback format:

BVIFRRESULT {__ atdcall *NVIFR_CreateFuncrionExType) (void "pParams);

// Example usage

ID30L0Device * pDevice = KULLs

DiDl0CreateDevicahndSwapChalnl._., &pbevice); // Creats the device
NVIFR CREATE PARAMS params = (0);

params.version = NVIFR_CREATE_PARAMS VER;

params duintsrfaceType = NVIFA_TOSYS;

para=s.pDevice = phevice:

KVIFRTOSys = toSys = NULLy
NVIFRRESULT res = pfnNVIFR_Create(Lparams);
Af (zes == NVIFR SUCCESS)
{
toSya = (NVIFRToSya *)params pXVIFR;

If successful, the ¥vIFR_Create () call retums a pointer to the newly-created NVIFR
object, otherwise it returns NULL

20Guide. pdf

iles/akamai/designworks/docs/NVIDIA_Capture_SDK_6/NVIDIA%20Capture%205DK%20Programming%%

19. When a specific application is needed for a particular hardware, the generic

functions and the specific functions are compiled together to yield a machine readable code.

NVIDIA and/or its customers compile the generic functions and the specific functions using

NVIDIA Capture SDK, CUDA compiler and/or any other IDE/Compiler supported by

NVIDIA. Certain elements of this limitation are illustrated in the screenshots below and in the

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION

PAGE |9

Case 1:17-cv-01154 Document1 Filed 12/11/17 Page 10 of 14

screenshots referenced in connection with other elements herein.

1.1.2. CUDA Sources

Source files for CUDA applications consist of a mixture of conventional C++ host code,
plus GPU device functions, The CUDA compilation trajectory separates the device
functions from the host code, compiles the device functions using the proprietary
NVIDIA compilers and assembler, compiles the host code using a C++ host compiler
that is available, and afterwards embeds the compiled GPU functions as fatbinary
images in the host object file. In the linking stage, specific CUDA runtime libraries are
added for supporting remaote SPMD procedure calling and for providing explicit GPU
manipulation such as allocation of GPU memory buffers and host-GPU data transfer.

s T

e Bt B e S ko i W
|:|r.¢l__|-|.|"|t.l1 B g B — - ak
PAMS Sy Al G J TS

D

The compilation step to an actual GPU binds the code to one generation of GPUs, Within

h—- rati itinvolvesa i W T ka5l erfirm, 3
o+ Preprocessor e o5 e P T that generation, it involves a choice between GP'U coverage and possible pe ance,

Aln Sinduded in & the only targets,
[~ cudatel stubc “ s e NN L
m ! ,I I Fepoat [1 for sach virtual architecture, and 2ol avict so0a)
v i sepaat plans fof eadh virtuall resl architecture
L i
) combination.
D =
| {PTX Goneration)
!
! L
1
i gt
' e
i
bin.c

Figure 1 CUDA Whole Program Compilation Trajectory

wiflusl compuie architeciure

roal wm mchileciure

For example, compiling to sm_30 allows the code to run on all Kepler-generation GI'Us,
but compiling to sm_35 would probably vield better code if Kepler GK110 and later are

Source: http://docs. nvidia com/fcuda/cuda-quic k-stari-guide/index himl

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION

PAGE | 10

Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 11 of 14

20. Defendant’s actions complained of herein will continue unless Defendant is
enjoined by this court.

21. Defendant’s actions complained of herein are causing irreparable harm and
monetary damage to Plaintiff and will continue to do so unless and until Defendant is enjoined
and restrained by this Court.

22. Plaintiff is in compliance with 35 U.S.C. § 287.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE | 11

Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 12 of 14

PRAYER FOR RELIEF

WHEREFORE, Plaintiff asks the Court to:

(a) Enter judgment for Plaintiff on this Complaint on all causes of action asserted
herein;

(b) Enter an Order enjoining Defendant, its agents, officers, servants, employees,
attorneys, and all persons in active concert or participation with Defendant who receive notice
of the order from further infringement of United States Patent No. 7,069,546 (or, in the
alternative, awarding Plaintiff a running royalty from the time of judgment going forward);

(c) Award Plaintiff damages resulting from Defendant’s infringement in
accordance with 35 U.S.C. § 284;

(d) Award Plaintiff pre-judgment and post-judgment interest and costs; and

(e) Award Plaintiff such further relief to which the Court finds Plaintiff entitled

under law or equity.

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE | 12

Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 13 of 14

Dated: December 11, 2017 Respectfully submitted,

/s/ Jay Johnson

JAY JOHNSON

State Bar No. 24067322

D. BRADLEY KIZZIA
State Bar No. 11547550
KIZZIA JOHNSON, PLLC
1910 Pacific Ave., Suite 13000
Dallas, Texas 75201
(214)451-0164

Fax: (214) 451-0165
jay@kjpllc.com
bkizzia@kjpllc.com

ATTORNEYS FOR PLAINTIFF

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE | 13

Case 1:17-cv-01154 Document 1 Filed 12/11/17 Page 14 of 14

EXHIBIT A

PLAINTIFF’S COMPLAINT AGAINST DEFENDANT NVIDIA CORPORATION PAGE | 14

