

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

STEVEN J. RIZZI (admitted pro hac vice)
srizzi@kslaw.com
RAMY HANNA (pro hac vice forthcoming)
rhanna@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas, 35th Floor
New York, NY 10036
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

RYAN A. SCHMID (pro hac vice forthcoming)
rschmid@kslaw.com
KING & SPALDING LLP
1700 Pennsylvania Avenue, N.W.
Washington, D.C. 20006
Telephone: (202) 737-0500
Facsimile: (202) 626-3737

RAMON A. MIYAR (CA SBN 284990)
rmiyar@kslaw.com
KING & SPALDING LLP
50 California Street, Suite 3300
San Francisco, CA 94111
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

Attorneys for Plaintiff
EXPRESS MOBILE, INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

EXPRESS MOBILE, INC.

Plaintiff,

v.

BOOKING HOLDINGS, INC.,
BOOKING.COM B.V., PRICELINE.COM
LLC, AGODA COMPANY PTE. LTD., and
OPENTABLE, INC.,

Defendants.

Civil Action No. 3:20-CV-08491-RS

PLAINTIFF EXPRESS MOBILE, INC.’S
FIRST AMENDED COMPLAINT

Jury Trial Demanded

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 1 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 1

 Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

FIRST AMENDED COMPLAINT

Plaintiff Express Mobile, Inc. (“Express Mobile” or “Plaintiff”), by and through its

undersigned counsel, brings this action for patent infringement against defendants Booking.com

B.V. (“Booking-BV”), priceline.com LLC (“Priceline”), Agoda Company Pte. Ltd. (“Agoda), and

OpenTable, Inc. (“OpenTable”) (Booking B.V., Agoda, Priceline, and OpenTable collectively,

“Defendants”) and alleges as follows:

NATURE OF THE ACTION

1. This is a civil action arising under 35 U.S.C. § 271 for Defendants’ infringement of

Express Mobile’s United States Patent Nos. 6,546,397 (“the ’397 patent”), 7,594,168 (“the ’168

patent”), 9,063,755 (“the ’755 patent”), 9,471,287 (“the ’287 patent”), and 9,928,044 (“the ’044

patent”) (collectively the “Patents-In-Suit”).

THE PARTIES

2. Plaintiff Express Mobile, Inc. is a Delaware corporation with a place of business at

38 Washington Street, Novato, CA 94947.

3. Defendants are each wholly owned subsidiaries of Booking Holdings, Inc., and

collectively offer an assortment of online travel and restaurant searching and reservation products

and services, including the Accused Instrumentalities (defined infra, ¶ 55), throughout the United

States, including in this District. In particular, Defendants and other companies under the Booking

Holdings, Inc. umbrella market and provide these products and services through six widely-used

and recognized e-commerce brands: (1) “Booking.com,” which includes the www.Booking.com

website, Booking.com mobile application, and Pulse mobile application, (2) “Kayak.com,” which

includes the www.Kayak.com website and Kayak mobile application, (3) “Priceline.com,” which

includes the www.priceline.com website and Priceline mobile application, (4) “Rentalcars.com,”

which includes the www.Rentalcars.com website and Rentalcars mobile application, (5)

“Agoda.com,” which includes the www.agoda.com website and Agoda mobile application, and

(6) “OpenTable.com,” which includes the www.opentable.com website and OpenTable mobile

application. See https://ir.bookingholdings.com/node/24796/html, pp. 1-4 (“We offer these

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 2 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 2

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

services through six primary consumer-facing brands: Booking.com, KAYAK, priceline, agoda,

Rentalcars.com and OpenTable. While historically our brands operated on a largely independent

basis and many of them focused on a particular service (e.g., accommodation reservations) or

geography, we are increasing the collaboration, cooperation and interdependency among our

brands in our efforts to provide consumers with the best and most comprehensive services. We

also seek to maximize the benefits of our scale by sharing resources and technological innovations,

co-developing new services and coordinating activities in key markets among our brands. For

example, Booking.com, the world’s leading brand for booking online accommodation reservations

(based on room nights booked), offers rental car and other ground transportation services, flights,

restaurant reservations, tours and activities reservations and other services, many of which are

supported by our other brands. Similarly, hotel reservations available through Booking.com are

also generally available through agoda and priceline.”); see also

https://www.bookingholdings.com/about/factsheet/; https://ir.bookingholdings.com/investor-

relations.

4. Upon information and belief, defendant Booking-BV is a company incorporated

under the laws of the Kingdom of the Netherlands with its principal place of business in

Amsterdam. Booking-BV is a wholly owned subsidiary of Booking Holdings, Inc., a Delaware

corporation. Booking-BV directly and/or indirectly develops, designs, manufactures, distributes,

markets, offers to sell and/or sells infringing products and services related to Booking.com in the

United States, including in the Northern District of California, and otherwise purposefully directs

infringing activities to this District in connection with its products and services.

5. Upon information and belief, defendant Priceline is a Delaware limited liability

company with a principal place of business located at 800 Connecticut Avenue, Norwalk,

Connecticut 06854. Priceline directly and/or indirectly develops, designs, manufactures,

distributes, markets, offers to sell and/or sells infringing products and services related to

Priceline.com in the United States, including in the Northern District of California, and otherwise

purposefully directs infringing activities to this District in connection with its products and

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 3 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 3

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

services.

6. Upon information and belief, defendant Agoda is a Singapore private limited

liability company with a principal place of business located at 30 Cecil Street, Prudential Tower

#19-08, Singapore 049712. Agoda directly and/or indirectly develops, designs, manufactures,

distributes, markets, offers to sell and/or sells infringing products and services related to

Agoda.com in the United States, including in the Northern District of California, and otherwise

purposefully directs infringing activities to this District in connection with its products and

services.

7. Upon information and belief, defendant OpenTable is a corporation organized

under the laws of the State of Delaware with a principal place of business located at 1 Montgomery

Street, Suite 700, San Francisco, California 94104. OpenTable directly and/or indirectly develops,

designs, manufactures, distributes, markets, offers to sell and/or sells infringing products and

services related to OpenTable.com in the United States, including in the Northern District of

California, and otherwise purposefully directs infringing activities to this District in connection

with its products and services.

JURISDICTION

8. This is a civil action for patent infringement arising under the patent laws of the

United States, 35 U.S.C. § 1 et seq., including specifically 35 U.S.C. § 271.

9. This Court has subject matter jurisdiction over the matters pleaded herein under 28

U.S.C. §§ 1331 and 1338(a).

10. This Court has personal jurisdiction over Defendants because they have, jointly or

individually:

(1) purposefully availed themselves of the rights and benefits of the laws of this

State and this Judicial District;

(2) transacted, conducted, and/or solicited business and engaged in a persistent

course of conduct in the State of California (and in this District) directly or

through intermediaries;

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 4 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 4

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(3) each derived substantial revenue from the sales and/or use of one or more

infringing products and services in the State of California (and in this District)

(including, without limitation, the (i) WebDirect website building platform (the

“WebDirect Platform”); (ii) the Booking-BV website building platform (the

“Booking Platform”) available for and through Booking.com, the

https://join.booking.com/ website and related mobile application, and the

https://partner.booking.com/en-us website and related mobile application; (iii) the

Priceline Agoda Global Partner Services website building platform (the “YCS

Platform”) available for and through Agoda.com and Priceline.com at the

https://ycs.agoda.com/en-us/kipp/public/home website and related mobile

application; and (iv) the OpenTable restaurant reservation software platform (the

“OpenTable Platform”), available for and through OpenTable.com at

https://restaurant.opentable.com/ website and related mobile application;

(4) purposefully directed activities (directly and/or through intermediaries), such

as distributing, offering for sale, selling, marketing, and/or advertising their

products and services, at residents of the State of California (and residents in this

District);

(5) delivered their products and services into the stream of commerce with the

expectation that the such products and services will be used and/or purchased by

consumers in the State of California (and in this District); and

(6) committed, contributed to, and/or induced acts of patent infringement in the

State of California (and in this District).

11. In particular, Defendants have committed and continue to commit acts of

infringement in violation of 35 U.S.C. § 271, and have made, used, marketed, distributed, offered

for sale, sold, and/or imported infringing products and services in/into the State of California,

including in this District, and engaged in infringing conduct within and directed at or from this

District. For example, Defendants have purposefully and voluntarily placed their brands’

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 5 of 548

https://join.booking.com/
https://partner.booking.com/en-us
https://restaurant.opentable.com/

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 5

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

respective websites, website building platforms, and mobile applications into the stream of

commerce with the expectation that such websites, website building platforms, and mobile

applications will be used in this District. Defendants’ websites, website building platforms and

mobile applications have been and continue to be distributed to and used in this District.

Defendants’ acts cause and have caused injury to Express Mobile, including within this District.

VENUE

12. Venue is proper in this Judicial District under 28 U.S.C. §§ 1391 and 1400(b).

13. Venue is proper as to Booking-BV and Agoda under 28 U.S.C. § 1391(c)(3)

because Booking-BV and Agoda are not residents of any judicial district of the United States and

therefore may be sued in any judicial district.

14. Venue is proper as to OpenTable in this Judicial District under 28 U.S.C. §§ 1391

and 1400(b) based on the information and belief that (1) OpenTable has committed, contributed

to, and/or induced acts of infringement, and/or has advertised, marketed, sold, and/or offered to

sell products and services, including infringing products and services, in this Judicial District, as

discussed, supra ¶¶ 3, 7, and 10-11, which are incorporated by reference herein; and (2) OpenTable

maintains at least one regular and established place of business in this Judicial District via its office

located at 1 Montgomery Street, Ste 700, San Francisco, California, 94104.

15. Venue is proper as to Priceline in this Judicial District based on information and

belief that (1) Priceline has committed, contributed to, and/or induced acts of infringement, and/or

has advertised, marketed, sold, and/or offered to sell products and services, including infringing

products and services, in this Judicial District, as discussed, supra ¶¶ 3, 5, and 10-11, which are

incorporated by reference herein, and (2) Defendants have voluntarily waived any objections to

venue in the Northern District of California (see ECF No. 25; attached as Exhibit I).

THE PATENTS-IN-SUIT

16. On April 8, 2003, United States Patent No 6,546,397 entitled “Browser Based Web

Site Generation Tool and Run Time Engine,” was duly and legally issued to Steven H. Rempell

after full and fair examination. Plaintiff is the lawful owner of all right, title, and interest in and to

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 6 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 6

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the ‘397 patent, including the right to recover for infringement thereof. A copy of the ‘397 patent

is attached as Exhibit A.

17. The claimed inventions of the ‘397 patent solve technical problems related to the

creation and generation of websites. For example, the inventions enable the creation of websites

through browser-based visual editing tools, for example, selectable settings that describe website

elements, with one or more settings corresponding to commands. These features are implemented

utilizing computer technology, including a virtual machine.

18. The claims of the ‘397 patent do not merely describe performing some known

business practice on the Internet. Instead, the claims of the ‘397 patent recite inventive concepts

that are rooted in computerized website creation technology and overcome problems specific to

this realm.

19. The claimed inventions of the ‘397 patent do not merely apply routine or

conventional technologies for website creation and generation. Instead, the claims describe a

browser-based website creation system and method in which information representing user-

selected settings for a website are stored in a database, and the stored information is retrieved to

generate the website.

20. The claims in the ‘397 patent do not preempt all ways of creating and generating

websites or web pages, all uses of website authoring tools, nor any other well-known prior art

technology.

21. Each claim of the ‘397 patent thus recites a combination of elements sufficient to

ensure that the claim amounts to significantly more than a patent- ineligible concept.

22. On September 22, 2009, United States Patent No 7,594,168 entitled “Browser

Based Web Site Generation Tool and Run Time Engine,” was duly and legally issued to Steven H.

Rempell after full and fair examination. Plaintiff is the lawful owner of all right, title, and interest

in and to the ‘168 patent, including the right to recover for infringement thereof. A copy of the

‘168 patent is attached as Exhibit B.

23. The claimed inventions of the ‘168 patent solve technical problems related to the

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 7 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 7

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

creation and generation of websites. For example, the inventions utilize browser-based build tools

and a user interface to enable the creation of websites. These inventions greatly improve the

productivity of the designer utilizing an innovative implementation for styles. These features are

implemented utilizing computer technology.

24. The claimed inventions of the ‘168 patent do not perform a known business practice

on the Internet. Instead, the claims of the ‘168 patent recite inventive concepts rooted in

computerized website creation technology, and overcome problems specifically arising in this

realm.

25. The claimed inventions of the ‘168 patent do not merely apply routine or

conventional technologies for website creation and generation. Instead, the inventions describe a

browser-based website creation system including a server comprising a build engine configured to

create and apply styles to, for example, a website with web pages comprised of objects.

26. The claims in the ‘168 patent do not preempt all ways of creating and generating

websites or web pages, all uses of website authoring tools, nor any other well-known or prior art

technology.

27. Each claim of the ‘168 patent thus recites a combination of elements sufficient to

ensure that the claim amounts to significantly more than a patent-ineligible concept.

28. In Case No. 3:18-CV-04679-RS, an infringement action filed by Plaintiff in the

Northern District of California, the defendant in that action, Code and Theory LLC, brought a

Motion to Dismiss Plaintiff’s Complaint, asserting that the ‘397 and ‘168 patents do not claim

patent-eligible subject matter under 35 U.S.C. § 101 as a matter of law. (Case No. 3:18-CV-04679-

RS D.I. 35.) Subsequent briefing included Plaintiff Express Mobile, Inc.’s Opposition to

Defendant Code and Theory LLC’s Motion to Dismiss Plaintiff’s Complaint (Case No. 3:18-CV-

04679-RS D.I. 40), and Motion to Dismiss Plaintiff’s Complaint [sic] (Case No. 3:18-CV-04679-

RS D.I. 41). Each of those filings is incorporated by reference into this Complaint.

29. In Case No. 3:18-CV-04688-RS, an infringement action filed by Plaintiff in the

Northern District of California, the defendant in that action, Pantheon Systems, Inc., brought a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 8 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 8

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Motion to Dismiss Counts I and II of Plaintiff’s First Amended Complaint asserting that the ‘397

and ‘168 patents were directed to the abstract idea of creating and displaying webpages based upon

information from a user with no further inventive concept, and purportedly ineligible for patenting

under 35 U.S.C. § 101. (Case No. 3:18-CV-04688-RS D.I. 26.) Subsequent briefing included

Plaintiff’s Answering Brief in Opposition of Defendant’s Motion to Dismiss (Case No. 3:18-CV-

04688-RS D.I. 32), and Reply in Support of Defendant’s Motion to Dismiss Counts I and II of

Plaintiff’s First Amended Complaint (Case No. 3:18-CV-04688-RS D.I. 34). Each of those filings

is incorporated by reference into this Complaint.

30. After a motion hearing and a consideration of the respective pleadings, the Hon.

Richard Seeborg denied both motions with respect to both patents in a joint order, because “the

patents purport to describe a novel technological approach to creating websites on the internet.”

(Case No. 3:18-CV-04679-RS D.I. 45; Case No. 3:18-CV-04688-RS D.I. 40; attached as Exhibit

F.) In denying the motions, Judge Seeborg made several findings:

• “The patents here are directed at a purportedly revolutionary technological solution

to a technological problem—how to create webpages for the internet in a manner

that permits ‘what you see is what you get’ editing, and a number of other alleged

improvements over the then-existing methodologies.” Id. at 5.

• The claims of the ‘397 and ‘168 patents are “directed to a specific improvement to

the way computers operate,” and “it simply cannot be said on the present record

that the claims are drawn so broadly as to be divorced from the potentially patent-

eligible purported technological improvements described in the specification.” Id.

at 6.

31. In C.A. 2:17-00128, an infringement action filed by Plaintiff in the Eastern District

of Texas, the defendant in that action, KTree Computer Solutions, brought a Motion for Judgement

on the Pleadings, asserting that the ‘397 and ‘168 patents were invalid as claiming abstract subject

matter under 35 U.S.C. § 101. (C.A. 2:17-00128 D.I. 9.) Subsequent briefing included Plaintiff’s

Response and related Declarations and Exhibits (C.A. 2:17-00128 D.I. 17, 22-24), KTree’s Reply

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 9 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 9

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(C.A. 2:17-00128 D.I. 25), and Plaintiff’s Sur-Reply and related Declarations and Exhibits (C.A.

2:17-00128 D.I. 26-27). Each of those filings is incorporated by reference into this Complaint.

32. After consideration of the respective pleadings, Magistrate Judge Payne

recommended denial of KTree’s motion, without prejudice, holding that “the claims appear to

address a problem particular to the internet: dynamically generating websites and displaying web

pages based on stored user-selected settings” and further stating “the asserted claims do not bear

all of the hallmarks of claims that have been invalidated on the pleadings by other courts in the

past. For example, the claims are not merely do-it-on-a-computer claims.” (C.A. 2:17-00128 D.I.

29, attached as Exhibit G.) No objection was filed to the Magistrate Judge’s report and

recommendation and the decision therefore became final.

33. In Case Nos. 1:18-CV-01173-RGA and 1:18-CV-01175-RGA, infringement

actions filed by Plaintiff in the District of Delaware, the respective defendants in those actions,

Dreamhost LLC and Hostway Services, Inc., brought Motions to Dismiss claims of the ‘397 and

‘168 patents on the basis of invalidity under 35 U.S.C. § 101. (Case No. 1:18-CV-01173-RGA D.I.

14; Case No. 1:18-CV-01175-RGA D.I. 14.) Subsequent briefing included Plaintiff’s Responses

and related Declarations and Exhibits (Case No. 1:18-CV-01173-RGA D.I. 18-21; Case No. 1:18-

CV-01175-RGA D.I. 17-19), and defendants’ Replies (Case No. 1:18-CV-01173-RGA D.I. 24;

Case No. 1:18-CV-01175-RGA D.I. 23). Each of these filings is incorporated by reference.

34. After consideration of the respective pleadings, Judge Andrews denied both

motions in a joint order, pointing to factual allegations of inventiveness identified by the Plaintiff,

and an expert declaration explaining inventiveness of the claims, noting that such factual issues

preclude a finding of invalidity on a motion to dismiss. (Case No. 1:18-CV-01173-RGA D.I. 43;

Case No. 1:18-CV-01175-RGA D.I. 42; attached as Exhibit H.)

35. On June 23, 2015, United States Patent No 9,063,755 entitled “Systems and

methods for presenting information on mobile devices,” was duly and legally issued to Steven H.

Rempell, David Chrobak and Ken Brown after full and fair examination. Plaintiff is the lawful

owner of all right, title, and interest in and to the ‘755 patent, including the right to recover for

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 10 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 10

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

infringement thereof. A copy of the ‘755 patent is attached as Exhibit C.

36. The inventions of the ‘755 patent utilize inventive concepts to solve technical

problems, such as those associated with methods and systems for displaying dynamic content on

displays of devices, providing more efficient ways of generating code for more uniformly

displaying dynamic content across different kinds of devices. For example, the inventions of the

‘755 patent allow a data-efficient and flexible association between a symbolic name and a UI

object (e.g., a UI object for a widget), corresponding to a web component of a web service, that is

defined for presentation on a display of a device. A device-independent application including the

symbolic name is produced and provided to the device, together with a device-platform-dependent

player.

37. The claimed inventions of the ‘755 patent allow the UI object to be efficiently

displayed across different kinds of devices (e.g., PC, mobile or tablet; or different browsers,

operating systems, and applications, including also for example both native and browser-based

applications). In turn, a user can enter an input value to the UI object and obtain an output value

based on a web service associated with the UI object, the input value and output value also being

communicated through symbolic names to provide an additional level of efficiency. These

inventive features are implemented utilizing computer technology and solve technical problems in

the prior art.

38. The claims of the ‘755 patent do not recite merely the performance of a known

business practice on the Internet. Instead, the claims of the ‘755 patent recite inventive concepts

concerning the computerized, data-efficient generation of content (e.g., a UI object for providing

dynamic content) on displays for different types of devices, such as PC, tablet, or mobile devices,

or different browsers and applications. For example, the claims of the ‘755 patent utilize symbolic

name associations and provide device-independent applications including those symbolic names,

together with device-platform-dependent players, to devices. Further, input values and output

values for the defined content are also communicated as symbolic names. Such features are

specifically grounded in and overcome problems with data efficiency and flexibility specifically

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 11 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 11

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

arising in, the realm of computerized content generation and display technologies, and are not

well-understood, routine, and conventional elements.

39. For example, the claimed inventions of the ‘755 patent recite innovative, technical

improvements that associate symbolic names with defined UI objects (e.g., UI objects for a widget)

corresponding to web components of web services, and produce device-independent applications

including those symbolic names, together with device-dependent players, to provide more

uniform, data-efficient content display across different types of devices.

40. The technology claimed in the ‘755 patent does not preempt all ways for the

computerized generation of code for a display of a device, nor any other well-known or prior art

technology. For example, the specific, innovative technical improvements claimed in the ‘755

patent do not preempt well-known methods of generating code for a display of a device by

programming in HTML or JavaScript code.

41. Each claim of the ‘755 patent thus recites a combination of elements sufficient to

ensure that the claim amounts to significantly more than a patent on an ineligible concept.

42. On October 18, 2016, United States Patent No 9,471,287 entitled “Systems and

Methods for Integrating Widgets on Mobile Devices,” was duly and legally issued to Steven H.

Rempell, David Chrobak and Ken Brown after full and fair examination. Plaintiff is the lawful

owner of all right, title, and interest in and to the ‘287 patent, including the right to recover for

infringement thereof. A copy of the ‘287 patent is attached as Exhibit D.

43. The inventions of the ‘287 patent solve technical problems, such as those associated

with methods and systems for displaying dynamic content on displays of devices by providing

more efficient ways of generating code for more uniformly displaying dynamic content across

different kinds of devices. For example, the inventions of the ‘287 patent allow a data-efficient

and flexible association between a symbolic name and a UI object (e.g., a UI object for a widget)

corresponding to a web component of a web service, that is defined for presentation on a display

of a device. The defined UI object can be selected by a user of an authoring tool or automatically

selected by a system based on a web component selected by the user. Further, the symbolic name

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 12 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 12

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

has a data format type corresponding to a subclass of UI objects that support the data format type

of the symbolic name. A device-independent application including the symbolic name is then

produced and provided to the device together with a device-platform-dependent player. Such

operations provide a user-friendly platform allowing the UI object to be efficiently defined and

more uniformly displayed across different kinds of devices (e.g., PC, mobile or tablet; or different

browsers, operating systems, and applications, including also for example both native and browser-

based applications). These features are implemented utilizing computer technology and solve

technical problems in the prior art.

44. The claims of the ‘287 patent do not recite merely the performance of a known

business practice on the Internet. Instead, the claims of the ‘287 patent recite inventive concepts

grounded in the computerized, data-efficient definition and generation of content (e.g., a UI object

for providing dynamic content) on displays for different types of devices, such as PC, tablet, or

mobile devices, or different browsers and applications. Such features are specifically grounded in

and overcome problems with data efficiency and flexibility specifically arising in, the realm of

computerized content generation and display technologies, and are not well-understood, routine,

and conventional elements.

45. For example, the claimed inventions of the ‘287 patent recite innovative, technical

improvements that associate symbolic names with UI objects (e.g., UI objects for a widget)

corresponding to web components of web services that are manually or automatically selected,

and defined based on, for example, data format type, and produce device-independent applications

including those symbolic names, together with device-dependent players, to provide more

uniform, data-efficient content display across different types of devices.

46. The technology claimed in the ‘287 patent does not preempt all ways for the

computerized generation of code for a display of a device nor any other well-known or prior art

technology. For example, the specific, innovative technical improvements do not preempt well-

known methods of generating code for a display of a device by programming in HTML or

JavaScript code.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 13 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 13

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

47. Each claim of the ‘287 patent thus recites a combination of elements sufficient to

ensure that the claim amounts to significantly more than a patent on an ineligible concept.

48. On March 27, 2018, United States Patent No 9,928,044 entitled “Systems and

Methods for Integrating Widgets on Mobile Devices,” was duly and legally issued to Steven H.

Rempell, David Chrobak and Ken Brown after full and fair examination. Plaintiff is the lawful

owner of all right, title, and interest in and to the ‘044 patent, including the right to recover for

infringement thereof. A copy of the ‘044 patent is attached as Exhibit E.

49. The inventions of the ‘044 patent solve technical problems, such as those associated

with methods and systems for displaying dynamic content on displays of devices by providing

more efficient ways of generating, storing, and retrieving code for displaying dynamic content

more uniformly across different kinds of devices. For example, the inventions of the ‘044 patent

allow a data-efficient and flexible association between a symbolic name with a UI object (e.g., a

UI object for a widget) corresponding to a web component of a web service, that is manually or

automatically selected. The symbolic name has a data format type corresponding to a subclass of

UI objects that support the data format type of the symbolic name, and is only available to UI

objects that support the data format of the symbolic name. Information representative of the

defined UI object can be stored in a database, and subsequently retrieved from the database to

build an application consisting of at least a portion of the database using a player, which uses the

information to generate one or more web pages for display across different kinds of devices (e.g.,

PC, mobile or tablet; or different browsers, operating systems, and applications, including also for

example both native and browser-based applications). These features are implemented utilizing

computer technology and solve technical problems in the prior art.

50. The claims of the ‘044 patent do not recite merely the performance of a known

business practice on the Internet. Instead, the claims of the ‘044 patent recite inventive concepts

grounded in the computerized, data-efficient definition, selection, storage and generation of

content (e.g., a UI object providing dynamic content) on displays for different types of devices,

such as PC, tablet, or mobile devices, or different browsers and applications. Such features are

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 14 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 14

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

specifically grounded in and overcome problems with data efficiency and flexibility specifically

arising in, the realm of computerized content generation and display technologies, and are not

well-understood, routine, and conventional elements.

51. For example, the claimed inventions of the ‘044 patent recite innovative, technical

improvements that select and associate symbolic names with defined UI objects (e.g., UI objects

for a widget) corresponding to web components of web services based on, for example, data format

type, storing information representative of such settings in a database, and building applications,

which together with players, generate more uniform, data-efficient content display across different

types of devices.

52. The technology claimed in the ‘044 patent does not preempt all ways for the

computerized generation of code for a display of a device nor any other well-known or prior art

technology. For example, the specific, innovative technical improvements do not preempt well-

known methods of generating code for a display of a device by programming in HTML or

JavaScript code.

53. Each claim of the ‘044 patent thus recites a combination of elements sufficient to

ensure that the claim amounts to significantly more than a patent on an ineligible concept.

BACKGROUND

54. Defendants are online travel and leisure companies providing customers with

online tools and services to research and book accommodations, flights, rental cars, and restaurant

reservations. At minimum, Defendants are each affiliated with each other in that they are all

owned by wholly owned subsidiaries of the same parent holding company: Booking Holdings, Inc.

Defendants provide services to merchants, end-users, and consumers through a series of websites

and online tools and services:

55. Each of defendants Booking-BV, Priceline, Agoda, and OpenTable infringes the

Patents-In-Suit by implementing Express Mobile’s patented technologies in a number of their

products and services offered through Booking.com, Agoda.com, Priceline.com, and

OpenTable.com, including, inter alia: (i) the WebDirect Platform; (ii) the Booking Platform for

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 15 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 15

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

and available through Booking.com, the https://join.booking.com/ website and related mobile

application, and the https://partner.booking.com/en-us website and related mobile application;

(iii) the YCS Platform available for and through Agoda.com and Priceline.com at the

https://ycs.agoda.com/en-us/kipp/public/home website and related mobile application; and (iv)

the OpenTable Platform available for and through OpenTable.com at

https://restaurant.opentable.com/ website and related mobile application (collectively the

“Accused Instrumentalities”). Defendants develop, market, sell, and distribute the Accused

Instrumentalities, or products and services that use the Accused Instrumentalities, to consumers

throughout the United States, including in this State and this Judicial District.

COUNT I – INFRINGEMENT OF U.S. PATENT NO. 6,546,397

56. Plaintiff incorporates by reference paragraphs 1 to 55 above as if fully set forth

herein.

57. On information and belief, Defendants have infringed the ‘397 patent under 35

U.S.C. § 271, either literally and/or under the doctrine of equivalents, directly and/or indirectly.

58. On information and belief, Booking-BV has infringed the ‘397 patent by

performing, without authority, one or more of the following acts during the term of the ‘397 patent:

making, using, offering to sell, selling within, and importing into the United States products and

services that practice the claimed inventions of the ‘397 patent, including but not limited to the

WebDirect Platform and the Booking Platform.1

59. On information and belief, Priceline and Agoda (the “YCS infringers”) have

infringed the ‘397 patent by performing, without authority, one or more of the following acts

during the term of the ‘397 patent: making, using, offering to sell, selling within, and importing

1 This Count focuses its infringement allegations on the Booking Platform, YCS Platform, and

the OpenTable Platform. Upon information and belief, the WebDirect Platform operates in a

similar fashion as the Booking and YCS Platforms, and discovery of the WebDirect Platform,

including confidential documents related thereto, will confirm these facts.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 16 of 548

https://join.booking.com/
https://partner.booking.com/en-us
https://ycs.agoda.com/en-us/kipp/public/home
https://restaurant.opentable.com/

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 16

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

into the United States products and services that practice the claimed inventions of the ‘397 patent,

including but not limited to the YCS Platform.

60. On information and belief, OpenTable has infringed the ‘397 patent by performing,

without authority, one or more of the following acts during the term of the ‘397 patent: making,

using, offering to sell, selling within, and importing into the United States products and services

that practice the claimed inventions of the ‘397 patent, including but not limited to the OpenTable

Platform.

The Booking Platform:

61. Booking-BV has infringed at least claim 1 of the ‘397 patent through a combination

of features in the Booking Platform that collectively practiced each limitation of claim 1. By way

of example, during the term of the ‘397 patent, Booking-BV provided the Booking Platform for

creating property listing websites for hotels, homes, apartments, and other lodgings where travelers

could view and book accommodations.

2

2 Unless otherwise noted, the images presented in this Count were generated for investigative

purposes by testing the Accused Instrumentalities on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, https://ycs.agoda.com/en-

us/kipp/public/home, https://www.opentable.com/, https://support.opentable.com/s/?language

=en_US, https://platform.opentable.com/documentation/, and/or other associated websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 17 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 17

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

62. The property listings websites were, during the term of the ‘397 patent, created on

and for computers having a browser and a virtual machine capable of generating displays. For

example, the Booking Platform displayed content through modern browsers such as Google

Chrome, Mozilla Firefox, and Microsoft Edge, that used browser engines (virtual machines) to

render web pages on computers by interpreting and executing code such as JavaScript and HTML.

63. The Booking Platform allowed customization of the name, location, amenities,

prices, descriptions, and images for a property listing website, through a menu with a panel of

settings with which a user could select settings for elements on the website.

64. By way of example, a user could customize the images of the property to be

displayed on the property listing’s website through a panel that included options for uploading new

images, dragging uploaded images to set the order in which the images were to be displayed, and

tagging an image with a tag that would describe the image.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 18 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 18

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

65. A user could also select settings to specify the property’s location on a map by

zooming in and out of or by dragging a pin on an interactive map.

66. As described above, the Booking Platform comprised a browser-based platform,

and presented a user selectable panel of setting through a browser of a computer, which rendered

websites using a browser engine (a virtual machine), based on commands to the browser engine,

for display on the browser.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 19 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 19

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

67. When a desired setting was selected, a display in accordance with that selection

was generated substantially contemporaneously with the selection. In the example above, when a

map location was selected on a map showing the property location, the setting was displayed

substantially contemporaneously with the dragging and dropping of the pin. Similarly, when an

image was selected and uploaded, the order of images was modified, or when an image was tagged,

the settings were displayed substantially contemporaneously with the selections thereof.

68. Upon selection of the desired setting, information representative of the selected

setting was stored in a database that supported the property listing website. In particular, websites

for the Booking products were supported by a MySQL database, an open-source relational

database management system, which served a backend database to retrieve and store data for

Booking websites.

https://www.quora.com/Who-hosts-the-booking-com-website

69. A website for the property listing was generated in part by retrieving information

and files for user selected settings stored in the MySQL database. As shown in the example below,

if a user previously stored different price discounts (e.g., 22% for 1 guest, 18% for 2 guests, 15%

for 3 guests, and 12% for 4 guests) for different groups of guests in the MySQL database in

Booking’s server, a browser could load the website by sending a HTTP POST request to query the

property details and fetch the stored settings information (e.g., price discounts for 1 guest, 2 guests,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 20 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 20

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3 guests, and 4 guests) from the database in the Booking server “https://join.booking.com.” In

particular, the settings for the different price discounts (e.g., 22% for 1 guest, 18% for 2 guests,

15% for 3 guests, and 12% for 4 guests), were stored in the format of JSON data along with other

property information, and communicated from Booking’s server as a response to the HTTP POST

request.

70. The Booking Platform built the property listing website comprising one or more

web pages from the data for the selected settings and files stored in the database. Run time files

(including CSS files and Javascript files) used the stored data and files to generate commands for

the browser engine to display the one or more web pages. In particular, the Booking Platform relied

on a browser engine to generate a website comprising one or more web pages based on settings

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 21 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 21

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

data extracted from at least a portion of the Booking Platform’s database and at least one run time

file. As shown in the example below, the Booking Platform downloaded an HTML file from the

Booking Platform’s servers with an HTTP GET request. When the browser build engine parsed

the HTML file, the web browser made a request (e.g., GET method) to fetch the embedded CSS

and Javascript run time files.

71. On information and belief, the Booking Platform fetched HTML (*.html) files, CSS

(*.css) files, and Javascript (*.js) files from the Booking Platform’s servers and converted them

with additional contents (e.g., JSON files and image files) into a working website. In the example

below, the Booking Platform’s source code, such as HTML files and run time files (including CSS

files, and Javascript files) were fetched from the Booking Platform’s servers to build a “Search

results” web page for display.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 22 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 22

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The YCS Platform:

72. The YCS infringers infringed at least claim 1 of the ‘397 patent through a

combination of features in the YCS Platform that collectively practiced each limitation of claim 1.

By way of example, during the term of the ‘397 patent, the YCS infringers provided the YCS

Platform to produce property listing websites for the Priceline Agoda products.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 23 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 23

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

73. The property listings websites were, during the term of the ‘397 patent, created on

and for computers having a browser and a virtual machine capable of generating displays. For

example, Priceline.com websites displayed content through modern browsers such as Google

Chrome, Mozilla Firefox, and Internet Explorer, which used browser engines (virtual machines)

capable of generating a display by interpreting and executing code such as JavaScript and HTML

to render web pages on a computer.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 24 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 24

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.priceline.com/static-pages/browser-upgrade.html

74. The YCS Platform allowed customization of the location, description, amenities,

pricing, availability, photos, and profile for a Priceline.com or Agoda.com property listing website,

through a menu having a panel of settings in which a user could select settings describing elements

for the website. For example, the YCS Platform was configured to accept user settings for photos

of the property, such as selection of photos to be displayed, selection of “main photo,” and

selection of a caption.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 25 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 25

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 26 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 26

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.priceline.com/static-pages/browser-upgrade.html

75. By way of another example, the YCS Platform was configured to accept user

settings for the location of the property on a map by zooming in and out, or dragging and dropping

a pin, on an interactive map.

76. As described above, the YCS Platform comprised a browser-based platform, and

presented a user selectable panel of settings through a browser of a computer, which rendered the

property listing website using a browser engine (a virtual machine), based on commands to the

browser engine, for display on the browser.

77. When a desired setting was selected, a display in accordance with that selection

was generated substantially contemporaneously with the selection. In the examples above, when

a map location was selected on the map showing the property location, the selected location was

displayed substantially contemporaneously with the dragging and dropping of the pin. Similarly,

when a particular image was selected and uploaded or a caption for an image was selected, the

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 27 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 27

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

selections were displayed substantially contemporaneously.

78. Upon selection of the desired setting, information representative of the selected

setting was stored in a database that supported the property listing website. On information and

belief, websites for the Priceline Agoda products were supported on database systems where

settings for the Priceline or Agoda websites were stored.

79. A website for the property listing was generated in part by retrieving the

information and files from a database. As shown in the example below, a user could set “single

rate” to “220.00,” “double rate” to “280.00,” “Allotment” to “2,” “Auto Top Up” to “1,” and check

the “Include Breakfast” option in the property’s “Rates&Allotments” web page. These user input

settings were sent to the YCS Platform’s server and stored in its database via an HTTP POST

request “16529523” in the format of JSON data. A browser could then load the website by

retrieving the stored setting information from a response JSON data. In the example shown below,

the settings “220.00” for “Single,” “280.00” for “Double,” “2” for “Allotment,” “1” for “Auto Top

Up,” and “Y” for “Breakfast” were fetched from the YCS Platform’s database and displayed in

the table listed for each applicable day of week.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 28 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 28

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

80. The YCS Platform built the property listing website comprising one or more web

pages from the data for the selected settings and files stored in the database. Run time files

(including CSS files and Javascript files) used the stored data and files to generate commands for

the browser engine to display the one or more web pages. The YCS Platform relied on a browser

engine to generate a website comprising one or more web pages based on settings data extracted

from at least a portion of the YCS Platform’s CDN database, and at least one run time file. As

shown in the example below, the YCS Platform downloaded an HTML file from an Agoda server.

When the browser build engine parsed the HTML file, the web browser could make HTTP GET

requests to fetch the embedded HTML file from Agoda’s server, and embedded run time files (e.g.,

CSS and Javascript files), along with additional content files (e.g., image files), from Agoda’s

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 29 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 29

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

CDNs. The image files displayed in the website were downloaded from the Akamai server, the

CDN service provider for Agoda.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 30 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 30

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

81. On information and belief, the YCS Platform fetched HTML (*.html) files, CSS

(*.css) files, and Javascript (*.js) files from the YCS Platform’s servers and converted them with

additional contents (e.g., JSON files and image files) into a working website. As shown in the

example below, the YCS Platform’s source code, such as HTML files and run time files (including

CSS files, and Javascript files), and image files, were fetched from the Agoda’s servers to build a

web page for display.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 31 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 31

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The OpenTable Platform:

82. OpenTable has infringed at least claim 1 of the ‘397 patent through a combination

of features in the OpenTable Platform that collectively practiced each limitation of claim 1. By

way of example, during the term of the ‘397 patent, OpenTable provided the OpenTable Platform,

a browser-based platform for, inter alia, creating restaurant profile websites.

https://restaurant.opentable.com/why-opentable/

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 32 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 32

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

83. The OpenTable Platform created restaurant profile websites on and for computers

having a browser and a virtual machine capable of generating displays. Upon information and

belief, the restaurant profile websites were created and displayed on browsers, such as Google

Chrome, Mozilla Firefox, and Microsoft Edge, which used browser engines (virtual machines), to

render web pages on computers by interpreting and executing code such as JavaScript and HTML.

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/eQVviz7sYnQ)

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 33 of 548

https://youtu.be/eQVviz7sYnQ

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 33

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://help.opentable.com/s/article/Recommended-Web-Browsers-for-Optimized-OpenTable-

Experience-1505260708133?language=en_US

84. The OpenTable Platform presented a menu with a user selectable panel of settings

that permitted the selection of settings describing elements for a restaurant profile. This permitted

the customization of the basic information of the restaurant, dining experience, profile photo of

the restaurant, reservation widget and menus.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 34 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 34

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/eQVviz7sYnQ)

85. By way of example, a user could customize the images of the restaurant to be

displayed on the restaurant profile website through a panel that included options for uploading new

images, dragging uploaded images to set the order in which the images were to be displayed, and

tagging an image with a tag that would describe the image.

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US

86. As described above, the OpenTable Platform comprised a browser-based platform

and presented a user selectable panel of settings through a browser of a computer. The computer

and browser accepted user inputs for settings such as the basic information of the restaurant, dining

experience, profile photo of the restaurant, reservation widget and menus for the restaurant profile.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 35 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 35

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

For example, the panel included options for uploading contact information and restaurant

description, such as the reservation phone number, restaurant name, popular dishes and unique

details.

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/ta64-nFW8rA)

87. By way of another example, the panel could accept settings to specify a restaurant’s

hours of operation.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 36 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 36

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/VbCAysF9UvI)

88. When a desired setting was selected, the OpenTable Platform generated a display

in accordance with that selection substantially contemporaneously with the selection. As shown

in the example above, when an image was selected and uploaded, and a user selected to drag and

move the box of the image to crop the displayed image, the OpenTable platform displayed these

settings substantially contemporaneously with the selections thereof.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 37 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 37

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/eQVviz7sYnQ)

89. Upon information and belief, the OpenTable Platform stored information

representative of the selected setting in a database that supporting the restaurant profile. In the

example below, the OpenTable Platform sends the user selected settings for a reservation, such as

party size, reservation date and time through a “search” HTTP POST request to the OpenTable

Platform’s server and stores the information representative of the said user selected settings in an

OpenTable Platform’s database. In particular, the user selected settings are transferred and stored

in JSON data format.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 38 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 38

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

90. The OpenTable Platform generated a restaurant profile website at least in part by

retrieving information and files for user selected settings stored in the database. As shown in the

example below, the OpenTable Platform could load the restaurant profile on a browser by sending

an HTTP GET request to fetch the stored settings information (e.g., overview, photos, popular

dishes, reservation, menu, and reviews of the restaurant) from the database in the OpenTable

Platform’s server. In particular, the OpenTable Platform stored the images of the restaurant (e.g.,

restaurant profile image) along with other user selected settings, which it in turn communicated

from the server as a response to an HTTP GET request. On information and belief, these

functionalities were present during the term of the ‘397 patent.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 39 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 39

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/?shell#platform-basics

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 40 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 40

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

91. The OpenTable Platform built the property listing website comprising one or more

web pages from the data for the selected settings and files stored in the database, and one or more

run time files. The run time files (including, e.g., CSS files and Javascript files) used the stored

data and files to generate commands for the browser engine to display the one or more web pages.

In particular, the OpenTable Platform relied on a browser engine to generate a website comprising

one or more web pages based on settings data extracted from at least a portion of the OpenTable

Platform’s database and the run time files.

92. In the example below, the OpenTable Platform downloaded an HTML file from the

OpenTable Platform’s servers with an HTTP GET request. When the OpenTable Platform parsed

the HTML file through a browser build engine, the OpenTable Platform would make a request

(e.g., through the GET method) to fetch the embedded CSS and Javascript run time files through

the web browser. On information and belief, these functionalities were present during the term of

the ‘397 patent.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 41 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 41

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

93. On information and belief, the OpenTable Platform fetched HTML (*.html) files,

CSS (*.css) files, and Javascript (*.js) files from the OpenTable Platform’s servers and converted

them with additional contents (e.g., JSON files and image files) into a working website. In the

example below, the OpenTable Platform fetches its source code, such as HTML files and run time

files (including CSS files, and Javascript files) from the OpenTable Platform’s servers to build a

restaurant profile for display. On information and belief, this functionality was present during the

term of the ‘397 patent.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 42 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 42

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

94. The presence of the above referenced features, which on information and belief

were present during the term of the ‘397 patent, is demonstrated, by way of example, by testing

the Accused Instrumentalities for investigative purposes on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, and/or https://ycs.agoda.com/en-

us/kipp/public/home, and by reference to publicly available information, including the following:

• https://join.booking.com/,

• https://partner.booking.com/en-us,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 43 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 43

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

• https://partner.booking.com/en-us/help/working-booking/how-do-i-join-

bookingcom,

• https://partner.booking.com/en-us/help/working-booking/how-can-i-set-my-

property-easily,

• https://ycs.agoda.com/en-us/kipp/public/home,

• https://www.agoda.com/info/ycs-online-registration.html?cid=1844104,

• https://www.agoda.com/info/privacy.html?cid=1844104,

• https://partners.agoda.com/en-us/faq.html,

• https://agodapropertyhelp.zendesk.com/hc/en-us,

• https://partners.agoda.com/,

• https://agodapropertyhelp.zendesk.com/hc/en-us/articles/115009545508-How-

do-I-list-my-property-on-Agoda-com-,

• https://www.opentable.com/,

• https://support.opentable.com/s/?language=en_US,

• https://platform.opentable.com/documentation/, and

• https://restaurant.opentable.com/.

95. On information and belief, Defendants have had knowledge of the ‘397 patent and

their infringement thereof at least as early as October 3, 2019, and no later than November 30,

2020, when Plaintiff provided notice of the ‘397 patent and Defendants’ infringement of the ‘397

patent. Furthermore, Defendants have been aware of the ‘397 patent and their infringement thereof

since at least the filing of the original Complaint, D.I. 1, on December 1, 2020.

96. On information and belief, Defendants have contributed to the infringement of the

‘397 patent because Defendants knew that the infringing aspects of their infringing products and

services, including but not limited to the Accused Instrumentalities, were made for use in an

infringement, and were not staple articles of commerce suitable for substantial non-infringing uses.

97. On information and belief, Defendants have induced the infringement of the ‘397

patent, with knowledge of the ‘397 patent and that their acts, including without limitation using,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 44 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 44

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

offering to sell, selling within, and importing into the United States, the Accused Instrumentalities,

would aid and abet and induce infringement by customers, clients, partners, developers, and end

users of the foregoing.

98. In particular, Defendants’ actions that aided and abetted others such as customers,

clients, partners, developers, and end users to infringe included advertising and distributing the

Accused Instrumentalities, providing instructional materials, training, and other services regarding

the Accused Instrumentalities, and providing free listings for the Accused Instrumentalities.

Defendants actively encouraged the adoption of the Accused Instrumentalities and provided

support sites for the vast network of developers working with the Accused Instrumentalities,

emphasizing the simple and user-friendly nature of the Accused Instrumentalities, for example,

explaining that “Registration can take as little as 15 minutes to complete—get started today” and

that Defendants provides “24/7 support by phone or email” (see, e.g., https://join.booking.com/),

that “Through one platform our hotel partners are distributed across both priceline.com and

agoda.com maximizing performance across our Retail, Private, Opaque and Vacation Packages

programs. Our partners can easily set rates, promotions, and change hotel details with a few simple

clicks of a mouse or on the go with a mobile device” (see, e.g., https://ycs.agoda.com/en-

us/kipp/public/home), and that “From online ordering and takeout to powerful marketing and

experiences, make more money when you access our network of millions” and that restaurants can

“[g]et discovered and capture the business of the millions of people, around the world and in your

neighborhood, searching on OpenTable” (see, e.g.,

https://restaurant.opentable.com/?utm_source=dinersite&utm_medium=referral&utm_campaign

=topnav&Lead.LeadSource=DinerSite&Lead.Marketing_ID__c=topnav). On information and

belief, Defendants engaged in such actions with specific intent to cause infringement or with

willful blindness to the resulting infringement because Defendants had actual knowledge of the

‘397 patent and knowledge that their acts were inducing infringement of the ‘397 patent since at

least the date Defendants received notice that their activities infringed the ‘397 patent.

99. Defendants’ acts of infringement have caused damage to Plaintiff, and Plaintiff is

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 45 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 45

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

entitled to recover damages from Defendants in an amount subject to proof at trial.

100. On information and belief, Defendants have acted with disregard of Plaintiff’s

patent rights, without any reasonable basis for doing so, and have willfully infringed the ‘397

patent.

101. The foregoing is illustrative of Defendants’ infringement of the ‘397 patent.

Plaintiff reserves the right to identify additional claims and Accused Instrumentalities in

accordance with the Court’s local rules and applicable scheduling orders.

COUNT II – INFRINGEMENT OF U.S. PATENT NO. 7,594,168

102. Plaintiff incorporates by reference paragraphs 1 to 55 above as if fully set forth

herein.

103. On information and belief, Defendants have infringed and continue to infringe the

‘168 patent under 35 U.S.C. § 271, either literally and/or under the doctrine of equivalents, directly

and/or indirectly.

104. On information and belief, Booking-BV has infringed and continues to infringe the

‘168 patent by performing, without authority, one or more of the following acts during relevant

time periods: making, using, offering to sell, selling within, and importing into, the United States

products and services that practice the claimed inventions of the ‘168 patent, including but not

limited to the WebDirect Platform and the Booking Platform.3

105. On information and belief, Priceline and Agoda (the “YCS infringers”) have

infringed and continue to infringe the ‘168 patent by performing, without authority, one or more

of the following acts during relevant time periods: making, using, offering to sell, selling within,

and importing into, the United States products and services that practice the claimed inventions of

3 This Count focuses its infringement allegations on the Booking Platform, YCS Platform, and

the OpenTable Platform. Upon information and belief, the WebDirect Platform operates in a

similar fashion as the Booking and YCS Platforms, and discovery of the WebDirect Platform,

including confidential documents related thereto, will confirm these facts.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 46 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 46

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the ‘168 patent, including but not limited to the YCS Platform.

106. On information and belief, OpenTable has infringed and continues to infringe the

‘168 patent by performing, without authority, one or more of the following acts during relevant

time periods: making, using, offering to sell, selling within, and importing into the United States

products and services that practice the claimed inventions of the ‘168 patent, including but not

limited to the OpenTable Platform.

The Booking Platform:

107. Booking-BV infringes at least claim 1 of the ‘168 patent through a combination of

features in the Booking Platform that collectively practice each limitation of claim 1. By way of

example, Booking-BV provides the Booking Platform for creating property listing websites for

hotels, homes, apartments, and other lodgings where travelers can view and book

accommodations.

4

4 Unless otherwise noted, the images presented in this Count were generated for investigative

purposes by testing the Accused Instrumentalities on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, https://ycs.agoda.com/en-

us/kipp/public/home, https://www.opentable.com/, https://support.opentable.com/s/?language

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 47 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 47

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

108. On information and belief, property listing websites created on the Booking

Platform are supported by MySQL, a relational database management system (RDBMS) that

serves a backend server to retrieve and store data for the websites, including data relating to inputs

from users.

https://www.quora.com/Who-hosts-the-booking-com-website

=en_US, https://platform.opentable.com/documentation/, and/or other associated websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 48 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 48

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.youtube.com/watch?v=iNxqZSbaHYQ&feature=youtu.be

https://www.youtube.com/watch?v=iNxqZSbaHYQ&feature=youtu.be

109. The Booking Platform’s MySQL server thus operates as a build engine that can

accept user input to create a website comprising a plurality of web pages that each include objects.

User input for a property listing website may include customization of general information such

as name and location of the property, facilities and services, amenities, descriptions, and images.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 49 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 49

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

110. For example, a user may select images of the property to be displayed on the

property website and may select the order in which the images are to be displayed by dragging the

images with a mouse.

111. Upon input of an image, a user may associate a particular style to be associated

with the image object. For example, a user may associate tags with an image. In the example

below, the tag “Garden view” is associated with an image.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 50 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 50

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 51 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 51

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

112. A style for an image on the website may define transformations and time lines for

the image. For example, when a thumbnail image in the photo gallery for a property on a Booking

website is clicked on, the thumbnail image transforms into an enlarged image including a black

background and an image caption at the bottom of screen. Further, the forward arrow on an

enlarged image can be clicked on to transform the current enlarged image into the next enlarged

image of the photo gallery, providing a photo gallery slideshow.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 52 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 52

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

113. A 360 panoramic view style is another example of a style defining transformations

and time lines that can be associated with an image. In the example below, a 360 view style for

an image allows website visitors to click and drag on the image to get a 360 degree view of a

particular room or area of the property.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 53 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 53

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 54 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 54

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

114. The Booking Platform is configured to produce a database with multidimensional

array including the objects that comprise the website. For example, as described above, user inputs

for Booking websites are stored in MySQL databases that are multidimensional array databases.

Further, Booking websites are rendered using JSON dataset, which are multidimensional in nature,

comprising key/value pairs and an ordered list of values.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 55 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 55

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://developers.booking.com/api/commercial/index.html?version=2.5&page_url=migration-
guide

115. For each website object, JSON dataset includes object style, object identifiers, and

an indication of the web page that the object is part of. This data is provided to the Booking’s

server, accessible to a web browser to generate a website based on user inputs. In the example

below, a user selects a tag “Sunset” for an image object “image2.jpg” and rotates the image by 90

degrees clockwise. In the response JSON dataset, the symbolic name “tags” is associated with the

user selected tag name “Sunset” for the image object. The symbolic name “is_external_tag,”

which is associated with value “false,” indicates the style of the tab object for the image object. In

addition, the symbolic name “title” is the object identifier for each image object. The symbolic

name “ranking” is the object style that indicates the display order of each image object. Since the

symbolic name “ranking” is set to “1,” the image object “image1.jpg” is presented first in order in

the photo gallery for the property. The symbolic name “enabled” is another object style that

indicates whether an image object is displayed or not on the Booking flatform. Since the symbolic

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 56 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 56

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

name “enabled” is set to “0,” the image object “image2.jpg” is not immediately displayed on the

website.

116. A web browser with access to a runtime engine can then generate the user

configured website including the user input objects and style data extracted from the database. For

example, a web browser can generate a web page for “Photo Gallery.” Whether the image objects

are to be displayed on the “Photo Gallery” web page is determined based on the value of the

“enabled” object style, and their display order is determined based on the value of the “ranking”

object style. In other words, the “enabled” and “ranking” are symbolic names associated with user

input style data and “tags” and “title” are symbolic names associated with user input tag objects

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 57 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 57

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

and image objects, respectively.

The YCS Platform:

117. The YCS infringers infringe at least claim 1 of the ‘168 patent through a

combination of features in the YCS Platform that collectively practice each limitation of claim 1.

By way of example, the YCS infringers provide the YCS Platform for creating property listing

websites for hotels and other lodgings where travelers can view and book accommodations.

118. On information and belief, the YCS Platform is supported by a server comprising

a build engine configured to accept user input to create a website comprising a plurality of web

pages that each include objects displaying different elements of the website. The exemplary

screenshot below shows a web page including various objects displaying different elements of a

property listing website.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 58 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 58

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

119. User input for a website may include customization of the location, description,

amenities, pricing, availability, photos, and profile for a listed property. Further, a user may enter

inputs to associate styles with image objects, including styles that define a transformation and time

line. For example, a user may define a caption for an image that is displayed when the image is

transformed, as shown below.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 59 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 59

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 60 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 60

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

120. When a thumbnail image of a property on the property listing website is clicked on,

the thumbnail image is transformed into an enlarged image, and displayed together with a black

background and the selected caption describing the image. Further, the forward arrow on an

enlarged image can be clicked on to transform the current enlarged image into the next enlarged

image of the photo gallery, providing a photo gallery slideshow.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 61 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 61

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 62 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 62

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

121. On information and belief, the YCS Platform is configured to produce a database

with multidimensional array comprising the objects that comprise the website. Further, on

information and belief, Priceline and Agoda websites are rendered using JSON dataset, which are

multidimensional in nature. On information and belief, the JSON dataset for an object on a

Priceline or Agoda website includes object style, object identifiers, and an indication of the web

page that the object is part of. This data is provided to the YCS server, accessible to a web browser

to generate a website based on user inputs. As shown in the example below, a user can upload

photos for a listing property. The response is in the format of JSON dataset, in which the symbolic

name “id” is the object identifier of each image object and symbolic name “pageId” is the

indication of the web page that the object is part of. On information and belief, style settings are

stored and transmitted in a similar manner.

122. A web browser with access to a runtime engine can then generate the user

configured website including the user input objects and style data extracted from the database. In

the example below, image objects are fetched from the YCS Platform server and displayed on the

YCS Platform with a simple HTTP GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 63 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 63

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The OpenTable Platform:

123. OpenTable infringes at least claim 1 of the ‘168 patent through a combination of

features in the OpenTable Platform that collectively practice each limitation of claim 1. By way

of example, OpenTable provides the OpenTable Platform, a browser-based platform for, inter alia,

creating restaurant profile websites.

124.

https://restaurant.opentable.com/why-opentable/

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 64 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 64

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

125. On information and belief, the OpenTable Platform comprises a server that serves

a backend server to retrieve and store data, including data relating to user input data, for the

OpenTable Platform and restaurant profile websites created thereon.

126. The OpenTable Platform’s server comprises a build engine for creating and

configuring restaurant profile websites.

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/eQVviz7sYnQ)

127. The OpenTable Platform’s build engine is configured to accept user input to create

a website comprising a plurality of web pages that each include objects. User input for a website

may include basic information of the restaurant, dining experience, profile photo of the restaurant,

reservation widget and menus for the restaurant profile websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 65 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 65

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US (video: https://youtu.be/eQVviz7sYnQ)

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 66 of 548

https://youtu.be/eQVviz7sYnQ

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 66

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://support.opentable.com/s/article/Updating-your-restaurant-profile-in-

GuestCenter?language=en_US

128. Restaurant profile websites created with the OpenTable Platform’s build engine

comprise objects, such as image, drop-down list, and date picker objects, as shown in the example

below.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 67 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 67

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

129. The OpenTable Platform’s build engine is configured to accept user inputs to

associate a style with image objects for a photo gallery of the restaurant profile. By way of

example, images of the property can be selected to be displayed on the restaurant profile and the

OpenTable Platform’s build engine accepts user inputs for the titles of the images and adjusted

cropping of the displayed images. Upon selection of an image and other inputs, the OpenTable

Platform’s build engine can associate a particular style with the image object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 68 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 68

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://support.opentable.com/s/article/How-to-update-photos-on-OpenTable-com-

profile?language=en_US

130. Each web page includes at least one button object or at least one image object. For

example, a restaurant profile web page can include image objects for a photo gallery of the

restaurant and a “Find a table” button object permitting a visitor to make a reservation.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 69 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 69

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146. An image object is associated with styles defining transformations and timelines

for the image. By way of another example, when the forward arrow on an enlarged image is clicked

on, the current full-screen image is transformed into the next full-screen image of the photo gallery,

providing a photo slideshow with the selected image.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 70 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 70

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.opentable.com/ruths-chris-steak-house-fairfax?originId=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&corrid=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&avt=eyJ2IjoyLCJtIjoxLCJwIjowLCJzIjowLCJuIjowfQ

147. By way of another example, an indicator counts down to the end of the reservation

(here, showing 4:15 minutes left), where the counting down value defines the timelines for the

“Complete reservation” button object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 71 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 71

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 72 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 72

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

160. Each web page for a restaurant profile created through the OpenTable Platform is

defined by the objects and styles comprising that web page, such as the image objects and styles

described above.

161. On information and belief, the OpenTable Platform’s build engine is configured to

produce a database with a multidimensional array comprising the objects that comprise the

website. As described above, inputs for the restaurant profile websites are stored in the OpenTable

Platform’s database, which comprises multidimensional arrays. In the example below, the

OpenTable Platform sends the user selected settings for a reservation, such as party size,

reservation date and time through a “search” HTTP POST request to the OpenTable Platform’s

server and stores the information representative of the said user selected settings in an OpenTable

Platform’s database. In particular, the user selected settings are transferred and stored in JSON

data format.

162. Further, the restaurant profile websites are rendered with data in JSON format,

which is multidimensional in nature. In particular, each website object rendered with JSON dataset

includes object styles, object identifiers, and an indication of the web page that the object is part

of. For example, five button UI objects can be used to select a reservation time, and user selection

of one of the five button UI objects is stored in a multidimensional array, e.g., JSON dataset,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 73 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 73

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

including data defining, for each button object, the object style, an object number, and an indication

of the web page that each object is part of. For example, “0” is the object number for the “5:00

PM” button object and symbolic name “url” associates with an indication (i.e., URL address) of

the web page that each button object is part of. In addition, the JSON dataset also includes data

defining, for each button object, the object style, such as the “attributes” is set to “default”.

163. On information and belief, the OpenTable Platform’s build engine stores the data

relating to the inputs and settings for the restaurant profile websites in the database and provides

the date to the OpenTable Platform’s server which is accessible to a web browser to generate a

restaurant profile website including the inputs and settings. In particular, data is sent and received

in JSON format between the OpenTable Platform’s server and the web browser of a client device.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 74 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 74

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/?shell#platform-basics

164. The OpenTable Platform’s database is produced such that a web browser with

access to a runtime engine can generate the restaurant profile websites including the input objects

and style data extracted from the database. In the example below, the OpenTable Platform

downloads an HTML file of a restaurant profile website from the OpenTable Platform’s server

with an HTTP GET request. When the OpenTable Platform parses the HTML file through a

browser build engine, the OpenTable Platform makes a request (e.g., GET method) through a web

browser to fetch the embedded files such as CSS and Javascript run time files, which are processed

with a runtime engine.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 75 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 75

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

165. The OpenTable Platform fetches HTML (*.html) files, CSS (*.css) files, and

Javascript (*.js) files from the OpenTable Platform’s servers and converts them with additional

contents (e.g., JSON files and image files) into a working website. In the example below, the

OpenTable Platform fetches its source code, such as HTML files and run time files (including CSS

files, and Javascript files) from the OpenTable Platform’s servers to build a restaurant profile for

display. On information and belief, this functionality was present during relevant time periods of

infringement.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 76 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 76

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

166. The presence of the above referenced features is demonstrated, by way of example,

by testing the Accused Instrumentalities for investigative purposes on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, and/or https://ycs.agoda.com/en-

us/kipp/public/home, and by reference to publicly available information, including the following:

• https://www.booking.com/,

• https://join.booking.com/,

• https://partner.booking.com/en-us,

• https://partner.booking.com/en-us/help/working-booking/how-do-i-join-

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 77 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 77

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

bookingcom,

• https://partner.booking.com/en-us/help/working-booking/how-can-i-set-my-

property-easily,

• https://ycs.agoda.com/en-us/kipp/public/home,

• https://www.agoda.com/info/ycs-online-registration.html?cid=1844104,

• https://www.agoda.com/info/privacy.html?cid=1844104,

• https://partners.agoda.com/en-us/faq.html,

• https://agodapropertyhelp.zendesk.com/hc/en-us,

• https://partners.agoda.com/,

• https://agodapropertyhelp.zendesk.com/hc/en-us/articles/115009545508-How-

do-I-list-my-property-on-Agoda-com-,

• https://www.opentable.com/,

• https://support.opentable.com/s/?language=en_US,

• https://platform.opentable.com/documentation/, and

• https://restaurant.opentable.com/.

167. On information and belief, Defendants have had knowledge of the ‘168 patent and

their infringement thereof at least as early as October 3, 2019, and no later than November 30,

2020, when Plaintiff provided notice of the ‘168 patent and Defendants’ infringement of the ‘168

patent. Furthermore, Defendants have been aware of the ‘168 patent and their infringement thereof

since at least the filing of the original Complaint, D.I. 1, on December 1, 2020.

168. On information and belief, Defendants have contributed and are contributing to the

infringement of the ‘168 patent because Defendants know that the infringing aspects of their

infringing products and services, including but not limited to the Accused Instrumentalities, are

made for use in an infringement, and are not staple articles of commerce suitable for substantial

non-infringing uses.

169. On information and belief, Defendants have induced and are inducing the

infringement of the ‘168 patent, with knowledge of the ‘168 patent and that their acts, including

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 78 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 78

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

without limitation using, offering to sell, selling within, and importing into the United States, the

Accused Instrumentalities, would aid and abet and induce infringement by customers, clients,

partners, developers, and end users of the foregoing.

170. In particular, Defendants’ actions that aid and abet others such as customers,

clients, partners, developers, and end users to infringe include advertising and distributing the

Accused Instrumentalities, providing instructional materials, training, and other services regarding

the Accused Instrumentalities, and providing free listings for the Accused Instrumentalities.

Defendants actively encouraged the adoption of the Accused Instrumentalities and provided

support sites for the vast network of developers working with the Accused Instrumentalities,

emphasizing the simple and user-friendly nature of the Accused Instrumentalities, for example,

explaining that “Registration can take as little as 15 minutes to complete—get started today” and

that Defendants provides “24/7 support by phone or email” (see, e.g., https://join.booking.com/),

that “Through one platform our hotel partners are distributed across both priceline.com and

agoda.com maximizing performance across our Retail, Private, Opaque and Vacation Packages

programs. Our partners can easily set rates, promotions, and change hotel details with a few simple

clicks of a mouse or on the go with a mobile device” (see, e.g., https://ycs.agoda.com/en-

us/kipp/public/home), and that “From online ordering and takeout to powerful marketing and

experiences, make more money when you access our network of millions” and that restaurants can

“[g]et discovered and capture the business of the millions of people, around the world and in your

neighborhood, searching on OpenTable” (see, e.g.,

https://restaurant.opentable.com/?utm_source=dinersite&utm_medium=referral&utm_campaign

=topnav&Lead.LeadSource=DinerSite&Lead.Marketing_ID__c=topnav). On information and

belief, Defendants have engaged in such actions with specific intent to cause infringement or with

willful blindness to the resulting infringement because Defendants have had actual knowledge of

the ‘168 patent and knowledge that their acts were inducing infringement of the ‘168 patent since

at least the date Defendants received notice that their activities infringed the ‘168 patent.

171. Defendants’ acts of infringement have caused damage to Plaintiff, and Plaintiff

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 79 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 79

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

is entitled to recover damages from Defendants in an amount subject to proof at trial.

172. Defendants’ infringement of Plaintiff’s rights under the ‘168 patent will continue

to damage Plaintiff’s business, causing irreparable harm, for which there is no adequate remedy at

law, unless enjoined by this Court.

173. On information and belief, Defendants have acted with disregard of Plaintiff’s

patent rights, without any reasonable basis for doing so, and have willfully infringed and do

willfully infringe the ‘168 patent.

174. The foregoing is illustrative of Defendants’ infringement of the ‘168 patent.

Plaintiff reserves the right to identify additional claims and Accused Instrumentalities in

accordance with the Court’s local rules and applicable scheduling orders.

COUNT III – INFRINGEMENT OF U.S. PATENT NO. 9,063,755

175. Plaintiff incorporates by reference paragraphs 1 to 55 above as if fully set forth

herein.

176. On information and belief, Defendants have infringed and are infringing the ‘755

patent under 35 U.S.C. § 271, either literally and/or under the doctrine of equivalents, directly

and/or indirectly.

177. On information and belief, Booking-BV has infringed and continues to infringe the

‘755 patent by performing, without authority, one or more of the following acts: making, using,

offering to sell, selling within, and importing into, the United States products and services that

practice the claimed inventions of the ‘755 patent, including but not limited to the WebDirect

Platform and the Booking Platform.5

178. On information and belief, Priceline and Agoda (the “YCS infringers”) have

5 This Count focuses its infringement allegations on the Booking Platform, YCS Platform, and

the OpenTable Platform. Upon information and belief, the WebDirect Platform operates in a

similar fashion as the Booking and YCS Platforms, and discovery of the WebDirect Platform,

including confidential documents related thereto, will confirm these facts.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 80 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 80

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

infringed and continue to infringe the ‘755 patent by performing, without authority, one or more

of the following acts: making, using, offering to sell, selling within, and importing into, the United

States products and services that practice the claimed inventions of the ‘755 patent, including but

not limited to the WebDirect Platform and the Booking Platform.

179. On information and belief, OpenTable has infringed and continues to infringe the

‘755 patent by performing, without authority, one or more of the following acts during relevant

time periods: making, using, offering to sell, selling within, and importing into the United States

products and services that practice the claimed inventions of the ‘755 patent, including but not

limited to the OpenTable Platform.

The Booking Platform:

180. Booking-BV infringes at least claim 12 of the ‘755 patent through a combination

of features in the Booking Platform that collectively practice each claimed limitation of claim 12.

By way of example, Booking-BV provides the Booking Platform for creating property listing

websites for hotels, homes, apartments, and other lodgings where travelers can view and book

accommodations.

6

6 Unless otherwise noted, the images presented in this Count were generated for investigative

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 81 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 81

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

181. The Booking Platform utilizes a registry of web components related to inputs and

outputs of web services, with each web component including a plurality of corresponding symbolic

names for inputs and outputs. On information and belief, the Booking Platform is supported by

MySQL, a relational database management system that serves as a back-end server supporting

Booking websites. This includes support for website visitors creating, reading, updating, and

deleting (CRUD) datasets within a Booking property listing website, providing a registry of web

components for inputs and outputs of web services.

purposes by testing the Accused Instrumentalities on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, https://ycs.agoda.com/en-

us/kipp/public/home, https://www.opentable.com/, https://support.opentable.com/s/?language

=en_US, https://platform.opentable.com/documentation/, and/or other associated websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 82 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 82

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.quora.com/Who-hosts-the-booking-com-website

https://www.youtube.com/watch?v=iNxqZSbaHYQ&feature=youtu.be

182. Web services on the Booking Platform include various Application Programming

Interfaces (APIs) that may be integrated on Booking websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 83 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 83

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://connect.booking.com/user_guide/site/en-US/

183. By way of example, the Google Maps API be embedded on a Booking website

to display a property’s location and other nearby attractions and points of interest. As shown

below, a user can input a property address, which is embedded in a request URL and sent to the

Google Maps API via an HTTP GET request for Geocoding service, which in turn converts the

input address into geographic coordinates and places a marker on the map indicating the property’s

location.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 84 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 84

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

184. On information and belief, the Booking Platform utilizes JSON data to evoke

web components and communicate inputs and outputs for the APIs. Each web component includes

a plurality of corresponding symbolic names for inputs and outputs for a web service. These

symbolic names are required for evoking the web components and constitute character strings that

do not contain a persistent address or pointer. In particular, JSON datasets used by the Booking

Platform comprise name/value pairs that are essentially character strings (i.e., symbolic names)

with no persistent address or pointers.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 85 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 85

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://developers.booking.com/api/commercial/index.html?version=2.5&page_url=migration-

guide

https://developers.booking.com/api/commercial/index.html?version=2.5&page_url=migration-

guide

185. The registry for the Booking Platform also includes addresses for the web

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 86 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 86

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

services where the input symbolic names and output symbolic names can be sent to and received

from. For example, the screenshot below shows a request URL including an address of the Google

Maps web service when a user inputs an address for Geocoding service in the Google Maps API.

In particular, the user-input property address “800 Connecticut Avenue. Norwalk, CT 06854” is

embedded in the request URL and sent to the Google Maps API via an HTTP GET request. The

Geocoding service in the Google Maps API then responds with geographic coordinates for the

user-input address in the format of JSON data and places a marker on the map indicating the

property’s location. The geographic coordinates and the user input address are stored in the

Booking’s database for further use.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 87 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 87

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

186. The Booking Platform defines a UI object corresponding to a web component for

an input or output of a web service, for presentation on the display. For example, when the Google

Maps API is embedded onto a Booking website, UI objects for web components such as a map

image, a pin indicating the property’s location, zoom-in and zoom-out buttons, and points showing

nearby attractions and points of interest are defined for the Google Map web service.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 88 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 88

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

187. When a UI object is defined, a symbolic name (e.g., JSON data) from the web

component corresponding to the defined UI object is selected and associated with the defined UI

object. The Booking Platform then produces a device-independent application that includes the

JSON data, as well as standard HTML, CSS and Javascript code. The application is executed on

a device together with a device-dependent player, such as a device-dependent code for a browser

engine for a specific browser, or an application or operating system for a particular kind of device.

See, e.g., Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137.

In the example below, the Booking Platform converts HTML, CSS, Javascript, image, and other

files into an active property website.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 89 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 89

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

188. The Booking Platform can accept an input, and transmit the input with a

corresponding input symbolic name to a web service. By way of example, when the Google Maps

API accepts an input value (e.g., a hotel name, a zoom-in click, or a click on a nearby hotel) from

a user into the API, a corresponding input symbolic name (e.g., a query string or JSON data for

the input) is transmitted to the Google Maps web service through an HTTP request protocol, such

as a GET method call. The example below demonstrates how a user can search for “East Village

Hotel” in the Google Maps API on a property listing. When the user types “East Village Hotel,”

a query string with parameters including the symbolic name “1s” and associated value “East

Village Hotel” is sent to the Google Maps web service to initiate an autocompletion service with

an HTTP GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 90 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 90

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

189. The input symbolic name is utilized by the Google Maps web service to generate

an output value with an associated output symbolic name (e.g., JSON data for the output). The

player then provides instructions to the display of the device to present and display the output in

the Google Maps API. For example, when a user searches “East Village Hotel” and selects an

autocomplete suggestion from the Google Maps API, the Google Maps web service generates and

transmits a corresponding hotel address and geographic coordinates in the format of JSON data to

the web browser and displays a pin indicating the location of the selected hotel on the Google

Maps API.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 91 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 91

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The YCS Platform:

190. The YCS infringers infringe at least claim 12 of the ‘755 patent through a

combination of features in the YCS Platform that collectively practice each claimed limitation of

claim 12. By way of example, the YCS infringers provide the YCS Platform for creating property

listing websites for hotels and other lodgings where travelers can view and book accommodations.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 92 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 92

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

191. On information and belief, the YCS Platform utilizes a registry, located in a server

database and/or a CDN, of web components related to inputs and outputs of web services, with

each web component including a plurality of corresponding symbolic names for inputs and

outputs. Web services that may be integrated on Priceline and Agoda websites include, for

example, the Google Maps API.

192. On information and belief, Priceline and Agoda websites utilize JSON data to evoke

web components and communicate inputs and outputs for the APIs. JSON data comprise

key/value pairs that are essentially character strings (i.e., symbolic names) with no persistent

address or pointer. For example, an Agoda property listing website can include a Google Maps

API integrated on the website to display the location of the property listing. The Google Maps

API utilizes symbolic names (e.g., JSON data) to transfer the property address information and

geographic coordinates to the Agoda website. In the example below, “lat” and “lng” are symbolic

names associated with the latitude and longitude coordinates of the property address “800

Connecticut Avenue, Norwalk, CT 06854, USA.”

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 93 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 93

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

193. The registry for the YCS Platform also includes addresses for the web services

where the input symbolic names and output symbolic names can be sent to and received from. For

example, the screenshot below shows a request URL including an address of the Google Maps

web service. In particular, the user-input property address “800 Connecticut Avenue. Norwalk,

CT 06854” is embedded in the request URL and sent to the Google Maps API via an HTTP GET

request for Geocoding service. The Geocoding service in the Google Maps API then converts the

property address to geographic coordinates and sends the geographic coordinates with other

property information in the format of JSON data to the Agoda website. The geographic

coordinates and the user input address are stored in Booking’s database for further use.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 94 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 94

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

194. The YCS Platform defines a UI object corresponding to a web component for an

input or output of a web service, for presentation on the display. For example, when the Google

Maps API is embedded onto a Priceline or Agoda property listing website, UI objects for web

components such as the zoom-in and zoom-out buttons, a search field, a search button, a slide bar

for “Price per night,” a check box for “Star rating,” and a radio button for “Location rating” are

automatically selected by the YCS Platform as preferred UI objects.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 95 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 95

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

195. When a UI object is defined, a symbolic name (e.g., JSON data) from the web

component corresponding to the defined UI object is selected and associated with the defined UI

object. The YCS Platform then produces a device-independent application that includes the JSON

data, as well as standard HTML, CSS and Javascript code. The application is executed on a device

together with a device-dependent player, such as a device-dependent code for a browser engine

for a specific browser, or an application or operating system for a particular kind of device. See,

e.g., Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. In the

example below, the YCS Platform converts HTML, CSS, Javascript, JSON, and other files into an

active property listing website for “Hyatt Regency Suites Atlanta.”

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 96 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 96

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

196. The YCS Platform is configured to accept an input, and transmit the input with a

corresponding input symbolic name to a web service. By way of example, when the Google Maps

API accepts an input value (e.g., an input hotel name, a zoom-in click, or a click on the “Explore”

tab) from a user, a corresponding input symbolic name (e.g., a query string or JSON data for the

input) is transmitted to the Google Maps web service through an HTTP request protocol, such as

a GET method call. The example below demonstrates a user searching for “East Village Hotel”

on the Google Maps API on an Agoda website. When the user types “East Village Hotel,” a query

string with parameters including the symbolic name “1s” and the associated value “East Village

Hotel” is sent to the Google Maps web service to initiate an autocompletion service with an HTTP

GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 97 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 97

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

197. The input symbolic name is utilized by the Google Map web service to generate an

output value with an associated output symbolic name (e.g., JSON data for the output). The player

then provides instructions to the display of the device to present the output value in the API. For

example, when a user searches “East Village Hotel” and selects an autocomplete suggestion from

the Google Maps API, the Google Maps web service generates and transmits a corresponding hotel

address and geographic coordinates in the format of JSON data to the web browser and displays a

pin indicating the location of the hotel on the Google Maps API.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 98 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 98

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The OpenTable Platform:

198. OpenTable infringes at least claim 12 of the ‘755 patent through a combination of

features in the OpenTable Platform that collectively practice each limitation of claim 12. By way

of example, OpenTable provides the OpenTable Platform, a browser-based platform for, inter alia,

creating restaurant profile websites that can be displayed on a display of a device.

https://restaurant.opentable.com/why-opentable/

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 99 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 99

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.opentable.com/ruths-chris-steak-house-fairfax?originId=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&corrid=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&avt=eyJ2IjoyLCJtIjoxLCJwIjowLCJzIjowLCJuIjowfQ

199. On information and belief, the OpenTable Platform uses a registry of symbolic

names for evoking web components for inputs and outputs of web services on the property listing

websites. The OpenTable Platform provides various web services through the OpenTable

application programming interface (API). A client can use the OpenTable API to access the

OpenTable Platform for data and services, such as make a reservation. In particular, the data is

sent and received in JSON format.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 100 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 100

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/#platform-policy

https://platform.opentable.com/documentation/#platform-basics

200. By way of example, when a client makes a reservation on a restaurant profile, the

OpenTable Platform can display the available time slots as outputs in response to the client’s input.

In the example below, when “Find a table” button is pressed, user input party size, date and time

are sent to the OpenTable API via an HTTP POST request for the OpenTable’s reservation web

service, which in turn creates five available time slots for the restaurant reservation.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 101 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 101

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

201. On information and belief, the OpenTable Platform utilizes JSON data, which

comprise symbolic names, to evoke web components to communicate inputs and outputs for the

APIs and other web services. In the example below, output available time slots for the

OpenTable’s reservation web service are transmitted in JSON data.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 102 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 102

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

202. On information and belief, the registry includes symbolic names in the form of

JSON data, to evoke web components for the applications and to communicate inputs and outputs

for the web services over the Internet. JSON data comprise key/value pairs that are essentially

character strings (i.e., symbolic names) with no persistent address or pointer.

https://platform.opentable.com/documentation/#platform-basics

203. The registry also includes addresses for the web services where the input symbolic

names and output symbolic names can be sent to and received from. The exemplary screenshot

below shows a request URL including an address of the OpenTable’s reservation web service. The

OpenTable Platform transfers user input settings, e.g., party size, date and time, in JSON format

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 103 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 103

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

and sends them to the OpenTable’s reservation web service via an HTTP POST request. The

OpenTable’s reservation web service responds with five available time slots for the input date and

time in JSON format and the OpenTable Platform creates five web components (e.g., button UI

objects) to display the five available time slots. Each of the five web components further includes

a URL address to complete the reservation in the specified time slot.

204. The authoring tool is configured to, among other things, define a UI object

corresponding to a web component in the registry for an input or output of a web service, for

presentation on the display. By way of example, the authoring tool defines UI objects for web

components such as a button to represent the available time slot.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 104 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 104

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

205. On information and belief, the authoring tool selects a symbolic name (e.g., JSON

data) from the web component corresponding to the defined UI object. In the example below,

symbolic name “0” corresponds to the “5:00 PM” button UI object; symbolic name “1”

corresponds to the “5:15 PM” button UI object; symbolic name “2” corresponds to the “5:30 PM”

button UI object.

206. The authoring tool associates the selected symbolic name from the web component

corresponding to the defined UI object with the defined UI object. In the example below, the

authoring tool associates “5:00 PM” button UI object with the symbolic name “0”. In particular,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 105 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 105

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the symbolic name “timeString” associates with the value “5:00 PM” that is displayed on the

button UI object.

207. The authoring tool produces a device-independent code (i.e., an application) that

includes the JSON data, as well as standard HTML, CSS and Javascript code. In the example

below, the authoring tool generates a device-independent application for a restaurant profile, in

which five button UI objects are used to represent five available time slots for restaurant

reservation. The symbolic names “0” is associated with the “5:00 PM” button UI object; the

symbolic name “1” is associated with the “5:15 PM” button UI object; the symbolic name “2” is

associated with the “5:30 PM” button UI object; the symbolic name “3” is associated with the

“5:45 PM” button UI object; and the symbolic name “4” is associated with the “6:00 PM” button

UI object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 106 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 106

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 107 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 107

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

208. The authoring tool produces a player, such as a device-dependent code for a

browser engine for a browser, or for an operating system or application of a device. See, e.g.,

Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. For

example, the OpenTable Platform can display a restaurant profile on a Google Chrome, Mozilla

Firefox, Apple Safari, or Microsoft Internet Explorer using the player.

https://help.opentable.com/s/article/Recommended-Web-Browsers-for-Optimized-OpenTable-

Experience-1505260708133?language=en_US

209. The OpenTable Platform can execute the application and the player on a device to

produce the contents for the restaurant profile, where a user can input a value associated with an

input symbolic name to an input of a defined UI object. In the example below, the OpenTable

Platform converts HTML, CSS, Javascript, image, and other files from an application into an

active property listing using a player. The active restaurant profile accepts a search input value

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 108 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 108

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(e.g., party size, date, and time). For example, a client can make a reservation for party size of “

for 2”, date of “Tue, 3/2”, and time of “5:30 PM”. An input symbolic name “covers” is associated

with party size and another input symbolic name “dateTime” is associated with the date and time.

These symbolic names along with the input values are transmitted to the OpenTable API through

an HTTP request protocol such as a POST method call.

210. When the OpenTable Platform executes the application and player on the device,

the OpenTable Platform can cause the device to provide an input value and corresponding input

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 109 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 109

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

symbolic name to a web service. By way of example, the OpenTable Platform causes the device

to transmit the input value and a corresponding input symbolic name (e.g., JSON data for the input)

to the OpenTable’s reservation web service through an HTTP request protocol, such as a POST

method call. In the example below, when a client wants to make a reservation for party size of “

for 2”, date of “Tue, 3/2”, and time of “5:30 PM”, the OpenTable Platform causes the device to

send a JSON data including the symbolic name “covers” associating with value “2” and the

symbolic name “covers” associating with the value “2021-03-02T17:30:00” to the OpenTable’s

reservation web service with an HTTP POST request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 110 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 110

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

211. The OpenTable Platform provides the input value and a corresponding input

symbolic name to the web service, and in turn causes the web service to generate an output value

and a corresponding symbolic name for the output. In the example described below, when a search

for “2021-03-02T17:30:00” is input, the OpenTable Platform causes the OpenTable’s reservation

web service to generate five corresponding output available time slots around the date and time in

the form of JSON data.

212. The player receives the output symbolic name and output value and provides

instructions to the display of the device to present the output value in the API. In the example

below, the player provides instructions to the browser of the device to display five output button

UI objects.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 111 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 111

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

213. The presence of the above referenced features is demonstrated, by way of example,

by testing the Accused Instrumentalities for investigative purposes on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, and/or https://ycs.agoda.com/en-

us/kipp/public/home, and by reference to publicly available information, including the following:

• https://www.booking.com/,

• https://join.booking.com/,

• https://partner.booking.com/en-us,

• https://partner.booking.com/en-us/help/working-booking/how-do-i-join-

bookingcom,

• https://partner.booking.com/en-us/help/working-booking/how-can-i-set-my-

property-easily,

• https://ycs.agoda.com/en-us/kipp/public/home,

• https://www.agoda.com/info/ycs-online-registration.html?cid=1844104,

• https://www.agoda.com/info/privacy.html?cid=1844104,

• https://partners.agoda.com/en-us/faq.html,

• https://agodapropertyhelp.zendesk.com/hc/en-us,

• https://partners.agoda.com/,

• https://agodapropertyhelp.zendesk.com/hc/en-us/articles/115009545508-How-

do-I-list-my-property-on-Agoda-com-,

• https://www.opentable.com/,

• https://support.opentable.com/s/?language=en_US,

• https://platform.opentable.com/documentation/, and

• https://restaurant.opentable.com/.

214. On information and belief, Defendants have had knowledge of the ‘755 patent and

their infringement thereof at least as early as October 3, 2019, when plaintiff provided notice of

the ‘287 and ‘044 patents and Defendants’ infringement thereof, both of which identify on their

face the ‘755 patent, and its issuance from a parent patent application of the ‘287 and ‘044 patents,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 112 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 112

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

and no later than November 30, 2020, when Plaintiff provided notice of the ‘755 patent and

Defendants’ infringement of the ‘755 patent. Furthermore, Defendants have been aware of the

‘755 patent and their infringement thereof since at least the filing of the original Complaint, D.I.

1, on December 1, 2020.

215. On information and belief, Defendants have contributed and are contributing to the

infringement of the ‘755 patent because Defendants know that the infringing aspects of their

infringing products and services, including but not limited to the Accused Instrumentalities, are

made for use in an infringement, and are not staple articles of commerce suitable for substantial

non-infringing uses.

216. On information and belief, Defendants have induced and are inducing the

infringement of the ‘755 patent, with knowledge of the ‘755 patent and that their acts, including

without limitation using, offering to sell, selling within, and importing into the United States, the

Accused Instrumentalities, would aid and abet and induce infringement by customers, clients,

partners, developers, and end users of the foregoing.

217. In particular, Defendants’ actions that aid and abet others such as customers, clients,

partners, developers, and end users to infringe include advertising and distributing the Accused

Instrumentalities, providing instructional materials, training, and other services regarding the

Accused Instrumentalities, and providing free listings for the Accused Instrumentalities.

Defendants actively encouraged the adoption of the Accused Instrumentalities and provided

support sites for the vast network of developers working with the Accused Instrumentalities,

emphasizing the simple and user-friendly nature of the Accused Instrumentalities, for example,

explaining that “Registration can take as little as 15 minutes to complete—get started today” and

that Defendants provides “24/7 support by phone or email” (see, e.g., https://join.booking.com/),

that “Through one platform our hotel partners are distributed across both priceline.com and

agoda.com maximizing performance across our Retail, Private, Opaque and Vacation Packages

programs. Our partners can easily set rates, promotions, and change hotel details with a few simple

clicks of a mouse or on the go with a mobile device” (see, e.g., https://ycs.agoda.com/en-

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 113 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 113

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

us/kipp/public/home), and that “From online ordering and takeout to powerful marketing and

experiences, make more money when you access our network of millions” and that restaurants can

“[g]et discovered and capture the business of the millions of people, around the world and in your

neighborhood, searching on OpenTable” (see, e.g.,

https://restaurant.opentable.com/?utm_source=dinersite&utm_medium=referral&utm_campaign

=topnav&Lead.LeadSource=DinerSite&Lead.Marketing_ID__c=topnav). On information and

belief, Defendants have engaged in such actions with specific intent to cause infringement or with

willful blindness to the resulting infringement because Defendants have had actual knowledge of

the ‘397 patent and knowledge that their acts were inducing infringement of the ‘397 patent since

at least the date Defendants received notice that their activities infringed the ‘397 patent.

218. Defendants’ acts of infringement have caused damage to Plaintiff, and Plaintiff is

entitled to recover damages from Defendants in an amount subject to proof at trial.

219. Defendants’ infringement of Plaintiff’s rights under the ‘755 patent will continue

to damage Plaintiff’s business, causing irreparable harm, for which there is no adequate remedy at

law, unless enjoined by this Court.

220. On information and belief, Defendants have acted with disregard of Plaintiff’s

patent rights, without any reasonable basis for doing so, and have willfully infringed and do

willfully infringe the ‘755 patent.

221. The foregoing is illustrative of Defendants’ infringement of the ‘755 patent.

Plaintiff reserves the right to identify additional claims and Accused Instrumentalities in

accordance with the Court’s local rules and applicable scheduling orders.

COUNT IV – INFRINGEMENT OF U.S. PATENT NO. 9,471,287

222. Plaintiff incorporates by reference paragraphs 1 to 55 above as if fully set forth

herein.

223. On information and belief, Defendants have infringed and are infringing the ‘287

patent under 35 U.S.C. § 271, either literally and/or under the doctrine of equivalents, directly

and/or indirectly.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 114 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 114

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

224. On information and belief, Booking-BV has infringed and continues to infringe the

‘287 patent by performing, without authority, one or more of the following acts: making, using,

offering to sell, selling within, and importing into, the United States products and services that

practice the claimed inventions of the ‘287 patent, including but not limited to the WebDirect

Platform and the Booking Platform.7

225. On information and belief, Priceline and Agoda (the “YCS infringers”) have

infringed and continue to infringe the ‘287 patent by performing, without authority, one or more

of the following acts: making, using, offering to sell, selling within, and importing into, the United

States products and services that practice the claimed inventions of the ‘287 patent, including but

not limited to the YCS platform.

226. On information and belief, OpenTable has infringed and continues to infringe the

‘287 patent by performing, without authority, one or more of the following acts during relevant

time periods: making, using, offering to sell, selling within, and importing into the United States

products and services that practice the claimed inventions of the ‘287 patent, including but not

limited to the OpenTable Platform.

The Booking Platform:

227. Booking-BV infringes at least claim 15 of the ‘287 patent through a combination

of features in the Booking Platform that collectively practice each claimed limitation of claim 15.

By way of example, Booking-BV provides the Booking Platform for creating property listing

websites for hotels, homes, apartments, and other lodgings where travelers can view and book

accommodations.

7 This Count focuses its infringement allegations on the Booking Platform, YCS Platform, and

the OpenTable Platform. Upon information and belief, the WebDirect Platform operates in a

similar fashion as the Booking and YCS Platforms, and discovery of the WebDirect Platform,

including confidential documents related thereto, will confirm these facts.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 115 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 115

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8

228. The Booking Platform displays content through a device that has a device-

dependent player, such as a device-dependent code for a browser engine for a specific browser, or

an operating system or application for a particular kind of device. See, e.g., Shopify Inc. v. Express

Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. For example, the Booking Platform

8 Unless otherwise noted, the images presented in this Count were generated for investigative

purposes by testing the Accused Instrumentalities on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, https://ycs.agoda.com/en-

us/kipp/public/home, https://www.opentable.com/, https://support.opentable.com/s/?language

=en_US, https://platform.opentable.com/documentation/, and/or other associated websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 116 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 116

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

displays content through modern browsers such as Google Chrome, Mozilla Firefox, and

Microsoft Edge.

229. The Booking Platform defines a UI object for presentation on the display, the UI

object corresponding to a web component included in a registry of one or more web components

selected from an input of a web service and an output of a web service. Web services that can be

integrated on a property listing include Application Programming Interfaces (APIs) providing

various kinds of services.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 117 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 117

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://connect.booking.com/user_guide/site/en-US/

230. By way of example, when the Google Maps API is embedded onto a Booking

website, UI objects for web components such as a map image, a pin indicating the property’s

location, zoom-in and zoom-out buttons, and pins indicating nearby attractions and points of

interest are defined for the Google Map web service.

231. In order to store and transmit data for APIs (web services) such as the Google Maps

API, the Booking Platform employs JSON data to evoke web components and communicate inputs

and outputs for the APIs. JSON data comprise key/value pairs that are essentially character strings

(i.e., symbolic names) with no persistent address or pointer. In the example below, when the

Google Maps API is embedded on the property listing, the Booking Platform sets the location of

the property “800 Connecticut Avenue. Norwalk, CT 06854” with a simple HTTP GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 118 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 118

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

In particular, the property address is sent to the Google Maps API’s Geocoding service, which

converts the property address to geographic coordinates that are sent to the Booking Platform in

JSON dataset.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 119 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 119

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

232. The Booking Platform’s web components and symbolic names (e.g., JSON data)

described above, are located in a MySQL system. MySQL is a relational database management

system that operates as a back-end server supporting Booking websites.

https://www.quora.com/Who-hosts-the-booking-com-website

https://www.youtube.com/watch?v=iNxqZSbaHYQ&feature=youtu.be

233. The registry for the Booking Platform also includes addresses for the web services

where the input symbolic names and output symbolic names can be sent to and received from. For

example, the screenshot below shows a request URL including an address of the Google Maps

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 120 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 120

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

web service when a user inputs an address for Geocoding service in the Google Maps API. In

particular, the user-input property address “800 Connecticut Avenue. Norwalk, CT 06854” is

embedded in the request URL and sent to the Google Maps API via an HTTP GET request. The

Geocoding service in the Google Maps API then responds with geographic coordinates for the

user-input address in the format of JSON data and places a marker on the map indicating the

property’s location. The geographic coordinates and the user input address are stored in the

Booking’s database for further use.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 121 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 121

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

234. The defined UI objects described above are either selected by a user of an authoring

tool or automatically selected by the Booking Platform as preferred UI objects. For example, when

the Google Maps API is integrated onto a property listing as described above, UI objects for web

components such as the zoom-in and zoom-out buttons, and pins indicating nearby hotels and

points of interest are automatically selected by the Booking Platform as preferred UI objects.

235. When a UI object is so defined, a symbolic name (e.g., JSON data) from the web

component corresponding to the defined UI object is selected and associated with the defined UI

object. The symbolic name has an associated data format class type corresponding to a subclass

of UI objects that support the data format type of the symbolic name and has the preferred UI

object. The example below demonstrates how a user can search for “East Village Hotel” in the

Google Maps API on a property listing. When the hotel name “East Village Hotel” in entered into

the search box of the Google Maps API, the Google Maps web service responds by sending a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 122 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 122

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

JSON dataset to the Booking Platform. In particular, the symbolic names “address_components”

and “formatted_address” associated with the hotel address, and the symbolic name “geometry”

associated with the geographic coordinates of the hotel are used to display the location of the

property on the Google Maps API. In the example below, a large pin marker object associated

with the address and geographic coordinates of the hotel is dropped on the map to indicate the

location of the “East Village Hotel.” The large pin marker object is a preferred UI object to

represent the target hotel, which is distinguishable from other pins indicating nearby hotels and

points of interest.

236. The Booking Platform then produces a device-independent application that

includes the JSON data, as well as standard HTML, CSS and Javascript code. The application is

executed on a device together with a device-dependent player, such as a device-dependent code

for a browser engine for a specific browser, or an operating system or application for a particular

kind of device. See, e.g., Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-RGA, D.

Del., D.I. 137. In the example below, the Booking Platform converts HTML, CSS, Javascript,

image, and other files into an active property website.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 123 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 123

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

237. When the application and player are executed on the device, an input value can be

provided by a user. The device then provides the input value and a corresponding input symbolic

name to the web service, which in turn generates an output value and a corresponding symbolic

name for the output. By way of example, when the Google Maps API accepts an input value (e.g.,

a hotel name, a zoom-in click, or a click on a nearby hotel) from a user into the API, a

corresponding input symbolic name (e.g., a query string or JSON data for the input) is transmitted

to the Google Maps web service through an HTTP request protocol, such as a GET method call.

The example below demonstrates how a user can search for “East Village Hotel” in the Google

Maps API on a property listing. When the user types “East Village Hotel,” a query string with

parameters including the symbolic name “1s” and associated value “East Village Hotel” is sent to

the Google Maps web service to initiate an autocompletion service with an HTTP GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 124 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 124

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

238. The input symbolic name is utilized by the Booking server to generate an output

value with an associated output symbolic name (e.g., JSON data for the output). The player then

provides instructions to the display of the device to present and display the output in the Google

Maps API. For example, when a user searches “East Village Hotel” and selects an autocomplete

suggestion from the Google Maps API, the Google Maps web service generates and transmits a

corresponding hotel address and geographic coordinates in the format of JSON data to the web

browser and displays a pin indicating the location of the selected hotel on the Google Maps API.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 125 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 125

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The YCS Platform:

239. The YCS infringers infringe at least claim 15 of the ‘287 patent through a

combination of features in the YCS Platform that collectively practice each claimed limitation of

claim 15. By way of example, the YCS infringers provide the YCS Platform for creating property

listing websites for hotels and other lodgings where travelers can view and book accommodations.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 126 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 126

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

240. The YCS Platform displays content through a device that has a device-dependent

player, such as a device-dependent code for a browser engine for a specific browser, or an

operating system or application for a particular kind of device. See, e.g., Shopify Inc. v. Express

Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. For example, the YCS Platform

displays content through modern browsers such as Google Chrome, Mozilla Firefox, and Internet

Explorer.

https://www.priceline.com/static-pages/browser-upgrade.html

241. The YCS Platform defines a UI object for presentation on the display, where the

UI object corresponds to a web component included in a registry of one or more web components

selected from an input of a web service and an output of a web service. Web services that can be

integrated on the property listings include Application Programming Interfaces (APIs) such as the

Google Maps API.

242. By way of example, when a Google Maps API is integrated on a property listing to

embed an interactive map of the property, UI objects for web components such as zoom-in and

zoom-out buttons, a search field, a search button, a slide bar for “Price per night,” a check box for

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 127 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 127

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

“Star rating,” and a radio button for “Location rating” are automatically selected by the YCS

Platform as preferred UI objects.

243. On information and belief, Priceline and Agoda websites utilize JSON data to evoke

web components for the APIs and to communicate inputs and outputs for the APIs. JSON data

comprise key/value pairs that are essentially character strings (i.e., symbolic names) with no

persistent address or pointer. For example, an Agoda property listing website can include a Google

Maps API integrated on the website to display the location of the property listing. The Google

Maps API utilizes symbolic names (e.g., JSON data) to transfer the property address information

and geographic coordinates to the Agoda website. In the example below, “lat” and “lng” are

symbolic names associated with the latitude and longitude coordinates of the property address

“800 Connecticut Avenue, Norwalk, CT 06854, USA.”

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 128 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 128

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

244. On information and belief, the YCS Platform’s web components and symbolic

names (e.g., JSON data) described above are located in a registry such as a database and/or a CDN.

The registry for the YCS Platform also includes addresses for the web services where the input

symbolic names and output symbolic names can be sent to and received from. For example, the

screenshot below shows a request URL including an address of the Google Maps web service. In

particular, the user-input property address “800 Connecticut Avenue. Norwalk, CT 06854” is

embedded in the request URL and sent to the Google Maps API via an HTTP GET request for

Geocoding service. The Geocoding service in the Google Maps API then converts the property

address to geographic coordinates and sends the geographic coordinates with other property

information in the format of JSON data to the Agoda website. The geographic coordinates and

the user input address are stored in Booking’s database for further use.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 129 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 129

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

245. The defined UI objects described above are either selected by a user of an authoring

tool or automatically selected by the YCS Platform as preferred UI objects. For example, when

the Google Maps API is embedded on a Priceline or Agoda property listing, UI objects for web

components such as zoom-in and zoom-out buttons, a search field, a search button, a slide bar for

“Price per night,” a check box for “Star rating,” and a radio button for “Location rating” are

automatically selected by the YCS Platform as preferred UI objects.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 130 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 130

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

246. When a UI object is so defined, a symbolic name (e.g., JSON data) from the web

component corresponding to the defined UI object is selected and associated with the defined UI

object. The symbolic name has an associated data format class type corresponding to a subclass

of UI objects that support the data format type of the symbolic name, and has the preferred UI

object. The example below demonstrates a user searching for “East Village Hotel” on the Google

Maps API. When the user types “East Village Hotel” into the search field of the Google Maps

API, the Google Maps web service responds by sending a JSON dataset to the YCS Platform. In

particular, the symbolic names “address_components” and “formatted_address” are associated

with the hotel address, and the symbolic name “geometry” is associated with the geographic

coordinates of the hotel. This information is further used to display the property’s location on the

Google Maps API. In the example below, a pin object associated with the address and geographic

coordinates of the property is dropped on the map to indicate the location of the “East Village

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 131 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 131

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Hotel.” The pin object is a preferred UI object indicating the target hotel, distinguishable from

bubbles indicating locations and prices for other nearby hotels.

247. The YCS Platform then produces a device-independent application that includes

the JSON data, as well as standard HTML, CSS and Javascript code. The application is executed

on a device together with a device-dependent player, such as a device-dependent code for a

browser engine for a specific browser, or an operating system or application for a particular kind

of device. See, e.g., Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del.,

D.I. 137. In the example below, the YCS Platform converts HTML, CSS, Javascript, JSON, and

other files into an active property listing website for “Hyatt Regency Suites Atlanta.”

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 132 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 132

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

248. When the application and player are executed on the device, an input value can be

provided by a user. The device then provides the input value and a corresponding input symbolic

name to the web service, which in turn generates an output value and a corresponding symbolic

name for the output. By way of example, when the Google Maps API accepts an input value (e.g.,

an input hotel name, a zoom-in click, or a click on the “Explore” tab) from a user, a corresponding

input symbolic name (e.g., a query string or JSON data for the input) is transmitted to the Google

Maps web service through an HTTP request protocol, such as a GET method call. The example

below demonstrates a user searching for “East Village Hotel” on the Google Maps API on an

Agoda website. When the user types “East Village Hotel,” a query string with parameters

including the symbolic name “1s” and the associated value “East Village Hotel” is sent to the

Google Maps web service to initiate an autocompletion service with an HTTP GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 133 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 133

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

249. The input symbolic name is utilized by the Google Map web service to generate an

output value with an associated output symbolic name (e.g., JSON data for the output). The player

then provides instructions to the display of the device to present the output value in the API. For

example, when a user searches “East Village Hotel” and selects an autocomplete suggestion from

the Google Maps API, the Google Maps web service generates and transmits a corresponding hotel

address and geographic coordinates in the format of JSON data to the web browser and displays a

pin indicating the location of the hotel on the Google Maps API.

The OpenTable Platform:

250. OpenTable infringes at least claim 15 of the ‘287 patent through a combination of

features in the OpenTable Platform that collectively practice each limitation of claim 15. By way

of example, OpenTable provides the OpenTable Platform, a browser-based platform for, inter alia,

creating restaurant profile websites that can be displayed on a display of a device.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 134 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 134

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://restaurant.opentable.com/why-opentable/

https://www.opentable.com/ruths-chris-steak-house-fairfax?originId=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&corrid=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&avt=eyJ2IjoyLCJtIjoxLCJwIjowLCJzIjowLCJuIjowfQ

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 135 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 135

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

251. The OpenTable platform displays restaurant profile on a device having a player,

such as a device-dependent code for a browser engine for a browser, or for an operating system or

application of a device. See, e.g., Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-

RGA, D. Del., D.I. 137. For example, the OpenTable platform can display a restaurant profile on

a Google Chrome, Mozilla Firefox, Apple Safari, or Microsoft Internet Explorer using the player.

https://help.opentable.com/s/article/Recommended-Web-Browsers-for-Optimized-OpenTable-

Experience-1505260708133?language=en_US

252. The OpenTable platform defines a UI object corresponding to a web component in

the registry for an input or output of a web service, for presentation on the display. By way of

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 136 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 136

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

example, the authoring tool defines UI objects for web components such as a button to represent

the available time slot.

253. The OpenTable platform provides various web services through the OpenTable

application programming interface (API). A client can use the OpenTable API to access the

OpenTable platform for data and services, such as make a reservation. In particular, the data is

sent and received in JSON format.

https://platform.opentable.com/documentation/#platform-policy

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 137 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 137

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/#platform-basics

254. On information and belief, the OpenTable platform utilizes JSON data, which

comprise symbolic names, to evoke web components to communicate inputs and outputs for the

APIs and other web services. In the example below, output available time slots for the

OpenTable’s reservation web service are transmitted in JSON data.

255. On information and belief, the registry includes symbolic names in the form of

JSON data, to evoke web components for the applications and to communicate inputs and outputs

for the web services over the Internet. JSON data comprise key/value pairs that are essentially

character strings (i.e., symbolic names) with no persistent address or pointer.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 138 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 138

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/#platform-basics

256. The registry also includes addresses for the web services where the input symbolic

names and output symbolic names can be sent to and received from. The exemplary screenshot

below shows a request URL including an address of the OpenTable’s reservation web service. The

OpenTable platform transfers user input settings, e.g., party size, date and time, in JSON format

and sends them to the OpenTable’s reservation web service via an HTTP POST request. The

OpenTable’s reservation web service responds with five available time slots for the input date and

time in JSON format and the OpenTable platform creates five web components (e.g., button UI

objects) to display the five available time slots. Each of the five web components further includes

a URL address to complete the reservation in the specified time slot.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 139 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 139

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

257. Each defined UI object is either selected by a user of an authoring tool or

automatically selected by the OpenTable platform as the preferred UI object corresponding to the

symbolic name of the web component selected by the user of the authoring tool. For example, the

OpenTable platform automatically selects the button as preferred UI objects.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 140 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 140

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

258. On information and belief, the authoring tool selects a symbolic name (e.g., JSON

data) from the web component corresponding to the defined UI object. In the example below,

symbolic name “0” corresponds to the “5:00 PM” button UI object; symbolic name “1”

corresponds to the “5:15 PM” button UI object; symbolic name “2” corresponds to the “5:30 PM”

button UI object.

259. Each symbolic name has an associated data format class type corresponding to a

subclass of User Interface (UI) objects that support the data format type of the symbolic name, and

has a preferred UI object. By way of example, when “Find a table” button is pressed, the

OpenTable platform creates and displays a subclass of UI objects, e.g., five button objects, that

represent five available time slots. In particular, symbolic name “0” associates with the “5:00 PM”

button and the button object is the preferred UI object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 141 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 141

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

260. The authoring tool associates the selected symbolic name from the web component

corresponding to the defined UI object with the defined UI object. In the example below, the

authoring tool associates “5:00 PM” button UI object with the symbolic name “0”. In particular,

the symbolic name “timeString” associates with the value “5:00 PM” that is displayed on the

button UI object.

261. The authoring tool produces a device-independent code (i.e., an application) that

includes the JSON data, as well as standard HTML, CSS and Javascript code. In the example

below, the authoring tool generates a device-independent application for a restaurant profile, in

which five button UI objects are used to represent five available time slots for restaurant

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 142 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 142

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

reservation. The symbolic names “0” is associated with the “5:00 PM” button UI object; the

symbolic name “1” is associated with the “5:15 PM” button UI object; the symbolic name “2” is

associated with the “5:30 PM” button UI object; the symbolic name “3” is associated with the

“5:45 PM” button UI object; and the symbolic name “4” is associated with the “6:00 PM” button

UI object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 143 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 143

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

262. The OpenTable platform can execute the application and the player on a device to

produce the contents for the restaurant profile, where a user can input a value associated with an

input symbolic name to an input of a defined UI object. In the example below, the OpenTable

platform converts HTML, CSS, Javascript, image, and other files from an application into an active

property listing using a player. The active restaurant profile accepts a search input value (e.g., party

size, date, and time). For example, a client can make a reservation for party size of “ for 2”, date

of “Tue, 3/2”, and time of “5:30 PM”. An input symbolic name “covers” is associated with party

size and another input symbolic name “dateTime” is associated with the date and time. These

symbolic names along with the input values are transmitted to the OpenTable API through an

HTTP request protocol such as a POST method call.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 144 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 144

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

263. When the OpenTable platform executes the application and player on the device,

the OpenTable platform can cause the device to provide an input value and corresponding input

symbolic name to a web service. By way of example, the OpenTable platform causes the device

to transmit the input value and a corresponding input symbolic name (e.g., JSON data for the input)

to the OpenTable’s reservation web service through an HTTP request protocol, such as a POST

method call. In the example below, when a client wants to make a reservation for party size of “

for 2”, date of “Tue, 3/2”, and time of “5:30 PM”, the OpenTable platform causes the device to

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 145 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 145

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

send a JSON data including the symbolic name “covers” associating with value “2” and the

symbolic name “covers” associating with the value “2021-03-02T17:30:00” to the OpenTable’s

reservation web service with an HTTP POST request.

264. The OpenTable platform provides the input value and a corresponding input

symbolic name to the web service, and in turn causes the web service to generate an output value

and a corresponding symbolic name for the output. In the example described below, when a search

for “2021-03-02T17:30:00” is input, the OpenTable platform causes the OpenTable’s reservation

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 146 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 146

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

web service to generate five corresponding output available time slots around the date and time in

the form of JSON data.

265. The player receives the output symbolic name and output value and provides

instructions to the display of the device to present the output value in the API. In the example

below, the player provides instructions to the browser of the device to display five output button

UI objects.

266. The presence of the above referenced features is demonstrated, by way of example,

by testing the Accused Instrumentalities for investigative purposes on https://www.booking.com/,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 147 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 147

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://join.booking.com/, https://partner.booking.com/en-us, and/or https://ycs.agoda.com/en-

us/kipp/public/home, and by reference to publicly available information, including the following:

• https://www.booking.com/,

• https://join.booking.com/,

• https://partner.booking.com/en-us,

• https://partner.booking.com/en-us/help/working-booking/how-do-i-join-

bookingcom,

• https://partner.booking.com/en-us/help/working-booking/how-can-i-set-my-

property-easily,

• https://ycs.agoda.com/en-us/kipp/public/home,

• https://www.agoda.com/info/ycs-online-registration.html?cid=1844104,

• https://www.agoda.com/info/privacy.html?cid=1844104,

• https://partners.agoda.com/en-us/faq.html,

• https://agodapropertyhelp.zendesk.com/hc/en-us,

• https://partners.agoda.com/,

• https://agodapropertyhelp.zendesk.com/hc/en-us/articles/115009545508-How-

do-I-list-my-property-on-Agoda-com-,

• https://www.opentable.com/,

• https://support.opentable.com/s/?language=en_US,

• https://platform.opentable.com/documentation/, and

• https://restaurant.opentable.com/.

267. On information and belief, Defendants have had knowledge of the ‘287 patent and

their infringement thereof at least as early as July 27, 2019, and no later than November 30, 2020,

when Plaintiff provided notice of the ‘287 patent and Defendants’ infringement of the ‘287 patent.

Furthermore, Defendants have been aware of the ‘287 patent and their infringement thereof since

at least the filing of the original Complaint, D.I. 1, on December 1, 2020.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 148 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 148

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

268. On information and belief, Defendants have contributed and are contributing to the

infringement of the ‘287 patent because Defendants know that the infringing aspects of their

infringing products and services, including but not limited to the Accused Instrumentalities, are

made for use in an infringement, and are not staple articles of commerce suitable for substantial

non-infringing uses.

269. On information and belief, Defendants have induced and are inducing the

infringement of the ‘287 patent, with knowledge of the ‘287 patent and that their acts, including

without limitation using, offering to sell, selling within, and importing into the United States, the

Accused Instrumentalities, would aid and abet and induce infringement by end users of the

foregoing.

270. In particular, Defendants’ actions that aid and abet others such as customers, clients,

partners, developers, and end users to infringe include advertising and distributing the Accused

Instrumentalities, providing instructional materials, training, and other services regarding the

Accused Instrumentalities, and providing free listings for the Accused Instrumentalities.

Defendants actively encouraged the adoption of the Accused Instrumentalities and provided

support sites for the vast network of developers working with the Accused Instrumentalities,

emphasizing the simple and user-friendly nature of the Accused Instrumentalities, for example,

explaining that “Registration can take as little as 15 minutes to complete—get started today” and

that Defendants provides “24/7 support by phone or email” (see, e.g., https://join.booking.com/),

that “Through one platform our hotel partners are distributed across both priceline.com and

agoda.com maximizing performance across our Retail, Private, Opaque and Vacation Packages

programs. Our partners can easily set rates, promotions, and change hotel details with a few simple

clicks of a mouse or on the go with a mobile device” (see, e.g., https://ycs.agoda.com/en-

us/kipp/public/home), and that “From online ordering and takeout to powerful marketing and

experiences, make more money when you access our network of millions” and that restaurants can

“[g]et discovered and capture the business of the millions of people, around the world and in your

neighborhood, searching on OpenTable” (see, e.g.,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 149 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 149

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://restaurant.opentable.com/?utm_source=dinersite&utm_medium=referral&utm_campaign

=topnav&Lead.LeadSource=DinerSite&Lead.Marketing_ID__c=topnav). On information and

belief, Defendants have engaged in such actions with specific intent to cause infringement or with

willful blindness to the resulting infringement because Defendants have had actual knowledge of

the ‘287 patent and knowledge that their acts were inducing infringement of the ‘287 patent since

at least the date Defendants received notice that their activities infringed the ‘287 patent.

271. Defendants' acts of infringement have caused damage to Plaintiff, and Plaintiff is

entitled to recover damages from Defendants in an amount subject to proof at trial.

272. Defendants' infringement of Plaintiff’s rights under the ‘287 patent will continue to

damage Plaintiff’s business, causing irreparable harm, for which there is no adequate remedy at

law, unless enjoined by this Court.

273. On information and belief, Defendants haveacted with disregard of Plaintiff’s

patent rights, without any reasonable basis for doing so, and have willfully infringed and do

willfully infringe the ‘287 patent.

274. The foregoing is illustrative of Defendants' infringement of the ‘287 patent.

Plaintiff reserves the right to identify additional claims and Accused Instrumentalities in

accordance with the Court’s local rules and applicable scheduling orders.

COUNT V – INFRINGEMENT OF U.S. PATENT NO. 9,928,044

275. Plaintiff incorporates by reference paragraphs 1 to 55 above as if fully set forth

herein.

276. On information and belief, Defendants have infringed and are infringing the ‘044

patent under 35 U.S.C. § 271, either literally and/or under the doctrine of equivalents, directly

and/or indirectly.

277. On information and belief, Booking-BV has infringed and continues to infringe the

‘044 patent by performing, without authority, one or more of the following acts: making, using,

offering to sell, selling within, and importing into, the United States products and services that

practice the claimed inventions of the ‘044 patent, including but not limited to the WebDirect

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 150 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 150

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Platform and the Booking Platform.9

278. On information and belief, Priceline and Agoda (the “YCS infringers”) have

infringed and continue to infringe the ‘044 patent by performing, without authority, one or more

of the following acts: making, using, offering to sell, selling within, and importing into, the United

States products and services that practice the claimed inventions of the ‘044 patent, including but

not limited to the YCS Platform.

279. On information and belief, OpenTable has infringed and continues to infringe the

‘044 patent by performing, without authority, one or more of the following acts during relevant

time periods: making, using, offering to sell, selling within, and importing into the United States

products and services that practice the claimed inventions of the ‘044 patent, including but not

limited to the OpenTable Platform.

The Booking Platform:

280. Booking-BV infringes at least claim 15 of the ‘044 patent through a combination

of features in the Booking Platform that collectively practice each claimed limitation of claim 15.

By way of example, Booking-BV provides the Booking Platform for creating property listing

websites for hotels, homes, apartments, and other lodgings where travelers can view and book

accommodations.

9 This Count focuses its infringement allegations on the Booking Platform, YCS Platform, and

the OpenTable Platform. Upon information and belief, the WebDirect Platform operates in a

similar fashion as the Booking and YCS Platforms, and discovery of the WebDirect Platform,

including confidential documents related thereto, will confirm these facts.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 151 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 151

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

10 Unless otherwise noted, the images presented in this Count were generated for investigative

purposes by testing the Accused Instrumentalities on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, https://ycs.agoda.com/en-

us/kipp/public/home, https://www.opentable.com/, https://support.opentable.com/s/?language

=en_US, https://platform.opentable.com/documentation/, and/or other associated websites.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 152 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 152

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

281. The Booking Platform displays content on a display of a device having a player,

such as a device-dependent code for a browser engine for a specific browser, or an operating

system or application for a particular kind of device. See, e.g., Shopify Inc. v. Express Mobile, Inc.,

Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. For example, the Booking Platform displays

content through modern browsers such as Google Chrome, Mozilla Firefox, and Microsoft Edge.

282. The Booking Platform includes a non-volatile memory for storing symbolic names

required for evoking one or more web components each related to a set of inputs and outputs of a

web service obtainable over a network. In particular, the Booking Platform is supported by a

MySQL database that serves as a back-end server to support Booking websites.

https://www.quora.com/Who-hosts-the-booking-com-website

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 153 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 153

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.youtube.com/watch?v=iNxqZSbaHYQ&feature=youtu.be

283. Databases conventionally use non-volatile computer memories to store data. The

computer memory in the Booking Platform thus stores data for the property listings, including

symbolic names for evoking inputs and outputs of web services such as Application Programming

Interfaces (APIs) that can be integrated on the property listings to provide various kinds of services.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 154 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 154

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://connect.booking.com/user_guide/site/en-US/

284. In order to store and transmit data for APIs (i.e., web services) such as the Google

Maps API, the Booking Platform employs JSON data to evoke web components and communicate

inputs and outputs for the APIs. JSON data comprise key/value pairs that are essentially character

strings (i.e., symbolic names) with no persistent address or pointer.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 155 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 155

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://developers.booking.com/api/commercial/index.html?version=2.5&page_url=migration-

guide

https://developers.booking.com/api/commercial/index.html?version=2.5&page_url=migration-

guide

285. Each symbolic name has an associated data format class type corresponding to a

subclass of UI objects that support the data format type of the symbolic name, and has the preferred

UI object. The example below shows that the symbolic names “address_components” and

“formatted_address” are associated with the address for “East Village Hotel,” and the symbolic

name “geometry” is associated with the geographic coordinates of the “East Village Hotel.” A

large pin marker object associated with the address and geographic coordinates of the hotel, is

dropped on a Google Maps API map to indicate the location of the “East Village Hotel.” The large

pin marker object is a preferred UI object indicating the target hotel, which is distinguishable from

pins indicating other nearby hotels and points of interest.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 156 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 156

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

286. On information and belief, the computer memory where data for the property

listings are stored also includes addresses for the web services where the input symbolic names

and output symbolic names can be sent to and received from. For example, the screenshot below

shows a request URL including an address of the Google Maps web service when a user inputs an

address for Geocoding service in the Google Maps API. In particular, the user-input property

address “800 Connecticut Avenue. Norwalk, CT 06854” is embedded in the request URL and sent

to the Google Maps API via an HTTP GET request. The Geocoding service in the Google Maps

API then responds with geographic coordinates for the user-input address in the format of JSON

data and places a marker on the map indicating the property’s location. The geographic

coordinates and the user input address are stored in the Booking’s database for further use.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 157 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 157

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

287. The Booking Platform defines a UI object for presentation on the display, where

the UI object corresponds to a web component included in the computer memory, and the web

component is selected from a group consisting of an input or output for an API described above

(i.e., a web service). By way of example, when the Google Maps API is embedded onto a Booking

website, UI objects for input and output web components such as a map image, a pin indicating

the property’s location, zoom-in and zoom-out buttons, and other nearby attractions and points of

interest, are defined for the Google Maps web service. Each of these UI objects is automatically

selected by the Booking Platform as a preferred UI object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 158 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 158

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

288. When a UI object is so defined, a symbolic name (e.g., JSON data) from the web

component corresponding to the defined UI object is selected and associated with the defined UI

object. The symbolic name is only available to UI objects that support the defined data format

associated with that symbolic name. The example below demonstrates how a user can search for

“East Village Hotel” in the Google Maps API on a property listing. When the hotel name “East

Village Hotel” in entered into the search box of the Google Maps API, the Google Maps web

service responds by sending a JSON dataset to the Booking Platform. In particular, the symbolic

names “address_components” and “formatted_address” associated with the hotel address, and the

symbolic name “geometry” associated with the geographic coordinates of the hotel are used to

display the location of the property on the Google Maps API. In the example below, a large pin

marker object associated with the address and geographic coordinates of the hotel is dropped on

the map to indicate the location of the “East Village Hotel.” The large pin marker object is a

preferred UI object to represent the target hotel, which is distinguishable from other pins indicating

nearby hotels and points of interest.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 159 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 159

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

289. The Booking Platform stores information representative of the defined UI object

and related settings (e.g., JSON data, along with standard HTML, CSS, and Javascript code) in the

MySQL database described above.

290. To generate the property listing website, the Booking Platform retrieves the

information for the UI objects stored in the MySQL database, and builds an application consisting

of one or more web pages views from at least a portion of the database using the player. The player

(e.g., a browser engine or operating system) utilizes the data stored in the database to generate for

the display at least a portion of a web page. In the example below, the Booking Platform converts

HTML, CSS, Javascript, image, and other files into an active property website.

291. When the application and player are executed on the device, an input value can be

provided by a user. The device then provides the input value and a corresponding input symbolic

name to the web service, which in turn generates an output value and a corresponding symbolic

name for the output. By way of example, when the Google Maps API accepts an input value (e.g.,

a hotel name, a zoom-in click, or a click on a nearby hotel) from a user into the API, a

corresponding input symbolic name (e.g., a query string or JSON data for the input) is transmitted

to the Google Maps web service through an HTTP request protocol, such as a GET method call.

The example below demonstrates how a user can search for “East Village Hotel” in the Google

Maps API on a property listing. When the user types “East Village Hotel,” a query string with

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 160 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 160

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

parameters including the symbolic name “1s” and associated value “East Village Hotel” is sent to

the Google Maps web service to initiate an autocompletion service with an HTTP GET request.

292. The input symbolic name is utilized by the Booking server to generate an output

value with an associated output symbolic name (e.g., JSON data for the output). The player then

provides instructions to the display of the device to present and display the output in the Google

Maps API. For example, when a user searches “East Village Hotel” and selects an autocomplete

suggestion from the Google Maps API, the Google Maps web service generates and transmits a

corresponding hotel address and geographic coordinates in the format of JSON data to the web

browser and displays a pin indicating the location of the selected hotel on the Google Maps API.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 161 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 161

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The YCS Platform:

293. The YCS infringers infringe at least claim 15 of the ‘044 patent through a

combination of features in the YCS Platform that collectively practice each claimed limitation of

claim 15. By way of example, the YCS infringers provide the YCS Platform for creating property

listing websites for hotels and other lodgings where travelers can view and book accommodations.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 162 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 162

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

294. The YCS Platform provides a platform for displaying content on a display of a

device having a player, such as a device-dependent code for a browser engine for a specific

browser, or an operating system or application for a particular kind of device. See, e.g., Shopify

Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. For example,

Priceline property listings are displayed through modern browsers such as Internet Explorer,

Mozilla Firefox, and Google Chrome.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 163 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 163

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.priceline.com/static-pages/browser-upgrade.html

295. On information and belief, the YCS Platform includes a non-volatile computer

memory for storing symbolic names required for evoking one or more web components each

related to a set of inputs and outputs of a web service obtainable over a network. The YCS Platform

is supported by a server database, and databases conventionally use computer memories to store

data. On information and belief, a non-volatile computer memory in the YCS Platform stores data

for the property listings, including symbolic names for evoking inputs and outputs of Application

Programming Interfaces (APIs), i.e., web services, such the Google Maps API.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 164 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 164

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

296. In order to store and transmit data for the APIs, the YCS Platform employs JSON

data to evoke web components and communicate inputs and outputs for the APIs. JSON data

comprise key/value pairs that are essentially symbolic names constituting character strings with

no persistent address or pointer. In the example below, a JSON dataset is used to store a hotel

search result when a user enters “East Village Hotel” into the Google Maps API embedded on an

Agoda website. The hotel search result consists of symbolic names and associated values that can

be used to provide hotel information, such as the hotel name, address, geographic coordinates,

photos, website, and contact numbers.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 165 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 165

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

297. Each symbolic name has an associated data format class type corresponding to a

subclass of UI objects that support the data format type of the symbolic name and has the preferred

UI object. In the example below, the symbolic names “address_components” and

“formatted_address” are associated with the address for the “East Village Hotel,” and the symbolic

name “geometry” is associated with the geographic coordinates for the “East Village Hotel.” A

pin object associated with the address and geographic coordinates of the hotel is dropped on the

map to indicate the location of the hotel. The pin object is a preferred UI object indicating the

target hotel, which is distinguishable from bubbles indicating the locations and prices of other

nearby hotels.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 166 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 166

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

298. The computer memory where data for the property listings are stored also includes

addresses for the web services where the input symbolic names and output symbolic names can be

sent to and received from. For example, the screenshot below shows a request URL including an

address of the Google Maps web service. In particular, the user-input property address “800

Connecticut Avenue. Norwalk, CT 06854” is embedded in the request URL and sent to the Google

Maps API via an HTTP GET request for Geocoding service. The Geocoding service in the Google

Maps API then converts the property address to geographic coordinates and sends the geographic

coordinates with other property information in the format of JSON data to the Agoda website. The

geographic coordinates and the user input address are stored in Booking’s database for further use.

299. The YCS Platform defines a UI object corresponding to a web component for an

input or output of a web service, for presentation on the display. For example, when the Google

Maps API is embedded on a Priceline or Agoda property listing website, UI objects for web

components such as zoom-in and zoom-out buttons, a search field, a search button, a slide bar for

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 167 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 167

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

“Price per night,” a check box for “Star rating,” and a radio button for “Location rating” are

automatically selected by the YCS Platform as preferred UI objects.

300. When a UI object is so defined, a symbolic name (e.g., JSON data) from the web

component corresponding to the defined UI object is selected and associated with the defined UI

object. The symbolic name is only available to UI objects that support the defined data format

associated with that symbolic name. The example below demonstrates a user searching for “East

Village Hotel” on the Google Maps API. When the user types “East Village Hotel” into the search

field of the Google Maps API, the Google Maps web service responds by sending a JSON dataset

to the YCS Platform. In particular, the symbolic names “address_components” and

“formatted_address” are associated with the hotel address, and the symbolic name “geometry” is

associated with the geographic coordinates of the hotel. This information is further used to display

the property’s location on the Google Maps API. In the example below, a pin object associated

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 168 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 168

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

with the address and geographic coordinates of the property is dropped on the map to indicate the

location of the “East Village Hotel.” The pin object is a preferred UI object indicating the target

hotel, distinguishable from bubbles indicating locations and prices for other nearby hotels.

301. On information and belief, the YCS Platform stores information representative of

the defined UI object and related settings (e.g., JSON data, along with standard HTML, CSS, and

Javascript code) in a database and/or CDN as described above.

302. To generate the property listing, the YCS Platform retrieves the information for the

UI objects stored in the database, and builds an application consisting of one or more web pages

views from at least a portion of the database using the player. The player (e.g., a browser engine

or operating system) utilizes the data stored in the database to generate for the display at least a

portion of a web page. In the example below, the YCS Platform converts HTML, CSS, Javascript,

JSON, and other files into an active property listing website for “Hyatt Regency Suites Atlanta.”

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 169 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 169

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

303. When the application and player are executed on the device, an input value can be

provided by a user. The device then provides the input value and a corresponding input symbolic

name to the web service, which in turn generates an output value and a corresponding symbolic

name for the output. By way of example, when the Google Maps API accepts an input value (e.g.,

an input hotel name, a zoom-in click, or a click on the “Explore” tab) from a user, a corresponding

input symbolic name (e.g., a query string or JSON data for the input) is transmitted to the Google

Maps web service through an HTTP request protocol, such as a GET method call. The example

below demonstrates a user searching for “East Village Hotel” on the Google Maps API on an

Agoda website. When the user types “East Village Hotel,” a query string with parameters

including the symbolic name “1s” and the associated value “East Village Hotel” is sent to the

Google Maps web service to initiate an autocompletion service with an HTTP GET request.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 170 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 170

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

304. The input symbolic name is utilized by the Google Map web service to generate an

output value with an associated output symbolic name (e.g., JSON data for the output). The player

then provides instructions to the display of the device to present the output value in the API. For

example, when a user searches “East Village Hotel” and selects an autocomplete suggestion from

the Google Maps API, the Google Maps web service generates and transmits a corresponding hotel

address and geographic coordinates in the format of JSON data to the web browser and displays a

pin indicating the location of the hotel on the Google Maps API.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 171 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 171

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The OpenTable Platform:

305. OpenTable infringes at least claim 15 of the ‘044 patent through a combination of

features in the OpenTable Platform that collectively practice each limitation of claim 15. By way

of example, OpenTable provides the OpenTable Platform, a browser-based platform for, inter alia,

creating restaurant profile websites that can be displayed on a display of a device.

306.

https://restaurant.opentable.com/why-opentable/

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 172 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 172

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://www.opentable.com/ruths-chris-steak-house-fairfax?originId=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&corrid=dfc6cee2-c8f8-4054-8eae-

7ada9d88b68e&avt=eyJ2IjoyLCJtIjoxLCJwIjowLCJzIjowLCJuIjowfQ

307. The OpenTable platform displays restaurant profile on a device having a player,

such as a device-dependent code for a browser engine for a browser, or for an operating system or

application of a device. See, e.g., Shopify Inc. v. Express Mobile, Inc., Case No. 1:19-cv-00439-

RGA, D. Del., D.I. 137. For example, the OpenTable platform can display a restaurant profile on

a Google Chrome, Mozilla Firefox, Apple Safari, or Microsoft Internet Explorer using the player.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 173 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 173

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://help.opentable.com/s/article/Recommended-Web-Browsers-for-Optimized-OpenTable-

Experience-1505260708133?language=en_US

308. On information and belief, the OpenTable platform displays restaurant profile on a

device having a non-volatile computer memory storing symbolic names required for evoking one

or more web components each related to a set of inputs and outputs of a web service obtainable

over a network. The symbolic names are present in the form of JSON data, and are used to evoke

web components for inputs and outputs of web services, such as the OpenTable Application

Programming Interface (API). In particular, the data is sent and received in JSON format.

309.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 174 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 174

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/#platform-policy

https://platform.opentable.com/documentation/#platform-basics

310. The JSON data used to evoke web components and to communicate inputs and

outputs for the applications comprise key/value pairs that are essentially symbolic names

constituting character strings with no persistent address or pointer. The example below shows

JSON data for available time slots in key/value pairs comprising character strings with no

persistent address or pointer.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 175 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 175

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

311. Each symbolic name has an associated data format class type corresponding to a

subclass of User Interface (UI) objects that support the data format type of the symbolic name, and

has a preferred UI object. By way of example, when “Find a table” button is pressed, the

OpenTable platform creates and displays a subclass of UI objects, e.g., five button objects, that

represent five available time slots. In particular, symbolic name “0” associates with the “5:00 PM”

button and the button object is the preferred UI object. The symbolic name “0” also includes an

URL address of the OpenTable reservation web service to complete the reservation in the specified

time slot.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 176 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 176

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

312. The OpenTable platform defines a UI object corresponding to a web component in

the registry for an input or output of a web service, for presentation on the display. By way of

example, the authoring tool defines UI objects for web components such as a button to represent

the available time slot.

313. The OpenTable platform provides various web services through the OpenTable

application programming interface (API). A client can use the OpenTable API to access the

OpenTable platform for data and services, such as make a reservation. In particular, the data is

sent and received in JSON format.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 177 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 177

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/#platform-policy

https://platform.opentable.com/documentation/#platform-basics

314. Each defined UI object is either selected by a user of an authoring tool or

automatically selected by the OpenTable platform as the preferred UI object corresponding to the

symbolic name of the web component selected by the user of the authoring tool. For example, the

OpenTable platform automatically selects the button as preferred UI objects.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 178 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 178

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

315. On information and belief, the authoring tool selects a symbolic name (e.g., JSON

data) from the web component corresponding to the defined UI object. In the example below,

symbolic name “0” corresponds to the “5:00 PM” button UI object; symbolic name “1”

corresponds to the “5:15 PM” button UI object; symbolic name “2” corresponds to the “5:30 PM”

button UI object.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 179 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 179

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

316. The authoring tool associates the selected symbolic name from the web component

corresponding to the defined UI object with the defined UI object. In the example below, the

authoring tool associates “5:00 PM” button UI object with the symbolic name “0”. In particular,

the symbolic name “timeString” associates with the value “5:00 PM” that is displayed on the

button UI object. When the time slot is not available, the button object is not displayed and the

symbolic name “timeString” is not available.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 180 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 180

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

317. Upon information and belief, the OpenTable platform stored information

representative of the selected setting in a database that supporting the restaurant profile. In the

example below, the OpenTable platform sends the user selected settings for a reservation, such as

party size, reservation date and time through a “search” HTTP POST request to the OpenTable

platform’s server and stores the information representative of the said user selected settings in an

OpenTable platform’s database. In particular, the user selected settings are transferred and stored

in JSON data format.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 181 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 181

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

318. The OpenTable platform retrieves information representative of one or more UI

object settings stored in the database. As shown in the example below, the OpenTable platform

could load the restaurant profile on a browser by sending an HTTP GET request to fetch the stored

settings information (e.g., overview, photos, popular dishes, reservation, menu, and reviews of the

restaurant) from the database in the OpenTable’s server. In particular, the OpenTable platform

stored the images of the restaurant (e.g., restaurant profile image) along with other user selected

settings, which it in turn communicated from the server as a response to an HTTP GET request.

On information and belief, these functionalities were present during relevant time periods of

infringement.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 182 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 182

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

https://platform.opentable.com/documentation/?shell#platform-basics

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 183 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 183

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

319. The OpenTable platform builds an application including, e.g., the JSON data as

well as standard HTML, CSS and Javascript code, consisting of one or more web page views from

at least a portion of the database using at least one player, such as a code for a browser engine for

a browser, or an operating system or application of a device. See, e.g., Shopify Inc. v. Express

Mobile, Inc., Case No. 1:19-cv-00439-RGA, D. Del., D.I. 137. In the example below, the

OpenTable platform generates an application for a restaurant profile, in which the OpenTable

platform fetches its source code, such as HTML files and run time files (including CSS files, and

Javascript files) from the OpenTable platform’s database to build a restaurant profile for display.

320. The player utilizes the information stored in the database to generate for the display

at least a portion of a web page for the restaurant profile. In the example below, the player utilizes

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 184 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 184

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the information relating to available time slots stored in the database to generate a display of a

portion of a web page for a restaurant reservation.

321. The OpenTable platform can execute the application and the player on a device to

produce the contents for the restaurant profile, where a user can input a value associated with an

input symbolic name to an input of a defined UI object. In the example below, the OpenTable

platform converts HTML, CSS, Javascript, image, and other files from an application into an active

property listing using a player. The active restaurant profile accepts a search input value (e.g., party

size, date, and time). For example, a client can make a reservation for party size of “ for 2”, date

of “Tue, 3/2”, and time of “5:30 PM”. An input symbolic name “covers” is associated with party

size and another input symbolic name “dateTime” is associated with the date and time. These

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 185 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 185

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

symbolic names along with the input values are transmitted to the OpenTable API through an

HTTP request protocol such as a POST method call.

322. When the OpenTable platform executes the application and player on the device,

the OpenTable platform can cause the device to provide an input value and corresponding input

symbolic name to a web service. By way of example, the OpenTable platform causes the device

to transmit the input value and a corresponding input symbolic name (e.g., JSON data for the input)

to the OpenTable’s reservation web service through an HTTP request protocol, such as a POST

method call. In the example below, when a client wants to make a reservation for party size of “

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 186 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 186

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

for 2”, date of “Tue, 3/2”, and time of “5:30 PM”, the OpenTable platform causes the device to

send a JSON data including the symbolic name “covers” associating with value “2” and the

symbolic name “covers” associating with the value “2021-03-02T17:30:00” to the OpenTable’s

reservation web service with an HTTP POST request.

323. The OpenTable platform provides the input value and a corresponding input

symbolic name to the web service, and in turn causes the web service to generate an output value

and a corresponding symbolic name for the output. In the example described below, when a search

for “2021-03-02T17:30:00” is input, the OpenTable platform causes the OpenTable’s reservation

web service to generate five corresponding output available time slots around the date and time in

the form of JSON data.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 187 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 187

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

324. The player receives the output symbolic name and output value and provides

instructions to the display of the device to present the output value in the API. In the example

below, the player provides instructions to the browser of the device to display five output button

UI objects.

325. The presence of the above referenced features is demonstrated, by way of example,

by testing the Accused Instrumentalities for investigative purposes on https://www.booking.com/,

https://join.booking.com/, https://partner.booking.com/en-us, and/or https://ycs.agoda.com/en-

us/kipp/public/home, and by reference to publicly available information, including the following:

• https://www.booking.com/,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 188 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 188

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

• https://join.booking.com/,

• https://partner.booking.com/en-us,

• https://partner.booking.com/en-us/help/working-booking/how-do-i-join-

bookingcom,

• https://partner.booking.com/en-us/help/working-booking/how-can-i-set-my-

property-easily,

• https://ycs.agoda.com/en-us/kipp/public/home,

• https://www.agoda.com/info/ycs-online-registration.html?cid=1844104,

• https://www.agoda.com/info/privacy.html?cid=1844104,

• https://partners.agoda.com/en-us/faq.html,

• https://agodapropertyhelp.zendesk.com/hc/en-us,

• https://partners.agoda.com/,

• https://agodapropertyhelp.zendesk.com/hc/en-us/articles/115009545508-How-

do-I-list-my-property-on-Agoda-com-,

• https://www.opentable.com/,

• https://support.opentable.com/s/?language=en_US,

• https://platform.opentable.com/documentation/, and

• https://restaurant.opentable.com/.

326. On information and belief, Defendants have had knowledge of the ‘044 patent and

their infringement thereof at least as early as October 3, 2019, and no later than November 30,

2020, when Plaintiff provided notice of the ‘044 patent and Defendants' infringement of the ‘044

patent. Furthermore, Defendants have been aware of the ‘044 patent and their infringement thereof

since at least the filing of the original Complaint, D.I. 1, on December 1, 2020.

327. On information and belief, Defendants have contributed and are contributing to the

infringement of the ‘044 patent because Defendants know that the infringing aspects of their

infringing products and services, including but not limited to the Accused Instrumentalities, are

made for use in an infringement, and are not staple articles of commerce suitable for substantial

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 189 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 189

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

non-infringing uses.

328. On information and belief, Defendants have induced and are inducing the

infringement of the ‘044 patent, with knowledge of the ‘044 patent and that their acts, including

without limitation using, offering to sell, selling within, and importing into the United States, the

Accused Instrumentalities, would aid and abet and induce infringement by customers, clients,

partners, developers, and end users of the foregoing.

329. In particular, Defendants actions that aid and abet others such as customers, clients,

partners, developers, and end users to infringe include advertising and distributing the Accused

Instrumentalities, providing instructional materials, training, and other services regarding the

Accused Instrumentalities, and providing free listings for the Accused Instrumentalities.

Defendants actively encouraged the adoption of the Accused Instrumentalities and provided

support sites for the vast network of developers working with the Accused Instrumentalities,

emphasizing the simple and user-friendly nature of the Accused Instrumentalities, for example,

explaining that “Registration can take as little as 15 minutes to complete—get started today” and

that Defendants provides “24/7 support by phone or email” (see, e.g., https://join.booking.com/),

that “Through one platform our hotel partners are distributed across both priceline.com and

agoda.com maximizing performance across our Retail, Private, Opaque and Vacation Packages

programs. Our partners can easily set rates, promotions, and change hotel details with a few simple

clicks of a mouse or on the go with a mobile device” (see, e.g., https://ycs.agoda.com/en-

us/kipp/public/home), and that “From online ordering and takeout to powerful marketing and

experiences, make more money when you access our network of millions” and that restaurants can

“[g]et discovered and capture the business of the millions of people, around the world and in your

neighborhood, searching on OpenTable” (see, e.g.,

https://restaurant.opentable.com/?utm_source=dinersite&utm_medium=referral&utm_campaign

=topnav&Lead.LeadSource=DinerSite&Lead.Marketing_ID__c=topnav). On information and

belief, Defendants have engaged in such actions with specific intent to cause infringement or with

willful blindness to the resulting infringement because Defendants have had actual knowledge of

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 190 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 190

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the ‘044 patent and knowledge that their acts were inducing infringement of the ‘044 patent since

at least the date Defendants received notice that their activities infringed the ‘044 patent.

330. Defendants' acts of infringement have caused damage to Plaintiff, and Plaintiff is

entitled to recover damages from Defendants in an amount subject to proof at trial.

331. Defendants' infringement of Plaintiff’s rights under the ‘044 patent will continue to

damage Plaintiff’s business, causing irreparable harm, for which there is no adequate remedy at

law, unless enjoined by this Court.

332. On information and belief, Defendants have acted with disregard of Plaintiff’s

patent rights, without any reasonable basis for doing so, and have willfully infringed and do

willfully infringe the ‘044 patent.

333. The foregoing is illustrative of Defendants' infringement of the ‘044 patent.

Plaintiff reserves the right to identify additional claims and Accused Instrumentalities in

accordance with the Court’s local rules and applicable scheduling orders.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff prays for the following relief:

A. A judgment that U.S. Patent Nos. 6,546,397, 7,594,168, 9,063,755,

9,471,287, and 9,928,044 are valid and enforceable;

B. A judgment that Defendants have directly infringed, contributorily

infringed, and/or induced the infringement of U.S. Patent Nos. 6,546,397,

7,594,168, 9,063,755, 9,471,287, and 9,928,044;

C. A judgment that Defendants' infringement of U.S. Patent Nos. 6,546,397,

7,594,168, 9,063,755, 9,471,287, and 9,928,044 has been willful;

D. An award of attorneys’ fees incurred in prosecuting this action, on the basis

that this is an exceptional case;

E. A judgment and order requiring Defendants to pay Plaintiff damages under

35 U.S.C. § 284, including supplemental damages for any continuing post-

verdict infringement up until entry of the final judgment, with an

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 191 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 191

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

accounting, as needed, and treble damages for willful infringement as

provided by 35 U.S.C. § 284;

F. A judgment and order requiring Defendants to pay Plaintiff the costs of this

action (including all disbursements);

G. A judgment and order requiring Defendants to pay Plaintiff pre-judgment

and post-judgment interest on the damages awarded;

H. A judgment and order requiring that Plaintiff be awarded a compulsory

ongoing license fee; and

I. Such other relief as the Court may deem just and proper.

Dated: February 26, 2021 Respectfully submitted,

 /s/ Ramon A. Miyar

Steven J. Rizzi (pro hac vice forthcoming)
Ramy Hanna (pro hac vice forthcoming)
Ryan A. Schmid (pro hac vice forthcoming)
Ramon A. Miyar

Attorneys for Plaintiff Express Mobile, Inc.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 192 of 548

PLAINTIFF EXPRESS MOBILE, INC.’S FIRST
AMENDED COMPLAINT 192

Case No. 3:20-CV-08491-RS

WORKAMER\29724\112005\38223792.v1-2/26/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

DEMAND FOR JURY TRIAL

Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure and Civil L.R. 3-6(a),

Express Mobile respectfully demands a trial by jury on all issues triable by Jury.

Dated: February 26, 2021 Respectfully submitted,

/s/ Ramon A. Miyar

Steven J. Rizzi (admitted pro hac vice)
Ramy Hanna (pro hac vice forthcoming)
Ryan A. Schmid (pro hac vice forthcoming)
Ramon A. Miyar

Attorneys for Plaintiff Express Mobile, Inc.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 193 of 548

EXHIBIT A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 194 of 548

USOO6546397 B1

(12) United States Patent (10) Patent No.: US 6,546,397 B1
Rempell (45) Date of Patent: Apr. 8, 2003

(54) BROWSER BASED WEBSITE GENERATION 6,148,311 A 11/2000 Wishnie et al. 707/513
TOOL AND RUN TIME ENGINE 6,191,786 B1 * 2/2001 Eyzaguirre et al. 345/853

(76) Inventor: Steven H. Rempell, 38 Washington St., OTHER PUBLICATIONS
Novato, CA (US) 94.947 Piero Fraternali, “Tools and Approaches for Developing

Data-Intensive Web Applications: A Survey', ACM Sep.
(*) Notice: Subject to any disclaimer, the term of this 1999, pp. 226–263.*

patent is extended or adjusted under 35 BaluSubramanian et al A Large-Scale Hypermedia Applica
U.S.C. 154(b) by 0 days. tion using Document Management and Web Technologies,

ACM 1997, pp. 134–145.*
(21) Appl. No.: 09/454,061
(22) Filed: Dec. 2, 1999 - 0

Primary Examiner Safet Metahic
(51) Int. C.7 - - - - - - ... GO6F 17/00; GO6T 13/00 ASSistant Examiner Uyen Le

(52) U.S. Cl. 707/102; 707/104.1; 707/501.1; (74) Attorney, Agent, or Firm-Coudert Brothers LLP
345,700; $45,473 , ABSTRACT (58) Field of Search 707/102,103, (57)

707/104, 501, 513,517, 530, 104.1, 501.1; A method and apparatus for designing and building a web
345/333,967, 326,339, 348, 352, 700, page. The apparatus includes a browser based build engine

473 including build tools and a user interface. The build tools are
operable to construct a single run time file and an associated

* cited by examiner

(56) References Cited database that describe, and when executed, produce the web
U.S. PATENT DOCUMENTS page. The user interface includes a build frame and a panel.

The build frame is operable to receive user input and present
5,428,731. A 6/1995 Powers, III 707S01 a WYSIWIG representation of the web page. The panel
i. A : y R"v- - - - - - - - - - - - 3:3: includes one or more menus for controlling the form of

6,035.119 A 3/2000 Massena et al... 4 content to be placed on the web page.
6,081,263 A * 6/2000 LeGallet al......... ... 345/327

7/2000 Davidson et al. 717/1 39 Claims, 68 Drawing Sheets 6,083.276 A

START

HE BROWSERASED
BLOOOCREATES AN
OBECoAABASE

HMSEFE AND
8 CABARFLE WITH
-> CSTOMZE RUN ENGIN

AN ATA BASE

UPLOAD TO
USERS WEBSITE

10 BROWSER CALS
THE RUN ENGINE

RUN ENGINE REAS
11 AABASE AND

ExeCUES THENTIRE
WEBSITE

9

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 195 of 548

U.S. Patent Apr. 8, 2003 Sheet 1 of 68 US 6,546,397 B1

START

NON-BROWSER BASED
HTMLISCRIPT

CODE
GENERATOR

HTML FILES
WITH IMBEDDED SCRIPTAND

UAVA APPLETS
(ASISOLATED ENTITIES)

PER WEB PAGE

UPLOAD EACH
WEB PAGE TO

USER'S WEBSITE

EXECUTED BY
BROWSER

Fig. 1 PRIOR ART

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 196 of 548

U.S. Patent Apr. 8, 2003 Sheet 2 of 68

START

THE BROWSER BASED
BUILD TOOL CREATES AN

OBJECT DATABASE

HTML. SHELL FILE AND
CABIJAR FILE WITH

CUSTOMZED RUN ENGINE
AND DATA BASE

UPLOAD TO
USERS WEBSITE

BROWSER CALLS
THE RUN ENGINE

RUN ENGINE READS
DATABASE AND

EXECUTES THE ENTIRE
WEBSITE

US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 197 of 548

U.S. Patent Apr. 8, 2003

INSTALLATION
PROGRAM

356

SCREEN
SENSING

MECHANISM

se 354
WEB PAGE
SCALNG INTERFACE
ENGINE

--- s 352 ---- - - - - - - - - -----

TIME LINE
ENGINE BUILD ENGINE

Sheet 3 of 68 US 6,546,397 B1

360

-

INTERFACE's
DATA BASE

Fig. 3a

BUILD TOOL COMPONENTS

358

BUILD ENGINE'S
MULTI

DIMENSIONAL
ARRAY

STRUCTURED
DATA BASE

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 198 of 548

U.S. Patent Apr. 8, 2003 Sheet 4 of 68 US 6,546,397 B1

INALZE 13 4.

w
UPDATENTERNAL DATA BASE
AND SET FEATURE FLAGS

(FIGURE 5)

ACTIVATEPANE, POPUP WINDOW,
COLORAND ALERT MESSAGE
NTERFACE TECHNOLOGY
(FIGURES 7a, 7b, & 7c)

COMMUNICATION OF USERNPUT
ATA AND STATUS BETWEENTHE
ENGINEAN THE INTERFACE

(FIGURE 6) (FIGURE 8)

POLING TECHNOLOGY: INTERFACE TO THE BUILD ENGINE

(FIGURE 9)

ANALYZE INPUT:
ERRORCHECKING

(FIGURE 10)

y
AUDIO AND WIDEO DIRECTWEBPAGE BUTTON, IMAGE AND MAGE PROCESSING FrAMES, TABLES,

| LECHANNEL TEXTENTRY AND PARAGRAPH STYLE FORMS AND DRAW
PROCESSING TEXT PROCESSING SETANGS AND OBJECTS

TECHNOLOGY
(FIGURE 14) (FIGURE 11) (FIGURE 13) (FIGURE 12) (FIGURE 15)

22

ANMATON AND/OR
INTERACON
TECHNOLOGY

24

user INTERACTION TANIMATION traNSORMATION OBJECT WEB PAGE
SETTINGS AND SETTINGS AND SETINGS AND TIME LINE SETINGS RANSiTION ANIMATIONS,
ECHNOLOGY TECHNOLOGY ECHNOLOGY AND TECHNOLOGY ME LINE SENGS

AND TECHNOLOGY

(FIGURE 16) (FIGURE 17) (FIGURE 18) (FIGURE 19) (FIGURE 20)
29b.

-
DYNAMIc weBPAGE VIEW OPERATIONS (FROM FIG. 6) FILE OPERATIONS (FROM FIG. 6)
RESIZING PROCESS

NEW, APPLY AND CLOSE. OPEN AND WEBSITEACTIVATE NORMAL PREVIEW, AND PLAY.
THE DYNAMICWebPAGERESIZINGPROCESS, ZOOMING AT WAROUSZOOMEVES

SAVE AND SAVE AS BEGIN THE RUNGENERATION AND THE (TO FIG. 5) | ACTIVATE THE DYNAMICWEBPAGE
RUNTIME PROCESS (SEE FIGS. 4 AND 23) RESIZINGPROCESS,

(FIGURE 21a) (FIGURE 22) (FIGURE 21b)

9 THE BUILD Tool & BUILD PROCESS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 199 of 548

U.S. Patent Apr. 8, 2003 Sheet S of 68 US 6,546,397 B1

370

RUN
GENERATION
PROCEDURE

- "-
WEB PAGE PAGE SIZE
SCALING DATABASE GENERATION
ENGINE ENGINE

382

RUNTIME user RUNTIME RUNTIME
TIMELINE INTERACTION DRAWING,

ENGINE ENGINE ANIMATION,
-- AUDIO AND

VIDEO ENGINE
RUNTIME ENGINE

Fig. 4a

RUN GENERATION AND RUNTIME
COMPONENTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 200 of 548

U.S. Patent Apr. 8, 2003 Sheet 6 of 68 US 6,546,397 B1

SAVE WEBSITE.
BEGINRUNGENERATION

i EXTERNALDATABASE CREATION: SECURITY AND OPTIMIZATION TECHNOUES

(FIGURE 24)

31
CREATE CUSTOMZED AND OPTIMIZEDRUNTIME ENGINE

(FIGURE 25)

32
CREATE THE HMSHELL FLE

(FIGURE 26) 360

3A

CREATE THE CABIARFILES

(FIGURE 27)

33B

UPLOAD THE HTMLSHEL FILE AND THE JARICABFILES
TO THE USERS WEBSITE.

WEBPAGESIZE GENERATION TECHNOLOGY

(FIGURE 28)

READ OATA BASE AND GENERATE NECESSARY OBJECTS.

(FIGURE 29)

WEBPAGE GENERATION WITH SCALING TECHNOLOGY.

(FIGURE 30) 365

THE MULTILEVE WEBPAGE AND OBJECT THREAD TECHNOLOGY

(FIGURE 31 THROUGH FIGURE35)

RESPOND TO USER INTERACTIONS.

(FIGURE 36)

? EXIT

Fig. 4b

RUN GENERATION & THE RUNTIME PROCESS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 201 of 548

U.S. Patent

1 -
39

Apr. 8, 2003 Sheet 7 of 68

BUILD TOOLS CREATED.

INTIALIZATION AND BUILD ENGINES ARESGNED AND TMESTAMPED AND PLACED INA JAVAWRAPPER.

V

\ NITIAL BUILD
TOOL FES
ACTIVATED

BROWSERTYPESSENSED TO
DETERMINE RECURED SECURITY

AUTHORIZATIONS.

42 HE INITALIZATION ENGINES CALLED WHCH
RETURNS THE SCREEN RESOUTION.

THE INITIALIZATIONMODES CONFIRMED.
THE INTIALIZATION ENGINES CALLED TO ADAPT

THE INTERFACE TO THE CURRENT SCREEN
RESOLUTION.

43

THE INITIALIZATION ENGINE ASSERTS, IF
NECESSARY. THE RECURED SECURITY

AUTHORIZATION FOR READ/WRITE ONUSERDISK

44

HE INITALIZATION ENGINE CREATES A BULD
ENGINE HTMDEFINITION FILE

45 GENERATE BULD ENGINESCREEN

TO THE BUILD ENGINE PARENT HTML FRAME FILE.
THE INTABUILD TOOL FILETURNS CONTROL OVER

THE INTERFACE THROUGH THE PANELFE AND THE
BUILD ENGINE THROUGH THE BUILD ENGINE HTML

DEFINITIONFILE ARELOADED.

TO FIGURE 6

US 6,546,397 B1

Fig. 5 NITIALIZATION

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 202 of 548

U.S. Patent Apr. 8, 2003 Sheet 8 of 68 US 6,546,397 B1

3
: COMMUNICAON OF USER

INPUT DATA AND STATUS
BETWEEN THE ENGINEANd

THE INTERFACE.

48 54

y Y. !
SELECTION SELECTION DRECT TEXT DYNAMICWEB DREC OBJEC SELECTION
FROMAJAVA FROMA ENTRY AND PAGE RESZNG MANIPULATION FROM THE
WINDOW : JAVASCRIPT PROCESSENG JAVASCRIPT
OBJECT WNOW RESIZE.EVENT (SH8-SH 12, PANE
(SH6-SH7) (SH19, ETC) (SH2-SH5) DETECED SH38, SH40) (SH 13-18)

SELECTION SELECTION
WTHADUAL FROMA
SPIN CONTROL JAVASCRIPT CHILD WINDow

)
OBJECT
SH23-27) L (SH19-SH22

TO FIGS. 7 AND
(8.

Fig. 6

COMMUNICATION OF USER INPUT DATA AND
STATUS BETWEEN THE ENGINE AND THE

INTERFACE.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 203 of 548

U.S. Patent Apr. 8, 2003 Sheet 9 of 68 US 6,546,397 B1

FROM
FGS. 68.9

POPUP WINDOWAND PANELNERFACE
TECHNOLOGY

56 59

HTML FRAME, TABLE AND
MOUSE AND KEYBOARD JAVASCRIPTTECHNOLOGY FORMTECHNOLOGIES, AND

VENTS THRINTERACIONS WITH CASCADING STYLE SHEETS.
JAVASCRPT.

EXIT TO
FIGS. 9 & 10

Fig. 7a

POPUP WINDOW AND PANEL INTERFACE
AND COLOR TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 204 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 205 of 548

U.S. Patent Apr. 8, 2003 Sheet 11 of 68 US 6,546,397 B1

(FROM y
FGS, 68.9)

TABBED POPUP WINDOW
INTERFACE TECHNOLOGY

283 | CLICK ON ATAB
iNSIDEPOPUP - WINDOWS
DETECTED

284 use of 285 USE OF 286 USE OF
DYNAMIC HTML JAVASCRIPT CASCADING

-> -> STYLE SHEETS

(EXIT TO
FGS. 68.9

Fig. 7c

IMPLEMENTATION OF
TABBED POPUP WINDOWS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 206 of 548

U.S. Patent Apr. 8, 2003 Sheet 12 of 68 US 6,546,397 B1

14
y FROM \, FIGS. SAND9

63

-b UPDATEWALUE 60

- - - - -

62

WEBSE OR HGH
WATERMARK RELATED

61 - — 65
| WEB PAGE, PARAGRAPH STYLE,TEXT BUTTON . TEN SER PARAGRAPHLNE

STYLE, OR IMAGE STYLE | REAED RELATED
RELATED

t - -
64 66 68

w -- - - - - - - ------- - - ---------, -, - w w

CREATE URL, COLOR. FONT, IMAGE OR ES555 CREATE URL, COLOR ORFON OBJECTS, IF
THREAD OBJECTS, IF NECESSARY IMAGE, AUDIO CLP, Video NECESSARY.

CLIP, TEXT AREA, OR THREAD UPDATE 3D PARAGRAPHENE ARRAY
OBJECTS, IF NECESSARY. ELEMENTS BASED ON CURRENTLINE.

SERE WEESR UPDATE 2d OBJECT ARRAY UPDATE 4) PARAGRAPHLNESEGMENT
Textstyle, OR IMAGE STYLE ELEMENTS BASED ON ARRAYELEMENTS, BASED ON CURRENT

CURRENT OBJECT SEGMEN

69 ---

SETWEBPAGE, OBJECT,
> PARAGRAPHLINE, OR PARAGRAPH

LINE SEGMENT HIGH WATER
MARKS, FREQUIRED.

SET FEATURE FLAG, IF
RECURED,

i O FIGS.)
N 9 AND 10

Fig. 8
UPDATE INTERNAL DATA BASE AND SET FEATURE FLAGS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 207 of 548

U.S. Patent Apr. 8, 2003 Sheet 13 of 68 US 6,546,397 B1

16 y (FROM \ FIGS. 7 AND 8

JAVASCRIPTPOLLS THE JAVA BUILD ENGINE EVERY 100 (ORLESS) MILLISECONDS.
& THE WALUES. AS REPORTED IN REALTIME BY THEBULdNGINE FOR THE CURSOR'S ORIZONTAL

71 VERTICAL POSITION'S AREPOLLED AND DISPLAYED.

AS THE BUILD ENGINE DETECTSA MOUSE OVERAN OBJECT, ORASINGLE OR DOUBLE CLICK WHEN OVER
AWALID OBJECT, IT UPDATE'S VALUES THAT ARE BEING POLLED BY JAVASCRIPT.

IF THE BUILD ENGINE DETECT ANON-RECOVERABLEERRORINTS EXCEPTION HANDING ROUTINES, T
SEAANERRORF AG THAT IS BEINGPOLED BY JAVASCRIPT.

72

MOUSEEVENT
POSTED AND
POLED

74

MOUSE OVER OBJECTEVENT ? SINGLE CLICKMOUSEEVENT DOUBLE CLICKMOUSEEVEN
JAVASCRIPTPOLLS WHICHYPE JAVASCRIPT DISPLAY'S THE

of RIETSE IS OF OBJECT AND TS HEIGHT AND APPROPRIATE WINDow BASED ON
USED TO NITIALIZE WINDOWS WDTH ANRRSPAYS THOSE THE SELECTED OBJECT.
WITH THAT OBJECTS CURRENT |

VALUES (SH28-SH31) (SH32-SH33)

OBJECT
TYPE

77

- Y - r- ------
? EXT OBJECT TEXT BUTTON OBJECT MAGE OBJECT

THE VALUES FOR THE PARAGRAPH The VALUES FOR HE TEXT BUTTON THEVALUES FOR THE IMAGE
; STYLE,TEXT LOOK, POINT SIZE, STYLE,TEXT LOOK, POINT SIZE, OBJEC STYLE, OBJEC SIZE, ANIMATION,
OBJECT SIZE, COLOR LOCATION SIZE.COLOR, ANIMATION, LOCATION LOCATIONAN FRAME STATUS
AND FRAME STATUS ARE POLLED AND FRAME STATUS ARE POLLED AND ARE POLLED AND DISPLAYEO

AND DISPLAYED. DSPLAYED
| POLLING INITIATED FOR THE THE WALUE OF THESRING ARE THE RESULTS OF DIRECT

CREATION OF A HOT LINK POLLED ARE USED FOR POPUP MANIPULATIONARE POLED AND
----- WINDOWNITALZAON DISPLAYED

TO FIGS. y
AND

Fig. 9 POLLING METHODS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 208 of 548

U.S. Patent Apr. 8, 2003 Sheet 14 of 68 US 6,546,397 B1

17 y
FROM w

FGS. 7 AND 8

THE JAVASCRPT
INTERFACE

ERROR CHECKING

81 — 82
| FILE NAME WADITY

|- ERROR ce:g CHECKING AND
CHECKING COrrCTION

i

84

-> VALUES PASSED TO THE BUILD ENGINE

85 r

BUILD ENGINE EXCEPTION HANDING

A TO FIGS. 11,
\12, 13, 14 AND 15

Fig. 10

ANALYZE INPUT: ERROR CHECKING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 209 of 548

U.S. Patent Apr. 8, 2003 Sheet 15 of 68 US 6,546,397 B1

18 N (FROM \ FIG 10

86 USER SELECTS TXT
BUTTON OR PARAGRAPH

\ FROM THE PANELICONS

87
JAVASCRIP CALSBUILD ENGINE
WITH BOARD OBJECT TYPE, AND
OBJECT NUMBER SETTINGS.

(SH3)

se USER CLICKS MOUSE ON / '-oa WEBPAGE
w (SH4)

89
CURRENTY SELECTED PARAGRAPHTEXT STYLE'S VALUES ARE USED,

DYNAMICHIDDEN FRAME IS CREATED ATCURSOR LOCATION.
INSERTION POINT AND SELECTION RECTANGLE ARE ORAWN.

TEXTEDITORS ACTIVATED

user PREsses a RELEvent 92 USER CLICKS, DOUBLE CLICKS, OR /
|-> KEYBOARD KEY. DRAGS THE MOUSE. /

w (SH5) A w (SH32-SH33)
\- W

o EDITOR PRocessEs KEY. 93
HIDDEN FRAMERESIZED F NECESSARY.
REFORMAT CALLED, IF NECESSARY. | EDITOR PROCESSES THE MOUSE EVENT.

--> H
FRAME AND PARAGRAPH/TEXT DATA BASE : : SETSNECESSARY FAGS.

UPDATE,

94 -

EXT AND PARAGRAPH SEGMENT STRINGS ARE
UPDATED, F NECESSARY.

BASED ON FLAGS, THE DRAW SYSTEMIS
CALLED,

TO \
(deciSION 23
Y- -

Fig. 11
DIRECT WEB PAGE DATA ENTRY AND TEXT PROCESSING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 210 of 548

U.S. Patent Apr. 8, 2003 Sheet 16 of 68 US 6,546,397 B1

19
Y / FROM \

FIG 10

95 \ USER SELECTS IMAGE FROM THE CREATEMENU,
\ JAVASCRIPT CALLS IMAGE CREATE WINDOW.

- IMAGENAME AND OTHER USER DEFINED SETTINGS
\ ARE CAPTURE AND CHECKED.
W (SH34-SH35)

(SH36)

USER CLICKS MOUSE ON
-> PAGE

\ (SH37)

98 BUILDENGINE ASSERSHENECESSARY SECURITY POLICY FORREADING THE LOCADSK.
| THE IMAGE IS READ, EXCEPTIONS ARE HANDLED F

NECESSARY, AND THE IMAGE IS DRAWN.
THE MAGE DAABASE UPDATE,

99 101

DRECTWEBPAGE IMAGE INTERACTION JAVASCRIPTPANEL/WINDOWSINTERACTION FORMAGE
OPERATION.

THE BUILD ENGINE PROCESSES MOUSEEVENT.
APPROPREATE VALUES PLACED IN POLLABLE JAVA ROUTINE.
THE APPROPRIATE IMAGE PROCESSING ROUTINE IS CALLED.
MOUSECURSOR SHAPE IS CHANGEOBASED ONFUNCTION.

INAVALUES ARE SET FROMJAVASCRIPTSDATA BASE.
JAVASCRIPTSAABASE IS UPDATED.

BUILD ENGINE SCALED WITH NECESSARY SETTINGS.
APPROPRIATE MAGE PROCESSING ROUTINES CALLED.

(SH39-SH41) (SH42-SH43)

- 100 102
R&YREE S. NECESSARY IMAGE FILTER(S) ARE CALLED

UPDATES its DATABASE, AND | IMAGE OBSERVER IS ACTIVATED TO REPORT STATUS.
(IF ANIMATION OR TRANSFORMATION SEE FIGS. 178. 18) DISPLAYS VALUES, IF REQUIRED, INPANEL DRAW SYSTEMISCALED BY MAGE OBSERVOR,

TO
DECISION 23

Fig. 12 IMAGE PROCESSING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 211 of 548

U.S. Patent Apr. 8, 2003 Sheet 17 of 68 US 6,546,397 B1

20 y

- THE INITIAL VALUES FOR THE POPUPWNDOWSARE SET FROM JAVASCRIPTS
DATABASE

103 THE WALUES FOR THE EXT BUTTON AND MAGE STYLE's look for NORMAL MOUSE
OWER, AND MOUSE DOWN OBJECTS ARE CAPTURED.

THE VALUES FOR THE TEXT BUTTON AND IMAGE STYLE'S OBJECT ANIMATIONS,
TRANSFORMATIONS, AND TIME LENES ARE CAPTURED.

THE WALUES FOR PARAGRAPH STYLES, AND THE LOOKFOR HOT LINKS ARE CAPTURED. .
(SH24-SH27).

104 JAVASCRIPSDAABASE ISUPDATED.

--> JAVASCRIPT CALSBUILD ENGINEAN PASSES RECURED WALUES.
BUILD ENGINE UPDATES INTERNAL DATABASE AND SETS FEATURE FLAGS

(SEE FIG. 8).

105 IMAGE,TEXT BUTTON AND PARAGRAPH OBJECT CREATION.

--> ALL THE SETTINGS FROM THE TEXT, IMAGE AND PARAGRAPH STYLES ARE
APPLIED TO TEXT, IMAGE AND PARAGRAPH OBJECTS AS THEY ARE CREATED.

106
- EDITINGSTYLES AND INHERITANCE

WHEN A STYLE ARE CHANGED, ALL OBJECTS ON ALL INTERNAL WEBPAGES
-> WHICHUTILIZED THAT PARTICULAR STYLEMAYBE CHANGED,

WHETHER THE STYLE CHANGE WILL AFFECT AN OBJECT THAT UTILIZED THAT
STYLES DEPENDENT ON THE RULES OF INHERITANCE.

f TO FIGS.
\ 1 AND12 Y -

Fig. 13

BUTTON, IMAGE AND PARAGRAPH STYLE SETTINGS
AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 212 of 548

U.S. Patent Apr. 8, 2003 Sheet 18 of 68 US 6,546,397 B1

2

Y (FROM
FIG 10

107

FROMA USER INTERACTION PAN
(SEE FIG 16)

NITIAL VALUESSE FROMAWASCRIPTSDATA BASE

\ USER SELECTS WIDEOOR AUDIO SPECIAEFFECT

108

-> F ORCHANNENAMES CAPTURED AND CHECKED.
JAVASCRIPTSATA BASE IS UPDATED.

BUILD ENGINE SCALED WITH NECESSARY SETTINGS.

WIDEO OR AUDIO FE VIDEO OR AUDIO CHANNE

BUILDENGINE ASSERTSNECESSARY SECURITY
POLICY FOR READING THE LOCAdSK AND

EXCEPIONS ARE HANDLED
WDEONAUOO FILE IS LINKEDAN PLAYED,

DATABASE IS UPDATED.

1 O

NCESSARYPONERS ARE UPDATE AND
METHODS ASSIGNED FOREFFICENT TRANSMSSION

O
OECISION 23

Fig. 14

VIDEO AND AUDIO FILEICHANNEL PROCESSING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 213 of 548

U.S. Patent Apr. 8, 2003 Sheet 19 of 68 US 6,546,397 B1

BUILD PROCESS INTERFACE
TECHNOLOGIES

DRAW AND BUILD POPUPWINDOW

1 1 3.
BUILD ENGINE TECHNOLOGIES

CALL BUL) ENGINE METHOD TO
BUILD THE FRAME, TABLE, ETC.

114

RUNGENERATION TECHNOLOGIES

115

-...- RUNENGENE ECHNOLOGES

TO
DECSON 23 .

Fig. 15

FRAMES, TABLES, FORMS AND DRAW OBJECTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 214 of 548

U.S. Patent Apr. 8, 2003 Sheet 20 of 68 US 6,546,397 B1

- - { FROM
DECISION 23

17

PARAGRAPH

ACTIVATE BY DOUBLE CICK ORMOUSE ORAG, APPROPRIATEWALUES ARE SET INA
POLL-ENABLEDJAWAROUTINE,

TEX BUTTON THE JAVASCRIPTPOLLER READS THE WALUES, AND DRAWSAPPROPRIATE WINDOW, IMAGE OBJECT

l

OBJECT HOT LINKS CAPTURED FOR iNTERNAL OR EXTERNAL WEBPAGE.

THE BUILD ENGINE UPOATES TSNTERNALDATABASE
(SH32-SH33)

1 WHICHN
->< MoUse Y W

N STATE /
21 122

Mouse over staTE MOUSE DOWN STATE

INTIAL VALUES FOR THE POPUP WINDOWARE SET.
CONTENT AND LOOKFORMOUSE OVER OBJECS CAPTUREO, NITIAL VALUES FOR THE POPUP WINDOWARE SET.
TEXT BUTTON AND IMAGE POPUP SETTINGS ARE CAPTURED IF CONTENT AND LOOKFORMOUSE DOWN OBJECTIS CAPTURED.

DEFINED FREEZE STATES AND MOUSE CLICKEVENT DEFINTIONS, AND
THE SOUND ANOVIDEO SETTINGS ARE CAPTURED FOFINED. SOUND/wiDEOSETTINGS ARE CAPTURED, IF DEFINED.

(SH44-SH45) (SH46-SH47)

123 JAVASCRIPTSDATABASE IS UPDATED.
JAWASCRPT CALLSBUID ENGINE AND PASSES

REQUIRED WALUES.
BUILD ENGINE UPDATESNTERNALDATA BASE AND

SETS FEATURE FLAGS (SEE FIG. 8).

f TO
PROCESS 29

Fig. 16

USER INTERACTION SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 215 of 548

U.S. Patent Apr. 8, 2003 Sheet 21 of 68 US 6,546,397 B1

* N. FROM DECSON 23

124
WHICH
OBJECT

25 26

TEXT BUTTON OBJECT IMAGE OBJECT

THE NITIAL VALUES OF THE POPUP WINDOWARE SET. THE INITIAL VALUES OF THE POPUP WINDOWARE SET.
THE ANIMATION TYPE. SPEED, RESOLUTION AND NUMBER OF THE ANIMATION TYPE, SPEED, RESOLUTION AND NUMBER OF

CYCLES ARE CAPTURED. CYCLES ARE CAPTURED.
(SH48) (SH49)

127 JAVASCRIPTSAABASE IS UPDATED.
JAVASCRIPT CALS THEBUILD ENGINE AND PASSES :

THE RECUREDVALUES.
THE BUILD ENGINEUPDATES TSINTERNAL

DATABASE AND SETS FEATURE FLAGS (SEE FIG. 8).
THE LINKAGETO THE APPROPRIATE METHODSS

SET.

128
ATHREAD OBJECIS CREATED AND EXECUTED.
VALUES ARE SET TO INTEGRATE THEANMATION

INTO THE TIME LINE TECHNOLOGY.
(SEE FIGURE 19)

y
THE THREAD OBJECT, WHENINVOKED WILL CALL

THE APPROPRIATE IMAGE FILTER(S) AND ANIMATION
METHODS. -

TO
PROCESS 29
NT

Fig. 17

ANIMATION SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 216 of 548

U.S. Patent

30

* N.

-

WHICH TRANSFORMATIONS BETWEEN WHICH OBJECTS (NORMAL, MOUSE OVER,

THE TIME DELAY, PERTRANSFORM, AND RELATIONSHIP WITH ANY ANIMATION, IS

FORMAGES HE SPEED OF EACHRANSFORMATION SASO CAPTURED.

Apr. 8, 2003 Sheet 22 of 68

FROM
DECSON 23

DATA CAPTURE

NTIAL VALUES FOR THE POPUPWINDOWARE SE.

MOUSE DOWN). ARE CAPTURED.

ALSO CAPURED.

(SH50-SH51)

131 UPDATE DAABASES

JAVASCRIPTSDATABASE IS UPDATED. JAVASCRIPT
CAL SBUDENGINE AND PASSES RECURED

VALUES.
BUILD ENGINE UPDATES INTERNALDATABASE AND

SETS FEATURE FLAGS (SEE FIG, 8).

132 A T-READ OBJECTS CREATED AND EXECUTED
VALUES ARE SET TO INTEGRATE THE
RANSFORMATIONNTO THE TIME LINE

ECHNOLOGY.
(SEE FIGURE 19)

133

THREAD OBJECT, WHEN INVOKED, WILL CALL THE
APPROPRIATE IMAGE FILTER(S) AND

TRANSFORMATION METHODS.

TO
w PROCESS 29)

Fig. 18

US 6,546,397 B1

TRANSFORMATION SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 217 of 548

U.S. Patent Apr. 8, 2003 Sheet 23 of 68 US 6,546,397 B1

27 y
FROM

DECISION 23

THENTIAL VALUES FOR THE POPUP WINDOWARE SET FROMJAVASCRIPTSDATABASE

THE WALUES FOR THE OBJECTS APPEARANCE TIME, ANIMATION TYPE, SPEED AND RESOLUTIONARE CAPTURED.

THE WALUES FOR THE OBJECTS CHILD POPUP OBJECT(s) APPEARANCE TIME, ANIMATION TYPE. SPEED AND RESOLUTION ARE CAPTURED.

ThE WALUES FOR THE OBJECT'SEXT TIME, ANIMATIONYUPE, SPEED AND RESOLUTIONARE CAPTURED.

THE WALUES FOR THE OBJECT'S CHILD POPUP OBJECT(s) EXT TIME, ANIMATION TYPE, SPEED AND RESOLUTIONARE CAPTURED.

(SH52-SH53)

135 JAVASCRIPTSDATABASE IS UPDATE).

JAVASCRIPT CALLS THE BUILD ENGINE AND PASSES REQUIRED WALUES.

THE BUILD ENGINEUPDATESTSNTERNALDATABASEANDSETS FEATURE
FLAGS (SEE FIG. 8).

THE OBJECT's ANIMATION SETTINGS, FANY, ARE INTEGRATED INTO THE TIMELINE.

---.

136
FF ANIMAGE OBJECT. ANY TRANSFORMATION ANIMATION MAYBE EXECUTED SIMULTANEOUSLY

WITH THEAPPEARANCE AND/OR EXTANIMATIONS, DEPENDING UPON THE SETTINGS.

THE OBJECTS TRANSFORMATION SETTINGS, FANY, Are FNTEGRATED INTO THE TIMELINE.

A MULT-EVEL OBJECT THREAO DEFINITION IS CREATED AND EXECUTED FOR USER
WERFCATION

137

| THE THREAD OBJECT, WHENINVOKED, WILL CALL
--> THE APPROPRIATE IMAGE FILTER(S), ANIMATION

METHODS AND TRANSFORMATION METHODS.

TO
PROCESS 29

Fig. 19

OBJECT TIME LINES AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 218 of 548

U.S. Patent Apr. 8, 2003 Sheet 24 of 68 US 6,546,397 B1

FROM
DECSION 23

INTIAL VALUEs for THE POPUP WINDOWARE SET FroMJAVASCRIPTS
DATABASE

THE WALUES FOR THE WEB PAGE'S APPEARANCE DELAY, TRANSiTION
ANIMATION, ANIMATION SPEED AND RESOLUTIONARE CAPTURED,

139

(SH54-SH55)

JAVASCRIPTS DATABASE IS UPDATED.

JAVASCRIPT CALLS THE BUILD ENGINE AND PASSES THE RECURED VALUES.

THE BUILD ENGINE UPDATES ITS INTERNALDATABASEAND STS FEATURE
FLAGS (SEE FIG. 8).

140 | The WEBPAGE TIME LINESSYNCHRONIZED WITH THETS OBJECT TIME linS.

- | THE WEB PAGES APPEARANCE DELAY ANDTRANSiTION SETTINGS ARE
> NTEGRATED INTO THE WEBPAGE TIMELINE.

A SINGLE-LEVE OBJECTHREAD DEFINITIONS CREATED,
-

| THE WEB PAGE THREAD OBJECT, WHEN INVOKED,
WILL CALL THE APPROPRIATE IMAGE FILTER(S),

ANIMATION ROUTINES AND CREATE THENECESSARY
OBJECT TIME LINE THREADS.

TO
PROCESS 29)

Fig. 20

WEB PAGE TRANSiTION ANIMATIONS, TIME LINE
SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 219 of 548

U.S. Patent Apr. 8, 2003 Sheet 25 of 68 US 6,546,397 B1

FROM
FGS, 16-20

29 N

FLE
\ OPERATION

SELECTED.

SAVE AS CLOSE

(To FIGS. A O Y TO FIGS. to / To FIGS. '
4 AND 5 FIG.22 4 AND 24 FIG.5 (N52)

fig. 21a

FILE OPERATIONS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 220 of 548

U.S. Patent Apr. 8, 2003 Sheet 26 of 68 US 6,546,397 B1

FROM
FIGS. 16-20

29 N

WEW
OPERATION
SELECTED.

149a 149b) 149C 149d

| ZOOM
NORMAL | PREVIEW PLAY 50%, 200%,

t ETC.

| To TO TO TO
V FIG. 5 FIG 28 FIG. 28 FIG. 22

- - -1

fig. 21b

VIEW OPERATIONS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 221 of 548

U.S. Patent Apr. 8, 2003 Sheet 27 of 68 US 6,546,397 B1

. \, ? FROM)
FG. 21a \ l/ FROM

FIG 21b

------- - 504

500 \ user , 50 \ userchanges the f \ / SELECTS | \ WEBPAGESIZE W USER SELECTS
- OPENERQM - UNDER THE WEBSITE \ ZOOMUNDER

y THE FILE A coMMAND FROM THE THE VIEWMENU
\ MENU y FILEMENU \

506 HEADER AND WEBPAGE SETTINGSAR 508
READ FROMTSDATABASE. AEXTERNAL TEMPORARY DATABASE SWRITTEN

BASED ON THE CURRENT WEBSITEDFINITION.

A BUILD ENGINE HTMLDEFINITIONFILES
: CREATEDBASED ON THESE WEBPAGE
: SPECIFICATONS

y
TERMINATION PROCESS

A BUILD ENGINE HTMLDEFINIONFILE IS CREATED
BASED ON THE NEW WEBPAGE SPECIFICATION.

510 THE BUILD ENGINE TERMINATESITSELF.

THE INTERFACE WRITES OUTAS COOKES. THENTIALIZATION MODE,
CURRENT WEBPAGENUMBER, WEBSITE NAME AND ZOOMLEVEL

THE INTERFACETERMINATESITSELF BY REINITIALIZING THE BUILD
ENGINE PARENTHTML FRAME FILE.

REINITIALIZATION PROCESS.

PANEL READS MODE COOKEANDETERMNES INITIALIZATION STATUS.

512 PANEL READS CURRENT WEBPAGENUMBER, ZOOM LEVELAND WEBSITE NAME
COOKIES.

b PANELCALLSBUD ENGINE TO READIN THE EXTERNALDATABASE.

PANELCALS THE BUILDNGINE TO RETURN THE NECESSARY VALUESN
ORDER TOUPDATE THE PANEL'S DATABASE.

PANELCALLSBUILD ENGINE TO GO TO THE CORRENT WEBPAGE AT THE
CURRENT ZooMLEVEL

r To y
FIG.6 -- -1

Fig. 22

DYNAMIC WEB PAGE RESIZING PROCESS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 222 of 548

U.S. Patent Apr. 8, 2003 Sheet 28 of 68 US 6,546,397 B1

*ws: 8:38.838 &

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 223 of 548

U.S. Patent

se-N

152

Apr. 8, 2003 Sheet 29 of 68

FROM
FIG. 3

150

ACCEPT USER'S "WEBSITENAME",
CREATE "WEBSITENAME. OTA FLE.

SECURITY RIGHTSHAD BEENESTABISHED
DURING THE BUILD TOOL'S NITALIZATION

(SEE FIG 5)

HIGH WATER MARK TECHNOLOGY.
NUMBER OF WEBPAGES AND SYLES
NUMBER OF TEXT BUTTON, IMAGE,

PARAGRAPH, ETC, OBJECTS PER WEBPAGE,
NUMBER OF LINES AND LINE SEGMENTS FOR

151
ASSERTNECESSARY SECURITYPOCY

PERMISSIONS FOR FILE CREATION
RIGHTS.
-

153
WRITE HEADER RECORDS INCLUDING
DEFAULT SCREEN RESOLUTION, WEB
PAGE AND STYLE HIGH WATER MARKS,
AND USER WEB PAGESIZE SETTINGS

y

US 6,546,397 B1

155
ANY PARAGRAPH OBJECT.

54
WRITE OUT STYLE RECORDS For PARAGRAPH, TEXT BUTTONAND IMAGE STYLES.

--
WRITE ARRAYSTRUCTURESBASED ON HIGH WATER MARKS, OBJECT TYPE, AND TYPE OF DATA

156

BOOLEAN RECORDS NTEGER RECORDS MULTIMEDIA OBJECTS STRING RECORDs SENGLE AND DOUBLE
FLOATNG POINT AND

: SERIAZED FORMFOR IMAGES, AUDIO AND LONG INTEGER
VALUES FORWEB | VALUES FOR WEB URL, COLORAND FONT VIDEO FILE NAMES, RECORDS

PAGES, OBJECTS, AND PAGES, OBJECTS, AND OBJECTS, ETC. For ENCOOE FORM FOR
OBJECT COMPONENTS OBJECT COMPONENTS WEBPAGES AND TEXT /PARAGRAPH FOR ANIMATIONANO

IN A FOUR IN A FOUR OBJECTS IN A TWO OBJECTS INA FOUR IMAGE PROCESSING.
DIMENSIONAL ARRAY DIMENSIONAL ARRAY DIMENSIONAL ARRAY DIMENSIONAL ARRAY NATWOOMENSIONAL

STRUCTURE. STRUCTURE. STRUCTURE STRUCTURE ARRAYSTRUCTURE

159
157 158 160 161

(F s)

Fig. 24

EXTERNAL DATA BASE CREATION:
SECURITY AND OPTIMIZATION TECHNIOUES

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 224 of 548

U.S. Patent

* N.

Apr. 8, 2003

162

163

FROM
FIG24

FEATURE FLAGS ARE ANALYZED

EXTRACT REQUIRED WARIABLE
DEFINITIONS AND METHODS OF

"MAN" OBJECT CASS OF THE RUN
ENGINE SOURCE CODE.

OBJECT CLASS REFERENCES

EXTRACT ONLY REQUIRED

164

REFERENCES TO AL OTHER

Sheet 30 0f 68

RUNTIME OBJECT CASSES

EXTERNAL FILEREFERENCES

IMAGE, VIDEO AND AUDIO FILE

165

REFERENCES ANDFILE
PROCESSENG

SOURCE CODES COMPED WITH
HENECESSARY CLASS

LBRARIES

166

(EG. SUN, NETSCAPE,
MICROSOFT)

RUNTIME ENGINE FOR THE WEB
SES CREATED

TO
FIG. 26

Fig. 25

US 6,546,397 B1

CREATE CUSTOMIZED AND OPTIMIZED
RUNTIME ENGINE

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 225 of 548

U.S. Patent Apr. 8, 2003 Sheet 31 of 68 US 6,546,397 B1

s:-
WEBPAGE
OR CUSTOM
APPLICATION

169

WEBPAGESCREEN RESOLUTION PROCESSING. CUSTOMAPPLICATION.

WEBPAGE WINDOWSWRTUAWOTHAND HEIGHT
ARESTORED INSCREEN RESOLUTION INDEPENDENT

UNITS,
APPLE WINDOWSWDTH AND HEIGHT STOREDAS

ABSOLUTEVALUES.

170 DEFINITION OF BACKGROUND

WEBPAGE BACKGROUND COLORVALUES CONVERTED TO
HXADECMA ANY BACKGROUND IMAGES PROCESSED.

HTML CODES GENERATED TOSYNCONZETHERUNTIME ENGINES
BACKGROUND WITH THAT OF THE WEBPAGE WINDOW.

171
SCREEN RESOLUTION PREPROCESSING.

JAVASCRIPTAND HTML CODE IS GENERATED TO CALL THE
SCREEN RESOLUTION SENSING (SRS) JAVA. APPLET.

172
JAVASCRIPT TO SRSAPPLE COMMUNICATION.

JAVASCRIPT CODES GENERATED TO iNTERROGATE THESRSAPPLET
FORTHE SCREEN RESOLUTIONVALUES. THE JAVASCRIPT CODE ALSO

INCLUDESNECESSARYTIMEOUTS.

JAVASCRIPT GENERATION OF RUNTIME ENGINE HTML SPECIFICATION.

JAVASCRIPT CODE IS GNERATED TO CREATE THENCESSARY HTMLCO FOR THE RUNTIMENGINE SIZE SPECIFICAIONS,
PARAM FIELDS TO LINK TO THE DATA BASE (SEE FIG.23), THE NECESSARY HTML CODE TO LOAD THE JAR OR THE CABFILE, AND

HTML CODEFOR HAVING THE BROWSERNVOKE THE RUNTIME ENGINE.

WRTE EXTERNAL, HTML. SHELL FILE.

THE NECESSARY SECURITYPOLICYPERMISSIONS FOR FILE CREATION
: RIGHTS ARE ASSERTD. A WebSTENAME.HTMLSWRITEN.

Fig. 26

CREATE THE HTML SHELL FILE

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 226 of 548

U.S. Patent Apr. 8, 2003 Sheet 32 of 68 US 6,546,397 B1

33A

N

7 Analyze First web PAGE IMAGE OBJEcts
iF FIRST WEB PAGE HAS NON-TIME LINE
DELAYED IMAGE OBJECTS, FLAG FOR CAB

AND UAR FLE.

176 ANAYZE JAVA CLASS FILES

BASED ON FEATURE FLAGS MARKALL THE
NECESSARY JAVA CLASS FILES FOR INCLUSION

INTO THE CAB AND JAR FILES. (SEE FIG25)

177 BAT FILE DEFINITIONS

GENERATE THE BAT FILESTATEMENTS TO INCLUDE ALL NECESSARY
IMAGE FILES, THE WEBSITENAME". CLASS CUSTOMIZED RUNTIME
ENGINE, AND THE "WEBSITENAME". DTA DATA BASE FILE INTO THE

MAIN COMPRESSED CAB AND UAR FILES AND JAVA CLASS FILES INTO
A COMPRESSED CABIJAR LIBRARY FILE.

WRITE EXTERNAL BAT FILES

THE NECESSARY SECURITY POLICY PERMISSIONS
FOR FILE CREATIONARE ASSERTED. A

"WEBSITENAME. BAT FILE AND A"WEBSITENAMELIB".
BAT FILE ARE WRITTEN.

179 CREATE CABIJAR FLES

THE "WEBSITENAME". BAT AND "WEBSITENAMEB". BAT
FILES ARE EXECUTED, CREATING COMPRESSED
"WEBSITENAME". CAB, "WEBSITENAMELIB".CAB,

"WEBSITENAME".JAR AND "WEBSITENAMELIB".JAR FLES.

Fig. 27

CREATE THE CABIJAR FILES

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 227 of 548

U.S. Patent Apr. 8, 2003 Sheet 33 of 68 US 6,546,397 B1

* -
USERPOINTS
A BROWSER
AT THE HTML
SHELL FILE W

181 JAVASCRIPTINALZATION CODE.

| JAVASCRIPT codE DETERMINE'S THE TYPE OF BROWSER AND CALLs HTML cooE FOR THE BROWSERTO
L- INTERPRET.

THIS CODE DEFINES WHETHER THE EXECUTEBLE FILES AND DATABASE WILL BE EXTRACTED FROMINSIDE
ACOMPRESSED CABFILE ORACOMPRESSED JARFLEANDITSOCATION.

182 y
WEBAPPLICATION TYPE.

EXECUTE APPROPRIATE JAVASCRIPT CODE (BY APPLICATION TYPE). FIXED (EG.
BANNER) OR DYNAMIC. 183 184

DYNAMIc weBPAGE JAVASCRIPTSRs APPLET synchronizATION TECHNOLOGY. FIXEDSZE WINDOW.

CALLJAVASCRIPT CODE WHICH CAUSES THE SRSAPPLET TO BEMMEDIATELY EXECUTED BY
THE BROWSER. JAVASCRIPT GENERATES THE

THE JAVASCRIPT CODE GOES INTO A TIMERLOOP, CHECKING ONWHEN THE Sr.S APPLETIS HTML CODEFORTHERUNTIME
ALIVE BEFOREINITIATING ANY COMMUNICATION. ENGINE SPECS, ETC. (SEE FIG.25)

THE BROWSERIMMEDIATELY
- - - - - - - JAVASCRIPTSRSAPPLET COMMUNICATION --- EXECUTES THE RUNME ENGINE.

JAVASCRIPT CALLS SRS APPLET METHODS WHICHRETURN THE WIDTH AND HEIGHT, IN
Pixels, OF THE CURRENT BROWER WINDOW.

JAVASCRIPT THEN CONVERTS THE SCREEN RESOLUTION INDEPENDENT WINDow WDTH AND TO
HEIGHT WAUES INTO ABSOUTEPIXEL VALUES. FIG. 30

JAVASCRIPT THENGENERATES THE HTML CODE FOR THE RUNTIMENGINE SPECS, ETC.
(SEE FIG.26)

THE BROWSER IMMEDIATELY EXECUTES THE RUNTIME ENGINE.

t TO
185 FG29.

Fig. 28

WEB PAGE SIZE GENERATION TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 228 of 548

U.S. Patent Apr. 8, 2003 Sheet 34 of 68 US 6,546,397 B1

186 RUNTIME ENGINE TODATA BASE LINKAGE

RUNTIME ENGINE READSA PARAMVALUE WHICHPOINTS TO THE DATABASE AND
INITIATES THE READ OPERATION.

THE READ TECHNICUEIS NON-PRIVLEGED.

187 HEADER RECORD INITIALIZATION

THE HEADER RECORDS ARE READ AND THEVALUES PROCESSED.

88
PARAGRAPH, TEXT BUTTON, AND IMAGE STYLE PROCESSING.

THE STYLES RECORDS ARE READ, AND THE WALUES ARE
STORED FOR SUBSECUNT PARAGRAPH, Text, AND IMAGE

OBJECT GENERATION. s

EXCEPTION FIRSTWEBPAGE GENERATION.
HANDLNG

THE BOOLEAN, INTEGER, STRING AND FLOATING POINTFIELDS FOR THE FIRST TO
ERRORRECOVERY WEBPAGE ARE READ AND INITIALIZED. (SEE FIG.24) FIG. 30
AND/OR GRACEFUL

OPERATION THE SERIAZED MULTIMEDIA OBJECTS FOR THE FIRSTWEBPAGE ARE READ
CANCELLATION AND CAST INTO THEIR FINAL FORM. (SEE FIG.24)

191

MULTHREAD FIRST PAGE PROCESSING WITH THE GENERATION OF DATA FORALL THE OTHER PAGES.
(SEE FIG.31)

l
GENERATION OF DATA FOR AL THE OTHERWEBPAGES.

THE BOOLEAN, 1NTEGER. STRING AND FLOATING POINTFIELDS FOR THE OTHER WEB
PAGES ARE READ AND INITIALIZED. (SEE FIG.24) TO FIG. 30

THE SERIALIZED MULTIMEDIA OJECTS FOR THEOTHER WEBPAGES ARE REAAND
CAST INTO THEIR FINAL FORM. (SEE FIG.24)

192 Fig. 29

READ DATA BASE AND GENERATE
NECESSARY OBJECTS.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 229 of 548

U.S. Patent Apr. 8, 2003 Sheet 35 0f 68 US 6,546,397 B1

se-N

194 NON-CENTEREPLACEMENT CENTREPLACEMENT 195

-...-- LEFTAND TOP COORDINATES OBJECT WDTH CONVERTED INTO -
CONVERED TO LOCAL SCREEN LOCAL SCREEN VALUES. LEFTAND

WINDOW RESOLUCN. TO COORONATES CALCULATED

196

OBJECT TYPE

198 199

PARAGRAPH TEXT BUTTON MAGE OBJECT.
OBJECT.

THE PARAGRESSEE sYERTED INTO IFSCALED WAS CLOSEN, WIDTHAN HEIGHT Are
3D EFFECTS, F CONVERTED INTO LOCAL SCREEN VALUES, AND THE
CHOSEN, ARE IMAGESDRAWNTOSCAE. 3D EFFECTS, If CHOSEN, ARESCALED BY STRING
SCALEBY ANY SIZE, FONT SIZE, AND FONT STYLE.
ANIMATION, AND

FSSE5 ESSESSEE, FONT STYLE. IF DON'T SCALE WAS CHOSEN, HE HEIGHT AND
F DON'T SCALE WAS CHOSEN, the HIGHT AND WDTHARE NOTADJUSTED TO THE LOCAL SCREEN

WDHARE NOTADJUSTED TO THE LOCAL SCREEN WALUES.
WALUES.

TO
FG, 31

3D EFFECTS, IF CHOSEN, Are SCALED BY ANY
ANIMATION, AND BY IMAGE WIDTH AND HEIGHT.

Fig. 30

WEB PAGE GENERATION WITH SCALING
TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 230 of 548

U.S. Patent Apr. 8, 2003 Sheet 36 of 68 US 6,546,397 B1

s' N.
FROM

200 FIG.30

WEBPAGE COUNTERLOOP

INCREMENT FROM FIRSTWEBPAGE.
CHECKBOOLEAN PAGE EXISTENCEVALUE.

DOES END OF WEBPAGE
WEBPAGE Yes LOOP TEST.
EXIST? RESET COUNTER - 203

No

201
SUPPRESSDRAW FORAL DELAYED

206 TEXTAND IMAGE OBJECTS

- TRANSITONAND 205
TEXT BUTTON AND IMAGE OBJECT DRAWSYSTEM WEBPAGE TRANSiTION

TME LINE, TRANSFORMANdAN-MATION TEST. ANIMATION
LOOP No Yes

DRAW SYSTEM
INCREMENT FROM FRST PAGE OBJECT CALLED IFNO TO FIG. 32

TRANSiTION.

ANIMATION
END OF TEXT No

ButtonANDiMAGE - No RANSEE. To
TIME LINE LOOP2 TIME LINE

208 209

CREATE AN INSTANCE OF A TEXT OR IMAGE TIME LINE THREAD AND STAR THE THREAD,

21

COMPLETE WEBPAGELOOP OBJECT TIME LINE TECHNOLOGY

FO FIG. 35 TO FIG.33

Fig. 31

THE MULTILEVEL WEB PAGE AND OBJECT
THREAD TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 231 of 548

U.S. Patent Apr. 8, 2003 Sheet 37 of 68 US 6,546,397 B1

LOCK THE ANIMATON
PROCESS

RANDOM
TRANSiTION

NITALIZE: EXECUTE AN ANIMAON LOOP CREATE 214
RANDOM

NCREMENT BYTIME AND NUMBER OF TRANSiTION
ANIMATIONSBASED ONUSER DEFINED ANIMATION

SETTINGS NUMBER

ORAWANIMATION 26

GENERATE AN OFF-SCREEN MAGE FOR NEXT WEBPAGE WHILE PRESERVING THE OFF SCREEN
IMAGE OF THE PRORWEBPAGE.

ALIGN, SCALE, AND MERGE TOGETHER AS NECESSARY INTO ASECONDARY OFF-SCREEN
BUFFER AND DRAW TO THE SCREEN

INCREMENTX, Y, WIDTH AND HEIGHT VALUES FOR PRIOR AND
NEXT WEB PAGE, BASED ON ANIMATION TYPE AND

RESOLUTION.

CADRAW METHOD

LAST ANIMATION
CYCLEP

AT FIG. 31

Fig. 32

WEB PAGE TRANSITION ANIMATION

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 232 of 548

U.S. Patent Apr. 8, 2003 Sheet 38 of 68 US 6,546,397 B1

st

220

NON-TIME LINE ANIMATION AND/OR 222
TRANSFORMATION TEST DELAY SETATMER APPEARANCE EVENT.

ENTRY ANIMATION AND/OR TRANSFORMATION
TEST

224
ENTRY

N ANIMATION,
CHILD TRANSFORMATION

TIMELINES

No Yes 226

CREATE INSTANCE(S) OF CHILD TEXT AND/OR IMAGE POPUPTIME LINE THREAD(S) AND START THE THREAD(S). TO FIG. 31 -

--- 227

PARENT OBJECT TIME INEMAINANIMATION/TRANSFORMATION TEST k

r 230 r
-- w

TRANSFORMATION ONY MAIN ANIMATION ONLY TRANSFOFRMATION THENANIMATION TRANSFORMATION WITH
ANMATON

|CREATE AN INSTANCE OF CREATE AND STARTA RANSFORMATION
CREATE AN INSTANCE OFA AN ANIMATION THREAD THRA. SET THE JOINMETHOd TOWAITHE CREATE AND STARTA
TRANSFORMATION THREAD AND START THE TREAD. COMPLETION OF THE TRANSFORMATION. SUPER
AND START THE THREAD. TRANSFORMATION

SET THE JOINMETHOD THE TRANSFORMATION THREAD CREATES THREAD, SET THE JOIN
SET THE JOINMETHOD TO TO WAIT FORTHE AND STARTS ANANIMATIONTHREAD. THE METHOD TO WAITFOR
WAIT FOR THE COMPLETON COMPLETION OF THE JOINMETHODS SET TO WAIT FOR THE HE COMPLETON OF THE
OF THE TRANSFORMATION. ANIMATON COMPLETON OF THE ANIMATION. THREAD,

EXECUTE THE DEPARTURE ANIMATIONTRANSFORMATION

CREATE AN INSTANCE OF AN ANIMATIONTRANSFORMATION THREAD AND
START THE TREAD.

SET THE JOINMETHOD TOWAIT FORTHE COMPETION OF THE ANIMATION.

235 TERMINATE
POST TO JOIN SETA TIMER

EVENT GO FIG. 35

233 2 Fig. 33 OBJECT TIME LINE TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 233 of 548

U.S. Patent Apr. 8, 2003 Sheet 39 of 68 US 6,546,397 B1

FROM
FG. 33

237 238

DELAY Yes SEATMER
APPEARANCE EVENT

No

239

ENTRY
ANMATION?

No Yes

EXECUTE ENTRY ANIMATION
240

CREATE AN INSTANCE OF ANANIMATION
THREAD AND START THE TREAD

SET THE JOIN METHOD TO WAIT FOR THE
COMPLETION OF THE ANIMATION.

241
242

Yes DELAY
DEPARTURE2

SETA TMER
EVENT

No

243

EXIT
ANIMATION?

NO Yes

EXECUTE THE DEPARTURE ANIMATION 244

CREATE AN INSTANCE OF ANANIMATION
THREAD AND START THE TREAD.

SET THE JOIN METHOD TO WAIT FOR THE
COMPLETON OF THE ANMATION.

245

TERMINATE.
POST TO JOIN
TO FIG. 33

Fig. 34
CHILD TIME LINES FORTEXT
BUTTON AND IMAGE OBJECTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 234 of 548

U.S. Patent Apr. 8, 2003 Sheet 40 of 68 US 6,546,397 B1

FROM
FIG. 31,

FG.33 AND
FG. 34

246 JOIN WITH ALL WEB PAGE
OBJECTS

WAT FOR THE COMPLETION OF
ALL PARENT AND CHILD TIME
LINES FORTEXT AND IMAGE

OBJECTS.

STAY ON
WEB PAGE?

248 249 RESPOND TO USER INTERACTIONS
AND/OR TIMER CONTROLS

WEB PAGE DELAY

SET TIMEREVENT FOR WEBPAGE
DELAY BEFORE CONTINUING WITH

TO FIG. 36 THE WEB PAGE LOOP.

250

END OF WEB
PAGE COUNTER

LOOP

Fig. 35

COMPLETE WEB PAGE AND
OBJECT THREAD LOOP

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 235 of 548

U.S. Patent Apr. 8, 2003 Sheet 41 of 68 US 6,546,397 B1

FROM
FIG. 35

251 - MOUSE TO OBJECTRECOGNITION TECHNIQUE

SCALING TECHNOLOGY (SEE FIG. 27) SETS SCREEN COORDINATEWALUES FOR ALL OBJECTS AND
THEIR SUBCOMPONENTS

MOUSE POSITION DETERMINES WHICH OBJECT(s) ARE SELECTED.

252 7 \

A TEESUSER / INTERACTION

253 257

MOUSE MOVED OVER OBJECT(s) MOUSE DOWN OVER OBJECT(s)

256 --- 254 258 260

y
PARAGRAPH TEXT BUTTON AND/OR IMAGE OBJECT(S) TEXT BUTTON AND/OR IMAGE OBJECT(S) PARAGRAPH

OBJECT'S MOUSE OVER STATESDRAWN. OBJECTS CLICK STATESDRAWN. OVER HOT LINK

TEXTAND/OR IMAGE POPUP OBJECTS ARE SNYESEMSESEP CREATES ACAL
MOUSE OVER DRAWN, FDEFINED. TO
COLORS ARE SOUND AND WIDEO EVENTS ARE EXECUTED, APPROPRIATE
DRAWN IFOEFINED. GOTCEVENTIS EXECUTED, F DEFINED. METHOD

MoUSE MOVED OFF objecT(s) MOUSEUP
255 OBJECTSNORMAL STATESDRAWN. 259

OBJECTSNORMAL ORMOUSE OVER STATES
TEXT BUTTON AND/OR IMAGE POPUP OsCTS ARE DRAWN, DEPENDING UPON MOUSE COORDINATES.
ERASED, IFNOT FROZENBYA CLICKDEFINEDEVENT.

SOUND AND WIDEO EVENTS MAYBE TERMINATED, IF
SOUND AND WIDEO EVENS MAYBETERMINATED, if EFINED THAT WAY.

DEFINED THAT WAY.

261

EXIT -

Fig. 36

RESPOND TO USER INTERACTIONS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 236 of 548

U.S. Patent Apr. 8, 2003 Sheet 42 of 68 US 6,546,397 B1

The Paners interface objects

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 237 of 548

U.S. Patent Apr. 8, 2003 Sheet 43 of 68 US 6,546,397 B1

x3xxxx

-3

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 238 of 548

U.S. Patent Apr. 8, 2003 Sheet 44 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 239 of 548

U.S. Patent Apr. 8, 2003 Sheet 45 of 68 US 6,546,397 B1

a.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 240 of 548

U.S. Patent Apr. 8, 2003 Sheet 46 of 68 US 6,546,397 B1

i

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 241 of 548

U.S. Patent Apr. 8, 2003 Sheet 47 of 68 US 6,546,397 B1

Sai Sin Cairo Operatists

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 242 of 548

U.S. Patent Apr. 8, 2003 Sheet 48 of 68 US 6,546,397 B1

s
...a...:"www.wrwrxmass Oai Sir Corraigeratics

s

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 243 of 548

U.S. Patent Apr. 8, 2003 Sheet 49 of 68 US 6,546,397 B1

ai Si critici (perators

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 244 of 548

U.S. Patent Apr. 8, 2003 Sheet 50 of 68 US 6,546,397 B1

&

Dual Spin Control Operations
s---------------------------------------e.a.a.s. . . . rrrrr--aasaaa... wers---------------------

3888 ...is

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 245 of 548

U.S. Patent Apr. 8, 2003 Sheet 51 of 68 US 6,546,397 B1

s

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 246 of 548

U.S. Patent Apr. 8, 2003 Sheet 52 of 68 US 6,546,397 B1

s issix sin&

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 247 of 548

U.S. Patent Apr. 8, 2003 Sheet 53 0f 68 US 6,546,397 B1

s

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 248 of 548

U.S. Patent Apr. 8, 2003 Sheet 54 of 68 US 6,546,397 B1

s

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 249 of 548

U.S. Patent Apr. 8, 2003 Sheet 55 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 250 of 548

U.S. Patent Apr. 8, 2003 Sheet 56 of 68 US 6,546,397 B1

s

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 251 of 548

U.S. Patent Apr. 8, 2003 Sheet 57 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 252 of 548

U.S. Patent Apr. 8, 2003 Sheet 58 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 253 of 548

U.S. Patent Apr. 8, 2003 Sheet 59 of 68 US 6,546,397 B1

...'. '''.-----------------

A.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 254 of 548

U.S. Patent Apr. 8, 2003 Sheet 60 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 255 of 548

U.S. Patent Apr. 8, 2003 Sheet 61 of 68 US 6,546,397 B1

g

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 256 of 548

U.S. Patent Apr. 8, 2003 Sheet 62 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 257 of 548

U.S. Patent Apr. 8, 2003 Sheet 63 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 258 of 548

U.S. Patent Apr. 8, 2003 Sheet 64 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 259 of 548

U.S. Patent Apr. 8, 2003 Sheet 65 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 260 of 548

U.S. Patent Apr. 8, 2003 Sheet 66 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 261 of 548

U.S. Patent Apr. 8, 2003 Sheet 67 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 262 of 548

U.S. Patent Apr. 8, 2003 Sheet 68 of 68 US 6,546,397 B1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 263 of 548

US 6,546,397 B1
1

BROWSER BASED WEBSITE GENERATION
TOOLAND RUN TIME ENGINE

FIELD OF THE INVENTION

The present application is directed to computing Systems,
and more particularly to methods and apparatus for building
a web site using a browser-based build engine.

BACKGROUND

Conventional web site construction tools operate on tra
ditional operating System platforms and generate as output
HTML (hyper text mark-up language) and Script Code (e.g.,
JavaScript). Abrowser draws a web page associated with the
web site by interpreting the HTML and JavaScript Code.
However, conventional mark-up and Scripting languages
include numerous inherent limitations. Conventional mark
up and Scripting languages have not been designed for
Serious multimedia applications. They have almost no file
handling ability and very little computational power. In
addition, they are remarkably slow and inefficient.
As such it is virtually impossible to write a web publish

ing application in HTML and JavaScript. All conventional
implementations must, and do, utilize a full-featured pro
gramming language, Such as C++ or Visual Basic. Since the
current popular browsers do not Support these languages, by
necessity, conventional web publishing applications run on
platforms other than the World Wide Web (WWW) and its
browsers. Therefore, at best, a conventional web publishing
application can offer only a crude preview capability of what
a real web page will look like.
Although C++ and Visual Basic are very capable

languages, the conventional web publishing applications
written in these languages are Still necessarily limited by the
limitations inherent in their form of output, which as
described above is typically HTML and scripting code. As
Such, a conventional web publishing application written in
one of these languages Suffers from the Severe performance
problems inherent in these languages.

For example, HTML and JavaScript are incapable of
reformatting text and Scaling buttons or images dynamically.
In addition, most conventional web publishing applications
design a web page layout to fit into a 640 pixel wide Screen.
This means that the ability for higher resolution screens to
display more data horizontally is lost. Since capability is
wasted on the horizontal plane, unnecessary vertical Scroll
ing may be required. Further, on higher output resolution
devices (screens), unsightly extra white space or background
may be prevalent.

SUMMARY

In one aspect the invention includes a Browser Based
build engine that is written entirely in a web based full
featured programming language (e.g., JAVA). A Browser
Based Interface (the “Interface”) between the web designer
and the build engine is included. The browser-based inter
face can be written in the World Wide Web’s (WWW)
Hypertext Markup Language (HTML) and its Extensions
(Dynamic HTML, JavaScript and Cascading Style Sheets).
The Interface includes a unique Set of communication tech
niques. One technique allows for effective two-way com
munications between a JAVA engine and JavaScript.
Another technique allows for communications between a
JAVA applet object inside a JavaScript window, with the
JAVA engine, which permits the implementation of
advanced intelligent interface objects, Such as a "slider” or
a “dial.

15

25

35

40

45

50

55

60

65

2
In one aspect the invention includes a Screen resolution

Sensing mechanism that causes a build engine (i.e. build
tools) to adopt its interface to the web designer's Screen
resolution.

In one aspect, the invention includes a multi-dimensional
array Structured database, that, in addition to Storing the
numeric and String data found in conventional databases,
also Stores multi-dimensional arrays of various multimedia
objects. They include colors, fonts, images, audio clips,
Video clips, text areas, URLS and thread objects. The inven
tion includes a run time generation procedure that creates a
compressed web site Specific customized run time engine
program file, with its associated database and a build engine
generated HTML shell file.
The invention can include web page Scaling technology,

So that when the Web Site/web page is accessed on the
WWW, the web pages and all the objects within them can be
Scaled to the user's Screen resolution and to the then current
browser window size.

In one aspect, the invention includes a proprietary multi
level program animation model (threads) that responds to
multiple user interactions and time Sensitive operations
Simultaneously.

In one aspect, the invention includes a mechanism for the
dynamic resizing of the build engine's web page size during
various editing operations.

In one aspect, the invention includes techniques for cre
ating browser based interface objects that Visually and
behaviorally are identical to those of the MS Windows
Standard.

Aspects of the invention can include one or more of the
following features. Abrowser based build engine is provided
that includes a browser based interface. The entire web site
build process is WYSIWYG (what you see is what you get),
with the web designer working directly on and with the final
web page. The data produced by the build engine is pro
cessed and ultimately placed into a multi-dimensional array
Structured database, and Stored in an external file. A run time
generation procedure creates a compressed program custom
ized run time engine file, with an associated database and a
build engine generated HTML Shell File.
When the web site/web page is accessed on the WWW,

web page Scaling technology can be accessed to generate
web pages that are Scaled to the user's Screen resolution. A
technique is provided So that an applet’s size (height and
width) can be set in real time under the control of either the
interface or the build engine. At the same time a multi-level
program animation model (threads) is activated for user
interactions and time Sensitive operations.
The browser based interface technologies create a Set of

interface objects with a look and feel that is identical to that
of MS Windows, yet includes technologies that equal or
occasionally Surpass those of high end word processors,
desk top publishers, and image processing Software
programs, particularly in the areas of interaction, animation,
and timeline technologies. The run time engine includes
multimedia capabilities often rivaling the digital processing
capabilities Seen on television and in the movies.

Because of the implementation of a variety of perfor
mance and file reduction techniques, the entire run time
environment can range from as low as 12K, and no larger
than 50K. This depends upon the features selected by the
web designer. Although the compressed image, audio, and/
or video files must also be downloaded, with a reasonable
Web Site design, web pages should load quickly. The initial
run time environment is no larger than 25K, thus the initial

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 264 of 548

US 6,546,397 B1
3

web page should generally load in less than 2 Seconds, and
Subsequent web pages in less than 1 Second with a 56K
modem, even with numerous image files.

The present invention provides a real time, dynamic
linkage between JAVA and HTML including two-way
communications, in real time, between JAVA and JavaScript.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan
tages of the invention will become more readily appreciated
through the following drawings and their associated Screen
shots, referred to throughout the detailed description,
wherein:

FIG. 1 is a flow chart depicting a prior art conceptual
overview of how a user and a web browser interface.

FIG. 2 is flow chart depicting a conceptual overview of
how a user interfaces with a web browser when implement
ing the present invention to construct a web site.

FIG. 3a is a Schematic diagram showing the main com
ponents of a build tool in accordance with one implemen
tation of the present invention.

FIG.3b is a proceSS flow diagram showing a build proceSS
in accordance with one implementation of the present inven
tion.

FIG. 4a is Schematic diagram showing the main compo
nents of a run generation tool in accordance with one
implementation of the present invention.

FIG. 4b is process flow diagram showing a run time
proceSS in accordance with one implementation of the
present invention.

FIG. 5 is a flow chart, with its attendant Screen shot shown
in FIG. 37, that depicts a detailed view of a build time
initialization procedure in accordance with one implemen
tation of the present invention.

FIG. 6 is a flow chart, with its attendant Screenshots
shown in FIGS. 38–48, that depicts a detailed view of the
build time Supported user input techniques and techniques
for communication of data and Status between the build
engine and the interface in accordance with one implemen
tation of the present invention.

FIG. 7a is a flow chart that shows an overview of the build
time techniques for implementation of pop-up windows
(usually called “dialog boxes” in MS Windows), the panel
interface, and interface for color Selection.

FIG. 7b is a flow chart, with its attendant Screenshots
shown in FIGS. 37-38, that shows a detailed view of the
build time techniques for implementation of panel interface
objects, including the menu bar, menus and Sub-menus, the
tool bars, Status fields, interactive fields, and interactive pull
down lists, in accordance with one implementation of the
present invention.

FIG. 7c is a flow chart, with its attendant Screenshots
shown in FIG. 37 and FIG. 63, that shows a detailed view
of the build time techniques for implementation of tabbed
pop-up windows (also called “dialog boxes” in MS
Windows).

FIG. 8 is a flow chart that shows a detailed view of the
build time techniques for updating the internal databases and
the Setting of feature flags for run time optimization pur
pOSes.

FIG. 9 is a flow chart, with its attendant Screenshot shown
in FIG. 37, that shows a detailed view of the build time
polling methods used to facilitate communication from the
JAVA build engine to the interface.

15

25

35

40

45

50

55

60

65

4
FIG. 10 is a flow chart that shows a detailed view of the

build time techniques for analyzing user input for error
checking and data integrity.

FIG. 11 is a flow chart, with its attendant Screenshot
shown in FIGS. 38-41, that shows a detailed view of the
build time methods for direct text entry at an arbitrary cursor
position and text editor implementation methods.
FIG12 is a flow chart, with its attendant Screenshot shown

in FIGS. 49-56, that shows a detailed view of the build time
techniques for reading external image files, creating them on
a web page, and then manipulating them through either
direct mouse interaction or through the interface's panel/
windows.

FIG. 13 is a flow chart that shows a detailed view of the
build time implementation of text, button and image Styles
in accordance with one implementation of the present inven
tion.

FIG. 14 is a flow chart that shows a detailed view of the
Video and audio processing in accordance with one imple
mentation of the present invention.

FIG. 15 is a flow chart that shows a detailed view of the
frame, table, forms, and draw objects processing and tech
nology in accordance with one implementation of the
present invention.

FIG. 16 is a flow chart that shows a detailed view of the
build time methods for Supporting various user interactions
at run time.

FIG. 17 is a flow chart, with its attendant Screenshots
shown in FIGS. 57–58, that shows a detailed view of the
build time methods for text button and image object anima
tion.

FIG. 18 is a flow chart, with its attendant Screenshots
shown in FIGS. 59–60, that shows a detailed view of the
build time methods for text button and image transforma
tions.

FIG. 19 is a flow chart, with its attendant Screenshots
shown in FIGS. 61-62, that shows a detailed view of the
build time methods for text button and image time lines.

FIG.20 is a flow chart with its attendant Screenshot shown
in FIG. 63, that shows a detailed view of the build time web
page transition animations and time lines.

FIG. 21a is a flow chart that shows a detailed view of file
operations performed in accordance with one implementa
tion of the present invention.

FIG. 21b is a flow chart that shows a detailed view of the
View operations performed in accordance with one imple
mentation of the present invention.

FIG. 22 is a flow chart that shows a detailed view of a
dynamic web resizing process that is activated by the
“Open” and “Web Site” commands under the “File” menu
and the "Zoom’ command under the “View' menu.

FIG. 23 is a screen shot showing a file selection window
operation in accordance with one implementation of the
present invention.

FIG. 24 is a flow chart showing a detailed view of an
external database in accordance with one implementation of
the present invention and also shows the Security and
optimization techniques that can be employed.

FIG. 25 is a flow chart showing a detailed view of a
method for creating a customized and optimized run time
engine in accordance with one implementation of the present
invention.

FIG. 26 is a flow chart showing a detailed view of the
methods for creating an HTML shell file in accordance with
one implementation of the present invention.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 265 of 548

US 6,546,397 B1
S

FIG. 27 is a flow chart showing a detailed view of the
methods for creating compressed CAB and JAR files in
accordance with one implementation of the present inven
tion.

FIG. 28 is a flow chart showing a detailed view of the
technology for dynamic web page size creation in accor
dance with one implementation of the present invention.

FIG. 29 is a flow chart showing a detailed view of the
methods for reading the multimedia database and generating
the necessary objects in accordance with one implementa
tion of the present invention.

FIG. 30 is a flow chart showing a detailed view of the
methods for dynamically Scaling the web page object(s) to
different Screen resolutions and window Sizes in accordance
with one implementation of the present invention.

FIG. 31 is a flow chart showing a detailed view of the
methods for executing a multi-level web page and object
thread architecture in accordance with one implementation
of the present invention.

FIG.32 is a schematic diagram that shows a detailed view
of the web page transition animation architecture in accor
dance with one implementation of the present invention.

FIG.33 is a schematic diagram that shows a detailed view
of the parent object time line architecture in accordance with
one implementation of the present invention.

FIG.34 is a schematic diagram that shows a detailed view
of the child object time line architecture in accordance with
one implementation of the present invention.

FIG. 35 completes the flow chart begun at FIG. 31.
FIG. 36 is a flow chart showing a detailed view of the

methods for responding to user interactions in accordance
with one implementation of the present invention.

FIGS. 37-63 are screen shots of the user interface pre
Sented by the build process in accordance with one imple
mentation of the present invention.

DETAILED DESCRIPTION

Referring to FIG. 1, in a prior art process for creating and
displaying a web site, the user either directly writes HTML
and Script Code providing user input at 1 or operates a
related prior art product at 2, which generates the HTML and
Script Code at 3. A separate file, with its attendant HTML
and Script Code is uploaded for each Separate web page in
the web site at 4, which is then interpreted by a browser
when accessed at 5.

FIG. 2 shows a process for creating and displaying a web
Site in accordance with one aspect of the invention in which,
a user operates a build tool at 6, working directly with one
or more of the final web pages in a full WYSIWYG mode.
The build tool accepts the user input and creates a multi
dimensional embedded multimedia object database at 7. A
run time generation proceSS is then invoked to create the
necessary run time files at 8 (including HTML shell, CAB/
JAR files and a customized runtime engine) which are then
loaded to a user's web site at 9. The web page(s), when
viewed by a web surfer, are activated by the browser calling
the customized run time engine at 10. The run time engine
then begins to read the database and download image, audio
and video files, while simultaneously drawing the first web
page for viewing or user interaction at 11.
Build Tool and Process
FIG.3a shows a build tool 350 at the detailed component

level. The build tool includes a build engine 352, interface
354, screen sensing mechanism 356, multi-dimensional
array structured database 358, interface's database 360, web

15

25

35

40

45

50

55

60

65

6
page Scaling engine 364, time line engine 366 and installa
tion Program 368. The operation and use of each of these
components is described in greater detail below.

FIG. 3b is a flow of the build process executed by the
build tool to create a web page/web site. Referring to FIGS.
3a and 3b, the process begins with an initialization (12) and
continues through to a point where a web site has been
defined and Stored in the build engine's internal database
(29).
The build tool 350 includes plural individual tools that are

created and initialized at (12). The processes for creating and
initializing build tools are described in greater detail below
in association with FIG. 5. After the build tools are created
and initialized at 12, the build tool 350 interacts with the
user, receiving user commands (actions), for example, to
build a web site. The build tool 350 processes user responses
and communicates the same and Status information to both
the build engine 352 and interface 354 at 13. The processes
for interacting with the user are described in greater detail
below in association with FIG. 6.

In one implementation, the interface includes a panel (and
its objects, including a menu bar, menus and Sub-menus, tool
bars, Status fields, interactive fields and interactive pull
down lists), pop-up windows (called “dialog boxes” in MS
Windows), color and alert message interface technologies,
built with HTML, Dynamic HTML (DHTML), JavaScript,
and Cascading Style Sheets (CSS). Interface 354 responds to
the user input and may display a pop-up window, update the
interface objects, or display alert messages, as shown at 15.
The operation of the interface 354 is described in greater
detail below in association with FIG. 7a, FIG. 7b and FIG.
7c.
As the build engine 352 receives data and Status

information, it updates an internal database (part of multi
dimensional array structured database 358) and sets feature
flags at 14. The processes for updating the internal database
and Setting flags are described in greater detail below in
association with FIG.8. To enable effective two-way com
munication between the interface and the build engine,
polling technology is included as shown at 16. The details of
the polling process are described in greater detail below in
association with FIG. 9.
Whenever user input is received, the build tool 350

analyzes the input including error checking at 17. In one
implementation, the input is analyzed and then processed by
object type (class). The process for analyzing input to
determine type is described in greater detail below in
association with FIG. 10. In one implementation, the num
ber of different object processing technology classes are
four, and include direct text entry (18), image processing
(19), video or audio files and links (21) and frames, tables,
forms and draw objects (22). The build tool 350 processes
the user input based on class. The processes invoked for
direct text entry are described in greater detail below in
association with FIG. 11. The processes invoked for image
processing is described in greater detail below in association
with FIG. 12. The processes invoked by the text button,
paragraph, and image Style technologies are described in
greater detail below in association with FIG. 13. The pro
ceSSes invoked for processing audio and Video files and
channels are described in greater detail below in association
with FIG. 14. The processes invoked for processing frames,
tables, forms and draw objects are described in greater detail
below in association with FIG. 15. When an image, text
button or paragraph object is to be inserted in the web page,
the current Style that is Selected in the panel defines the
initial Settings used when creating the object in the web

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 266 of 548

US 6,546,397 B1
7

page. AS Such, button, image and paragraph Style Setting and
technology will be invoked at 20 depending on the user
input. The processes invoked by the paragraph Style Setting
and technology is described in greater detail below in
association with FIG. 13.

After the input is processed as described above, a check
is made to determine if one or more animation or transfor
mation (interaction) techniques are to be invoked at 23. The
run time engine provided in accordance with the teachings
of the present invention Support various user interactions,
including Support for numerous animation and transforma
tion techniques, and both web page and object time lines.
Depending on the user Selections, one or more technologies
may be invoked. In the implementation shown, the build tool
350 is configured to check to determine if the input data is
related to plural technologies including: user interaction
technology (24), animation technology (25), transformation
technology (26), object time line technology (27) and web
page transition animation technology (28). The processes
invoked for user interaction technology are described in
greater detail below in association with FIG. 16. The pro
ceSSes invoked for animation technologies are described in
greater detail below in association with FIG. 17. The pro
cesses invoked for transformation technologies are
described in greater detail below in association with FIG. 18.
The processes invoked for object timeline technologies are
described in greater detail below in association with FIG. 19.
The processes invoked for web page transition animation
technologies are described in greater detail below in asso
ciation with FIG. 20.

After the build tool 350 has processed the user input, one
or more file operations can be invoked at 29a. In one
implementation, the file operations are “save”, “save as”,
“new”, “close”, “open”, “apply” and “web site”. If “open” or
“web site' are selected, the build tool 350 initiates the
dynamic web page resizing process at 29c (See FIG.22). If
“save' or “save as are selected, the build tool 350 initiates
a run generation process (See FIG. 4 and FIG. 24). File
operations “close”, “open”, and “new” can also initiate the
run generation process, based on the State of the build
proceSS and user action.
At any time during the processing of user input, one or

more view operations can be invoked at 29b. In one
implementation, the View operations Supported are
“normal”, “preview”, “play”, and “Zoom” (at various Zoom
percentages). If any of the "Zoom’ levels are selected, the
build tool initiates the dynamic web page resizing process at
29c (See FIG. 22). If the “preview” or “play” view opera
tions are Selected they will initiate the run time process (See
FIGS. 28 through 36). FIG. 4a shows a run generation and
runtime tool 370 at the detailed component level. The run
generation and runtime tool 370 includes a run generation
procedure 371, web scaling engine 372, a database 374 and
a (web) page size generation engine 376 and run time engine
377 including a runtime user interaction engine 378, a
runtime timeline engine 380 and a runtime drawing,
animation, audio, and Video engine 382. In one
implementation, run time engine 377 includes plural
engines, each of which may in themselves include plural
engines.

FIG. 4b shows the run processes including methods for
creating the run time files, including the external database,
the web site specific customized run time engine, the HTML
shell file, and the compressed CAB/JAR file. The run
processes also include methods for Scaling each web page to
the web Surfer's then current Screen resolution and web
browser window size. After a web page has been Scaled, a

15

25

35

40

45

50

55

60

65

8
run time engine executes a multi-level thread technology,
which presents to the Viewer web pages that can operate
under time lines that may include animated transitions.
ASSociated with the web page time lines can be object time
lines that may define entrance, main and exit animations,
transformations, and Synchronized time lines for child
objects. Each object can have multiple object States, respon
Sive to various user interactions, which can result in numer
ous types of Visual and audio responses and actions.

Referring now to FIGS. 4a and 4b, a run generation
process 360 begins by invoking the run generation proce
dure 377. The run generation procedure 371 begins by
creating the external database (part of database 374) at 30.
The external database may include references to image,
Video and audio files, and Video and audio channels. The
process for creating the external database is described in
greater detail below in association with FIG. 24. A custom
ized and optimized run time engine (run time engine 377) is
created at 31. The customized and optimized run time engine
(run time engine 377) generates the web pages for the web
Site and is activated from the user's Server. The proceSS for
creating the run time engine 377 is described in greater detail
below in association with FIG. 25. The HTML Shell file is
created at 32, and then the CAB and JAR files are created at
33a. The HTML shell file includes JavaScript Code to
activate and interrogate the page size generation engine 376,
and to activate the entire runtime engine. The CAB and JAR
files both include the runtime engine and database in com
pressed executable form. The CAB file(s) will be activated
by the HTML shell file if it senses the browser as being
Microsoft Explorer, otherwise it will activate the JAR file(s).
The processes for creating the HTML shell file and the CAB
and JAR files are described in greater detail below in
association with FIG. 26 and FIG. 27, respectively. The run
generation proceSS portion of the run processes is completed
as the HTML shell file and the CAB and JAR files are
uploaded to the user's web site at 33b.

After the upload, the run time process 365 portion begins
with the run time engine 377 invoking a web page size
generation technology (engine)376 at 34. The web page size
generation technology can be used to determine the Screen
resolution and the current browser window size. The process
for invoking and initializing the web page Size generation
technology is described in greater detail below in association
with FIG. 28. The external database is read and the neces
sary objects generated at 35 from their stored external
references. These objects include image, audio, and Video
objects. The processes for generating the necessary objects
are described in greater detail below in association with FIG.
29. A web page generation and Scaling technology (web
page scaling engine 372) is then invoked at 36. The web
page Scaling engine 372 can be used to reformat and Scale
objects that had been placed in a web page during the build
process. The processes employed by the web page genera
tion and Scaling technology are described in greater detail
below in association with FIG. 30. The run time engine then,
as necessary, executes a multilevel web page and object
thread technology at 37 while the runtime user interaction
portion 378 of run time engine 371 responds to user inter
actions at 38. The processes invoked by the multilevel web
page and object thread technology are described in greater
detail below in association with FIGS. 31-35. The processes
invoked by the run time engine to respond to user interac
tions are described in greater detail below in association
with FIG. 36.
Detailed Build Processes

Referring now to FIGS. 3a and 5 through FIG. 22 the
build tool 350 and its associated build process are described.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 267 of 548

US 6,546,397 B1
9

Referring first to FIGS. 3a and 5, initialization methods are
shown. At 39 the build tools are created as part of the
execution of the installation program 368. They can include:

1: Initial build tool HTML/JavaScript file (IBTF)
2: An initialization engine (IE).
3: A build engine.
4: The build engine parent HTML frame file. (PFF).
5: A “Control Panel and Status Line” HTML/JavaScript

File (“panel”) for;
Controlling the JavaScript database.
Calling and initializing all pop-up windows.
Reading all pop-up window values, and updating a

JavaScript database
Calling the build engine and passing all necessary data

and Status information.
Polling the build engine for two-way JAVA/JavaScript

communication.
Displaying and updating the Status of its interface

objects.
ISSuing alert messages.

Processing direct user interactions with the panels
interface objects.

6: Numerous HTML/JavaScript files, one for each pop-up
window.

7: JAVA applets, embedded in HTML/JavaScript pop-up
window files.

8: A build engine HTML definition file that is created and
modified dynamically.

The initialization and build engines can be placed in a JAVA
wrapper So that JavaScript code may receive and proceSS
return values from JAVA methods. The initialization and
build engines are also created in a “Signed’ CAB file, and
assigned the necessary Security rights, So that the engines
can assert the necessary permissions, if permitted by a given
browser's Security manager, when read or write operations
are required. In one implementation, an installation program
is run prior to the first use of the build tools. After installing
all of the files, the installation program can install the
necessary class libraries required by the run generation
proceSS in which the customized and optimized run time
engine is created (See FIG.25). The installation program can
also set the necessary environmental variables and installa
tion options.
At 40 the web surfer points a browser at (i.e. calls) an

initial build tool HTML/JavaScript file (IBTF). At 41 the
IBTF identifies the current browser type and version num
ber. Presently, each browser has different Security manager
implementations. In one implementation, the invention Sup
ports the following three categories:

1: With appropriate Signing and time Stamping, and with
appropriate assertions of permissions, the browser will
permit local read/write operations.

2: With appropriate Signing and time Stamping, and with
appropriate assertions of permissions, the browser will
permit local read operations, but write is only legal if
Sent to a Server.

3: Local read/write operations are illegal, but are permit
ted on the server. The IBTF can include a flag that can
be set to indicate which Security implementation is
Supported, So that all Subsequent read/write operations
will comply with the current browser's security man
ager.

At 42, the IBTF causes the browser to execute the IE so
as to Sense the Screen resolution and for adapting the
interface to the user's Screen resolution. In one

15

25

35

40

45

50

55

60

65

10
implementation, after entering a delay loop and waiting for
the IE to report it is fully loaded and initialized, the IBTF
calls two IE methods, which return the width and height of
the current Screen and browser window. The IBTF then
checks for the presence and value of a “mode cookie', to
determine whether this is an initialization process, a web site
open command process, or a dynamic web page resizing
process. If the mode cookie is set to initialize, or it doesn’t
exist, the IBTF calls the IE to generate the build engine's
HTML definition file. At 43 the IE then asserts the required
security permission and at 44 creates a build engine HTML
definition file and writes this file to the local disk (as
appropriate). At 45 the IBTF then turns control over to the
PFF for activating the “paner” and build engine and dis
playing the build engine user interface Screen.
The build engine user interface Screen includes a “panel”

portion and a build engine portion, each of which are loaded
into their respective frames, after which the web site page(s)
build process can begin. Screen shot FIG. 37 shows a
representation of the user interface presented by the build
tool. The user interface includes a panel 400 and build frame
500. Panel 400 includes a menu bar 410, menus 420 and
Sub-menus 430, tool bars 440, status fields 450, interactive
fields 460, interactive pull down lists 470 and operational
pop-up windows 480. The menu bar 410 can be used for
Selecting a menu command that will cause a menu to be
drawn. The menu (one or menus 420) can be used to select
a feature command that could cause an operational pop-up
window to be drawn, a direct user input technique or object
manipulation technique to be activated, or a Sub-menu 430
to be drawn. A sub-menu (one of sub-menu 430) can cause
the same type of events as that of a menu. The tool bars 440
include various icons that are shortcuts to feature commands
that are also available through the menu bar and its menus.
In addition, the tool bar 440 can be used to show the current
state of a feature. Status fields 450 show the current value of
a certain setting. Interactive fields 460 also show the current
value of a Setting, but can also be directly changed by the
user by typing into the field, with the result immediately
processed by the build engine 352 and displayed in the build
frame 500. Interactive pull-down lists 470 also show the
current value of a Setting, but, if Selected with a mouse click,
will drop down a Selection list, which may have an elevator
attached. The user can click on an item in the Selection list,
which will become the current setting with the result imme
diately processed by the build engine 352 and displayed in
the build frame. Operational pop-up windows 480 can have
tabs assigned if the number of choices within the pop-up
window is large. One or more Settings can be changed
through a pop-up window, with the results immediately
processed by the build engine 352 and displayed in the build
frame 500. These interface techniques are described in
greater detail below in the build process.
The build frame 500 is used to present the actual web page

as constructed by a user. The user can directly enter text,
import images, Video and audio for display/playback and
create animations and transformations that can be viewed in
the build frame. FIG. 6, with its attendant Screen shots FIG.
38 through 48, shows the user input techniques supported in
one implementation of the invention. In one implementation,
the user inputs Supported include: Selection from a JAVA
window object (48); selection from a JavaScript window
(49) including selection with dual spin control (50a) or
selection from a JavaScript child window object (50b);
direct text entry (51), page resizing (52), direct object
manipulation (53); and, Selection from a JavaScript panel
(54).

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 268 of 548

US 6,546,397 B1
11

In the implementation shown, of the Six user input tech
niques Sensed at 13, the code for Supporting Selections from
a JavaScript pop-up window at 49 and selections from the
“panel” at 54 were implemented entirely in HTML/
JavaScript Code, while support for direct text entry at 51 and
direct web page object manipulation at 53 were imple
mented entirely in JAVA (or any other browser-based full
featured programming language). In one implementation,
code for Supporting selections from a JAVA Window object
at 48 and dynamic web page resizing at 52 are implemented
using both HTML/JavaScript and JAVA. Those of ordinary
skill will recognize that, JAVA could have been used more
extensively to implement the methods described at 48, 49
and 54. However, in order to achieve the most intuitive and
MS Windows like interface, and because effective two-way
communication between JavaScript and JAVA had been
achieved (See FIG. 9), the languages proposed appear to
best Support the particular user input technique.

For example, FIG. 23 shows an actual file selection
window 2300, implemented by the invention. This type of
file selection window is available in JavaScript/HTML, but
not supported by JAVA for applets. File selection window
2300 greatly enhances the interface for the user, as the
image, Sound clip, or Video clip names need not be memo
rized. File selection window 2300 further eliminates pos
Sible operator error when typing in a pathname or filename.
The present invention utilized the strengths of JavaScript/
HTML with the power of JAVA to create a unique browser
based interface solution. In one implementation, the HTML
form element “INPUT type=file” was embedded in a Java
Script pop-up window to create the file Selection window.
The file Selection window returns a String value of the image
(or other file type) pathname to the pop-up window. The
pop-up window's JavaScript then could be used to call a
JavaScript function in the panel (panel 400) which:

1: Reads the pathname value in the pop-up window.
2: Creates a string version of a valid URL by adding the

correct URL protocol to the String.
3: Updates the panel's database (interface's database

360).
4: Calls a JAVA method in the build engine, which casts

the string value of the URL into a URL object, creates
an image object which is then drawn on the Screen, and
updates its internal database.

User inputs that are a selection from a JAVA window
object (48) permit the implementation of a vast array of
intelligent user input interface objects, from Sliders to dials,
which are extremely intuitive and Significantly enhance the
user's ergonomic experience. In one implementation, user
input interface objects are Supported as follows. When a
Selection from a JAVA window is detected, a pop-up window
(applet) is presented (associated with the feature being
manipulated, e.g., color, Volume) and an engine method is
called to begin two-way communication (for passing as
arguments any necessary Status information). The engine
begins polling a JAVA abstract object waiting for a Static
variable's value to change. The pop-up applet processes the
value as defined by a user interaction event, and updates the
static variable in that same JAVA abstract object with the
new value. Upon detecting a change in the polled Static
variable, the engine calls the necessary methods to proceSS
that new value. These methods include can include a bright
neSS filter that is applied to the image bitmap utilizing
techniques very similar to that of that employed by the “fade
in and “fade Out' animations, described in association with
FIG. 33

User inputs for a Selection from a JavaScript pop-up
window (49) can be made in a manner identical to that of

15

25

35

40

45

50

55

60

65

12
making a selection from a dialog box under MS Windows,
including the use of tabbed JavaScript pop-up windows. In
one implementation when a Selection from a JavaScript
pop-up window is detected, the panel's (panel 400) JavaS
cript opens a pop-up window. The pop-up windows initial
values are Set from a JavaScript database defined in the panel
or by the panel calling the engine for the current values and
then setting the initial values. In a tabbed JavaScript
window, clicking on a tab will call the pop-up window's
JavaScript in order to change the State and appearance of the
tabbed JavaScript window in the expected way. The pop-up
window's JavaScript calls the panel's JavaScript when a
completion event occurs. The panel's JavaScript reads or the
pop-up window's JavaScript writes the pop-up window's
field values, causing the panel's database to be updated, and
the panel then calls the appropriate build engine 352 method,
passing as arguments the necessary data and Status condi
tions. Initializing the pop-up window's values and updating
the panel's database upon completion can alternatively be
implemented by JavaScript functions executed within the
pop-up window's HTML file.

In addition, there are interface extensions that can extend
beyond the usual MS Windows implementations. One is
support for a selection from a dual spin control at 50A.
Screen shots FIGS. 42-45 show a visualization of an imple
mentation of this interface technique. Screen shot FIG. 42
shows the mouse placed over an upper Spin control. Screen
shot FIG. 43 shows the result after the user clicked once on
the upper Spin control. Notice that the value has been
incremented by 1, and the text button object is now at a
larger point size. Screen shot FIG. 44 shows a combo box
list selected by the mouse with the user about to select a
Significantly larger point size. Screen shot FIG. 45 shows the
result of that Selection, including the effect on the text button
object.

In one implementation, dual spin controls are Supported
as follows. Each Spin control has three visual States, So that
when the user places the mouse over the control it appears
to light up, and when the mouse button is depressed (pressed
down), the spin control is modified to give the appearance of
being pressed. JavaScript methods are called in the panel
(panel 400) to:

1: proceSS each mouse click event over either Spin control,
2: range check as necessary,
3: update the value in the HTML frame object residing in

the pop-up window,
4: update the JavaScript (panel 400) database,
5: call the build engine 352, if necessary, passing the

necessary value and Status.
If the mouse is clicked on a combo box, the Selection
window opens in the usual way. If a mouse click in that
window is detected, another JavaScript method in the panel
400 is called to update the JavaScript database, and call the
build engine 352, if necessary, passing the necessary value
and Status as function call arguments.
Another interface extension is Selection from a JavaScript

child window at 50B. This technique helps simplify the
number of choices given to the user in a complex pop-up
window operation. A Selection from a JavaScript child
window can be Supported as follows. The panels (panel
400) JavaScript opens the pop-up window. The pop-up
window and its child pop-up windows initial values are Set
from the JavaScript database defined in the panel 400. The
pop-up window's JavaScript opens the child pop-up window
and Sets its initial values. The child pop-up window's
JavaScript calls the pop-up window's JavaScript when a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 269 of 548

US 6,546,397 B1
13

completion event occurs. The pop-up window's JavaScript
reads the child pop-up window's values, Sets those values to
its own internally defined variables, and calls the panels
JavaScript. The panel's JavaScript reads the pop-up win
dow’s values (which include the settings for its own fields as
well as those of its child windows), updates its database, and
calls the appropriate build engine 352 method, passing as
arguments the necessary data and Status conditions. Screen
shots FIGS. 46–47 show a visualization of an implementa
tion of a JavaScript child window. Screen shot FIG. 46 show
a change text button Style pop-up window. Screen shot FIG.
47 shows the result after the user selected the “Define the
Mouse Down Text Button Style' child pop-up window.

Direct text entry is Supported at any arbitrary cursor
location. In one implementation, "text areas' are utilized in
an unconventional way, in order to Support full text entry,
text editing, text button and paragraph Styles, and reformat.
Direct text entry can be defined at any arbitrary cursor
location, and then text can be dragged to any other arbitrary
location.

Text areas are objects that are utilized by JAVA primarily
as an interface object for the implementation of a form and
are generally “added to the Screen at the initialization time
of a JAVA applet. Text areas are decidedly not WYSIWYG.
The present invention creates text areas dynamically. Screen
shots FIG. 38 through FIG. 41 show a visualization for an
implementation of this technique. Screen shot FIG. 38
shows the user Selecting a text object from the create text
icon object from a tool bar of the panel (panel 400). When
the text icon object is Selected, the cursor Shape is changed
to indicate the Selection while the text icon object is in the
Select state. Screen Shot FIG. 39 shows that the cursor has
changed shape and that the user has placed the cursor at an
arbitrary location on the web page. Screen shot FIG. 40
shows the result after the user has clicked the mouse. A text
insertion point and a Selection rectangle are drawn at the
arbitrary web page location. Screen shot FIG. 41 shows the
result after the user has pressed the letter “W' on the
keyboard. As can be seen in screen shot FIG. 41, a draw
method asSociated with the build process immediately hides
the text area. However, text editor methods associated with
the build proceSS continue to utilize the text area as a hidden,
dynamically resizing frame, whose Size is Subject to text
button or paragraph Style Settings, by the amount of text, by
the text's orientation (vertical or horizontal) and by the
texts font style(s) and font size(s). As the build engine 352
detects a relevant mouse event or keyboard event, the build
engine 352 updates the necessary variables that are defined
as return values in Specified build engine methods. Polling
technology (see FIG. 9) retrieves the relevant values and
calls the necessary JavaScript method for processing. In one
implementation, these same techniques (text area
techniques) are used in the Scaling technology (See FIG. 30).
Since the direct text entry and editing processes bypass
completely the interface and the JavaScript code, the polling
technology (See FIG.9) is used to pass the text string values
back to the JavaScript database, in order for the interface's
pop-up windows to be correctly initialized for Subsequent
text operations.

Direct text processing at 51 begins with the build engine
352 detecting a “Mouse Drag" or a “Mouse Double Click”
event. In one implementation of the present invention, if a
mouse drag event is detected, the entire initial anchor word
(assuming the “mouse down” event placed the text insertion
point within a word) is selected as well as the entire closing
anchor word. If a double click event occurs over a word, the
entire word is selected. If a double click event is detected

15

25

35

40

45

50

55

60

65

14
over a special hot Zone (for example, just to the left of a
paragraph line), then an integral number of words are
Selected. Appropriate four-dimensional variables are Set, and
a draw System is called. The draw system paints the Selected
line Segment in the marked text background and text color.
The build engine 352 then sets a return flag to be read by the
polling technology (FIG. 9). A panel JavaScript poller (FIG.
9) detects this flag and redraws the panel’s “Text” menu
object showing the choices available when text is Selected.
In one implementation, the “Text' menu includes choices of
“Text Style”, “Hot Link”, “Preferences”, and “Format”. The
states for the tool bar icon objects of “Bold”, “Italic' and
“Underline' are set appropriately as is the Setting for the
point Size interactive drop-down list. The panel's JavaScript
then calls an appropriate build engine method that resets the
flag. If the panel's JavaScript detects the user Selecting the
“Text Style”, “Hot Link”, “Preferences” or “Format”
choices, it creates the appropriate pop-up window. Upon
detecting a user completion event, the panels JavaScript
reads the data Settings in the pop-up window, closes that
pop-up window, and Sends this data to an appropriate build
engine method for processing (See FIG. 11). Dynamic web
page resizing at 52 is invoked when the build engine 352
detects a user initiated web page resize event. This could be
caused by the “Open” or “Web Site” commands from the
“File” menu, or from a "Zoom’ command from the “View'
menu. This technology is explained in detail below in
association with FIG. 22.

Direct object manipulation at 53 includes dragging of any
object, resizing of non-text objects, rotation and other image
manipulation functions, as required. The processing for
direct object manipulation begins by analyzing the type of
object Selected and the State of the object, as set by the
interface based on a user's panel Selection. The build engine
352 then changes the mouse cursors appearance, and the
type of Selection rectangle, including which attachment
points, if any, should be drawn and activated. (See FIG. 10
for the mouse event processing technology and FIG. 12 for
image processing technology). In one implementation, the
Same direct object manipulation polling technology is used
as described above with regard to direct text entry.

If a Selection of an interactive field, interactive drop-down
list object, or a toll bar icon object from the JavaScript panel
is detected at 54, then the following StepS can be invoked,
depending on the Selection. The point size of a paragraph, a
marked text range inside a paragraph or text button object
can be changed. The state of an object’s 3D frame can be
changed. In one implementation, three States for an object
frame are Supported. The 3D frame can be drawn as a
“raised” 3D object, as a “depressed” 3D object, or as a
“raised” 3D object that turns into a “depressed” 3D object if
a mouse down event is detected over the object to which the
3D frame is assigned. An object's Style can be changed. The
current web page can be changed. Finally, any other opera
tion that has been defined by a tool bar icon object in the
panel can be invoked. This includes the “file” menu choices
of new, open and Save, the "edit' menu choices of cut, copy
and paste, inserting a text, button or image object onto the
web page, applying or removing the bold, italic, and under
line text attributes for a text or button object, centering or
uncentering any web page object, Setting the animation for
a button or image object, changing the Zoom level of the web
page, or previewing the web site.
AS each new user input is received and processed in

accordance with the steps shown in FIG. 6, at all times the
internal databases of the JavaScript panel and the build
engine 352 are maintained completely in Synchronization.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 270 of 548

US 6,546,397 B1
15

Synchronization is maintained So that: all Status information
displayed by the panel is current and correct; all data and
status information passed to the build engine 352 from the
interface are consistent with the build engine's State at any
given time; the values in all pop-up windows are correctly
initialized. In order to meet these requirements, all of the
variables in the JavaScript panel database are explicitly
“typed', to be compliant with the strict variable typing
methodology generally imposed in all full featured program
ming languages Such as Java. AS JavaScript does not explic
itly type anything, where using JavaScript herein, all String,
Boolean, and integer variables are typed. Full two-way real
time communication support between the JavaScript/HTML
interface and the JAVA build engine 352 is provided as
described below in association with FIG. 9.

FIG. 7a shows four tools utilized for an implementation
of the pop-up window and panel interface technology (15 of
FIG. 3). The panel and pop-up windows make extensive use
of JavaScript mouse events, including onMousedown,
onMouse Up, onMouseOver, onMouseOut, onClick and
onchange methods (56). The pop-up windows make exten
sive use of the JavaScript onload and on UnLoad methods.
In one implementation, when a pop-up window is loaded by
the panel, the panel goes into a wait loop, Set for 5 times a
Second using the JavaScript SetTimeOut method, interrogat
ing in each loop whether the pop-up window's Status flag has
been set. Meanwhile the pop-up window, when loaded by
the browser, executes the onload method in order to Set a
flag in the panel informing the panel that the pop-up window
is now loaded. Upon detecting the load event completion,
the panel then proceeds to initialize the fields in the pop-up
window. The panel will always close a pop-up window after
detecting its completion event. However, if the user has
closed the pop-up window in a non-Standard way, the pop-up
window executes the on UnLoad JavaScript method, which
Sets a flag in the panel notifying it that the pop-up window
has been closed.

The JavaScript code in the panel and in all pop-up
windows make extensive use of JavaScript method on Key
Down for the following operations:

1: When the focus is on the icon representing completion
(“OK” is used in many MS Windows applications)
causing the enter key to initiate a pop-up window/panel
completion event.

2: When the focus is on the icon representing cancellation
“cancel” is used in many MS Windows applications)
causing the Esc key to initiate a pop-up window/panel
cancellation event.

3: When the focus is on any pop-up window or panel
object, Such as a data entry field, a check box, a radio
button, a drop-down and Scrollable list, a Scrollable list,
an icon, or a DHTML tab object (discussed below), the
navigation keys are captured by the on Key Down
method, a JavaScript function is called, and the appro
priate change is made. For all pop-up window and
panel objects, when the Tab key or the combination of
the Tab key with the Shift key are detected, the onFocus
JavaScript method is employed and the focus moves to
the appropriate pop-up window object. If the pop-up
window or panel object is a data entry field, drop-down
list or a Scrollable list, all cursor key operations are
detected and the insertion point is adjusted accordingly.
If the pop-up window or panel object is a check box,
radio button a icon, or a DHTML tab object, and a
cursor key (up, down, left, right, home and end keys,
with or without the Ctrl or Shift keys) is detected, the
onFocus JavaScript method is employed and the focus
moves to the appropriate pop-up window object.

1O

15

25

35

40

45

50

55

60

65

16
One methodology for this feature requires that all key

board events be monitored, at all times. When the Scan code
for the enter key is detected, the appropriate JavaScript
function is called to close a pop-up window and to call the
appropriate JavaScript function for processing of the rel
evant data (updated in the window) and communicating, as
necessary, with the build engine 352. In another
implementation, rather than the panel going into a wait loop
awaiting notification from the pop-up window for data
initialization purposes the pop-up window, when loaded,
executes the onload JavaScript method, and reads the
required data values directly from the panels database,
utilizing the JavaScript “opener.fieldname. Value” technique.
Similarly, the pop-up window, when detecting its comple
tion event, updates the panel's database with the revised
values from its own fields and then calls the appropriate
JavaScript function in the panel for further processing. Both
implementations, and any combinations, assure that the
pop-up windows are correctly initialized, the panel's data
base is correctly updated, and the data is Successfully Sent to
the build engine 352 for processing.

Extensive use of JavaScript technology is employed to
enhance the user interface and for communication between
the various HTML frames and/or files, within a given HTML
frame or file, between an HTML frame and the JAVA engine,
and as a bridge between two different JAVA applets (57).
Extensive use is made of JavaScript arrays to Store the
values of all page and object attributes, to initialize the
correct values in all pop-up windows, and to pass data and
Status to the engine. Various JavaScript techniques are
employed to “type” all variables (JavaScript does not explic
itly type anything as described above) as a prerequisite for
passing values to the build engine 352. Variables that should
be typed as Strings, integers and Booleans are typed through
the use of “Eval” and “New JavaScript functions. The
choice of color, found in most pop-up windows to define one
or more color elements, can be implemented utilizing Sev
eral innovative JavaScript techniques. They include:

1: Defining a complex image map through a JavaScript
function utilizing arrays. Screen shot FIG. 48 shows a
Visualization of an image map. A JavaScript computa
tional loop utilizing arrays can be used to define each
individual rectangle in this color palette with its appro
priate RGB value and a function call to the appropriate
JavaScript method.

2: Limiting the color choices from the image map to only
those colors that are designated as Safe colors. Safe
Colors are the Subset of all colors that are browser
independent, assuring a consistent color look acroSS all
browsers.

3: Supporting a dual color Selection technology. The user
can be presented with a color palette and can click on
a particular color in the color palette. Image map
technology can call a JavaScript function, which con
verts that choice into a RGB numeric definition. This
definition updates the RGB values shown in screen shot
FIG. 48, as well as passing those values, though an
appropriate function call, to a build engine JAVA
method. The build engine 352 will then draw the actual
color immediately on the web page. Alternatively, the
user can Select a value from Red, Green or Blue
Selection lists, which can be implemented using an
HTML drop-down list form object. The value selected
is then processed by an appropriate JavaScript function
call to a build engine method, which converts the RGB
to a JAVA compliant value, and then draws the actual
color on the web page.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 271 of 548

US 6,546,397 B1
17

4: Supporting True Transparency. For appropriate color
elements, Such as the background for a text button
object, the user can choose, either from the color palette
by clicking on a “transparency rectangle, as described
above, or by selecting “TIR” from a Red, Green or Blue
Selection list. This choice is then processed by an
appropriate JavaScript function call to a build engine
method, that in turn Sets a particular flag for the draw
system (of the Build Tool) to not draw a background
color for that object.

Innovative techniques are used to enable JavaScript to
dynamically create HTML code based on real time condi
tions. Cookies can be used for data communication between
HTML frames and HTML files, Some of which were created
in real time. Many unique combinations of HTML elements,
including frames, forms, and tables, enhanced by JavaScript
code, are utilized to create a eXtensions beyond that of the
MS Windows interface (58). For example, a dual combo
box/spin control for both Small and large numeric incremen
taljumps can be implemented by a combination of form and
table elements, mouse events, and JavaScript methods.

Extensive use of Cascading Style Sheets (CSS) was
employed to create a consistent look for all pop-up windows,
and for precision placement of various HTML elements
(59).

FIG. 7b shows a detailed view of the build-time tech
niques for implementation of panel interface objects, includ
ing the menu bar, menus and Sub-menus, the toolbars, Status
fields, interactive fields, and interactive pull down lists, in
accordance with one implementation of the present inven
tion (15 of FIG. 3). These techniques create panel interface
objects that have the same look and feel of those which are
implemented under the various MicroSoft Windows Oper
ating Systems. In one implementation of the present
invention, the Status fields, interactive fields, and interactive
drop-down lists are defined as HTML form objects (text
boxes and lists) embedded within DHTML objects. The
menu bar, menus and Sub-menus, and the tool bars can be
defined as pure DHTML objects. However, Cascading Style
Sheets can be used for all panel interface objects, although
more extensively with DHTML objects as will be described
below. In an alternative implementation of the present
invention, the Status fields and interactive drop-down lists
are defined as pure DHTML objects.

In one implementation of the present invention the menu
bar at 270 is defined as sets of DHTML objects, each set
corresponding to a menu command. Each Set consists of four
DHTML objects with absolute screen positioning, one defin
ing the DHTML object in the Mouse Over state at 278, the
Second for the Mouse Down state at 279, the third for the
Active State, and the fourth for the Inactive State. Each State
has a different CSS style assigned, which defines the visual
appearance of that state. When the build tool is initialized at
FIG. 5, the appropriate menu commands are initialized as
active or inactive at 277. If the menu command is defined to
be inactive, that DHTML inactive object is assigned by a
JavaScript function to the “visible” style attribute, while the
other three DHTML objects are assigned the “hidden' style
attribute. Screen shot FIG. 38 shows a visualization of the
“Interactions' menu command in the inactive State. In the
inactive State all user interactions are ignored. If the menu
command is defined to be active, that DHTML active object
is assigned by a JavaScript function to the “visible” style
attribute, while the other three DHTML objects are assigned
the “hidden' style attribute. While in the active state, the
JavaScript functions for “onMouse Down”, “onMouse Up',
“onMouseOver” and “onMouseOut' are implemented. If a

15

25

35

40

45

50

55

60

65

18
Mouse Down user interaction event is detected over an
active menu DHTML object at 279, a menu command
Specific JavaScript function is called. This function Sets the
DHTML object for the Mouse Down state to the “visible”
Style attribute, calls a generalized JavaScript function to
reset the visibility states all the other appropriate DHTML
objects, set certain status variables, and set the DHTML
object which defines the menu associated with that menu
command to the “visible” style attribute. Screen shot FIG.
37 shows a visualization of the “Image” menu command
after having received a mouse down event, with its associ
ated menu 420 having been set to the “visible” style
attribute. If a mouse up user interaction event is detected
over an active menu DHTML object at 281, a generalized
JavaScript function is called in which the DHTML object
defining the mouse over State is passed as a function call
argument. This function sets the DHTML object defining the
mouse over state to the “hidden' style attribute thus result
ing in the appearance as shown for the image menu com
mand in Screen shot FIG. 37, even when the mouse has been
moved off the menu object. If a mouse over user interaction
event is detected over an active menu DHTML object at 278,
a generalized JavaScript function is called in which three
DHTML objects are passed as function call arguments as
well as a menu command name. These DHTML objects are
the ones defining the mouse over State, the mouse down
State, and the associated menu. This JavaScript function first
tests to see if a menu has been activated by a previous mouse
down event and is still visible. If So, a generalized “reset
visiblity states' function is called, then both the mouse down
and associated menu objects are set to visible. Finally the
Same menu Specific function is called as with the mouse
down event. If no menu is visible, then the object associated
with mouse over state is set to visible. If a mouse off user
interaction event is detected over an active menu DHTML
object at 281, a generalized JavaScript function is called in
which the mouse over DHTML object and the menu com
mand name are Sent as arguments. Logic tests are made to
determine which menu command object has been left, as
well as whether any menus are currently visible. Depending
upon the results, the mouse over DHTML object may be set
to hidden.

In one implementation of the present invention the menus
and Sub-menus at 271 are defined as a set of DHTML
objects, one for each menu choice, nested inside an DHTML
object that defines the entire menu. Each menu object is
given absolute positioning, while the menu items are given
absolute positioning relative the menu objects origin. Both
the entire menu and each choice are assigned CSS Styles to
define their visual appearances. For each menu choice the
JavaScript functions for “onClick”, “onMouseOver” and
“onMouseOut' are implemented. If a mouse click event is
detected at 280 and no Sub-menu is defined, a feature
Specific JavaScript function is called. First the menu bar and
the menus are Set to their appropriate visibility States. Then
setting their visibility attribute style to “visible” activates the
appropriate tool bar icon DHTML objects. Finally the fea
ture Specific JavaScript code is executed as discussed
here within, which may cause a pop-up window to be
displayed, the Panel's database to be updated, and/or the
build engine 352 to be called. If a mouse over event is
detected at 278 and no, Sub-menu is defined, a generalized
JavaScript function is called in which the menu choice
object is passed as an argument. This function first calls a
generalized JavaScript function to close any pop-up
windows, then Set a status variable and finally executes
DHTML commands to set the correct text and background

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 272 of 548

US 6,546,397 B1
19

colors for the object. If a mouse off event is detected at 282
and no Sub-menu is defined for a menu choice either
immediately above or below, a generalized JavaScript func
tion is called in which the menu choice object is passed as
an argument. A status variable is set and DHTML commands
are executed to Set the correct text and background colors for
the object. If a Sub-menu is defined for a menu choice object,
then the same Sub-menu Specific JavaScript function are
called for both mouse click or mouse over events. This
function performs the same Steps as that of the generalized
function that was called for a mouse over event, as well as
Setting the Sub-menu object and its menu choice objects to
the visible state. Screen shot FIG. 37 shows a visualization
of the menu bar's "Image' command having been activated,
the drawing of its associated menu 420, the selection of the
“Enhance” menu choice, and the drawing of the “Enhance”
Sub-menu 430. In the event that the cursor is moved to an
adjacent menu choice under the "Image' menu, Such as
“Animation . . . " or “Rotate', then a specific JavaScript
function is called which, in addition to the functions
executed by the generalized JavaScript mouse over function,
also hides the “Enhance” Sub-menu.

In one implementation of the present invention, the tool
bars at 272 are defined as a DHTML objects, and a set of
DHTML objects are defined for a tool icon. The tool is given
absolute positioning and is assigned a CSS Style in order to
define is visual appearance. Each tool icon is assigned a Set
of three DHTML objects all with absolute screen position
ing. The first DHTML object defines the mouse over state at
278, the second for the mouse down state at 279, and the
third for the active state. Each state has a different CSS style
assigned, which defines the Visual appearance of that State.
For each tool icon active state object the JavaScript func
tions for “onClick”, “onMouselDown”, “onMouse Up',
“onMouseOver” and “onMouseOut' are implemented. GIF
images are defined for the toolbar DHTML objects, and may
be always visible. The inactive “grayed out” representations
for each toll icon can be drawn on this image. When the
build tool is initialized at FIG. 5, the appropriate tool icon
objects are defined as active or inactive at 277. The inactive
State for an tool icon is represented when all three of its
asSociated objects are assigned the visibility Style of “hid
den'. Screen shot FIG. 38 shows a visualization for several
inactive tool icons including the icon commands for bold,
italic, underline, left and centered. All user interaction events
are ignored in the inactive State. If the tool icon, based on the
State of the build engine and based on the polling technology
described below, is set to an active State, then the tool icon's
active state object is set to the visibility style of “visible”. If
a mouse click event is then detected at 280, a feature Specific
JavaScript function is called in a manner identical to that for
a mouse click event over a menu choice object as described
above. If mouse down or mouse up events are detected at
279 or 281, then respective generalized JavaScript functions
are called, in which the DHTML object defining the mouse
down State is passed as a function call argument. If a mouse
down event was detected, then the generalized function Sets
the tool icon's mouse down object to the “visible” state. If
a mouse up event was detected, then the generalized func
tion sets the tool icon's mouse down object to the “hidden'
state. If mouse over or mouse out events are detected at 278
or 282, then respective generalized JavaScript functions are
called, in which the DHTML object defining the mouse over
State is passed as a function call argument. If a mouse over
event was detected, then the generalized function Sets the
tool icon's mouse over object to the “visible” state. If a
mouse off event was detected, then the generalized function

5

15

25

35

40

45

50

55

60

65

20
sets the tool icon's mouse over object to the “hidden' state.
Screen shot FIG. 37 shows a visualization of the button tool
icon with both its associated the mouse down and active
objects set to “visible”. Screen shot FIG. 38 shows a
visualization of the text tool icon with both its associated the
mouse over and active objects set to “visible”.

In one implementation of the present invention, the Status
fields at 273 and the interactive fields at 274 are defined as
HTML text boxes. In an alternative implementation status
fields are defined as DHTML objects. For both of these panel
interface object types, under certain conditions, the panel
drawS Status information into these panel interface objects.
This information can result from user input as discussed in
FIG. 6, or through the polling and two-way communication
technology between the interface and the build engine 352
as discussed below. In one implementation of the present
invention the Status fields are:

1: The color of the selected web page object, in which the
red, green and blue Settings are shown.

2: The animation State of the Selected button or image
object.

: The Zoom level for the current web page.
The point size for the selected text or button object.

: The horizontal position, in pixels, of the mouse cursor.
The vertical position, in pixels, of the mouse cursor.

: The type of web page object (text, button, image, table,
form object, draw object, etc.) if Selected. The type of
object that the mouse is over, if no object is Selected.

8: The width, in pixels, of web page object (text, button,
image, table, form object, draw object, etc..) if selected.
The width of the object that the mouse is over, if no
object is Selected.

9: The height, in pixels, of web page object (text, button,
image, table, form object, draw object, etc..) if selected.
The height of the object that the mouse is over, if no
object is Selected.

Screen shot FIG. 38 shows a visualization of the status
fields in one implementation of the invention 450. In an
alternate implementation using DHTML objects, the status
fields will appear two-dimensional rather than the three
dimensional look currently shown.

There is one interactive field defined in one implementa
tion of the present invention. Screen shot FIG. 37 at 460
shows a visualization of the page number interactive field. In
addition to the current web page being displayed, either as
a number in one implementation or as a user defined name
in an alternative implementation, the user can place the
cursor into this field and enter the desired page to go to. A
click at 280 or Enter Key event will execute this function.

In one implementation of the present invention, the inter
active drop-down lists at 275 are defined as HTML form
lists. In an alternative implementation, Status fields are
defined as DHTML objects. For both of these panel interface
object types, under certain conditions, the panel draws status
information into these panel interface objects. The interac
tive drop-down lists behave in a manner very similar to that
of interactive fields, except that when Selected, a Selection
list drops down for Selection. Depending upon the number of
entries in the list, an elevator object may be drawn. The
operations of Selecting the interactive pull down list, the
Selecting of a list item, or the operation of the elevator is
identical to that of comparable MS Windows objects. In one
implementation of the present invention the interactive pull
down list are:

1: Zoom. This interface object has dual Spin controls as
described above and is always Selectable except when
in a preview mode. It shows the current Zoom level.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 273 of 548

US 6,546,397 B1
21

2: Button Style. This interface object is always selectable
except when in preview. It shows the button style of the
currently Selected button, if any. Changing the button
Style will change the Style of the currently Selected
button, and/or define the style of the next button to be
created.

3: Point Size. This interface object has dual spin controls
as described above and is Selectable when a text or
button object is selected. It shows the point size of the
currently Selected text or button object, if any. Chang
ing the point Size will change the point Size of the
currently Selected text or button object.

4. Paragraph Style. This interface object is always Select
able except when in preview. It shows the paragraph
Style of the currently Selected paragraph, if any. Chang
ing the paragraph Style will change the Style of the
currently Selected paragraph, and/or define the Style of
the next paragraph to be created.

5: Frame State: The state of the 3D frame (none, raised,
pressed or live) of the currently selected text, button, or
image object.

6: Image Style. This interface object is always selectable
except when in preview. It shows the image Style of the
currently Selected image, if any. Changing the image
Style will change the Style of the currently Selected
image, and/or define the Style of the next image to be
created.

Screen shot FIG. 37 shows a visualization of interactive
drop-down lists 470. In an alternate implementation using
DHTML objects, the interactive drop-down lists will appear
two-dimensional rather than the three dimensional look
currently shown.

Toolbar icon objects, Status fields, interactive fields, and
interactive pull down lists all show feedback of the current
build engine State. The technology utilized by one imple
mentation of the invention is described below.

FIG. 7c shows a detailed view of the of the build time
techniques for implementation of tabbed pop-up windows
(15 of FIG. 3). These techniques create a pop-up window
interface that visually and behaviorally is identical to that
which is implemented as dialog boxes under the various
MicroSoft Windows Operating Systems. Pop-up windows
can be non-tabbed as described in FIG.7a, or can have from
two to as many as 10 or more tabs, depending upon the
complexity of the choices available to the user for a given
feature. In one implementation of the present invention each
tab at 283 is defined as a DHTML object at 284. The tab is
given absolute positioning and is assigned a CSS style at 286
in order to define is visual appearance. When a click is
detected through the JavaScript “onClick” function, a tab
specific JavaScript function at 285 is called within the
pop-up window's HTML file. This function sets the display
style attribute for the DHTML objects that define the settings
for all the non-selected tabs to the display style attribute of
“none". The DHTML objects that define the GIF image of
the non-Selected tab file representations are also set to the
display style attribute of “none'. The display style attribute
for the DHTML objects that define the settings of the
currently selected tab and the GIF image that depicts the
Selected tab file representation is Set to the display Style
attribute of “”. If there is to a change of the focus of the
selected field within the now to be visible tab specific
choices, the focus attribute for that object is executed.
Screen shot FIG. 37 shows a visualization of a tabbed
pop-up window, and Screen shot FIG. 63 shows a collage of
four views of a tabbed pop-up window with four tabs. Notice
that each state of the tabbed pop-up window has a different
tab file representation, showing the Selected tab as being in
the forefront.

1O

15

25

35

40

45

50

55

60

65

22
The interface technology of the invention, in addition to

its utilization as part of a web-based web site generation
tool, can be used to provide a general purpose interface for
all web-based applications that want a MS Windows com
pliant interface.
A process for updating the internal database of the build

engine 352 is shown schematically in FIG.8. The database
is compact and efficient in order to meet the performance
requirements for the run time process. The database handles
a wide Selection of data objects, including multi media
objects Such as colors, fonts, images, Sound clips, URLS,
threads, and Video. The database Supports a multi level
animation, transformation, and time line model (discussed in
greater detail below). The database complies with the dif
fering rules imposed by the various popular browser Security
managerS.
The proceSS begins by determining the type of data to be

updated at 60. Data that defines generic web site Settings
(See FIG. 21a), screen resolution values (See FIG. 21a and
FIG. 24), and the web page high watermark Setting (See
FIG. 24) can be stored in a header record as boolean and
integer variables and URL and color objects at 62 and 63.
Data that defines web page, paragraph, text button, and
image Style and text button, image and paragraph high
watermark Settings can be Stored in one-dimensional arrayS
as boolean, integer and String variables and URL, font,
image or thread objects at 61 and 64. The URL, color, font,
image and thread objects can also be created as required at
64.

Data that defines text button, image, paragraph, or other
parent objects and paragraph line high watermark Settings
can be stored in two-dimensional arrays (by web page and
by object number) as boolean, integer, String, floating point
variables and URLs at 65 and 66. Again, the URL, color,
font, image, audio clip, Video clip, text area and thread
objects can also be created as required at 66. Data that
defines a paragraph line and paragraph line Segment high
watermarks can be stored in three-dimensional arrays (by
web page, by paragraph number, and by line number) as
Boolean, integer or String variables at 67 and 68. Again, the
URL, color or font objects can be created as required at 68.
Data that defines a paragraph line Segment can be stored into
four-dimensional arrays (by web page, by paragraph
number, by line number and by line number segment) as
Boolean, integer or String variables or URL, color and font
objects at 67 and 68. As a data field is added, changed or
deleted, a determination is made at 69 on whether a value for
a given high watermark needs to be changed. If So, it is
updated. As a specific method in the build engine is called,
a determination is made at 70 on whether a feature flag needs
to be set. For example, if a particular JAVA method is called,
which requires an instance of a certain JAVA Class to be
executed by the run time engine, then that JAVA Class is
flagged, as well as any Supporting methods, variables and/or
object definitions. The use of these flags is described in
greater detail below in association with FIG. 25 and FIG. 27
to create a compact and efficient customized run time
environment.

In one implementation, the header record, the Style record,
the web page record, and the object records, are carefully
defined in a specific order, written in that order, and explic
itly cast by object type when read by the run time engine.
Exception handling can be implemented to recover from any
errors. This helps assure that data integrity is maintained
throughout the build and run time processes.

FIG. 9 details the polling process (16 of FIG. 3). The
polling technology is essential for creating the necessary

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 274 of 548

US 6,546,397 B1
23

two-way real time communication between the JavaScript/
HTML interface and the JAVA build engine. Since there is
no particular difficulty for JavaScript to be able to call and
pass values directly to JAVA methods, the technological
challenge is to find a reasonable technique to enable JAVA
to communicate back to JavaScript. The polling technology
is generic, and workable acroSS all the current browsers. The
polling technology is flexible, as there are no real constraints
as to what data could be communicated from the build
engine to the interface, and this communication can occur at
any time. The polling technology is reasonably efficient, So
that the performance of the build process is not significantly
affected.

In one implementation, two different techniques were
utilized to implement this capability. The first was to place
the build engine inside a JAVA wrapper. The JAVA wrapper
accepts direct communication from JavaScript function
calls, interrogates a particular JAVA build engine method,
and returns that methods return value back to the calling
JavaScript function. The Second technique was more uncon
ventional. A polling loop is defined in the panels (panel
400) JavaScript that creates a near continuous, at least from
a human perception point of view, dynamic real time link, in
order to monitor events occurring inside the build engine.
The result is a real time retrieval (from an ergonomic
perception point of View) of necessary data and Status
Settings from the build engine back to the interface.
Upon the loading of the panel HTML file, a JavaScript

function at 71 (the poller) is immediately called which
initiates a polling loop. In one implementation, the polling
loop is Set at a poll rate of once every 100 milliseconds or
leSS. The polling routine, operating through the JAVA
wrapper, calls the build engine in order to read the current
horizontal and vertical coordinates of the mouse cursor, and
displays them in the panel's status fields (FIG. 37 at 450).
The polling routine also polls the build engine in order to
detect whether the mouse has moved over a valid object or,
by inference, whether a mouse Single click, or double click
event has occurred. The poller is also constantly requesting
the JAVA wrapper to return the Status of an error flag in order
to inform the user, if necessary, of an unrecoverable error
condition, and the reason for it. (See FIG. 10). The poller
then calls a panel JavaScript function that, in turn, calls the
build engine to reset the flag. The poller constantly requests
that the JAVA Wrapper return the status of whether the
mouse cursor is over a valid object, and, if So, that object's
number, type, height and width. The poller also constantly
requests the JAVA wrapper to return the Status of whether an
object is Selected, and, if So, the type and number of that
Selected object, as well as the objects height, width, and 3D
frame State (and the point size of the objects current font if
the object is a text button or paragraph object). In addition,
if the object is a paragraph, the poller constantly requests the
JAVA wrapper to return a flag if a double click or drag mouse
event has occurred.
At 72 the polling routine detects a mouse event based on

analyzing the return values received. The poller can infer
that the mouse has either moved off or moved on to a valid
object at 73 if the mouse over object state has changed or the
mouse over object number has changed. If So, the poller
updates the relevant interface objects of the panel as appro
priate and displays them as necessary, and, depending upon
whether the object is a text button object, a paragraph, image
object, etc., at 75, begins polling their unique values.

The poller can infer that a single click mouse event has
occurred at 74 if the Selection State has changed, or the
Selected object changed. The poller updates the menu bar

5

15

25

35

40

45

50

55

60

65

24
(FIG. 37 at 410) as appropriate, making the appropriate
menu commands either active or inactive. The poller also
Sets the necessary Status variables, and, depending upon
whether the newly Selected object is a text button object, a
text object, image object, etc., at 74, begins polling their
unique values. The poller also activates the appropriate
menu choice objects inside the “Edit” menu, the “Text'
menu, the “Button” menu, the “Image” menu, and the
“Interactions” menu objects (FIG. 37 at 420 and 430),
depending upon whether an web page object is Selected or
not, which type of web page object is Selected, or, if the
Selected web page object is a text object, whether text is
marked through a drag or double click event. In a similar
manner, the poller also sets the values for the interactive
field objects (FIG. 37 at 460) and the interactive drop-down
list objects (FIG. 37 at 470). More specifically, JavaScript
can poll the web page object number. The value of the web
page object number can be used to initialize pop-up win
dows with that objects web page current values, either from
the panel's database or, if necessary, by interrogating the
build engine's database.

The poller can infer that a double click or mouse drag
operation has occurred if the flag indicating a double click
or mouse drag operation is detected at 75. The poller calls a
panel JavaScript function that, in turn, calls the build engine
to reset the flag. The poller then calls a panel JavaScript
function to display the appropriate panel menu choices. For
example, if the double click or mouse drag event occurs
within a text object, then the “Text Style and “Hot Link'
menu choice objects become active under the panel’s “Text'
menu object.

Depending on the object type (76), the polling technology
performs various functions. If the object is a text object at
77, the values for the paragraph Style, point Size, object
height and width, text color, and the 3D frame Status are
polled and displayed. The panel's menu objects and the
menu choice objects within that are active for a text object
are Set to the active State, and the non-text menu choice
objects are set to the inactive State, which Visually means
they are unavailable and are “grayed out'. In addition,
polling can be initiated for the creation of a hot link. If the
object is a text button object at 78, the values for the text
button Style, point size, object height, width, text color,
animation State, and 3D frame Status are polled and dis
played. The menu choice objects inside the panel's menu
objects that are active for a text button object are set to the
active State, and the non-text button menu choice objects are
Set to the inactive State, which Visually means they are
unavailable and are “grayed out'. The value of the text
button object String is also polled and Saved in the panels
database for use when initializing relevant pop-up windows.
If the object is an image object at 79, the values for the image
Style, object height, width, frame color, animation State, and
3D frame Status are polled and displayed. Again, the menu
choice objects inside the panel's menu objects that are active
for a image object are Set to the active State and the non-text
button menu choice objects are Set to the inactive State. In
addition, the results of any relevant direct object manipula
tion are polled and displayed.

FIG. 10 describes a two level error correction technology
(17 of FIG. 3) employed by the build process. Initial error
checking occurs during the interactions between the user and
the interface with the JavaScript error checking code at 80.
Any file name, Selected by the user through the file Selection
window or typed in a file pathname (See FIG. 6 at 49) is
checked by the panel's JavaScript to assure that it has the
correct file type Suffix (gif, jpg, au, etc.) at 81.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 275 of 548

US 6,546,397 B1
25

The panel's JavaScript Code performs range checking at
82 to prevent user error or to prevent the breaking of any
internal limits imposed by the build engine. These can
include: going to a non-existent Web page, exceeding any
limit with the dual spin control (i.e. attempting to increment
or decrement a point size outside of the legal range, or trying
to illegally decrement a value to Zero or a minus number;
typing in a numeric value that is outside a legal range; and,
implicitly creating an object that exceeds a limit imposed by
the build engine).

The panels JavaScript code also checks the file pathname
to make Sure it contains a valid address, and makes neces
Sary additions or conversions, if necessary, at 83. For
example, if the user Selected a file from the local disk, the
correct URL protocol is appended to the file name in order
to make it a valid String representation of a URL address.
Any illegal characters for a pathname or a null file pathname
entry are also caught at 83. In addition to file pathname
validity checking there are other validity checking functions
that can be employed by the JavaScript at 83. They include
the attempt by the user to enter a non-numeric character into
a numeric field, or leaving an essential fill-in field empty.
The panel's JavaScript then passes these values to the

build engine though the arguments of a JAVA method
function call at 84. The build engine can utilize the extensive
exception handling capability of JAVA at 85 (or that of any
other full featured programming language used) to attempt
to recover from any processing error. If recovery is not
possible, the build engine Sets an error flag, utilizing the
polling technology (See FIG. 9 at 71). The poller, upon
detecting this flag, informs the user, for example, through an
alert JavaScript pop-up message, what non-recoverable error
has occurred, from which operation, and What actions, if any,
the user should take. For example, if the user had Selected a
corrupted image file, the exception handling technology can
inform the user of this fact So that user corrective action can
resolve this very common problem. In one implementation,
error handling and exception recovery Support is provided
for a malformed URL, an input or output error, a Security
manager violation, and a null pointer error.

FIG. 11 shows a proceSS for text entry and text processing
(18 of FIG. 3). The process begins when the panel's Java
Script detects the user selecting either “Button” or “Text'
icon objects from the panels toolbar or from their equvalent
menu choices under the “Button” or “Text menus, and calls
the appropriate JavaScript function at 86. The JavaScript
function, after performing a range check to assure that no
internal limits of the build engine are being broken, updates
its database, and Sets the necessary Status variables. The
panel's JavaScript then calls the appropriate build engine
method, passing the necessary arguments, including the
current board number, the internal number to be assigned to
the object, the object type, and the current text button or
paragraph Style at 87. The build engine then updates its
internal database and Sets the necessary Status variables. The
build engine also changes the mouse cursor shape to that of
a text entry Symbol. In one implementation, the mouse
cursor is shaped like a crosshair, and can be moved onto the
web page (the build frame 402) at an arbitrary location.

The build engine detects a mouse click event through its
“mousedown” method at 88. This method reports to the
build engine the exact horizontal and Vertical coordinates of
the crosshair mouse cursor at the moment the mouse button
is pressed. The build engine places these values into its
internal database. The polling process is also Supported, as
discussed in FIG. 9, by placing the necessary return values
in the appropriate poll enabled methods.

15

25

35

40

45

50

55

60

65

26
The build engine-creates a dynamically resizable frame

utilizing JAVA’s “Text Area” object class, whose coordi
nates and Size coincide with that of the draw System for the
object as defined below. Other full-featured programming
languages, if used by the invention, also possess similar
object types. The text area is immediately overdrawn by the
draw System's background paint routine. The build engine,
utilizing the font metricS as defined by the Selected text
button or paragraph Style, and utilizing the crosshair cursors
coordinates, calls the draw System. The draw System paints
the background and then paints an insertion point and a
Selection rectangle, in the appropriate colors, and with the
appropriate height and width, into the appropriate web page
location at 89. If the text button or paragraph style has a 3D
frame Selected, this intelligent ornamental object would also
be drawn, in the appropriate color, dimensions, and thick
ness. Screen shot FIG. 41 shows a visualization of this
process. The text insert point is in black, Surrounded by a red
Selection rectangle, and Surrounded by a blue 3D frame, as
defined by the selected style. The text editor is then initial
ized by Setting the necessary Status variables.
The build engine waits until a keyboard keystroke is

detected. The Scan code is interpreted, and if it is a text entry
key, the text editor's methods are called at 90. The text editor
processes the key event at 91. The build engine employs
frame (Text Area) processing methods and draw methods to
implement the text entry and text processing functions. AS a
keyboard key for a text character is pressed, the build engine
passes this value to the editor's text entry method, which
updates both the text area's frame definition, and the draw
system's database. The width of the text area is dynamically
resized as necessary. If the object was a paragraph, a check
is made on whether a reformat event should occur, based on
the paragraph Style's definition and the width of the current
line's text String. If So, the appropriate text editor reformat
method is called, which may cause the text area's vertical
dimension to also be resized. A high watermark Variable may
also be set, for optimization purposes. After the final State of
the text area is determined for the text entry keyboard event,
the internal database for the text area, and for the paragraph
or text button object, are updated. The draw System is called,
and the results of the text entry event are drawn on the web
page at 94.

In one implementation, the build engine also Supports the
usual text processing functions found in MS Windows or
Macintosh based Word Processors or Desktop Publishers at
92 and 93. For example, if the user single clicks the mouse
when over an unselected paragraph or text button object, that
object is Selected, a Selection rectangle is drawn, the mouse
cursor Shape is changed to a crosshair, and the poller reports
the necessary information to the panel's JavaScript. If a
mouse click occurs over a Selected paragraph or text button
object, the editor’s “Set Text Insertion Point method is
called. Based on the coordinates of the mouse cursor, and
based on a calculation by the build engine as to the nearest
line, and the nearest character on that line, the text insertion
point can be drawn appropriately, and the necessary Status
variables are updated. Text entry is then processed as dis
cussed at 91.

If a double click or mouse drag mouse event is detected
over a paragraph, an appropriate "text String Selection'
method is called (See FIG. 6). Based on the coordinates of
the mouse cursor, and based on a calculation by the build
engine as to what text String should be Selected, the internal
database in updated, appropriate Status variables are Set, and
the draw System is called for marking the text String at 94.
The polling technology is activated as discussed in FIG. 9.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 276 of 548

US 6,546,397 B1
27

The build engine's reformat methods for paragraphs can
utilize a “Clean Text Stream” model for calculating line
breaks and for updating four-dimensional variables utilized
by the draw System in order to draw each paragraph, each
paragraph line, and each paragraph line Segment in the
correct location, with the correct font type, font Style, font
size, font effect, and background and text String color. Font
style refers to a font format such as Normal, Bold, Italic, or
Bold Italic. Font effect refers to style overrides such as
Underline, Double Underline, Small Caps, Cross Out,
Superscript, Subscript, etc. The “Clean Text Stream Model”
implemented by the build engine maintains multi
dimensional array pointers and records for every paragraph
line and line Segment external to the text String defined
within the text area. Three-dimensional and four
dimensional variables are updated after each text entry or
text editing and processing event in order to assure that the
pointers into the paragraph text stream, defined in the text
area, are current. The three-dimensional variables that the
build engine has implemented can include Soft and hard line
end pointers for each paragraph line. Their values can be the
absolute character positions within the text area text String
for that line end. Hard line breaks can be created by the user
pressing the enter key. Soft line breaks can be created by a
reformat method based on a calculation defined below.

The four-dimensional variables can be absolute pointers
into the text area text String for the beginning and end of
every Style override, asSociated with each paragraph line
Segment. These Style overrides can include hot links, font
type, font Style, fontsize, numerous font effects, and text and
background colors. For each Style override there is an
asSociated Style override record that maintains all the font
and color Settings for that paragraph line Segment. Also
positional and size data Such as Start and end pointers into
the paragraph text Stream, a left offset relative to the
paragraph's left origin, a top offset relative to the para
graphs top origin, and the line height. The Style override
record is created when the build engine detects a mouse drag
or mouse double click event within a Selected paragraph.
When the mouse button is initially pressed, the current
paragraph line and current word on that line are calculated
in a manner identical to that for calculating the location of
the text insertion point on a mouse click operation. The
entire word becomes one anchor for the paragraph line
Segment, while the word defined by the mouse coordinates
when the mouse button is released becomes the other anchor.
Up to two other paragraph line Segments can be implicitly
created by the word oriented selection method. If there is
text to the left of the first anchor word, and that paragraph
line had not previously had a style override defined in it, the
text String from the beginning of the paragraph line to the
first anchor point has a style override record created for it.
The values are Set to that of the underlying paragraph.

If Style overrides had already been created on that para
graph line, and the anchor word is inside one of them, then
that style override's end pointer is adjusted to the start of the
anchor word. All other Style overrides, if any, to the right of
the anchor word are deleted, as overlapping Style overrides
are not permitted. In a similar manner, the text String, if any,
to the right of the last anchor point, up to the line or
paragraph end, can also be defined as a Style override. If a
mouse click occurs before a "text Style” operation, then
these pointers will be reset. If the panel's JavaScript detects
a user selection of “text style” from the “Text” menu, the
appropriate pop-up window is drawn and its values initial
ized from the JavaScript database. Upon detecting a user
completion event (i.e., the depressing of the enter key), the

15

25

35

40

45

50

55

60

65

28
panel's JavaScript database is updated and a call is made to
an appropriate build engine method, with the necessary data
and Status information passed as function call arguments.
The build engine updates its internal database and calls the
reformat method if necessary. The draw system utilizes these
four-dimensional variables in order to paint the paragraph
line Segment Style override.
The calculation for the creation or updating of a Soft line

break begins with the maximum paragraph width, which is
Set at a percentage of the browser Screen width. This
percentage is converted to an absolute pixel number based
on the web designer's Screen resolution. When any text entry
or text editing and processing event occurs, a build engine
method is called which calculates the width, in pixels, for the
current paragraph line, based on the character String in the
text area that exists between the previous line end pointer
and the current line end pointer. The font definition(s) that
are related to this character String are applied, and a String
width is calculated. If the string width exceeds that of the
maximum paragraph width, an “OverFlow” reformat
method is called. The overflow reformat method calls a
method to determine the settings for the last word on that
line, and that word Overflows to the following paragraph
line. All pointers for the current line, and Subsequent lines
are updated as necessary, as are all pointers and records to
paragraph line Segments. If the String width is less than that
of the maximum paragraph width, and the text processing
operation was not text entry, then an “UnderFlow” Reformat
method is called. The underflow reformat method calls a
method to determine the width, in pixels, for the first word
on the next line. If that word will fit on the current line it is
placed there. AS before, all pointers for the current line, and
Subsequent lines are updated as necessary, as are all pointers
and records to paragraph line Segments. The word oriented
Selection technique, and the reformat, database, and draw
technologies that Support it, greatly simplify the text editor
and produce a run time engine that is Smaller, faster and
more reliable.

FIG. 12 shows the operation of the image processing
technology utilized by the build engine (19 at FIG. 3). The
process begins when the panel's JavaScript detects the user
Selecting the "Image' icon from the panels tool bar or the
comparable menu choice under the "hnage' menu. The
appropriate JavaScript function is called at 95, which draws
the define image pop-up window. The user then Selects an
image from the file Selection window with the browser, types
in the image pathname for the image file on the local disk,
or types in the URL for the image that exists on a server. The
user could also define a 3D frame for the Selected image at
this time. Screen shot FIG. 49 shows a visualization of a
collage for the define image pop-up window and the user's
Selection choices under each tab Setting. The user can
complete the Selection process by either pressing the Enter
Key or clicking on the “Create Image' icbn in the pop-up
window. If the Enter Key is pressed, the pop-up window's
JavaScript Code utilizes the on Key Down function, or if a
mouse click, the onClick function, as described in FIG. 7, to
recognize the completion event. An appropriate error check
ing JavaScript function is called, which performs a file name
error check, a filename validity check, and a range check to
assure that no internal limits of the build engine are being
broken. If the error checking tests are Successful another
JavaScript function is called to update the panel's database,
and Set the necessary Status variables.
The panel's JavaScript then calls the appropriate build

engine method, passing the necessary arguments, including
the current internal web page number, the internal number to

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 277 of 548

US 6,546,397 B1
29

be assigned to the image object, the object type, and the
current image Style at 96. The build engine then updates its
internal database and Sets the necessary Status variables. It
also changes the mouse cursor shape to that of an "Image
Create” symbol. In one implementation, the mouse cursor is
shaped like an arrow. The build engine detects a mouse click
event through its “mouseDQwn” Method at 97. This method
reports to the build engine the exact horizontal and vertical
coordinates of the arrow mouse cursor at the time the mouse
button was pressed, and places these values into its internal
database. The polling proceSS is also handled, as discussed
in FIG. 9. The build engine then asserts the necessary
Security permission for reading from the local disk, if
necessary, and attempts to create the necessary image object
at the current mouse coordinates at 98, while checking for
any exception conditions as described in FIG. 10. If no
unrecoverable exceptions are reported, the internal database
is updated and the draw System is called.

The image processing technology Supports direct web
page image object interactions at 99, utilizing the commu
nication technology described in FIG. 6. The build engine
first processes the mouse event as described in FIG. 7, and
places the appropriate values into a poll enabled JAVA
method as described in FIG. 9. There are two types of direct
web page image object interactions. S. The first occurs by
Simply Selecting the image object with a single mouse click.
A red Selection rectangle is drawn around the image, as are
eight attachment points. When the user has pressed the
mouse cursor, the mouse cursor's shape changes to that of an
anchor, which is a Symbol that can be used when dragging
or moving an object. The mouse's location will jump to the
origin for the image. In an alternative implementation, the
anchor can be defined by the mouse location at the time of
the mouse drag operation. In either case, while the mouse is
being dragged, the build engine updates its internal database.
The build engine also updates its poll-enabled methods for
communication with the interface's polling technology at
100. The JavaScript poller reads these values, updates the
panel JavaScript database, and updates the panels interface
objects. In a similar way, placing the mouse cursor over an
attachment point and dragging will result in an image
resizing operation. Screen shots FIG. 50 through FIG. 52
show a visualization of an image dragging operation. Screen
shot FIG. 50 shows the cursor over an unselected image.
Screen shot FIG. 51 shows the screen state after the left
mouse button has been pressed. Notice that the image is now
Selected and the cursor shape has changed to the drag State.
Screen shot FIG. 52 shows the Screen state after the mouse
has been dragged to the northwest. Notice that the image
stayed Selected and moved with the mouse. Screen shots
FIG. 53 and FIG. 54 show a visualization of an image
resizing operation for a normal image. Notice that all
eight-attachment points are drawn and active for the Selected
image. Screen shot FIG. 53 shows the cursor over the upper
left attachment point. Notice that the cursor shape has
changed to a northwest to Southeast resize cursor Shape.
Screen shot FIG. 54 shows the result after the left mouse
button has been pressed over the upper left attachment point
and dragged to the northwest. Notice that the image's upper
left corner is still under the cursor, the image has resized, and
the cursor Shape remained unchanged. For image resizing
operations with the mouse over and mouse down objects,
only the east, Southeast, and South attachment points are
drawn and active.

The Second type of direct web page image object inter
action occurs when the panel's JavaScript code detects that
the user has Selected an image object interaction feature

15

25

35

40

45

50

55

60

65

30
from the panel’s “Image' menu. The appropriate JavaScript
function is called, which Sets the necessary Status variables,
and then calls the appropriate JAVA method, passing the
necessary values as arguments. The JAVA method then Sets
its necessary Status variables, changes the mouse cursor
shape as appropriate, depending upon the type of direct
image operation, and awaits a direct mouse operation on the
image object. Image rotation is an example of this type of
direct image interaction. In one implementation, direct
image object rotation is realized by utilizing the image
rotation technology described in association with FIG. 33
below. Screen shots FIG.55 and FIG. 56 show a visualiza
tion of an image rotation for a normal image. Screen shot
FIG. 55 shows the user selecting the rotate command from
the "Image' menu. Immediately the cursor's shape changes
to the rotate (a dual left/right arrow) cursor, and the Selected
images attachment points disappear. Placing the cursor on
the image and dragging will cause the image to rotate on an
east/west and/or north South axis. Screen shot FIG. 56 shows
the result after the mouse was dragged on an east/west plane.

Image object interactions are invoked by Selecting from
the JavaScript panel, Selecting from a JavaScript pop-up
window, and by selecting from a JAVA window object at
101, as described in FIG. 6. The initial values in the pop-up
window are Set from JavaScript's database. After any user
interaction, JavaScript's database is updated and the appro
priate method in the build engine is called with the necessary
Settings. The build engine, after updating its internal
database, calls the appropriate image processing method.
The image processing routine then calls the required image
filter(s), which then perform the necessary processing on the
image bitmap at 102.
An image filter is a body of code, usually consisting of

one or more digital image processing algorithms, which
operate on an image bitmap, and create a transformed image
bitmap. An image observer can be invoked by the image
filter, which then reports when the image bitmap processing
has been completed. An image observer is a independent
process that monitor's a particular image processing event,
Such as the execution of an image filter or the reading in of
an image file, and reports the Status of that process when
queried. When the image observer reports a Successful
completion, the image filter can call the build engine's draw
System to display the transformed image bitmap. This inter
action between the build engine's image processing method,
the image filter(s), the image observer, and the draw system
can occur many times, depending upon the image processing
operation chosen. Image animations and image
transformations, which are technologies that rely heavily on
image filters, and the image observer are discussed in greater
detail below in association with FIG. 16 and FIG. 17.

FIG. 13 shows a process for implementing text button,
image and paragraph style Settings (20 of FIG.3). The initial
values for all the Settings inside a parent pop-up window and
asSociated child pop-up windows, for a particular Style, can
be set from the JavaScript database at 103. The settings can
include: image object Styles, text button object Styles and
paragraph object Styles.
The following Settings can be initialized and changed for

image object Styles. The following Settings are initialized for
all image object States (Normal, mouse Over, mouse Down)
and can be changed:

(1) resize factor.
(2) rotation factor.
(3) main animation type, speed, number of animation

Steps (resolution) and number of cycles.
(4) image processing factors. (brightness, contrast, etc.)

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 278 of 548

US 6,546,397 B1
31

(5) 3d effects and their color values.
(6) web page centering attribute.
(7) web page Scaling attribute.

b) The following actions are initialized and can be
changed.
(1) Sound effects and audio channels.
(2) video files and video channels
(3) text button and image pop upS and their attributes

(See 1.a above and 2.a below.)
(4) click events.

c) The following transformation Settings are initialized
and can be changed.
(1) the initial delay
(2) up to three transformations can be defined with the

following Settings:
(a) which image States should the transformation be

from and into.
(b) the speed of the transformation.
(c) any delay before the next transformation.

(3) whether the transformation(s) should occur simul
taneously with the enter and exit time line animation
or after the enter and before the exit animations.

d) The following time line Settings are initialized and can
be changed.
(1) the initial delay before the image objects appear

CC.

(2) the enter animation type, speed, and animation
resolution.

(3) the delay after the enter animation and the main
animation.

(4) the exit animation type, Speed, and animation
resolution.

(5) the initial delay, after the entrance of the parent
object, before the child text button and image
object's appearance(s).

(6) the child object(s) enter animation type, speed, and
animation resolution.

(7) the delay after the child object(s) enter animation.
(8) the child object(s) exit animation type, speed, and

animation resolution. The following Settings can be
initialized and changed for text button object Styles.

e) The following attributes are initialized for all text
button object States (normal, mouse over, mouse down)
and can be changed:
(1) all font specifications.
(2) vertical State.
(3) all color specifications.
(4) 3d effects and their color values.
(5) web page centering attribute.
(6) font processing attributes (available in java 2)
(7) Scale, shear, and rotate (available in java 2)

f) The following actions are initialized and can be
changed.
(1) Sound effects and audio channels.
(2) video files and video channels
(3) text button and image pop ups
(4) click events.

g) The following transformation settings are initialized
and can be changed.
(1) the initial delay
(2) up to three transformations can be defined with the

following Settings:
(a) which image States should the transformation be

from and into.
(b) the delay before the next transformation.

(3) whether the transformation(s) should occur simul
taneously with the enter and exit time line animation
or after the enter and before the exit animations.

5

15

25

35

40

45

50

55

60

65

32
h) The time line settings are the same as those defined for

image objects. They also are initialized and can be
changed.

The following Settings can be initialized and changed for
paragraph Styles.
The following attributes are and can be changed:
i) all font specifications.
j) all color specifications.
k) 3d effects and their color values.
l) web page centering attribute.
m) the look of hot links, including the text and back

ground colors when the link is active and when the
mouse is over the link.

The reference to JAVA 2 under text button object styles
refer to the most recent version of JAVA released by Sun
MicroSystems. This version Supports a far more robust
two-dimensional processing capability than JAVA 1.6,
including Significant font processing capabilities and the
Scaling, shearing, and rotation of objects. Currently, most
conventional browsers only support JAVA 1.6. Provisions
are made in the invention So that as the then popular
browserS Support more robust versions of programming
languages, those new capabilities can be employed to further
enhance the capability of the invention.

Referring again to FIG. 13, upon detecting the completion
of editing an image, text button or paragraph Style, the
panel's JavaScript calls a build engine method and passes
the required values. The build engine updates its internal
database and sets any necessary feature flags at 104. When
an image, text button or paragraph object is created, all the
Style Settings for the currently Selected Style are applied by
the build engine as part of the definition for the newly
created object at 105.

If a Style is changed, all objects on all internal web pages
that are utilizing that Style are candidates for being changed
to those new values at 106. Flags are kept for every possible
Style Setting for each object. If a given object is edited
through the text button, image, or interaction menus or other
interface objects of the panel 400, the flags are set for any
Setting that are changed. If that Style is Subsequently
changed, only those Settings that have not had their flags Set
will be changed for any given object.

FIG. 14 describes the video and audio file and video and
audio channel processing techniques employed by the build
engine (21 of FIG. 3). A user can select a video or audio
special effect (i.e. user input is provided at 107 that indicates
a video or audio special effect). The method for activating a
video file or video channel is defined in the text button and
image object “mouse over interactive pop-up windows
described later at FIG. 16. Methods for defining a video
object as a pop-up, or a frozen object, are described with
reference to the text button and image object “mouse down”
interactive pop-up window also described at FIG. 16. Audio
files and audio channels can be defined in both the “mouse
over and “mouse down” interactive pop-up windows also
described at FIG. 16. The pop-up or a frozen object settings
for audio are also set in the object “mouse down” interactive
pop-up windows discussed therein.
AS before, the panel JavaScript code initializes any pop

up windows (where the initial values are set from the
JavaScript database), captures a file or channel name (from
the user input) and performs file and validity error checking
upon detecting a user completion action at 108. The build
engine is then called, receiving the necessary data and Status
as function call arguments. The build engine determines if
the audio and video definition is a file pathname or the URL

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 279 of 548

US 6,546,397 B1
33

of a live channel at 109, and thereafter initiates its exception
handling. If the video or audio definition is a file, the build
engine performs the relevant file exception handling checks,
and asserts the necessary Security permissions. If there were
no errors, or the exception handling error was recoverable,
the build engine reads and links the video/audio file to the
database, and plays the file for user verification at 110. If the
Video or audio definition was a channel, the necessary
pointers are updated in the database, and methods are
assigned for efficient transmission, at run time by the run
time engine, at 111. The ability of the run time engine to play
multiple Synchronized audio and Video files and channels
simultaneously will be described at FIGS. 31-35.

FIG. 15 describes the frames, tables, forms and draw
objects technologies employed by the build engine (22 of
FIG. 3) in one implementation of the invention. When the
panel JavaScript code detects a user action to create a
“frame”, “table”, “form” or “draw object” from an appro
priate panel interface object, it draws and initializes the
appropriate pop-up window at 112. Upon detecting a user
completion action by the pop-up window's JavaScript code,
a panel JavaScript function is called to perform the neces
Sary error checking and updating of the panel's database.
Panel JavaScript thereafter calls the appropriate build engine
method(s) passing the necessary data and Status values as
function call arguments at 113.

The build engine updates its internal database, Sets the
necessary Status values, and initializes, as necessary, appro
priate methods for run time processing. In one
implementation, the build engine includes definitions to map
a given object into a relational database. Also available are
a full array of database operations. Support for popular
databases (Such as Oracle, Informix, Sybase and DB2) are
available on a real time interactive basis.
The run generation technologies, as described later in

FIGS. 24-27, are also implemented for a given frames,
table, form and draw object at 114. The run time
technologies, as described later in FIGS. 28-36, are also
implemented for a given frame, table, form and draw object
at 115. FIG. 16 describes the user interaction settings and
technology employed by the build engine (24 of FIG. 3).
Depending upon the type of object currently Selected at 116
(if no object is selected no user interaction choices will be
available) the panel JavaScript Code draws an appropriate
pop-up window. If the Selected object was a text buttoh
object at 117, or an image object at 119, both “mouse over”
and “mouse down” choices will be available from the
panel’s “Interactions” menu. If the selected object is a
paragraph, user interaction definitions can be activated by a
double click or a mouse drag event being detected by the
build engine at 118.
More specifically, appropriate values are Set in a poll

enabled JAVA routine. The JavaScript poller reads the
values, and draws the appropriate panel menu choices. The
“Text Style”, “Hot Link”, “Preferences” and “Format” pop
up windows can be chosen. If the hot link choice under the
panel’s “Text” menu is selected and executed, the hot link
definition for internal or external web pages is captured by
an appropriate JavaScript function and file pathname error
and validity checking is performed. If either the “Text
Style”, “Hot Link”, Preferences” or “Format” choices under
the panel’s “Text” menu are selected, the panel's JavaScript
draws the appropriate pop-up window. Upon detecting a user
completion event, the panel's JavaScript reads the values in
the pop-up window and passes the font Specification param
eters to an appropriate build engine method as function call
parameters. The build engine then processes this data, calls

15

25

35

40

45

50

55

60

65

34
a reformat method, updates its internal database, and Sets the
necessary four-dimensional variables for communication
with the draw system.

The normal and “mouse over” foreground and back
ground colors for the hot link, which were defined in a link
look pop-up window (available under the “Text” menu of the
panel), are utilized by the build engine to draw the hot link.
The build engine performs the necessary exception
handling, and then updates its internal database.

Based on the panel's JavaScript Code detecting whether
the user chose the “mouse over” or “mouse down” choice
under the “Interactions' menu at 120, as well as based on
whether an image or text button object is currently Selected,
the panel's JavaScript code draws the appropriate pop-up
window. Initial values for the pop-up windows are set from
the panel's database at 121 and 122. In one implementation,
the following user interactions for the “mouse over” and
"mouse down' States for text button and image objects are
Supported:

1: 3D Frame, in a specified color, and Selected for a
Specified 3D appearance, can be defined for text button
and image object’s “mouse over” and “mouse down”
States, as well as for their text, image and Video
pop-upS.

2: The font typeface, font style, font size, font effect(s),
text color, and text background color can be defined for
a text button object’s “mouse over” and “mouse down”
States, as well as for the text pop-ups associated from
both text button and image objects.

3: Text, image, and Video pop-ups can be defined for the
text button and image object’s “mouse over State.

4: A Sound track (file) can be defined for the text button
and image object’s “mouse over” state with the fol
lowing choices:
a. play once when a “mouse over” event occurs.
b. play until a click event while on the object.
c. play until the mouse moves off the object.

5: A Sound track (file) can be defined for the text button
and image object’s “mouse down” state with the fol
lowing choices:
a. play once when a mouse click event occurs when

over the object.
b. play until a Second click event while on the object.
c. play until the mouse moves off the object.

6: Both Video and Sounds can be defined as channels as
well as files.

7: The text, image, and Video pop-ups can be frozen (i.e.
not disappear when the mouse moves off the object
after a mouse click event, for both text button and
image objects).

8: Text button and image objects can have one of the
following click events defined:
a. go to a Specific internal Web page.
b. go to the next internal web page.
c. return to the parent (calling) web page.
d.go to an external web age. That web page will replace

the current web page.
e.go to an external web page. That web page will be

launched into a new window So that both web pages
will be visible and accessible.

After a user completion action is detected, the panel
JavaScript code performs the necessary file error and valid
ity checking, updates its database and Sets necessary Status
values, and then calls the appropriate build engine method,
passing the necessary data values and Status as function call
arguments at 123. The build engine updates its internal

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 280 of 548

US 6,546,397 B1
35

database, Sets the necessary Status variables, then draws the
appropriate “mouse over” or mouse down” text button or
image object States. The build engine also plays the Sound or
video file for user verification. The run time technology
behind the user interactions will be described in greater
detail in association with FIG. 36.

FIG. 17 describes the image and text button object ani
mation Settings and technology employed by the build
engine (25 of FIG. 3). The panel's JavaScript code deter
mines which type of object, and which object number, from
the currently Selected object, as reported by the poller at 124.
When the panel's JavaScript detects a user selection of
“Define Image' or “Animate” from the panel’s “Image”
menu, or a user selection of “Define Button” or "Animate'
from the panel’s “Button” menu, it draws the appropriate
pop-up window and initializes the pop-up window's values
from its database at 125 and 126. Screen shot FIG. 57 shows
a visualization of one implementation of the “Text Button
Animation Specifications' pop-up window and the anima
tion settings available to the user. Screen shot FIG. 58 shows
a visualization of one implementation of the “image anima
tion Specifications' pop-up window and the animation Set
tings available to the user.
When a user completion event is detected, the panels

JavaScript code captures the values from the pop-up window
for the animation type, Speed, resolution, and number of
animation cycles at 125 and 126, respectively, and updates
its database at 127. The panel's JavaScript then calls the
appropriate build engine method, passing the necessary data
and Status values as function call arguments. The build
engine updates its internal database and Sets the necessary
feature flags (See FIG. 8.) Linkage to the appropriate
animation method(s) is also set.
A thread object (a thread is an independent asynchronous

program that is multiprogrammed with other threads, are
defined and executed by the invention, by a JAVA Virtual
Machine and by the browser) is created and executed for
user verification at 128. Values are Set to integrate the given
animation thread with the object time line technology (See
FIG. 19). Values are set at 129 so that when the thread object
is invoked by the run time engine, the appropriate image
filter(s) and animation methods are called. The run time
technology behind image and text button object animations
is described in greater detail in association with FIG. 31
through FIG. 35.

FIG. 18 describes the transformation settings and tech
nology utilized by the build engine (26 of FIG. 3). A
transformation is defined as the changing of an object from
one State to another based on a timer control, Subject to user
Settings. In one implementation, the available States for text
button and image objects are their “normal”, “mouse over',
“mouse down” and “pop-up' definitions. For text button
objects, a transformation is implemented as the instanta
neous drawing of one object State while erasing the previous
object State. For images, a transformation is the gradual
fading out of the previous object State, while,
Simultaneously, fading into the next object State.

Prior to any user menu Selection, the panel's JavaScript
code already knows the Status of any Selected object through
the poller mechanism (124 of FIG. 17). This includes what
type of object and the objects internal identifying number.
When the panel's JavaScript detects a user selection of
“Transform” from the panel’s “Interactions' menu, it draws
an appropriate pop-up window and initializes the pop-up
window's values from its database at 130. Screen shot FIG.
59 shows a visualization of one implementation of a “define
the transformation for the text button object' pop-up win

15

25

35

40

45

50

55

60

65

36
dow and the transformation Settings available to the user.
Screen shot FIG. 60 shows a visualization of one imple
mentation of a “define the transformation for the image
object' pop-up window and the transformation Settings
available to the user. When a user completion event is
detected, the panel's JavaScript Code captures the values
from the pop-up window based on the object type.

In one implementation, the following Settings for text
button objects can be specified:

1. The initial delay.
2. Up to three transformations can be defined with the

following Settings:
a. Which image states should the transformation be

from and into.
b. The delay before the next transformation.

3. Whether the transformation(s) should occur simulta
neously with the enter and exit time line animation or
after the enter and before the exit animations.

In one implementation, the following Settings for image
objects can be specified:

1. The initial delay.
2. Up to three transformations can be defined with the

following Settings:
a. Which image states should the transformation be
from and into.

b. The speed of the transformation.
c. The resolution of the transformation.
d. Any delay before the next transformation.

3. Whether the transformation(s) should occur simulta
neously with the enter and exit time line animation or
after the enter and before the exit animations.

The panel's JavaScript updates its database at 131. The
panel's JavaScript then calls the appropriate build engine
method, passing the necessary data and Status values as
function call arguments. The build engine updates its inter
nal database and sets the necessary feature flags (See FIG.
8.) Linkage to the appropriate transformation method(s) is
also Set.
A thread object is created and executed for user verifica

tion at 132. Values are Set to integrate this transformation
thread with the object time line technology (See FIG. 19).
Values are set at 133 so that when the run time engine
invokes the thread object, the appropriate image filter(s) and
transformation methods are called. The run time technology
behind image and text button object transformations is
described in greater detail below in association with FIG.31
through FIG.35. FIG. 19 describes the text button and image
time lines and technology utilized by the build engine (27 of
FIG 3). A time line is an independent asynchronous process
that defines the existence of a given text button or image
object. An object's time line begins at the time a given web
page makes its appearance, either through an immediate
draw or through a transition animation. In one
implementation, an object time line can be created as an
instance of a class, which has a threadable interface. This
instance has its own data Structures, which define the
animations, and transitions associated with the time line
definition. An image or text button object time line can
Spawn child time lines, at a designated moment. A complete
description of time line technology, and how they integrate
the animation and transformation technologies, will be
described below in association with FIG. 31 through FIG.
35.
The build process begins the time line definition process

by having the panel's JavaScript determine what is the
currently Selected object, utilizing the polling technology at

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 281 of 548

US 6,546,397 B1
37

134. That is, values for the object appearance time, anima
tion type, Speed and resolution are captured. When the
panel's JavaScript detects a user selection of “time line”
from the panel’s “Interactions' menu, it draws the appro
priate pop-up window and initializes the pop-up window's
values from its database. Screen shot FIG. 61 shows a
Visualization of a collage of one implementation of a “define
the time line for the text button object” tabbed pop-up
window and the time line Settings available to the user under
each tab. Screen shot FIG. 62 shows a visualization of a
collage of one implementation of a “define the time line for
the image object' pop-up window and the time line Settings
available to the user under each tab. When a user completion
event is detected, the panel's JavaScript captures the values
from the pop-up window based on the object type. The
currently available Settings, for both text button and image
objects, are:

1: The initial delay before the image object's appearance.
2: The enter animation type, Speed, and animation reso

lution.

3: The delay after the enter animation and the main
animation.

4. The exit animation type, Speed, and animation resolu
tion.

5: The initial delay, after the entrance of the parent object,
before the child text button and image objects
appearance(s).

6: The child object(s) enter animation type, Speed, and
animation resolution.

7: The delay after the child object(s) enter animation.
8: The child object(s) exit animation type, speed, and

animation resolution.
The panel's JavaScript updates its database at 135. The

panel's JavaScript then calls the appropriate build engine
method, passing the necessary data and Status values as
function call arguments. The build engine updates its inter
nal database and sets the necessary feature flags (See FIG.
8.) A build engine method then processes all the data related
to this object. The objects animation Settings, if any, are
integrated into the timeline at 136. The object's transforma
tion Settings, if any, are also integrated into the timeline. If
an image object, any transformation animation may be
executed Simultaneously with the appearance and/or exit
animations, depending upon the Settings. Finally, a multi
level object thread definition is created and executed for user
verification. Values are set at 137 So that when the run time
engine invokes the thread object, the appropriate image
filter(s), animation methods, and transformation methods are
called.

FIG. 20 describes the web page transition animations,
time line Settings and technology utilized by the build engine
(28 of FIG. 3). When the panel's JavaScript detects a user
selection of “Define” from the panel’s “Webpage” menu, it
draws the appropriate pop-up window and initializes the
pop-up windows values for the current web page from its
database at 138. Screen shot FIG. 63 shows a visualization
of one implementation of the “define the current web page
Settings' pop-up window and the web page Settings avail
able to the user. In the implementation shown, the choices
Supported include:

1: The web page delay time (which is the delay, after the
completion of the last object time line, to the loading of
the next web Page).

2: The transition animation, which can include a random
animation choice. This is the animation applied to the

15

25

35

40

45

50

55

60

65

38
web page when it is loaded and to the previous web
page as it departs.

3: The number of animation frames per second, which
effectively is the resolution of the transition animation.

4: The number of animation frames, which effectively
defines the time expected for the transition animation to
complete.

5: The web page's background color. This setting will
Override the generic Setting for the web site, defined in
FIG. 21a.

6: A web page boarder. This boarder, if selected, will also
override the setting for the web site, defined in FIG.
21a. The boarder can be drawn with a 3D effect, taking
the background color, and applying a transformation So
that, to the human eye, a lighter and darker Shade of that
color will be drawn appropriately to create a 3D effect.

7: The web page's background pattern. This Setting will
Override the generic Setting for the web site, defined in
FIG. 21a.

The panel's JavaScript updates its database at 139. The
panel's JavaScript code then calls the appropriate build
engine method, passing the necessary data and Status Values
as function call arguments. The build engine updates its
internal database and sets the necessary feature flags (See
FIG.8.). The web page time line is synchronized with its
object time lines by an appropriate build engine method at
140. The web page's appearance delay and transition Set
tings are integrated into the web page time line. Thereafter,
a single-level object thread definition is created. Values are
set at 141 so that when the thread object is invoked by the
run time engine, the appropriate animation methods and
object time line threads are called. Again, the run time
technology behind web page transition animations and web
page time lines is described in greater detail below in
association with FIG. 31 through FIG. 35.

FIG. 21a describes the file operations supported by the
build engine (29a of FIG.3). In one implementation, the file
operations Supported include:

1: “Save' at 142 or “Save As at 143. If the Selection from
the panel’s “File” menu is to “Save” as a web page, the
current browser Screen height percentage value is Sent
to the build engine. The build engine updates its
internal database and the build process is completed.
Thereafter, the run generation process is executed. (See
FIG. 24 through FIG. 27.) If the selection is to “Save
As a template for the run generation proceSS is also
executed but the generated files are placed in the
template directory. If the Selection is to Save as a banner
or custom application, those absolute Screen dimen
Sions are Sent to the build engine and its internal
database is updated and the run generation process is
executed.

2: “New” at 144. A test is made by the panel's JavaScript
code to See if any user input has been processed and not
saved. If so, the user is asked whether this data should
be saved. If so, and if the selection is to "Save” as a web
page, the build proceSS is completed and the run
generation process is executed as described above. If
the Selection is to "Save” as a template the run gen
eration process is executed but the generated files are
placed in the template directory as described above.
The panel's JavaScript code then reinitializes its data
base and calls a build engine method that reinitializes
the build engine database.

3: “Close” at 145. A test is made by the panel's JavaScript
to see if any user input has been processed and not

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 282 of 548

US 6,546,397 B1
39

saved. If so, the user is asked whether this data should
be saved. If so, and if the selection is to "Save As a
web page, the build proceSS is completed and the run
generation process is executed. If the Selection is to
"Save AS' a template the run generation process is
executed but the generated files are placed in the
template directory. The panel's JavaScript then termi
nates the build process.

4: “Open” at 146. A test is made by the panel's JavaScript
to see if any user input has been processed and not
saved. If so, the user is asked whether this data should
be saved. If so, and if the selection is to "Save As a
Web Page, the build process is completed and the run
generation process is executed. If the Selection is to
"Save AS' a template the run generation process is
executed but the generated files are placed in the
template directory. The panel then initiates the dynamic
web page resizing technology as described in FIG. 22
below for the open re-initialization mode.

5: “Apply” at 147. A template is applied to the existing
web site that is being processed by the build engine.
The web page and style record definitions of the
template replace those of the existing web site. The web
page objects of the template are added to the web page
objects of the existing web site.

6: “Web Site at 148. The web designer can define settings
that will be applied to all web pages in the web site. In
one implementation, the web site applications Sup
ported include:
a: web page. The web page height can be set, as a

percentage, larger than the browser window for long
Vertically Scrolled web pages.

b: Standard banner sizes.
c: Custom. (The user can define any arbitrary web page

size and resolution) Screen shot FIG. 63 shows the
generic web site Setting choices presented to the user
in one implementation of the invention.

FIG. 21b describes the view operations supported by the
build engine (29a of FIG.3). In one implementation, the file
operations Supported include:

1: “Normal at 149a. This is the default file mode in
which the interface and the build engine are processing
user input as described in FIG. 5 through FIG. 23
above.

2: “Preview” at 149b. The build engine runs the web site
off its internal database. The web site will perform in an
identical manner as if it had gone through the entire run
generation and run time process, but it is being
executed on the web designer's computer.

3: “Play” at 149c. The build engine runs the web site off
an external database in a separate browser window. The
web site will perform in an identical manner as if it had
gone through the entire run generation and run time
process, but it is being executed on the web designer's
computer.

4: “Zoom’ at 149d. The dynamic web page resizing
technology (see FIG.22 below) is first executed. When
the engine is fully reinitialized, and the engine has gone
to the current web page, the page and all its objects are
drawn to the scale as defined by the Zoom level. All
object coordinates and sizes are automatically Scaled
appropriately because they are always defined with
Virtual Screen values, even when the web page is being
draw in the “normal” view.

FIG. 22 describes the dynamic web page resizing tech
nology Supported by the build engine. If a user Selection of

15

25

35

40

45

50

55

60

65

40
the “Open' command from the “File” menu is detected by
the panel at 500, the panel calls an engine method to read
Selected contents from that web site's external database file.

In one implementation of the invention at 506, the engine
reads the web page width and length fields, as well as the
background color or background image definition for the
first web page of the Web Site. The engine then creates a
build engine HTML definition file based on these
Specifications, and writes this file either to the local disk or
the Server, depending upon the origination of the build tool.
At 502, if a user completion event occurs inside the web

Site JavaScript pop-up window, which had been activated
when the user selected the “Web Site” command from the
“File” menu, the panel determines if the Web Site page size
has been changed. If So, the panel calls an engine method for
processing.

Similarly, at 504, if a user selection of a “Zoom’ com
mand from the “View' menu is detected by the panel at 504,
the panel also calls an engine for processing.

In both the cases at 502 or 504, in one implementation of
the invention, the engine writes out a checkpoint record at
508 that is similar to that of a “Websitename.dta “database
file (See FIG. 24). But is given the temporary checkpoint
Websitename. The engine then creates a build engine HTML
definition file based on these specifications, and writes this
file either to the local disk or the Server, depending upon the
origination of the build tool.

In one implementation of the invention at 510 the engine
terminates itself, by Stopping all of its threads. Meanwhile
the interface writes out four cookies onto the local disk
which define the following:

1: The re-initialization mode. (Either Open or
Checkpoint).

2: The current web page number when the resizing event
occurred.

3: The Web Site Name. (The checkpoint name if in
checkpoint mode)

4: The Zoom level.
The interface then terminates itself by executing the

JavaScript "parent.location.href command, which causes
the build engine parent HTML frame file (PFF) to be
reloaded (See FIG. 5).

In one implementation of the invention at 512 the
re-initialization process begins. The PFF cause both the
panel and the build engine to be reloaded and activated. The
panel then reads the mode cookie. If the mode is either open
or checkpoint, the interface reads the web site name, page
number and Zoom level cookies, then resets the mode cookie
to the initialize State for Subsequent operations. The interface
then calls an engine method to read the external database,
and then to return the necessary values from that database in
order to update the interface's database. Finally the engine
calls two engine methods in order for the engine to go to the
correct current web page and draw that page at the now
current Zoom level. Normal processing can then resume.
Run Generation Process

FIG. 24 through FIG. 27 describe the run generation
process. This proceSS Starts when the build process detects
that the user is finished defining the web site (user has saved
the web site and invokes the run generation process), and
concludes with the actual uploading of all the necessary web
Site run time files to the user's Server.

FIG. 24 describes the techniques employed by the build
engine for the creation of the external database, and the
Security and optimization techniques that Support this pro
cess (30 of FIG. 4).
When the panel's JavaScript Code detects a user selection

of “Save” or “Save As” from the panel’s “File” menu, it

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 283 of 548

US 6,546,397 B1
41

draws the appropriate pop-up window and initializes the
pop-up window's values for the current web page size as had
been defined at FIG. 5 and passed to the build engine. The
panel's JavaScript in the “Save the web page/template'
pop-up window detects a user completion event at 150 (i.e.,
the designation of a user's web site name followed by the
enter key), and calls the appropriate panel JavaScript func
tion. More Specifically, after completing the appropriate
validity checks, the function calls the appropriate JAVA
build engine method, passing as a function call argument the
user defined “Websitename'. The build engine method
checks for the existence of a “Websitename'.dta file, and, if
So, posts that result into a poll-enabled method return value.
The poller checks that value, and if Set to true, calls a
JavaScript function which draws a pop-up window asking
the user to confirm whether the existing web site definition
should be overwritten or not. This JavaScript function also
calls an appropriate build engine method to reset the return
value to false in order to be initialized for the next possible
“Save” operation.

Once this verification process is completed the build
engine begins the external database creation process at 151,
which will vary depending upon the Security manager of a
given browser at 152. See FIG. 5 for a detailed description
of the browser Security manager alternatives. If the brows
er's Security manager allows for local disk file creation, the
build engine calls a method, which asserts the necessary
Security policy permissions to create and write a file. If not,
the build engine calls the necessary method to create and
write a file on the user's server.

The external database contains, as its first record, a
“Header” record, which contains can include the following
information:

1: A file format version number, used for upgrading
database in future releases.

2: The default screen resolution, in virtual pixels, for both
the screen width and height. This is usually set to the
web designer's Screen resolution, unless overwritten by
the user at FIG. 5.

: Whether the application is a web site.
4: Virtual web page size Settings. A calculation is per

formed by the build engine method, in order to calcu
late what the maximum web page length is, after
reformatting all paragraphs on all internal web pages,
based on the default Screen resolution.

5: Web page and Styles high watermarkS.
6: The Websitename.
The header records are written at step 153.
During the build process, as new web pages or new

objects are created by the user, or as text is added to or
deleted from a paragraph, or as new styles are created or
deleted, appropriate high watermarks are Set, in order to
show the current number of each of these entities. Thus, at
154, the values for the number of active web pages and the
number of text button, image, paragraph or other Styles are
written as high watermarks in the header. The high water
marks for the number of text button, image, paragraph or
other objects that exist for each web page, the number of
lines for each paragraph object, and the number of line
Segments for each paragraph line are written within the body
of the external database as described at 156, and used as
Settings for each of the loops in the four-dimensional data
Structure. Because no Structural limits are set on the number
of web pages, objects per web page, Styles, or paragraph
size, these high watermarks greatly reduce the external
database file size, and the time it takes for the run time
engine to process the data Stored in its database.

3

15

25

35

40

45

50

55

60

65

42
The Settings for all paragraph, text button and image

styles are then written as a style record at 155 based on their
high watermark. This data includes Boolean and integer
variables, and font and color objects, written as a one
dimensional array, based on the high watermark Values for
the number of styles that exist. The font and color objects are
serialized as is discussed in greater detail below (See 159
below).
The body of the external database is then written at 156.

All Boolean values are written inside a four-dimensional
loop at 157. The outside loop contains the Boolean values
used to define web pages (i.e. a one-dimensional array
definition) as well as the high watermarks for the number of
text button, image, paragraph or other objects per web page,
with the loop set at the high watermark which defines the
number of existing web pages for this web site Structure. The
Second level consists of three or more two dimensional loops
with the loops Set to the high watermarks defining the actual
number of text button, image, and paragraph or other objects
that appear on any given web page and contains the values
used to define web page objects (i.e. a two-dimensional
array definition; web page number by object number).
Included within the loop for paragraph objects are the high
watermarks for the number of lines for each paragraph
object. The third loop is set by the high watermark defining
the actual number of paragraph lines that for all paragraphs
on any web page and contains the values used to define
paragraph lines (i.e. a three-dimensional array definition;
web page number by object number by paragraph line.)
Included within the loop for paragraph lines are the high
watermarks for the number of line Segments for each para
graph line. The inner most loop is set by the high watermarks
defining the number of line Segments per paragraph line and
contains the values used to define paragraph line Segments
(i.e. a four-dimensional array definition; web page number
by object number by paragraph line by paragraph line
Segment.).

All integer values are written inside a four-dimensional
loop at 158. Their four loops are controlled by the same high
watermark Settings as used for the Boolean records, and they
describe the same logical entities.

Multimedia objects are written inside a two-dimensional
loop at 159. They include URL, color, and font objects, and
can include other types of objects. A URL object is the
encoded form of a URL Address, used by a browser or a
JAVA method to access files and web addresses. All multi
media objects must be serialized before they can be written.
This means that the objects are converted into a common
external definition format that can be understood by the
appropriate deserialization technique when they are read
back in and cast into their original object Structure. The
outside loop contains web page related objects, and the inner
loop contains image, text button, paragraph, etc. related
URL, color, and font objects. The outer loop is defined by
the web page high watermark and the inner loops by the high
watermarks for the actual number of text button, image,
paragraph or other objects on a web page.

String records are written inside a four-dimensional loop
at 160. The outer loop may be empty. The second loop can
include the String values for text button objects, audio and
Video filenames, and audio and Video channel names. The
third loop contains values for paragraph line related data,
and the innermost loop contains the values for paragraph
line Segment definitions. The String records are controlled by
the same high watermarks as those used for Boolean and
integer records. String records are Stored utilizing an appro
priate field delimiter technology. In one implementation, a
UTF encoding technology that is supported by JAVA is
utilized.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 284 of 548

US 6,546,397 B1
43

Single and double floating-point, and long integer records
are written inside a two-dimensional loop at 161. The outer
loop may be empty. The inner loop contains mathematical
values required for certain animations and image processing
algorithms. The Single and double floating-point, and long
integer records are controlled by the same high watermarks
as those used for Boolean and integer records.

FIG. 25 describes the techniques used to create a custom
ized and optimized run time engine by the build engine (31
of FIG. 4). A versionizing program analyzes the feature
flags, and only those variable definitions, defined in the
“Main” object class, relating to the object classes and
methods that will be executed at run time, are extracted at
162. All references to object classes that will be called at run
time are extracted, creating the Source code for the run
engine “Main” object class that is ready for compilation at
163.

All external image, Video and audio files are resolved at
164. The external references can be copied to designated
directories at 164, either on the user's local disk or file
server. The file Pathnames can be changed to reflect these
new locations. During the installation of the build tools, the
necessary class libraries from Sun, MicroSoft and Netscape
are either installed on the local system (See FIG. 5) or made
available on the server where the build tools can be option
ally located. The necessary environmental variables are Set
to permit normal access to the required class libraries.

The customized run engine and a library of the referenced
run time classes are compiled and converted into byte code
at 165. Finally, the run time engine for the website is created
at 166. The required Set of class objects required at run time
is flagged for inclusion into the CAB/JAR file (See FIG.27).

FIG. 26 shows the techniques used to create the HTML
Shell File (HSF) (32 of FIG. 4). The first step of the process
at 167 is to determine whether the dynamic web page and
object resizing is desired by testing the application Setting,
set by the user at FIG. 21a, or possibly reset at FIG. 24. If
the application was a web page, and thus requiring dynamic
web page and object resizing, Virtual Screen resolution
settings, calculated at FIG. 24 at 153, are placed in an
appropriate HTML compliant string at 168. If the applica
tion is a banner or other customized application, the absolute
values for the run time object (applet size) height and width
are placed in an appropriate HTML compliant String as
absolute width and height values at 169.
An analysis is made for the background definition for the

first internal web page at 170. If a background pattern is
defined, an appropriate HTML compliant String for Setting
the HTML “background” to the same background image is
generated. If the first web page definition is a color instead,
then the RGB values from those colors are converted to
hexadecimal and an appropriate HTML compliant String is
generated Setting the “bgcolor” to the required hexadecimal
value. This proceSS Synchronizes the web page background
with the background that will be drawn by the browser when
it first interprets the HSF.

Thereafter, a JAVA method generates HTML and JavaS
cript compliant Strings, that when executed by a browser,
generate additional sets of HTML and JavaScript compliant
Strings that are again executed by the browser. More
Specifically, if the application required dynamic web page
and object resizing (See 167) then JavaScript and HTML
compliant Strings are generated at 171 So that, when inter
preted by the browser at the time the HTML Shell File is
initialized, the screen resolution sensing JAVA applet (SRS)
will be executed. JavaScript code is generated at 172 in
order to enable JavaScript to SRS applet communication. In

15

25

35

40

45

50

55

60

65

44
one implementation, the code is generated by performing the
following functions:

1: Determine the current browser type.
2: Load the SRS from either a JAR or CAB File, based on

browser type.
3: Enter a timing loop, interrogating when the SRS is

loaded.
4: When the SRS returns an “available” status, interrogate

the SRS, which will return the current Screen and
window's actual height and width.

5: Convert the Virtual Screen resolution Settings into
appropriate absolute Screen width and height values.

Strings defining additional JavaScript code are generated
at 173 that perform the following steps at the time the HSF
is initialized by the browser:

1: Generate HTML compliant strings that set the run time
engine's applet size to the appropriate values.

2: Generate an HTML complaint String that contains a
"param' definition for linking the run time engine to
the External Database created at FIG 24.

3: Generate an HTML complaint String, dependent upon
the type of browser, which causes the current browser
to load either the JAR or the CAB File(s).

4: Generate JavaScript Code compliant Strings that create
and dynamically write the applet size defining HTML
Strings utilizing the JavaScript "document.Write' func
tion. This dynamically created code causes the browser
to execute the run time engine, in the correctly sized
window, from the correct JAR or CAB file, and linked
to the external database.

At 174, writing out the above-generated HTML and
JavaScript compliant Strings creates the HSF. The necessary
Security policy permissions are asserted, and a “Website
name'.html file is created.

FIG. 27 describes the processes for creating the CAB and
JAR Files (33a of FIG. 4). The image objects, if any, which
were defined on the first internal web page are analyzed at
175. If they are set to draw immediately upon the loading of
the first web page, then they are flagged for compression and
inclusion in the CAB and JAR Files. The feature flags are
analyzed at 176 to determine which JAVA classes have been
compiled (See FIG. 25). These class files are flagged for
compression and inclusion in the library CAB and JAR
Files. Strings that are BAT compliant definitions are created
at 177 that will, when executed in DOS, create compressed
CAB and JAR Files. These CAB and JAR Files contain the
compressed versions of all necessary JAVA class files, image
files, the “Website name'.class, customized run time engine
file, and the “Websitename'.dta database file. In one imple
mentation of the invention, two BAT files are created. The
first, when executed, will create a CAB/JAR file with the
“Websitename'.dta database file and the customized “main'
run time engine, excluding all the image and button object
animation, transformation, and image processing code. The
Second BAT file, when executed, will create a CAB/JAR file
with all the library of all the referenced image and button
object animation, transformation, and image processing
code.
The necessary Security policy permissions for file creation

are then asserted, and “Websitename'.bat and “Website
namelib.bat files are written at 178. The “Websitename.bat
and “Websitename'.bat files are then executed under DOS,
creating compressed “Websitename'.cab and “Website
namelib'.cab files and compressed “Websitename”.jar and
“Websitenamelib'.jar files at 179. The HTML Shell File and
the JAR and CAB files are then, either as an automatic

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 285 of 548

US 6,546,397 B1
45

process, or manually, uploaded to the user's web site. This
completes the run generation processes.
Run Time Process
The run time process is shown in FIG.28 through FIG. 36.
FIG. 28 shows the web page Size generation technology

utilized by the run time engine. A Web Surfer points a
browser at the HTML shell file (HSF) at 180. The browser
begins to interpret the HTML and JavaScript code in the
HSF that was created (See FIG. 26). The browser draws
either the background color or background image pattern, as
defined by the HTML complaint code (See FIG. 26) at 170.
The browser then executes the HSF's JavaScript initializa
tion code, which “Sniffs' the current browser at 181 to
determine its type, and then generates the appropriate
HTML code for that particular browser to interpret. This
code defines whether the executable files and database will
be extracted from inside a compressed CAB file or a
compressed JAR file and its location.

Based on the user application (defined at FIG. 21a, or
possibly reset at FIG. 24), the HSF at 182 will then execute
an appropriate JavaScript function (as created in FIG. 26 at
167). If the application required dynamic resizing of the web
page's dimensions, JavaScript code is called which gener
ates HTML code using the JavaScript “document.write”
function, which causes the SRS applet to be immediately
executed by the browser at 183. The JavaScript code then
goes into a timer loop, checking on when the SRS applet is
alive before initiating any communication. After detecting
that the SRS has been initialized, a JavaScript function calls
the appropriate SRS applet methods at 185, which return the
width and height, in pixels, of the current browser window.
JavaScript Code is then called which converts the screen
resolution independent window width and height values into
absolute pixel values. A JavaScript function is then called
which use the JavaScript “document.write” function to gen
erate HTML code that define the run time engine
Specifications, etc. (see FIG. 26) and cause the browser to
immediately execute the run time engine. If the application
had not required dynamic resizing of the web page's
dimensions, then a JavaScript function is called which
generates HTML code using the JavaScript “document
write” function that defines the fixed dimensions for the
web pageSize and cause the browser to immediately execute
the run time engine at 184.

FIG. 29 shows the techniques employed by the run time
engine to read the external database and to generate the
necessary web page objects (35 of FIG. 4). The run time
engine reads a “PARAM” value at 186, from HTML Code
that was generated above (see FIG. 26), which points to the
“Websitename'.dta external database that is compressed
into the JAR or CAB File (that was loaded and accessed in
FIG. 28). The run time engine then initiates the read opera
tion. In one implementation, the read technique is always
non-privileged. If permitted by the current browser as a
non-privileged operation, the “Websitename'.dta file will be
extracted and read from the CAB/JAR file residing in
temporary local Storage. If not, the run time engine will read
the “Websitename”. dta file directly from the server. The
header record is read at 187. Any objects, such as fonts and
colors, are cast into their original form. The high watermark
values, as they are encountered in the header and in the body
of the database, are immediately used for Setting the limits
for the Subsequent multilevel read loops for reading in the
Style record and the web page(s) and object(s) definitions.
The virtual Screen resolution values are read for the Subse
quent dynamic resizing of the web page objects.

The Style record is read based on its high watermarks, and
processed at 188. The definitions for all paragraph, text

15

25

35

40

45

50

55

60

65

46
button, image or other Styles are read and Stored for Subse
quent initialization and processing of all paragraph, text
button, image or other objects. The data representing the
values for the first web page and all its objects is read at 189.
The Boolean, integer, String and floating point fields for the
first web page are initialized. The Serialized multimedia
objects for the first web page are read and cast into their final
form. (See FIG. 24)

If external files, Such as image, audio and Video files, must
be read as part of the first web page's generation, exception
handling routines are executed at 190, as necessary, in the
event of any processing errors. In one implementation, error
recovery at this Stage places the highest priority on a
graceful operation cancellation, rather than a web page
crash. In the worst case, a particular image, Sound or video
file may not be available to the web surfer. All other aspects
of the web page will likely be available even in this error
Scenario.

Process step 191 is executed simultaneously with the
generation of all the other web pages at 192 by means of
multiprogramming utilizing thread technology. Thus the first
web page will be drawn and active for user viewing and user
interaction long before the data for all the other web pages
have been read, processed, and initialized. The data repre
Senting the values for the Subsequent web pages and all their
objects are read at 192. The Boolean, integer, String and
floating point fields for these web pages are initialized. The
Serialized multimedia objects for these web pages are read
and cast into their final form. (See FIG. 24)

FIG. 30 shows the scaling techniques employed by the run
time engine for web page generation (36 of FIG. 4). The first
Step in the Scaling proceSS is to calculate the coordinates that
define the origin for the placement of each object for a given
web page. (This is usually the upper left corner of the object,
defined in actual screen pixels.) A test is made at 193 to
determine if the centering attribute is set for the object. If
not, the left and top coordinates are converted from the
Virtual Screen values to the local Screen values, based on the
local screen window resolution at 194. In one
implementation, multiplying the Virtual coordinate by the
local Screen window resolution and dividing by the Virtual
Screen resolution determine the conversion.

If the centering attribute is on, then a calculation for the
objects width is performed. See processes 197, 198, and
199 below for a description of this calculation. Based on this
calculated width, and based on the local Screen window
resolution, the left coordinate is calculated at 195. One
algorithm that can be used is to Subtract the Screen width, as
calculated in 197-199 below, from the local Screen window
resolution, and divide that result by 2. The top coordinate is
calculated the same as in process 194 above.

Based on the object type, determined at 196, a different
Scaling technology is employed. If the object is a text button
object at 197, the text button object itself, including its
background, is not Scaled. The Virtual width and the local
Screen width remain the same. However, if a 3D Frame
effect is defined, it is Scaled based on the following algo
rithm: if the text string's orientation is Left to Right, the
inner width of the 3D Frame, and its placement relative to
the text String, is calculated as the length of the text String,
plus /s of an “n” Space on each Side, plus an additional offset
appended to the right of the inner width to compensate for
the italic font style, if defined for the font of that text string.
The italic offset can be defined as the font size for the text
string, divided by 10, plus 1. The inner height of the 3D
Frame can be defined as the font height plus 2 pixels. The
font height equals the font's leading plus its ascent plus its

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 286 of 548

US 6,546,397 B1
47

descent specifications. The inner height origin can equal the
text string origin. The style of the 3D effect (i.e., either a 3D
raised look or a 3D depressed look), plus the inner width and
height, is sent to a 3D frame build method for the construc
tion of the 3D frame. The width of the 3D frame in pixels can
be calculated as the inner width divided by 10 plus 3.

If the text string's orientation is vertical, the inner width
of the 3D Frame is an “m” space. The inner height of the 3D
Frame can be calculated as the font height times the number
of characters in the text string. Both the left and top
placement of the 3D frame can be set to the left and top
origin of the text string. The width of the 3D Frame can then
be calculated as the inner height divided by 10, plus 3.

If an animation is assigned to the text String, the font Size
used for the initial calculation of the 3D frame is the same
as that used to define the animation's initialization value. If
the object is a paragraph at 198, and the Scaling attribute is
on, the maximum width for the paragraph can be defined by
the attached paragraph style (or paragraph override) as a
percentage of the Screen width. This Screen width percentage
can be converted into an actual width in pixels, based on the
local Screen's window resolution. If the current Screen
resolution is the same as that used by the web designer, then
the paragraph line end values (just read from the external
database) are used without adjustment, bypassing the entire
paragraph reformat process. If the current Screen resolution
is different than that of the virtual Screen resolution, then a
very compact method of reformat is called (relative to the
build engine reformat methods at FIG. 6 and at FIG. 18), and
the text for the paragraph is reformatted based on this width.

The run time engine's reformat technology begins by
creating one paragraph line for the entire text String assigned
to the paragraph text area. All the style overrides are
renumbered Sequentially with the Style records or the non
marked text strings ignored. A simplified “Overflow” refor
mat method can be called, which chopS up the Single
paragraph line first into paragraph line Segments, where each
word is defined as a line Segment. Because of the word
oriented Style override architecture, the Style overrides have
a one-for-one correspondence with the line Segments. Each
paragraph line break can be calculated by relying on the
Simplified word oriented Style override technology
described above. The paragraph line can be built inside a
tight word-by-word loop, with a simple logic check for a
style override or hard line break. The paragraph width is then
derived as the width of the longest line of the reformatted
paragraph, while the paragraph height is defined as the font
height times the number of lines. If a 3D frame was defined
for the paragraph, it can be Scaled based on the following
algorithm:
The inner width is defined as the same as that of a text

String, but the width of the text String for the longest line is
used. The same “n” Space and italic offset calculations are
used. The inner height is calculated as the font height times
the number of lines plus 2 pixels.

If the object is a paragraph, and the Scaling attribute is off,
then the paragraph is treated the Same as a text button object,
with the only exceptions that there is no vertical orientation,
and the height and width of the 3D frame, if defined, is
calculated using the same algorithm as was used for the
Scaled paragraph above.

If the object is an image at 199, and the scaling attribute
is on, the image width can be calculated as the Virtual width
times the local screen window width divided by the virtual
Screen width. The image height can be calculated as the
virtual height times the local screen widow height divided
by the virtual Screen height. If the image had been resized or

15

25

35

40

45

50

55

60

65

48
rotated, then the virtual width and height of the image would
differ from that of that of the original image. If a 3D frame
is defined for the image, it can be Scaled based on the
following algorithm:
The inner width and the inner height of the 3D frame will

coincide exactly with the outer edges of the image, after the
image had been Scaled. Adding the Scaled image height to
the scaled image width and dividing the result by 40 and
adding 3 can calculate the width in pixels of the 3D frame.

If an animation is assigned to the image, then the anima
tions initialization values for the image's width and height
can be used to calculate and draw the initial 3D frame. The
coordinates and sizes for the backgrounds for text button,
image and paragraph objects can be calculated using the
Same algorithms as was employed for the calculation and
placement of the inner width and inner height for the 3d
frame for each object.

FIG. 31 through FIG. 35 shows the multilevel web page
and object thread technology employed by the run time
engine. The description includes all the animation
technologies, transformation technologies, time line tech
nologies and drawing technologies that Support this multi
level architecture.

FIG. 31 describes the initial processes for the inventions
multilevel web page and object thread technology employed
by the run time engine (37 of FIG. 4). Upon the completion
of the processing of all the data definitions for the first
internal web page (FIG. 30), the main web page thread is
created and executed. This causes the run method for the
main run time engine class to be executed Simultaneously
with the reading, processing, and Scaling of the data for the
Subsequent web pages (See FIG.29). In addition, the reading
of any image files defined for the first web page is also
performed simultaneously, under the control of an image
observer (See FIG. 12). The main run method enters a web
page counter loop at 200, the loop being defined from the
first internal web page to the high watermark that was Set to
the number of existing internal web pages for the web site.
A check is made at 201 to see if the current web page

exists. If the web page does not exist, and the current web
page number is less than that of the high watermark, then the
web page counter is incremented by one and the web page
counter loop is reentered. If the current web page number
equals the high watermark at 202, then the web page counter
is reinitialized to the first web page, So that the web page
loop may repeat itself, from the first internal web page,
depending upon the delay Setting for the last web page.
A test is then made on all objects defined for this web page

at 203, utilizing a loop whose range is defined by the number
of objects per web page high watermarks. More specifically,
within this universe of possible objects, if the object exists,
and it is defined by a time line in which there is a delayed
entrance, then a boolean flag is Set for those objects that
causes the draw System to SuppreSS drawing these objects
during the web page transition as defined below.
A test is then made to determine if the web page has a

transition animation defined at 204. If not, the draw system
is called for the first time. The draw system for a given web
page utilizes a loop whose range is defined by the number of
objects per web page high watermarks. The draw System can
also employ technology So that the draw process generates
a Screen image in one or more off-screen buffers, only
drawing to the Screen when the Screen image, or the clipping
area for the Screen, has been fully generated. This greatly
reduces, if not totally eliminates, any Screen flicker, and
creates visually Smooth animation effects.
The first draw function is to draw the web page back

ground into the primary off-Screen buffer. The web page

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 287 of 548

US 6,546,397 B1
49

background color is drawn, as defined initially at FIG. 21a,
or modified for that particular web page at FIG. 20. A test is
then made to determine if the web page has a background
image pattern, as defined initially at FIG. 21a, or modified
for that particular web page at FIG. 20. If it does, and the
image observer reports that the image is ready to be drawn,
a background image draw loop is executed, defined by the
height and width of the background image, and the Screen
resolution of the current browser window. In the unlikely
event that the background image pattern is not yet available,
there is a delay until the image observer reports the comple
tion of the image processing operation. The tiled background
image pattern is also drawn into the primary off-Screen
buffer, completely overdrawing the background color. The
backgrounds for all non-suppressed (See 203) parent web
page text button and paragraph objects are then drawn into
the primary off-Screen buffer, unless a background transpar
ency flag has been set (See FIG. 7).

The text Strings for non-Suppressed parent web page text
button and paragraph objects are then drawn into the pri
mary off-screen buffer. These text Strings are drawn based on
their font name, Style, size, effect(s), and color. If a para
graph line String, the String may have multiple String
Segments, each with their own font name, Style, etc. If the
text button object has its vertical attribute set to true, then the
draw System executes a loop defined by the number of
characters defined in the text button object. The top and left
origin coordinates were set in the usual way (See FIG. 30),
but the top coordinate is adjusted by the font height for each
iteration of this draw loop. The intelligent 3D Frame, if
defined, is then drawn into the primary off-screen buffer for
the paragraph and text button objects (See FIG. 30). The
primary image objects for the Web page are then processed
by the draw system. If the image observer reports that the
image is ready to be drawn, it is drawn into the primary
off-screen buffer, based on the coordinates and Size as
defined in FIG. 30. If not ready, there is a delay until the
image observer reports the completion of the image pro
cessing operation. The Intelligent 3D frame, if defined, is
then drawn into the primary off-screen buffer for the image
objects (See FIG. 30).

The draw System is responsive to two other technologies
at this stage. The first is user interaction based on the
location of the mouse cursor and any user initiated mouse
event. This subject will be described in greater detail below
in association with FIG. 36. The second is object animation
for non-delayed web page objects. This subject will be
described in greater detail below in association with FIG. 33.

If the web page transition test at 204 was true, then the run
time engine's main run method executes the web page
transition animation technology at 205.

FIG. 32 describes the web page transition animation
technology. First a lock is placed on this method at 212, as
a Safety precaution to prevent any interference from other
threads during the animation. A test is then made on whether
the transition animation setting (See FIG. 20) for the web
page is random at 213. If So, a random transition number is
generated at 214. The web page thread then begins a
particular animation loop at 215, depending upon the ran
dom number that was generated at 214 or by the transition
animation that was set previously (at FIG. 20). In one
implementation, 13 different transition animations plus ran
dom are Supported including. They are: Fade In, Zoom In,
Zoom Out, Zoom to Upper Left, Zoom to Lower Right,
Rotate to the Left, Rotate to the Right, Rotate Bottom to Top,
Rotate Top to Bottom, Slide to the Left, Slide to the Right,
Slide Bottom to Top, and Slide Top to Bottom.

15

25

35

40

45

50

55

60

65

SO
For all web page transition animations, the X and Y

animation increment values are calculated by dividing the
current browser's screen width and height by the user
defined animation resolution at 215. In all animation and
draw loops, the number of loops can equal the number of
animation frames as set at FIG. 20. The timer delay for all
animations, in milliseconds, can be calculated by dividing
the number of frames per second (See FIG. 20) into 1,000.

For a description of “Fade In' Technology see FIG. 33. A
“Zoom. In algorithm sets the initial scaled width and height
for the current web page image to Zero and the prior web
page image to its full size. In each animation and draw loop
the previous web page's final image State is drawn into a
secondary off-screen buffer at 216. (If this is the first
occurrence of the first web page, then the Secondary off
Screen buffer is set to the background of the first web page.)
The upper left hand corner (origin) of the current web page
can be calculated based on the following formula: browser
screen width minus the scaled width divided by two.
The Scaled image of the current web page is then drawn

into the Secondary off-screen buffer at the calculated origin,
using the current Scaled width and height for the web page
image. This merged image of the prior and Scaled version of
the current web page is then drawn to the Screen. A timer
delay then occurs as defined at 215, after which the X and
Yanimation increment values are added to the Scaled width
and height for the current web page image. The animation
loop is then repeated to its conclusion at 218.
The other eleven web page transition animations follow a

Similar methodology, but have quite different calculations,
which are based on the following variables:

1: Order of drawing of the prior and current web pages.
2: Initialization values for the X and Y origin coordinates

for the current and prior web pages.
3: The initial values for the scaled width and height for the

current and prior web pages.
4: Whether X and Y origin coordinates for the current and

prior web pages increment, decrement, or remain the
SC.

5: Whether the values for the scaled width and height for
the current and prior web pages increment, decrement,
or remain the Same.

For the "Zoom Out' animation, the current page is drawn
first and always drawn at 100%. The prior web page is
initialized also at 100%, but its X and Y origin coordinates
are incremented and its Scaled width and height values are
decremented, by the appropriate values, for each animation
iteration.

For the “Zoom to Upper Left”, “Zoom to Lower Right',
“Rotate to the Left”, “Rotate to the Right”, “Rotate Bottom
to Top' and “Rotate Top to Bottom' animations, a common
data initialization and data increment Strategy is imple
mented.

1: The X and Y variables for page image one is set to Zero.
2: The X and Y variables for page image two is set to the

right and bottom edges of the browser window.
3: The Scaled width and height variables for page image

one is set to 100% of the browser window's resolution.
4: The Scaled width and height variables for page image

two is Set to Zero.
5: For each loop iteration, the scaled width and height

Variables for page image one are decremented by the X
and Y animation increment values defined at 215.

6: For each loop iteration, the Scaled width and height
Variables for page image two are incremented by the X
and Y Animation increment values defined at 215.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 288 of 548

US 6,546,397 B1
S1

For the "Zoom to Upper Left' animation, the prior web
page is drawn first, with its X and Y origin coordinates
always set to Zero. (upper left corner of the browser window)
Its Scaled width and height values are always Set to the
current values for Scaled width and height variables for page
image one. The X and Y origin coordinates for the current
web page can be calculated by Subtracting the current values
of image two's scaled width and height variables from the
initial values of the X and Y variables for page image two.
The Scaled width and height values for the current web page
can be set to the current values for the scaled width and
height variables for page image two.

For the "Zoom to Lower Right' animation, the current
web page is drawn first, with its X and Y origin coordinates
always Set to Zero. Its Scaled width and height values are
always Set to the current values for Scaled width and height
variables for page image two. The X and Y origin coordi
nates for the prior web page are set to current values of
image two's Scaled width and height variables. The Scaled
width and height values for the prior web page are Set to the
current values for the scaled width and height variables for
page image one.

For the “Rotate to the Left' animation, the prior web page
is drawn first, with its X and Y origin coordinates always Set
to Zero. Its Scaled width value is Set to current value of image
one’s Scaled width variable. Its Scaled height value is always
set to the bottom of the browser's window. The X origin
coordinate for the current web page can be calculated by
Subtracting the current value for image two's Scaled width
variable from the initial value for image two’s X origin
coordinate. The Y origin coordinate for the current web page
is always Set to Zero. Its Scaled width value is Set to current
value of image two's Scaled width variable. Its Scaled height
value is always set to the bottom of the browser's window.

For the “Rotate Bottom to Top' animation, the prior web
page is drawn first, with its X and Y origin coordinates
always set to zero. Its scaled width value is set to the width
of the browser window. Its scaled height value is set to
current value of image one's Scaled height variable. The
current web page's X origin coordinate is always Set to Zero.
The Y origin coordinate is calculated by Subtracting the
current value of image two’s Scaled height variable from the
initial value for image two's Y origin coordinate. Its Scaled
width value is always set to the right edge of the browser's
window. Its Scaled height value is set to current value of
image two’s Scaled height variable.

For the “Rotate Top to Bottom' animation, the current
web page is drawn first, with its X and Y origin coordinates
always set to zero. Its scaled width value is set to the width
of the browser window. Its scaled height value is set to
current value of image two's Scaled height variable. The
prior web page's X origin coordinate is always Set to Zero.
The Y origin coordinate is set to the current value of image
two's Scaled height. Its Scaled width value is always Set to
the right edge of the browser's window. Its scaled height
value is Set to current value of image one's Scaled height
variable.

For the “Slide to the Left”, “Slide to the Right”, “Slide
Bottom to Top' and “Slide Top to Bottom' transition
animations, a common data initialization and data increment
Strategy is implemented. The Strategy includes

1: The X and Y variables for page image one is Set to Zero.
2: The X and Y variables for page image two is set to the

right and bottom edges of the browser window.
3: For each loop iteration, the X and Y variables for page

image one are incremented by the X and Y animation
increment values defined at 215.

5

15

25

35

40

45

50

55

60

65

52
4: For each loop iteration, the X and Y variables for page

image two are decremented by the X and Y animation
increment values defined at 215.

5: The scaled width and height values always remain at
100% of the browser windows width and height.

For the “Slide to the Left' animation, the prior web page
is drawn first, with its X and Y origin coordinates always Set
to Zero. The current web page's X origin coordinate is Set to
the current value of page image two S X variable. Its Y
origin coordinate is always set to zero. For the “Slide to the
Right' Animation, the current web page is drawn first, with
its X and Y origin coordinates always Set to Zero. The prior
web page's X origin coordinate is Set to the current value of
page image one's X variable. Its Y origin coordinate is
always Set to Zero.

For the “Slide Bottom to Top' animation, the prior web
page is drawn first, with its X and Y origin coordinates
always Set to Zero. The current web page's Y origin coor
dinate is Set to the current value of page image two's Y
variable. Its X origin coordinate is always Set to Zero.

For the “Slide Top to Bottom' animation, the current web
page is drawn first, with its X and Y origin coordinates
always Set to Zero. The prior web page's Y origin coordinate
is Set to the current value of page image one's Y variable. Its
X origin coordinate is always Set to Zero.

After the last animation cycle is completed for any of the
transition animations at 218, the animation process is
unlocked, and process step 206 shown in FIG. 31 is then
executed.

Returning to FIG. 31, the main web page thread's run
method then executes a text button and image object time
line, transformation and animation loop at 206. This range
loop is defined from the first object on the given web page
to the high watermark for the number of those objects on a
web page for this web site. A test is made on each object on
whether an animation, transformation and/or time line has
been assigned at 208.

If So, an “instance' of the time line class for that particular
object type is created at 209. An “instance” of a class is a
fundamental aspect of object oriented programming (OOP).
Each time, the line class is implemented with a “runnable”
interface, So that they can be executed as independent
threads. Communication of data, between the “instance” of
a class and the main run engine class can be accomplished
in OOP using several different techniques. In one
implementation, this construction, passed as an argument, is
used to permit different objects to address each other's
variables and databases. A thread is then created, utilizing a
two-dimensional object internal database architecture (web
page number by internal object number). This methodology
is convenient for permitting all object time lines for a given
web page to be managed and Synchronized. The object's
thread is then “started”.
The result of this process at 209 is that an independent

thread has been created for each appropriate object on a
given web page, all executing Simultaneously with each
other and with the main run time engine web page thread,
Subject to the definitions of their independent time lines at
210. See FIG. 33 for a description of the time line technol
ogy. When the main web page thread has finished the text
and image loop at 207, the draw System is activated; the run
time engine can now respond to user interactions, and the
main web page thread transitions into a "Join' loop at 211.
See FIG. 35 for a description of this process.

FIG. 33 shows the time line technology used by the run
time engine. The techniques and algorithms employed to
create this technology permit each web page object to have

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 289 of 548

US 6,546,397 B1
S3

an independent yet synchronized existence with each other,
with the main web page thread, and with child objects that
each main or parent object may spawn. Furthermore, each
object and each of their child objects are capable of per
forming multiple animations and transformations, either
Serially or simultaneously. Database initialization is first
accomplished for each object thread. This assures that the
object thread's database is set to the correct initial values as
required for that particular object, and that the references to
the main web page thread's database are established.
A test is then made to determine if the object has a time

line definition assigned to it at 219. If not, a test is made at
220 on certain two-dimensional object definition variables in
order to determine which of the following four states have
been defined for the object: animation without a transfor
mation; transformation without animation; animation, with
the transformation occurring Simultaneously with the ani
mation; and animation and transformations occurring in a
Serial manner.

If the test shows that the object has an animation defined,
but no transformation, then certain two-dimensional Status
variables are Set, and an “instance' of the “animation class'
for that particular object type is created at 229. Each
“animation class” is also implemented with a “runnable”
interface. An object animation thread is then created, utiliz
ing the two-dimensional object internal database architec
ture (See FIG. 8). This object animation thread is then
“started”. Communication between the object animation
thread, the parent time line thread, and its parent, and the
main web page thread, are accomplished as discussed in
process 209. The object time line thread then executes a
“Join' method. This puts the object time line thread in a
“wait State'. When the thread it is waiting for is completed,
this child thread “joins” the parent object time line thread,
and the object time line thread then continues its process.
Other forms of synchronization between two independent
threads could have been implemented as is known in the art.

The techniques employed at 229 to implement object
animation vary by object type. In one implementation, for
text button object animations, 26 different animations are
supported including: Zoom In, Zoom Out, Grow NW, Grow
NE, Grow SE, Grow SW, Shrink SE, Shrink SW, Shrink
NW, Shrink NE, Enter N, Enter NE, Enter E, Enter SE, Enter
S, Enter SW, Enter W. Enter NW, Exit N, Exit NE, Exit E,
Exit SE, Exit S, Exit SW, Exit W and Exit NW. In one
implementation, for image object animations, 29 different
animations are Supported including: Fade In, Fade out,
Rotate, Zoom In, Zoom Out, Grow NW, Grow NE, Grow
SE, Grow SW, Shrink SE, Shrink SW, Shrink NW, Shrink
NE, Enter N, Enter NE, Enter E, Enter SE, Enter S, Enter
SW, Enter W. Enter NW, Exit N, Exit NE, Exit E, Exit SE,
Exit S, Exit SW, Exit W and Exit NW.
As discussed above with regard to FIG. 17 each animation

type has a defined speed, resolution, and number of anima
tion cycles. These Settings are Stored in the main web page
class, and are passed to the particular animation thread
through a two-dimensional object internal database archi
tecture as discussed in process Step 209 above during the
animation threads initialization process. The animation
thread then executes, in its run method, a main animation
loop that has the number of iterations set to the end number
of animation cycles, as assigned to that particular text button
object.

Text button animations are currently implemented in three
logical groups. Group One includes “Zoom In”, “Grow
NW”, “Grow NE”, “Grow SE", and “Grow SW”. Group
Two includes “Zoom Out”, “Shrink SF", “Shrink SW',

15

25

35

40

45

50

55

60

65

S4
“Shrink NW", and “Shrink NE". Group Three includes
“Enter N”, “Enter NE”, “Enter E”, “Enter SE”, “Enter SW,
“Enter W”, “Enter NW", “Exit N”, “Exit NE”, “Exit E",
“Exit SE”, “Exit S", “Exit SW.”, “Exit W" and “Exit NW".

For Group One text button animations, the animation font
Size is initialized at a very Small value, and in one imple
mentation is set at 4 Points. The animation point size
increment can be derived by dividing the resolution (number
of animation frames) into the font size for that text button
object. The run method then executes a Secondary animation
loop, which will terminate when the animation font size
equals the text button object point size. For each Secondary
animation loop, the length of the current animated text String
is calculated, a new font object is created for the current
animation point size, and the font metrics for that new font
are created. If the text button object has a vertical
orientation, the animated text button objects width is cal
culated to be the width of an “m” space, in the current
animated font. The animated text button object's height is
calculated to be current animated font height times the
number of characters in the text String. If the text had a
horizontal orientation, the animated text button object's
width is calculated to be the width of the text string in the
current animated font. The animated text button object's
height can be calculated to be the font height of the current
animated font. The calculations for X and Y coordinates for
the animated text button object depend upon which anima
tion was defined within the Group One-text button anima
tions. The X and Y animation increments can be calculated
utilizing the height and width, in pixels, of the text button
object Scaled to the current browser's window, utilizing the
text button animation resolution, and considering whether
the animating text button object is being centered during the
animation (“Zoom Out”) or not. These calculations are
Similar to those for the web page transition animations
discussed with regard to FIG. 32.
The draw system is then called. Based on the values of the

two-dimensional Status variables that had been Set initially,
the draw System executes the appropriate animation draw
routine utilizing, through the data communication tech
niques already discussed, the current animation font point
size, and the current animation X and Y coordinates. If a text
background is to be drawn, the same algorithm as defined in
FIG. 31 is used. If a 3D Frame is assigned, the current
animated String width and height are passed to the appro
priate 3D frame generation method, and the frame is drawn
with the same algorithm as defined in FIG. 31, but utilizing
the current animation X and Y coordinates. The text button
objects orientation is also handled by the draw system with
the same algorithms as defined in FIG. 31.
The text button animation thread then executes a timer

delay, whose value had been defined in FIG. 17. When the
timer reactivates the text button animation thread after the
appropriate delay, an animation cycle completion test is
made to See if the text button object's point size minus the
animation point size is less than the animation point size
increment. This type of testing methodology permits the
invention to utilize integer values, as opposed to floating
point values, for the text button animation. This improves
the execution of the animation considerably.

If the above test is true, the animation point Size is Set
equal to the object point size and a final call is made to the
draw system for that animation cycle. A test is then made to
See if the current animation cycle equals the total number of
animation cycles as defined in FIG. 17. If not, a new
animation cycle is initiated, with the animation values
reinitialized. If this was the last animation cycle the text

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 290 of 548

US 6,546,397 B1
SS

button animation thread calls its “stop” method, which sets
the required Status variables as appropriate, then terminates
itself This causes the parent text button time line thread to
be reactivated through the "join' mechanism.

If the results of animation cycle completion test are false,
the current animation point Size is increased by the anima
tion point size increment. A new font object is created for the
now current animation point size, and new font metrics for
that new font are created. If the text button object has a
vertical orientation, the animated text button objects width
is calculated to be the width of an “m” space, in the now
current animated font. The animated text button object's
height is calculated to be the now current animated font
height times the number of characters in the text String. If the
text has a horizontal orientation, the animated text button
objects width is calculated to be the width of the text string
in the now current animated font. The animated text button
object's height is calculated to be the font height of the now
current animated font. The calculations for the new X and Y
coordinates for the animated text button object are then
completed, as appropriate, and the draw System is called
again.
The algorithms for Group Two text button animations are

very similar to those of Group One. The differences are just
in what are the initial animation values, and whether the
animation point Size increments and the animation X and Y
coordinate increments are added or Subtracted from the then
current animation point Size and the then current X and Y
coordinates for the animating text button object.

For Group Three text button animations, the distance that
the text button animation will move is calculated, in pixels,
from its initial location to its final location in the current
browser Window. The X and Y animation increments are
calculated by dividing that distance by the resolution of the
text button animation. All the other algorithms for Group
Three text button animations are generally a Subset of those
for Group One, and Similar to the web page slide transition
animations defined with reference to FIG. 31.

Referring again to FIG. 33, image animations at proceSS
Step 229 can currently be grouped into five logical classes.
As with text button animations, Group One includes “Zoom
In”, “Grow NW, “Grow NE”, “Grow SE’, and “Grow
SW”. Group Two includes “Zoom Out”, “Shrink SE",
“Shrink SW, “Shrink NW, and “Shrink NE". Group Three
includes “Enter N”, “Enter NE”, “Enter E”, “Enter SE’,
“Enter S", “Enter SW, “Enter W, “Enter NW", “Exit N”,
“Exit NE”, “Exit E”, “Exit SE”, “Exit S", “Exit SW.”, “Exit
W” and “Exit NW. In addition, image animations have a
Group Four, which includes “Fade In” and “Fade Out”.
Group 5 image animations include the “Rotate' Animation.

For Group One mage animations, the animation width and
height increments are calculated by dividing the image
object's width and height by the resolution (number of
animation frames) as set in FIG. 17. The initial animation
width and animation height values are Set to a very Small
number, currently equal to the animation width and height
increment values just calculated. The calculations for X and
Y coordinates for the animated image object depends upon
which animation was defined within the Group One text
button animations. The X and Y animation increments are
calculated utilizing the height and width, in pixels, of the
image object Scaled to the current browser's window, ulti
lizing the image animation resolution, and considering
whether the animating image object is being centered during
the animation (“Zoom Out”) or not. These calculations are
Similar to those for the web page Transition Animations
discussed above with regard to FIG. 32.

15

25

35

40

45

50

55

60

65

S6
The run method then executes a Secondary animation

loop, which will terminate when the animation width equals
the image objects width. The algorithms employed by the
invention to change the animating object's height, width, X
coordinate, and Y coordinate are very Similar to those
employed for Group One text button animations, and will
not be repeated here. The techniques to utilize the draw
System for drawing the image animation, the time delay
technique, and the post draw logic tests and actions are also
very similar.

The algorithms for Group Two image animations are very
similar to those of Group One. The differences are just in
what are the initial animation values, and whether the
animation width and height increments and the animation X
and Y coordinate increments are added or Subtracted from
the then current animation width and height and the then
current X and Y coordinates for the animating image object.

For Group Three image animations, the algorithms are
identical to those of Group Three text button animations. For
Group Four image animations, the “alpha” value of a given
image object is utilized in order to implement “Fade In” and
“fade Out' animations. The alpha value can range from 0 to
255, depending upon the image Strength desired. The value
for an alpha animation increment variable can be calculated
by dividing the resolution of the animation into 255, after
making the necessary adjustments to keep the data in integer
form, without losing resolution due to integer rounding
errors. For a “Fade In' animation the value of an alpha
animation variable is set to zero. The run method then
executes a Secondary animation loop, which will not termi
nate until 255 minus the then current value of the alpha
animation variable is less than the value alpha animation
increment variable. A “Fade In' image filter can be created
for each iteration of the animation loop, using the current
Setting of the alpha animation variable. An image producer
can also be created with pointers to the last image bitmap
produced for the image object in the last animation loop and
to the image filter that has just been created. The image
producer, under the control of a media tracker then creates
a new image bitmap. The animation thread then “waits” for
the completion of this image-processing event using the
media tracker. Upon completion, the draw System is called
which draws the then current state of the image object. The
image animation thread goes into a timer delay of Some
preset value (in one implementation 500 milliseconds), to
permit a smooth visual animation effect. The value for the
alpha animation increment is added to alpha animation
variable and the loop is then repeated until the loop condi
tion is met. Then the “stop” method is called, certain status
variables are Set, and the image animation thread terminates
itself This causes the parent image time line thread to be
reactivated through the “Join' mechanism.
The “Fade Out' animation employs very similar

technology, except that:
1: the alpha animation variable is set to Zero,
2: the value for the alpha animation increment is

Subtracted, and
3: the loop termination test is when the value for the alpha

animation variable is less than the value for the alpha
animation increment.

For the Group Five image rotate animation, a different
bitmap for the image object is created for each animation
frame through the use of a progression of Standard geometri
cal transformations on the original image bitmap. A Second
ary animation loop is then executed as defined by the
number of animation frames. In each loop iteration, an
image object is created from an appropriate image bitmap

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 291 of 548

US 6,546,397 B1
57

Selected from among the Set just created, the necessary
two-dimensional variables are Set to communicate with the
draw system, and the draw System is then called. The image
animation thread then executes a timer delay method based
on the delay setting as defined above with reference to FIG
17. When the timer reactivates the image animation thread
after the appropriate delay, the next iteration of the Second
ary animation loop is repeated until the loop condition is
met. Then the “stop” method is called, certain status vari
ables are Set, and the image animation thread terminates
itself. This causes the parent image time line thread to be
reactivated through the "join' mechanism.

Returning to process step 220 shown in FIG. 33, if the
object had a transformation, but not an animation, then
certain two-dimensional Status variables are Set, and an
“instance' of the “transformation class” for that particular
object type is created at 228. Each “transformation class” is
also implemented with a “runnable' interface. An object
transformation thread is then created, utilizing the inven
tion's two-dimensional object internal database architecture.
This object transformation thread is then “started”. The
inter-thread communication technology and the "join' tech
nology employed for object transformations is the same as
for object animations.

If the transformation is being applied to a text button
object at 228, then a timer delay method is executed based
on the delay setting as described in association with FIG. 18.
When the timer reactivates the text button transformation
thread after the appropriate delay, the appropriate two
dimensional Status variables are set to inform the draw
system which state of the current text button object to draw.
The draw System is called and,-based on the Settings for the
above mentioned two-dimensional Status variables, either
the “normal', mouse over”, mouse down” or “pop-up' states
of the text button object's background, if any, the text button
object's String, and the 3D frame, if any, are drawn. If
additional transformations are defined (FIG. 18), the above
proceSS is repeated, based on the timer delay and object
states defined for the subsequent transformations. When the
last transformation is completed, the "Stop' method is
called, which Sets the required Status variables as appropri
ate. This causes the parent text button time line thread to be
reactivated through the "join' mechanism.

If the transformation is being applied to an image object
at 228, then a timer delay method is executed based on the
delay setting (as defined in FIG. 18). When the timer
reactivates the image transformation thread after the appro
priate delay, image transformation technology is executed.
In one implementation, the image transformation technology
utilizes the “alpha” value of a given image object State in
order to fade in and fade out images. The alpha value can
range from 0 to 255, depending upon the image Strength
desired. The value for an alpha transformation increment
variable is calculated by dividing the resolution of the
transformation into 255, after making the necessary adjust
ments to keep the data in integer form, without losing
resolution due to integer rounding errors. The value of an
alpha transformation variable is Set to Zero. Depending upon
the settings as defined in FIG. 18, the bitmap for one image
object State is initialized to an alpha value of Zero, while
another is initialized to an alpha value of 255. The appro
priate two-dimensional Status variables are Set for commu
nication with the draw System.
A transformation loop is then executed, until 255 minus

the then current value of the alpha transformation variable is
less than the value alpha transformation increment variable.
This methodology again keeps all calculations in the form of

15

25

35

40

45

50

55

60

65

58
integers, as opposed to floating point, thus Speeding up the
transformation process.
Two "Fade In' image filters are created for each iteration

of the transformation loop. The first uses an alpha value
calculated at the current Setting of the alpha transformation
variable. The Second uses an alpha value calculated at 255
minus the current Setting of the alpha transformation vari
able. Two image producers are also created with pointers to
the last image bitmap produced for each image object State
in the last transformation loop and to the two image filters
that had just been created. The two image producers under
the control of two media trackers then create two new image
bitmaps. The transformation thread then “waits” for the
completion of these two image processing events using the
media trackers. Upon completion, the draw System is called
which draws the then current State of the two image object
States, in the correct order, and in the correct location. The
image transformation thread goes into a timer delay of Some
preset value (500 milliseconds in one implementation), to
permit a Smooth Visual transformation effect. The loop is
then repeated until the loop condition is met. Then the “stop”
method is called, certain Status variables are Set, and the
image transformation thread terminates itself. This causes
the parent image time line thread to be reactivated through
the “join' mechanism.

Returning to process step 220 in FIG.33, if the object was
defined with an animation and transformation that would
execute in a Serial manner, then certain two-dimensional
Status variables are Set, and an “instance' of the “transfor
mation” class for that particular object type is created at 230.
An object transformation thread is then created, utilizing the
two-dimensional object internal database architecture. This
object transformation thread is then “started” and the parent
object time line thread “waits” to be "joined”.

If a text button object, then a primary loop is executed,
with the number of iterations set to the number of transfor
mations. After the execution and return from a timer delay
event, if any, an “instance' of the text button animation class
is created, and then a text button animation thread is created
and “started”. The parent text button transformation thread
then waits to be "joined”. This causes the text button
animation thread to be executed, in the manner described at
229. When the text button animation thread completes its
execution, it calls its "Stop' method, which Sets the neces
Sary Status variables and then terminates itself. This causes
the text button animation thread to “join the parent text
button animation thread, causing that thread to resume
processing. The first text button transformation is then
executed, in the manner described at 228. After the execu
tion and return from another timer delay event, if any,
another “instance' of the text button animation class is
created, and then another text button animation thread is
created and “started”. The parent text button transformation
thread again waits to be "joined”. This causes the text button
animation thread to be executed again with the animation
being executed, based on the definition set at FIG. 18, on a
different text button object state. The loop is then repeated
until the last text button transformation is completed. Then
the text button transformation thread calls its “stop” method,
certain Status variables are Set, and the text button transfor
mation thread terminates itself This causes the parent text
button time line thread to be reactivated through the “join'
mechanism.

If an image object, the mechanism of the image transfor
mation thread spawns image animation threads, before each
transformation, and is the same as that of a text button
object. The actual image transformation proceSS is identical

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 292 of 548

US 6,546,397 B1
59

to that described at 228. When completed the “stop” method
is called, certain Status variables are Set, and the image
transformation thread terminates itself. This causes the par
ent image time line thread to be reactivated through the
“join' mechanism.

Returning to process step 220 in FIG. 33, if the object was
defined with a simultaneous animation and transformation,
then certain two-dimensional Status variables are Set, and an
“instance' of the “super transformation class” for that par
ticular object type is created at 231. In one implementation,
the animation, transformation, and Super transformation
classes are integrated into one Structure in order to reduce
code size and increase execution Speed. Each “Super trans
formation class” is also implemented with a “runnable”
interface. An object Super transformation thread is then
created, utilizing the two-dimensional object internal data
base architecture. This object Super transformation thread is
then “started”. The inter-thread communication technology
and the "join' technology employed for object Super trans
formations is the same as for object transformations.

If a text button object, a calculation is made in order to
prorate the text button animation process acroSS the defined
text button transformation process. The calculation is driven
by the number of text button animation frames, and prorates
from that total the number of frames that should be assigned
to each transformation State. This can be done by dividing
the sum of all the transformation times by each individual
transformation time, and multiplying that result by the
number of frames, making necessary adjustments to prevent
integer rounding error. After these calculations are
completed, the text button animation is executed in a similar
manner as was defined at 229. However, when the appro
priate number of animation frames had been drawn, certain
two-dimensional Status variables are Set prior to calling the
draw System for the next animation frame, So that the correct
text button object State is drawn, in the correct size and with
the correct coordinates, by the draw system. When the Super
transformation process is completed the “Stop' method is
called, certain Status variables are Set, and the text button
Super transformation thread terminates itself. This causes the
parent text button time line thread to be reactivated through
the “join' mechanism.

If an image object, a calculation is made in order to
prorate the image animation process across the defined
image transformation process. The calculation is driven by
the number of image transformation events that would occur
(where each one can be set at approximately 500
milliseconds) over the entire animation event. A calculation
is performed in order to calculate how many image trans
formation events should be assigned to each transformation
state. This is done by dividing the sum of all the transfor
mation times by each individual transformation time, and
multiplying that result by the total number of transformation
events, making necessary adjustments to prevent integer
rounding error. A calculation is then made to allocate the
number of animation frames to each image transformation
event. After these calculations are completed, the image
animation is executed in a similar manner as was defined at
229. However, when the appropriate number of animation
frames had been drawn, the image transformation technol
ogy is called to perform the next transformation event. The
alpha transformation increment can be defined by dividing
255 by the number of transformation events assigned to that
transformation. The draw system is then called. When the
number of image transformation events assigned to a given
image transformation is reached, then certain two
dimensional Status variables are set prior to calling the draw

15

25

35

40

45

50

55

60

65

60
System for the next animation frame, So that the correct
image States, in the correct Size and with the correct
coordinates, are utilized by the draw System. This entire
animation/transformation proceSS will be repeated by the
number of image animation cycles. When the Super trans
formation process is completed the “Stop' method is called,
certain Status Variables are Set, and the text button Super
transformation thread terminates itself. This causes the par
ent text button time line thread to be reactivated through the
“join' mechanism.

Returning to process step 219 in FIG.33, if the object had
a time line, then a test is made at 221 on whether an
appearance delay had been defined in FIG. 19. If so, a timer
event is set at 222. When the timer reactivates the object
time line thread after the appropriate delay, a test is made on
whether an entry animation/transformation has been defined
for this object time line at 224, as described FIG. 19. If so,
based which animation/transformation process was defined,
it is created and executed at 228, 229, 230, or 231. In one
implementation, 13 entry animations are Supported for both
text button and image objects, and an additional "Fade In'
entry animation is Supported for image objects. The 13
common entry animations Supported include Zoom In, Grow
NW, Grow NE, Grow SE, Grow SW, Enter N, Enter NE,
Enter E, Enter SE, Enter S, Enter SW, Enter W and Enter
NW.

If no entry animation/transformation is defined, or when
the entry animation/transformation has “joined the object
time line thread, a test is made to determine if any child time
lines have been defined at 225, as described in FIG. 19, for
this parent object time line. If so, an “instance” of the “child
time line class' for that particular object type is created at
226. Each "child time line class” is also implemented with
a “runnable' interface. An object child time line thread is
then created, utilizing the two-dimensional object internal
database architecture. This object child time line thread is
then “started”. The inter-thread communication technology
and the “join' technology employed for object child time
lines is the same as for object time lines. Either a text button
child time line thread or an image child time line thread, or
both, can be spawned at this time. Simultaneous with the
execution of any spawned text button child time line threads,
the parent object thread then executes the defined main
animation and or transformation. AS with non-time line
object threads, a test is made on certain two-dimensional
object definition variables in order to determine which of the
following four states have been defined for the object at 227:
animation without a transformation; transformation without
animation; animation, with the transformation occurring
Simultaneously with the animation; and, animation and
transformations occurring in a Serial manner.

Based on the results of this test, an appropriate “instance'
of an appropriate animation, transformation, or Super trans
formation class is created, and an appropriate animation,
transformation, or Super transformation thread is created and
“started”. This results in the execution of process steps 228,
229, 230, or 231, as defined above.
The parent object time line thread then executes a “join'

method. This again puts the object time line thread in a “wait
state'. When the thread it is waiting for is completed, the
child thread “joins” the parent object time line thread, and
the object time line thread then continues its process. The
object time line thread then checks to see if there is a
departure delay defined at 232. If So, it sets a timer event at
233. When the timer reactivates the object time line thread
after the appropriate delay, a test is made at 234 on whether
an exit animation/transformation has been defined for this

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 293 of 548

US 6,546,397 B1
61

object time line, as described in FIG. 19. If so, it is created
at 235, and performed as discussed with reference to pro
cesses 228, 229, 230, or 231. In one implementation, 13 exit
animations Supported for both text button and image objects,
and an additional “Fade Out’ exit animation is supported for
image objects. The 13 common exit animations include:
Zoom Out, Shrink NW, Shrink NE, Shrink SE, Shrink SW,
Exit N, Exit NE, Exit E, Exit SE, Exit S, Exit SW, Exit W
and Exit NW.

If no exit animation/transformation is defined, or when
the exit animation/transformation has “joined” the object
time line thread, the parent object time line thread then
executes a “join' method if it had spawned any child time
lines. This again puts the object time line thread in a “wait
state'. Finally, when then the child time line threads, if any,
“join' the parent object time line, the “stop” method for the
parent time line is called. Certain Status variables are Set, and
the parent object time line thread terminates itself This
causes the main web page time line that had been in a "join'
loop at 211 of FIG. 31, since the invocation of the object
time lines, to be "joined” by this particular object time line
thread.

FIG. 34 shows the technology employed by the run time
engine for implementing child time lines for text button and
image objects. Child text button object time lines and child
image object time lines are Subsets of their parent object
time lines. First a test is made at 237 on whether an
appearance delay had been defined (See FIG. 19). If so, a
timer event is set at 238. When the timer reactivates the child
object time line thread after the appropriate delay, a test is
made on whether an entry animation has been defined for
this child object time line at 239 (as described FIG. 19). If
So, it is created and executed at 240 in a manner identical to
that described at process step 229 in FIG. 33. The same 13
entry animations Supported for parent object time lines are
also Supported for both child text button and image objects,
and the additional “Fade In' entry animation is supported for
child image objects. The “join' mechanism described in
FIG. 33 is employed in an identical manner at 240 to
Synchronize the child time line thread with its entry anima
tion thread.

After being “joined” and reactivated, the child object time
line performs a test at 241 on whether an exit delay had been
defined (See FIG. 19). If so, a timer event is set at 242. When
the timer reactivates the child object time line thread after
the appropriate delay, a test is made on whether an exit
animation has been defined for this child object time line at
243, as described in association with FIG. 19. If so, it is
created and executed at 244 in a manner identical to that
described above at process step 229 in FIG.33. The same 13
exit animations Supported for parent object time lines are
also Supported for both child text button and image objects,
and the additional “Fade Out’ exit animation is supported
for child image objects. The “join' mechanism described
above in association with FIG. 33 is employed in an iden
tical manner at 245 to synchronize the child time line thread
with its parent object time line thread. AS discussed at
process step 236 in FIG. 35, the parent object time lines
“wait” until all their child time lines have terminated, before
they in turn terminate and "join' the main web page time
line at FIG. 35.

FIG. 35 describes technology employed by the run time
engine for the web page and object thread loop. AS noted in
FIG. 31 at process step 211, after all the text button and
image time line threads for the current web page had been
launched, the main web page thread executed a "join' loop,
waiting for the completion of all the parent object time line

15

25

35

40

45

50

55

60

65

62
threads. Because each parent object time line thread waited
for their child object time line threads to be “joined”, as well
as any other spawned animation threads, transformation
threads, and/or Super transformation threads, the effect of
this “join' loop at 246 is that the web page thread will not
resume processing until all parent time line threads have
completed and that of all of their spawned threads.
Upon resuming its processing after the "join' process at

246 has been completed, the main web page thread checks
at 247 to see whether the current web page has an automatic
termination, based on a timer delay, or whether the web page
will wait for a user interaction before terminating. If the web
page has a time delay based termination Setting, then a timer
method is called at 249, and the web page goes to “sleep”
awaiting the completion of the timer event.
When the timer event occurs, the web page thread

resumes processing by incrementing the web page counter
by one, and the entire web page process, which began at
process step 200 in FIG. 31, is repeated. If the current web
page termination Setting was to Set to wait until user
interaction, then web page thread is placed in a “pause”
State, and the run time engine waits to respond to any mouse,
keyboard or other user initiated event.

FIG. 36 describes the technology employed by the run
time engine for responding to user interactions. AS men
tioned in association with process step 204 of FIG. 31, as
Soon as the draw System has been activated, the run time
engine will respond to any user interactions that have been
defined (See FIG. 16). This is also true during any object
time line events, as with respect to process step 207 of FIG.
31. The run time engine currently responds to “mouse over”
and “mouse down” events for text button, image, and
paragraph objects. For form objects, the run time engine will
also respond to keyboard events. AS the full-featured pro
gramming languages Supported by browsers evolve, the run
time engine may be configured to respond to other user
interactions, including but not limited to Single and double
clicks from both the left and right mouse button, voice
commands, eye focusing technologies, touch Screen
technologies, and push technologies originating from a
SCWC.

The run time engine invokes a “dynamic mouse to object
recognition” technology at 251 in order to be responsive to
the following elements:

1: The location of objects will vary based on the viewer's
Screen resolution and browser window Size as dis
cussed above with regard to FIG. 27.

2: Objects may move or resize themselves based on time
lines and animations.

3: Objects may have different sizes based on the state they
are being displayed in based on time lines and trans
formations.

4: More than one object can occupy the Same Screen
location, and which objects occupy that location may
change over time based on time lines, animations, and
transformations.

The run time engine maintains, in its internal database, the
object's current X and Y origin coordinates, and the object's
current width and height, in pixels, based on the current
viewer's Screen and browser window size. This can be
accomplished by first converting all coordinates and sizes to
the current viewer environment with the Scaling technology
as discussed above with regard to FIG. 27. Every time line,
animation, and transformation thread updates, in real time,
the run time engine's internal database positional and size
variables of the objects they define, utilizing the data com
munication techniques described above with reference to
FIG. 33.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 294 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 295 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 296 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 297 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 298 of 548

EXHIBIT B

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 299 of 548

US007594168B2

(12) United States Patent (10) Patent No.: US 7,594,168 B2
Rempell (45) Date of Patent: Sep. 22, 2009

(54) BROWSER BASED WEBSITE GENERATION 6,262,729 B1* 7/2001 Marcos et al. 715,744
TOOL AND RUN TIME ENGINE

(75) Inventor: Steven H. Rempell, Novato, CA (US)

(73) Assignee: Akira Technologies, Inc.

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1100 days.

(21) Appl. No.: 10/351,182

(22) Filed: Jan. 24, 2003

(65) Prior Publication Data

US 2004/O 1483O7 A1 Jul. 29, 2004

Related U.S. Application Data
(63) Continuation of application No. 09/454.061, filed on

Dec. 2, 1999, now Pat. No. 6,546,397.

(51) Int. Cl.
G06F 7700 (2006.01)

(52) U.S. Cl. 715/234; 715/238; 715/762
(58) Field of Classification Search 715/234,

715/238, 762
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,428,731 A 6/1995 Powers, III
5,842,020 A 11/1998 Faustini
5,870,767 A 2/1999 Kraft, IV
6,026,433 A * 2/2000 D'Arlach et al. 709/217
6,081,263 A 6, 2000 LeGallet al.
6,083,276 A 7/2000 Davidson et al.
6,148,311 A 11/2000 Wishnie et al.

The srowser sased
Build ToolcREATES AN

scoATAsAs

HT SHE FEAN
CA3ARFEWTH

CUSOzrun NGIN
AND DATABASE

UPoActs
User's Wesst

BROWSER CALLS
The ruinean

RNENGINE READS
OAASASEAN

executs the NLR
Website

6,313,835 B1 * 1 1/2001 Gever et al.
6.424.979 B1* 7/2002 Livingston et al.
6,585,779 B1* 7/2003 Becker ...
6,675,382 B1* 1/2004 Foster
6,684,369 B1* 1/2004 Bernardo et al. ..
7,127,501 B1 * 10/2006 Beir et al.
7,152.207 B1 * 12/2006 Underwood et al. ..

2001/001287 A1* 8, 2001 Goto et al.
2001/0042083 A1* 11/2001 Saito et al.

... 715,846

... 715,206

... 715,237

... 717/177

... 715,205

... 709,219

... 715/2O7

... 707/513

... 707/517
... 345,765 2003/0058277 A1 3/2003 Bowman-Amuah

2005, 0198087 A1* 9, 2005 Bremers 707,204
2005/0223320 A1* 10/2005 Brintzenhofe et al. 71.5/517
2009/0094327 A1* 4/2009 Shuster et al. TO9,203

OTHER PUBLICATIONS

Tyler, Denise, Microsoft Frontpage 98, Nov. 1997, pp. 276-281,
321-327,558-561.*
“Photo Album AppletInstallation and Customization Instructions” (C)
1997 AgenX Corp. http://pages.prodigy.net/larzman applets/
phalbum.html.*

* cited by examiner
Primary Examiner Adam M. Queler
(74) Attorney, Agent, or Firm—Steven R. Vosen

(57) ABSTRACT

A method and apparatus for designing and building a web
page. The apparatus includes a browser based build engine
including build tools and a user interface. The build tools are
operable to construct a single run time file and an associated
database that describe, and when executed, produce the web
page. The user interface includes a build frame and a panel.
The build frame is operable to receive user input and present
a WYSIWIG representation of the web page. The panel
includes one or more menus for controlling the form of con
tent to be placed on the web page.

6 Claims, 68 Drawing Sheets

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 300 of 548

U.S. Patent Sep. 22, 2009 Sheet 1 of 68 US 7,594,168 B2

START

NON-BROWSER BASED
HTMLISCRIP

CODE
GENERATOR

HTML FES
WITH IMBEDDED SCRIPTAND

AVA. APPLES
(AS SOLATED ENTITES)

PER WEB PAGE

UPLOAD EACH
WEB PAGE TO

USER'S WEBSITE

EXECUTED BY
BROWSER

Fig. 1 PRIOR ART

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 301 of 548

U.S. Patent Sep. 22, 2009 Sheet 2 of 68 US 7,594,168 B2

START

THE BROWSER BASED
BUILD TOO CREATES AN

OBJECT DATABASE

HTML. SHELL FILE AND
8 CABIJAR FILE WITH

CUSTOMZED RUN ENGINE
AND DATA BASE

UPLOAD TO
USERS WEBSITE

BROWSER CALLS
THE RUN ENGINE

RUN ENGINE READS
DATABASE AND

EXECUTES HE ENTIRE
WEBSITE

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 302 of 548

U.S. Patent Sep. 22, 2009 Sheet 3 of 68

WEB PAGE
SCALNG
ENGINE

NSTALLATION
PROGRAM

SCREEN
SENSING

MECHANISM

INTERFACE

TIME LINE
ENGINE

BUILD ENGINE

Fig. 3a

US 7,594,168 B2

INTERFACE'S
DATA BASE

BUILD ENGINE'S
MULT

DIMENSIONAL
ARRAY

STRUCTURED
DATA BASE

BUILD TOOL COMPONENTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 303 of 548

U.S. Patent Sep. 22, 2009 Sheet 4 of 68 US 7,594,168 B2

STAR

12
INTAZE 15 13 14

(FIGURE 5)

ACTIVATEPANE, POPUP WINDOW, COMMUNICATION OF USER INPUT UPDATE INTERNALDATABASE
COLORANDALERT MESSAGE DATA AND STATUSBETWEEN THE AND STFEATURE FLAGS
INTERFACE TECHNOLOGY ENGINE AND THE INTERFACE -
(FIGURES 7a, 7b, & 7c) (FIGURE 6) (FIGURE 8)

POLLING TECHNOLOGY. INTERFACE TO THE BUILD ENGINE

(FIGURE 9)

ANALYZE INPUT:
ERROR CHECKING

(FIGURE 10)

AUDIO AND WIDEO DIRECTWEBPAGE BUTTON, IMAGE AND IMAGE PROCESSING FRAMES, TABLES,
FiLEICHANNEL TeXT NTRY AND PARAGRAPHSTYLE FORMS AND DRAW
PROCESSING TEXTPROCESSING SETINGS AND OBJECTS

TECHNOLOGY
(FIGURE 14) (FIGURE 11) (FIGURE 13) (FIGURE 12) (FIGURE 15)

22 21 8 23 20 19

ANMATION AND/OR
INTERACTION
TECHNOLOGY?

24 25 26 27 28

USER INTERACTION ANIMATON TRANSFORMATION OBEC WEB PAGE
SETTINGS AND SETTINGSAND SETTINGS AND TIMELINESTINGS TRANSiTIONANIMATIONS,
TECHNOLOGY TECHNOLOGY TECHNOLOGY AND TECHNOLOGY TIMELINE SENGS

AND TECHNOLOGY

(FIGURE 16) (FIGURE 17) (FIGURE 18) (FIGURE 19) (FIGURE 20)
29C

29A 29b)

FILE OPERATIONS (FROM FIG. 6) DYNAMC WEB PAGE VIEW OPERATIONS (FROM FIG. 6)
RESIZNG PROCESS

NEW, APPLY AND CLOSE. OPEN AND WEBSITE ACTIVATE NorMAL PREVIEW, AND PLAY.
THE DYNAMICWEBPAGE RESIZINGPROCESS, ZOOMNG AT WARIOUS ZOOM LEVELS

SAVE AND SAVE AS BEGINTHERUNGENERATION AND THE (TO FIG. 5) ACTIVATE THE DYNAMICWEBPAGE
RUNTIME PROCESS (SEE FIGS 4AND 23) RSIZINGPROCESS.

(FIGURE 21a) (FIGURE 22) (FIGURE 21b)

Fig. 3b THE BUILD TOOL & BUILD PROCESS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 304 of 548

U.S. Patent Sep. 22, 2009 Sheet 5 of 68 US 7,594,168 B2

370

RUN
GENERATION
PROCEDURE

374

WEB PAGE PAGE SIZE
SCALING DATABASE GENERATION
ENGINE ENGINE

377

RUNTIME USER RUNTIME RUNTIME
INTERACTION TIMELINE DRAWING,

ENGINE ENGINE ANIMATION,
AUDIO AND

RUNTIME ENGINE VIDEO ENGINE

Fig. 4a

RUN GENERATION AND RUNTIME
COMPONENTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 305 of 548

U.S. Patent Sep. 22, 2009 Sheet 6 of 68 US 7,594,168 B2

SAVE WEBSITE.
BEGINRUNGENERATION

EXTERNADATA BASE CREATION: SECURITY AND OMIZATION ECHNOUES

30

(FIGURE 24)

CREATE CUSTOMIZED AND OPTIMIZEDRUNME ENGINE

(FIGURE 25)

32

CREATE THE HTMSHELL FLE

(FIGURE 26) 360

CREATE THE CABEAR FILES

(FIGURE 27)

UPLOAD THE HTMSHELLFILE ANOTHE JARICABFILES
TO THE USERS WEBSITE.

WEBPAGE SIZE GENERATION TECHNOOGY

33B

(FIGURE 28)

READ DATABASE AND GENERATE NECESSARY OBJECTS.

(FIGURE 29)

WEBPAGE GENERAONWITH SCALING TECHNOLOGY.

365 (FIGURE 30)

HE MUTELEVE WEBPAGE AND OBJECTHREAD ECHNOLOGY

(FIGURE 31 THROUGH FIGURE35)

RESPOND TO USER INTERACTIONS.

(FIGURE 36)

Fig. 4b

RUN GENERATION & THE RUNTIME PROCESS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 306 of 548

U.S. Patent Sep. 22, 2009 Sheet 7 of 68 US 7,594,168 B2

1
39

BUILD TOOLS CREATED.

INTIALIZATION AND BUD ENGINES ARESIGNED AND TIME STAMPED AND PLACED IN A JAVAWRAPPER.

NTIAL BUILD
TOCFES
ACTIVATED

BROWSERTYPESSENSED TO
DETERMINE RECURED SECURITY

AUTHORIZATIONS.

42 THE INTAZATON ENGINES CALLED WHCH
RETURNS THE SCREEN RESOUTION.
HENTIALZATIONMODES CONFERMED.

THE NITIALIZATION ENGLNES CALLED TO ADAPT
HE INTERFACE TO THE CURRENSCREEN

RESOLUTION.

THE INITIALIZATION ENGINE ASSERTS, IF
NECESSARY, THE RECURED SECURITY

AUTHORIZATION FOR READ/WRITE ONUSERDISK

44

THE INTALIZATION ENGINE CREATES ABO
ENGINE HTML DEFINITION FLE

45 GENERATE BUD ENGINESCREEN

THE INTIAL BUILD TOOL FILE URNS CONTROL OVER
TO THE BUILD ENGINE PARENHTML FRAME FILE.
THE INTERFACEHROUGHEPANEL FLE AND THE
BUILD ENGINE THROUGH THE BUILD ENGINE HTML

DEFINITION FILEARELOADED.

TO FIGURE 6

Fig. 5 INITIALIZATION

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 307 of 548

U.S. Patent Sep. 22, 2009 Sheet 8 of 68 US 7,594,168 B2

CECATION OF USER
NTA STATUS

THE ERFACE.
BEEE THE ENGINEAN

4. S s

E
SELEC SELECTC CIRECTEXT C-Alice IRECT CT SELSCON
FREAAA FR ERYA PAERESF MANPAON FRHE

ASCIFT - CESS ASCRIPT
OC WNOCW RSEEN SHB-SH2, PANE
SHB-SH) ;SH 19, ETC) (SH2-SH5) EECE S38, SH4D (SH13-18)

tr

Fig 22 w
SELECTION SELECTION
THUAL A

So RL JAVASCRIPT
CHILD WINDOW

CBEC
SH23-7. SH19-SH22

a is t CFGS. ano) 8.
N--

Fig. 6

COMMUNICATION OF USER INPUT DATA AND
STATUS BETWEEN THE ENGINE AND THE

INTERFACE.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 308 of 548

U.S. Patent Sep. 22, 2009 Sheet 9 of 68 US 7,594,168 B2

FROM
FIGS. 6 & 9

POPUPWINDOW AND PANELINTERFACE
TECHNOLOGY

56 59

HTML FRAME, TABLE AND
MOUSE AND KEYBOARD JAVASCRIPTECHNOLOGY FORM TECHNOLOGIES, AND

EVENTS THEIR NTERACTIONS WITH CASCADINGSTYLE SHETS.
JAVASCRIPT.

EXT TO
FIGS. 9 & 0

Fig. 7a

POPUP WINDOW AND PANEL INTERFACE
AND COLOR TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 309 of 548

US 7,594,168 B2 Sheet 10 of 68 Sep. 22, 2009 U.S. Patent

S LOETEJO E OVERHEILNI TEN\/d -IO NOI.LV/LNE INE|Te|INI

SEZ

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 310 of 548

U.S. Patent Sep. 22, 2009 Sheet 11 of 68 US 7,594,168 B2

FROM
FIGS. 6 & 9

TABBED POPUP WINDOW
INTERFACE TECHNOLOGY

283 CLICKONATAB
INSIDE POPUP
WINDOWS
DETECTED

USE OF
JAVASCRIPT

EXT TO
FIGS. 68, 9

284 USE OF
CASCADING

STYLE SHEETS

USE OF
DYNAMIC HTML

Fig. 7c

IMPLEMENTATION OF
TABBED POPUP WINDOWS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 311 of 548

U.S. Patent Sep. 22, 2009 Sheet 12 of 68 US 7,594,168 B2

63

62

61
WEBPAGE, PARAGRAPH
STYLE. TEXT BUTTON

STYLE, OR IMAGE STYLE
RELATED

TEXT BUTTON, IMAGE OR
PARAGRAPH OBJECT

RELATED

PARAGRAPHLINE
RELATED

64

CREATE URL, COLOR, FONT,
IMAGE, AUDIO CLIP, VIDEO

CLIP, TEXT AREA, OR THREAD
OBJECTS. IF NECESSARY.
UPDATE2D OBJECTARRAY

ELEMENTS BASED ON
CURREN OBJECT

CREATE URL, COLOR OR FONT OBJECTS, if
NECESSARY.

UPDATE 3d PARAGRAPHLINEARRAY
ELEMENTS BASED ON CURRENTLINE
UPDATE 4) PARAGRAPHINE SEGMENT
ARRAYELEMENTS, BASED ON CURRENT

SEGMENT.

CREATE URL, COLOR, FONT, IMAGE OR
ThreAD OBJECTS, FNECESSARY.

UPDATED ARRAYELEMENSBASED ON
CURRENT WEBPAGE. PARAGRAPH STYLE,

TEXT STYLE, OR IMAGE STYLE

SET WEB PAGE, OBJECT,
PARAGRAPHLINE, OR PARAGRAPH

LINE SEGMENT HIGH WATER
MARKS, FRECUIRE).

SET FEATURE FLAG, IF
RECURED

TOFGS.
9 AND 10

Fig. 8
UPDATE INTERNAL DATA BASE AND SET FEATURE FLAGS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 312 of 548

U.S. Patent

* N.

Sep. 22, 2009

FROM
FIGS. 7 AND 8

Sheet 13 of 68 US 7,594,168 B2

JAVASCRIPT POLLS THE JAVA BUILD ENGINE EVERY 100 (ORLESS) MILLISECONDS.

THE WALUES, AS REPORTED IN REALTIME BY THE BUILD ENGINE, FOR THE CURSOR'S HORIZONTA &
7 WERTCA POSTON'S ARE POLED AND DISPLAYED.

AS THE BUILD ENGINE DETECTSA MOUSE OVERAN OBJECT, OR A SINGLE OR DOUBLE CLICK WHEN OVER
AVALID OBJECT, IT UPDATESWALUES THAT ARE BEING POLLED BY JAVASCRIPT.

F HEBUDENGINEETECT ANON-RECOVERABLE ERRORINTS EXCEPTION HANDLING ROUTINES, IT
SETA ANERRORFAG AS BEING POLED BY AWASCRIP.

SNGE CCKMOUSEEVEN

AWASCRIPTPOS WHCH
OBJECT NUMBER THIS WALUES
USED TONTALZEWINOOWS
WITH THA CECTS CURRENT

VALUES.

77

MOUSEEVENT
POSTED AND
POLE

MOUSE OVER OBJECT EVENT

JAVASCRIPT POLS WHCYPE
OF OBJECT AND SHEG-TAND
WDTAND DISPLAYS HOSE

WALUES.

(SH28-SH31)

APPROPRIATEWNOOWBASED ON

DOUBECLCKMOUSEEVENT

JAVASCRIPT DISPLAY'S THE

THE SELECTED OBJECT.

(SH32-SH33)

OJECT
TYPE

TEXT OBJECT

HEWALUES FOR THE PARAGRAPH
STYLE, TEXT LOOK, POINT SIZE,
OBJECT SIZE, COLOR, LOCATION
AND FRAME STATUS ARE POLEO

AND DISPLAY.
POLLING INATED OR HE
CREATION OF A HOLINK.

Fig. 9

TEXT BUTTON OBJEC

THE WALUES FORTETEXT BUTTON
STYLE,TEXT LOOK, POIN. SIZE OBJECT
SIZE, COLOR, ANIMATION, LOCATION
AND FRAME STATUSAREPOLLEAN

SPLAYE)
THE WALUE OF THE STRING ARE
POLE) ARE USED FOR POPUP
WNDOWNTAZATION.

MAGE OBJEC

THE WALUES FOR THE MAGE
STYLE, OBJECT SIZE, ANIMATION,
LOCATION AND FRAME STATUS
ARE POLLED AND DISPLAYE)

HE RESULTS OF DIRECT
MANIPULATONAREPOLLED AND

DISPLAYED

TO FIGS.
7 AND 8

POLLING METHODS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 313 of 548

U.S. Patent Sep. 22, 2009 Sheet 14 of 68 US 7,594,168 B2

17 N
FROM

FIGS. 7 AND 8

THE JAVASCRIPT
NTERFACE

ERROR CHECKING

RANGE
CHECKING

WALUES PASSED TO THE BUILD ENGINE

BUILD ENGINE EXCEPTION HANDING

TO FIGS. 11,
12, 13, 14 AND 15

Fig. 10

ANALYZE INPUT: ERROR CHECKING

81

FILE NAME
ERROR

CHECKENG

VALIDITY
CHECKING AND
CORRECTION

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 314 of 548

U.S. Patent Sep. 22, 2009 Sheet 15 of 68 US 7,594,168 B2

"-N
USER SELECTS EXT

BUTTONOR PARAGRAPH
FROM THEPANE CONS

(SH2)

86

87
JAVASCRIPT CALSBUILD ENGINE
WITH BOARD, OBJECT TYPE, AND
OBJECT NUMBER SETTINGS.

(SH3)

USER CLICKSMOUSE ON
WEBPAGE

(SH4)

89
CURRENTLYSECTED PARAGRAPHITEX STYLESWALUES ARE USED.

DYNAMICHIDDEN FRAME IS CREATED ATCURSORLOCATION.
INSERTION POENT AND SELECTION RECTANGLE ARE DRAWN.

Text EDITOR IS ACTIVATED.

90 USER PRESSESARELEVENT
KEYBOARDKEY.

(SH5)

USER CLICKS, DOUBLE CLICKS, OR
DRAGS THE MOUSE.

(SH32-SH33)

91 EdTOR PROCESSESKEY
HIDDEN FRAMERSZEd IF NECESSARY.
REFORMAT CALLED, IF NECESSARY.

93
EDITOR PROCESSES THE MOUSEEVENT.

FRAME AND PARAGRAPHITEX DATABASE SETSNECESSARY FAGS.
UPDATED.

94
TEXT AND PARAGRAPH SEGMENT STRINGS ARE

UPDATED, IF NECESSARY.
BASED ON FLAGS, THE DRAW SYSTEMIS

CALLED.

TO
DECSON 23

Fig. 11
DIRECT WEB PAGE DATA ENTRY AND TEXT PROCESSING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 315 of 548

U.S. Patent Sep. 22, 2009 Sheet 16 of 68 US 7,594,168 B2

1-N

USER SELECTS iMAGE FROM THE CREATEMENU.
JAVASCRIPT CALLS IMAGE CREATE WINDOW.

IMAGENAME AND OTHER USER DEFINed Set TNGS
ARE CAPTURED AND CHECKED.

(SH34-SH35)

JAVASCRPT CALLSBUILD ENGINE
WITH IMAGE OBJECTSETTINGS.

(SH36)

USER CLICKSMOUSE ON
PAGE
(SH37)

BUDENGINASSERTS THENECESSARY SECURITY
POLICY FORREADING THE LOCAL DISK.

THE IMAGE IS READ, EXCEPTIONS ARE HANDLED F
NECESSARY AND THE IMAGE ISDRAWN.

THE IMAGE DATABASE UPDATED.

99 101

DIRECTWEBPAGE IMAGE INTERACTION. JAVASCRIPT PANELIWINDOWS INTERACTION FOR IMAGE
OPERATION.

The BUILD ENGINE PROCESSES MOUSEVENT.
APPROPRIATEVALUES PLACED IN POLABLE JAVA ROUTINE. INTIAL VALUES ARE SET FROMJAVASCRIPTSDATABASE.
THEAPPROPRIATE IMAGE PROCESSING ROUTINES CALLED. JAVASCRIPTSDATABASE IS UPDATED.
MOUSECURSOR SHAPES CHANGED BASED ONFUNCTION. BUILD ENGINE IS CALLED WITH NECESSARY SETTINGS.

APPROPRIATE IMAGE PROCESSING ROUTINES CALLED.
(SH39-SH41) (SH42-SH43)

100 102
AWASCRPTPOLLING

ROUTINE READS VALUES,
UPDATES ITS DATA BASE, AND

DISPLAYS VALUES, IF
REQUIRED, INPANEL

NECESSARY IMAGE FILTER(S) ARE CALLED
IMAGE OBSERVER SACTIVATED TO REPORT STATUS.
(IFANIMATION ORTRANSFORMATION SEE FIGS. 17 8, 18)

DRAW SYSTEMISCALED BY MAGE OBSERVOR.

TO
OECISION 23

Fig. 12 IMAGE PROCESSING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 316 of 548

U.S. Patent Sep. 22, 2009 Sheet 17 of 68 US 7,594,168 B2

20 y FROM
F.G. 10

The NTIAL VALUES FOR THE POPUP WINDOWSARE SET FROMJAVASCRPS
DATABASE

103 THE VALUES FOR THE TEXT BUTTON AND IMAGE STYLE'S LOOKFOR NORMAL MOUSE
OVER, AND MOUSE DOWN OBJECTS ARE CAPTURED,

THE WALUES FOR THE TEXT BUTTON AND IMAGE STYLE'S OBJECT ANIMATIONS,
TRANSFORMATIONS, AND TIME LINES ARE CAPTURED.

THE WALUES FOR PARAGRAPH STYLES, AND THE LOOKFOR HOT LINKS ARE CAPTURED.

(SH24-SH27).

104 JAVASCRIPTSDATA BASE IS UPDATED.

JAVASCRIPT CALLSBULD ENGINE AND PASSES REQURED WALUES.
BUILD ENGINEUPDATES INTERNALDATA BASE AND SETS FEATURE FLAGS

(SEE FIG. 8).

105 IMAGE,TEXT BUTTON AND PARAGRAPH OBJECT CREATION.

ALL THE SETTINGS FROM THE TEXT, IMAGE AND PARAGRAPH STYLES ARE
APPLIED TO TEXT, IMAGE AND PARAGRAPH OBJECTS AS THEY ARE CREATED.

106 EDITING STYLES AND ENHERITANCE

WHEN A STYLE ARE CHANGED, ALL OBJECTS ON ALL INTERNAL WEB PAGES
WhCHUTILIZED THAPARTICULAR STYLE MAYBE CHANGED.

WHETHER THE STYLE CHANGE WILAFFECAN OBJECTHATUTIZED HAT
STYLES DEPENDENT ON THE RULES OF INHERTANCE.

TO FIGS.
11 AND 2

Fig. 13

BUTTON, IMAGE AND PARAGRAPH STYLE SETTINGS
AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 317 of 548

U.S. Patent Sep. 22, 2009 Sheet 18 of 68 US 7,594,168 B2

107
USER SELECTS WIDEO OR AUDIO SPECIAL EFFECT

FROMA USERINTERACTION PANEL
\ (SEE FIG 16)

NTIAL VALUES SET FROMAWASCRIPTS DATABASE. 108

FILE ORCHANNELNAMES CAPTURED AND CHECKED.
JAVASCRIPTS DATABASE IS UPDATED.

BUILD ENGINE IS CALLED WITH NECESSARY SETTINGS.

109

EXCEPTIONS ARE HANDLED.
VIDEOAUDIO FILESLINKED AND PLAYED.

DATA BASE IS UPDAED.
NECESSARYPOINTERS ARE UPDATED AND

110 VIDEO OR AUDO FILE 111 VIDEO OR AUDIO CHANNEL

BUILDENGINE ASSRTSNCSSARY SECURITY
POLICY FOR READING THE LOCAL DISK AND

METHODSASSIGNED FOREFFICENT TRANSMISSION

TO
DECSON 23

Fig. 14

VIDEO AND AUDIO FILEICHANNEL PROCESSING

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 318 of 548

U.S. Patent Sep. 22, 2009 Sheet 19 of 68 US 7,594,168 B2

* -

112
BUILD PROCESS INTERFACE

TECHNOLOGfES

RAW AND BUILD POPUPWINDOW

13
BUILD ENGINE TECHNOLOGIES

CALL BUILD ENGINE METHOD TO
BUILD THE FRAME, TABLE.ETC.

114

RUNGENERAON TECHNOLOGLES

115

RUNENGINE TECHNOLOGIES

TO
DECSION 23

Fig. 15

FRAMES, TABLES, FORMS AND DRAW OBJECTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 319 of 548

U.S. Patent Sep. 22, 2009 Sheet 20 of 68 US 7,594,168 B2

FROM
DECSON23

117

PARAGRAPH

ACTIVATE BY DOUBECLCK ORMOUSEDRAG. APPROPRIATEWALUES ARESENA
PO-ENABEDAWA ROUTINE.

TEYEON THE JAVASCRIPTPOLLER READS THE VALUES, AND DRAWS APPROPRIATE WINDOW. IMAGE OBJECT
HONKS CAPTURE FORNTERNA OR EXTERNAL WEBPAGE.

The BULDENGINUPDATESS INTERNALDATABASE
(SH32-SH33)

120

121 122

MOUSE OVERSATE MOUSE DOWN STATE

INTIAL VALUES FOR THE POPUPWINDOWAR SET.
CONTENAND LOOKFORMOUSE OVER OBJECTISCAPURED. NTIA VALUES FORTH POPUP WINDOWARE SET.
TEXT BUTTONANO IMAGE POPUP SETINGS ARE CAPTURED F CONEN AND LOOKFORMOUSE DOWN OBJECTS CAPTURED,

OEFINE). freeze STATES AND MOUSE CLICKEVENT DEFENTIONS, AND
HE SOUND AND WIDEO SETTENGS ARE CAPTURED FOEFINED. SOUND/VIDEO SETTINGS ARE CAPTURED, IF DEFINED.

(SH44-SH45) (SH46-SH47)

123 JAVASCRIPTS DATABASE IS UPDATE).
JAVASCRIPT CALSBUILD ENGINE AND PASSES

RECURED WALUES.
BUILD ENGINEUPDATES INTERNADATABASEAND

SETS FEATURE FLAGS (SEE FIG. 8).

Fig. 16

USER INTERACTION SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 320 of 548

U.S. Patent Sep. 22, 2009 Sheet 21 of 68 US 7,594,168 B2

25 N FROM
OECISION 23

125 126

TEXT BUTTON OBJECT IMAGE OBJECT

THE INA WAUES OF THE POPUPWINDOWARE SET. THENTIAL VALUES OF THE POPUP WINDOWARE SET.
The ANIMATION TYPE, SPEED, RESOLUTION AND NUMBER OF THE ANIMATION TYPE, SPEED, RESOLUTION AND NUMBER OF

CYCLES ARE CAPTURED. CYCLES ARE CAPTURED.
(SH48) (SH49)

127 JAVASCRIPTSDATABASE IS UPDATED.
JAVASCRIPT CALS THE BUILD ENGINE AND PASSES

THE RECUREDVALUES.
THEBUILD ENGINEUPDATES ITS INTERNAL

DATABASE AND SETS FEATURE FLAGS (SEE FIG. 8).
THE LINKAGETO THEAPPROPRIATEMETHODSS

SET.

128
ATHREAD OBJECTS CREATED AND EXECUTED.
VALUES ARE SET TO INTEGRATE THE ANIMATION

NOTHE TIMELINE TECHNOLOGY.
(SEE FIGURE 19)

129

THE THREAD OBJECT, WHENINVOKED WILL CALL
THE APPROPRIATE IMAGE FILTER(S) AND ANIMATION

METHODS.

TO
PROCESS 29

Fig. 17

ANIMATION SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 321 of 548

U.S. Patent Sep. 22, 2009 Sheet 22 of 68 US 7,594,168 B2

26 y
FROM

DECSION 23

DATA CAPTRE

130 NITIAL VALUES FOR THE POPUPWINDOWARE SET.
WHECHTRANSFORMATIONS BETWEEN WHICH OBJECTS (NORMAL MOUSE OVER,

MOUSE DOWN) ARE CAPTURED.
THE TIME DELAY, PER TRANSFORM, AND RELATIONSHIP WITH ANY ANIMATION, IS

ASO CAPTUREO.
FOR MAGES THE SPEED OF EACHTRANSFORMATIONS ALSO CAPTURED,

(SH50-SH51)

131 UPDAEOAA BASES

AWASCRIPTS DATABASE IS UPDATE). AWASCRIP
CALLSBUILD ENGINE AND PASSES RECURED

WALES.
BUILD ENGINE UPDATES INTERNAL DAABASE AND

SETS FEATURE FLAGS (SEE FIG. 8).

ATHREAD object is creatED AND Executed.
WAUES ARE SE ONEGRATE THE
RANSFORMATION INTO THE MENE

ECHNOLOGY.
(SEE FIGURE 19)

133

THREAD OBJECT, WHENINVOKED WILL CALL THE
APPROPRIATE IMAGE FILTER(S) AND

RANSFORMATION METHODS.

TO
PROCESS 29

Fig. 18

TRANSFORMATION SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 322 of 548

U.S. Patent Sep. 22, 2009 Sheet 23 of 68 US 7,594,168 B2

27 y
FROM
CSION23

the NIAL VALUES FOR THE POPP WINDOWARE SET FROMJAVASCRPSDAABASE

He wall.JES FOR THE OBJECTS APPEARANCETME, ANMATON type, Speed AND reSOLUTION Are CAPURED.

THE VALUES FOR THE OBJECTS CHILD POPUP OBJECT(s) APPEARANCE TIME, ANIMATION TYPE, SPEED AND RESOLUTION ARE CAPTURED,

The VALUES FOR THE OBJECTS EXIT TIME, ANIMATIONYUPE, SPEED AND RESOLUTIONARE CAPTURED.

THE WALUES FOR THE OBJECTS CHILD POPUP OBJECT(s) EXIT TIME, ANIMATION TYPE. SPEED AND RESOLUTIONARE CAPTURED.

(SH52-SH-53)

AWASCRPS DATABASE SUPDATED, 135

AWASCRPT CALS THE BUILD NGINEAN PASSES RECUREDVALUES.

HEBUD ENGINE UPOASTSNERNAL DATABASEAN SESFEATURE
FLAGS (SEE FIG. 8).

THE OBJECTS ANIMATON SETINGS, FANY, ARE INTEGRATED INTO THE MENE.

136 The OBJECTS TRANSFORMATIONSTTINGS, F ANY, ARENTEGRATED Nto HE TIMELINE.

IF ANIMAGE OBJECT, ANY TRANSFORMATION ANIMATION MAYBE EXECUTED SIMULTANEOUSLY
WITH THEAPPEARANCE AND/OR EXITANEMATONS, DEPENDING UPONTHE SETINGS.

A MULT-LEVEL OBJECT TREAD FNTIONS CREATED AND EXECUTE FOR USER
WRFCATION.

THE THREAD OBJECT. When NWOKED WILL CALL
THEAPPROPRIATE IMAGE FILTER(S). ANIMATION
METHODSANRANSFORMATION METHODS.

TO
PROCESS 29

Fig. 19

37

OBJECT TIME LINES AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 323 of 548

U.S. Patent Sep. 22, 2009 Sheet 24 of 68 US 7,594,168 B2

as N.
FROM

DECSON 23

INTIAL VALUES FOR THE POPUR WINDOWARE SE FROMJAWASCRIPTS
138 DATABASE

THE WALUES FOR THE WEB PAGES APPEARANCE DELAY TRANSiTION
ANIMATION ANIMATION SPEED AND RESOLUTIONARE CAPTURED.

(SH54-SH55)

139 AWASCRIPTSDATABASE IS UPDATED

AWASCRPT CAS THE BUD ENGINE AND PASSES THE RECURED WALUES.

THE BUILD ENGINEE UPDAESS NTERNADATABASE AND SES FEATURE
FLAGS (SEE FIG. 8).

140 TE WEB PAGE TIME LINESSYNCHRONIZEW THE S CBEC MENES.

THE WEBPAGES APPEARANCEDELAY AND TRANSON SETTINGS ARE
INTEGRATED INTO THE WEB PAGE TIMELINE.

ASNGLE-LEVELOBEC THREADEFINITION IS CREATEC,

THE WEB PAGE THREAD OBJECT, WHENINVOKED.
WILL CALL THE APPROPRIATE IMAGE FILTER(S),

ANMATON ROUTINES AND CREATE THENECESSARY
OBJECTIME LINE THREADS.

Fig. 20

WEB PAGE TRANSiTION ANIMATIONS, TIME LINE
SETTINGS AND TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 324 of 548

U.S. Patent Sep. 22, 2009 Sheet 25 of 68 US 7,594,168 B2

FROM
FGS. 16-20

29 y

FILE
OPERATION
SELECTED

144

NEW OPEN

TO FIGS. TO
4 AND 5 FG.22

WEBSITE SAVE AS

TO FIGS.
4 AND 24

fig. 21a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 325 of 548

U.S. Patent Sep. 22, 2009 Sheet 26 of 68 US 7,594,168 B2

FROM
FIGS. 16-20

29 N

VIEW
OPERATION
SELECTED.

149a 149) 149C 149d

ZOOM
NORMAL PREVIEW PLAY 50%, 200%,

EC.

TO O TO O
F.G. 5 F.G. 28 F.G. 28 FG.22

fig. 21b

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 326 of 548

U.S. Patent Sep. 22, 2009 Sheet 27 of 68 US 7,594,168 B2

FROM
FIG 21

506

500 USER USERCHANGES THE SO4
SELECS WEBPAGESIE USERSELECTS

OPEN FROM UNDER HE WEBSITE ZOOM UNER
THE FILE COMMAND FROMHE THE WIEWMENU
MEN FILEMENU

HEAER AND WEBPAGE SETINGS ARE 508 A EXTERNAL TEMPORARY DATABASE SWRTEN
READ FROMTSDATABASE. BASED ON THE CURREN WEBSITE OEFINION,

A BUDENGINE HTMLDEFINITION FES
CREATED BASED ON THESE WEBPAGE

SPECIFICAONS.

Asu NGINE HTML EFINITIONFILE IS CREATED
BASE ON THE NEW WEB PAGE SPECIFICATION.

TERMINATION PROCESS

510 ThEBUILD ENGINEERMINAESITSELF.

THE INTERFACE WRITES OUT AS COOKIES.THE INTIALIZATION MODE,
CURRENT WEBPAGENUMBER, WE SITE NAME AND ZOOMLEVE,

THE INTERFACETERMINATESITSELF BYRENTALEZING THE BULD
ENGINE PARENT HTML FRAME FE.

RENAZATION PROCESS.

PANE READS MOBE COOKEANO DETERMINES NTAZATION STATUS.

512 PANEL REASCURRENT WEBPAGENUMBER, ZOOMEVEL AND WEBSITE NAME
COOKES,

PANE CALLSBUILD ENGINE TO READIN THE EXTERNALDATABASE,

PANE CAS HE BUD ENGINE TO REURNE NECESSARY WALUES EN
ORDERO UPDAE THE PANE'S DATABASE,

PANELCALSBUILONGINE TO GO TO THE CORREN WEBPAGE AT THE
CURRENZOOMEWEL.

TO
F.G. 6

Fig. 22

DYNAMIC WEB PAGE RESIZING PROCESS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 327 of 548

US 7,594,168 B2 Sheet 28 of 68 Sep. 22, 2009 U.S. Patent

Fig. 23

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 328 of 548

U.S. Patent

se-N

Sep. 22, 2009

ACCEPT USERS WEBSITENAME.
CREATE WEBSITENAMEDTAFE.

Sheet 29 of 68

150

US 7,594,168 B2

52

51
SECURRGHTS HAD BEEN ESABESE ASSERTNECESSARY SCURYPOLICY

DURING THE BUDiggs INITIALIZATION - PERMISSIONSEELE CREATION (SEE FIG 5) RGS

G WAER MARKECHNOOGY. -53

NMBEESSNs WRITE HEADER RECOROSENCLUDING
DEFAULT SCREENRESOLUTION, WEB

PARAGRAPH, ETC. OBJECTS PER WEBPAGE, PAGE AND STYLE GWATER MARKS
NUMBER OF NES AND NESEGMENTS FOR AND USER WEBPAGE sizE SETTINGs.

AmiY PARAGRAPH OBC.

l 155
54 WRITE OUT STYLE RECORDS FOR PARAGRAPH, EXTBUTTONANO IMAGE STYLES.
5 1S6 !

WRITE ARRAY STRUCTURES BASED ONHGhWATER MARKS. OBJECTYPE, AND TYPE OF DATA

BOOLEAN RECORDS NGR RECORDS MUL.MEA OBECS STRING RECORDS SINGLE AND OUBLE
FOATNG POINT AND

SERIALIZED FORMFOR IMAGES, ADIO AND LONGINTEGER
WAES FORWE WALUES FORWB UR, COLORAND FONT WIDECFENAMES RECORS

PAGES, OBJECTS AND PAGES, OBJECTS, AND OJECTS, TC. FOR | ENCODED FORM FOR
OBECT COMPONENTS OBJECT COMPONENS WEBPAGES AND EXPARAGRAPH FOR ANIMATION AND

IN a FOR In A FOR OBJECTSNAWO OBECSNAFOR IMAGE PROCESSING
OMENSONAARRAY OMENSIONAARRAY OMENSIONAL ARRAY DIMENSIONAL ARRAY NATWOMENSIONAL

STRUCTURE. STRUCTURE. SRCURE SRUCTURE ARRAYSTRUCTURE

1st 158 TO SO 16
FG25

Fig. 24

EXTERNAL DATA BASE CREATION:
SECURITY AND OPTIMIZATION TECHNICRUES

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 329 of 548

U.S. Patent Sep. 22, 2009 Sheet 30 of 68

FEATURE FLAGS AREANALYZED

EXTRACT REQUIRED WARIABLE
DEFINITIONS AND METHODS OF

"MAN" OBJECT CLASS OF THE RUN
ENGINE SOURCE CODE.

OBJECT CLASS REFERENCES

EXTRACT ONLY RECURED
REFERENCES TO ALL OTHER
RUNTIME OBJECT CLASSES

EXTERNAL FILE REFERENCES

IMAGE, WIDEO AND AUDIO FILE
REFERENCES AND FELE

PROCESSING

SOURCE CODES COMPLED WITH
THE NECESSARY CLASS

LBRARIES

(EG. SUN, NETSCAPE,
MICROSOFT)

RUNTIME ENGINE FOR THE WEB
SITE IS CREATED.

Fig. 25

US 7,594,168 B2

CREATE CUSTOMIZED AND OPTIMIZED
RUNTIME ENGINE

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 330 of 548

U.S. Patent Sep. 22, 2009 Sheet 31 of 68 US 7,594,168 B2

* N.

WEBPAGE
OR CUSOM
APPLICATION

168 169

WEBPAGE SCREEN RESOLUTION PROCESSENG. CUSTOMAFPLICATION.

WBPAGE WINDOWSWIRTUALWLDHAN HEGH
ARESTORE NSCRENRESOLUTION INDEPENDENT APPETWINDOWS WITH AND HEGHT STORED AS

UNITS. ABSOLUTEWALUES.

170 EFINITION OF BACKGROUND

WEBPAGE BACKGROUND COLORWALUES CONVERTED TO
HEXADECIMAL ANY BACKGROUND IMAGES PROCESSE.

HTM CODES GENERATED TOSYNCONIZE THE RUNTIME ENGINES
BACKGROUND WITH THAT OF THEWSB PAGE WINDOW.

171
SCREEN RESOLUTION PREPROCESSING.

JAWASCRIPTAND HTML CODES GENERATE TO CALLEHE
SCREEN RESOLUTION SENSING (SRS) JAWA APPLET

172
AWASCRIPT TO SRSAPPET COMMUNICAON

JAVASCRPT CODES GENERATED TONTERROGATE THE SRS APPLET
FOR THE SCREENRESOLONVALUES. THE AWASCRPT CODEASO

NCUESNECESSARYTMECUS.

AWASCRPT GENERATION OF RINTAE ENGENEHMSPECIFICATION.

17.3

JAWASCRIPT CODES GENERATED TO CREATE THENECESSARY HTML CODEFOR THE RUNTIME ENGINESIZE SPECIFICATIONS,
PARAM FIELDS TO LINK TO THE DATA BASE (SEE FIG.23), THE NECESSARY HTML cooE TO LOAD THE JAR OR THE CAB FILE, AND

HTML CODE FOR HAVING THE BROWSERINVOKETHERUNME ENGINE.

y
WRTE EXERNAHTMLSHELL FLE. 14

THENECESSARY SECURITYPOLICYPERMISSIONS FOR FIE CREATION
RGHTS ARE ASSERTED A"WEESTENAME.HMS WRITEN.

GOO
F.G. 27

Fig. 26

CREATE THE HTML SHELL FILE

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 331 of 548

U.S. Patent Sep. 22, 2009 Sheet 32 of 68

77

sia
FROM
FIG. 26

ANALYZE FIRST WEBPAGE IMAGE OBJECTS

IF FIRST WEB PAGE HAS NON-TIME LINE
DELAYED IMAGE OBJECTS, FLAG FOR CAB

AN ARFE.

176 ANALYZE JAVA CLASS FILES

BASED ONFEATURE FLAGS MARK ALL THE
NECESSARY JAVA CLASS FILES FOR INCLUSION

INTO THE CAB AND JARFILES. (SEE FIG 25)

BAT FILE DEFINITIONS

A COMPRESSED CABIJAR LIBRARY FILE.

WRITE EXTERNAL BAT FILES

THE NECESSARY SECURITY POLCY PERMISSIONS
FOR FILE CREATION ARE ASSERED. A

"WEESTENAME" BAT FILE AND A"WEBSITENAMELEB".
BAT FILE ARE WRITEN.

179 CREATE CABAR FES

THE "WEBSITENAME", BAT AND "WEBSITENAMELIB". BAT
FILES ARE EXECUTED, CREATING COMPRESSED
"WEBSITENAME". CAB, WEBSITENAMELIB"CAB.

"WEBSITENAMEAR AND WEBSITENAMEB JAR FILES.

Fig. 27

GENERAE THE BAT FILESTATEMENS TO INCLUDE ALL NECESSARY
MAGE FILES, THE "WEBSENAME CLASS CUSTOMAED RUNTIME
ENGINE, AND THE WEBSITENAME", TA DATA BASE FLE INTO THE

MAN COMPRESSED CABAND AR FLES ANDAVA, CLASS FILES INTO

US 7,594,168 B2

CREATE THE CABIJAR FLES

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 332 of 548

U.S. Patent Sep. 22, 2009 Sheet 33 of 68 US 7,594,168 B2

80 USERPONS
A BROWSER
AT THE HTML
SHELL FLE

JAVASCRIPTINITALIZATION CODE
1B1

AVASCRIPT CODE DETERMINES THE TYPE OF BROWSER AND CASHTML CODEFORTHE BROWSERTO
NTERPR.

THIS CODEDEFINES WHETHER THE EXECUTEBLE FLES ANDATABASEWELL BE EXTRACTED FROMINSIDE
A COMPRESSE CABFLE ORACOMPRESSED UARFILE ANDTSOCATION,

82
WEBAPPLICATION TYPE.

EXECUTE APPROPRIATE JAVASCRIPT CODE (BY APPLICATION TYPE). FIXED (EG.
183 BANNER) OR DYNAMC, B4

! El E
DYNAMIc weBPAGE AvascRIPTSRs APPLET syNCHRONIZATION TECHNOLOGY. FIXED size wNDow

CALJAWASCRIP CODEWHC CAUSES HESRSAPPET TO EMMEDIATELY EXECUTE Y
THE BROWSER. JAVASCRPT GENERATES THE

THE JAVASCRIPT CODE GOES INTO A TIMERLOOP, CHECKING ONWHeNTHE SRS APPLETIS HTMLCODEFOR THE RUNTIME
ALIVE BEFORE INITIATING ANY COMMUNICATION. ENGINE SPECS, ETC. (SEE. F.G.25)

J THE BROWSERMMEDIATEY
AWASCRIPTSRSAPPLE COMMUNECATION EXECUTES THE RUNME ENGINE.

JAVASCRIPT CALLS SRS APPLET METHODS WHICH RETURN THE WIDTH AND HEIGHT, IN
PXELS, OFHE CURRENT BROWERWINDOW.

AWASCRIPT THENCONVERS THE SCREENRESOLUTION INDEPENDEN WINDOW WITHAN
HEIGHT WALUES NOABSOUEXEWALUES

JAVASCRIPT THEN GENERATES THE HTML CODE FOR THE RUNTIME ENGINE SPECS, ETC.
(SEE FIG.26)

THE BROWSERIMMEATELY EXECUTES THE RUNTIME ENGINE.

185

Fig. 28

WEB PAGE SIZE GENERATION TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 333 of 548

U.S. Patent Sep. 22, 2009 Sheet 34 of 68 US 7,594,168 B2

35
N FROM

FG.28

186 RUNTIME ENGINE TODATA BASE LINKAGE

RUNTIME ENGINE READSA PARAMVALUE WHICH POINTS TO THE DATABASe AND
INTATES THE READ OPERATION.

THE READ TECHNICUEIS NON-PRIVLEGED.

187 HEADER RECORD INTIALIZATION

THE HEADER RECORDS ARE READ AND THEVALUES PROCESSED.

188
PARAGRAPH, Text BUTTON, And IMAGE Style PrOCESSING.

THE STYLES RECORDS ARE READ, AND THE WALUES ARE
STORED FOR SUBSEQUENT PARAGRAPH, TeXT. AND IMAGE

190 OBJECT GENERATION.
189

EXCEPTION
HANDLING

FIRSTWEBPAGE GNRATION.

THE BOOLEAN, INTEGER, STRING AND FOATNG PolNTFIELDS FOR THE FIRST
WEB PAGE ARE READ AND INITIALIZED. (SEE FIG.24) ERROR RECOVERY

ANDFOR GRACEFUL
OPERATION

CANCELLATION
THE SERALIZEDMULTIMEDIA OBJECTS FOR THE FIRSTWEBPAGE ARE READ

AND CAST INTO THEIR FINAL FORM. (SEE FIG.24)
19

MULTTHREADFIRST PAGE PROCESSING WITH THE GENERATION OF DATA FOR ALL THE OTHER PAGES.
(SEE FIG.31)

GeNERATION OF DATA FOR ALL THE OTHER WEBPAGES.

THE BOOLEAN, INTEGER, STRING AND FLOATING POINTFIELDS FOR THE Other WEB TO
PAGES ARE READ AND INITIALIZED. (SEE FIG.24) F.G. 30

THE SERALIZED MULTIMEDIA OBJECTS FOR THEOTHER WEBPAGES AREREAD AND
CAST INTO THEIR FINALFORM. (SEE FIG.24)

192 Fig. 29

READ DATA BASE AND GENERATE
NECESSARY OBJECTS.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 334 of 548

U.S. Patent Sep. 22, 2009

CNRE

94 NON-CENTEREOPLACEMENT

FAND TO COORONAS
CONFERED TOCA SCREEN

WINDOW RESCLUTION.

96

Sheet 35 of 68

CENTEREOPLACEEN

OJEC. With CONVERTED INTO
OCA-SCRENAUES. RTAND
TOP COORONATES CACULA,

US 7,594,168 B2

95

-

BJC TY

197 98. Y 19

PRAGRAPH - TXUTTON AGE OBJECT.
OBJECT.

THE PARAGristorTED INTO F SCALED WASCLOSEN, WITH AND HEGHTAR
3CEFFECTS, IF CONVEReD INTO LOCAL SCREEN WALUES, AND THE
CHOSENARE a. MAGESRANTO SALE.
SCALEDEYANY 3 EFFECTS, F CHOSEN, AR SALED BY STRING
ANIMATIO. AND SIZE, FONTSIZE, ANDFONT STYLE.
YSTRING SEE,
FONT SIZE AND
FON St.

REFORMATIS CALLETH TEXT IS RFORMATED

IF ON SCALE WAS CHOSEN, THE HEIGHT AND
WOT; ARE NOTAUSE TO THE LOCAL SCREN

AES.

BASED ON THE CURRENTPRAGRAPH PIXEDTH.

3D EFFECTS, IF CHOSEN, ARESCALEB'YANY
AN-MATION AND BYMAGE WITHAND HEIGHT.

iF DON'T SCALS WAS CHOSEN, THE HEIGHT AND
WHARE NOTADJUSTED TO THE LOCAL SCREEN

WALUES.

Fig. 30

WEB PAGE GENERATION WITH SCALING
TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 335 of 548

U.S. Patent Sep. 22, 2009 Sheet 36 of 68 US 7,594,168 B2

37 N

FROM
200 FIG.30

WEBPAGE COUNTERLOOP

INCREMENT FROM FIRSTWEBPAGE.
CHECKBOOLEAN PAGE EXISTENCE WALUE.

DOES
WEBPAGE

EXIST?

END OF WEBPAGE
LOOP TEST.

RESET COUNTERP 203

20
SUPPRESS DRAW FORAL DELAYED

TEXTAND, IMAGE OBJECTS

TRANSITION AND
ORAWSYSTEM

St.

205
WEBPAGE TRANSiTION

ANMATION
TXT BUTTONANO IMAGE OBJECT

TIME INE, TRANSFORMANdANIMATION
LOOP

DRAWSYSTEM
CALEDF NO
RANSiTION.

NCREMENT FroM FIRST PAGE OBJECT TO FIG. 32

END OF EXT
BUTTON AND IMAGE
TIMELINE LOOP

ANOFOR
TIME LINE?

Yes 208 209

CREATEANINSTANCE OF A TEXT OR IMAGE TIME LINE THREAD AND START THE THREAD.

211

COMPLETE WEB PAGELOOP OBJECT TIMELINE TECHNOLOGY

TOFG. 35 TO FIG.33

Fig. 31

THE MULTILEVEL WEB PAGE AND OBJECT
THREAD TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 336 of 548

U.S. Patent Sep. 22, 2009 Sheet 37 of 68 US 7,594,168 B2

FROM
FIG 31

212

OCK THE ANIMATON
PROCESS

213

RANDOM
TRANSiTION?

215
No Yes

NITALIZE: EXECUTE AN ANIMATON LOOP CREATE 214
RANDOM

INCREMENT BY TEME AND NUMBER OF TRANSITION
ANIMATIONSBASED ONUSER DEFINED ANMATION

SETINGS NUMBER

ORAWANIMATION 216

GENERATE AN OFF-SCREEN MAGE FOR NEXT WEB PAGE WHILE PRESERVING THE OFF SCREEN
iMAGE OF THE PROR WEB PAGE.

ALIGN, SCALE, AND MERGE TOGETHER AS NECESSARY INTO ASECONDARY OFF-SCREEN
BUFFER AND DRAW TO THE SCREEN

INCREMENTX, Y, WEDTH AND HEIGHT VALUES FOR PRIOR AND
NEXT WEB PAGE, BASED ON ANIMATION TYPE AND

RESOLUTION.

CADRAW MEHOD

218

LAST ANIMATION
CYCE?

No Yes

At FIG. 31

Fig. 32

WEB PAGE TRANSiTION ANIMATION

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 337 of 548

U.S. Patent Sep. 22, 2009 Sheet 38 of 68 US 7,594,168 B2

FROM
F.G. 31

37 y 219
IMELINE
EXISTS?

220
No Yes

- 221

NON-TIME LINEANIMATION AND/OR /6 N 222
TRANSFORMATION TEST DELAY SETA TIMER

- APPEARANCE EVEN

1 Yes
ENTRY ANIMATIONAND/ORTRANSFORMATION -1

TeST No 223
eS

224
225 ENTRY

ANIMATION
CHLD No TRANSFORMATION
MELNESP

1.

No Yes 226

CREATE INSTANCE(S) OF CHILD TEXT AND/OR IMAGE POPUPTIME LINE THREAD(S) AND START THE THREAD(S). TO FIG. 31 -

227

PARENT OBJECTIME LINEMAINANIMATIONTRANSFORMATION TEST

r 229 230 r
RANSFORMATION ONLY MAN ANIMATION ONLY TRANSFORMATION THENANMATION TRANSFORMATION WITH

ANIMATION
CREATEANINSTANCE OF CREATE AND STARTA TRANSFORMATION

CREATE AN INSTANCE OF A AN ANMATON THREAD THREAD. SET THE JONMETHOD TO WAIT THE CREATE AND STARTA
RANSFORMATION THREAD AND START THE READ. COMPLETION OF THE TRANSFORMATION. SUPER
And START THE THREA). TRANSFORMATION

Set THE JONMETHOD THE TRANSFORMAION THREA) CREATES THREAD. SETHE JOIN
SET THE JOINMETHOD TO TOWAT FOR THE AND STARTS ANANIMATION THREAD. THE METHOD TOWAT FOR
WAT FOR THE COMPLETION COMPLETON OF THE JOINMETHODS ST TO WAIT FOR THE THE COMPLETION OF THE
OF THE TRANSFORMAON. ANIMATION. COMPLETON OF THE ANIMATION. THREAD.

EXECUTE THE DEPAREURE ANIMATIONFTRANSFORMATION

EXT
ANIMATION?

CREATE AN INSTANCE OF AN ANIMATION/TRANSFORMATION THREAD AND
START THE TrAd.

SET THE JOINMETHOD TOWAT FOR THE COMPLETION OF THE ANIMATION.
DEPARTURE2

TERMINATE
POS TOJOIN
GO FCG. 35

SETATIMER
EVENT

235

233 2 Fig. 33 OBJECT TIME LINE TECHNOLOGY

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 338 of 548

U.S. Patent Sep. 22, 2009 Sheet 39 of 68 US 7,594,168 B2

FIG. 33

APPEARANCE

237 238

SETA MER
EVENT.

239

ENTRY
ANIMATION?

No Yes

EXECUTE ENTRY ANIMATION
240

CREATE AN INSTANCE OF AN ANIMATION
THREAD AND START THE TREAD.

SE THE ON METHOD TOWAT FOR THE
COMPLETON OF THE ANIMATION.

241
242

Yes SET A TIMER
DEPARTURE. EVENT

No

243

EXIT
ANIMATION?

No Yes

EXECUTE THE DEPARTURE ANMAFION 244

CREATE AN INSTANCE OF AN ANIMATION
THREAD AND START THE TREAD.

SET THE JOIN METHOD TO WAIT FOR THE
COMPLETON OF THE ANIMATION.

TERMINATE
POST TOJOIN
TO FIG. 33

Fig. 34

CHILD TIME LINES FORTEXT
BUTTON AND IMAGE OBJECTS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 339 of 548

U.S. Patent Sep. 22, 2009 Sheet 40 of 68 US 7,594,168 B2

FROM
FIG. 31,

FG.33 AND
FIG. 34

246 JOIN WITH ALL WEB PAGE
OBJECTS

WAIT FOR THE COMPLETION OF
ALL PARENT AND CHILD TME
LINES FORTEXT AND IMAGE

OBJECTS.

STAY ON
WEB PAGEP

248 249
RESPOND TO USER INTERACTIONS

AND/OR TIMER CONTROLS
WEB PAGE DELAY

SET TIMEREVENT FOR WEB PAGE
DELAY BEFORE CONTINUING WITH

THE WEB PAGE LOOP. TO FIG. 36

END OF WEB
PAGE COUNTER

LOOP

Fig. 35

COMPLETE WEB PAGE AND
OBJECT THREAD LOOP

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 340 of 548

U.S. Patent Sep. 22, 2009 Sheet 41 of 68 US 7,594,168 B2

251 MOUSE TO OBJECTRECOGNITION TECHNICUE

SCALING TECHNOLOGY (SEE FIG. 27) SETS SCREEN COORDINATE VALUES FOR ALL OBJECTS AND
THEIR SUBCOMPONENTS.

MOUSE POSITION DETERMINES WHICH OBJECT(S) ARE SELECTED.

TYPE OF USER
NTERACTION

MOUSE DOWN OVER OBJECT(S) MOUSE MOVED OVER OBJECT(S)

260

PARAGRAPH TEXT BUTTON AND/OR IMAGE OBJECT(s) PARAGRAPH TEXT BUTTON AND/OR IMAGE OBJECTS)
OJECS MOUSE OVER STATESDRAWN. OBJECTS CLICK STATE IS ORAWN.

SOUND, VIDEO, ORTEXTIIMAGE POPUP OVER HOT LINK
TEXTAND/OR IMAGE POPUP OBJECTS ARE CREATES ACALL

MOUSE OVER DRAWN, IF DEFINED. EVENTS ARE EXECUTED, IF DEFINED- TO
COLORS ARE SOUND AND WIdEO EVENTS ARE EXECUTED, APPROPRIATE
DRAWN IF DEFINED, GOTO EVENTIS EXECUTED, IF DEFINED. METHOD,

MOUSE MOVED OFF OBJECT(s) MoUSEUP
255 259

OBJECTS NORMAL STATE ISDRAWN.
OBJECTSNORMAL ORMOUSE OVER STATES

TEXT BUTTON AND/OR IMAGE POPUP OBJECTS ARE DRAWN, DEPENDING UPON MOUSE COORDINATES.
RASED, IFNOT FROZEN BYA CLICKDEFINEDEVENT.

SOUND AND WIDEO EVENTS MAYBE TERMINATED, IF
SOUND AND WIDEO EVENTS MAYBE TERMINATED, IF DEFENED THAT WAY.

DEFINED THAT WAY.

Fig. 36

RESPOND TO USER INTERACTIONS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 341 of 548

US 7,594,168 B2 Sheet 42 of 68 Sep. 22, 2009 U.S. Patent

03

*

Fig. 37

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 342 of 548

US 7,594,168 B2 Sheet 43 of 68 Sep. 22, 2009 U.S. Patent

o

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 343 of 548

US 7,594,168 B2 Sheet 44 of 68 Sep. 22, 2009 U.S. Patent

Fig. 39

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 344 of 548

US 7,594,168 B2 Sheet 45 of 68 Sep. 22, 2009 U.S. Patent

Fig. 40

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 345 of 548

US 7,594,168 B2 Sheet 46 of 68 Sep. 22, 2009 U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 346 of 548

US 7,594,168 B2 Sheet 47 of 68 Sep. 22, 2009 U.S. Patent

Fig. 42

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 347 of 548

US 7,594,168 B2 Sheet 48 of 68 Sep. 22, 2009 U.S. Patent

Fig. 43

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 348 of 548

US 7,594,168 B2 Sheet 49 of 68 Sep. 22, 2009 U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 349 of 548

US 7,594,168 B2 Sheet 50 of 68 Sep. 22, 2009 U.S. Patent

Fig. 45

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 350 of 548

US 7,594,168 B2 Sheet 51 of 68 Sep. 22, 2009 U.S. Patent

Fig. 46

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 351 of 548

US 7,594,168 B2 Sheet 52 of 68 Sep. 22, 2009 U.S. Patent

Fig. 47

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 352 of 548

US 7,594,168 B2 Sheet 53 of 68 Sep. 22, 2009 U.S. Patent

Fig. 48

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 353 of 548

US 7,594,168 B2 Sheet 54 of 68 Sep. 22, 2009 U.S. Patent

Fig. 49

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 354 of 548

US 7,594,168 B2 Sheet 55 of 68 Sep. 22, 2009 U.S. Patent

Fig. 5O

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 355 of 548

US 7,594,168 B2 Sheet 56 of 68 Sep. 22, 2009 U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 356 of 548

US 7,594,168 B2 Sheet 57 of 68 Sep. 22, 2009

Fig. 52

U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 357 of 548

US 7,594,168 B2 Sheet 58 of 68 Sep. 22, 2009 U.S. Patent

Fig. 53

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 358 of 548

US 7,594,168 B2 Sheet 59 of 68 Sep. 22, 2009 U.S. Patent

Fig. 54

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 359 of 548

US 7,594,168 B2 Sheet 60 of 68 Sep. 22, 2009 U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 360 of 548

US 7,594,168 B2 Sheet 61 of 68 Sep. 22, 2009 U.S. Patent

Fig. 56

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 361 of 548

US 7,594,168 B2 Sheet 62 of 68 Sep. 22, 2009 U.S. Patent

„SputoaS$2 §§§§§
?anoidae iagraju

Fig. 57

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 362 of 548

US 7,594,168 B2 Sheet 63 of 68 Sep. 22, 2009 U.S. Patent

Fig. 58

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 363 of 548

US 7,594,168 B2 Sheet 64 of 68 Sep. 22, 2009 U.S. Patent

Espudoes3]

Fig. 59

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 364 of 548

US 7,594,168 B2 Sheet 65 of 68 Sep. 22, 2009 U.S. Patent

Fig. 6O

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 365 of 548

US 7,594,168 B2 Sheet 66 of 68 Sep. 22, 2009 U.S. Patent

$$$$$

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 366 of 548

US 7,594,168 B2 Sheet 67 of 68 Sep. 22, 2009 U.S. Patent

Fig. 62

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 367 of 548

US 7,594,168 B2 Sheet 68 of 68 Sep. 22, 2009 U.S. Patent

Fig. 63

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 368 of 548

US 7,594,168 B2
1.

BROWSER BASED WEBSITE GENERATION
TOOL AND RUN TIME ENGINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 09/454,061, filed Dec. 2, 1999 now U.S. Pat. No.
6,546,397.

FIELD OF THE INVENTION

The present application is directed to computing systems,
and more particularly to methods and apparatus for building
a web site using a browser-based build engine.

BACKGROUND

Conventional web site construction tools operate on tradi
tional operating system platforms and generate as output
HTML (hyper text mark-up language) and Script Code (e.g.,
JavaScript). A browser draws a web page associated with the
web site by interpreting the HTML and JavaScript Code.
However, conventional mark-up and Scripting languages
include numerous inherent limitations. Conventional mark
up and Scripting languages have not been designed for serious
multimedia applications. They have almost no file handling
ability and very little computational power. In addition, they
are remarkably slow and inefficient.
As such it is virtually impossible to write a web publishing

application in HTML and JavaScript. All conventional imple
mentations must, and do, utilize a full-featured programming
language. Such as C++ or Visual Basic. Since the current
popular browsers do not support these languages, by neces
sity, conventional web publishing applications run on plat
forms other than the WorldWideWeb (WWW) and its brows
ers. Therefore, at best, a conventional web publishing
application can offer only a crude preview capability of what
a real web page will look like.

Although C++ and Visual Basic are very capable lan
guages, the conventional web publishing applications written
in these languages are still necessarily limited by the limita
tions inherent in their form of output, which as described
above is typically HTML and scripting code. As such, a
conventional web publishing application written in one of
these languages Suffers from the severe performance prob
lems inherent in these languages.

For example, HTML and JavaScript are incapable of refor
matting text and Scaling buttons or images dynamically. In
addition, most conventional web publishing applications
design a web page layout to fit into a 640 pixel wide screen.
This means that the ability for higher resolution screens to
display more data horizontally is lost. Since capability is
wasted on the horizontal plane, unnecessary vertical scrolling
may be required. Further, on higher output resolution devices
(screens), unsightly extra white space or background may be
prevalent.

SUMMARY

In one aspect the invention includes a Browser Based build
engine that is written entirely in a web based full featured
programming language (e.g., JAVA). A Browser Based Inter
face (the Interface') between the web designer and the build
engine is included. The browser-based interface can be writ
ten in the World Wide Web’s (WWW) Hypertext Markup
Language (HTML) and its Extensions (Dynamic HTML,

10

15

25

30

35

40

45

50

55

60

65

2
JavaScript and Cascading Style Sheets). The Interface
includes a unique set of communication techniques. One
technique allows for effective two-way communications
between a JAVA engine and JavaScript. Another technique
allows for communications between a JAVA applet object
inside a JavaScript window, with the JAVA engine, which
permits the implementation of advanced intelligent interface
objects, such as a “slider” or a “dial”.

In one aspect the invention includes a screen resolution
sensing mechanism that causes a build engine (i.e. build
tools) to adopt its interface to the web designer's screen
resolution.

In one aspect, the invention includes a multi-dimensional
array structured database, that, in addition to storing the
numeric and string data found in conventional databases, also
stores multi-dimensional arrays of various multimedia
objects. They include colors, fonts, images, audio clips, video
clips, text areas, URLs and thread objects. The invention
includes a run time generation procedure that creates a com
pressed web site specific customized run time engine pro
gram file, with its associated database and a build engine
generated HTML shell file.
The invention can include web page Scaling technology, so

that when the web site/web page is accessed on the WWW, the
web pages and all the objects within them can be scaled to the
user's screen resolution and to the then current browser win
dow size.

In one aspect, the invention includes a proprietary multi
level program animation model (threads) that responds to
multiple user interactions and time sensitive operations
simultaneously.

In one aspect, the invention includes a mechanism for the
dynamic resizing of the build engine's web page size during
various editing operations.

In one aspect, the invention includes techniques for creat
ing browser based interface objects that visually and behav
iorally are identical to those of the MS Windows standard.

Aspects of the invention can include one or more of the
following features. A browser based build engine is provided
that includes a browser based interface. The entire web site
build process is WYSIWYG (what you see is what you get),
with the web designer working directly on and with the final
web page. The data produced by the build engine is processed
and ultimately placed into a multi-dimensional array struc
tured database, and stored in an external file. A run time
generation procedure creates a compressed program custom
ized run time engine file, with an associated database and a
build engine generated HTML Shell File.
When the web site/web page is accessed on the WWW,

web page scaling technology can be accessed to generate web
pages that are scaled to the user's screen resolution. A tech
nique is provided so that an applet’s size (height and width)
can be set in real time under the control of either the interface
or the build engine. At the same time a multi-level program
animation model (threads) is activated for user interactions
and time sensitive operations.
The browser based interface technologies create a set of

interface objects with a look and feel that is identical to that of
MS Windows, yet includes technologies that equal or occa
sionally surpass those of high end word processors, desktop
publishers, and image processing software programs, particu
larly in the areas of interaction, animation, and timeline tech
nologies. The run time engine includes multimedia capabili
ties often rivaling the digital processing capabilities seen on
television and in the movies.

Because of the implementation of a variety of performance
and file reduction techniques, the entire run time environment

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 369 of 548

US 7,594,168 B2
3

can range from as low as 12K, and no larger than 50K. This
depends upon the features selected by the web designer.
Although the compressed image, audio, and/or video files
must also be downloaded, with a reasonable web site design,
web pages should load quickly. The initial run time environ- 5
ment is no larger than 25K, thus the initial web page should
generally load in less than 2 seconds, and Subsequent web
pages in less than 1 second with a 56K modem, even with
numerous image files.
The present invention provides a real time, dynamic link- 10

age between JAVA and HTML including two-way communi
cations, in real time, between JAVA and JavaScript.

BRIEF DESCRIPTION OF THE DRAWINGS
15

The foregoing aspects and many of the attendant advan
tages of the invention will become more readily appreciated
through the following drawings and their associated Screen
shots, referred to throughout the detailed description,
wherein: 2O

FIG. 1 is a flow chart depicting a prior art conceptual
overview of how a user and a web browser interface.

FIG. 2 is flow chart depicting a conceptual overview of how
a user interfaces with a web browser when implementing the
present invention to construct a web site.

FIG. 3a is a schematic diagram showing the main compo
nents of a build tool in accordance with one implementation
of the present invention.

FIG.3b is a process flow diagram showing a build process 30
in accordance with one implementation of the present inven
tion.

FIG. 4a is schematic diagram showing the main compo
nents of a run generation tool in accordance with one imple
mentation of the present invention. 35

FIG.4b is process flow diagram showing a run time process
in accordance with one implementation of the present inven
tion.

FIG. 5 is a flow chart, with its attendant screen shot shown
in FIG. 37, that depicts a detailed view of a build time initial- 0
ization procedure in accordance with one implementation of
the present invention.

FIG. 6 is a flow chart, with its attendant screenshots shown
in FIGS. 38-48, that depicts a detailed view of the build time
Supported user input techniques and techniques for commu
nication of data and status between the build engine and the
interface in accordance with one implementation of the
present invention.

FIG. 7a is a flow chart that shows an overview of the build
time techniques for implementation of pop-up windows (usu
ally called “dialog boxes” in MS Windows), the panel inter
face, and interface for color selection.

FIG. 7b is a flow chart, with its attendant screenshots
shown in FIGS. 37-38, that shows a detailed view of the build
time techniques for implementation of panel interface
objects, including the menu bar, menus and Sub-menus, the
tool bars, status fields, interactive fields, and interactive pull
down lists, in accordance with one implementation of the
present invention. 60

FIG. 7c is a flow chart, with its attendant screenshots shown
in FIG.37 and FIG. 63, that shows a detailed view of the build
time techniques for implementation of tabbed pop-up win
dows (also called “dialog boxes” in MS Windows).

FIG. 8 is a flow chart that shows a detailed view of the build 65
time techniques for updating the internal databases and the
setting of feature flags for run time optimization purposes.

25

45

50

55

4
FIG. 9 is a flow chart, with its attendant screenshot shown

in FIG.37, that shows a detailed view of the build time polling
methods used to facilitate communication from the JAVA
build engine to the interface.

FIG. 10 is a flow chart that shows a detailed view of the
build time techniques for analyzing user input for error check
ing and data integrity.

FIG.11 is a flow chart, with its attendant screenshot shown
in FIGS. 38-41, that shows a detailed view of the build time
methods for direct text entry at an arbitrary cursor position
and text editor implementation methods.

FIG. 12 is a flow chart, with its attendant screenshot shown
in FIGS. 49-56, that shows a detailed view of the build time
techniques for reading external image files, creating them on
a web page, and then manipulating them through either direct
mouse interaction or through the interface's panel/windows.

FIG. 13 is a flow chart that shows a detailed view of the
build time implementation of text, button and image styles in
accordance with one implementation of the present invention.

FIG. 14 is a flow chart that shows a detailed view of the
Video and audio processing in accordance with one imple
mentation of the present invention.

FIG. 15 is a flow chart that shows a detailed view of the
frame, table, forms, and draw objects processing and technol
ogy in accordance with one implementation of the present
invention.

FIG. 16 is a flow chart that shows a detailed view of the
build time methods for Supporting various user interactions at
run time.

FIG. 17 is a flow chart, with its attendant screenshots
shown in FIGS. 57-58, that shows a detailed view of the build
time methods for text button and image object animation.

FIG. 18 is a flow chart, with its attendant screenshots
shown in FIGS. 59-60, that shows a detailed view of the build
time methods for text button and image transformations.

FIG. 19 is a flow chart, with its attendant screenshots
shown in FIGS. 61-62, that shows a detailed view of the build
time methods for text button and image time lines.

FIG. 20 is a flow chart with its attendant screenshot shown
in FIG. 63, that shows a detailed view of the build time web
page transition animations and time lines.

FIG. 21a is a flow chart that shows a detailed view of file
operations performed in accordance with one implementation
of the present invention.

FIG. 21b is a flow chart that shows a detailed view of the
view operations performed in accordance with one imple
mentation of the present invention.

FIG. 22 is a flow chart that shows a detailed view of a
dynamic web resizing process that is activated by the “Open”
and “Web Site” commands under the "File' menu and the
“Zoom’ command under the “View' menu.

FIG. 23 is a screen shot showing a file selection window
operation in accordance with one implementation of the
present invention.

FIG. 24 is a flow chart showing a detailed view of an
external database in accordance with one implementation of
the present invention and also shows the Security and optimi
Zation techniques that can be employed.

FIG.25 is a flow chart showing a detailed view of a method
for creating a customized and optimized run time engine in
accordance with one implementation of the present invention.

FIG. 26 is a flow chart showing a detailed view of the
methods for creating an HTML shell file in accordance with
one implementation of the present invention.

FIG. 27 is a flow chart showing a detailed view of the
methods for creating compressed CAB and JAR files inaccor
dance with one implementation of the present invention.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 370 of 548

US 7,594,168 B2
5

FIG. 28 is a flow chart showing a detailed view of the
technology for dynamic web page size creation in accordance
with one implementation of the present invention.

FIG. 29 is a flow chart showing a detailed view of the
methods for reading the multimedia database and generating
the necessary objects in accordance with one implementation
of the present invention.

FIG. 30 is a flow chart showing a detailed view of the
methods for dynamically scaling the web page object(s) to
different Screen resolutions and window sizes in accordance
with one implementation of the present invention.

FIG. 31 is a flow chart showing a detailed view of the
methods for executing a multi-level web page and object
thread architecture in accordance with one implementation of
the present invention.

FIG. 32 is a schematic diagram that shows a detailed view
of the web page transition animation architecture in accor
dance with one implementation of the present invention.

FIG.33 is a schematic diagram that shows a detailed view
of the parent object time line architecture in accordance with
one implementation of the present invention.

FIG. 34 is a schematic diagram that shows a detailed view
of the child object time line architecture in accordance with
one implementation of the present invention.

FIG. 35 completes the flow chart begun at FIG. 31.
FIG. 36 is a flow chart showing a detailed view of the

methods for responding to user interactions in accordance
with one implementation of the present invention.

FIGS.37-63 are screen shots of the user interface presented
by the build process in accordance with one implementation
of the present invention.

DETAILED DESCRIPTION

Referring to FIG. 1, in a prior art process for creating and
displaying a web site, the user either directly writes HTML
and Script Code providing user input at 1 or operates a related
prior art product at 2, which generates the HTML and Script
Code at 3. A separate file, with its attendant HTML and Script
Code is uploaded for each separate web page in the web site
at 4, which is then interpreted by a browser when accessed at
5.

FIG. 2 shows a process for creating and displaying a web
site in accordance with one aspect of the invention in which,
a user operates a build tool at 6, working directly with one or
more of the final web pages in a full WYSIWYG mode. The
build tool accepts the user input and creates a multi-dimen
sional embedded multimedia object database at 7. A run time
generation process is then invoked to create the necessary run
time files at 8 (including HTML shell, CAB/JAR files and a
customized runtime engine) which are then loaded to a user's
web site at 9. The web page(s), when viewed by a web surfer,
are activated by the browser calling the customized run time
engine at 10. The run time engine then begins to read the
database and down load image, audio and video files, while
simultaneously drawing the first web page for viewing or user
interaction at 11.

Build Tool and Process

FIG. 3a shows a build tool 350 at the detailed component
level. The build tool includes a build engine 352, interface
354, screen sensing mechanism 356, multi-dimensional array
structured database 358, interface's database 360, web page
Scaling engine 364, time line engine 366 and installation
Program 368. The operation and use of each of these compo
nents is described in greater detail below.

10

15

25

30

35

40

45

50

55

60

65

6
FIG.3b is a flow of the build process executed by the build

tool to create a web page/web site. Referring to FIGS. 3a and
3b, the process begins with an initialization (12) and contin
ues through to a point where a web site has been defined and
stored in the build engine's internal database (29).
The build tool 350 includes plural individual tools that are

created and initialized at (12). The processes for creating and
initializing build tools are described in greater detail below in
association with FIG. 5. After the build tools are created and
initialized at 12, the build tool 350 interacts with the user,
receiving user commands (actions), for example, to build a
web site. The build tool 350 processes user responses and
communicates the same and status information to both the
build engine 352 and interface 354 at 13. The processes for
interacting with the user are described in greater detail below
in association with FIG. 6.

In one implementation, the interface includes a panel (and
its objects, including a menu bar, menus and Sub-menus, tool
bars, status fields, interactive fields and interactive pull down
lists), pop-up windows (called “dialog boxes” in MS Win
dows), color and alert message interface technologies, built
with HTML, Dynamic HTML (DHTML), JavaScript, and
Cascading Style Sheets (CSS). Interface 354 responds to the
user input and may display a pop-up window, update the
interface objects, or display alert messages, as shown at 15.
The operation of the interface 354 is described in greater
detail below in association with FIG.7a, FIG.7b and FIG. 7c.
As the build engine 352 receives data and status informa

tion, it updates an internal database (part of multi-dimen
sional array structured database 358) and sets feature flags at
14. The processes for updating the internal database and
setting flags are described in greater detail below in associa
tion with FIG.8. To enable effective two-way communication
between the interface and the build engine, polling technol
ogy is included as shown at 16. The details of the polling
process are described in greater detail below in association
with FIG. 9.

Whenever user input is received, the build tool 350 ana
lyzes the input including error checking at 17. In one imple
mentation, the input is analyzed and then processed by object
type (class). The process for analyzing input to determine
type is described in greater detail below in association with
FIG. 10. In one implementation, the number of different
object processing technology classes are four, and include
direct text entry (18), image processing (19), video or audio
files and links (21) and frames, tables, forms and draw objects
(22). The build tool 350 processes the user input based on
class. The processes invoked for direct text entry are
described in greater detail below in association with FIG. 11.
The processes invoked for image processing is described in
greater detail below in association with FIG. 12. The pro
cesses invoked by the text button, paragraph, and image style
technologies are described in greater detail below in associa
tion with FIG. 13. The processes invoked for processing audio
and video files and channels are described in greater detail
below in association with FIG. 14. The processes invoked for
processing frames, tables, forms and draw objects are
described in greater detail below in association with FIG. 15.
When an image, text button or paragraph object is to be
inserted in the web page, the current style that is selected in
the panel defines the initial settings used when creating the
object in the web page. As such, button, image and paragraph
style setting and technology will be invoked at 20 depending
on the user input. The processes invoked by the paragraph
style setting and technology is described in greater detail
below in association with FIG. 13.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 371 of 548

US 7,594,168 B2
7

After the input is processed as described above, a check is
made to determineifone or more animation or transformation
(interaction) techniques are to be invoked at 23. The run time
engine provided in accordance with the teachings of the
present invention Support various user interactions, including
Support for numerous animation and transformation tech
niques, and both web page and object time lines. Depending
on the user selections, one or more technologies may be
invoked. In the implementation shown, the build tool 350 is
configured to check to determine if the input data is related to
plural technologies including: user interaction technology
(24), animation technology (25), transformation technology
(26), object time line technology (27) and web page transition
animation technology (28). The processes invoked for user
interaction technology are described in greater detail below in
association with FIG. 16. The processes invoked for anima
tion technologies are described in greater detail below in
association with FIG. 17. The processes invoked for transfor
mation technologies are described in greater detail below in
association with FIG. 18. The processes invoked for object
timeline technologies are described in greater detail below in
association with FIG. 19. The processes invoked for web page
transition animation technologies are described in greater
detail below in association with FIG. 20.

After the build tool 350 has processed the user input, one or
more file operations can be invoked at 29a. In one implemen
tation, the file operations are “save”, “save as”, “new”.
“close”, “open”, “apply” and “web site'. If “open” or “web
site' are selected, the build tool 350 initiates the dynamic web
page resizing process at 29c (See FIG.22). If “save' or “save
as are selected, the build tool 350 initiates a run generation
process (See FIG. 4 and FIG. 24). File operations “close'.
“open”, and “new” can also initiate the run generation pro
cess, based on the State of the build process and user action.

At any time during the processing of user input, one or
more view operations can be invoked at 29b. In one imple
mentation, the view operations Supported are “normal”, “pre
view”, “play', and "Zoom' (at various Zoom percentages). If
any of the "Zoom’ levels are selected, the build tool initiates
the dynamic web page resizing process at 29c (See FIG. 22).
If the “preview’ or “play' view operations are selected they
will initiate the run time process (See FIGS. 28 through 36).

FIG. 4a shows a run generation and runtime tool 370 at the
detailed component level. The run generation and runtime
tool 370 includes a run generation procedure 371, web scaling
engine 372, a database 374 and a (web) page size generation
engine 376 and run time engine 377 including a runtime user
interaction engine 378, a runtime timeline engine 380 and a
runtime drawing, animation, audio, and video engine 382. In
one implementation, run time engine 377 includes plural
engines, each of which may in themselves include plural
engines.

FIG. 4b shows the run processes including methods for
creating the run time files, including the external database, the
web site specific customized run time engine, the HTML shell
file, and the compressed CAB/JAR file. The run processes
also include methods for Scaling each web page to the web
surfers then current screen resolution and web browser win
dow size. After a web page has been scaled, a run time engine
executes a multi-level thread technology, which presents to
the viewer web pages that can operate under time lines that
may include animated transitions. Associated with the web
page time lines can be object time lines that may define
entrance, main and exit animations, transformations, and Syn
chronized time lines for child objects. Each object can have

10

15

25

30

35

40

45

50

55

60

65

8
multiple object states, responsive to various user interactions,
which can result in numerous types of visual and audio
responses and actions.

Referring now to FIGS. 4a and 4b, a run generation pro
cess 360 begins by invoking the run generation procedure
377. The run generation procedure 371 begins by creating the
external database (part of database 374) at 30. The external
database may include references to image, video and audio
files, and video and audio channels. The process for creating
the external database is described in greater detail below in
association with FIG. 24. A customized and optimized run
time engine (run time engine 377) is created at 31. The cus
tomized and optimized run time engine (run time engine 377)
generates the web pages for the web site and is activated from
the user's server. The process for creating the run time engine
377 is described in greater detail below in association with
FIG. 25. The HTML shell file is created at 32, and then the
CAB and JAR files are created at 33a . The HTML Shell file
includes JavaScript Code to activate and interrogate the page
size generation engine 376, and to activate the entire runtime
engine. The CAB and JAR files both include the runtime
engine and database in compressed executable form. The
CAB file(s) will be activated by the HTML shell file if it
senses the browser as being Microsoft Explorer, otherwise it
will activate the JAR file(s). The processes for creating the
HTML Shell file and the CAB and JAR files are described in
greater detail below in association with FIG. 26 and FIG. 27.
respectively. The run generation process portion of the run
processes is completed as the HTML shell file and the CAB
and JAR files are uploaded to the users web site at 33b.

After the upload, the run time process 365 portion begins
with the run time engine 377 invoking a web page size gen
eration technology (engine) 376 at 34. The web page size
generation technology can be used to determine the screen
resolution and the current browser window size. The process
for invoking and initializing the web page size generation
technology is described in greater detail below in association
with FIG. 28. The external database is read and the necessary
objects generated at 35 from their stored external references.
These objects include image, audio, and video objects. The
processes for generating the necessary objects are described
in greater detail below in association with FIG. 29. A web
page generation and Scaling technology (web page scaling
engine 372) is then invoked at 36. The web page scaling
engine 372 can be used to reformat and scale objects that had
been placed in a web page during the build process. The
processes employed by the web page generation and Scaling
technology are described in greater detail below in associa
tion with FIG. 30. The run time engine then, as necessary,
executes a multilevel web page and object thread technology
at 37 while the runtime user interaction portion 378 of run
time engine 371 responds to user interactions at 38. The
processes invoked by the multilevel web page and object
thread technology are described in greater detail below in
association with FIGS. 31-35. The processes invoked by the
run time engine to respond to user interactions are described
in greater detail below in association with FIG. 36.
Detailed build processes

Referring now to FIGS.3a and 5 through FIG.22 the build
tool 350 and its associated build process are described. Refer
ring first to FIGS. 3a and 5, initialization methods are shown.
At 39 the build tools are created as part of the execution of the
installation program 368. They can include:

1: Initial build tool HTML/JavaScript file (IBTF)
2: An initialization engine (IE).
3: A build engine.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 372 of 548

US 7,594,168 B2
9

4: The build engine parent HTML frame file. (PFF).
5: A “Control Panel and Status Line” HTML/JavaScript

File (“panel”) for:
Controlling the JavaScript database.
Calling and initializing all pop-up windows.
Reading all pop-up window values, and updating a Java

Script database
Calling the build engine and passing all necessary data

and status information.
Polling the build engine for two-way JAVA/JavaScript

communication.
Displaying and updating the status of its interface

objects.
Issuing alert messages.
Processing direct user interactions with the panels

interface objects.
6: Numerous HTML/JavaScript files, one for each pop-up
window.

7: JAVA applets, embedded in HTML/JavaScript pop-up
window files.

8: A build engine HTML definition file that is created and
modified dynamically.

d The initialization and build engines can be placed in a JAVA
wrapper so that JavaScript code may receive and process
return values from JAVA methods. The initialization and build
engines are also created in a "Signed’ CAB file, and assigned
the necessary security rights, so that the engines can assert the
necessary permissions, if permitted by a given browser's
security manager, when read or write operations are required.
In one implementation, an installation program is run prior to
the first use of the build tools. After installing all of the files,
the installation program can install the necessary class librar
ies required by the run generation process in which the cus
tomized and optimized run time engine is created (See FIG.
25). The installation program can also set the necessary envi
ronmental variables and installation options.

At 40 the web surfer points a browser at (i.e. calls) an initial
build tool HTML/JavaScript file (IBTF). At 41 the IBTF
identifies the current browser type and version number. Pres
ently, each browser has different security manager implemen
tations. In one implementation, the invention Supports the
following three categories:

1: With appropriate signing and time stamping, and with
appropriate assertions of permissions, the browser will
permit local read/write operations.

2: With appropriate signing and time stamping, and with
appropriate assertions of permissions, the browser will
permit local read operations, but write is only legal if
Sent to a Server.

3: Local read/write operations are illegal, but are permitted
on the server.

The IBTF can include a flag that can be set to indicate which
security implementation is Supported, so that all Subsequent
read/write operations will comply with the current browser's
Security manager.
At 42, the IBTF causes the browser to execute the IE so as

to sense the screen resolution and for adapting the interface to
the user's screen resolution. In one implementation, after
entering a delay loop and waiting for the IE to report it is fully
loaded and initialized, the IBTF calls two IE methods, which
return the width and height of the current screen and browser
window. The IBTF then checks for the presence and value of
a “mode cookie', to determine whether this is an initialization
process, a web site open command process, or a dynamic web
page resizing process. If the mode cookie is set to initialize, or
it doesn't exist, the IBTF calls the IE to generate the build

10

15

25

30

35

40

45

50

55

60

65

10
engine's HTML definition file. At 43 the IE then asserts the
required security permission and at 44 creates a build engine
HTML definition file and writes this file to the local disk (as
appropriate). At 45 the IBTF then turns control over to the
PFF for activating the “panel and build engine and display
ing the build engine user interface screen.
The build engine user interface screen includes a “panel

portion and a build engine portion, each of which are loaded
into their respective frames, after which the web site page(s)
build process can begin. Screen shot FIG. 37 shows a repre
sentation of the user interface presented by the build tool. The
user interface includes a panel 400 and build frame 500. Panel
400 includes a menu bar 410, menus 420 and sub-menus 430,
tool bars 440, status fields 450, interactive fields 460, inter
active pull down lists 470 and operational pop-up windows
480. The menu bar 410 can be used for selecting a menu
command that will cause a menu to be drawn. The menu (one
or menus 420) can be used to select a feature command that
could cause an operational pop-up window to be drawn, a
direct user input technique or object manipulation technique
to be activated, or a sub-menu 430 to be drawn. A sub-menu
(one of Sub-menu 430) can cause the same type of events as
that of a menu. The toolbars 440 include various icons that are
shortcuts to feature commands that are also available through
the menu bar and its menus. In addition, the tool bar 440 can
be used to show the current state of a feature. Status fields 450
show the current value of a certain setting. Interactive fields
460 also show the current value of a setting, but can also be
directly changed by the user by typing into the field, with the
result immediately processed by the build engine 352 and
displayed in the build frame 500. Interactive pull-down lists
470 also show the current value of a setting, but, if selected
with a mouse click, will drop down a selection list, which may
have an elevator attached. The user can click on an item in the
selection list, which will become the current setting with the
result immediately processed by the build engine 352 and
displayed in the build frame. Operational pop-up windows
480 can have tabs assigned if the number of choices within the
pop-up window is large. One or more settings can be changed
through a pop-up window, with the results immediately pro
cessed by the build engine 352 and displayed in the build
frame 500. These interface techniques are described in
greater detail below in the build process.
The build frame 500 is used to present the actual web page

as constructed by a user. The user can directly enter text,
import images, video and audio for display/playback and
create animations and transformations that can be viewed in
the build frame. FIG. 6, with its attendant screen shots FIGS.
38 through 48, shows the user input techniques supported in
one implementation of the invention. In one implementation,
the user inputs supported include: selection from a JAVA
window object (48); selection from a JavaScript window (49)
including selection with dual spin control (50a) or selection
from a JavaScript child window object (50b); direct text entry
(51); page resizing (52); direct object manipulation (53); and,
selection from a JavaScript panel (54).

In the implementation shown, of the six user input tech
niques sensed at 13, the code for Supporting selections from a
JavaScript pop-up window at 49 and selections from the
“panel at 54 were implemented entirely in HTML/JavaS
cript Code, while support for direct text entry at 51 and direct
web page object manipulation at 53 were implemented
entirely in JAVA (or any other browser-based full featured
programming language). In one implementation, code for
supporting selections from a JAVA Window object at 48 and
dynamic web page resizing at 52 are implemented using both
HTML/JavaScript and JAVA. Those of ordinary skill will

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 373 of 548

US 7,594,168 B2
11

recognize that, JAVA could have been used more extensively
to implement the methods described at 48, 49 and 54. How
ever, in order to achieve the most intuitive and MS Windows
like interface, and because effective two-way communication
between JavaScript and JAVA had been achieved (See FIG.
9), the languages proposed appear to best Support the particu
lar user input technique.

For example, FIG. 23 shows an actual file selection win
dow 2300, implemented by the invention. This type of file
selection window is available in JavaScript/HTML, but not
supported by JAVA for applets. File selection window 2300
greatly enhances the interface for the user, as the image,
Sound clip, or video clip names need not be memorized. File
selection window 2300 further eliminates possible operator
error when typing in a pathname or filename. The present
invention utilized the strengths of JavaScript/HTML with the
power of JAVA to create a unique browser based interface
solution. In one implementation, the HTML form element
“INPUT type=file' was embedded in a JavaScript pop-up
window to create the file selection window. The file selection
window returns a string value of the image (or other file type)
pathname to the pop-up window. The pop-up windows Java
Script then could be used to call a JavaScript function in the
panel (panel 400) which:

1: Reads the pathname value in the pop-up window.
2: Creates a string version of a valid URL by adding the

correct URL protocol to the string.
3: Updates the panels database (interface's database 360).
4: Calls a JAVA method in the build engine, which casts the

string value of the URL into a URL object, creates an
image object which is then drawn on the screen, and
updates its internal database.

User inputs that area selection from a JAVA window object
(48) permit the implementation of a vast array of intelligent
user input interface objects, from sliders to dials, which are
extremely intuitive and significantly enhance the user's ergo
nomic experience. In one implementation, user input inter
face objects are supported as follows. When a selection from
a JAVA window is detected, a pop-up window (applet) is
presented (associated with the feature being manipulated,
e.g., color, Volume) and an engine method is called to begin
two-way communication (for passing as arguments any nec
essary status information). The engine begins polling a JAVA
abstract object waiting for a static variable's value to change.
The pop-up applet processes the value as defined by a user
interaction event, and updates the static variable in that same
JAVA abstract object with the new value. Upon detecting a
change in the polled Static variable, the engine calls the nec
essary methods to process that new value. These methods
include can include a brightness filter that is applied to the
image bitmap utilizing techniques very similar to that of that
employed by the “fade in and “fade out animations,
described in association with FIG. 33

User inputs for a selection from a JavaScript pop-up win
dow (49) can be made in a manner identical to that of making
a selection from a dialog box under MS Windows, including
the use of tabbed JavaScript pop-up windows. In one imple
mentation when a selection from a JavaScript pop-up window
is detected, the panels (panel 400) JavaScript opens a pop-up
window. The pop-up windows initial values are set from a
JavaScript database defined in the panel or by the panel call
ing the engine for the current values and then setting the initial
values. In a tabbed JavaScript window, clicking on a tab will
call the pop-up window's JavaScript in order to change the
state and appearance of the tabbed JavaScript window in the
expected way. The pop-up windows JavaScript calls the pan
els JavaScript when a completion event occurs. The panels

10

15

25

30

35

40

45

50

55

60

65

12
JavaScript reads or the pop-up windows JavaScript writes
the pop-up window's field values, causing the panels data
base to be updated, and the panel then calls the appropriate
build engine 352 method, passing as arguments the necessary
data and status conditions. Initializing the pop-up windows
values and updating the panels database upon completion
can alternatively be implemented by JavaScript functions
executed within the pop-up windows HTML file.

In addition, there are interface extensions that can extend
beyond the usual MS Windows implementations. One is sup
port for a selection from a dual spin control at 50A. Screen
shots FIGS. 42-45 show a visualization of an implementation
of this interface technique. Screen shot FIG. 42 shows the
mouse placed over an upper spin control. Screen shot FIG. 43
shows the result after the user clicked once on the upper spin
control. Notice that the value has been incremented by 1, and
the text button object is now at a larger point size. Screen shot
FIG. 44 shows a combo box list selected by the mouse with
the user about to select a significantly larger point size. Screen
shot FIG. 45 shows the result of that selection, including the
effect on the text button object.

In one implementation, dual spin controls are Supported as
follows. Each spin control has three visual states, so that when
the user places the mouse over the control it appears to light
up, and when the mouse button is depressed (pressed down),
the spin control is modified to give the appearance of being
pressed. JavaScript methods are called in the panel (panel
400) to:

1: process each mouse click event over either spin control,
2: range check as necessary,
3: update the value in the HTML frame object residing in

the pop-up window,
4: update the JavaScript (panel 400) database,
5: call the build engine 352, if necessary, passing the nec

essary value and status.

If the mouse is clicked on a combo box, the selection window
opens in the usual way. If a mouse click in that window is
detected, another JavaScript method in the panel 400 is called
to update the JavaScript database, and call the build engine
352, if necessary, passing the necessary value and status as
function call arguments.

Another interface extension is selection from a JavaScript
child window at 50B. This technique helps simplify the num
ber of choices given to the user in a complex pop-up window
operation. A selection from a JavaScript child window can be
supported as follows. The panels (panel 400) JavaScript
opens the pop-up window. The pop-up window and its child
pop-up windows initial values are set from the JavaScript
database defined in the panel 400. The pop-up windows
JavaScript opens the child pop-up window and sets its initial
values. The child pop-up windows JavaScript calls the pop
up windows JavaScript when a completion event occurs. The
pop-up windows JavaScript reads the child pop-up win
dows values, sets those values to its own internally defined
variables, and calls the panel's JavaScript. The panel's Java
Script reads the pop-up windows values (which include the
settings for its own fields as well as those of its child win
dows), updates its database, and calls the appropriate build
engine 352 method, passing as arguments the necessary data
and status conditions. Screen shots FIGS. 46-47 show a visu
alization of an implementation of a JavaScript child window.
Screen shot FIG. 46 show a change text button style pop-up
window. Screen shot FIG. 47 shows the result after the user
selected the “Define the Mouse Down Text Button Style”
child pop-up window.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 374 of 548

US 7,594,168 B2
13

Direct text entry is Supported at any arbitrary cursor loca
tion. In one implementation, "text areas are utilized in an
unconventional way, in order to Support full text entry, text
editing, text button and paragraph styles, and reformat. Direct
text entry can be defined at any arbitrary cursor location, and
then text can be dragged to any other arbitrary location.

Text areas are objects that are utilized by JAVA primarily as
an interface object for the implementation of a form and are
generally “added to the screen at the initialization time of a
JAVA applet. Text areas are decidedly not WYSIWYG. The
present invention creates text areas dynamically. Screen shots
FIG. 38 through FIG. 41 show a visualization for an imple
mentation of this technique. Screen shot FIG. 38 shows the
user selecting a text object from the create text icon object
from a tool bar of the panel (panel 400). When the text icon
object is selected, the cursor shape is changed to indicate the
selection while the text icon object is in the select state.
Screen Shot FIG. 39 shows that the cursor has changed shape
and that the user has placed the cursor at an arbitrary location
on the web page. Screen shot FIG. 40 shows the result after
the user has clicked the mouse. A text insertion point and a
selection rectangle are drawn at the arbitrary web page loca
tion. Screen shot FIG. 41 shows the result after the user has
pressed the letter “W on the keyboard. As can be seen in
screen shot FIG. 41, a draw method associated with the build
process immediately hides the text area. However, text editor
methods associated with the build process continue to utilize
the text area as a hidden, dynamically resizing frame, whose
size is subject to text button or paragraph style settings, by the
amount of text, by the texts orientation (vertical or horizon
tal) and by the texts font style(s) and fontsize(s). As the build
engine 352 detects a relevant mouse event or keyboard event,
the build engine 352 updates the necessary variables that are
defined as return values in specified build engine methods.
Polling technology (see FIG.9) retrieves the relevant values
and calls the necessary JavaScript method for processing. In
one implementation, these same techniques (text area tech
niques) are used in the scaling technology (See FIG. 30).
Since the direct text entry and editing processes bypass com
pletely the interface and the JavaScript code, the polling
technology (See FIG.9) is used to pass the text string values
back to the JavaScript database, in order for the interface's
pop-up windows to be correctly initialized for Subsequent text
operations.

Direct text processing at 51 begins with the build engine
352 detecting a “Mouse Drag” or a “Mouse Double Click”
event. In one implementation of the present invention, if a
mouse drag event is detected, the entire initial anchor word
(assuming the “mouse down” event placed the text insertion
point within a word) is selected as well as the entire closing
anchor word. If a double click event occurs over a word, the
entire word is selected. If a double click event is detected over
a special hot Zone (for example, just to the left of a paragraph
line), then an integral number of words are selected. Appro
priate four-dimensional variables are set, and a draw system is
called. The draw system paints the selected line segment in
the marked text background and text color. The build engine
352 then sets a return flag to be read by the polling technology
(FIG. 9). A panel JavaScript poller (FIG. 9) detects this flag
and redraws the panel’s “Text menu object showing the
choices available when text is selected. In one implementa
tion, the “Text” menu includes choices of “Text Style”, “Hot
Link”, “Preferences', and “Format. The states for the tool
bar icon objects of “Bold”, “Italic' and “Underline” are set
appropriately as is the setting for the point size interactive
drop-down list. The panels JavaScript then calls an appro
priate build engine method that resets the flag. If the panels

5

10

15

25

30

35

40

45

50

55

60

65

14
JavaScript detects the user selecting the “Text Style”, “Hot
Link”, “Preferences' or “Format' choices, it creates the
appropriate pop-up window. Upon detecting a user comple
tion event, the panels JavaScript reads the data settings in the
pop-up window, closes that pop-up window, and sends this
data to an appropriate build engine method for processing
(See FIG. 11).
Dynamic web page resizing at 52 is invoked when the build

engine 352 detects a user initiated web page resize event. This
could be caused by the “Open” or “Web Site” commands
from the "File' menu, or from a "Zoom’ command from the
“View' menu. This technology is explained in detail below in
association with FIG. 22.

Direct object manipulation at 53 includes dragging of any
object, resizing of non-text objects, rotation and other image
manipulation functions, as required. The processing for direct
object manipulation begins by analyzing the type of object
selected and the state of the object, as set by the interface
based on a user's panel selection. The build engine 352 then
changes the mouse cursors appearance, and the type of selec
tion rectangle, including which attachment points, if any,
should be drawn and activated. (See FIG. 10 for the mouse
event processing technology and FIG. 12 for image process
ing technology). In one implementation, the same direct
object manipulation polling technology is used as described
above with regard to direct text entry.

If a selection of an interactive field, interactive drop-down
list object, or a toll bar icon object from the JavaScript panel
is detected at 54, then the following steps can be invoked,
depending on the selection. The point size of a paragraph, a
marked text range inside a paragraph or text button object can
be changed. The state of an object’s 3D frame can be changed.
In one implementation, three States for an object frame are
supported. The 3D frame can be drawn as a “raised 3D
object, as a “depressed 3D object, or as a “raised 3D object
that turns into a “depressed 3D object if a mouse down event
is detected over the object to which the 3D frame is assigned.
An objects style can be changed. The current web page can
be changed. Finally, any other operation that has been defined
by a tool bar icon object in the panel can be invoked. This
includes the “file” menu choices of new, open and save, the
'edit’ menu choices of cut, copy and paste, inserting a text,
button or image object onto the web page, applying or remov
ing the bold, italic, and underline text attributes for a text or
button object, centering or uncentering any web page object,
setting the animation for a button or image object, changing
the Zoom level of the web page, or previewing the web site.
As each new user input is received and processed in accor

dance with the steps shown in FIG. 6, at all times the internal
databases of the JavaScript panel and the build engine 352 are
maintained completely in Synchronization. Synchronization
is maintained so that: all status information displayed by the
panel is current and correct; all data and status information
passed to the build engine 352 from the interface are consis
tent with the build engine's state at any given time; the values
in all pop-up windows are correctly initialized. In order to
meet these requirements, all of the variables in the JavaScript
panel database are explicitly “typed, to be compliant with
the strict variable typing methodology generally imposed in
all full featured programming languages Such as Java. As
JavaScript does not explicitly type anything, where using
JavaScript herein, all String, Boolean, and integer variables
are typed. Full two-way real time communication Support
between the JavaScript/HTML interface and the JAVA build
engine 352 is provided as described below in association with
FIG. 9.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 375 of 548

US 7,594,168 B2
15

FIG. 7a shows four tools utilized for an implementation of
the pop-up window and panel interface technology (15 of
FIG. 3). The panel and pop-up windows make extensive use
of JavaScript mouse events, including onMouse own,
onMouseUp, onMouseOver, onMouseOut, onClick and
onchange methods (56). The pop-up windows make exten
sive use of the JavaScript onload and onlJnLoad methods. In
one implementation, when a pop-up window is loaded by the
panel, the panel goes into a wait loop, set for 5 times a second
using the JavaScript setTimeout method, interrogating in
each loop whether the pop-up windows status flag has been
set. Meanwhile the pop-up window, when loaded by the
browser, executes the onload method in order to set a flag in
the panel informing the panel that the pop-up window is now
loaded. Upon detecting the load event completion, the panel
then proceeds to initialize the fields in the pop-up window.
The panel will always close a pop-up window after detecting
its completion event. However, if the user has closed the
pop-up window in a non-standard way, the pop-up window
executes the on Jnload JavaScript method, which sets a flag
in the panel notifying it that the pop-up window has been
closed.
The JavaScript code in the panel and in all pop-up windows

make extensive use of JavaScript method onKeyDown for the
following operations:

1: When the focus is on the icon representing completion
(“OK” is used in many MS Windows applications) caus
ing the enter key to initiate a pop-up window/panel
completion event.

2: When the focus is on the icon representing cancellation
“cancel is used in many MS Windows applications)
causing the Esc key to initiate a pop-up window/panel
cancellation event.

3: When the focus is on any pop-up window or panel object,
Such as a data entry field, a check box, a radio button, a
drop-down and Scrollable list, a scrollable list, an icon,
or a DHTML tab object (discussed below), the naviga
tion keys are captured by the onKeyDown method, a
JavaScript function is called, and the appropriate change
is made.

For all pop-up window and panel objects, when the Tab key or
the combination of the Tab key with the Shift key are detected,
the onFocus JavaScript method is employed and the focus
moves to the appropriate pop-up window object. If the pop-up
window or panel object is a data entry field, drop-down list or
a scrollable list, all cursor key operations are detected and the
insertion point is adjusted accordingly. If the pop-up window
or panel object is a check box, radio button a icon, or a
DHTML tab object, and a cursor key (up, down, left, right,
home and end keys, with or without the Ctrl or Shift keys) is
detected, the onFocus JavaScript method is employed and the
focus moves to the appropriate pop-up window object.
One methodology for this feature requires that all keyboard

events be monitored, at all times. When the scan code for the
enter key is detected, the appropriate JavaScript function is
called to close a pop-up window and to call the appropriate
JavaScript function for processing of the relevant data (up
dated in the window) and communicating, as necessary, with
the build engine 352. In another implementation, rather than
the panel going into a wait loop awaiting notification from the
pop-up window for data initialization purposes, the pop-up
window, when loaded, executes the onload JavaScript
method, and reads the required data values directly from the
panels database, utilizing the JavaScript “openerfieldname
.value” technique. Similarly, the pop-up window, when
detecting its completion event, updates the panels database

10

15

25

30

35

40

45

50

55

60

65

16
with the revised values from its own fields and then calls the
appropriate JavaScript function in the panel for further pro
cessing. Both implementations, and any combinations, assure
that the pop-up windows are correctly initialized, the panels
database is correctly updated, and the data is successfully sent
to the build engine 352 for processing.

Extensive use of JavaScript technology is employed to
enhance the user interface and for communication between
the various HTML frames and/or files, within a given HTML
frame or file, between an HTML frame and the JAVA engine,
and as a bridge between two different JAVA applets (57).
Extensive use is made of JavaScript arrays to store the values
ofall page and object attributes, to initialize the correct values
in all pop-up windows, and to pass data and status to the
engine. Various JavaScript techniques are employed to “type
all variables (JavaScript does not explicitly type anything as
described above) as a prerequisite for passing values to the
build engine 352. Variables that should be typed as strings,
integers and Booleans are typed through the use of "Eval' and
“New JavaScript functions. The choice of color, found in
most pop-up windows to define one or more color elements,
can be implemented utilizing several innovative JavaScript
techniques. They include:

1: Defining a complex image map through a JavaScript
function utilizing arrays. Screen shot FIG. 48 shows a
visualization of an image map. A JavaScript computa
tional loop utilizing arrays can be used to define each
individual rectangle in this color palette with its appro
priate RGB value and a function call to the appropriate
JavaScript method.

2: Limiting the color choices from the image map to only
those colors that are designated as safe colors. Safe
Colors are the subset of all colors that are browser inde
pendent, assuring a consistent color look across all
browsers.

3: Supporting a dual color selection technology. The user
can be presented with a color palette and can click on a
particular color in the color palette. Image map technol
ogy can call a JavaScript function, which converts that
choice into a RGB numeric definition. This definition
updates the RGB values shown in screen shot FIG. 48, as
well as passing those values, though an appropriate
function call, to a build engine JAVA method. The build
engine 352 will then draw the actual color immediately
on the web page. Alternatively, the user can select a
value from Red, Green or Blue selection lists, which can
be implemented using an HTML drop-down list form
object. The value selected is then processed by an appro
priate JavaScript function call to a build engine method,
which converts the RGB to a JAVA compliant value, and
then draws the actual color on the web page.

4: Supporting True Transparency. For appropriate color
elements, such as the background for a text button
object, the user can choose, either from the color palette
by clicking on a “transparency” rectangle, as described
above, or by selecting “TR from a Red, Green or Blue
Selection list. This choice is then processed by an appro
priate JavaScript function call to a build engine method,
that in turn sets a particular flag for the draw system (of
the Build Tool) to not draw a background color for that
object.

Innovative techniques are used to enable JavaScript to
dynamically create HTML code based on real time condi
tions. Cookies can be used for data communication between
HTML frames and HTML files, some of which were created
in real time. Many unique combinations of HTML elements,
including frames, forms, and tables, enhanced by JavaScript

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 376 of 548

US 7,594,168 B2
17

code, are utilized to create a extensions beyond that of the MS
Windows interface (58). For example, a dual combo box/spin
control for both Small and large numeric incremental jumps
can be implemented by a combination of form and table
elements, mouse events, and JavaScript methods.

Extensive use of Cascading Style Sheets (CSS) was
employed to create a consistent look for all pop-up windows,
and for precision placement of various HTML elements (59).

FIG.7b shows a detailed view of the build time techniques
for implementation of panel interface objects, including the
menu bar, menus and Sub-menus, the tool bars, status fields,
interactive fields, and interactive pull down lists, in accor
dance with one implementation of the present invention (15
of FIG. 3). These techniques create panel interface objects
that have the same look and feel of those which are imple
mented under the various MicroSoft Windows Operating
Systems. In one implementation of the present invention, the
status fields, interactive fields, and interactive drop-down lists
are defined as HTML form objects (text boxes and lists)
embedded within DHTML objects. The menu bar, menus and
sub-menus, and the tool bars can be defined as pure DHTML
objects. However, Cascading Style Sheets can be used for all
panel interface objects; although more extensively with
DHTML objects as will be described below. In an alternative
implementation of the present invention, the status fields and
interactive drop-down lists are defined as pure DHTML
objects.

In one implementation of the present invention the menu
bar at 270 is defined as sets of DHTML objects, each set
corresponding to a menu command. Each set consists of four
DHTML objects with absolute screen positioning, one defin
ing the DHTML object in the Mouse Over state at 278, the
second for the Mouse Down state at 279, the third for the
Active state, and the fourth for the Inactive state. Each state
has a different CSS style assigned, which defines the visual
appearance of that state. When the build tool is initialized at
FIG. 5, the appropriate menu commands are initialized as
active or inactive at 277. If the menu command is defined to be
inactive, that DHTML inactive object is assigned by a Java
Script function to the “visible' style attribute, while the other
three DHTML objects are assigned the “hidden' style
attribute. Screen shot FIG. 38 shows a visualization of the
“Interactions' menu command in the inactive state. In the
inactive state all user interactions are ignored. If the menu
command is defined to be active, that DHTML active object is
assigned by a JavaScript function to the “visible” style
attribute, while the other three DHTML objects are assigned
the “hidden' style attribute. While in the active state, the
JavaScript functions for “onMouse Down”, “onMouseOp'.
“onMouseOver and “onMouseOut' are implemented. If a
Mouse Down user interaction event is detected over an active
menu DHTML object at 279, a menu command specific Java
Script function is called. This function sets the DHTML
object for the Mouse Down state to the “visible” style
attribute, calls a generalized JavaScript function to reset the
visibility states all the other appropriate DHTML objects, set
certain status variables, and set the DHTML object which
defines the menu associated with that menu command to the
“visible” style attribute. Screen shot FIG. 37 shows a visual
ization of the “Image' menu command after having received
a mouse down event, with its associated menu 420 having
been set to the “visible” style attribute. If a mouse up user
interaction event is detected over an active menu DHTML
object at 281, a generalized JavaScript function is called in
which the DHTML object defining the mouse over state is
passed as a function call argument. This function sets the
DHTML object defining the mouse over state to the “hidden'

10

15

25

30

35

40

45

50

55

60

65

18
style attribute thus resulting in the appearance as shown for
the image menu command in screen shot FIG. 37, even when
the mouse has been moved off the menu object. If a mouse
over user interaction event is detected over an active menu
DHTML object at 278, a generalized JavaScript function is
called in which three DHTML objects are passed as function
call arguments as well as a menu command name. These
DHTML objects are the ones defining the mouse over state,
the mouse down state, and the associated menu. This JavaS
cript function first tests to see if a menu has been activated by
a previous mouse down event and is still visible. If so, a
generalized “reset visiblity states’ function is called, then
both the mouse down and associated menu objects are set to
visible. Finally the same menu specific function is called as
with the mouse down event. If no menu is visible, then the
object associated with mouse over state is set to visible. If a
mouse off user interaction event is detected over an active
menu DHTML object at 281, a generalized JavaScript func
tion is called in which the mouse over DHTML object and the
menu command name are sent as arguments. Logic tests are
made to determine which menu command object has been
left, as well as whether any menus are currently visible.
Depending upon the results, the mouse over DHTML object
may be set to hidden.

In one implementation of the present invention the menus
and sub-menus at 271 are defined as a set of DHTML objects,
one for each menu choice, nested inside an DHTML object
that defines the entire menu. Each menu object is given abso
lute positioning, while the menu items are given absolute
positioning relative the menu objects origin. Both the entire
menu and each choice are assigned CSS styles to define their
visual appearances. For each menu choice the JavaScript
functions for "onClick”, “onMouseOver and "onMouse
Out' are implemented. If a mouse click event is detected at
280 and no sub-menu is defined, a feature specific JavaScript
function is called. First the menu bar and the menus are set to
their appropriate visibility states. Then setting their visibility
attribute style to “visible' activates the appropriate tool bar
icon DHTML objects. Finally the feature specific JavaScript
code is executed as discussed herewithin, which may cause a
pop-up window to be displayed, the Panels database to be
updated, and/or the build engine 352 to be called. If a mouse
over event is detected at 278 and no sub-menu is defined, a
generalized JavaScript function is called in which the menu
choice object is passed as an argument. This function first
calls a generalized JavaScript function to close any pop-up
windows, then set a status variable and finally executes
DHTML commands to set the correct text and background
colors for the object. If a mouse off event is detected at 282
and no Sub-menu is defined for a menu choice either imme
diately above or below, a generalized JavaScript function is
called in which the menu choice object is passed as an argu
ment. A status variable is set and DHTML commands are
executed to set the correct text and background colors for the
object. If a sub-menu is defined for a menu choice object, then
the same sub-menu specific JavaScript function are called for
both mouse click or mouse over events. This function per
forms the same steps as that of the generalized function that
was called for a mouse over event, as well as setting the
sub-menu object and its menu choice objects to the visible
state. Screen shot FIG. 37 shows a visualization of the menu
bar’s “Image' command having been activated, the drawing
of its associated menu 420, the selection of the “Enhance'
menu choice, and the drawing of the “Enhance' sub-menu
430. In the event that the cursor is moved to an adjacent menu
choice under the “Image' menu, Such as "Animation” or
“Rotate', then a specific JavaScript function is called which,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 377 of 548

US 7,594,168 B2
19

in addition to the functions executed by the generalized Java
Script mouse over function, also hides the “Enhance' sub
C.

In one implementation of the present invention, the tool
bars at 272 are defined as a DHTML objects, and a set of
DHTML objects are defined for a tool icon. The tool is given
absolute positioning and is assigned a CSS style in order to
define is visual appearance. Each tool icon is assigned a set of
three DHTML objects all with absolute screen positioning.
The first DHTML object defines the mouse over state at 278,
the second for the mouse down state at 279, and the third for
the active state. Each state has a different CSS style assigned,
which defines the visual appearance of that state. For each
tool icon active state object the JavaScript functions for
“onClick”, “onMouse|Down”, “onMouseUp”, “onMou
seCover and “onMouseOut' are implemented. GIF images
are defined for the tool bar DHTML objects, and may be
always visible. The inactive “grayed out” representations for
each toll icon can be drawn on this image. When the build tool
is initialized at FIG. 5, the appropriate tool icon objects are
defined as active or inactive at 277. The inactive state for an
tool icon is represented when all three of its associated objects
are assigned the visibility style of “hidden'. Screen shot FIG.
38 shows a visualization for several inactive tool icons includ
ing the icon commands for bold, italic, underline, left and
centered. All user interaction events are ignored in the inac
tive state. If the tool icon, based on the state of the build engine
and based on the polling technology described below, is set to
an active state, then the tool icon's active state object is set to
the visibility style of “visible'. If a mouse click event is then
detected at 280, a feature specific JavaScript functionis called
in a manner identical to that for a mouse click event over a
menu choice object as described above. If mouse down or
mouse up events are detected at 279 or 281, then respective
generalized JavaScript functions are called, in which the
DHTML object defining the mouse down state is passed as a
function call argument. If a mouse down event was detected,
then the generalized function sets the tool icon's mouse down
object to the “visible” state. If a mouse up event was detected,
then the generalized function sets the tool icon's mouse down
object to the “hidden state. If mouse over or mouse out
events are detected at 278 or 282, then respective generalized
JavaScript functions are called, in which the DHTML object
defining the mouse over state is passed as a function call
argument. If a mouse over event was detected, then the gen
eralized function sets the tool icon's mouse over object to the
“visible” state. If a mouse off event was detected, then the
generalized function sets the tool icon's mouse over object to
the "hidden' state. Screen shot FIG. 37 shows a visualization
of the button tool icon with both its associated the mouse
down and active objects set to “visible'. Screen shot FIG.38
shows a visualization of the text tool icon with both its asso
ciated the mouse over and active objects set to “visible'.

In one implementation of the present invention, the status
fields at 273 and the interactive fields at 274 are defined as
HTML text boxes. In an alternative implementation status
fields are defined as DHTML objects. For both of these panel
interface object types, under certain conditions, the panel
draws status information into these panel interface objects.
This information can result from user input as discussed in
FIG. 6, or through the polling and two-way communication
technology between the interface and the build engine 352 as
discussed below. In one implementation of the present inven
tion the status fields are:

1: The color of the selected web page object, in which the
red, green and blue settings are shown.

5

15

25

30

35

40

45

50

55

60

65

20
2: The animation state of the selected button or image

object.
: The Zoom level for the current web page.
: The point size for the selected text or button object.
: The horizontal position, in pixels, of the mouse cursor.
: The Vertical position, in pixels, of the mouse cursor.
: The type of web page object (text, button, image, table,
form object, draw object, etc.) if selected. The type of
object that the mouse is over, if no object is selected.

8: The width, in pixels, of web page object (text, button,
image, table, form object, draw object, etc.) if selected.
The width of the object that the mouse is over, if no
object is selected.

9: The height, in pixels, of web page object (text, button,
image, table, form object, draw object, etc.) if selected.
The height of the object that the mouse is over, if no
object is selected.

Screen shot FIG. 38 shows a visualization of the status
fields in one implementation of the invention 450. In an
alternate implementation using DHTML objects, the status
fields will appear two-dimensional rather than the three-di
mensional look currently shown.

There is one interactive field defined in one implementa
tion of the present invention. Screen shot FIG. 37 at 460
shows a visualization of the page number interactive field. In
addition to the current web page being displayed, either as a
number in one implementation or as a user defined name in an
alternative implementation, the user can place the cursor into
this field and enter the desired page to go to. A click at 280 or
Enter Key event will execute this function.

In one implementation of the present invention, the inter
active drop-down lists at 275 are defined as HTML form lists.
In an alternative implementation, status fields are defined as
DHTML objects. For both of these panel interface object
types, under certain conditions, the panel draws status infor
mation into these panel interface objects. The interactive
drop-down lists behave in a manner very similar to that of
interactive fields, except that when selected, a selection list
drops down for selection. Depending upon the number of
entries in the list, an elevator object may be drawn. The
operations of selecting the interactive pull down list, the
selecting of a list item, or the operation of the elevator is
identical to that of comparable MS Windows objects. In one
implementation of the present invention the interactive pull
down list are:

1: Zoom. This interface object has dual spin controls as
described above and is always selectable except when in
a preview mode. It shows the current Zoom level.

2: Button Style. This interface object is always selectable
except when in preview. It shows the button style of the
currently selected button, if any. Changing the button
style will change the style of the currently selected but
ton, and/or define the style of the next button to be
created.

3: Point Size. This interface object has dual spin controls as
described above and is selectable when a text or button
object is selected. It shows the point size of the currently
Selected text or button object, if any. Changing the point
size will change the point size of the currently selected
text or button object.

4: Paragraph Style. This interface object is always select
able except when in preview. It shows the paragraph
style of the currently selected paragraph, if any. Chang
ing the paragraph style will change the style of the cur
rently selected paragraph, and/or define the style of the
next paragraph to be created.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 378 of 548

US 7,594,168 B2
21

5: Frame State: The state of the 3D frame (none, raised,
pressed or live) of the currently selected text, button, or
image object.

6: Image Style. This interface object is always selectable
except when in preview. It shows the image style of the 5
currently selected image, if any. Changing the image
style will change the style of the currently selected
image, and/or define the style of the next image to be
created.

Screen shot FIG. 37 shows a visualization of interactive 10
drop-down lists 470. In an alternate implementation using
DHTML objects, the interactive drop-down lists will appear
two-dimensional rather than the three dimensional look cur
rently shown.

Tool bar icon objects, status fields, interactive fields, and 15
interactive pull down lists all show feedback of the current
build engine state. The technology utilized by one implemen
tation of the invention is described below.

FIG. 7c shows a detailed view of the of the build time
techniques for implementation of tabbed pop-up windows 20
(15 of FIG. 3). These techniques create a pop-up window
interface that visually and behaviorally is identical to that
which is implemented as dialog boxes under the various
MicroSoft Windows Operating Systems. Pop-up windows
can be non-tabbed as described in FIG.7a, or can have from 25
two to as many as 10 or more tabs, depending upon the
complexity of the choices available to the user for a given
feature. In one implementation of the present invention each
tab at 283 is defined as a DHTML object at 284. The tab is
given absolute positioning and is assigned a CSS style at 286 30
in order to define is visual appearance. When a click is
detected through the JavaScript “onClick” function, a tab
specific JavaScript function at 285 is called within the pop-up
window’s HTML file. This function sets the display style
attribute for the DHTML objects that define the settings for all 35
the non-selected tabs to the display style attribute of “none'.
The DHTML objects that define the GIF image of the non
selected tab file representations are also set to the display style
attribute of “none'. The display style attribute for the
DHTML objects that define the settings of the currently 40
selected tab and the GIF image that depicts the selected tab
file representation is set to the display style attribute of “”. If
there is to a change of the focus of the selected field within the
now to be visible tab specific choices, the focus attribute for
that object is executed. Screen shot FIG. 37 shows a visual- 45
ization of a tabbed pop-up window, and screen shot FIG. 63
shows a collage of four views of a tabbed pop-up window
with four tabs. Notice that each state of the tabbed pop-up
window has a different tab file representation, showing the
selected tab as being in the forefront. 50
The interface technology of the invention, in addition to its

utilization as part of a web-based web site generation tool, can
be used to provide a general purpose interface for all web
based applications that want a MS Windows compliant inter
face. 55

A process for updating the internal database of the build
engine 352 is shown schematically in FIG.8. The database is
compact and efficient in order to meet the performance
requirements for the run time process. The database handles a
wide selection of data objects, including multi media objects 60
Such as colors, fonts, images, Sound clips, URLs, threads, and
Video. The database Supports a multi level animation, trans
formation, and time line model (discussed in greater detail
below). The database complies with the differing rules
imposed by the various popular browser security managers. 65
The process begins by determining the type of data to be

updated at 60. Data that defines generic web site settings (See

22
FIG. 21a), screen resolution values (See FIG. 21a and FIG.
24), and the web page high watermark setting (See FIG. 24)
can be stored in a header record as boolean and integer vari
ables and URL and color objects at 62 and 63. Data that
defines web page, paragraph, text button, and image style and
text button, image and paragraph high watermark settings can
be stored in one-dimensional arrays as boolean, integer and
string variables and URL, font, image or thread objects at 61
and 64. The URL, color, font, image and thread objects can
also be created as required at 64.

Data that defines text button, image, paragraph, or other
parent objects and paragraph line high watermark settings can
be stored in two-dimensional arrays (by web page and by
object number) as boolean, integer, String, floating point vari
ables and URLs at 65 and 66. Again, the URL, color, font,
image, audio clip, video clip, text area and thread objects can
also be created as required at 66. Data that defines a paragraph
line and paragraph line segment high watermarks can be
stored in three-dimensional arrays (by web page, by para
graph number, and by line number) as Boolean, integer or
string variables at 67 and 68. Again, the URL, color or font
objects can be created as required at 68. Data that defines a
paragraph line segment can be stored into four-dimensional
arrays (by web page, by paragraph number, by line number
and by line number segment) as Boolean, integer or string
variables or URL, color and font objects at 67 and 68.
As a data field is added, changed or deleted, a determina

tion is made at 69 on whether a value for a given high water
mark needs to be changed. If so, it is updated. As a specific
method in the build engine is called, a determination is made
at 70 on whether a feature flag needs to be set. For example,
if a particular JAVA method is called, which requires an
instance of a certain JAVA Class to be executed by the run
time engine, then that JAVA Class is flagged, as well as any
Supporting methods, variables and/or object definitions. The
use of these flags is described in greater detail below in
association with FIG.25 and FIG. 27 to create a compact and
efficient customized run time environment.

In one implementation, the header record, the style record,
the web page record, and the object records, are carefully
defined in a specific order, written in that order, and explicitly
cast by object type when read by the run time engine. Excep
tion handling can be implemented to recover from any errors.
This helps assure that data integrity is maintained throughout
the build and run time processes.

FIG. 9 details the polling process (16 of FIG. 3). The
polling technology is essential for creating the necessary
two-way real time communication between the JavaScript/
HTML interface and the JAVA build engine. Since there is no
particular difficulty for JavaScript to be able to call and pass
values directly to JAVA methods, the technological challenge
is to find a reasonable technique to enable JAVA to commu
nicate back to JavaScript. The polling technology is generic,
and workable across all the current browsers. The polling
technology is flexible, as there are no real constraints as to
what data could be communicated from the build engine to
the interface, and this communication can occur at any time.
The polling technology is reasonably efficient, so that the
performance of the build process is not significantly affected.

In one implementation, two different techniques were uti
lized to implement this capability. The first was to place the
build engine inside a JAVA wrapper. The JAVA wrapper
accepts direct communication from JavaScript function calls,
interrogates a particular JAVA build engine method, and
returns that methods return value back to the calling JavaS
cript function. The second technique was more unconven
tional. A polling loop is defined in the panels (panel 400)

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 379 of 548

US 7,594,168 B2
23

JavaScript that creates a near continuous, at least from a
human perception point of view, dynamic real time link, in
order to monitor events occurring inside the build engine. The
result is a real time retrieval (from an ergonomic perception
point of view) of necessary data and status settings from the
build engine back to the interface.
Upon the loading of the panel HTML file, a JavaScript

function at 71 (the poller) is immediately called which ini
tiates a polling loop. In one implementation, the polling loop
is set at a poll rate of once every 100 milliseconds or less. The
polling routine, operating through the JAVA wrapper, calls the
build engine in order to read the current horizontal and ver
tical coordinates of the mouse cursor, and displays them in the
panels status fields (FIG.37 at 450). The polling routine also
polls the build engine in order to detect whether the mouse has
moved over a valid object or, by inference, whether a mouse
single click, or double click event has occurred. The poller is
also constantly requesting the JAVA wrapper to return the
status of an error flag in order to inform the user, if necessary,
of an unrecoverable error condition, and the reason for it. (See
FIG. 10). The poller then calls a panel JavaScript function
that, in turn, calls the build engine to reset the flag. The poller
constantly requests that the JAVA Wrapper return the status of
whether the mouse cursor is over a valid object, and, if so, that
object's number, type, height and width. The poller also con
stantly requests the JAVA wrapper to return the status of
whether an object is selected, and, if so, the type and number
of that selected object, as well as the objects height, width,
and 3D frame state (and the point size of the object’s current
font if the object is a text button or paragraph object). In
addition, if the object is a paragraph, the poller constantly
requests the JAVA wrapper to return a flag if a double click or
drag mouse event has occurred.

At 72 the polling routine detects a mouse event based on
analyzing the return values received.
The poller can infer that the mouse has either moved offor

moved on to a valid object at 73 if the mouse over object state
has changed or the mouse over object number has changed. If
so, the poller updates the relevant interface objects of the
panel as appropriate and displays them as necessary, and,
depending upon whether the object is a text button object, a
paragraph, image object, etc., at 75, begins polling their
unique values.

The poller can infer that a single click mouse event has
occurred at 74 if the selection state has changed, or the
selected object changed. The poller updates the menu bar
(FIG.37 at 410) as appropriate, making the appropriate menu
commands either active or inactive. The poller also sets the
necessary status variables, and, depending upon whether the
newly selected object is a text button object, a text object,
image object, etc., at 74, begins polling their unique values.
The poller also activates the appropriate menu choice objects
inside the “Edit” menu, the “Text menu, the "Button' menu,
the “Image' menu, and the “Interactions’ menu objects (FIG.
37 at 420 and 430), depending upon whether an web page
object is selected or not, which type of web page object is
selected, or, if the selected web page object is a text object,
whether text is marked through a drag or double click event.
In a similar manner, the poller also sets the values for the
interactive field objects (FIG. 37 at 460) and the interactive
drop-down list objects (FIG. 37 at 470). More specifically,
JavaScript can poll the web page object number. The value of
the web page object number can be used to initialize pop-up
windows with that objects web page current values, either
from the panels database or, if necessary, by interrogating the
build engine's database.

10

15

25

30

35

40

45

50

55

60

65

24
The poller can infer that a double click or mouse drag

operation has occurred if the flag indicating a double click or
mouse drag operation is detected at 75. The poller calls a
panel JavaScript function that, in turn, calls the build engine
to reset the flag. The poller then calls a panel JavaScript
function to display the appropriate panel menu choices. For
example, if the double click or mouse drag event occurs
within a text object, then the “Text Style and “Hot Link' menu
choice objects become active under the panel’s “Text menu
object.

Depending on the object type (76), the polling technology
performs various functions. If the object is a text object at 77.
the values for the paragraph style, point size, object height
and width, text color, and the 3D frame status are polled and
displayed. The panel's menu objects and the menu choice
objects within that are active for a text object are set to the
active state, and the non-text menu choice objects are set to
the inactive state, which visually means they are unavailable
and are “grayed out'. In addition, polling can be initiated for
the creation of a hot link. If the object is a text button object at
78, the values for the text button style, point size, object
height, width, textcolor, animation state, and 3D frame status
are polled and displayed. The menu choice objects inside the
panel's menu objects that are active for a text button object are
set to the active state, and the non-text button menu choice
objects are set to the inactive state, which visually means they
are unavailable and are “grayed out'. The value of the text
button object string is also polled and saved in the panels
database for use when initializing relevant pop-up windows.
If the object is an image object at 79, the values for the image
style, object height, width, frame color, animation state, and
3D frame status are polled and displayed. Again, the menu
choice objects inside the panel's menu objects that are active
for a image object are set to the active state and the non-text
button menu choice objects are set to the inactive state. In
addition, the results of any relevant direct object manipulation
are polled and displayed.

FIG. 10 describes a two level error correction technology
(17 of FIG. 3) employed by the build process. Initial error
checking occurs during the interactions between the user and
the interface with the JavaScript error checking code at 80.
Any file name, selected by the user through the file selection
window or typed in a file pathname (See FIG. 6 at 49) is
checked by the panel's JavaScript to assure that it has the
correct file type suffix (gif, jpg, au, etc.) at 81.
The panels JavaScript Code performs range checking at

82 to prevent user error or to prevent the breaking of any
internal limits imposed by the build engine. These can
include: going to a non-existent web page; exceeding any
limit with the dual spin control (i.e. attempting to increment
or decrement a point size outside of the legal range, or trying
to illegally decrement a value to Zero or a minus number;
typing in a numeric value that is outside a legal range; and,
implicitly creating an object that exceeds a limit imposed by
the build engine).
The panels JavaScript code also checks the file pathname

to make Sure it contains a valid address, and makes necessary
additions or conversions, if necessary, at 83. For example, if
the user selected a file from the local disk, the correct URL
protocol is appended to the file name in order to make it a
valid string representation of a URL address. Any illegal
characters for a pathname or a null file pathname entry are
also caught at 83. In addition to file pathname validity check
ing there are other validity checking functions that can be
employed by the JavaScript at 83. They include the attempt by
the user to entera non-numeric character into a numeric field,
or leaving an essential fill-in field empty.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 380 of 548

US 7,594,168 B2
25

The panels JavaScript then passes these values to the build
engine though the arguments of a JAVA method function call
at 84. The build engine can utilize the extensive exception
handling capability of JAVA at 85 (or that of any other full
featured programming language used) to attempt to recover
from any processing error. If recovery is not possible, the
build engine sets an error flag, utilizing the polling technol
ogy (See FIG. 9 at 71). The poller, upon detecting this flag,
informs the user, for example, through an alert JavaScript
pop-up message, what non-recoverable error has occurred,
from which operation, and what actions, if any, the user
should take. For example, if the user had selected a corrupted
image file, the exception handling technology can inform the
user of this fact so that user corrective action can resolve this
very common problem. In one implementation, error han
dling and exception recovery Support is provided for a mal
formed URL, an input or output error, a security manager
violation, and a null pointer error.

FIG. 11 shows a process for text entry and text processing
(18 of FIG. 3). The process begins when the panels JavaS
cript detects the user selecting either “Button” or “Text' icon
objects from the panels toolbar or from their equvalent menu
choices under the "Button' or “Text menus, and calls the
appropriate JavaScript function at 86. The JavaScript func
tion, after performing a range check to assure that no internal
limits of the build engine are being broken, updates its data
base, and sets the necessary status variables. The panels
JavaScript then calls the appropriate build engine method,
passing the necessary arguments, including the current board
number, the internal number to be assigned to the object, the
object type, and the current text button or paragraph style at
87. The build engine then updates its internal database and
sets the necessary status variables. The build engine also
changes the mouse cursor shape to that of a text entry symbol.
In one implementation, the mouse cursor is shaped like a
crosshair, and can be moved onto the web page (the build
frame 402) at an arbitrary location.
The build engine detects a mouse click event through its

“mouse Down' method at 88. This method reports to the build
engine the exact horizontal and vertical coordinates of the
crosshair mouse cursor at the moment the mouse button is
pressed. The build engine places these values into its internal
database. The polling process is also supported, as discussed
in FIG.9, by placing the necessary return values in the appro
priate poll enabled methods.
The build engine creates a dynamically resizable frame

utilizing JAVA’s “TextArea’’ object class, whose coordinates
and size coincide with that of the draw system for the object
as defined below. Other full-featured programming lan
guages, if used by the invention, also possess similar object
types. The text area is immediately overdrawn by the draw
system's background paint routine. The build engine, utiliz
ing the font metrics as defined by the selected text button or
paragraph style, and utilizing the crosshair cursors coordi
nates, calls the draw system. The draw system paints the
background and then paints an insertion point and a selection
rectangle, in the appropriate colors, and with the appropriate
height and width, into the appropriate web page location at
89. If the text button or paragraph style has a 3D frame
selected, this intelligent ornamental object would also be
drawn, in the appropriate color, dimensions, and thickness.
Screen shot FIG. 41 shows a visualization of this process. The
text insert point is in black, Surrounded by a red selection
rectangle, and surrounded by a blue 3D frame, as defined by
the selected style. The text editor is then initialized by setting
the necessary status variables.

10

15

25

30

35

40

45

50

55

60

65

26
The build engine waits until a keyboard keystroke is

detected. The scan code is interpreted, and if it is a text entry
key, the text editor's methods are called at 90. The text editor
processes the key event at 91. The build engine employs
frame (TextArea) processing methods and draw methods to
implement the text entry and text processing functions. As a
keyboard key for a text character is pressed, the build engine
passes this value to the editor's text entry method, which
updates both the text area’s frame definition, and the draw
system's database. The width of the text area is dynamically
resized as necessary. If the object was a paragraph, a check is
made on whether a reformat event should occur, based on the
paragraph style's definition and the width of the current line's
text string. If so, the appropriate text editor reformat method
is called, which may cause the text area’s vertical dimension
to also be resized. A high watermark variable may also be set,
for optimization purposes. After the final state of the text area
is determined for the text entry keyboard event, the internal
database for the text area, and for the paragraph or text button
object, are updated. The draw system is called, and the results
of the text entry event are drawn on the web page at 94.

In one implementation, the build engine also supports the
usual text processing functions found in MS Windows or
Macintosh based Word Processors or Desktop Publishers at
92 and 93. For example, if the user single clicks the mouse
when over an unselected paragraph or text button object, that
object is selected, a selection rectangle is drawn, the mouse
cursor shape is changed to a crosshair, and the poller reports
the necessary information to the panel's JavaScript. If a
mouse click occurs over a selected paragraph or text button
object, the editor’s “Set Text Insertion Point’ method is
called. Based on the coordinates of the mouse cursor, and
based on a calculation by the build engine as to the nearest
line, and the nearest character on that line, the text insertion
point can be drawn appropriately, and the necessary status
variables are updated. Text entry is then processed as dis
cussed at 91.

If a double click or mouse drag mouse event is detected
over a paragraph, an appropriate "text string selection”
method is called (See FIG. 6). Based on the coordinates of the
mouse cursor, and based on a calculation by the build engine
as to what text string should be selected, the internal database
in updated, appropriate status variables are set, and the draw
system is called for marking the text string at 94. The polling
technology is activated as discussed in FIG. 9. The build
engine's reformat methods for paragraphs can utilize a
“CleanText Stream” model for calculating line breaks and for
updating four-dimensional variables utilized by the draw sys
tem in order to draw each paragraph, each paragraph line, and
each paragraph line segment in the correct location, with the
correct font type, font style, font size, font effect, and back
ground and text string color. Font style refers to a font format
such as Normal, Bold, Italic, or Bold Italic. Font effect refers
to style overrides such as Underline, Double Underline, Small
Caps, Cross Out, Superscript, Subscript, etc. The “Clean Text
Stream Model' implemented by the build engine maintains
multi-dimensional array pointers and records for every para
graph line and line segment external to the text string defined
within the text area. Three-dimensional and four-dimensional
variables are updated after each text entry or text editing and
processing event in order to assure that the pointers into the
paragraph text stream, defined in the text area, are current.
The three-dimensional variables that the build engine has
implemented can include soft and hard line end pointers for
each paragraph line. Their values can be the absolute charac
ter positions within the text area text string for that line end.
Hard line breaks can be created by the user pressing the enter

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 381 of 548

US 7,594,168 B2
27

key. Soft line breaks can be created by a reformat method
based on a calculation defined below.

The four-dimensional variables can be absolute pointers
into the text area text string for the beginning and end of every
style override, associated with each paragraph line segment.
These style overrides can include hot links, font type, font
style, font size, numerous font effects, and text and back
ground colors. For each style override there is an associated
style override record that maintains all the font and color
settings for that paragraph line segment. Also positional and
size data such as start and endpointers into the paragraph text
stream, a left offset relative to the paragraph’s left origin, a top
offset relative to the paragraphs top origin, and the line
height. The style override record is created when the build
engine detects a mouse drag or mouse double click event
within a selected paragraph. When the mouse button is ini
tially pressed, the current paragraph line and current word on
that line are calculated in a manner identical to that for cal
culating the location of the text insertion point on a mouse
click operation. The entire word becomes one anchor for the
paragraph line segment, while the word defined by the mouse
coordinates when the mouse button is released becomes the
otheranchor. Up to two other paragraph line segments can be
implicitly created by the word oriented selection method. If
there is text to the left of the first anchor word, and that
paragraph line had not previously had a style override defined
in it, the text string from the beginning of the paragraph line
to the first anchor point has a style override record created for
it. The values are set to that of the underlying paragraph.

If style overrides had already been created on that para
graph line, and the anchor word is inside one of them, then
that style override's end pointer is adjusted to the start of the
anchor word. All other style overrides, if any, to the right of
the anchor word are deleted, as overlapping style overrides
are not permitted. In a similar manner, the text string, if any,
to the right of the last anchor point, up to the line or paragraph
end, can also be defined as a style override. If a mouse click
occurs before a “textstyle” operation, then these pointers will
be reset. If the panels JavaScript detects a user selection of
“text style” from the “Text menu, the appropriate pop-up
window is drawn and its values initialized from the JavaScript
database. Upon detecting a user completion event (i.e., the
depressing of the enter key), the panel's JavaScript database
is updated and a call is made to an appropriate build engine
method, with the necessary data and status information
passed as function call arguments. The build engine updates
its internal database and calls the reformat method if neces
sary. The draw system utilizes these four-dimensional vari
ables in order to paint the paragraph line segment style over
ride.
The calculation for the creation or updating of a soft line

break begins with the maximum paragraph width, which is set
at a percentage of the browser screen width. This percentage
is converted to an absolute pixel number based on the web
designer's screen resolution. When any text entry or text
editing and processing event occurs, a build engine method is
called which calculates the width, in pixels, for the current
paragraph line, based on the character string in the text area
that exists between the previous line end pointer and the
current line endpointer. The font definition(s) that are related
to this character string are applied, and a string width is
calculated. If the string width exceeds that of the maximum
paragraph width, an “OverFlow” reformat method is called.
The overflow reformat method calls a method to determine
the settings for the last word on that line, and that word
overflows to the following paragraph line. All pointers for the
current line, and Subsequent lines are updated as necessary, as

10

15

25

30

35

40

45

50

55

60

65

28
are all pointers and records to paragraph line segments. If the
string width is less than that of the maximum paragraph
width, and the text processing operation was not text entry,
then an “UnderFlow” Reformat method is called. The under
flow reformat method calls a method to determine the width,
in pixels, for the first word on the next line. If that word will
fit on the current line it is placed there. As before, all pointers
for the current line, and Subsequent lines are updated as
necessary, as are all pointers and records to paragraph line
segments. The word oriented selection technique, and the
reformat, database, and draw technologies that Support it,
greatly simplify the text editor and produce a run time engine
that is smaller, faster and more reliable.

FIG. 12 shows the operation of the image processing tech
nology utilized by the build engine (19 at FIG.3). The process
begins when the panels JavaScript detects the user selecting
the “Image' icon from the panels tool bar or the comparable
menu choice under the "Image' menu. The appropriate Java
Script function is called at 95, which draws the define image
pop-up window. The user then selects an image from the file
selection window with the browser, types in the image path
name for the image file on the local disk, or types in the URL
for the image that exists on a server. The user could also define
a 3D frame for the selected image at this time. Screen shot
FIG. 49 shows a visualization of a collage for the define image
pop-up window and the user's selection choices under each
tab setting. The user can complete the selection process by
either pressing the Enter Key or clicking on the “Create
Image icon in the pop-up window. If the Enter Key is
pressed, the pop-up window's JavaScript Code utilizes the
onKeyDown function, or if a mouse click, the onClick func
tion, as described in FIG. 7, to recognize the completion
event. An appropriate error checking JavaScript function is
called, which performs a file name error check, a filename
validity check, and a range check to assure that no internal
limits of the build engine are being broken. If the error check
ing tests are Successful another JavaScript function is called
to update the panel's database, and set the necessary status
variables.
The panel's JavaScript then calls the appropriate build

engine method, passing the necessary arguments, including
the current internal web page number, the internal number to
be assigned to the image object, the object type, and the
current image style at 96. The build engine then updates its
internal database and sets the necessary status variables. It
also changes the mouse cursor shape to that of an "Image
Create” symbol. In one implementation, the mouse cursor is
shaped like an arrow. The build engine detects a mouse click
event through its “mouse Down' Method at 97. This method
reports to the build engine the exact horizontal and vertical
coordinates of the arrow mouse cursor at the time the mouse
button was pressed, and places these values into its internal
database. The polling process is also handled, as discussed in
FIG. 9. The build engine then asserts the necessary security
permission for reading from the local disk, if necessary, and
attempts to create the necessary image object at the current
mouse coordinates at 98, while checking for any exception
conditions as described in FIG. 10. If no unrecoverable
exceptions are reported, the internal database is updated and
the draw system is called.
The image processing technology Supports direct web page

image object interactions at 99, utilizing the communication
technology described in FIG. 6. The build engine first pro
cesses the mouse event as described in FIG. 7, and places the
appropriate values into a poll enabled JAVA method as
described in FIG. 9. There are two types of direct web page
image object interactions.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 382 of 548

US 7,594,168 B2
29

The first occurs by simply selecting the image object with
a single mouse click. A red selection rectangle is drawn
around the image, as are eight attachment points. When the
user has pressed the mouse cursor, the mouse cursors shape
changes to that of an anchor, which is a symbol that can be
used when dragging or moving an object. The mouse's loca
tion will jump to the origin for the image. In an alternative
implementation, the anchor can be defined by the mouse
location at the time of the mouse drag operation. In either
case, while the mouse is being dragged, the build engine
updates its internal database. The build engine also updates its
poll-enabled methods for communication with the interface's
polling technology at 100. The JavaScript poller reads these
values, updates the panel JavaScript database, and updates the
panels interface objects. In a similar way, placing the mouse
cursor over an attachment point and dragging will result in an
image resizing operation. Screen shots FIG.50 through FIG.
52 show a visualization of an image dragging operation.
Screen shot FIG. 50 shows the cursor over an unselected
image. Screen shot FIG. 51 shows the screen state after the
left mouse button has been pressed. Notice that the image is
now selected and the cursor shape has changed to the drag
state. Screen shot FIG. 52 shows the screen state after the
mouse has been dragged to the northwest. Notice that the
image stayed selected and moved with the mouse. Screen
shots FIG. 53 and FIG. 54 show a visualization of an image
resizing operation for a normal image. Notice that all eight
attachment points are drawn and active for the selected image.
Screen shot FIG. 53 shows the cursor over the upper left
attachment point. Notice that the cursorshape has changed to
a northwest to southeast resize cursor shape. Screen shot FIG.
54 shows the result after the left mouse button has been
pressed over the upper left attachment point and dragged to
the northwest. Notice that the image's upper left corner is still
under the cursor, the image has resized, and the cursor shape
remained unchanged. For image resizing operations with the
mouse over and mouse down objects, only the east, Southeast,
and South attachment points are drawn and active.
The second type of direct web page image object interac

tion occurs when the panel's JavaScript code detects that the
user has selected an image object interaction feature from the
panel’s “Image' menu. The appropriate JavaScript function
is called, which sets the necessary status variables, and then
calls the appropriate JAVA method, passing the necessary
values as arguments. The JAVA method then sets its necessary
status variables, changes the mouse cursor shape as appropri
ate, depending upon the type of direct image operation, and
awaits a direct mouse operation on the image object. Image
rotation is an example of this type of direct image interaction.
In one implementation, direct image object rotation is real
ized by utilizing the image rotation technology described in
association with FIG. 33 below. Screen shots FIG. 55 and
FIG. 56 show a visualization of an image rotation for a normal
image. Screen shot FIG.55 shows the user selecting the rotate
command from the "Image' menu. Immediately the cursors
shape changes to the rotate (a dual left/right arrow) cursor,
and the selected images attachment points disappear. Placing
the cursor on the image and dragging will cause the image to
rotate on an east/west and/or north South axis. Screen shot
FIG. 56 shows the result after the mouse was dragged on an
east/west plane.

Image object interactions are invoked by selecting from the
JavaScript panel, selecting from a JavaScript pop-up window,
and by selecting from a JAVA window object at 101, as
described in FIG. 6. The initial values in the pop-up window
are set from JavaScript's database. After any user interaction,
JavaScript's database is updated and the appropriate method

10

15

25

30

35

40

45

50

55

60

65

30
in the build engine is called with the necessary settings. The
build engine, after updating its internal database, calls the
appropriate image processing method. The image processing
routine then calls the required image filter(s), which then
perform the necessary processing on the image bitmap at 102.
An image filter is a body of code, usually consisting of one

or more digital image processing algorithms, which operate
on an image bitmap, and create a transformed image bitmap.
An image observer can be invoked by the image filter, which
then reports when the image bitmap processing has been
completed. An image observer is a independent process that
monitors a particular image processing event, such as the
execution of an image filter or the reading in of an image file,
and reports the status of that process when queried. When the
image observer reports a successful completion, the image
filter can call the build engine's draw system to display the
transformed image bitmap. This interaction between the build
engine's image processing method, the image filter(s), the
image observer, and the draw system can occur many times,
depending upon the image processing operation chosen.
Inage animations and image transformations, which are tech
nologies that rely heavily on image filters, and the image
observer are discussed in greater detail below in association
with FIG. 16 and FIG. 17.

FIG. 13 shows a process for implementing text button,
image and paragraph style settings (20 of FIG.3). The initial
values for all the settings inside a parent pop-up window and
associated child pop-up windows, for a particular style, can
be set from the JavaScript database at 103. The settings can
include: image object styles, text button object styles and
paragraph object styles.
The following settings can be initialized and changed for

image object styles.
a) The following settings are initialized for all image object

states (Normal, mouse Over, mouse Down) and can be
changed:
(1) resize factor.
(2) rotation factor.
(3) main animation type, speed, number of animation

steps (resolution) and number of cycles.
(4) image processing factors. (brightness, contrast, etc.)
(5) 3d effects and their color values.
(6) web page centering attribute.
(7) web page scaling attribute.

b) The following actions are initialized and can be changed.
(1) Sound effects and audio channels.
(2) video files and video channels
(3) text button and image pop ups and their attributes

(See 1.a above and 2.a below.)
(4) click events.

c) The following transformation settings are initialized and
can be changed.
(1) the initial delay
(2) up to three transformations can be defined with the

following settings:
(a) which image states should the transformation be

from and into.
(b) the speed of the transformation.
(c) any delay before the next transformation.

(3) whether the transformation(s) should occur simulta
neously with the enter and exit time line animation or
after the enter and before the exit animations.

d) The following time line settings are initialized and can
be changed.
(1) the initial delay before the image object’s appear
aCC.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 383 of 548

US 7,594,168 B2
31

(2) the enter animation type, speed, and animation reso
lution.

(3) the delay after the enter animation and the main
animation.

(4) the exit animation type, speed, and animation reso
lution.

(5) the initial delay, after the entrance of the parent
object, before the child text button and image objects
appearance(s).

(6) the child object(s) enter animation type, speed, and
animation resolution.

(7) the delay after the child object(s) enter animation.
(8) the child object(s) exit animation type, speed, and

animation resolution.
The following settings can be initialized and changed for

text button object styles.
e) The following attributes are initialized for all text button

object states (normal, mouse over, mouse down) and can
be changed:
(1) all font specifications.
(2) vertical state.
(3) all color specifications.
(4) 3d effects and their color values.
(5) web page centering attribute.
(6) font processing attributes (available in java 2)
(7) scale, shear, and rotate (available in java 2)

f) The following actions are initialized and can be changed.
(1) Sound effects and audio channels.
(2) video files and video channels
(3) text button and image pop ups
(4) click events.

g) The following transformation settings are initialized and
can be changed.
(1) the initial delay
(2) up to three transformations can be defined with the

following settings:
a) which image States should the transformation be

from and into.
b) the delay before the next transformation.

(3) whether the transformation(s) should occur simulta
neously with the enter and exit time line animation or
after the enter and before the exit animations.

h) The time line settings are the same as those defined for
image objects. They also are initialized and can be
changed.

The following settings can be initialized and changed for
paragraph styles. The following attributes are and can be
changed:

i) all font specifications.
j) all color specifications.
k) 3d effects and their color values.
l) web page centering attribute.
m) the look of hot links, including the text and background

colors when the link is active and when the mouse is over
the link.

The reference to JAVA 2 under text button object styles
refer to the most recent version of JAVA released by Sun
Microsystems. This version supports a far more robust two
dimensional processing capability than JAVA 1.6, including
significant font processing capabilities and the Scaling, shear
ing, and rotation of objects. Currently, most conventional
browsers only support JAVA 1.6. Provisions are made in the
invention so that as the then popular browsers Support more
robust versions of programming languages, those new capa
bilities can be employed to further enhance the capability of
the invention.

10

15

25

30

35

40

45

50

55

60

65

32
Referring again to FIG. 13, upon detecting the completion

of editing an image, text button or paragraph style, the panels
JavaScript calls a build engine method and passes the required
values. The build engine updates its internal database and sets
any necessary feature flags at 104.
When an image, text button or paragraph object is created,

all the style settings for the currently selected style are applied
by the build engine as part of the definition for the newly
created object at 105.

If a style is changed, all objects on all internal web pages
that are utilizing that style are candidates for being changed to
those new values at 106. Flags are kept for every possible
style setting for each object. If a given object is edited through
the text button, image, or interaction menus or other interface
objects of the panel 400, the flags are set for any setting that
are changed. If that style is Subsequently changed, only those
settings that have not had their flags set will be changed for
any given object.

FIG. 14 describes the video and audio file and video and
audio channel processing techniques employed by the build
engine (21 of FIG. 3). A user can select a video or audio
special effect (i.e. user input is provided at 107 that indicates
a video or audio special effect). The method for activating a
video file or video channel is defined in the text button and
image object “mouse over interactive pop-up windows
described later at FIG.16. Methods for defining a video object
as a pop-up, or a frozen object, are described with reference to
the text button and image object “mouse down” interactive
pop-up window also described at FIG. 16. Audio files and
audio channels can be defined in both the “mouse over” and
“mouse down” interactive pop-up windows also described at
FIG. 16. The pop-up or a frozen object settings for audio are
also set in the object “mouse down interactive pop-up win
dows discussed therein.
AS before, the panel JavaScript code initializes any pop-up

windows (where the initial values are set from the JavaScript
database), captures a file or channel name (from the user
input) and performs file and validity error checking upon
detecting a user completion action at 108. The build engine is
then called, receiving the necessary data and status as func
tion call arguments.
The build engine determines if the audio and video defini

tion is a file pathname or the URL of a live channel at 109, and
thereafter initiates its exception handling. If the video or
audio definition is a file, the build engine performs the rel
evant file exception handling checks, and asserts the neces
sary security permissions. If there were no errors, or the
exception handling error was recoverable, the build engine
reads and links the video/audio file to the database, and plays
the file for user verification at 110. If the video or audio
definition was a channel, the necessary pointers are updated
in the database, and methods are assigned for efficient trans
mission, at run time by the run time engine, at 111. The ability
of the run time engine to play multiple synchronized audio
and video files and channels simultaneously will be described
at FIGS. 31-35.

FIG. 15 describes the frames, tables, forms and draw
objects technologies employed by the build engine (22 of
FIG. 3) in one implementation of the invention. When the
panel JavaScript code detects a user action to create a
“frame', “table”, “form” or “draw object” from an appropri
ate panel interface object, it draws and initializes the appro
priate pop-up window at 112. Upon detecting a user comple
tion action by the pop-up windows JavaScript code, a panel
JavaScript function is called to perform the necessary error
checking and updating of the panels database. Panel JavaS

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 384 of 548

US 7,594,168 B2
33

cript thereafter calls the appropriate build engine method(s)
passing the necessary data and status values as function call
arguments at 113.
The build engine updates its internal database, sets the

necessary status values, and initializes, as necessary, appro
priate methods for run time processing. In one implementa
tion, the build engine includes definitions to map a given
object into a relational database. Also available are a full array
of database operations. Support for popular databases (such
as Oracle, Informix, Sybase and DB2) are available on a real
time interactive basis.

The run generation technologies, as described later in
FIGS. 24-27, are also implemented for a given frames, table,
form and draw object at 114. The run time technologies, as
described later in FIGS. 28-36, are also implemented for a
given frame, table, form and draw object at 115.

FIG.16 describes the user interaction settings and technol
ogy employed by the build engine (24 of FIG.3). Depending
upon the type of object currently selected at 116 (if no object
is selected no user interaction choices will be available) the
panel JavaScript Code draws an appropriate pop-up window.
If the selected object was a text button object at 117, or an
image object at 119, both “mouse over and “mouse down”
choices will be available from the panel’s “Interactions'
menu. If the selected object is a paragraph, user interaction
definitions can be activated by a double click or a mouse drag
event being detected by the build engine at 118.
More specifically, appropriate values are set in a poll

enabled JAVA routine. The JavaScript poller reads the values,
and draws the appropriate panel menu choices. The “Text
Style”, “Hot Link”, “Preferences” and “Format” pop-up win
dows can be chosen. If the hot link choice under the panels
“Text menu is selected and executed, the hot link definition
for internal or external web pages is captured by an appropri
ate JavaScript function and file pathname error and validity
checking is performed. If either the “Text Style”, “Hot Link',
Preferences” or “ForTnat” choices under the panel’s “Text”
menu are selected, the panels JavaScript draws the appropri
ate pop-up window. Upon detecting a user completion event,
the panel's JavaScript reads the values in the pop-up window
and passes the font specification parameters to an appropriate
build engine method as function call parameters. The build
engine then processes this data, calls a reformat method,
updates its internal database, and sets the necessary four
dimensional variables for communication with the draw sys
tem.

The normal and “mouse over” foreground and background
colors for the hot link, which were defined in a link look
pop-up window (available under the “Text menu of the
panel), are utilized by the build engine to draw the hot link.
The build engine performs the necessary exception handling,
and then updates its internal database.

Based on the panel's JavaScript Code detecting whether
the user chose the “mouse over” or “mouse down” choice
under the “Interactions' menu) at 120, as well as based on
whether an image or text button object is currently selected,
the panels JavaScript code draws the appropriate pop-up
window. Initial values for the pop-up windows are set from
the panels database at 121 and 122.

In one implementation, the following user interactions for
the “mouse over and “mouse down” states for text button and
image objects are Supported:

1: 3D Frame, in a specified color, and selected for a speci
fied 3D appearance, can be defined for text button and
image object’s “mouse over and “mouse down” states,
as well as for their text, image and video pop-ups.

10

15

25

30

35

40

45

50

55

60

65

34
2: The font typeface, font style, fontsize, font effect(s), text

color, and text background color can be defined for a text
button object’s “mouse over and “mouse down” states,
as well as for the text pop-ups associated from both text
button and image objects.

3: Text, image, and video pop-ups can be defined for the
text button and image object’s “mouse over state.

4: A soundtrack (file) can be defined for the text button and
image object’s “mouse over state with the following
choices:
a. play once when a “mouse over” event occurs.
b. play until a click event while on the object.
c. play until the mouse moves off the object.

5: A soundtrack (file) can be defined for the text button and
image object’s “mouse down” state with the following
choices:
a. play once when a mouse click event occurs when over

the object.
b. play until a second click event while on the object.
c. play until the mouse moves off the object.

6: Both video and sounds can be defined as channels as well
as files.

7: The text, image, and video pop-ups can be frozen (i.e. not
disappear when the mouse moves off the object after a
mouse click event, for both text button and image
objects).

8: Text button and image objects can have one of the fol
lowing click events defined:
a.go to a specific internal web page.
b. go to the next internal web page.
c. return to the parent (calling) web page.
d. go to an external web age. That web page will replace

the current web page.
e.go to an external web page. That web page will be

launched into a new window so that both web pages
will be visible and accessible.

After a user completion action is detected, the panel Java
Script code performs the necessary file error and validity
checking, updates its database and sets necessary status Val
ues, and then calls the appropriate build engine method, pass
ing the necessary data values and status as function call argu
ments at 123. The build engine updates its internal database,
sets the necessary status variables, then draws the appropriate
“mouse over” or mouse down text button or image object
states. The build engine also plays the sound or video file for
user verification. The run time technology behind the user
interactions will be described in greater detail in association
with FIG. 36.

FIG. 17 describes the image and text button object anima
tion settings and technology employed by the build engine
(25 of FIG.3). The panels JavaScript code determines which
type of object, and which object number, from the currently
selected object, as reported by the poller at 124. When the
panel's JavaScript detects a user selection of “Define Image'
or Animate” from the panel’s “Image' menu, or a user selec
tion of “Define Button” or “Animate” from the panel’s “But
ton’ menu, it draws the appropriate pop-up window and ini
tializes the pop-up window’s values from its database at 125
and 126. Screen shot FIG. 57 shows a visualization of one
implementation of the “Text Button Animation Specifica
tions' pop-up window and the animation settings available to
the user. Screen shot FIG. 58 shows a visualization of one
implementation of the “image animation specifications' pop
up window and the animation settings available to the user.
When a user completion event is detected, the panels

JavaScript code captures the values from the pop-up window
for the animation type, speed, resolution, and number of

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 385 of 548

US 7,594,168 B2
35

animation cycles at 125 and 126, respectively, and updates its
database at 127. The panels JavaScript then calls the appro
priate build engine method, passing the necessary data and
status values as function call arguments. The build engine
updates its internal database and sets the necessary feature
flags (See FIG. 8.) Linkage to the appropriate animation
method(s) is also set.
A thread object (a thread is an independent asynchronous

program that is multiprogrammed with other threads, are
defined and executed by the invention, by a JAVA Virtual
Machine and by the browser) is created and executed for user
verification at 128. Values are set to integrate the given ani
mation thread with the object time line technology (See FIG.
19). Values are set at 129 so that when the thread object is
invoked by the run time engine, the appropriate image filter(s)
and animation methods are called. The run time technology
behind image and text button object animations is described
in greater detail in association with FIG. 31 through FIG. 35.

FIG. 18 describes the transformation settings and technol
ogy utilized by the build engine (26 of FIG. 3). A transfor
mation is defined as the changing of an object from one state
to another based on a timer control, Subject to user settings. In
one implementation, the available states for text button and
image objects are their “normal. “mouse over”, “mouse
down” and “pop-up' definitions. For text button objects, a
transformation is implemented as the instantaneous drawing
of one object state while erasing the previous object state. For
images, a transformation is the gradual fading out of the
previous object state, while, simultaneously, fading into the
next object state.

Prior to any user menu selection, the panel's JavaScript
code already knows the status of any selected object through
the poller mechanism (124 of FIG. 17). This includes what
type of object and the objects internal identifying number.
When the panel's JavaScript detects a user selection of
“Transform” from the panel’s “Interactions’ menu, it draws
an appropriate pop-up window and initializes the pop-up
windows values from its database at 130. Screen shot FIG.59
shows a visualization of one implementation of a “define the
transformation for the text button object' pop-up window and
the transformation settings available to the user. Screen shot
FIG. 60 shows a visualization of one implementation of a
“define the transformation for the image object' pop-up win
dow and the transformation settings available to the user.
When a user completion event is detected, the panel's Java
Script Code captures the values from the pop-up window
based on the object type.

In one implementation, the following settings for text but
ton objects can be specified:

1. The initial delay.
2. Up to three transformations can be defined with the

following settings:
a. Which image states should the transformation be from

and into.
b. The delay before the next transformation.

3. Whether the transformation(s) should occur simulta
neously with the enter and exit time line animation or
after the enter and before the exit animations.

In one implementation, the following settings for image
objects can be specified:

1. The initial delay.
2. Up to three transformations can be defined with the

following settings:
a. Which image states should the transformation be from

and into.
b. The speed of the transformation.
c. The resolution of the transformation.

5

10

15

25

30

35

40

45

50

55

60

65

36
d. Any delay before the next transformation.

3. Whether the transformation(s) should occur simulta
neously with the enter and exit time line animation or
after the enter and before the exit animations.

The panel's JavaScript updates its database at 131. The
panel's JavaScript then calls the appropriate build engine
method, passing the necessary data and status values as func
tion call arguments. The build engine updates its internal
database and sets the necessary feature flags (See FIG. 8.)
Linkage to the appropriate transformation method(s) is also
Set.

A thread object is created and executed for user verification
at 132. Values are set to integrate this transformation thread
with the object time line technology (See FIG. 19). Values are
set at 133 so that when the run time engine invokes the thread
object, the appropriate image filter(s) and transformation
methods are called. The run time technology behind image
and text button object transformations is described in greater
detail below in association with FIG. 31 through FIG. 35.

FIG. 19 describes the text button and image time lines and
technology utilized by the build engine (27 of FIG.3). A time
line is an independent asynchronous process that defines the
existence of a given text button or image object. An objects
time line begins at the time a given web page makes its
appearance, either through an immediate draw or through a
transition animation. In one implementation, an object time
line can be created as an instance of a class, which has a
threadable interface. This instance has its own data structures,
which define the animations, and transitions associated with
the time line definition. An image or text button object time
line can spawn child time lines, at a designated moment. A
complete description of time line technology, and how they
integrate the animation and transformation technologies, will
be described below in association with FIG. 31 through FIG.
35.
The build process begins the time line definition process by

having the panels JavaScript determine what is the currently
selected object, utilizing the polling technology at 134.

That is, values for the object appearance time, animation
type, speed and resolution are captured. When the panels
JavaScript detects a user selection of “time line' from the
panel’s “Interactions' menu, it draws the appropriate pop-up
window and initializes the pop-up windows values from its
database. Screen shot FIG. 61 shows a visualization of a
collage of one implementation of a “define the time line for
the text button object” tabbed pop-up window and the time
line settings available to the user under each tab. Screen shot
FIG. 62 shows a visualization of a collage of one implemen
tation of a “define the time line for the image object' pop-up
window and the time line settings available to the user under
each tab'. When a user completion event is detected, the
panel's JavaScript captures the values from the pop-up win
dow based on the object type. The currently available settings,
for both text button and image objects, are:

1: The initial delay before the image object’s appearance.
2: The enter animation type, speed, and animation resolu

tion.
3: The delay after the enter animation and the main anima

tion.
4: The exit animation type, speed, and animation resolu

tion.
5: The initial delay, after the entrance of the parent object,

before the child text button and image object’s appear
ance(s).

6: The child object(s) enter animation type, speed, and
animation resolution.

7: The delay after the child object(s) enter animation.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 386 of 548

US 7,594,168 B2
37

8: The child object(s) exit animation type, speed, and ani
mation resolution.

The panel's JavaScript updates its database at 135. The
panels JavaScript then calls the appropriate build engine
method, passing the necessary data and status values as func
tion call arguments. The build engine updates its internal
database and sets the necessary feature flags (See FIG. 8.) A
build engine method then processes all the data related to this
object. The objects animation settings, if any, are integrated
into the timeline at 136. The object’s transformation settings,
if any, are also integrated into the timeline. If an image object,
any transformation animation may be executed simulta
neously with the appearance and/or exit animations, depend
ing upon the settings. Finally, a multi-level object thread
definition is created and executed for user verification. Values
are set at 137 so that when the run time engine invokes the
thread object, the appropriate image filter(s), animation meth
ods, and transformation methods are called.

FIG. 20 describes the web page transition animations, time
line settings and technology utilized by the build engine (28
of FIG. 3). When the panel's JavaScript detects a user selec
tion of “Define” from the panel’s “Webpage' menu, it draws
the appropriate pop-up window and initializes the pop-up
window’s values for the current web page from its database at
138. Screen shot FIG. 63 shows a visualization of one imple
mentation of the "define the current web page settings' pop
up window and the web page settings available to the user. In
the implementation shown, the choices Supported include:

1: The web page delay time (which is the delay, after the
completion of the last object time line, to the loading of
the next web Page).

2: The transition animation, which can include a random
animation choice. This is the animation applied to the
web page when it is loaded and to the previous web page
as it departs.

3: The number of animation frames per second, which
effectively is the resolution of the transition animation.

4: The number of animation frames, which effectively
defines the time expected for the transition animation to
complete.

5: The web page's background color. This setting will
override the generic setting for the web site, defined in
FIG. 21a.

6: A web page boarder. This boarder, if selected, will also
override the setting for the web site, defined in FIG. 21a.
The boarder can be drawn with a 3D effect, taking the
backgroundcolor, and applying a transformation so that,
to the human eye, a lighter and darker shade of that color
will be drawn appropriately to create a 3D effect.

7: The web page's background pattern. This setting will
override the generic setting for the web site, defined in
FIG. 21a.

The panel's JavaScript updates its database at 139. The
panels JavaScript code then calls the appropriate build
engine method, passing the necessary data and status values
as function call arguments. The build engine updates its inter
nal database and sets the necessary-feature flags (See FIG.
8.). The web page time line is synchronized with its object
time lines by an appropriate build engine method at 140. The
web page's appearance delay and transition settings are inte
grated into the web page time line. Thereafter, a single-level
object thread definition is created. Values are set at 141 so that
when the thread object is invoked by the run time engine, the
appropriate animation methods and object time line threads
are called. Again, the run time technology behind web page

5

10

15

25

30

35

40

45

50

55

60

65

38
transition animations and web page time lines is described in
greater detail below in association with FIG. 31 through FIG.
35.

FIG. 21a describes the file operations supported by the
build engine (29a of FIG. 3). In one implementation, the file
operations Supported include:

1 : “Save” at 142 or “Save As at 143. If the selection from
the panel’s “File” menu is to “Save” as a web page, the
current browserscreen height percentage value is sent to
the build engine. The build engine updates its internal
database and the build process is completed. Thereafter,
the run generation process is executed. (See FIG. 24
through FIG. 27.) If the selection is to “Save As a
template for the run generation process is also executed
but the generated files are placed in the template direc
tory. If the selection is to save as a banner or custom
application, those absolute screen dimensions are sent to
the build engine and its internal database is updated and
the run generation process is executed.

2: “New' at 144. A test is made by the panels JavaScript
code to see if any user input has been processed and not
saved. If so, the user is asked whether this data should be
saved. If so, and if the selection is to “Save” as a web
page, the build process is completed and the run genera
tion process is executed as described above. If the selec
tion is to "Save” as a template the run generation process
is executed but the generated files are placed in the
template directory as described above. The panels Java
Script code then reinitializes its database and calls a
build engine method that reinitializes the build engine
database.

3: "Close” at 145. A test is made by the panel's JavaScript
to see if any user input has been processed and not saved.
If so, the user is asked whether this data should be saved.
If so, and if the selection is to “Save As a web page, the
build process is completed and the run generation pro
cess is executed. If the selection is to “Save As a tem
plate the run generation process is executed but the gen
erated files are placed in the template directory. The
panel's JavaScript then terminates the build process.

4: “Open' at 146. A test is made by the panels JavaScript
to see if any user input has been processed and not saved.
If so, the user is asked whether this data should be saved.
If so, and if the selection is to “Save As a web Page, the
build process is completed and the run generation pro
cess is executed. If the selection is to “Save As a tem
plate the run generation process is executed but the gen
erated files are placed in the template directory. The
panel then initiates the dynamic web page resizing tech
nology as described in FIG. 22 below for the open re
initialization mode.

5: "Apply’ at 147. A template is applied to the existing web
site that is being processed by the build engine. The web
page and style record definitions of the template replace
those of the existing web site. The web page objects of
the template are added to the web page objects of the
existing web site.

6: “Web Site at 148. The web designer can define settings
that will be applied to all web pages in the web site. In
one implementation, the web site applications Supported
include:
a: web page. The web page height can be set, as a

percentage, larger than the browser window for long
Vertically scrolled web pages.

b: Standard banner sizes.
c: Custom. (The user can define any arbitrary web page

size and resolution)

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 387 of 548

US 7,594,168 B2
39

Screen shot FIG. 63 shows the generic web site setting
choices presented to the user in one implementation of the
invention.

FIG. 21b describes the view operations supported by the
build engine (29a of FIG. 3). In one implementation, the file
operations Supported include:

1: “Normal at 149a. This is the default file mode in which
the interface and the build engine are processing user
input as described in FIG. 5 through FIG. 23 above.

2: “Preview” at 149b. The buildengine runs the web site off
its internal database. The web site will perform in an
identical manner as if it had gone through the entire run
generation and run time process, but it is being executed
on the web designer's computer.

3: “Play” at 149c. The build engine runs the web site off an
external database in a separate browser window. The
web site will perform in an identical manner as if it had
gone through the entire run generation and run time
process, but it is being executed on the web designer's
computer.

4: “Zoom’ at 149d. The dynamic web page resizing tech
nology (see FIG. 22 below) is first executed. When the
engine is fully reinitialized, and the engine has gone to
the current web page, the page and all its objects are
drawn to the scale as defined by the Zoom level. All
object coordinates and sizes are automatically scaled
appropriately because they are always defined with Vir
tual screen values, even when the web page is being draw
in the “normal” view.

FIG.22 describes the dynamic web page resizing technol
ogy Supported by the build engine. If a user selection of the
“Open” command from the “File” menu is detected by the
panel at 500, the panel calls an engine method to read selected
contents from that web site's external database file.

In one implementation of the invention at 506, the engine
reads the web page width and length fields, as well as the
background color or background image definition for the first
web page of the Web Site. The engine then creates a build
engine HTML definition file based on these specifications,
and writes this file either to the local disk or the server,
depending upon the origination of the build tool.
At 502, if a user completion event occurs inside the web

site JavaScript pop-up window, which had been activated
when the user selected the “Web Site” command from the
“File' menu, the panel determines if the web site page size has
been changed. If so, the panel calls an engine method for
processing.

Similarly, at 504, if a user selection of a "Zoom’ command
from the “View' menu is detected by the panel at 504, the
panel also calls an engine for processing.

In both the cases at 502 or 504, in one implementation of
the invention, the engine writes out a checkpoint record at 508
that is similar to that of a “Websitename'.dta “database file
(See FIG. 24). But is given the temporary checkpoint Web
sitename. The engine then creates a build engine HTML
definition file based on these specifications, and writes this
file either to the local disk or the server, depending upon the
origination of the build tool.

In one implementation of the invention at 510 the engine
terminates itself, by stopping all of its threads. Meanwhile the
interface writes out four cookies onto the local disk which
define the following:

1: The re-initialization mode. (Either Open or Checkpoint).
2: The current web page number when the resizing event

occurred.
3: The Web Site Name. (The checkpoint name if in check

point mode)

10

15

25

30

35

40

45

50

55

60

65

40
4: The Zoom level.

The interface then terminates itself by executing the Java
Script “parent.location.href command, which causes the
build engine parent HTML frame file (PFF) to be reloaded
(See FIG. 5).

In one implementation of the invention at 512 the re-ini
tialization process begins. The PFF cause both the panel and
the build engine to be reloaded and activated. The panel then
reads the mode cookie. If the mode is either open or check
point, the interface reads the web site name, page number and
Zoom level cookies, then resets the mode cookie to the ini
tialize state for Subsequent operations. The interface then
calls an engine method to read the external database, and then
to return the necessary values from that database in order to
update the interface's database. Finally the engine calls two
engine methods in order for the engine to go to the correct
current web page and draw that page at the now current Zoom
level. Normal processing can then resume.
Run Generation Process

FIG. 24 through FIG. 27 describe the run generation pro
cess. This process starts when the build process detects that
the user is finished defining the web site (user has saved the
web site and invokes the run generation process), and con
cludes with the actual uploading of all the necessary web site
run time files to the user's server.

FIG. 24 describes the techniques employed by the build
engine for the creation of the external database, and the Secu
rity and optimization techniques that Support this process (30
of FIG. 4).
When the panel's JavaScript Code detects a user selection

of "Save” or “Save As” from the panel’s “File” menu, it draws
the appropriate pop-up window and initializes the pop-up
window’s values for the current web page size as had been
defined at FIG. 5 and passed to the build engine. The panels
JavaScript in the “save the web page/template pop-up win
dow detects a user completion event at 150 (i.e., the designa
tion of a users web site name followed by the enter key), and
calls the appropriate panel JavaScript function. More specifi
cally, after completing the appropriate validity checks, the
function calls the appropriate JAVA build engine method,
passing as a function call argument the user defined “Web
sitename'. The build engine method checks for the existence
of a “Websitename.dta file, and, if so, posts that result into a
poll-enabled method return value. The poller checks that
value, and if set to true, calls a JavaScript function which
draws a pop-up window asking the user to confirm whether
the existing web site definition should be overwritten or not.
This JavaScript function also calls an appropriate build
engine method to reset the return value to false in order to be
initialized for the next possible “Save” operation.
Once this verification process is completed the build

engine begins the external database creation process at 151,
which will vary depending upon the security manager of a
given browser at 152. See FIG.5 for a detailed description of
the browser security manager alternatives. If the browser's
security manager allows for local disk file creation, the build
engine calls a method, which asserts the necessary security
policy permissions to create and write a file. If not, the build
engine calls the necessary method to create and write a file on
the user's server.

The external database contains, as its first record, a
“Header record, which contains can include the following
information:

1: A file format version number, used for upgrading data
base in future releases.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 388 of 548

US 7,594,168 B2
41

2: The default screen resolution, in virtual pixels, for both
the screen width and height. This is usually set to the web
designer's screen resolution, unless overwritten by the
user at FIG. 5.

3: Whether the application is a web site.
4: Virtual web page size settings. A calculation is per

formed by the build engine method, in order to calculate
what the maximum web page length is, after reformat
ting all paragraphs on all internal web pages, based on
the default screen resolution.

5: Web page and styles high watermarks.
6: The Websitename.

The header records are written at step 153.
During the build process, as new web pages or new objects

are created by the user, or as text is added to or deleted from
a paragraph, or as new styles are created or deleted, appro
priate high watermarks are set, in order to show the current
number of each of these entities. Thus, at 154, the values for
the number of active web pages and the number of text button,
image, paragraph or other styles are written as high water
marks in the header. The high watermarks for the number of
text button, image, paragraph or other objects that exist for
each web page, the number of lines for each paragraph object,
and the number of line segments for each paragraph line are
written within the body of the external database as described
at 156, and used as settings for each of the loops in the
four-dimensional data structure. Because no structural limits
are set on the number of web pages, objects per web page,
styles, or paragraph size, these high watermarks greatly
reduce the external database file size, and the time it takes for
the run time engine to process the data stored in its database.

The settings for all paragraph, text button and image styles
are then written as a style record at 155 based on their high
watermark. This data includes Boolean and integer variables,
and font and color objects, written as a one-dimensional array,
based on the high watermark values for the number of styles
that exist. The font and color objects are serialized as is
discussed in greater detail below (See 159 below).
The body of the external database is then written at 156. All

Boolean values are written inside a four-dimensional loop at
157. The outside loop contains the Boolean values used to
define web pages (i.e. a one-dimensional array definition) as
well as the high watermarks for the number of text button,
image, paragraph or other objects per web page, with the loop
set at the high watermark which defines the number of exist
ing web pages for this web site structure. The second level
consists of three or more two dimensional loops with the
loops set to the high watermarks defining the actual number of
text button, image, and paragraph or other objects that appear
on any given web page and contains the values used to define
web page objects (i.e. a two-dimensional array definition;
web page number by object number). Included within the
loop for paragraph objects are the high watermarks for the
number of lines for each paragraph object. The third loop is
set by the high watermark defining the actual number of
paragraph lines that for all paragraphs on any web page and
contains the values used to define paragraph lines (i.e. a
three-dimensional array definition; web page number by
object number by paragraph line.) Included within the loop
for paragraph lines are the high watermarks for the number of
line segments for each paragraph line. The inner most loop is
set by the high watermarks defining the number of line seg
ments per paragraph line and contains the values used to
define paragraph line segments (i.e. a four-dimensional array
definition; web page number by object number by paragraph
line by paragraph line segment.).

10

15

25

30

35

40

45

50

55

60

65

42
All integer values are written inside a four-dimensional

loop at 158. Their four loops are controlled by the same high
watermark settings as used for the Boolean records, and they
describe the same logical entities.

Multimedia objects are written inside a two-dimensional
loop at 159. They include URL, color, and font objects, and
can include other types of objects. A URL object is the
encoded form of a URL Address, used by a browser or a JAVA
method to access files and web addresses. All multimedia
objects must be serialized before they can be written. This
means that the objects are converted into a common external
definition format that can be understood by the appropriate
deserialization technique when they are read back in and cast
into their original object structure. The outside loop contains
web page related objects, and the inner loop contains image,
text button, paragraph, etc. related URL, color, and font
objects. The outer loop is defined by the web page high
watermark and the inner loops by the high watermarks for the
actual number of text button, image, paragraph or other
objects on a web page.

String records are written inside a four-dimensional loop at
160. The outer loop may be empty. The second loop can
include the string values for text button objects, audio and
Video filenames, and audio and video channel names. The
third loop contains values for paragraph line related data, and
the innermost loop contains the values for paragraph line
segment definitions. The string records are controlled by the
same high watermarks as those used for Boolean and integer
records. String records are stored utilizing an appropriate
field delimiter technology. In one implementation, a UTF
encoding technology that is Supported by JAVA is utilized.

Single and double floating-point, and long integer records
are written inside a two-dimensional loop at 161. The outer
loop may be empty. The inner loop contains mathematical
values required for certain animations and image processing
algorithms. The single and double floating-point, and long
integer records are controlled by the same high watermarks as
those used for Boolean and integer records.

FIG. 25 describes the techniques used to create a custom
ized and optimized run time engine by the build engine (31 of
FIG. 4). A versionizing program analyzes the feature flags,
and only those variable definitions, defined in the “Main’
object class, relating to the object classes and methods that
will be executed at run time, are extracted at 162. All refer
ences to object classes that will be called at run time are
extracted, creating the source code for the run engine “Main’
object class that is ready for compilation at 163.

All external image, video and audio files are resolved at
164. The external references can be copied to designated
directories at 164, either on the user's local disk or file server.
The file Pathnames can be changed to reflect these new loca
tions. During the installation of the build tools, the necessary
class libraries from Sun, Microsoft and Netscape are either
installed on the local system (See FIG. 5) or made available
on the server where the build tools can be optionally located.
The necessary environmental variables are set to permit nor
mal access to the required class libraries.
The customized run engine and a library of the referenced

run time classes are compiled and converted into byte code at
165. Finally, the run time engine for the web site is created at
166. The required set of class objects required at run time is
flagged for inclusion into the CAB/JAR file (See FIG. 27).

FIG. 26 shows the techniques used to create the HTML
Shell File (HSF) (32 of FIG. 4).
The first step of the process at 167 is to determine whether

the dynamic web page and object resizing is desired by testing
the application setting, set by the user at FIG. 21a, or possibly

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 389 of 548

US 7,594,168 B2
43

reset at FIG. 24. If the application was a web page, and thus
requiring dynamic web page and object resizing, virtual
screen resolution settings, calculated at FIG. 24 at 153, are
placed in an appropriate HTML compliant string at 168. If the
application is a banner or other customized application, the
absolute values for the run time object (applet size) height and
width are placed in an appropriate HTML compliant string as
absolute width and height values at 169.
An analysis is made for the background definition for the

first internal web page at 170. If a background pattern is
defined, an appropriate HTML compliant string for setting
the HTML “background to the same background image is
generated. If the first web page definition is a color instead,
then the RGB values from those colors are converted to hexa
decimal and an appropriate HTML compliant String is gen
erated setting the “bgcolor” to the required hexadecimal
value. This process synchronizes the web page background
with the background that will be drawn by the browser when
it first interprets the HSF.

Thereafter, a JAVA method generates HTML and JavaS
cript compliant strings, that when executed by a browser,
generate additional sets of HTML and JavaScript compliant
strings that are again executed by the browser. More specifi
cally, if the application required dynamic web page and object
resizing (See 167) then JavaScript and HTML compliant
strings are generated at 171 so that, when interpreted by the
browser at the time the HTML Shell File is initialized, the
screen resolution sensing JAVA applet (SRS) will be
executed. JavaScript code is generated at 172 in order to
enable JavaScript to SRS applet communication. In one
implementation, the code is generated by performing the
following functions:

1: Determine the current browser type.
2: Load the SRS from either a JAR or CAB File, based on

browser type.
3: Enter a timing loop, interrogating when the SRS is

loaded.
4: When the SRS returns an “available' status, interrogate

the SRS, which will return the current screen and win
dows actual height and width.

5: Convert the virtual screen resolution settings into appro
priate absolute screen width and height values.

Strings defining additional JavaScript code are generated at
173 that perform the following steps at the time the HSF is
initialized by the browser:

1: Generate HTML compliant strings that set the run time
engine's applet size to the appropriate values.

2: Generate an HTML complaint string that contains a
“param' definition for linking the run time engine to the
External Database created at FIG. 24.

3: Generate an HTML complaint string, dependent upon
the type of browser, which causes the current browser to
load either the JAR or the CAB File(s).

4: Generate JavaScript Code compliant strings that create
and dynamically write the applet size defining HTML
strings utilizing the JavaScript “document.write func
tion. This dynamically created code causes the browser
to execute the run time engine, in the correctly sized
window, from the correct JAR or CAB file, and linked to
the external database.

At 174, writing out the above-generated HTML and Java
Script compliant strings creates the HSF. The necessary secu
rity policy permissions are asserted, and a “Websitename
'.html file is created.

FIG. 27 describes the processes for creating the CAB and
JAR Files (33a of FIG. 4). The image objects, if any, which
were defined on the first internal web page are analyzed at

10

15

25

30

35

40

45

50

55

60

65

44
175. If they are set to draw immediately upon the loading of
the first web page, then they are flagged for compression and
inclusion in the CAB and JAR Files. The feature flags are
analyzed at 176 to determine which JAVA classes have been
compiled (See FIG. 25). These class files are flagged for
compression and inclusion in the library CAB and JAR Files.
Strings that are BAT compliant definitions are created at 177
that will, when executed in DOS, create compressed CAB and
JAR Files. These CAB and JAR Files contain the compressed
versions of all necessary JAVA class files, image files, the
“Websitename'.class, customized run time engine file, and
the “Websitename'.dta database file. In one implementation
of the invention, two BAT files are created. The first, when
executed, will create a CAB/JAR file with the “Website
name'.dta database file and the customized “main run time
engine, excluding all the image and button object animation,
transformation, and image processing code. The second BAT
file, when executed, will create a CABFJAR file with all the
library of all the referenced image and button object anima
tion, transformation, and image processing code.
The necessary security policy permissions for file creation

are then asserted, and “Websitename'.bat and “Website
namelib.bat files are written at 178. The “Websitename.bat
and “Websitename'.bat files are then executed under DOS,
creating compressed “Websitename'.cab and “Website
namelib'.cab files and compressed “Websitename'' jar and
“Websitenamelib' jar files at 179. The HTML Shell File and
the JAR and CAB files are then, either as an automatic pro
cess, or manually, uploaded to the users web site. This com
pletes the run generation processes.
Run Time Process
The run time process is shown in FIG. 28 through FIG. 36.
FIG. 28 shows the web page size generation technology

utilized by the run time engine. A web surfer points a browser
at the HTML shell file (HSF) at 180. The browser begins to
interpret the HTML and JavaScript code in the HSF that was
created (See FIG. 26). The browser draws either the back
ground color or background image pattern, as defined by the
HTML complaint code (See FIG. 26) at 170. The browser
then executes the HSF's JavaScript initialization code, which
"sniffs’ the current browser at 181 to determine its type, and
then generates the appropriate HTML code for that particular
browser to interpret. This code defines whether the executable
files and database will be extracted from inside a compressed
CAB file or a compressed JAR file and its location.

Based on the user application (defined at FIG. 21a, or
possibly reset at FIG. 24), the HSF at 182 will then execute an
appropriate JavaScript function (as created in FIG. 26 at 167).
If the application required dynamic resizing of the web page's
dimensions, JavaScript code is called which generates HTML
code using the JavaScript “document.write” function, which
causes the SRS applet to be immediately executed by the
browser at 183. The JavaScript code then goes into a timer
loop, checking on when the SRS applet is alive before initi
ating any communication.

After detecting that the SRS has been initialized, a JavaS
cript function calls the appropriate SRS applet methods at
185, which return the width and height, in pixels, of the
current browser window. JavaScript Code is then called
which converts the screen resolution independent window
width and height values into absolute pixel values. A JavaS
cript function is then called which use the JavaScript “docu
ment.write' function to generate HTML code that define the
run time engine specifications, etc. (see FIG. 26) and cause
the browser to immediately execute the run time engine. If the
application had not required dynamic resizing of the web

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 390 of 548

US 7,594,168 B2
45

page's dimensions, then a JavaScript function is called which
generates HTML code using the JavaScript “document
write” function that defines the fixed dimensions for the web
page size and cause the browser to immediately execute the
run time engine at 184.

FIG. 29 shows the techniques employed by the run time
engine to read the external database and to generate the nec
essary web page objects (35 of FIG. 4). The run time engine
reads a “PARAM value at 186, from HTML Code that was
generated above (see FIG. 26), which points to the “Website
name'.dta external database that is compressed into the JAR
or CAB File (that was loaded and accessed in FIG. 28). The
run time engine then initiates the read operation. In one
implementation, the read technique is always non-privileged.
If permitted by the current browser as a non-privileged opera
tion, the “Websitename'.dta file will be extracted and read
from the CAB/JAR file residing in temporary local storage. If
not, the run time engine A will read the “Websitename'.dta
file directly from the server. The header record is read at 187.
Any objects, such as fonts and colors, are cast into their
original form. The highwatermark values, as they are encoun
tered in the header and in the body of the database, are
immediately used for setting the limits for the Subsequent
multi-level read loops for reading in the style record and the
web page(s) and object(s) definitions. The virtual screen reso
lution values are read for the Subsequent dynamic resizing of
the web page objects.

The style record is read based on its high watermarks, and
processed at 188. The definitions for all paragraph, text but
ton, image or other styles are read and stored for Subsequent
initialization and processing of all paragraph, text button,
image or other objects. The data representing the values for
the first web page and all its objects is read at 189. The
Boolean, integer, String and floating point fields for the first
web page are initialized. The serialized multimedia objects
for the first web page are read and cast into their final form.
(See FIG. 24)

If external files, such as image, audio and video files, must
be read as part of the first web page's generation, exception
handling routines are executed at 190, as necessary, in the
event of any processing errors. In one implementation, error
recovery at this stage places the highest priority on a gracefull
operation cancellation, rather than a web page crash. In the
worst case, a particular image, Sound or video file may not be
available to the web surfer. All other aspects of the web page
will likely be available even in this error scenario.

Process step 191 is executed simultaneously with the gen
eration of all the other web pages at 192 by means of multi
programming utilizing thread technology. Thus the first web
page will be drawn and active for user viewing and user
interaction long before the data for all the other web pages
have been read, processed, and initialized. The data represent
ing the values for the Subsequent web pages and all their
objects are read at 192. The Boolean, integer, string and
floating point fields for these web pages are initialized. The
serialized multimedia objects for these web pages are read
and cast into their final form. (See FIG. 24)

FIG. 30 shows the scaling techniques employed by the run
time engine for web page generation (36 of FIG. 4). The first
step in the scaling process is to calculate the coordinates that
define the origin for the placement of each object for a given
web page. (This is usually the upper left corner of the object,
defined in actual screen pixels.) A test is made at 193 to
determine if the centering attribute is set for the object. If not,
the left and top coordinates are converted from the virtual
screen values to the local Screen values, based on the local
screen window resolution at 194. In one implementation,

10

15

25

30

35

40

45

50

55

60

65

46
multiplying the virtual coordinate by the local screen window
resolution and dividing by the virtual screen resolution deter
mine the conversion.

If the centering attribute is on, then a calculation for the
objects width is performed. See processes 197, 198, and 199
below for a description of this calculation. Based on this
calculated width, and based on the local screenwindow reso
lution, the left coordinate is calculated at 195. One algorithm
that can be used is to subtract the screen width, as calculated
in 197-199 below, from the local screen window resolution,
and divide that result by 2. The top coordinate is calculated
the same as in process 194 above.

Based on the object type, determined at 196, a different
Scaling technology is employed.

If the object is a text button object at 197, the text button
object itself, including its background, is not scaled. The
virtual width and the local screen width remain the same.
However, if a 3D Frame effect is defined, it is scaled based on
the following algorithm: if the text string's orientation is Left
to Right, the inner width of the 3D Frame, and its placement
relative to the text string, is calculated as the length of the text
string, plus /8 of an “n” space on each side, plus an additional
offset appended to the right of the inner width to compensate
for the italic font style, if defined for the font of that text string.
The italic offset can be defined as the font size for the text
string, divided by 10, plus 1. The inner height of the 3D Frame
can be defined as the font height plus 2 pixels. The font height
equals the fonts leading plus its ascent plus its descent speci
fications. The inner height origin can equal the text string
origin. The style of the 3D effect (i.e., either a 3D raised look
or a 3D depressed look), plus the inner width and height, is
sent to a 3D frame build method for the construction of the 3D
frame. The width of the 3D frame in pixels can be calculated
as the inner width divided by 10 plus 3.

If the text strings orientation is vertical, the inner width of
the 3D Frame is an “m’ space. The inner height of the 3D
Frame can be calculated as the font height times the number
of characters in the text string. Both the left and top placement
of the 3D frame can be set to the left and top origin of the text
string. The width of the 3D Frame can then be calculated as
the inner height divided by 10, plus 3.

If an animation is assigned to the text string, the font size
used for the initial calculation of the 3D frame is the same as
that used to define the animations initialization value. If the
object is a paragraph at 198, and the scaling attribute is on, the
maximum width for the paragraph can be defined by the
attached paragraph style (or paragraph override) as a percent
age of the screen width. This screen width percentage can be
converted into an actual width in pixels, based on the local
screen's window resolution. If the current screen resolution is
the same as that used by the web designer, then the paragraph
line end values (just read from the external database) are used
without adjustment, bypassing the entire paragraph reformat
process. If the current screen resolution is different than that
of the virtual screen resolution, then a very compact method
of reformat is called (relative to the build engine reformat
methods at FIG. 6 and at FIG. 18), and the text for the
paragraph is reformatted based on this width.
The run time engine's reformat technology begins by cre

ating one paragraph line for the entire text string assigned to
the paragraph text area. All the style overrides are renumbered
sequentially with the style records or the non-marked text
strings ignored. A simplified “Overflow” reformat method
can be called, which chops up the single paragraph line first
into paragraph line segments, where each word is defined as
a line segment. Because of the word oriented style override
architecture, the style overrides have a one-for-one corre

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 391 of 548

US 7,594,168 B2
47

spondence with the line segments. Each paragraph line break
can be calculated by relying on the simplified word oriented
style override technology described above. The paragraph
line can be built inside a tight word-by-word loop, with a
simple logic check for a style override or hard line break. The
paragraph width is then derived as the width of the longest
line of the reformatted paragraph, while the paragraph height
is defined as the font height times the number of lines. If a 3D
frame was defined for the paragraph, it can be scaled based on
the following algorithm:

The inner width is defined as the same as that of a text
string, but the width of the text string for the longest line is
used. The same “n” space and italic offset calculations are
used. The inner height is calculated as the font height times
the number of lines plus 2 pixels.

If the object is a paragraph, and the scaling attribute is off
then the paragraph is treated the same as a text button object,
with the only exceptions that there is no vertical orientation,
and the height and width of the 3D frame, if defined, is
calculated using the same algorithm as was used for the scaled
paragraph above.

If the object is an image at 199, and the scaling attribute is
on, the image width can be calculated as the virtual width
times the local screen window width divided by the virtual
screen width. The image height can be calculated as the
virtual height times the local screen widow height divided by
the virtual screen height. If the image had been resized or
rotated, then the virtual width and height of the image would
differ from that of that of the original image. If a 3D frame is
defined for the image, it can be scaled based on the following
algorithm:

The inner width and the inner height of the 3D frame will
coincide exactly with the outer edges of the image, after the
image had been scaled. Adding the scaled image height to the
scaled image width and dividing the result by 40 and adding
3 can calculate the width in pixels of the 3D frame.

If an animation is assigned to the image, then the anima
tions initialization values for the image's width and height
can be used to calculate and draw the initial 3D frame. The
coordinates and sizes for the backgrounds for text button,
image and paragraph objects can be calculated using the same
algorithms as was employed for the calculation and place
ment of the inner width and inner height for the 3d frame for
each object.

FIG. 31 through FIG. 35 shows the multilevel web page
and object thread technology employed by the run time
engine. The description includes all the animation technolo
gies, transformation technologies, time line technologies and
drawing technologies that Support this multilevel architec
ture.

FIG. 31 describes the initial processes for the inventions
multilevel web page and object thread technology employed
by the run time engine (37 of FIG. 4). Upon the completion of
the processing of all the data definitions for the first internal
web page (FIG. 30), the main web page thread is created and
executed. This causes the run method for the main run time
engine class to be executed simultaneously with the reading,
processing, and Scaling of the data for the Subsequent web
pages (See FIG. 29). In addition, the reading of any image
files defined for the first web page is also performed simulta
neously, under the control of an image observer (See FIG. 12).
The main run method enters a web page counter loop at 200,
the loop being defined from the first internal web page to the
high watermark that was set to the number of existing internal
web pages for the web site.
A check is made at 201 to see if the current web page exists.

If the web page does not exist, and the current web page

10

15

25

30

35

40

45

50

55

60

65

48
number is less than that of the high watermark, then the web
page counter is incremented by one and the web page counter
loop is reentered. If the current web page number equals the
high watermark at 202, then the web page counter is reinitial
ized to the first web page, so that the web page loop may
repeat itself, from the first internal web page, depending upon
the delay setting for the last web page.
A test is then made on all objects defined for this web page

at 203, utilizing a loop whose range is defined by the number
of objects per web page high watermarks. More specifically,
within this universe of possible objects, if the object exists,
and it is defined by a time line in which there is a delayed
entrance, then a boolean flag is set for those objects that
causes the draw system to Suppress drawing these objects
during the web page transition as defined below.
A test is then made to determine if the web page has a

transition animation defined at 204. If not, the draw system is
called for the first time. The draw system for a given web page
utilizes a loop whose range is defined by the number of
objects per web page high watermarks. The draw system can
also employ technology so that the draw process generates a
screen image in one or more off-screen buffers, only drawing
to the screen when the screen image, or the clipping area for
the screen, has been fully generated. This greatly reduces, if
not totally eliminates, any screen flicker, and creates visually
Smooth animation effects.

The first draw function is to draw the web page background
into the primary off-screen buffer. The web page background
color is drawn, as defined initially at FIG. 21a, or modified for
that particular web page at FIG. 20. A test is then made to
determine if the Web page has a background image pattern, as
defined initially at FIG. 21a, or modified for that particular
web page at FIG.20. If it does, and the image observer reports
that the image is ready to be drawn, a background image draw
loop is executed, defined by the height and width of the
background image, and the screen resolution of the current
browser window. In the unlikely event that the background
image pattern is not yet available, there is a delay until the
image observer reports the completion of the image process
ing operation. The tiled background image pattern is also
drawn into the primary off-screen buffer, completely over
drawing the background color. The backgrounds for all non
suppressed (See 203) parent web page text button and para
graph objects are then drawn into the primary off-screen
buffer, unless a background transparency flag has been set
(See FIG. 7).
The text strings for non-Suppressed parent web page text

button and paragraph objects are then drawn into the primary
off-screen buffer. These text strings are drawn based on their
font name, style, size, effect(s), and color. If a paragraph line
string, the string may have multiple string segments, each
with their own font name, style, etc. If the text button object
has its vertical attribute set to true, then the draw system
executes a loop defined by the number of characters defined in
the text button object. The top and left origin coordinates were
set in the usual way (See FIG. 30), but the top coordinate is
adjusted by the font height for each iteration of this draw loop.
The intelligent 3D Frame, if defined, is then drawn into the
primary off-screen buffer for the paragraph and text button
objects (See FIG. 30). The primary image objects for the web
page are then processed by the draw system. If the image
observer reports that the image is ready to be drawn, it is
drawn into the primary off-screen buffer, based on the coor
dinates and size as defined in FIG. 30. If not ready, there is a
delay until the image observer reports the completion of the
image processing operation. The Intelligent 3D frame, if

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 392 of 548

US 7,594,168 B2
49

defined, is then drawn into the primary off-screen buffer for
the image objects (See FIG. 30).

The draw system is responsive to two other technologies at
this stage. The first is user interaction based on the location of
the mouse cursor and any user initiated mouse event. This
subject will be described in greater detail below in association
with FIG. 36. The second is object animation for non-delayed
web page objects. This subject will be described in greater
detail below in association with FIG. 33.

If the web page transition test at 204 was true, then the run
time engine's main run method executes the web page tran
sition animation technology at 205.

FIG. 32 describes the web page transition animation tech
nology. First a lock is placed on this method at 212, as a safety
precaution to prevent any interference from other threads
during the animation. A test is then made on whether the
transition animation setting (See FIG. 20) for the web page is
random at 213. If so, a random transition number is generated
at 214. The web page thread then begins a particular anima
tion loop at 215, depending upon the random number that was
generated at 214 or by the transition animation that was set
previously (at FIG. 20). In one implementation, 13 different
transition animations plus random are Supported including.
They are: Fade In, Zoom In, Zoom Out, Zoom to Upper Left,
Zoom to Lower Right, Rotate to the Left, Rotate to the Right,
Rotate Bottom to Top, Rotate Top to Bottom, Slide to the Left,
Slide to the Right, Slide Bottom to Top, and Slide Top to
Bottom.

For all web page transition animations, the X and Y ani
mation increment values are calculated by dividing the cur
rent browser's screen width and height by the user defined
animation resolution at 215. In all animation and draw loops,
the number of loops can equal the number of animation
frames as set at FIG. 20. The timer delay for all animations, in
milliseconds, can be calculated by dividing the number of
frames per second (See FIG. 20) into 1,000.

For a description of "Fade In' Technology see FIG. 33. A
“Zoom. In algorithm sets the initial scaled width and height
for the current web page image to Zero and the prior web page
image to its full size. In each animation and draw loop the
previous web page's final image state is drawn into a second
ary off-screen buffer at 216. (If this is the first occurrence of
the first web page, then the secondary off-screen buffer is set
to the background of the first web page.) The upper left hand
corner (origin) of the current web page can be calculated
based on the following formula: browser screen width minus
the scaled width divided by two.

The scaled image of the current web page is then drawn
into the secondary off-screen buffer at the calculated origin,
using the current scaled width and height for the web page
image. This merged image of the prior and Scaled version of
the current web page is then drawn to the screen.
A timer delay then occurs as defined at 215, after which the

X and Y animation increment values are added to the scaled
width and height for the current web page image. The anima
tion loop is then repeated to its conclusion at 218.

The other eleven web page transition animations follow a
similar methodology, but have quite different calculations,
which are based on the following variables:

1: Order of drawing of the prior and current web pages.
2: Initialization values for the X and Y origin coordinates

for the current and prior web pages.
3: The initial values for the scaled width and height for the

current and prior web pages.
4: Whether X and Y origin coordinates for the current and

prior web pages increment, decrement, or remain the
SaC.

5

10

15

25

30

35

40

45

50

55

60

65

50
5: Whether the values for the scaled width and height for

the current and prior web pages increment, decrement,
or remain the same.

For the "Zoom Out' animation, the current page is drawn
first and always drawn at 100%. The prior web page is ini
tialized also at 100%, but its X and Y origin coordinates are
incremented and its scaled width and height values are dec
remented, by the appropriate values, for each animation itera
tion.

For the “Zoom to Upper Left”, “Zoom to Lower Right',
“Rotate to the Left”, “Rotate to the Right”, “Rotate Bottom to
Top' and “Rotate Top to Bottom' animations, a common data
initialization and data increment strategy is implemented.

1: The X and Y variables for page image one is set to zero.
2: The X and Y variables for page image two is set to the

right and bottom edges of the browser window.
3: The scaled width and height variables for page image

one is set to 100% of the browser window's resolution.
4: The scaled width and height variables for page image
two is set to Zero.

5: For each loop iteration, the scaled width and height
variables for page image one are decremented by the X
and Y animation increment values defined at 215.

6: For each loop iteration, the scaled width and height
variables for page image two are incremented by the X
and Y Animation increment values defined at 215.

For the "Zoom to Upper Left' animation, the prior web
page is drawn first; with its X and Y origin coordinates always
set to zero. (upper left corner of the browser window) Its
scaled width and height values are always set to the current
values for scaled width and height variables for page image
one. The X and Y origin coordinates for the current web page
can be calculated by Subtracting the current values of image
two's scaled width and height variables from the initial values
of the X and Y variables for page image two. The scaled width
and height values for the current web page can be set to the
current values for the scaled width and height variables for
page image two.

For the "Zoom to Lower Right' animation, the current web
page is drawn first; with its X and Y origin coordinates always
set to Zero. Its scaled width and height values are always set to
the current values for scaled width and height variables for
page image two. The X and Y origin coordinates for the prior
web page are set to current values of image two’s scaled width
and height variables. The scaled width and height values for
the prior web page are set to the current values for the scaled
width and height variables for page image one.

For the “Rotate to the Left' animation, the prior web page
is drawn first; with its X and Y origin coordinates always set
to Zero. Its scaled width value is set to current value of image
one’s scaled width variable. Its scaled height value is always
set to the bottom of the browser's window. The X origin
coordinate for the current web page can be calculated by
Subtracting the current value for image two’s scaled width
variable from the initial value for image two’s X origin coor
dinate. The Y origin coordinate for the current web page is
always set to Zero. Its scaled width value is set to current value
of image two’s scaled width variable. Its scaled height value
is always set to the bottom of the browser's window.

For the “Rotate Bottom to Top' animation, the prior web
page is drawn first; with its X and Y origin coordinates always
set to zero. Its scaled width value is set to the width of the
browser window. Its scaled height value is set to current value
of image one's scaled height variable.
The current web page's X origin coordinate is always set to

Zero. The Y origin coordinate is calculated by subtracting the
current value of image two’s scaled height variable from the

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 393 of 548

US 7,594,168 B2
51

initial value for image two’s Y origin coordinate. Its scaled
width value is always set to the right edge of the browser's
window. Its scaled height value is set to current value of image
two's scaled height variable.

For the “Rotate Top to Bottom' animation, the current web
page is drawn first; with its X and Y origin coordinates always
set to zero. Its scaled width value is set to the width of the
browser window. Its scaled height value is set to current value
of image two’s Scaled height variable.
The prior web page's X origin coordinate is always set to

Zero. The Y origin coordinate is set to the current value of
image two’s Scaled height. Its scaled width value is always set
to the right edge of the browser's window. Its scaled height
value is set to current value of image one’s Scaled height
variable.

For the “Slide to the Left”, “Slide to the Right”, “Slide
Bottom to Top' and "Slide Top to Bottom' transition anima
tions, a common data initialization and data increment strat
egy is implemented. The strategy includes:

1: The X and Y variables for page image one is set to zero.
2: The X and Y variables for page image two is set to the

right and bottom edges of the browser window.
3: For each loop iteration, the X and Y variables for page

image one are incremented by the X and Y animation
increment values defined at 215.

4: For each loop iteration, the X and Y variables for page
image two are decremented by the X and Y animation
increment values defined at 215.

5: The scaled width and height values always remain at
100% of the browser windows width and height.

For the “Slide to the Left' animation, the prior web page is
drawn first; with its X and Y origin coordinates always set to
Zero. The current web page's X origin coordinate is set to the
current value of page image two’s X variable. Its Y origin
coordinate is always set to Zero.

For the “Slide to the Right' Animation, the current web
page is drawn first, with its X and Y origin coordinates always
set to Zero. The prior web page's X origin coordinate is set to
the current value of page image one's X variable. Its Y origin
coordinate is always set to Zero.

For the “Slide Bottom to Top' animation, the prior web
page is drawn first; with its X and Y origin coordinates always
set to Zero. The current web page's Y origin coordinate is set
to the current value of page image two’s Y variable. Its X
origin coordinate is always set to Zero.

For the "Slide Top to Bottom' animation, the current web
page is drawn first; with its X and Y origin coordinates always
set to Zero. The prior web page's Y origin coordinate is set to
the current value of page image one’s Y variable. Its X origin
coordinate is always set to Zero.

After the last animation cycle is completed for any of the
transition animations at 218, the animation process is
unlocked, and process step 206 shown in FIG. 31 is then
executed.

Returning to FIG. 31, the main web page threads run
method then executes a text button and image object time line,
transformation and animation loop at 206. This range loop is
defined from the first object on the given web page to the high
watermark for the number of those objects on a web page for
this web site. A test is made on each object on whether an
animation, transformation and/or time line has been assigned
at 208.

If so, an “instance' of the time line class for that particular
object type is created at 209. An “instance' of a class is a
fundamental aspect of object oriented programming (OOP).
Each time, the line class is implemented with a “runnable'
interface, so that they can be executed as independent threads.

10

15

25

30

35

40

45

50

55

60

65

52
Communication of data, between the “instance' of a class and
the main run engine class can be accomplished in OOP using
several different techniques. In one implementation, this con
struction, passed as an argument, is used to permit different
objects to address each other's variables and databases. A
thread is then created, utilizing a two-dimensional object
internal database architecture (web page number by internal
object number). This methodology is convenient for permit
ting all object time lines for a given web page to be managed
and synchronized. The objects thread is then “started.
The result of this process at 209 is that an independent

thread has been created for each appropriate object on a given
web page, all executing simultaneously with each other and
with the main run time engine web page thread, Subject to the
definitions of their independent time lines at 210. See FIG.33
for a description of the time line technology. When the main
web page thread has finished the text and image loop at 207,
the draw system is activated; the run time engine can now
respond to user interactions, and the main web page thread
transitions into a “Join' loop at 211. See FIG.35 for a descrip
tion of this process.

FIG. 33 shows the time line technology used by the run
time engine. The techniques and algorithms employed to
create this technology permit each web page object to have an
independent yet synchronized existence with each other, with
the main web page thread, and with child objects that each
main or parent object may spawn. Furthermore, each object
and each of their child objects are capable of performing
multiple animations and transformations, either serially or
simultaneously. Database initialization is first accomplished
for each object thread. This assures that the object threads
database is set to the correct initial values as required for that
particular object, and that the references to the main web page
thread's database are established.
A test is then made to determine if the object has a time line

definition assigned to it at 219.
If not, a test is made at 220 on certain two-dimensional

object definition variables in order to determine which of the
following four states have been defined for the object: anima
tion without a transformation; transformation without anima
tion; animation, with the transformation occurring simulta
neously with the animation; and animation and
transformations occurring in a serial manner.

If the test shows that the object has an animation defined,
but no transformation, then certain two-dimensional status
variables are set, and an “instance' of the “animation class'
for that particular object type is created at 229. Each “anima
tion class” is also implemented with a “runnable' interface.
An object animation thread is then created, utilizing the two
dimensional object internal database architecture (See FIG.
8). This object animation thread is then “started”. Communi
cation between the object animation thread, the parent time
line thread, and its parent, and the main web page thread, are
accomplished as discussed in process 209. The object time
line thread then executes a “Join' method. This puts the object
time line thread in a “wait state'. When the thread it is waiting
for is completed, this child thread joins the parent object
timeline thread, and the object time line thread then continues
its process. Other forms of synchronization between two
independent threads could have been implemented as is
known in the art.
The techniques employed at 229 to implement object ani

mation vary by object type. In one implementation, for text
button object animations, 26 different animations are Sup
ported including: Zoom In, Zoom Out, Grow NW. Grow NE,
Grow SE, Grow SW, Shrink SE, Shrink SW, Shrink NW,
Shrink NE, Enter N, Enter NE, Enter E. Enter SE, Enter S,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 394 of 548

US 7,594,168 B2
53

Enter SW, Enter W. Enter NW, Exit N, Exit NE, Exit E, Exit
SE, Exit S, Exit SW, Exit W and Exit NW. In one implemen
tation, for image object animations, 29 different animations
are Supported including: Fade In, Fade out, Rotate, Zoom In,
Zoom Out, Grow NW, Grow NE, Grow SE, Grow SW, Shrink
SE, Shrink SW, Shrink NW, Shrink NE, Enter N, Enter NE,
Enter E. Enter SE, Enter S. Enter SW, Enter W. Enter NW,
Exit N, Exit NE, Exit E, Exit SE, Exit S, Exit SW, Exit W and
Exit NW.
As discussed above with regard to FIG. 17, each animation

type has a defined speed, resolution, and number of animation
cycles. These settings are stored in the main web page class,
and are passed to the particular animation thread through a
two-dimensional object internal database architecture as dis
cussed in process step 209 above during the animation
threads initialization process. The animation thread then
executes, in its run method, a main animation loop that has the
number of iterations set to the end number of animation
cycles, as assigned to that particular text button object.

Text button animations are currently implemented in three
logical groups. Group One includes “Zoom In”, “Grow NW,
“Grow NE”, “Grow SE, and “Grow SW. Group Two
includes “Zoom Out”, “Shrink SE’, “Shrink SW, “Shrink
NW, and “Shrink NE. Group Three includes “Enter N”,
“Enter NE”, “Enter E”, “Enter SE”, “Enter S, “Enter SW,
“Enter W, “Enter NW, “Exit N”, “Exit NE”, “Exit E, “Exit
SE”, “Exit S, “Exit SW, “Exit W and “Exit NW.

For Group One text button animations, the animation font
size is initialized at a very small value, and in one implemen
tation is set at 4 Points. The animation point size increment
can be derived by dividing the resolution (number of anima
tion frames) into the fontsize for that text button object. The
run method then executes a secondary animation loop, which
will terminate when the animation font size equals the text
button object point size. For each secondary animation loop,
the length of the current animated text string is calculated, a
new font object is created for the current animation point size,
and the font metrics for that new font are created. If the text
button object has a vertical orientation, the animated text
button objects width is calculated to be the width of an “m
space, in the current animated font. The animated text button
objects height is calculated to be current animated font
height times the number of characters in the text string. If the
text had a horizontal orientation, the animated text button
objects width is calculated to be the width of the text string in
the current animated font. The animated text button objects
height can be calculated to be the font height of the current
animated font. The calculations for X and Y coordinates for
the animated text button object depend upon which animation
was defined within the Group One-text button animations.
The XandYanimation increments can be calculated utilizing
the height and width, in pixels, of the text button object scaled
to the current browser's window, utilizing the text button
animation resolution, and considering whether the animating
text button object is being centered during the animation
(“Zoom Out”) or not. These calculations are similar to those
for the web page transition animations discussed with regard
to FIG. 32.
The draw system is then called. Based on the values of the

two-dimensional status variables that had been set initially,
the draw system executes the appropriate animation draw
routine utilizing, through the data communication techniques
already discussed, the current animation font point size, and
the current animation X and Y coordinates. If a text back
ground is to be drawn, the same algorithm as defined in FIG.
31 is used. If a 3D Frame is assigned, the current animated
string width and height are passed to the appropriate 3D frame

10

15

25

30

35

40

45

50

55

60

65

54
generation method, and the frame is drawn with the same
algorithm as defined in FIG. 31, but utilizing the current
animation X and Y coordinates. The text button objects ori
entation is also handled by the draw system with the same
algorithms as defined in FIG. 31.
The text button animation thread then executes a timer

delay, whose value had been defined in FIG. 17. When the
timer reactivates the text button animation thread after the
appropriate delay, an animation cycle completion test is made
to see if the text button objects point size minus the animation
point size is less than the animation point size increment. This
type of testing methodology permits the invention to utilize
integer values, as opposed to floating point values, for the text
button animation. This improves the execution of the anima
tion considerably.

If the above test is true, the animation point size is set equal
to the object point size and a final call is made to the draw
system for that animation cycle. A test is then made to see if
the current animation cycle equals the total number of ani
mation cycles as defined in FIG. 17. If not, a new animation
cycle is initiated, with the animation values reinitialized. If
this was the last animation cycle the text button animation
thread calls its “stop' method, which sets the required status
variables as appropriate, then terminates itselfThis causes the
parent text button time line thread to be reactivated through
the join' mechanism.

If the results of animation cycle completion test are false,
the current animation point size is increased by the animation
point size increment. A new font object is created for the now
current animation point size, and new font metrics for that
new font are created. If the text button object has a vertical
orientation, the animated text button objects width is calcu
lated to be the width of an “m’ space, in the now current
animated font. The animated text button objects height is
calculated to be the now current animated font height times
the number of characters in the text string. If the text has a
horizontal orientation, the animated text button objects
width is calculated to be the width of the text string in the now
current animated font. The animated text button objects
height is calculated to be the font height of the now current
animated font. The calculations for the new X and Y coordi
nates for the animated text button object are then completed,
as appropriate, and the draw system is called again.
The algorithms for Group Two text button animations are

very similar to those of Group One. The differences are just in
what are the initial animation values, and whether the anima
tion point size increments and the animation X and Y coor
dinate increments are added or subtracted from the then cur
rent animation point size and the then current X and Y
coordinates for the animating text button object.

For Group Three text button animations, the distance that
the text button animation will move is calculated, in pixels,
from its initial location to its final location in the current
browser window. The X and Y animation increments are
calculated by dividing that distance by the resolution of the
text button animation. All the other algorithms for Group
Three text button animations are generally a Subset of those
for Group One, and similar to the web page slide transition
animations defined with reference to FIG. 31.

Referring again to FIG. 33, image animations at process
step 229 can currently be grouped into five logical classes. As
with text button animations, Group One includes "Zoom In’.
“Grow NW, “Grow NE”, “Grow SE’, and “Grow SW.
Group Two includes “Zoom Out”, “Shrink SE”, “Shrink
SW, “Shrink NW, and “Shrink NE. Group Three includes
“Enter N”, “Enter NE”, “Enter E”, “Enter SE”, “Enter S,
“Enter SW, “Enter W, “Enter NW, “Exit N”, “Exit NE,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 395 of 548

US 7,594,168 B2
55

“Exit E”, “Exit SE”, “Exit S, “Exit SW, “Exit W and “Exit
NW. In addition, image animations have a Group Four,
which includes "Fade In' and "Fade Out”. Group 5 image
animations include the “Rotate' Animation.

For Group One mage animations, the animation width and
height increments are calculated by dividing the image
objects width and height by the resolution (number of ani
mation frames) as set in FIG. 17. The initial animation width
and animation height values are set to a very Small number,
currently equal to the animation width and height increment
values just calculated. The calculations for X and Y coordi
nates for the animated image object depends upon which
animation was defined within the Group One text button
animations. The XandYanimation increments are calculated
utilizing the height and width, in pixels, of the image object
scaled to the current browsers window, utilizing the image
animation resolution, and considering whether the animating
image object is being centered during the animation ("Zoom
Out”) or not. These calculations are similar to those for the
web page Transition Animations discussed above with regard
to FIG. 32.
The run method then executes a secondary animation loop,

which will terminate when the animation width equals the
image objects width. The algorithms employed by the inven
tion to change the animating objects height, width, X coor
dinate, and Y coordinate are very similar to those employed
for Group One text button animations, and will not be
repeated here. The techniques to utilize the draw system for
drawing the image animation, the time delay technique, and
the post draw logic tests and actions are also very similar.

The algorithms for Group Two image animations are very
similar to those of Group One. The differences are justin what
are the initial animation values, and whether the animation
width and height increments and the animation X and Y
coordinate increments are added or subtracted from the then
current animation width and height and the then current Xand
Y coordinates for the animating image object.

For Group Three image animations, the algorithms are
identical to those of Group Three text button animations. For
Group Four image animations, the “alpha' value of a given
image object is utilized in order to implement "Fade In' and
“fade Out' animations. The alpha value can range from 0 to
255, depending upon the image strength desired. The value
for an alpha animation increment variable can be calculated
by dividing the resolution of the animation into 255, after
making the necessary adjustments to keep the data in integer
form, without losing resolution due to integer rounding
errors. For a "Fade In' animation the value of an alpha ani
mation variable is set to zero. The run method then executes a
secondary animation loop, which will not terminate until 255
minus the then current value of the alpha animation variable
is less than the value alpha animation increment variable. A
"Fade In' image filter can be created for each iteration of the
animation loop, using the current setting of the alpha anima
tion variable. An image producer can also be created with
pointers to the last image bitmap produced for the image
object in the last animation loop and to the image filter that
has just been created. The image producer, under the control
of a media tracker then creates a new image bitmap. The
animation thread then “waits” for the completion of this
image-processing event using the media tracker. Upon
completion, the draw system is called which draws the then
current state of the image object. The image animation thread
goes into a timer delay of some preset value (in one imple
mentation 500 milliseconds), to permit a smooth visual ani
mation effect. The value for the alpha animation increment is
added to alpha animation variable and the loop is then

10

15

25

30

35

40

45

50

55

60

65

56
repeated until the loop condition is met. Then the “stop'
method is called, certain status variables are set, and the
image animation thread terminates itself. This causes the
parent image time line thread to be reactivated through the
"Join' mechanism.
The “Fade Out' animation employs very similar technol

ogy, except that:
1: the alpha animation variable is set to Zero,
2: the value for the alpha animation increment is Sub

tracted, and
3: the loop termination test is when the value for the alpha

animation variable is less than the value for the alpha
animation increment.

For the Group Five image rotate animation, a different
bitmap for the image object is created for each animation
frame through the use of a progression of standard geometri
cal transformations on the original image bitmap. A second
ary animation loop is then executed as defined by the number
ofanimation frames. In each loop iteration, an image object is
created from an appropriate image bitmap selected from
among the set just created, the necessary two-dimensional
variables are set to communicate with the draw system, and
the draw system is then called. The image animation thread
then executes a timer delay method based on the delay setting
as defined above with reference to FIG. 17. When the timer
reactivates the image animation thread after the appropriate
delay, the next iteration of the secondary animation loop is
repeated until the loop condition is met. Then the “stop'
method is called, certain status variables are set, and the
image animation thread terminates itself. This causes the
parent image time line thread to be reactivated through the
“join' mechanism.

Returning to process step 220 shown in FIG. 33, if the
object had a transformation, but not an animation, then certain
two-dimensional status variables are set, and an “instance' of
the “transformation class' for that particular object type is
created at 228. Each “transformation class” is also imple
mented with a “runnable' interface. An object transformation
thread is then created, utilizing the invention's two-dimen
sional object internal database architecture. This object trans
formation thread is then “started'. The inter-thread commu
nication technology and the join' technology employed for
object transformations is the same as for object animations.

If the transformation is being applied to a text button object
at 228, then a timer delay method is executed based on the
delay setting as described in association with FIG. 18. When
the timer reactivates the text button transformation thread
after the appropriate delay, the appropriate two-dimensional
status variables are set to inform the draw system which state
of the current text button object to draw. The draw system is
called and, based on the settings for the above mentioned
two-dimensional status variables, either the “normal, mouse
over, mouse down” or “pop-up' states of the text button
object's background, if any, the text button object's String,
and the 3D frame, if any, are drawn. If additional transforma
tions are defined (FIG. 18), the above process is repeated,
based on the timer delay and object states defined for the
Subsequent transformations. When the last transformation is
completed, the “stop' method is called, which sets the
required status variables as appropriate. This causes the par
ent text button time line thread to be reactivated through the
join' mechanism.
If the transformation is being applied to an image object at

228, then a timer delay method is executed based on the delay
setting (as defined in FIG. 18). When the timer reactivates the
image transformation thread after the appropriate delay,
image transformation technology is executed. In one imple

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 396 of 548

US 7,594,168 B2
57

mentation, the image transformation technology utilizes the
“alpha value of a given image object state in order to fade in
and fade out images. The alpha value can range from 0 to 255,
depending upon the image strength desired. The value for an
alpha transformation increment variable is calculated by
dividing the resolution of the transformation into 255, after
making the necessary adjustments to keep the data in integer
form, without losing resolution due to integer rounding
errors. The value of an alpha transformation variable is set to
Zero. Depending upon the settings as defined in FIG. 18, the
bitmap for one image object state is initialized to an alpha
value of Zero, while another is initialized to an alpha value of
255. The appropriate two-dimensional status variables are set
for communication with the draw system.
A transformation loop is then executed, until 255 minus the

then current value of the alpha transformation variable is less
than the value alpha transformation increment variable. This
methodology again keeps all calculations in the form of inte
gers, as opposed to floating point, thus speeding up the trans
formation process.
Two "Fade In' image filters are created for each iteration of

the transformation loop. The first uses an alpha value calcu
lated at the current setting of the alpha transformation vari
able. The second uses an alpha value calculated at 255 minus
the current setting of the alpha transformation variable. Two
image producers are also created with pointers to the last
image bitmap produced for each image object state in the last
transformation loop and to the two image filters that had just
been created. The two image producers under the control of
two media trackers then create two new image bitmaps. The
transformation thread then “waits” for the completion of
these two image processing events using the media trackers.
Upon completion, the draw system is called which draws the
then current state of the two image object states, in the correct
order, and in the correct location. The image transformation
thread goes into a timer delay of some preset value (500
milliseconds in one implementation), to permit a smooth
visual transformation effect. The loop is then repeated until
the loop condition is met. Then the “stop' method is called,
certain status variables are set, and the image transformation
thread terminates itself. This causes the parent image time
line thread to be reactivated through the join' mechanism.

Returning to process step 220 in FIG.33, if the object was
defined with an animation and transformation that would
execute in a serial manner, then certain two-dimensional sta
tus variables are set, and an “instance' of the “transforma
tion' class for that particular object type is created at 230. An
object transformation thread is then created, utilizing the
two-dimensional object internal database architecture. This
object transformation thread is then “started and the parent
object time line thread “waits' to be joined'.

If a text button object, then a primary loop is executed, with
the number of iterations set to the number of transformations.
After the execution and return from a timer delay event, ifany,
an “instance' of the text button animation class is created, and
then a text button animation thread is created and “started'.
The parent text button transformation thread then waits to be
joined. This causes the text button animation thread to be

executed, in the manner described at 229. When the text
button animation thread completes its execution, it calls its
“stop' method, which sets the necessary status variables and
then terminates itself. This causes the text button animation
thread to join the parent text button animation thread, caus
ing that thread to resume processing. The first text button
transformation is then executed, in the manner described at
228. After the execution and return from another timer delay
event, if any, another “instance' of the text button animation

10

15

25

30

35

40

45

50

55

60

65

58
class is created, and then another text button animation thread
is created and “started. The parent text button transformation
thread again waits to be joined'. This causes the text button
animation thread to be executed again with the animation
being executed, based on the definition set at FIG. 18, on a
different text button object state. The loop is then repeated
until the last text button transformation is completed. Then
the text button transformation thread calls its “stop' method,
certain status variables are set, and the text button transfor
mation thread terminates itself. This causes the parent text
button time line thread to be reactivated through the join'
mechanism.

If an image object, the mechanism of the image transfor
mation thread spawns image animation threads, before each
transformation, and is the same as that of a text button object.
The actual image transformation process is identical to that
described at 228. When completed the “stop' method is
called, certain status variables are set, and the image trans
formation thread terminates itself. This causes the parent
image time line thread to be reactivated through the join'
mechanism.

Returning to process step 220 in FIG. 33, if the object was
defined with a simultaneous animation and transformation,
then certain two-dimensional status variables are set, and an
“instance' of the “super transformation class' for that par
ticular object type is created at 231. In one implementation,
the animation, transformation, and Super transformation
classes are integrated into one structure in order to reduce
code size and increase execution speed. Each “Super trans
formation class” is also implemented with a “runnable' inter
face. An object Super transformation thread is then created,
utilizing the two-dimensional object internal database archi
tecture. This object super transformation thread is then
“started”. The inter-thread communication technology and
the join' technology employed for object Super transforma
tions is the same as for object transformations.

If a text button object, a calculation is made in order to
prorate the text button animation process across the defined
text button transformation process. The calculation is driven
by the number of text button animation frames, and prorates
from that total the number of frames that should be assigned
to each transformation state. This can be done by dividing the
sum of all the transformation times by each individual trans
formation time, and multiplying that result by the number of
frames, making necessary adjustments to prevent integer
rounding error. After these calculations are completed, the
text button animation is executed in a similar manner as was
defined at 229. However, when the appropriate number of
animation frames had been drawn, certain two-dimensional
status variables are set prior to calling the draw system for the
next animation frame, so that the correct text button object
state is drawn, in the correct size and with the correct coor
dinates, by the draw system. When the super transformation
process is completed the “stop' method is called, certain
status variables are set, and the text button Super transforma
tion threadterminates itself. This causes the parent text button
time line thread to be reactivated through the join' mecha
nism.

If an image object, a calculation is made in order to prorate
the image animation process across the defined image trans
formation process. The calculation is driven by the number of
image transformation events that would occur (where each
one can be set at approximately 500 milliseconds) over the
entire animation event. A calculation is performed in order to
calculate how many image transformation events should be
assigned to each transformation state. This is done by divid
ing the sum of all the transformation times by each individual

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 397 of 548

US 7,594,168 B2
59

transformation time, and multiplying that result by the total
number of transformation events, making necessary adjust
ments to prevent integer rounding error. A calculation is then
made to allocate the number of animation frames to each
image transformation event. After these calculations are com
pleted, the image animation is executed in a similar manner as
was defined at 229. However, when the appropriate number of
animation frames had been drawn, the image transformation
technology is called to perform the next transformation event.
The alpha transformation increment can be defined by divid
ing 255 by the number of transformation events assigned to
that transformation. The draw system is then called. When the
number of image transformation events assigned to a given
image transformation is reached, then certain two-dimen
sional status variables are set prior to calling the draw system
for the next animation frame, so that the correct image states,
in the correct size and with the correct coordinates, are uti
lized by the draw system. This entire animation/transforma
tion process will be repeated by the number of image anima
tion cycles. When the Super transformation process is
completed the “stop' method is called, certain status vari
ables are set, and the text button Super transformation thread
terminates itself. This causes the parent text button time line
thread to be reactivated through the join' mechanism.

Returning to process step 219 in FIG.33, if the object had
a time line, then a test is made at 221 on whether an appear
ance delay had been defined in FIG. 19. If so, a timer event is
set at 222.
When the timer reactivates the object time line thread after

the appropriate delay, a test is made on whether an entry
animation/transformation has been defined for this object
time line at 224, as described FIG. 19. If so, based which
animation/transformation process was defined, it is created
and executed at 228, 229, 230, or 231. In one implementation,
13 entry animations are supported for both text button and
image objects, and an additional "Fade In' entry animation is
Supported for image objects. The 13 common entry anima
tions supported include Zoom In, Grow NW. Grow NE, Grow
SE, Grow SW, EnterN, EnterNE, Enter E, Enter SE, Enter S,
Enter SW, Enter W and Enter NW

If no entry animation/transformation is defined, or when
the entry animation/transformation has joined the object
time line thread, a test is made to determine if any child time
lines have been defined at 225, as described in FIG. 19, for
this parent object time line. If so, an “instance' of the “child
timeline class' for that particular object type is created at 226.
Each "child time line class” is also implemented with a “run
nable' interface. An object child time line thread is then
created, utilizing the two-dimensional object internal data
base architecture. This object child time line thread is then
“started”. The inter-thread communication technology and
the join' technology employed for object child time lines is
the same as for object time lines. Either a text button child
time line thread or an image child time line thread, or both,
can be spawned at this time.

Simultaneous with the execution of any spawned text but
ton child time line threads, the parent object thread then
executes the defined main animation and or transformation.
As with non-time line object threads, a test is made on certain
two-dimensional object definition variables in order to deter
mine which of the following four states have been defined for
the object at 227: animation without a transformation; trans
formation without animation; animation, with the transfor
mation occurring simultaneously with the animation; and,
animation and transformations occurring in a serial manner.

Based on the results of this test, an appropriate “instance'
of an appropriate animation, transformation, or Super trans

10

15

25

30

35

40

45

50

55

60

65

60
formation class is created, and an appropriate animation,
transformation, or Super transformation thread is created and
“started”. This results in the execution of process steps 228,
229, 230, or 231, as defined above.
The parent object time line thread then executes a join'

method. This again puts the object time line thread in a “wait
state'. When the thread it is waiting for is completed, the child
thread joins the parent object time line thread, and the
object time line thread then continues its process.
The object time line thread then checks to see if there is a

departure delay defined at 232. If so, it sets a timer event at
233. When the timer reactivates the object time line thread
after the appropriate delay, a test is made at 234 on whetheran
exit animation/transformation has been defined for this object
time line, as described in FIG. 19. If so, it is created at 235,
and performed as discussed with reference to processes 228,
229, 230, or 231. In one implementation, 13 exit animations
Supported for both text button and image objects, and an
additional “Fade Out’ exit animation is supported for image
objects. The 13 common exit animations include: Zoom Out,
Shrink NW, Shrink NE, Shrink SE, Shrink SW, Exit N, Exit
NE, Exit E, Exit SE, Exit S, Exit SW, Exit W and Exit NW.

If no exit animation/transformation is defined, or when the
exit animation/transformation has joined the object time
line thread, the parent object time line thread then executes a
join' method if it had spawned any child time lines. This

again puts the object time line thread in a “wait state'. Finally,
when then the child time line threads, if any, join the parent
object time line, the “stop' method for the parent time line is
called. Certain status variables are set, and the parent object
time line thread terminates itself. This causes the main web
page timeline that had been in a "join” loop at 211 of FIG.31,
since the invocation of the object time lines, to be joined by
this particular object time line thread.

FIG. 34 shows the technology employed by the run time
engine for implementing child time lines for text button and
image objects. Child text button object time lines and child
image object time lines are subsets of their parent object time
lines. First a test is made at 237 on whether an appearance
delay had been defined (See FIG. 19). If so, a timer event is set
at 238. When the timer reactivates the child object time line
thread after the appropriate delay, a test is made on whetheran
entry animation has been defined for this child object time
line at 239 (as described FIG. 19). If so, it is created and
executed at 240 in a manner identical to that described at
process step 229 in FIG. 33. The same 13 entry animations
Supported for parent object time lines are also supported for
both child text button and image objects, and the additional
"Fade In' entry animation is supported for child image
objects. The join' mechanism described in FIG. 33 is
employed in an identical manner at 240 to synchronize the
child time line thread with its entry animation thread.

After being joined and reactivated, the child object time
line performs a test at 241 on whether an exit delay had been
defined (See FIG. 19). If so, a timer event is set at 242. When
the timer reactivates the child object timeline thread after the
appropriate delay, a test is made on whether an exit animation
has been defined for this child object time line at 243, as
described in association with FIG. 19. If so, it is created and
executed at 244 in a manner identical to that described above
at process step 229 in FIG. 33. The same 13 exit animations
Supported for parent object time lines are also supported for
both child text button and image objects, and the additional
"Fade Out’ exit animation is supported for child image
objects. The join' mechanism described above in associa
tion with FIG.33 is employed in an identical manner at 245 to
synchronize the child time line thread with its parent object

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 398 of 548

US 7,594,168 B2
61

time line thread. As discussed at process step 236 in FIG. 35.
the parent object time lines “wait until all their child time
lines have terminated, before they in turn terminate and join'
the main web page time line at FIG. 35.

FIG. 35 describes technology employed by the run time
engine for the web page and object thread loop. As noted in
FIG.31 at process step 211, after all the text button and image
time line threads for the current web page had been launched,
the main web page thread executed a join' loop, waiting for
the completion of all the parent object time line threads.
Because each parent object time line thread waited for their
child object time line threads to be joined, as well as any
other spawned animation threads, transformation threads,
and/or super transformation threads, the effect of this join'
loop at 246 is that the web page thread will not resume
processing until all parent time line threads have completed
and that of all of their spawned threads.
Upon resuming its processing after the join' process at

246 has been completed, the main web page thread checks at
247 to see whether the current web page has an automatic
termination, based on a timer delay, or whether the web page
will wait for a user interaction before terminating.

If the web page has a time delay based termination setting,
then a timer method is called at 249, and the web page goes to
“sleep' awaiting the completion of the timer event.
When the timer event occurs, the web page thread resumes

processing by incrementing the web page counter by one, and
the entire web page process, which began at process step 200
in FIG. 31, is repeated. If the current web page termination
setting was to set to wait until user interaction, then Web page
thread is placed in a “pause state, and the run time engine
waits to respond to any mouse, keyboard or other user initi
ated event.

FIG. 36 describes the technology employed by the run time
engine for responding to user interactions. As mentioned in
association with process step 204 of FIG. 31, as soon as the
draw system has been activated, the run time engine will
respond to any user interactions that have been defined (See
FIG. 16). This is also true during any object time line events,
as with respect to process step 207 of FIG. 31. The run time
engine currently responds to “mouse over and “mouse
down” events for text button, image, and paragraph objects.
For form objects, the run time engine will also respond to
keyboard events. As the full-featured programming lan
guages Supported by browsers evolve, the run time engine
may be configured to respond to other user interactions,
including but not limited to single and double clicks from
both the left and right mouse button, Voice commands, eye
focusing technologies, touch screen technologies, and push
technologies originating from a server.

The run time engine invokes a “dynamic mouse to object
recognition” technology at 251 in order to be responsive to
the following elements:

1: The location of objects will vary based on the viewer's
Screen resolution and browser window size as discussed
above with regard to FIG. 27.

2: Objects may move or resize themselves based on time
lines and animations.

3: Objects may have different sizes based on the state they
are being displayed in based on time lines and transfor
mations.

4: More than one object can occupy the same screen loca
tion, and which objects occupy that location may change
over time based on time lines, animations, and transfor
mations.

The run time engine maintains, in its internal database, the
objects current X and Y origin coordinates, and the objects

10

15

25

30

35

40

45

50

55

60

65

62
current width and height, in pixels, based on the current
viewer's screen and browser window size. This can be accom
plished by first converting all coordinates and sizes to the
current viewer environment with the Scaling technology as
discussed above with regard to FIG. 27. Every time line,
animation, and transformation thread updates, in real time,
the run time engine's internal database positional and size
variables of the objects they define, utilizing the data com
munication techniques described above with reference to
FIG. 33.
The run time engine employs mouseRnter, mouseMove,

mouse own, mouseCrag, mouseUp, and mouseRxit meth
ods to constantly monitor the state of the mouse at all times.
The onClick method (to detect a single click) and a special
ized method to detect a double click event are also employed.
The on KeyDown method, with processing the returned scan
code, permits the run time engine to process all keyboard
events. The mouseBnter, mouseMove, mouse own, mouse
Drag, mouseUp, and mouseBXit methods return to the run
time engine the exactX and Y coordinates of the mouse cursor
at the instant that particular mouse event occurred. Thus for
each Supported mouse based user interaction technique Sup
ported by the run time engine, a two-dimensional loop exists
(web page number by object number) in which the current
bounding rectangle for every object on a given web page is
being compared to the current mouse cursor location at all
times. The bounding rectangle is simply the current X and Y
origin coordinates of an object, extended by its current width
and height. In this way, the run time engine is informed if the
current mouse cursor location falls within one or more bound
ing rectangles. Parenthetically, the run time engine also
knows when the current mouse cursor falls outside the bound
ing rectangle of a given object.

Based on the type of mouse user interaction at 252, the run
time engine employs different techniques and executes dif
ferent methods. If the viewer moves the mouse at 253, the
mouseMove method informs the run time engine immedi
ately of this event and the current mouse cursor coordinates.

If this user mouse move action caused the mouse to move
into one or more bounding rectangles of any text button or
image object(s) at 254, or out of one or more bounding rect
angles of any text button or image object(s) at 255, then
appropriate two-dimensional status variables are set and the
draw system is called. The draw system interprets the relevant
two-dimensional variables for the existing text button and
image object(s) on the current web page in its draw loop as
described above with reference to FIG. 16, and draws the
correct backgrounds, text strings, images, and 3D frames
based on the state of each object, as just set by the “mouse
Move' computational two-dimensional loop. If the mouse
has entered into or out of the bounding rectangles of any
image and/or text button object that has a defined text button,
image and/or video pop-up object (See FIG. 16), then the
draw system paints or effectively erases the appropriate back
ground, text string, images and/or 3D frame for these pop-up
objects. If the location of any of these text button and image
objects or child pop-up objects is changing over time because
of time line, animation, or transformation threads, the draw
system, as described in association with FIG.33 and FIG.34,
is aware of these dynamics, and redraws the screen as these
real time events occur. If any sound or video events were
defined (See FIG. 16) for any text button or image objects,
then the run time engine plays those Sound and/or video files
or channels as defined. As multiple objects can be defined that
each have associated Sound (and even video) files, and these
objects can be overlaid on each other, either completely or
partially, very interesting synchronized multiple Soundtracks

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 399 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 400 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 401 of 548

EXHIBIT C

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 402 of 548

US009063755B2

(12) United States Patent (10) Patent No.: US 9,063,755 B2
Rempell et al. (45) Date of Patent: Jun. 23, 2015

(54) SYSTEMS AND METHODS FOR (52) U.S. Cl.
PRESENTING INFORMATION ON MOBILE CPC G06F 9/4443 (2013.01)
DEVICES (58) Field of Classification Search

CPC ... GO6F 3/048
(75) Inventors: Steven H. Rempell, Novato, CA (US); USPC .. 71.5/738

David Chrobak, Clayton, CA (US); Ken
Brown, San Martin, CA (US)

(73) Assignee: Express Mobile, inc., Novato, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 154 days.

(21) Appl. No.: 12/936,395

(22) PCT Filed: Apr. 6, 2009

(86). PCT No.: PCT/US2009/039695

S371 (c)(1),
(2), (4) Date: Nov. 3, 2010

(87) PCT Pub. No.: WO2009/126591
PCT Pub. Date: Oct. 15, 2009

(65) Prior Publication Data

US 2011 FO1 O7227A1 May 5, 2011

Related U.S. Application Data
(60) Provisional application No. 61/166.651, filed on Apr.

3, 2009, provisional application No. 61/113,471, filed
on Nov. 11, 2008, provisional application No.
61/123,438, filed on Apr. 7, 2008.

(51) Int. Cl.

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0055017 A1* 3/2004 Delpuchet al. 725/110
2004/0163020 A1* 8, 2004 Sidman 714,100
2005, 01499.35 A1* 7, 2005 Benedetti 718, 102
2005/0273705 A1* 12/2005 McCain T15,513
2006/0063518 A1 3/2006 Paddon et al. 455,418

OTHER PUBLICATIONS

Stina Nylander etal. “The Ubiquitous Interactor-Device Independent
Access to MobileServices” (Computer-Aided Design for User Inter
faces IV, Proceedings of the Fifth International Conference on Com
puter-Aided Design of User Interfaces CADUI 2004, Jan. 2004, pp.
271-282).*

* cited by examiner

Primary Examiner — Jennifer To
Assistant Examiner — Xuyang Xia
(74) Attorney, Agent, or Firm — Steven R. Vosen

(57) ABSTRACT

Embodiments of a system and method are described for gen
erating and distributing programming to mobile devices over
a network. Devices are provided with Players specific to each
device and Applications that are device independent.
Embodiments include a full-featured WYSIWYG authoring
environment, including the ability to bind web components to

G06F 3/048 (2013.01) objects.
G06F 9/44 (2006.01)
G06F 9/45 (2006.01) 28 Claims, 18 Drawing Sheets

OO y

A

110 Authoring — 120 Server
Platform ------------------------121 Network

11 Memory Interface

12 Auerns 123 Memory

114 Devi 25 Processor
Routines

13 Processor

17 input
Device

Content
140 Server
14 Network

"s.

131 Network
Interface

133 Memory

terface Processor

143 Memory

145 Processor

137 Screen

139 input
device

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 403 of 548

U.S. Patent Jun. 23, 2015 Sheet 1 of 18 US 9,063,755 B2

OO
N

1 O Authoring
Patform

-------------------------- . 121 Network
interface 111 Memory

112 Authoring
Too

114 Device
Routines

3 Processor

11

B-1

31 Metwork
interface

FG. A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 404 of 548

U.S. Patent Jun. 23, 2015 Sheet 2 of 18 US 9,063,755 B2

OO
N 1 O Authoring

C-1, R-1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 405 of 548

U.S. Patent Jun. 23, 2015 Sheet 3 of 18 US 9,063,755 B2

2OO
N

Players
y O.

Authoring
Platform

Lpad Registry
Applications

Access Y. W. Y

Registry 220
WebComponent

Registry

W Deploy

Applications Registry

Web

210 Response
Director

Request
Proxy

HTP/XM
Request
and

Response
230

Web Service

FG. 2A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 406 of 548

US 9,063,755 B2 Sheet 4 of 18 Jun. 23, 2015 U.S. Patent

JOSS3DO)

8 Z '91-'

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 407 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 408 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 409 of 548

U.S. Patent Jun. 23, 2015 Sheet 7 of 18 US 9,063,755 B2

--
309b

SS

Soto Exterisai Nei Page sepiacing Crest Fame
{SE} xSassages age 388.8 is a Se; iii.38
Sato a specific page Fiest

$8 Exissates age Sesiacing Saci Fiasis
$goto the next Page view
Execisie JavaScriptiletics
assessessie age is ext:

Execisie & Applicatics
G8 is a Specisi: Side is a Page siew

£isis:
Exit Player
Piace psafe Cai
Sessi Sising 8 FIRE
Sasi Siig is ERE { SYasic says

* -

309b3
Šssascaissatastise Seigs is:se Sisie
Stsiastiaissaries
Sisatiss Esty Sssssssss
Eisaite Series listeres
Sisi is R.

Tessia Cities as RE
iiie SS-Seister Cities

Object Selected Audio Settings 309b.4
ar, R. Sise

Object Selected: Text Field

FG. 3C

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 410 of 548

U.S. Patent Jun. 23, 2015 Sheet 8 of 18 US 9,063,755 B2

Š S. S
w

Šiš

Sco Sigis
SSESS

Šišiliš'

FG. 3D

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 411 of 548

U.S. Patent Jun. 23, 2015

309e

Y
eis (aparter at set Servi

Sheet 9 of 18 US 9,063,755 B2

Attributes Exposed
S 309e2 S

S

309es tagse assie

Seise
309e8 Retsie's is

seat Siege
sex.

as :

ite fee

309e11

309e12

w

Operatio: 3O9e1 O
S 8 s N r Sesii: "r
S.a & S . sas

309e9

FG.3E

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 412 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 413 of 548

US 9,063,755 B2 Sheet 11 of 18 Jun. 23, 2015

/8 ||

U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 414 of 548

US 9,063,755 B2 Sheet 12 of 18 Jun. 23, 2015 U.S. Patent

pZOG ?ZOG

DZOG

CIZOGZ09

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 415 of 548

U.S. Patent Jun. 23, 2015 Sheet 13 of 18 US 9,063,755 B2

700

7O 1 a

701b.

701 d

FG. 7

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 416 of 548

U.S. Patent Jun. 23, 2015 Sheet 14 of 18 US 9,063,755 B2

8OO
N

8O1
Website System

8O3.
SMS Server "

805

Content Server

Promo Code

805
Content Server

FG. 9

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 417 of 548

U.S. Patent Jun. 23, 2015 Sheet 15 of 18 US 9,063,755 B2

OOO
N

isis
Qafter
$8$8y

OO
& 8:::::::::8: O

Atemiss RaF
& Es: O2

O3
O4.

O6

1 O 5
Of

O8

O 9

O2)

Sassasax assawaxas O2

iyassi: V.
is: Carter Serger

F.G. 1 O

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 418 of 548

US 9,063,755 B2 Sheet 16 of 18 Jun. 23, 2015 U.S. Patent

%

65 ? ?

&zzzºzzzzzzzzzzzzzzzzzzz
s

sy Syssssssssssss

88 || ||

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 419 of 548

US 9,063,755 B2

::

U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 420 of 548

U.S. Patent Jun. 23, 2015 Sheet 18 of 18 US 9,063,755 B2

Receive easier
SSSSSSSSSSSSS3&SSSSSSSSSSSSSS3&SSSSSSSSSSSSSS3&S

Exisery for
& ice &&isities
Operator aid acaie

SSSSSSSSSS&S

S&reate

2 O

Respoise Eirector

tiery and Receive
JRi. for atching Player

Bewice Appropriate isye iristaii

payer Profile
at&tas

305
\

Player Build Process
Generate Fayets for a:

Asfact: it pi&;8&ntatios

FG, 3

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 421 of 548

US 9,063,755 B2
1.

SYSTEMS AND METHODS FOR
PRESENTING INFORMATION ON MOBILE

DEVICES

TECHNICAL FIELD

The present invention generally relates to providing soft
ware for mobile devices, and more particularly to a method
and system for authoring Applications for devices.

BACKGROUND ART

Internet-connected mobile devices are becoming ever
more popular. While these devices provide portability to the
Internet, they generally do not have the capabilities of non
mobile devices including computing, input and output capa
bilities.

In addition, the mobility of the user while using such
devices provides challenges and opportunities for the use of
the Internet. Further, unlike non-mobile devices, there are a
large number of types of devices and they tend to have a
shorter lifetime in the marketplace. The programming of the
myriad of mobile devices is a time-consuming and expensive
proposition, thus limiting the ability of service providers to
update the capabilities of mobile devices.

Thus there is a need in the art for a method and apparatus
that permits for the efficient programming of mobile devices.
Such a method and apparatus should be easy to use and
provide output for a variety of devices.

DISCLOSURE OF INVENTION

In certain embodiments, a system is provided to generate
code to provide content on a display of a platform. The system
includes a database of web services obtainable over a network
and an authoring tool. The authoring tool is configured to
define an object for presentation on the display, select a com
ponent of a web service included in said database, associate
said object with said selected component, and produce code
that, when executed on the platform, provides said selected
component on the display of the platform.

In certain other embodiments, a method is provided for
providing information to platforms on a network. The method
includes accepting a first code over the network, where said
first code is platform-dependent; providing a second code
over the network, where said second code is platform-inde
pendent; and executing said first code and said second code
on the platform to provide web components obtained over the
network.

In certain embodiments, a method for displaying content
on a platform utilizing a database of web services obtainable
over a network is provided. The method includes: defining an
object for presentation on the display; selecting a component
of a web service included in said database; associating said
object with said selected component; and producing code
that, when executed on the platform, provides said selected
component on the display of the platform.

In one embodiment, one of the codes is a Player, which is
a thin client architecture that operates in a language that
manages resources efficiently, is extensible, Supports a robust
application model, and has no device specific dependencies.
In another embodiment, Player P is light weight and extends
the operating system and/or virtual machine of the device to:
Manage all applications and application upgrades, and
resolve device, operating system, VM and language fragmen
tation.

10

15

25

30

35

40

45

50

55

60

65

2
In another embodiment, one of the codes is an Application

that is a device independent code that interpreted by the
Player.

These features together with the various ancillary provi
sions and features which will become apparent to those
skilled in the art from the following detailed description, are
attained by the system and method of the present invention,
preferred embodiments thereof being shown with reference
to the accompanying drawings, by way of example only,
wherein:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is an illustrative schematic of one embodiment of
a system including an authoring platform and a server for
providing programming instructions to a device over a net
work;
FIG.1B is schematic of an alternative embodiment system

for providing programming instructions to device over a net
work;

FIG. 2A is a schematic of an embodiment of system illus
trating the communications between different system com
ponents;

FIG. 2B is a schematic of one embodiment of a device
illustrating an embodiment of the programming generated by
authoring platform;

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface as it appears, for example and without limitation, on
a screen while executing an authoring tool;

FIG. 3C illustrates an embodiment of the Events Tab'
FIG. 3D illustrates one embodiment of an Animation Tab:
FIG.3E illustrates one embodiment of Bindings Tab:
FIG.3F illustrates one embodiment of a pop-up menu for

adding web components;
FIG. 4A shows a publisher interface having a layout on a

canvas; and FIG. 4B shows a device having the resulting
layout on a device Screen;

FIG. 5 shows a display of launch strips:
FIG. 6A is a display of a Channel Selection List:
FIG. 6B is a display of a Widget Selection List;
FIG. 6C is a display of a Phone List:
FIG. 7 shows a display of a mash-up:
FIG. 8 is a schematic of an embodiment of a push capable

system;
FIG. 9 is a schematic of an alternative embodiment of a

push capable system;
FIG. 10 is a schematic of one embodiment of a feed col

lector;
FIG. 11 is a schematic of an embodiment of a Mobile

Content Gateway;
FIG. 12 is a schematic of one embodiment of a system that

includes a response director, a user agent database, an IP
address database, and a file database; and

FIG. 13 is a schematic of another embodiment of a system
that includes a response director, a user agent database, an IP
address database, and a file database.

Reference symbols are used in the Figures to indicate cer
tain components, aspects or features shown therein, with
reference symbols common to more than one Figure indicat
ing like components, aspects or features shown therein.

MODE(S) FORCARRYING OUT THE
INVENTION

FIG. 1A is an illustrative schematic of one embodiment of
a system 100 including an authoring platform 110 and a
server 120 for providing programming instructions to a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 422 of 548

US 9,063,755 B2
3

device 130 over a network N. In one embodiment, device 130
is a wireless device, and network N includes wireless com
munication to the device. Alternatively, system 100 may pro
vide access over network N to other information, data, or
content, such as obtainable as a web service over the Internet.
In general, a user of authoring platform 110 may produce
programming instructions or files that may be transmitted
over network N to operate device 130, including instructions
or files that are sent to device 130 and/or server 120. The result
of the authoring process is also referred to herein, and without
limitation, as publishing an Application.

Embodiments include one or more databases that store
information related to one or more devices 130 and/or the
content provided to the devices. It is understood that such
databases may reside on any computer or computer system on
networkN, and that, in particular, the location is not limited to
any particular server, for example.

Device 130 may be, for example and without limitation, a
cellular telephone or a portable digital assistant, includes a
network interface 131, a memory 133, a processor 135, a
screen 137, and an input device 139. Network interface 131 is
used by device 130 to communication over a wireless net
work, such as a cellular telephone network, a WiFi network or
a WiMax network, and then to other telephones through a
public switched telephone network (PSTN) or to a satellite, or
over the Internet. Memory 133 includes programming
required to operate device 130 (such as an operating system or
virtual machine instructions), and may include portions that
store information or programming instructions obtained over
network interface 131, or that are input by the user (such as
telephone numbers or images from a device camera (not
shown). In one embodiment screen 137 is a touch screen,
providing the functions of the screen and input device 139.

Authoring platform 110 includes a computer or computer
system having a memory 111, a processor 113, a screen 115,
and an input device 117. It is to be understood that memory
111, processor 113, screen 115, and input device 117 are
configured such a program stored in the memory may be
executed by the processor to accept input from the input
device and display information on the screen. Further, the
program stored in memory 111 may also instruct authoring
platform 110 to provide programming or information, as indi
cated by the line labeled “A” and to receive information, as
indicated by the line labeled “B”
Memory 111 is shown schematically as including a stored

program referred to herein, and without limitation, as an
authoring tool 112. In one embodiment, authoring tool 112 is
a graphical system for designing the layout of features as a
display that is to appear on screen 137. One example of
authoring tool 112 is the CDERTM publishing platform (Ex
press Mobile, Inc., Novato, Calif.).

In another embodiment, which is not meant to limit the
scope of the present invention, device 130 may include an
operating system having a platform that can interpret certain
routines. Memory 111 may optionally include programming
referred to herein, and without limitation, as routines 114 that
are executable on device 130.

Routines 114 may include device-specific routines—that
is, codes that are specific to the operating system, program
ming language, or platform of specific devices 130, and may
include, but are not limited to, Java, Windows Mobile, Brew,
Symbian OS, or Open Handset Alliance (OHA). Several
examples and embodiments herein are described with refer
ence to the use of Java. It is to be understood that the invention
is not so limited, except as provided in the claims, and that one
skilled in the art could provide Players for devices using
routines provided on a platform. Thus as an example, routines

5

10

15

25

30

35

40

45

50

55

60

65

4
114 may include Java APIs and an authoring tool System
Development Kit (SDK) for specific devices 130.

Server 120 is a computer or computer system that includes
a network interface 121, a memory 123. and a processor 125.
Is to be understood that network interface 121, memory 123,
and processor 125 are configured such that a program stored
in the memory may be executed by the processor to: accept
input and/or provide output to authoring platform 110; accept
input and/or provide output through network interface 121
over network N to network interface 131; or store information
from authoring platform 110 or from device 130 for transmis
sion to another device or system at a later time.

In one embodiment, authoring platform 110 permits a user
to design desired displays for screen 137 and actions of device
130. In other words, authoring platform 110 is used to pro
gram the operation of device 130. In another embodiment,
authoring platform 110 allows a user to provide input for the
design of one or more device displays and may further allow
the user to save the designs as device specific Applications.
The Applications may be stored in memory 123 and may then
be sent, when requested by device 130 or when the device is
otherwise accessible, over network N, through network inter
face 130 for storage in memory 133.

In an alternative embodiment, analytics information from
devices 130 may be returned from device 130, through net
work N and server 120, back to authoring platform 110, as
indicated by line B, for later analysis. Analytics information
includes, but is not limited to, user demographics, time of day,
and location. The type of analytic content is only limited by
which listeners have been activated for which objects and for
which pages. Analytic content may include, but is not limited
to, player-side page view, player-side forms-based content,
player-side user interactions, and player-side object status.

Content server 140 is a computer or computer system that
includes a network interface 141, a memory 143. and a pro
cessor 145. It is to be understood that network interface 141,
memory 143, and processor 145 are configured such that a
stored program in the memory may be executed by the pro
cessor to accepts requests R from device 130 and provide
content C over a network, such as web server content the
Internet, to device 130.
FIG.1B is schematic of an alternative embodiment system

100 for providing programming instructions to device 130
over a network N that is generally similar to the system of
FIG. 1A. The embodiment of FIG. 1B illustrates that system
100 may include multiple servers 120 and/or multiple devices
130.

In the embodiment of FIG. 1B, system 100 is shown as
including two or more servers 120, shown illustratively and
without limitation as servers 120a and 120b. Thus some of the
programming or information between authoring platform
110 and one or more devices 130 may be stored, routed,
updated, or controlled by more than one server 120. In par
ticular, the systems and methods described herein may be
executed on one or more server 120.

Also shown in FIG. 1B are a plurality of devices 130,
shown illustratively and without limitation as device 130-1,
130-1,... 130-N. System 100 may thus direct communication
between individual server(s) 120 and specific device(s) 130.
As described subsequently, individual devices 130 may be

provided with program instructions which may be stored in
each device's memory 133 and where the instructions are
executed by each device's processor 135. Thus, for example,
server(s) 120 may provide device(s) 130 with programming
in response to the input of the uses of the individual devices.
Further, different devices 130 may be operable using different
sets of instructions, that is having one of a variety of different

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 423 of 548

US 9,063,755 B2
5

“device platforms. Differing device platforms may result,
for example and without limitation, to different operating
systems, different versions of an operating system, or differ
ent versions of virtual machines on the same operating sys
tem. In some embodiments, devices 130 are provided with
Some programming from authoring system 100 that is par
ticular to the device.

In one embodiment, system 100 provides permits a user of
authoring platform 110 to provide instructions to each of the
plurality of devices 130 in the form of a device- or device
platform specific instructions for processor 135 of the device,
referred to herein and without limitation as a “Player, and a
device-independent program, referred to herein and without
limitation as an "Application' Thus, for example, authoring
platform 110 may be used to generate programming for a
plurality of devices 130 having one of several different device
platforms. The programming is parsed into instructions used
by different device platforms and instructions that are inde
pendent of device platform. Thus in one embodiment, device
130 utilizes a Player and an Application to execute program
ming from authoring platform 110. A device having the cor
rect Player is then able to interpret and be programmed
according to the Application.

In one alternative embodiment, the Player is executed the
first time by device 130 (“activated') through an Application
directory. In another alternative embodiment, the Player is
activated by a web browser or other software on device 130.
In yet another alternative embodiment, Player is activated
through a signal to device 130 by a special telephone num
bers, such as a short code.
When the Application and the Player are provided to

memory 133, the functioning of device 130 may occur in
accordance with the desired programming. Thus in one
embodiment, the Application and Player includes program
ming instructions which may be stored in memory 133 and
which, when executed by processor 135, generate the
designed displays on screen 137. The Application and Player
may also include programming instructions which may be
stored in memory 133 and which provide instructions to
processor 135 to accept input from input device 139.

Authoring tool 112 may, for example, produce and store
within memory 111a plurality of Players (for different
devices 130) and a plurality of Applications for displaying
pages on all devices. The Players and Applications are then
stored on one or more servers 120 and then provided to
individual devices 130. In general, Applications are provided
to device 130 for each page of display or a some number of
pages. A Player need be provided once or updated as neces
sary, and thus may be used to display a large number of
Applications. This is advantageous for the authoring process,
since all of the device-dependent programming is provided to
a device only once (or possibly for Some Small number of
upgrades), permitting a smaller Application, which is the
same for each device 130.

Thus, for example and without limitation, in one embodi
ment, the Player transforms device-independent instructions
of the Application into device-specific instructions that are
executable by device 130. Thus, by way of example and
without limitation, the Application may include Java pro
gramming for generating a display on Screen 137, and the
Player may interpret the Java and instruct processor 135 to
produce the display according to the Application for execu
tion on a specific device 130 according to the device platform.
The Application may in general include, without limitation,
instructions for generating a display on Screen 137, instruc
tions for accepting input from input device 139, instructions

10

15

25

30

35

40

45

50

55

60

65

6
for interacting with a user of device 130, and/or instructions
for otherwise operating the device. Such as to place a tele
phone call.
The Application is preferably code in a device-independent

format, referred to herein and without limitation as a Portable
Description Language (PDL). The device's Player interprets
or executes the Application to generate one or more pages'
(Applications Pages') on a display as defined by the PDL.
The Player may include code that is device-specific—that it,
each device is provided with a Player that is used in the
interpretation and execution of Applications. Authoring tool
112 may thus be used to design one or more device-indepen
dent Applications and may also include information on one or
more different devices 130 that can be used to generate a
Player that specific devices may use to generate displays from
the Application.

In one embodiment, system 100 provides Players and
Applications to one server 120, as in FIG. 1A. In another
embodiment, system 100 provides Players to a first server
120a and Applications to a second server 120b, as in FIG. 1B.

In one embodiment, authoring tool 112 may be used to
program a plurality of different devices 130, and routines 114
may include device-specific routines. In another embodi
ment, the Player is of the type that is commonly referred to as
a “thin client’ that is, software for running on the device as
a client in client-server architecture with a device network
which depends primarily on a central server for processing
activities, and mainly focuses on conveying input and output
between the user and the server.

In one embodiment, authoring platform 110 allows user to
arrange objects for display on screen. A graphical user inter
face (“GUI. or “UI) is particularly well suited to arranging
objects, but is not necessary. The objects may correspond to
one or more of an input object, an output object, an action
object, or may be a decorative display, Such as a logo, or
background color or pattern, such as a solid or gradient fill. In
another embodiment, authoring platform 110 also permits a
user to assign actions to one or more of an input object, an
output object, oran action object. In yet another embodiment,
authoring platform 110 also permits a user to bind one or
more of an input object, an output object, or an action object
with web services or web components, or permits a user to
provide instructions to processor 135 to store or modify infor
mation in memory 133, to navigate to another display or
service, or to perform other actions, such as dialing a tele
phone number.

In certain embodiments, the applicant model used in devel
oping and providing Applications is a PDL. The PDL can be
conceptually viewed as a device, operating system and virtual
machine agnostic representation of Java serialized objects. In
certain embodiments, the PDL is the common language for
authoring tool 112, the Application, and Player. Thus while
either designing the Application with the authoring tool 112,
or programming with the SDK, the internal representation of
the programming logic is in Java. In one embodiment the
SDK is used within a multi-language Software development
platform comprising an IDE and a plug-in system to extend it,
such as the Eclipse Integrated Development Environment
(see, for example, http://www.eclipse.org/). At publish time
the Java code is translated into a PDL. This translation may
also occur in real-time during the execution of any Web Ser
vices or backend business logic that interacts with the user.
One embodiment for compacting data that may be used is

described in U.S. Pat. No. 6,546,397 to Rempell (“Rempell”),
the contents of which are incorporated herein by reference. In
that patent the compressed data is described as being a data

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 424 of 548

US 9,063,755 B2
7

base. The terminology used here is a PDL, that is the “internal
database' of Rempell is equivalent to the PDL of the present
Application.
The use of a PDL, as described in Rempell, permits for

efficient code and data compaction. Code, as well as vector,
integer and Boolean data may be compacted and then com
pressed resulting in a size reduction of 40 to 80 times that of
the original Java serialized objects. This is important not only
for performance over the network but for utilizing the virtual
memory manager of the Player more efficiently. As an
example, the reassembled primitives of the Java objects may
first undergo logical compression, followed by LZ encoding.
The use of a PDL also provides virtual machine and oper

ating system independence. Since the reassembled primitives
of the Application no longer have any dependencies from the
original programming language (Java) that they were defined
in. The PDL architecture takes full advantage of this by
abstracting all the virtual machine and/or operating system
interfaces from the code that processes the PDL.

In one embodiment, the PDL is defined by the means of
nested arrays of primitives. Accordingly, the use of a PDL
provides extensibility and compatibility, with a minimal
amount of constraints in extending the Player seamlessly as
market demands and device capabilities continue to grow.
Compatibility with other languages is inherent based on the
various Player abstraction implementations, which may be,
for example and without limitation, Java CDC, J2SE or
MIDP2 implementations.

In one embodiment, the architecture of Player P includes
an abstraction interface that separates all device, operating
system and virtual machine dependencies from the Player's
Application model business logic (that is, the logic of the
server-side facilities) that extend the Application on the
Player so that it is efficiently integrated into a comprehensive
client/server Application. The use of an abstraction interface
permits the more efficient porting to other operating systems
and virtual machines and adding of extensions to the Appli
cation model so that a PDL can be implemented once and then
seamlessly propagated across all platform implementations.
The Application model includes all the currently supported
UI objects and their attributes and well as all of the various
events that are supported in the default Player. Further, less
robust platforms can be augmented by extending higher end
capabilities inside that platforms abstraction interface imple
mentation.

In one embodiment, authoring platform 110 provides one
or more pages, which may be provided in one Application, or
a plurality of Applications, which are stored in memory 123
and subsequently provided to memory 133. In certain
embodiments, the Application includes instructions R to
request content or web services C from content server 140.
Thus, for example and without limitation, the request is for
information over the network via a web service, and the
request R is responded to with the appropriate information for
display on device 130. Thus, for example, a user may request
a news report. The Application may include the layout of the
display, including a space for the news, which is downloaded
form content server 140 for inclusion on the display. Other
information that may be provided by content server 140 may
include, but is not limited to, pages, Applications, multime
dia, and audio.

FIG. 2A is a schematic of a system 200 of an embodiment
of system 100 illustrating the communications between dif
ferent system components. System includes a response direc
tor 210, a web component registry 220, and a web service 230.
System 200 further includes authoring platform 110, server

5

10

15

25

30

35

40

45

50

55

60

65

8
120, device 130 and content server 140 are which are gener
ally similar to those of the embodiments of FIGS. 1A and 1B,
except as explicitly noted.

Response director 210 is a computer or computer system
that may be generally similar to server 120 including the
ability to communicate with authoring platform 110 and one
or more devices 130. In particular, authoring platform 110
generates one or more Players (each usable by certain devices
130) which are provided to response director 210. Devices
130 may be operated to provide response director 210 with a
request for a Player and to receive and install the Player. In
one embodiment, device 130 provides response director 210
with device-specific information including but not limited to
make, model, and/or software version of the device. Response
director 210 then determines the appropriate Player for the
device, and provides the device with the Player over the
network.
Web service 230 is a plurality of services obtainable over

the Internet. Each web service is identified and/or defined as
an entry in web component registry 230, which is a database,
XML file, or PDL that exists on a computer that may be a
server previously described or another server 120. Web com
ponent registry 230 is provided through server 120 to author
ing platform 110 So that a user of the authoring platform may
bind web services 230 to elements to be displayed on device
130, as described subsequently.

In one embodiment, authoring platform 110 is used in
conjunction with a display that provides a WYSIWYG envi
ronment in which a user of the authoring platform can pro
duce an Application and Player that produces the same dis
play and the desired programming on device 130. Thus, for
example, authoring tool 112 provides a display on screen 115
that corresponds to the finished page that will be displayed on
screen 137 when an Application is intercepted, via a Player,
on processor 135 of device 130.

Authoring platform 110 further permits a user of the
authoring platform to associate objects, such as objects for
presenting on screen 137, with components of one or more
web services 230 that are registered in web component reg
istry 220. In one embodiment, information is provided in an
XML file to web component registry 220 for each registered
components of each web service 230. Web component regis
try 220 may contain consumer inputs related to each web
service 230, environmental data such as PIM, time or location
values, persistent variable data, outputs related to the web
service, and/or optional hinting for improving the user's pro
ductivity.
A user of authoring platform 110 of system 200 may define

associations with web services as WebComponent Bindings.
In one embodiment, authoring platform 110 allows a user to
associate certain objects for display that provide input or
output to components of web service 230. The associated
bindings are saved as a PDL in server 120.

In one embodiment, an XML web component registry 220
for each registered web service 230 is loaded into authoring
platform 110. The user of system 200 can then assign com
ponents of any web service 230 to an Application without any
need to write code. In one embodiment, a component of web
service 230 is selected from authoring platform 110 which
presents the user with WYSIWYG dialog boxes that enable
the binding of all the inputs and outputs of component of web
service 230 to a GUI component of the Application as will be
displayed on screen 137. In addition, multiple components of
one or more web service 230 can be assigned to any Object or
Event in order to facilitate mashups. These Object and/or
Event bindings, for each instance of a component of any web
service 230, are stored in the PDL. The content server 140

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 425 of 548

116434
Highlight

116434
Highlight

116434
Highlight

US 9,063,755 B2

9

handles all communication between device 130 and the web

service 230 and can be automatically deployed as a web

application archive to any content server.

Device 130, upon detecting an event in which a component

10
element within a graphical list; any icon within a launch strip;
any feature within any geographical view of a GIS service
object; and/or any virtual room within a virtual tour.

As an example of third-party web services 230 that may be
provided using system 200, a user of authoring platform 110

can place, for example, Yahoo maps into device 130 by bind
ing the required component of the Yahoo Maps Web Service,
such as Yahoo Map's Inputs and/or Outputs to appropriate
Objects of authoring platform 110. System 200 also provides

of a web service 230 has been defined, assembles and sends 5

all related inputs to content server 240, which proxies the
request to web service 230 and returns the requested infor
mation to device 130. The Player on device 130 then takes the
outputs of web service 230 and binds the data to the UI
components in the Application, as displayed on screen 137. 10 binding to web services for text, image and video searching

by binding to components of those web services. In one embodiment, the mechanism for binding the outputs
of the web service to the UI components is through symbolic
references that matches each output to the symbolic name of
the UI component. The outputs, in one embodiment, may
include meta-data which could become part of the inputs for 15
subsequent interactions with the web service.

For example, if a user of authoring platform 110 wants to
present an ATOM feed on device 130, they would search
through a list of UI Components available in the authoring
platform, select the feed they want to use, and bind the output
of the feed summary to a textbox. The bindings would be 20

saved into the PDL on server 120 and processed by device 130
at runtime. If the ATOM feed does not exist a new one can be
added to the web component registry that contains all the
configuration data required, such as the actual feed URL, the
web component manager URL, and what output fields are 25

available for binding.
In another embodiment, components of web services 230

are available either to the user of authoring platform 110 or
otherwise accessible through the SDK and JavaAPis of rou
tines 114. System 200 permits an expanding set of compo- 30

nents of web services 230 including, but not limited to: server
pages from content server 120; third-party web services
including, but not limited to: searching (such through Google
or Yahoo), maps (such as through MapQuest and Yahoo),
storefronts (such as through Thumb Play), SMS share (such as 35
through clickatel), stock quotes, social networking (such as
through FaceBook), stock quotes, weather (such as through
Accuweather) and/or movie trailers. Other components
include web services for communication and sharing through
chats and forums and rich messaging alerts, where message
alerts are set-up that in turn could have components of Web 40

Services 230 defined within them, including the capture of
consumer generated and Web Service supplied rich media
and textual content.

System 200 also permits dynamic binding of real-time
content, where the inputs and outputs of XML web services 45

are bound to GUI components provided on screen 137. Thus,
for example, a user of authoring platform 110 may bind
attributes of UI Objects to a particular data base field on a
Server. When running the Application, the current value in the
referenced data base will be immediately applied. During the 50

Application session, any other real time changes to these
values in the referenced data base will again be immediately
displayed.

As an example of dynamic binding of real-time content, an
RSS feeds and other forms of dynamic content may be

55
inserted into mobile Applications, such as device 130, using
system 200. Authoring platform 110 may include a "RSS
display" list which permits a user to select RSS channels and
feeds from an extensible list of available dynamic content.
Meta data, such as titles, abstracts and Images can be revealed
immediately by the user as they traverse this RSS display list, 60

bringing the PC experience completely and conveniently to
mobile devices 130. In addition, Authoring platform 110 may
include a dialog box that dynamically links objects to data and
feeds determined by RSS and chat databases. Any relevant
attribute for a page view and/or object can be dynamically 65

bound to a value in a server-side database. This includes
elements within complex objects such as: any icon or text

In one embodiment, an Application for displaying on
device 130 includes one or more Applications Pages, each
referred to herein as an "XSP," that provides functionality that
extends beyond traditional web browsers. The XSP is defined
as a PDL, in a similar manner as any Application, although it
defines a single page view, and is downloaded to the Player
dynamically as required by the PDL definition of the Appli
cation. Thus, for example, while JSPs andASPs, are restricted
to the functionality supported by the web browser, the func
tionality ofXSPs can be extended through authoring platform
110 having access to platform dependent routines 114, such
as JavaAPis. Combined with dynamic binding functionality,
an XSP, a page can be saved as a page object in an author's
"pages" library, and then can be dynamically populated with
real-time content simultaneously as the page is downloaded
to a given handset Player based on a newly expanded APL
XSP Server Pages can also be produced programmatically,
but in most cases authoring platform 110 will be a much more
efficient way to generate and maintain libraries of dynami
cally changing XSPs.

With XSPs, Applications Pages that have dynamic content
associated with them can be sent directly to device 130, much
like how a web browser downloads an HTML page through a
external reference. Without XSPs, content authors would
have to define each page in the Application. With XSPs, no
pages need to be defined. Thus, for example, in a World Cup
Application, one page could represent real-time scores that
change continuously on demand. With polling (for example,
a prompt to the users asking who they predict will win a
game), a back-end database would tabulate the information
and then send the results dynamically to the handsets. With a
bar chart, the Application would use dynamic PDL with scal-
ing on the fly. For example, the server would recalibrate the
bar chart for every ten numbers.

Other combinations of components of web services 230
include, but are not limited to, simultaneous video chat ses
sions, inside an integrated page view, with a video or televi
sion station; multiple simultaneous chat sessions, each with a
designated individual and/or group, with each of the chat
threads visible inside an integrated page view.

Another extension of an XSP is a widget object. Widgets
can be developed from numerous sources including, but not
limited to, authoring platform 110, a Consumer Publishing
Tool, and an XML to Widget Conversion Tool where the SDK
Widget Libraries are automatically populated and managed,
or Widget Selection Lists that are available and can be popu
lated with author defined Icons.
Applications, Players, and Processing in a Device

FIG. 2B is a schematic of one embodiment of a device 130
illustrating an embodiment of the programming generated by
authoring platform 110. Memory 133 may include several
different logical portions, such as a heap 133a, a record store
133b and a filesystem (not shown).

As shown in FIG. 2B, heap 133a and record store 133b

include programming and/or content. In general, heap 133a is
readily accessible by processor 135 and includes, but is not
limited to portions that include the following programming: a
portion 133al for virtual machine compliant objects repre-
senting a single Page View for screen 137; a portion 133a2 for

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 426 of 548

116434
Highlight

116434
Highlight

116434
Highlight

US 9,063,755 B2
11

a Player; a portion 133a3 for a virtual machine; and a portion
133.a4 for an operating system.

Record store 133b (or alternatively the filesystem)
includes, but is not limited to, portions 133b1 for Applications
and non-streaming content, which may include portions
133a2 for images, portions 133.a4 for audio, and/or portions
133a5 for video. and portions 133b2 for non-Application
PDLs, such as a Master Page PDL for presenting repeating
objects, and Alerts, which are overlayed on the current page
view. Other content, such as streaming content may be pro
vided from network interface 131 directly to the Media Codec
of device 130 with instructions from Player on how to present
the audio or video.

In one embodiment, the Player includes a Threading Model
and a Virtual Memory Manager. The Threading Model first
manages a queue of actions that can be populated based on
Input/Output events, Server-side events, time-based events,
or events initiated by user interactions. The Threading Model
further manages the simultaneous execution of actions occur
ring at the same time. The Virtual Memory Manager includes
a Logical Virtual Page controller that provides instructions
from the record store to the heap, one page at time. Specifi
cally, the Virtual Memory Manager controls the transfer of
one of the Application Pages and its virtual machine compli
ant objects into portion 133a1 as instructions readable by the
Player or Virtual Machine. When the Player determines that a
new set of instructions is required, the information (such as
one Application Page is retrieve from the Record store, con
Verted into virtual machine compliant objects (by processor
135 and according to operation by the Player, Virtual
Machine, etc). and stored in heap 133a. Alternatively, the
Player may augment virtual machine compliant objects with
its own libraries for managing user interactions, events,
memory, etc.
The connection of portions 133a1, 133a2, 133a3, 133.a4,

record store 133b and processor 135 are illustrative of the
logical connection between the different types of program
ming stored in Heap 133a and record store 133b, that is, how
data is processed by processor 135.
The Player determines which of the plurality of Applica

tion Pages in portion 133b1 is required next. This may be
determined by input actions from the Input Device 139, or
from instructions from the current Application Page. The
Player instructs processor 135 to extract the PDF from that
Applications Page and store it in portion 133a1. The Player
then interprets the Application Page extracted from PDL
which in turn defines all of the virtual machine compliant
Objects, some of which could have attributes that refer to
images, audio, and/or video stored in portions 133a3, 133a4,
133a5, respectively.
The Virtual Machine in portion 133a3 processes the Player

output, the Operating System in portion 133a3 processes the
Virtual Machine output which results in machine code that is
processed by the Operating System in portion 133.a4.

In another embodiment, the Player is a native program that
interacts directly with the operating system.
Embodiments of a Publishing Environment

In one embodiment, authoring platform 110 includes a
full-featured authoring tool 112 that provides a what-you
see-is-what-you-get (WYSIWYG) full featured editor. Thus,
for example, authoring tool 112 permits a user to design an
Application by placing objects on canvas 305 and optionally
assigning actions to the objects and save the Application.
System 100 then provides the Application and Player to a
device 130. The Application as it runs on device 130 has the
same look and operation as designed on authoring platform

10

15

25

30

35

40

45

50

55

60

65

12
110. In certain embodiments, authoring platform 110 is, for
example and without limitation, a PC-compatible or a Macin
tosh computer.

Authoring platform 110 produces an Application having
one or more Applications Pages, which are similar to web
pages. That is, each Applications Page, when executed on
device 130 may, according to its contents, modify what is
displayed on Screen 137 or cause programming on the device
to change in a manner similar to how web pages are displayed
and navigated through on a website.

In one embodiment, authoring tool 112 allows a user to
place one or more objects on canvas 305 and associate the
objects with an Applications Pages. Authoring platform 110
maintains a database of object data in memory 111, including
but not limited to type of object, location on which page, and
object attributes. The user may add settings, events, anima
tions or binding to the object, from authoring tool 112, which
are also maintained in memory 111. Authoring tool 112 also
allows a user to define more than one Applications Page.

In another embodiment, authoring tool 112, provides Java
programming functions of the Java API for specific devices
130 as pull-down menus, dialog boxes, or buttons. This per
mits a user of authoring platform 110 to position objects that,
after being provided as an Application to device 130, activate
Such Java functions on the device.

In certain embodiments, authoring platform 110, as part of
system 100, permits designers to include features of advanced
web and web services Applications for access by users of
device 130. Some of the features of advanced web and web
services include, but are not limited to: slide shows, images,
Video, audio, animated transitions, multiple chats, and mouse
interaction; full 2-D vector graphics; GIS (advanced LBS),
including multiple raster and vector layers, feature sensitive
interactions, location awareness, streaming and embedded
audio/video, Virtual tours, image processing and enhance
ment, and widgets. In other embodiments the features are
provided for selection in authoring platform 110 through
interactive object libraries.

In certain embodiments, authoring platform 110, as part of
system 100, allows the inclusion of child objects which may
eventually be activated on device 130 by the user of the device
or by time. The uses of the child objects on device 130
include, but are not limited to: mouse over (object selection),
hover and fire events and launching of object-specific, rich
media experiences.

In certain other embodiments, authoring platform 110, as
part of system 100, provides advanced interactive event mod
els on device 130, including but not limited to: user-, time
and/or location-initiated events, which allow content devel
opers to base interactivity on specific user interactions and/or
instances in time and space; timelines, which are critical for
timing of multiple events and for animations when entering,
on, or exiting pages of the Application; waypoints, which act
similar to key frames, to allow Smooth movement of objects
within pages of the Application. Waypoints define positions
on a page objects animation trajectory. When an object
reaches a specific waypoint other object timelines can be
initiated, creating location-sensitive multiple object interac
tion, and/or audio can be defined to play until the object
reaches the next waypoint.

Authoring platform 110 may also define a Master Page,
which acts as a template for an Applications Page, and may
also define Alert Pages, which provide user alerts to a user of
device 130.

In certain embodiments, authoring platform 110, as part of
system 100, provides full style inheritance on device 130.
Thus, for example and without limitation, both master page

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 427 of 548

US 9,063,755 B2
13

inheritance (for structural layout inheritance and repeating
objects) and object styles (for both look and feel attribute
inheritance) are supported. After a style has been defined for
an object, the object will inherit the style. Style attributes
include both the look and the feel of an object, including 5
mouse interaction, animations, and timelines. Each page may
include objects that may be a parent object or a child object.
A child object is one that was created by first selecting a
parent object, and then creating a child object. Child objects
are always part of the same drawing layer as its parent object,
but are drawn first, and are not directly selectable when run
ning the Application. A parent object is any object that is not
a child object, and can be selected when running the Appli
cation.
As an example, the user of authoring tool 112 may create

various text objects on canvas 305 using a style that sets the
font to red, the fonts of these objects will be red. Suppose user
of authoring tool 112 changes the font color of a specific
button to green. If later, the user of authoring tool 112 changes
the style to blue; all other text objects that were created with 20
that style will become blue except for the button that had been
specifically set to green.

In certain other embodiments, authoring platform 110 pro
vides page view, style, object, widget and Application tem
plate libraries. Authoring platform 110 may provide tem- 25
plates in private libraries (available to certain users of the
authoring platform) and public libraries (available to all users
of the authoring platform). Templates may be used to within
authoring platform 110 to define the look and feel of the entire
Application, specific pages, or specific slide shows and Vir
tual tours a seen on device 130.

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface 300 as it appears, for example and without limita
tion, on screen 115 while executing authoring tool 112. In one
embodiment, publisher interface 300 includes a Menu bar
301, a Tool bar 303, a Canvas 305, a Layer Inspector 307 35
having Subcomponents of a page/object panel 307a, an object
style panel 307b, and a pagealert panel 307c, and a Resource
Inspector 309.

In general, publisher interface 300 permits a user of author
ing platform 110 to place objects on canvas 305 and then 40
associate properties and/or actions to the object, which are
stored in the Application. As described Subsequently, pub
lisher interface 300 permits a user to program a graphical
interface for the screen 137 of device 130 on Screen 115 of
authoring platform 110, save an Application having the pro- 45
gramming instructions, and save a Player for the device. The
intended programming is carried out on device 130 when the
device, having the appropriate device platform Player,
receives and executes the device-independent Application.

Thus, for example, authoring tool 112 maintains, in
memory 111, a list of every type of object and any properties,
actions, events, or bindings that may be assigned to that
object. As objects are selected for an Application, authoring
tool 112 further maintains, in memory 111, a listing of the
objects. As the user selects objects, publisher interface 300

10

15

30

50

14
provides the user with a choice of further defining properties,
actions, events, or bindings that may be assigned to each
particular object, and continues to store the information in
memory 111.

In one embodiment, publisher interface 300 is a graphical
interface that permits the placement and association of
objects in a manner typical of for example, vector graphics
editing programs (such as Adobe Illustrator). Objects located
on canvas 305 placed and manipulated by the various com
mands within publisher interface 300 or inputs such as an
input device 117 which may be a keyboard or mouse. As
described herein, the contents of canvas 305 may be saved as
an Application that, through system 100, provide the same or
a similar placement of objects on screen 137 and have actions
defined within publisher interface 300. Objects placed on
canvas 305 are intended for interaction with user of device
130 and are referred to herein, without limitation, as objects
or UI (user interface) objects. In addition, the user of interface
300 may assign or associate actions or web bindings to UI
objects placed on canvas 305 with result in the programming
device 130 that cause it to respond accordingly.

Objects include, but are not limited to input UI objects,
response UI objects. Input UI objects include but are not
limited to: text fields (including but not limited to alpha,
numeric, phone number, or SMS number); text areas; choice
objects (including but not limited to returning the selected
visible string or returning a numeric hidden attribute); single
item selection lists (including but not limited to returning the
selected visible string or returning a numeric hidden
attribute); multi item selection lists (including but not limited
to returning all selected items (visible text string or hidden
attribute) or cluster item selection lists (returning the hidden
attributes for all items).

Other input UI objects include but are not limited to: check
boxes; slide show (including but not limited to returning a
numeric hidden attribute, returning a string hidden attribute,
or returning the hidden attributes for all slides); and submit
function (which can be assigned to any object including Sub
mit buttons, vectors, etc.).

Response UI Objects may include, but are not limited to:
single line text objects, which include: a text Field (including
but not limited to a URL, audio URL, or purchase URL), a
text button, a submit button, or a clear button. Another
response UI objects include: a multiple line text object, which
may include a text area or a paragraph; a checkbox; an image:
a video; a slide show (with either video or image slides, or
both); choice objects; list objects; or control lists, which
control all the subordinate output UI objects for that web
component. Controllist objects include, but are not limited to:
list type or a choice type, each of which may include a search
response list or RSS display list.
As a further example of objects that may be used with

authoring tool 112, Table I lists Data Types, Preferred Input,
Input Candidates, Preferred Output and Output Candidates
for one embodiment of an authoring tool.

TABLE I

One embodiment of supported objects

Data Types Preferred Input

boolean Check Box
Int Text Field (integer)

Input Candidates Preferred Output Output Candidates

Check Box Check Box Check Box
Text Field (integer) Text Field (integer) Text Field (integer)
Text Field (Phone #) Text Field (Phone #)
Text Field (SMS #) Text Field (SMS #)
Choice Choice
List (single select) List (single select)

TextButton

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 428 of 548

15
US 9,063,755 B2

TABLE I-continued

16

One embodiment of Supported objects

Data Types Preferred Input Input Candidates Preferred Output Output Candidates

String Text Field (Alpha) Any Text Field (Alpha) Any
multilineString TextArea TextArea TextArea TextArea

Paragraph
ImageORL NA NA Image Image

Slide Show
VideoURL NA NA Video Video

Slide Show
List Single Item List Single Item List Single Item List Any List Type

Multi-Select List Any ChoiceType
Complex List (see Complex
Choice List Specification)
Slide Show

ComplexList Complex List Single Item List Single Item List Any List Type
Multi-Select List (see Complex List
Complex List Specification)

Slideshow Slide Show Slide Show Slide Show Slide Show
SearchResponseList NA NA Search Response List Search Response List

Control List
Complex List
Choice

RSSList NA NA RSS Display List RSS Display List
Control List
Complex List
Choice

SingleSelectionList Choice Choice Choice Choice
Complex List Complex List

MultiSelectionList Multi-Selection List Multi-Selection List Multi-Selection List Multi-Selection List
Service Activation Submit Button Any NA NA
ChannelImageURL NA NA Image Image

Video
Slide Show

ChannelDescription NA NA TextArea TextArea
Paragraph
Text Field
TextButton
List
Choice

ChannelTitle NA NA Text Field Text Field
TextButton
Paragraph
TextArea
List
Choice

URL Text Field Text Field
(URL request) (URL request)

Audio URL Text Field Text Field
(Audio URL request) (Audio URL request)

Purchase URL Text Field Text Field
(Purchase URL request) (Purchase URL request)

mage Data Image Image
Slide Show

mage List Data Slide Show Slide Show
Image

Persistent Variable NA NA NA NA
Pipeline Multiple Select Multi-select List Multi-selectList NA NA

Complex List
Slide Show

PhoneNumber Text Field Text Field Text Field Text Field
(numeric type) TextButton (numeric type) TextButton

Hidden Attribute Complex List Complex List Complex List Complex List
Slide Show Slide Show

Collection List NA NA Slide Show Complex List
Slide Show

In general, publisher interface 300 permits a user to define
an Application as one or more Applications Pages, select UI
objects from Menu bar 301 or Toolbar 303 and arrange them
on an Applications Page by placing the objects canvas 305. An
Application Page is a page that is available to be visited
through any navigation event. Application Pages inherit all
the attributes of the Master Page, unless that attribute is spe
cifically changed during an editing session.

60

65

Authoring platform 110 also stores information for each UI
object on each Application Page of an Application. Layer
Inspector 307 provides lists of Applications Pages, UI objects
on each Applications Page, and Styles, including templates.
Objects may be selected from canvas 305 or Layer Inspector
307 causing Resource Inspector 309 to provide lists of vari
ous UI objects attributes which may be selected from within
the Resource Inspector. Publisher interface 300 also permits a
user to save their work as an Application for layer transfer and

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 429 of 548

US 9,063,755 B2
17

operation of device 130. Publisher interface 300 thus pro
vides an integrated platform for designing the look and opera
tion of device 130.

The information stored for each UI object depends, in part,
on actions which occur as the result of a user of device 130
selecting the UI object from the device. UI objects include,
but are not limited to: navigational objects, such as widget or
channel launch Strips or selection lists; message objects for
communicating, such as a multiple chat, video chat, phone
and/or SMS lists or fields or a pop-up alert; text fields or areas:
check boxes; pull down menus; selection lists and buttons;
pictures; slide shows; video or LBS maps: shapes or text
defined by a variety of tools; a search response; or an RSS
display.

In certain embodiments, publisher interface 300 permits a
user to assign action to UI objects, including but not limited
to, programming of the device 130 or a request for informa
tion over network N. In one embodiment, for example and
without limitation, publisher interface 300 has a selection to
bind a UI object to a web service that is, associate the UI
object or a manipulation or selection of UI object with web
services. Publisher interface 300 may also include many
drawing and text input functions for generating displays that
may be, in some ways, similar to drawing and/or word pro
cessing programs, as well as toolbars and for Zooming and
scrolling of a workspace.

Each UI object has some form, color, and display location
associate with it. Further, for example and without limitation,
UI objects may have navigational actions (such as return to
home page), communications actions (such as to call the
number in a phone number field), or web services (such as to
provide and/or retrieve certain information from a web ser
vice). Each of the these actions requires authoring platform
110 to store the appropriate information for each action. In
addition, UI objects may have associated patent or child
objects, default settings, attributes (such as being a password
or a phone number), whether a field is editable, animation of
the object, all of which may be stored by authoring platform
110, as appropriate.
Menu bar 301 provides access features of publisher inter

face 300 through a series of pull-down menus that may
include, but are not limited to, the following pull-down
menus: a File menu 301a, an Edit menu 301b, a View menu
301c, a Project menu 3.01d, an Objects menu 3.01e, an Events
menu 3.01f a Pages menu 3.01g, a Styles menu 3.01 h, and a
Help menu 301 i.

File menu 3.01 a provides access to files on authoring plat
form 110 and may include, for example and without limita
tion, selections to open a new Application or master page,
open a saved Application, Application template, or style tem
plate, import a page, alert, or widget, open library objects
including but not limited to an image, video, slide show,
vector or list, and copying an Application to a user or to Server
120.

Edit menu 3.01b may include, but is not limited to, selec
tions for select, cut, copy, paste, and edit functions.

View menu 301C may include, but is not limited to, selec
tions for Zooming in and out, previewing, canvas 305 grid
display, and various palette display selections.

Project menu 3.01d may include, but is not limited to,
selections related to the Application and Player, such as selec
tions that require a log in, generate a universal Player, gener
ate server pages, activate server APIs and extend Player APIs.
A Universal Player will include all the code libraries for the
Player, including those that are not referenced by the current

10

15

25

30

35

40

45

50

55

60

65

18
Application. Server APIs and Player APIs logically extend
the Player with Server-side or device-side Application spe
cific logic.

Objects menu 3.01e includes selections for placing various
objects on canvas 305 including, but not limited to: navigation
UI objects, including but not limited to widget or channel
launch strips or selection lists; message-related UI objects,
including but not limited to multiple chat, video chat, phone
and/or SMS lists or fields, or a pop-up alert; shapes, which
provides for drawing tools; forms-related objects, including
but not limited to text fields; scrolling text box, check box,
drop-down menu, list menu, Submit button or clear button;
media-related UI objects such as pictures, slide shows, video
or LBS maps; text-related UI objects such as buttons or para
graphs; and variables, including but not limited to time, date
and audio mute control.

Events menu 3.01f includes selections for defining child
objects, mouse events, animations or timelines.

Pages menu 3.01g includes selection for handling multi
page Applications, and may include selections to set a master
page, delete, copy, add or go to Applications Pages.

Styles menu 3.01h includes selections to handle styles,
which are the underlying set of default appearance attributes
or behaviors that define any object that is attached to a style.
Styles are a convenient way for quickly creating complex
objects, and for changing a whole collection of objects by just
modifying their common style. Selections of Styles menu
301h include, but not limited to, define, import, or modify a
style, or apply a template. Help menu 301 i includes access a
variety of help topics.

Tool bar 303 provides more direct access to some of the
features of publisher interface 300 through a series of pull
down menus. Selections under tool bar 303 may include
selections to:

control the look of publisher interface 300, such as a Panel
Selection to control the for hiding or viewing various
panels on publisher interface 300:

control the layout being designed, such as an Insert Page
selection to permit a user to insert and name pages;

control the functionality of publisherinterface 300, such as
a Palettes selection to choose from a variety of specialized
palettes, such as a View Palette for Zooming and controlling
the display of canvas 305, a Command Palette of common
commands, and Color and Shape Palettes;

place objects on canvas 305, which may include selections
Such as: a Navigation selection to place navigational objects,
Such as widget or channel launch strips or selection lists), a
Messages selection to place objects for communicating. Such
as a multiple chat, video chat, phone and/or SMS lists or
fields, or a pop-up alert, a Forms selection to place objects
Such as text fields or areas, check boxes, pull down menus,
selection lists, and buttons, a Media selection to place pic
tures, slide shows, video or LBS maps, and a Shapes selection
having a variety of drawing tools, a Text selection for placing
text, a search response, or an RSS display, and Palettes.

In one embodiment, Tool bar 303 includes a series of
pull-down menus that may include, but are not limited to,
items from Menu bar 301 organized in the following pull
down menus: a Panel menu 3.03a, an Insert Page menu 3.03b,
a Navigation menu 3.03c, a Messages menu 303d, a Forms
menu 3.03e, a Media menu 3.03f a Shapes menu 3.03.g., a Text
menu 3.03.h, and a Palettes menu 301 i.

Panel menu 3.03a permits a user of authoring platform 110
to change the appearance of interface 300 by, controlling
which tools are on the interface or the size of canvas 305.
Insert Page menu 303b permits a user of authoring platform
110 to open a new Application Page. Navigation menu 3.03c

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 430 of 548

US 9,063,755 B2
19

displays a drop down menu of navigational-related objects
Such as a widget or channel launch strip or selection list.
Messages menu 303d displays a drop down menu of messag
ing-related objects such as multiple chat, video chat, phone or
SMS lists or fields, and pop-up alerts. Forms menu 3.03e
displays a drop down menu of forms-related objects includ
ing, but not limited to, a text field, a text area, a checkbox, a
drop down menu, a selection list, a Submit button, and a clear
button. Media menu 3.03f displays a drop down menu of
media-related objects including, but not limited to, a picture,
slide show, video or LBS map. Shapes menu 3.03g displays a
drop down menu of draw tools, basic shapes, different types
of lines and arrows and access to a shape library. Text menu
303j displays a drop down menu of text-related objects,
including but not limited to a text button, paragraph, search
response, RSS display and variables such as time and date.

Palettes menu 3.01i includes a selection of different palettes
that can be moved about publisher interface 300, where each
palette has specialized commands for making adjustments or
associations to objects easier. Palettes include, but are not
limited to: a page view palette, to permit easy movement
between Applications Pages; a view palette, to execute an
Application or Zoom or otherwise control the viewing of an
Application; a commands palette having editing commands;
a color palette for selection of object colors; and a shapes
palette to facilitate drawing objects.

Layer inspector 307 permits a user of publisher interface
300 to navigate, select and manipulate UI objects on Appli
cations Pages. Thus, for example, a Page/objects panel 307a
of layer inspector 307 has a listing that may be selected to
choose an Applications Pages within and Application, and UI
objects and styles within an Applications Page. An Object
styles panel 307b of layer inspector 307 displays all styles on
the Applications Page and permits selection of UI objects for
operations to be performed on the objects.

Thus, for example, when objects from Menu bar 301 or
Toolbar 303 are placed on canvas 305, the name of the object
appears in Page/objects panel 307a. Page/objects panel 307a
includes a page display 307a 1 and an objects display 307a2.
Page display 307a 1 includes a pull down menu listing all
Applications Pages of the Application, and objects display
307a2 includes a list of all objects in the Applications Page
(that is, objects on canvas 305).

In general, page/objects panel 307 a displays various asso
ciations with a UI object and permits various manipulations
including, but not limited to, operations for parent and child
objects that are assigned to a page, and operations for object
styles, and permits navigating between page types and object
styles, such as Switching between the master page and Appli
cation pages and deselecting object styles and alerts, opening
an Edit Styles Dialog Box and deselecting any master, Appli
cation or alert page, or selecting an alert page and deselecting
any Master Page or Application Page. A parent or child object
can also be selected directly from the Canvas. In either case,
the Resource Inspector can then be used for modifying any
attribute of the selected object.

Examples of operations provided by page/objects panel
307a on pages include, but are not limited to: importing from
either a user's private page library or a public page library;
deleting a page; inserting a new page, inheriting all the
attributes of the Master Page, and placing the new page at any
location in the Page List; editing the currently selected page,
by working with an Edit Page Dialog Box. While editing all
the functions of the Resource Inspector 309 are available, as
described Subsequently, but are not applied to the actual page
until completing the editing process.

10

15

25

30

35

40

45

50

55

60

65

20
Examples of operations provided by of page/objects panel

307a on objects, which may be user interface (UI) objects,
include but are not limited to: changing the drawing order
layer to: bring to the front, send to the back, bring to the front
one layer, or send to the back one layer, hiding (and then
reshowing) selected objects to show UI objects obstructed by
other UI Objects, delete a selected UI Page Object, and edit
ing the currently selected page, by working with a Edit Page
Dialog Box.

Object styles panel 307b of layer inspector 307 displays all
styles on the Applications Page and permits operations to be
performed on objects, and is similar to panel 307a. Examples
ofoperations provided by object style panel 307b include, but
are not limited to: importing from either a user's private
object library or a public object library; inserting a new object
style, which can be inherited from a currently selected object,
or from a previously defined style object; and editing a cur
rently selected object style by working with an Edit Style
Dialog Box.

Style attributes can be assigned many attributes, including
the look, and behavior of any object that inherits these
objects. In addition, List Layout Styles can be created or
changed as required. A layout style can define a unbounded
set of Complex List Layouts, including but not limited to: the
number of lines per iteminalist, the number of text and image
elements and their location for each line for each item in the
last, the color and font for each text element, and the vertical
and horizontal offset for each image and text element.

Alerts Panel 307c provides a way of providing alert pages,
which can have many of the attributes of Application Pages,
but they are only activated through an Event such as a user
interaction, a network event, a timer event, or a system vari
able setting, and will be Superimposed onto whatever is cur
rently being displayed. Alert Pages all have transparent back
grounds, and they function as a template overlay, and can also
have dynamic binding to real time content.

Resource inspector 309 is the primary panel for interac
tively working with UI objects that have been placed on the
Canvas 305. When a UI object is selected on Canvas 305, a
user of authoring platform 110 may associate properties of
the selected object by entering or selecting from resource
inspector 309. In one embodiment, resource inspector 309
includes five tab selections: Setting Tab 309a, Events Tab
309b, Animation Tab 309c, Color Tab 309d which includes a
color palette for selecting object colors, and Bindings Tab
309e.

Settings Tab 309a provides a dialog box for the basic
configuration of the selected object including, but not limited
to, name, size, location, navigation and visual settings.
Depending upon the type of object, numerous other attributes
could be settable. As an example, the Setting Tab for a Text
Field may include dialog boxes to define the text field string,
define the object style, set the font name, size and effects, set
an object name, frame style, frame width, text attributes (text
field, password field, numeric field, phone number, SMS
number, URL request).
As an example of Setting Tab 309a, FIG.3B shows various

selections including, but not limited to, setting 309a 1 for the
web page name, setting 309a2 for the page size, including
selections for specific devices 130, setting 309a3 indicating
the width and height of the object, and setting 309a 4 to select
whether background audio is present and to select an audio
file.
FIG.3C illustrates an embodiment of the Events Tab 309b,

which includes all end user interactions and time based opera
tions. The embodiment of Events Tab 309b in FIG. 3C
includes, for example and without limitation, an Events and

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 431 of 548

US 9,063,755 B2
21

Services 309b1, Advanced Interactive Settings 309b2, Mouse
State 309b3, Object Selected Audio Setting 309b4, and Work
with Child Objects and Mouse Overs button 309b5.

Events and Services 309b1 lists events and services that
may be applied to the selected objects. These include, but are
not limited to, going to external web pages or other Applica
tions pages, either as a new page or by launching a new
window, executing an Application or JavaScript method,
pausing or exiting, placing a phone call or SMS message, with
or without single or multiple Player download, show launch
strip, or go back to previous page. Examples of events and
services include, but are not limited to those listed in Table II

TABLE II

Events and Services

Goto External Web Page replacing
Current Frame
Goto External Web Page Launched

ChoiceObject: Remove Icon
from Launch Strip
Goto a specific Internal Web

in a New Window Page with Alert.
“Backend Synchronization

Goto a specific Internal Web Page Goto Widget Object
Generate Alert.
“With a Fire Event
Send SMS Message from
Linked Text Field
Toggle Alert. “Display OnFocus,
Hide OffRocus’
Execute an Application with
Alert. “With a Fire Event
Goto Logical First Page
Generate Alert with Backend
Synchronization
Send SMS Message with Share
(Player Download)
Place PhoneCall from linked
Text Field with Share
(Player Download)
Send IMAlert from linked Text
Field or TextArea
Set and Goto Starting Page
Populate Image
Preferred Launch Strip

Goto the next Internal Web Page

Goto External Web Page replacing
the Top Frame
Execute JavaScript Method

Pause/Resume Page Timeout

Execute an Application
Goto a specific Internal Web Page
with setting starting slide
Exit Application

Exit Player

Place PhoneCall from linked Text Field

Text Field/Area: Send String on FIRE
ChoiceObject: Add Icon to Launch Strip
Text Field/Area: Send String on FIRE
or Numeric Keys

Advanced Interactive Settings 309b2 include Scroll Acti
vation Enabled, Timeline Entry Suppressed, Enable Server
Listener, Submit Form, Toggle Children on FIRE, and Hide
Non-related Children, Mouse State 309.b3 selections are
Selected or Fire. When Mouse State Selected is chosen,
Object Selected Audio Setting 309b4 of Inactive, Play Once,
Loop, and other responses are presented. When Mouse State
Fire is chosen, Object Selected Audio Setting 309b4 is
replaced with FIRE Audi Setting, with appropriate choices
presented.
When Work with Child Objects and Mouse Overs button

309b5 is selected, a Child Object Mode box pops up, allowing
a user to create a child object with shortcut to Menu bar 301
actions that may be used define child objects.

FIG. 3D illustrates one embodiment of an Animation Tab
309c, which includes all animations and timelines. The Color
Tab includes all the possible color attributes, which may vary
significantly by object type.

Animation Tab 309c includes settings involved in anima
tion and timelines that may be associated with objects. One
embodiment of Animation Tab 309c is shown, without limi
tation, in FIG. 3D, and is described, in Rempell (“Rempell’).
A Color Tab 309d includes a color palette for selecting

object colors.
Bindings Tab 309e is where web component operations are

defined and dynamic binding settings are assigned. Thus, for

10

15

25

30

35

40

45

50

55

60

65

22
example, a UI object is selected from canvas 305, and a web
component may be selected and configured from the bindings
tab. When the user's work is saved, binding information is
associated with the UI object that will appear on screen 137.

FIG. 3E illustrates one embodiment of Bindings Tab and
includes, without limitation, the following portions: Web
Component and Web Services Operations 309e1, Attributes
Exposed list 309e2, panel 309e3 which includes dynamic
binding of server-side data base values to attributes for the
selected object, Default Attribute Value 309e4, Database
Name 309.e5, Table Name 309.e6, Field Name 309e7, Chan
nel Name 309e8, Channel Feed 309e9, Operation 309e10,
Select Link 309e11, and Link Set checkbox 309e12.
Web Component and Web Services Operations 309e1

includes web components that may be added, edited or
removed from a selected object. Since multiple web compo
nents can be added to the same object, any combination of
mash-ups of 3rd party web services is possible. When the
“Add” button of Web Component and Web Services Opera
tions 309e1 is selected, a pop-up menu 319, as shown in FIG.
3F, appears on publisher interface 300. Pop-up menu 319
includes, but is not limited to, the options of: Select a Web
Component 319a: Select Results Page 319b: Activation
Options 319.c; Generate UI Objects 319d; and Share Web
Component 319e.
The Select a Web Component 319a portion presents a list

of web components. As discussed herein, the web compo
nents are registered and are obtained from web component
registry 220.

Select Results Page 319b is used to have the input and
output on different pages—that is, when the Results page is
different from Input page. The default selected results page is
either the current page, or, if there are both inputs and outputs,
it will be set provisionally to the next page in the current page
order, if one exists.

Activation Options 319.c include, if there are no Input UI
Objects, a choice to either “Preload the web component,
similar to how dynamic binding, or have the web component
executed when the “Results' page is viewed by the consumer.

Generate UI Objects 319C, if selected, will automatically
generate the UI objects. If not selected, then the author will
bind the Web Component Inputs and Results to previously
created UI Objects.

Share Web Component 319e is available and will become
selected under the following conditions: 1) Web Component
is Selected which already has been used by the current Appli
cation; or 2) the current Input page is also a “Result page for
that Web component. This permits the user of device 130,
after viewing the results, to extend the Web Component
allowing the user to make additional queries against the same
Web Component. Examples of this include, but are not lim
ited to, interactive panning and Zooming for a Mapping Appli
cation, or additional and or refined searches for a Search
Application.
Dynamic Binding permits the binding of real time data,

that could either reside in a 3" party server-side database, or
in the database maintained by Feed Collector 1010 for aggre
gating live RSS feeds, as described subsequently with refer
ence to FIG. 10.

Referring again to FIG. 3E, Attributes Exposed list 309e2
are the attributes available for the selected object that can be
defined in real time through dynamic binding.

Panel 309e3 exposes all the fields and tables associated
with registered server-side data bases. In one embodiment,
the user would select an attribute from the "Attributes
Exposed List” and then select a database, table and field to
define the real time binding process. The final step is to define

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 432 of 548

US 9,063,755 B2
23

the record. If the Feed Collector data base is selected, for
example, then the RSS “Channel Name” and the “Channel
Feed' drop down menus will be available for symbolically
selected the record. For other databases the RSS "Channel
Name” and the “Channel Feed' drop down menus are
replaced by a “Record ID' text field.

Default Attribute Value 309.e4 indicates the currently
defined value for the selected attribute. It will be overridden in
real time based on the dynamic linkage setting.

Database Name 309e5 indicates which server side data
base is currently selected. Table Name 309.e6 indicates which
table of the server side database is currently selected.

Field Name 309e7, indicates which field form the selected
table of the server side database is currently selected.

Channel Name 309e8 indicates a list of all the RSS feeds
currently supported by the Feed Collector. This may be
replaced by “Record ID' if a database other than the Feed
Collector 1010 is selected.

Channel Feed 309e9 indicates the particular RSS feed for
the selected RSS Channel. Feed Collector 1010 may maintain
multiple feeds for each RSS channel.

Operation 309e10, as a default operation, replaces the
default attribute value with the real time value. In other
embodiments this operation could be append, add, Subtract,
multiply or divide.

Select Link309e11 a button that, when pressed, creates the
dynamic binding. Touching the “Select Link' will cause the
current database selections to begin the blink is some manner,
and the “Select Link' will change to “Create Link”. The user
could still change the database and attribute choices. Touch
ing the “CreateLink' will set the “LinkSet' checkbox and the
“Create Link' will be replaced by “Delete Link” if the user
wishes to subsequently remove the link. When the application
is saved, the current active links are used to create the SPDL.

Link Set checkbox 309e12 indicates that a link is currently
active.
An example of the design of a display is shown in FIGS. 4A

and 4B according the system 100, where FIG. 4A shows
publisher interface 300 having a layout 410 on canvas 305,
and FIG. 4B shows a device 130 having the resulting layout
420 on screen 137. Thus, for example, authoring platform 110
is used to design layout 410. Authoring platform 110 then
generates an Application and a Player specific to device 130
of FIG. 4B. The Application and Player are thus used by
device 130 to produce layout 420 on screen 137.
As illustrated in FIG. 4A, a user has placed the following

on canvas 305 to generate layout 410; text and background
designs 411, a first text input box. 413, a second text input box
415, and a button 417. As an example which is not meant to
limit the scope of the present invention, layout 410 is screen
prompts a user to entera user name in box 413 and a password
in box 415, and enter the information by clicking on button
417.

In one embodiment, all UI objects are initially rendered as
Java objects on canvas 305. When the Application is saved,
the UI objects are transformed into the PDL, as described
Subsequently.

Thus, for example, layout 410 may be produced by the user
of authoring platform 110 selecting and placing a first Text
Field as box 413 then using the Resource Inspector 309 por
tion of interface 300 to define its attributes.
Device User Experience

Systems 100 and 200 provide the ability for a very large
number of different types of user experiences. Some of these
are a direct result of the ability of authoring platform 110 to
bind UI objects to components of web services. The following

10

15

25

30

35

40

45

50

55

60

65

24
description is illustrative of some of the many types of expe
riences of using a device 130 as part of system 100 or 200.

Device 130 may have a one or more of a very powerful and
broad set of extensible navigation objects, as well as object
and pointer-navigation options to make it easy to provide a
small mobile device screen 137 with content and to navigate
easily among page views, between Applications, or within
objects in a single page view of an Application.

Navigation objects include various types of launch strips,
various intelligent and user-friendly text fields and scrolling
textboxes, powerful graphical complex lists, as well as Desk
top-level business forms. In fact, every type of object can be
used for navigation by assigning a navigation event to it. The
authoring tool offers a list of navigation object templates,
which then can be modified in numerous ways.
Launch Strips and Graphical List Templates Launch Strips

Launch strips may be designed by the user of authoring
platform 110 with almost no restrictions. They can be station
ary or appear on command from any edge of the device, their
size, style, audio feedback, and animations can be freely
defined to create highly compelling experiences.

FIG. 5 shows a display 500 of launch strips which may be
on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application. Display 501
includes a portal-type Launch Strip 501 and a channel-type
Launch Strip 502, either one of which may be included for
navigating the Application.

Launch Strip 501 includes UI objects 501a, 501b, 501c,
501d, and 501e that that becomes visible from the left edge of
the display, when requested. UI objects 501a, 501b, 501c,
501d, and 501e are each associated, through resource inspec
tor 309 with navigational instructions, including but not lim
ited to navigating to a different Applications Page, or request
ing web content. When the Applications Page, having been
saved by authoring platform 110 and transferred to display
130, is executed on device 130, a user of the device may easily
navigate the Application.
Launch Strip 502 includes UI objects 502b, 502c, 502d,

and 503e that that becomes visible from the bottom of the
display, when requested. UI objects 501a, 501b, 501c, 501d.
and 501e are each associated, through resource inspector 309
with navigational instructions, including but not limited to
navigating to a different Applications Page, or requesting web
content. Launch Strip 502 also includes UI objects 502a and
503g, which include the graphic of arrows, and which provide
access to additional navigation objects (not shown) when
selected by a user of device 130. Launch strip 502 may also
include sound effects for each channel when being selected,
as well as popup bubble help.

Additional navigational features are illustrated in FIG. 6A
as a display of a Channel Selection List 601a, in FIG. 6B as a
display of a Widget Selection List 601b, and in FIG. 6C as
display of a Phone List 601c. Lists 601a, 601b, and 601c may
be displayed on canvas 305 or on screen 137 of device 130
having the proper Player and Application. As illustrated,
graphical lists 601a, 601b, and 601c may contain items with
many possible text and image elements. Each element can be
defined at authoring time and/or populated dynamically
through one or more Web Service 250 or API. Assignable
Navigation Events. All objects, and/or all elements within an
object, can be assigned navigation events that can be extended
to registered web services or APIs. For example, a Rolodex
type of navigation event can dynamically set the starting slide
of the targeted page view (or the starting view of a targeted
Application).

In the embodiment of FIGS. 6A, 6B, and 6C, each list
601a, 601b, and 601c has several individual entries that are

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 433 of 548

US 9,063,755 B2
25

each linked to specific actions. Thus Channel Selection List
601 a shows three objects, each dynamically linked to a web
service (ESPN, SF 49ers, and Netflix) each providing a link to
purchase or obtain items from the Internet. Widget Selection
List 601b includes several objects presenting different wid
gets for selecting. Phone List 601c includes a list phone
number objects of names that, when selected by a user of
device 130 cause the number to be dialed Entries in Phone
List 601c may be generated automatically from either the
user's contact list that is resident on the device, or though a
dynamic link to any of user's chosen server-side facilities
such as Microsoft Outlook, Google Mail, etc. In one embodi
ment, Phone List 601c may be generated automatically using
a web component assigned to the Application, which would
automatically perform those functions.

In another embodiment, authoring platform 110 allows a
navigation selection of objects with a Joy Stick and/or Cursor
Keys in all 4 directions. When within a complex object the
navigation system automatically adopts to the navigation
needs for that object. For coordinate sensitive objects such as
geographical information services (GIS) and location-based
services (LBS) or virtual tours a soft cursor appears. For Lists,
scrolling text areas and chats, Launch strips, and slide shows
the navigation process permits intuitive selection of elements
within the object. Scroll bars and elevators are optionally
available for feedback. If the device has a pointing mecha
nism then scroll bars are active and simulate the desktop
experience.
Personalization and Temporal Adoption

System 100 and 200 permit for the personalization of
device 130 by a variety of means. Specifically, what is dis
played on screen 137 may depend on either adoption or cus
tomization. Adoption refers to the selection of choices, navi
gation options, etc. are based on user usage patterns.
Temporal adoption permits the skins, choices, layouts, con
tent. widgets, etc. to be further influenced by location (for
example home, work or traveling) and time of day (including
season and day of week). Customization refers to user select
able skins, choices, layouts, dynamic content, widgets, etc.
that are available either through a customization on the phone
or one that is on the desktop but dynamically linked to the
user's other internet connected devices.

To Support many personalization functions there must be a
convenient method for maintaining, both within a user's ses
Sion, and between sessions, memory about various user
choices and events. Both utilizing a persistent storage mecha
nism on the device, or a database for user profiles on a server,
may be employed.

FIG. 7 shows a display 700 of a mash-up which may be on
displayed canvas 305 or on screen 137 of device 130 having
the proper Player and Application. Display 700 includes sev
eral object 701 that have been dynamically bound, including
an indication of time 701a, an indication of unread text mes
sages 701b, an RSS news feed 701c (including 2 "ESPN Top
Stories” 701c1 and 701 c2), components 701d from two Web
Services—a weather report (“The Weather Channel), and a
traffic report 701e (“TRAFFIC.COM).

In assembling the information of display 700, device 130 is
aware of the time and location of the device in this example
the display is for a workday when a user wakes. Device 130
has been customized so that on a work day morning the user
wishes to receive the displayed information. Thus in the
morning, any messages received overnight would be flagged,
the user's favorite RSS sports feeds would be visible, today's
weather forecast would be available, and the current traffic
conditions between the user's home and office would be
graphically depicted. User personalization settings may be

10

15

25

30

35

40

45

50

55

60

65

26
maintained as persistent storage on device 130 when appro
priate, or in a user profile which is maintained and updated in
real-time in a server-side database.
Push Capable Systems

In another embodiment system 100 or 200 is a push-ca
pable system. As an example, of Such systems, short codes
may be applied to cereal boxes and beverage containers, and
SMS text fields can be applied to promotional websites. In
either case, a user of device 130 can text the short code or text
field to an SMS server, which then serves the appropriate
Application link back to device 130.

FIG. 8 is a schematic of an embodiment of a push enabled
system 800. System 800 is generally similar to system 100 or
200. Device 130 is shown as part of a schematic of a push
capable system 800 in FIG.8. System 800 includes a website
system 801 hosting a website 801, a server 803 and a content
server 805. System 801 is connected to servers 803 and/or 805
through the Internet. Server 803 is generally similar to server
120, servers 805 is generally similar to server 140.

In one embodiment, a user sets up a weekly SMS update
from website system 801. System 801 provides user informa
tion to server 803, which is an SMS server, when an update is
ready for delivery. Server 803 provides device 130 with an
SMS indication that the subscribed information is available
and queries the user to see if they wish to receive the update.
Website 801 also provides content server 805 with the content
of the update. When a user of device 130 responds to the SMS
query, the response is provided to content server 805, which
provides device 130 with updates including the subscribed
COntent.

In an alternative embodiment of system 800, server 803
broadcasts alerts to one or more devices 130, such as a logical
group of devices. The user is notified in real-time of the
pending alert, and can view and interact with the massage
without interrupting the current Application.

FIG. 9 is a schematic of an alternative embodiment of a
push enabled system 900. System 900 is generally similar to
system 100, 200, or 800. In system 900 a user requests infor
mation using an SMS code, which is delivered to device 130.
System 900 includes a promotional code 901, a third-party
server 903, and content server 805. Server 803 is connected to
servers 803 and/or 805 through the Internet, and is generally
similar to server 120.
A promotional code 901 is provided to a user of device 130,

for example and without limitation, on print media, Such as on
a cereal box. The use of device 130 sends the code server 903.
Server 903 then notifies server 805 to provide certain infor
mation to device 130. Server 805 then provides device 130
with the requested information.
Device Routines

Device routines 114 may include, but are not limited to: an
authoring tool SDK for custom code development including
full set of Java APIs to make it easy to add extensions and
functionality to mobile Applications and tie Applications to
back-end databases through the content server 140; an
expanding set of web services 250 available through the
authoring tool SDK; a web services interface to SOAP/XML
enabled web services; and an RSS/Atom and RDF feed col
lector 1010 and content gateway 1130.
Authoring Tool SDK for Custom Code Development Includ
ing Full Set of Java APIs

In one embodiment, authoring platform 110 SDK is com
patible for working with various integrated development
environments (IDE) and popular plugins such as J2ME Pol
ish. In one embodiment the SDK would be another plug in to
these IDEs. A large and powerful set of APIs and interfaces
are thus available through the SDK to permit the seamless

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 434 of 548

US 9,063,755 B2
27

extension of any Application to back end business logic, web
services, etc. These interfaces and APIs may also support
listeners and player-side object operations.

There is a large set of listeners that expose both player-side
events and dynamically linked server side database events.
Some examples of player side events are: player-side time
based event, a page entry event, player-side user interactions
and player-side object status. Examples of server-side data
base events are when a particular set of linked database field
values change, or some filed value exceeds a certain limit, etc.
A superset of all authoring tool functionality is available

through APIs for layer-side object operations. These include,
but are not limited to: page view level APIs for inserting,
replacing, and or modifying any page object; Object Level
APIs for modifying any attribute of existing objects, adding
definitions to attributes, and adding, hiding or replacing any
object.
Authoring Tool SDK Available Web Services
The APIs permit, without limit, respond, with or without

relying on back-end business logic, that is, logic that what an
enterprise has developed for their business, to any player-side
event or server-side dynamically linked data-base, incorpo
rating any open 3rd party web service(s) into the response.
RSS/ATOM and RDF Feed Conversion Web Service

FIG. 10 is a schematic of one embodiment a system 1000
having a feed collector 1010. System 1000 is generally simi
lar to system 100, 200, 800, or 900. Feed collector 1010 is a
server side component of system 100 that collects RSS,
ATOM and RDF format feeds from various sources 1001 and
aggregates them into a database 1022 for use by the Applica
tions built using authoring platform 110.

Feed collector 1010 is a standard XML DOM data extrac
tion process, and includes Atom Populator Rule 1012, RSS
Populator Rule 1013, RDF Populator Rule 1014, and Custom
Populator Rule 1016, DOM XML Parsers 1011, 1015, and
1017, Feed Processed Data Writer 1018, Custom Rule Based
Field Extraction 1019, Rule-based Field Extraction 1020,
Channel Data Controller 1021, and Database 1022.
The feed collector is primarily driven by two sets of param

eters: one is the database schema (written as SQL DDL)
which defines the tables in the database, as well as parameters
for each of the feeds to be examined. The other is the feed
collection rules, written in XML, which can be used to cus
tomize the information that is extracted from the feeds. Each
of the feeds is collected at intervals specified by the feed
parameter set in the SQL DDL.

Feed collector 1010 accepts information from ATOM,
RDF or RSS feed sources 1001. Using a rules-based popula
tor, any of these feeds can be logically parsed, with any type
of data extraction methodology, either by using Supplied
rules, or by the author defining their own custom extraction
rule. The rules are used by the parser to parse from the feed
Sources, and the custom rule base field extraction replaces the
default rules and assembles the parsed information into the
database

In particular, Atom Populator Rule 1012, RSS Populator
Rule 1013, RDF Populator Rule 1014, Custom Populator
Rule 1016, and DOMXML Parsers 1011, 1015, and 1017 are
parse information from the feeds 1001, and Feed Processed
Data Writer 1018, Custom Rule Based Field Extraction 1019,
Rule-based Field Extraction 1020, and Channel Data Con
troller1021, supply the content of the feeds in Database 1022,
which is accessible through content server 140.

FIG. 11 is a schematic of an embodiment of a system 1100
having a Mobile Content Gateway 1130. System 1100 is
generally similar to system 100, 200, 800, 900, or 1000.
System 1100 includes an SDK 1131, feed collector 1010,

10

15

25

30

35

40

45

50

55

60

65

28
database listener 1133, transaction server 1134, custom code
1135 generated from the SDK, Java APIs, Web Services 1137,
and PDL snippets compacted objects 1139. System 1100
accepts input from Back End Java Code Developer 1120 and
SOAP XML from Web Services 1110, and provides dynamic
content to server 140 and Players to devices 130.

In one embodiment authoring platform 110 produces a
Server-side PDL (SPDL) at authoring time. The SPDL
resides in server 120 and provides a logical link between the
Application’s UI attributes and dynamic content in database
1022. When a user of device 130 requests dynamic informa
tion, server 120 uses the SPDL to determine the link required
to access the requested content.

In another embodiment Web Services 1137 interface
directly with 3rd party Web Services 1110, using SOAP.
REST JAVA, JavaScript, or any other interface for dynami
cally updating the attributes of the Application’s UI objects.
XSP Web Pages as a Web Service

In one embodiment, a PDL for a page is embedded within
an HTML shell, forming one XSP page. The process of form
ing XSP includes compressing the description of the page and
then embedding the page within an HTML shell.

In another embodiment, a PDL, which contains many indi
vidual page definitions, is split into separate library objects on
the server, so that each page can to presented as a PDL as part
of a Web Service.

Prior to compression the code has already been trans
formed so that there are no dependencies on the original
programming language (Java), and The code and data have
been reduced by 4 to 10 times.

Compression has two distinct phases. The first takes advan
tage of how the primitive representations had been
assembled, while the second utilizes standard LZ encoding.
The final result is an overall reduction of 40 to 100 times the

original size as represented by Java serialized objects.
One embodiment for compacting data that may be used is

described in Rempell. In that patent the compressed data is
described as being a database. The terminology used here is a
PDL, that is the “internal database' of Rempell is equivalent
to the PDL of the present Application.

In Rempell, a process for compacting a "database' (that is,
generating a compact PDL) is described, wherein data
objects, including but not limited to, multimedia objects Such
as colors, fonts, images, sound clips, URLs, threads, and
Video, including multi level animation, transformation, and
time line are compacted. As an extension to Rempell in all
cases these objects are reduced and transformed to Boolean,
integer and string arrays.
The compression technique involves storing data in the

Smallest arrays necessary to compactly store web page infor
mation. The technique also includes an advanced form of
delta compression that reduces integers so that they can be
stored in a single byte, a as high water marks.

Thus, for example, the high water mark for different types
of data comprising specific web site settings are stored in a
header record as Boolean and integer variables and URL and
color objects. Data that defines web page, paragraph, text
button, and image style and text button, image and paragraph
high watermark settings can be stored in one-dimensional
arrays as Boolean, integer and string variables and URL, font,
image or thread objects at. The URL, color, font, image and
thread objects can also be created as required

Data that defines text button, image, paragraph, or other
parent objects and paragraph line high watermark settings can
be stored in two-dimensional arrays (by web page and by
object number) as Boolean, integer, string, floating point
variables and URLs. Again, the URL, color, font, image,

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 435 of 548

US 9,063,755 B2
29

audio clip, video clip, text area and thread objects can also be
created as required. Data that defines a paragraph line and
paragraph line segment high watermarks can be stored in
three-dimensional arrays (by web page, by paragraph num
ber, and by line number) as Boolean, integer or string Vari
ables. Again, the URL, color or font objects can be created as
required. Data that defines a paragraph line segment can be
stored into four-dimensional arrays (by web page, by para
graph number, by line number and by line number segment)
as Boolean, integer or string variables or URL, color and font
objects.
As a data field is added, changed or deleted, a determina

tion is made at on whether a value for a given high watermark
needs to be changed. If so, it is updated. As a specific method
in the build engine is called, a determination is made on
whether a feature flag needs to be set. For example, if a
particular JAVA method is called, which requires an instance
of a certain JAVA Class to be executed by the run time engine,
then that JAVA Class is flagged, as well as any supporting
methods, variables and/or object definitions.

In one implementation, the header record, the style record,
the web page record, and the object records, are carefully
defined in a specific order, written in that order, and explicitly
cast by object type when read by the run time engine. Excep
tion handling can be implemented to recover from any errors.
This helps assure that data integrity is maintained throughout
the build and run time processes.

Also described in Rempell is the “run generation process.”
This is equivalent generating a Player in the present applica
tion. This process starts when the build process detects that
the user is finished defining the web site (user has saved the
web site and invokes the run generation process), and con
cludes with the actual uploading of all the necessary web site
run time files to the user's server.

In one embodiment, the PDL includes a first record, a
“Header record, which contains can include the following
information:

1: A file format version number, used for upgrading data
base in future releases.

2: The default screen resolution, in virtual pixels, for both
the screen width and height. This is usually set to the web
designer's screen resolution, unless overwritten by the user.

3: Whether the Application is a web site.
4: Virtual web page size settings. A calculation is per

formed by the build engine method, in order to calculate what
the maximum web page length is, after reformatting all para
graphs on all internal web pages, based on the default Screen
resolution.

5: Web page and styles high watermarks.
6: The Websitename.
As new web pages or new objects are created by the user, or

as text is added to or deleted from a paragraph, or as new
styles are created or deleted, appropriate high watermarks are
set, in order to show the current number of each of these
entities. Thus, the values for the number of active web pages
and the number of text button, image, paragraph or other
styles are written as high watermarks in the header. The high
watermarks for the number of text button, image, paragraph
or other objects that exist for each web page, the number of
lines for each paragraph object, and the number of line seg
ments for each paragraph line are written within the body of
the PDL, and used as settings for each of the loops in the
four-dimensional data structure. Because no structural limits
are set on the number of web pages, objects per web page,
styles, or paragraph size, these high watermarks greatly
reduce the external database file size, and the time it takes for
the run time engine to process the data stored in its database.

10

15

25

30

35

40

45

50

55

60

65

30
The settings for all paragraph, text button and image styles

are then written as a style record based on their high water
mark. This data includes Boolean and integer variables, and
font and color objects, written as a one-dimensional array,
based on the high watermark values for the number of styles
that exist.
The body of the PDL is then written. All Boolean values are

written inside a four-dimensional loop. The outside loop con
tains the Boolean values used to define web pages (i.e. a
one-dimensional array definition) as well as the high water
marks for the number of text button, image, paragraph or
other objects per web page, with the loop set at the high
watermark which defines the number of existing web pages
for this web site structure. The second level consists of three
or more two dimensional loops with the loops set to the high
watermarks defining the actual number of text button, image,
and paragraph or other objects that appear on any given web
page and contains the values used to define web page objects
((i.e. a two-dimensional array definition; web page number
by object number). Included within the loop for paragraph
objects are the high watermarks for the number of lines for
each paragraph object. The third loop is set by the high water
mark defining the actual number of paragraph lines that for all
paragraphs on any web page and contains the values used to
define paragraph lines (i.e. a three-dimensional array defini
tion; web page number by object number by paragraph line.)
Included within the loop for paragraph lines are the high
watermarks for the number of line segments for each para
graph line. The inner most loop is set by the high watermarks
defining the number of line segments per paragraph line and
contains the values used to define paragraph line segments
(i.e. a four-dimensional array definition; web page number by
object number by paragraph line by paragraph line segment).

All integer values are written inside a four-dimensional
loop. Their four loops are controlled by the same high water
mark settings as used for the Boolean records, and they
describe the same logical entities.

Multimedia objects are written inside a two-dimensional
loop. They include URL, color, and font objects, and can
include other types of objects. A URL object is the encoded
form of a URL Address, used by a web browser or a JAVA
method to access files and web addresses. All multimedia
objects must be serialized before they can be written. This
means that the objects are converted into a common external
definition format that can be understood by the appropriate
deserialization technique when they are read back in and cast
into their original object structure. The outside loop contains
web page related objects, and the inner loop contains image,
text button, paragraph, etc. related URL, color, and font
objects. The outer loop is defined by the web page high
watermark and the inner loops by the high watermarks for the
actual number of text button, image, paragraph or other
objects on a web page.

String records are written inside a four-dimensional loop.
The outer loop may be empty. The second loop can include
the string values for text button objects, audio and video
filenames, and audio and video channel names. The third loop
contains values for paragraph line related data, and the inner
most loop contains the values for paragraph line segment
definitions. The string records are controlled by the same high
watermarks as those used for Boolean and integer records.
String records are stored utilizing an appropriate field delim
iter technology. In one implementation, a UTF encoding tech
nology that is supported by JAVA is utilized.

Single and double floating-point, and long integer records
are written inside a two-dimensional loop. The outer loop
may be empty. The inner loop contains mathematical values

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 436 of 548

US 9,063,755 B2
31

required for certain animations and image processing algo
rithms. The single and double floating-point, and long integer
records are controlled by the same high watermarks as those
used for Boolean and integer records.

In one embodiment, a versionizing program analyzes the
feature flags, and only those variable definitions, defined in
the “Main” object class, relating to the object classes and
methods that will be executed at run time, are extracted. All
references to object classes that will be called at run time are
extracted, creating the source code for the run engine “Main’
object class that is ready for compilation.

All external image, video and audio files are resolved. The
external references can be copied to designated directories,
either on the user's local disk or file server. The file Path
names can be changed to reflect these new locations. During
the installation of the build tools, the necessary class libraries
are either installed on the local system or made available on
the server where the build tools can be optionally located. The
necessary environmental variables are set to permit normal
access to the required class libraries.
The customized run engine and a library of the referenced

run time classes are compiled and converted into byte code.
Finally, the run time engine for the web site is created. The
required set of class objects required at run time is flagged for
inclusion into the CAB/JAR file.

Next, an HTML Shell File (HSF) is constructed. The first
step of this process is to determine whether the dynamic web
page and object resizing is desired by testing the Application
setting. If the Application was a web page, and thus requiring
dynamic web page and object resizing, virtual screen resolu
tion settings are placed in an appropriate HTML compliant
string. If the Application is a banner or other customized
Application, the absolute values for the run time object (ap
plet size) height and width are placed in an appropriate
HTML compliant string as absolute width and height values.
An analysis is made for the background definition for the

first internal web page. If a background pattern is defined, an
appropriate HTML compliant string for setting the HTML
“background to the same background image is generated. If
the first web page definition is a color instead, then the RGB
values from those colors are converted to hexadecimal and an
appropriate HTML compliant String is generated setting the
“bgcolor to the required hexadecimal value. This process
synchronizes the web page background with the background
that will be drawn by the web browser when it first interprets
the HSF.

Thereafter, a JAVA method generates HTML and JavaS
cript compliant strings, that when executed by a web browser,
generate additional sets of HTML and JavaScript compliant
strings that are again executed by the web browser. More
specifically, if the Application required dynamic web page
and object resizing then JavaScript and HTML compliant
strings are generated so that, when interpreted by the web
browser at the time the HTML Shell File is initialized, the
screen resolution sensing JAVA applet (SRS) will be
executed. JavaScript code is generated in order to enable
JavaScript to SRS applet communication. In one implemen
tation, the code is generated by performing the following
functions:

1: Determine the current web browser type.
2: Load the SRS from either a JAR or CAB File, based on

web browser type.
3: Enter a timing loop, interrogating when the SRS is

loaded.
4: When the SRS returns an “available' status, interrogate

the SRS, which will return the current screen and windows
actual height and width.

10

15

25

30

35

40

45

50

55

60

65

32
5: Convert the virtual screen resolution settings into appro

priate absolute screen width and height values.
Strings defining additional JavaScript code are generated

that perform the following steps at the time the HSF is ini
tialized by the web browser:

1: Generate HTML compliant strings that set the run time
engine's applet size to the appropriate values.

2: Generate an HTML complaint string that contains a
“param' definition for linking the run time engine to the PDL.

3: Generate an HTML complaint string, dependent upon
the type of web browser, which causes the current web
browser to load either the JAR or the CAB File(s).

4: Generate JavaScript Code compliant strings that create
and dynamically write the applet size defining HTML strings
utilizing the JavaScript “document.write” function. This
dynamically created code causes the web browser to execute
the run time engine, in the correctly sized window, from the
correct JAR or CAB file, and linked to the external database.
The writing out the above-generated HTML and JavaScript

compliant strings creates the HSF. The necessary security
policy permissions are asserted, and a “Websitename'.html
file is created.

In one embodiment, the processes for creating the CAB
and JAR Files is as follows. The image objects, if any, which
were defined on the first internal web page are analyzed. If
they are set to draw immediately upon the loading of the first
web page, then they are flagged for compression and inclu
sion in the CAB and JAR Files. The feature flags are analyzed
to determine which JAVA classes have been compiled. These
class files are flagged for compression and inclusion in the
library CAB and JAR Files. Strings that are BAT compliant
definitions are created that will, when executed in DOS, cre
ate compressed CAB and JAR Files. These CAB and JAR
Files contain the compressed versions of all necessary JAVA
class files, image files, the “Websitename'.class, customized
run time engine file, and the “Websitename'.dta database file.
In one implementation of the invention, two BAT files are
created. The first, when executed, will create a CAB/JAR file
with the “Websitename'.dta database file and the customized
“main run time engine, excluding all the image and button
object animation, transformation, and image processing
code. The second BAT file, when executed, will create a
CAB/JAR file with all the library of all the referenced image
and button object animation, transformation, and image pro
cessing code.
The necessary security policy permissions for file creation

are then asserted, and “Websitename'.bat and “Website
namelib'.bat files are written. The “Websitename'.bat and
“Websitename'.bat files are then executed under DOS, cre
ating compressed “Websitename'.cab and “Website
namelib'.cab files and compressed “Websitename'' jar and
“Websitenamelib'jar files. The HTML Shell File and the JAR
and CAB files are then, either as an automatic process, or
manually, uploaded to the user's web site. This completes the
production of an XSP page that may be accessed through a
web browser.
Displaying Content on a Device
Decompression Management

Authoring platform 110 uses compaction to transform the
code and data in an intelligent way while preserving all of the
original classes, methods and attributes. This requires both an
intelligent server engine and client (handset) Player, both of
which fully understand what the data means and how it will be
used.
The compaction technology described above includes

transformation algorithms that deconstruct the logic and data
into their most primitive representations, and then reas

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 437 of 548

US 9,063,755 B2
33

sembles them in a way that can be optimally digested by
further compression processing. This reassembled set of
primitive representations defines the PDL of authoring plat
form 110.

Prior to compression the code has already been trans
formed so that there are no dependencies on the original
programming language (Java). The data is then compressed
by first taking advantage of how the primitive representations
had been assembled, and then by utilizing standard LZencod
ing. The final result is an overall reduction of 40 to 100 times
the original size as represented by Java serialized objects.

The Player, when preparing a page view for execution,
decompresses and then regenerate the original objects, but
this time in compliance with the programming APIs of device
130. Specifically, device 130 operates on compacted image
pages, one at a time. The cache manager retrieves, decom
presses, and reassembles the compacted page images into
device objects, which are then interpreted by device 130 for
display on screen 137.
Response Director

In one embodiment, system 100 includes a Response
Director, which determines a user's handset, fetches the cor
rect Application from different databases, and delivers a
respective highly compressed Application in a PDL format
over the air (OTA).

In one embodiment, the Response Director operates on a
network connected computer to provide the correct Player to
a given device based on the information the device sent to it.
As an example, this may occur when a device user enters their
phone number into Some call-to-action web page. The
response director is called and sends an SMS message to the
device, which responds, beginning the recognition process.

FIG. 12 illustrates one embodiment of a system 1200 that
includes a response director 210, a user agent database 1201,
an IP address database 1203, and a file database 1205. System
1200 is generally similar to system 100, 200, 800,900, 1000,
or 1100.

Databases 1201, 1203, and 1205 may reside on server 120,
210, or any computer system in communication with
response director 210. System 1200, any mobile device can
be serviced, and the most appropriate Application for the
device will be delivered to the device, based on the charac
teristics of the device.

User agent database 1201 includes user agent information
regarding individual devices 130 that are used to identify the
operating system on the device. IP address database 1203
identifies the carrier/operator of each device 130. File data
base 1205 includes data files that may operate on each device
130.
The following is an illustrative example of the operation of

response director 210. First, a device 1300 generates an SMS
message, which automatically sends an http://stream that
includes handset information and its phone number to
response director 210. Response director 210 then looks at a
field in the http header (which includes the user agent and IP
address) that identifies the web browser (i.e., the “User
Agent'). The User Agent prompts a database lookup in user
agent database 1201 which returns data including, but not
limited to, make, model, attributes, MIDP 1.0 MIDP 2.0,
WAP and distinguishes the same models from different coun
tries. A lookup of the IP address in IP address 1203 identifies
the carrier/operator.

File database 1205 contains data types, which may include
as jadl, jad2, html, Wml/wap2, or other data types, appropri
ate for each device 130. A list of available Applications are
returned to a decision tree, which then returns, to device 130,
the Application that is appropriate for the respective device.

10

15

25

30

35

40

45

50

55

60

65

34
For each file type, there is an attributes list (e.g., streaming
Video, embedded video, streaming audio, etc.) to provide
enough information to determine what to send to the handset.

Response director 210 generates or updates an html or jad
file populating this text file with the necessary device and
network dependent parameters, including the Application
dependent parameters, and then generate, for example, a
CAB or JAD file which contains the necessary Player for that
device. For example, the jad file could contain the operator or
device type or extended device-specific functions that the
player would then become aware of.

If there is an Application that has a data type that device 130
cannot support, for example, video, response director 210
sends an alternative Application to the handset, for example
one that has a slide show instead. If the device cannot Support
a slide show, an Application might have text and images and
display a message that indicates it does not Support video.

Another powerful feature of response director 210 is its
exposed API from the decision tree that permits the overrid
ing of the default output of the decision tree by solution
providers. These solution providers are often licensees who
want to further refine the fulfillment of Applications and
Players to specific devices beyond what the default algo
rithms provide. Solution providers may be given a choice of
Applications and then can decide to use the defaults or force
other Applications.

Authoring platform 110 automatically scales Applications
at publishing time to various form factors to reduce the
amount of fragmentation among devices, and the Response
Director serves the appropriately scaled version to the device.
For example, a QVGAApplication will automatically scale to
the QCIF form factor. This is important because one of the
most visible forms of fragmentation resides in the various
form factors of wireless, and particularly mobile, devices,
which range from 128x128, 176x208, 240x260, 220x220,
and many other customized sizes in between.

FIG. 13 is a schematic of an embodiment of a system 1300.
System 1300 is generally similar to system 1200. System
1300 is an overview of the entire Player fulfillment process,
starting with the generation of players during the player build
process.

System 1300 includes response director 210, a device char
acteristics operator and local database 1301, a player profile
database 1303 and a player build process 1305, which may be
authoring platform 110.
As an example of system 1300, when response director 210

receives an SMS message from device 130, the response
director identifies the device characteristics operator and
locale from database 1301 and a Player URL from database
1303 and provides the appropriate Player to the device.

In another embodiment, Player P extend the power of
response director 210 by adapting the Application to the
resources and limitations of any particular device. Some of
these areas of adaptation include the speed of the devices
microprocessor, the presence of device resources such as
cameras and touch screens. Another area of adaptation is
directed to heap, record store and file system memory con
straints. In one embodiment, the Player will automatically
throttle down an animation to the frame rate that the device
can handle so that the best possible user experience is pre
served. Other extensions include device specific facilities
Such as location awareness, advanced touch screen interac
tions, push extensions, access to advanced phone facilities,
and many others
Memory Management

In one embodiment, Player Pincludes a logical page virtual
memory manager. This architecture requires no supporting

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 438 of 548

US 9,063,755 B2
35

hardware and works efficiently with constrained devices. All
page view images, which could span multiple Applications,
are placed in a table as highly compacted and compressed
code. A typical page view will range from 500 bytes up to
about 1,500 bytes. (See, for example, the Rempell patent)
When rolled into the heap and instantiated this code increases
to the more typical 50,000 up to 250,000 bytes. Additional
alert pages may also be rolled into the heap and Superimposed
on the current page view. Any changes to any page currently
downloaded are placed in a highly compact change vector for
each page, and rolled out when the page is discarded. Note
that whenever an Application is visited that had previously
been placed in virtual memory the Server is interrogated to
see if a more current version is available, and, if so, down
loads it. This means that Application logic can be changed in
real-time and the results immediately available to mobile
devices.
To operate efficiently with the bandwidth constraints of

mobile devices, authoring platform 110 may also utilize
anticipatory streaming and multi-level caching. Anticipatory
streaming includes multiple asynchronous threads and IO
request queues. In this process, the current Application is
scanned to determine if there is content that is likely to be
required in as-yet untouched page views. Anticipatory
streaming also looks for mapping Applications, where the
user may Zoom or pan next so that map content is retrieved
prior to the user requesting it. For mapping applications,
anticipatory streaming downloads a map whose size is greater
than the map portal size on the device and centered within the
portal. Any pan operation will anticipatory stream a section of
the map to extend the view in the direction of the pan while,
as a lower priority, bring down the next and prior Zoom levels
for this new geography. Zooming will always anticipatory
stream the next Zoom level up and down.

Multi-level caching determines the handsets heap through
an API, and also looks at the record store to see how much
memory is resident. This content is placed in record store
and/or the file system, and may, if there is available heap, also
place the content there as well. Multi-level caching permits
the management of memory Such that mobile systems best
use limited memory resources. Multi-level caching is a
memory management system with results similar to embed
ding, without the overhead of instantiating the content. In
other words, with multi-level caching, handset users get an
“embedded performance without the embedded download.
Note that when content is flagged as cacheable and is placed
in persistent storage, a digital rights management (DRM)
solution will be used.
One embodiment of each of the methods described herein

is in the form of a computer program that executes on a
processing system. Thus, as will be appreciated by those
skilled in the art, embodiments of the present invention may
be embodied as a method, an apparatus Such as a special
purpose apparatus, an apparatus Such as a data processing
system, or a carrier medium, e.g., a computer program prod
uct. The carrier medium carries one or more computer read
able code segments for controlling a processing system to
implement a method. Accordingly, aspects of the present
invention may take the form of a method, an entirely hardware
embodiment, an entirely software embodiment or an embodi
ment combining software and hardware aspects. Further
more, the present invention may take the form of carrier
medium (e.g., a computer program product on a computer
readable storage medium) carrying computer-readable pro
gram code segments embodied in the medium. Any Suitable
computer readable medium may be used including a mag

10

15

25

30

35

40

45

50

55

60

65

36
netic storage device Such as a diskette or a hard disk, or an
optical storage device such as a CD-ROM.

It will be understood that the steps of methods discussed
are performed in one embodiment by an appropriate proces
Sor (or processors) of a processing (i.e., computer) system
executing instructions (code segments) stored in storage. It
will also be understood that the invention is not limited to any
particular implementation or programming technique and
that the invention may be implemented using any appropriate
techniques for implementing the functionality described
herein. The invention is not limited to any particular program
ming language or operating system. It should thus be appre
ciated that although the coding for programming devices has
not be discussed in detail, the invention is not limited to a
specific coding method. Furthermore, the invention is not
limited to any one type of network architecture and method of
encapsulation, and thus may be utilized in conjunction with
one or a combination of other network architectures/proto
cols.

Reference throughout this specification to “one embodi
ment,” “an embodiment, or “certain embodiments' means
that a particular feature, structure or characteristic described
in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment,” or “in
certain embodiments' in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures
or characteristics may be combined in any suitable manner, as
would be apparent to one of ordinary skill in the art from this
disclosure, in one or more embodiments.

Throughout this specification, the term “comprising shall
be synonymous with “including.” “containing,” or “charac
terized by, is inclusive or open-ended and does not exclude
additional, unrecited elements or method steps. “Compris
ing is a term of art which means that the named elements are
essential, but other elements may be added and still form a
construct within the scope of the statement. “Comprising
leaves open for the inclusion of unspecified ingredients even
in major amounts.

Similarly, it should be appreciated that in the above
description of exemplary embodiments, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
one or more of the various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the claimed invention requires more features
than are expressly recited in each claim. Rather, as the fol
lowing claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment, and the
invention may include any of the different combinations
embodied herein. Thus, the following claims are hereby
expressly incorporated into this Mode(s) for Carrying Out the
Invention, with each claim standing on its own as a separate
embodiment of this invention.

Thus, while there has been described what is believed to be
the preferred embodiments of the invention, those skilled in
the art will recognize that other and further modifications may
be made thereto without departing from the spirit of the
invention, and it is intended to claim all such changes and
modifications as fall within the scope of the invention. For
example, any formulas given above are merely representative
of procedures that may be used. Functionality may be added
or deleted from the block diagrams and operations may be

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 439 of 548

US 9,063,755 B2
37

interchanged among functional blocks. Steps may be added
or deleted to methods described within the scope of the
present invention.
We claim:
1. A system for generating code to provide content on a

display of a device, said system comprising:
computer memory storing a registry of

a) symbolic names required for evoking one or more
web components each related to a set of inputs and
outputs of a web service obtainable over a network,
where the symbolic names are character strings that
do not contain eitherapersistent address or pointer to
an output value accessible to the web service, and

b) the address of the web service;
an authoring tool configured to:
define a user interface (UI) object for presentation on the

display, where said UI object corresponds to the web
component included in said registry selected from the
group consisting of an input of the web service and an
output of the web service,

access said computer memory to select the symbolic name
corresponding to the web component of the defined UI
object,

associate the selected symbolic name with the defined UI
object,

produce an Application including the selected symbolic
name of the defined UI object, where said Application is
a device-independent code, and

produce a Player, where said Player is a device-dependent
code;

such that, when the Application and Player are provided to
the device and executed on the device, and when a user
of the device provides one or more input values associ
ated with an input symbolic name to an input of defined
UI object,

1) the device provides the user provided one or more input
values and corresponding input symbolic name to the
web service,

2) the web service utilizes the input symbolic name and the
user provided one or more input values for generating
one or more output values having an associated output
symbolic name,

3) said Player receives the output symbolic name and cor
responding one or more output values and provides
instructions for a display of the device to present an
output value in the defined UI object.

2. The system of claim 1, where said registry includes
definitions of input and output related to said web service.

3. The system of claim 1, where said web component is a
text chat, a video chat, an image, a slideshow, a video, or an
RSS feed.

4. The system of claim 1, where said UI object is an input
field for a chat.

5. The system of claim 1, where said UI object is an input
field for a web service.

6. The system of claim 1, where said UI object is an input
field usable to obtain said web component, where said input
field includes a text field, a scrolling textbox, a check box, a
drop down-menu, a list menu, or a Submit button.

7. The system of claim 1, where said web component is an
output of a web service, is the text provided by one or more
simultaneous chat sessions, is the video of a video chat ses
Sion, is a video, an image, a slideshow, an RSS display, or an
advertisement.

8. The system of claim 1, where said authoring tool is
further configured to:

define a phone field or list; and

5

10

15

25

30

35

40

45

50

55

60

65

38
generate code that, when executed on the device, allows a

user to Supply a phone number to said phone field or list.
9. The system of claim 1, where said authoring tool is

further configured to:
define a SMS field or list; and
generate code that, when executed on the device, allows a

user to supply an SMS address to said SMS field or list.
10. The system of claim 1,
where said code includes three or more codes, where one of

said three or more codes is device specific, and where
two of said three or more codes is device independent.

11. The system of claim 1, where said code is provided over
said network.

12. A method of displaying content on a display of a device
utilizing a registry of one or more web components related to
inputs and outputs of a web service obtainable over a network,
where each web component includes a plurality of symbolic
names of inputs and outputs associated with each web ser
vice, and where the registry includes: a) symbolic names
required for evoking one or more web components each
related to a set of inputs and outputs of a web service obtain
able over a network, where the symbolic names are character
strings that do not contain either a persistent address or
pointer to an output value accessible to the web service, and

b) the address of the web service, said method comprising:
defining a user interface (UI) object for presentation on

the display, where said UI object corresponds to a web
component included in said registry selected from the
group consisting of an input of the web service and an
output of the web service;

selecting a symbolic name from said web component
corresponding to the defined UI object;

associating the selected symbolic name with the defined
UI object;

producing an Application including the selected Sym
bolic name of the defined UI object, where said Appli
cation is a device-dependent code; and

producing a Player, where said Player is a device-depen
dent code:

such that, when the Application and Player are provided
to the device and executed on the device, and when a
user of the device provides one or more input values
associated with an input symbolic name to an input of
defined UI object,

1) the device provides the user provided one or more
input values and corresponding input symbolic name
to the web service,

2) the web service utilizes the input symbolic name and
the user provided one or more input values for gener
ating one or more output values having an associated
output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and pro
vides instructions for a display of the device to present
an output value in the defined UI object.

13. The method of claim 12, where said registry includes
definitions of input and output related to said web service.

14. The method of claim 12, where said web component is
a text chat, a video chat, an image, a slideshow, a video, oran
RSS feed.

15. The method of claim 12, where said UI object is an
input field for a chat.

16. The method of claim 12, where said UI object is an
input field for a web service.

17. The method of claim 12, where said UI object is an
input field usable to obtain said web component, where said

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 440 of 548

US 9,063,755 B2
39

input field includes a text field, a scrolling textbox, a check
box, a drop down-menu, a list menu, or a Submit button.

18. The method of claim 12, where said web component is
an output of a web service, is the text provided by one or more
simultaneous chat sessions, is the video of a video chat ses
Sion, is a video, an image, a slideshow, an RSS display, or an
advertisement.

19. The method of claim 12, further comprising:
defining a phone field or list; and
generating code that, when executed on the device, allows

a user to Supply a phone number to said phone field or
list.

20. The method of claim 12, further comprising:
defining a SMS field or list; and
generating code that, when executed on the device, allows

a user to supply an SMS address to said SMS field or list.
21. Previously Presented The method of claim 12, and such

that said Player interprets dynamically received, device-inde
pendent values of the web component defined in the Appli
cation.

22. The method of claim 12, further comprising:
providing said Application and Player over said network.
23. A method of providing information to a device having

a display from a web component of a web service to a device
on a network, said method comprising:

accepting, on the device, a first code over the network,
where said first code is device-dependent;

accepting, on the device, a second code over the network,
where said second code is device-independent and
includes a plurality of symbolic names of inputs and
outputs associated with the web service; and

executing said first code on the device,
where the symbolic names are provided from a registry of

one or more web components related to inputs and out
puts of a web service obtainable over a network,

10

15

25

30

35

40
where the web service requires both an input symbolic
name and one or more associated input values and
returns one or more output values having an associated
output symbolic name, and

where the registry includes
a) symbolic names required for evoking one or more web

components each related to a set of inputs and outputs of
a web service obtainable over a network, where the
symbolic names are character strings that do not contain
either a persistent address or pointer to an output value
accessible to the web service, and

b) the address of the web service;
where said executing includes:

processing said symbolic names of the second code on
the device,

transmitting processed instructions from the device to
the web service, and

accepting a third code on the device over the network,
where said third code is a device-independent third
code including the output of the web component pro
vided by the web service over the network and in
response to the second code.

24. The method of claim 23, where said third code is a text
chat, a video chat, an image, a slideshow, a video, or an RSS
feed.

25. The method of claim 23, where said third code is an
output of a web service, is the text provided by one or more
simultaneous chat sessions, is the video of a video chat ses
Sion, is a video, an image, a slideshow, an RSS display, or an
advertisement.

26. The method of claim 23, where said first code and said
second code are generated using an authoring tool.

27. The method of claim 23, where said first code is a
Player.

28. The method of claim 23, where said second code is an
Application which includes one or more web components.

k k k k k

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 441 of 548

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 9,063,755 B2 Page 1 of 1
APPLICATIONNO. : 12/936395
DATED : June 23, 2015
INVENTOR(S) : Rempellet al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item 73, Assignee: Express Mobile, inc., Novato, CA (US) - the “inc. should be -- Inc. --.

In the claims

Column 39, line 18, Claim 21, delete the text reading “Previously Presented.

Signed and Sealed this
Twentieth Day of October, 2015

74-4-04- 2% 4
Michelle K. Lee

Director of the United States Patent and Trademark Office

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 442 of 548

EXHIBIT D

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 443 of 548

US009471287B2

(12) United States Patent (10) Patent No.: US 9,471,287 B2
Rempell et al. (45) Date of Patent: *Oct. 18, 2016

(54) SYSTEMS AND METHODS FOR (52) U.S. Cl.
INTEGRATING WIDGETS ON MOBILE CPC G06F 8/34 (2013.01); G06F 3/0482
DEVICES (2013.01); G06F 3/04842 (2013.01); G06F

9/4443 (2013.01); H04L 51/046 (2013.01);
(71) Applicant: Express Mobile, Inc., Novato, CA (US) H04L 65/60 (2013.01); H04L 67/02 (2013.01)
(72) Inventors: Steven H. Rempell, Novato, CA (US); (58) Field of Classification Search f

David Chrobak, Clayton, CA (US); CPC G06F 3/048
Ken Brown, San Martin, CA (US) See application file for complete search history.

(73) Assignee: Express Mobile, Inc., Novato, CA (US) (56) References Cited

(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS
patent is extended or adjusted under 35 2004/0055017 A1 3/2004 Delpuch et al.
U.S.C. 154(b) by 0 days. 2004/0163020 A1 8/2004 Sidman

2004/01996.14 A1* 10, 2004 Shenfield HO4L 29,06
This patent is Subject to a terminal dis- TO9.220
laimer.
Ca1 (Continued)

(21) Appl. No.: 14/708,074
OTHER PUBLICATIONS

(22) Filed: May 8, 2015
Stina Nylander et al. “The Ubiquitous Interactor Device Indepen

(65) Prior Publication Data dent Access to Mobile Services” (Computer-Aided Design for User
Interfaces IV, Proceedings of the Fifth International Conference on

US 2015/031713O A1 Nov. 5, 2015 Computer-Aided Design of User Interfaces CADUI 2004, Jan.

Related U.S. Application Data 2004, pp. 271-282).*

(63) Continuation of application No. 12/936,395, filed as
application No. PCT/US2009/039695 on Apr. 6,
2009, now Pat. No. 9,063,755. Primary Examiner — Jennifer To

Assistant Examiner — X Xi
(60) Provisional application No. 61/123,438, filed on Apr. 't al yong s R. V.

7, 2008, provisional application No. 61/113,471, filed (74) Attorney, Agent, or Firm — Steven R. Vosen
on Nov. 11, 2008, provisional application No.

(Continued)

61/166,651, filed on Apr. 3, 2009. (57) ABSTRACT
Embodiments of a system and method are described for

(51) Int. Cl. generating and distributing programming to mobile devices
G06F 3/048 (2013.01) over a network. Devices are provided with Players specific
G06F 9/44 (2006.01) to each device and Applications that are device independent.
H04L 29/08 (2006.01) Embodiments include a full-featured WYSIWYG authoring
G06F 3/0484 (2013.01) environment, including the ability to bind web components
G06F 3/0482 (2013.01) to objects.
H04L 29/06 (2006.01)
H04L 2/58 (2006.01) 28 Claims, 18 Drawing Sheets

00 y

10 Authoring 12 Sewer
Piatforr

----------------------121 Network
11 Memory interface

12 Authoring 123 Memory 12 Memory

25. Processor 114 Device
Routies

3 Processor

is screen
-

17 liput
evice
H

Content
140 server

4. Network
interface

143 Memory

145 processor

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 444 of 548

US 9,471,287 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2005/01499.35 A1 7/2005 Benedetti
2005/0273705 A1* 12, 2005 McCain GO6F 17 24

T15,234
2006, OO63518 A1 3, 2006 Paddon et al.

OTHER PUBLICATIONS

Stina Nylander et at. “The Ubiquitous Interactor Device Indepen
dent Access to Mobile Services” (Computer-Aided Design for User
Interfaces IV, Proceedings of the Fifth international Conference on
Computer-Aided Design of User Interfaces CADUT2004, Jan.
2004, pp. 271-282).

International Search Report and Written Opinion —PCT/US2009/
039695–Aug. 21, 2009.
International Preliminary Report on Patentability and Written Opin
ion PCT/US2009/039695 Oct. 21, 2010.
Rempell et al, co-pending U.S. Appl. No. 14,708,087, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708,094, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708,097, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708, 100, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708, 108, filed May 8,
2015.

* cited by examiner

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 445 of 548

U.S. Patent Oct. 18, 2016 Sheet 1 of 18 US 9,471,287 B2

OO
N

11 O Authoring
Platform

Network
1 11 Memory interface

112 Authoring 123 Memory

125 Processor
114 Device

Routines

3 Processor

5 Screen

13 Network

interface
40

- ful Server --- 133 Memory
4 Network a s O

Interface 135 Processor

FG. A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 446 of 548

U.S. Patent Oct. 18, 2016 Sheet 2 of 18 US 9,471,287 B2

OO
N O Authoring

Platform

Device

C-1, R-1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 447 of 548

U.S. Patent Oct. 18, 2016 Sheet 3 of 18 US 9,471,287 B2

2OO y

Players

Authoring
Patform

Load Registry
Applications

120 Registry 220
Server 3. - WebComponent

Registry

Deploy
Applications Registry

Web
Content

2O R Player- 3 s: SSe
p N evice

Director
Content
Recuest Proxy

HTTP/XM
Request
and

Response
23O

Web Service

F.G. 2A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 448 of 548

US 9,471,287 B2 U.S. Patent

4ÖSS3DO)

| |-legel

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 449 of 548

US 9,471,287 B2 U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 450 of 548

US 9,471,287 B2 U.S. Patent

?608 p.608

%

D608 q608 e608

608

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 451 of 548

U.S. Patent Oct. 18, 2016 Sheet 7 of 18 US 9,471,287 B2

S&S

3O9b 1
st ExSessi šes as Sesiasting Ci SS assista
Essexiesii is is age S.Essicises is is sistics
sts as specisit age fiel:
{} x's Saise age Sesiasig Saig SSS
stic tise sexiste sies
sectse S&SE:Sisies:
assessessfire &se isses:
Xscists Sississists

R is S&Eiit Site is is series

309b.5

FG. 3C

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 452 of 548

U.S. Patent Oct. 18, 2016 Sheet 8 of 18 US 9,471,287 B2

Š SSS

Šiši-SS
See ESS
jSS38

Sessi
SeSt. Eise
tags: S.
is same'araws. :

3.
s
s
S.

FG. 3D

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 453 of 548

U.S. Patent Oct. 18, 2016 Sheet 9 of 18 US 9,471,287 B2

309

309e9

FG.3E

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 454 of 548

U.S. Patent Oct. 18, 2016 Sheet 10 of 18 US 9,471,287 B2

SSS is is is Y
Sississiest-SSEse:Siegss.setSEFe:Eoss 319C
Siassiss-Seisa Esa-sassissists

S Sistest-sease E-SSESSaSS
319a siastisest-Seti apiciuste-targas E

Siassist-SetRapissie -8.3sš
S$2:38:8siesis. ESSSSg-Sass,geSiasise:
SSSSSSSSSS Š
Siasiss-OiseER: 319C
Sisses
SeSSS

Flesher2 319e
Neather
SSEiss
SSESS
Báciegsgeisiesis
ESSESS...SeSats
SSSE3SSSSSSS:

FB&Siegsge:ER:

is gets::
Riigits-Spig
Ssss;
SE&SS
Seases -Riigi Ees
Siassissists
Š

FG, 3F

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 455 of 548

US 9,471,287 B2 Sheet 11 of 18 Oct. 18, 2016 U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 456 of 548

US 9,471,287 B2

009

U.S. Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 457 of 548

U.S. Patent Oct. 18, 2016 Sheet 13 of 18 US 9,471,287 B2

7OO

"Nell asses
7O1b

S.

FG. 7

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 458 of 548

U.S. Patent Oct. 18, 2016 Sheet 14 of 18 US 9,471,287 B2

3OO
N

8O1

Website System

O3
SMS Server

Content Server

FG. 9

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 459 of 548

U.S. Patent Oct. 18, 2016 Sheet 15 of 18 US 9,471,287 B2

isis
fist

&esters&y SS&
St& S

O2
O3
O14

1 O5

&y& 88sts
its Sisse
if &c. &
is 8. Rg88 S&:

3O Y.

yassi: re
sers at Sea 4O

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 460 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 461 of 548

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 462 of 548

U.S. Patent Oct. 18, 2016 Sheet 18 of 18

S&S

S&SSSSSSSSSSSSSSSSSSSSSSSSSSS

S. SS

S&reate

evice Appropriate isyer instaii

Player Briti Process
{Senerate RiaysFS for a

AEast actic inpatientations

F.G. 13

Response irector

US 9,471,287 B2

guery for
&fice Ca3Sexistics
sperator acticae

tiery and Receive
R. for Narciag layey

13O3

Bayer foie
fata: base

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 463 of 548

US 9,471,287 B2
1.

SYSTEMIS AND METHODS FOR
INTEGRATING WIDGETS ON MOBILE

DEVICES

TECHNICAL FIELD

The present invention generally relates to providing soft
ware for mobile devices, and more particularly to a method
and system for authoring Applications for devices.

BACKGROUND ART

Internet-connected mobile devices are becoming ever
more popular. While these devices provide portability to the
Internet, they generally do not have the capabilities of
non-mobile devices including computing, input and output
capabilities.

In addition, the mobility of the user while using such
devices provides challenges and opportunities for the use of
the Internet. Further, unlike non-mobile devices, there are a
large number of types of devices and they tend to have a
shorter lifetime in the marketplace. The programming of the
myriad of mobile devices is a time-consuming and expen
sive proposition, thus limiting the ability of service provid
ers to update the capabilities of mobile devices.

Thus there is a need in the art for a method and apparatus
that permits for the efficient programming of mobile devices.
Such a method and apparatus should be easy to use and
provide output for a variety of devices.

DISCLOSURE OF INVENTION

In certain embodiments, a system is provided to generate
code to provide content on a display of a platform. The
system includes a database of web services obtainable over
a network and an authoring tool. The authoring tool is
configured to define an object for presentation on the dis
play, select a component of a web service included in said
database, associate said object with said selected compo
nent, and produce code that, when executed on the platform,
provides said selected component on the display of the
platform.

In certain other embodiments, a method is provided for
providing information to platforms on a network. The
method includes accepting a first code over the network,
where said first code is platform-dependent; providing a
second code over the network, where said second code is
platform-independent; and executing said first code and said
second code on the platform to provide web components
obtained over the network.

In certain embodiments, a method for displaying content
on a platform utilizing a database of web services obtainable
over a network is provided. The method includes: defining
an object for presentation on the display; selecting a com
ponent of a web service included in said database; associ
ating said object with said selected component; and produc
ing code that, when executed on the platform, provides said
selected component on the display of the platform.

In one embodiment, one of the codes is a Player, which is
a thin client architecture that operates in a language that
manages resources efficiently, is extensible, Supports a
robust application model, and has no device specific depen
dencies. In another embodiment, Player P is light weight and
extends the operating system and/or virtual machine of the
device to: Manage all applications and application upgrades,
and resolve device, operating system, VM and language
fragmentation.

10

15

25

30

35

40

45

50

55

60

65

2
In another embodiment, one of the codes is an Application

that is a device independent code that interpreted by the
Player.

These features together with the various ancillary provi
sions and features which will become apparent to those
skilled in the art from the following detailed description, are
attained by the system and method of the present invention,
preferred embodiments thereof being shown with reference
to the accompanying drawings, by way of example only,
wherein:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is an illustrative schematic of one embodiment of
a system including an authoring platform and a server for
providing programming instructions to a device over a
network;

FIG. 1B is schematic of an alternative embodiment sys
tem for providing programming instructions to device over
a network;

FIG. 2A is a schematic of an embodiment of system
illustrating the communications between different system
components;

FIG. 2B is a schematic of one embodiment of a device
illustrating an embodiment of the programming generated
by authoring platform;

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface as it appears, for example and without limitation,
on a screen while executing an authoring tool;

FIG. 3C illustrates an embodiment of the Events Tab'
FIG. 3D illustrates one embodiment of an Animation Tab:
FIG. 3E illustrates one embodiment of Bindings Tab:
FIG.3F illustrates one embodiment of a pop-up menu for

adding web components;
FIG. 4A shows a publisher interface having a layout on a

canvas; and FIG. 4B shows a device having the resulting
layout on a device screen;

FIG. 5 shows a display of launch strips;
FIG. 6A is a display of a Channel Selection List;
FIG. 6B is a display of a Widget Selection List:
FIG. 6C is a display of a Phone List;
FIG. 7 shows a display of a mash-up:
FIG. 8 is a schematic of an embodiment of a push capable

system;
FIG. 9 is a schematic of an alternative embodiment of a

push capable system;
FIG. 10 is a schematic of one embodiment of a feed

collector;
FIG. 11 is a schematic of an embodiment of a Mobile

Content Gateway;
FIG. 12 is a schematic of one embodiment of a system that

includes a response director, a user agent database, an IP
address database, and a file database; and

FIG. 13 is a schematic of another embodiment of a system
that includes a response director, a user agent database, an IP
address database, and a file database.

Reference symbols are used in the Figures to indicate
certain components, aspects or features shown therein, with
reference symbols common to more than one Figure indi
cating like components, aspects or features shown therein.

MODE(S) FOR CARRYING OUT THE
INVENTION

FIG. 1A is an illustrative schematic of one embodiment of
a system 100 including an authoring platform 110 and a
server 120 for providing programming instructions to a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 464 of 548

US 9,471,287 B2
3

device 130 over a network N. In one embodiment, device
130 is a wireless device, and network N includes wireless
communication to the device. Alternatively, system 100 may
provide access over network N to other information, data, or
content, such as obtainable as a web service over the
Internet. In general, a user of authoring platform 110 may
produce programming instructions or files that may be
transmitted over network N to operate device 130, including
instructions or files that are sent to device 130 and/or server
120. The result of the authoring process is also referred to
herein, and without limitation, as publishing an Application.

Embodiments include one or more databases that store
information related to one or more devices 130 and/or the
content provided to the devices. It is understood that such
databases may reside on any computer or computer system
on network N, and that, in particular, the location is not
limited to any particular server, for example.

Device 130 may be, for example and without limitation,
a cellular telephone or a portable digital assistant, includes
a network interface 131, a memory 133, a processor 135, a
screen 137, and an input device 139. Network interface 131
is used by device 130 to communication over a wireless
network, such as a cellular telephone network, a WiFi
network or a WiMax network, and then to other telephones
through a public switched telephone network (PSTN) or to
a satellite, or over the Internet. Memory 133 includes
programming required to operate device 130 (Such as an
operating system or virtual machine instructions), and may
include portions that store information or programming
instructions obtained over network interface 131, or that are
input by the user (Such as telephone numbers or images from
a device camera (not shown). In one embodiment screen 137
is a touch screen, providing the functions of the screen and
input device 139.

Authoring platform 110 includes a computer or computer
system having a memory 111, a processor 113, a screen 115,
and an input device 117. It is to be understood that memory
111, processor 113, screen 115, and input device 117 are
configured such a program stored in the memory may be
executed by the processor to accept input from the input
device and display information on the screen. Further, the
program stored in memory 111 may also instruct authoring
platform 110 to provide programming or information, as
indicated by the line labeled “A” and to receive information,
as indicated by the line labeled “B.”
Memory 111 is shown schematically as including a stored

program referred to herein, and without limitation, as an
authoring tool 112. In one embodiment, authoring tool 112
is a graphical system for designing the layout of features as
a display that is to appear on screen 137. One example of
authoring tool 112 is the CDERTM publishing platform
(Express Mobile, Inc., Novato, Calif.).

In another embodiment, which is not meant to limit the
scope of the present invention, device 130 may include an
operating system having a platform that can interpret certain
routines. Memory 111 may optionally include programming
referred to herein, and without limitation, as routines 114
that are executable on device 130.

Routines 114 may include device-specific routines—that
is, codes that are specific to the operating system, program
ming language, or platform of specific devices 130, and may
include, but are not limited to, Java, Windows Mobile, Brew,
Symbian OS, or Open Handset Alliance (OHA). Several
examples and embodiments herein are described with ref
erence to the use of Java. It is to be understood that the
invention is not so limited, except as provided in the claims,
and that one skilled in the art could provide Players for

5

10

15

25

30

35

40

45

50

55

60

65

4
devices using routines provided on a platform. Thus as an
example, routines 114 may include Java APIs and an
authoring tool System Development Kit (SDK) for specific
devices 130.

Server 120 is a computer or computer system that
includes a network interface 121, a memory 123, and a
processor 125. Is to be understood that network interface
121, memory 123, and processor 125 are configured such
that a program stored in the memory may be executed by the
processor to: accept input and/or provide output to authoring
platform 110; accept input and/or provide output through
network interface 121 over network N to network interface
131; or store information from authoring platform 110 or
from device 130 for transmission to another device or
system at a later time.

In one embodiment, authoring platform 110 permits a user
to design desired displays for screen 137 and actions of
device 130. In other words, authoring platform 110 is used
to program the operation of device 130. In another embodi
ment, authoring platform 110 allows a user to provide input
for the design of one or more device displays and may
further allow the user to save the designs as device specific
Applications. The Applications may be stored in memory
123 and may then be sent, when requested by device 130 or
when the device is otherwise accessible, over network N,
through network interface 130 for storage in memory 133.

In an alternative embodiment, analytics information from
devices 130 may be returned from device 130, through
network N and server 120, back to authoring platform 110.
as indicated by line B, for later analysis. Analytics informa
tion includes, but is not limited to, user demographics, time
of day, and location. The type of analytic content is only
limited by which listeners have been activated for which
objects and for which pages. Analytic content may include,
but is not limited to, player-side page view, player-side
forms-based content, player-side user interactions, and
player-side object status.

Content server 140 is a computer or computer system that
includes a network interface 141, a memory 143, and a
processor 145. It is to be understood that network interface
141, memory 143, and processor 145 are configured such
that a stored program in the memory may be executed by the
processor to accepts requests R from device 130 and provide
content C over a network, such as web server content the
Internet, to device 130.

FIG. 1B is schematic of an alternative embodiment sys
tem 100 for providing programming instructions to device
130 over a network N that is generally similar to the system
of FIG. 1A. The embodiment of FIG. 1B illustrates that
system 100 may include multiple servers 120 and/or mul
tiple devices 130.

In the embodiment of FIG. 1B, system 100 is shown as
including two or more servers 120, shown illustratively and
without limitation as servers 120a and 120b. Thus some of
the programming or information between authoring plat
form 110 and one or more devices 130 may be stored,
routed, updated, or controlled by more than one server 120.
In particular, the systems and methods described herein may
be executed on one or more server 120.

Also shown in FIG. 1B are a plurality of devices 130,
shown illustratively and without limitation as device 130-1,
130-1, . . . 130-N. System 100 may thus direct communi
cation between individual server(s) 120 and specific
device(s) 130.
As described subsequently, individual devices 130 may be

provided with program instructions which may be stored in
each device's memory 133 and where the instructions are

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 465 of 548

US 9,471,287 B2
5

executed by each device's processor 135. Thus, for example,
server(s) 120 may provide device(s) 130 with programming
in response to the input of the uses of the individual devices.
Further, different devices 130 may be operable using differ
ent sets of instructions, that is having one of a variety of
different “device platforms. Differing device platforms may
result, for example and without limitation, to different
operating systems, different versions of an operating system,
or different versions of virtual machines on the same oper
ating system. In some embodiments, devices 130 are pro
vided with some programming from authoring system 100
that is particular to the device.

In one embodiment, system 100 provides permits a user
of authoring platform 110 to provide instructions to each of
the plurality of devices 130 in the form of a device- or
device-platform specific instructions for processor 135 of
the device, referred to herein and without limitation as a
“Player,” and a device-independent program, referred to
herein and without limitation as an “Application' Thus, for
example, authoring platform 110 may be used to generate
programming for a plurality of devices 130 having one of
several different device platforms. The programming is
parsed into instructions used by different device platforms
and instructions that are independent of device platform.
Thus in one embodiment, device 130 utilizes a Player and an
Application to execute programming from authoring plat
form 110. A device having the correct Player is then able to
interpret and be programmed according to the Application.

In one alternative embodiment, the Player is executed the
first time by device 130 (“activated') through an Application
directory. In another alternative embodiment, the Player is
activated by a web browser or other software on device 130.
In yet another alternative embodiment, Player is activated
through a signal to device 130 by a special telephone
numbers, such as a short code.
When the Application and the Player are provided to

memory 133, the functioning of device 130 may occur in
accordance with the desired programming. Thus in one
embodiment, the Application and Player includes program
ming instructions which may be stored in memory 133 and
which, when executed by processor 135, generate the
designed displays on screen 137. The Application and Player
may also include programming instructions which may be
stored in memory 133 and which provide instructions to
processor 135 to accept input from input device 139.

Authoring tool 112 may, for example, produce and store
within memory 111 a plurality of Players (for different
devices 130) and a plurality of Applications for displaying
pages on all devices. The Players and Applications are then
stored on one or more servers 120 and then provided to
individual devices 130. In general, Applications are pro
vided to device 130 for each page of display or a some
number of pages. A Player need be provided once or updated
as necessary, and thus may be used to display a large number
of Applications. This is advantageous for the authoring
process, since all of the device-dependent programming is
provided to a device only once (or possibly for some Small
number of upgrades), permitting a smaller Application,
which is the same for each device 130.

Thus, for example and without limitation, in one embodi
ment, the Player transforms device-independent instructions
of the Application into device-specific instructions that are
executable by device 130. Thus, by way of example and
without limitation, the Application may include Java pro
gramming for generating a display on Screen 137, and the
Player may interpret the Java and instruct processor 135 to
produce the display according to the Application for execu

10

15

25

30

35

40

45

50

55

60

65

6
tion on a specific device 130 according to the device
platform. The Application may in general include, without
limitation, instructions for generating a display on Screen
137, instructions for accepting input from input device 139,
instructions for interacting with a user of device 130, and/or
instructions for otherwise operating the device. Such as to
place a telephone call.
The Application is preferably code in a device-indepen

dent format, referred to herein and without limitation as a
Portable Description Language (PDL). The device's Player
interprets or executes the Application to generate one or
more "pages” (“Applications Pages') on a display as defined
by the PDL. The Player may include code that is device
specific—that it, each device is provided with a Player that
is used in the interpretation and execution of Applications.
Authoring tool 112 may thus be used to design one or more
device-independent Applications and may also include
information on one or more different devices 130 that can be
used to generate a Player that specific devices may use to
generate displays from the Application.

In one embodiment, system 100 provides Players and
Applications to one server 120, as in FIG. 1A. In another
embodiment, system 100 provides Players to a first server
120a and Applications to a second server 120b, as in FIG.
1B.

In one embodiment, authoring tool 112 may be used to
program a plurality of different devices 130, and routines
114 may include device-specific routines. In another
embodiment, the Player is of the type that is commonly
referred to as a “thin client' that is, software for running
on the device as a client in client-server architecture with a
device network which depends primarily on a central server
for processing activities, and mainly focuses on conveying
input and output between the user and the server.

In one embodiment, authoring platform 110 allows user to
arrange objects for display on screen. A graphical user
interface (“GUI,” or “UI”) is particularly well suited to
arranging objects, but is not necessary. The objects may
correspond to one or more of an input object, an output
object, an action object, or may be a decorative display, Such
as a logo, or background color or pattern, such as a Solid or
gradient fill. In another embodiment, authoring platform 110
also permits a user to assign actions to one or more of an
input object, an output object, or an action object. In yet
another embodiment, authoring platform 110 also permits a
user to bind one or more of an input object, an output object,
or an action object with web services or web components, or
permits a user to provide instructions to processor 135 to
store or modify information in memory 133, to navigate to
another display or service, or to perform other actions, such
as dialing a telephone number.

In certain embodiments, the applicant model used in
developing and providing Applications is a PDL. The PDL
can be conceptually viewed as a device, operating system
and virtual machine agnostic representation of Java serial
ized objects. In certain embodiments, the PDL is the com
mon language for authoring tool 112, the Application, and
Player. Thus while either designing the Application with the
authoring tool 112, or programming with the SDK, the
internal representation of the programming logic is in Java.
In one embodiment the SDK is used within a multi-language
Software development platform comprising an IDE and a
plug-in system to extend it. Such as the Eclipse Integrated
Development Environment (see, for example, http://www.e-
clipse.org/). At publish time the Java code is translated into

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 466 of 548

US 9,471,287 B2
7

a PDL. This translation may also occur in real-time during
the execution of any Web Services or backend business logic
that interacts with the user.
One embodiment for compacting data that may be used is

described in co-pending U.S. Pat. No. 6,546,397 to Rempell
(“Rempell”), the contents of which are incorporated herein
by reference. In that patent the compressed data is described
as being a database. The terminology used here is a PDL,
that is the “internal database' of Rempell is equivalent to the
PDL of the present Application.
The use of a PDL, as described in Rempell, permits for

efficient code and data compaction. Code, as well as vector,
integer and Boolean data may be compacted and then
compressed resulting in a size reduction of 40 to 80 times
that of the original Java serialized objects. This is important
not only for performance over the network but for utilizing
the virtual memory manager of the Player more efficiently.
As an example, the reassembled primitives of the Java
objects may first undergo logical compression, followed by
LZ encoding.
The use of a PDL also provides virtual machine and

operating system independence. Since the reassembled
primitives of the Application no longer have any dependen
cies from the original programming language (Java) that
they were defined in. The PDL architecture takes full advan
tage of this by abstracting all the virtual machine and/or
operating system interfaces from the code that processes the
PDL.

In one embodiment, the PDL is defined by the means of
nested arrays of primitives. Accordingly, the use of a PDL
provides extensibility and compatibility, with a minimal
amount of constraints in extending the Player seamlessly as
market demands and device capabilities continue to grow.
Compatibility with other languages is inherent based on the
various Player abstraction implementations, which may be,
for example and without limitation, Java CDC, J2SE or
MIDP2 implementations.

In one embodiment, the architecture of Player P includes
an abstraction interface that separates all device, operating
system and virtual machine dependencies from the Player's
Application model business logic (that is, the logic of the
server-side facilities) that extend the Application on the
Player so that it is efficiently integrated into a comprehensive
client/server Application. The use of an abstraction interface
permits the more efficient porting to other operating systems
and virtual machines and adding of extensions to the Appli
cation model so that a PDL can be implemented once and
then seamlessly propagated across all platform implemen
tations. The Application model includes all the currently
supported UI objects and their attributes and well as all of
the various events that are supported in the default Player.
Further, less robust platforms can be augmented by extend
ing higher end capabilities inside that platforms abstraction
interface implementation.

In one embodiment, authoring platform 110 provides one
or more pages, which may be provided in one Application,
or a plurality of Applications, which are stored in memory
123 and subsequently provided to memory 133. In certain
embodiments, the Application includes instructions R to
request content or web services C from content server 140.
Thus, for example and without limitation, the request is for
information over the network via a web service, and the
request R is responded to with the appropriate information
for display on device 130. Thus, for example, a user may
request a news report. The Application may include the
layout of the display, including a space for the news, which
is downloaded form content server 140 for inclusion on the

10

15

25

30

35

40

45

50

55

60

65

8
display. Other information that may be provided by content
server 140 may include, but is not limited to, pages, Appli
cations, multimedia, and audio.

FIG. 2A is a schematic of a system 200 of an embodiment
of system 100 illustrating the communications between
different system components. System includes a response
director 210, a web component registry 220, and a web
service 230. System 200 further includes authoring platform
110, server 120, device 130 and content server 140 are which
are generally similar to those of the embodiments of FIGS.
1A and 1B, except as explicitly noted.

Response director 210 is a computer or computer system
that may be generally similar to server 120 including the
ability to communicate with authoring platform 110 and one
or more devices 130. In particular, authoring platform 110
generates one or more Players (each usable by certain
devices 130) which are provided to response director 210.
Devices 130 may be operated to provide response director
210 with a request for a Player and to receive and install the
Player. In one embodiment, device 130 provides response
director 210 with device-specific information including but
not limited to make, model, and/or software version of the
device. Response director 210 then determines the appro
priate Player for the device, and provides the device with the
Player over the network.
Web service 230 is a plurality of services obtainable over

the Internet. Each web service is identified and/or defined as
an entry in web component registry 230, which is a database,
XML file, or PDL that exists on a computer that may be a
server previously described or another server 120. Web
component registry 230 is provided through server 120 to
authoring platform 110 so that a user of the authoring
platform may bind web services 230 to elements to be
displayed on device 130, as described subsequently.

In one embodiment, authoring platform 110 is used in
conjunction with a display that provides a WYSIWYG
environment in which a user of the authoring platform can
produce an Application and Player that produces the same
display and the desired programming on device 130. Thus,
for example, authoring tool 112 provides a display on Screen
115 that corresponds to the finished page that will be
displayed on screen 137 when an Application is intercepted,
via a Player, on processor 135 of device 130.

Authoring platform 110 further permits a user of the
authoring platform to associate objects, such as objects for
presenting on screen 137, with components of one or more
web services 230 that are registered in web component
registry 220. In one embodiment, information is provided in
an XML file to web component registry 220 for each
registered components of each web service 230. Web com
ponent registry 220 may contain consumer inputs related to
each web service 230, environmental data such as PIM, time
or location values, persistent variable data, outputs related to
the web service, and/or optional hinting for improving the
user's productivity.
A user of authoring platform 110 of system 200 may

define associations with web services as WebComponent
Bindings. In one embodiment, authoring platform 110
allows a user to associate certain objects for display that
provide input or output to components of web service 230.
The associated bindings are saved as a PDL in server 120.

In one embodiment, an XML web component registry 220
for each registered web service 230 is loaded into authoring
platform 110. The user of system 200 can then assign
components of any web service 230 to an Application
without any need to write code. In one embodiment, a
component of web service 230 is selected from authoring

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 467 of 548

US 9,471,287 B2
9

platform 110 which presents the user with WYSIWYG
dialog boxes that enable the binding of all the inputs and
outputs of component of web service 230 to a GUI compo
nent of the Application as will be displayed on screen 137.
In addition, multiple components of one or more web service 5
230 can be assigned to any Object or Event in order to
facilitate mashups. These Object and/or Event bindings, for
each instance of a component of any web service 230, are
stored in the PDL. The content server 140 handles all
communication between device 130 and the web service 230
and can be automatically deployed as a web application
archive to any content server.

Device 130, upon detecting an event in which a compo
nent of a web service 230 has been defined, assembles and
sends all related inputs to content server 240, which proxies
the request to web service 230 and returns the requested
information to device 130. The Player on device 130 then
takes the outputs of web service 230 and binds the data to the
UI components in the Application, as displayed on Screen 20
137.

In one embodiment, the mechanism for binding the out
puts of the web service to the UI components is through
symbolic references that matches each output to the sym
bolic name of the UI component. The outputs, in one 25
embodiment, may include meta-data which could become
part of the inputs for subsequent interactions with the web
service.

For example, if a user of authoring platform 110 wants to
present an ATOM feed on device 130, they would search 30
through a list of UI Components available in the authoring
platform, select the feed they want to use, and bind the
output of the feed summary to a textbox. The bindings would
be saved into the PDL on server 120 and processed by device
130 at runtime. If the ATOM feed does not exist a new one 35
can be added to the web component registry that contains all
the configuration data required, such as the actual feed URL,
the web component manager URL, and what output fields
are available for binding.

In another embodiment, components of web services 230 40
are available either to the user of authoring platform 110 or
otherwise accessible through the SDK and Java APIs of
routines 114. System 200 permits an expanding set of
components of web services 230 including, but not limited
to: server pages from content server 120; third-party web 45
services including, but not limited to: Searching (Such
through Google or Yahoo), maps (such as through MapQuest
and Yahoo), storefronts (such as through ThumbPlay), SMS
share (such as through clickatel), Stock quotes, social net
working (such as through FaceBook), Stock quotes, weather 50
(such as through Accuweather) and/or movie trailers. Other
components include web services for communication and
sharing through chats and forums and rich messaging alerts,
where message alerts are set-up that in turn could have
components of Web Services 230 defined within them, 55
including the capture of consumer generated and Web Ser
Vice Supplied rich media and textual content.

System 200 also permits dynamic binding of real-time
content, where the inputs and outputs of XML web services
are bound to GUI components provided on screen 137. Thus, 60
for example, a user of authoring platform 110 may bind
attributes of UI Objects to a particular data base field on a
Server. When running the Application, the current value in
the referenced database will be immediately applied. During
the Application session, any other real time changes to these 65
values in the referenced database will again be immediately
displayed.

10

15

10
As an example of dynamic binding of real-time content,

an RSS feeds and other forms of dynamic content may be
inserted into mobile Applications, such as device 130, using
system 200. Authoring platform 110 may include a “RSS
display” list which permits a user to select RSS channels and
feeds from an extensible list of available dynamic content.
Meta data, such as titles, abstracts and Images can be
revealed immediately by the user as they traverse this RSS
display list, bringing the PC experience completely and
conveniently to mobile devices 130. In addition, Authoring
platform 110 may include a dialog box that dynamically
links objects to data and feeds determined by RSS and chat
databases. Any relevant attribute for a page view and/or
object can be dynamically bound to a value in a server-side
database. This includes elements within complex objects
Such as: any icon or text element within a graphical list; any
icon within a launch strip; any feature within any geographi
cal view of a GIS service object; and/or any virtual room
within a virtual tour.
As an example of third-party web services 230 that may

be provided using system 200, a user of authoring platform
110 can place, for example, Yahoo maps into device 130 by
binding the required component of the Yahoo Maps Web
Service, such as Yahoo Map’s Inputs and/or Outputs to
appropriate Objects of authoring platform 110. System 200
also provides binding to web services for text, image and
Video searching by binding to components of those web
services.

In one embodiment, an Application for displaying on
device 130 includes one or more Applications Pages, each
referred to herein as an “XSP.” that provides functionality
that extends beyond traditional web browsers. The XSP is
defined as a PDL, in a similar manner as any Application,
although it defines a single page view, and is downloaded to
the Player dynamically as required by the PDL definition of
the Application. Thus, for example, while JSPs and ASPs,
are restricted to the functionality supported by the web
browser, the functionality of XSPs can be extended through
authoring platform 110 having access to platform dependent
routines 114, such as Java APIs. Combined with dynamic
binding functionality, an XSP, a page can be saved as a page
object in an author’s “pages' library, and then can be
dynamically populated with real-time content simultane
ously as the page is downloaded to a given handset Player
based on a newly expanded API. XSP Server Pages can also
be produced programmatically, but in most cases authoring
platform 110 will be a much more efficient way to generate
and maintain libraries of dynamically changing XSPs.

With XSPs, Applications Pages that have dynamic content
associated with them can be sent directly to device 130,
much like how a web browser downloads an HTML page
through a external reference. Without XSPs, content authors
would have to define each page in the Application. With
XSPs, no pages need to be defined. Thus, for example, in a
World Cup Application, one page could represent real-time
scores that change continuously on demand. With polling
(for example, a prompt to the users asking who they predict
will win a game), a back-end database would tabulate the
information and then send the results dynamically to the
handsets. With a bar chart, the Application would use
dynamic PDL with scaling on the fly. For example, the
server would recalibrate the bar chart for every ten numbers.

Other combinations of components of web services 230
include, but are not limited to, simultaneous video chat
sessions, inside an integrated page view, with a video or
television station; multiple simultaneous chat sessions, each

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 468 of 548

US 9,471,287 B2
11

with a designated individual and/or group, with each of the
chat threads visible inside an integrated page view.

Another extension of an XSP is a widget object. Widgets
can be developed from numerous sources including, but not
limited to, authoring platform 110, a Consumer Publishing
Tool, and an XML to Widget Conversion Tool where the
SDK Widget Libraries are automatically populated and
managed, or Widget Selection Lists that are available and
can be populated with author defined Icons.
Applications, Players, and Processing in a Device

FIG. 2B is a schematic of one embodiment of a device 130
illustrating an embodiment of the programming generated
by authoring platform 110. Memory 133 may include sev
eral different logical portions, such as a heap 133a, a record
store 133b and a filesystem (not shown).
As shown in FIG. 2B, heap 133a and record store 133b

include programming and/or content. In general, heap 133a
is readily accessible by processor 135 and includes, but is
not limited to portions that include the following program
ming: a portion 133a1 for virtual machine compliant objects
representing a single Page View for screen 137; a portion
133a2 for a Player; a portion 133a3 for a virtual machine;
and a portion 133.a4 for an operating system.

Record store 133b (or alternatively the filesystem)
includes, but is not limited to, portions 133b1 for Applica
tions and non-streaming content, which may include por
tions 133a2 for images, portions 133.a4 for audio, and/or
portions 133a5 for video, and portions 133b2 for non
Application PDLs, such as a Master Page PDL for present
ing repeating objects, and Alerts, which are overlayed on the
current page view. Other content, Such as streaming content
may be provided from network interface 131 directly to the
Media Codec of device 130 with instructions from Player on
how to present the audio or video.

In one embodiment, the Player includes a Threading
Model and a Virtual Memory Manager. The Threading
Model first manages a queue of actions that can be populated
based on Input/Output events, Server-side events, time
based events, or events initiated by user interactions. The
Threading Model further manages the simultaneous execu
tion of actions occurring at the same time. The Virtual
Memory Manager includes a Logical Virtual Page controller
that provides instructions from the record store to the heap,
one page at time. Specifically, the Virtual Memory Manager
controls the transfer of one of the Application Pages and its
virtual machine compliant objects into portion 133a1 as
instructions readable by the Player or Virtual Machine.
When the Player determines that a new set of instructions is
required, the information (Such as one Application Page is
retrieve from the Record store, converted into virtual
machine compliant objects (by processor 135 and according
to operation by the Player, Virtual Machine, etc), and stored
in heap 133a. Alternatively, the Player may augment virtual
machine compliant objects with its own libraries for man
aging user interactions, events, memory, etc.

The connection of portions 133a1, 133a2, 133a3, 133.a4,
record store 133b and processor 135 are illustrative of the
logical connection between the different types of program
ming stored in Heap 133a and record store 133b, that is, how
data is processed by processor 135.
The Player determines which of the plurality of Applica

tion Pages in portion 133b1 is required next. This may be
determined by input actions from the Input Device 139, or
from instructions from the current Application Page. The
Player instructs processor 135 to extract the PDF from that
Applications Page and store it in portion 133a1. The Player
then interprets the Application Page extracted from PDL

10

15

25

30

35

40

45

50

55

60

65

12
which in turn defines all of the virtual machine compliant
Objects, some of which could have attributes that refer to
images, audio, and/or video stored in portions 133a3, 133a4,
133a5, respectively.
The Virtual Machine in portion 133a3 processes the

Player output, the Operating System in portion 133a3 pro
cesses the Virtual Machine output which results in machine
code that is processed by the Operating System in portion
133a4.

In another embodiment, the Player is a native program
that interacts directly with the operating system.
Embodiments of a Publishing Environment

In one embodiment, authoring platform 110 includes a
full-featured authoring tool 112 that provides a what-you
see-is-what-you-get (WYSIWYG) full featured editor. Thus,
for example, authoring tool 112 permits a user to design an
Application by placing objects on canvas 305 and optionally
assigning actions to the objects and save the Application.
System 100 then provides the Application and Player to a
device 130. The Application as it runs on device 130 has the
same look and operation as designed on authoring platform
110. In certain embodiments, authoring platform 110 is, for
example and without limitation, a PC-compatible or a
Macintosh computer.

Authoring platform 110 produces an Application having
one or more Applications Pages, which are similar to web
pages. That is, each Applications Page, when executed on
device 130 may, according to its contents, modify what is
displayed on Screen 137 or cause programming on the
device to change in a manner similar to how web pages are
displayed and navigated through on a website.

In one embodiment, authoring tool 112 allows a user to
place one or more objects on canvas 305 and associate the
objects with an Applications Pages. Authoring platform 110
maintains a database of object data in memory 111, includ
ing but not limited to type of object, location on which page,
and object attributes. The user may add settings, events,
animations or binding to the object, from authoring tool 112,
which are also maintained in memory 111. Authoring tool
112 also allows a user to define more than one Applications
Page.

In another embodiment, authoring tool 112, provides Java
programming functions of the Java API for specific devices
130 as pull-down menus, dialog boxes, or buttons. This
permits a user of authoring platform 110 to position objects
that, after being provided as an Application to device 130,
activate Such Java functions on the device.

In certain embodiments, authoring platform 110, as part of
system 100, permits designers to include features of
advanced web and web services Applications for access by
users of device 130. Some of the features of advanced web
and web services include, but are not limited to: slide shows,
images, video, audio, animated transitions, multiple chats,
and mouse interaction; full 2-D vector graphics; GIS (ad
vanced LBS), including multiple raster and vector layers,
feature sensitive interactions, location awareness, streaming
and embedded audio/video, Virtual tours, image processing
and enhancement, and widgets. In other embodiments the
features are provided for selection in authoring platform 110
through interactive object libraries.

In certain embodiments, authoring platform 110, as part of
system 100, allows the inclusion of child objects which may
eventually be activated on device 130 by the user of the
device or by time. The uses of the child objects on device
130 include, but are not limited to: mouse over (object
selection), hover and fire events and launching of object
specific, rich-media experiences.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 469 of 548

US 9,471,287 B2
13

In certain other embodiments, authoring platform 110, as
part of system 100, provides advanced interactive event
models on device 130, including but not limited to: user-,
time- and/or location-initiated events, which allow content
developers to base interactivity on specific user interactions
and/or instances in time and space; timelines, which are
critical for timing of multiple events and for animations
when entering, on, or exiting pages of the Application;
waypoints, which act similar to key frames, to allow Smooth
movement of objects within pages of the Application. Way
points define positions on a page objects animation trajec
tory. When an object reaches a specific waypoint other
object timelines can be initiated, creating location-sensitive
multiple object interaction, and/or audio can be defined to
play until the object reaches the next waypoint.

Authoring platform 110 may also define a Master Page,
which acts as a template for an Applications Page, and may
also define Alert Pages, which provide user alerts to a user
of device 130.

In certain embodiments, authoring platform 110, as part of
system 100, provides full style inheritance on device 130.
Thus, for example and without limitation, both master page
inheritance (for structural layout inheritance and repeating
objects) and object styles (for both look and feel attribute
inheritance) are supported. After a style has been defined for
an object, the object will inherit the style. Style attributes
include both the look and the feel of an object, including
mouse interaction, animations, and timelines. Each page
may include objects that may be a parent object or a child
object. A child object is one that was created by first
selecting a parent object, and then creating a child object.
Child objects are always part of the same drawing layer as
its parent object, but are drawn first, and are not directly
selectable when running the Application. A parent object is
any object that is not a child object, and can be selected
when running the Application.
As an example, the user of authoring tool 112 may create

various text objects on canvas 305 using a style that sets the
font to red, the fonts of these objects will be red. Suppose
user of authoring tool 112 changes the font color of a specific
button to green. If later, the user of authoring tool 112
changes the style to blue; all other text objects that were
created with that style will become blue except for the button
that had been specifically set to green.

In certain other embodiments, authoring platform 110
provides page view, style, object, widget and Application
template libraries. Authoring platform 110 may provide
templates in private libraries (available to certain users of
the authoring platform) and public libraries (available to all
users of the authoring platform). Templates may be used to
within authoring platform 110 to define the look and feel of
the entire Application, specific pages, or specific slide shows
and virtual tours a seen on device 130.

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface 300 as it appears, for example and without limi
tation, on screen 115 while executing authoring tool 112. In
one embodiment, publisher interface 300 includes a Menu
bar 301, a Toolbar 303, a Canvas 305, a Layer Inspector 307
having Subcomponents of a page/object panel 307a, an
object style panel 307b, and a page alert panel 307c, and a
Resource Inspector 309.

In general, publisher interface 300 permits a user of
authoring platform 110 to place objects on canvas 305 and
then associate properties and/or actions to the object, which
are stored in the Application. As described Subsequently,
publisher interface 300 permits a user to program a graphical
interface for the Screen 137 of device 130 on Screen 115 of

10

15

25

30

35

40

45

50

55

60

65

14
authoring platform 110, save an Application having the
programming instructions, and save a Player for the device.
The intended programming is carried out on device 130
when the device, having the appropriate device platform
Player, receives and executes the device-independent Appli
cation.

Thus, for example, authoring tool 112 maintains, in
memory 111, a list of every type of object and any proper
ties, actions, events, or bindings that may be assigned to that
object. As objects are selected for an Application, authoring
tool 112 further maintains, in memory 111, a listing of the
objects. As the user selects objects, publisher interface 300
provides the user with a choice of further defining proper
ties, actions, events, or bindings that may be assigned to
each particular object, and continues to store the information
in memory 111.

In one embodiment, publisher interface 300 is a graphical
interface that permits the placement and association of
objects in a manner typical of for example, vector graphics
editing programs (such as Adobe Illustrator). Objects
located on canvas 305 placed and manipulated by the
various commands within publisher interface 300 or inputs
such as an input device 117 which may be a keyboard or
mouse. As described herein, the contents of canvas 305 may
be saved as an Application that, through system 100, provide
the same or a similar placement of objects on screen 137 and
have actions defined within publisher interface 300. Objects
placed on canvas 305 are intended for interaction with user
of device 130 and are referred to herein, without limitation,
as objects or UI (user interface) objects. In addition, the user
of interface 300 may assign or associate actions or web
bindings to UI objects placed on canvas 305 with result in
the programming device 130 that cause it to respond accord
ingly.

Objects include, but are not limited to input UI objects,
response UI objects. Input UI objects include but are not
limited to: text fields (including but not limited to alpha,
numeric, phone number, or SMS number); text areas; choice
objects (including but not limited to returning the selected
visible string or returning a numeric hidden attribute); single
item selection lists (including but not limited to returning the
selected visible string or returning a numeric hidden attri
bute); multi item selection lists (including but not limited to
returning all selected items (visible text string or hidden
attribute) or cluster item selection lists (returning the hidden
attributes for all items).

Other input UI objects include but are not limited to:
check boxes; slide show (including but not limited to
returning a numeric hidden attribute, returning a string
hidden attribute, or returning the hidden attributes for all
slides); and Submit function (which can be assigned to any
object including Submit buttons, vectors, etc.).

Response UI Objects may include, but are not limited to:
single line text objects, which include: a text Field (includ
ing but not limited to a URL, audio URL, or purchase URL),
a text button, a submit button, or a clear button. Another
response UI objects include: a multiple line text object,
which may include a text area or a paragraph; a check box;
an image; a video; a slide show (with either video or image
slides, or both); choice objects; list objects; or control lists,
which control all the subordinate output UI objects for that
web component. Control list objects include, but are not
limited to: list type or a choice type, each of which may
include a search response list or RSS display list.
As a further example of objects that may be used with

authoring tool 112, Table I lists Data Types, Preferred Input,
Input Candidates, Preferred Output and Output Candidates
for one embodiment of an authoring tool.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 470 of 548

15
US 9,471,287 B2

TABLE I

16

One embodiment of supported objects

Data Types

boolean
Int

String
multilineString

ImageORL

VideoURL

List

ComplexList

Slideshow
SearchResponseList

RSSList

SingleSelectionList

MultiSelectionList
Service Activation
ChannelImageURL

ChannelDescription

ChannelTitle

URL

Audio URL

Purchase URL

mage Data

mage List Data

Persistent Variable
Pipeline Multiple Select

Phone Number

Hidden Attribute

Collection List

Preferred Input

Check Box
Text Field (integer)

Text Field (Alpha)
TextArea

NA

NA

Single Item List

Complex List

Slide Show
NA

NA

Choice

Multi-Selection List
Submit Button
NA

NA

NA

NA
Multi-select List

Text Field
(numeric type)
Complex List

NA

Input Candidates

Check Box
Text Field (integer)
Text Field (Phone #)
Text Field (SMS #)
Choice
List (single select)

Any
TextArea

NA

NA

Single Item List
Multi-Select List
Complex List
Choice
Slide Show
Single Item List
Multi-Select List
Complex List
Slide Show
NA

NA

Choice
Complex List
Multi-Selection List
Any
NA

NA

NA

NA
Multi-select List
Complex List
Slide Show
Text Field
Text Button
Complex List
Slide Show
NA

Preferred Output

Check Box
Text Field (integer)

Text Field (Alpha)
TextArea

Image

Video

Single Item List

Single Item List

Slide Show
Search Response List

RSS Display List

Choice

Multi-Selection List
NA
Image

TextArea

Text Field

Text Field
(URL request)
Text Field
(Audio URL request)
Text Field
(Purchase URL request)
Image

Slide Show

NA
NA

Text Field
(numeric type)
Complex List

Slide Show

Output Candidates

Check Box
Text Field (integer)
Text Field (Phone #)
Text Field (SMS #)
Choice
List (single select)
Text Button
Any
TextArea
Paragraph
Image
Slide Show
Video
Slide Show
Any List Type
Any Choice Type
(see Complex
List Specification)

Any List Type
(see Complex List
Specification)
Slide Show
Search Response List
Control List
Complex List
Choice
RSS Display List
Control List
Complex List
Choice
Choice
Complex List
Multi-Selection List

Text Field
(URL request)
Text Field
(Audio URL request)
Text Field
(Purchase URL request)
Image
Slide Show
Slide Show
Image
NA
NA

Text Field
Text Button
Complex List
Slide Show
Complex List
Slide Show

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 471 of 548

US 9,471,287 B2
17

In general, publisher interface 300 permits a user to define
an Application as one or more Applications Pages, select UI
objects from Menu bar 301 or Toolbar 303 and arrange them
on an Applications Page by placing the objects canvas 305.
An Application Page is a page that is available to be visited
through any navigation event. Application Pages inherit all
the attributes of the Master Page, unless that attribute is
specifically changed during an editing session.

Authoring platform 110 also stores information for each
UI object on each Application Page of an Application. Layer
Inspector 307 provides lists of Applications Pages, UI
objects on each Applications Page, and Styles, including
templates. Objects may be selected from canvas 305 or
Layer Inspector 307 causing Resource Inspector 309 to
provide lists of various UI objects attributes which may be
selected from within the Resource Inspector. Publisher inter
face 300 also permits a user to save their work as an
Application for layer transfer and operation of device 130.
Publisher interface 300 thus provides an integrated platform
for designing the look and operation of device 130.
The information stored for each UI object depends, in

part, on actions which occur as the result of a user of device
130 selecting the UI object from the device. UI objects
include, but are not limited to: navigational objects, such as
widget or channel launch strips or selection lists; message
objects for communicating, such as a multiple chat, video
chat, phone and/or SMS lists or fields or a pop-up alert; text
fields or areas; checkboxes; pull down menus; selection lists
and buttons; pictures; slide shows: video or LBS maps:
shapes or text defined by a variety of tools; a search
response; or an RSS display.

In certain embodiments, publisher interface 300 permits a
user to assign action to UI objects, including but not limited
to, programming of the device 130 or a request for infor
mation over network N. In one embodiment, for example
and without limitation, publisher interface 300 has a selec
tion to bind a UI object to a web service—that is, associate
the UI object or a manipulation or selection of UI object with
web services. Publisher interface 300 may also include
many drawing and text input functions for generating dis
plays that may be, in Some ways, similar to drawing and/or
word processing programs, as well as toolbars and for
Zooming and Scrolling of a workspace.

Each UI object has some form, color, and display location
associate with it. Further, for example and without limita
tion, UI objects may have navigational actions (such as
return to home page), communications actions (such as to
call the number in a phone number field), or web services
(such as to provide and/or retrieve certain information from
a web service). Each of the these actions requires authoring
platform 110 to store the appropriate information for each
action. In addition, UI objects may have associated patent or
child objects, default settings, attributes (such as being a
password or a phone number), whether a field is editable,
animation of the object, all of which may be stored by
authoring platform 110, as appropriate.
Menu bar 301 provides access features of publisher

interface 300 through a series of pull-down menus that may
include, but are not limited to, the following pull-down
menus: a File menu 301a, an Edit menu 3.01b, a View menu
301c, a Project menu 3.01d, an Objects menu 3.01e, an
Events menu 3.01f a Pages menu 3.01g, a Styles menu 3.01 h,
and a Help menu 301 i.

File menu 3.01 a provides access to files on authoring
platform 110 and may include, for example and without
limitation, selections to open a new Application or master
page, open a saved Application, Application template, or

10

15

25

30

35

40

45

50

55

60

65

18
style template, import a page, alert, or widget, open library
objects including but not limited to an image, video, slide
show, vector or list, and copying an Application to a user or
to Server 120.

Edit menu 3.01b may include, but is not limited to,
selections for select, cut, copy, paste, and edit functions.
View menu 301C may include, but is not limited to,

selections for Zooming in and out, previewing, canvas 305
grid display, and various palette display selections.

Project menu 3.01d may include, but is not limited to,
selections related to the Application and Player, Such as
selections that require a log in, generate a universal Player,
generate server pages, activate server APIs and extend
Player APIs. A Universal Player will include all the code
libraries for the Player, including those that are not refer
enced by the current Application. Server APIs and Player
APIs logically extend the Player with Server-side or device
side Application specific logic.

Objects menu 3.01e includes selections for placing various
objects on canvas 305 including, but not limited to: navi
gation UI objects, including but not limited to widget or
channel launch strips or selection lists; message-related UI
objects, including but not limited to multiple chat, video
chat, phone and/or SMS lists or fields, or a pop-up alert:
shapes, which provides for drawing tools; forms-related
objects, including but not limited to text fields; Scrolling text
box, check box, drop-down menu, list menu, Submit button
or clear button; media-related UI objects such as pictures,
slide shows, video or LBS maps; text-related UI objects such
as buttons or paragraphs; and variables, including but not
limited to time, date and audio mute control.

Events menu 301f includes selections for defining child
objects, mouse events, animations or timelines.

Pages menu 3.01g includes selection for handling multi
page Applications, and may include selections to set a
master page, delete, copy, add or go to Applications Pages.

Styles menu 3.01h includes selections to handle styles,
which are the underlying set of default appearance attributes
or behaviors that define any object that is attached to a style.
Styles are a convenient way for quickly creating complex
objects, and for changing a whole collection of objects by
just modifying their common style. Selections of Styles
menu 3.01h include, but not limited to, define, import, or
modify a style, or apply a template. Help menu 3.01i includes
access a variety of help topics.

Tool bar 303 provides more direct access to some of the
features of publisher interface 300 through a series of
pull-down menus. Selections under tool bar 303 may include
selections to:

control the look of publisher interface 300, such as a Panel
Selection to control the for hiding or viewing various
panels on publisher interface 300:

control the layout being designed, such as an Insert Page
Selection to permit a user to insert and name pages;

control the functionality of publisher interface 300, such
as a Palettes selection to choose from a variety of
specialized palettes, such as a View Palette for Zooming
and controlling the display of canvas 305, a Command
Palette of common commands, and Color and Shape
Palettes;

place objects on canvas 305, which may include selec
tions such as: a Navigation selection to place naviga
tional objects, such as widget or channel launch strips
or selection lists), a Messages selection to place objects
for communicating, such as a multiple chat, video chat,
phone and/or SMS lists or fields, or a pop-up alert, a
Forms selection to place objects such as text fields or

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 472 of 548

US 9,471,287 B2
19

areas, check boxes, pull down menus, selection lists,
and buttons, a Media selection to place pictures, slide
shows, video or LBS maps, and a Shapes selection
having a variety of drawing tools, a Text selection for
placing text, a search response, or an RSS display, and
Palettes.

In one embodiment, Tool bar 303 includes a series of
pull-down menus that may include, but are not limited to,
items from Menu bar 301 organized in the following pull
down menus: a Panel menu 3.03a, an Insert Page menu 3.03b,
a Navigation menu 3.03c, a Messages menu 303d, a Forms
menu 3.03e, a Media menu 3.03f a Shapes menu 3.03.g., a Text
menu 3.03.h, and a Palettes menu 3.01.i.

Panel menu 3.03a permits a user of authoring platform 110
to change the appearance of interface 300 by, controlling
which tools are on the interface or the size of canvas 305.
Insert Page menu 303b permits a user of authoring platform
110 to open a new Application Page. Navigation menu 3.03c
displays a drop down menu of navigational-related objects
Such as a widget or channel launch strip or selection list.
Messages menu 303d displays a drop down menu of mes
saging-related objects such as multiple chat, video chat,
phone or SMS lists or fields, and pop-up alerts. Forms menu
303e displays a drop down menu of forms-related objects
including, but not limited to, a text field, a text area, a check
box, a drop down menu, a selection list, a Submit button, and
a clear button. Media menu 3.03f displays a drop down menu
of media-related objects including, but not limited to, a
picture, slide show, video or LBS map. Shapes menu 3.03g
displays a drop down menu of draw tools, basic shapes,
different types of lines and arrows and access to a shape
library. Text menu 3.03j displays a drop down menu of
text-related objects, including but not limited to a text
button, paragraph, search response, RSS display and vari
ables such as time and date.

Palettes menu 3.01i includes a selection of different pal
ettes that can be moved about publisher interface 300, where
each palette has specialized commands for making adjust
ments or associations to objects easier. Palettes include, but
are not limited to: a page view palette, to permit easy
movement between Applications Pages; a view palette, to
execute an Application or Zoom or otherwise control the
viewing of an Application; a commands palette having
editing commands; a color palette for selection of object
colors; and a shapes palette to facilitate drawing objects.

Layer inspector 307 permits a user of publisher interface
300 to navigate, select and manipulate UI objects on Appli
cations Pages. Thus, for example, a Page/objects panel 307a
of layer inspector 307 has a listing that may be selected to
choose an Applications Pages within and Application, and
UI objects and styles within an Applications Page. An Object
styles panel 307b of layer inspector 307 displays all styles on
the Applications Page and permits selection of UI objects for
operations to be performed on the objects.

Thus, for example, when objects from Menu bar 301 or
Tool bar 303 are placed on canvas 305, the name of the
object appears in Page/objects panel 307a. Page/objects
panel 307a includes a page display 307a 1 and an objects
display 307a2. Page display 307a 1 includes a pull down
menu listing all Applications Pages of the Application, and
objects display 307a2 includes a list of all objects in the
Applications Page (that is, objects on canvas 305).

In general, page/objects panel 307 a displays various
associations with a UI object and permits various manipu
lations including, but not limited to, operations for parent
and child objects that are assigned to a page, and operations
for object styles, and permits navigating between page types

5

10

15

25

30

35

40

45

50

55

60

65

20
and object styles, such as Switching between the master page
and Application pages and deselecting object styles and
alerts, opening an Edit Styles Dialog Box and deselecting
any master, Application or alert page, or selecting an alert
page and deselecting any Master Page or Application Page.
A parent or child object can also be selected directly from
the Canvas. In either case, the Resource Inspector can then
be used for modifying any attribute of the selected object.

Examples of operations provided by page/objects panel
307a on pages include, but are not limited to: importing
from either a user's private page library or a public page
library; deleting a page; inserting a new page, inheriting all
the attributes of the Master Page, and placing the new page
at any location in the Page List; editing the currently selected
page, by working with an Edit Page Dialog Box. While
editing all the functions of the Resource Inspector 309 are
available, as described Subsequently, but are not applied to
the actual page until completing the editing process.

Examples of operations provided by of page/objects panel
307a on objects, which may be user interface (UI) objects,
include but are not limited to: changing the drawing order
layer to: bring to the front, send to the back, bring to the front
one layer, or send to the back one layer, hiding (and then
reshowing) selected objects to show UI objects obstructed
by other UI Objects, delete a selected UI Page Object, and
editing the currently selected page, by working with a Edit
Page Dialog Box.

Object styles panel 307b of layer inspector 307 displays
all styles on the Applications Page and permits operations to
be performed on objects, and is similar to panel 307a.
Examples of operations provided by object style panel 307b
include, but are not limited to: importing from either a user's
private object library or a public object library; inserting a
new object style, which can be inherited from a currently
selected object, or from a previously defined style object;
and editing a currently selected object style by working with
an Edit Style Dialog Box.

Style attributes can be assigned many attributes, including
the look, and behavior of any object that inherits these
objects. In addition, List Layout Styles can be created or
changed as required. A layout style can define a unbounded
set of Complex List Layouts, including but not limited to:
the number of lines per item in a list, the number of text and
image elements and their location for each line for each item
in the last, the color and font for each text element, and the
vertical and horizontal offset for each image and text ele
ment.

Alerts Panel 307c provides a way of providing alert pages,
which can have many of the attributes of Application Pages,
but they are only activated through an Event such as a user
interaction, a network event, a timer event, or a system
variable setting, and will be Superimposed onto whatever is
currently being displayed. Alert Pages all have transparent
backgrounds, and they function as a template overlay, and
can also have dynamic binding to real time content.

Resource inspector 309 is the primary panel for interac
tively working with UI objects that have been placed on the
Canvas 305. When a UI object is selected on Canvas 305, a
user of authoring platform 110 may associate properties of
the selected object by entering or selecting from resource
inspector 309. In one embodiment, resource inspector 309
includes five tab selections: Setting Tab 309a, Events Tab
309b, Animation Tab 309c, Color Tab 309d which includes
a color palette for selecting object colors, and Bindings Tab
309e.

Settings Tab 309a provides a dialog box for the basic
configuration of the selected object including, but not lim

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 473 of 548

US 9,471,287 B2
21

ited to, name, size, location, navigation and visual settings.
Depending upon the type of object, numerous other attri
butes could be settable. As an example, the Setting Tab for
a Text Field may include dialog boxes to define the text field
string, define the object style, set the font name, size and
effects, set an object name, frame style, frame width, text
attributes (text field, password field, numeric field, phone
number, SMS number, URL request).
As an example of Setting Tab 309a, FIG. 3B shows

various selections including, but not limited to, setting
309a 1 for the web page name, setting 309a2 for the page
size, including selections for specific devices 130, setting
309a3 indicating the width and height of the object, and
setting 309a4 to select whether background audio is present
and to select an audio file.

FIG. 3C illustrates an embodiment of the Events Tab
309b, which includes all end user interactions and time
based operations. The embodiment of Events Tab 309b in
FIG. 3C includes, for example and without limitation, an
Events and Services 309b1, Advanced Interactive Settings
309b2, Mouse State 309b3, Object Selected Audio Setting
309b4, and Work with Child Objects and Mouse Overs
button 309b5.

Events and Services 309b1 lists events and services that
may be applied to the selected objects. These include, but are
not limited to, going to external web pages or other Appli
cations pages, either as a new page or by launching a new
window, executing an Application or JavaScript method,
pausing or exiting, placing a phone call or SMS message,
with or without single or multiple Player download, show
launch strip, or go back to previous page. Examples of
events and services include, but are not limited to those
listed in Table II

TABLE II

Events and Services

Goto External Web Page replacing ChoiceObject: Remove Icon from
Current Frame Launch Strip
Goto External Web Page Launched Goto a specific Internal Web
in a New Window Page with Alert. “Backend

Synchronization
Goto Widget Object
Generate Alert. “With a Fire

Goto a specific Internal Web Page
Goto the next Internal Web Page

Event
Goto External Web Page replacing Send SMS Message from Linked
the Top Frame Text Field
Execute JavaScript Method Toggle Alert. “Display OnFocus,

Hide OffRocus'
Pause/Resume Page TimeOut Execute an Application with Alert.

“With a Fire Event
Goto Logical First Page
Generate Alert with Backend
Synchronization
Send SMS Message with Share
(Player Download)
Place PhoneCall from linked Text
Field with Share (Player Download)
Send IMAlert from linked Text

Execute an Application
Goto a specific Internal Web
Page with setting starting slide
Exit Application

Exit Player

Place PhoneCall from linked
Text Field Field or TextArea
Text Field Area: Send String Set and Goto Starting Page
on FIRE
ChoiceObject: Add Icon to Populate Image
Launch Strip
Text Field Area: Send String
on FIRE or Numeric Keys

Preferred Launch Strip

Advanced Interactive Settings 309b2 include Scroll Acti
vation Enabled, Timeline Entry Suppressed, Enable Server
Listener, Submit Form, Toggle Children on FIRE, and Hide
Non-related Children, Mouse State 309.b3 selections are
Selected or Fire. When Mouse State Selected is chosen,

5

10

15

25

30

35

40

45

50

55

60

65

22
Object Selected Audio Setting 309b4 of Inactive, Play Once,
Loop, and other responses are presented. When Mouse State
Fire is chosen, Object Selected Audio Setting 309b4 is
replaced with FIRE Audi Setting, with appropriate choices
presented.
When Work with Child Objects and Mouse Overs button

309b5 is selected, a Child Object Mode box pops up,
allowing a user to create a child object with shortcut to Menu
bar 301 actions that may be used define child objects.

FIG. 3D illustrates one embodiment of an Animation Tab
309c, which includes all animations and timelines. The
Color Tab includes all the possible color attributes, which
may vary significantly by object type.

Animation Tab 309c includes settings involved in anima
tion and timelines that may be associated with objects. One
embodiment of Animation Tab 309c is shown, without
limitation, in FIG. 3D, and is described, in Rempell (“Rem
pell”).
A Color Tab 309d includes a color palette for selecting

object colors.
Bindings Tab 309e is where web component operations

are defined and dynamic binding settings are assigned. Thus,
for example, a UI object is selected from canvas 305, and a
web component may be selected and configured from the
bindings tab. When the user's work is saved, binding infor
mation is associated with the UI object that will appear on
Screen 137.

FIG. 3E illustrates one embodiment of Bindings Tab and
includes, without limitation, the following portions: Web
Component and Web Services Operations 309e1, Attributes
Exposed list 309e2, panel 309e3 which includes dynamic
binding of server-side database values to attributes for the
selected object, Default Attribute Value 309e4, Database
Name 309.e5, Table Name 309.e6, Field Name 309e7, Chan
nel Name 309e8, Channel Feed 309e9, Operation 309e10,
Select Link 309e11, and Link Set checkbox 309e12.
Web Component and Web Services Operations 309e1

includes web components that may be added, edited or
removed from a selected object. Since multiple web com
ponents can be added to the same object, any combination
of mash-ups of 3rd party web services is possible. When the
“Add button of Web Component and Web Services Opera
tions 309e1 is selected, a pop-up menu 319, as shown in
FIG. 3F, appears on publisher interface 300. Pop-up menu
319 includes, but is not limited to, the options of: Select a
Web Component 319a: Select Results Page 319b: Activation
Options 319.c; Generate UI Objects 319d; and Share Web
Component 319e.
The Select a Web Component 319 a portion presents a list

of web components. As discussed herein, the web compo
nents are registered and are obtained from web component
registry 220.

Select Results Page 319b is used to have the input and
output on different pages—that is, when the Results page is
different from Input page. The default selected results page
is either the current page, or, if there are both inputs and
outputs, it will be set provisionally to the next page in the
current page order, if one exists.

Activation Options 319.c include, if there are no Input UI
Objects, a choice to either “Preload the web component,
similar to how dynamic binding, or have the web component
executed when the “Results' page is viewed by the con
SUC.

Generate UI Objects 319C, if selected, will automatically
generate the UI objects. If not selected, then the author will
bind the Web Component Inputs and Results to previously
created UI Objects.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 474 of 548

US 9,471,287 B2
23

Share Web Component 319e is available and will become
selected under the following conditions: 1) Web Component
is Selected which already has been used by the current
Application; or 2) the current Input page is also a “Result
page for that Web component. This permits the user of 5
device 130, after viewing the results, to extend the Web
Component allowing the user to make additional queries
against the same Web Component. Examples of this include,
but are not limited to, interactive panning and Zooming for
a Mapping Application, or additional and or refined searches
for a Search Application.

Dynamic Binding permits the binding of real time data,
that could either reside in a 3rd party server-side database,
or in the database maintained by Feed Collector 1010 for
aggregating live RSS feeds, as described Subsequently with
reference to FIG. 10.

Referring again to FIG.3E, Attributes Exposed list 309e2
are the attributes available for the selected object that can be
defined in real time through dynamic binding.

Panel 309e3 exposes all the fields and tables associated
with registered server-side data bases. In one embodiment,
the user would select an attribute from the "Attributes
Exposed List” and then select a database, table and field to
define the real time binding process. The final step is to
define the record. If the Feed Collector database is selected,
for example, then the RSS "Channel Name” and the “Chan
nel Feed” drop down menus will be available for symboli
cally selected the record. For other data bases the RSS
“Channel Name” and the “Channel Feed” drop down menus
are replaced by a “Record ID' text field.

Default Attribute Value 309e4 indicates the currently
defined value for the selected attribute. It will be overridden
in real time based on the dynamic linkage setting.

Database Name 309e5 indicates which server side data
base is currently selected.

Table Name 309e6 indicates which table of the server side
database is currently selected.

Field Name 309e7, indicates which field form the selected
table of the server side data base is currently selected.

Channel Name 309e8 indicates a list of all the RSS feeds
currently supported by the Feed Collector. This may be
replaced by “Record ID' if a database other than the Feed
Collector 1010 is selected.

Channel Feed 309e9 indicates the particular RSS feed for
the selected RSS Channel. Feed Collector 1010 may main
tain multiple feeds for each RSS channel.

Operation 309e10, as a default operation, replaces the
default attribute value with the real time value. In other
embodiments this operation could be append, add, Subtract,
multiply or divide.

Select Link 309e11 a button that, when pressed, creates
the dynamic binding. Touching the “Select Link' will cause
the current data base selections to begin the blink is some
manner, and the “Select Link' will change to “Create Link”.
The user could still change the data base and attribute
choices. Touching the “Create Link' will set the “Link Set
checkbox and the “Create Link' will be replaced by “Delete
Link' if the user wishes to subsequently remove the link.
When the application is saved, the current active links are
used to create the SPDL.

Link Set checkbox 309e12 indicates that a link is cur
rently active.
An example of the design of a display is shown in FIGS.

4A and 4B according the system 100, where FIG. 4A shows
publisher interface 300 having a layout 410 on canvas 305,
and FIG. 4B shows a device 130 having the resulting layout
420 on screen 137. Thus, for example, authoring platform

10

15

25

30

35

40

45

50

55

60

65

24
110 is used to design layout 410. Authoring platform 110
then generates an Application and a Player specific to device
130 of FIG. 4B. The Application and Player are thus used by
device 130 to produce layout 420 on screen 137.
As illustrated in FIG. 4A, a user has placed the following

on canvas 305 to generate layout 410; text and background
designs 411, a first text input box 413, a second text input
box. 415, and a button 417. As an example which is not
meant to limit the scope of the present invention, layout 410
is screen prompts a user to enter a user name in box 413 and
a password in box 415, and enter the information by clicking
on button 417.

In one embodiment, all UI objects are initially rendered as
Java objects on canvas 305. When the Application is saved,
the UI objects are transformed into the PDL, as described
Subsequently.

Thus, for example, layout 410 may be produced by the
user of authoring platform 110 selecting and placing a first
Text Field as box 413 then using the Resource Inspector 309
portion of interface 300 to define its attributes.
Device User Experience

Systems 100 and 200 provide the ability for a very large
number of different types of user experiences. Some of these
are a direct result of the ability of authoring platform 110 to
bind UI objects to components of web services. The follow
ing description is illustrative of Some of the many types of
experiences of using a device 130 as part of system 100 or
2OO.

Device 130 may have a one or more of a very powerful
and broad set of extensible navigation objects, as well as
object- and pointer-navigation options to make it easy to
provide a small mobile device screen 137 with content and
to navigate easily among page views, between Applications,
or within objects in a single page view of an Application.

Navigation objects include various types of launch strips,
various intelligent and user-friendly text fields and scrolling
text boxes, powerful graphical complex lists, as well as
Desktop-level business forms. In fact, every type of object
can be used for navigation by assigning a navigation event
to it. The authoring tool offers a list of navigation object
templates, which then can be modified in numerous ways.
Launch Strips and Graphical List Templates Launch Strips

Launch strips may be designed by the user of authoring
platform 110 with almost no restrictions. They can be
stationary or appear on command from any edge of the
device, their size, style, audio feedback, and animations can
be freely defined to create highly compelling experiences.

FIG. 5 shows a display 500 of launch strips which may be
on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application. Display 501
includes a portal-type Launch Strip 501 and a channel-type
Launch Strip 502, either one of which may be included for
navigating the Application.

Launch Strip 501 includes UI objects 501a, 501b, 501c,
501d, and 501e that that becomes visible from the left edge
of the display, when requested. UI objects 501a, 501b, 501c,
501d, and 501e are each associated, through resource
inspector 309 with navigational instructions, including but
not limited to navigating to a different Applications Page, or
requesting web content. When the Applications Page, having
been saved by authoring platform 110 and transferred to
display 130, is executed on device 130, a user of the device
may easily navigate the Application.

Launch Strip 502 includes UI objects 502b, 502c, 502d,
and 503e that that becomes visible from the bottom of the
display, when requested. UI objects 501a, 501b, 501c, 501d.
and 501e are each associated, through resource inspector

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 475 of 548

US 9,471,287 B2
25

309 with navigational instructions, including but not limited
to navigating to a different Applications Page, or requesting
web content. Launch Strip 502 also includes UI objects 502a
and 503g, which include the graphic of arrows, and which
provide access to additional navigation objects (not shown)
when selected by a user of device 130. Launch strip 502 may
also include Sound effects for each channel when being
selected, as well as popup bubble help.

Additional navigational features are illustrated in FIG. 6A
as a display of a Channel Selection List 601a, in FIG. 6B as
a display of a Widget Selection List 601b, and in FIG. 6C as
display of a Phone List 601c. Lists 601a, 601b, and 601c
may be displayed on canvas 305 or on screen 137 of device
130 having the proper Player and Application. As illustrated,
graphical lists 601a, 601b, and 601c may contain items with
many possible text and image elements. Each element can be
defined at authoring time and/or populated dynamically
through one or more Web Service 250 or API. Assignable
Navigation Events. All objects, and/or all elements within an
object, can be assigned navigation events that can be
extended to registered web services or APIs. For example, a
Rolodex-type of navigation event can dynamically set the
starting slide of the targeted page view (or the starting view
of a targeted Application).

In the embodiment of FIGS. 6A, 6B, and 6C, each list
601a, 601b, and 601c has several individual entries that are
each linked to specific actions. Thus Channel Selection List
601 a shows three objects, each dynamically linked to a web
service (ESPN, SF 49ers, and Netflix) each providing a link
to purchase or obtain items from the Internet. Widget
Selection List 601b includes several objects presenting
different widgets for selecting. Phone List 601c includes a
list phone number objects of names that, when selected by
a user of device 130 cause the number to be dialed Entries
in Phone List 601c may be generated automatically from
either the user's contact list that is resident on the device, or
though a dynamic link to any of user's chosen server-side
facilities such as Microsoft Outlook, Google Mail, etc. In
one embodiment, Phone List 601c may be generated auto
matically using a web component assigned to the Applica
tion, which would automatically perform those functions.

In another embodiment, authoring platform 110 allows a
navigation selection of objects with a Joy Stick and/or
Cursor Keys in all 4 directions. When within a complex
object the navigation system automatically adopts to the
navigation needs for that object. For coordinate sensitive
objects such as geographical information services (GIS) and
location-based services (LBS) or virtual tours a soft cursor
appears. For Lists, scrolling text areas and chats, Launch
strips, and slide shows the navigation process permits intui
tive selection of elements within the object. Scroll bars and
elevators are optionally available for feedback. If the device
has a pointing mechanism then scroll bars are active and
simulate the desktop experience.
Personalization and Temporal Adoption

System 100 and 200 permit for the personalization of
device 130 by a variety of means. Specifically, what is
displayed on screen 137 may depend on either adoption or
customization. Adoption refers to the selection of choices,
navigation options, etc. are based on user usage patterns.
Temporal adoption permits the skins, choices, layouts, con
tent, widgets, etc. to be further influenced by location (for
example home, work or traveling) and time of day (includ
ing season and day of week). Customization refers to user
selectable skins, choices, layouts, dynamic content, widgets,
etc. that are available either through a customization on the

10

15

25

30

35

40

45

50

55

60

65

26
phone or one that is on the desktop but dynamically linked
to the user's other internet connected devices.
To support many personalization functions there must be

a convenient method for maintaining, both within a user's
session, and between sessions, memory about various user
choices and events. Both utilizing a persistent storage
mechanism on the device, or a database for user profiles on
a server, may be employed.

FIG. 7 shows a display 700 of a mash-up which may be
on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application. Display 700
includes several object 701 that have been dynamically
bound, including an indication of time 701a, an indication of
unread text messages 701b, an RSS news feed 701c (includ
ing 2 “ESPN Top Stories’ 701c1 and 701 c2), components
701d from two Web Services a weather report (“The
Weather Channel'), and a traffic report 701e (“TRAFFIC
.COM).

In assembling the information of display 700, device 130
is aware of the time and location of the device in this
example the display is for a workday when a user wakes.
Device 130 has been customized so that on a work day
morning the user wishes to receive the displayed informa
tion. Thus in the morning, any messages received overnight
would be flagged, the user's favorite RSS sports feeds would
be visible, today's weather forecast would be available, and
the current traffic conditions between the user's home and
office would be graphically depicted. User personalization
settings may be maintained as persistent storage on device
130 when appropriate, or in a user profile which is main
tained and updated in real-time in a server-side data base.
Push Capable Systems

In another embodiment system 100 or 200 is a push
capable system. As an example, of Such systems, short codes
may be applied to cereal boxes and beverage containers, and
SMS text fields can be applied to promotional websites. In
either case, a user of device 130 can text the short code or
text field to an SMS server, which then serves the appro
priate Application link back to device 130.

FIG. 8 is a schematic of an embodiment of a push enabled
system 800. System 800 is generally similar to system 100
or 200. Device 130 is shown as part of a schematic of a push
capable system 800 in FIG.8. System 800 includes a website
system 801 hosting a website 801, a server 803 and a content
server 805. System 801 is connected to servers 803 and/or
805 through the Internet. Server 803 is generally similar to
server 120, servers 805 is generally similar to server 140.

In one embodiment, a user sets up a weekly SMS update
from website system 801. System 801 provides user infor
mation to server 803, which is an SMS server, when an
update is ready for delivery. Server 803 provides device 130
with an SMS indication that the subscribed information is
available and queries the user to see if they wish to receive
the update. Website 801 also provides content server 805
with the content of the update. When a user of device 130
responds to the SMS query, the response is provided to
content server 805, which provides device 130 with updates
including the Subscribed content.

In an alternative embodiment of system 800, server 803
broadcasts alerts to one or more devices 130, such as a
logical group of devices. The user is notified in real-time of
the pending alert, and can view and interact with the
massage without interrupting the current Application.

FIG. 9 is a schematic of an alternative embodiment of a
push enabled system 900. System 900 is generally similar to
system 100, 200, or 800. In system 900 a user requests
information using an SMS code, which is delivered to device

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 476 of 548

US 9,471,287 B2
27

130. System 900 includes a promotional code 901, a third
party server 903, and content server 805. Server 803 is
connected to servers 803 and/or 805 through the Internet,
and is generally similar to server 120.
A promotional code 901 is provided to a user of device

130, for example and without limitation, on print media,
such as on a cereal box. The use of device 130 sends the code
server 903. Server 903 then notifies server 805 to provide
certain information to device 130. Server 805 then provides
device 130 with the requested information.
Device Routines

Device routines 114 may include, but are not limited to:
an authoring tool SDK for custom code development includ
ing full set of Java APIs to make it easy to add extensions
and functionality to mobile Applications and tie Applica
tions to back-end databases through the content server 140;
an expanding set of web services 250 available through the
authoring tool SDK; a web services interface to SOAP/XML
enabled web services; and an RSS/Atom and RDF feed
collector 1010 and content gateway 1130.
Authoring Tool SDK for Custom Code Development Includ
ing Full Set of Java APIs

In one embodiment, authoring platform 110 SDK is
compatible for working with various integrated develop
ment environments (IDE) and popular plug ins such as
J2ME Polish. In one embodiment the SDK would be another
plug in to these IDEs. A large and powerful set of APIs and
interfaces are thus available through the SDK to permit the
seamless extension of any Application to back end business
logic, web services, etc. These interfaces and APIs may also
support listeners and player-side object operations.

There is a large set of listeners that expose both player
side events and dynamically linked server side data base
events. Some examples of player side events are: player-side
time based event, a page entry event, player-side user
interactions and player-side object status. Examples of
server-side data base events are when a particular set of
linked data base field values change, or some filed value
exceeds a certain limit, etc.
A superset of all authoring tool functionality is available

through APIs for layer-side object operations. These include,
but are not limited to: page view level APIs for inserting,
replacing, and or modifying any page object; Object Level
APIs for modifying any attribute of existing objects, adding
definitions to attributes, and adding, hiding or replacing any
object.
Authoring Tool SDK Available Web Services
The APIs permit, without limit, respond, with or without

relying on back-end business logic, that is, logic that what an
enterprise has developed for their business, to any player
side event or server-side dynamically linked data-base,
incorporating any open 3rd party web service(s) into the
response.
RSS/Atom and RDF Feed Conversion Web Service

FIG. 10 is a schematic of one embodiment a system 1000
having a feed collector 1010. System 1000 is generally
similar to system 100, 200, 800, or 900. Feed collector 1010
is a server side component of system 100 that collects RSS,
ATOM and RDF format feeds from various sources 1001
and aggregates them into a database 1022 for use by the
Applications built using authoring platform 110.

Feed collector 1010 is a standard XML DOM data extrac
tion process, and includes Atom Populator Rule 1012, RSS
Populator Rule 1013, RDF Populator Rule 1014, and Cus
tom Populator Rule 1016, DOM XML Parsers 1011, 1015,
and 1017, Feed Processed Data Writer 1018, Custom Rule

10

15

25

30

35

40

45

50

55

60

65

28
Based Field Extraction 1019, Rule-based Field Extraction
1020, Channel Data Controller 1021, and Database 1022.
The feed collector is primarily driven by two sets of

parameters: one is the database schema (written as SQL
DDL) which defines the tables in the database, as well as
parameters for each of the feeds to be examined. The other
is the feed collection rules, written in XML, which can be
used to customize the information that is extracted from the
feeds. Each of the feeds is collected at intervals specified by
the feed parameter set in the SQL DDL.

Feed collector 1010 accepts information from ATOM,
RDF or RSS feed sources 1001. Using a rules-based popu
lator, any of these feeds can be logically parsed, with any
type of data extraction methodology, either by using Sup
plied rules, or by the author defining their own custom
extraction rule. The rules are used by the parser to parse
from the feed sources, and the custom rule base field
extraction replaces the default rules and assembles the
parsed information into the database

In particular, Atom Populator Rule 1012, RSS Populator
Rule 1013, RDF Populator Rule 1014, Custom Populator
Rule 1016, and DOM XML Parsers 1011, 1015, and 1017
are parse information from the feeds 1001, and Feed Pro
cessed Data Writer 1018, Custom Rule Based Field Extrac
tion 1019, Rule-based Field Extraction 1020, and Channel
Data Controller 1021, supply the content of the feeds in
Database 1022, which is accessible through content server
140.

FIG. 11 is a schematic of an embodiment of a system 1100
having a Mobile Content Gateway 1130. System 1100 is
generally similar to system 100, 200, 800, 900, or 1000.
System 1100 includes an SDK 1131, feed collector 1010,
database listener 1133, transaction server 1134, custom code
1135 generated from the SDK, Java APIs, Web Services
1137, and PDL snippets compacted objects 1139. System
1100 accepts input from Back End Java Code Developer
1120 and SOAP XML from Web Services 1110, and pro
vides dynamic content to server 140 and Players to devices
130.

In one embodiment authoring platform 110 produces a
Server-side PDL (SPDL) at authoring time. The SPDL
resides in server 120 and provides a logical link between the
Application’s UI attributes and dynamic content in database
1022. When a user of device 130 requests dynamic infor
mation, server 120 uses the SPDL to determine the link
required to access the requested content.

In another embodiment Web Services 1137 interface
directly with 3rd party Web Services 1110, using SOAP.
REST JAVA, JavaScript, or any other interface for dynami
cally updating the attributes of the Application’s UI objects.
XSP Web Pages as a Web Service

In one embodiment, a PDL for a page is embedded within
an HTML shell, forming one XSP page. The process of
forming XSP includes compressing the description of the
page and then embedding the page within an HTML shell.

In another embodiment, a PDL, which contains many
individual page definitions, is split into separate library
objects on the server, so that each page can to presented as
a PDL as part of a Web Service.

Prior to compression the code has already been trans
formed so that there are no dependencies on the original
programming language (Java), and The code and data have
been reduced by 4 to 10 times.

Compression has two distinct phases. The first takes
advantage of how the primitive representations had been
assembled, while the second utilizes standard LZ encoding.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 477 of 548

US 9,471,287 B2
29

The final result is an overall reduction of 40 to 100 times
the original size as represented by Java serialized objects.
One embodiment for compacting data that may be used is

described in Rempell. In that patent the compressed data is
described as being a database. The terminology used here is
a PDL, that is the “internal database' of Rempell is equiva
lent to the PDL of the present Application.

In Rempell, a process for compacting a “database' (that
is, generating a compact PDL) is described, wherein data
objects, including but not limited to, multi media objects
Such as colors, fonts, images, Sound clips, URLs, threads,
and video, including multi level animation, transformation,
and time line are compacted. As an extension to Rempell in
all cases these objects are reduced and transformed to
Boolean, integer and string arrays.
The compression technique involves storing data in the

Smallest arrays necessary to compactly store web page
information. The technique also includes an advanced form
of delta compression that reduces integers so that they can
be stored in a single byte, a as high water marks.

Thus, for example, the high water mark for different types
of data comprising specific web site settings are stored in a
header record as Boolean and integer variables and URL and
color objects. Data that defines web page, paragraph, text
button, and image style and text button, image and para
graph high watermark settings can be stored in one-dimen
sional arrays as Boolean, integer and string variables and
URL, font, image or thread objects at. The URL, color, font,
image and thread objects can also be created as required

Data that defines text button, image, paragraph, or other
parent objects and paragraph line high watermark settings
can be stored in two-dimensional arrays (by web page and
by object number) as Boolean, integer, string, floating point
variables and URLs. Again, the URL, color, font, image,
audio clip, video clip, text area and thread objects can also
be created as required. Data that defines a paragraph line and
paragraph line segment high watermarks can be stored in
three-dimensional arrays (by web page, by paragraph num
ber, and by line number) as Boolean, integer or string
variables. Again, the URL, color or font objects can be
created as required. Data that defines a paragraph line
segment can be stored into four-dimensional arrays (by web
page, by paragraph number, by line number and by line
number segment) as Boolean, integer or string variables or
URL, color and font objects.
As a data field is added, changed or deleted, a determi

nation is made at on whether a value for a given high
watermark needs to be changed. If so, it is updated. As a
specific method in the build engine is called, a determination
is made on whether a feature flag needs to be set. For
example, if a particular JAVA method is called, which
requires an instance of a certain JAVA Class to be executed
by the run time engine, then that JAVA Class is flagged, as
well as any Supporting methods, variables and/or object
definitions.

In one implementation, the header record, the style record,
the web page record, and the object records, are carefully
defined in a specific order, written in that order, and explic
itly cast by object type when read by the run time engine.
Exception handling can be implemented to recover from any
errors. This helps assure that data integrity is maintained
throughout the build and run time processes.

Also described in Rempell is the “run generation pro
cess.” This is equivalent generating a Player in the present
application. This process starts when the build process
detects that the user is finished defining the web site (user
has saved the web site and invokes the run generation

10

15

25

30

35

40

45

50

55

60

65

30
process), and concludes with the actual uploading of all the
necessary web site run time files to the user's server.

In one embodiment, the PDL includes a first record, a
“Header record, which contains can include the following
information:

1: A file format version number, used for upgrading
database in future releases.

2: The default screen resolution, in virtual pixels, for both
the screen width and height. This is usually set to the
web designer's screen resolution, unless overwritten by
the user.

: Whether the Application is a web site.
4: Virtual web page size settings. A calculation is per

formed by the build engine method, in order to calcu
late what the maximum web page length is, after
reformatting all paragraphs on all internal web pages,
based on the default screen resolution.

5: Web page and styles high watermarks.
6: The Websitename.
As new web pages or new objects are created by the user,

or as text is added to or deleted from a paragraph, or as new
styles are created or deleted, appropriate high watermarks
are set, in order to show the current number of each of these
entities. Thus, the values for the number of active web pages
and the number of text button, image, paragraph or other
styles are written as high watermarks in the header. The high
watermarks for the number of text button, image, paragraph
or other objects that exist for each web page, the number of
lines for each paragraph object, and the number of line
segments for each paragraph line are written within the body
of the PDL, and used as settings for each of the loops in the
four-dimensional data structure. Because no structural limits
are set on the number of web pages, objects per web page,
styles, or paragraph size, these high watermarks greatly
reduce the external database file size, and the time it takes
for the run time engine to process the data stored in its
database.
The settings for all paragraph, text button and image

styles are then written as a style record based on their high
watermark. This data includes Boolean and integer vari
ables, and font and color objects, written as a one-dimen
sional array, based on the high watermark values for the
number of styles that exist.
The body of the PDL is then written. All Boolean values

are written inside a four-dimensional loop. The outside loop
contains the Boolean values used to define web pages (i.e. a
one-dimensional array definition) as well as the high water
marks for the number of text button, image, paragraph or
other objects per web page, with the loop set at the high
watermark which defines the number of existing web pages
for this web site structure. The second level consists of three
or more two dimensional loops with the loops set to the high
watermarks defining the actual number of text button,
image, and paragraph or other objects that appear on any
given web page and contains the values used to define web
page objects (i.e. a two-dimensional array definition; web
page number by object number). Included within the loop
for paragraph objects are the high watermarks for the
number of lines for each paragraph object. The third loop is
set by the high watermark defining the actual number of
paragraph lines that for all paragraphs on any web page and
contains the values used to define paragraph lines (i.e. a
three-dimensional array definition; web page number by
object number by paragraph line.) Included within the loop
for paragraph lines are the high watermarks for the number
of line segments for each paragraph line. The inner most
loop is set by the high watermarks defining the number of

3

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 478 of 548

US 9,471,287 B2
31

line segments per paragraph line and contains the values
used to define paragraph line segments (i.e. a four-dimen
sional array definition; web page number by object number
by paragraph line by paragraph line segment).

All integer values are written inside a four-dimensional
loop. Their four loops are controlled by the same high
watermark settings as used for the Boolean records, and they
describe the same logical entities.

Multimedia objects are written inside a two-dimensional
loop. They include URL, color, and font objects, and can
include other types of objects. A URL object is the encoded
form of a URL Address, used by a web browser or a JAVA
method to access files and web addresses. All multimedia
objects must be serialized before they can be written. This
means that the objects are converted into a common external
definition format that can be understood by the appropriate
deserialization technique when they are read back in and
cast into their original object structure. The outside loop
contains web page related objects, and the inner loop con
tains image, text button, paragraph, etc. related URL, color,
and font objects. The outer loop is defined by the web page
high watermark and the inner loops by the high watermarks
for the actual number of text button, image, paragraph or
other objects on a web page.

String records are written inside a four-dimensional loop.
The outer loop may be empty. The second loop can include
the string values for text button objects, audio and video
filenames, and audio and video channel names. The third
loop contains values for paragraph line related data, and the
innermost loop contains the values for paragraph line seg
ment definitions. The string records are controlled by the
same high watermarks as those used for Boolean and integer
records. String records are stored utilizing an appropriate
field delimiter technology. In one implementation, a UTF
encoding technology that is Supported by JAVA is utilized.

Single and double floating-point, and long integer records
are written inside a two-dimensional loop. The outer loop
may be empty. The inner loop contains mathematical values
required for certain animations and image processing algo
rithms. The single and double floating-point, and long
integer records are controlled by the same high watermarks
as those used for Boolean and integer records.

In one embodiment, a versionizing program analyzes the
feature flags, and only those variable definitions, defined in
the “Main” object class, relating to the object classes and
methods that will be executed at run time, are extracted. All
references to object classes that will be called at run time are
extracted, creating the Source code for the run engine
“Main” object class that is ready for compilation.

All external image, video and audio files are resolved. The
external references can be copied to designated directories,
either on the user's local disk or file server. The file
Pathnames can be changed to reflect these new locations.
During the installation of the build tools, the necessary class
libraries are either installed on the local system or made
available on the server where the build tools can be option
ally located. The necessary environmental variables are set
to permit normal access to the required class libraries.

The customized run engine and a library of the referenced
run time classes are compiled and converted into byte code.
Finally, the run time engine for the web site is created. The
required set of class objects required at run time is flagged
for inclusion into the CAB/JAR file.

Next, an HTML Shell File (HSF) is constructed. The first
step of this process is to determine whether the dynamic web
page and object resizing is desired by testing the Application
setting. If the Application was a web page, and thus requir

10

15

25

30

35

40

45

50

55

60

65

32
ing dynamic web page and object resizing, virtual screen
resolution settings are placed in an appropriate HTML
compliant string. If the Application is a banner or other
customized Application, the absolute values for the run time
object (applet size) height and width are placed in an
appropriate HTML compliant string as absolute width and
height values.
An analysis is made for the background definition for the

first internal web page. If a background pattern is defined, an
appropriate HTML compliant string for setting the HTML
“background to the same background image is generated. If
the first web page definition is a color instead, then the RGB
values from those colors are converted to hexadecimal and
an appropriate HTML compliant String is generated setting
the “bgcolor” to the required hexadecimal value. This pro
cess synchronizes the web page background with the back
ground that will be drawn by the web browser when it first
interprets the HSF.

Thereafter, a JAVA method generates HTML and
JavaScript compliant strings, that when executed by a web
browser, generate additional sets of HTML and JavaScript
compliant strings that are again executed by the web
browser. More specifically, if the Application required
dynamic web page and object resizing then JavaScript and
HTML compliant Strings are generated so that, when inter
preted by the web browser at the time the HTML Shell File
is initialized, the screen resolution sensing JAVA applet
(SRS) will be executed. JavaScript code is generated in
order to enable JavaScript to SRS applet communication. In
one implementation, the code is generated by performing the
following functions:

1: Determine the current web browser type.
2: Load the SRS from either a JAR or CAB File, based on
web browser type.

3: Enter a timing loop, interrogating when the SRS is
loaded.

4: When the SRS returns an “available' status, interrogate
the SRS, which will return the current screen and
windows actual height and width.

5: Convert the virtual screen resolution settings into
appropriate absolute screen width and height values.

Strings defining additional JavaScript code are generated
that perform the following steps at the time the HSF is
initialized by the web browser:

1: Generate HTML compliant strings that set the run time
engine's applet size to the appropriate values.

2: Generate an HTML complaint string that contains a
"param' definition for linking the run time engine to
the PDL.

3: Generate an HTML complaint string, dependent upon
the type of web browser, which causes the current web
browser to load either the JAR or the CAB File(s).

4: Generate JavaScript Code compliant strings that create
and dynamically write the applet size defining HTML
strings utilizing the JavaScript “document.write func
tion. This dynamically created code causes the web
browser to execute the run time engine, in the correctly
sized window, from the correct JAR or CAB file, and
linked to the external database.

The writing out the above-generated HTML and
JavaScript compliant strings creates the HSF. The necessary
security policy permissions are asserted, and a “Website
name'.html file is created.

In one embodiment, the processes for creating the CAB
and JAR Files is as follows. The image objects, if any, which
were defined on the first internal web page are analyzed. If
they are set to draw immediately upon the loading of the first

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 479 of 548

US 9,471,287 B2
33

web page, then they are flagged for compression and inclu
sion in the CAB and JAR Files. The feature flags are
analyzed to determine which JAVA classes have been com
piled. These class files are flagged for compression and
inclusion in the library CAB and JAR Files. Strings that are
BAT compliant definitions are created that will, when
executed in DOS, create compressed CAB and JAR Files.
These CAB and JAR Files contain the compressed versions
of all necessary JAVA class files, image files, the “Website
name.class, customized run time engine file, and the “Web
sitename'.dta database file. In one implementation of the
invention, two BAT files are created. The first, when
executed, will create a CAB/JAR file with the “Website
name'.dta database file and the customized “main run time
engine, excluding all the image and button object animation,
transformation, and image processing code. The second
BAT file, when executed, will create a CAB/JAR file with all
the library of all the referenced image and button object
animation, transformation, and image processing code.
The necessary security policy permissions for file creation

are then asserted, and “Websitename'.bat and “Website
namelib'.bat files are written. The “Websitename'.bat and
“Websitename.bat files are then executed under DOS,
creating compressed “Websitename'.cab and “Website
namelib'.cab files and compressed “Websitename'' jar and
“Websitenamelib' jar files. The HTML Shell File and the
JAR and CAB files are then, either as an automatic process,
or manually, uploaded to the users web site. This completes
the production of an XSP page that may be accessed through
a web browser.
Displaying Content on a Device
Decompression Management

Authoring platform 110 uses compaction to transform the
code and data in an intelligent way while preserving all of
the original classes, methods and attributes. This requires
both an intelligent server engine and client (handset) Player,
both of which fully understand what the data means and how
it will be used.
The compaction technology described above includes

transformation algorithms that deconstruct the logic and data
into their most primitive representations, and then reas
sembles them in a way that can be optimally digested by
further compression processing. This reassembled set of
primitive representations defines the PDL of authoring plat
form 110.

Prior to compression the code has already been trans
formed so that there are no dependencies on the original
programming language (Java). The data is then compressed
by first taking advantage of how the primitive representa
tions had been assembled, and then by utilizing standard LZ
encoding. The final result is an overall reduction of 40 to 100
times the original size as represented by Java serialized
objects.
The Player, when preparing a page view for execution,

decompresses and then regenerate the original objects, but
this time in compliance with the programming APIs of
device 130. Specifically, device 130 operates on compacted
image pages, one at a time. The cache manager retrieves,
decompresses, and reassembles the compacted page images
into device objects, which are then interpreted by device 130
for display on screen 137.
Response Director

In one embodiment, system 100 includes a Response
Director, which determines a user's handset, fetches the
correct Application from different databases, and delivers a
respective highly compressed Application in a PDL format
over the air (OTA).

10

15

25

30

35

40

45

50

55

60

65

34
In one embodiment, the Response Director operates on a

network connected computer to provide the correct Player to
a given device based on the information the device sent to
it. As an example, this may occur when a device user enters
their phone number into some call-to-action web page. The
response director is called and sends an SMS message to the
device, which responds, beginning the recognition process.

FIG. 12 illustrates one embodiment of a system 1200 that
includes a response director 210, a user agent database 1201,
an IP address database 1203, and a file database 1205.
System 1200 is generally similar to system 100, 200, 800,
900, 1000, or 1100.

Databases 1201, 1203, and 1205 may reside on server
120, 210, or any computer system in communication with
response director 210. System 1200, any mobile device can
be serviced, and the most appropriate Application for the
device will be delivered to the device, based on the char
acteristics of the device.

User agent database 1201 includes user agent information
regarding individual devices 130 that are used to identify the
operating system on the device. IP address database 1203
identifies the carrier/operator of each device 130. File data
base 1205 includes data files that may operate on each
device 130.
The following is an illustrative example of the operation

of response director 210. First, a device 1300 generates an
SMS message, which automatically sends an http://stream
that includes handset information and its phone number to
response director 210. Response director 210 then looks at
a field in the http header (which includes the user agent and
IP address) that identifies the web browser (i.e., the “User
Agent”). The User Agent prompts a database lookup in user
agent database 1201 which returns data including, but not
limited to, make, model, attributes, MIDP 1.0 MIDP 2.0,
WAP and distinguishes the same models from different
countries. A lookup of the IP address in IP address 1203
identifies the carrier/operator.

File database 1205 contains data types, which may
include as jadl, jad2, html, Wm.1/wap2, or other data types,
appropriate for each device 130. A list of available Appli
cations are returned to a decision tree, which then returns, to
device 130, the Application that is appropriate for the
respective device. For each file type, there is an attributes list
(e.g., streaming video, embedded video, streaming audio,
etc.) to provide enough information to determine what to
send to the handset.

Response director 210 generates or updates an html or jad
file populating this text file with the necessary device and
network dependent parameters, including the Application
dependent parameters, and then generate, for example, a
CAB or JAD file which contains the necessary Player for
that device. For example, the jad file could contain the
operator or device type or extended device-specific func
tions that the player would then become aware of

If there is an Application that has a data type that device
130 cannot support, for example, video, response director
210 sends an alternative Application to the handset, for
example one that has a slide show instead. If the device
cannot Support a slide show, an Application might have text
and images and display a message that indicates it does not
Support video.

Another powerful feature of response director 210 is its
exposed API from the decision tree that permits the over
riding of the default output of the decision tree by solution
providers. These solution providers are often licensees who
want to further refine the fulfillment of Applications and
Players to specific devices beyond what the default algo

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 480 of 548

US 9,471,287 B2
35

rithms provide. Solution providers may be given a choice of
Applications and then can decide to use the defaults or force
other Applications.

Authoring platform 110 automatically scales Applications
at publishing time to various form factors to reduce the
amount of fragmentation among devices, and the Response
Director serves the appropriately scaled version to the
device. For example, a QVGA Application will automati
cally scale to the QCIF form factor. This is important
because one of the most visible forms of fragmentation
resides in the various form factors of wireless, and particu
larly mobile, devices, which range from 128x128, 176x208,
240x260, 220x220, and many other customized sizes in
between.

FIG. 13 is a schematic of an embodiment of a system
1300. System 1300 is generally similar to system 1200.
System 1300 is an overview of the entire Player fulfillment
process, starting with the generation of players during the
player build process.

System 1300 includes response director 210, a device
characteristics operator and local database 1301, a player
profile database 1303 and a player build process 1305, which
may be authoring platform 110.
As an example of system 1300, when response director

210 receives an SMS message from device 130, the response
director identifies the device characteristics operator and
locale from database 1301 and a Player URL from database
1303 and provides the appropriate Player to the device.

In another embodiment, Player P extend the power of
response director 210 by adapting the Application to the
resources and limitations of any particular device. Some of
these areas of adaptation include the speed of the devices
microprocessor, the presence of device resources such as
cameras and touch screens. Another area of adaptation is
directed to heap, record store and file system memory
constraints. In one embodiment, the Player will automati
cally throttle down an animation to the frame rate that the
device can handle so that the best possible user experience
is preserved. Other extensions include device specific facili
ties such as location awareness, advanced touch screen
interactions, push extensions, access to advanced phone
facilities, and many others
Memory Management

In one embodiment, Player P includes a logical page
virtual memory manager. This architecture requires no Sup
porting hardware and works efficiently with constrained
devices. All page view images, which could span multiple
Applications, are placed in a table as highly compacted and
compressed code. A typical page view will range from 500
bytes up to about 1,500 bytes. (See, for example, the
Rempell patent) When rolled into the heap and instantiated
this code increases to the more typical 50,000 up to 250,000
bytes. Additional alert pages may also be rolled into the heap
and Superimposed on the current page view. Any changes to
any page currently downloaded are placed in a highly
compact change vector for each page, and rolled out when
the page is discarded. Note that whenever an Application is
visited that had previously been placed in virtual memory
the Server is interrogated to see if a more current version is
available, and, if so, downloads it. This means that Appli
cation logic can be changed in real-time and the results
immediately available to mobile devices.

To operate efficiently with the bandwidth constraints of
mobile devices, authoring platform 110 may also utilize
anticipatory streaming and multi-level caching. Anticipatory
streaming includes multiple asynchronous threads and IO
request queues. In this process, the current Application is

10

15

25

30

35

40

45

50

55

60

65

36
scanned to determine if there is content that is likely to be
required in as-yet untouched page views. Anticipatory
streaming also looks for mapping Applications, where the
user may Zoom or pan next so that map content is retrieved
prior to the user requesting it. For mapping applications,
anticipatory streaming downloads a map whose size is
greater than the map portal size on the device and centered
within the portal. Any pan operation will anticipatory stream
a section of the map to extend the view in the direction of
the pan while, as a lower priority, bring down the next and
prior Zoom levels for this new geography. Zooming will
always anticipatory stream the next Zoom level up and
down.

Multi-level caching determines the handset's heap
through an API, and also looks at the record store to see how
much memory is resident. This content is placed in record
store and/or the file system, and may, if there is available
heap, also place the content there as well. Multi-level
caching permits the management of memory Such that
mobile systems best use limited memory resources. Multi
level caching is a memory management system with results
similar to embedding, without the overhead of instantiating
the content. In other words, with multi-level caching, hand
set users get an “embedded performance without the
embedded download. Note that when content is flagged as
cacheable and is placed in persistent storage, a digital rights
management (DRM) solution will be used.
One embodiment of each of the methods described herein

is in the form of a computer program that executes on a
processing system. Thus, as will be appreciated by those
skilled in the art, embodiments of the present invention may
be embodied as a method, an apparatus such as a special
purpose apparatus, an apparatus Such as a data processing
System, or a carrier medium, e.g., a computer program
product. The carrier medium carries one or more computer
readable code segments for controlling a processing system
to implement a method. Accordingly, aspects of the present
invention may take the form of a method, an entirely
hardware embodiment, an entirely software embodiment or
an embodiment combining Software and hardware aspects.
Furthermore, the present invention may take the form of
carrier medium (e.g., a computer program product on a
computer-readable storage medium) carrying computer
readable program code segments embodied in the medium.
Any suitable computer readable medium may be used
including a magnetic storage device Such as a diskette or a
hard disk, or an optical storage device such as a CD-ROM.

It will be understood that the steps of methods discussed
are performed in one embodiment by an appropriate pro
cessor (or processors) of a processing (i.e., computer) sys
tem executing instructions (code segments) stored in Stor
age. It will also be understood that the invention is not
limited to any particular implementation or programming
technique and that the invention may be implemented using
any appropriate techniques for implementing the function
ality described herein. The invention is not limited to any
particular programming language or operating System. It
should thus be appreciated that although the coding for
programming devices has not be discussed in detail, the
invention is not limited to a specific coding method. Fur
thermore, the invention is not limited to any one type of
network architecture and method of encapsulation, and thus
may be utilized in conjunction with one or a combination of
other network architectures/protocols.

Reference throughout this specification to “one embodi
ment,” “an embodiment,” or “certain embodiments' means
that a particular feature, structure or characteristic described

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 481 of 548

US 9,471,287 B2
37

in connection with the embodiment is included in at least
one embodiment of the present invention. Thus, appearances
of the phrases “in one embodiment,” “in an embodiment,” or
“in certain embodiments' in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures
or characteristics may be combined in any suitable manner,
as would be apparent to one of ordinary skill in the art from
this disclosure, in one or more embodiments.

Throughout this specification, the term "comprising shall
be synonymous with “including.” “containing,” or "charac
terized by, is inclusive or open-ended and does not exclude
additional, unrecited elements or method steps. “Compris
ing is a term of art which means that the named elements
are essential, but other elements may be added and still form
a construct within the scope of the statement. "Comprising
leaves open for the inclusion of unspecified ingredients even
in major amounts.

Similarly, it should be appreciated that in the above
description of exemplary embodiments, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding
of one or more of the various inventive aspects. This method
of disclosure, however, is not to be interpreted as reflecting
an intention that the claimed invention requires more fea
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment, and the
invention may include any of the different combinations
embodied herein. Thus, the following claims are hereby
expressly incorporated into this Mode(s) for Carrying Out
the Invention, with each claim standing on its own as a
separate embodiment of this invention.

Thus, while there has been described what is believed to
be the preferred embodiments of the invention, those skilled
in the art will recognize that other and further modifications
may be made thereto without departing from the spirit of the
invention, and it is intended to claim all such changes and
modifications as fall within the scope of the invention. For
example, any formulas given above are merely representa
tive of procedures that may be used. Functionality may be
added or deleted from the block diagrams and operations
may be interchanged among functional blocks. Steps may be
added or deleted to methods described within the scope of
the present invention.
We claim:
1. A system for generating code to provide content on a

display of a device, said system comprising:
computer memory storing a registry of

a) symbolic names required for evoking one or more
web components each related to a set of inputs and
outputs of a web service obtainable over a network,
where the symbolic names are character strings that
do not contain either a persistent address or pointer
to an output value accessible to the web service,
where each symbolic name has an associated data
format class type corresponding to a subclass of User
Interface (UI) objects that support the data format
type of the symbolic name, and has a preferred UI
object, and

b) an address of the web service;
an authoring tool configured to:

define a (UI) object for presentation on the display,
where said defined UI object corresponds to a web

component included in said registry selected from
a group consisting of an input of the web service

5

10

15

25

30

35

40

45

50

55

60

65

38
and an output of the web service, where each
defined UI object is either: 1) selected by a user of
the authoring tool; or 2) automatically selected by
the system as the preferred UI object correspond
ing to the symbolic name of the web component
selected by the user of the authoring tool,

access said computer memory to select the symbolic
name corresponding to the web component of the
defined UI object,

associate the selected symbolic name with the
defined UI object, where the selected symbolic
name is only available to UI objects that support
the defined data format associated with that sym
bolic name, and

produce an Application including the selected Sym
bolic name of the defined UI object, where said
Application is a device-independent code; and

a Player, where said Player is a device-dependent
code, wherein, when the Application and Player
are provided to the device and executed on the
device, and when the user of the device provides
one or more input values associated with an input
symbolic name to an input of the defined UI
object,

1) the device provides the user provided one or more
input values and corresponding input symbolic
name to the web service,

2) the web service utilizes the input symbolic name
and the user provided one or more input values for
generating one or more output values having an
associated output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and
provides instructions for the display of the device
to present an output value in the defined UI object.

2. The system of claim 1, where said registry includes
definitions of input and output related to said web service.

3. The system of claim 1, where said web component is
a text chat, a video chat, an image, a slideshow, a video, or
an RSS feed.

4. The system of claim 1, where said UI object is an input
field for a chat.

5. The system of claim 1, where said UI object is an input
field for a web service.

6. The system of claim 1, where said UI object is an input
field usable to obtain said web component, where said input
field includes a text field, a scrolling text box, a check box,
a drop down-menu, a list menu, or a Submit button.

7. The system of claim 1, where said web component is
an output of a web service, is the text provided by one or
more simultaneous chat sessions, is the video of a video chat
session, is a video, an image, a slideshow, an RSS display,
or an advertisement.

8. The system of claim 1, where said authoring tool is
further configured to:

define a phone field or list; and
generate code that, when executed on the device, allows

a user to Supply a phone number to said phone field or
list.

9. The system of claim 1, where said authoring tool is
further configured to:

define a SMS field or list; and
generate code that, when executed on the device, allows

a user to supply an SMS address to said SMS field or
list.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 482 of 548

US 9,471,287 B2
39

10. The system of claim 1,
where said code includes three or more codes, where one
of said three or more codes is device specific, and
where two of said three or more codes is device
independent.

11. The system of claim 1, where said code is provided
over said network.

12. The system of claim 1, wherein said defined UI object
corresponds to a widget.

13. The system of claim 1, where said Player is activated
and runs in a web browser.

14. The system of claim 1, where said Player is a native
program.

15. A method of displaying content on a display of a
device having a Player, where said Player is a device
dependent code, said method comprising:

defining a user interface (UI) object for presentation on
the display, where said UI object corresponds to a web
component included in a registry of one or more web
components selected from a group consisting of an
input of a web service and an output of the web service,
where each web component includes a plurality of
Symbolic names of inputs and outputs associated with
each web service, and where the registry includes: a)
Symbolic names required for evoking one or more web
components each related to a set of inputs and outputs
of the web service obtainable over a network, where the
Symbolic names are character strings that do not con
tain either a persistent address or pointer to an output
value accessible to the web service, and b) an address
of the web service, and where each defined UI object is
either: 1) selected by a user of an authoring tool; or 2)
automatically selected by a system as a preferred UI
object corresponding to a symbolic name of the web
component selected by the user of the authoring tool;

Selecting the symbolic name from said web component
corresponding to the defined UI object, where the
Selected symbolic name has an associated data format
class type corresponding to a subclass of UI objects that
Support the data format type of the symbolic name, and
has the preferred UI object:

associating the selected symbolic name with the defined
UI object; and

producing an Application including the selected symbolic
name of the defined UI object, where said Application
is a device-independent code, wherein, when the Appli
cation and Player are provided to the device and
executed on the device, and when the user of the device
provides one or more input values associated with an
input symbolic name to an input of the defined UI
object,

10

15

25

30

35

40

45

50

40
1) the device provides the user provided one or more input

values and corresponding input symbolic name to the
web service,

2) the web service utilizes the input symbolic name and
the user provided one or more input values for gener
ating one or more output values having an associated
output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and provides
instructions for the display of the device to present an
output value in the defined UI object.

16. The method of claim 15, where said registry includes
definitions of input and output related to said web service.

17. The method of claim 15, where said web component
is a text chat, a video chat, an image, a slideshow, a video,
or an RSS feed.

18. The method of claim 15, where said UI object is an
input field for a chat.

19. The method of claim 15, where said UI object is an
input field for a web service.

20. The method of claim 15, where said UI object is an
input field usable to obtain said web component, where said
input field includes a text field, a scrolling text box, a check
box, a drop down-menu, a list menu, or a submit button.

21. The method of claim 15, where said web component
is an output of a web service, is the text provided by one or
more simultaneous chat sessions, is the video of a video chat
session, is a video, an image, a slideshow, an RSS display,
or an advertisement.

22. The method of claim 15, further comprising:
defining a phone field or list; and
generating code that, when executed on the device, allows

a user to supply a phone number to said phone field or
list.

23. The method of claim 15, further comprising:
defining a SMS field or list; and
generating code that, when executed on the device, allows

a user to supply an SMS address to said SMS field or
list.

24. The method of claim 15, and such that said Player
interprets dynamically received, device independent values
of the web component defined in the Application.

25. The method of claim 15, further comprising:
providing said Application and Player over said network.
26. The method of claim 15, wherein said UI object

corresponds to a widget.
27. The method of claim 15, where said Player is activated

and runs in a web browser.
28. The method of claim 15, where said Player is a native

program.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 483 of 548

EXHIBIT E

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 484 of 548

TOMMUNE TOTA UNUI TA ON TUTTI
US009928044B2

(12) United States Patent
Rempell et al .

(10) Patent No . : US 9 , 928 , 044 B2
(45) Date of Patent : * Mar . 27 , 2018

(54) SYSTEMS AND METHODS FOR
PROGRAMMING MOBILE DEVICES

(71) Applicant : Express Mobile , Inc . , Novato , CA (US)

(52) U . S . CI .
CPC G06F 8 / 38 (2013 . 01) ; G06F 3 / 0482

(2013 . 01) ; G06F 3 / 04842 (2013 . 01) ; G06F
8 / 34 (2013 . 01) ; G06F 9 / 4443 (2013 . 01) ;

H04L 51 / 046 (2013 . 01) ; H04L 65 / 60
(2013 . 01) ; H04L 67 / 02 (2013 . 01)

(58) Field of Classification Search
??? GO6F 3 / 048
See application file for complete search history .

(72) Inventors : Steven H . Rempell , Novato , CA (US) ;
David Chrobak , Clayton , CA (US) ;
Ken Brown , San Martin , CA (US)

(73) Assignee : Express Mobile , Inc . , Novato , CA (US)
(56) References Cited

(*) Notice : U . S . PATENT DOCUMENTS Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .
This patent is subject to a terminal dis
claimer .

2004 / 0055017 All 3 / 2004 Delpuch et al .
2004 / 0163020 A18 / 2004 Sidman

(Continued)

OTHER PUBLICATIONS (21) Appl . No . : 15 / 706 , 746
(22) Filed : Sep . 17 , 2017
(65) Prior Publication Data

US 2018 / 0004493 A1 Jan . 4 , 2018

Stina Nylander et al . “ The Ubiquitous Interactor - Device Indepen
dent Access to Mobile Services ” (Computer - Aided Design for User
Interfaces IV , Proceedings of the Fifth International Conference on
Computer - Aided Design of User Interfaces CADUI ’ 2004 , Jan .
2004 , pp . 271 - 282) . *

(Continued)
Related U . S . Application Data

Continuation of application No . 15 / 370 , 990 , filed on
Dec . 6 , 2016 , now Pat . No . 9 , 766 , 864 , which is a

(Continued)

Primary Examiner — Xuyang Xia
(74) Attorney , Agent , or Firm — Steven R . Vosen (63)

(51) Int . Ci .
G06F 3 / 048
G06F 9 / 44
H04L 29 / 08
G06F 3 / 0484
G06F 3 / 0482
H04L 12 / 58
H04L 29 / 06

(2013 . 01)
(2018 . 01)
(2006 . 01)
(2013 . 01)
(2013 . 01)
(2006 . 01)
(2006 . 01)

(57) ABSTRACT
Embodiments of a system and method are described for
generating and distributing programming to mobile devices
over a network . Devices are provided with Players specific
to each device and Applications that are device independent .
Embodiments include a full - featured WYSIWYG authoring
environment , including the ability to bind web components
to objects .

28 Claims , 18 Drawing Sheets

100

110 Authoring
Platform

120 Server
121 Network

Interface 111 Memory
112 Authoring

Tool 123 Memory

125 Processor
Device
Routines

113 Processor

115 Screen

117 Input
Device 130 Device

131 Network
Interface

140
Content
Server 133 Memory

141 Network
Interface 135 Processor

143 Memory 137 Screen

145 Processor 139 Input
Device

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 485 of 548

US 9 , 928 , 044 B2
Page 2

Related U . S . Application Data
continuation of application No . 14 / 708 , 094 , filed on
May 8 , 2015 , now Pat . No . 9 , 542 , 163 , which is a
continuation of application No . 12 / 936 , 395 , filed as
application No . PCT / US2009 / 039695 on Apr . 6 ,
2009 , now Pat . No . 9 , 063 , 755 .

2005 / 0149935 A1 7 / 2005 Benedetti
2005 / 0273705 A1 * 12 / 2005 McCain GO6F 17 / 24

715 / 234
2006 / 0063518 A1 3 / 2006 Paddon et al .

OTHER PUBLICATIONS

(60) Provisional application No . 61 / 123 , 438 , filed on Apr .
7 , 2008 , provisional application No . 61 / 113 , 471 , filed
on Nov . 11 , 2008 , provisional application No .
61 / 166 , 651 , filed on Apr . 3 , 2009 .

International Search Report and Written Opinion — PCT / US2009 /
039695 - Aug . 21 , 2009 .
International Preliminary Report on Patentability and Written Opin
ion — PCT / US2009 / 039695 – Oct . 21 , 2010 .
Rempell et al , co - owned U . S . Pat . No . 9 , 471 , 287 , Issue date of Oct .
18 , 2016 .
Rempell et al , co - owned U . S . Pat . No . 9 , 507 , 571 , Issue date of Nov .
29 , 2016 .
Rempell et al , co - owned U . S . Pat . No . 9 , 542 , 163 , Issue date of Nov .
29 , 2016 .
Rempell et al , co - owned U . S . Pat . No . 9 , 766 , 864 , Issue date of Sep .
19 , 2017 .

(56) References Cited

U . S . PATENT DOCUMENTS
2004 / 0199614 A1 * 10 / 2004 Shenfield H04L 29 / 06

709 / 220 * cited by examiner

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 486 of 548

U . S . Patent Mar . 27 , 2018 Sheet 1 of 18 US 9 , 928 , 044 B2

100 m

120 Server 110 Authoring
Platform 121 Network

Interface 111 Memory
112 Authoring

Tool
wwwwww 123 Memory

125 Processor 114 Device
Routines www
www

113 Processor

115 Screen

117 Input
Device 130 Device

Amaran annannnnnnnnnnnnnn

131 Network
Interface

?? Content
Server

? 133 Memory
141 Network

Interface 135 Processor

143 Memory 137 Screen ????????? 145 Processor 139 input
Device

FIG . 1A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 487 of 548

U . S . Patent Mar . 27 , 2018 Sheet 2 of 18 US 9 , 928 , 044 B2

TO 100
110 Authong

Platform

A8

A , R …
LA , B

120a Server 120b Server

AN , B - N A - 1 , B - 1 A - R , B - ?

A - 2 , B - 2 …

130 - 1 Device 1 302 service 2 130 - N DeviceN
(- 2 . R - 2

C - N , R - N (- 1 , R - 1 24
CR

Content
Server

FIG . TB

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 488 of 548

U . S . Patent Mar . 27 , 2018 Sheet 3 of 18 US 9 , 928 , 044 B2

200

Players on 110
Authoring
Platform hon 2
PS

Load Registry
Applications

120 Access
Registry 220

Server onent WebComponent
Registry

Deploy
Registry Applications

Web
Content

210 Response Playeray 140 130
Device

Content
Server JUUUUUU Director

Content
Request Proxy

HTTP / XML
Request

and
Response

230

nnnnnnnnnnnn Web Service

FIG . 2A

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 489 of 548

ww 130 Device

U . S . Patent

133 Memory 133a Heap

133b Record Store 133b1 Application

13301

Virtual Machine Compliant Objects representing a single Page View

Page 1

Page 2

Page i

Page N

Pages | Horez
po

moet in

mayor

Mar . 27 , 2018

133a27

133a2

133a4
Audio

PDL

Player w / Threading Model and Virtual Memory Manager

Images

de

133a5
Video

133a3

Virtual Machine

Sheet 4 of 18

133a4

Operating System

to e

per

135 Processor

137

139

131 Network Interface

Screen

Input

FIG . 2B

Device

US 9 , 928 , 044 B2

Wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwww
wwwwwwwwwww

wwwwwwwwwwwwwwwww

BEKREMNIKARKKOKARKARENKORNER VERSKOR
KOEKRANBROOKARKKNERABERALKAERARRASKROKKRU

KARKAEKUPERARKIRURRAKKEREKEKKA
ERARKIRKARABLOKKOKKAKKANKREKAR

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 490 of 548

U . S . Patent _ Mar . 27 , 2018 Sheet 5 of 18 US 9 , 928 , 044 B2

60 &

???? ???? ???? ?????? ?????? ?????? . ?????? ?????????????????? ????????? ?????? . ?????????? ???????? ?????????? ???????? ?????? . ???? ???? ???? ? ? . . . ???? • .
. : : : : : : : : : . . : : : : : : :
: - - : : : : : :

" gppg "
.

SL :
:

: : : : : : : : : : : : : :
: : : : : : : : : : :

" : : : : : : : : : : : : -
. : : : : : : : : : : - . : : .
:
" . " . " " . " . " " . " " . " " " . " . . " . " . "

: : : : : : : : : : : : : : : : : : : : : : . . . : : : : : : : : : : . . .

. : : : : : : :
: : : : : : : :
. . . : : : : : : : : : : : : : :

: : : : : : : : : : : : : :
. 5 ? 5 , ' , " .

. . . : : : : :
4 : : : : : : : : : :
" . " " . " " . " . . . " . " " . " . "
: : : : : : : : : : : :

; ? : : : : : : ? | . . . : ; ; ; ; ; * * * * * : : ? ? ?? : : , , , * * * * . ! . ! • , . . . • * * * * . : - . : ES : : : : : : : : : : : : : : : . : : : . . . : : : : : : : : : : : : : : : : : : : : : : : : .
[. .

1 :

2014 / P ?? " ?????? : : ; : : : : : : : : : : : : :
. : : : : : : : : : :
. : : : : : : : : : : :

: ???? ??????

?????????? ?? ????

.

. : ?????? ???? ?? - ??? ?????????????????????? ???? ?????????????? ??????????? ???? ???? ???? ???? =

4 -
. . ?? ?????????????????????? ???? ??????????????

?????????? 3 ????????????

???????? ?????? ???????? ?????????????? ???????????? ?????????? ???????????? .
. 97

S . . . : : : : : : : : : : : : : : : . . ; ; : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : . . : : : . : : : : : : : : : : : : : : : : : - : . . : " . ; ; : . . .

: : : : : : : : . . : : : : : : : : : : : . : : : : : . NS : : : : : . : : : : : : . : : : : : : : : : : : : : : . . . : : : : : : . . :
S : : : : : : : . : : : : . : : :
s : . . * * * * * * : : : 5 ? ? ; ; : ; ; : ; ; ; ; . E = 55 ; . . . : : . ; ; . ; : : * * ssy : . . ; ; ; ; : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : ; : ; * = * * * ; ; ; ; " . . . : : : : : : ? : : : : : : : * * : : : : :
. : : : : : : : :
. : : : : : : : : : : : : :

* * *

. "

: : : : "

:

32 0
???? ?????? ?? ??????

: : : : : : : : :

. .

; ; : ; ; ; : ; : ; ; : ; : ; ?? 82 ??
. :

: : .

: : : : : ???????? " ?????? ?????? ?????? ?? : : : : : : : ; : : : : : : -

?????? ? : : : : : : : ?? ?? : : : : : : : : : : ?????? ????????????? ??????????????????????

3

????

2 . ???? . a

288
- ???????? ?? : :

?????????? 72) ?? ??????

? ????????????????????? ??? ??? ! ??????????????????????????????????? ??? . .

34 &

[

. ?????? ???? 2
: : : : : : . . . :

. : : : : : : : :

:

??

: . . . : : : : : : : : : : : :

???????????? ?????? ???????? ??????

????

?????? ???????? ?????? / ?? .

?????? ???????????? ?? ?????? ?????? ???? ?????? ?????? ??

????

2 /

1
/ 11

???????? ??

:

,
29 # ?????????? ??? ???????? ?? ??????

. : . . . : : : : . . : : : : : :

. " " . . .
. : " : : : : : : : : . : : :

5 . : : : : : :
: : : : : :

s : : : :
; : : : : : : : : : : : : : : :

. : : : : : : : : : : : : . : : :
S : : : : : : : : : : : . : : : : : : : : : : : :

: : : : : :
. - - : s - : : : . . .
. . . : : : : : : : : : : : : . : : : : : . . : . . : : : : : : : : : : : : . : : : . . . : : : : 5 . : : . 5 . : ; ; ; ; . , ,

$??
9

4 ???????? 2 5

.
23

83

82 ????

?????? ???????????????? ?? ?? 22 : ?????? 1 ?????????? ?? 24
?? ???? ?????????????? ?? ?? :

???? ??????? 848
??????????

??

??????????? ???? ???????? i
3 & fi / : & 4 25

2 /

2

?????????? ?????? ??????
28 ??

: : : : ???? ????????????????????? ???????? ? ?? ? ?

?????????? . . ????

?? ????????
2 ???? ??????????

* * - * * * - - . : : . . . * . * * * * *
4 ????

???????? ?????? ??????
; . ' ' ;

305 , ' * * ' ? '

:

??

??????
, , ' , ' * . "

2

* * . ' ?? ' ? ' * * * * * ,

???????? ??????

???? ?? 9 ????

30th
301f

301a | 301c | 301e | 301g | 301i

301d
301b

. . . * " . * * * * *

. % ????????

-

??????

, ?????? ?? ???????? ?????????????? ???????????? ???????????? ???
?? : - : - : : : : - -

??

?? ?????? 2
?? ???? 307a

? ? ???
?????? ???????????????????????????????? ??? . ????????? ????

. : : : : • : : : : : : :
• : : : : : : : : : : : : : : : :
· . . . " . " " . " . . . " . " "
: : : : . ; . . : : : : : : : : : : :
: : : : : : : : : : : : : : :

. : : : : :
. : : : . . . : :
: : : : . . . : : :

: : : : : : : : : : : 2448828 ? 307b ?????? 307c : . "

?????? : :

????

. ?? . ????????

. ? . ??? ?????

: : : : : : : : : : : |

? ??????
. &

2 ?????? ??
: : : : : : : : : : :

: : : : :

?????? ????????????
fi

: : : : : : : : : : : : ;

301 307 303a - 303b 303c . 303d . 303e 303f 303g 303h 303i
FIG . A L | a

300 303 /

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 491 of 548

US 9 , 928 , 044 B2

FIG . 3B

VW

.

. .

. .

:

:

3070

:

:

. . ' . ' . '

X XXXXXXXXXX

WW : WW

. ' . ' . ' . ' . ' .

: :

XOXX :

erworrenteiro DELETE SUBS

E N wwwwwwwwww WWE R aw
W

309a4

WE 2013

W

307b

:

309a3

W

ELLA

BIETEN

Sheet 6 of 18

.

utwage : Uit

B

: 4WD

MG LAM SU SEM
Prepax tzuuk
X

: 134

KIP

* * * * * *

1

7

. , . ' . ' .

. . . .

.

.

. 1

7

.

1 . .

.

. ,

; . , . . . ;

: ; ; : ; ;

; . :

. . . , .

. ; ; . ;

. . .

19

@

X Wie 3 : Want On 7 CS388 89 88 WEWEC WWW

1

' '

305

WWW . MMKY

' '

WEBWIW8

307a2

:

' ' '

.

WW
w

me on my

XX . XXX : WWWXXX

307a

:

309a2

. ' '

.

. .

Wh 23

?????????? / ?? ?
E

Www i un

was , ka apelusega

.

Mar . 27 , 2018

1

ka

w

.

w

309a1

IMPUL

N

. 1

leze

wowo

????????????????????????????? . ?? -

.

W

startet

severse Braun Horosztations Regsgodis Bissone

O La

W

g a üt

*

1

EDE

* *

* * Own when w
21 . 11 . 17 .

won was WWW crivererrurier

7 . 27

XXX

na t

W

orrinärer
runterrrr

il

260€ P60€

+ 60€ 960€ 260€

301

U . S . Patent

K

60€

300

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 492 of 548

U . S . Patent Mar . 27 , 2018 Sheet 7 of 18 US 9 , 928 , 044 B2

309b

[settings Events Animation Color I Bindings
. . ' . ' ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' .

Events and WVeb Services
SC _ 309b1 1 : 12

: 1826 WWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Goto External Web Page replacing Current Frame
Goto External Web Page Launched in a New Window
Goto a specific Page View
Goto External Web Page replacing the Top Frame
Goto the next Page View
Execute JavaScript Method
Pause Resume Page Timeout
Execute an Apnication
Goto a Speciác Slide in a Page View
Exit Application
Exit Player
Place Phone Call
???£8 Sr i9???? : F { RE
*

309b2 - :
* * *

: : : : : : : : : : : : : : : : :
22 :

* : * XXXXXXXXX

1999
WX XX * 309b3

33XXXXXXXXXXXXXXXXXXXXXXX
Kle se
Selected
Fire

:
: 341739919333933333333333333

:
13 : 23 : 11 : 29

:
39 : 19 32 . 999 :

17 . 11 . 17 17 . 11 . 199 9
* * * *

11 : 29 *
* *

*
* * * * * * 309b4

Advanced Interacti e Settings
Scroll Activation Enabled

pe Timeline Entry Suppressed
Enable Server Listener
Submit Form
Toggle Children on FIRE
Hide non - related Children

Object Selected Audio Settin
loactive

: 11 : : :
W

* * * * * * * * X XX ' ' ' ' ' ' ' '

???????????????????????????

* : * W * *

Select a Sound File
* :

*
* % * * % % % % % % % % % % % % % % % % % % % 999999999999999999 309b5

S bress ana u severe
1 : : : : : : : : : : : : : : : : :

* * * * *

* Arm
WWWLIRALCI - BX

.

* * * * * * *
XXXWWWXXXXXXXXX . . .

r / X * * * * * * * * W * XXXW7892199877 * * *
ALEXXXXXXXXXXXXXXWWWWWWWWWW *

. : . :

FIG . 30

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 493 of 548

US 9 , 928 , 044 B2

'

, ' .

' . ' .

' . '

.

' .

'

. ' . ' . .

. . .

. ' . ' . '

'

.

. . .

: : . . * * * . * W

* * . * :

. . . ' ' . . . ' , .
:

. ' . ' . . ' , ' '

.

' ' '
. . .

: , ' , iii

. . .

.

. . .
.

.

. : . : . : . : . : . : . : .

:

.

.

: : :

:

: :

: :

.

. . .

.

.

. .

: : : : : : :
.

. : . : . : . : . : . : . : . : . : . : . : . : . : . : : . : . : . : . : . : .

.

. . : : . : . : . : . : : : . .

poca les dering when you buy para n XXXWomen
mm

Hiiiiiiiiiiiiiiiii

Hinn 17 . 11 .

17

: . : .

.

14H

: . : . : . : .
.

: : . : . :

. . .

. :

. . . .

:

. : : . . : . : . : .
. ' ' .

: : . : . : . : .

' ' I ' II '

. . ' , ' ' ,

' '

: : . : . . ' II ' . .

, ' : '

.

: : :

I

.

. ' ' , '

: .
' i ' .

: . :
. ' . ' .

'

. :

. ' . '

. : . : .
. ' . ' . ' . ' . '

: . : . . ' . ' . ' . ' .

: '

. : . : . : . ' . ' . ' :

. : . : . : . '

.

.

. . . .

: : .

'

, ' ' ' , ' . . '

Sassa

: ' . . . '

. '

.

.

.

. .

. .

. .

. . .

.

.

. . . .

. . .

.

. .

.

.

. . . .

. : .

io con otro

. : . : . : . : . : . : . : . : . : . : . : . : . : . :

: . . : . : . : . . : . : . : . : . : . . .

??????

: . : . : . :

.

77777777777

.

.

.

: : * : : : : :
. . . .

. . . .

sports

. : . : . . : : . . :

and everything

to the conc

.

ept

.

. : . : . : : . : : . . .

???? ?????????????????????????? ?

. : .

. . . . ' . ' . ' . '

Sheet 8 of 18

: .

: : : : : : : : : : : : : : :

?????????????????????????

:

. . . : . : . : . : . : . : . : . . .

Bindings Color
S Speciications

Director Sovement Ouatan Seo carmos

Animation
de

Events
ouSci este

Settings

Timeline Delay Sec
Activate

Fade Out

None

ririi

ape
2004

.
Main Audio File
Dames

Pathname for this Object ' s Animation Audio Track

Animation Cycles Custom Zoom $ Avold Car Sex
0

FIG . 3D

o vaniemi Duration sa Tomas
a Sosiaan ons

wrac
OLM Exit

Goto palay (Sac

: . : . : . . :

www

.

Object Animation Specifications

:

: ????????????????????

.

. : . : . : : . : . : . . : .

. - - . - . - - . ' . ' . ' . - ' - ' - ' . ' . ' - - - -

?????????????

????????????????

. : . . : . : .

.

Mar . 27 , 2018

Scroll Left
Scroll Right

Multi - Point
Custom

Seek Cursor

None

Attach
Deposit

31
N

?WOH pues
0

VIEWS

. : . : . : . : . : . : . : . : . : : . : . : . : . : . : . : . : . : . : . : . : . : . . : . : . : . : . : .

:
WY

. . .

. :

riticisinin

777777777777777 : :

4 : 11 .

.

.

un

. ' . ' . ' . ' - - ' - ' - ' . .

Den er en

: : .

.

. . . :

WWWWWWWWWWWWWWWWW
??????????

: : : : : : : : : : : : : .

. - . - . - . . - ' . '

1 : 13

. . . .

.

: . : . : . : . . : . : . : : : : : . . : : : : . : . : . : . : . : . : . : .
WWWWWWW

X

.

??????

: : : :

.

. . '

.

. .

.

:

prone

t

o

ID

Plus 10

. : .

T

ITIT

7 7771 .

ZWEITETIIKKATINIMUIM
:

. : : : : : :

3090

. . .
. . : :

. . ' : : : :

.

. ; : , ' ' , ' ' : 1 . ' 1 ' , ' 1 ' , ' ' , ' . ' . ' ' . . . ' : : : : :
:

. PITTURA
: : : : : .

.

:

: : : : :

: : : : : : : :
: : : : : : : :

WWW
: : : : : : :

: : : : : :

. Fr

.

: : : : : . : : : : : : : : :

. :
: : :

:

:

. . .

:

2

U . S . Patent

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 494 of 548

U . S . Patent Mar . 27 , 2018 Sheet 9 of 18 US 9 , 928 , 044 B2

309

309e1 Se vents Animation desloe Bindings
Web Component and Web Service Operations Events |

. GOSSILUE WS
ww w
WWWWWWW * * * * :

WWW
WWWWWWWWWW

Attributes Exposed 309e2 # RE 309e3

O DO
Prospects
Phloq018
Push EBES

Page Het
Background image
Background Color
Page Delay lume
Transition Animadon .
Transition time
Frames per second
Page Audio Track
TONSILOS Auto Track
Pages

* *

*

: : : : : : : : : : : : : : : : : : : *

*

.

.

1 309e11 .

*
1 . . .

. . . .

1 . . .

309e4 Default Attribute Value Link Set 309e12
.

Irm

.

309e5 Dabasa Name Table Name 309e7 Fuld Name
Www my

309e6
channel Feed 309e10 W

X Channel Name
Req???

Operation
Replace 309e8 *

. . .

*
*

.

.

. .

* *

Object Selected : Page . .

* *

309e9

FIG . 3E

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 495 of 548

U . S . Patent Mar . 27 , 2018 Sheet 10 of 18 US 9 , 928 , 044 B2

319

w
3 Select Results Page - 319b SNOWBLOM S

. .
MY

.
Y

. .
N ? * *
.

*
. .

* *
.

* *
.

* *
. .

* * : * :
. ? ? ???

Na
* * * *

kee camponem
Select a Web Component
RSS {] ???y &
Ntapuest - Dérecons getotections
ap ????? ekkapter ???? . ???

Mapouest - Getkapcluster - Pappa : 35
MapQuest - Getkapcluster - Pas . pare MapQuesi . Mapouest - Gergiamuster - Pandan
Napovest - GelkapClester - pan . getfiaucluster

3190
Activation Options Merrrrrrrrrrrrrrrrrrrrrrrrr 319a 319a * *

1999 : * : * : XXXXXXY * * *
Generate Of Ctects

319d
* * * W WW

X XXX XXXXXXXX
XXXXX XXX PARALLAAN 319e

*
:
* * WWWWWWW

* * * * XXXXXXY
4797789

* * * * * *
* W * XXXXX

Magosest - polgetpol
Pictures
Send SNS
% E8 8 . ??? ?3
Weather
Movies
Stocks

SEBActions . deFriends
??CXKS , ?????
FOÁCÉCNS seadin
FBActions . getN
SFBActions . uploadphoto

y
S

RSS
Allagio . getAllop10

Y ? { } ? - p]
SearchAT
?ES

Searck - Ringtones
Mapslage

rrrrrrrrrrrrri . ir . XXXXXXXX * : * : * : * : * * * * * * * * *
23 . .

* * *
* * * * * YYYYYYYY
* * * * * * * * * * * *

XXXXXXXX

: * : *
.

* * * * * * * * * *

1
* *

: : 3
* * * * *

. .
* * * * * * *

7 : : : : : :
4 : 43 *

17 : : : : 11 : 111 : 11 : 1 : 133
* * * * * * * *

: : : :

Ok Cance Hele

FIG . 3F rex

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 496 of 548

:
US 9 . 928 , 044 B2

FIG . 4B

FIG . 4A

SSSSSSSSSSSSSSSSSSSSSS8888
.

VANT $ 11 :

19 : 24 :

- - - - - - - - - - -

: :

: : : : :

… … … . … … . …

: - - :
:

.

: :
: : : : :

:
:

: : : : : : : : : : : : :
: : : : : : : : :

: : : : : : : : : : : : : :

…

: : : : :

:

: : : *

…

:
:
:

- - : : : : : : : : : : :
· ?
:

???? ???

… . …

:

.

… … .

Sheng : W2008
:

Terrrrrrrrrrrrrrrrrrrr : : : : : : : :

:
:

. … .

: :

…

:
: : : : : :

: : :

ite

… … .

: : : : :

??

… . .

: : : : :

…

: :

…
: :

… . .

: : :

Tea

,

T

SAPP
…
: : : :

: : :

:
.

2018

…

* * * * PPPPTPPPYPPPTPPPTPP / PHP ' , ' . ' ' ' ' ' P

P / PP / PP / PP /

PP

/ PPPTPP

. .

Sheet 11 of 18

… . . … … .
:

:

085

??? % A4 Apt : :
?

. . . …
:

:
… .

.

:

:

,

, , ,

.

…

:

… . .

… … . .
: : :

. . : Lrr

. . , , ,

?

: : :
: :

thods . . .

?

.

.

???????

,

: Ste : ??

…
… … … . … … .

…

.
… . …

…
… …

:
:

?

BE ?
?

.

www

: :
…

;

… .
… .

… . . .

. . .

… .

|

|

…

: : :
: : : : : : :
: : : :

%

… .

.

????????????

? :

… …

… … Previ ' s Perm _ mpurpurpor = re rev " " " . .

?RESS
THE : :

: : : : : : : :

: : : : : : : :

??

??????

. .

? “

?

.
… . . . … . … .

. .

?USB 888

.

: :
:

.

… .

:

:

?? ?? : “ ??? 2? :
?

.

: :

…

: : :

? ?E “ ?E 13

: : :

888?? 1 3??

. . . : ; : ;

:

30 : 3

4

???t : : : MAXFAC E ?3 : 31 : 88S SPSS3 WR :

… … .

Personalitet entertainment for

… . .

82090
393

.

.

ASSY

: :

:

Mar . 27 , 2018

…

?

THERENTRANSArriersiti Librar FreeWeb

:

:

. . . ????????????????????

301985 8 : 35 : ??

…

:

…

: : : :
: : : : : : : : :
: : :

:
:
:

.

: :

:
:
:

:
: :
: :

: :
.
: …
: …
: . . … . .

.

: : : : : : : : . . … … . …
:

. . … .

137

:
.

?

:

…

?

?

115

305

| 421 | 425 | | 423 427

411 | 415 | | 413 417

U . S . Patent

?oZY
\ DEL

410)

300

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 497 of 548

601A

U . S . Patent

501

09

500 mm

Patriots heat Colts 35 - 145

?

??
5012

FIG . 6A

$ F 49er4

$ 2 . 99

Davidson selected as coach

501b

Domo Netflix promo
Special promo for today ,

Mar . 27 , 2018

AEAEAEAEAEA
AEAEAEAEAEAEEEEEEEKER

601B

501C

FIG . 6B

Widget
1 23 , 210 Widget 2 * * 4 , 623 Widget 3 * * * 9 , 874

Widge . . . * * * * * 56 , 988

tube

5010

Sheet 12 of 18

UUUUUUUU

WISE

6010

501e

berrierrinmuwenawwamen errefournirwi
l

owWien

2011

-

502

502a | 502 502 5029 502 502d 502f
FIG . 5

FIG . 6C

.

Call Home Brian Kidney McKinley Hackett Ken Brown

.

MYY

US 9 , 928 , 044 B2

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 498 of 548

U . S . Patent Mar . 27 , 2018 Sheet 13 of 18 US 9 , 928 , 044 B2

700

701a
701b -

2SM 21
A Mesasges to .

:
. ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . . .
. .

11 , ' . ' . ' . ' . iii , , , , , ' '

701c1 ESPN TOP STORIES
7010 - . . ! !

70102 ??????????????????rarrierinrirituitarrincircu???? , "

besclined * XX *
XXX

THE WEATHER CHANNEL 7010 - .

65° F and Sunny

TRAFFIC . COM
1 - 580 701e

Q IMMED

FIG . 7

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 499 of 548

U . S . Patent Mar . 27 , 2018 Sheet 14 of 18 US 9 , 928 , 044 B2

800 900

801
Website System

803
SMS Server ??) (2 ense) 130 Device

???? 805
Content Server

FIG . 8

901
Promo Code

?????
805
Content Server 130 Device

903
3rd Party Server

FIG . 9

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 500 of 548

U . S . Patent Mar . 27 , 2018 Sheet 15 of 18 US 9 , 928 , 044 B2

1000 m
1001

WWW 1 * * *
. : 12 *

. . Mobile
???

Gateway : r WARNING
* Scule Sex 2 . Ne08 * * * * * *

1010
1011

ATOMVRSS / RDF
Fc octo ROXXXV 1012 -

1013 -
1014 - a 1016

M

Bmw wWwwWWWW wwy Gusto
dator

ABF
Post Populatex Popular

Suit Ayo
www . S .

Wwwwwwwwwwwwww 13 . Ouanensis

SI
www inna

1015 - WWWXXXX * XWXKKABWXXXXXWXWWW449 www 1017
www
????????????

wwwwww
?????????
VW
Pa

QUMS
RA

1992 PET TERVIS
?? ? ?

for Fesa Data
HTTP : 30 POGT 130

Wwwwww funduuuuu
- 1018
. 1019
1020 M

Data Yuver wwww
OUSIN : Bundred

Extracion

HRS08
*
kao o WWWWWWWWWWWWww 1021

Balebase
Parodnom ang

fit 10 mm www wayo
00wele

Denne
* * * et with

?????
Content Server

am 1022
Client 140

FIG . 10

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 501 of 548

US 9 , 928 , 044 B2

FIG . 11

$ aAd 3 qon

130

WWW .

WWWWWW

KX90 Donovadace Pave

www 1139

Tradia , ot ,

(????????? 513 ??? JJJ

1 ????????????

298 sate)
{ { kkkk

{ { { { {

-

1187290 W AYAW X30

-

Sheet 16 of 18

- -

ww
mm 1138

Www
ZO000000

one or more Wo Serviços

JY 2427 G46400x

Transack Som
_ pe

:

:

Y

. . .

"

140

3 . . .

102w @

WWWWWWWWWWWWWW ????? ' ????

Owoux

mer

WY4 Aia41ai

- m] 137

xed Corpor DISASSIF

Mar . 27 , 2018

us

L

1010

vivery

u Designer ???plca???? ?g

wi

1136

WWWWWWWWW

File Binding

?ding &

Xprecemu SOK

222

* * * * * * * * * * * *

BUS

DELER18

WWW
- - 01130

SELL TELL

H2H

$

W

pins

011 OZLI

042190 apo) Engr
233

110

OLLI

U . S . Patent

1100 manat

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 502 of 548

1200 -

HTTP Header (User Agent / IP Address)

U . S . Patent

130

User Agent
1207 Database

W

IMMING

MINIMUM ?? ?? ?????????????????????????? ????????????

ME

mwang wwwwww

WWWWWWWWWWWWWW
Hint

ELIMI WAILAKOOL

mammu w

eta
*

Mar . 27 , 2018

www
????cebo

Jen

.

Find Make Model Using User Agent (MIDP Support ,
Screen Size , etc)

A

fu

210 , Response Director

sed sodat

MWM
Www

Miss
0000000

Cocoon
. 1 . 2

Carriet / Operator Using IP Address

TUTTERIT MIMI
1203 D

Denum

Sheet 17 of 18

Determined Phone Characteristics

11011111111111111111 W ZWMUNIZMI

1205 . 1205 ,

Mwanau

OSSA

Send Appropriate File

?????????????? M

IP Address Database (ISP , Carrier /
Operator)

Xpresmo Fille Database (adi , jad2 , himi , wapwml , sms)

FIG . 12

US 9 , 928 , 044 B2

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 503 of 548

U . S . Patent Mar . 27 , 2018 Sheet 18 of 18 US 9 . 928 , 044 B2

giveTTP Cher 7 ? : SS

| ?
Device Characteristics
se?CPU?GE??

SSS

- 1301

?? Em … SEEEEEE HTTE
… … … … . … … … … … . …

???????
??

? goverrective /

PV : '

ESPORS Sirect >
' '

? ????????
??EQ &

1 7303
??? PC??PSP??????

Player Profile
??????

1305
? ? ? ? ? ? ? ? ?

GET?FA??yePS ft ” ?
SCRIPTT?? ?

FIG . 13

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 504 of 548

US 9 , 928 , 044 B2

SYSTEMS AND METHODS FOR
PROGRAMMING MOBILE DEVICES

TECHNICAL FIELD

In another embodiment , one of the codes is an Application
that is a device independent code that interpreted by the
Player .

These features together with the various ancillary provi
5 sions and features which will become apparent to those

skilled in the art from the following detailed description , are
attained by the system and method of the present invention ,
preferred embodiments thereof being shown with reference
to the accompanying drawings , by way of example only ,

10 wherein :

The present invention generally relates to providing soft
ware for mobile devices , and more particularly to a method
and system for authoring Applications for devices .

BACKGROUND ART

Internet - connected mobile devices are becoming ever BRIEF DESCRIPTION OF DRAWINGS
more popular . While these devices provide portability to the

FIG . 1A is an illustrative schematic of one embodiment of Internet , they generally do not have the capabilities of 15 a system including an authoring platform and a server for non - mobile devices including computing , input and output providing programming instructions to a device over a capabilities .
network ; In addition , the mobility of the user while using such FIG . 1B is schematic of an alternative embodiment sys devices provides challenges and opportunities for the use of tem for providing programming instructions to device over

the Internet . Further , unlike non - mobile devices , there are a 20 a network .
large number of types of devices and they tend to have a FIG . 2A is a schematic of an embodiment of system
shorter lifetime in the marketplace . The programming of the illustrating the communications between different system
myriad of mobile devices is a time - consuming and expen
sive proposition , thus limiting the ability of service provid - FIG . 2B is a schematic of one embodiment of a device
ers to update the capabilities of mobile devices . 25 illustrating an embodiment of the programming generated

Thus there is a need in the art for a method and apparatus by authoring platform ;
that permits for the efficient programming of mobile devices . FIGS . 3A and 3B illustrate one embodiment of a publisher
Such a method and apparatus should be easy to use and interface as it appears , for example and without limitation ,
provide output for a variety of devices . on a screen while executing an authoring tool ;

30 FIG . 3C illustrates an embodiment of the Events Tab ,
DISCLOSURE OF INVENTION FIG . 3D illustrates one embodiment of an Animation Tab ;

FIG . 3E illustrates one embodiment of Bindings Tab ;
In certain embodiments , a system is provided to generate FIG . 3F illustrates one embodiment of a pop - up menu for

code to provide content on a display of a platform . The adding web components ;
system includes a database of web services obtainable over 35 FIG . 4A shows a publisher interface having a layout on a
a network and an authoring tool . The authoring tool is canvas ; and FIG . 4B shows a device having the resulting
configured to define an object for presentation on the dis layout on a device screen ;
play , select a component of a web service included in said FIG . 5 shows a display of launch strips ;
database , associate said object with said selected compo - FIG . 6A is a display of a Channel Selection List ;
nent , and produce code that , when executed on the platform , 40 FIG . 6B is a display of a Widget Selection List ;
provides said selected component on the display of the FIG . 6C is a display of a Phone List ;
platform . FIG . 7 shows a display of a mash - up ;

In certain other embodiments , a method is provided for FIG . 8 is a schematic of an embodiment of a push capable
providing information to platforms on a network . The system ;
method includes accepting a first code over the network , 45 FIG . 9 is a schematic of an alternative embodiment of a
where said first code is platform - dependent ; providing a push capable system ;
second code over the network , where said second code is FIG . 10 is a schematic of one embodiment of a feed
platform - independent ; and executing said first code and said collector ;
second code on the platform to provide web components FIG . 11 is a schematic of an embodiment of a Mobile
obtained over the network . 50 Content Gateway ;

In certain embodiments , a method for displaying content FIG . 12 is a schematic of one embodiment of a system that
on a platform utilizing a database of web services obtainable includes a response director , a user agent database , an IP
ove provided . The method includes : defining address database , and a file database ; and
an object for presentation on the display ; selecting a com - FIG . 13 is a schematic of another embodiment of a system
ponent of a web service included in said database ; associ - 55 that includes a response director , a user agent database , an IP
ating said object with said selected component ; and produc address database , and a file database .
ing code that , when executed on the platform , provides said Reference symbols are used in the Figures to indicate
selected component on the display of the platform . certain components , aspects or features shown therein , with

In one embodiment , one of the codes is a Player , which is reference symbols common to more than one Figure indi
a thin client architecture that operates in a language that 60 cating like components , aspects or features shown therein .
manages resources efficiently , is extensible , supports a
robust application model , and has no device specific depen MODE (S) FOR CARRYING OUT THE
dencies . In another embodiment , Player P is light weight and INVENTION
extends the operating system and / or virtual machine of the
device to : Manage all applications and application upgrades , 65 FIG . 1A is an illustrative schematic of one embodiment of
and resolve device , operating system , VM and language a system 100 including an authoring platform 110 and a
fragmentation . server 120 for providing programming instructions to a

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 505 of 548

US 9 , 928 , 044 B2
device 130 over a network N . In one embodiment , device devices using routines provided on a platform . Thus as an
130 is a wireless device , and network N includes wireless example , routines 114 may include Java API ' s and an
communication to the device . Alternatively , system 100 may authoring tool System Development Kit (SDK) for specific
provide access over network N to other information , data , or d evices 130 .
content , such as obtainable as a web service over the 5 Server 120 is a computer or computer system that
Internet . In general , a user of authoring platform 110 may includes a network interface 121 , a memory 123 . and a
produce programming instructions or files that may be processor 125 . Is to be understood that network interface
transmitted over network N to operate device 130 , including 121 , memory 123 , and processor 125 are configured such
instructions or files that are sent to device 130 and / or server that a program stored in the memory may be executed by the
120 . The result of the authoring process is also referred to 10 processor to : accept input and / or provide output to authoring
herein , and without limitation , as publishing an Application . platform 110 ; accept input and / or provide output through

Embodiments include one or more databases that store network interface 121 over network N to network interface
information related to one or more devices 130 and / or the 131 ; or store information from authoring platform 110 or
content provided to the devices . It is understood that such from device 130 for transmission to another device or
databases may reside on any computer or computer system 15 system at a later time .
on network N , and that , in particular , the location is not In one embodiment , authoring platform 110 permits a user
limited to any particular server , for example . to design desired displays for screen 137 and actions of
Device 130 may be , for example and without limitation , device 130 . In other words , authoring platform 110 is used

a cellular telephone or a portable digital assistant , includes to program the operation of device 130 . In another embodi
a network interface 131 , a memory 133 , a processor 135 , a 20 ment , authoring platform 110 allows a user to provide input
screen 137 , and an input device 139 . Network interface 131 for the design of one or more device displays and may
is used by device 130 to communication over a wireless further allow the user to save the designs as device specific
network , such as a cellular telephone network , a WiFi Applications . The Applications may be stored in memory
network or a WiMax network , and then to other telephones 123 and may then be sent , when requested by device 130 or
through a public switched telephone network (PSTN) or to 25 when the device is otherwise accessible , over network N ,
a satellite , or over the Internet . Memory 133 includes through network interface 130 for storage in memory 133 .
programming required to operate device 130 (such as an In an alternative embodiment , analytics information from
operating system or virtual machine instructions) , and may devices 130 may be returned from device 130 , through
include portions that store information or programming network N and server 120 , back to authoring platform 110 ,
instructions obtained over network interface 131 , or that are 30 as indicated by line B , for later analysis . Analytics informa
input by the user (such as telephone numbers or images from tion includes , but is not limited to , user demographics , time
a device camera (not shown) . In one embodiment screen 137 of day , and location . The type of analytic content is only
is a touch screen , providing the functions of the screen and limited by which listeners have been activated for which
input device 139 . objects and for which pages . Analytic content may include ,

Authoring platform 110 includes a computer or computer 35 but is not limited to , player - side page view , player - side
system having a memory 111 , a processor 113 , a screen 115 , forms - based content , player - side user interactions , and
and an input device 117 . It is to be understood that memory player - side object status .
111 , processor 113 , screen 115 , and input device 117 are Content server 140 is a computer or computer system that
configured such a program stored in the memory may be includes a network interface 141 , a memory 143 . and a
executed by the processor to accept input from the input 40 processor 145 . It is to be understood that network interface
device and display information on the screen . Further , the 141 , memory 143 , and processor 145 are configured such
program stored in memory 111 may also instruct authoring that a stored program in the memory may be executed by the
platform 110 to provide programming or information , as processor to accepts requests R from device 130 and provide
indicated by the line labeled “ A ” and to receive information , content C over a network , such as web server content the
as indicated by the line labeled “ B . ” 45 Internet , to device 130 .
Memory 111 is shown schematically as including a stored FIG . 1B is schematic of an alternative embodiment sys

program referred to herein , and without limitation , as an tem 100 for providing programming instructions to device
authoring tool 112 . In one embodiment , authoring tool 112 130 over a network N that is generally similar to the system
is a graphical system for designing the layout of features as of FIG . 1A . The embodiment of FIG . 1B illustrates that
a display that is to appear on screen 137 . One example of 50 system 100 may include multiple servers 120 and / or mul
authoring tool 112 is the CDERTM publishing platform tiple devices 130 .
(Express Mobile , Inc . , Novato , Calif .) . In the embodiment of FIG . 1B , system 100 is shown as

In another embodiment , which is not meant to limit the including two or more servers 120 , shown illustratively and
scope of the present invention , device 130 may include an without limitation as servers 120a and 120b . Thus some of
operating system having a platform that can interpret certain 55 the programming or information between authoring plat
routines . Memory 111 may optionally include programming form 110 and one or more devices 130 may be stored ,
referred to herein , and without limitation , as routines 114 routed , updated , or controlled by more than one server 120 .
that are executable on device 130 . In particular , the systems and methods described herein may

Routines 114 may include device - specific routines — that be executed on one or more server 120 .
is , codes that are specific to the operating system , program - 60 Also shown in FIG . 1B are a plurality of devices 130 ,
ming language , or platform of specific devices 130 , and may shown illustratively and without limitation as device 130 - 1 ,
include , but are not limited to , Java , Windows Mobile , Brew , 130 - 1 , . . . 130 - N . System 100 may thus direct communi
Symbian OS , or Open Handset Alliance (OHA) . Several cation between individual server (s) 120 and specific
examples and embodiments herein are described with ref - device (s) 130 .
erence to the use of Java . It is to be understood that the 65 As described subsequently , individual devices 130 may be
invention is not so limited , except as provided in the claims , provided with program instructions which may be stored in
and that one skilled in the art could provide Players for each device ' s memory 133 and where the instructions are

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 506 of 548

US 9 , 928 , 044 B2
executed by each device ' s processor 135 . Thus , for example , tion on a specific device 130 according to the device
server (s) 120 may provide device (s) 130 with programming platform . The Application may in general include , without
in response to the input of the uses of the individual devices . limitation , instructions for generating a display on screen
Further , different devices 130 may be operable using differ - 137 , instructions for accepting input from input device 139 ,
ent sets of instructions , that is having one of a variety of 5 instructions for interacting with a user of device 130 , and / or
different “ device platforms . ” Differing device platforms may instructions for otherwise operating the device , such as to
result , for example and without limitation , to different place a telephone call . operating systems , different versions of an operating system , The Application is preferably code in a device - indepen or different versions of virtual machines on the same oper dent format , referred to herein and without limitation as a ating system . In some embodiments , devices 130 are pro - 10 Portable Description Language (PDL) . The device ' s Player vided with some programming from authoring system 100 interprets or executes the Application to generate one or that is particular to the device . more " pages ” (“ Applications Pages ”) on a display as defined In one embodiment , system 100 provides permits a user
of authoring platform 110 to provide instructions to each of by the PDL . The Player may include code that is device
the plurality of devices 130 in the form of a device - or 15 specific 15 specific — that it , each device is provided with a Player that that it , each device is provided with a Player that
device - platform specific instructions for processor 135 of is used in the interpretation and execution of Applications .
the device , referred to herein and without limitation as a Authoring tool 112 may thus be used to design one or more
“ Player , ” and a device - independent program , referred to device - independent Applications and may also include
herein and without limitation as an “ Application ” Thus , for information on one or more different devices 130 that can be
example , authoring platform 110 may be used to generate 20 used to generate a Player that specific devices may use to
programming for a plurality of devices 130 having one of generate displays from the Application .
several different device platforms . The programming is In one embodiment , system 100 provides Players and
parsed into instructions used by different device platforms Applications to one server 120 , as in FIG . 1A . In another
and instructions that are independent of device platform . embodiment , system 100 provides Players to a first server
Thus in one embodiment , device 130 utilizes a Player and an 25 120a and Applications to a second server 120b , as in FIG .
Application to execute programming from authoring plat - 1B .
form 110 . A device having the correct Player is then able to In one embodiment , authoring tool 112 may be used to
interpret and be programmed according to the Application . program a plurality of different devices 130 , and routines In one alternative embodiment , the Player is executed the 114 may include device - specific routines . In another first time by device 130 (“ activated ”) through an Application 30 embodiment , the Player is of the type that is commonly directory . In another alternative embodiment , the Player is referred to as a “ thin client ” — that is , software for running activated by a web browser or other software on device 130 . on the device as a client in client - server architecture with a In yet another alternative embodiment , Player is activated
through a signal to device 130 by a special telephone device network which depends primarily on a central server
numbers , such as a short code . 35 for processing activities , and mainly focuses on conveying

When the Application and the Player are provided to input and output between the user and the server .
memory 133 , the functioning of device 130 may occur in In one embodiment , authoring platform 110 allows user to
accordance with the desired programming Thus in one arrange objects for display on screen . A graphical user
embodiment , the Application and Player includes program interface (“ GUI , ” or “ UI ”) is particularly well suited to
ming instructions which may be stored in memory 133 and 40 arranging objects , but is not necessary . The objects may
which , when executed by processor 135 , generate the correspond to one or more of an input object , an output
designed displays on screen 137 . The Application and Player object , an action object , or may be a decorative display , such
may also include programming instructions which may be as a logo , or background color or pattern , such as a solid or
stored in memory 133 and which provide instructions to gradient fill . In another embodiment , authoring platform 110
processor 135 to accept input from input device 139 . 45 also permits a user to assign actions to one or more of an

Authoring tool 112 may , for example , produce and store input object , an output object , or an action object . In yet
within memory 111 a plurality of Players (for different another embodiment , authoring platform 110 also permits a
devices 130) and a plurality of Applications for displaying user to bind one or more of an input object , an output object ,
pages on all devices . The Players and Applications are then or an action object with web services or web components , or
stored on one or more servers 120 and then provided to 50 permits a user to provide instructions to processor 135 to
individual devices 130 . In general , Applications are pro - store or modify information in memory 133 , to navigate to
vided to device 130 for each page of display or a some another display or service , or to perform other actions , such
number of pages . A Player need be provided once or updated as dialing a telephone number .
as necessary , and thus may be used to display a large number In certain embodiments , the applicant model used in
of Applications . This is advantageous for the authoring 55 developing and providing Applications is a PDL . The PDL
process , since all of the device - dependent programming is can be conceptually viewed as a device , operating system
provided to a device only once (or possibly for some small and virtual machine agnostic representation of Java serial
number of upgrades) , permitting a smaller Application , ized objects . In certain embodiments , the PDL is the com
which is the same for each device 130 . mon language for authoring tool 112 , the Application , and

Thus , for example and without limitation , in one embodi - 60 Player . Thus while either designing the Application with the
ment , the Player transforms device - independent instructions authoring tool 112 , or programming with the SDK , the
of the Application into device - specific instructions that are internal representation of the programming logic is in Java .
executable by device 130 . Thus , by way of example and In one embodiment the SDK is used within a multi - language
without limitation , the Application may include Java pro - software development platform comprising an IDE and a
gramming for generating a display on screen 137 , and the 65 plug - in system to extend it , such as the Eclipse Integrated
Player may interpret the Java and instruct processor 135 to Development Environment (see , for example , http : / / www . e
produce the display according to the Application for execu clipse . org /) . At publish time the Java code is translated into

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 507 of 548

US 9 , 928 , 044 B2

a PDL . This translation may also occur in real - time during display . Other information that may be provided by content
the execution of any Web Services or backend business logic server 140 may include , but is not limited to , pages , Appli
that interacts with the user . cations , multimedia , and audio .
One embodiment for compacting data that may be used is FIG . 2A is a schematic of a system 200 of an embodiment

described in co - pending U . S . Pat . No . 6 , 546 , 397 to Rempell 5 of system 100 illustrating the communications between
(“ Rempell ”) , the contents of which are incorporated herein different system components . System includes a response
by reference . In that patent the compressed data is described director 210 , a web component registry 220 , and a web
as being a database . The terminology used here is a PDL , service 230 . System 200 further includes authoring platform
that is the internal database " of Rempell is equivalent to the 110 , server 120 , device 130 and content server 140 are which
PDL of the present Application . 10 are generally similar to those of the embodiments of FIGS .

The use of a PDL , as described in Rempell , permits for 1A and 1B , except as explicitly noted .
efficient code and data compaction . Code , as well as vector , Response director 210 is a computer or computer system
integer and Boolean data may be compacted and then that may be generally similar to server 120 including the
compressed resulting in a size reduction of 40 to 80 times ability to communicate with authoring platform 110 and one
that of the original Java serialized objects . This is important 15 or more devices 130 . In particular , authoring platform 110
not only for performance over the network but for utilizing generates one or more Players (each usable by certain
the virtual memory manager of the Player more efficiently . devices 130) which are provided to response director 210 .
As an example , the reassembled primitives of the Java Devices 130 may be operated to provide response director
objects may first undergo logical compression , followed by 210 with a request for a Player and to receive and install the
LZ encoding . 20 Player . In one embodiment , device 130 provides response

The use of a PDL also provides virtual machine and director 210 with device - specific information including but
operating system independence . Since the reassembled not limited to make , model , and / or software version of the
primitives of the Application no longer have any dependen device . Response director 210 then determines the appro
cies from the original programming language (Java) that priate Player for the device , and provides the device with the
they were defined in . The PDL architecture takes full advan - 25 Player over the network .
tage of this by abstracting all the virtual machine and / or Web service 230 is a plurality of services obtainable over
operating system interfaces from the code that processes the the Internet . Each web service is identified and / or defined as
PDL . an entry in web component registry 230 , which is a database ,

In one embodiment , the PDL is defined by the means of XML file , or PDL that exists on a computer that may be a
nested arrays of primitives . Accordingly , the use of a PDL 30 server previously described or another server 120 . Web
provides extensibility and compatibility , with a minimal component registry 230 is provided through server 120 to
amount of constraints in extending the Player seamlessly as authoring platform 110 so that a user of the authoring
market demands and device capabilities continue to grow . platform may bind web services 230 to elements to be
Compatibility with other languages is inherent based on the displayed on device 130 , as described subsequently .
various Player abstraction implementations , which may be , 35 In one embodiment , authoring platform 110 is used in
for example and without limitation , Java CDC , J2SE or conjunction with a display that provides a WYSIWYG
MIDP2 implementations . environment in which a user of the authoring platform can

In one embodiment , the architecture of Player P includes produce an Application and Player that produces the same
an abstraction interface that separates all device , operating display and the desired programming on device 130 . Thus ,
system and virtual machine dependencies from the Player ' s 40 for example , authoring tool 112 provides a display on screen
Application model business logic (that is , the logic of the 115 that corresponds to the finished page that will be
server - side facilities) that extend the Application on the displayed on screen 137 when an Application is intercepted ,
Player so that it is efficiently integrated into a comprehensive via a Player , on processor 135 of device 130 .
client / server Application . The use of an abstraction interface Authoring platform 110 further permits a user of the
permits the more efficient porting to other operating systems 45 authoring platform to associate objects , such as objects for
and virtual machines and adding of extensions to the Appli - presenting on screen 137 , with components of one or more
cation model so that a PDL can be implemented once and web services 230 that are registered in web component
then seamlessly propagated across all platform implemen - registry 220 . In one embodiment , information is provided in
tations . The Application model includes all the currently an XML file to web component registry 220 for each
supported UI objects and their attributes and well as all of 50 registered components of each web service 230 . Web com
the various events that are supported in the default Player . ponent registry 220 may contain consumer inputs related to
Further , less robust platforms can be augmented by extend - each web service 230 , environmental data such as PIM , time
ing higher end capabilities inside that platform ' s abstraction or location values , persistent variable data , outputs related to
interface implementation . the web service , and / or optional hinting for improving the

In one embodiment , authoring platform 110 provides one 55 user ' s productivity .
or more pages , which may be provided in one Application , A user of authoring platform 110 of system 200 may
or a plurality of Applications , which are stored in memory define associations with web services as WebComponent
123 and subsequently provided to memory 133 . In certain Bindings . In one embodiment , authoring platform 110
embodiments , the Application includes instructions R to allows a user to associate certain objects for display that
request content or web services C from content server 140 . 60 provide input or output to components of web service 230 .
Thus , for example and without limitation , the request is for The associated bindings are saved as a PDL in server 120 .
information over the network via a web service , and the In one embodiment , an XML web component registry 220
request R is responded to with the appropriate information for each registered web service 230 is loaded into authoring
for display on device 130 . Thus , for example , a user may platform 110 . The user of system 200 can then assign
request a news report . The Application may include the 65 components of any web service 230 to an Application
layout of the display , including a space for the news , which without any need to write code . In one embodiment , a
is downloaded form content server 140 for inclusion on the component of web service 230 is selected from authoring

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 508 of 548

US 9 , 928 , 044 B2
10

platform 110 which presents the user with WYSIWYG As an example of dynamic binding of real - time content ,
dialog boxes that enable the binding of all the inputs and an RSS feeds and other forms of dynamic content may be
outputs of component of web service 230 to a GUI compo inserted into mobile Applications , such as device 130 , using
nent of the Application as will be displayed on screen 137 . system 200 . Authoring platform 110 may include a " RSS
In addition , multiple components of one or more web service 5 display ” list which permits a user to select RSS channels and
230 can be assigned to any Object or Event in order to feeds from an extensible list of available dynamic content .
facilitate mashups . These Object and / or Event bindings , for Meta data , such as titles , abstracts and Images can be
each instance of a component of any web service 230 , are revealed immediately by the user as they traverse this RSS
stored in the PDL . The content server 140 handles all display list , bringing the PC experience completely and
communication between device 130 and the web service 230 " conveniently to mobile devices 130 . In addition , Authoring
and can be automatically deployed as a web application platform 110 may include a dialog box that dynamically
archive to any content server . links objects to data and feeds determined by RSS and chat

Device 130 , upon detecting an event in which a compo - databases . Any relevant attribute for a page view and / or
nent of a web service 230 has been defined , assembles and 15 object can be dynamically bound to a value in a server - side
sends all related inputs to content server 240 , which proxies database . This includes elements within complex objects
the request to web service 230 and returns the requested such as : any icon or text element within a graphical list ; any
information to device 130 . The Player on device 130 then icon within a launch strip ; any feature within any geographi
takes the outputs of web service 230 and binds the data to the cal view of a GIS service object ; and / or any virtual room
UI components in the Application , as displayed on screen 20 within a virtual tour .
137 . As an example of third - party web services 230 that may

In one embodiment , the mechanism for binding the out - be provided using system 200 , a user of authoring platform
puts of the web service to the UI components is through 110 can place , for example , Yahoo maps into device 130 by
symbolic references that matches each output to the sym - binding the required component of the Yahoo Maps Web
bolic name of the UI component . The outputs , in one 25 Service , such as Yahoo Map ' s Inputs and / or Outputs to
embodiment , may include meta - data which could become appropriate Objects of authoring platform 110 . System 200
part of the inputs for subsequent interactions with the web also provides binding to web services for text , image and
service . video searching by binding to components of those web

For example , if a user of authoring platform 110 wants to services .
present an ATOM feed on device 130 , they would search 30 In one embodiment , an Application for displaying on
through a list of UI Components available in the authoring device 130 includes one or more Applications Pages , each
platform , select the feed they want to use , and bind the referred to herein as an “ XSP , ” that provides functionality
output of the feed summary to a textbox . The bindings would that extends beyond traditional web browsers . The XSP is
be saved into the PDL on server 120 and processed by device defined as a PDL , in a similar manner as any Application ,
130 at runtime . If the ATOM feed does not exist a new one 35 although it defines a single page view , and is downloaded to
can be added to the web component registry that contains all the Player dynamically as required by the PDL definition of
the configuration data required , such as the actual feed URL , the Application . Thus , for example , while JSPs and ASPs ,
the web component manager URL , and what output fields are restricted to the functionality supported by the web
are available for binding . browser , the functionality of XSPs can be extended through

In another embodiment , components of web services 230 40 authoring platform 110 having access to platform dependent
are available either to the user of authoring platform 110 or routines 114 , such as Java APIs . Combined with dynamic
otherwise accessible through the SDK and Java APIs of binding functionality , an XSP , a page can be saved as a page
routines 114 . System 200 permits an expanding set of object in an author ' s " pages " library , and then can be
components of web services 230 including , but not limited dynamically populated with real - time content simultane
to : server pages from content server 120 ; third - party web 45 ously as the page is downloaded to a given handset Player
services including , but not limited to : searching (such based on a newly expanded API . XSP Server Pages can also
through Google or Yahoo) , maps (such as through MapQuest be produced programmatically , but in most cases authoring
and Yahoo) , storefronts (such as through ThumbPlay) , SMS platform 110 will be a much more efficient way to generate
share (such as through clickatel) , stock quotes , social net - and maintain libraries of dynamically changing XSPs .
working (such as through FaceBook) , stock quotes , weather 50 With XSPs , Applications Pages that have dynamic content
(such as through Accuweather) and / or movie trailers . Other associated with them can be sent directly to device 130 ,
components include web services for communication and much like how a web browser downloads an HTML page
sharing through chats and forums and rich messaging alerts , through a external reference . Without XSPs , content authors
where message alerts are set - up that in turn could have would have to define each page in the Application . With
components of Web Services 230 defined within them , 55 XSPs , no pages need to be defined . Thus , for example , in a
including the capture of consumer generated and Web Ser - World Cup Application , one page could represent real - time
vice supplied rich media and textual content . scores that change continuously on demand . With polling

System 200 also permits dynamic binding of real - time (for example , a prompt to the users asking who they predict
content , where the inputs and outputs of XML web services will win a game) , a back - end database would tabulate the
are bound to GUI components provided on screen 137 . Thus , 60 information and then send the results dynamically to the
for example , a user of authoring platform 110 may bind handsets . With a bar chart , the Application would use
attributes of UI Objects to a particular data base field on a dynamic PDL with scaling on the fly . For example , the
Server . When running the Application , the current value in server would recalibrate the bar chart for every ten numbers .
the referenced data base will be immediately applied . During Other combinations of components of web services 230
the Application session , any other real time changes to these 65 include , but are not limited to , simultaneous video chat
values in the referenced data base will again be immediately sessions , inside an integrated page view , with a video or
displayed . television station ; multiple simultaneous chat sessions , each

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 509 of 548

US 9 , 928 , 044 B2

with a designated individual and / or group , with each of the which in turn defines all of the virtual machine compliant
chat threads visible inside an integrated page view . Objects , some of which could have attributes that refer to

Another extension of an XSP is a widget object . Widgets images , audio , and / or video stored in portions 133a3 , 133a4 ,
can be developed from numerous sources including , but not 133a5 , respectively .
limited to , authoring platform 110 , a Consumer Publishing 5 The Virtual Machine in portion 133a3 processes the
Tool , and an XML to Widget Conversion Tool where the Player output , the Operating System in portion 133a3 pro
SDK Widget Libraries are automatically populated and cesses the Virtual Machine output which results in machine
managed , or Widget Selection Lists that are available and code that is processed by the Operating System in portion
can be populated with author defined Icons . 133a4 .
Applications , Players , and Processing in a Device 10 In another embodiment , the Player is a native program

FIG . 2B is a schematic of one embodiment of a device 130 that interacts directly with the operating system .
illustrating an embodiment of the programming generated Embodiments of a Publishing Environment
by authoring platform 110 . Memory 133 may include sev In one embodiment , authoring platform 110 includes a
eral different logical portions , such as a heap 133a , a record full - featured authoring tool 112 that provides a what - you
store 133b and a filesystem (not shown) . 15 see - is - what - you - get (WYSIWYG) full featured editor . Thus ,
As shown in FIG . 2B , heap 133a and record store 133b for example , authoring tool 112 permits a user to design an

include programming and / or content . In general , heap 133a Application by placing objects on canvas 305 and optionally
is readily accessible by processor 135 and includes , but is assigning actions to the objects and save the Application .
not limited to portions that include the following program - System 100 then provides the Application and Player to a
ming : a portion 133al for virtual machine compliant objects 20 device 130 . The Application as it runs on device 130 has the
representing a single Page View for screen 137 ; a portion same look and operation as designed on authoring platform
133a2 for a Player ; a portion 133a3 for a virtual machine ; 110 . In certain embodiments , authoring platform 110 is , for
and a portion 133a4 for an operating system . example and without limitation , a PC - compatible or a

Record store 133b (or alternatively the filesystem) Macintosh computer .
includes , but is not limited to , portions 133b1 for Applica - 25 Authoring platform 110 produces an Application having
tions and non - streaming content , which may include por - one or more Applications Pages , which are similar to web
tions 133a2 for images , portions 133a4 for audio , and / or pages . That is , each Applications Page , when executed on
portions 133a5 for video . and portions 133b2 for non device 130 may , according to its contents , modify what is
Application PDLs , such as a Master Page PDL for present displayed on screen 137 or cause programming on the
ing repeating objects , and Alerts , which are overlayed on the 30 device to change in a manner similar to how web pages are
current page view . Other content , such as streaming content displayed and navigated through on a website .
may be provided from network interface 131 directly to the In one embodiment , authoring tool 112 allows a user to
Media Codec of device 130 with instructions from Player on place one or more objects on canvas 305 and associate the
how to present the audio or video . objects with an Applications Pages . Authoring platform 110

In one embodiment , the Player includes a Threading 35 maintains a database of object data in memory 111 , includ
Model and a Virtual Memory Manager . The Threading ing but not limited to type of object , location on which page ,
Model first manages a queue of actions that can be populated and object attributes . The user may add settings , events ,
based on Input / Output events , Server - side events , time - animations or binding to the object , from authoring tool 112 ,
based events , or events initiated by user interactions . The which are also maintained in memory 111 . Authoring tool
Threading Model further manages the simultaneous execu - 40 112 also allows a user to define more than one Applications
tion of actions occurring at the same time . The Virtual Page .
Memory Manager includes a Logical Virtual Page controller In another embodiment , authoring tool 112 , provides Java
that provides instructions from the record store to the heap , programming functions of the Java API for specific devices
one page at time . Specifically , the Virtual Memory Manager 130 as pull - down menus , dialog boxes , or buttons . This
controls the transfer of one of the Application Pages and its 45 permits a user of authoring platform 110 to position objects
virtual machine compliant objects into portion 133al as that , after being provided as an Application to device 130 ,
instructions readable by the Player or Virtual Machine . activate such Java functions on the device .
When the Player determines that a new set of instructions is In certain embodiments , authoring platform 110 , as part of
required , the information (such as one Application Page is system 100 , permits designers to include features of
retrieve from the Record store , converted into virtual 50 advanced web and web services Applications for access by
machine compliant objects (by processor 135 and according users of device 130 . Some of the features of advanced web
to operation by the Player , Virtual Machine , etc) . and stored and web services include , but are not limited to : slide shows ,
in heap 133a . Alternatively , the Player may augment virtual images , video , audio , animated transitions , multiple chats ,
machine compliant objects with its own libraries for man - and mouse interaction ; full 2 - D vector graphics ; GIS (ad
aging user interactions , events , memory , etc . 55 vanced LBS) , including multiple raster and vector layers ,

The connection of portions 133al , 133a2 , 133a3 , 133a4 , feature sensitive interactions , location awareness , streaming
record store 133b and processor 135 are illustrative of the and embedded audio / video , virtual tours , image processing
logical connection between the different types of program - and enhancement , and widgets . In other embodiments the
ming stored in Heap 133a and record store 133b , that is , how features are provided for selection in authoring platform 110
data is processed by processor 135 . 60 through interactive object libraries .

The Player determines which of the plurality of Applica - In certain embodiments , authoring platform 110 , as part of
tion Pages in portion 133b1 is required next . This may be system 100 , allows the inclusion of child objects which may
determined by input actions from the Input Device 139 , or eventually be activated on device 130 by the user of the
from instructions from the current Application Page . The device or by time . The uses of the child objects on device
Player instructs processor 135 to extract the PDF from that 65 130 include , but are not limited to : mouse over (object
Applications Page and store it in portion 133al . The Player selection) , hover and fire events and launching of object
then interprets the Application Page extracted from PDL specific , rich - media experiences .

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 510 of 548

14
US 9 , 928 , 044 B2

13
In certain other embodiments , authoring platform 110 , as authoring platform 110 , save an Application having the

part of system 100 , provides advanced interactive event programming instructions , and save a Player for the device .
models on device 130 , including but not limited to : user - , The intended programming is carried out on device 130
time - and / or location - initiated events , which allow content when the device , having the appropriate device platform
developers to base interactivity on specific user interactions 5 Player , receives and executes the device - independent Appli
and / or instances in time and space ; timelines , which are cation .
critical for timing of multiple events and for animations Thus , for example , authoring tool 112 maintains , in when entering , on , or exiting pages of the Application ; memory 111 , a list of every type of object and any proper
waypoints , which act similar to key frames , to allow smooth ties , actions , events , or bindings that may be assigned to that movement of objects within pages of the Application . Way - 10 object . As objects are selected for an Application , authoring points define positions on a page object ' s animation trajec tool 112 further maintains , in memory 111 , a listing of the tory . When an object reaches a specific waypoint other objects . As the user selects objects , publisher interface 300 object timelines can be initiated , creating location - sensitive provides the user with a choice of further defining proper multiple object interaction , and / or audio can be defined to ties , actions , events , or bindings that may be assigned to play until the object reaches the next waypoint . 15 each particular object , and continues to store the information Authoring platform 110 may also define a Master Page , in memory 111 . which acts as a template for an Applications Page , and may In one embodiment , publisher interface 300 is a graphical also define Alert Pages , which provide user alerts to a user interface that permits the placement and association of of device 130 . objects in a manner typical of , for example , vector graphics In certain embodiments , authoring platform 110 , as part of 20 editing programs (such as Adobe Illustrator) . Objects system 100 , provides full style inheritance on device 130 . located on canvas 305 placed and manipulated by the Thus , for example and without limitation , both master page various commands within publisher interface 300 or inputs inheritance (for structural layout inheritance and repeating such as an input device 117 which may be a keyboard or objects) and object styles (for both look and feel attribute mouse . As described herein , the contents of canvas 305 may inheritance) are supported . After a style has been defined for 25 be saved as an Application that , through system 100 , provide an object , the object will inherit the style . Style attributes the same or a similar placement of objects on screen 137 and include both the look and the feel of an object , including have actions defined within publisher interface 300 . Objects mouse interaction , animations , and timelines . Each page placed on canvas 305 are intended for interaction with user may include objects that may be a parent object or a child of device 130 and are referred to herein , without limitation , object . A child object is one that was created by first 30 as objects or UI (user interface) objects . In addition , the user selecting a parent object , and then creating a child object . of interface 300 may assign or associate actions or web Child objects are always part of the same drawing layer as bindings to UI objects placed on canvas 305 with result in its parent object , but are drawn first , and are not directly the programming device 130 that cause it to respond accord selectable when running the Application . A parent object is ingly .
any object that is not a child object , and can be selected 35 Objects include , but are not limited to input UI objects , when running the Application . response UI objects . Input UI objects include but are not As an example , the user of authoring tool 112 may create limited to : text fields (including but not limited to alpha , various text objects on canvas 305 using a style that sets the numeric , phone number , or SMS number) ; text areas ; choice font to red , the fonts of these objects will be red . Suppose objects (including but not limited to returning the selected user of authoring tool 112 changes the font color of a specific 40 visible string or returning a numeric hidden attribute) ; single button to green . If later , the user of authoring tool 112 item selection lists (including but not limited to returning the changes the style to blue ; all other text objects that were selected visible string or returning a numeric hidden attri created with that style will become blue except for the button bute) ; multi item selection lists (including but not limited to that had been specifically set to green . returning all selected items (visible text string or hidden In certain other embodiments , authoring platform 110 45 attribute) or cluster item selection lists (returning the hidden provides page view , style , object , widget and Application attributes for all items) . template libraries . Authoring platform 110 may provide Other input UI objects include but are not limited to : templates in private libraries (available to certain users of check boxes ; slide show (including but not limited to the authoring platform) and public libraries (available to all returning a numeric hidden attribute , returning a string
users of the authoring platform) . Templates may be used to 50 hidden attribute , or returning the hidden attributes for all
within authoring platform 110 to define the look and feel of slides) ; and submit function (which can be assigned to any
the entire Application , specific pages , or specific slide shows object including submit buttons , vectors , etc .) .
and virtual tours a seen on device 130 . Response UI Objects may include , but are not limited to :

FIGS . 3A and 3B illustrate one embodiment of a publisher single line text objects , which include : a text Field (includ
interface 300 as it appears , for example and without limi - 55 ing but not limited to a URL , audio URL , or purchase URL) ,
tation , on screen 115 while executing authoring tool 112 . In a text button , a submit button , or a clear button . Another
one embodiment , publisher interface 300 includes a Menu response UI objects include : a multiple line text object ,
bar 301 , a Tool bar 303 , a Canvas 305 , a Layer Inspector 307 which may include a text area or a paragraph ; a check box ;
having subcomponents of a page / object panel 307a , an an image ; a video ; a slide show (with either video or image

slides , or both) ; choice objects ; list objects ; or control lists , object style panel 307b , and a page alert panel 307c , and a 60 which control all the subordinate output UI objects for that Resource Inspector 309 . web component . Control list objects include , but are not In general , publisher interface 300 permits a user of limited to : list type or a choice type , each of which may
authoring platform 110 to place objects on canvas 305 and include a search response list or RSS display list .
then associate properties and / or actions to the object , which As a further example of objects that may be used with
are stored in the Application . As described subsequently , 65 authoring tool 112 , Table I lists Data Types , Preferred Input ,
publisher interface 300 permits a user to program a graphical Input Candidates , Preferred Output and Output Candidates
interface for the screen 137 of device 130 on screen 115 of for one embodiment of an authoring tool .

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 511 of 548

US 9 , 928 , 044 B2
15

TABLE I
One embodiment of supported obiects

Data Types Preferred Input Input Candidates Preferred Output Output Candidates
boolean
Int

Check Box
Text Field (integer)

Check Box
Text Field (integer)

Check Box
Text Field (integer)
Text Field (Phone #)
Text Field (SMS #)
Choice
List (single select)

String
multilineString

Text Field (Alpha)
Text Area

Any
Text Area

Text Field (Alpha)
Text Area

Check Box
Text Field (integer)
Text Field (Phone #)
Text Field (SMS #)
Choice
List (single select)
Text Button
Any
Text Area
Paragraph
Image
Slide Show
Video
Slide Show
Any List Type
Any Choice Type
(see Complex
List Specification)

ImageURL N / A N / A Image

VideoURL N / A N / A Video

List ngle Item List Single Item List Single Item List
Multi - Select List
Complex List
Choice
Slide Show
Single Item List
Multi - Select List
Complex List
Slide Show
N / A

ComplexList Complex List Single Item List

Slideshow
SearchResponse List

Slide Show
N / A

Slide Show
Search Response List

Any List Type
(see Complex List
Specification)
Slide Show
Search Response List
Control List
Complex List
Choice
RSS Display List
Control List
Complex List
Choice
Choice
Complex List
Multi - Selection List
N / A

RSSList NA N / A RSS Display List

SingleSelection List

MultiSelection List
Service Activation
ChannelImageURL

Choice Choice Choice
Complex List

Multi - Selection List Multi - Selection List Multi - Selection List
Submit Button Any N / A
N / A N / A belles is Image Image

ChannelDescription N / A N / A Text Area

ChannelTitle NA N / A N / A Text Field

Video
Slide Show
Text Area
Paragraph
Text Field
Text Button
List
Choice
Text Field
Text Button
Paragraph
Text Area
List
Choice
Text Field
(URL request)
Text Field
(Audio URL request)
Text Field
(Purchase URL request)
Image
Slide Show
Slide Show
Image
N / A
N / A

URL

Audio URL

Text Field
(URL request)
Text Field
(Audio URL request)
Text Field
(Purchase URL request)
Image

Purchase URL

Image Data

Image List Data Slide Show

Persistent Variable N / A
Pipeline Multiple Select Multi - select List

N / A
N / A

Phone Number Text Field
(numeric type)
Complex List

N / A
Multi - select List
Complex List
Slide Show
Text Field
Text Button
Complex List
Slide Show
N / A

Text Field
(numeric type)
Complex List Hidden Attribute

Text Field
Text Button
Complex List
Slide Show
Complex List
Slide Show

Collection List N / A Slide Show

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 512 of 548

18
US 9 , 928 , 044 B2

17
In general , publisher interface 300 permits a user to define style template , import a page , alert , or widget , open library

an Application as one or more Applications Pages , select UI objects including but not limited to an image , video , slide
objects from Menu bar 301 or Tool bar 303 and arrange them show , vector or list , and copying an Application to a user or
on an Applications Page by placing the objects canvas 305 . to Server 120 .
An Application Page is a page that is available to be visited 5 Edit menu 301b may include , but is not limited to ,
through any navigation event . Application Pages inherit all selections for select , cut , copy , paste , and edit functions .
the attributes of the Master Page , unless that attribute is View menu 3010 may include , but is not limited to ,
specifically changed during an editing session . selections for zooming in and out , previewing , canvas 305

Authoring platform 110 also stores information for each grid display , and various palette display selections .
UI object on each Application Page of an Application . Layer 10 Project menu 301d may include , but is not limited to ,
Inspector 307 provides lists of Applications Pages , UI selections related to the Application and Player , such as
objects on each Applications Page , and Styles , including selections that require a log in , generate a universal Player ,
templates . Objects may be selected from canvas 305 or generate server pages , activate server APIs and extend
Layer Inspector 307 causing Resource Inspector 309 to Player APIs . A Universal Player will include all the code
provide lists of various UI objects attributes which may be 15 libraries for the Player , including those that are not refer
selected from within the Resource Inspector . Publisher inter enced by the current Application . Server APIs and Player
face 300 also permits a user to save their work as an APIs logically extend the Player with Server - side or device
Application for layer transfer and operation of device 130 . side Application specific logic .
Publisher interface 300 thus provides an integrated platform Objects menu 301e includes selections for placing various
for designing the look and operation of device 130 . 20 objects on canvas 305 including , but not limited to : navi

The information stored for each UI object depends , in gation UI objects , including but not limited to widget or
part , on actions which occur as the result of a user of device channel launch strips or selection lists ; message - related UI
130 selecting the UI object from the device . UI objects objects , including but not limited to multiple chat , video
include , but are not limited to : navigational objects , such as chat , phone and / or SMS lists or fields , or a pop - up alert ;
widget or channel launch strips or selection lists ; message 25 shapes , which provides for drawing tools ; forms - related
objects for communicating , such as a multiple chat , video objects , including but not limited to text fields ; scrolling text
chat , phone and / or SMS lists or fields or a pop - up alert ; text box , check box , drop - down menu , list menu , submit button
fields or areas ; check boxes ; pull down menus ; selection lists or clear button ; media - related UI objects such as pictures ,
and buttons ; pictures ; slide shows ; video or LBS maps ; slide shows , video or LBS maps ; text - related UI objects such
shapes or text defined by a variety of tools ; a search 30 as buttons or paragraphs ; and variables , including but not
response ; or an RSS display . limited to time , date and audio mute control .

In certain embodiments , publisher interface 300 permits a Events menu 301f includes selections for defining child
user to assign action to UI objects , including but not limited objects , mouse events , animations or timelines .
to , programming of the device 130 or a request for infor - Pages menu 3019 includes selection for handling multi
mation over network N . In one embodiment , for example 35 page Applications , and may include selections to set a
and without limitation , publisher interface 300 has a selec - master page , delete , copy , add or go to Applications Pages .
tion to bind a UI object to a web service that is , associate Styles menu 301h includes selections to handle styles ,
the UI object or a manipulation or selection of UI object with which are the underlying set of default appearance attributes
web services . Publisher interface 300 may also include or behaviors that define any object that is attached to a style .
many drawing and text input functions for generating dis - 40 Styles are a convenient way for quickly creating complex
plays that may be , in some ways , similar to drawing and / or objects , and for changing a whole collection of objects by
word processing programs , as well as toolbars and for just modifying their common style . Selections of Styles
zooming and scrolling of a workspace . menu 301h include , but not limited to , define , import , or

Each UI object has some form , color , and display location modify a style , or apply a template . Help menu 301i includes
associate with it . Further , for example and without limita - 45 access a variety of help topics .
tion , UI objects may have navigational actions (such as Tool bar 303 provides more direct access to some of the
return to home page) , communications actions (such as to features of publisher interface 300 through a series of
call the number in a phone number field) , or web services pull - down menus . Selections under tool bar 303 may include
(such as to provide and / or retrieve certain information from selections to :
a web service) . Each of the these actions requires authoring 50 control the look of publisher interface 300 , such as a Panel
platform 110 to store the appropriate information for each selection to control the for hiding or viewing various
action . In addition , UI objects may have associated patent or panels on publisher interface 300 ;
child objects , default settings , attributes (such as being a control the layout being designed , such as an Insert Page
password or a phone number) , whether a field is editable , selection to permit a user to insert and name pages ;
animation of the object , all of which may be stored by 55 control the functionality of publisher interface 300 , such
authoring platform 110 , as appropriate . as a Palettes selection to choose from a variety of
Menu bar 301 provides access features of publisher specialized palettes , such as a View Palette for zooming

interface 300 through a series of pull - down menus that may and controlling the display of canvas 305 , a Command
include , but are not limited to , the following pull - down Palette of common commands , and Color and Shape
menus : a File menu 301a , an Edit menu 301b , a View menu 60 Palettes ;
301c , a Project menu 301d , an Objects menu 301e , an place objects on canvas 305 , which may include selec
Events menu 301f , a Pages menu 301g , a Styles menu 301h , tions such as : a Navigation selection to place naviga
and a Help menu 301i . tional objects , such as widget or channel launch strips

File menu 301a provides access to files on authoring or selection lists) , a Messages selection to place objects
platform 110 and may include , for example and without 65 for communicating , such as a multiple chat , video chat ,
limitation , selections to open a new Application or master phone and / or SMS lists or fields , or a pop - up alert , a
page , open a saved Application , Application template , or Forms selection to place objects such as text fields or

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 513 of 548

US 9 , 928 , 044 B2
19 20

areas , check boxes , pull down menus , selection lists , and object styles , such as switching between the master page
and buttons , a Media selection to place pictures , slide and Application pages and deselecting object styles and
shows , video or LBS maps , and a Shapes selection alerts , opening an Edit Styles Dialog Box and deselecting
having a variety of drawing tools , a Text selection for any master , Application or alert page , or selecting an alert
placing text , a search response , or an RSS display , and 5 page and deselecting any Master Page or Application Page .
Palettes . A parent or child object can also be selected directly from

In one embodiment , Tool bar 303 includes a series of the Canvas . In either case , the Resource Inspector can then
pull - down menus that may include , but are not limited to be used for modifying any attribute of the selected object .
items from Menu bar 301 organized in the following pull - Examples of operations provided by page / objects panel
down menus : a Panel menu 303a , an Insert Page menu 303b , 10 307a on pages include , but are not limited to : importing
a Navigation menu 303c , a Messages menu 303d , a Forms from either a user ' s private page library or a public page
menu 303e , a Media menu 303f , a Shapes menu 303g , a Text library ; deleting a page ; inserting a new page , inheriting all
menu 303h , and a Palettes menu 301i . the attributes of the Master Page , and placing the new page

Panel menu 303a permits a user of authoring platform 110 at any location in the Page List ; editing the currently selected
to change the appearance of interface 300 by , controlling 15 page , by working with an Edit Page Dialog Box . While
which tools are on the interface or the size of canvas 305 . editing all the functions of the Resource Inspector 309 are
Insert Page menu 303b permits a user of authoring platform available , as described subsequently , but are not applied to
110 to open a new Application Page . Navigation menu 3030 the actual page until completing the editing process .
displays a drop down menu of navigational - related objects Examples of operations provided by of page / objects panel
such as a widget or channel launch strip or selection list . 20 307a on objects , which may be user interface (UI) objects ,
Messages menu 303d displays a drop down menu of mes include but are not limited to : changing the drawing order
saging - related objects such as multiple chat , video chat , layer to : bring to the front , send to the back , bring to the front
phone or SMS lists or fields , and pop - up alerts . Forms menu one layer , or send to the back one layer ; hiding (and then
303e displays a drop down menu of forms - related objects reshowing) selected objects to show UI objects obstructed
including , but not limited to , a text field , a text area , a check 25 by other UI Objects , delete a selected UI Page Object , and
box , a drop down menu , a selection list , a submit button , and editing the currently selected page , by working with a Edit
a clear button . Media menu 303f displays a drop down menu Page Dialog Box .
of media - related objects including , but not limited to , a O bject styles panel 307b of layer inspector 307 displays
picture , slide show , video or LBS map . Shapes menu 303g all styles on the Applications Page and permits operations to
displays a drop down menu of draw tools , basic shapes , 30 be performed on objects , and is similar to panel 307a .
different types of lines and arrows and access to a shape Examples of operations provided by object style panel 3076
library . Text menu 303 ; displays a drop down menu of include , but are not limited to : importing from either a user ' s
text - related objects , including but not limited to a text private object library or a public object library ; inserting a
button , paragraph , search response , RSS display and vari new object style , which can be inherited from a currently
ables such as time and date . 35 selected object , or from a previously defined style object ;

Palettes menu 301i includes a selection of different pal - and editing a currently selected object style by working with
ettes that can be moved about publisher interface 300 , where an Edit Style Dialog Box .
each palette has specialized commands for making adjust - Style attributes can be assigned many attributes , including
ments or associations to objects easier . Palettes include , but the look , and behavior of any object that inherits these
are not limited to : a page view palette , to permit easy 40 objects . In addition , List Layout Styles can be created or
movement between Applications Pages ; a view palette , to changed as required . A layout style can define a unbounded
execute an Application or zoom or otherwise control the set of Complex List Layouts , including but not limited to :
viewing of an Application ; a commands palette having the number of lines per item in a list , the number of text and
editing commands ; a color palette for selection of object image elements and their location for each line for each item
colors , and a shapes palette to facilitate drawing objects . 45 in the last , the color and font for each text element , and the
Layer inspector 307 permits a user of publisher interface vertical and horizontal offset for each image and text ele

300 to navigate , select and manipulate UI objects on Appli ment .
cations Pages . Thus , for example , a Page / objects panel 307a Alerts Panel 307c provides a way of providing alert pages ,
of layer inspector 307 has a listing that may be selected to which can have many of the attributes of Application Pages ,
choose an Applications Pages within and Application , and 50 but they are only activated through an Event such as a user
UI objects and styles within an Applications Page . An Object interaction , a network event , a timer event , or a system
styles panel 307b of layer inspector 307 displays all styles on variable setting , and will be superimposed onto whatever is
the Applications Page and permits selection of UI objects for currently being displayed . Alert Pages all have transparent
operations to be performed on the objects . backgrounds , and they function as a template overlay , and

Thus , for example , when objects from Menu bar 301 or 55 can also have dynamic binding to real time content .
Tool bar 303 are placed on canvas 305 , the name of the Resource inspector 309 is the primary panel for interac
object appears in Page / objects panel 307a . Pagelobjects tively working with UI objects that have been placed on the
panel 307a includes a page display 307al and an objects Canvas 305 . When a UI object is selected on Canvas 305 , a
display 307a2 . Page display 307al includes a pull down user of authoring platform 110 may associate properties of
menu listing all Applications Pages of the Application , and 60 the selected object by entering or selecting from resource
objects display 307a2 includes a list of all objects in the inspector 309 . In one embodiment , resource inspector 309
Applications Page (that is , objects on canvas 305) . includes five tab selections : Setting Tab 309a , Events Tab

In general , page / objects panel 307a displays various 309b , Animation Tab 309c , Color Tab 309d which includes
associations with a UI object and permits various manipu - a color palette for selecting object colors , and Bindings Tab
lations including , but not limited to , operations for parent 65 309e .
and child objects that are assigned to a page , and operations Settings Tab 309a provides a dialog box for the basic
for object styles , and permits navigating between page types configuration of the selected object including , but not lim

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 514 of 548

scree

US 9 , 928 , 044 B2
21

ited to , name , size , location , navigation and visual settings . Object Selected Audio Setting 309b4 of Inactive , Play Once ,
Depending upon the type of object , numerous other attri - Loop , and other responses are presented . When Mouse State
butes could be settable . As an example , the Setting Tab for Fire is chosen , Object Selected Audio Setting 309b4 is
a Text Field may include dialog boxes to define the text field replaced with FIRE Audi Setting , with appropriate choices
string , define the object style , set the font name , size and 5 presented .
effects . set an obiect name frame style . frame width . text W hen Work with Child Objects and Mouse Overs button
attributes (text field , password field , numeric field , phone 309b5 is selected , a Child Object Mode box pops up ,
number , SMS number , URL request) . allowing a user to create a child object with shortcut to Menu

bar 301 actions that may be used define child objects . As an example of Setting Tab 309a , FIG . 3B shows 10 FIG . 3D illustrates one embodiment of an Animation Tab various selections including , but not limited to , setting 309c , which includes all animations and timelines . The 309al for the web page name , setting 309a2 for the page Color Tab includes all the possible color attributes , which size , including selections for specific devices 130 , setting may vary significantly by object type .
309a3 indicating the width and height of the object , and Animation Tab 309c includes settings involved in anima
setting 309a4 to select whether background audio is present 15 tion and timelines that may be associated with objects . One
and to select an audio file . embodiment of Animation Tab 309c is shown , without

FIG . 3C illustrates an embodiment of the Events Tab limitation in FIG . 3D and is described in Rempell (Rem
309b , which includes all end user interactions and time pell ”) .
based operations . The embodiment of Events Tab 309b in A Color Tab 309d includes a color palette for selecting
FIG . 3C includes , for example and without limitation , an 20 obiect colors .
Events and Services 309b1 , Advanced Interactive Settings Bindings Tab 309e is where web component operations
309b2 , Mouse State 309b3 , Object Selected Audio Setting are defined and dynamic binding settings are assigned . Thus ,
309b4 , and Work with Child Objects and Mouse Overs for example , a UI object is selected from canvas 305 , and a
button 309b5 . web component may be selected and configured from the

Events and Services 309b1 lists events and services that 25 bindings tab . When the user ' s work is saved , binding infor
may be applied to the selected objects . These include , but are may be applied to the selected objects . These include , but are mation is associated with the UI object that will appear on
not limited to , going to external web pages or other Appli screen 137 .
cations pages , either as a new page or by launching a new FIG . 3E illustrates one embodiment of Bindings Tab and
window , executing an Application or JavaScript method , includes , without limitation , the following portions : Web
pausing or exiting , placing a phone call or SMS message , 30 Component and Web Services Operations 309e1 , Attributes
with or without single or multiple Player download , show Exposed list 309e2 , panel 309e3 which includes dynamic
launch strip , or go back to previous page . Examples of binding of server - side data base values to attributes for the
events and services include , but are not limited to those selected obiect . Default Attribute Value 309e4 . Database
listed in Table II Name 309e5 , Table Name 309e6 , Field Name 309e7 , Chan

35 nel Name 309e8 , Channel Feed 309e9 , Operation 309e10 ,
TABLE II Select Link 309e11 , and Link Set checkbox 309e12 .

Web Component and Web Services Operations 309e1 Events and Services includes web components that may be added , edited or
Goto External Web Page ChoiceObject : Remove Icon from removed from a selected object . Since multiple web com
replacing Current Frame Launch Strip 40 ponents can be added to the same object , any combination
Goto External Web Page Goto a specific Internal Web Page of mash - ups of 3rd party web services is possible . When the Launched in a New Window with Alert . “ Backend

Synchronization ” “ Add ” button of Web Component and Web Services Opera
Goto a specific Internal Web Page Goto Widget Object tions 309el is selected , a pop - up menu 319 , as shown in
Goto the next Internal Web Page Generate Alert . “ With a Fire Event " FIG . 3F , appears on publisher interface 300 . Pop - up menu Goto External Web Page Send SMS Message from Linked 45 319 includes , but is not limited to , the options of : Select a replacing the Top Frame Text Field
Execute JavaScript Method Toggle Alert . “ Display OnFocus , Web Component 319a ; Select Results Page 319b ; Activation

Hide OffFocus " Options 319c ; Generate UI Objects 319d ; and Share Web
Pause / Resume Page Timeout Execute an Application with Alert . Component 319e .

“ With a Fire Event ” The Select a Web Component 319a portion presents a list Execute an Application Goto Logical First Page
Goto a specific Internal Web Generate Alert with Backend 50 of web components . As discussed herein , the web compo
Page with setting starting slide Synchronization nents are registered and are obtained from web component
Exit Application Send SMS Message with Share registry 220 .

(Player Download) Select Results Page 319b is used to have the input and Exit Player Place PhoneCall from linked Text
Field with Share (Player Download) output on different pages — that is , when the Results page is

Place PhoneCall from linked Send IM Alert from linked Text 55 different from Input page . The default selected results page
Text Field Field or Text Area is either the current page , or , if there are both inputs and Text Field / Area : Send String Set and Goto Starting Page outputs , it will be set provisionally to the next page in the on FIRE
ChoiceObject : Add Icon to Populate Image current page order , if one exists .
Launch Strip Activation Options 319c include , if there are no Input UI
Text Field / Area : Send String on Preferred Launch Strip 60 Objects , a choice to either “ Preload " the web component ,
FIRE or Numeric Keys similar to how dynamic binding , or have the web component

executed when the “ Results ” page is viewed by the con
Advanced Interactive Settings 30962 include Scroll Acti sumer .

vation Enabled , Timeline Entry Suppressed , Enable Server Generate UI Objects 319c , if selected , will automatically
Listener , Submit Form , Toggle Children on FIRE , and Hide 65 generate the UI objects . If not selected , then the author will
Non - related Children , Mouse State 309b3 selections are bind the Web Component Inputs and Results to previously
Selected or Fire . When Mouse State Selected is chosen , created UI Objects .

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 515 of 548

US 9 , 928 , 044 B2
23 24

Share Web Component 319e is available and will become 110 is used to design layout 410 . Authoring platform 110
selected under the following conditions : 1) Web Component then generates an Application and a Player specific to device
is Selected which already has been used by the current 130 of FIG . 4B . The Application and Player are thus used by
Application ; or 2) the current Input page is also a “ Result ” device 130 to produce layout 420 on screen 137 .
page for that Web component . This permits the user of 5 As illustrated in FIG . 4A , a user has placed the following
device 130 , after viewing the results , to extend the Web on canvas 305 to generate layout 410 : text and background
Component allowing the user to make additional queries designs 411 , a first text input box 413 , a second text input
against the same Web Component . Examples of this include , box 415 , and a button 417 . As an example which is not
but are not limited to , interactive panning and zooming for meant to limit the scope of the present invention , layout 410
a Mapping Application , or additional and or refined searches 10 is screen prompts a user to enter a user name in box 413 and
for a Search Application . a password in box 415 , and enter the information by clicking
Dynamic Binding permits the binding of real time data , on button 417 .

that could either reside in a 3rd party server - side data base , In one embodiment , all UI objects are initially rendered as
or in the database maintained by Feed Collector 1010 for Java objects on canvas 305 . When the Application is saved ,
aggregating live RSS feeds , as described subsequently with 15 the UI objects are transformed into the PDL , as described
reference to FIG . 10 . subsequently .

Referring again to FIG . 3E , Attributes Exposed list 309e2 Thus , for example , layout 410 may be produced by the
are the attributes available for the selected object that can be user of authoring platform 110 selecting and placing a first
defined in real time through dynamic binding . Text Field as box 413 then using the Resource Inspector 309

Panel 309e3 exposes all the fields and tables associated 20 portion of interface 300 to define its attributes .
with registered server - side data bases . In one embodiment , Device User Experience
the user would select an attribute from the " Attributes Systems 100 and 200 provide the ability for a very large
Exposed List ” and then select a data base , table and field to number of different types of user experiences . Some of these
define the real time binding process . The final step is to are a direct result of the ability of authoring platform 110 to
define the record . If the Feed Collector data base is selected , 25 bind UI objects to components of web services . The follow
for example , then the RSS “ Channel Name ” and the “ Chan - ing description is illustrative of some of the many types of
nel Feed ” drop down menus will be available for symboli experiences of using a device 130 as part of system 100 or
cally selected the record . For other data bases the RSS 200 .
“ Channel Name ” and the “ Channel Feed ” drop down menus Device 130 may have a one or more of a very powerful
are replaced by a “ Record ID ” text field . 30 and broad set of extensible navigation objects , as well as

Default Attribute Value 309e4 indicates the currently object - and pointer - navigation options to make it easy to
defined value for the selected attribute . It will be overridden provide a small mobile device screen 137 with content and
in real time based on the dynamic linkage setting . to navigate easily among page views , between Applications ,

Database Name 309e5 indicates which server side data or within objects in a single page view of an Application .
base is currently selected . 35 Navigation objects include various types of launch strips ,

Table Name 309e6 indicates which table of the server side various intelligent and user - friendly text fields and scrolling
data base is currently selected . text boxes , powerful graphical complex lists , as well as

Field Name 309e7 , indicates which field form the selected Desktop - level business forms . In fact , every type of object
table of the server side data base is currently selected . can be used for navigation by assigning a navigation event

Channel Name 309e8 indicates a list of all the RSS feeds 40 to it . The authoring tool offers a list of navigation object
currently supported by the Feed Collector . This may be templates , which then can be modified in numerous ways .
replaced by “ Record ID ” if a data base other than the Feed Launch Strips and Graphical List Templates Launch Strips
Collector 1010 is selected . Launch strips may be designed by the user of authoring
Channel Feed 309e9 indicates the particular RSS feed for platform 110 with almost no restrictions . They can be

the selected RSS Channel . Feed Collector 1010 may main - 45 stationary or appear on command from any edge of the
tain multiple feeds for each RSS channel . device , their size , style , audio feedback , and animations can

Operation 309e10 , as a default operation , replaces the be freely defined to create highly compelling experiences .
default attribute value with the real time value . In other FIG . 5 shows a display 500 of launch strips which may be
embodiments this operation could be append , add , subtract , on displayed canvas 305 or on screen 137 of device 130
multiply or divide . 50 having the proper Player and Application . Display 501

Select Link 309e11 a button that , when pressed , creates includes a portal - type Launch Strip 501 and a channel - type
the dynamic binding . Touching the “ Select Link " will cause Launch Strip 502 , either one of which may be included for
the current data base selections to begin the blink is some navigating the Application .
manner , and the “ Select Link ” will change to “ Create Link ” . Launch Strip 501 includes UI objects 501a , 501b , 501c ,
The user could still change the data base and attribute 55 501d , and 50le that that becomes visible from the left edge
choices . Touching the “ Create Link ” will set the “ Link Set ” of the display , when requested . UI objects 501a , 501b , 501c ,
checkbox and the “ Create Link ” will be replaced by “ Delete 501d , and 501e are each associated , through resource
Link ” if the user wishes to subsequently remove the link . inspector 309 with navigational instructions , including but
When the application is saved , the current active links are not limited to navigating to a different Applications Page , or
used to create the SPDL . 60 requesting web content . When the Applications Page , having

Link Set checkbox 309e12 indicates that a link is cur - been saved by authoring platform 110 and transferred to
rently active . display 130 , is executed on device 130 , a user of the device

An example of the design of a display is shown in FIGS . may easily navigate the Application .
4A and 4B according the system 100 , where FIG . 4A shows Launch Strip 502 includes UI objects 502b , 502c , 502d ,
publisher interface 300 having a layout 410 on canvas 305 , 65 and 503e that that becomes visible from the bottom of the
and FIG . 4B shows a device 130 having the resulting layout display , when requested . UI objects 501a , 501b , 501c , 501d ,
420 on screen 137 . Thus , for example , authoring platform and 501e are each associated , through resource inspector

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 516 of 548

US 9 , 928 , 044 B2
25 26

309 with navigational instructions , including but not limited phone or one that is on the desktop but dynamically linked
to navigating to a different Applications Page , or requesting to the user ' s other internet connected devices .
web content . Launch Strip 502 also includes UI objects 502a To support many personalization functions there must be
and 503g , which include the graphic of arrows , and which a convenient method for maintaining , both within a user ' s
provide access to additional navigation objects (not shown) 5 session , and between sessions , memory about various user
when selected by a user of device 130 . Launch strip 502 may choices and events . Both utilizing a persistent storage
also include sound effects for each channel when being mechanism on the device , or a database for user profiles on
selected , as well as popup bubble help . a server , may be employed .

Additional navigational features are illustrated in FIG . 6A FIG . 7 shows a display 700 of a mash - up which may be

as a display of a Channel Selection List 601a , in FIG . 6B as 10 on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application . Display 700 a display of a Widget Selection List 601b , and in FIG . 6C as includes several object 701 that have been dynamically display of a Phone List 601c . Lists 601a , 6016 , and 6010 bound , including an indication of time 701a , an indication of may be displayed on canvas 305 or on screen 137 of device unread text messages 701b , an RSS news feed 701c (includ 130 having the proper Player and Application . As illustrated , lustrated , 15 ing 2 “ ESPN Top Stories ” 701c1 and 70102) , components

graphical lists 601a , 601b , and 601c may contain items with 701d from two Web Services a weather report (“ The many possible text and image elements . Each element can be Weather Channel ”) , and a traffic report 701e defined at authoring time and / or populated dynamically noring time and / or populated aynamically (“ TRAFFIC . COM ”) .
through one or more Web Service 250 or API . Assignable In assembling the information of display 700 , device 130
Navigation Events . All objects , and / or all elements within an 20 is aware of the time and location of the device in this
object , can be assigned navigation events that can be example the display is for a workday when a user wakes .
extended to registered web services or APIs . For example , a Device 130 has been customized so that on a work day
Rolodex - type of navigation event can dynamically set the morning the user wishes to receive the displayed informa
starting slide of the targeted page view (or the starting view tion . Thus in the morning , any messages received overnight
of a targeted Application) . 25 would be flagged , the user ' s favorite RSS sports feeds would

In the embodiment of FIGS . 6A , 6B , and 6C , each list be visible , today ' s weather forecast would be available , and
601a , 601b , and 601c has several individual entries that are the current traffic conditions between the user ' s home and
each linked to specific actions . Thus Channel Selection List office would be graphically depicted . User personalization
601a shows three objects , each dynamically linked to a web settings may be maintained as persistent storage on device
service (ESPN , SF 49ers , and Netflix) each providing a link 30 130 when appropriate , or in a user profile which is main
to purchase or obtain items from the Internet . Widget t ained and updated in real - time in a server - side data base .
Selection List 601b includes several objects presenting Push Capable Systems
different widgets for selecting . Phone List 601c includes a In another embodiment system 100 or 200 is a push
list phone number objects of names that , when selected by capable system . As an example , of such systems , short codes
a user of device 130 cause the number to be dialed Entries 35 may be applied to cereal boxes and beverage containers , and
in Phone List 601c may be generated automatically from SMS text fields can be applied to promotional websites . In
either the user ' s contact list that is resident on the device , or either case , a user of device 130 can text the short code or
though a dynamic link to any of user ' s chosen server - side text field to an SMS server , which then serves the appro
facilities such as Microsoft Outlook , Google Mail , etc . In priate Application link back to device 130 .
one embodiment , Phone List 601c may be generated auto - 40 FIG . 8 is a schematic of an embodiment of a push enabled
matically using a web component assigned to the Applica - system 800 . System 800 is generally similar to system 100
tion , which would automatically perform those functions . or 200 . Device 130 is shown as part of a schematic of a push

In another embodiment , authoring platform 110 allows a capable system 800 in FIG . 8 . System 800 includes a website
navigation selection of objects with a Joy Stick and / or system 801 hosting a website 801 , a server 803 and a content
Cursor Keys in all 4 directions . When within a complex 45 server 805 . System 801 is connected to servers 803 and / or
object the navigation system automatically adopts to the 805 through the Internet . Server 803 is generally similar to
navigation needs for that object . For coordinate sensitive server 120 , servers 805 is generally similar to server 140 .
objects such as geographical information services (GIS) and In one embodiment , a user sets up a weekly SMS update
location - based services (LBS) or virtual tours a soft cursor from website system 801 . System 801 provides user infor
appears . For Lists , scrolling text areas and chats , Launch 50 mation to server 803 , which is an SMS server , when an
strips , and slide shows the navigation process permits intui - update is ready for delivery . Server 803 provides device 130
tive selection of elements within the object . Scroll bars and with an SMS indication that the subscribed information is
elevators are optionally available for feedback . If the device available and queries the user to see if they wish to receive
has a pointing mechanism then scroll bars are active and the update . Website 801 also provides content server 805
simulate the desktop experience . 55 with the content of the update . When a user of device 130
Personalization and Temporal Adoption responds to the SMS query , the response is provided to

System 100 and 200 permit for the personalization of content server 805 , which provides device 130 with updates
device 130 by a variety of means . Specifically , what is including the subscribed content .
displayed on screen 137 may depend on either adoption or In an alternative embodiment of system 800 , server 803
customization . Adoption refers to the selection of choices , 60 broadcasts alerts to one or more devices 130 , such as a
navigation options , etc . are based on user usage patterns . logical group of devices . The user is notified in real - time of
Temporal adoption permits the skins , choices , layouts , con - the pending alert , and can view and interact with the
tent . widgets , etc . to be further influenced by location (for massage without interrupting the current Application .
example home , work or traveling) and time of day (includ - FIG . 9 is a schematic of an alternative embodiment of a
ing season and day of week) . Customization refers to user 65 push enabled system 900 . System 900 is generally similar to
selectable skins , choices , layouts , dynamic content , widgets , system 100 , 200 , or 800 . In system 900 a user requests
etc . that are available either through a customization on the information using an SMS code , which is delivered to device

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 517 of 548

US 9 , 928 , 044 B2
28

130 . System 900 includes a promotional code 901 , a third - Based Field Extraction 1019 , Rule - based Field Extraction
party server 903 , and content server 805 . Server 803 is 1020 , Channel Data Controller 1021 , and Database 1022 .
connected to servers 803 and / or 805 through the Internet , The feed collector is primarily driven by two sets of
and is generally similar to server 120 . parameters : one is the database schema (written as SQL

A promotional code 901 is provided to a user of device 5 DDL) which defines the tables in the database , as well as
130 , for example and without limitation , on print media , parameters for each of the feeds to be examined . The other
such as on a cereal box . The use of device 130 sends the code is the feed collection rules , written in XML , which can be
server 903 . Server 903 then notifies server 805 to provide used to customize the information that is extracted from the
certain information to device 130 . Server 805 then provides feeds . Each of the feeds is collected at intervals specified by
device 130 with the requested information . the feed parameter set in the SQL DDL .
Device Routines Feed collector 1010 accepts information from ATOM ,

Device routines 114 may include , but are not limited to : RDF or RSS feed sources 1001 . Using a rules - based popu
an authoring tool SDK for custom code development includ - lator , any of these feeds can be logically parsed , with any
ing full set of Java APIs to make it easy to add extensions 15 type of data extraction methodology , either by using sup
and functionality to mobile Applications and tie Applica - plied rules , or by the author defining their own custom
tions to back - end databases through the content server 140 ; extraction rule . The rules are used by the parser to parse
an expanding set of web services 250 available through the from the feed sources , and the custom rule base field
authoring tool SDK ; a web services interface to SOAP / XML extraction replaces the default rules and assembles the
enabled web services ; and an RSS / Atom and RDF feed 20 parsed information into the database
collector 1010 and content gateway 1130 . In particular , Atom Populator Rule 1012 , RSS Populator
Authoring Tool SDK for Custom Code Development Includ - Rule 1013 , RDF Populator Rule 1014 , Custom Populator
ing Full Set of Java APIs Rule 1016 , and DOM XML Parsers 1011 , 1015 , and 1017

In one embodiment , authoring platform 110 SDK is are parse information from the feeds 1001 , and Feed Pro
compatible for working with various integrated develop - 25 cessed Data Writer 1018 , Custom Rule Based Field Extrac
ment environments (IDE) and popular plug ins such as tion 1019 , Rule - based Field Extraction 1020 , and Channel
J2ME Polish . In one embodiment the SDK would be another Data Controller 1021 , supply the content of the feeds in
plug in to these IDEs . A large and powerful set of APIs and Database 1022 , which is accessible through content server
interfaces are thus available through the SDK to permit the 140 .
seamless extension of any Application to back end business 30 FIG . 11 is a schematic of an embodiment of a system 1100
logic , web services , etc . These interfaces and APIs may also having a Mobile Content Gateway 1130 . System 1100 is
support listeners and player - side object operations . generally similar to system 100 , 200 , 800 , 900 , or 1000 .

There is a large set of listeners that expose both player System 1100 includes an SDK 1131 , feed collector 1010 ,
side events and dynamically linked server side data base database listener 1133 , transaction server 1134 , custom code
events . Some examples of player side events are : player - side 35 1135 generated from the SDK , Java APIs , Web Services
time based event , a page entry event , player - side user 1137 , and PDL snippets compacted objects 1139 . System
interactions and player - side object status . Examples of 1100 accepts input from Back End Java Code Developer
server - side data base events are when a particular set of 1120 and SOAP XML from Web Services 1110 , and pro
linked data base field values change , or some filed value vides dynamic content to server 140 and Players to devices
exceeds a certain limit , etc . 40 130 .

A superset of all authoring tool functionality is available In one embodiment authoring platform 110 produces a
through APIs for layer - side object operations . These include , Server - side PDL (SPDL) at authoring time . The SPDL
but are not limited to : page view level APIs for inserting , resides in server 120 and provides a logical link between the
replacing , and or modifying any page object ; Object Level Application ' s UI attributes and dynamic content in database
APIs for modifying any attribute of existing objects , adding 45 1022 . When a user of device 130 requests dynamic infor
definitions to attributes , and adding , hiding or replacing any mation , server 120 uses the SPDL to determine the link
object . required to access the requested content .
Authoring Tool SDK Available Web Services In another embodiment Web Services 1137 interface

The APIs permit , without limit , respond , with or without directly with 3rd party Web Services 1110 , using SOAP ,
relying on back - end business logic , that is , logic that what an 50 REST , JAVA , JavaScript , or any other interface for dynami
enterprise has developed for their business , to any player cally updating the attributes of the Application ' s UI objects .
side event or server - side dynamically linked data - base , XSP Web Pages as a Web Service
incorporating any open 3rd party web service (s) into the In one embodiment , a PDL for a page is embedded within
response . an HTML shell , forming one XSP page . The process of
RSS / ATOM and RDF Feed Conversion Web Service 55 forming XSP includes compressing the description of the

FIG . 10 is a schematic of one embodiment a system 1000 page and then embedding the page within an HTML shell .
having a feed collector 1010 . System 1000 is generally In another embodiment , a PDL , which contains many
similar to system 100 , 200 , 800 , or 900 . Feed collector 1010 individual page definitions , is split into separate library
is a server side component of system 100 that collects RSS , objects on the server , so that each page can to presented as
ATOM and RDF format feeds from various sources 1001 60 a PDL as part of a Web Service .
and aggregates them into a database 1022 for use by the Prior to compression the code has already been trans
Applications built using authoring platform 110 . formed so that there are no dependencies on the original

Feed collector 1010 is a standard XML DOM data extrac programming language (Java) , and The code and data have
tion process , and includes Atom Populator Rule 1012 , RSS been reduced by 4 to 10 times .
Populator Rule 1013 , RDF Populator Rule 1014 , and Cus - 65 Compression has two distinct phases . The first takes
tom Populator Rule 1016 , DOM XML Parsers 1011 , 1015 , advantage of how the primitive representations had been
and 1017 , Feed Processed Data Writer 1018 , Custom Rule assembled , while the second utilizes standard LZ encoding .

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 518 of 548

29
US 9 , 928 , 044 B2

30
The final result is an overall reduction of 40 to 100 times process) , and concludes with the actual uploading of all the

the original size as represented by Java serialized objects . necessary web site run time files to the user ' s server .
One embodiment for compacting data that may be used is . In one embodiment , the PDL includes a first record , a

described in Rempell . In that patent the compressed data is “ Header ” record , which contains can include the following
described as being a database . The terminology used here is 5 information :
a PDL , that is the “ internal database ” of Rempell is equiva - 1 : A file format version number , used for upgrading
lent to the PDL of the present Application . database in future releases .

In Rempell , a process for compacting a “ database ” (that 2 : The default screen resolution , in virtual pixels , for both
is , generating a compact PDL) is described , wherein data the screen width and height . This is usually set to the web
objects , including but not limited to , multi media objects 10 designer ' s screen resolution , unless overwritten by the user .
such as colors , fonts , images , sound clips , URLs , threads , 3 : Whether the Application is a web site .
and video , including multi level animation , transformation , 4 : Virtual web page size settings . A calculation is per
and time line are compacted . As an extension to Rempell in f ormed by the build engine method , in order to calculate
all cases these objects are reduced and transformed to what the maximum web page length is , after reformatting all
Boolean , integer and string arrays . 15 paragraphs on all internal web pages , based on the default

The compression technique involves storing data in the screen resolution .
smallest arrays necessary to compactly store web page 5 : Web page and styles high watermarks .
information . The technique also includes an advanced form 6 : The Websitename .
of delta compression that reduces integers so that they can As new web pages or new objects are created by the user ,
be stored in a single byte , a as high water marks . 20 or as text is added to or deleted from a paragraph , or as new

Thus , for example , the high water mark for different types styles are created or deleted , appropriate high watermarks
of data comprising specific web site settings are stored in a are set , in order to show the current number of each of these
header record as Boolean and integer variables and URL and entities . Thus , the values for the number of active web pages
color objects . Data that defines web page , paragraph , text and the number of text button , image , paragraph or other
button , and image style and text button , image and para - 25 styles are written as high watermarks in the header . The high
graph high watermark settings can be stored in one - dimen - watermarks for the number of text button , image , paragraph
sional arrays as Boolean , integer and string variables and or other objects that exist for each web page , the number of
URL , font , image or thread objects at . The URL , color , font , lines for each paragraph object , and the number of line
image and thread objects can also be created as required segments for each paragraph line are written within the body

Data that defines text button , image , paragraph , or other 30 of the PDL , and used as settings for each of the loops in the
parent objects and paragraph line high watermark settings four - dimensional data structure . Because no structural limits
can be stored in two - dimensional arrays (by web page and are set on the number of web pages , objects per web page ,
by object number) as Boolean , integer , string , floating point styles , or paragraph size , these high watermarks greatly
variables and URLs . Again , the URL , color , font , image , reduce the external database file size , and the time it takes
audio clip , video clip , text area and thread objects can also 35 for the run time engine to process the data stored in its
be created as required . Data that defines a paragraph line and database .
paragraph line segment high watermarks can be stored in The settings for all paragraph , text button and image
three - dimensional arrays (by web page , by paragraph num - styles are then written as a style record based on their high
ber , and by line number) as Boolean , integer or string watermark . This data includes Boolean and integer vari
variables . Again , the URL , color or font objects can be 40 ables , and font and color objects , written as a one - dimen
created as required . Data that defines a paragraph line sional array , based on the high watermark values for the
segment can be stored into four - dimensional arrays (by web number of styles that exist .
page , by paragraph number , by line number and by line The body of the PDL is then written . All Boolean values
number segment) as Boolean , integer or string variables or are written inside a four - dimensional loop . The outside loop
URL , color and font objects . 45 contains the Boolean values used to define web pages (i . e . a

As a data field is added , changed or deleted , a determi - one - dimensional array definition) as well as the high water
nation is made at on whether a value for a given high marks for the number of text button , image , paragraph or
watermark needs to be changed . If so , it is updated . As a other objects per web page , with the loop set at the high
specific method in the build engine is called , a determination watermark which defines the number of existing web pages
is made on whether a feature flag needs to be set . For 50 for this web site structure . The second level consists of three
example , if a particular JAVA method is called , which or more two dimensional loops with the loops set to the high
requires an instance of a certain JAVA Class to be executed watermarks defining the actual number of text button ,
by the run time engine , then that JAVA Class is flagged , as image , and paragraph or other objects that appear on any
well as any supporting methods , variables and / or object given web page and contains the values used to define web
definitions . 55 page objects (i . e . a two - dimensional array definition ; web

In one implementation , the header record , the style record , page number by object number) . Included within the loop
the web page record , and the object records , are carefully for paragraph objects are the high watermarks for the
defined in a specific order , written in that order , and explic number of lines for each paragraph object . The third loop is
itly cast by object type when read by the run time engine . set by the high watermark defining the actual number of
Exception handling can be implemented to recover from any 60 paragraph lines that for all paragraphs on any web page and
errors . This helps assure that data integrity is maintained contains the values used to define paragraph lines (i . e . a
throughout the build and run time processes . three - dimensional array definition ; web page number by

Also described in Rempell is the “ run generation pro object number by paragraph line .) Included within the loop
cess . ” This is equivalent generating a Player in the present for paragraph lines are the high watermarks for the number
application . This process starts when the build process 65 of line segments for each paragraph line . The inner most
detects that the user is finished defining the web site (user loop is set by the high watermarks defining the number of
has saved the web site and invokes the run generation line segments per paragraph line and contains the values

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 519 of 548

US 9 , 928 , 044 B2
31 32

used to define paragraph line segments (i . e . a four - dimen - resolution settings are placed in an appropriate HTML
sional array definition ; web page number by object number compliant string . If the Application is a banner or other
by paragraph line by paragraph line segment) . customized Application , the absolute values for the run time

All integer values are written inside a four - dimensional object (applet size) height and width are placed in an
loop . Their four loops are controlled by the same high 5 appropriate HTML compliant string as absolute width and
watermark settings as used for the Boolean records , and they height values .
describe the same logical entities . An analysis is made for the background definition for the

Multimedia objects are written inside a two - dimensional first internal web page . If a background pattern is defined , an
loop . They include URL , color , and font objects , and can appropriate HTML compliant string for setting the HTML
include other types of objects . A URL object is the encoded 10 “ background " to the same background image is generated . If
form of a URL Address , used by a web browser or a JAVA the first web page definition is a color instead , then the RGB
method to access files and web addresses . All multimedia values from those colors are converted to hexadecimal and
objects must be serialized before they can be written . This an appropriate HTML compliant String is generated setting
means that the objects are converted into a common external the “ bgcolor ” to the required hexadecimal value . This pro
definition format that can be understood by the appropriate 15 cess synchronizes the web page background with the back
deserialization technique when they are read back in and ground that will be drawn by the web browser when it first
cast into their original object structure . The outside loop interprets the HSF .
contains web page related objects , and the inner loop con Thereafter , a JAVA method generates HTML and
tains image , text button , paragraph , etc . related URL , color , JavaScript compliant strings , that when executed by a web
and font objects . The outer loop is defined by the web page 20 browser , generate additional sets of HTML and JavaScript
high watermark and the inner loops by the high watermarks compliant strings that are again executed by the web
for the actual number of text button , image , paragraph or browser . More specifically , if the Application required
other objects on a web page . dynamic web page and object resizing then JavaScript and

String records are written inside a four - dimensional loop . HTML compliant strings are generated so that , when inter
The outer loop may be empty . The second loop can include 25 preted by the web browser at the time the HTML Shell File
the string values for text button objects , audio and video is initialized , the screen resolution sensing JAVA applet
filenames , and audio and video channel names . The third (SRS) will be executed . JavaScript code is generated in
loop contains values for paragraph line related data , and the order to enable JavaScript to SRS applet communication . In
innermost loop contains the values for paragraph line seg - one implementation , the code is generated by performing the
ment definitions . The string records are controlled by the 30 following functions :
same high watermarks as those used for Boolean and integer 1 : Determine the current web browser type .
records . String records are stored utilizing an appropriate 2 : Load the SRS from either a JAR or CAB File , based on
field delimiter technology . In one implementation , a UTF web browser type .
encoding technology that is supported by JAVA is utilized . 3 : Enter a timing loop , interrogating when the SRS is

Single and double floating - point , and long integer records 35 loaded .
are written inside a two - dimensional loop . The outer loop 4 : When the SRS returns an “ available ” status , interrogate
may be empty . The inner loop contains mathematical values the SRS , which will return the current screen and
required for certain animations and image processing algo window ' s actual height and width .
rithms . The single and double floating - point , and long 5 : Convert the virtual screen resolution settings into
integer records are controlled by the same high watermarks 40 appropriate absolute screen width and height values .
as those used for Boolean and integer records . Strings defining additional JavaScript code are generated

In one embodiment , a versionizing program analyzes the that perform the following steps at the time the HSF is
feature flags , and only those variable definitions , defined in initialized by the web browser :
the “ Main ” object class , relating to the object classes and 1 : Generate HTML compliant strings that set the run time
methods that will be executed at run time , are extracted . All 45 engine ' s applet size to the appropriate values .
references to object classes that will be called at run time are 2 : Generate an HTML complaint string that contains a
extracted , creating the source code for the run engine " param ” definition for linking the run time engine to
" Main " object class that is ready for compilation . the PDL .

All external image , video and audio files are resolved . The 3 : Generate an HTML complaint string , dependent upon
external references can be copied to designated directories , 50 the type of web browser , which causes the current web
either on the user ' s local disk or file server . The file browser to load either the JAR or the CAB File (s) .
Pathnames can be changed to reflect these new locations . 4 : Generate JavaScript Code compliant strings that create
During the installation of the build tools , the necessary class and dynamically write the applet size defining HTML
libraries are either installed on the local system or made strings utilizing the JavaScript " document . write ” func
available on the server where the build tools can be option - 55 tion . This dynamically created code causes the web
ally located . The necessary environmental variables are set browser to execute the run time engine , in the correctly
to permit normal access to the required class libraries . sized window , from the correct JAR or CAB file , and

The customized run engine and a library of the referenced linked to the external database .
run time classes are compiled and converted into byte code . The writing out the above - generated HTML and
Finally , the run time engine for the web site is created . The 60 JavaScript compliant strings creates the HSF . The necessary
required set of class objects required at run time is flagged security policy permissions are asserted , and a “ Website
for inclusion into the CAB / JAR file . name ” . html file is created .
Next , an HTML Shell File (HSF) is constructed . The first In one embodiment , the processes for creating the CAB

step of this process is to determine whether the dynamic web and JAR Files is as follows . The image objects , if any , which
page and object resizing is desired by testing the Application 65 were defined on the first internal web page are analyzed . If
setting . If the Application was a web page , and thus requir - they are set to draw immediately upon the loading of the first
ing dynamic web page and object resizing , virtual screen web page , then they are flagged for compression and inclu

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 520 of 548

US 9 , 928 , 044 B2
33 34

sion in the CAB and JAR Files . The feature flags are In one embodiment , the Response Director operates on a
analyzed to determine which JAVA classes have been com - network connected computer to provide the correct Player to
piled . These class files are flagged for compression and a given device based on the information the device sent to
inclusion in the library CAB and JAR Files . Strings that are it . As an example , this may occur when a device user enters
BAT compliant definitions are created that will , when 5 their phone number into some call - to - action web page . The
executed in DOS , create compressed CAB and JAR Files . response director is called and sends an SMS message to the
These CAB and JAR Files contain the compressed versions device , which responds , beginning the recognition process .
of all necessary JAVA class files , image files , the “ Website FIG . 12 illustrates one embodiment of a system 1200 that
name ” . class , customized run time engine file , and the “ Web includes a response director 210 , a user agent database 1201 ,
sitename ” . dta database file . In one implementation of the 10 an IP address database 1203 , and a file database 1205 .

System 1200 is generally similar to system 100 , 200 , 800 , invention , two BAT files are created . The first , when 900 , 1000 , or 1100 . executed , will create a CAB / JAR file with the “ Website Databases 1201 , 1203 , and 1205 may reside on server name ” . dta database file and the customized " main " run time 120 , 210 , or any computer system in communication with engine , excluding all the image and button object animation , 1 ; 15 response director 210 . System 1200 , any mobile device can transformation , and image processing code . The second be serviced , and the most appropriate Application for the
BAT file , when executed , will create a CAB / JAR file with all device will be delivered to the device , based on the char the library of all the referenced image and button object ll the reverenced image and button object acteristics of the device .
animation , transformation , and image processing code . User agent database 1201 includes user agent information

The necessary security policy permissions for file creation 20 regarding individual devices 130 that are used to identify the
are then asserted , and “ Websitename ” . bat and “ Website operating system on the device . IP address database 1203
namelib ” . bat files are written . The “ Websitename ” . bat and identifies the carrier / operator of each device 130 . File data
“ Websitename ” . bat files are then executed under DOS , base 1205 includes data files that may operate on each
creating compressed “ Websitename ” . cab and “ Website - device 130 .
namelib ” . cab files and compressed “ Websitename ” jar and 25 The following is an illustrative example of the operation
“ Websitenamelib ” jar files . The HTML Shell File and the of response director 210 . First , a device 1300 generates an
JAR and CAB files are then , either as an automatic process , SMS message , which automatically sends an http : / / stream
or manually , uploaded to the user ' s web site . This completes that includes handset information and its phone number to
the production of an XSP page that may be accessed through response director 210 . Response director 210 then looks at
a web browser . 30 a field in the http header (which includes the user agent and
Displaying Content on a Device IP address) that identifies the web browser (i . e . , the “ User
Decompression Management Agent ”) . The User Agent prompts a database lookup in user

Authoring platform 110 uses compaction to transform the agent database 1201 which returns data including , but not
code and data in an intelligent way while preserving all of limited to , make , model , attributes , MIDP 1 . 0 MIDP 2 . 0 ,
the original classes , methods and attributes . This requires 35 WAP and distinguishes the same models from different
both an intelligent server engine and client (handset) Player , countries . A lookup of the IP address in IP address 1203
both of which fully understand what the data means and how identifies the carrier / operator .
it will be used . File database 1205 contains data types , which may

The compaction technology described above includes include as jadi , jad2 , html , wm1 / wap2 , or other data types ,
transformation algorithms that deconstruct the logic and data 40 appropriate for each device 130 . A list of available Appli
into their most primitive representations , and then reas - cations are returned to a decision tree , which then returns , to
sembles them in a way that can be optimally digested by device 130 , the Application that is appropriate for the
further compression processing . This reassembled set of respective device . For each file type , there is an attributes list
primitive representations defines the PDL of authoring plat (e . g . , streaming video , embedded video , streaming audio ,
form 110 . 45 etc .) to provide enough information to determine what to

Prior to compression the code has already been trans - send to the handset .
formed so that there are no dependencies on the original Response director 210 generates or updates an html or jad
programming language (Java) . The data is then compressed file populating this text file with the necessary device and
by first taking advantage of how the primitive representa - network dependent parameters , including the Application
tions had been assembled , and then by utilizing standard LZ 50 dependent parameters , and then generate , for example , a
encoding . The final result is an overall reduction of 40 to 100 CAB or JAD file which contains the necessary Player for
times the original size as represented by Java serialized that device . For example , the jad file could contain the
objects . operator or device type or extended device - specific func

The Player , when preparing a page view for execution , tions that the player would then become aware of
decompresses and then regenerate the original objects , but 55 If there is an Application that has a data type that device
this time in compliance with the programming APIs of 130 cannot support , for example , video , response director
device 130 . Specifically , device 130 operates on compacted 210 sends an alternative Application to the handset , for
image pages , one at a time . The cache manager retrieves , example one that has a slide show instead . If the device
decompresses , and reassembles the compacted page images cannot support a slide show , an Application might have text
into device objects , which are then interpreted by device 130 60 and images and display a message that indicates it does not
for display on screen 137 . support video .
Response Director Another powerful feature of response director 210 is its

In one embodiment , system 100 includes a Response exposed API from the decision tree that permits the over
Director , which determines a user ' s handset , fetches the riding of the default output of the decision tree by solution
correct Application from different databases , and delivers a 65 providers . These solution providers are often licensees who
respective highly compressed Application in a PDL format want to further refine the fulfillment of Applications and
over the air (OTA) . Players to specific devices beyond what the default algo

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 521 of 548

US 9 , 928 , 044 B2
35 36

rithms provide . Solution providers may be given a choice of scanned to determine if there is content that is likely to be
Applications and then can decide to use the defaults or force required in as - yet untouched page views . Anticipatory
other Applications . streaming also looks for mapping Applications , where the

Authoring platform 110 automatically scales Applications user may zoom or pan next so that map content is retrieved
at publishing time to various form factors to reduce the 5 prior to the user requesting it . For mapping applications ,
amount of fragmentation among devices , and the Response anticipatory streaming downloads a map whose size is
Director serves the appropriately scaled version to the greater than the map portal size on the device and centered
device . For example , a QVGA Application will automati - within the portal . Any pan operation will anticipatory stream
cally scale to the QCIF form factor . This is important a section of the map to extend the view in the direction of
because one of the most visible forms of fragmentation 10 the pan while , as a lower priority , bring down the next and
resides in the various form factors of wireless , and particu prior zoom levels for this new geography . Zooming will
larly mobile , devices , which range from 128x128 , 176x208 , always anticipatory stream the next zoom level up and
240x260 , 220x220 , and many other customized sizes in down .
between . Multi - level caching determines the handset ' s heap

FIG . 13 is a schematic of an embodiment of a system 15 through an API , and also looks at the record store to see how
1300 . System 1300 is generally similar to system 1200 . much memory is resident . This content is placed in record
System 1300 is an overview of the entire Player fulfillment store and / or the file system , and may , if there is available
process , starting with the generation of players during the heap , also place the content there as well . Multi - level
player build process . caching permits the management of memory such that

System 1300 includes response director 210 , a device 20 mobile systems best use limited memory resources . Multi
characteristics operator and local database 1301 , a player level caching is a memory management system with results
profile database 1303 and a player build process 1305 , which similar to embedding , without the overhead of instantiating
may be authoring platform 110 . the content . In other words , with multi - level caching , hand
As an example of system 1300 , when response director set users get an " embedded ” performance without the

210 receives an SMS message from device 130 , the response 25 embedded download . Note that when content is flagged as
director identifies the device characteristics operator and cacheable and is placed in persistent storage , a digital rights
locale from database 1301 and a Player URL from database management (DRM) solution will be used .
1303 and provides the appropriate Player to the device . One embodiment of each of the methods described herein

In another embodiment , Player P extend the power of is in the form of a computer program that executes on a
response director 210 by adapting the Application to the 30 processing system . Thus , as will be appreciated by those
resources and limitations of any particular device . Some of skilled in the art , embodiments of the present invention may
these areas of adaptation include the speed of the device ' s be embodied as a method , an apparatus such as a special
microprocessor , the presence of device resources such as purpose apparatus , an apparatus such as a data processing
cameras and touch screens . Another area of adaptation is system , or a carrier medium , e . g . , a computer program
directed to heap , record store and file system memory 35 product . The carrier medium carries one or more computer
constraints . In one embodiment , the Player will automati - readable code segments for controlling a processing system
cally throttle down an animation to the frame rate that the to implement a method . Accordingly , aspects of the present
device can handle so that the best possible user experience invention may take the form of a method , an entirely
is preserved . Other extensions include device specific facili - hardware embodiment , an entirely software embodiment or
ties such as location awareness , advanced touch screen 40 an embodiment combining software and hardware aspects .
interactions , push extensions , access to advanced phone Furthermore , the present invention may take the form of
facilities , and many others carrier medium (e . g . , a computer program product on a
Memory Management computer - readable storage medium) carrying computer

In one embodiment , Player P includes a logical page readable program code segments embodied in the medium .
virtual memory manager . This architecture requires no sup - 45 Any suitable computer readable medium may be used
porting hardware and works efficiently with constrained including a magnetic storage device such as a diskette or a
devices . All page view images , which could span multiple hard disk , or an optical storage device such as a CD - ROM .
Applications , are placed in a table as highly compacted and It will be understood that the steps of methods discussed
compressed code . A typical page view will range from 500 are performed in one embodiment by an appropriate pro
bytes up to about 1 , 500 bytes . (See , for example , the 50 cessor (or processors) of a processing (i . e . , computer) sys
Rempell patent) When rolled into the heap and instantiated tem executing instructions (code segments) stored in stor
this code increases to the more typical 50 , 000 up to 250 , 000 age . It will also be understood that the invention is not
bytes . Additional alert pages may also be rolled into the heap limited to any particular implementation or programming
and superimposed on the current page view . Any changes to technique and that the invention may be implemented using
any page currently downloaded are placed in a highly 55 any appropriate techniques for implementing the function
compact change vector for each page , and rolled out when ality described herein . The invention is not limited to any
the page is discarded . Note that whenever an Application is particular programming language or operating system . It
visited that had previously been placed in virtual memory should thus be appreciated that although the coding for
the Server is interrogated to see if a more current version is programming devices has not be discussed in detail , the
available , and , if so , downloads it . This means that Appli - 60 invention is not limited to a specific coding method . Fur
cation logic can be changed in real - time and the results thermore , the invention is not limited to any one type of
immediately available to mobile devices . network architecture and method of encapsulation , and thus

To operate efficiently with the bandwidth constraints of may be utilized in conjunction with one or a combination of
mobile devices , authoring platform 110 may also utilize other network architectures / protocols .
anticipatory streaming and multi - level caching . Anticipatory 65 Reference throughout this specification to " one embodi
streaming includes multiple asynchronous threads and I ment , " " an embodiment , " or " certain embodiments ” means
request queues . In this process , the current Application is that a particular feature , structure or characteristic described

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 522 of 548

US 9 , 928 , 044 B2
37 38

in connection with the embodiment is included in at least web service and an output of the web service , where
one embodiment of the present invention . Thus , appearances each defined UI object is either :
of the phrases in one embodiment , ” “ in an embodiment , ” or 1) selected by a user of the authoring tool ; or
" in certain embodiments ” in various places throughout this 2) automatically selected by the system as the pre
specification are not necessarily all referring to the same 5 ferred UI object corresponding to the symbolic
embodiment . Furthermore , the particular features , structures name of the web component selected by the user
or characteristics may be combined in any suitable manner , of the authoring tool ,
as would be apparent to one of ordinary skill in the art from access said computer memory to select the symbolic
this disclosure , in one or more embodiments . name corresponding to the web component of the

Throughout this specification , the term " comprising ” shall 10 defined UI object ,
be synonymous with “ including , " " containing , " or " charac associate the selected symbolic name with the defined
terized by , ” is inclusive or open - ended and does not exclude UI object , where the selected symbolic name is only
additional , unrecited elements or method steps . “ Compris available to UI objects that support the defined data
ing ” is a term of art which means that the named elements format associated with that symbolic name ,
are essential , but other elements may be added and still form 15 store information representative of said defined UI
a construct within the scope of the statement . “ Comprising ” object and related settings in a database ;
leaves open for the inclusion of unspecified ingredients even retrieve said information representative of said one or
in major amounts . more said UI object settings stored in said database ;

Similarly , it should be appreciated that in the above and
description of exemplary embodiments , various features of 20 build an application consisting of one or more web
the invention are sometimes grouped together in a single page views from at least a portion of said database
embodiment , figure , or description thereof for the purpose of utilizing at least one player , where said player uti
streamlining the disclosure and aiding in the understanding lizes information stored in said database to generate
of one or more of the various inventive aspects . This method for the display of at least a portion of said one or
of disclosure , however , is not to be interpreted as reflecting 25 more web pages ,
an intention that the claimed invention requires more fea wherein when the application and player are provided
tures than are expressly recited in each claim . Rather , as the to the device and executed on the device , and
following claims reflect , inventive aspects lie in less than all when the user of the device provides one or more input
features of a single foregoing disclosed embodiment , and the values associated with an input symbolic name to an
invention may include any of the different combinations 30 input of the defined UI object , the device provides
embodied herein . Thus , the following claims are hereby the user provided one or more input values and
expressly incorporated into this Mode (s) for Carrying Out corresponding input symbolic name to the web ser
the Invention , with each claim standing on its own as a vice , the web service utilizes the input symbolic
separate embodiment of this invention . name and the user provided one or more input values

Thus , while there has been described what is believed to 35 for generating one or more output values having an
be the preferred embodiments of the invention , those skilled associated output symbolic name ,
in the art will recognize that other and further modifications and the player receives the output symbolic name and
may be made thereto without departing from the spirit of the corresponding one or more output values and pro
invention , and it is intended to claim all such changes and vides instructions for the display of the device to
modifications as fall within the scope of the invention . For 40 present an output value in the defined UI object .
example , any formulas given above are merely representa 2 . The system of claim 1 , where said system stores
tive of procedures that may be used . Functionality may be information in a registry , and wherein the registry includes
added or deleted from the block diagrams and operations definitions of input and output related to said web service .
may be interchanged among functional blocks . Steps may be 3 . The system of claim 1 , where said web component is
added or deleted to methods described within the scope of 45 a text chat , a video chat , an image , a slideshow , a video , or
the present invention . an RSS feed .
We claim : 4 . The system of claim 1 , where said UI object is an input
1 . A system for generating code to provide content on a field for a chat .

display of a device , said system comprising : 5 . The system of claim 1 , where said UI object is an input
computer memory storing : 50 field for a web service .

a) symbolic names required for evoking one or more 6 . The system of claim 1 , where said UI object is an input
web components each related to a set of inputs and field usable to obtain said web component , where said input
outputs of a web service obtainable over a network , field includes a text field , a scrolling text box , a check box ,
where the symbolic names are character strings that a drop down - menu , a list menu , or a submit button .
do not contain either a persistent address or pointer 55 7 . The system of claim 1 , where said web component is
to an output value accessible to the web service , an output of a web service , is the text provided by one or
where each symbolic name has an associated data more simultaneous chat sessions , is the video of a video chat
format class type corresponding to a subclass of User session , is a video , an image , a slideshow , an RSS display ,
Interface (UI) objects that support the data format or an advertisement .
type of the symbolic name , and where each symbolic 60 8 . The system of claim 1 , where said authoring tool is
name has a preferred UI object , and further configured to :

b) an address of the web service ; define a phone field or list ; and
an authoring tool configured to : generate code that , when executed on the device , allows

define a UI object for presentation on the display , a user to supply a phone number to said phone field or
where said defined UI object corresponds to a web 65

component included in said computer memory 9 . The system of claim 1 , where said authoring tool is
selected from a group consisting of an input of the further configured to :

list .

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 523 of 548

list .

15

US 9 , 928 , 044 B2
39 40

define a SMS field or list ; and wherein , when the application and player are provided to
generate code that , when executed on the device , allows the device and executed on the device , and when the

a user to supply an SMS address to said SMS field or user of the device provides one or more input values
associated with an input symbolic name to an input of

10 . The system of claim 1 , the defined UI object , 1) the device provides the user
where said code includes three or more codes , where one provided one or more input values and corresponding

of said three or more codes is device specific , and input symbolic name to the web service , 2) the web
where two of said three or more codes is device service utilizes the input symbolic name and the user
independent . provided one or more input values for generating one or

11 . The system of claim 1 , where said code is provided 10 more output values having an associated output sym
over said network . bolic name , and 3) the player receives the output

12 . The system of claim 1 , wherein said defined UI object symbolic name and corresponding one or more output
corresponds to a widget . values and provides instructions for the display of the

13 . The system of claim 1 , where said player is activated device to present an output value in the defined UI
and runs in a web browser . object .

14 . The system of claim 1 , where said player is a native 16 . The method of claim 15 , where said method stores
program . information in a registry , and wherein the registry includes

15 . A method of displaying content on a display of a definitions of input and / or output related to said web service .
device having a player and non - volatile computer memory 17 . The method of claim 15 , where said web component
storing symbolic names required for evoking one or more 2015 20 is a text chat , a video chat , an image , a slideshow , a video ,
web components each related to a set of inputs and outputs or an RSS feed .
of a web service obtainable over a network , where the 18 . The method of claim 15 , where said UI object is an
symbolic names are character strings that do not contain input field for a chat .
either a persistent address or pointer to an output value 19 . The method of claim 15 , where said UI object is an
accessible to the web service , where each symbolic name 25 " name 25 input field for a web service .

20 . The method of claim 15 , where said UI object is an has an associated data format class type corresponding to a input field usable to obtain said web component , where said subclass of User Interface (UI) objects that support the data
format type of the symbolic name , and where each symbolic input field includes a text field , a scrolling text box , a check
name has a preferred UI object , and an address of the web box , a drop down - menu , a list menu , or a submit button .

30 . service , said method comprising : 21 . The method of claim 15 , where said web component
defining a UI object for presentation on the display , where is an output of a web service , is the text provided by one or

said UI object corresponds to a web component more simultaneous chat sessions , is the video of a video chat
included in the computer memory , where said web session , is a video , an image , a slideshow , an RSS display ,
component is selected from a group consisting of an or an advertisement .
input of a web service and an output of the web service , 35 35 22 . The method of claim 15 , further comprising :
where each defined UI object is either : 1) selected by a defining a phone field or list ; and

user of the authoring tool ; or 2) automatically selected generating code that , when executed on the device , allows
by the system as the preferred UI object corresponding a user to supply a phone number to said phone field or
to a symbolic name of the web component selected by
the user of the authoring tool ; 40 23 . The method of claim 15 , further comprising :

defining a SMS field or list ; and selecting the symbolic name corresponding to the web
component of the defined UI object ; generating code that , when executed on the device , allows

associating the selected symbolic name with the defined a user to supply an SMS address to said SMS field or
UI object , where the selected symbolic name is only list .
available to UI objects that support the defined data 45 45 24 . The method of claim 15 , and such that said player
format associated with that symbolic name ; interprets dynamically received , device independent values

storing information representative of said defined UI of the web component defined in the application .
25 . The method of claim 15 , further comprising : object and related settings in a database ;

retrieving said information representative of said one or providing said application and player over said network .
more said UI object settings stored in said database ; 50 e 50 26 . The method of claim 15 , wherein said UI object
and corresponds to a widget .

building an application consisting of one or more web 27 . The method of claim 15 , where said player is activated
page views from at least a portion of said database and runs in a web browser .
utilizing the player , where said player utilizes informa 28 . The method of claim 15 , where said player is a native
tion stored in said database to generate for the display 55 program .
of at least a portion of said one or more web pages , * * * * *

list .
40

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 524 of 548

EXHIBIT F

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 525 of 548

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

EXPRESS MOBILE, INC.,

Plaintiff,

v.

CODE AND THEORY LLC,

Defendant.

EXPRESS MOBILE, INC.,

Plaintiff,

v.

PANTHEON SYSTEMS INC.,
Defendant.

Case No. 18-cv-04679-RS

Case No. 18-cv-04688-RS

ORDER DENYING MOTIONS TO
DISMISS

I. INTRODUCTION

 These are two in a number of related patent cases involving allegations that the various

defendants infringe U.S. Patent Nos. 6,546,397 (the ’397 patent) and 7,594,168 (the ’168 patent),

which share a specification. Certain terms of the patents have been the subject of claim

construction by this court in X.Commerce, Inc. v. Express Mobile, Inc., Case No. 17-cv-02605-RS,

a declaratory relief action where the patent holder, plaintiff Express Mobile in these cases, appears

as the defendant. Claim construction has also taken place in at least one other district in other

litigation brought by Express Mobile on the patents.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 526 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183
https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330211

CASE NO. 18-cv-04679-RS

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

 Defendants in these two actions move to dismiss contending the patent claims are drawn

only to abstract ideas, ineligible for protection under Section 101 of the Patent Act, as elucidated

in Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347 (2014) and its progeny. Because the

patents purport to describe a novel technological approach to creating websites on the internet,

defendants’ characterization of the patents as claiming only an abstract idea fails, and the motions

to dismiss must be denied.

II. BACKGROUND

 As described in the patents’ shared specification and explained in the briefing, Express

Mobile contends the patents “bring together a number of disparate ideas and concepts, to create a

new paradigm for creating, storing, and building web pages.” According to Express Mobile, prior

to the invention of the patents, web pages were created, stored and rendered in a fundamentally

different manner. Individual web pages were typically created by either programming directly in

HTML or JavaScript code, or by using a visual editor that output HTML formatted files. These

approaches allegedly were cumbersome and inflexible, in various respects.

The inventive methodology purportedly described in the patents involves building a web

page by defining it as a set of user-selected “objects” and/or “settings.” The result is not a markup

language code file for the web page, but instead a collection of user selected objects and object

attributes. These can be saved in a database, for ease of access and efficient storage. Express

Mobile explains that because complete code files for each page do not need to be stored, the page

structure—the full HTML code itself—is created on the fly each time the page is loaded in a

user’s Web browser. This is achieved in part through a browser-appropriate “run time engine” and

related files.

Defendants contend claim 1 of the ’397 patent is representative of both patents for

purposes of Alice analysis.1 It provides:

1 Express Mobile asserts claim 1 is not representative, and discusses at least one other claim
(Claim 1 of the ’168) patent, but it has not shown the result would be any different for any of the

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 527 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183

CASE NO. 18-cv-04679-RS

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

A method to allow users to produce Internet websites on and for
computers having a browser and a virtual machine capable of
generating displays, said method comprising:

(a) presenting a viewable menu having a user selectable panel of
settings describing elements on a website, said panel of setting being
presented through a browser on a computer adapted to accept one or
more of said selectable settings in said panel as inputs therefrom,
and where at least one of said user selectable settings in said panel
corresponds to commands in said virtual machine;

(b) generating a display in accordance with one or more user
selected settings substantially contemporaneously with the selection
thereof;

(c) storing information representative of said one or more user
selected settings in a database;

(d) generating a website at least in part by retrieving said
information representative of said one or more user selected settings
stored in said database; and

(e) building one or more webpages to generate said website from at
least a portion of said database and at least one run time file, where
said at least one run time file utilizes information stored in said
database to generate virtual machine commands for the display of at
least a portion of said one or more web pages.

III. DISCUSSION

 As explained in Alice, the Supreme Court has “interpreted § 101 and its predecessors ... for

more than 150 years” to “‘contain[] an important implicit exception: Laws of nature, natural

phenomena, and abstract ideas are not patentable.’ ” The Alice court applied a two-step framework

for determining patent eligibility, previously articulated in Mayo Collaborative Servs. v.

Prometheus Labs., Inc., 132 S.Ct. 1289 (2012):

First, we determine whether the claims at issue are directed to one of
those patent-ineligible concepts. If so, we then ask, “[w]hat else is

other asserted claims.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 528 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183

CASE NO. 18-cv-04679-RS

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

there in the claims before us?” To answer that question, we consider
the elements of each claim both individually and “as an ordered
combination” to determine whether the additional elements
“transform the nature of the claim” into a patent-eligible application.
We have described step two of this analysis as a search for an
“inventive concept”—i.e., an element or combination of elements
that is sufficient to ensure that the patent in practice amounts to
significantly more than a patent upon the [ineligible concept] itself.

Alice, 134 S.Ct. at 2355.

 Alice also explained, “The ‘abstract ideas’ category embodies “the longstanding rule that

‘[a]n idea of itself is not patentable.’ ” Id. at 2355; see also Le Roy v. Tatham, 14 How. 156, 175,

14 L.Ed. 367 (1853). (“A principle, in the abstract, is a fundamental truth; an original cause; a

motive; these cannot be patented, as no one can claim in either of them an exclusive right”).

 Alice repeated the caution given in Mayo, however, that the exclusion for “abstract ideas”

must not be applied too broadly, “we tread carefully in construing this exclusionary principle lest

it swallow all of patent law.” 134 S.Ct. at 2354 (citing Mayo, 132 S.Ct. at 1293–1294.) At some

level, “all inventions . . . embody, use, reflect, rest upon, or apply laws of nature, natural

phenomena, or abstract ideas.” Mayo, 132 S.Ct. at 1293.

 On the facts before it, the Alice court also expressly declined to “labor to delimit the

precise contours of the ‘abstract ideas’ category.” 134 S.Ct. at 2357. Instead, it merely found that

the concept of providing an “intermediated settlement” was not meaningfully distinguishable from

the idea of “risk hedging” at issue in Bilski v. Kappos, 561 U.S. 593 (2010). In both instances, the

idea involved was “a fundamental economic practice long prevalent in our system of commerce.”

Id. at 2356.

Here, defendants rely primarily on Intellectual Ventures I LLC v. Capital One Bank (USA),

792 F.3d 1363 (Fed. Cir. 2015). They argue the patents here are not meaningfully distinguishable

from one held invalid in that case, U.S. Patent No. 7,603,382, entitled “Advanced Internet

Interface Providing User Display Access of Customized Webpages.” Defendants’ insistence to the

contrary notwithstanding, the patents are simply not directly comparable. The ’382 patent in

Intellectual Ventures “generally relate[d] to customizing web page content as a function of

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 529 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183

CASE NO. 18-cv-04679-RS

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

navigation history and information known about the user.” 792 F.3d at 1369. The representative

claim described “[a] system for providing web pages accessed from a web site in a manner which

presents the web pages tailored to an individual user.” The Intellectual Ventures court had little

trouble concluding that merely tailoring the information presented to a website user based on

information about that user or when the website was being viewed represented patent-ineligible

abstract ideas.

This sort of information tailoring is “a fundamental . . . practice long
prevalent in our system. . . .” . . . There is no dispute that newspaper
inserts had often been tailored based on information known about
the customer—for example, a newspaper might advertise based on
the customer's location. Providing this minimal tailoring—e.g.,
providing different newspaper inserts based upon the location of the
individual—is an abstract idea

Tailoring information based on the time of day of viewing is also an
abstract, overly broad concept long-practiced in our society. There
can be no doubt that television commercials for decades tailored
advertisements based on the time of day during which the
advertisement was viewed.

Id.

 The patents here are not comparable merely because they also involve webpages that

reflect information provided by a “user.” Indeed, the patents do not even involve the same

category of “user”—here the “user” is the person who is trying to create webpages, in Intellectual

Ventures the user is a person viewing the webpage to whom customized content will be delivered.

The patents here are directed at a purportedly revolutionary technological solution to a

technological problem—how to create webpages for the internet in a manner that permits “what

you see is what you get” editing, and a number of other alleged improvements over the then-

existing methodologies.

 A more apt comparison is Enfish, LLC v. Microsoft Corp., 822 F.3d 1327 (Fed. Cir. 2016),

which reversed a district court’s finding of ineligibility under Alice. At issue in Enfish was “an

innovative logical model for a computer database.” Enfish supports the notion that a dividing line

can be drawn between patents which merely describe using a computer and/or the internet to carry

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 530 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183

CASE NO. 18-cv-04679-RS

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

out pre-existing and well-known tasks and techniques, and those that relate to the functioning of

computers themselves. The former will virtually always fail under Alice unless some “inventive

concept” can be found in the second step of the analysis; the latter are substantially less easily

characterized as merely abstract ideas.

 Enfish explains:

The first step in the Alice inquiry in this case asks whether the focus
of the claims is on the specific asserted improvement in computer
capabilities (i.e., the self-referential table for a computer database)
or, instead, on a process that qualifies as an “abstract idea” for
which computers are invoked merely as a tool. As noted infra, in
Bilski and Alice and virtually all of the computer-related § 101 cases
we have issued in light of those Supreme Court decisions, it was
clear that the claims were of the latter type—requiring that the
analysis proceed to the second step of the Alice inquiry, which asks
if nevertheless there is some inventive concept in the application of
the abstract idea. See Alice, 134 S.Ct. at 2355, 2357–59. In this case,
however, the plain focus of the claims is on an improvement to
computer functionality itself, not on economic or other tasks for
which a computer is used in its ordinary capacity.

822 F.3d at 1335–36.

 Enfish drew a line between “improvement[s] to computer functionality itself,” and

“economic or other tasks for which a computer is used in its ordinary capacity.” The court

concluded:
we find that the claims at issue in this appeal are not directed to an
abstract idea within the meaning of Alice. Rather, they are directed to
a specific improvement to the way computers operate”

Id. at 1336.

 So too here.

 Finally, to the extent that defendants are arguing that any potentially patent-eligible

technological improvements set out in the specification are not reflected in the actual claims,

dismissal under Alice is not appropriate, at least at this juncture. Although some claim

construction has taken place, it simply cannot be said on the present record that the claims are

drawn so broadly as to be divorced from the potentially patent-eligible purported technological

improvements described in the specification. Accordingly, the motions to dismiss are denied.

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 531 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183

CASE NO. 18-cv-04679-RS

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

U
ni

te
d

St
at

es
 D

is
tri

ct
 C

ou
rt

N
or

th
er

n
D

is
tri

ct
 o

f C
al

ifo
rn

ia

IT IS SO ORDERED.

Dated: January 29, 2019

RICHARD SEEBORG
United States District Judge

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 532 of 548

https://ecf.cand.uscourts.gov/cgi-bin/DktRpt.pl?330183

EXHIBIT G

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 533 of 548

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS

MARSHALL DIVISION

Express Mobile, Inc,

Plaintiff,

 v.

KTree Computer Solutions Inc.,

Defendant.

§
§
§
§
§
§
§
§
§
§
§

Case No. 2:17-cv-128-JRG-RSP

REPORT AND RECOMMENDATION

Before the Court is Defendant’s Motion for Judgment on the Pleadings (Dkt. No. 9) (the

“Motion”). The Court recommends the Motion be DENIED WITHOUT PREJUDICE.

First, the claims appear to address a problem particular to the internet:

dynamically generating websites and displaying web pages based on stored user-selected

settings. See DDR Holdings, LLC v. Hotels.com, L.P., 773 F.3d 1245, 1257 (Fed. Cir. 2014).

On the face of the asserted patents, the claims appear to be necessarily rooted in computer

technology and directed to specific problems of and improvements to then-existing web

publishing applications. See, e.g., Dkt. No. 22-1 at 1:6–8, 1:22–24 (“As such it is virtually

impossible to write a web publishing application in HTML and JavaScript. All conventional

implementations must, and do, utilize a full-featured programming language, such as C++ or

Visual Basic.”); 1:36–39 (“As such, a conventional web publishing application written in one

of these languages suffers from the severe performance problems inherent in these languages.”);

2:60–64 (“Because of the implementation of a variety of performance and file reduction

techniques, the entire run time environment can range from as low as 12K, and no larger than

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 534 of 548

- 2 -

5OK.”); 3:4–6 (“The present invention provides a real time, dynamic linkage between JAVA and

HTML including two-way communications, in real time, between JAVA and JavaScript.”).

 Second, the asserted claims do not bear all of the hallmarks of claims that have been

invalidated on the pleadings by other courts in the past. For example, the claims are not merely

do-it-on-a-computer claims. See Alice Corp. Pty. v. CLS Bank Int'l, 134 S. Ct. 2347, 2358, 189 L.

Ed. 2d 296 (2014). The Court has also reviewed Internet Patents Corp. v. Active Network, Inc.,

790 F.3d 1343 (Fed. Cir. 2015), cited by Defendant, and is not persuaded that the case is directly

on point. For one, it is unclear from this record whether a run time file or run time engine as

claimed in the asserted patents is analogous to the “template file” recited in the Internet Patents

claims. The Court also does not have a firm conviction at this early stage that these claims contain

no inventive concept.

Thus, the Court is not persuaded that claim construction and a fuller factual record would be

unhelpful to the patent eligibility determination. See Autumn Cloud LLC v. TripAdvisor, Inc., Dkt.

No. 66 at 2–4, Case No. 2:16-cv-853-JRG-RSP (E.D. Tex. April 3, 2017).

Accordingly, the Court recommends the Motion be DENIED WITHOUT PREJUDICE.1

1 A party’s failure to file written objections to the findings, conclusions, and recommendations
contained in this report within fourteen days after being served with a copy shall bar that party
from de novo review by the district judge of those findings, conclusions, and recommendations
and, except on grounds of plain error, from appellate review of unobjected-to-factual findings and
legal conclusions accepted and adopted by the district court. Fed. R. Civ. P. 72(b)(2); see Douglass
v. United Servs. Auto. Ass’n, 79 F.3d 1415, 1430 (5th Cir. 1996) (en banc).

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 535 of 548

payner
Judge Roy S. Payne

EXHIBIT H

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 536 of 548

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

EXPRESS MOBILE, INC.,

Plaintiff,

v.

DREAMHOST LLC,

Defendant.

EXPRESS MOBILE, INC.,

Plaintiff,

V.

HOSTWA Y SERVICES, INC.,

Defendant.

Civil Action No. 1:18-cv-01173-RGA

CivilActionNo. l:18-cv-01175-RGA

MEMORANDUM ORDER

Presently before me are Defendants' Motions to Dismiss. (C.A. 18-1173, D.I. 13; C.A.

18-1175, D.I. 13). The Parties have briefed the issues. (C.A. 18-1173, D.I. 14, 18, 24; C.A. 18-

1175, D. I. 14, 17, 23). For the reasons set out below, I will grant Defendants' motions as to past

damages and willful infringement. I will deny Defendant Hostway Service Inc.' s motion as to

direct infringement and Defendants' motions as to patent eligibility.

Plaintiff filed these lawsuits on August 4, 2018. It alleges that Defendants infringe U.S.

Patent Nos. 6,546,397 ("'397 Patent"), 7,594,168 C'168 Patent), 9,471,287, and 9,928,044

through their use of certain website building tools such as Wordpress or Joomla. (See C.A. 18-

1173, D.I. 10; C.A. 18-1175, D.I. 9).

1

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 537 of 548

When reviewing a motion to dismiss pursuant to Rule 12(b)(6), the court must accept the

complaint's factual allegations as true. See Bell At!. Corp. v. Twombly, 550 U.S. 544, 555-56

(2007). Rule 8(a) requires "a short and plain statement of the claim showing that the pleader is

entitled to relief." Id at 555. The factual allegations do not have to be detailed, but they must

provide more than labels, conclusions, or a "formulaic recitation" of the claim elements. Id

("Factual allegations must be enough to raise a right to relief above the speculative level ... on

the assumption that all the allegations in the complaint are true (even if doubtful in fact).").

Moreover, there must be sufficient factual matter to state a facially plausible claim to relief.

Ashcroft v. Iqbal, 556 U.S. 662, 678 (2009). The facial plausibility standard is satisfied when the

complaint's factual content "allows the court to draw the reasonable inference that the defendant

is liable for the misconduct alleged." Id ("Where a complaint pleads facts that are merely

consistent with a defendant's liability, it stops short of the line between possibility and

plausibility of entitlement to relief." (internal quotation marks omitted)).

To satisfy the Iqbal pleading standard in a patent case, "[s]pecific facts are not

necessary." Disc Disease Solutions Inc. v. VGH Solutions, Inc., 888 F.3d 1256, 1260 (Fed. Cir.

2018) (quoting Erickson v. Pardus, 551 U.S. 89, 93 (2007)). The Complaint need only give

defendant "fair notice of what the [infringement] claim is and the ground upon which it rests."

Id.

Defendant Hostway Services, Inc. ("Hostway") argues that the direct infringement claims

of the 67-page First Amended Complaint should be dismissed for failure to meet the pleading

standard. (C.A. 18-1175, D.I. 14 at 7-10). In three related cases, I have found that Plaintiffs

essentially identical complaints are sufficient. (See C.A. 18-1176, D.I. 19; C.A. 18-1177, D.I.

26; C.A. 18-1181, D.I. 39). Hostway's argument for dismissal of Plaintiffs direct infringement

2

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 538 of 548

claims are largely identical to those made in the related cases. (Compare C.A. 18-1175, D.I. 14

at 7-10, with C.A. 18-1177, D.I. 14 at 4-6, and C.A. 18-1181, D.I. 28 at 5-7). Accordingly, I will

deny Hostway' s motion to dismiss Plaintiff's direct infringement claims. 1

Defendants next argue that Plaintiffs willfulness claims should be dismissed. I agree.

"[T]o state a claim of willful infringement, the patentee must allege facts in its pleading plausibly

demonstrating that the accused infringer had committed subjective willful infringement as of the

date of the filing of the willful infringement claim." Viilinge Innovation AB v. Halstead New

England Corp., 2018 WL 2411218, at *10-12 (D. Del. May 29, 2018) (discussing Mentor

Graphics Corp. v. EVE-USA, Inc., 851 F.3d 1275, 1282 (Fed. Cir. 2017), cert. dismissed, No. 17-

804, 2018 WL 3978434 (U.S. Aug. 17, 2018)). The complaints allege only post-filing

knowledge of the alleged infringement. (C.A. 18-1173, D.I. 10 at ,r,r 54, 72, 143,210; C.A. 18-

1175, D.I. 9 at ,r,r 54, 72, 143,210). Thus, they fail to meet the pleading standard for willful

infringement, which requires allegations of willful conduct prior to the filing of the claim. I will

grant Defendants' motion to dismiss Plaintiff's willful infringement claims. I will, however, also

grant Plaintiff's request for leave to amend the complaints to plead post-filing conduct. (See

C.A. 18-1175, D.I. 17 at 8).

Defendants separately note that Plaintiff has failed to plead compliance with the marking

statute. (C.A. 18-1173, D.I. 14 at 16-19; C.A. 18-1175, D.I. 14 at 13-14). They argue that this is

a basis to dismiss Plaintiff's claims to the extent that they s.eek past damages. 35 U.S.C. § 287(a)

requires that a patentee who makes or sells a patented article mark the articles to recover past

damages. It is the patentee's burden to plead compliance with§ 287(a). Arctic Cat Inc. v.

1 Plaintiff improperly included a screenshot of a content management service detection website,
https://builtwith.com, as evidence that Hostway uses WordPress. (C.A. 18-1175, D.I. 17 at 4). I
have not considered this new evidence in resolving this motion.

3

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 539 of 548

Bombardier Recreational Prod. Inc., 876 F.3d 1350, 1366 (Fed. Cir. 2017). Plaintiff avers that

there is no evidence that there was anything for it to mark but does not argue that it pled

compliance. (SeeC.A.18-1173,D.I.16at19-20;C.A.18-1175,D.I.·17at5-7). Atthemotion

to dismiss stage, I am only concerned with the sufficiency of the claims. A claim for past

damages requires pleading compliance with the marking statute--even when compliance is

achieved, factually, by doing nothing at all. Thus, as Plaintiff has failed to state a claim for past

damages, I will grant Defendants' motions.

Defendants also argue for dismissal of half of Plaintiffs claims on the basis that the

claims of the '397 and' 168 Patents are invalid under Section 101. (C.A. 18-1173, D.I. 14 at 5-

15; see also C.A. 18-1175, D.I. 14 at 14 (incorporating Section 101 argument)). Patentability

under 35 U.S.C. § 101 is a threshold legal issue. Bilski, 561 U.S. at 602. Accordingly, the§ 101

inquiry is properly raised at the pleading stage if it is apparent from the face of the patent that the

asserted claims are not directed to eligible subject matter. See Cleveland Clinic Found. v. True

Health Diagnostics LLC, 859 F.3d 1352, 1360 (Fed. Cir. 2017), cert. denied, 138 S. Ct. 2621

(2018). This is, however, appropriate "only when there are no factual allegations that, taken as

true, prevent resolving the eligibility question as a matter of law." Aatrix Software, Inc. v. Green

Shades Software, Inc., 882 F.3d 1121, 1125 (Fed. Cir. 2018). In response to Defendants'

argument, Plaintiff identified factual allegations of inventiveness in the complaint and submitted

an expert declaration explaining inventiveness of the claims. (See C.A. 18-1173, D.I. 10 at ,-r,r

12, 13, 60, 61; C.A. 18-1173, D.I. 20 (expert declaration discussing inventiveness of the

claims)). I find that these factual issues preclude a finding of invalidity on a motion to dismiss.

Thus, I will deny Defendants' Section 101 motion without prejudice to Defendants raising the

issue again on summary judgment.

4

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 540 of 548

Defendants' Motions to Dismiss (C.A. 18-1173, D.I. 13; C.A. 18-1175, D.I. 13) are

GRANTED-IN-PART and DENIED-IN-PART. Plaintiff's claims for past damages and

willful infringement are dismissed. Plaintiff may file an amended complaint within 14 days of

the entry of this order.

Entered this J1L day of June 2019.

5

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 541 of 548

EXHIBIT I

Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 542 of 548

JOINT STIPULATION RE: AMENDED COMPL. & Case No.: 3:20-cv-08492-RS
WAIVER OF SERVICE OF SUMMONS
WORKAMER\29724\112005\38072172.v5-2/18/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

STEVEN J. RIZZI (pro hac vice)
srizzi@kslaw.com
RAMY HANNA (pro hac vice forthcoming)
rhanna@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas, 35th Floor
New York, NY 10036
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

RYAN A. SCHMID (pro hac vice forthcoming)
rschmid@kslaw.com
KING & SPALDING LLP
1700 Pennsylvania Avenue, N.W.
Washington, D.C. 20006
Telephone: (202) 737-0500
Facsimile: (202) 626-3737

RAMON A. MIYAR (CA SBN 284990)
rmiyar@kslaw.com
KING & SPALDING LLP
50 California Street, Suite 3300
San Francisco, CA 94111
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

Attorneys for Plaintiff
EXPRESS MOBILE, INC.

[Additional Counsel Listed on Signature Page]

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

EXPRESS MOBILE, INC.

Plaintiff,

v.

BOOKING HOLDINGS, INC.

Defendants.

Civil Action No. 3:20-cv-08491-RS

JOINT STIPULATION REGARDING
FILING OF AMENDED COMPLAINT
AND WAIVER OF SERVICE OF
SUMMONS

Case 3:20-cv-08491-RS Document 25 Filed 02/26/21 Page 1 of 6Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 543 of 548

1
JOINT STIPULATION RE: AMENDED COMPL. & Case No.: 3:20-cv-08492-RS
WAIVER OF SERVICE OF SUMMONS
WORKAMER\29724\112005\38072172.v5-2/18/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

JOINT STIPULATION

 Plaintiff Express Mobile, Inc. (“Plaintiff”) and Defendant Booking Holdings, Inc.

(“Defendant” or “Booking Holdings”), by and through their respective counsel, hereby stipulate

as follows:

RECITALS

 WHEREAS, Plaintiff filed its Complaint against Defendants on December 1, 2020;

 WHEREAS, service of process on Booking Holdings’ registered agent for service of

process was effectuated on December 3, 2020;

 WHEREAS, following the appearance of Booking Holdings’ former counsel, Fish &

Richardson LLP, the Parties stipulated to continue Booking Holdings’ deadline to respond to the

Complaint to January 27, 2021 (ECF No. 13);

 WHEREAS, since filing that stipulation, Booking Holdings retained new counsel and is

now represented in this action by Baker Botts LLP;

 WHEREAS, the Parties stipulated to a further extension of Booking Holdings’ responsive

pleading deadline to February 11, 2021, in order to accommodate its change in counsel (ECF No.

18);

 WHEREAS, Booking Holdings represents that it is a holding company that does not

presently—and did not at any point—own, operate or control the allegedly infringing

www.booking.com, www.agoda.com, and www.priceline.com websites accused of infringement

in the Complaint (“Accused Instrumentalities”) (with the exception of any indirect ownership

interest(s) it may have by virtue of its status as an ultimate parent company of the Booking

Subsidiaries);

WHEREAS, Booking Holdings represents that its subsidiaries: (1) Agoda Company Pte.

Ltd.; (2) Booking.com B.V.; and (3) priceline.com LLC (collectively, the “Booking

Subsidiaries”) possess relevant and discoverable information pertaining to the Accused

Instrumentalities;

WHEREAS, counsel for Booking Holdings represents that it is also counsel for the

Case 3:20-cv-08491-RS Document 25 Filed 02/26/21 Page 2 of 6Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 544 of 548

2
JOINT STIPULATION RE: AMENDED COMPL. & Case No.: 3:20-cv-08492-RS
WAIVER OF SERVICE OF SUMMONS
WORKAMER\29724\112005\38072172.v5-2/18/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Booking Subsidiaries for the purposes of this action, and that it is duly authorized to act on their

behalf and bind them to this Stipulation;

WHEREAS, Booking Holdings represents that the website at www.booking.com

referenced in Plaintiff’s Complaint is developed and owned by Booking.com B.V., a Netherlands

company, which is wholly owned by Booking Holdings;

WHEREAS, Booking Holdings represents that the website at www.agoda.com referenced

in Plaintiff’s Complaint is developed and owned by Agoda Company Pte. Ltd., a Singapore

company, which is wholly owned by Booking Holdings;

WHEREAS, Booking Holdings represents that the website at www.priceline.com

referenced in Plaintiff’s Complaint is developed and owned by priceline.com LLC, which is

wholly owned by Booking Holdings;

WHEREAS, Booking Holdings represents that it is a holding company, which is a

separate corporate entity from the Booking Subsidiaries, and that it has no discoverable

information in its possession, custody, and/or control related to the Accused Instrumentalities

beyond that which is available from the Booking Subsidiaries;

WHEREAS, Booking Holdings represents that it (a) has no ownership interest in the

Accused Instrumentalities (with the exception of any indirect ownership interest(s) it may have

by virtue of its status as an ultimate parent company of the Booking Subsidiaries), (b) does not

operate or control the Accused Instrumentalities, and (c) would not bear financial or legal

responsibility for satisfying any judgment against the Booking Subsidiaries on any of the causes

of actions asserted against them in the Complaint;

WHEREAS, each of the Booking Subsidiaries stipulates and represents that it will not

use the absence of Booking Holdings as a basis to limit or withhold discovery in this matter

concerning the Accused Instrumentalities;

WHEREAS, the Parties wish to avoid the burden and expense of motion practice;

WHEREAS, in the interests of judicial economy and efficiency, the Parties stipulate to

Plaintiff’s filing of its First Amended Complaint, removing Booking Holdings as a defendant,

Case 3:20-cv-08491-RS Document 25 Filed 02/26/21 Page 3 of 6Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 545 of 548

3
JOINT STIPULATION RE: AMENDED COMPL. & Case No.: 3:20-cv-08492-RS
WAIVER OF SERVICE OF SUMMONS
WORKAMER\29724\112005\38072172.v5-2/18/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

and substituting the Booking Subsidiaries as defendants to this action and allegations related to

those entities;

WHEREAS, Plaintiff agrees to withdraw all outstanding discovery requests against

Booking Holdings;

WHEREAS, Booking.com B.V. is headquartered and incorporated under the laws of the

Kingdom of the Netherlands and Agoda Company Pte. Ltd. is headquartered and incorporated

under the laws of the Republic of Singapore;

WHEREAS, the Bookings Subsidiaries, by and through their counsel, agree to waive

service of process under Rule 4(d) of the Federal Rule of Civil Procedure (“FRCP”), provided

that all three of the Booking Subsidiaries are provided 60 days to answer or otherwise plead in

response to the First Amended Complaint;

 NOW, THEREFORE, the Parties hereby stipulate and as follows:

1. Pursuant to FRCP 15(a), the Parties agree that Plaintiff shall be permitted to file a

First Amended Complaint;

2. Each of (i) Agoda Company Pte. Ltd., (ii) Booking.com B.V., and (iii)

priceline.com LLC shall execute and provide to Plaintiff’s counsel, within 7 days of the execution

of this Stipulation, a waiver of service of the Summons in the form prescribed by the Court;

3. Each of (i) Agoda Company Pte. Ltd., (ii) Booking.com B.V., and (iii)

priceline.com LLC consents to the filing of the First Amended Complaint, and further consents to

and waives any objection to venue in the U.S. District Court for the Northern District of California;

provided, however, that each reserves any and all rights to raise specific and/or affirmative

defenses other than those related to venue;

4. Booking Holdings shall be contemporaneously dismissed without prejudice; and

5. The language of the waiver of the service of summons form and FRCP 4(d)

notwithstanding, the Booking Subsidiaries’ deadline to file an answer or other pleading or motion

in response to the Complaint shall be 60 days after the date on which Plaintiff files its First

Amended Complaint via the Court’s ECF system. Agoda Company Pte. Ltd. and Booking.com

Case 3:20-cv-08491-RS Document 25 Filed 02/26/21 Page 4 of 6Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 546 of 548

4
JOINT STIPULATION RE: AMENDED COMPL. & Case No.: 3:20-cv-08492-RS
WAIVER OF SERVICE OF SUMMONS
WORKAMER\29724\112005\38072172.v5-2/18/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

B.V. expressly waive the 90-day answer/responsive pleading period provided to defendants who

are served in a judicial district outside the United States under FRCP 4(d)(3).

6. In light of the above, the Parties agree to jointly seek (through a separate stipulation)

a fourteen-day continuance of the Initial Case Management Conference presently scheduled for

March 4, 2021 to March 18, 2021.

IT IS SO STIPULATED.

Dated: February 26, 2021 KING & SPALDING LLP

/s/ Ramon A. Miyar

Steven J. Rizzi (pro hac vice)
Ramy Hanna (pro hac vice forthcoming)
Ryan A. Schmid (pro hac vice forthcoming)
Ramon A. Miyar

Attorneys for Plaintiff Express Mobile, Inc.

Dated: February 26, 2021 BAKER BOTTS LLP

/s/ Jeremy J. Taylor

JEREMY J. TAYLOR
101 California Street, ste. 3600
San Francisco, CA 94111
Tel.: (415) 291-6202
Facsimile: (415) 291-6302

Attorneys for Defendants Booking Holdings, Inc.;
Agoda Company Pte. Ltd.; Booking.com B.V.; and
priceline.com LLC

Case 3:20-cv-08491-RS Document 25 Filed 02/26/21 Page 5 of 6Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 547 of 548

5
JOINT STIPULATION RE: AMENDED COMPL. & Case No.: 3:20-cv-08492-RS
WAIVER OF SERVICE OF SUMMONS
WORKAMER\29724\112005\38072172.v5-2/18/21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ATTESTATION

Pursuant to Civil Local Rule 5-1(i)(3), I hereby attest that all signatories to this

document concur in its filing.

Dated: February 26, 2021 /s/ Ramon A. Miyar
Ramon A. Miyar

Case 3:20-cv-08491-RS Document 25 Filed 02/26/21 Page 6 of 6Case 3:20-cv-08491-RS Document 26 Filed 02/26/21 Page 548 of 548

	FIRST AMENDED COMPLAINT
	NATURE OF THE ACTION
	THE PARTIES
	JURISDICTION
	VENUE
	THE PATENTS-IN-SUIT
	BACKGROUND
	COUNT I – INFRINGEMENT OF U.S. PATENT NO. 6,546,397
	The Booking Platform:
	The YCS Platform:
	The OpenTable Platform:

	COUNT II – INFRINGEMENT OF U.S. PATENT NO. 7,594,168
	The Booking Platform:
	The YCS Platform:
	The OpenTable Platform:

	COUNT III – INFRINGEMENT OF U.S. PATENT NO. 9,063,755
	The Booking Platform:
	The YCS Platform:
	The OpenTable Platform:

	COUNT IV – INFRINGEMENT OF U.S. PATENT NO. 9,471,287
	The Booking Platform:
	The YCS Platform:
	The OpenTable Platform:

	COUNT V – INFRINGEMENT OF U.S. PATENT NO. 9,928,044
	The Booking Platform:
	The YCS Platform:
	The OpenTable Platform:

	PRAYER FOR RELIEF
	EXHIBIT A.pdf
	EXHIBIT A COVER SHEET
	US6546397

	EXHIBIT B.pdf
	EXHIBIT B COVER SHEET
	US7594168

	EXHIBIT C.pdf
	EXHIBIT C COVER SHEET
	US9063755

	EXHIBIT D.pdf
	EXHIBIT D COVER SHEET
	US9471287

	EXHIBIT E.pdf
	EXHIBIT E COVER SHEET
	US9928044

	EXHIBIT F.pdf
	EXHIBIT F COVER SHEET
	Exhibit F

	EXHIBIT G.pdf
	EXHIBIT G COVER SHEET
	Exhibit G

	EXHIBIT H.pdf
	EXHIBIT H COVER SHEET
	Exhibit H

