	Case 8:18-cv-01952 Document 1 Filed 1	0/31/18 Page 1 of 22 Page ID #:1		
1 2 3 4 5 6 7	M. ELIZABETH DAY (SBN 177125) eday@feinday.com DAVID ALBERTI (SBN 220265) dalberti@feinday.com SAL LIM (SBN 211836) slim@feinday.com MARC BELLOLI (SBN 244290) mbelloli@feinday.com FEINBERG DAY ALBERTI LIM & BELLOLI LLP			
8 9	1600 El Camino Real, Suite 280 Menlo Park, CA 94025 Tel: 650.618.4360			
10	Fax: 650.618.4360 Fax: 650.618.4368 Attorneys for Uniloc 2017 LLC and Uniloc			
11 12	Licensing USA LLC			
13	CENTRAL DISTR	LICT OF CALIFORNIA		
14	UNILOC 2017 LLC and UNILOC	CASE NO. 8:18-cv-01952		
15 16	LICENSING USA LLC Plaintiffs,	COMPLAINT FOR PATENT INFRINGEMENT		
17	V.			
18	ESPN, INC.	DEMAND FOR JURY TRIAL		
19				
20	Defendant.			
21				
22				
23				
24				
25				
26				
27				
28				
		COMPLAINT – CASE NO. 8:18-CV-01952		

1 Plaintiffs Uniloc 2017 LLC and Uniloc Licensing USA LLC (collectively 2 "Uniloc"), by and through the undersigned counsel, hereby file this Complaint and 3 make the following allegations of patent infringement relating to U.S. Patent Nos. 4 6,519,005 and 6,895,118 against ESPN, Inc. ("ESPN") and allege as follows upon 5 actual knowledge with respect to themselves and their own acts and upon 6 information and belief as to all other matters: 7 NATURE OF THE ACTION 8 This is an action for patent infringement. Uniloc alleges that ESPN 1. 9 infringes U.S. Patent Nos. 6,519,005 (the "'005 patent") and 6,895,118 (the "'118 10 patent"), copies of which are attached hereto as Exhibits A-B (collectively, "the

11 Asserted Patents").

Uniloc alleges that ESPN directly infringes the Asserted Patents by
 making, using, offering for sale, selling and/or importing products and services that:
 (1) perform a method for motion coding an uncompressed (pixel level) digital video
 data stream and (2) perform a method of coding a digital image comprising
 macroblocks in a binary data stream. Uniloc seeks damages and other relief for
 ESPN's infringement of the Asserted Patents.

18

THE PARTIES

Uniloc 2017 LLC is a Delaware corporation having places of business
 at 1209 Orange Street, Wilmington, Delaware 19801 and 620 Newport Center
 Drive, Newport Beach, California 92660.

4. Uniloc Licensing USA LLC is a Delaware corporation having places
 of business at 1209 Orange Street, Wilmington, Delaware 19801 and 620 Newport
 Center Drive, Newport Beach, California 92660.

25 5. Uniloc holds all substantial rights, title and interest in and to the26 Asserted Patents.

6. Upon information and belief, Defendant ESPN, Inc. ("ESPN") is a

28

corporation organized and existing under the laws of the State of Delaware. ESPN has
 at least the following place of business in this District: 800 West Olympic Boulevard,
 Los Angeles, California 90015. ESPN can be served with process by serving its
 registered agent for service of process at Corporation Service Company 251 Little
 Falls Drive, Wilmington, DE 19808.

JURISDICTION AND VENUE

7. This action for patent infringement arises under the Patent Laws of the United States, 35 U.S.C. § 1 et. seq. This Court has original jurisdiction under 28 U.S.C. §§ 1331 and 1338.

10 8. This Court has both general and specific jurisdiction over ESPN 11 because ESPN has committed acts within the Central District of California giving 12 rise to this action and has established minimum contacts with this forum such that 13 the exercise of jurisdiction over ESPN would not offend traditional notions of fair 14 play and substantial justice. ESPN, directly and through subsidiaries, 15 intermediaries (including distributors, retailers, franchisees and others), has committed and continues to commit acts of patent infringement in this District, by, 16 17 among other things, making, using, testing, selling, licensing, importing and/or 18 offering for sale/license products and services that infringe the Asserted Patents.

- 9. Venue is proper in this district and division under 28 U.S.C. §§
 1391(b)-(d) and 1400(b) because ESPN has committed acts of infringement in the
 Central District of California and has at least one regular and established place of
 business in the Central District of California.
- 23

6

7

8

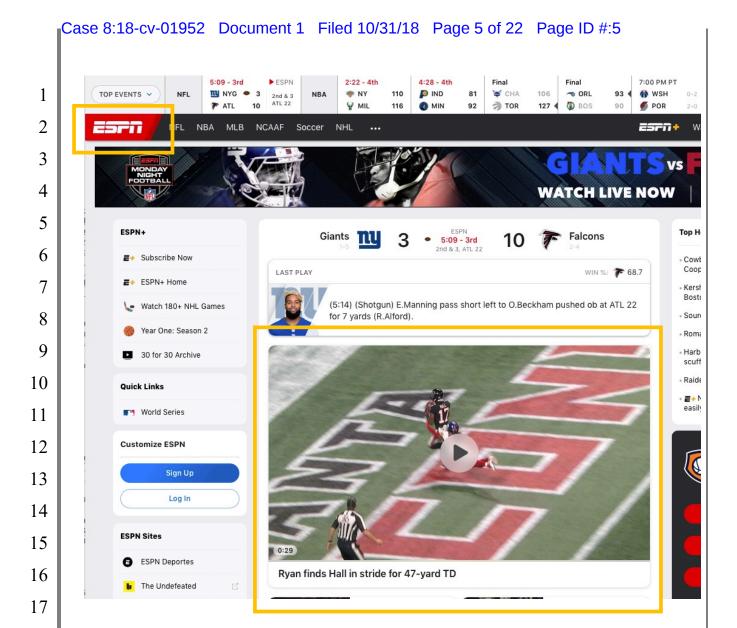
9

COUNT I – INFRINGEMENT OF U.S. PATENT NO. 6,519,005

24 10. The allegations of paragraphs 1-9 of this Complaint are incorporated25 by reference as though fully set forth herein.

26 11. The '005 patent, titled "Method of Concurrent Multiple-Mode Motion
27 Estimation For Digital Video," issued on February 11, 2003. A copy of the '005

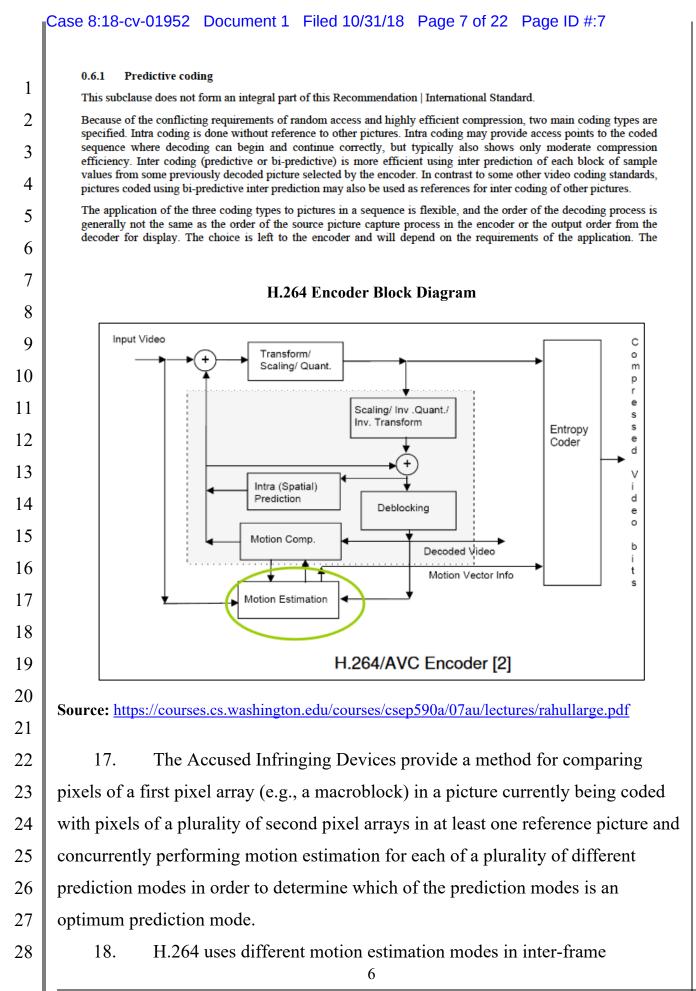
patent is attached as Exhibit A.

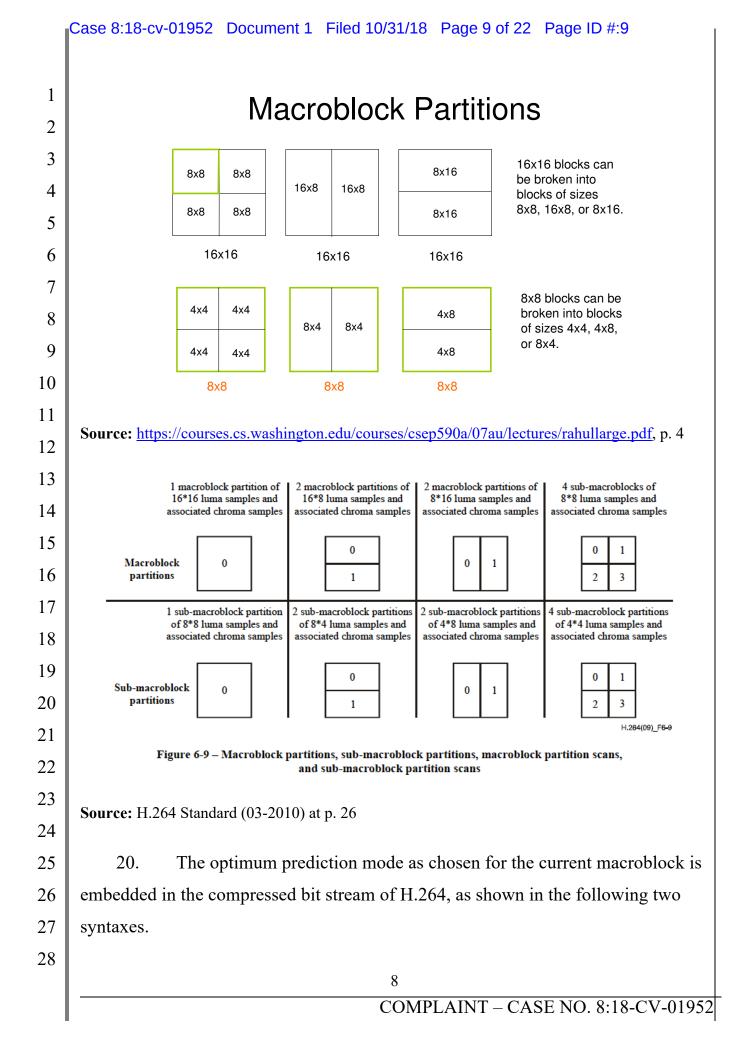

12. Pursuant to 35 U.S.C. § 282, the '005 patent is presumed valid.

3 13. Upon information and belief, ESPN makes, uses, offers for sale, and/or
4 sells in the United States and/or imports into the United States products and
5 services that practice a method for motion coding an uncompressed digital video
6 data stream (collectively the "Accused Infringing Devices").

7 14. Upon information and belief, the Accused Infringing Devices infringe8 at least claim 1 in the exemplary manner described below.

9 15. The Accused Infringing Devices provide a method for motion coding
an uncompressed (pixel level) digital video data stream. The Accused Infringing
Devices receive input video streams which are then encoded using at least the
H.264 standard. This is a widely used video compression format with decoder
support on web browsers, TVs and other consumer devices. Moreover, H.264 uses
motion compressor and estimator for motion coding video streams.


15 16. The Accused Infringing Devices stream content using H.264 video
16 encoded in mp4 files. Inspection of the files shows the video codec used is H.264.


18 Source: <u>http://www.espn.com</u>, retrieved Oct. 22, 7:12 PM Pacific

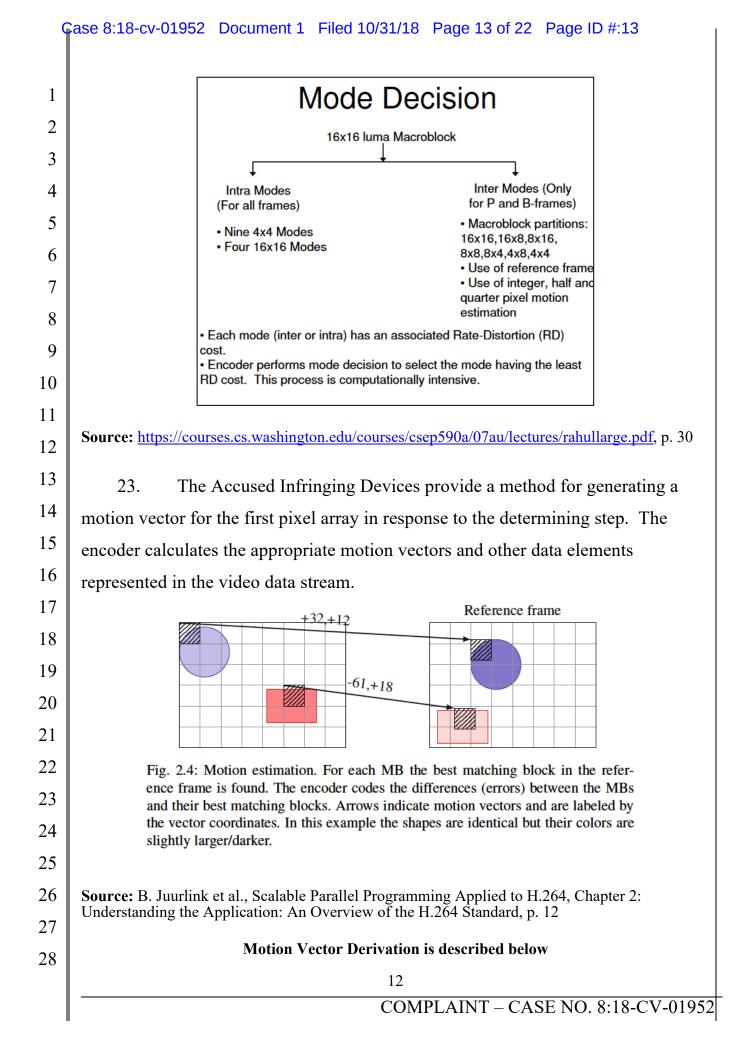
Case 8:18-cv-01952 Document 1 Filed 10/31/18 Page 6 of 22 Page ID #:6

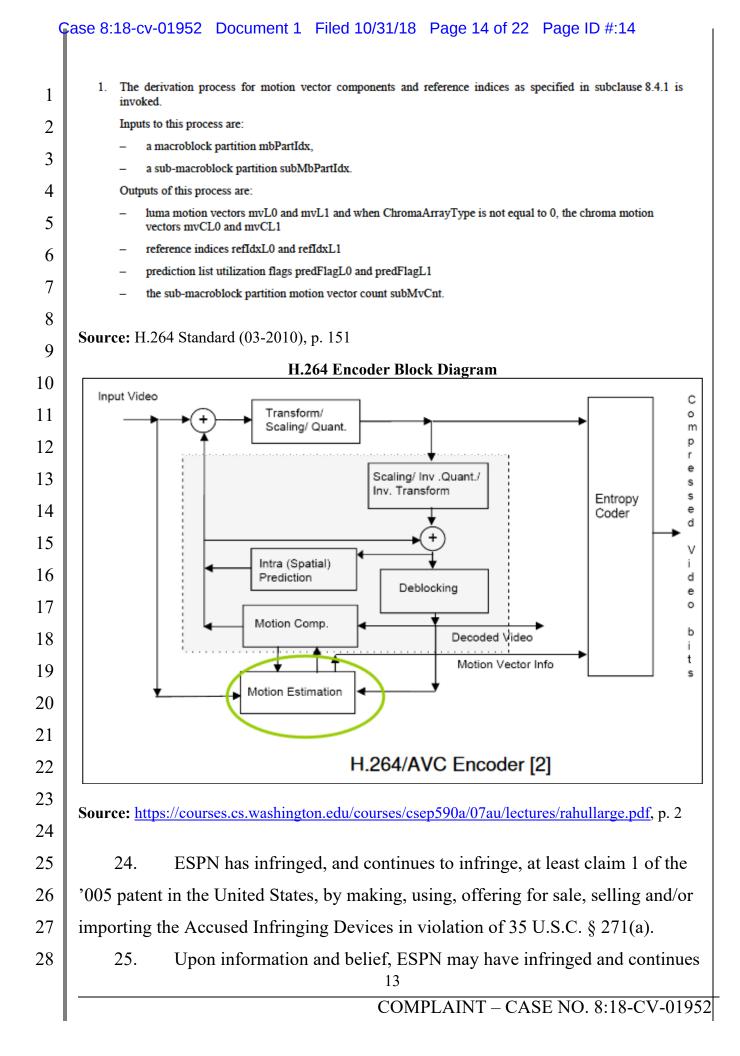
	Reverse of the second secon		
1	Properties for "evc_NFL_20181022_nyg_atl_5a5cc1d3_a72a_4902_94ec_2e70ba004590.mp4"		
2	Extract Delete Enabled Name Start Time Duration Format		
3	evc_NFL_2018 0.00 28.96 NA- Video Track 0.00 28.96 H.264 Sound Track 0.03 28.88 AAC		
4	Annotations Resources Audio Settings Presentation		
5	Annotation Value		
6			
7			
8			
9	Add Annotation Remove Selected Annotations		
10	TONIGHT 2 MATT RYAN COMP/ATT: 10/12 YARDS: 131		
11	ESTIMINE TU NYG D ATL D 2ND 5:00 14 1ST & 10		
12	00:00:00		
13			
14			
15	Source: <u>http://bc.video-</u> origin.espn.com/espnvideo/fastclipper/2018/1022/evc_NFL_20181022_nyg_atl_5a5cc1d3_a72a		
16	<u>4902_94ec_2e70ba004590/evc_NFL_20181022_nyg_atl_5a5cc1d3_a72a_4902_94ec_2e70ba</u> 004590.mp4		
17	H.264 Uses Predictive Coding		
18	0.6 Overview of the design characteristics		
19	This subclause does not form an integral part of this Recommendation International Standard.		
20	The coded representation specified in the syntax is designed to enable a high compression capability for a desired image quality. With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 Intra,		
21	CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles, and the I_PCM mode of operation in all profiles, the algorithm is typically not lossless, as the exact source sample values are typically not preserved through the encoding and		
22	decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding algorithms (not specified in this Recommendation International Standard) may select between inter and intra coding for block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal		
23	statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may be		
24	specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a transform to remove spatial correlation inside the transform block before it is quantised, producing an irreversible process that		
25	typically discards less important visual information while forming a close approximation to the source samples. Finally, the motion vectors or intra prediction modes are combined with the quantised transform coefficient information and		
26	encoded using either variable length coding or arithmetic coding.		
20 27			
27 28			
20	5		
	COMPLAINT – CASE NO. 8:18-CV-01952		

1	prediction. These modes are commonly r	referred to as inter-frame prediction	
	prediction. These modes are commonly referred to as inter-frame prediction		
2	modes, or inter modes. Each inter mode involves partitioning the current		
3	macroblock into a different combination of sub blocks, and selecting the optimum		
4	motion vector for the current macroblock based on the partition. The inter-frame		
5	prediction modes, or inter modes, can be further categorized by the number and		
6	position of the reference frames, as well as the choice of integer pixel, half pixel		
7	and quarter pixel values in motion estimation. The ESPN H.264 encoders		
8	concurrently perform motion estimation of a macroblock for all inter-modes and		
9	select the most optimum prediction mode with least rate distortion cost.		
10			
11	Mode E	Decision	
12	16x16 luma		
13			
14	+ Intra Modes	↓ Inter Modes (Only	
15	(For all frames)	for P and B-frames) Macroblock partitions: 	
	Nine 4x4 Modes Four 16x16 Modes	16x16,16x8,8x16,	
16		8x8,8x4,4x8,4x4 • Use of reference frames	
17		 Use of integer, half and quarter pixel motion 	
18		estimation	
19	 Each mode (inter or intra) has an a cost. 	associated Rate-Distortion (RD)	
	Encoder performs mode decision		
20	RD cost. This process is computati		
21 22	Source: https://courses.cs.washington.edu/cour	rses/csep590a/07au/lectures/rahullarge.pdf, p. 30	
23	19. H.264 provides a hierarchica	I way to partition a macroblock, with the	
24	available partitions shown in the following two figures. An exemplary inter-frame		
25	prediction mode, or inter mode, can be for a macroblock to be partitioned to		
26	encompass a 16x8 sub block on the left, and two 8x8 sub blocks on the right.		
27		-	
28			
		7 2010 DI ADUEL CAGENIO, 0.10, CM 01057	
	COMPLAINT – CASE NO. 8:18-CV-0195		

7.3.5.1 Macroblock prediction syntax

2			
_	mb_pred(mb_type) {	C	Descriptor
	if(MbPartPredMode(mb_type, 0) == Intra_4x4		
	MbPartPredMode(mb_type, 0) == Intra_16x16) { if(MbPartPredMode(mb_type, 0) == Intra_4x4)		
	for(luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++)		
	prev_intra4x4_pred_mode_flag[luma4x4BlkIdx]	2	u(1) ae(v)
	if(!prev_intra4x4 pred_mode_flag[luma4x4BlkIdx])		
	rem_intra4x4_pred_mode[luma4x4BlkIdx]	2	u(3) ae(v)
	}		
	intra_chroma_pred_mode	2	ue(v) ae(v)
	} else if(MbPartPredMode(mb_type, 0) != Direct) {		
	for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)		
	if((num_ref_idx_l0_active_minus $1 > 0 $ mb_field_decoding_flag) &&		
	MbPartPredMode(mb_type, mbPartIdx) != Pred_L1)		
	ref_idx_l0[mbPartIdx]	2	$te(v) \mid ae(v)$
	for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++) if(num ref. idx $ 1 $ active minus $ 2 > 0$	-	
	if((num_ref_idx_l1_active_minus1 > 0 mb_field_decoding_flag) &&		
	MbPartPredMode(mb_type, mbPartIdx) != Pred_L0)		
	for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb type); mbPartIdx++)	2	$te(v) \mid ae(v)$
	if(MbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)		
	for(compIdx = 0; compIdx < 2; compIdx++)	-	
	mvd_10[mbPartIdx][0][compIdx]	2	se(v) ae(v)
	for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)		
	if MbPartPredMode(mb_type, mbPartIdx) != Pred_L0)		
	<pre>for(compIdx = 0; compIdx < 2; compIdx++)</pre>		
	mvd_l1[mbPartIdx][0][compIdx]	2	se(v) ae(v)
	}	-	
	}		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		
	Source: H.264 Standard (03-2010) at p. 57		


Gase 8:18-cv-01952 Document 1 Filed 10/31/18 Page 11 of 22 Page ID #:11


7.3.5.2 Sub-macroblock prediction syntax

1

2			
	<pre>sub_mb_pred(mb_type) {</pre>	C	Descriptor
-	for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)		
3	<pre>sub_mb_type[mbPartIdx] for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)</pre>	2	ue(v) ae(v)
4	if((num_ref_idx_l0_active_minus1 > 0 mb_field_decoding_flag) && mb_type != P_8x8ref0 &&		
5	sub_mb_type[mbPartIdx] != B_Direct_8x8 && SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1)		
6	ref_idx_10[mbPartIdx] for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)	2	te(v) ae(v)
7	if((num_ref_idx_l1_active_minus1 > 0 mb_field_decoding_flag) && sub_mb_type[_mbPartIdx_] != B_Direct_&x& &&		
8	SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0) ref idx 11[mbPartIdx]	2	te(v) ae(v)
9	$for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)$ $if(sub_mb_type[mbPartIdx] != B_Direct_8x8_&&$		
-	SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1)		
10	for(subMbPartIdx = 0; subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);		
11	$\frac{\text{subMbPartIdx}_{++})}{\text{for}(\text{ compIdx} = 0; \text{ compIdx} < 2; \text{ compIdx}_{++})}$		
2	mvd_10[mbPartIdx][subMbPartIdx][compIdx]	2	se(v) ae(v)
13	for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++) if(sub_mb_type[_mbPartIdx] != B_Direct_8x8 &&		
14	SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0) for(subMbPartIdx = 0;		
5	subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]); subMbPartIdx++)		
5	for(compIdx = 0; compIdx < 2; compIdx++) mvd 11 [mbPartIdx][subMbPartIdx][compIdx]	2	
6	mvd_11 [mbPartidx][subivibPartidx][compidx]	2	se(v) ae(v)
0	}		
	_ }		
7	Source: H.264 Standard (03-2010) at p. 58		
17 18	Source: H.264 Standard (03-2010) at p. 58	<u> </u>	
7 8 9	Source: H.264 Standard (03-2010) at p. 58		
17 18 19 20	Source: H.264 Standard (03-2010) at p. 58		
.7 .8 .9 20 21	Source: H.264 Standard (03-2010) at p. 58		
17 18 19 20 21 22	Source: H.264 Standard (03-2010) at p. 58		
.7 .8 .9 20 21 22 23	Source: H.264 Standard (03-2010) at p. 58		
.7 .8 .9 20 21 22 23 24	Source: H.264 Standard (03-2010) at p. 58		
.7 8 9 20 21 22 23 24 25	Source: H.264 Standard (03-2010) at p. 58		
.7 8 9 20 21 22 23 24 25 26	Source: H.264 Standard (03-2010) at p. 58		
17 18 19 20 21 22 23 24 25 26 27	Source: H.264 Standard (03-2010) at p. 58		
17 18 19 20 21 22 23 24 25 26 27 28	Source: H.264 Standard (03-2010) at p. 58		

1 21. The Accused Infringing Devices provide a method for determining 2 which of the second pixel arrays (e.g., macroblock) constitutes a best match with 3 respect to the first pixel array (e.g., macroblock) for the optimum prediction mode. 4 Reference frame 5 6 7 61,+18 8 9 Fig. 2.4: Motion estimation. For each MB the best matching block in the refer-10 ence frame is found. The encoder codes the differences (errors) between the MBs 11 and their best matching blocks. Arrows indicate motion vectors and are labeled by the vector coordinates. In this example the shapes are identical but their colors are 12 slightly larger/darker. 13 **Source:** B. Juurlink et al., Scalable Parallel Programming Applied to H.264, Chapter 2: 14 Understanding the Application: An Overview of the H.264 Standard, p. 12 15 22. For example, the encoder performs mode decision to select the most 16 optimum prediction mode with least rate distortion cost. 17 18 **Macroblock layer semantics** 19 The following semantics are assigned to the macroblock types in Table 7-13: 20 P L0 16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma samples and associated chroma samples. 21 P_L0_L0_MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated 22 chroma samples, respectively. P_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartIdx] with mbPartIdx being 23 the macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2). 24 P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref_idx_10[mbPartIdx] with mbPartIdx = 0..3) is present in the bitstream and ref_idx_10[mbPartIdx] shall be 25 inferred to be equal to 0 for all sub-macroblocks of the macroblock (with indices mbPartIdx = 0..3). P Skip: no further data is present for the macroblock in the bitstream. 26 Source: H.264 Standard (03-2010), p. 100 27 28 11 COMPLAINT - CASE NO. 8:18-CV-01952

Gase 8:18-cv-01952 Document 1 Filed 10/31/18 Page 15 of 22 Page ID #:15

to infringe the '005 patent through other software and devices utilizing the same or
 reasonably similar functionality, including other versions of the Accused Infringing
 Devices.

4 26. ESPN's acts of direct infringement have caused and continue to cause
5 damage to Uniloc and Uniloc is entitled to recover damages sustained as a result of
6 ESPN's wrongful acts in an amount subject to proof at trial.

7

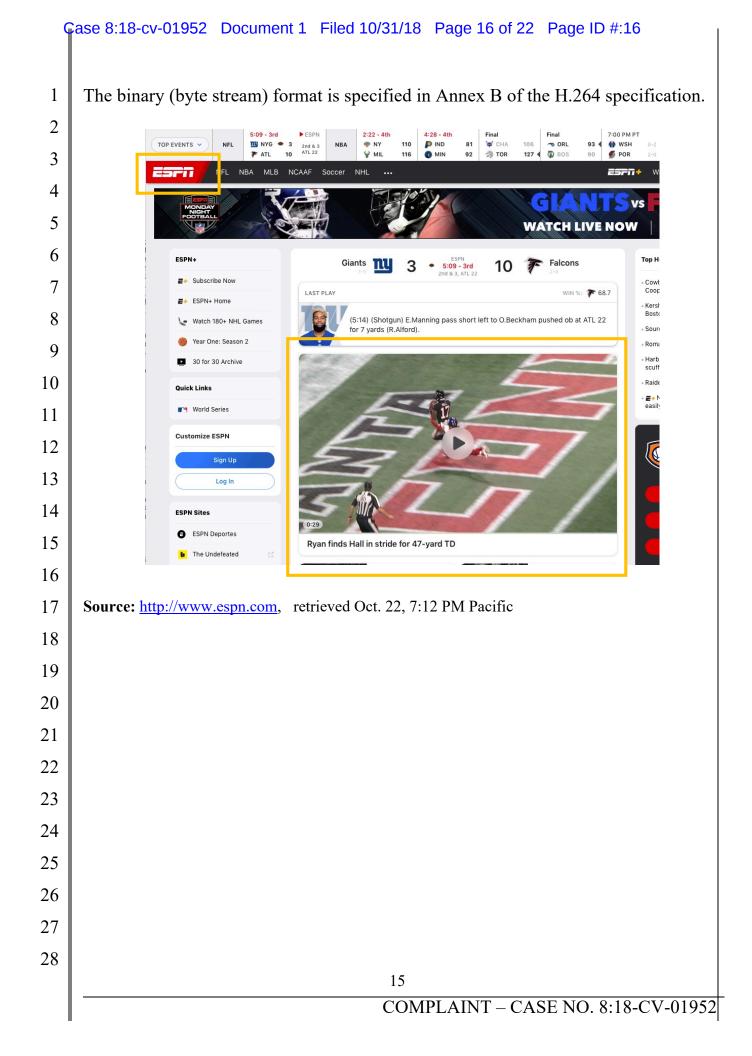
COUNT II – INFRINGEMENT OF U.S. PATENT NO. 6,895,118

8 27. The allegations of paragraphs 1-9 of this Complaint are incorporated
9 by reference as though fully set forth herein.

10 28. The '118 patent, titled "Method Of Coding Digital Image Based on
11 Error Concealment," issued on May 17, 2005. A copy of the '118 patent is attached
12 as Exhibit B.

13

29. Pursuant to 35 U.S.C. § 282, the '118 patent is presumed valid.

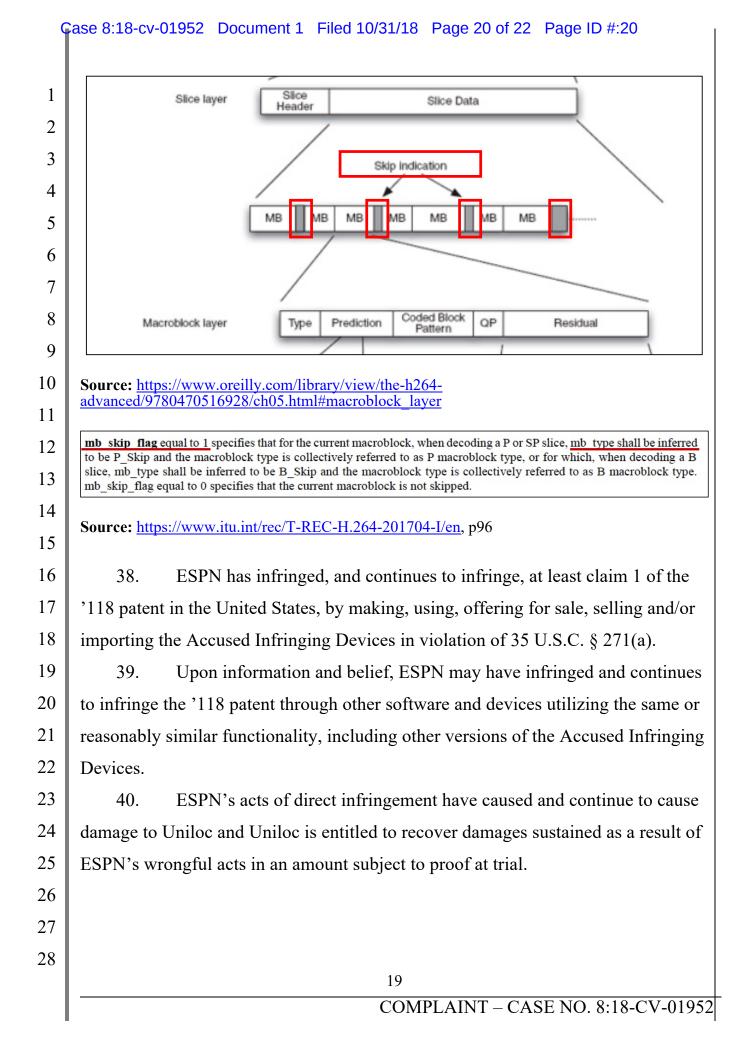

14 30. Upon information and belief, ESPN makes, uses, offers for sale, and/or
15 sells in the United States and/or imports into the United States products and
16 services that practice a method for coding video data (digital images) including
17 macroblocks embedded in a binary data stream (collectively the "Accused
18 Infringing Devices").

19 31. Upon information and belief, the Accused Infringing Devices infringe20 at least claim 1 in the exemplary manner described below.

21 32. The Accused Infringing Devices use H.264 streams for coding video
22 data (digital images) including macroblocks embedded in a binary stream.

33. H.264 is a widely used video compression format with decoder support
on web browsers, TVs and other consumer devices. Moreover, H.264 codes digital
images comprising macroblocks streams.

26 34. The Accused Infringing Devices stream content using H.264 video
27 encoded in mp4 files. Inspection of the files shows the video codec used is H.264.



Gase 8:18-cv-01952 Document 1 Filed 10/31/18 Page 17 of 22 Page ID #:17

000	evc_NFL_20181022_nygatl_5a5cc1d3_a72a_4902_94ec_2e70ba004590.mp4
Extract Delete	for "evc_NFL_20181022_nyg_atl_5a5cc1d3_a72a_4902_94ec_2e70ba004590.mp4"
Enabled Name evc_NFL_2018	Start Time Duration Format 3 0.00 28.96 -NA- 0.00 28.96 H.264
Sound Track	0.03 28.88 AAC
Annotation	Annotations Resources Audio Settings Presentation
Add Annotation V	Remove Selected Annotations
ESFIMNE	TONIGHT 2 MATT RYAN COMP/ATT: 10/12 YARDS: 131 TUNYG 0 ATL 0 2ND 5:00 14 157 & 10
00:00:00	
4)	
Source: <u>http://bc.</u> origin.espn.com/e	espnvideo/fastclipper/2018/1022/evc NFL 20181022 nyg atl 5a5cc1d3 a7
<u>4902 94ec 2e70</u> 004590.mp4	0ba004590/evc_NFL_20181022_nygatl_5a5cc1d3_a72a_4902_94ec_2e70t
This Recommendat	ion International Standard was developed in response to the growing need for higher compression of
moving pictures for streaming, and com	various applications such as videoconferencing, digital storage media, television broadcasting, interne munication. It is also designed to enable the use of the coded video representation in a flexible manne
to be manipulated a	f network environments. The use of this Recommendation International Standard allows motion vide as a form of computer data and to be stored on various storage media, transmitted and received over
existing and future i	networks and distributed on existing and future broadcasting channels.
Source: <u>https://w</u>	<u>rww.itu.int/rec/T-REC-H.264-201704-I/en</u> , p. i
	coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block o o corresponding blocks of chroma samples, is used as the basic processing unit of the video decoding
	e further partitioned for inter prediction. The selection of the size of inter prediction partitions is a etween the coding gain provided by using motion compensation with smaller blocks and the quantity
Source: <u>https://w</u>	<u>ww.itu.int/rec/T-REC-H.264-201704-I/en</u> , section 0.6.3
	16
	COMPLAINT – CASE NO. 8:18-CV-019

	Annex B
Byte stream format	
	(This annex forms an integral part of this Recommendation International Standard.)
t	This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to be identifiable from patterns in the data, such as Rec. ITU-T H.222.0 ISO/IEC 13818-1 systems or Rec. ITU-T H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.
	ource: https://www.itu.int/rec/T-REC-H.264-201704-I/en, Annex B
	35. The Accused Infringing Devices' H.264 coding supports skipped
	nacroblocks. Before a macroblock is coded, an estimation is made of whether that
]	nacroblock can be reconstructed with an error concealment method by examining
	ts motion characteristics, and checking to see that the resulting prediction contains
]	no non-zero (i.e. all zero) quantized transform coefficients. This estimation
p	provides an indication of the capacity for the macroblock to be reconstructed from
properties of neighboring macroblocks, allowing the missing block to be concealed	
)	by inferring its properties.
	Skipped Mode: In addition to the macroblock modes described above, a P-slice macroblock can also be coded in the so-called skip mode. If a macroblock has motion characteristics that allow its motion to be effectively predicted from the motion of neighboring macroblocks, and it contains no non-zero quantized transform coefficients, then it is flagged as skipped. For this mode, neither a quantized prediction error signal nor a motion vector or reference index parameter are transmitted. The reconstructed signal is computed in a manner similar to the prediction of a macroblock with partition size 16 × 16 and fixed reference picture index equal to 0. In contrast to previous video coding standards, the motion vector used for reconstructing a skipped macroblock is inferred from motion properties of neighboring macroblocks rather than being inferred as zero (i.e., no motion).
S	ource: http://mrutyunjayahiremath.blogspot.com/2010/09/h264-inter-predn.html
	36. The Accused Infringing Devices' H.264 encoders perform a decision
S	tep to determine if a macroblock should be excluded from coding (skipped), with
tl	he decision to exclude made on the basis of its capacity to be reconstructing by 17
	COMPLAINT – CASE NO. 8:18-CV-0195

Case 8:18-cv-01952 Document 1 Filed 10/31/18 Page 19 of 22 Page ID #:19		
inferring its motion properties from neighboring macroblocks, and based on all zero		
quantized transform coefficients.		
Shinned Meder		
Skipped Mode: In addition to the macroblock modes described above, a P-slice macroblock can also be coded in the		
so-called skip mode. If a macroblock has motion characteristics that allow its motion to be effectively predicted from the motion of neighboring macroblocks, and it contains no non-zero quantized		
transform coefficients, then it is flagged as skipped. For this mode, neither a quantized prediction		
error signal nor a motion vector or reference index parameter are transmitted. The reconstructed signal is computed in a manner similar to the prediction of a macroblock with partition size 16 × 16		
and fixed reference picture index equal to 0. In contrast to previous video coding standards, the		
motion vector used for reconstructing a skipped macroblock is inferred from motion properties of neighboring macroblocks rather than being inferred as zero (i.e., no motion).		
Source: <u>http://mrutyunjayahiremath.blogspot.com/2010/09/h264-inter-predn.html</u>		
3.139 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is		
to be decoded as "skipped". This indication may be common to several macroblocks.		
Source: <u>https://www.itu.int/rec/T-REC-H.264-201704-I/en</u> , p13		
37. Skipped macroblocks are communicated with an mb_skip_flag = 1		
(resynchronization marker at the point where the macroblocks are not coded		
(skipped)) in the binary data stream.		
3.139 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is		
to be decoded as "skipped". This indication may be common to several <i>macroblocks</i> .		
Source: https://www.itu.int/rec/T-REC-H.264-201704-I/en, p13		
10		
18 COMPLAINT – CASE NO. 8:18-CV-01952		

Ģ	Case 8:18-cv-01952 Document 1 Filed 10/31/18 Page 21 of 22 Page ID #:21			
1	PRAYER FOR RELIEF			
2	WHEREFORE, plaintiffs Uniloc 2017 LLC and Uniloc Licensing USA LLC			
3	respectfully pray that the Court enter judgment in their favor and against ESPN as			
4	follows:			
5	a. A judgment that ESPN has infringed one or more claims of the			
6	'005 Patent literally and/or under the doctrine of equivalents;			
7	b. A judgment that ESPN has infringed one or more claims of the			
8	'118 Patent literally and/or under the doctrine of equivalents;			
9	c. That for each Asserted Patent this Court judges infringed by			
10	ESPN this Court award Uniloc its damages pursuant to 35 U.S.C. § 284 and any			
11	royalties determined to be appropriate;			
12	d. That this be determined to be an exceptional case under 35			
13	U.S.C. § 285 and that Uniloc be awarded enhanced damages up to treble damages			
14	for willful infringement as provided by 35 U.S.C. § 284;			
15	e. That this Court award Uniloc prejudgment and post-judgment			
16	interest on its damages;			
17	f. That Uniloc be granted its reasonable attorneys' fees in this			
18	action;			
19	g. That this Court award Uniloc its costs; and			
20	h. That this Court award Uniloc such other and further relief as the			
21	Court deems proper.			
22	DEMAND FOR JURY TRIAL			
23	Uniloc hereby demands trial by jury on all issues so triable pursuant to Fed.			
24	R. Civ. P. 38.			
25				
26				
27				
28				
	20 COMPLAINT – CASE NO. 8:18-CV-01952			
	COWF LAINT - CASE NO. 8:16-CV-01932			

G	ase 8:18-cv-01952 Document 1 Filed	10/31/18 Page 22 of 22 Page ID #:22
1	Dated: October 31, 2018	FEINBERG DAY ALBERTI LIM & BELLOLI LLP
2		By: /s/ M. Elizabeth Day
3		M. Elizabeth Day
4		Atternation for Disintific
5		Attorneys for Plaintiffs Uniloc 2017 LLC and Uniloc Licensing
6		USA LLC
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25 26		
26		
27		
28		21
		COMPLAINT – CASE NO. 8:18-CV-01952