Case	2:19-cv-06361-GW-JC	Document 14	Filed 09/20/19	Page 1 of 43	Page ID #:284				
1 2 3 4 5 6 7 8 9 10	RUSS, AUGUST & Marc A. Fenster (CA Email: <u>mfenster@rail</u> Brian D. Ledahl (CA Email: <u>bledahl@rakl</u> Reza Mirzaie (CA S Email: <u>rmirzaie@rakl</u> Paul Kroeger (CA S Email: <u>pkroeger@rail</u> C. Jay Chung (CA S Email: <u>jchung@rakl</u> Philip X. Wang (CA Email: <u>pwang@rakl</u> 12424 Wilshire Bou Los Angeles, CA 90 Telephone: 310/826-6 Attorneys for Plaintit REALTIME ADAPT	A SBN 186579 aw.com BN 246953) (law.com BN 229074) klaw.com BN 252794) aw.com SBN 262239) aw.com levard, 12th Fl 025 -7474 991) loor						
11	REALTIME ADAPT	IVE STREAMI	NG LLC						
12		UNITED STA	ATES DISTRI	CT COURT					
13	CENTRAL DISTRICT OF CALIFORNIA								
14	WESTERN DIVISION								
15									
16	REALTIME ADAP	ГIVЕ	Case No. 2	:19-cv-06361	-GW-JC				
17	STREAMING LLC,								
18	Plaintif	f,	FIRST A	MENDED CO	OMPLAINT				
19	v.		FOR PAT	<u>rent infri</u>	NGEMENT				
20	NETFLIX, INC. and	l							
21	NETFLIX STREAM	IING	JUKYTR	IAL DEMAN	UED				
22	SERVICES, INC., Defenda	ants							
23									
24									
25									
26									
27									
28									
			1						
		FIRST A	MENDED COM	PLAINT					
I	I								

This is an action for patent infringement arising under the Patent Laws of the United States of America, 35 U.S.C. § 1 et seq. in which Plaintiff Realtime Adaptive Streaming LLC ("Plaintiff" or "Realtime") makes the following allegations against Defendants Netflix, Inc. and Netflix Streaming Services, Inc. (collectively "Netflix" or "Defendants")

PARTIES

1. Realtime is a Texas limited liability company. Realtime has a place of business at 66 Palmer Avenue, Suite 27, Bronxville, NY 10708. Realtime has researched and developed specific solutions for data compression, including, for example, those that increase the speeds at which data can be stored and accessed. As recognition of its innovations rooted in this technological field, Realtime holds multiple United States patents and pending patent applications.

2. Defendant Netflix, Inc. is a Delaware corporation, with its principal place of business at 100 Winchester Circle, Los Gatos, California 95032. Netflix, Inc. may be served with process by serving its registered agent, The Corporation Trust Company at the Corporation Trust Center, 1209 Orange Street, Wilmington, Delaware 19801.

Defendant Netflix Streaming Services, Inc. is a Delaware corporation,
 with its principal place of business at 100 Winchester Circle, Los Gatos, California
 95032. Netflix Streaming Services, Inc. may be served with process by serving its
 registered agent, The Corporation Trust Company at the Corporation Trust Center,
 1209 Orange Street, Wilmington, Delaware 19801.

4. Defendants have regular and established place of business in this
District, including, e.g., in Los Angeles, CA. See, e.g.,
<u>https://jobs.netflix.com/locations/los-angeles-california</u>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

26

27

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

JURISDICTION AND VENUE

5. This action arises under the patent laws of the United States, Title 35 of the United States Code. This Court has original subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and 1338(a).

6. This Court has personal jurisdiction over Defendants in this action because Defendants have committed acts within this District giving rise to this action and has established minimum contacts with this forum such that the exercise of jurisdiction over Defendants would not offend traditional notions of fair play and substantial justice. Defendants have also committed and continue to commit acts of infringement in this District by, among other things, offering to sell and selling products and/or services that infringe the asserted patents.

7. Venue is proper in this district, *e.g.*, under 28 U.S.C. § 1400(b).
Defendants has committed acts of direct and indirect infringement in this District, and has a regular and established place of business in this District, including, e.g., in Los Angeles.

THE PATENTS-IN-SUIT

8. This action arises under 35 U.S.C. § 271 for Netflix's infringement of
Realtime's United States Patent Nos. 7,386,046 (the "046 patent"), 8,934,535 (the
"535 patent"), 8,054,879 (the "879 patent"), and 9,769,477 (the "477 patent")
(collectively, the "Patents-In-Suit").

9. The '046 patent, titled "Bandwidth Sensitive Data Compression and
Decompression," was duly and properly issued by the United States Patent and
Trademark Office ("USPTO") on June 10, 2008. A copy of the '046 patent is
attached hereto as Exhibit A. Realtime is the owner and assignee of the '046
patent and holds the right to sue for and recover all damages for infringement
thereof, including past infringement.

27 10. The '535 patent, titled "Systems and methods for video and audio data
28 storage and distribution," was duly and properly issued by the USPTO on January

13, 2015. A copy of the '535 patent is attached hereto as **Exhibit B** Realtime is the owner and assignee of the '535 patent and holds the right to sue for and recover all damages for infringement thereof, including past infringement.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

The '879 patent, titled "Bandwidth Sensitive Data Compression and 11. Decompression," was duly and properly issued by the USPTO on November 8, 2011. A copy of the '879 patent is attached hereto as Exhibit C. Realtime is the owner and assignee of the '879 patent and holds the right to sue for and recover all damages for infringement thereof, including past infringement.

The '477 patent, titled "Video data compression systems," was duly 12. and properly issued by the USPTO on September 19, 2017. A copy of the '477 patent is attached hereto as Exhibit D. Realtime is the owner and assignee of the '477 patent and holds the right to sue for and recover all damages for infringement thereof, including past infringement.

COUNT I

INFRINGEMENT OF U.S. PATENT NO. 7,386,046

13. Plaintiff re-alleges and incorporates by reference the foregoing paragraphs, as if fully set forth herein.

On information and belief, Netflix has made, used, offered for sale, 18 14. sold and/or imported into the United States Netflix products that infringe the '046 19 patent, and continues to do so. By way of illustrative example, these infringing 20 products include, without limitation, Netflix's streaming video service; Netflix's 21 video encoders or codecs including x264, x265 and libvpx; and Netflix's mobile 22 encoders or codecs including AVCMain (H.264/AVC 23 encoders, Main). H.264/AVC High, VP9, AVCHi-Mobile and VP9-Mobile, and all versions and 24 the issuance of the '046 patent ("Accused thereof since variations 25 Instrumentalities"). 26

For example, an official website from Netflix known as "The Netflix 15. 27 Tech Blog" states that Netflix is "introducing two new types of mobile encodes – 28

AVCHi-Mobile and VP9-Mobile...All the changes combined result in better video quality for the same bitrate compared to our current streams (AVCMain). 2 Many Netflix-ready devices receive streams which are encoded using the 3 H.264/AVC Main profile (AVCMain). This is a widely-used video compression 4 format, with ubiquitous decoder support on web browsers, TVs, mobile devices, 5 and other consumer devices. However, newer formats are available that offer more 6 sophisticated video coding tools. For our mobile bitstreams we adopt two 7 compression formats: H.264/AVC High profile and VP9 (profile 0). Similar to 8 Main profile, the High profile of H.264/AVC enjoys broad decoder support. VP9, 9 a royalty-free format developed by Google, is supported on the majority of 10 Android devices, Chrome, and a growing number of consumer devices." (emphasis added). See https://medium.com/netflix-techblog/more-efficient-mobile-encodes-12 for-netflix-downloads-625d7b082909. 13

16. As confirmation, an article from Variety states that "Netflix has been 14 using H.264/AVC almost exclusively" and "That's why Netflix is also encoding its 15 downloadable videos with a different flavor of H.264/AVC, which is also known 16 as a different profile. (For the technically inclined: Netflix's streams are encoded 17 with H.264/AVC Main, whereas its downloads come in H.264/AVC High. The 18 company shared more details on its tech blog this week.) This isn't quite as 19 effective as using VP9, but still allows Netflix to shave off some bits." See Janko 20 Roettgers, Variety, December 2, 2016, "How Netflix Delivers Better-Looking 21 Downloads Without All Phone 22 Eating Up Your Storage," http://variety.com/2016/digital/news/netflix-offline-downloads-codecs-vp9-23 1201932502/. 24

In another entry of Netflix's "The Netflix Tech Blog," a test 17. 25 comparing several different encoders was described: "H.264/AVC is a very 26 widely-used video compression standard on the Internet, with ubiquitous decoder 27 28 support on web browsers, TVs, mobile devices, and other consumer devices. x264

FIRST AMENDED COMPLAINT

1

is the most established open-source software encoder for H.264/AVC...x265 is an 1 open-source HEVC encoder, originally ported from the x264 codebase. Concurrent 2 to HEVC, Google developed VP9 as a royalty-free video compression format and 3 released libvpx as an open-source software library for encoding VP9." See 4 https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-5 libvpx-a-sneak-peek-2e81e88f8b0f. 6

18. The Accused Instrumentalities determine a parameter of at least a portion of a video data block. As shown below, examples of such parameters 8 include bitrate (or max video bitrate) and resolution parameters. 9 Different parameters correspond with different end applications. H.264 provides for 10 multiple different ranges of such parameters, each included in the "profiles" and 11 "levels" as defined by the H.264 standard, from the below shown paragraphs from 12 Wikipedia. white 13 paper and See а 14

http://www.axis.com/files/whitepaper/wp h264 31669 en 0803 lo.pdf at 5:

4. H.264 profiles and levels

The joint group involved in defining H.264 focused on creating a simple and clean solution, limiting options and features to a minimum. An important aspect of the standard, as with other video standards, is providing the capabilities in profiles (sets of algorithmic features) and levels (performance classes) that optimally support popular productions and common formats.

H.264 has seven profiles, each targeting a specific class of applications. Each profile defines what feature set the encoder may use and limits the decoder implementation complexity.

Network cameras and video encoders will most likely use a profile called the baseline profile, which is intended primarily for applications with limited computing resources. The baseline profile is the most suitable given the available performance in a real-time encoder that is embedded in a network video product. The profile also enables low latency, which is an important requirement of surveillance video and also particularly important in enabling real-time, pan/tilt/zoom (PTZ) control in PTZ network cameras.

- 24 H.264 has 11 levels or degree of capability to limit performance, bandwidth and memory requirements. Each level defines the bit rate and the encoding rate in macroblock per second for resolutions ranging 25 from QCIF to HDTV and beyond. The higher the resolution, the higher the level required.
- 26 See https://en.wikipedia.org/wiki/H.264/MPEG-4 AVC:
- 27
- 28

7

15

16

17

18

19

20

21

22

23

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 7 of 43 Page ID #:290

	Levels with maximum property values									
Level	Max decod	ing speed	Max frar	ne size	Max video bit rate	for video codi kbit/s	ng layer (VCL)	Examples for high resolution @ highest frame rate		
Level	Luma	Manualitation	Luma	Manakiasia	Baseline, Extended			(max stored frames) Toggle additional details		
	samples/s	Macroblocks/s	samples	Macroblocks	and Main Profiles	High Profile	High 10 Profile			
1	380,160	1,485	25,344	99	64	80	192	176×144@15.0 (4)		
1b	380,160	1,485	25,344	99	128	160	384	176×144@15.0 (4)		
1.1	768,000	3,000	101,376	396	192	240	576	352×288@7.5 (2)		
1.2	1,536,000	6,000	101,376	396	384	480	1,152	352×288@15.2 (6)		
1.3	3,041,280	11,880	101,376	396	768	960	2,304	352×288@30.0 (6)		
2	3,041,280	11,880	101,376	396	2,000	2,500	6,000	352×288@30.0 (6)		
2.1	5,068,800	19,800	202,752	792	4,000	5,000	12,000	352×576@25.0 (6)		
2.2	5,184,000	20,250	414,720	1,620	4,000	5,000	12,000	720×576@12.5 (5)		
3	10,368,000	40,500	414,720	1,620	10,000	12,500	30,000	720×576@25.0 (5)		
3.1	27,648,000	108,000	921,600	3,600	14,000	17,500	42,000	1,280×720@30.0 (5)		
3.2	55,296,000	216,000	1,310,720	5,120	20,000	25,000	60,000	1,280×1,024@42.2 (4)		
4	62,914,560	245,760	2,097,152	8,192	20,000	25,000	60,000	2,048×1,024@30.0 (4)		
4.1	62,914,560	245,760	2,097,152	8,192	50,000	62,500	150,000	2,048×1,024@30.0 (4)		
4.2	133,693,440	522,240	2,228,224	8,704	50,000	62,500	150,000	2,048×1,080@60.0 (4)		
5	150,994,944	589,824	5,652,480	22,080	135,000	168,750	405,000	3,672×1,536@26.7 (5)		
5.1	251,658,240	983,040	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@26.7 (5)		
5.2	530,841,600	2,073,600	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@56.3 (5)		

.

12 13 21. A video data block is organized by the group of pictures (GOP) 14 structure, which is a "collection of successive pictures within a coded video 15 stream." See https://en.wikipedia.org/wiki/Group of pictures. A GOP structure 16 can contain intra coded pictures (I picture or I frame), predictive coded pictures (P 17 picture or P frame), bipredictive coded pictures (B picture or B frame) and direct 18 coded pictures (D picture or D frames, or DC direct coded pictures which are used 19 MPEG-1 video). only in See 20 https://en.wikipedia.org/wiki/Video compression picture types (for descriptions 21 of I frames, P frames and B frames); https://en.wikipedia.org/wiki/MPEG-1#D-22 frames (for descriptions of D frames). Thus, at least a portion of a video data block 23 would also make up a GOP structure and could also contain I frames, P frames, B 24 frames and/or D frames. The GOP structure also reflects the size of a video data 25 block, and the GOP structure can be controlled and used to fine-tune other 26 parameters (e.g. bitrate, max video bitrate and resolution parameters) or even be 27 considered as a parameter by itself. 28

22. Based on the bitrate and/or resolution parameter identified (e.g. 1 bitrate, max video bitrate, resolution, GOP structure or frame type within a GOP 2 structure), any H.264-compliant system such as the Accused Instrumentalities 3 would determine which profile (e.g., "baseline," "extended," "main", or "high") 4 corresponds with that parameter, then select between at least two asymmetric 5 compressors. If baseline or extended is the corresponding profile, then the system 6 will select a Context-Adaptive Variable Length Coding ("CAVLC") entropy 7 encoder. If main or high is the corresponding profile, then the system will select a 8 Context-Adaptive Binary Arithmetic Coding ("CABAC") entropy encoder. Both 9 encoders are asymmetric compressors because it takes a longer period of time for 10 them compress data than decompress data. See 11 to to https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/: 12

	1	Baseline	Extended	Main	High	High 10
I and P Slice	s ,	Yes	Yes	Yes	Yes	Yes
B Slices		No	Yes	Yes	Yes	Yes
SI and SP SI	ices	No	Yes	No	No	No
Multiple Ref Frames	erence	Yes	Yes	Yes	Yes	Yes
In-Loop Deb	locking Filter	Yes	Yes	Yes	Yes	Yes
CAVLC Entro	py Coding	Yes	Yes	Yes	Yes	Yes
CABAC Entro	opy Coding	No	No	Yes	Yes	Yes
Flexible Mac Ordering (Fl		Yes	Yes	No	No	No
Arbitrary Sli (ASO)	ce Ordering	Yes	Yes	No	No	No
Redundant S	lices (RS)	Yes	Yes	No	No	No
Data Partitio	oning	No	Yes	No	No	No
Interlaced C (PicAFF, MBJ		No	Yes	Yes	Yes	Yes
4:2:0 Chrom	a Format	Yes	Yes	Yes	Yes	Yes
Monochrome Format (4:0		No	No	No	Yes	Yes
4:2:2 Chrom	a Format	No	No	No	No	No
4:4:4 Chrom	a Format	No	No	No	No	No
8 Bit Sample	Depth	Yes	Yes	Yes	Yes	Yes
9 and 10 Bit Depth	Sample	No	No	No	No	Yes
11 to 14 Bit Depth	Sample	No	No	No	No	No
8×8 vs. 4×4 Adaptivity	Transform	No	No	No	Yes	Yes
Quantization Matrices	Scaling	No	No	No	Yes	Yes
Separate Cb control	and Cr QP	No	No	No	Yes	Yes
Separate Co Coding	lor Plane	No	No	No	No	No
Predictive Lo Coding	ossless	No	No	No	No	No

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case	2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 9 of 43 Page ID #:292
1	The following table summarizes the two major types of entropy coding: Variable Length Coding (VLC) and Context Adaptive Binary Arithmetic Coding (CABAC). CABAC offers
3	superior coding efficiency over VLC by adapting to the changing probability distribution of symbols, by exploiting correlation between symbols, and by adaptively exploiting bit
4	correlations using arithmetic coding. H.264 also supports Context Adaptive Variable Length Coding (CAVLC) which offers superior entropy coding over VLC without the full cost of
5	CABAC. H.264 Entropy Coding – Comparison of Approaches
6	Characteristics Variable Length Coding Context Adaptive Binary
7	(VLC) Arithmetic Coding(CABAC)
8	Where it is used MPEG-2, H.264/MPEG-4 AVC MPEG-4 ASP (high efficiency option)
9	Probability distribution Static - Probabilities never change Adaptive - Adjusts probabilities based on actual data
10	Leverages correlation between symbols Probabilities ignored "contexts" "contexts" Tes - Exploits symbol correlations by using "contexts"
11 12	Non-integer code words No - Low coding efficiency forhigh probability symbols Yes - Exploits "arithmetic coding" which generates non-integer code words for
13	higher efficiency
14	
15	Moreover, the H.264 Standard requires a bit-flag descriptor, which is set to
16	determine the correct decoder for the corresponding encoder. As shown below, if
17	the flag = 0, then CAVLC must have been selected as the encoder; if the flag = 1,
18	then CABAC must have been selected as the encoder. See
19	https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201304-
20	<u>S!!PDF-E&type=items</u> (Rec. ITU-T H.264 (04/2013)) at 80:
21	entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
22	 descriptors appear in the syntax tables as follows: If entropy_coding_mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
23	(Exp-Golomb coded, see clause 9.1 or CAVLC, see clause 9.2).
24	 Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table is applied (CABAC, see clause 9.3).
25	23. The Accused Instrumentalities compress the at least the portion of the
26	data block with the selected one or more asymmetric compressors to provide one
27	or more compressed data blocks, which can be organized in a GOP structure (see
28	above). After its selection, the asymmetric compressor (CAVLC or CABAC) will
	9 FIRST AMENDED COMPLAINT

	compress the video data to provide various compressed data blocks, which can also									
2	be organized in a GOP structure, as discussed previously above. See									
3	https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/:									
4	Entropy Coding For entropy coding, H.264 may use an enhanced VLC, a more complex context-adaptive									
5	variable-length coding (CAVLC) or an ever more complex Context-adaptive binary-arithmetic									
6	coding (CABAC) which are complex techniques to losslessly compress syntax elements in the video stream knowing the probabilities of syntax elements in a given context. The use of									
7	CABAC can improve the compression of around 5-7%. CABAC may requires a 30-40% of total processing power to be accomplished.									
8	See									
9	http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.602.1581&rep									
10	<u>=rep1&type=pdf</u> at 13:									
11 12	 Typical compression ratios to maintain excellent quality are: 10:1 for general images using JPEG 									
12	 30:1 for general video using H.263 and MPEG-2 60:1 for general video using H.264 and WMV9 									
14	See http://www.ijera.com/papers/Vol3_issue4/BM34399403.pdf at 2:									
15	Most visual communication systems today									
16	use Baseline Profile. Baseline is the simplest H.264 profile and defines, for example, zigzag scanning of the picture and using 4:2:0 (YUV video formats)									
17	chrominance sampling. In Baseline Profile, the picture is split in blocks consisting of 4x4 pixels,									
18	and each block is processed separately. Another important element of the Baseline Profile is the use of Universal Variable Length Coding (UVLC) and									
19	Context Adaptive Variable Length Coding (CAVLC) entropy coding techniques. The Extended and Main Profiles includes									
20	the functionality of the Baseline Profile and add improvements to the predictions algorithms. Since transmitting every single frame (think 30 frames per									
21	second for good quality video) is not feasible if you are trying to reduce the bit rate 1000-2000 times, temporal and motion prediction are heavily used in									
22	H.264, and allow transmitting only the difference between one frame and the previous frames. The result is spectacular efficiency gain, especially for									
23	scenes with little change and motion. The High Profile is the most powerful profile in H.264, and it allows most efficient coding									
24	of video. For example, large coding gain achieved through the use of Context Adaptive Binary									
25	Arithmetic Coding (CABAC) encoding which is more efficient than the UVLC/CAVLC used in Baseline Profile.									
26	The High Profile also uses adaptive transform that decides on the fly if 4x4 or 8x8-pixel blocks should be used. For example, 4x4 blocks are									
27	used for the parts of the picture that are dense with detail, while parts that have little detail are transformed using 8x8 blocks.									
28	24. Therefore, from at least the above, Netflix has directly infringed and									
	10 FIRST AMENDED COMPLAINT									

continues to infringe the '046 patent, for example, through its own use and testing of the Accused Instrumentalities, which when used, practices the system claimed by Claim 1 of the '046 patent, namely, a method comprising: compressing data using a first compression routine providing a first compression rate, wherein the first compression routine comprises a first compression algorithm; tracking the throughput of a data processing system to determine if the first compression rate provides a throughput that meets a predetermined throughput threshold, wherein said tracking throughput comprises tracking a number of pending requests for data transmission; and when the tracked throughput does not meet the predetermined throughput threshold, compressing data using a second compression routine providing a second compression rate that is greater than the first compression rate, to increase the throughput of the data processing system to at least the predetermined throughput level, wherein the second compression routine comprises a second compression algorithm. Upon information and belief, Netflix uses the Accused Instrumentalities to practice infringing methods for its own internal non-testing business purposes, while testing the Accused Instrumentalities, and while providing technical support and repair services for the Accused Instrumentalities to their customers.

19 25. On information and belief, the Accused Instrumentalities store at least
20 a portion of the one or more compressed data blocks in buffers, hard disk, or other
21 forms of memory/storage.

22 26. On information and belief, Netflix also directly infringes and
23 continues to infringe other claims of the '046 patent.

24 27. On information and belief, all of the Accused Instrumentalities
25 perform the claimed methods in substantially the same way, e.g., in the manner
26 specified in the H.264 standard.

27 28. On information and belief, use of the Accused Instrumentalities in
28 their ordinary and customary fashion results in infringement of the systems and/or

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

11

methods claimed by the '046 patent.

29. On information and belief, Netflix has had knowledge of the '046 patent since at least the filing of this Complaint or shortly thereafter, and on information and belief, Netflix knew of the '046 patent and knew of its infringement, including by way of this lawsuit. By the time of trial, Netflix will have known and intended (since receiving such notice) that its continued actions would actively induce and contribute to the infringement of the claims of the '046 patent.

Upon information and belief, Netflix's affirmative acts of making, 9 30. using, and selling the Accused Instrumentalities, and providing implementation 10 services and technical support to users of the Accused Instrumentalities, including, 11 e.g., through training, demonstrations, brochures, installation and user guides, have 12 induced and continue to induce users of the Accused Instrumentalities to use them 13 in their normal and customary way to infringe the '046 patent by practicing a 14 method comprising: compressing data using a first compression routine providing 15 a first compression rate, wherein the first compression routine comprises a first 16 compression algorithm; tracking the throughput of a data processing system to 17 determine if the first compression rate provides a throughput that meets a 18 predetermined throughput threshold, wherein said tracking throughput comprises 19 tracking a number of pending requests for data transmission; and when the tracked 20 throughput does not meet the predetermined throughput threshold, compressing 21 data using a second compression routine providing a second compression rate that 22 is greater than the first compression rate, to increase the throughput of the data 23 processing system to at least the predetermined throughput level, wherein the 24 second compression routine comprises a second compression algorithm. 25 For example, Netflix adopted H.264 as its video codec in its products/services, such as 26 its streaming services, and uses H.264 as an encoder, encode or codec. For similar 27 reasons, Netflix also induces its customers to use the Accused Instrumentalities to 28

1

2

3

4

5

6

7

infringe other claims of the '046 patent. Netflix specifically intended and was aware that these normal and customary activities would infringe the '046 patent. Netflix performed the acts that constitute induced infringement, and would induce actual infringement, with the knowledge of the '046 patent and with the 4 knowledge, or willful blindness to the probability, that the induced acts would On information and belief, Netflix engaged in such constitute infringement. 6 inducement to promote the sales of the Accused Instrumentalities. Accordingly, Netflix has induced and continues to induce users of the Accused Instrumentalities to use the Accused Instrumentalities in their ordinary and customary way to 9 infringe the '046 patent, knowing that such use constitutes infringement of the '046 10 patent. Accordingly, Netflix has been, and currently is, inducing infringement of the '046 patent, in violation of 35 U.S.C. § 271(b).

Netflix has also infringed, and continues to infringe, claims of the 13 31. '046 patent by offering to commercially distribute, commercially distributing, 14 making, and/or importing the Accused Instrumentalities, which are used in 15 practicing the process, or using the systems, of the '046 patent, and constitute a 16 material part of the invention. Netflix knows the components in the Accused 17 Instrumentalities to be especially made or especially adapted for use in 18 infringement of the '046 patent, not a staple article, and not a commodity of 19 commerce suitable for substantial noninfringing use. Accordingly, Netflix has 20 been, and currently is, contributorily infringing the '046 patent, in violation of 35 21 U.S.C. § 271(c). 22

By making, using, offering for sale, selling and/or importing into the 23 32. United States the Accused Instrumentalities, and touting the benefits of using the 24 Accused Instrumentalities' compression features, Netflix has injured Realtime and 25 is liable to Realtime for infringement of the '046 patent pursuant to 35 U.S.C. § 26 271. 27

28

As a result of Netflix's infringement of the '046 patent, Plaintiff 33.

1

2

3

5

7

8

11

12

Realtime is entitled to monetary damages in an amount adequate to compensate for Netflix's infringement, but in no event less than a reasonable royalty for the use 2 made of the invention by Netflix, together with interest and costs as fixed by the 3 Court. 4

COUNT II

INFRINGEMENT OF U.S. PATENT NO. 8,934,535

Plaintiff re-alleges and incorporates by reference the foregoing 34. paragraphs, as if fully set forth herein.

On information and belief, Netflix has made, used, offered for sale, 9 35. sold and/or imported into the United States Netflix products that infringe the '535 10 patent, and continues to do so. By way of illustrative example, these infringing products include, without limitation, Netflix's streaming video service; Netflix's 12 video encoders or codecs including x264, x265 and libvpx; and Netflix's mobile 13 encoders, encoders or codecs including AVCMain (H.264/AVC 14 Main). H.264/AVC High, VP9, AVCHi-Mobile and VP9-Mobile, and all versions and 15 variations thereof since the issuance of the '535 patent ("Accused 16 Instrumentalities"). 17

For example, an official website from Netflix known as "The Netflix 18 36. Tech Blog" states that Netflix is "introducing two new types of mobile encodes – 19 AVCHi-Mobile and VP9-Mobile...All the changes combined result in better 20 video quality for the same bitrate compared to our current streams (AVCMain). 21 Many Netflix-ready devices receive streams which are encoded using the 22 H.264/AVC Main profile (AVCMain). This is a widely-used video compression 23 format, with ubiquitous decoder support on web browsers, TVs, mobile devices, 24 and other consumer devices. However, newer formats are available that offer more 25 sophisticated video coding tools. For our mobile bitstreams we adopt two 26 compression formats: H.264/AVC High profile and VP9 (profile 0). Similar to 27 Main profile, the High profile of H.264/AVC enjoys broad decoder support. VP9, 28

> 14 FIRST AMENDED COMPLAINT

1

5

6

7

8

a royalty-free format developed by Google, is supported on the majority of Android devices, Chrome, and a growing number of consumer devices." (emphasis added). *See* <u>https://medium.com/netflix-techblog/more-efficient-mobile-encodes-</u> for-netflix-downloads-625d7b082909.

5 6

7

8

9

10

11

12

13

14

15

1

2

3

4

As confirmation, an article from Variety states that "Netflix has been 37. using H.264/AVC almost exclusively" and "That's why Netflix is also encoding its downloadable videos with a different flavor of H.264/AVC, which is also known as a different profile. (For the technically inclined: Netflix's streams are encoded with H.264/AVC Main, whereas its downloads come in H.264/AVC High. The company shared more details on its tech blog this week.) This isn't quite as effective as using VP9, but still allows Netflix to shave off some bits." See Janko Roettgers, Variety, December 2, 2016, "How Netflix Delivers Better-Looking Storage," Up Downloads Without Eating All Your Phone http://variety.com/2016/digital/news/netflix-offline-downloads-codecs-vp9-1201932502/.

38. In another entry of Netflix's "The Netflix Tech Blog," a test 16 comparing several different encoders was described: "H.264/AVC is a very 17 widely-used video compression standard on the Internet, with ubiquitous decoder 18 support on web browsers, TVs, mobile devices, and other consumer devices. x264 19 is the most established open-source software encoder for H.264/AVC...x265 is an 20 open-source HEVC encoder, originally ported from the x264 codebase. Concurrent 21 to HEVC, Google developed VP9 as a royalty-free video compression format and 22 released libvpx as an open-source software library for encoding VP9." See 23 https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-24 libvpx-a-sneak-peek-2e81e88f8b0f. 25

39. The Accused Instrumentalities determine a parameter of at least a
portion of a video data block. As shown below, examples of such parameters
include bitrate (or max video bitrate) and resolution parameters. Different

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 16 of 43 Page ID #:299

parameters correspond with different end applications. H.264 provides for multiple different ranges of such parameters, each included in the "profiles" and "levels" as defined by the H.264 standard, from the below shown paragraphs from a white paper and Wikipedia. *See* <u>http://www.axis.com/files/whitepaper/wp_h264_31669_en_0803_lo.pdf</u> at 5:

4. H.264 profiles and levels

The joint group involved in defining H.264 focused on creating a simple and clean solution, limiting options and features to a minimum. An important aspect of the standard, as with other video standards, is providing the capabilities in profiles (sets of algorithmic features) and levels (performance classes) that optimally support popular productions and common formats.

H.264 has seven profiles, each targeting a specific class of applications. Each profile defines what feature set the encoder may use and limits the decoder implementation complexity.

Network cameras and video encoders will most likely use a profile called the baseline profile, which is intended primarily for applications with limited computing resources. The baseline profile is the most suitable given the available performance in a real-time encoder that is embedded in a network video product. The profile also enables low latency, which is an important requirement of surveillance video and also particularly important in enabling real-time, pan/tilt/zoom (PTZ) control in PTZ network cameras.

H.264 has 11 levels or degree of capability to limit performance, bandwidth and memory requirements. Each level defines the bit rate and the encoding rate in macroblock per second for resolutions ranging from QCIF to HDTV and beyond. The higher the resolution, the higher the level required.

See https://en.wikipedia.org/wiki/H.264/MPEG-4 AVC:

Level	Max decod	ing speed	ed Max frame size		Max video bit rate for video coding layer (VCL) kbit/s			Examples for high resolution @ highest frame rate	
	Luma samples/s	Macroblocks/s	Luma samples	Macroblocks	Baseline, Extended and Main Profiles	High Profile	High 10 Profile	(max stored frames) Toggle additional details	
1	380,160	1,485	25,344	99	64	80	192	176×144@15.0 (
1b	380,160	1,485	25,344	99	128	160	384	176×144@15.0 (
1.1	768,000	3,000	101,376	396	192	240	576	352×288@7.5 (
1.2	1,536,000	6,000	101,376	396	384	480	1,152	352×288@15.2 (
1.3	3,041,280	11,880	101,376	396	768	960	2,304	352×288@30.0 (
2	3,041,280	11,880	101,376	396	2,000	2,500	6,000	352×288@30.0 (
2.1	5,068,800	19,800	202,752	792	4,000	5,000	12,000	352×576@25.0 (
2.2	5,184,000	20,250	414,720	1,620	4,000	5,000	12,000	720×576@12.5	
3	10,368,000	40,500	414,720	1,620	10,000	12,500	30,000	720×576@25.0	
3.1	27,648,000	108,000	921,600	3,600	14,000	17,500	42,000	1,280×720@30.0	
3.2	55,296,000	216,000	1,310,720	5,120	20,000	25,000	60,000	1,280×1,024@42.2	
4	62,914,560	245,760	2,097,152	8,192	20,000	25,000	60,000	2,048×1,024@30.0	
4.1	62,914,560	245,760	2,097,152	8,192	50,000	62,500	150,000	2,048×1,024@30.0 (
4.2	133,693,440	522,240	2,228,224	8,704	50,000	62,500	150,000	2,048×1,080@60.0	
5	150,994,944	589,824	5,652,480	22,080	135,000	168,750	405,000	3,672×1,536@26.7	
5.1	251,658,240	983,040	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@26.7 (
5.2	530,841,600	2,073,600	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@56.3	

40.A video data block is organized by the group of pictures (GOP)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 17 of 43 Page ID #:300

structure, which is a "collection of successive pictures within a coded video stream." See https://en.wikipedia.org/wiki/Group of pictures. A GOP structure can contain intra coded pictures (I picture or I frame), predictive coded pictures (P picture or P frame), bipredictive coded pictures (B picture or B frame) and direct coded pictures (D picture or D frames, or DC direct coded pictures which are used only MPEG-1 video). in See https://en.wikipedia.org/wiki/Video compression picture types (for descriptions of Р I frames, frames and В frames); https://en.wikipedia.org/wiki/MPEG-1#D-frames (for descriptions of D frames). Thus, at least a portion of a video data block would also make up a GOP structure and could also contain I frames, P frames, B frames and/or D frames. The GOP structure also reflects the size of a video data block, and the GOP structure can be controlled and used to fine-tune other parameters (e.g. bitrate, max video bitrate and resolution parameters) or even be considered as a parameter by itself.

41. Based on the bitrate and/or resolution parameter identified (e.g. 17 bitrate, max video bitrate, resolution, GOP structure or frame type within a GOP 18 structure), any H.264-compliant system such as the Accused Instrumentalities 19 would determine which profile (e.g., "baseline," "extended," "main", or "high") 20 corresponds with that parameter, then select between at least two asymmetric 21 compressors. If baseline or extended is the corresponding profile, then the system 22 will select a Context-Adaptive Variable Length Coding ("CAVLC") entropy 23 encoder. If main or high is the corresponding profile, then the system will select a 24 Context-Adaptive Binary Arithmetic Coding ("CABAC") entropy encoder. Both 25 encoders are asymmetric compressors because it takes a longer period of time for 26 27 them compress data than decompress data. See to to https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/: 28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 18 of 43 Page ID #:301

	Baseline	Extended	Main	High	High 10
I and P Slices	Yes	Yes	Yes	Yes	Yes
B Slices	No	Yes	Yes	Yes	Yes
SI and SP Slices	No	Yes	No	No	No
Multiple Reference Frames	Yes	Yes	Yes	Yes	Yes
In-Loop Deblocking Filter	Yes	Yes	Yes	Yes	Yes
CAVLC Entropy Coding	Yes	Yes	Yes	Yes	Yes
CABAC Entropy Coding	No	No	Yes	Yes	Yes
Flexible Macroblock Ordering (FMO)	Yes	Yes	No	No	No
Arbitrary Slice Ordering (ASO)	Yes	Yes	No	No	No
Redundant Slices (RS)	Yes	Yes	No	No	No
Data Partitioning	No	Yes	No	No	No
Interlaced Coding (PicAFF, MBAFF)	No	Yes	Yes	Yes	Yes
4:2:0 Chroma Format	Yes	Yes	Yes	Yes	Yes
Monochrome Video Format (4:0:0)	No	No	No	Yes	Yes
4:2:2 Chroma Format	No	No	No	No	No
4:4:4 Chroma Format	No	No	No	No	No
8 Bit Sample Depth	Yes	Yes	Yes	Yes	Yes
9 and 10 Bit Sample Depth	No	No	No	No	Yes
11 to 14 Bit Sample Depth	No	No	No	No	No
8×8 vs. 4×4 Transform Adaptivity	No	No	No	Yes	Yes
Quantization Scaling Matrices	No	No	No	Yes	Yes
Separate Cb and Cr QP control	No	No	No	Yes	Yes
Separate Color Plane Coding	No	No	No	No	No
Predictive Lossless Coding	No	No	No	No	No

See http://web.cs.ucla.edu/classes/fall03/cs218/paper/H.264_MPEG4_Tutorial.pdf

at 7:

The following table summarizes the two major types of entropy coding: Variable Length Coding (VLC) and Context Adaptive Binary Arithmetic Coding (CABAC). CABAC offers superior coding efficiency over VLC by adapting to the changing probability distribution of symbols, by exploiting correlation between symbols, and by adaptively exploiting bit correlations using arithmetic coding. H.264 also supports Context Adaptive Variable Length Coding (CAVLC) which offers superior entropy coding over VLC without the full cost of CABAC.

H.264 Entropy Coding - Comparison of Approaches

Characteristics	Variable Length Coding (VLC)	Context Adaptive Binary Arithmetic Coding(CABAC
• Where it is used	MPEG-2, MPEG-4 ASP	H.264/MPEG-4 AVC (high efficiency option)
Probability distribution	Static - Probabilities never change	Adaptive - Adjusts probabilities based on actual data
 Leverages correlation between symbols 	No - Conditional probabilities ignored	Yes - Exploits symbol correlations by using "contexts"
Non-integer code words	No - Low coding efficiency forhigh probability symbols	Yes - Exploits "arithmetic coding" which generates non-integer code words for higher efficiency

FIRST AMENDED COMPLAINT

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 19 of 43 Page ID #:302

1	Moreover, the H.264 Standard requires a bit-flag descriptor, which is set to
2	determine the correct decoder for the corresponding encoder. As shown below, if
3	the flag = 0, then CAVLC must have been selected as the encoder; if the flag = 1,
4	then CABAC must have been selected as the encoder. See
5	https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201304-
6	<u>S!!PDF-E&type=items</u> (Rec. ITU-T H.264 (04/2013)) at 80:

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two descriptors appear in the syntax tables as follows:

 If entropy_coding_mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied (Exp-Golomb coded, see clause 9.1 or CAVLC, see clause 9.2).

 Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table is applied (CABAC, see clause 9.3).

42. The Accused Instrumentalities compress the at least the portion of the data block with the selected one or more asymmetric compressors to provide one or more compressed data blocks, which can be organized in a GOP structure (see above). After its selection, the asymmetric compressor (CAVLC or CABAC) will compress the video data to provide various compressed data blocks, which can also be organized in a GOP structure, as discussed previously above. *See* https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/:

18 Entropy Coding

For entropy coding, H.264 may use an enhanced VLC, a more complex context-adaptive variable-length coding (CAVLC) or an ever more complex Context-adaptive binary-arithmetic coding (CABAC) which are complex techniques to losslessly compress syntax elements in the video stream knowing the probabilities of syntax elements in a given context. The use of CABAC can improve the compression of around 5-7%. CABAC may requires a 30-40% of total processing power to be accomplished.

See

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.602.1581&rep =rep1&type=pdf at 13:

Typical compression ratios to maintain excellent quality are:

- 10:1 for general images using JPEG
- 30:1 for general video using H.263 and MPEG-2
- 60:1 for general video using H.264 and WMV9
 - 19 FIRST AMENDED COMPLAINT

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

Case 2	:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 20 of 43 Page ID #:303
1	See <u>http://www.ijera.com/papers/Vol3_issue4/BM34399403.pdf</u> at 2:
2	Most visual communication systems today use Baseline Profile. Baseline is the simplest H.264
3	profile and defines, for example, zigzag scanning of the picture and using 4:2:0 (YUV video formats) chrominance sampling. In Baseline Profile, the
4	picture is split in blocks consisting of 4x4 pixels, and each block is processed separately. Another
5	important element of the Baseline Profile is the use of Universal Variable Length Coding (UVLC) and Context Adaptive Variable Length Coding
6	(CAVLC) entropy coding techniques. The Extended and Main Profiles includes the functionality of the Baseline Profile and add
7	improvements to the predictions algorithms. Since transmitting every single frame (think 30 frames per second for good quality video) is not feasible if you
8	are trying to reduce the bit rate 1000-2000 times, temporal and motion prediction are heavily used in
9	H.264, and allow transmitting only the difference between one frame and the previous frames. The result is spectacular efficiency gain, especially for
10	scenes with little change and motion. The High Profile is the most powerful profile in H.264, and it allows most efficient coding
11	of video. For example, large coding gain achieved through the use of Context Adaptive Binary
12	Arithmetic Coding (CABAC) encoding which is more efficient than the UVLC/CAVLC used in Baseline Profile.
12	The High Profile also uses adaptive transform that decides on the fly if 4x4 or 8x8-pixel blocks should be used. For example, 4x4 blocks are
13	used for the parts of the picture that are dense with detail, while parts that have little detail are transformed using 8x8 blocks.
15	43. Therefore, from at least the above, Netflix has directly infringed and
16	continues to infringe the '535 patent, for example, through its own use and testing
17	of the Accused Instrumentalities, which when used, practices the system claimed
18	by Claim 1 of the '535 patent, namely, a method, comprising: determining a
19	parameter or attribute of at least a portion of a data block having audio or video
20	data; selecting an access profile from among a plurality of access profiles based
21	upon the determined parameter or attribute; and compressing the at least the
22	portion of the data block with one or more compressors using asymmetric data
23	compression and information from the selected access profile to create one or more
24	compressed data blocks, the information being indicative of the one or more
25	compressors to apply to the at least the portion of the data block. Upon

information and belief, Netflix uses the Accused Instrumentalities to practice infringing methods for its own internal non-testing business purposes, while testing

28 the Accused Instrumentalities, and while providing technical support and repair

26

27

20

services for the Accused Instrumentalities to their customers.

44. On information and belief, the Accused Instrumentalities store at least a portion of the one or more compressed data blocks in buffers, hard disk, or other forms of memory/storage.

45. On information and belief, Netflix also directly infringes and continues to infringe other claims of the '535 patent.

46. On information and belief, all of the Accused Instrumentalities perform the claimed methods in substantially the same way, e.g., in the manner specified in the H.264 standard.

47. On information and belief, use of the Accused Instrumentalities in their ordinary and customary fashion results in infringement of the systems and/or methods claimed by the '535 patent.

48. On information and belief, Netflix has had knowledge of the '535 patent since at least the filing of this Complaint or shortly thereafter, and on information and belief, Netflix knew of the '535 patent and knew of its infringement, including by way of this lawsuit. By the time of trial, Netflix will have known and intended (since receiving such notice) that its continued actions would actively induce and contribute to the infringement of the claims of the '535 patent.

Upon information and belief, Netflix's affirmative acts of making, 49. 20 using, and selling the Accused Instrumentalities, and providing implementation 21 services and technical support to users of the Accused Instrumentalities, including, 22 e.g., through training, demonstrations, brochures, installation and user guides, have 23 induced and continue to induce users of the Accused Instrumentalities to use them 24 in their normal and customary way to infringe the '535 patent by practicing a 25 method, comprising: determining a parameter of at least a portion of a data block; 26 determining a parameter or attribute of at least a portion of a data block having 27 audio or video data; selecting an access profile from among a plurality of access 28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

profiles based upon the determined parameter or attribute; and compressing the at least the portion of the data block with one or more compressors using asymmetric 2 data compression and information from the selected access profile to create one or 3 more compressed data blocks, the information being indicative of the one or more 4 compressors to apply to the at least the portion of the data block. For example, 5 Netflix adopted H.264 as its video codec in its products/services, such as its 6 streaming services, and uses H.264 as an encoder, encode or codec. For similar 7 reasons, Netflix also induces its customers to use the Accused Instrumentalities to 8 infringe other claims of the '535 patent. Netflix specifically intended and was 9 aware that these normal and customary activities would infringe the '535 patent. 10 Netflix performed the acts that constitute induced infringement, and would induce actual infringement, with the knowledge of the '535 patent and with the 12 knowledge, or willful blindness to the probability, that the induced acts would 13 On information and belief, Netflix engaged in such constitute infringement. 14 inducement to promote the sales of the Accused Instrumentalities. Accordingly, 15 Netflix has induced and continues to induce users of the Accused Instrumentalities 16 to use the Accused Instrumentalities in their ordinary and customary way to 17 infringe the '535 patent, knowing that such use constitutes infringement of the '535 18 patent. Accordingly, Netflix has been, and currently is, inducing infringement of 19 the '535 patent, in violation of 35 U.S.C. § 271(b). 20

50. Netflix has also infringed, and continues to infringe, claims of the '535 patent by offering to commercially distribute, commercially distributing, 22 making, and/or importing the Accused Instrumentalities, which are used in 23 practicing the process, or using the systems, of the '535 patent, and constitute a 24 material part of the invention. Netflix knows the components in the Accused 25 Instrumentalities to be especially made or especially adapted for use in 26 infringement of the '535 patent, not a staple article, and not a commodity of 27 commerce suitable for substantial noninfringing use. Accordingly, Netflix has 28

> 22 FIRST AMENDED COMPLAINT

1

11

been, and currently is, contributorily infringing the '535 patent, in violation of 35 U.S.C. § 271(c). 2

By making, using, offering for sale, selling and/or importing into the 51. United States the Accused Instrumentalities, and touting the benefits of using the Accused Instrumentalities' compression features, Netflix has injured Realtime and is liable to Realtime for infringement of the '535 patent pursuant to 35 U.S.C. § 271.

8 52. As a result of Netflix's infringement of the '535 patent, Plaintiff Realtime is entitled to monetary damages in an amount adequate to compensate for 9 Netflix's infringement, but in no event less than a reasonable royalty for the use 10 made of the invention by Netflix, together with interest and costs as fixed by the Court.

COUNT III

INFRINGEMENT OF U.S. PATENT NO. 8,054,879

Plaintiff re-alleges and incorporates by reference the foregoing 53. paragraphs, as if fully set forth herein.

On information and belief, Netflix has made, used, offered for sale, 54. 17 sold and/or imported into the United States Netflix products that infringe the '879 18 patent, and continues to do so. By way of illustrative example, these infringing 19 products include, without limitation, Netflix's streaming video service; Netflix's 20 video encoders or codecs including x264, x265 and libvpx; and Netflix's mobile 21 encoders, encoders or codecs including AVCMain (H.264/AVC Main), 22 H.264/AVC High, VP9, AVCHi-Mobile and VP9-Mobile, and all versions and 23 '879 variations thereof since issuance of the 24 the patent ("Accused Instrumentalities"). 25

For example, an official website from Netflix known as "The Netflix 55. 26 Tech Blog" states that Netflix is "introducing two new types of mobile encodes – 27 AVCHi-Mobile and VP9-Mobile...All the changes combined result in better 28

1

3

4

5

6

7

11

12

13

14

15

16

video quality for the same bitrate compared to our current streams (AVCMain). 1 Many Netflix-ready devices receive streams which are encoded using the 2 3 H.264/AVC Main profile (AVCMain). This is a widely-used video compression format, with ubiquitous decoder support on web browsers, TVs, mobile devices, 4 and other consumer devices. However, newer formats are available that offer more 5 sophisticated video coding tools. For our mobile bitstreams we adopt two 6 compression formats: H.264/AVC High profile and VP9 (profile 0). Similar to 7 Main profile, the High profile of H.264/AVC enjoys broad decoder support. VP9, 8 a royalty-free format developed by Google, is supported on the majority of 9 Android devices, Chrome, and a growing number of consumer devices." (emphasis 10 added). See https://medium.com/netflix-techblog/more-efficient-mobile-encodesfor-netflix-downloads-625d7b082909. 12

As confirmation, an article from Variety states that "Netflix has been 13 56. using H.264/AVC almost exclusively" and "That's why Netflix is also encoding its 14 downloadable videos with a different flavor of H.264/AVC, which is also known 15 as a different profile. (For the technically inclined: Netflix's streams are encoded 16 with H.264/AVC Main, whereas its downloads come in H.264/AVC High. The 17 company shared more details on its tech blog this week.) This isn't quite as 18 effective as using VP9, but still allows Netflix to shave off some bits." See Janko 19 Roettgers, Variety, December 2, 2016, "How Netflix Delivers Better-Looking 20 Downloads Without Eating Up All Your Phone Storage," 21 http://variety.com/2016/digital/news/netflix-offline-downloads-codecs-vp9-22 1201932502/. 23

In another entry of Netflix's "The Netflix Tech Blog," a test 24 57. comparing several different encoders was described: "H.264/AVC is a very 25 widely-used video compression standard on the Internet, with ubiquitous decoder 26 support on web browsers, TVs, mobile devices, and other consumer devices. x264 27 is the most established open-source software encoder for H.264/AVC...x265 is an 28

> 24 FIRST AMENDED COMPLAINT

open-source HEVC encoder, originally ported from the x264 codebase. Concurrent
to HEVC, Google developed VP9 as a royalty-free video compression format and
released libvpx as an open-source software library for encoding VP9." *See*<u>https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-</u>
<u>libvpx-a-sneak-peek-2e81e88f8b0f.</u>

58. The Accused Instrumentalities receive a data block and determine a 6 data type associated with the received data block. Examples of data type include 7 whether the data block is a video data block, as well as other data types. The 8 Accused Instrumentalities select an access profile from a plurality of access 9 profiles based, at least in part, on a number of times in which the determined data 10 type is written to a storage device relative to a number of times that the determined 11 data type is read from the storage device. For example, a video data type, as well as 12 other data types, are associated with a number of times in which the data type is 13 written to a storage device relative to a number of times that the data type is read 14 from the storage device. The Accused Instrumentalities retrieve information from 15 the selected access profile, wherein said information comprises a compression 16 parameter. As shown below, examples of such parameters include bitrate (or max 17 video bitrate) and resolution parameters, as well as other parameters. 18 Different parameters correspond with different end applications. 19 H.264 provides for multiple different ranges of such parameters, each included in the "profiles" and 20 "levels" as defined by the H.264 standard, from the below shown paragraphs from 21 white Wikipedia. and See 22 a paper http://www.axis.com/files/whitepaper/wp h264 31669 en 0803 lo.pdf at 5: 23 24

> 25 FIRST AMENDED COMPLAINT

25

26

27

See <u>https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC</u>:

Level	Max decod	ling speed	Max fra	me size	Max video bit rate	Examples for high resolution @ highest frame rate		
	Luma samples/s	Macroblocks/s	Luma samples	Macroblocks	Baseline, Extended and Main Profiles	High Profile	High 10 Profile	(max stored frames) Toggle additional details
1	380,160	1,485	25,344	99	64	80	192	176×144@15.0 (4
1b	380,160	1,485	25,344	99	128	160	384	176×144@15.0 (4
1.1	768,000	3,000	101,376	396	192	240	576	352×288@7.5 (2
1.2	1,536,000	6,000	101,376	396	384	480	1,152	352×288@15.2 (6
1.3	3,041,280	11,880	101,376	396	768	960	2,304	352×288@30.0 (6
2	3,041,280	11,880	101,376	396	2,000	2,500	6,000	352×288@30.0 (6
2.1	5,068,800	19,800	202,752	792	4,000	5,000	12,000	352×576@25.0 (6
2.2	5,184,000	20,250	414,720	1,620	4,000	5,000	12,000	720×576@12.5 (5
3	10,368,000	40,500	414,720	1,620	10,000	12,500	30,000	720×576@25.0 (5
3.1	27,648,000	108,000	921,600	3,600	14,000	17,500	42,000	1,280×720@30.0 (5
3.2	55,296,000	216,000	1,310,720	5,120	20,000	25,000	60,000	1,280×1,024@42.2 (4
4	62,914,560	245,760	2,097,152	8,192	20,000	25,000	60,000	2,048×1,024@30.0 (4
4.1	62,914,560	245,760	2,097,152	8,192	50,000	62,500	150,000	2,048×1,024@30.0 (4
4.2	133,693,440	522,240	2,228,224	8,704	50,000	62,500	150,000	2,048×1,080@60.0 (4
5	150,994,944	589,824	5,652,480	22,080	135,000	168,750	405,000	3,672×1,536@26.7 (5
5.1	251,658,240	983,040	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@26.7 (5
5.2	530,841,600	2,073,600	9,437,184	36,864	240,000	300,000	720.000	4,096×2,304@56.3 (5

A video data block is organized by the group of pictures (GOP) 59. 14 structure, which is a "collection of successive pictures within a coded video 15 stream." See https://en.wikipedia.org/wiki/Group of pictures. A GOP structure 16 can contain intra coded pictures (I picture or I frame), predictive coded pictures (P 17 picture or P frame), bipredictive coded pictures (B picture or B frame) and direct 18 coded pictures (D picture or D frames, or DC direct coded pictures which are used 19 MPEG-1 only in video). See 20 https://en.wikipedia.org/wiki/Video compression picture types (for descriptions 21 of I frames, P frames and B frames); https://en.wikipedia.org/wiki/MPEG-1#D-22 <u>frames</u> (for descriptions of D frames). Thus, at least a portion of a video data block 23 would also make up a GOP structure and could also contain I frames, P frames, B 24 frames and/or D frames. The GOP structure also reflects the size of a video data 25 block, and the GOP structure can be controlled and used to fine-tune other 26 parameters (e.g. bitrate, max video bitrate and resolution parameters) or even be 27 considered as a parameter by itself. 28

1

2

3

4

5

6

7

8

9

10

11

12

13

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 27 of 43 Page ID #:310

60. Based on the bitrate and/or resolution parameter identified (e.g. 1 bitrate, max video bitrate, resolution, GOP structure or frame type within a GOP 2 structure), any H.264-compliant system such as the Accused Instrumentalities 3 would determine which profile (e.g., "baseline," "extended," "main", or "high") 4 corresponds with that parameter, then select between or among compressors. If 5 baseline or extended is the corresponding profile, then the system will select a 6 Context-Adaptive Variable Length Coding ("CAVLC") entropy encoder. If main 7 or high is the corresponding profile, then the system will select a Context-Adaptive 8 Binary Arithmetic Coding ("CABAC") entropy encoder. 9 Both encoders are asymmetric compressors because it takes a longer period of time for them to 10 than compress data decompress data. See 11 to https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/: 12 13 See http://web.cs.ucla.edu/classes/fall03/cs218/paper/H.264 MPEG4 Tutorial.pdf 14 15 at 7: The following table summarizes the two major types of entropy coding: Variable Length 16 Coding (VLC) and Context Adaptive Binary Arithmetic Coding (CABAC). CABAC offers superior coding efficiency over VLC by adapting to the changing probability distribution of symbols, by exploiting correlation between symbols, and by adaptively exploiting bit 17 correlations using arithmetic coding. H.264 also supports Context Adaptive Variable Length Coding (CAVLC) which offers superior entropy coding over VLC without the full cost of CABAC 18 H.264 Entropy Coding - Comparison of Approaches Variable Length Coding Context Adaptive Binary 19 Characteristics Arithmetic Coding(CABAC) (VLC) H.264/MPEG-4 AVC Where it is used MPEG-2. 20MPEG-4 ASP (high efficiency option) Adaptive - Adjusts Static - Probabilities never Probability distribution 21 change probabilities based on actual data Leverages correlation No - Conditional Yes - Exploits symbol 22 between symbols probabilities ignored correlations by using "contexts" Non-integer code words No - Low coding efficiency Yes - Exploits "arithmetic 23 forhigh probability symbols coding" which generates non-integer code words for higher efficiency 24 25 Moreover, the H.264 Standard requires a bit-flag descriptor, which is set to 26 determine the correct decoder for the corresponding encoder. As shown below, if the flag = 0, then CAVLC must have been selected as the encoder; if the flag = 1, 27 28 CABAC selected encoder. then must have been as the See 27 FIRST AMENDED COMPLAINT

2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 28 of 43 Page ID #:311 Case

- https://www.itu.int/rec/dologin pub.asp?lang=e&id=T-REC-H.264-201304-
- S!!PDF-E&type=items (Rec. ITU-T H.264 (04/2013)) at 80:

61. The Accused Instrumentalities compress said data block, to provide a compressed data block, based, at least in part, on said compression parameter, which can be organized in a GOP structure (see above). After its selection, the compressor (CAVLC or CABAC) will compress the video data to provide various compressed data blocks, which can also be organized in a GOP structure, as discussed previously above. See https://sonnati.wordpress.com/2007/10/29/how-h-

264-works-part-ii/:

11	Entropy Coding
12	For entropy coding, H.264 may use an enhanced VLC, a more complex context-adaptive variable-length coding (CAVLC) or an ever more complex Context-adaptive binary-arithmetic
13	coding (CABAC) which are complex techniques to losslessly compress syntax elements in the video stream knowing the probabilities of syntax elements in a given context. The use of
14	CABAC can improve the compression of around 5-7%. CABAC may requires a 30-40% of total processing power to be accomplished.
15 16	
17	See http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.602.1581&rep
18	= rep1&type=pdf at 13:
19	Typical compression ratios to maintain excellent quality are:
20	 10:1 for general images using JPEG 30:1 for general video using H.263 and MPEG-2
21	 60:1 for general video using H.264 and WMV9
22	
23 24	
25	
26	
27	
28	
	28
	FIRST AMENDED COMPLAINT

1	See http://www.ijera.com/papers/Vol3_issue4/BM34399403.pdf at 2:							
2	62. Therefore, from at least the above, Netflix has directly infringed and							
3	continues to infringe the '879 patent, for example, through its own use and testing							
4	of the Accused Instrumentalities, which when used, practices the method claimed							
5	Most visual communication systems today use Baseline Profile. Baseline is the simplest H.264							
6	profile and defines, for example, zigzag scanning of the picture and using 4:2:0 (YUV video formats) chrominance sampling. In Baseline Profile, the							
7	picture is split in blocks consisting of 4x4 pixels, and each block is processed separately. Another important element of the Baseline Profile is the use							
8	of Universal Variable Length Coding (UVLC) and Context Adaptive Variable Length Coding							
9	(CAVLC) entropy coding techniques. The Extended and Main Profiles includes the functionality of the Baseline Profile and add							
10	improvements to the predictions algorithms. Since transmitting every single frame (think 30 frames per second for good quality video) is not feasible if you							
11	are trying to reduce the bit rate 1000-2000 times, temporal and motion prediction are heavily used in							
12	H.264, and allow transmitting only the difference between one frame and the previous frames. The result is spectacular efficiency gain, especially for							
13	scenes with little change and motion. The High Profile is the most powerful profile in H.264, and it allows most efficient coding							
14	of video. For example, large coding gain achieved through the use of Context Adaptive Binary							
15	Arithmetic Coding (CABAC) encoding which is more efficient than the UVLC/CAVLC used in Baseline Profile.							
16	The High Profile also uses adaptive transform that decides on the fly if 4x4 or 8x8-pixel blocks about he word. For example, 4x4 blocks are							
10	blocks should be used. For example, 4x4 blocks are used for the parts of the picture that are dense with detail, while parts that have little detail are							
	transformed using 8x8 blocks.							

by Claim 1 of the '879 patent, namely, a method comprising: receiving a data 18 19 block; determining a data type associated with the received data block; selecting an access profile from a plurality of access profiles based, at least in part, on a number 20 of times in which the determined data type is written to a storage device relative to 21 a number of times that the determined data type is read from the storage device; 22 retrieving information from the selected access profile, wherein said information 23 comprises a compression parameter; and compressing said data block, to provide a 24 compressed data block, based, at least in part, on said compression parameter. 25 Upon information and belief, Netflix uses the Accused Instrumentalities to practice 26 infringing methods for its own internal non-testing business purposes, while testing 27 the Accused Instrumentalities, and while providing technical support and repair 28

services for the Accused Instrumentalities to their customers.

63. On information and belief, the Accused Instrumentalities store at least a portion of the one or more compressed data blocks in buffers, hard disk, or other forms of memory/storage.

64. On information and belief, Netflix also directly infringes and continues to infringe other claims of the '879 patent.

65. On information and belief, all of the Accused Instrumentalities perform the claimed methods in substantially the same way, e.g., in the manner specified in the H.264 standard.

66. On information and belief, use of the Accused Instrumentalities in their ordinary and customary fashion results in infringement of the systems and/or methods claimed by the '879 patent.

67. On information and belief, Netflix has had knowledge of the '879 patent since at least the filing of this Complaint or shortly thereafter, and on information and belief, Netflix knew of the '879 patent and knew of its infringement, including by way of this lawsuit. By the time of trial, Netflix will have known and intended (since receiving such notice) that its continued actions would actively induce and contribute to the infringement of the claims of the '879 patent.

Upon information and belief, Netflix's affirmative acts of making, 68. 20 using, and selling the Accused Instrumentalities, and providing implementation 21 services and technical support to users of the Accused Instrumentalities, including, 22 e.g., through training, demonstrations, brochures, installation and user guides, have 23 induced and continue to induce users of the Accused Instrumentalities to use them 24 in their normal and customary way to infringe the '879 patent by practicing a 25 method comprising: receiving a data block; determining a data type associated with 26 the received data block; selecting an access profile from a plurality of access 27 profiles based, at least in part, on a number of times in which the determined data 28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

type is written to a storage device relative to a number of times that the determined data type is read from the storage device; retrieving information from the selected access profile, wherein said information comprises a compression parameter; and compressing said data block, to provide a compressed data block, based, at least in part, on said compression parameter. For example, Netflix adopted H.264 as its video codec in its products/services, such as its streaming services, and uses H.264 as an encoder, encode or codec. For similar reasons, Netflix also induces its customers to use the Accused Instrumentalities to infringe other claims of the '879 Netflix specifically intended and was aware that these normal and patent. customary activities would infringe the '879 patent. Netflix performed the acts that constitute induced infringement, and would induce actual infringement, with the knowledge of the '879 patent and with the knowledge, or willful blindness to the probability, that the induced acts would constitute infringement. On information and belief, Netflix engaged in such inducement to promote the sales of the Accused Instrumentalities. Accordingly, Netflix has induced and continues to induce users of the Accused Instrumentalities to use the Accused Instrumentalities in their ordinary and customary way to infringe the '879 patent, knowing that such use constitutes infringement of the '879 patent. Accordingly, Netflix has been, and currently is, inducing infringement of the '879 patent, in violation of 35 U.S.C. § 271(b).

69. Netflix has also infringed, and continues to infringe, claims of the '879 patent by offering to commercially distribute, commercially distributing, 22 making, and/or importing the Accused Instrumentalities, which are used in 23 practicing the process, or using the systems, of the '879 patent, and constitute a 24 material part of the invention. Netflix knows the components in the Accused 25 Instrumentalities to be especially made or especially adapted for use in 26 infringement of the '879 patent, not a staple article, and not a commodity of 27 commerce suitable for substantial noninfringing use. Accordingly, Netflix has 28

> 31 FIRST AMENDED COMPLAINT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

been, and currently is, contributorily infringing the '879 patent, in violation of 35 U.S.C. § 271(c).

By making, using, offering for sale, selling and/or importing into the 70. United States the Accused Instrumentalities, and touting the benefits of using the Accused Instrumentalities' compression features, Netflix has injured Realtime and is liable to Realtime for infringement of the '879 patent pursuant to 35 U.S.C. § 271.

8 71. As a result of Netflix's infringement of the '879 patent, Plaintiff Realtime is entitled to monetary damages in an amount adequate to compensate for 9 Netflix's infringement, but in no event less than a reasonable royalty for the use 10 made of the invention by Netflix, together with interest and costs as fixed by the Court.

COUNT IV

INFRINGEMENT OF U.S. PATENT NO. 9,769,477

Plaintiff re-alleges and incorporates by reference the foregoing 72. paragraphs, as if fully set forth herein.

On information and belief, Netflix has made, used, offered for sale, 73. 17 sold and/or imported into the United States Netflix products that infringe the '477 18 patent, and continues to do so. By way of illustrative example, these infringing 19 products include, without limitation, Netflix's streaming video service; Netflix's 20 video encoders or codecs including x264, x265 and libvpx; and Netflix's mobile 21 encoders, encoders or codecs including AVCMain (H.264/AVC Main), 22 H.264/AVC High, VP9, AVCHi-Mobile and VP9-Mobile, and all versions and 23 variations thereof since issuance of the 24 the '477 patent ("Accused Instrumentalities"). 25

For example, an official website from Netflix known as "The Netflix 74. 26 Tech Blog" states that Netflix is "introducing two new types of mobile encodes – 27 AVCHi-Mobile and VP9-Mobile...All the changes combined result in better 28

1

2

3

4

5

6

7

11

12

13

14

15

16

video quality for the same bitrate compared to our current streams (AVCMain). Many Netflix-ready devices receive streams which are encoded using the H.264/AVC Main profile (AVCMain). This is a widely-used video compression format, with ubiquitous decoder support on web browsers, TVs, mobile devices, 4 and other consumer devices. However, newer formats are available that offer more sophisticated video coding tools. For our mobile bitstreams we adopt two 6 compression formats: H.264/AVC High profile and VP9 (profile 0). Similar to Main profile, the High profile of H.264/AVC enjoys broad decoder support. VP9, a royalty-free format developed by Google, is supported on the majority of 9 Android devices, Chrome, and a growing number of consumer devices." (emphasis 10 added). See https://medium.com/netflix-techblog/more-efficient-mobile-encodesfor-netflix-downloads-625d7b082909.

As confirmation, an article from Variety states that "Netflix has been 13 75. using H.264/AVC almost exclusively" and "That's why Netflix is also encoding its 14 downloadable videos with a different flavor of H.264/AVC, which is also known 15 as a different profile. (For the technically inclined: Netflix's streams are encoded 16 with H.264/AVC Main, whereas its downloads come in H.264/AVC High. The 17 company shared more details on its tech blog this week.) This isn't quite as 18 effective as using VP9, but still allows Netflix to shave off some bits." See Janko 19 Roettgers, Variety, December 2, 2016, "How Netflix Delivers Better-Looking 20 Downloads Without Eating Up All Your Phone Storage," 21 http://variety.com/2016/digital/news/netflix-offline-downloads-codecs-vp9-22 1201932502/. 23

In another entry of Netflix's "The Netflix Tech Blog," a test 24 76. comparing several different encoders was described: "H.264/AVC is a very 25 widely-used video compression standard on the Internet, with ubiquitous decoder 26 support on web browsers, TVs, mobile devices, and other consumer devices. x264 27 is the most established open-source software encoder for H.264/AVC...x265 is an 28

1

2

3

5

7

8

11

12

1	open-source HEVC encoder, originally ported from the x264 codebase. Concurrent
2	to HEVC, Google developed VP9 as a royalty-free video compression format and
3	released libvpx as an open-source software library for encoding VP9." See
4	https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-
5	libvpx-a-sneak-peek-2e81e88f8b0f.
6	The Accused Instrumentalities determine a parameter of at least a portion of a
7	4. H.264 profiles and levels
8	The joint group involved in defining H.264 focused on creating a simple and clean solution, limiting options and features to a minimum. An important aspect of the standard, as with other video standards,
9	is providing the capabilities in profiles (sets of algorithmic features) and levels (performance classes) that optimally support popular productions and common formats.
10 11	H.264 has seven profiles, each targeting a specific class of applications. Each profile defines what feature set the encoder may use and limits the decoder implementation complexity.
12	Network cameras and video encoders will most likely use a profile called the baseline profile, which is
13	intended primarily for applications with limited computing resources. The baseline profile is the most suitable given the available performance in a real-time encoder that is embedded in a network video
14	product. The profile also enables low latency, which is an important requirement of surveillance video and also particularly important in enabling real-time, pan/tilt/zoom (PTZ) control in PTZ network cameras.
15 16	H.264 has 11 levels or degree of capability to limit performance, bandwidth and memory requirements. Each level defines the bit rate and the encoding rate in macroblock per second for resolutions ranging from QCIF to HDTV and beyond. The higher the resolution, the higher the level required.
17	video data block. As shown below, examples of such parameters include bitrate
18	(or max video bitrate) and resolution parameters. Different parameters correspond
19	with different end applications. H.264 provides for multiple different ranges of
20	such parameters, each included in the "profiles" and "levels" as defined by the
21	H.264 standard, from the below shown paragraphs from a white paper and
22	Wikipedia. See
23	http://www.axis.com/files/whitepaper/wp_h264_31669_en_0803_lo.pdf at 5:
24	See https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC:
25	
26	
27	
28	
	34
	FIRST AMENDED COMPLAINT

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 35 of 43 Page ID #:318

Level	Max decoding speed Max frame			Max video bit rate		for video codi kbit/s	ng layer (VCL)	Examples for high resolution @ highest frame rate	
	Luma samples/s	Macroblocks/s	Luma samples	Macroblocks	Baseline, Extended and Main Profiles	High Profile	High 10 Profile	(max stored frames) Toggle additional details	
1	380,160	1,485	25,344	99	64	80	192	176×144@15.0 (4	
1b	380,160	1,485	25,344	99	128	160	384	176×144@15.0 (4	
1.1	768,000	3,000	101,376	396	192	240	576	352×288@7.5 (2	
1.2	1,536,000	6,000	101,376	396	384	480	1,152	352×288@15.2 (
1.3	3,041,280	11,880	101,376	396	768	960	2,304	352×288@30.0 (
2	3,041,280	11,880	101,376	396	2,000	2,500	6,000	352×288@30.0 (
2.1	5,068,800	19,800	202,752	792	4,000	5,000	12,000	352×576@25.0 (
2.2	5,184,000	20,250	414,720	1,620	4,000	5,000	12,000	720×576@12.5 (
3	10,368,000	40,500	414,720	1,620	10,000	12,500	30,000	720×576@25.0 (
3.1	27,648,000	108,000	921,600	3,600	14,000	17,500	42,000	1,280×720@30.0 (
3.2	55,296,000	216,000	1,310,720	5,120	20,000	25,000	60,000	1,280×1,024@42.2 (4	
4	62,914,560	245,760	2,097,152	8,192	20,000	25,000	60,000	2,048×1,024@30.0 (4	
4.1	62,914,560	245,760	2,097,152	8,192	50,000	62,500	150,000	2,048×1,024@30.0 (4	
4.2	133,693,440	522,240	2,228,224	8,704	50,000	62,500	150,000	2,048×1,080@60.0 (4	
5	150,994,944	589,824	5,652,480	22,080	135,000	168,750	405,000	3,672×1,536@26.7 (
5.1	251,658,240	983,040	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@26.7 (
5.2	530,841,600	2,073,600	9,437,184	36,864	240,000	300,000	720,000	4,096×2,304@56.3 (

77. A video data block is organized by the group of pictures (GOP) structure, which is a "collection of successive pictures within a coded video stream." See https://en.wikipedia.org/wiki/Group of pictures. A GOP structure can contain intra coded pictures (I picture or I frame), predictive coded pictures (P picture or P frame), bipredictive coded pictures (B picture or B frame) and direct coded pictures (D picture or D frames, or DC direct coded pictures which are used MPEG-1 only in video). See https://en.wikipedia.org/wiki/Video compression picture types (for descriptions of I frames, P frames and B frames); https://en.wikipedia.org/wiki/MPEG-1#Dframes (for descriptions of D frames). Thus, at least a portion of a video data block would also make up a GOP structure and could also contain I frames, P frames, B frames and/or D frames. The GOP structure also reflects the size of a video data block, and the GOP structure can be controlled and used to fine-tune other parameters (e.g. bitrate, max video bitrate and resolution parameters) or even be considered as a parameter by itself.

78. Based on the bitrate and/or resolution parameter identified (e.g.
bitrate, max video bitrate, resolution, GOP structure or frame type within a GOP
structure), any H.264-compliant system such as the Accused Instrumentalities
would determine which profile (e.g., "baseline," "extended," "main", or "high")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

35

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 36 of 43 Page ID #:319

corresponds with that parameter, then select between at least two asymmetric compressors. If baseline or extended is the corresponding profile, then the system 2 will select a Context-Adaptive Variable Length Coding ("CAVLC") entropy 3 encoder. If main or high is the corresponding profile, then the system will select a 4 Context-Adaptive Binary Arithmetic Coding ("CABAC") entropy encoder. Both 5 encoders are asymmetric compressors because it takes a longer period of time for 6 decompress 7 them compress data than data. See to to

https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/:

The following table summarizes the two major types of entropy coding: Variable Length Coding (VLC) and Context Adaptive Binary Arithmetic Coding (CABAC). CABAC offers superior coding efficiency over VLC by adapting to the changing probability distribution of symbols, by exploiting correlation between symbols, and by adaptively exploiting bit correlations using arithmetic coding. H.264 also supports Context Adaptive Variable Length Coding (CAVLC) which offers superior entropy coding over VLC without the full cost of CABAC.

H.264 Entropy Coding - Comparison of Approaches

Characteristics	Variable Length Coding (VLC)	Context Adaptive Binary Arithmetic Coding(CABAC)
• Where it is used	MPEG-2, MPEG-4 ASP	H.264/MPEG-4 AVC (high efficiency option)
Probability distribution	Static - Probabilities never change	Adaptive - Adjusts probabilities based on actual data
 Leverages correlation between symbols 	No - Conditional probabilities ignored	Yes - Exploits symbol correlations by using "contexts"
 Non-integer code words 	No - Low coding efficiency forhigh probability symbols	Yes - Exploits "arithmetic coding" which generates non-integer code words for higher efficiency

1

8

9

10

11

12

13

14

15

16

17

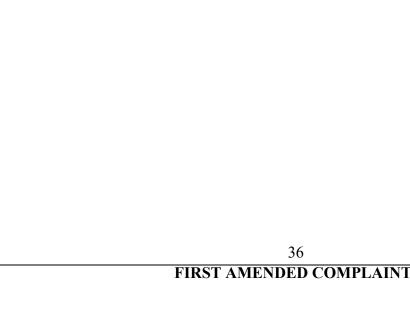
18

19

20

21

22


23

24

25

26

27

Case	2:19-cv-06361-GW-JC	Document 14	-iled (09/20/	'19	Page	e 37	of 43	B Page ID #:3	20
1	See <u>http://web.cs.uc</u>	la.edu/classes/	<u>fal103</u>	<u>8/cs21</u>	<u>8/pa</u>	aper/	<u>H.20</u>	<u>54_N</u>	1PEG4_Tutor	<u>rial.pdf</u>
2	at 7:									
3			Baseline	Extended	Main	High	High 10			
4		I and P Slices B Slices	Yes No	Yes Yes	Yes Yes	Yes Yes	Yes Yes	_		
4		SI and SP Slices Multiple Reference	No Yes	Yes Yes	No Yes	No Yes	No Yes			
5		Frames In-Loop Deblocking Filter	Yes	Yes	Yes	Yes	Yes			
6		CAVLC Entropy Coding CABAC Entropy Coding	Yes No	Yes	Yes Yes	Yes	Yes			
7		Flexible Macroblock Ordering (FMO) Arbitrary Slice Ordering	Yes	Yes	No	No	No			
7		(ASO) Redundant Slices (RS)	Yes	Yes	No	No	No	_		
8		Data Partitioning	No No	Yes Yes	No Yes	No Yes	No Yes	_		
9		(PicAFF, MBAFF) 4:2:0 Chroma Format	Yes	Yes	Yes	Yes	Yes	_		
7		Monochrome Video Format (4:0:0) 4:2:2 Chroma Format	No	No	No	Yes	Yes	_		
10		4:4:4 Chroma Format	No	No	No	No	No			
11		8 Bit Sample Depth 9 and 10 Bit Sample Depth	Yes No	Yes No	Yes No	Yes	Yes	_		
11		11 to 14 Bit Sample Depth	No	No	No	No	No			
12		8×8 vs. 4×4 Transform Adaptivity	No	No	No	Yes	Yes			
13		Quantization Scaling Matrices Separate Cb and Cr QP	No	No	No	Yes	Yes	_		
		control Separate Color Plane	No	No	No	No	No	_		
14		Coding Predictive Lossless	No	No	No	No	No			
15										
Moreover, the H.264 Standard requires a bit-flag descriptor, which							s set to			
	determine the correc	t decoder for the	he co	rresp	ondi	ng e	ncoo	der.	As shown be	low, if
17								$a\sigma = 1$		
18							encoder.	See		
19 https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-20130						264-201304-				
20	S!!PDF-E&type=iter	• _	-						.204 201304	
21				(-		•))	9			
22	entropy_coding_mode_f descriptors appear in the s		decoding	g method	to be	applied	for th	e synta	x elements for which	two
23	 If entropy_coding_m (Exp-Golomb coded, 	ode_flag is equal to 0, th see clause 9.1 or CAVL	he metho C, see cl	od specif lause 9.2)	ied by).	the left	descrip	ptor in t	the syntax table is app	olied
24	 Otherwise (entropy_original control of the control of	coding_mode_flag is equ see clause 9.3).	ual to 1),	the meth	iod spe	cified b	y the r	ight des	scriptor in the syntax t	able
25	79. The Acc	cused Instrume	ntalit	ties co	omp	ress	the a	at lea	ast the portion	of the
26	79. The Accused Instrumentalities compress the at least the portion of the data block with the selected one or more asymmetric compressors to provide one						con	npres	ssors to provi	de one
20	or more compressed data blocks, which can be organized in a GOP structure (see									
20		data blocks, w	vhich	can l	be o	rgan	izea	III a	GOP structu	re (see
						-				
27	or more compressed					-				
27	or more compressed		mme	tric co 37	omp	resso	or (C			
27	or more compressed	ection, the asy	mme	tric co 37	omp	resso	or (C			

Case 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 Page 38 of 43 Page ID #:321

1	compress the video data to provide various compressed data blocks, which can also							
2	be organized in a GOP structure, as discussed previously above. See							
3	https://sonnati.wordpress.com/2007/10/29/how-h-264-works-part-ii/:							
4	Entropy Coding							
5	Entropy Coding For entropy coding, H.264 may use an enhanced VLC, a more complex context-adaptive variable-length coding (CAVLC) or an ever more complex Context-adaptive binary-arithmetic							
6	coding (CABAC) which are complex techniques to losslessly compress syntax elements in the video stream knowing the probabilities of syntax elements in a given context. The use of CABAC can improve the compression of around 5-7%. CABAC may requires a 30-40% of total							
7	processing power to be accomplished.							
8	See							
9	http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.602.1581&rep							
10	<u>=rep1&type=pdf</u> at 13:							
11	 Typical compression ratios to maintain excellent quality are: 10:1 for general images using JPEG 							
12	 30:1 for general video using H.263 and MPEG-2 60:1 for general video using H.264 and WMV9 							
13								
14	See http://www.ijera.com/papers/Vol3_issue4/BM34399403.pdf at 2:							
15	Most visual communication systems today use Baseline Profile. Baseline is the simplest H.264							
16 17	profile and defines, for example, zigzag scanning of the picture and using 4:2:0 (YUV video formats) chrominance sampling. In Baseline Profile, the picture is split in blocks consisting of 4x4 pixels, and each block is processed separately. Another important element of the Baseline Profile is the use of Universal Variable Length Coding (UVLC) and Context Adaptive Variable Length Coding (CAVLC) entropy coding techniques.							
17								
10								
20	The Extended and Main Profiles includes the functionality of the Baseline Profile and add improvements to the predictions algorithms. Since							
21	transmitting every single frame (think 30 frames per second for good quality video) is not feasible if you							
22	are trying to reduce the bit rate 1000-2000 times, temporal and motion prediction are heavily used in H.264, and allow transmitting only the difference							
23	between one frame and the previous frames. The result is spectacular efficiency gain, especially for scenes with little change and motion.							
24	The High Profile is the most powerful profile in H.264, and it allows most efficient coding of video. For example, large coding gain achieved							
25	through the use of Context Adaptive Binary Arithmetic Coding (CABAC) encoding which is more efficient than the UVLC/CAVLC used in							
26	Baseline Profile. The High Profile also uses adaptive transform that decides on the fly if 4x4 or 8x8-pixel							
27	blocks should be used. For example, 4x4 blocks are used for the parts of the picture that are dense with							
28	detail, while parts that have little detail are transformed using 8x8 blocks.							
	80. Therefore, from at least the above, Netflix has directly infringed and 38							
	FIRST AMENDED COMPLAINT							

continues to infringe the '477 patent, for example, through its own use and testing of the Accused Instrumentalities, which when used, practices the system claimed by Claim 1 of the '477 patent, namely, a plurality of different asymmetric data compression encoders, wherein each asymmetric data compression encoder of the plurality of different asymmetric data compression encoders is configured to utilize one or more data compression algorithms, and wherein a first asymmetric data compression encoder of the plurality of different asymmetric data compression encoders is configured to compress data blocks containing video or image data at a higher data compression rate than a second asymmetric data compression encoder of the plurality of different asymmetric data compression encoders; and one or more processors configured to: determine one or more data parameters, at least one of the determined one or more data parameters relating to a throughput of a communications channel measured in bits per second; and select one or more asymmetric data compression encoders from among the plurality of different asymmetric data compression encoders based upon, at least in part, the determined one or more data parameters. Upon information and belief, Netflix uses the Accused Instrumentalities to practice infringing methods for its own internal nontesting business purposes, while testing the Accused Instrumentalities, and while providing technical support and repair services for the Accused Instrumentalities to their customers.

81. On information and belief, the Accused Instrumentalities store at least
a portion of the one or more compressed data blocks in buffers, hard disk, or other
forms of memory/storage.

24 82. On information and belief, Netflix also directly infringes and
25 continues to infringe other claims of the '477 patent.

83. On information and belief, all of the Accused Instrumentalities
perform the claimed methods in substantially the same way, e.g., in the manner
specified in the H.264 standard.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

84. On information and belief, use of the Accused Instrumentalities in their ordinary and customary fashion results in infringement of the systems and/or methods claimed by the '477 patent.

85. On information and belief, Netflix has had knowledge of the '477 patent since at least the filing of this Complaint or shortly thereafter, and on information and belief, Netflix knew of the '477 patent and knew of its infringement, including by way of this lawsuit. By the time of trial, Netflix will have known and intended (since receiving such notice) that its continued actions would actively induce and contribute to the infringement of the claims of the '477 patent.

86. Upon information and belief, Netflix's affirmative acts of making, 11 using, and selling the Accused Instrumentalities, and providing implementation 12 services and technical support to users of the Accused Instrumentalities, including, 13 e.g., through training, demonstrations, brochures, installation and user guides, have 14 induced and continue to induce users of the Accused Instrumentalities to use them 15 in their normal and customary way to infringe the '477 patent by practicing a 16 plurality of different asymmetric data compression encoders, wherein each 17 asymmetric data compression encoder of the plurality of different asymmetric data 18 compression encoders is configured to utilize one or more data compression 19 algorithms, and wherein a first asymmetric data compression encoder of the 20 plurality of different asymmetric data compression encoders is configured to 21 compress data blocks containing video or image data at a higher data compression 22 rate than a second asymmetric data compression encoder of the plurality of 23 different asymmetric data compression encoders; and one or more processors 24 configured to: determine one or more data parameters, at least one of the 25 determined one or more data parameters relating to a throughput of a 26 communications channel measured in bits per second; and select one or more 27 asymmetric data compression encoders from among the plurality of different 28

1

2

3

4

5

6

7

8

9

asymmetric data compression encoders based upon, at least in part, the determined one or more data parameters. For example, Netflix adopted H.264 as its video codec in its products/services, such as its streaming services, and uses H.264 as an encoder, encode or codec. For similar reasons, Netflix also induces its customers to use the Accused Instrumentalities to infringe other claims of the '477 patent. Netflix specifically intended and was aware that these normal and customary activities would infringe the '477 patent. Netflix performed the acts that constitute induced infringement, and would induce actual infringement, with the knowledge of the '477 patent and with the knowledge, or willful blindness to the probability, that the induced acts would constitute infringement. On information and belief, Netflix engaged in such inducement to promote the sales of the Accused Instrumentalities. Accordingly, Netflix has induced and continues to induce users of the Accused Instrumentalities to use the Accused Instrumentalities in their ordinary and customary way to infringe the '477 patent, knowing that such use constitutes infringement of the '477 patent. Accordingly, Netflix has been, and currently is, inducing infringement of the '477 patent, in violation of 35 U.S.C. § 271(b).

Netflix has also infringed, and continues to infringe, claims of the 18 87. '477 patent by offering to commercially distribute, commercially distributing, 19 making, and/or importing the Accused Instrumentalities, which are used in 20 practicing the process, or using the systems, of the '477 patent, and constitute a 21 material part of the invention. Netflix knows the components in the Accused 22 Instrumentalities to be especially made or especially adapted for use in 23 infringement of the '477 patent, not a staple article, and not a commodity of 24 commerce suitable for substantial noninfringing use. Accordingly, Netflix has 25 been, and currently is, contributorily infringing the '477 patent, in violation of 35 26 U.S.C. § 271(c). 27

28

88. By making, using, offering for sale, selling and/or importing into the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

United States the Accused Instrumentalities, and touting the benefits of using the Accused Instrumentalities' compression features, Netflix has injured Realtime and is liable to Realtime for infringement of the '477 patent pursuant to 35 U.S.C. § 271.

89. As a result of Netflix's infringement of the '477 patent, Plaintiff Realtime is entitled to monetary damages in an amount adequate to compensate for Netflix's infringement, but in no event less than a reasonable royalty for the use made of the invention by Netflix, together with interest and costs as fixed by the Court.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff Realtime respectfully requests that this Court enter: a. A judgment in favor of Plaintiff that Netflix has infringed, literally and/or under the doctrine of equivalents, the '046, '535, '879, and '477 patents (the "asserted patents" or "patents-in-suit");

b. A judgment and order requiring Netflix to pay Plaintiff its damages,
costs, expenses, and prejudgment and post-judgment interest for its infringement of
the asserted patents, as provided under 35 U.S.C. § 284;

c. A judgment and order requiring Netflix to provide an accounting and
 to pay supplemental damages to Realtime, including without limitation,
 prejudgment and post-judgment interest;

d. A judgment and order finding that this is an exceptional case within
the meaning of 35 U.S.C. § 285 and awarding to Plaintiff its reasonable attorneys'
fees against Netflix; and

Any and all other relief as the Court may deem appropriate and just 42

FIRST AMENDED COMPLAINT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

28

e.

Case	se 2:19-cv-06361-GW-JC Document 14 Filed 09/20/19 F	Page 43 of 43 Page ID #:326								
1	1 under the circumstances.									
2	2 DEMAND FOR JURY	DEMAND FOR JURY TRIAL								
3	³ Plaintiff, under Rule 38 of the Federal Rule	es of Civil Procedure, requests a								
4	4									
5	5 trial by jury of any issues so triable by right.									
6	6 Respectfull	y submitted,								
7	7 DATED: September 20, 2019 RUSS, AU	GUST & KABAT								
8	But /s/ Pozz	n Mivzaio								
9										
10	0 Marc A. Fe Email: <u>mfer</u>	nster (CA SBN 181067) nster@raklaw.com								
11	Brian D. Le Email: bled	nster@raklaw.com edahl (CA SBN 186579) ahl@raklaw.com lie (CA SBN 246953)								
12	2 Reza Mirza Email: <u>rmir</u> Baul Kroog	rzaie@raklaw.com er (CA SBN 229074)								
13 14	Email: pkrc	ng (CA SBN 229074)								
14	5 Email: jchu Philin X W	ing@raklaw.com Vang (CA SBN 262239) ng@raklaw.com								
16	6 2424 W1 s	hire Boulevard, 12th Floor								
	1012-12-4 Witshife Dodecvard, 12-11 100117Los Angeles, CA 9002517Telephone: 310/826-7474Facsimile 310/826-6991									
18	8									
19	9 Attorneys f Realtime A	or Plaintiff daptive Streaming LLC								
20	0									
21	1									
22	2									
23	3									
24	4									
25	5									
26	6									
27	7									
28	8									
	43									
	FIRST AMENDED COMP									