Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 1 of 40

UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS
WACO DIVISION

BCS SOFTWARE, LLC,

Plaintiff Case No. 6:20-cv-00695

JURY TRIAL DEMANDED

FACEBOOK, INC.,

Defendant

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff BCS Software, LLC (“Plaintiff” or “BCS”) hereby asserts the following
claims for patent infringement against Facebook, Inc. (“Defendant” or “Facebook”), and

alleges, on information and belief, as follows:

THE PARTIES

1. BCS Software, LLL.C is a limited liability company organized and existing under
the laws of the Texas with its principal place of business in Austin, Texas.

2. Facebook is a corporation organized and existing under the laws of the State of
Delaware having a principal place of business at 1 Hacker Way, Bldg. 10, Menlo Park,
California 94025-1456.

3. Facebook may be served with process through its registered agent, Corporation Service
Company, DBA CSC — Lawyers Inco, 211 East 7" Street, Suite 620, Austin, Texas 78701.

4. On information and belief, since about April 2009, Facebook has been registered to do

business in the state of Texas under Texas SOS file number 0801108427.

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 2 of 40

JURISDICTION AND VENUE

5. This action arises under the patent laws of the United States, 35 U.S.C. § 1, et seq.
This Court has subject matter jurisdiction under 28 U.S.C. §§ 1331 and 1338(a).

6. Defendant has committed acts of infringement in this judicial district.

7. On information and belief, Defendant has a regular and established place of
business in this judicial district at 9420 Research Blvd, Austin, Texas 78759.

8. On information and belief, the Court has personal jurisdiction over Defendant
because Defendant has committed, and continues to commit, acts of infringement in the
state of Texas, has conducted business in the state of Texas, and/or has engaged in
continuous and systematic activities in the state of Texas.

9. On information and belief, Defendant’s instrumentalities that are alleged herein
to infringe were and continue to be used, imported, offered for sale, and/or sold in the
Western District of Texas.

10. Venue is proper in the Western District of Texas pursuant to 28 U.S.C. § 1400(b).

U.S. PATENT NO. 7,890,809

11. BCS is the owner, by assignment, of U.S. Patent No. 7,890,809 (“the ’809 Patent”),
entitled HIGH LEVEL OPERATIONAL SUPPORT SYSTEM, which issued on February
15, 2011. A copy of the 809 Patent is attached as Exhibit A.

12. The ’809 Patent is valid, enforceable, and was duly issued in full compliance with
Title 35 of the United States Code.

13. The ’809 Patent was invented by Messrs. Blaine Nye and David Sze Hong.

14. The priority date for the 809 Patent is at least May 1, 2003.

15. The expiration date of the 809 Patent is August 21, 2023.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 2

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 3 of 40

16. The ’809 Patent has been referenced by 18 United States Patents, United States
Patent Applications and foreign patents.

17. The ’809 Patent was examined by United States Patent Examiner Joshua Lohn.
During the examination of the ’809 Patent, the United States Patent Examiner searched
for prior art in the following US Classifications: 714/38, 714/47, 719/320.

18. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent No. 6,748,555 to
Teegan et al as one of the most relevant prior art references found during the search.
19. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent No. 6,862,698 to
Shyu as one of the most relevant prior art references found during the search.

20. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent No. 7,003,560 to
Mullen et al as one of the most relevant prior art references found during the search.
21. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent No. 7,100,195 to
Underwood as one of the most relevant prior art references found during the search.

22. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent Application No.
2003/0037288 by Harper et al as one of the most relevant prior art references found
during the search.

23. After conducting a search for prior art during the examination of the ’809 Patent,

the United States Patent Examiner identified and cited U.S. Patent Application No.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 3

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 4 of 40

2003/0204791 by Helgren et al as one of the most relevant prior art references found
during the search.

24. After conducting a search for prior art during the examination of the 809 Patent,
the United States Patent Examiner identified and cited U.S. Patent Application No.
2004/0073566 by Trivedi as one of the most relevant prior art references found during
the search.

25. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent Application No.
2004/0088401 by Tripathi et al as one of the most relevant prior art references found
during the search.

26. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent Application No.
2005/0044535 by Coppert as one of the most relevant prior art references found during
the search.

27. After conducting a search for prior art during the examination of the ’809 Patent,
the United States Patent Examiner identified and cited U.S. Patent Application No.
6,748,555 by Shyu as one of the most relevant prior art references found during the
search.

28. The '809 Patent relates to:

A high level Operational Support System (OSS) framework provides the
infrastructure and analytical system to enable all applications and systems
to be managed dynamically at runtime regardless of platform or
programming technology. Applications are automatically discovered and
managed. Java applications have the additional advantage of auto-
inspection (through reflection) to determine their manageability. Resources
belonging to application instances are associated and managed with that

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 4

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 5 of 40

application instance. This provides operators the ability to not only manage
an application, but its distributed components as well. They are presented
as belonging to a single application instance node that can be monitored,
analyzed, and managed. The OSS framework provides the platform-
independent infrastructure that heterogeneous applications require to be
monitored, controlled, analyzed and managed at runtime. New and legacy
applications written in C++ or Java are viewed and manipulated identically
with zero coupling between the applications themselves and the tools that
scrutinize them.

’809 Patent (Abstract).

System Model / Context Diagram

Voyager M
Control
Center

140
SNMP, JMX, TL1 —CJ

]
Network
. ent u Fak 1 Performance .?’s,tm.ls
System Data Data

(NMS)

FIG. 1

Id. (Figure 1).
29. The field of the invention is to improvements in “wireless communication carriers.
More particularly, it relates to operational support system (OSS), application/systems

management, and network management.” Id., col. 1:17-20.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 5

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 6 of 40

30. As disclosed in the 809 Patent, “[m]Jany network management technologies exist
that allow operators to manage applications and devices at runtime. For instance, SNMP,
TL1 and JMX each attempt to provide operators with the ability to manipulate and affect
change at runtime.” Id., col. 1:22-26.

31. As disclosed in the 809 Patent, “[t|]he fundamental of each is similar. It is to
manipulate the objects of an application through messaging.” Id., col. 1:26-27.

32. As disclosed in the ’809 Patent, “SNMP is the standard basic management service
for networks that operate in TCP/IP environments. It is intended primarily to operate
well-defined devices easily and does so quite successfully. However, it is limited to the
querying and updating of variables.” Id., col. 1:28-32.

33. As disclosed in the ’809 Patent, “Transaction Language 1 (TL1) is a set of ASCII-
based instructions, or ‘messages,” that an operations support system (OSS) uses to
manage a network element (NE) and its resources. Id., col. 1:32-35.

34. Asdisclosed in the 809 Patent, “JMX is a Java centric technology that permits the
total management of objects: not only the manipulation of fields, but also the execution
of object operations. It is designed to take advantage of the Java language to allow for
the discovery and manipulation of new or legacy applications or devices.” Id., col. 1:35-
40.

35. As disclosed in the ’809 Patent, “Operational Support for enterprise applications
1s currently realized using a variety of technologies and distinct, separate services. For
instance, network management protocols (SNMP, JMX, TL1, etc.) provide runtime
configuration and some provide operation invocation, but these technologies are not

necessarily geared toward applications.” Id., col. 1:40-45.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 6

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 7 of 40

36. As disclosed in the 809 Patent, “[sJome are language specific (e.g., JMX) and
require language agnostic bridging mechanisms that must be implemented, configured
and maintained. SNMP is generic (e.g., TL1 and SNMP) and very simple in nature, but
it requires application developers to implement solutions to common OSS tasks on top of
SNMP. Id., col. 1:46-51.

37. As disclosed in the 809 Patent, “TL1 is also ASCII based and generic. However,
while it 1s very flexible and powerful, it is another language that must be mastered, and
it's nature is command line based. As a result, it is not intuitively based in presentation
layer tools. While all the technologies have their respective benefits, they do not provide
direct means of providing higher level OSS functionality. Conventionally, applications
are monitored, analyzed and managed at runtime.” Id., col. 1:52-59.

38. As disclosed in the 809 Patent, one or more claims “provid[e] a high level
operational support system framework comprises monitoring a health of a plurality of
applications. The health of the plurality of applications is assessed, and the health of the
plurality of applications is analyzed, whereby each of the plurality of applications are
managed dynamically at runtime regardless of a platform of each of the plurality of
applications.” Id., col. 1:64-2:3.

39. Consequently, the 809 Patent improves the computer functionality itself and

represents a technological improvement to the operation of computers.

NOTICE OF BCS’ PATENTS

40. Plaintiff is the owner, by assignment, of U.S. Patent No. 6,240,421 (the “421

Patent”), entitled “System, software and apparatus for organizing, storing and retrieving

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 7

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 8 of 40

information from a computer database,” which issued on May 29, 2001. A copy of the

421 Patent is available at https://patents.google.com/patent/US6240421B1/en?0g=6240421.

41. Plaintiff is the owner, by assignment, of U.S. Patent No. 6,421,821 (the “821
Patent”), entitled “Flow chart-based programming method and system for object-oriented
languages,” which issued on July 16, 2002. A copy of the 821 Patent is available at

https://patents.google.com/patent/US6421821B1/en?0q=6421821.

42, Plaintiff is the owner, by assignment, of U.S. Patent No. 6,438,535 (the “535
Patent”), entitled “Relational database method for accessing information useful for the
manufacture of, to interconnect nodes in, to repair and to maintain product and system
units,” which issued on August 20, 2002. A copy of the 535 Patent is available at

https://patents.google.com/patent/US6438535B1/en?0q=6438535.

43. Plaintiff is the owner, by assignment, of U.S. Patent No. 6,658,377 (the “377
Patent”), entitled “Method and system for text analysis based on the tagging, processing,
and/or reformatting of the input text,” which issued on December 2, 2003. A copy of the

377 Patent 1s available at https://patents.google.com/patent/US6658377B1/en?0g=6658377.

44, Plaintiff is the owner, by assignment, of U.S. Patent No. 6,662,179 (the “179
Patent”), entitled “Relational database method for accessing information useful for the
manufacture of, to interconnect nodes in, to repair and to maintain product and system
units,” which issued on December 9, 2003. A copy of the 179 Patent is available at

https://patents.google.com/patent/US6662179B2/en?0q=6662179.

45. Plaintiff is the owner, by assignment, of U.S. Patent No. 6,895,502 (the “502

Patent”), entitled “Method and system for securely displaying and confirming request to

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 8

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 9 of 40

perform operation on host computer,” which issued on May 17, 2005. A copy of the 502

Patent is available at https://patents.coogle.com/patent/US6895502B 1/en?0q=6895502.

46. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,200,760 (the “760
Patent”), entitled “System for persistently encrypting critical software data to control the
operation of an executable software program,” which issued on April 3, 2007. A copy of
the 760 Patent 18 available at

https://patents.google.com/patent/US7200760B2/en?0g=7200760.

47. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,302,612 (the “612
Patent”), entitled “High level operational support system,” which issued on November 27,
2007. A copy of the 612 Patent 1s available at

https://patents.google.com/patent/US7302612B2/en?0q=7302612.

48. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,533,301 (the “301
Patent”), entitled “High level operational support system,” which issued on May 12, 2009.
A copy of the ’301 Patent 1s available at

https://patents.google.com/patent/US7533301B2/en?0g=7533301.

49. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,730,129 (the “129
Patent”), entitled “Collaborative communication platforms,” which issued on June 1,
2010. A copy of the 129 Patent 1s available at

https://patents.google.com/patent/US7730129B2/en?0q=7730129.

50. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,774,296 (the “296
Patent”), entitled “Relational database method for accessing information useful for the

manufacture of, to interconnect nodes in, to repair and to maintain product and system

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 9

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 10 of 40

units,” which issued on August 10, 2010. A copy of the 296 Patent is available at

https://patents.google.com/patent/US7774296B2/en?0q=7774296.

51. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,840.893 (the “893
Patent”), entitled “Display and manipulation of web page-based search results,” which
issued on November 23, 2010. A copy of the 893 Patent is available at

https://patents.google.com/patent/US7840893B2/en?0q=7840893.

52. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,895,282 (the “282
Patent”), entitled “Internal electronic mail system and method for the same,” which
issued on February 22, 2011. A copy of the ’282 Patent is available at

https://patents.google.com/patent/US7895282B1/en?0q=7895282.

53. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,996,464 (the “464
Patent”), entitled “Method and system for providing a user directory,” which issued on
August 9, 2011. A copy of the ’464 Patent 1s available at

https://patents.google.com/patent/US7996464B1/en?0q=7996464.

54. Plaintiff is the owner, by assignment, of U.S. Patent No. 7,996,469 (the “469
Patent”), entitled “Method and system for sharing files over networks,” which issued on
August 9, 2011. A copy of the ’469 Patent 1is available at

https://patents.google.com/patent/US7996469B1/en?0q=7996469.

55. Plaintiff is the owner, by assignment, of U.S. Patent No. 8,171,081 (the “081
Patent”), entitled “Internal electronic mail within a collaborative communication
system,” which issued on May 1, 2012. A copy of the ’'081 Patent is available at

https://patents.google.com/patent/US8171081B1/en?0q=8171081.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 10

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 11 of 40

56. Plaintiff is the owner, by assignment, of U.S. Patent No. 8,176,123 (the “123
Patent”), entitled “Collaborative communication platforms,” which issued on May 8,
2012. A copy of the 123 Patent 1s available at

https://patents.google.com/patent/US8176123B1/en?0q=8176123.

57. Plaintiff is the owner, by assignment, of U.S. Patent No. 8,285,788 (the “788
Patent”), entitled “Techniques for sharing files within a collaborative communication
system,” which issued on October 9, 2012. A copy of the 788 Patent is available at

https://patents.google.com/patent/US8285788B1/en?0q=8285788.

58. Plaintiff is the owner, by assignment, of U.S. Patent No. 8,554,838 (the “838
Patent”), entitled “Collaborative communication platforms,” which issued on October 8,
2013. A copy of the '838 Patent 1s available at

https://patents.google.com/patent/US8554838B1/en?0q=8554838.

59. Plaintiff is the owner, by assignment, of U.S. Patent No. 8,819,120 (the “120
Patent”), entitled “Method and system for group communications,” which issued on
August 26, 2014. A copy of the ’120 Patent 1is available at

https://patents.google.com/patent/US8819120B1/en?0g=8819120.

60. Plaintiff is the owner, by assignment, of U.S. Patent No. 8,984,063 (the “063
Patent”), entitled “Techniques for providing a user directory for communication within a
communication system,” which issued on March 17, 2015. A copy of the ’063 Patent is

available at https://patents.google.com/patent/US8984063B 1/en?0g=8984063.

61. Plaintiff is the owner, by assignment, of U.S. Patent No. 9,396,456 (the “456

Patent”), entitled “Method and system for forming groups in collaborative communication

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 11

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 12 of 40

system,” which issued on July 19, 2016. A copy of the ’456 Patent is available at

https://patents.google.com/patent/US9396456B1/en?0q=9396456.

62.

DEFENDANT’S SYSTEM

Upon information and belief, Defendant makes, uses, and operates the

Facebook.com platform, which includes the Apache Zookeeper service, which 1is

exemplified by the following references:

The Underlying Technology of Messages (“Underlying Technology”), available at
https://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-
messages/454991608919 (last accessed July 29, 2020);

Observers: Making ZooKeeper Scale Even Further (“ZooKeeper Scale”), available at
https://www.facebook.com/notes/cloudera/observers-making-zookeeper-scale-even-
further/204351007002/ (last accessed July 29, 2020);

What is Zookeeper (“What is Zookeeper”), available at

http://www.corejavaguru.com/bigdata/zookeeper/what-is-zookeeper (last accessed July
29, 2020);

Welcome to Apache ZooKeeper (“Apache ZooKeeper”), available at
https://zookeeper.apache.org/ (last accessed July 29, 2020);

ZooKeeper: A Distributed Coordination Service for Distributed Applications
(“Distributed Coordination™), available at
https://zookeeper.apache.org/doc/r3.2.2/zookeeperOver.html (last accessed July 29,
2020);

What is Apache Zookeeper? (“Zookeeper_intellipaat™), available at
https://intellipaat.com/blog/what-is-apache-zookeeper/ (last accessed July 29, 2020);

Start making? Zookeeper's API (“Zookeeper's API”), available at
https://topic.alibabacloud.com/a/start-making-zookeeper39s-api_8 8 30841990.html
(last accessed July 29, 2020);

ZooKeeper by Benjamin Reed, Flavio Junqueira (“ZooKeeper by Benjamin Reed”),
available at

https://www.oreilly.com/library/view/zookeeper/9781449361297/ch01.html (last
accessed July 29, 2020);

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 12

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 13 of 40

e Apache Zookeeper Tutorial (“Zookeeper Tutorial”), available at
https://www.dezyre.com/hadoop-tutorial/zookeeper-tutorial (last accessed dJuly 29,
2020);

e Curator RPC (“Curator RPC”), available at
http://zookeeper-user.578899.n2.nabble.com/ANN-Curator-RPC-td7580113.html ~ (last
accessed July 29, 2020);

e Introduction to Thrift (“Introduction to Thrift”), available at
https://thrift-tutorial.readthedocs.io/en/latest/intro.html (last accessed July 29, 2020);

e Service Discovery Server (“Service Discovery Server”), available at

https://curator.apache.org/curator-x-discovery-server/index.html (last accessed July 29,
2020);

e Apache Thrift (“Apache Thrift”), available at
https://en.wikipedia.org/wiki/Apache Thrift (last accessed July 29, 2020);

e ZooKeeper Flavio Junqueira Benjamin Reed (“ZooKeeper Flavio Junqueira”), available
at
http:// www.54manong.com/ebook/%E5%A4%A7%E6%95%B0%E6%8D%AE/2018120
8232851/ZooKeeper-Flavio%20Junqueira%20&%20Benjamin%20Reed/ZooKeeper-
Flavio%20Junqueira%20&%20Benjamin%20Reed.html (last accessed July 29, 2020);

e ZooKeeper Monitoring (“ZooKeeper Monitoring”™), available at
https://www.site24x7.com/plugins/zookeeper-monitoring.html (last accessed July 29,
2020);

o ZooKeeper (“DataDog”), available at
https://docs.datadoghq.com/integrations/zk/ (last accessed July 29, 2020);

e Chapter 4. Dealing with State Change (“State Change”), available at
https://www.oreilly.com/library/view/zookeeper/9781449361297/ch04.html (last
accessed July 29, 2020);

e ZooKeeper Programmer's Guide (“Programmer's Guide”), available at
https://zookeeper.apache.org/doc/r3.3.5/zookeeperProgrammers.html (last accessed July
29, 2020);

e Architecture of ZAB — ZooKeeper Atomic Broadcast protocol (“Architecture of ZAB”),
available at

https://distributedalgorithm.wordpress.com/tag/zookeeper/ (last accessed dJuly 29,
2020); and

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 13

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 14 of 40

¢ Introduction to Apache ZooKeeper (“Introduction”), available at
https://hadooptechblog.wordpress.com/2015/12/29/introduction-to-apache-zookeeper/
(last accessed July 29, 2020).

63. The information contained in the references identified in paragraph 62 is
incorporated by reference as if set forth fully herein.
64. The information contained in the references identified in paragraph 63 accurately

describes the operation and functionality of the Apache Zookeeper service.

COUNT1
(Infringement of U.S. Patent No. 7,890,809)

65. BCS incorporates paragraphs 1-64 herein by reference.

66. Defendant has been on notice of the 809 Patent at least as early as the date it
received service of this complaint.

67. Upon information and belief, Defendant has infringed and continues to infringe
one or more claims, including Claim 1, of the 809 Patent by making, using, and operating
the Apache Zookeeper service.

68. Defendant, with knowledge of the 809 Patent, infringes the 809 Patent by
inducing others to infringe the 809 Patent. In particular, Defendant intends to induce
its customers to infringe the 809 Patent by encouraging its customers to use the Apache
Zookeeper service.

69. Defendant also induces others, including its customers, to infringe the ’809 Patent
by providing technical support for the use of the Apache Zookeeper service.

70. Upon information and belief, at all times Defendant owns and controls the
operation of the Apache Zookeeper service.

71. Claim 1 of the 809 Patent recites:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 14

72.

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 15 of 40

1. A method of providing a high level support framework, comprising:

monitoring from a physical server a health of a plurality of client applications and
a health of said plurality of client applications' distributed components, using a
common monitoring protocol, said monitoring being independent of a
programming technology of said plurality of client applications and respective

distributed components;

assessing said health of said plurality of client applications and said respective

distributed components; and

associating said health of said plurality of client applications and said respective

distributed components as belonging to a single application node.

With the ThinQ product, Defendant provides a high-level operational support

system framework.

73.

74.

The Apache Zookeeper satisfies the claim element “a high level support framework.”

The Apache Zookeeper service is an open source centralized service for coordination of

distributed applications and also known as king of coordination.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 15

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 16 of 40

The Underlying Technology of Messages

5 November 2010 at 1246 @

We're launching a new version of Messages today that
combines chat, SMS, emall, and Messages into a real-time
conversation. The product team spent the last year building
out a robust, scalable infrastructure. As we launch the product,
we wanted to share some details about the technology.

The current Messages infrastructure handles over 350 million

users sending over 15 billion person-to-person messages per

month. Our chat service supports over 300 million users who
send over 120 billion messages per month. By monitoring usage, two general data patiemns
emerged:

Since Messages accepts data from many sources such as email and SMS, we decided to
write an application server from scratch instead of using our generic Web infrastructure to
handle all decision making for a user's messages. It interfaces with a large number of other
services. we store attachments in Haystack, wrote a user discovery service on top of Apache
ZooKeeper, and talk to other infrastructure services for email account verification, friend
relationships, privacy decisions, and delivery decisions (for example, should a message be
sent over chat or SM3). We spent a lot of time making sure each of these services are
reliable, robust, and performant enough to handle a real-time messaging system.

Underlying Technology.

As readers of our previous post on the subject will recall, ZooKeeper is a distributed
coordination service suitable for implementing coordination primitives like locks and
concurrent queues. One of ZooKeeper's great strengths is its ability to operate at scale.
Clusters of only five or seven machines can often serve the coordination needs of several
large applications.

ZooKeeper Scale.

ZooKeeper is a distributed, open-source coordination service for distributed applications. It is
also called as 'King of Coordination’. It exposes a simple set of primitives that distributed
applications can build upon to implement higher level services for synchronization, configuration
maintenance, and groups and naming. It is designed to be easy to program to, and uses a data
model styled after the familiar directory tree structure of file systems. It runs in Java and has
bindings for both Java and C.

What is Zookeeper.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 16

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 17 of 40

Apache ZooKeeper is an effort to develop and maintain an open-source server which enables
highly reliable distributed coordination.

ZooKeeper is a centralized service for maintaining configuration information, naming, providing
distributed synchronization, and providing group services. All of these kinds of services are used
in some form or another by distributed applications. Each time they are implemented there is a
lot of work that goes into fixing the bugs and race conditions that are inevitable. Because of the
difficulty of implementing these kinds of services, applications initially usually skimp on them,
which make them brittle in the presence of change and difficult to manage. Even when done
correctly, different implementations of these services lead to management complexity when the
applications are deployed.

Apache ZooKeeper.
75. The Zookeeper server satisfies the claim element “a physical server.”
76. The clients connected to the zookeeper server satisfies the claim element “a plurality of

client applications.”

77. The children nodes such as z-nodes/data-nodes of applications can be created. The z-node
is called as directory for storing data satisfies the claim element “plurality of client applications'
distributed components.”

78. The monitoring of health of session between client and zookeeper satisfies the claim
element “health of a plurality of client applications.”

79. A number of clients are connected to the zookeeper service. The zookeeper service allows
the monitoring of the health of session between client and zookeeper (herein referred as plurality
of client applications). Further, a notification is generated (herein inferred as monitoring of health)
whenever a z-node/data-node (herein referred as plurality of client applications' distributed

components) is created/deleted.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 17

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 18 of 40

ZooKeeper is replicated. Like the distributed processes it coordinates, ZooKeeper itself is intended to be
replicated over a sets of hosts called an ensemble.

ZooKeeper Service

\cn;nt] | Client | | Client | | Client | | Client | |cu;n:| | Client | |C|l:ent|

The servers that make up the ZooKeeper service must all know about each other. They maintain an in-
memory image of state, along with a transaction logs and snapshots in a persistent store. As long as a
majority of the servers are available, the ZooKeeper service will be available.

ZooKeeper is a distributed, open-source coordination service for distributed
applications. It exposes a simple set of primitives that distributed applications can build
upon to implement higher level services for synchronization, configuration maintenance,
and groups and naming. It is designed to be easy to program to, and uses a data model
styled after the familiar directory tree structure of file systems. It runs in Java and has
bindings for both Java and C.

Clients connect to a single ZooKeeper server. The client maintains a TCP connection
through which it sends requests, gets responses, gets watch events, and sends heart
beats. If the TCP connection to the server breaks, the client will connect to a different

server.

Distributed Coordination.

COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 18

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 19 of 40

ZooKeeper Architecture

Apache ZooKeeper works on the Client-Server architecture in which clients are machine nodes and servers are
nodes.

The following figure shows the relationship between the servers and their clients. In this, we can see that each
client sources the client library, and further they communicate with any of the ZooKeeper nodes.

_JntelliPaat

Zookeeper Service

Fnllower Follawer Follower Fallower |
- —_—

Client CllEI'Il

Components of the ZooKeeper architecture has been explained in the following table.

Part Description

Client Client node in our distributed applications
cluster is used to access information from
the server. It sends a message to the server
to let the server know that the client is
alive, and if there is no response from the
connected server the client automatically
resends the message to another server.

Server The server gives an acknowledgement to
the client to inform that the server is alive,
and it provides all services to clients.

Leader If any of the server nodes is failed, this
server node performs automatic recovery.

Follower It is @ server node which follows the
instructions given by the leader.

Zookeeper _intellipaat.

Watcher

an object that is used to receive session events, which requires our own creation. Because

Wacher is defined as an interface, so we need to implement one ourselves, and then initialize the class's
instance and passes the zookeeper in the constructor. The client uses the Watcher interface to monitor and
the health of the session between zookeeper. Establish or lose connectivity with the zookeeper server
event occurs. They can also be used to monitor changes in zookeeper data. In the end, such as

The zookeeper session expires, and the event is passed through the Watcher interface to notify the client
the application.

Zookeeper's API.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 19

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 20 of 40

Another important issue with communication failures is the impact they have on
synchronization primitives like locks. Because nodes can crash and systems are prone to
network partitions, locks can be problematic: if a node crashes or gets partitioned away, the
lock can prevent others from making progress. ZooKeeper consequently needs to implement
mechanisms to deal with such scenarios. First, it enables clients to say that some data in the
ZooKeeper state is ephemeral. Second, the ZooKeeper ensemble requires that clients
periodically notify that they are alive. If a client fails to notify the ensemble in a timely
manner, then all ephemeral state belonging to this client is deleted. Using these two
mechanisms, we are able to prevent clients individually from bringing the application to a halt
in the presence of crashes and communication failures.

ZooKeeper by Benjamin Reed.

Along with this strong consistency guarantee, ZooKeeper also promises high availability,
which can loosely be interpreted to mean that it can withstand a significant number of
machine failures before the service stops being available to clients. ZooKeeper achieves this
availability in a traditional way - by replicating the data that is being written and read amongst
a small number of machines so that if one fails, there are others ready to take over without
the client being any wiser.

ZooKeeper Scale.

In a distributed environment, coordinating and managing a service has become a difficult
process. Apache ZooKeeper was used to solve this problem because of its simple
architecture, as well as API, that allows developers to implement common coordination
tasks like electing a master server, managing group membership, and managing metadata.

Apache ZooKeeper is used for maintaining centralized configuration information, naming,
providing distributed synchronization, and providing group services in a simple interface so
that we don't have to write it from scratch. Apache Kafka also uses ZooKeeper to manage
configuration. ZooKeeper allows developers to focus on the core application logic, and it
implements various protocols on the cluster so that the applications need not implement
them on their own.

_inleli?um

Why Apache ZooKeeper ? a

Synchronization

s

Zookeeper _intellipaat.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 20

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 21 of 40

Data model and the hierarchical namespace

The name space provided by ZooKeeper is much like that of a standard file system. A name is a sequence
of path elements separated by a slash (/). Every node in ZooKeeper's name space is identified by a path.

ZooKeeper's Hierarchical Namespace

fapp2

fapp1/p_1 [fappi/p_2 /app1/p_3

Unlike is standard file systems, each node in a ZooKeeper nhamespace
can have data associated with it as well as children. It is like having a
file-system that allows a file to also be a directory. (ZooKeeper was
designed to store coordination data: status information, configuration,
location information, etc., so the data stored at each node Is usually
small, in the byte to kilobyte range.) We use the term znode to make it
clear that we are talking about ZooKeeper data nodes.

Znodes maintain a stat structure that includes version numbers for data
changes, ACL changes, and timestamps, to allow cache validations and
coordinated updates. Each time a znode's data changes, the version
number increases. For instance, whenever a client retrieves data it also
receives the version of the data.

The data stored at each znode in a hamespace is read and written
atomically. Reads get all the data bytes associated with a znode and a
write replaces all the data. Each node has an Access Control List (ACL)
that restricts who can do what.

Distributed Coordination.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 21

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 22 of 40

Before getting deeper into watches, let's establish some terminology. We talk
about an event to denote the execution of an update to a given znode. A watch
is a one-time trigger associated with a znode and a type of event (e.g., data is
set in the znode, or the znode is deleted). When the watch is triggered by an
event, it generates a notification. A notification is a message to the application
client that registered the watch to inform this client of the event.

When an application process registers a watch to receive a notification, the
watch is triggered at most once and upon the first event that matches the
condition of the watch. For example, say that the client needs to know when a
given znode /z is deleted (e.g., a backup master). The client executes an exists
operation on /z with the watch flag set and waits for the notification. The
notification comes in the form of a callback to the application client.

There are two types of watches: data watches and child watches. Creating,
deleting, or setting the data of a znode successfully triggers a data watch.
exists and getData both set data watches. Only getChildren sets child
watches, which are triggered when a child znode is either created or deleted.
For each event type, we have the following calls for setting a watch:

We use the same watch mechanism for notifying the application of
events related to the state of a ZooKeeper session and events related
to znode changes. Although session state changes and znode state
changes constitute independent sets of events, we rely upon the same
mechanism to deliver such events for simplicity.

State Change.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 22

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 23 of 40

How to Use Apache ZooKeeper to Build Distributed Apps?

All the details mentioned above are done hy the Zookeeper and the user does not
have to do anything. The master is elected, the observers are set and the stage is

made ready for the user to use the Zockeeper.

As compared earlier user can use Zookeeper like a file system where directories
can be created and data can be stored inside it. The directories made above can
also have children and grandchildren like any other file system. This file system is
stored centraily thus giving access from any spot. Example of Apache Zookeeper
can be a data model. Each directory In our example is called znode In Zookeeper.
They are containers for data and other nodes. It stores statistical data like version
details and user data up to 1Mb. This tiny space available to store information
makes it clear that Zockeeper is not used for data storage like database but
instead it is used for storing small amount of data like configuration data that
needs 1o be shared.

There are 2 types of znodes:

» Persistent: This is the default type of znode in any Zookeeper. Persistent nodes
are always present and they contain the impertant configuration details. When a
new node is added to the Zookeeper it goes to persistent znode and gets the
configuration information.

s Ephemeral: They are sessicn nodes which gets created when an application fire
ups and get deleted when the application has finished. This is mainly useful to
keep check on client applications in case of failures. As the application fails the
znode dies.

Zookeeper Tutorial.

80. The Curator RPC module using Apache Thrift protocol satisfies the claim element “a
common monitoring protocol.”

81. Coordination of software components/independent programs running independently on
ever-changing multiple machines satisfies the claim element “monitoring being independent of a
programming technology of said plurality of client applications and respective distributed

components.”

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 23

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 24 of 40

82. The clients connected to the zookeeper server satisfies the claim element “a plurality of
client applications.”

83. The zookeeper service enables the coordination of distributed applications with the help of
curator RPC Module which provides a bridge to non-java environment. It uses an apache thrift
protocol which supports large set of languages and environment thus zookeeper service can unify
across languages and environments (herein referred as using a common monitoring protocol). The
zookeeper service provides Coordination of software components/independent programs running
independently on ever-changing multiple machines (herein inferred as monitoring being

independent of a programming technology).

Announcing Curator RPC

The just release version 2.6.0 of Apache Curator includes a new project,
Curator RPC.

The Curator RPC module implements a proxy that bridges non-java
environments with the Curator framework and recipes. It uses Apache Thrift
which supports a large set of languages and environments.

The benefits of Curator RPC are:

* Gives access to Curator to non JVM languages/environments

** Curator has become the de-facto JVM client library for ZooKeeper

** Curator makes using Apache ZooKeeper much easier

** Curator contains well-tested recipes for many common ZooKeeper usages
* QOrganizations can unify their ZooKeeper usage across
languages/environments (i.e. use Curator's Service Discovery recipe)

* The quality of ZooKeeper clients for some non-JVM languages is lacking

* There are Thrift implementations for a large number of
languages/environments

Curator RPC.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 24

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 25 of 40

Thrift is a lightweight, language-independent
software stack with an associated code generation
mechanism for RPC. Thrift provides clean
abstractions for data transport, data serialization,
and application level processing. Thrift was originally
developed by Facebook and now it is open sourced
as an Apache project. Apache Thrift is a set of code-
generation tools that allows developers to build RPC
clients and servers by just defining the data types
and service interfaces in a simple definition file.
Given this file as an input, code is generated to build
RPC clients and servers that communicate
seamlessly across programming languages.

In this tutorial | will describe how Thrift works and
provide a guide for build and installation steps, how
to write thrift files and how to generate from those
files the source code that can be used from different
client libraries to communicate with the server. Thrift
supports a variety of languages including C++, Java,
Python, PHP, Ruby but for simplicity | will focus this
tutorial on examples that include Java and Python.

Introduction to Thrift.

The Service Discovery Server bridges non-Java or legacy applications with the Curator Service
Discovery. It exposes RESTful web services to register, remove, query, etc. services.

Service Discovery Server.

COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 25

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 26 of 40

Thrift is an interface definition language and binary communication
protocolm used for defining and creating services for numerous
Ianguages.lz] It forms a remote procedure call (RPC) framework and
was developed at Facebook for "scalable cross-language services
development”. It combines a software stack with a code generation
engine to build cross-platform services which can connect
applications written in a variety of languages and frameworks,
including ActionScript, C, c++,Bl c#, Cappuccino.[‘” Cocoa, Delphi,
Erlang, Go, Haskell, Java, JavaScript, Objective-C, OCaml, Perl,
PHP, Python, Ruby, Elixirl®], Rust, Smalltalk and Swift.[8! Aithough
developed at Facebook, it is now an open source project in the
Apache Software Foundation. The implementation was described in
an April 2007 technical paper released by Facebook, now hosted on
Apache.mfs]

Apache Thrift.

There are multiple definitions of a distributed system, but for the purposes of this book, we
define it as a system comprised of multiple software components running independently and
concurrently across multiple physical machines. There are a number of reasons to design a
system in a distributed manner. A distributed system is capable of exploiting the capacity of
multiple processors by running components, perhaps replicated, in parallel. A system might
be distributed geographically for strategic reasons, such as the presence of servers in multiple
locations participating in a single application.

Having a separate coordination component has a couple of important advantages. First, it
allows the component to be designed and implemented independently. Such an independent
component can be shared across many applications. Second, it enables a system architect to
reason more easily about the coordination aspect, which is not trivial (as this book tries to
expose). Finally, it enables a system to run and manage the coordination component
separately. Running such a component separately simplifies the task of solving issues in
production.

ZooKeeper by Benjamin Reed.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 26

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 27 of 40

Why Apache Zookeeper

In the good old past, each application software was a single program running on a single
computer with a single CPU. Today, things have changed. In the Big Data world, application
softwares are made up of many independent programs running on an ever-changing set of
computers. These applications are known as Distributed Application. A distributed application
can run on multiple systems in a network simultaneously by coordinating among themselves
to complete a particular task in a fast and efficient manner.

Building distributed systems is hard. Nowadays, a lot of the software applications people use
daily, however, depend on such systems, and it doesn’t look like we will stop relying on
distributed computer systems any time soon. Coordinating the actions of the independent
programs in a distributed systems is far more difficult than writing a single program to run on
a single computer. It is easy for developers to get mired in coordination logic and lack the
time to write their application logic properly or perhaps the converse, to spend little time with
the coordination logic and simply to write a quick-and-dirty master coordinator that is fragile
and becomes an unreliable single point of failure.

ZooKeeper was designed to be a robust service that enables application developers to focus
mainly on their application logic rather than coordination. It exposes a simple API, inspired by
the filesystem API, that allows developers to implement common coordination tasks, such as
electing a master server, managing group membership, and managing metadata. ZooKeeper
is an application library with two principal implementations of the APls—Java and C—and a

service component implemented in Java that runs on an ensemble of dedicated servers.

What is Zookeeper.

ZooKeeper is replicated. Like the distributed processes it coordinates, ZooKeeper itself is intended to be
replicated over a sets of hosts called an ensemble.

ZooKeeper Service

{ -I‘l‘l . \

| | |
|Cllent| |cnent] |Cllent| [cnent[[cnent] |Cllent| [Clllent| |Cﬂem:|

\

The servers that make up the ZooKeeper service must all know about each other. They maintain an in-
memory image of state, along with a transaction logs and snapshots in a persistent store. As long as a
majority of the servers are available, the ZooKeeper service will be available.

ZooKeeper is a distributed, open-source coordination service for distributed
applications. It exposes a simple set of primitives that distributed applications can build
upon to implement higher level services for synchronization, configuration maintenance,
and groups and naming. It is designed to be easy to program to, and uses a data model
styled after the familiar directory tree structure of file systems. It runs in Java and has
bindings for both Java and C.

Clients connect to a single ZooKeeper server. The client maintains a TCP connection
through which it sends requests, gets responses, gets watch events, and sends heart
beats. If the TCP connection to the server breaks, the client will connect to a different
server.

Distributed Coordination.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 27

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 28 of 40

ZooKeeper Architecture

Apache ZooKeeper works on the Client-Server architecture in which clients are machine nodes and servers are
nodes.

The following figure shows the relationship between the servers and their clients. In this, we can see that each
client sources the client library, and further they communicate with any of the ZooKeeper nodes.

_,infeliPnul
Zookeeper Service

Foiluwer Follawer Leader . Fullowet Fallower

Server Server Server

izt g

Components of the ZooKeeper architecture has been explained in the following table.

Zookeeper _intellipaat.

84. The clients connected to the zookeeper server satisfies the claim element “a plurality of
client applications.”

85. The children nodes such as z-nodes/data-nodes of applications can be created. The z-node
is called as directory for storing data satisfies the claim element “plurality of client applications'
distributed components.”

86. The monitoring of health of session between client and zookeeper satisfies the claim
element “health of a plurality of client applications.”

87. The monitoring of health session of client with zookeeper is done using watcher interface.
The Zookeeper monitoring metrices provides total/live clients connected to zookeeper server
satisfies the claim element “assessing health.”

88. The watcher interface in the zookeeper services watches/monitors the events related to
health session of client with zookeeper and events related to z-nodes/data-nodes. The zookeeper
monitoring metrices provides total/live clients connected to the zookeeper service in form of

graphs.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 28

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 29 of 40

ZooKeeper is replicated. Like the distributed processes it coordinates, ZooKeeper itself is intended to be
replicated over a sets of hosts called an ensemble.

ZooKeeper Service

\cnént] | Client | | Client | | Client | | Client | |cu;n:| | Client | |cn:m|

The servers that make up the ZooKeeper service must all know about each other. They maintain an in-
memory image of state, along with a transaction logs and snapshots in a persistent store. As long as a
majority of the servers are available, the ZooKeeper service will be available.

ZooKeeper is a distributed, open-source coordination service for distributed
applications. It exposes a simple set of primitives that distributed applications can build
upon to implement higher level services for synchronization, configuration maintenance,
and groups and naming. It is desighed to be easy to program to, and uses a data model
styled after the familiar directory tree structure of file systems. It runs in Java and has
bindings for both Java and C.

Clients connect to a single ZooKeeper server. The client maintains a TCP connection
through which it sends requests, gets responses, gets watch events, and sends heart
beats. If the TCP connection to the server breaks, the client will connect to a different

server.

Distributed Coordination.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 29

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 30 of 40

ZooKeeper Architecture

Apache ZooKeeper works on the Client-Server architecture in which clients are machine nodes and servers are
nodes.

The following figure shows the relationship between the servers and their clients. In this, we can see that each
client sources the client library, and further they communicate with any of the ZooKeeper nodes.

_,inlaﬁ?uui

_Follower __Follower

Components of the ZooKeeper architecture has been explained in the following table.

Part Description

Client Client node in our distributed applications
cluster is used to access information from
the server. It sends a message to the server
to let the server know that the client is
alive, and if there is no response from the
connected server the client automatically
resends the message to another server.

Server The server gives an acknowledgement to
the client to inform that the server is alive,
and it provides all services to clients.

Leader If any of the server nodes is failed, this
server node performs automatic recovery.

Follower It is a server node which follows the
instructions given by the leader.

Zookeeper _intellipaat.

in the previous chapters, we introduced the basic operation of zookeeper
using the Zkcli tool. starting with this chapter, we'll see how the APl is used
in the app. Let's start by introducing How to use the Zookeeper API for
development, showing how to create a session and implement a monitoring
point (Watcher). We're still coding from the master-pattern example .

Watcher

an object that is used to receive session events, which requires our own creation. Because

Wacher is defined as an interface, so we need to implement one ourselves, and then initialize the class's
instance and passes the zookeeper in the constructor. The client uses the Watcher interface to monitor and
the health of the session between zookeeper. Establish or lose connectivity with the zookeeper server
event occurs. They can also be used to monitor changes in zookeeper data. In the end, such as

The zookeeper session expires, and the event is passed through the Watcher interface to notify the client
the application.

Zookeeper's API.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 30

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 31 of 40

Another important issue with communication failures is the impact they have on
synchronization primitives like locks. Because nodes can crash and systems are prone to
network partitions, locks can be problematic: if a node crashes or gets partitioned away, the
lock can prevent others from making progress. ZooKeeper consequently needs to implement
mechanisms to deal with such scenarios. First, it enables clients to say that some data in the
ZooKeeper state is ephemeral. Second, the ZooKeeper ensemble requires that clients
periodically notify that they are alive. If a client fails to notify the ensemble in a timely
manner, then all ephemeral state belonging to this client is deleted. Using these two
mechanisms, we are able to prevent clients individually from bringing the application to a halt
in the presence of crashes and communication failures.

ZooKeeper by Benjamin Reed.

watcher
An object we need to create that will receive session events. Because Watcher is an
interface, we will need to implement a class and then instantiate it to pass an instance to
the ZooKeeper constructor. Clients use the watcher interface to monitor the health of the
session with ZooKeeper. Events will be generated when a connection is established or lost
to a ZooKeceper server. They can also be used to monitor changes to ZooKeceper data.
Finally, if a session with ZooKceper expires, an event is delivered through the watcher
interface to notify the client application.

Implementing a Watcher

To receive notifications from ZooKeeper, we need to implement watchers. Let’s look a bit more
closely at the watcher interface. It has the following declaration:

ZooKeeper Flavio Junqueira.

The servers that make up the ZooKeeper service must all know about
each other. They maintain an in-memory image of state, along with a
transaction logs and snapshots in a persistent store. As long as a
majority of the servers are available, the ZooKeeper service will be
available.

Clients connect to a single ZooKeeper server. The client maintains a TCP
connection through which it sends requests, gets responses, gets watch
events, and sends heart beats. If the TCP connection to the server
breaks, the client will connect to a different server.

Distributed Coordination.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 31

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 32 of 40

Apache ZooKeeper is a distributed hierarchical key-value store, which is
used to provide a distributed configuration service, synchronization
service, and naming registry for large distributed systems. Install and use
our ZooKeeper monitoring tool and get detailed insights into system

activity and health.

This document details how to configure the ZooKeeper plugin and the
monitoring metrics for providing in-depth visibility into the performance,

availability, and usage stats of ZooKeeper servers.

connections

Average Minimum Maximum
48.44 Units 0 Units 100 Units

80

60

connections

40

20

: f

LY
16:00 21:00 02:00 07:00

Maximum connections

Use the metric "maxclientcnxns"” and get the total number of
concurrent connections that a single client, identified by IP
address, may make to a single member of the ZooKeeper

system.

Connections
The metric "connections" lists total number of

connection/session details for all clients connected to the

ZooKeeper server.

ZooKeeper Monitoring.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 32

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 33 of 40

Overview

The Zookeeper check tracks client connections and latencies, monitors the number of unprocessed

requests, and more.

zookeeper.num_alive_connections The total count of client connections

(gauge) Shown as connection

DataDog.

Before getting deeper into watches, let's establish some terminology. We talk
about an event to denote the execution of an update to a given znode. A watch
is a one-time trigger associated with a znode and a type of event (e.g., data is
set in the znode, or the znode is deleted). When the watch is triggered by an
event, it generates a notification. A notification is a message to the application
client that registered the watch to inform this client of the event.

When an application process registers a watch to receive a notification, the
watch is triggered at most once and upon the first event that matches the
condition of the watch. For example, say that the client needs to know when a
given znode /z is deleted (e.g., a backup master). The client executes an exists
operation on /z with the watch flag set and waits for the notification. The
notification comes in the form of a callback to the application client.

State Change.
89. The clients connected to the zookeeper server satisfies the claim element “a plurality of

client applications.”

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 33

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 34 of 40

90. The children nodes such as z-nodes/data-nodes of applications can be created. The z-node
is called as directory for storing data satisfies the claim element “plurality of client applications'
distributed components.”

91. The monitoring of health of session between client and zookeeper satisfies the claim
element “health of a plurality of client applications.”

92. Event Notification by watcher of client’s session with zookeeper and of deletion and
creation of z-nodes/data-nodes (herein referred as respective distributed components) satisfies the
claim element “associating said health.”

93. The Leader Node satisfies the claim element “a single application node.”

94. The zookeeper service provides the event notification regarding the health of session
between client and zookeeper and creation/deletion of z-nodes/data-nodes through watcher (herein
inferred as associating said health). When the session between client and zookeeper expires or
disconnected there is a change in the state of client. All the state changes are accepted from clients

are accepted by leader and replicated to the follower node.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 34

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 35 of 40

ZooKeeper is replicated. Like the distributed processes it coordinates, ZooKeeper itself is intended to be
replicated over a sets of hosts called an ensemble.

ZooKeeper Service

[Ciient | [Ciient | [Ciient | [Ciient | [Ciient | [Ciient | [Ciient | [Ciient |

The servers that make up the ZooKeeper service must all know about each other. They maintain an in-
memory image of state, along with a transaction logs and snapshots in a persistent store. As long as a
majority of the servers are available, the ZooKeeper service will be available.

ZooKeeper is a distributed, open-source coordination service for distributed
applications. It exposes a simple set of primitives that distributed applications can build
upon to implement higher level services for synchronization, configuration maintenance,
and groups and naming. It is designed to be easy to program to, and uses a data model
styled after the familiar directory tree structure of file systems. It runs in Java and has
bindings for both Java and C.

Clients connect to a single ZooKeeper server. The client maintains a TCP connection
through which it sends requests, gets responses, gets watch events, and sends heart
beats. If the TCP connection to the server breaks, the client will connect to a different
server.

Distributed Coordination.

ZooKeeper Architecture

Apache ZooKeeper works on the Client-Server architecture in which clients are machine nodes and servers are
nodes.

The following figure shows the relationship between the servers and their clients. In this, we can see that each
client sources the client library, and further they communicate with any of the ZooKeeper nodes.

Zookeeper Service
Follower Fallower

Components of the ZooKeeper architecture has been explained in the following table.

Zookeeper _intellipaat.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 35

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 36 of 40

Data model and the hierarchical namespace

The name space provided by ZooKeeper is much like that of a standard file system. A name Is a sequence
of path elements separated by a slash (/). Every node in ZooKeeper's name space is identified by a path.

ZooKeeper's Hierarchical Namespace

lapp2

lappi/p_1 /lappiip 2 Japp1/p_3

Unlike Is standard file systems, each node in a ZooKeeper hamespace
can have data associated with it as well as children. It is like having a
file-system that allows a file to also be a directory. (ZooKeeper was
designed to store coordination data: status information, configuration,
location information, etc., so the data stored at each node is usually
small, in the byte to kilobyte range.) We use the term znode to make it
clear that we are talking about ZooKeeper data nodes.

Znodes maintain a stat structure that includes version numbers for data
changes, ACL changes, and timestamps, to allow cache validations and
coordinated updates. Each time a znode's data changes, the version
number increases. For instance, whenever a client retrieves data it also
receives the version of the data.

The data stored at each znode in a hamespace is read and written
atomically. Reads get all the data bytes associated with a znode and a
write replaces all the data. Each node has an Access Control List (ACL)
that restricts who can do what.

Distributed Coordination.

Watcher

an object that is used to receive session events, which requires our own creation. Because

Wacher is defined as an interface, so we need to implement one ourselves, and then initialize the class's
instance and passes the zookeeper in the constructor. The client uses the Watcher interface to monitor and
the health of the session between zookeeper. Establish or lose connectivity with the zookeeper server
event occurs. They can also be used to monitor changes in zookeeper data. In the end, such as

The zookeeper session expires, and the event is passed through the Watcher interface to notify the client
the application.

Zookeeper's API.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 36

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 37 of 40

Another important issue with communication failures is the impact they have on
synchronization primitives like locks. Because nodes can crash and systems are prone to
network partitions, locks can be problematic: if a node crashes or gets partitioned away, the
lock can prevent others from making progress. ZooKeeper consequently needs to implement
mechanisms to deal with such scenarios. First, it enables clients to say that some data in the
ZooKeeper state is ephemeral. Second, the ZooKeeper ensemble requires that clients
periodically notify that they are alive. If a client fails to notify the ensemble in a timely
manner, then all ephemeral state belonging to this client is deleted. Using these two
mechanisms, we are able to prevent clients individually from bringing the application to a halt
in the presence of crashes and communication failures.

ZooKeeper by Benjamin Reed.

Along with this strong consistency guarantee, ZooKeeper also promises high availability,
which can loosely be interpreted to mean that it can withstand a significant number of
machine failures before the service stops being available to clients. ZooKeeper achieves this
availability in a traditional way - by replicating the data that is being written and read amongst
a small number of machines so that if one fails, there are others ready to take over without
the client being any wiser.

ZooKeeper Scale.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 37

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 38 of 40

Before getting deeper into watches, let's establish some terminology. We talk
about an event to denote the execution of an update to a given znode. A watch
is a one-time trigger associated with a znode and a type of event (e.g., data is
set in the znode, or the znode is deleted). When the watch is triggered by an
event, it generates a notification. A notification is a message to the application
client that registered the watch to inform this client of the event.

When an application process registers a watch to receive a notification, the
watch is triggered at most once and upon the first event that matches the
condition of the watch. For example, say that the client needs to know when a
given znode /z is deleted (e.g., a backup master). The client executes an exists
operation on /z with the watch flag set and waits for the notification. The
notification comes in the form of a callback to the application client.

There are two types of watches: data watches and child watches. Creating,
deleting, or setting the data of a znode successfully triggers a data watch.
exists and getData both set data watches. Only getChildren sets child
watches, which are triggered when a child znode is either created or deleted.
For each event type, we have the following calls for setting a watch:

We use the same watch mechanism for notifying the application of
events related to the state of a ZooKeeper session and events related
to znode changes. Although session state changes and znode state
changes constitute independent sets of events, we rely upon the same
mechanism to deliver such events for simplicity.

State Change.

Another parameter to the ZooKeeper session establishment call is the
default watcher. Watchers are notified when any state change occurs in
the client. For example if the client loses connectivity to the server the
client will be notified, or if the client's session expires, etc... This watcher
should consider the initial state to be disconnected (i.e. before any state
changes events are sent to the watcher by the client lib). In the case of
a new connection, the first event sent to the watcher is typically the
session connection event.

Programmer's Guide.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 38

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 39 of 40

 |leader and followers- in ZooKeeper cluster, one of the nodes has a
leader role and the rest have followers roles. The leader is
responsible for accepting all incoming state changes from the
clients and replicate them to itself and to the followers. read
requests are load balanced between all followers and leader.

» ZooKeeper uses a variation of two-phase-commit protocol for
replicating transactions to followers. When a leader receive a
change update from a client it generate a transaction with sequel
number ¢ and the leader’s epoch e (see definitions) and send the
transaction to all followers. a follower adds the transaction to its
history queue and send ACK to the leader. When a leader receives

Architecture of ZAB.

Zookeeper Service , Delegation of

‘,/ write
requests to
Leader Node

e o

- —Leader
Node

A8
Sy

T

Introduction.
95. BCS has been damaged by Defendant’s infringement of the '809 Patent.

PRAYER FOR RELIEF

WHEREFORE, BCS respectfully requests the Court enter judgment against

Defendant:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 39

Case 6:20-cv-00695-ADA Document 1 Filed 07/29/20 Page 40 of 40

1. declaring that the Defendant has infringed the 809 Patent;

2. awarding BCS its damages suffered as a result of Defendant’s infringement
of the 809 Patent;

3. awarding BCS its costs, attorneys’ fees, expenses, and interest; and

4. granting BCS such further relief as the Court finds appropriate.

JURY DEMAND

BCS demands trial by jury, Under Fed. R. Civ. P. 38.
Dated: July 29, 2020 Respectfully Submitted

/s/ Raymond W. Mort, IIT
Raymond W. Mort, III

Texas State Bar No. 00791308
raymort@austinlaw.com

THE MORT LAW FIrM, PLLC
100 Congress Ave, Suite 2000
Austin, Texas 78701

Tel/Fax: (512) 865-7950

ATTORNEYS FOR PLAINTIFF

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 40

