Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 1 of 53

UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS
WACO DIVISION

TELEPUTERS, LLC,

Plaintiff Case No. 6:20-cv-640-ADA

JURY TRIAL DEMANDED

FUJITSU AMERICA, INC,, et al.

Defendants

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff Teleputers, LLC (“Plaintiff” or “Teleputers”) hereby files this Original
Complaint for Patent Infringement against Defendants Fujitsu America, Inc., Fujitsu Computer
Products of America, Inc. (formerly known as Fujitsu Semiconductor America, Inc., which was
formerly known as Fujitsu Microelectronics America, Inc.), Fujitsu Limited and Fujitsu Frontech

North America, Inc. (collectively “Defendant” or “Fujitsu Entities”)' and alleges, on information

! Fujitsu has a multitude of corporate structures making it difficult for the public to identify the
correct Fujitsu “entities” to list as defendants in this lawsuit. See e.g.
https://en.wikipedia.org/wiki/Fujitsu#cite note-80. In September 2020, Four Defendant Fujitsu
entities’ filed and served individual motions to dismiss never indicating whether they are (or are
not) the correct entities to even be in this lawsuit. Specifically, the Fujitsu entities do not deny
that they make, use, sell, and/or import the Accused Instrumentalities and/or the 014 Accused
Instrumentalities. See Dkt. Nos. 15,16,17,18.

Fujitsu could have easily avoided the expense of filing such motions by simply informing
Plaintiff that they are not the correct entities to be named as a party under the multitude of
existing Fujitsu shell companies. But, they refused to do so. Opting instead to file 4 (four)
separate Motions to Dismiss alleging venue is improper under Rule 12(b)(3). In doing so,
Fujitsu seems to have forgotten it has well over $500,000 worth of its real property located in
this District. Based on all 4 (four) of the self-serving declarations filed with their motions to
dismiss, it is telling that none of them deny Fujitsu has joint enterprises in this district. After all,
Fujitsu has over a half million dollars worth of computer and server related assets located in
someone’s offices, if not their own, then obviously their joint enterprise partner(s). Those asserts

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 1

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 2 of 53

and belief, as follows:

THE PARTIES

1. Teleputers, LLC is a limited liability company organized and existing under the laws of
the State of New Jersey with its principal place of business in Princeton, New Jersey.

2. On information and belief, Fujitsu America, Inc. is a California corporation, having its
principal place of business at 1250 East Arques Avenue, Sunnyvale, California 94085. Fujitsu
America, Inc. can be served with process through its registered agent, C T Corporation System,
located at 1999 Bryan St., Ste. 900, Dallas, Texas 75201. Fujitsu America, Inc. does business in
the State of Texas and in the Western District of Texas.

3. On information and belief, Fujitsu Microelectronics America, Inc. is a California
corporation, having its principal place of business at 1250 East Arques Avenue, Sunnyvale, CA
94085. Upon information and belief, on or around April 19, 2010, Fujitsu Microelectronics
America, Inc. changed its name to Fujitsu Semiconductor America, Inc. Fujitsu Semiconductor
America, Inc. can be served with process through its registered agent, C T Corporation System,
located at 1999 Bryan St., Ste. 900, Dallas, Texas 75201. Fujitsu Semiconductor America, Inc.
does business in the State of Texas and in the Western District of Texas.

4. On information and belief, Fujitsu Computer Products of America, Inc. is a California
corporation, having its principal place of business at 1255 East Arques Avenue, Sunnyvale,
California 94085. Fujitsu Computer Products of America, Inc. can be served with process

through its registered agent, C T Corporation System, located at 1999 Bryan St., Ste. 900, Dallas,

are personal property, not real property. They aren’t being kept out in the rain or in a field, but
instead at specific locations identified in this Amended Complaint. Going forward, again,
Plaintiff asks Fujitsu to simply communicate with Plaintiff, so the correct entities are before the
Court to resolve the actual dispute concerning three separate Counts of patent infringement, as
required under Rule 1 of the Federal Rules of Civil Procedure.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |2

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 3 of 53

Texas 75201. Fujitsu Computer Products of America, Inc. does business in the State of Texas
and in the Western District of Texas.

5. On information and belief, Fujitsu Frontech North America, Inc., is located at 2801
Network Blvd, Frisco, Texas 75034. Fujitsu Frontech North America, Inc. can be served with
process through its registered agent, C T Corporation System, located at 1999 Bryan St., Ste.
900, Dallas, Texas 75201. Fujitsu Frontech North America, Inc. does business in the State of
Texas and in the Western District of Texas.

6. On information and belief, Defendant Fujitsu Limited is a company organized under the
laws of Japan with its principal place of business at Shiodome City Center, 1-5-2 Higashi-
Shimbashi, Minato-ku, Tokyo 105-7123, Japan. Fujitsu Limited may be served through its U.S.
subsidiaries, supra.

JURISDICTION AND VENUE

7. This action arises under the patent laws of the United States, 35 U.S.C. § 1, ef seq. This
Court has subject matter jurisdiction under 28 U.S.C. §§ 1331 and 1338(a).

8. Defendants have committed acts of infringement in this judicial district.

9. On information and belief, Defendants maintain regular and systematic business interests
in this district and throughout the State of Texas including through their representatives,
employees and physical facilities.

10. On information and belief, the Court has personal jurisdiction over Defendants because
Defendants have committed, and continue to commit, acts of infringement in the State of Texas,
have conducted business in the State of Texas, and/or have engaged in continuous and systematic

activities in the State of Texas. On information and belief, Defendants’ accused instrumentalities

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE|3

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 4 of 53

that are alleged herein to infringe were and continue to be used, imported, offered for sale, and/or
sold in the Western District of Texas.
11. On information and belief, Defendant voluntarily conducts business and solicit customers
in the State of Texas and within this District.
12. On information and belief, Defendant has entered into a joint enterprise with one or more
technology companies in Austin leading to Defendant invest and remain owner in over $500,000
worth of its real property in this District, including, but not limited to, the following listed below.
(a) Located at 2802 Flintrock TRCE 201, Austin, TX 78734, Fujitsu has at least $46,414
worth of personal property at this location.
(b) Located at 1831 Wells Branch Pkwy, TX 78728, Defendant has at least $34,321 worth of
personal property at this location.
(¢) Located at 8904 Rustic CV, Austin, TX 78717, Defendant has $24508 worth of its own
personal property at this location.
(d) Located at 116 E Old Settlers Blvd, #6, Round Rock, TX 87664, Defendant has $439,325

worth of its own personal property at this location.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE | 4

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 5 of 53

OWNER MAME SITUS ADDRESS LEGAL DESCRIFTION PROPERTY TYPE
FUJITSW COMPUTER §004 RUISTIC OV, ALSTIN, TX BUSINESS PERSOMNAL
PRODUCTE OF AMERICA 78717 PROPERTY (& RESIDEMCE) Personal
INC @ B304 RUSTIC OV
e | sonsmasn RSSO
#6, ROUND ROCK, TX TG54 .
INC SETTLERS BLVD
FUJITSU NETWORK SEZS SPECTRUM DR 8400, INVENTORY OMLY @ 9825 |
COMMUMNMCATIONS AUSTIN, TX 7EM17 SPECTRLUM DR #:300
LEASED ECHLAPMENT (&
AFL::IE : il WESTINGHOUSE ELECTRIC) Perzonal
@3ISHNRR
BUSINESS PERSOMNAL
;U;LT:JE::ICAINEMD 14205 BURMET RD @470 PROPERTY @ 14205 Perzonal
EURNET RD #8470 RR
LEASED ECHLAPMENT (&
FUNITSU ICL SYSTEMS INC SUNCOAST #3431} @ 11200 Personal
LAKELINE MALL DR RR
13. On information and belief, Defendants generate substantial revenue within this District

and from the acts of infringement as carried out in this District. As such, the exercise of
jurisdiction over Defendants would not offend the traditional notions of fair play and substantial
justice.

14. Venue is proper in the Western District of Texas pursuant to 28 U.S.C. § 1400(b) and 28
U.S.C. § 1391(c)(3).

NOTICE OF TELEPUTERS’ PATENTS

15. Teleputers is owner by assignment of U.S. Patent No. 6,922,472 (“the ’472 Patent”)
entitled “Method and system for performing permutations using permutation instructions based

on butterfly networks.” A copy may be obtained at:

https://patents.google.com/patent/US6922472B2/en.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE|S

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 6 of 53

16. Teleputers is owner by assignment of U.S. Patent No. 6,952,478B2 (“the ’478 Patent”)
entitled “Method and system for performing permutations using permutation instructions based
on modified omega and flip stages.” A copy may be obtained at:
https://patents.google.com/patent/US6952478B2/en.

17. Teleputers is owner by assignment of U.S. Patent No. 7,092,526B2 (“the ’526 Patent”)
entitled “Method and system for performing subword permutation instructions for use in two-
dimensional ~ multimedia processing.” A copy may be obtained at:
https://patents.google.com/patent/US7092526B2/en.

18. Teleputers is owner by assignment of U.S. Patent No. 7,174,014B2 (“the 014 Patent”
and collectively with the 478 Patent and the *526 Patent, “the Patents-in-Suit”) entitled “Method
and system for performing permutations with bit permutation instructions.” A copy may be
obtained at: https://patents.google.com/patent/US7174014B2/en.

19. Teleputers is owner by assignment of U.S. Patent No. 7,519,795B2 (“the *795 Patent”)
entitled “Method and system for performing permutations with bit permutation instructions.” A
copy may be obtained at:

https://patents.google.com/patent/US7519795B2/en.

20. The foregoing Patents, namely the 014 Patent, the *526 Patent, the *478 Patent, the *472
Patent, and the *795 Patent are collectively referred to as “the Teleputers Patents.”

21. Teleputers is the owner of all right, title, and interest in each of the Teleputers Patents.
None of the Teleputers Patents, nor any of the claimed subject matter in any such Teleputers
Patents, has been otherwise assigned to any person or entity other than Teleputers. Teleputers
therefore has complete and unfettered standing to assert and seek money damages for the

infringement of each and every one of the Teleputers Patents.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 6

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 7 of 53

22. No entity other than Teleputers presently claims any ownership interest, valid or
otherwise, in any of the Teleputers Patents. Teleputers possesses full legal title to each of the
Teleputers Patents.

23. The records at the United States Patent and Trademark Office indicate duly recorded
assignments of the Teleputers Patents from the inventors (Lee, Shi, Yang, and/or Vachharajani)
to Teleputers, LLC, executed on February 14, 2005. No other assignments of interest in any
Teleputers Patent have been recorded with the United States Patent and Trademark Office, and
no such assignments exist. Indeed, the face of each Teleputers Patent properly identifies
Teleputers LLC as the legal assignee. As such, because each of the Teleputers Patents were
issued to the inventors, and because the inventors assigned the Teleputers Patents to Teleputers
LLC and filed copies of such assignments with the Patent and Trademark Office, Plaintiff
presumptively has proper standing to bring these causes of action. By operation of law, legal
title vests in the inventors, and passes to another only by way of assignment or effective legal
transfer.

24. Princeton University claims no rights to the patents-in-suit. Even if Princeton possessed
any rights whatsoever in any Teleputers Patent, such rights were equitable in nature and non-
exclusive to the rights of the inventors. The Verified Statement Claiming Small Entity Status
(dated March 5, 2000) in the certain Provisional Patent Application Number 60/202,250 states
only that certain unidentified “rights under contract or law” were, at the time, allegedly
possessed by The Trustees of Princeton University. The Verified Statement further made clear
that the named inventors possessed legal rights to the inventions. At best, such rights possessed
by Princeton were equitable, and were in any event limited to the inventions, not to the issued

patents. Further, the written policies of Princeton University relating to inventions (see

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |7

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 8 of 53

https://dof.princeton.edu/policies-procedure/policies/patents) expressly call for the outright
assignment of inventions to the inventors or the transfer of the inventions to a patent
management company. Having not transferred any of the Teleputers Patents to any patent
management company, the historical actions of Princeton reflect an abandonment of equitable
rights and an assignment of all rights (equitable and legal) to the inventors. Stated differently,
the conduct of the parties (Princeton and the inventors) evidences an abandonment of rights on
the part of Princeton, and full equitable and legal title in the inventors. Inventors have releases
from Princeton.

25. The Teleputers Patents are valid, enforceable, and were duly issued in full compliance
with Title 35 of the United States Code.

26. Defendant, at least by the date of this Original Complaint, is on notice of the Teleputers
Patents.

27. The ’526 Patent relates generally to methods and systems for providing provides a set of
permutation primitives for current and future 2-D multimedia programs which are based on
decomposing images and objects into atomic units, then finding the permutations desired for the
atomic units. The subword permutation instructions for these 2-D building blocks are also
defined for larger subword sizes at successively higher hierarchical levels. The atomic unit can
be a 2x2 matrix and four triangles contained within the 2x2 matrix. Each of the elements in the
matrix can represent a subword of one or more bits. The permutations provide vertical,
horizontal, diagonal, rotational, and other rearrangements of the elements in the atomic unit. See
Abstract, ’526 Patent.

28. The claims of the *526 Patent claim priority to at least May 7, 2001.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |8

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 9 of 53

29. The claims of the ’526 Patent are not drawn to laws of nature, natural phenomena, or
abstract ideas. Although the systems and methods claimed in the Asserted Patents are ubiquitous
now (and, as a result, are widely infringed), the specific combinations of elements, as recited in
the claims, was not conventional or routine at the time of the invention.

30. Further, the claims of the 526 Patent overcome deficiencies in the prior art, including but
not limited to those deficiencies embodied in subword parallelism, shift-and-rotate instructions,
extract-and-deposit instructions, and mix-and-permute. The prior art was deficient in its ability
to permute more than 16 elements. See 526 Patent at Col. 1:15-2:23.

31. Further, the claims of the ’526 Patent contain inventive concepts which transform the
underlying non-abstract aspects of the claims into patent-eligible subject matter.

32. For example, the claims of the ’526 Patent recite and are drawn to improvements in
existing computational technologies, and provide for efficient subword permutation instructions
that can be used for parallel execution, for example in 2-D multimedia processing. See ’526
Patent at Col. 2:50-53.

33. Further, the claims of the ’526 Patent recite and are drawn to improvements in existing
computational technologies, and provide for single-cycle instructions, which can be used to
construct any type of permutations needed in two-dimensional (2-D) multimedia processing. The
instructions can be used in a programmable processor, such as a digital signal processor, video
signal processors, media processors, multimedia processors, cryptographic processors and
programmable System-on-a-Chips (SOCs). See *526 Patent at Col. 2:56-62.

34. Further, the claims of the ’526 Patent recite and are drawn to improvements in existing
computational technologies, wherein the subword permutation primitives enhance the use of

subword parallelism by allowing in-place rearrangement of packed subwords across multiple

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |9

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 10 of 53

registers, reducing the need for memory accesses with potentially costly cache misses. The
alphabet of permutation primitives of the invention is easy to implement and is useful for 2-D
multimedia processing and for other data-parallel computations using subword parallelism. See
’526 Patent at Col. 3:40-47.

35. The foregoing improvements and technological solutions, as captured in the claims of the
‘526 Patent, enable prior art systems to perform better than they previously could by
implementing unconventional methodologies.

36. Further, the claims of the ’526 Patent do not preempt all methods and systems for
providing permutation primitives.

37. Consequently, the claims of the ’526 Patent recite systems and methods resulting in
improved functionality of the claimed systems and represent technological improvements to the
operation of computers.

38. The ’526 Patent was examined by Primary United States Patent Examiner Hosuk Song.
During the examination of the ’526 Patent, the United States Patent Examiner(s) searched for
prior art in the following US Classifications: 708/100, 708/520, 712/1, 10, 20, 16, 24, 200,
380/28, 380/37, 42-47.

39. After conducting a search for prior art during the examination of the ’526 Patent, the
United States Patent Examiner(s) identified and cited the following as the most relevant prior art
references found during the search: (i) US4751733A; (i1) US4845668A; (iii) US5113516A; (iv)
US5423010A; and (v) US5673321A.

40. After giving full proper credit to the prior art and having conducted a thorough search for
all relevant art and having fully considered the most relevant art known at the time, the United

States Patent Examiner(s) allowed all of the claims of the ’526 Patent to issue. In so doing, it is

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 10

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 11 of 53

presumed that the Examiner(s) used his or her knowledge of the art when examining the claims.
K/S Himpp v. Hear-Wear Techs., LLC, 751 F.3d 1362, 1369 (Fed. Cir. 2014). It is further
presumed that the Examiner has experience in the field of the invention, and that the Examiner
properly acted in accordance with a person of ordinary skill. In re Sang Su Lee, 277 F.3d 1338,
1345 (Fed. Cir. 2002).

41. The ’472 Patent relates generally to methods and systems for providing permutation
instructions which can be used in software executed in a programmable processor for solving
permutation problems in cryptography, multimedia and other applications. The permute
instructions are based on a Benes network comprising two butterfly networks of the same size
connected back-to-back. Intermediate sequences of bits are defined that an initial sequence of
bits from a source register are transformed into. Each intermediate sequence of bits is used as
input to a subsequent permutation instruction. Permutation instructions are determined for
permitting the initial source sequence of bits into one or more intermediate sequence of bits until
a desired sequence is obtained. The intermediate sequences of bits are determined by
configuration bits. The permutation instructions form a permutation instruction sequence of at
least one instruction. At most 21 gr/m permutation instructions are used in the permutation
instruction sequence, where r is the number of k-bit subwords to be permuted, and m is the
number of network stages executed in one instruction. The permutation instructions can be used
to permute k-bit subwords packed into an n-bit word, where k can be 1, 2, . . ., or n bits, and
k*r=n. See Abstract, ’472 Patent.

42. The claims of the *472 Patent claim priority to at least May 5, 2000.

43, The claims of the ’472 Patent are not drawn to laws of nature, natural phenomena, or

abstract ideas. Although the systems and methods claimed in the Asserted Patents are ubiquitous

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 11

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 12 of 53

now (and, as a result, are widely infringed), the specific combinations of elements, as recited in
the claims, was not conventional or routine at the time of the invention.

44. Further, the claims of the 472 Patent contain inventive concepts which transform the
underlying non-abstract aspects of the claims into patent-eligible subject matter.

45. Further, the claims of the *472 Patent overcome deficiencies in the prior art, including but
not limited to those relating to secure use of the Internet, symmetric key cryptography, bit-level
permutations, table lookup methods, and methods requiring excessive memory requirements.
See *472 Patent at Col. 1:17-3:15.

46. For example, the claims of the ’472 Patent recite and are drawn to improvements in
existing computational technologies, and provide significantly faster and more economical ways
to perform arbitrary permutations of n bits, without any need for table storage, which can be used
for encrypting large amounts of data for confidentiality or privacy. See 472 Patent at Col. 3:17-
21.

47. Further, the claims of the 472 Patent recite and are drawn to improvements in existing
computational technologies, and provide improved and more efficient cryptography, which
provides for improved multimedia processing. See *472 Patent at Col. 3:24-37.

48. Further, the claims of the 472 Patent recite and are drawn to improvements in existing
computational technologies, and provide a basis for the design of new processors or coprocessors
which can be efficient for both cryptography and multimedia software. See 472 Patent at Col.
3:42-47.

49. The foregoing improvements and technological solutions, as captured in the claims of the
‘472 Patent, enable prior art systems to perform better than they previously could by

implementing unconventional methodologies.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 12

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 13 of 53

50. Further, the claims of the *472 Patent do not preempt all methods and systems for solving
permutation problems in cryptography.

51. Consequently, the claims of the 472 Patent recite systems and methods resulting in
improved functionality of the claimed systems and represent technological improvements to the
operation of computers.

52. The 472 Patent was examined by Primary United States Patent Examiner Gilberto
Barron, Jr, with Assistant Examiner Grigory Gurshman. During the examination of the ’472
Patent, the United States Patent Examiner(s) searched for prior art in the following US
Classifications: 380/37, 28, 1.

53. After conducting a search for prior art during the examination of the ’472 Patent, the
United States Patent Examiner(s) identified and cited the following as the most relevant prior art
references found during the search: (i) US5495476A; (ii) US5546393A; (iii) US6381690B1; (iv)
US6446198B1; (v) US6629115B1; (vi) US6108311A; and (vii) US5940389A.

54. After giving full proper credit to the prior art and having conducted a thorough search for
all relevant art and having fully considered the most relevant art known at the time, the United
States Patent Examiner(s) allowed all of the claims of the 472 Patent to issue. In so doing, it is
presumed that the Examiner(s) used his or her knowledge of the art when examining the claims.
K/S Himpp v. Hear-Wear Techs., LLC, 751 F.3d 1362, 1369 (Fed. Cir. 2014). It is further
presumed that the Examiner has experience in the field of the invention, and that the Examiner
properly acted in accordance with a person of ordinary skill. In re Sang Su Lee, 277 F.3d 1338,
1345 (Fed. Cir. 2002).

55. The ’014 Patent relates generally to methods and systems for providing permutation

instructions usable in a programmable processor for solving permutation problems in

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 13

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 14 of 53

cryptography, multimedia and other applications. PPERM and PPERM3R instructions are
defined to perform permutations by a sequence of instructions with each sequence specifying the
position in the source for each bit in the destination. In the PPERM instruction bits in the
destination register that change are updated and bits in the destination register that do not change
are set to zero. In the PPERM3R instruction bits in the destination register that change are
updated and bits in the destination register that do not change are copied from intermediate result
of previous PPERM3R instructions. Both PPERM and PPERM3R instructions can individually
do permutation with bit repetition. Both PPERM and PPERM3R instructions can individually do
permutation of bits stored in more than one register. In an alternate embodiment, a GRP
instruction is defined to perform permutations. See Abstract, 014 Patent.

56. The claims of the 014 Patent claim priority to at least May 7, 2001.

57. The claims of the 014 Patent are not drawn to laws of nature, natural phenomena, or
abstract ideas. Although the systems and methods claimed in the Asserted Patents are ubiquitous
now (and, as a result, are widely infringed), the specific combinations of elements, as recited in
the claims, was not conventional or routine at the time of the invention.

58. Further, the claims of the 014 Patent contain inventive concepts which transform the
underlying non-abstract aspects of the claims into patent-eligible subject matter.

59. Further, the claims of the ‘014 Patent overcome deficiencies in the prior art, including but
not limited to those relating to secure use of the Internet, symmetric key cryptography, bit-level
permutations, table lookup methods, and methods requiring excessive memory requirements.
See ’014 Patent at 1:14-2:67.

60. For example, the claims of the 014 Patent recite and are drawn to improvements in

existing computational technologies, and provide significantly faster and more economical ways

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 14

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 15 of 53

to perform arbitrary permutations of n bits, without any need for table storage, which can be used
for encrypting large amounts of data for confidentiality or privacy. See 014 Patent at Col.3:1-5.
61. Further, the claims of the 014 Patent recite and are drawn to improvements in existing
computational technologies, and provide improved and more efficient cryptography, which
provides for improved multimedia processing. See *014 Patent at Col. 3:9-21.

62. Further, the claims of the 014 Patent recite and are drawn to improvements in existing
computational technologies, and provide a basis for the design of new processors or coprocessors
which can be efficient for both cryptography and multimedia software. See 014 Patent at Col.
3:26-31.

63. The foregoing improvements and technological solutions, as captured in the claims of the
014 Patent, enable prior art systems to perform better than they previously could by
implementing unconventional methodologies.

64. Further, the claims of the 014 Patent do not preempt all methods and systems for solving
permutation problems in cryptography.

65. Consequently, the claims of the 014 Patent recite systems and methods resulting in
improved functionality of the claimed systems and represent technological improvements to the
operation of computers.

66. The 014 Patent was examined by Primary United States Patent Examiner Emmanuel L.
Moise, with Assistant Examiner Paul Callahan. During the examination of the 014 Patent, the
United States Patent Examiner(s) searched for prior art in the following US Classifications:
380/44, 380/265, 28, 377/54, 60, 75, 67, 81, 711/109, 340/825.68, 365/73, 78, 712/1, 24, 10,

712/223.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 15

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 16 of 53

67. After conducting a search for prior art during the examination of the ’014 Patent, the
United States Patent Examiner(s) identified and cited the following as the most relevant prior art
references found during the search: (i) US5524256A; (ii) US5734721A; (iii) US6865272B2; (iv)
US4907233A; (v) JP2863597B2; (vi) US5734334A; (vii) US5422705A; (viii) GB9617553D0;
(ix) US5996104A; (x) US6275965B1; (xi) US6233671B1; (xii) US6483543B1; (xiii)
EP0992916A1; (xiv) US7174014B2; and (xv) Zhijie Shi, Ruby B. Lee: “Bit Permutation
Instructions for Accelerating Software Cryptography”, in Proc. IEEE Intl. Conf. Application-
Specific Systems, Architectures and Processors, pp. 138-148, Jul. 2000.

68. After giving full proper credit to the prior art and having conducted a thorough search for
all relevant art and having fully considered the most relevant art known at the time, the United
States Patent Examiner(s) allowed all of the claims of the 014 Patent to issue. In so doing, it is
presumed that the Examiner(s) used his or her knowledge of the art when examining the claims.
K/S Himpp v. Hear-Wear Techs., LLC, 751 F.3d 1362, 1369 (Fed. Cir. 2014). It is further
presumed that the Examiner has experience in the field of the invention, and that the Examiner
properly acted in accordance with a person of ordinary skill. In re Sang Su Lee, 277 F.3d 1338,
1345 (Fed. Cir. 2002).

ACCUSED INSTRUMENTALITIES

69. On information and belief, Defendants make, use, import, sell, and/or offer for sale a
multitude of products and services as systems on chips (“SoC”) that employ Arm Neon
technology supporting the infringing instructions including, but not limited to: MB86RI1x,
MB86R2x, MB86HD6x, MB86R24, (“Triton-C” Graphics Display Controller) (individually and

collectively, the “Accused Instrumentalities”). On information and belief, the Accused

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 16

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 17 of 53

Instrumentalities are made, used, sold, offered for sale, and/or imported in the United States by
Defendants.

70. On information and belief, Defendants also make, use, import, sell, and/or offer for sale a
multitude of products and services and provides, for example, the SPARC64 XII processor used
in Fujitsu servers (including but not limited to SPARC M12-1, SPARC M12-2 and SPARC
M12-2S) (the “’014 Accused Instrumentalities”). On information and belief, the 014 Accused

Instrumentalities are made, used, sold, offered for sale, and/or imported in the United States by

Defendants.
COUNT1
(Infringement of U.S. Patent No. 7,092,526B2)
71. Teleputers incorporates the above paragraphs by reference.
72. Defendant has been on notice of the 526 Patent at least as early as the date it received

service of this Original Complaint.

73. On information and belief, Defendant has directly infringed and continue to infringe the
’526 Patent by making, using, importing, selling, and/or, offering for sale the Accused
Instrumentalities in the United States.

74. On information and belief, Defendant, with knowledge of the ’526 Patent, indirectly
infringes the 526 Patent by inducing others to infringe the *526 Patent. In particular, Defendant
intends to induce customers to infringe the ’526 Patent by encouraging customers to use the
Accused Instrumentalities in a manner that results in infringement.

75. On information and belief, Defendant also induces others, including its customers, to
infringe the ’526 Patent by providing technical support for the use of the Accused

Instrumentalities.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 17

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 18 of 53

76. On information and belief, at all times Defendant owns and controls the operation of the
Accused Instrumentalities in accordance with an end user license agreement.

77. On information and belief, the Accused Instrumentalities necessarily infringe one or more
claims of the ‘478 Patent when used as intended.

78. On information and belief, the Accused Instrumentalities infringe at least Claim 1 of the
’526 Patent by providing a method for permuting data based on decomposing images and objects
into atomic elements. For example, Defendant provides system-on-chip solutions for data
processing. Defendant’s MB86R24 SoC (used herein as an exemplary product) utilizes ARM
Neon technology for improving video encoding and decoding. ARM Neon SIMD architecture
provides permutation instructions to rearrange individual elements present in 2D/3D graphics.
Further, upon information and belief, Defendant directly infringes the claim at least when it tests
its SoCs. During such tests, Defendant utilizes the SoCs to perform permutation on the input
data using permutation instructions available in ARM Neon SIMD ISA (Instruction Set

Architecture).

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE| 18

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 19 of 53

MB86R24 “Triton" Series: The high-performance MB86R24
“Triton-C’ combines the latest ARM Cortex-AS dual CPU core with
state-of-the-art, embedded 2.5D and 3D graphics cores. This third-
generation application processor is the first device in Fujitsu's

new “Blueline” family of high-performance GDCs.

The 3D core incorporates Imagination Technologies' POWERVR™
SGX543-MP1, which supports open standard API formats

such as OpenGL ES 2.0. The POWERVR core uses Tile-Based
Deferred Rendering (TBDR) for render processing, which reduces
performance loads on the CPU and GPU, and increases system
capacity. The high-end SoC also combines six video-capture inputs
and three, independent, parallel display outputs.

The chip’s architecture has been optimized for the simultaneous
use of all functional blocks, virtually eliminating performance
gaps. The device's harmonized structure permits the simultaneous
rendering of independent 2.5D and 3D graphics, the capturing

of multiple video streams, and the display of content to

multiple sources.

Source:https://www.fujitsu.com/us/Images/SPBG_GDC_Overview PB.pdf, page 3

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE| 19

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 20 of 53

Triton-C

Gen. Purpose 32ch DDR2-&X)I3—IOG?|
Bus 16/32-bit DMA x32,x64,2GB

SGX543-MP1

3D Engine
OpenGL ES, VG, (L

CAN MOST Ethernet MAC
3/6-Pin IEEE1588

Source:https://www.fujitsu.com/us/Images/SPBG_GDC_Overview PB.pdf, page 3

E d
Product Description avedde
Processor
MRAAEIy ® * Caring Sprite-based GDC with an APIX interface designed to be used in conjunction with
MBB8F33x “Indigo” Series Jade D" or MBB6R1x "Emerald” Series No
T i 2.5D/3D, DDR2, dual display/single capture. Interfaces: SD (1), I°C (2), IS (3), PWM
MBB86R03 “Jade -L (2), UART (6), GPIO (24) ARM926E
MBB6RO1 “Jade’ “Jade L features plus USB, Media LB, IDE66 ARM9I26E
MBB6R02 “Jade-D" “Jade” plus an APIX (USB, IDE removed) dithering unit added to the display controller ARM926E
3D GDC core supporting OpenGL ES 2.0 plus new Pix8It engine for enhanced 2.5D
MBB6R11 “Emerald-1 processing. Four video-capture ports, with the ability to drive five displays. Interfaces ARM
gl LoD include: Ethernet (1), SD (3), USB (2), I’C (5), I’S (4), PWM (12), UART (6), GPIO (25), Cortex-A9
CAN (2), SPI (2), QSPI (1)
MBB6R12 “Emerald-P’ Faster CPU (533 MHz) and graphics core (266MHz). Four high-speed APIX 2.0 ports - ARM
AEEEREE S three outputs and one input. Rated for a -40 to +105° C operating range Cortex-A9
Dual-core ARM Cortex-A9 processors with Imagination’s IMG543 3D graphics core
MBB6R24 “Triton-C" combined with Fujitsu's high-performance 2.5D engine. Six video-capture inputs and ARM
oot UL three independent display controllers. Interfaces: SPI (3), Ethernet, USB 2.0, SDIO/ Cortex-A9
MMC (1), UART (6), USART (5), IS (2), IPC (4), and PWM (8)

Source:https://www.fujitsu.com/us/Images/SPBG_GDC_Overview PB.pdf, page 4

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |20

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 21 of 53

a rl I I DeVeloper IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES SOLUTIONS COMMUNITY SUPPORT DOCUMENTATION

Overview SVE Neon ¥ Helium

Arm Neon technology is an advanced Single Instruction Multiple Data (SIMD) architecture
extension for the Arm Cortex-A and Cortex-R series processors.

arm

Neon technology is a packed SIMD architecture. Neon registers are considered as vectors of N E O N
elements of the same data type, with Neon instructions operating on multiple elements

simultaneously. Multiple data types are supported by the technology, including floating-point and
integer operations.

Neon technology is intended to improve the multimedia user experience by accelerating audio and
video encoding and decoding, user interface, 2D/3D graphics, and gaming. Neon can also
accelerate signal processing algorithms and functions to speed up applications such as audio and O

Video Encoding

video processing, voice and facial recognition, computer vision, and deep learning.

As a programmer, there are several ways you can use Neon technology: Audio Recognition Machine Leaming

« Neon intrinsics

* Neon-enabled libraries

* Auto-vectorization by your compiler
* Hand-coded Neon assembler

Source: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon

This article describes the instructions provided by Neon for rearranging data within vectors. Previous
articles in this series:

* Part 1: Loads and Stores

e Part 2: Dealing with Leftovers

e Part 3: Matrix Multiplication
e Part4: Shifting Left and Right

Introduction

When writing code for Neon, you may find that sometimes, the data in your registers are not quite in the
correct format for your algorithm. You may need to rearrange the elements in your vectors so that
subsequent arithmetic can add the correct parts together, or perhaps the data passed to your function is
in a strange format. and must be reordered before your speedy SIMD code can handle it.

This reordering operation is called a permutation. Permutation instructions rearrange individual
elements, selected from single or multiple registers, to form a new vector.

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |21

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 22 of 53

NEON technology

ARM NEON technology is the implementation of the Advanced SIMD architecture extension. It
1s a 64 and 128-bit hybrid SIMD technology targeted at advanced media and signal processing
applications and embedded processors.

NEON technology is implemented as part of the ARM core, but has its own execution pipelines
and a register bank that is distinct from the ARM core register bank.

NEON instructions are available in both ARM and Thumb code.

Source:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473j/DUI0473) armasm_user guide.pdf,

page 40

79. Further, Defendant performs and induces others to perform the step of decomposing said
two dimensional data into at least one atomic element said two dimensional data being located in
at least one source register said at least one atomic element of said two dimensional data is a 2x2
matrix and said two dimensional data is decomposed into data elements in said matrix. For
example, the MB86R24 Triton-C uses a permutation instruction (such as a VTRN instruction)
and decomposes two dimensional data (in the form of 4x4 matrix) into a 2x2 matrix. The 4x4
matrix consists of 16-bit elements (“atomic element”). The permutation instruction transposes 8§,
16 or 32-bit elements between a pair of vectors. The permutation instruction is applied on the
elements of the vectors by dividing it into 2x2 matrices. The two dimensional data is stored in at

least one of the dO and d1 vectors (“source registers”).

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |22

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 23 of 53

Use multiple VTRN instructions to transpose larger matrices. For example, 3 4x4 matrix consisting of 16-
bit elements can be transposed using three VTRN instructions.

[d]cfbfa]e (9] cefa]e
DonoE DOUDE
[plon]m]a [po]n]m]e
VIRN.16 d2, d3
\J
[~ T le]+]
e | DOUDk
- -~ ™ ElEE
(- e Cl-m -

Transposing a 4x4 matrix

Thisis the same operation performed by VLD4 and VST4 after loading, or before storing, vectors. As they
require fewer instructions, try to use these structured memory access features in preferenceto a
sequence of VTRN instructions, where possible.

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

VTRN: Transpose

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors
as 2x2 matrices, and transposes each matrix.

do
dl
VTRN.16 a0, dl
Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |23

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 24 of 53

14131 VTRN
Vector Transpose.
Syntax
VTRN{cond}.size Qd, Qm
VTRN{cond}.size Dd, Dm
where:

cond
is an optional condition code.
size
must be one of 8, 16, or 32.
Qd, Qm
specifies the vectors, for a quadword operation.
Dd, Dm
specifies the vectors, for a doubleword operation.

Operation
VTRN treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.
The following figures show examples of the operation of VTRN:

5 4

o TTTTTTT]
[TT1]

oo | |] I

Figure 14-9 Operation of doubleword VTRN.8
1 0

O l I

Dd |

Figure 14-10 Operation of doubleword VTRN.32

Source:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473j/DUI0473] armasm_user guide.pdf,

page 734.

80. Further, Defendant performs and induces others to perform the step of determining at
least one permutation instruction for rearrangement of said data in said atomic element. For
example, the MB86R24 Triton-C uses a permutation instruction (such as a VTRN instruction)
and decomposes two dimensional data (in the form of 4x4 matrix) into a 2x2 matrix. The
permutation instruction transposes (“rearrangement”) 8, 16 or 32-bit elements between a pair of
vectors. The permutation instruction is applied on the elements of the vectors by dividing it into

2x2 matrices.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE | 24

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 25 of 53

Use multiple VTRN instructions to transpose larger matrices. For example, 3 4x4 matrix consisting of 16-
bit elements can be transposed using three VTRN instructions.

[d]cfbfa]e (9] cefa]e
DonoE DOUDE
[plon]m]a [po]n]m]e
VIRN.16 d2, d3
\J
[~ T le]+]
e | DOUDk
- -~ ™ ElEE
(- e Cl-m -

Transposing a 4x4 matrix

Thisis the same operation performed by VLD4 and VST4 after loading, or before storing, vectors. As they
require fewer instructions, try to use these structured memory access features in preferenceto a
sequence of VTRN instructions, where possible.

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

VTRN: Transpose

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors
as 2x2 matrices, and transposes each matrix.

do
dl
VTRN.16 a0, dl
Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |25

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 26 of 53

14131 VTRN
Vector Transpose.
Syntax
VTRN{cond}.size Qd, Qm
VTRN{cond}.size Dd, Dm
where:

cond
is an optional condition code.
size
must be one of 8, 16, or 32.
Qd, Qm
specifies the vectors, for a quadword operation.
Dd, Dm
specifies the vectors, for a doubleword operation.

Operation

VTRN treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.
The following figures show examples of the operation of VTRN:

5 4

o TTTTTTT]
[TT1]

oo | |] I

Figure 14-9 Operation of doubleword VTRN.8
1 0

O l I

Dd |

Figure 14-10 Operation of doubleword VTRN.32

Source:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473j/DUI0473) armasm_user guide.pdf,

page 734.

81. Further, Defendant performs and induces others to perform the step of said data elements
being rearranged by said at least one permutation instruction, each of said data elements
representing a subword having one or more bits. For example, the MB86R24 Triton-C uses a
permutation instruction (such as a VITRN instruction) and transposes (“rearrange”) 8, 16 or 32-
bit elements (“subwords”) of the 2x2 matrix. The permutation instruction performs bit

permutation on each element.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |26

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 27 of 53

articles in this series:

* Part 1: Loads and Stores

e Part 2: Dealing with Leftovers

e Part 3: Matrix Multiplication
e Part 4:Shifting Left and Right

Introduction

When writing code for Neon, you may find that sometimes, the data in your registers are not quite in the
correct format for your algorithm. You may need to rearrange the elements in your vectors so that
subsequent arithmetic can add the correct parts together, or perhaps the data passed to your functionis
in a strange format, and must be reordered before your speedy SIMD code can handle it.

This reordering operation is called a permutation. Permutation instructions rearrange individual
elements, selected from single or multiple registers, to form a new vector.

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

VTRN: Transpose

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors
as 2x2 matrices, and transposes each matrix.

do
dl
VTRN.16 d0, d1
Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |27

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 28 of 53

Operation

VTRN treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.

The following figures show examples of the operation of VTRN:
3 2 1 0
L1 | /I‘
oof | T T TTT]

Figure 14-9 Operation of doubleword VTRN.8

7 6 5 4

om | | |

|

1 (4]

D I |

Dd [

|Flgure 14-10 Operation of doubleword VTRN.32

Source:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473j/DUI0473) armasm_user guide.pdf,

page 734

82. Further, Defendant performs and induces others to perform the step of applying said
permutation instructions to said subwords and placing said permutated subwords into a
destination register. For example, the MB86R24 Triton-C uses a permutation instruction (such
as a VTRN instruction) and transposes 2x2 matrix elements to form a new vector (“placing said

permutated subword into a destination register”).

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |28

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 29 of 53

articles in this series:

* Part 1: Loads and Stores

e Part 2: Dealing with Leftovers

e Part 3: Matrix Multiplication
e Part4:Shifting Left and Right

Introduction

When writing code for Neon, you may find that sometimes, the data in your registers are not quite in the
correct format for your algorithm. You may need to rearrange the elements in your vectors so that
subsequent arithmetic can add the correct parts together, or perhaps the data passed to your functionis
in a strange format. and must be reordered before your speedy SIMD code can handle it.

This reordering operation is called a permutation. Permutation instructions rearrange individual
elements, selected from single or multiple registers, to form a new vector.

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

83. Defendant indirectly infringe the claim at least when Defendant’s customers (such as
device manufacturers which use Defendant’s SoCs in their products) perform the method while
testing their devices and when the devices are operated by end-users.

COUNT 11
(Infringement of U.S. Patent No. 6,952,478B2)

84. Teleputers incorporates the above paragraphs by reference.

85. Defendant has been on notice of the *478 Patent at least as early as the date it received
service of this Original Complaint.

86. On information and belief, Defendant has infringed and continue to infringe the ’478
Patent by making, using, importing, selling, and/or, offering for sale the Accused

Instrumentalities in the United States.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |29

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 30 of 53

87. On information and belief, Defendant, with knowledge of the ’478 Patent, indirectly
infringes the 478 Patent by inducing others to infringe the 478 Patent. In particular, Defendant
intends to induce customers to infringe the 478 Patent by encouraging customers to use the
Accused Instrumentalities in a manner that results in infringement.

88. On information and belief, Defendant also induces others, including customers, to
infringe the ’478 Patent by providing technical support for the use of the Accused
Instrumentalities.

89. On information and belief, at all times Defendant owns and controls the operation of the
Accused Instrumentalities in accordance with an end user license agreement.

90. On information and belief, the Accused Instrumentalities necessarily infringe one or more
claims of the *478 Patent when used as intended.

91. On information and belief, the Accused Instrumentalities infringe and induce others to
infringe the ’478 Patent by providing a method for performing an arbitrary permutation of a
source sequence of bits in a programmable processor. For example, Fujitsu provides a system-
on-chip (including but not limited to MB86R1x, MB86R2x and MB86HD6x) solutions for
parallel data processing. Defendant’s MB86R24 Triton-C SoC (used herein as an exemplary
product) is used in Graphic Display Controllers. The MB86R24 Triton-C includes ARM Cortex-
A9 dual CPU core, embedded 2.5D and 3D graphics cores. Further, the MB86R24 Triton-C SoC
(“programmable processor”) utilizes Arm Neon technology (an advanced Single Instruction
Multiple Data (SIMD) architecture) for improving audio/video encoding and decoding, 2.5D/3D
graphics (“source sequence of bits”), and/or image/video processing. ARM Neon SIMD
architecture provides permutation instructions to rearrange individual elements present in

2.5D/3D graphics.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |30

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 31 of 53

92. For example, Defendant’s 88PA6270 SoC (used herein as an exemplary product) is used
for class color and monochrome single or multi-function printers. The 88PA6270 SoC includes a
quad core 1.2 GHz ARM AS53 processor to handle all the application processing and Page
Description Language (PDL) rendering requirements.

93. Further, the 88PA6270 SoC (“programmable processor”) utilizes ARM Neon technology
(a Single Instruction Multiple Data (SIMD) architecture) for improving video encoding and
decoding, 2D/3D graphics (“two dimensional (2-D) data”), and/or gaming experience. ARM
Neon SIMD architecture provides permutation instructions to rearrange individual elements

present in 2D/3D graphics.

MB86R24 “Triton" Series: The high-performance MB86R24
“Triton-C" combines the latest ARM Cortex-AS dual CPU core with
state-of-the-art, embedded 2.5D and 3D graphics cores. This third-
generation application processor is the first device in Fujitsu’s

new “Blueline” family of high-performance GDCs.

The 3D core incorporates Imagination Technologies' POWERVR™
SGX543-MP1, which supports open standard API formats

such as OpenGL ES 2.0. The POWERVR core uses Tile-Based
Deferred Rendering (TBDR) for render processing, which reduces
performance loads on the CPU and GPU, and increases system
capacity. The high-end SoC also combines six video-capture inputs
and three, independent, parallel display outputs.

The chip’s architecture has been optimized for the simultaneous
use of all functional blocks, virtually eliminating performance
gaps. The device's harmonized structure permits the simultaneous
rendering of independent 2.5D and 3D graphics, the capturing

of multiple video streams, and the display of content to

multiple sources.

Source:https://www.fujitsu.com/us/Images/SPBG_GDC_Overview PB.pdf, page 3

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |31

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 32 of 53

Triton-C

Gen. Purpose 32ch DDR2-&X)I3—IOG?|
Bus 16/32-bit DMA x32,x64,2GB

SGX543-MP1

3D Engine
OpenGL ES, VG, (L

CAN MOST Ethernet MAC
3/6-Pin IEEE1588

Source:https://www.fujitsu.com/us/Images/SPBG_GDC_Overview PB.pdf, page 3

E d
Product Description avedde
Processor
MRAAEIy ® * Caring Sprite-based GDC with an APIX interface designed to be used in conjunction with
MBB8F33x “Indigo” Series Jade D" or MBB6R1x "Emerald” Series No
T i 2.5D/3D, DDR2, dual display/single capture. Interfaces: SD (1), I°C (2), IS (3), PWM
MBB86R03 “Jade -L (2), UART (6), GPIO (24) ARM926E
MBB6RO1 “Jade’ “Jade L features plus USB, Media LB, IDE66 ARM9I26E
MBB6R02 “Jade-D" “Jade” plus an APIX (USB, IDE removed) dithering unit added to the display controller ARM926E
3D GDC core supporting OpenGL ES 2.0 plus new Pix8It engine for enhanced 2.5D
MBB6R11 “Emerald-1 processing. Four video-capture ports, with the ability to drive five displays. Interfaces ARM
gl LoD include: Ethernet (1), SD (3), USB (2), I’C (5), I’S (4), PWM (12), UART (6), GPIO (25), Cortex-A9
CAN (2), SPI (2), QSPI (1)
MBB6R12 “Emerald-P’ Faster CPU (533 MHz) and graphics core (266MHz). Four high-speed APIX 2.0 ports - ARM
AEEEREE S three outputs and one input. Rated for a -40 to +105° C operating range Cortex-A9
Dual-core ARM Cortex-A9 processors with Imagination’s IMG543 3D graphics core
MBB6R24 “Triton-C" combined with Fujitsu's high-performance 2.5D engine. Six video-capture inputs and ARM
oot UL three independent display controllers. Interfaces: SPI (3), Ethernet, USB 2.0, SDIO/ Cortex-A9
MMC (1), UART (6), USART (5), IS (2), IPC (4), and PWM (8)

Source:https://www.fujitsu.com/us/Images/SPBG_GDC_Overview PB.pdf, page 4.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |32

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 33 of 53

a rl I I DeVeloper IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES SOLUTIONS COMMUNITY

SUPPORT DOCUMENTATION

Overview SVE Neon ¥ Helium

Arm Neon technology is an advanced Single Instruction Multiple Data (SIMD) architecture

elements of the same data type, with Neon instructions operating on multiple elements
simultaneously. Multiple data types are supported by the technology, including floating-point and

integer operations.

Neon technology is intended to improve the multimedia user experience by accelerating audio and Video Encoding

video encoding and decoding, user interface, 2D/3D graphics, and gaming. Neon can also
accelerate signal processing algorithms and functions to speed up applications such as audio and O

video processing, voice and facial recognition, computer vision, and deep learning.

As a programmer, there are several ways you can use Neon technology: Audio Recognition

« Neon intrinsics

* Neon-enabled libraries

* Auto-vectorization by your compiler
* Hand-coded Neon assembler

Source: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon

Introduction

When writing code for Neon, you may find that sometimes, the data in your registers are not quite in the
correct format for your algorithm. You may need to rearrange the elements in your vectors so that
subsequent arithmetic can add the correct parts together, or perhaps the data passed to your function is
in a strange format, and must be reordered before your speedy SIMD code can handle it.

This reordering operation is called a permutation. Permutation instructions rearrange individual
elements, selected from single or multiple registers, to form a new vector.

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to issue,

whereas the more complex operations use multiple cycles, and may require additional registers to be set
up. As always, benchmark or profile your code regularly, and check your processor's Technical Reference
Manual (Cortex-A8, Cortex-A9) for performance details.

extension for the Arm Cortex-A and Cortex-R series processors. a r m

Neon technology is a packed SIMD architecture. Neon registers are considered as vectors of N E O N

)

ARNVR

@@

Machine Learning

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 33

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 34 of 53

NEON technology

ARM NEON technology is the implementation of the Advanced SIMD architecture extension. It
1s a 64 and 128-bit hybrid SIMD technology targeted at advanced media and signal processing
applications and embedded processors.

NEON technology is implemented as part of the ARM core, but has its own execution pipelines
and a register bank that is distinct from the ARM core register bank.

NEON instructions are available in both ARM and Thumb code.

Source:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473j/DUI0473) armasm_user guide.pdf,

page 2-40.

94. Further, Defendant performs the step of defining an intermediate sequence of bits that
said source sequence of bits is transformed into. For example, the MB86R24 Triton-C SoC uses
a permutation instruction (such as a VTRN instruction) and decomposes two dimensional data
(in the form of 4x4 matrix) into an intermediate sequence and then into a 2x2 matrix. The
permutation instruction transposes (“rearrangement”) 8, 16 or 32-bit elements between a pair of
vectors. The permutation instruction is applied on the elements of the vectors by dividing it into
2x2 matrices. The intermediate sequence of bits is converted into the desired output by applying

the permutation instruction on it.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE | 34

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 35 of 53

Source Sequence
[dfcfbfe]a
Douok
Donok
RS Ry S EREE LA
\ J
(9 cfefa]wm
1 d b | d1

4| VIRN.32 90, a1 |

a a o
~N

w

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

I -
- -

blog/posts/coding-for-neon---part-5-rearranging-vectors (annotated)

VTRN: Transpose

as 2x2 matrices, and transposes each matrix.

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors

do
dl
VTRN.16 0, a1
Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |35

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 36 of 53

95. Further, Defendant performs the step of determining a permutation instruction for
transforming said source sequence of bits into said intermediate sequence of bits. For example,
the MB86R24 Triton-C SoC supports multiple permutation instructions (including but not
limited to VMOV, VSWP, VREV, VEXT, VTRN, VZIP, VUZP, VTBL, and VTBX) to carry
out the permutation on the sequence of bits. The VTRN instruction is determined and applied on
the source sequence of bits which transposes (“transforms”) it into an intermediate sequence of

bits on which further permutation instruction is applied to achieve the final permuted result.

VMOV and VSWP: Move and Swap

VMOV and VSWP are the simplest permute instructions, copying the contents of an entire register to
another, or swapping the values in a pair of registers.

Although you may not regard them as permute instructions, they can be used to change the values in the

two D registers that make up a Q register. For example, VSWP d0, d1 swapsthe mostand least-
significant 64-bits of 0.

VREV: Reverse

VREV reverses the order of 8, 16 or 32-bit elements within a vector. There are three variants:

e VREV16reverses each pair of 8-bit sub-elements making up 16-bit elements within a vector.
¢ VREV32reverses the four 8-bit or two 16-bit sub-elements making up 32-bit elements within a vector.
o VREV64 reverses eight 8-bit, four 16-bit or two 32-bit elements in a vector.

Use VREV to reverse the endianness of data, rearrange color components or exchange channels of audio
samples.

VREV16.8 do, d1 VREV32.8 do, d1 VREV32.16 do, d1

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |36

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 37 of 53

VEXT: Extract

VEXT extracts a new vector of bytes from a pair of existing vectors. The bytes in the new vector are from
the top of the first operand, and the bottom of the second operand. This allows you to produce a new
vector containing elements that straddle a pair of existing vectors.

VEXT can be used to implement a moving window on data from two vectors, useful in FIR filters. For
permutation, it can also be used to simulate a byte-wise rotate operation, when using the same vector for

both input operands.

1

do

W /7

VEXT d2, dO, d1, #3

VTRN: Transpose

d2

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors

as 2x2 matrices, and transposes each matrix.

do

dl

VTRN.16 dO, d1

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |37

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 38 of 53

VZIP and VUZP: Zip and Unzip

VZIP interleaves the 8, 16 or 32-bit elements of a pair of vectors|The operation is the same as that
performed by VST2 before storing, so use VST2 rather than VZIP if you need to zip data immediately
before writing back to memory.

7|6(5(4(3]|2|1]|0| d1 7|6(5(4(3(2|1|0| dO

|

7|716|6|5(5(4[4| dl1 3|3|2|2(1f{1|0|0| dO

VZIP.8 dO, d1

VUZP is the inverse of VZIP, deinterleaving the 8, 16, or 32-bit elements of a pair of vectors.[The
operation is the same as that performed by VLD2 after loading from memory.

VTBL, VIBX: Table and Table Extend

VTBL constructs a new vector from a table of vectors and an index vector. It is a byte-wise table lookup
operation.

The table consists of one to four adjacent D registers. Each byte in the index vector is used to index a byte
inthe table of vectors. The indexed value is inserted into the result vector at the position corresponding
to the location of the original index in the index vector.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |38

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 39 of 53

VEXT: Extract

VEXT extracts a new vector of bytes from a pair of existing vectors. The bytes in the new vector are from
the top of the first operand, and the bottom of the second operand. This allows you to produce a new
vector containing elements that straddle a pair of existing vectors.

VEXT can be used to implement a moving window on data from two vectors, useful in FIR filters. For
permutation, it can also be used to simulate a byte-wise rotate operation, when using the same vector for

both input operands.

1

do

W /7

VEXT d2, dO, d1, #3

VTRN: Transpose

d2

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors

as 2x2 matrices, and transposes each matrix.

do

dl

VTRN.16 dO, d1

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |39

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 40 of 53

VZIP and VUZP: Zip and Unzip

|VZI P interleaves the 8, 16 or 32-bit elements of a pair of vectors. The operation is the same as that
performed by VST2 before storing, so use VST2 rather than VZIP if you need to zip data immediately
before writing back to memory.

7|6(5(4(3]|2|1]|0| d1 7|6(5(4(3(2|1|0| dO

|

7|716|6|5(5(4[4| dl1 3|3|2|2(1f{1|0|0| dO

VZIP.8 dO, d1

VUZP is the inverse of VZIP, deinterleaving the 8, 16, or 32-bit elements of a pair of vectors.[The
operation is the same as that performed by VLD?2 after loading from memory.

VTBL, VIBX: Table and Table Extend

VTBL constructs a new vector from a table of vectors and an index vector. It is a byte-wise table lookup
operation.

The table consists of one to four adjacent D registers. Each byte in the index vector is used to index a byte
in the table of vectors. The indexed value is inserted into the result vector at the position corresponding
to the location of the original index in the index vector.

VTBL and VTBX differ in the way that out-of-range indexes are handled. If an index exceeds the length of
the table, VTBL inserts zero at the corresponding position in the result vector, but VTBX leaves the value
inthe result vector unchanged.

If you use a single source vector as the table, VTBL allows you to implement an arbitrary permutation of a
vector, at the expense of setting up an index register. If the operation is used in a loop, and the type of
permutation doesn't change, you can initialize the index register outside the loop, and remove the setup
overhead.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |40

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 41 of 53

Source Sequence

[N do. d >

VTRN,16 d2, d3

Final Permuted

Intermediate

Sequence of Bits

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors (annotated).

96. Further, Defendant performs the step of repeating steps (a.) and (b.) using said

determined intermediate sequence of bits from step (b.) as said source sequence of bits in step

(a.) until a desired sequence of bits is obtained. For example, the MB86R24 Triton-C SoC uses

the permutation instruction to apply permutation on the intermediate sequence of bits until the

desired permuted result (“sequence of bits”) is obtained.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 41

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 42 of 53

[d]c]|b]a]a0
[h]og]|f|e]ar

DOnoE

[p[o[n|m|d3

g|cle]|a]do
DEaEDeE

[Vini6do. d1 |

monnf
|p[o|nlmld3

Intermediate
VTRN.16 d2, d3

Final Permuted

Sequence of Bits

A J
B < B o |
[R]a[F]® |«

e
[n.flb]dl
[o-glcldz
[p.hld]da

VTRN.32 q0, ql

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors (annotated).

97. Further, Defendant performs the step wherein the determined permutation instructions
form a permutation instruction sequence. For example, first permutation instruction works as a
source operand for the next instruction. Once the result value of the operation is written in the
register file the result of the instruction is available to other instruction as a source operand and
this is followed until the desired permuted result is obtained. The MB86R24 Triton-C SoC
performs permutation of the source sequence of bits using VIRN, 16, d0, d1 (“permutation
instruction”) to obtain a first intermediate sequence of bits. Permutation instruction VTRN, 16,
d2, d3 is applied on first intermediate sequence of bits further to obtain a second intermediate
sequence of bits. VTRN, 16, q0, q1 is applied on second intermediate sequence of bits to get the

final permuted result. The instructions (VTRN, 16, d0, d1) (VTRN, 16, d2, d3) and (VTRN, 16,

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE | 42

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 43 of 53

q0, ql) form sequence of permutation operations (“permutation instruction sequence”) to

permute the source sequence of bits.

djec|b|a|]do
[hTaf]e]a

Source Sequence

g|c|e|a]|do
h|d]|]f|b]|a

|p|o|n[m|d3 Iplo[n]m|d3
VTRN,16 d2, d3

Final Permuted

\J

m-ﬂ g |c|e|a]|do
(e] [R]dF]b |
e ™o -
(= IR - (o~ -

First Intermediate

Second Intermediate

Sequence of Bits

Source: https://community.arm.com/developer/ip-products/processors/b/processors-ip-

blog/posts/coding-for-neon---part-5-rearranging-vectors (annotated)

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |43

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 44 of 53

Cycles This is the number of issue cycles the particular instruction consumes, and is the
absolute minimum number of cycles per instruction if no operand interlocks are
present.

Source The Source field indicates the execution cycle where the source operands must be

available if the instruction is to be permitted to issue. The comma separated list
matches that of the Format field, indicating the register that each value applies to.

Where two lines are provided for a single format containing quad (Q) registers,
this indicates that the source registers are handled independently between top and
bottom half double (D) registers. The first line provides the information for the
lower half of the quad register and the second line provides the same information
for the upper half of the quad register.

Result The Result field indicates the execution cycle when the result of the operation is
ready. At this point, the result might be ready as source operands for consumption
by other instructions using forwarding paths. However, some pairs of instructions
might have to wait until the value is written back to the register file.

Writeback The Writeback field indicates the execution cycle that the result is committed to
the register file. From this cycle, the result of the instruction is available to all
other instructions as a source operand.

Source: https://static.docs.arm.com/ddi0409/i/DDI04091 cortex a9 neon mpe rdpl trm.pdf,
page 3-9.

98. Further, upon information and belief, Defendant directly infringes the claim at least when
it tests its SoCs. During such tests, Defendant utilizes the SoCs to perform permutation on the
input data using permutation instructions available in ARM Neon SIMD ISA (Instruction Set
Architecture).

99. Further, Defendant indirectly infringes the claim at least when Defendant’s customers
(such as device manufacturers which use Defendant’s SoCs in their products) perform the
method while testing their devices and when the devices are operated by end-users.

100. Teleputers has been damaged by Defendant’s infringement of the 478 Patent.

COUNT 111
(Infringement of U.S. Patent No. 7,174,014)

101. Teleputers incorporates the above paragraphs by reference.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE | 44

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 45 of 53

102. Defendant has been on notice of the ’014 Patent at least as early as the date it received
service of this Original Complaint.

103. On information and belief, Defendant has infringed and continue to infringe the *014
Patent by making, using, importing, selling, and/or, offering for sale the 014 Accused
Instrumentalities in the United States.

104. On information and belief, Defendant, with knowledge of the ’014 Patent, indirectly
infringes the 014 Patent by inducing others to infringe the 014 Patent. In particular, Defendant
intends to induce customers to infringe the 014 Patent by encouraging customers to use the 014
Accused Instrumentalities in a manner that results in infringement.

105. On information and belief, Defendant also induces others, including customers, to
infringe the ’014 Patent by providing technical support for the use of the ’014 Accused
Instrumentalities.

106. On information and belief, at all times Defendant owns and controls the operation of the
’014 Accused Instrumentalities in accordance with an end user license agreement.

107. On information and belief, the Accused Instrumentalities necessarily infringe one or more
claims of the *014 Patent when used as intended.

108. On information and belief, the 014 Accused Instrumentalities infringe and induce others
to infringe the 014 Patent by providing a method for performing an arbitrary permutation of a
sequence of bits. For example, Defendant provides a SPARC64 XII processor used in Fujitsu
servers (including but not limited to SPARC M12-1, SPARC M12-2 and SPARC M12-2S) for
parallel data processing. Defendant’s SPARC M12-1 (used herein as an exemplary product)
supports SPARC64 XII processor for mission-critical enterprise workloads and cloud computing.

SPARC64 XII supports permutation instructions to permute the data in the register.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |45

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 46 of 53

Fujitsu SPARC Servers Product Lineup

Max Max Max Max x Internal
Model T CPU
= L CPUs Cores Threads Memory HDD
Fujitsu SPARCIM12-1
Rackmount |SPARCG4™ XII
1) 42 178 7278
Fujitsu SPARC M12-2
Rackmount |SPARCG4™ XI|
2 24 192 278 7278
(4U) 2.9GHz
Fujitsu SPARC M12-28
Rackmount
2 24 102 2TB 7278
(4U)
roRR. SPARCE4A™ XI|
| — Two 4.25GHz
g —_ l ‘_’] dedicated 22 | 384 2072 227B | 115278
s —
=l

Source: https://www.fujitsu.com/us/products/computing/servers/unix/sparc/lineup/

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 46

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 47 of 53

FUjiTsu

Global | Change ¥ |Please enter search word In

Services [¥] | Products ¥ | Solutions[¥ | Support® | About Fujitsu [|

Home > Products > IT Products and Systems > Servers > UNIX Servers = Fujitsu SPARC Servers > Product Lineup > Fujitsu SPARC M12-1

Fujitsu SPARC Servers

v Product Lineup
> Fujitsu SPARC M12-1
> Fujitsu SPARC M12-2
> Fujitsu SPARC M12-2S
> Fujitsu M10-1
> Fujitsu M10-4S

> Case Studies

> Key Reports & Press
Releases

» Documentation
> Tools
> Video Library

> Trademark

Fujitsu SPARC M12-1

« = Datasheet (223 KB)
« Power Calculator

The Fujitsu SPARC M12-1 server is a mission critical entry-level server based on the latest
SPARC64 XII processor, delivering powerful core performance and the high-end benefits of
virtualization for deployment flexibility.

Fujiisy SPARC
idaes

World #1
Del
Extreme Results

Find more >>

Source: https://www.fujitsu.com/global/products/computing/servers/unix/sparc/lineup/m12-1/

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |47

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 48 of 53

The Fujitsu SPARC M12-1 features:

The Fujitsu SPARC M12-1 server is designed to reduce total cost of ownership (TCQ), rapidly
deploy new business services, and reduce server sprawl by consolidating existing systems more
cost-effectively and more reliably.

CPU core-level Capacity on Demand allows granular and agile response to changes in business
reguirements. Fujitsu SPARC M12 Core Activation allows customers to start small and grow by
supporting an initial minimum of two activated cores and step-by-step expansion in units of a
single core.

Dramatically improved Oracle Database processing and encryption performance with Fujitsu
SPARC M12 Software on Chip functionality. By implementing dedicated per-core logic in each
processor, Software on Chip offers vastly improved performance for tasks traditionally handled
purely by software. Software on Chip functionalities include Single Instruction Multiple Data
(SIMD) for in-memory processing, decimal floating-point operations, and encryption processing.

Mainframe-class RAS (Reliahility, Availablity, Serviceablity) features ahound in Fujitsu SPARC
M12 servers. Features to support the most business-critical processing include: automatic
recovery with instruction reiry, extended error-correcting code (ECC) protection, guaranteed data
path integrity, configurable memory mirroring, redundant and hot-swappable system components
and support for dual power feed implementations.

Fujitsu SPARC M12 systems support the world’s most advanced enterprise operating system:
Oracle Solaris. Bare metal Solaris 10 and Solaris 11 are supported, as well as Solaris & and 9 in
Oracle Solaris Legacy Containers, providing customers with exceptional investment protection
and no-risk migration from previous server generations.

To drive higher levels of system utilization and the resulting cost savings, Fujitsu SPARC M12
systems support no-cost Oracle VM Server for SPARC and Oracle Solaris Zones virtualization
technologies, allowing for flexible server consolidation for the most demanding mixed-workload
environments.

Fujitsu SPARC M12-1 is the ideal entry-level server for traditional enterprise-class workloads such as
online transaction processing (OLTP), business intelligence and data warehousing (BIDW),
enterprise resource planning (ERP), and customer relationship management (CRM), as well as new
environments in cloud computing or big data processing.

Source: https://www.fujitsu.com/global/products/computing/servers/unix/sparc/lineup/m12-1/

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |48

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 49 of 53

7.148. | Full Element Permutation

Opcode opf Operation HPC-ACE Assembly Language Syntax
Rega SIMD
FEPERM32X™ 11000 01002 Sorts 32-bit data among double v v feperm32x frege:,
floating-point registers freg or_fsimm, fregm
FEPERME4X™" 1100001012 Sorts 64-bit data among double v v fepermé4x fregr,
floating-point registers freg or fsimm, fregmn
[10. | rd | op3=110110. | rsl | opf rs2 |

81 80 29 25 24 19 18 14 13

Source:https://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/downloads

/documents/SPARC64XII-Specification.vol20.pdf page-75

109. Further, Defendant performs and induces others to perform the step of inputting a source

sequence of bits into a source register. For example, the SPARC M12-1 uses a permutation

instruction (such as a FEPERM32X/FEPERM64X instruction) to permute the data bits. Fd[rs1]

(“source register’’) contains the data bits to be permuted.

| FEPERM32X and FEPERM64X are mainly used to permutate or mask the SIMD data

These

instructions can be used 1in non-SIMD operations but the purpose 1s difterent from SIMD

operations.

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) - (3) as stated below) to
Fd[rd]<63:32> according to Fd[rs2]<63, 32>, and to Fd[rd]<31:0> according to Fd[rs2]<31, 0>.

(1) data in Fd[rs1]<63:32>
(2) data in Fd[rs1]<31:0>
(3) allo

Source:https://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/downloads

/documents/SPARC64XII-Specification.vol20.pdf, page-75.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |49

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 50 of 53

110. Further, Defendant performs and induces others to perform the step of defining bit
positions in said source sequence of bits to be permuted in said source register for a group of bits
in a destination register. For example, the SPARC M12-1 implements a permutation instruction
(such as a FEPERM32X/ FEPERM64X instruction) to permute the data bits. The data bits in the
Fd[rs1] are permuted based on the data bits in Fd[rs2]. Therefore, Fd[rs2] determines the data
bits in the Fd[rs1] that will be permuted and moved to the destination register Fd[rd]. If the 63"
bit of Fd[rs2] is 0 and the 32™ bit of the Fd[rs2] is 0, then the [63-32] bits of Fd[rs1] will be
copied to [63-32] bit position in Fd[rd]. If the 63" bit of Fd[rs2] is 0 and the 32™ bit of the
Fd[rs2] is 1, then the [31-0] bits in Fd[rs1] will be copied to [63-32] bit position in Fd[rd].

Similarly, for the bit position [31-0] in Fd[rd], 31% and 0" bit of Fd[rs2] are checked.

IFEPERMB 2% and FEPERM64X are mainly used to permutate or mask the SIMD datalThese
mstructions can be used 1n non-SIMD operations but the purpose 1s different from SIMD
operations.

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) - (3) as stated below) to
Fd[rd]<63:32> according to Fd[rs2]<63, 32>, and to Fd[rd]<31:0> according to Fd[rs2]<31, 0>.

(1) data in Fd[rs1]<63:32>
(2) data in Fd[rs1]<31:0>
(3) allo

Source:https://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/downloads

/documents/SPARC64XII-Specification.vol20.pdf page-75.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE | 50

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 51 of 53

The behavior of FEPERM32X is described in Figure 7-8, Table 7-10, and Table 7-11. The
value of Fd[rs2]<62:33, 30:1> is ignored.

63 0 63 0
Fd[rsl]|] Fd[r52]|
l_L :
< A S e
0 0
' Iy
Fd[rd] [|
63 0

Figure 7-8 Behavior of FEPERM32X (xar_i = 0)

Source:https://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/downloads

/documents/SPARC64XI1I-Specification.vol20.pdf page-75

Table 7-10 Results of FEPERM32X (Fd[rd]<63:32>, xar_i = 0)

Fd[rs2]<63> | Fd[rs2]<32> |Fd[rd]<63:32>

0 0 Fd[rs1]<63:32>
1 Fd[rs1]<31:0>
1 - all0o

Table 7-11 Results of FEPERM32X (Fd[rd]<31:0>, xar_i = 0)

Fd[rs2]<31> | Fd[rs2]<0> |Fd[rd]<31:0>

0 0 Fd[rs1]<63:32>
1 Fd[rs1]<31:0>
1 - allo

Source:https://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/downloads

/documents/SPARC64XII-Specification.vol20.pdf page-76.

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

PAGE |51

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 52 of 53

111. Further, Defendant performs and induces others to perform the step of in response to a
PPERM instruction inserting bits from said source sequence into said destination register as
determined by said bit positions. = For example, the SPARC MI12-1 performs the
FEPERM32X/FEPERM64X permutation instructions that are equivalent to the PPERM
instruction as mentioned in the claimed invention. In response to the FEPERM32X/
FEPERM64X permutation instruction, the data bits in Fd[rs1] (“source sequence”) are moved to

the Fd[rd] (“destination register”) according to the bit positions defined by Fd[rs2].

FEPERM32X and FEPERM6E4X are mainly used to permutate or mask the SIMD data| These
mstructions can be used in non-SIMD operations but the purpose 1s different from SIMD
operations.

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) - (3) as stated below) to
Fd[rd]<63:32> according to Fd[rs2]<63, 32>, and to Fd[rd]<31:0> according to Fd[rs2]<31, 0>.

(1) data in Fd[rs1]<63:32>
(2) data in Fd[rs1]<31:0>
(3) allo

Source:https://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/downloads

/documents/SPARC64XII-Specification.vol20.pdf page-75.

112. Further, upon information and belief, Defendant directly infringes the claim at least when
it tests its servers. During such tests, Defendant utilizes the SPARC XII processor to perform
permutation on the input data using permutation instructions.

113. Further, Further, Defendant indirectly infringes the claim at least when the server
computers are operated by the customers. During such use, end users utilize the SPARC XII
processor to perform permutation on the input data using permutation instructions.

114. Teleputers has been damaged by Defendant’s infringement of the *014 Patent.

PRAYER FOR RELIEF

WHEREFORE, Teleputers respectfully requests the Court enter judgment against Defendants:

AMENDED COMPLAINT FOR PATENT INFRINGEMENT PAGE |52

Case 6:20-cv-00640-ADA Document 22 Filed 10/07/20 Page 53 of 53

declaring that the Defendants have infringed each of the Patents-in-Suit;

a) awarding Teleputers its damages suffered as a result of Defendants’ infringement of the

Patents-in-Suit;

b) awarding Teleputers its costs, attorneys’ fees, expenses, and interest;

c) awarding Teleputers ongoing post-trial royalties; and

d) granting Teleputers such further relief as the Court finds appropriate.

JURY DEMAND

Teleputers demands trial by jury, under Fed. R. Civ. P. 38.

Dated: October 7, 2020

AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Respectfully Submitted

/s/

Randall Garteiser

Texas Bar No. 24038912
M. Scott Fuller

Texas Bar No. 24036607
sfuller@ghiplaw.com
Thomas G. Fasone III
Texas Bar No. 00785382
tfasone@ghiplaw.com
GARTEISER HONEA, PLLC
119 W. Ferguson Street
Tyler, Texas 75702
Telephone: (903) 705-7420
Facsimile: (888) 908-4400

Raymond W. Mort, III

Texas State Bar No. 00791308
raymort@austinlaw.com

THE MORT LAW FIRM, PLLC
100 Congress Ave, Suite 2000
Austin, Texas 78701

Tel/Fax: (512) 865-7950

ATTORNEYS FOR PLAINTIFF
TELEPUTERS LLC

PAGE | 53

