IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE

FG SRC LLC,

Plaintiff,

v.

XILINX, INC.,

Defendant.

Case No. 1:20-cv-00601-LPS

JURY TRIAL DEMANDED

PLAINTIFF'SECOND AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff FG SRC LLC ("SRC") files this Second Amended Complaint for Patent Infringement ("Second Amended Complaint") against Defendant Xilinx, Inc. ("Defendant" or "Xilinx"). Plaintiff alleges as follows:

I. NATURE OF THE ACTION

1. This is an action for infringement of U.S. Patent No. 9,153,311 (the "'311 patent").

2. SRC is a limited liability company incorporated in Delaware and is the successor to SRC Computers, LLC ("SRC Computers").

3. Xilinx, Inc. is a Delaware corporation with its principal place of business located at 2100 Logic Drive, San Jose, California 95154.

II. JURISDICTION

4. This action arises under the Patent Laws of the United States, 35 U.S.C. § 1, *et seq.*, including 35 U.S.C. §§ 271, 281, 283, 284, and 285. This is a patent infringement lawsuit, over which this Court has subject matter jurisdiction under 28 U.S.C. §§ 1331 and 1338(a).

5. This Court has general and specific personal jurisdiction over Defendant because it is present in and transacts and conducts business in and with residents of this District and the

State of Delaware. Defendant is incorporated in the State of Delaware and has conducted and does conduct business therein. Defendant has purposefully and voluntarily availed itself of the privileges of conducting business in the United States and the State of Delaware by continuously and systematically placing goods into the stream of commerce through a distribution channel with the expectation that they will be purchased by consumers in Delaware. Plaintiff's causes of action arise directly from Defendant's business contacts and other activities in the State of Delaware.

6. Upon information and belief, Defendant has committed acts of infringement in this District giving rise to this action and does business in this District, including making sales and/or providing services and support for its customers in this District. Defendant purposefully and voluntarily sold one or more of its infringing products with the expectation that they would be purchased by consumers in this District. These infringing products have been and continue to be purchased by consumers in this District.

III. VENUE

7. Venue is proper as to Defendant under 28 U.S.C. § 1400(b) in that Defendant is incorporated in Delaware and, therefore, resides in this District. *TC Heartland LLC v. Kraft Foods Grp. Brands LLC*, 137 S. Ct. 1514, 1521 (2017).

IV. FG SRC LLC AND DEFENDANT'S PRODUCTS

A. FG SRC LLC

8. SRC Computers was co-founded by Seymour R. Cray, Jim Guzy, and Jon Huppenthal in 1996 to produce unique high-performance computer systems using Intel's Merced microprocessor.

9. SRC is the successor to SRC Computers.

10. Jim Guzy is a co-founder of Intel Corporation and served on Intel's board for 38 years.

PLAINTIFF'S SECOND AMENDED COMPLAINT FOR PATENT INFRINGEMENT – Page 2

11. Mr. Guzy was named to Forbes Midas List, which surveys the top tech deal makers in the world, in 2006 and 2007.

12. Seymour Cray was an American electrical engineer and supercomputer architect who designed a series of computers that were the fastest in the world for decades.

13. Mr. Cray has been credited with creating the supercomputing industry.

14. Unfortunately, Mr. Cray died shortly after founding SRC Computers.

15. But his legacy was carried on by Jon Huppenthal and a talented team of engineers that worked with Mr. Cray and Mr. Huppenthal for decades.

16. SRC Computers' focus was creating easy-to-program, general-purpose reconfigurable computing systems.

17. In early 1997, Mr. Huppenthal and his team realized that the microprocessors of the day had many shortcomings relative to the custom processing engines that they were used to.

18. As a result, they decided to incorporate dedicated processing elements built from Field Programmable Gate Arrays ("FPGAs") and that idea quickly evolved into a novel system combining reconfigurable processors and Central Processing Units ("CPUs").

19. SRC Computers' heterogenous system had 100x performance, 1/50th of the operating expense, 1/100th of the power usage, and required 1/500th of the space of more traditional computer systems.

20. SRC Computers' proven systems are used for some of the most demanding military and intelligence applications, including the simultaneous real-time processing and analysis of radar, flight and mission data collected from a variety of aerial vehicles in over 1,000 successful counter-terrorism and counter-insurgency missions for the U.S. Department of Defense.

21. SRC Computers offered its first commercial product in 2015 called the Saturn 1 server.

22. The Saturn 1 was 100 times faster than a server with standard Intel microprocessors while using one percent of the power.

23. The Saturn 1 was designed to be used in HP's Moonshot server chassis for data centers.

24. SRC Computers has had over 30 U.S. patents issued for its innovative technology.

25. SRC Computers' patent portfolio covers numerous aspects of reconfigurable computing and has more than 2,090 forward citations.

26. In February 2016, SRC Computers restructured into three new entities: a corporate parent FG SRC LLC, an operating company DirectStream, LLC ("DirectStream"), and a licensing entity SRC Labs, LLC ("SRC Labs").

B. Accused Products

27. In this Second Amended Complaint, Plaintiff accuses the following Xilinx products (collectively "Accused Products") of infringing the '311 patent. For clarity, accused product families are listed, as are exemplary device names and/or part numbers or part number prefixes.

Product Family	Exemplary Device Names	Exemplary Part Numbers and/or Part Number Prefixes
Alveo accelerator cards	U25, U200, U250, U280, SN1022 (aka SN1000)	and/ of 1 art (valide) 1 fenxes
Kintex UltraScale+ Evaluation Kit	KCU116	
Virtex UltraScale+ Evaluation Kit	VCU118	
Zynq UltraScale+ Evaluation Kits and	ZCU102, ZCU104, ZCU106, ZCU111, ZCU208, ZCU216,	
Characterization Kits	ZCU1275, ZCU1285	
Kintex UltraScale Evaluation Kit	KCU105	
Virtex UltraScale Evaluation Kit	VCU108	
Virtex-7 Evaluation Kits and Connectivity Kits	VC707, VC709	

Product Family	Exemplary Device Names	Exemplary Part Numbers
	FFF	and/or Part Number Prefixes
Zynq-7000 Evaluation	ZC702, ZC706	
Kits		
Kintex UltraScale+	KU3P, KU5P, KU9P,	
FPGA devices	KU11P, KU13P, KU15P,	
	KU19P	
Virtex UltraScale+	VU3P, VU5P, VU7P, VU9P,	
FPGA devices	VU11P, VU13P, VU19P,	
	VU23P, VU27P, VU29P,	
	VU31P, VU33P, VU35P,	
	VU37P, VU45P, VU47P,	
	VU57P	
Zynq UltraScale+	ZU2CG, ZU3CG, ZU4CG,	
MPSoC: CG devices	ZU5CG, ZU6CG, ZU7CG,	
	ZU9CG	
Zynq UltraScale+	ZU2EG, ZU3EG, ZU4EG,	
MPSoC: EG devices	ZU5EG, ZU6EG, ZU7EG,	
	ZU9EG, ZU11EG, ZU15EG,	
	ZU17EG, ZU19EG	
Zynq UltraScale+	ZU4EV, ZU5EV, ZU7EV	
MPSoC: EV devices		
Zynq Ultrascale+	ZU21DR, ZU25DR,	
RFSoC devices	ZU27DR, ZU28DR,	
	ZU29DR, ZU39DR,	
	ZU42DR, ZU43DR,	
	ZU46DR, ZU47DR, ZU48DR, ZU49DR	
Kintex UltraScale	,	
FPGA devices	KU025, KU035, KU040, KU060, KU085, KU095,	
IT GA devices	KU115	
Virtex UltraScale	XCVU065, XCVU080,	
FPGA devices	XCVU095, VCVU125,	
	XCVU160, XCVU190,	
	XCVU440	
Spartan 7-Series		XC7S6, XC7S15, XC7S25,
FPGA devices		XC7S50, XC7S75, XC7S100
Artix 7-Series FPGA		XC7A12T, XC7A15T,
devices		ХС7А25Т, ХС7А35Т,
		ХС7А50Т, ХС7А75Т,
		XC7A100T, XC7A200T
Kintex 7-Series FPGA		ХС7К70Т, ХС7К160Т,
devices		XC7K325T, XCE7K325T,
		XC7K355T, XCE7K355T,
		ХС7К410Т, ХСЕ7К410Т,

Product Family	Exemplary Device Names	Exemplary Part Numbers
		and/or Part Number Prefixes
		XC7K420T, XCE7K420T,
		XC7K480T, XCE7K480T
Virtex 7-Series FPGA		XC7V585T, XCE7V585T,
devices		ХС7V2000Т, ХС7VХ330Т,
		XCE7VX330T, XC7VX415T,
		XCE7VX415T, XC7VX485T,
		XCE7VX485T, XC7VX550T,
		XCE7VX550T, XC7VX690T,
		XCE7VX690T, XC7VX980T,
		XCE7VX980T, XCVX1140T,
		ХС7VH580Т, ХС7VH870Т
Zynq-7000 SoC	Z-7007S, Z-7012S, Z-7014S,	XC7Z007S, XC7Z012S,
devices	Z-7010, Z-7015, Z-7020,	XC7Z014S, XC7Z010,
	Z-7030, Z-7035, Z-7045,	XC7Z015, XC7Z020, XC7Z030,
	Z-7100	XC7Z035, XC7Z045,
		XC7Z100

28. Each of the Accused Products includes an FPGA.

29. In contrast to a purpose-built chip which is designed with a single function in mind and then hardwired to implement it, an FPGA is more flexible.

30. An FPGA can be programmed in the field, after it has been plugged into a socket on a PC board.

31. FPGAs are based around a matrix of configurable logic blocks ("CLBs") connected via programmable interconnects.

32. FPGAs can be reprogrammed to desired application or functionality requirements after

manufacturing. This feature distinguishes FPGAs from Application Specific Integrated

Circuits (ASICs), which are custom manufactured for specific design tasks.

33. Today's FPGAs easily push the 500 MHz performance barrier.

34. Programming an FPGA is a matter of connecting CLBs to create the desired logical

functions (AND, OR, XOR, and so forth) or storage elements (flip-flops and shift registers).

35. Unlike a CPU which is primarily serial (with a few parallel elements) and has fixed-size instructions and data paths (typically 32 or 64 bit), an FPGA can be programmed to perform many operations in parallel, and the operations themselves can be of almost any width, large or small.

36. The highly parallelized model in FPGAs is ideal for building custom accelerators to process compute-intensive problems.

37. An FPGA has the potential to provide a 30x or greater speedup to many types of genomics, seismic analysis, financial risk analysis, big data search, and encryption algorithms and applications.

38. The Alveo U200 provides up to 90x higher performance than CPUs on key workloads at 1/3 the cost. *See* <u>https://www.xilinx.com/publications/product-briefs/alveo-product-brief.pdf.</u>

39. The Alveo U280 provides up to 3,000 times higher throughput than CPUs on key workloads such as Key-Value-Store. *See* <u>https://www.xilinx.com/publications/product-brief.pdf</u>.

40. Defendant's customers can use FPGAs to accelerate its applications more than 30x when compared with servers that use CPUs alone.

41. The speed increases referenced in the prior four paragraphs are a result of the FPGAs handling compute-intensive, deeply pipelined, hardware-accelerated operations, which also allows for highly parallelized computing.

V. MARKING AND NOTICE

A. Marking and Constructive Notice to Defendant.

42. SRC Computers complied with 35 U.S.C. § 287 by (i) placing the required notice on all, or substantially all, of its products made, offered for sale, sold, or imported into the United States, or (ii) providing actual notice to Defendant.

43. For example, SRC Computers placed notices such as the following on all, or substantially all, of its products since at least February 19, 2013:¹

44. The website listed in the notice, WWW.SRCCOMP.COM/

TECHPUBS/PATENTEDTECH.ASP, stated the following:

¹

E.g., https://web.archive.org/web/20100930014237/http://www.srccomp.com/techpubs/pat entedtech.asp.

SRC[®] PATENTED TECHNOLOGY

SRC Computers holds fundamental U.S. and foreign patents covering hardware and software techniques for vastly accelerating data processing through the use of reconfigurable elements comprising one or more Direct Execution Logic blocks operating in conjunction with one or more commodity microprocessors.

SRC patented technology, with filing dates back to 1997, also includes a number of general applications of Direct Execution Logic computing systems for parallelizing the execution of user-defined algorithms including acceleration of web site access and processing.

SRC Computers has exclusive rights to the following patents:

B. Actual Notice to Defendant.

45. Xilinx is well-aware of the patent asserted in this action and that instrumentalities accused herein infringe that patent.

46. On or around February 22, 2013, counsel for SRC Computers sent a notice letter to Xilinx advising that "Our client has recently become aware of Xilinx' Zynq-7000 All Programmable SoC devices which are stated to integrate an ARM® dual-core CortexTM-A9 CPU as an application processor unit in conjunction with programmable logic. From the information presently available to us, these devices may possibly involve SRC Computers' patented technology."

47. Between July 2015 and November 2015 SRC Computers and Xilinx communicated regarding a potential acquisition by Xilinx of SRC Computers and/or its intellectual property ("IP"). Persons involved on behalf of Xilinx included Greer Person, Ron Satori, Nate Gazdik, Michael White, and Ivo Bolsens. Persons involved on behalf of SRC Computers included Brandon Freeman and Jon Huppenthal.

48. A third party, 3LP Advisors, LLC ("3LP"), assisted with discussions on behalf of SRC Computers.

49. In order to assist Xilinx with reviewing SRC Computers' patent portfolio, 3LP provided Xilinx with a list of SRC Computers' IP on or around October 1, 2015.

50. On October 18, 2017, SRC Labs sued Amazon Web Services, Inc., Amazon.com, Inc., and VADATA, Inc. (collectively the "Amazon Defendants") alleging infringement of five patents, including the '311 patent. *SRC Labs, LLC v. Amazon Web Services, Inc.*, No. 1-17-cv-01227 (E.D. Va.). The complaint (the "Amazon Complaint") filed in that case (the "Amazon Case") alleged that the Amazon Defendants' products infringed the '311 patent based on usage of Xilinx FPGA products.

51. Moreover, specifically, the Amazon Complaint included—as Exhibit J—a publiclyavailable claim chart showing how the Amazon Defendants' product EC2 F1 Instance infringed the '311 patent based on its usage of a Xilinx UltraScale+ FPGA. Plaintiff accuses that device of infringing the '311 patent in this Second Amended Complaint and accused said device of infringement in its Original Complaint and First Amended Complaint.

52. On or around January 8, 2018, SRC Labs, LLC served Xilinx with a subpoena in the Amazon Case. That subpoena explicitly referenced the '311 patent, providing Xilinx with further notice of the patent.

53. After learning of the '311 patent, and that its products infringed that patent, on July 13, 2018 Xilinx filed a petition for *inter partes* review, requesting that the Board of Patent Trials and Appeals cancel claims 1 through 5 and 8 through 10 of the '311 patent. IPR2018-01395 (hereinafter "the Xilinx IPR"), Paper No. 1. In its petition, Xilinx noted the complaint against the Amazon Defendants and admitted that "Amazon and Xilinx have a customer/supplier

relationship" and that "Xilinx Ultrascale+ FPGAs and its Vivado Design Suite are referenced in the SRC Labs complaint . . ." That petition was denied on January 23, 2019. IPR201801395, Paper No. 17.

54. The district court case against the Amazon Defendants was transferred to the Western District of Washington on March 1, 2018. *SRC Labs, LLC et al v. Amazon Web Services*, Inc., No. 2-18-cv-00317 (W.D. Wa.).

VI. THE PATENT

A. Asserted Patent is Owned by SRC.

55. On January 22, 2020, DirectStream assigned both the '311 patent to SRC. The assignment was recorded with the USPTO on January 24, 2020 at Reel/Frame 051615/0344.

56. All maintenance fees have been paid to the USPTO to keep the '311 patent enforceable for its full term.

B. Description of the Asserted Patent.

57. The '311 patent is entitled "System and method for retaining DRAM data when reprogramming reconfigurable devices with DRAM memory controllers" and issued on October 6, 2015.

58. A true and correct copy of the '311 patent is attached as Exhibit A.

59. The '311 patent is valid and enforceable.

VII. COUNT ONE: DIRECT INFRINGEMENT OF THE '311 PATENT

60. Plaintiff incorporates by reference all paragraphs above as though set forth herein.

61. Defendant has at no time, either expressly or impliedly, been licensed under the '311 patent.

62. Defendant has and continues to directly infringe the '311 patent by making, using, offering for sale, selling, and/or importing in or into the United States in violation of 35 U.S.C.

§ 271(a) the Accused Products. For example, on information and belief Defendant tests, manufactures, and uses each of the Accused Products in an infringing manner at least in order to (1) ensure that functionality such as that appearing in SRC's claim charts attached hereto, including but not limited to those portions of the charts describing partial reconfiguration, works as described and (2) provide support regarding said reconfiguration to its customers, members of its Partner Program, such as its Premier Partners, Certified Partners, Alliance Partners, and Accelerator Partners (*see* <u>https://www.xilinx.com/alliance.html</u>) and members of its University Program (*see* <u>https://www.xilinx.com/support/university.html</u>).

63. Defendant's direct infringement of the '311 patent by the Accused Products has caused, and will continue to cause, substantial and irreparable damage to Plaintiff. Plaintiff is therefore entitled to an award of damages adequate to compensate for Defendant's infringement, but not less than a reasonable royalty, together with pre- and post-judgment interest and costs as fixed by the Court under 35 U.S.C. § 284.

64. Plaintiff adopts, and incorporates by reference, as if fully stated herein, **Exhibits B through E**, which are claim charts that describe and demonstrate how the Accused Products infringe exemplary claims of the '311 patent. These charts collectively show that Xilinx infringes at least claims 1, 3, 9, and 10 of the '311 patent.

VIII. COUNT TWO: INDIRECT INFRINGEMENT OF THE '311 PATENT

65. Plaintiff incorporates by reference all paragraphs above as though set forth herein.

66. Defendant induces infringement under 35 U.S.C. § 271(b) by actively and knowingly aiding and abetting direct infringement by its users.

67. As discussed in § V.B, Defendant received actual and constructive notice of the '311 patent.

68. Defendant learned of its infringement of the '311 patent at least as a result of the filing of the Original Complaint and the First Amended Complaint in this case as well as the filing of this Second Amended Complaint.

69. Defendant also learned that its products infringe the '311 patent as a result of the Amazon Complaint and/or the Amazon Case.

70. Through at least the filing of the Original Complaint, the First Amended Complaint, and this Second Amended Complaint, and the claim charts attached to those complaints, Defendant learned that its actions would result in users of the Accused Products infringing the '311 patent.

71. For example, the claim charts attached to the complaints show how Defendant's UltraScale Architecture-Based FPGA's Memory IP v1.4 LogiCORE IP Product Guide, PG150 provides explicit instructions on using the '311 Accused Products in an infringing manner, such as through partial reconfiguration.

72. Defendant's UltraScale Architecture-Based FPGA's Memory IP v1.4 LogiCORE IP core described in its UltraScale Architecture-Based FPGA's Memory IP v1.4 LogiCORE IP Product Guide, PG150 provides a complete solution for interfacing external DRAM memories to the user FPGA logic. One component of this Memory IP is a memory controller with a maintenance block – both are implemented as part of the reconfigurable processor (FPGA). One of the functions this maintenance block supports is "Self Refresh." The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance, during partial reconfiguration.

73. Moreover, Defendant provides guides such as that described above, as well as training and support to its customers, members of its Partner Program, such as its Premier Partners, Certified Partners, Alliance Partners, and Accelerator Partners (*see*

https://www.xilinx.com/alliance.html) and members of its University Program (see https://www.xilinx.com/support/university.html).

74. Xilinx teaches users to use the Accused Products in an infringing manner, such as that shown by partial reconfiguration in SRC's claim charts.

75. Xilinx actively provides support services for its products. An important part of Xilinx's support services is the Xilinx Community Portal. *See*

<u>https://www.xilinx.com/community.html.</u> Xilinx hosts forums where members can ask questions and receive support both from Xilinx engineers and fellow members.

76. Defendant induces infringement of the '311 patent by marketing the Accused Products and providing LogiCORE IP cores, documentation (i.e., the UltraScale Architecture-Based FPGA's Memory IP v1.4 LogiCORE IP Product Guide, PG150), training, and support (i.e. through its Partner Program, and support for non-program members) on how to use said products in ways that infringe the '311 patent.

77. For example, Defendant induces infringement by providing Kits that allow users to develop, simulate, debug, and compile FGPA applications. Defendant actively provides support services for its Kits, and other products, directly and through its Community Forum, in which Xilinx engineers provide support to users.

78. Defendant specifically intends for users of its products to infringe and knows that its acts will result in patent infringement.

IX. COUNT SIX: WILLFUL INFRINGEMENT OF THE '311 PATENT

79. Plaintiff incorporates by reference all paragraphs above as though set forth herein.80. Defendant has and continues to willfully infringe the '311 patent.

81. As discussed in § V.B herein, Defendant has long had knowledge of the '311 patent and that its products infringe that patent.

82. Even if Defendant had not had such knowledge previously, Defendant would learn of the '311 patent and its infringement as a result of the filing of Plaintiff's Original Complaint, the First Amended Complaint, and this Second Amended Complaint, and this district does not require pre-suit knowledge to establish willfulness. *DermaFocus LLC v. Ulthera, Inc.*, 201 F. Supp. 3d 465, 473 (D. Del. 2016).

83. Despite knowing of the '311 patent, Defendant continued and continues making, using, offering for sale, and selling the Accused Products resulting in infringement as discussed in Counts One and Two herein. At least because of its knowledge of the '311 patent and its claims, Defendant knew or should have known that its conduct resulted in infringement of several claims of the '311 patent. Moreover, Defendant was provided information regarding its infringement in the Original Complaint, the First Amended Complaint, and this Second Amended Complaint.

84. Defendant has continued its infringement of the '311 patent despite its knowing that claims 1 through 5 and 8 through 10 of the '311 patent were held valid on January 23, 2019 in the Xilinx IPR.

85. Therefore, Defendant's infringement was intentional or knowing. Defendant knows or should know that its continued activities result in infringement of the '311 patent.

86. Defendant's actions have not been consistent with the standards of behavior in its industry.

87. Defendant made no effort to avoid infringing the '311 patent.

88. Defendant's infringement of the '311 patent is willful, deliberate, and/or consciously wrongful, and therefore Plaintiff should receive enhanced damages up to three times the amount of actual damages for Defendant's willful infringement under 35 U.S.C. § 284.

X. CONCLUSION

89. Plaintiff is entitled to recover from Defendant the damages sustained by SRC as a result of Xilinx's wrongful acts in an amount subject to proof at trial, which, by law, cannot be less than a reasonable royalty, together with interest and costs as fixed by this Court.

90. Plaintiff has incurred and will incur attorneys' fees, costs, and expenses in the prosecution of this action.

91. Plaintiff reserves the right to amend, supplement, or modify its allegations of infringement as facts regarding such allegations arise during the course of this case.

XI. JURY DEMAND

92. Plaintiff hereby demands a trial by jury for all causes of action.

XII. PRAYER FOR RELIEF

Plaintiff requests the following relief:

A. A judgment that Defendant has infringed and continues to infringe the '311 patent;

B. A judgment and order requiring Defendant to pay Plaintiff damages under 35 U.S.C. § 284, including treble damages for willful infringement as provided by 35 U.S.C. § 284, and supplemental damages for any continuing post-verdict infringement up until entry of the final judgment with an accounting as needed;

C. A judgment and order requiring Defendant to pay Plaintiff pre-judgment and postjudgment interest on the damages awarded;

D. A judgment and order awarding a compulsory ongoing royalty; and

E. Such other and further relief as the Court deems just and equitable.

PLAINTIFF'S SECOND AMENDED COMPLAINT FOR PATENT INFRINGEMENT - Page 16

Dated: March 18, 2021

Respectfully submitted,

<u>/s/ Stamatios Stamoulis</u> Stamatios Stamoulis (#4606) Richard C. Weinblatt (#5080) Two Fox Point Centre 6 Denny Road, Suite 307 Wilmington, DE 19809 Tel: (302) 999-1540 stamoulis@swdelaw.com weinblatt@swdelaw.com

SHORE CHAN DEPUMPO LLP Michael W. Shore* (mshore@shorechan.com) Alfonso Garcia Chan* (achan@shorechan.com) Ari B. Rafilson* (arafilson@shorechan.com) William D. Ellerman* (wellerman@shorechan.com) Paul T. Beeler* (pbeeler@shorechan.com)

901 Main Street, Suite 3300 Dallas, TX 75202 Tel: (214) 593-9110 SHORE CHAN DEPUMPO LLP 901 Main Street, Suite 3300 Dallas, Texas 75202 Telephone (214) 593-9110 Facsimile (214) 593-9111

Counsel for Plaintiff FG SRC LLC

* Admitted pro hac vice

Case 1:20-cv-00601-LPS Document 48 Filed 03/22/21 Page 18 of 113 PageID #: 1785

EXHIBIT A

Case 1:20-cv-00601-LPS Document 48 File

US009153311B1

(12) United States Patent

Tewalt

(54) SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS

- (71) Applicant: **SRC Computers, LLC.**, Colorado Springs, CO (US)
- (72) Inventor: Timothy J. Tewalt, Larkspur, CO (US)
- (73) Assignee: **SRC Computers, LLC**, Colorado Springs, CO (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 14/288,094
- (22) Filed: May 27, 2014
- (51) Int. Cl. *G11C 7/00* (2006.01) *G11C 11/406* (2006.01)
- (52) U.S. Cl.
- CPC *G11C 11/40615* (2013.01) (58) Field of Classification Search

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,026,459 A	2/2000	Huppenthal
6,076,152 A		Huppenthal et al.
6,247,110 B1	6/2001	Huppenthal et al.
6,295,598 B1	9/2001	Bertoni et al.
6,339,819 B1	1/2002	Huppenthal et al.
6,356,983 B1	3/2002	Parks
6,434,687 B1	8/2002	Huppenthal
6,594,736 B1	7/2003	Parks
6,836,823 B2	12/2004	Burton

(10) Patent No.: US 9,153,311 B1

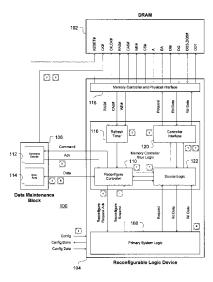
(45) **Date of Patent:** Oct. 6, 2015

6,941,539 B2	9/2005	Hammes
6,961,841 B2	11/2005	Huppenthal et al.
6,964,029 B2	11/2005	Poznanovic et al.
6,983,456 B2	1/2006	Poznanovic et al.
6,996,656 B2	2/2006	Burton
7,003,593 B2	2/2006	Huppenthal et al.
7,124,211 B2	10/2006	Dickson et al.
7,134,120 B2	11/2006	Hammes
7,149,867 B2	12/2006	Poznanovic et al.
7,155,602 B2	12/2006	Poznanovic
7,155,708 B2	12/2006	Hammes et al.
7,167,976 B2	1/2007	Poznanovic
7,197,575 B2	3/2007	Huppenthal et al.
7,225,324 B2	5/2007	Huppenthal et al.
7,237,091 B2	6/2007	Huppenthal et al.
7,299,458 B2	11/2007	Hammes

(Continued)

OTHER PUBLICATIONS

Allan, Graham, "DDR IP Integration: How to Avoid Landmines in this Quickly Changing Landscape", Chip Design, Jun./Jul. 2007, pp. 20-22.


(Continued)

Primary Examiner — Hoai V Ho (74) Attorney, Agent, or Firm — Peter J. Meza; William J. Kubida; Hogan Lovells US LLP

(57) **ABSTRACT**

A system and method for retaining dynamic random access memory (DRAM) data when reprogramming reconfigurable devices with DRAM memory controllers such as field programmable gate arrays (FPGAs). The DRAM memory controller is utilized in concert with an internally or externally located data maintenance block wherein the FPGA drives the majority of the DRAM input/output (I/O) and the data maintenance block drives the self-refresh command inputs. Even though the FPGA reconfigures and the majority of the DRAM inputs are tri-stated, the data maintenance block provides stable input levels on the self-refresh command inputs.

19 Claims, 2 Drawing Sheets

US 9,153,311 B1

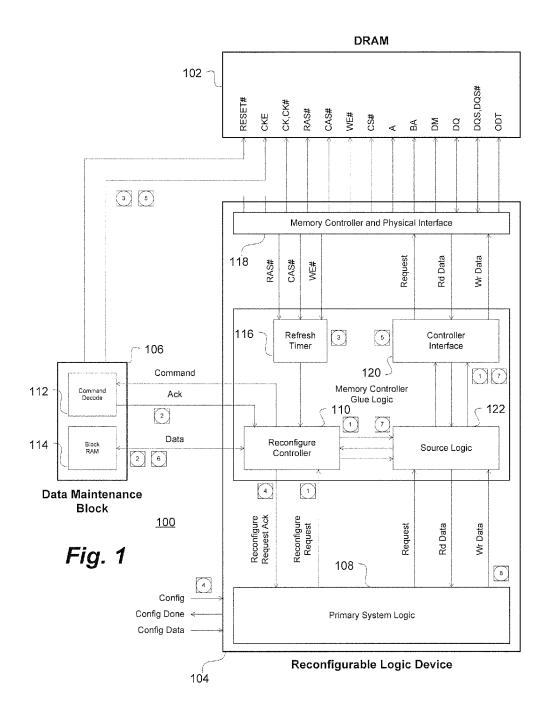
Page 2

(56) **References Cited**

U.S. PATENT DOCUMENTS

7,373,440	B2	5/2008	Huppenthal et al.
7,406,573	B2	7/2008	Huppenthal et al.
7,421,524	B2	9/2008	Huppenthal et al.
7,424,552	B2	9/2008	Burton
7,565,461	B2	7/2009	Huppenthal et al.
7,620,800		11/2009	Huppenthal et al.
7,680,968	B2	3/2010	Burton
7,703,085	B2	4/2010	Poznanovic et al.
7,890,686	B2	2/2011	Conner

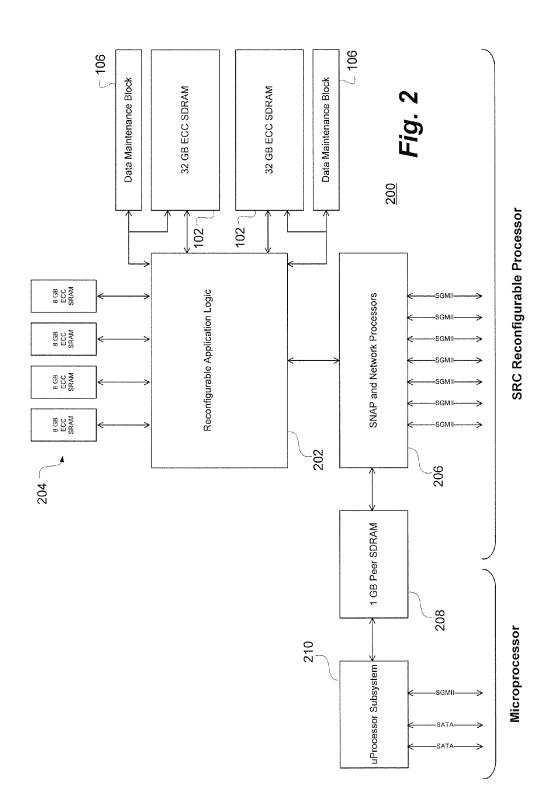
8,589,666 B	2 11/2013	Hammes
8,713,518 B	2 4/2014	Pointer et al.
2012/0117318 A	1 5/2012	Burton et al.
2013/0157639 A	.1 6/2013	Huppenthal et al.
2014/0211579 A	1* 7/2014	Lovelace


OTHER PUBLICATIONS

Wilson, Ron, "DRAM Controllers for System Designers", Altera Corporation Articles, 2012, 8 pages.

* cited by examiner

```
U.S. Patent
```


Oct. 6, 2015

Oct. 6, 2015

Sheet 2 of 2

US 9,153,311 B1

5

SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS

BACKGROUND OF THE INVENTION

The present invention relates, in general, to the field of reconfigurable computing systems. More particularly, the present invention relates to a system and method for retaining ¹⁰ dynamic random access memory (DRAM) data when reprogramming reconfigurable devices with DRAM memory controllers.

The majority of today's programmable logic designs 15 include a DRAM based memory solution at the heart of their memory subsystem. Today's DRAM devices are significantly faster than previous generation's, albeit at the cost of requiring increasingly complex and resource intensive memory controllers. One example is in double data rate 3 and 4 (DDR3 20 and DDR4) controllers which require read and write calibration logic. This added logic was not necessary when using previous versions of DRAM (e.g. DDR and DDR2. As a result, companies are forced to absorb substantial design costs and increased project completion times when designing 25 proprietary DRAM controllers utilizing modern DRAM technology.

In order to mitigate design engineering costs and verification time, it is very common for field programmable gate array (FPGA) designers to implement vendor provided ³⁰ memory controller intellectual property (IP) when including DRAM based memory solutions in their designs. See, for example, Allan, Graham; "DDR IP Integration: How to Avoid Landmines in this Quickly Changing Landscape"; Chip Design, June/July 2007; pp 20-22 and Wilson, Ron; "DRAM ³⁵ Controllers for System Designers"; Altera Corporation Articles, 2012.

FPGA designers tend to choose device manufacturer IP designs because they are proven, tested and have the incredible benefit of significantly reduced design costs and project ⁴⁰ completion times. Many times there is the added benefit of exploiting specialized circuitry within the programmable device to increase controller performance, which is not always readily apparent when designing a controller from scratch. ⁴⁵

The downside to using factory supplied IP memory controllers is that there is little flexibility when trying to modify operating characteristics. A significant problem arises in reconfigurable computing when the FPGA is reprogrammed during a live application and the memory controller tri-states ⁵⁰ all inputs and outputs (I/O) between the FPGA device and the DRAM. The result is corrupted data in the memory subsystem. Therefore, dynamically reconfigurable processors are excluded as viable computing options, especially in regard to database applications or context switch processing. ⁵⁵ The reason for this is that the time it takes to copy the entire contents of DRAM data and preserve it in another part of the system, reconfigure the processor, then finally retrieve the data and restore it in DRAM is just too excessive.

SUMMARY OF THE INVENTION

Disclosed herein is a system and method for preserving DRAM memory contents when a reconfigurable device, for example an FPGA having a DRAM memory controller, is 65 reconfigured, reprogrammed or otherwise powered down. When an FPGA is reprogrammed, the DRAM inputs are 2

tri-stated including self-refresh command signals. Indeterminate states on the reset or clock enable inputs results in DRAM data corruption.

In accordance with the system and method of the present invention, an FPGA based DRAM controller is utilized in concert with an internally or externally located data maintenance block. In operation, the FPGA drives the majority of the DRAM input/output (I/O) and the data maintenance block drives the self-refresh command inputs. Even though the FPGA reconfigures and the majority of the DRAM inputs are tri-stated, the data maintenance block provides stable input levels on the self-refresh command inputs.

Functionally, the data maintenance block does not contain the memory controller and therefore has no point of reference for when and how to initiate the self-refresh commands, particularly the DRAM self-refresh mode. As also disclosed herein, a communication port is implemented between the FPGA and the data maintenance block that allows the memory controller in the FPGA to direct the self-refresh commands to the DRAM via the data maintenance block. Specifically, this entails when to put the DRAM into selfrefresh mode and preserve the data in memory.

At this point, the DRAM data has been preserved throughout the FPGA reconfiguration via the self-refresh mode initiated by the data maintenance block, but the DRAM controller must now re-establish write/read timing windows and will corrupt specific address contents with guaranteed write and read data required during the calibration/leveling process. Consequently, using the self-refresh capability of DRAM alone is not adequate for maintaining data integrity during reconfiguration. (It should be noted that the memory addresses used during calibration/leveling are known and typically detailed in the controller IP specification).

In order to effectuate this, the system transmits a "reconfiguration request" to the DRAM controller. Once received, glue logic surrounding the FPGA vendor provided memory controller IP issues read requests to the controller specifying address locations used during the calibration/leveling process. As data is retrieved from the DRAM, it is transmitted via the communication port from the FPGA device to a block of storage space residing within the data maintenance block itself or another location in the system.

Once the process is complete, the data maintenance block sends a self-refresh command to the DRAM and transmits an 45 acknowledge signal back to the FPGA. The data maintenance block recognizes this as an FPGA reconfiguration condition versus an FPGA initial power up condition and retains this state for later use.

Once the FPGA has been reprogrammed, the DRAM controller has re-established calibration settings and several specific addresses in the DRAM have been corrupted with guaranteed write/read data patterns. At this point, glue logic surrounding the vendor memory controller IP is advised by the data maintenance block (through the communication 55 port) that it has awakened from either an initial power up condition or a reconfiguration condition. If a reconfiguration condition is detected, and before processing incoming DMA requests, the controller retrieves stored DRAM data from the data maintenance block (again through the communication 60 port) and writes it back to the specific address locations corrupted during the calibration/leveling process. Once complete, the DRAM controller in the FPGA is free to begin servicing system memory requests in the traditional fashion.

Among the benefits provided in conjunction with the system and method of the present invention is that since the data maintenance block functions to hold the DRAM in self-refresh mode, the FPGA is free to be reprogrammed to perform 10

a very application-specific computing job that may not require DRAM. This means all the device resources previously reserved for creating a DRAM controller are now free to be used for different functions.

Further, the overall computer system benefits from the 5 present invention because data previously stored in DRAM has now been preserved and is available for use by the next application that needs it. This leads to the fact that computing solutions requiring a series of specific data manipulation tasks now have the ability to be implemented in a small reconfigurable processor. Each application performs its intended function and data is passed from application to application between reconfiguration periods via the DRAM.

Importantly, it should also be noted that the DRAM data contents are retained even if the reconfigurable device is 15 powered down. This is especially critical, for example, when the system and method of the present invention is implemented in mobile devices.

Particularly disclosed herein is a system and method for preserving DRAM data contents when reconfiguring a device 20 containing one or more DRAM controllers. Also particularly disclosed herein is a system and method for preserving DRAM data contents in a reconfigurable computing environment when the programmable device is reconfigured with a new design that does not include a DRAM controller. Further 25 disclosed herein is a system and method for passing DRAM data between sequential computing tasks in a reconfigurable computing environment as well as system and method for preserving DRAM contents when the reconfigurable device is powered down.

Also particularly disclosed herein is a computer system which comprises a DRAM memory, a reconfigurable logic device having a memory controller coupled to selected inputs and outputs of the DRAM memory and a data maintenance block coupled to the reconfigurable logic device and self- 35 refresh command inputs of the DRAM memory. The data maintenance block is operative to provide stable input levels on the self-refresh command inputs while the reconfigurable logic device is reconfigured.

Still further particularly disclosed herein is a method for 40 preserving the contents of a DRAM memory associated with a reconfigurable device having a memory controller. The method comprises providing a data maintenance block coupled to the reconfigurable device, coupling the data maintenance block to self-refresh command inputs of the DRAM 45 memory, storing data received from the reconfigurable device at the data maintenance block and maintaining stable input levels on the self-refresh command inputs while the reconfigurable logic device is reconfigured.

BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned and other features and objects of the present invention and the manner of attaining them will become more apparent and the invention itself will be best 55 understood by reference to the following description of a preferred embodiment taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a functional block diagram of a computer subsystem comprising a reconfigurable logic device having a 60 reconfigurable DRAM controller with associated DRAM memory and illustrating the data maintenance block of the present invention for retaining DRAM data when the logic device is reconfigured; and

FIG. 2 is a block diagram of a reconfigurable computer 65 system, such as that available from SRC Computers, LLC, assignee of the present invention, incorporating a pair of data

4

maintenance blocks and DRAM memory in accordance with the system and method of the present invention in association with reconfigurable application logic.

DESCRIPTION OF A REPRESENTATIVE EMBODIMENT

With reference now to FIG. 1, a functional block diagram of a computer subsystem 100 comprising a DRAM memory 102 and reconfigurable logic device 104 is shown. In a representative embodiment of the present invention, the reconfigurable logic device 104 may comprise a field programmable gate array (FPGA). However, it should be noted that the reconfigurable logic device 104 may comprise any and all forms of reconfigurable logic devices including hybrid devices, such as a reconfigurable logic device with partial reconfiguration capabilities or an application specific integrated circuit (ASIC) device with reprogrammable regions contained within the chip.

Also illustrated is a data maintenance block 106 in accordance with the present invention for retaining DRAM memory 102 data when the logic device 104 is reconfigured during operation of the computer subsystem 100. In a representative embodiment of the present invention, the data maintenance block 106 may be conveniently provided as a complex programmable logic device (CPLD) or other separate integrated circuit device or, in alternative embodiments, may be provided as a portion of an FPGA comprising the reconfigurable logic device 104.

As illustrated, the reconfigurable logic device 104 comprises a primary system logic block 108 which issues a reconfigure request command to a reconfigure controller 110 and receives a reconfigure request acknowledgement (Ack) signal in return. The reconfigure controller 110, in turn, issues a command to the command decode block 112 of the data maintenance block 106 and receives an acknowledgement (Ack) signal in return. A block RAM portion 114 of the data maintenance block 106 exchanges data with the reconfigure controller 110.

The reconfigure controller 110 receives an input from a refresh timer 116 which is coupled to receive row address select (RAS#), column address select (CAS#) and write enable (WE#) signals from a memory controller and physical interface block 118. The memory controller and physical interface block 118 also provides the RAS#, CAS# and WE# signals to the DRAM memory 102 as well as clock (CR, CK#), chip select (CS#), address (A), bank address (BA), data mask (DM) and on-die termination (ODT) input signals. Bididrectional data (DQ) input/output (I/O) and differential 50 data strobe signals (DQS/DQS#) are exchanged between the DRAM memory 102 and the memory controller and physical interface block 118 as shown. The data maintenance block 106 is coupled to the DRAM memory 102 to supply reset (RESET#) and clock enable (CKE#) signals thereto.

The memory controller and physical interface block 118 responds to a request from the controller interface 120 to provide data read from the DRAM memory 102 (Rd Data) and to receive data to be written to the DRAM memory 102 (Wr Data) as shown. A source logic block 122 is coupled to the controller interface 120 as well as the reconfigure controller 110 as also illustrated. The source logic block 122 receives a data request from the primary system logic block 108 and supplies data read from the DRAM memory 102 while receiving data to be written thereto.

As indicated by the operation at numeral 1, a reconfiguration request is received at the reconfigure controller 110 from the primary system logic block 108 of the reconfigurable US 9,153,311 B1

logic device **104**. The reconfigure controller **110** initiates direct memory access (DMA) read requests to memory addresses used in a calibration/leveling sequence after the reconfigurable logic device **104** is reconfigured. Returned data is stored in a small section of block RAM (not shown) in 5 the reconfigure controller **110**.

As indicated by the operation at numeral 2, the reconfigure Controller 110 stores its block RAM contents in another small section of block RAM 114 located in the data maintenance block 106. When complete, the data maintenance block 10 106 asserts an acknowledge signal from its command decode block 112. At the operation indicated by numeral 3, the reconfigure controller 110 detects a refresh command from the refresh timer 116, waits a refresh cycle time (t_{RFC}) and instructs the data maintenance block 106 to de-assert CKE to 15 the DRAM memory 102.

The reconfigure controller **110** asserts the Reconfigure Request Ack signal at the operation indicated by numeral **4** and the reconfigurable logic device **104** is reconfigured. As indicated by the operation at numeral **5**, the reconfigure controller **110** recognizes a post-reconfigure condition (Ack=High), holds the memory controller and physical interface **118** in reset and instructs the data maintenance block **106** to assert CKE to the DRAM memory **102**. The memory controller and physical interface **118** is then released from 25 reset and initializes the DRAM memory **102**.

At the operation indicated by numeral **6**, the reconfigure controller **110** retrieves the data maintenance block **106** block RAM **114** contents and stores it in a small section of block RAM (not shown) in the reconfigure controller **110**. The 30 reconfigure controller **110** detects that the memory controller and physical interface **118** and DRAM memory **102** initialization is complete at the operation indicated by numeral **7** and initiates DMA write requests to restore the memory contents corrupted during the calibration/leveling sequence with 35 the data values read prior to reconfiguration. At the operation indicated by numeral **8**, the memory controller and physical interface **118** glue logic (comprising reconfigure controller **110**, refresh timer **116**, controller interface **120** and source logic block **122**) resumes DMA activity with the primary 40 system logic **108** in a conventional fashion.

It should be noted certain of the aforementioned operational steps may, in fact, operate substantially concurrently. Further, while functionally accurate, some of the operational steps enumerated have been listed out of order to provide 45 logical continuity to the overall operation and to facilitate comprehensibility of the process. In a particular implementation of the system and method of the present invention, one or more of the operational steps disclosed may be conveniently re-ordered to increase overall hardware efficiency. 50 Moreover, steps which can serve to facilitate relatively seamless integration in an active application can be provided in addition to those described as may be desired.

With reference additionally now to FIG. **2**, a block diagram of a reconfigurable computer system **200** is illustrated incorporating a pair of data maintenance blocks **106** and DRAM memory **102** in accordance with the system and method of the present invention in association with reconfigurable application logic **202**. In this representative embodiment of a reconfigurable computer system **200**, the DRAM memory **102** is 60 illustrated in the form of **32** GB error correction code (ECC) synchronous dynamic random access memory (SDRAM).

The reconfigurable application logic **202** is coupled to the data maintenance blocks **106** and DRAM memory **102** as depicted and described previously with respect to the preced- 65 ing figure and is also illustrated as being coupled to a number of 8 GB ECC static random access memory (SRAM) memory

6

modules **204**. The reconfigurable application logic **202** is also coupled to an SRC Computers, LLC SNAPTM and network processors block **206** having a number of serial gigabit media independent interface (SGMII) links as shown. It should be noted that the DRAM memory **102** controller in the reconfigurable application block **202** may be omitted upon subsequent reconfigurations as the DRAM memory **102** data contents will be maintained in the data maintenance blocks **106**.

The SNAP and network processors block **206** shares equal read/write access to a 1 GB peer SDRAM system memory **208** along with a microprocessor subsystem **210**. The microprocessor subsystem **210**, as illustrated, also comprises an SGMII link as well as a pair of serial advanced technology attachment (SATA) interfaces.

For continuity and clarity of the description herein, the term "FPGA" has been used in conjunction with the representative embodiment of the system and method of the present invention and refers to just one type of reconfigurable logic device. However, it should be noted that the concept disclosed herein is applicable to any and all forms of reconfigurable logic devices including hybrid devices, inclusive of reconfigurable logic devices with partial reconfiguration capabilities or an ASIC device with reprogrammable regions contained within the chip.

Representative embodiments of dynamically reconfigurable computing systems incorporating the DRAM memory 102, reconfigurable logic device 104, associated microprocessors and programming techniques are disclosed in one or more of the following United States Patents and United States Patent Publications to SRC Computers LLC, assignee of the present invention, the disclosures of which are herein specifically incorporated by this reference in their entirety: U.S. Pat. No. 6,026,459; U.S. Pat. No. 6,076,152; U.S. Pat. No. 6,247, 110; U.S. Pat. No. 6,295,598; U.S. Pat. No. 6,339,819; U.S. Pat. No. 6,356,983; U.S. Pat. No. 6,434,687; U.S. Pat. No. 6,594,736; U.S. Pat. No. 6,836,823; U.S. Pat. No. 6,941,539; U.S. Pat. No. 6,961,841; U.S. Pat. No. 6,964,029; U.S. Pat. No. 6,983,456; U.S. Pat. No. 6,996,656; U.S. Pat. No. 7,003, 593; U.S. Pat. No. 7,124,211; U.S. Pat. No. 7,134,120; U.S. Pat. No. 7,149,867; U.S. Pat. No. 7,155,602; U.S. Pat. No. 7,155,708; U.S. Pat. No. 7,167,976; U.S. Pat. No. 7,197,575; U.S. Pat. No. 7,225,324; U.S. Pat. No. 7,237,091; U.S. Pat. No. 7,299,458; U.S. Pat. No. 7,373,440; U.S. Pat. No. 7,406, 573; U.S. Pat. No. 7,421,524; U.S. Pat. No. 7,424,552; U.S. Pat. No. 7,565,461; U.S. Pat. No. 7,620,800; U.S. Pat. No. 7,680,968; U.S. Pat. No. 7,703,085; U.S. Pat. No. 7,890,686; U.S. Pat. No. 8,589,666; U.S. Pat. Pub. No. 2012/0117318; U.S. Pat. Pub. No. 2012/0117535; and U.S. Pat. Pub. No. 2013/0157639.

While there have been described above the principles of the present invention in conjunction with specific apparatus and methods, it is to be clearly understood that the foregoing description is made only by way of example and not as a limitation to the scope of the invention. Particularly, it is recognized that the teachings of the foregoing disclosure will suggest other modifications to those persons skilled in the relevant art. Such modifications may involve other features which are already known per se and which may be used instead of or in addition to features already described herein. Although claims have been formulated in this application to particular combinations of features, it should be understood that the scope of the disclosure herein also includes any novel feature or any novel combination of features disclosed either explicitly or implicitly or any generalization or modification thereof which would be apparent to persons skilled in the relevant art, whether or not such relates to the same invention as presently claimed in any claim and whether or not it miti-

US 9,153,311 B1

-5

gates any or all of the same technical problems as confronted by the present invention. The applicants hereby reserve the right to formulate new claims to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.

As used herein, the terms "comprises", "comprising", or any other variation thereof, are intended to cover a nonexclusive inclusion, such that a process, method, article, or apparatus that comprises a recitation of certain elements does not necessarily include only those elements but may include 10 other elements not expressly recited or inherent to such process, method, article or apparatus. None of the description in the present application should be read as implying that any particular element, step, or function is an essential element which must be included in the claim scope and THE SCOPE 15 OF THE PATENTED SUBJECT MATTER IS DEFINED ONLY BY THE CLAIMS AS ALLOWED. Moreover, none of the appended claims are intended to invoke paragraph six of 35 U.S.C. Sect. 112 unless the exact phrase "means for" is employed and is followed by a participle. 20

What is claimed is:

1. A computer system comprising:

a DRAM memory;

- a reconfigurable logic device having a memory controller ²⁵ coupled to selected inputs and outputs of said DRAM memory; and
- a data maintenance block coupled to said reconfigurable logic device and self-refresh command inputs of said DRAM memory, said data maintenance block operative ³⁰ to provide stable input levels on said self-refresh command inputs while said reconfigurable logic device is reconfigured.

2. The computer system of claim 1 wherein said DRAM memory comprises DDR3 compliant memory devices.

3. The computer system of claim **1** wherein said reconfigurable logic device comprises an FPGA.

4. The computer system of claim **1** wherein said data maintenance block comprises a command decode portion coupled to a reconfigure controller of said reconfigurable logic device. ⁴⁰

5. The computer system of claim **4** wherein said command decode portion of said data maintenance block is operative in response to a command from said reconfigure controller and provides an acknowledgement signal in response.

6. The computer system of claim **1** wherein said data main-⁴⁵ tenance block comprises a memory block coupled to a reconfigure controller of said reconfigurable logic device.

7. The computer system of claim **6** wherein said memory block is operative to retain data received from said reconfigure controller of said reconfigurable logic device. 50

8. The computer system of claim **1** wherein said data maintenance block comprises a CPLD.

9. The computer system of claim **1** wherein said reconfigurable logic device comprises said data maintenance block.

8

10. The computer system of claim **1** wherein said data maintenance block is operable to hold said DRAM memory in self-refresh mode while said reconfigurable logic device is reconfigured.

11. A method for preserving contents of a DRAM memory associated with a reconfigurable device having a memory controller comprising:

- providing a data maintenance block coupled to said reconfigurable device;
- coupling said data maintenance block to self-refresh command inputs of said DRAM memory;
- storing data received from said reconfigurable device at said data maintenance block; and
- maintaining stable input levels on said self-refresh command inputs while said reconfigurable logic device is reconfigured.

12. The method of claim **11** wherein said step of providing comprises:

providing a command decode portion of said data maintenance block coupled to receive commands from said reconfigurable device and return acknowledgment signals in response thereto.

13. The method of claim **11** wherein said step of storing comprises:

providing a memory block in said data maintenance block for storing said data received from said reconfigurable device and returning said data to said reconfigurable device upon completion of a reconfiguration function.

14. The method of claim 11 wherein said step of storing comprises:

providing a memory block in said data maintenance block for storing said data received directly from said DRAM memory and returning said data directly to said DRAM memory upon completion of a reconfiguration function.

15. The method of claim **11** wherein said step of providing ₃₅ said data maintenance block comprises:

providing a portion of said reconfigurable device as said data maintenance block.

16. The method of claim **11** wherein said step of providing said data maintenance block comprises:

providing a CPLD as said data maintenance block.

17. The method of claim 11 wherein said step of providing said data maintenance block comprises:

- providing a block RAM for storing said data received from said reconfigurable device; and
- providing a command decode portion responsive to said reconfigurable device and coupled to said reset and lock enable inputs of said DRAM memory.

18. The method of claim 11 further comprising:

passing said data between sequential computing tasks in a reconfigurable computing environment.

19. The method of claim 11 further comprising:

preserving said data at said data maintenance block while said reconfigurable logic device is powered down.

* * * * *

Case 1:20-cv-00601-LPS Document 48 Filed 03/22/21 Page 27 of 113 PageID #: 1794

EXHIBIT B

(12)	United States Patent Tewalt	(10) Patent No.: US 9,153,311 B1 (45) Date of Patent: Oct. 6, 2015
(54)	SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS	6.941,559 B2 9.2005 Hammes 6.961,341 B2 11.2005 Huppenhal et al. 6.984,025 B2 11.2005 Poznanovic et al. 6.984,645 B2 11.2006 Poznanovic et al. 6.996,656 B2 2.2006 Burton 7.003.593 B2 2.2006 Huppenhal et al.
(71)	Applicant: SRC Computers, LLC., Colorado Springs, CO (US)	7,124,211 B2 10/2006 Dickson et al. 7,134,120 B2 11/2006 Hammes 7,149,867 B2 12/2006 Poznanovic et al.
(72)	Inventor: Timothy J. Tewalt, Larkspur, CO (US)	7,155,602 B2 12/2006 Poznanovic 7,155,708 B2 12/2006 Hammes et al. 7,167,976 B2 1/2007 Poznanovic
(73)	Assignee: SRC Computers, LLC, Colorado Springs, CO (US)	7,107,976 BZ 1/2007 Poznanovic 7,197,575 BZ 3/2007 Huppenthal et al. 7,225,324 BZ 5/2007 Huppenthal et al. 7,237,091 BZ 6/2007 Huppenthal et al.
(*)	Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	7,299,458 B2 11/2007 Hammes (Continued)
(21)	Appl. No.: 14/288,094	OTHER PUBLICATIONS
	Filed: May 27, 2014	Allan, Graham, "DDR IP Integration: How to Avoid Landmines ir this Quickly Changing Landscape", Chip Design, Jun./Jul. 2007, pp
	Int. Cl.	20-22. (Continued)
	GIIC 700 (2006.01) GIIC 11/406 (2006.01) US. CL. GIIC 11/40615 (2013.01) Field of Classification Search 56/222 USPC	
	U.S. PATENT DOCUMENTS 6,026,49 A 2:2000 Hoppenhal of al. 6,026,49 B 2:000 Hoppenhal of al. 6,025,49 B 10 2:000 Hoppenhal of al. 6,255,59 B 11 9:2001 Hoppenhal of al. 6,356,69 B 11 9:2002 Hoppenhal of al. 6,356,69 B 13:3002 Hoppenhal of al. 6,356,69 B 14:3003 Hoppenhal 6,356,69 B 14:2003 Hoppenhal 6,356,69 B 14:2003 Hoppenhal	devices with DRAM memory controllers with as field pro- grammable gate arrays (FPGAs). The DRAM memory con- troller is utilized in concert with an internally or externally located data maintenance block wherein the FPGA drives the majority of the DRAM input/cutput (IG) and the data main- tenance block drives the self-effesh command inputs. Free though the FPGA reconfigures and the majority of the DRAM inputs are tristed, the data maintenance block, providee suble input levels on the self-refresh command inputs.

Title: SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS

Priority Date: May 27, 2014

Filed Date: May 27, 2014

Issued Date: Oct. 06, 2015

Expiration Date: May 27, 2034

Inventor: Timothy J. Tewalt

Exemplary Claims: 1, 3, 9, 10

A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Claim 9

The computer system of claim 1 wherein said (**RL**) reconfigurable logic device comprises said (**DM**) data maintenance block.

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is operable to hold said (D) DRAM memory in (SR) self-refresh mode while said reconfigurable logic device is (R) reconfigured.

A (CS) computer system comprising:

a (D) DRAM memory;

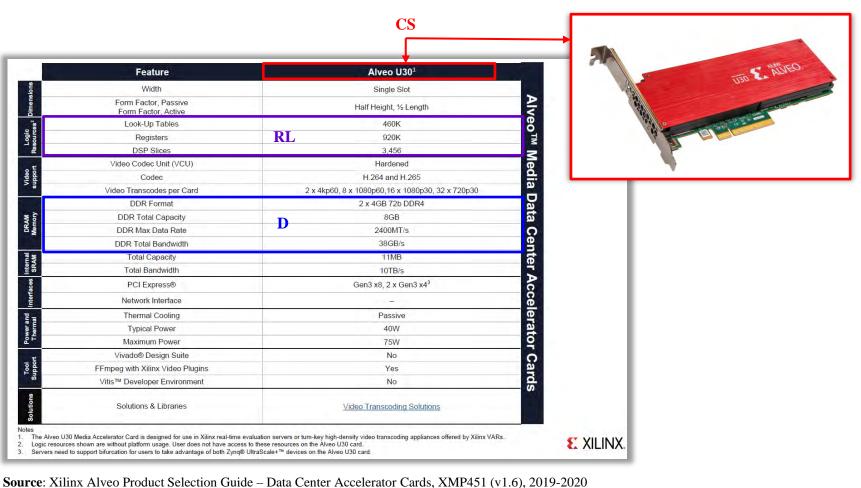
a (RL) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and

Feature	Alveo U25	
Width	Single Slot	
Form Factor	Half Height, 1/2 Length	Alveo
Look-Up Tables	523K	
	RL	
Registers	1,045K	
DDR Format	D - 1x 2GB x 40 DDR4-2400 - 1x 4GB x 72 DDR4-2400	SmartNic
PCI Express®	Gen3 x16, 2xGen3 x8	2
Link Speeds	10/25GbE	
Network Interface	2x SFP28	
Thermal Cooling	Passive	
Typical Power	55W	Adapter Hardware
Maximum Power	75W	
Stateless Offloads	Yes	> 2x PCIe Gen 3 x8 (x16 connector in bifurcated mod
Tunneling Offloads	VXLAN, Geneve, Custom	
SR-IOV	Yes	> 2x10/25G SFP28 DA copper or optical transceiver;
Advanced Packet Filtering	Yes	
Acceleration	DPDK, Onload®	> XtremeScale [™] Ethernet Controller
Hardware Timestamping	Yes	> Zynq® UltraScale+™ XCU25 FPGA RL
PMCI Protocols	NC-SI, PLDM Monitoring and Control, PLDM	
PMCI Transports	MCTP SMBus, MCTP PCIe VDM	1x 2GB x 40 DDR4-2666
Boot Support	PXE and UEFI	
Vitis™ Developer Environment	Yes	> 2x 4GB x 72 DDR4-2666
r resources shown without platform usage; refer to card user guides for p	latform resource usage.	E XILINX.

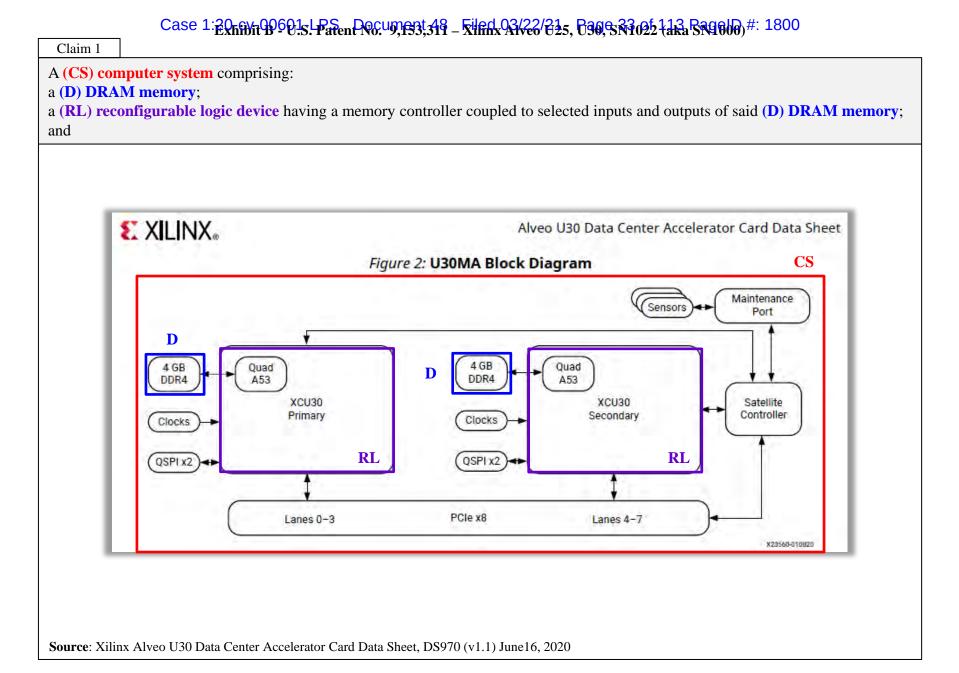
A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and

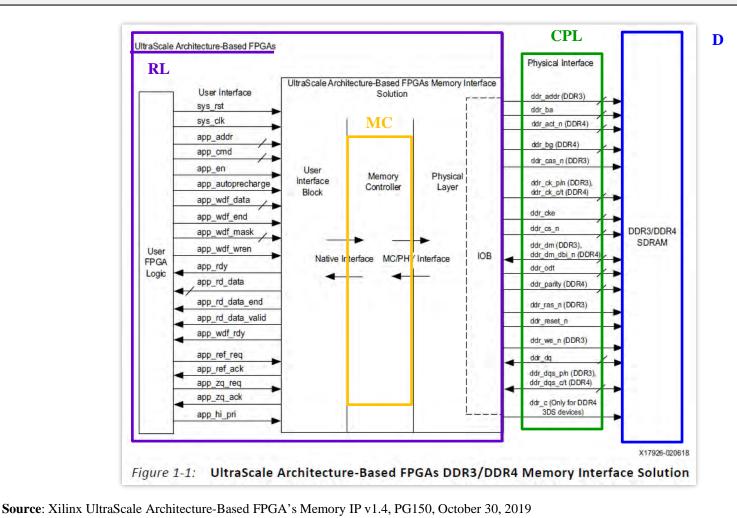

The Alveo™ SN1000 family of composable SmartNICs meets Xilinx uses both these challenges with software-defined hardware acceleration. Revolutionary Xilinx composability empowers providers and SN1000 and SN1022 enterprises to effortlessly support new protocols, build custom to identify their newest SN1000 E ALVEO. offloads, and deploy efficient and fluid application-specific data accelerator card. paths using P4 or HLS. SN1000 SmartNICs deliver protocol-level programmability at linerate performance, and are powered by a Xilinx 16nm UltraScale+™ CS architecture FPGA and a 16-core NXP Arm® processor. RL Starting with the SN1022 100Gb/s composable SmartNIC, the Alveo™ SN1000 family provides a comprehensive suite of solutions XILINX ADVANTAGE for network, storage, and compute acceleration functions on a single platform. CS Alveo U25 Feature Alveo SN1022 Width Single Slot Single Slot AlveoTM Form Factor Half Height, 1/2 Length Full Height, 1/2 Length glc Look-Up Tables 523K 1.030K RL Registers 1.045K 2,059K Hardware SmartNIC Data Center - 1x 2GB x 40 DDR4-2400 1x 4GB x 72 DDR4-2400 (Arm® Processor) D **DDR** Format RL - 1x 4GB x 72 DDR4-2400 PCIe Gen 4 x8 or Gen 3 x16 2x 4GB x 72 DDR4-2400 (FPGA) 2x100G QSFP28 DA copper or optical transceiver PCI Express® Gen3 x16, 2xGen3 x8 Gen 3 x16, Gen 4 x8 Link Speeds 10/25GbE 100GbE XCU26 FPGA based on Xilinx 16nm UltraScale+ . Network Interface 2x SFP28 2x QSFP28 architecture Discrete 16-core Cortex-A72 Processor Arm Processor Integrated Quad-core Cortex®-A53 Arm Processor Thermal Cooling Passive Passive On-board CPU: 16 64-bit Arm Cortex®-A72 cores at Thermal Design Power 40W 70W 2.0 GHz with 8 MB cache 75W 75W Total Power Yes Yes Stateless Offloads 1x 4GB x 72 DDR4-2400 (Processor) **Tunneling Offloads** VXLAN, NVGRE, Geneve, Custom VXLAN, NVGRE, Custom D 2x 4GB x 72 DDR4-2400 (FPGA) CD ION

Source: Xilinx Alveo Product Selection Guide – Data Center Accelerator Cards, XMP451 (v1.7), 2019-2021 Xilinx Alveo SN1000 Smart NICs; Product Brief, JD022221, 2021


A (CS) computer system comprising:

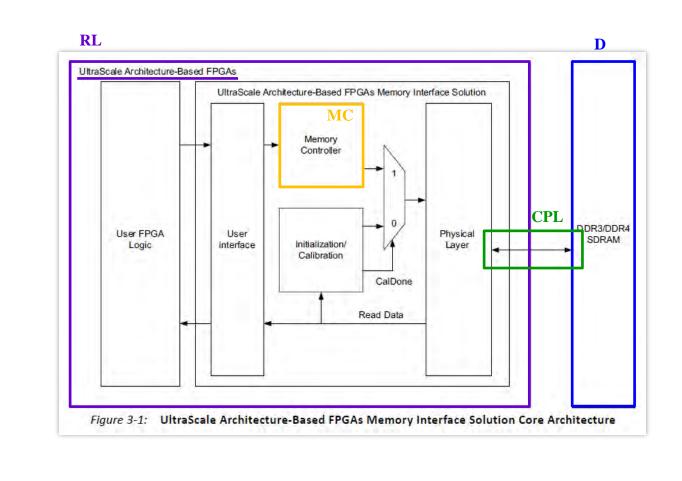
a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and


Source: Xilinx Alveo Product Selection Guide – Data Center Accelerator Cards, XMP451 (v1.6), 2019-2020 Xilinx Alveo U30 Data Center Accelerator Card Data Sheet, DS970 (v1.1) June16, 2020

A computer system comprising:

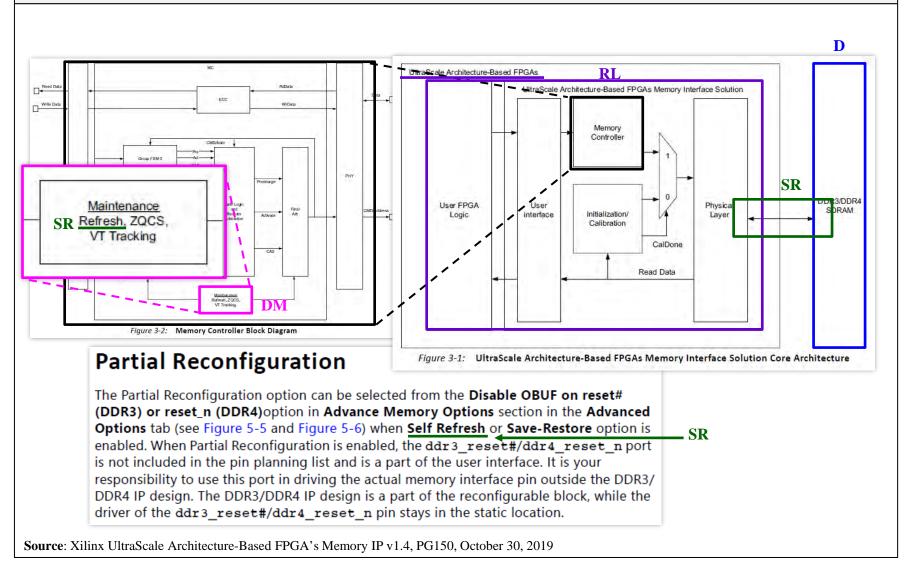
a (D) DRAM memory;


a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

A computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and



Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

$Case 1: \underbrace{225, 030, 530, 125}_{125, 030, 530, 125}_{125, 030, 530, 125}_{125, 030, 530, 125}_{125, 030, 530, 125}_{125, 030,$

Claim 1

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

$Case 1: \underbrace{225, 030, 537, 022}_{112} + \underbrace{235, 037, 022}_{112} + \underbrace{235, 022}_{112$

Claim 1

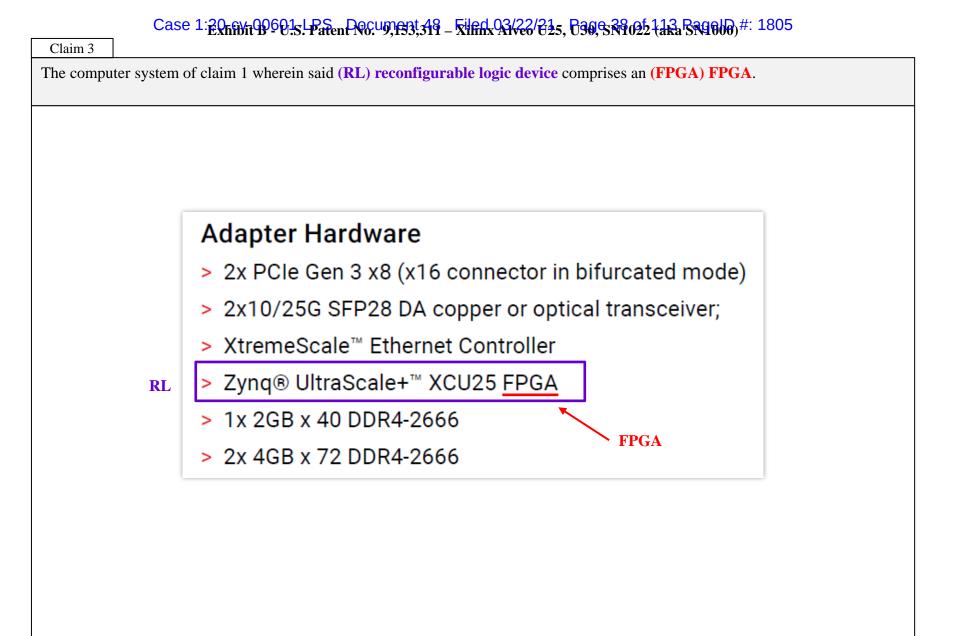
said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

- **DM** The <u>maintenance blocks</u> of the controller command path include:
 - 1. Blocks that generate refresh and ZQCS commands SR
 - 2. Commands needed for VT tracking
 - 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh SIL

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

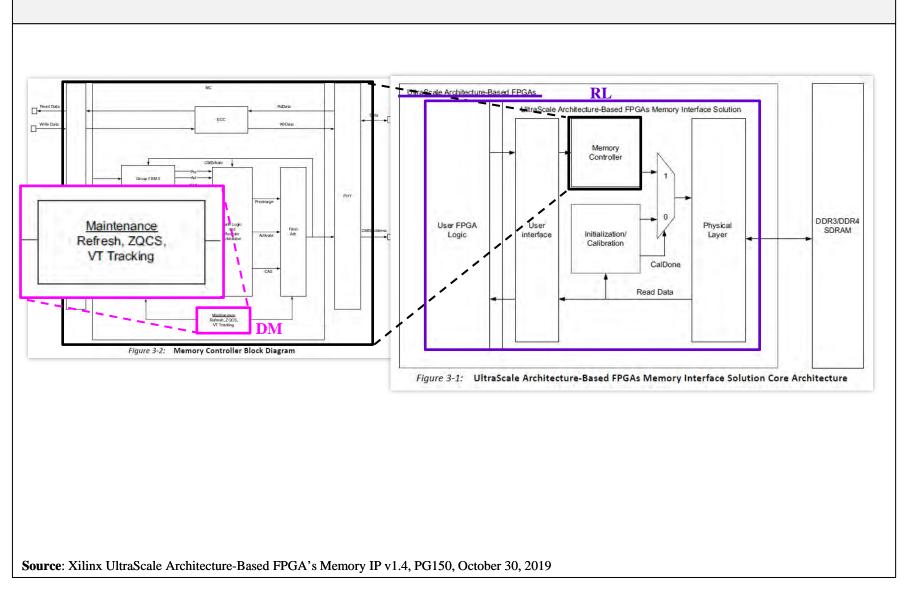

Partial Reconfiguration

SR The Partial Reconfiguration option can be selected from the Disable OBUF on reset# (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when <u>Self Refresh</u> or Save-Restore option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/ DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the

ddr3_reset#/ddr4_reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration.



Source: Xilinx Alveo U25 2x10/25Gb Ethernet PCIe SmartNIC: Product Brief, WW02272020, 2020

Claim 9

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises said (DM) data maintenance block.

$Case 1: \underline{E25, 030, 549, 022} + \underline{133, 349} - \underline{5166, 030, 630, 549, 022} + \underline{133, 849, 022} + \underline{133, 849,$

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is (HSR) operable to hold said DRAM memory in self-refresh mode while said (RL) reconfigurable logic device is (R) reconfigured.

DM The <u>maintenance blocks</u> of the controller command path include:

- 1. Blocks that generate refresh and ZQCS commands
- 2. Commands needed for VT tracking
- 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh HSR

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when Self Refresh or Save-Restore option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/ DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the *ddr3* reset#/*ddr4* reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration; it is used to hold/keep the DRAM memory in selfrefresh mode.

Claim 10

The computer system of claim 1 wherein said (**DM**) data maintenance block is (**HSR**) operable to hold said **DRAM** memory in self-refresh mode while said (**RL**) reconfigurable logic device is (**R**) reconfigured.

The maintenance blocks of the controller command path include:

- **DM** 1. Blocks that generate refresh and ZQCS commands
- 2. Commands needed for VT tracking
- 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh HSR

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

Case 1:20-cv-00601-LPS Document 48 Filed 03/22/21 Page 42 of 113 PageID #: 1809

EXHIBIT C

		US009153311B1
(12)	United States Patent Tewalt	(10) Patent No.: US 9,153,311 B1 (45) Date of Patent: Oct. 6, 2015
(54)	SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS	6.941,539 B2 9/2005 Hammes 6.961,841 B2 11/2005 Huppenthal et al. 6.964,293 B2 11/2005 Peznanovic et al. 6.983,456 B2 1/2006 Peznanovic et al. 6.996,656 B2 2/2006 Burton
(71)	Applicant: SRC Computers, LLC., Colorado Springs, CO (US)	7,003,593 B2 2/2006 Huppenthal et al. 7,124,211 B2 10/2006 Dickson et al. 7,134,120 B2 11/2006 Hammes 7,149,867 B2 12/2006 Poznanovic et al.
(72)	Inventor: Timothy J. Tewalt, Larkspur, CO (US)	7,155,602 B2 12/2006 Poznanovic 7,155,708 B2 12/2006 Hammes et al.
(73)	Assignee: SRC Computers, LLC, Colorado Springs, CO (US)	7,167,976 B2 1/2007 Poznanovic 7,197,575 B2 3/2007 Huppenthal et al. 7,225,324 B2 5/2007 Huppenthal et al. 7,237,091 B2 6/2007 Huppenthal et al.
(*)	Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35	7,299,458 B2 11/2007 Hammes (Continued)
(21)	U.S.C. 154(b) by 0 days.	OTHER PUBLICATIONS
(21)	Appl. No.: 14/288,094 Filed: May 27, 2014	 Allan, Graham, "DDR IP Integration: How to Avoid Landmines in this Quickly Changing Landscape", Chip Design, Jun./Jul. 2007, pp
()	Filed: May 27, 2014 Int. Cl.	20-22. (Continued)
	Inc. C.L. <i>G11C 700</i> (2006.01) <i>G11C 11/406</i> (2006.01) U.S. CL CPC	Primary Examiner — Hoai V Ho (74) Attorney, Agent, or Firm — Peter J. Meza; William J Kubida; Hogan Lovells US LLP
(58)	Field of Classification Search	(57) ABSTRACT
(56)	USPC	A system and method for retaining dynamic random access memory (DRAM) data when reprogramming reconfigurable devices with DRAM memory controllers such as field pro-
	U.S. PATENT DOCUMENTS 6.026.49 A 2:2006 Itoposthal 6.027.412 A 0:000 Itoposthal et al. 6.247.110 B 6:2001 Itoposthal et al. 6.259.598 B 1:2002 Itoposthal et al. 6.259.598 B 1:2002 Itoposthal et al. 6.259.439 B 1:2002 Itoposthal et al. 6.264.364.367 B 1:2002 Itoposthal 6.264.364.367 B 1:2002 Itoposthal 6.264.368.37 B 1:2004 Itanas	grammable gate arrays (PPGAs). The DRAM memory con- roller is utilized in concert with an internally or externally located data maintenance block wherein the PPGA drives the majority of the DRAM input/output (O) and the data main- tenance block drives the self-refresh command inputs. Fav- hough the FPGA reconfigures and the majority of the DRAM inputs are tri-stated, the data maintenance block provides stable input levels on the self-refresh command inputs. 19 Claims, 2 Drawing Sheets
	0,350,825 B2 12/2004 Buildin	19 Claims, 2 Drawing Succes

Title: SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS

Priority Date: May 27, 2014

Filed Date: May 27, 2014

Issued Date: Oct. 06, 2015

Expiration Date: May 27, 2034

Inventor: Timothy J. Tewalt

Exemplary Claims: 1, 3, 9, 10

A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Claim 9

The computer system of claim 1 wherein said (**RL**) reconfigurable logic device comprises said (**DM**) data maintenance block.

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is operable to hold said (D) DRAM memory in (SR) self-refresh mode while said reconfigurable logic device is (R) reconfigured.

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

ERANGEO.	Product Name	Alveo U200	Alveo U250	Alveo U280	Alveo U50
ALL	Width	Dual Slot	Dual Slot	Dual Slot	Single Slot
Olmen	Form Factor, Passive Form Factor, Active	Full Height, ¾ Length Full Height, Full Length	Full Height, ¾ Length Full Height, Full Length	Full Height, ¾ Length Full Height, Full Length	Half Height, ½ Length
	Look-Up Tables	1,182K	1,728K	1,304K	872K
Logic	Registers	2,364K	3,456K	2,607K	RL 1,743K
Re - Re	DSP Slices	6,840	12,288	9,024	5,952
	DDR Format	4x 16GB 72b DIMM DDR4	4x 16GB 72b DIMM DDR4	2x 16GB 72b DIMM DDR4	D -
5	DDR Total Capacity	64GB	64GB	32GB	-
femo	DDR Max Data Rate	2400MT/s	2400MT/s	2400MT/s	1 e
DRAM M	DDR Total Bandwidth	77GB/s	77GB/s	38GB/s	2
E.	HBM2 Total Capacity	<u></u>	-	8GB	8GB
	HBM2 Total Bandwidth	2	-	460GB/s	316GB/s ⁴
In the second se	Total Capacity	43MB	57MB	43MB	28MB
SR	Total Bandwidth	37TB/s	47TB/s	35TB/s	24TB/s
8	PCI Express®	Gen3 x16	Gen3 x16	Gen3 x16, 2xGen4 x8, CCIX	Gen3 x16, 2xGen4 x8, CCIX
Interf	Network Interface	2x QSFP28	2x QSFP28	2x QSFP28	U50 ² - 1x QSFP28 U50DD ³ - 2x SFP-DD
2 =	Thermal Cooling	Passive, Active	Passive, Active	Passive, Active	Passive
wer a	Typical Power	100W	110W	100W	50W
2 F	Maximum Power	225W	225W	225W	75W
Time	Clock Precision		-	-	IEEE Std 1588
, 2	INT8 TOPs	18.6	33.3	24.5	16.2
mpul	Machine Learning		Machine Learning Solution Brie	f	
Per C	Acceleration Applications	A	cceleration Application Solutio	ns	

Source: Xilinx Alveo Product Selection Guide – Data Center Accelerator Cards, XMP451 (v1.3), 2019

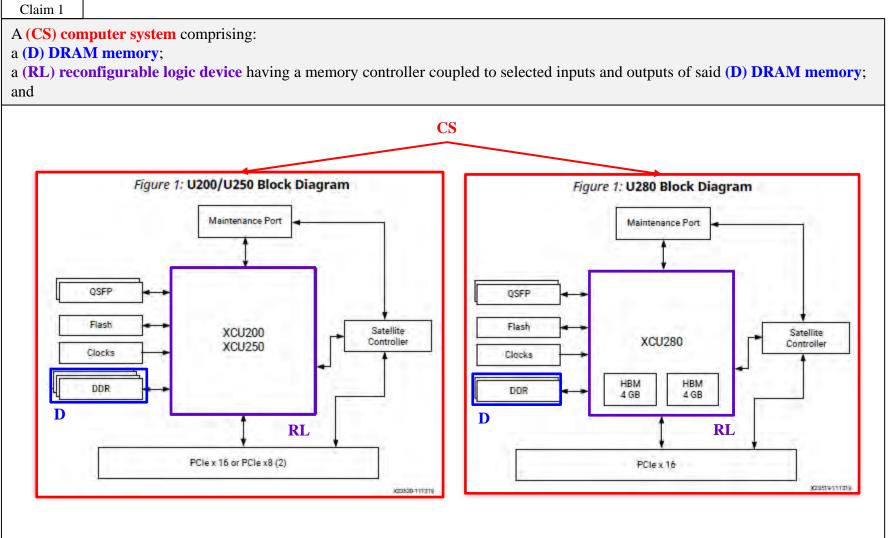
A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and

FPGA Resource Information

CS RL The Xilinx Alveo U200 and U250 accelerator cards are custom-built UltraScale+ FPGAs that run optimally (and exclusively) on the Alveo architecture. The Alveo U200 card features the XCU200 FPGA and the Alveo U250 card uses the XCU250 FPGA, which uses Xilinx stacked silicon interconnect (SSI) technology to deliver breakthrough FPGA capacity, bandwidth, and power efficiency. This technology allows for increased density by combining multiple super logic regions (SLRs). The XCU200 comprises three SLRs and the XCU250 comprises four SLRs. Both devices connect to 16 lanes of PCI Express® that can operate up to 8 GT/s (Gen3). Both devices connect to four DDR4 16 GB, 2400 MT/s, 64-bit with error correcting code (ECC) DIMMs for a total of 64 GB of DDR4. Both devices connect to two QSFP28 connectors with associated clocks generated on board. The following figures show the SLR regions along with the connections for PCIe, DDR4 and QSFP28.


FPGA Resource Information

RL

The Xilinx Alveo U280 accelerator card is a custom-built UltraScale+ FPGA that runs optimally (and exclusively) on the Alveo architecture. The Alveo U280 card features the XCU280 FPGA, which uses Xilinx stacked silicon interconnect (SSI) technology to deliver breakthrough FPGA capacity, bandwidth, and power efficiency. This technology allows for increased density by combining multiple super logic regions (SLRs). The XCU280 comprises three SLRs with the bottom SLR (SLR0) integrating an HBM controller to interface with the adjacent 8 GB HBM2 memory. The bottom SLR also connects to 16 lanes of PCI Express® that can operate up to 16 GT/s (Gen4). SLR0 and SLR1 both connect to a DDR4 16 GB, 2400 MT/s, 64-bit with error correcting code (ECC) DIMM for a total of 32 GB of DDR4. SLR2 connects two QSFP28 connectors with associated clocks generated on the U280 board. The following figure shows the three SLR regions along with the connections for PCIe, DDR4, and QSFP28. The HBM is co-located on the XCU280 device and connects directly to SLR0.

Source: Xilinx Alveo U200 and U250 Data Center Accelerator Cards Data Sheet, DS962 (v1.2.1) December 9, 2019 Xilinx Alveo U280 Data Center Accelerator Card Data Sheet, DS963 (v1.2) November 20, 2019 D

D

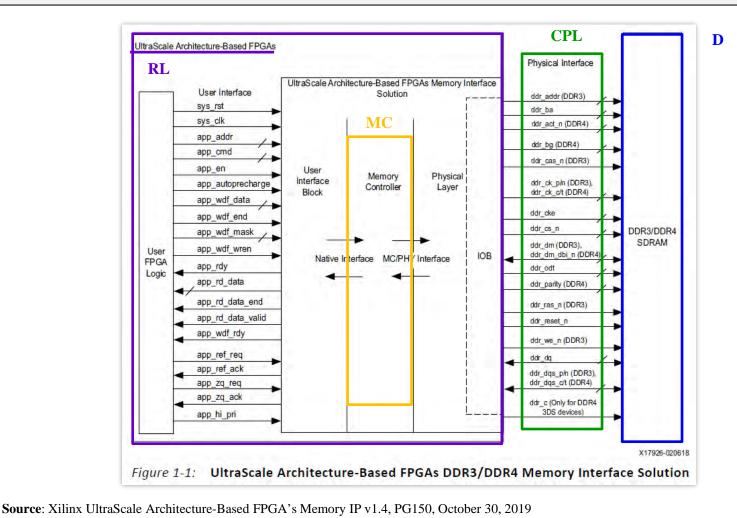

Source: Xilinx Alveo U200 and U250 Data Center Accelerator Cards Data Sheet, DS962 (v1.2.1) December 9, 2019 Xilinx Alveo U280 Data Center Accelerator Card Data Sheet, DS963 (v1.2) November 20, 2019

A computer system comprising:

a DRAM memory;

a reconfigurable logic device having a (MC) memory controller coupled to selected inputs and outputs of said DRAM memory; and

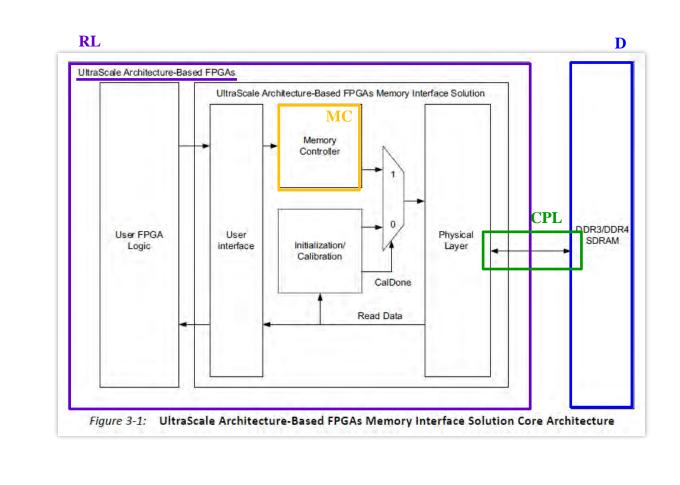
MIC The dynamically programmable region has several DDR/HBM/PLRAM memory interfaces coupled with interconnect logic. The term PLRAM refers to internal UltraRAM/block RAM that can be accessed by host and user kernels. The dynamically programmable region uses the Memory Subsystem (MSS) IP (for DDR/PLRAM) and the HBM Memory Subsystem (HMSS) IP (for HBM). These subsystems are unique to the Vitis platforms. They contain multiple memory interfaces, coupled with the appropriate interconnect IP. When the dynamic region is being built


The Alveo cards use Memory Subsystem IP for its interface to DDR4; this MSS IP (DDR4 IP in the figure) contains the (MC) memory controller.

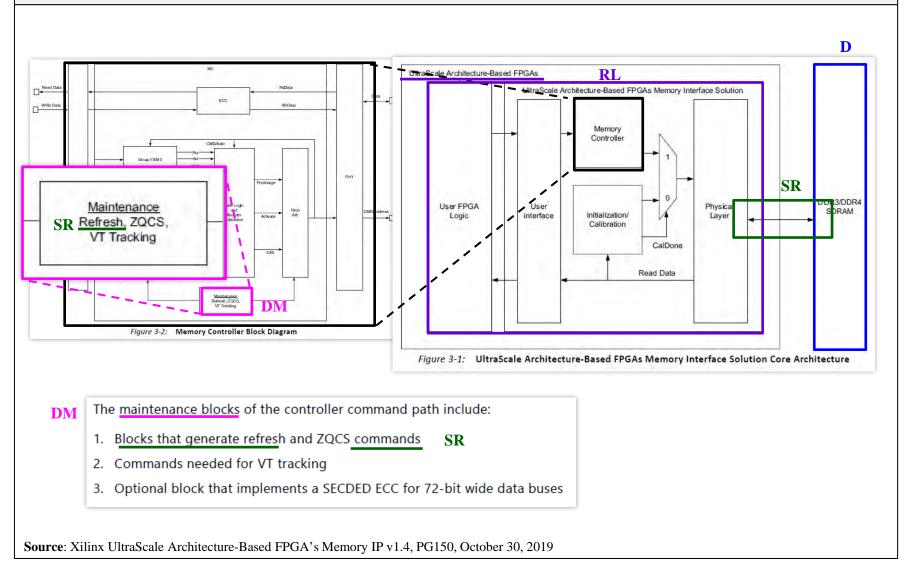
Source: Xilinx Alveo U280 Data Center Accelerator Card User Guide, UG1314 (v1.2.1) November 20, 2019

A computer system comprising:

a (D) DRAM memory;


a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

A computer system comprising:


a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

Case 1:20-cv-206011 (PSU.S. Patement 48153, JPd_0242241veB 2260, 2250, 1138 BageID #: 1819

Claim 1

said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

- **DM** The <u>maintenance blocks</u> of the controller command path include:
 - 1. Blocks that generate refresh and ZQCS commands SR
 - 2. Commands needed for VT tracking
 - 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh SIL

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

SR

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when <u>Self Refresh or Save-Restore</u> option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the

ddr3_reset#/ddr4_reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration.

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

FPGA Resource Information

RL The Xilinx Alveo U200 and U250 accelerator cards are custom-built <u>UltraScale+ FPGAs</u> that run optimally (and exclusively) on the Alveo architecture. The Alveo U200 card features the <u>XCU200 FPGA</u> and the Alveo U250 card uses the <u>XCU250 FPGA</u>, which uses Xilinx stacked silicon interconnect (SSI) technology to deliver breakthrough FPGA capacity, bandwidth, and power efficiency. This technology allows for increased density by combining multiple super logic regions (SLRs). The XCU200 comprises three SLRs and the XCU250 comprises four SLRs. Both devices connect to 16 lanes of PCI Express® that can operate up to 8 GT/s (Gen3). Both devices connect to four DDR4 16 GB, 2400 MT/s, 64-bit with error correcting code (ECC) DIMMs for a total of 64 GB of DDR4. Both devices connect to two QSFP28 connectors with associated clocks generated on board. The following figures show the SLR regions along with the connections for PCIe, DDR4 and QSFP28.

FPGA Resource Information

RL

The Xilinx Alveo U280 accelerator card is a custom-built <u>UltraScale+ FPGA</u> that runs optimally (and exclusively) on the Alveo architecture. The Alveo U280 card features the <u>XCU280 FPGA</u>, which uses Xilinx stacked silicon interconnect (SSI) technology to deliver breakthrough FPGA capacity, bandwidth, and power efficiency. This technology allows for increased density by combining multiple super logic regions (SLRs). The XCU280 comprises three SLRs with the bottom SLR (SLR0) integrating an HBM controller to interface with the adjacent 8 GB HBM2 memory. The bottom SLR also connects to 16 lanes of PCI Express® that can operate up to 16 GT/s (Gen4). SLR0 and SLR1 both connect to a DDR4 16 GB, 2400 MT/s, 64-bit with error correcting code (ECC) DIMM for a total of 32 GB of DDR4. SLR2 connects two QSFP28 connectors with associated clocks generated on the U280 board. The following figure shows the three SLR regions along with the connections for PCle, DDR4, and QSFP28. The HBM is co-located on the XCU280 device and connects directly to SLR0.

Source: Xilinx Alveo U200 and U250 Data Center Accelerator Cards Data Sheet, DS962 (v1.2.1) December 9, 2019 Xilinx Alveo U280 Data Center Accelerator Card Data Sheet, DS963 (v1.2) November 20, 2019 **FPGA**

Case 1:20-cv-20601 (PSUS Patent No. 9,155, 9Pd 02,07,4250, 1230, 1

Claim 9 The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises said (DM) data maintenance block. UltraScale Architecture-Based FPGAs RL Read Da UltraScale Architecture-Based FPGAs Memory Interface Solution RdDate Write Dat ECC WrData Memory Controller MD/Aidd INC. ISM PHY 0 DDR3/DDR4 User Maintenance User FPGA Physical SDRAM and ecider Final interface Initialization/ Layer Advis + Logic Refresh, ZQCS. Calibration VT Tracking CalDone Read Data Refresh, ZQCS VT Irad DM Figure 3-2: Memory Controller Block Diagram Figure 3-1: UltraScale Architecture-Based FPGAs Memory Interface Solution Core Architecture

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

Case 1:20-cv-206011 (PSU.S. Patement 48153, JPD _ 24222 Alve B 2260, 5250, 1238 ageID #: 1822

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is (HSR) operable to hold said DRAM memory in self-refresh mode while said (RL) reconfigurable logic device is (R) reconfigured.

DM The <u>maintenance blocks</u> of the controller command path include:

- 1. Blocks that generate refresh and ZQCS commands
- 2. Commands needed for VT tracking
- 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh HSR

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when Self Refresh or Save-Restore option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/ DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the *ddr3* reset#/*ddr4* reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration; it is used to hold/keep the DRAM memory in selfrefresh mode.

Case 1:20-cv-00601-LPS Document 48 Filed 03/22/21 Page 56 of 113 PageID #: 1823

EXHIBIT D

Exhibit D COSE Patent No. 9,193,317 S x Rinx Untrascale, Futrascale, Zynq-7000 An Programmable Sot, 7 Series FPGA's

()	United States Patent	(10) Patent No.: US 9,153,311 B1 (45) Date of Patent: Oct. 6, 2015
(54)	SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS	6.996.656 B2 2/2006 Burton
(71)	Applicant: SRC Computers, LLC., Colorado Springs, CO (US)	7,003,593 B2 2/2006 Huppenthal et al. 7,124,211 B2 10/2006 Dickson et al. 7,134,120 B2 11/2006 Hammes 7,149,867 B2 12/2006 Hoznarovic et al.
(72)	Inventor: Timothy J. Tewalt, Larkspur, CO (US	7,155,602 B2 12/2006 Poznanovic 7,155,708 B2 12/2006 Hammes et al.
(73)	Assignee: SRC Computers, LLC, Colorado Springs, CO (US)	7,167,976 B2 1/2007 Poznanovic 7,197,575 B2 3/2007 Huppenthal et al. 7,225,324 B2 5/2007 Huppenthal et al. 7,237,091 B2 6/2007 Huppenthal et al.
*)	Notice: Subject to any disclaimer, the term of patent is extended or adjusted under U.S.C. 154(b) by 0 days.	
(21)	Appl. No.: 14/288,094	Allan, Graham, "DDR IP Integration: How to Avoid Landmines in
(22)	Filed: May 27, 2014	this Quickly Changing Landscape", Chip Design, Jun./Jul. 2007, pp. 20-22.
	Int. CL. G11C 7/00 (2006.01) G11C 11/406 (2006.01) U.S. CL.	(Continued) Primary Examiner — Hoai V Ho (74) Attorney, Agent, or Firm — Peter J. Meza; William J.
(58)	CPC	
	References Cited U.S. PATENT DOCUMENTS 5005455 A 2000 50054554 A 2000 50054554 A 2000 50054554 B 2000 50054554 B 2000 50054514 B 2000 50054514 B 2000 5005451 B 2000 5005475 2000 5005	memory (DRAM) data when reprogramming reconfigurable devices with DRAM memory controllers use that Bield pro- grammable gate arrays (PFGA). The DRAM memory con- troller is utilized in concert with an internally or externally located data minimes with an internally of the data main- tenance block drives the self-refresh command inputs. Even inputs are ris-struct, the data maintenance block, provide stable input levels on the self-refresh command inputs. 19 Claims, 2 Drawing Sheets

Title: SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS

Priority Date: May 27, 2014

Filed Date: May 27, 2014

Issued Date: Oct. 06, 2015

Expiration Date: May 27, 2034

Inventor: Timothy J. Tewalt

Exemplary Claims: 1, 3, 9, 10

A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Claim 9

The computer system of claim 1 wherein said (**RL**) reconfigurable logic device comprises said (**DM**) data maintenance block.

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is operable to hold said (D) DRAM memory in (SR) self-refresh mode while said reconfigurable logic device is (R) reconfigured.

Exhibit D COSC Patent No. 9,993,347 S XPACUMENT 48e+, Führ a Scale, Zynq-7000 A 1999 og rammable Sott, 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

		Device Name	KU3P	KU5P	KU9P	KU11P	KU13P	KU15P	KU19P
	System I	Logic Cells (K)	356	475	600	653	747	1,143	1,843
Logic	CLB	Flip-Flops (K)	325	434	548	597	683	1,045	1,685
		CLB LUTs (K)	163	217	274	299	341	523	842
	Max. Distribut	ed RAM (Mb)	4.7	6.1	8.8	9.1	11.3	9.8	11.6
Memory	Total Blo	ock RAM (Mb)	12.7	16.9	32.1	21.1	26.2	34.6	60.8
	UI	ltraRAM (Mb)	13.5	18.0	0	22.5	31.5	36.0	81.0
Clocking	Clock Mgmt	t Tiles (CMTs)	4	4	4	8	4	11	9
		DSP Slices	1,368	1,824	2,520	2,928	3,528	1,968	1,080
	PCIE4 (PCI	e® Gen3 x16)	1	1	0	4	0	5	0
Integrated IP		e® Gen3 x16 / en4 x8 /CCIX)	0	0	0	0	0	0	3
	150	0G Interlaken	0	0	0	1	0	4	0
3	100G Ethernet w	/ KR4 RS-FEC	0	1	0	2	0	4	1
	Max. Single-E	nded HD I/Os	96	96	96	96	96	96	72
1/0	Max. Single-E	inded HP I/Os	208	208	208	416	208	572	468
1/0	GTH 16.3Gb/s	Transceivers	0	0	28	32	28	44	0
	GTY 32.75Gb/s	Transceivers	16	16	0	20	0	32	32
opeed Grades		Extended ⁽¹⁾	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L -3			
speed Grades		Industrial	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2
	Footprint ^(2, 3) D	imensions (mm)			HD I/O,	HP I/O, GTH 16.3Gb/s, GT	(32.75Gb/s		
to .	B784 ⁽⁴⁾	23x23 ⁽⁵⁾	96, 208, 0, 16	96, 208, 0, 16					
entifi	A676 ⁽⁴⁾	27x27	48, 208, 0, 16	48, 208, 0, 16					
Dnm int id	B676	27x27	72, 208, 0, 16	72, 208, 0, 16					
e with 20nm e footprint identifier	D900 ⁽⁴⁾	31x31	96, 208, 0, 16	96, 208, 0, 16		96, 312, 16, 0			
ne fo	E900	31x31			96, 208, 28, 0		96, 208, 28, 0		
h sar	A1156 ⁽⁴⁾	35x35				48, 416, 20, 8		48, 468, 20, 8	

For clarity, accused products from the above-referenced table appear below:

• Kintex UltraScale+ FPGA Devices - KU3P, KU5P, KU9P, KU11P, KU13P, KU15P, KU19P

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Kintex devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx UltraScale+ FPGA Product Tables and Product Selection Guide, XMP103 (v1.21)

Exhibit D - O.S. Patent No. 9,193,347 Strink Ultrascale+, Führlascale, Zynq-7000 An Programmable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

				Found	dation				2	58G PAM4	
	Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU19P	VU23P	VU27P	VU29P
System	m Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	8,938	2,252	2,835	3,780
C	LB Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	8,172	2,059	2,592	3,456
	CLB LUTs (K)	394	601	788	1,182	1,296	1,728	4,086	1,030	1,296	1,728
Max.	Dist. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	58.4	14.2	36.2	48.3
Total I	Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	75.9	74.3	70.9	94.5
	UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	90.0	99.0	270.0	360.0
	DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	3,840	1,320	9,216	12,288
Peak If	T8 DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	10.4	4.1	28.7	38,3
	PCIe® Gen3 x16	2	4	4	6	3	4	0	0	1	1
le Gen3 x16/0	Gen4 x8 / CCIX ⁽¹⁾	-						8	4		
	150G Interlaken	3	4	6	9	6	8	0	0	8	8 5
	t w/ KR4 RS-FEC	3	4	6	9	9	12	0	2	15	8 Virtex 676 0
Max. Single	-Ended HP I/Os	520	832	832	832	624	832	1,976	572	676	676 🕑
Max. Single	-Ended HD I/Os	0	0	0	0	0	0	96	72	0	0 🔒
	o/s Transceivers	40	80	80	120	96	128	80	34	32	
M 58Gb/s PA	M4 Transceivers	(e)		-				-	4	48	48
100	G / 50G KP4 FEC			-				-	2/4	24/48	24/48
	Extended ⁽²⁾	-1 -2 -2L -3	-1 -2	-1 -2 -2L -3	-1 -2 -2L -3	-1-2-2L-3 🕥					
	Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-	-1, -2	-1 -2	-1-2
otprint ^(3,4,5)	Dim. (mm)			HP I/	D, GTY			HP I/O, HD I/O, GTY	HP I/O, HD I/O, GTY, GTM		32 48 24/48 -1-2-2∟-3 -1-2 -1-2
A1365 ⁽⁴⁾	35x35				[364, 0, 34 ⁽⁸⁾ , 4		1
C1517	40x40	520, 40							The second se		2
J1760	42.5x42.5								572, 72, 34, 4		
F1924 ⁽⁶⁾	45x45					624, 64					õ
	47.5x47.5		832, 52	832, 52	832, 52						FPGAs
A2104	52.5x52.5 ⁽⁷⁾		002/02	002/02	002/02		832, 52				0
	47.5x47.5		702, 76	702, 76	702, 76	572, 76	032, 32				
B2104	52.5x52.5 ⁽⁷⁾		702, 70	702,70	702,70	372,70	700 70				
							702, 76				
C2104	47.5x47.5		416, 80	416, 80	416, 104	416, 96					
	52.5x52.5 ⁽⁷⁾						416, 104				
D2104	47.5x47.5				676, 76	572, 76					
02104	52.5x52.5 ⁽⁷⁾						676, 76			676, 16, 30	676, 16, 30
	47.5x47.5										

For clarity, accused products from the above-referenced table appear below:

• Virtex UltraScale+ FPGA Devices - VU3P, VU5P, VU7P, VU9P, VU11P, VU13P, VU19P, VU23P, VU27P, VU29

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Virtex devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx UltraScale+ FPGA Product Tables and Product Selection Guide, XMP103 (v1.21)

Exhibit D - O.S. Patent No. 9,193,341 S XPACUMENT 48e+, Führlascale, Zynq-7000 An Programmable Sot, 7 series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

		HBM (4GB)		HBM (8GB)			HBM (16GB)		
	Device Name	VU31P	VU33P	VU35P	VU37P	VU45P	VU47P	VU57P	
	System Logic Cells (K)	962	962	1,907	2,852	1,907	2,852	2,852	
	CLB Flip-Flops (K)	879	879	1,743	2,607	1,743	2,607	2,607	
	CLB LUTs (K)	440	440	872	1,304	872	1,304	1,304	
	Max. Dist. RAM (Mb)	12.5	12.5	24.6	36.7	24.6	36.7	36.7	\leq
	Total Block RAM (Mb)	23.6	23.6	47.3	70.9	47.3	70.9	70.9	
	UltraRAM (Mb)	90.0	90.0	180.0	270.0	180.0	270.0	270.0	6
	HBM DRAM (GB)	4	8	8	8	16	16	16	Virtex®
	HBM AXI Interfaces	32	32	32	32	32	32	32	
Cl	lock Mgmt Tiles (CMTs)	4	4	8	12	8	12	12	C
	DSP Slices	2,880	2,880	5,952	9,024	5,952	9,024	9,024	UltraScale+™
	Peak INT8 DSP (TOP/s)	8.9	8.9	18.6	28.1	18.6	28.1	28.1	a
	PCIe® Gen3 x16	0	0	1	2	1	2	0	S
PCIe Gen	3 x16/Gen4 x8 / CCIX ⁽¹⁾	4	4	4	4	4	4	4	8
	150G Interlaken	0	0	2	4	2	4	4	
100G E	thernet w/ KR4 RS-FEC	2	2	5	8	5	8	10	4
Max	k. Single-Ended HP I/Os	208	208	416	624	416	624	624	Ę
GTY	32.75Gb/s Transceivers	32	32	64	96	64	96	32	
GTM 58G	b/s PAM4 Transceivers		÷	-		-	-	32	FPGAs
	100G / 50G KP4 FEC	-	-	-	-	-	-	16/32	۵ I
	Extended ⁽²⁾	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L -3					
	Industrial	-	=.	-	-	-	-	-	S
Footprint ^(3, 4, 5, 6)	Dim. (mm)			HP I/	O, GTY			HP I/O, GTY, GTM	
H1924	45x45	208, 32				11			
H2104	47.5x47.5		208, 32	416, 64		416, 64			
H2892	55x55			416, 64	624, 96	416, 64	624, 96		
K2892	55x55					· · · · · · · · · · · · · · · · · · ·		624, 32, 32	

For clarity, accused products from the above-referenced table appear below:

• Virtex UltraScale+ FPGA Devices - VU31P, VU33P, VU35P, VU37P, VU45P, VU47P, VU57P

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Virtex devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx UltraScale+ FPGA Product Tables and Product Selection Guide, XMP103 (v1.21)

Exhibit D COSE Patent No. 9,993, JHTS XR0x UNFascale+, Fulfra Scale, Zyng-7000 A92Ph grammable Sott, 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and

	Device Name ⁽¹⁾	ZU2CG	ZU3CG	ZU4CG	ZU5CG	ZU6CG	ZU7CG	ZU9CG			
Application	Processor Core		Dual-	core ARM® Co	rtex™-A53 MP	Core [™] up to 1	L.3GHz				
Processor Unit	Memory w/ECC		L1 Cache 32K	BI/D per cor	e, L2 Cache 1M	MB, on-chip M	lemory 256KB				
Real-Time	Processor Core		Du	al-core ARM C	ortex-R5 MPC	ore up to 533	MHz				
Processor Unit	Memory w/ECC		L1 Cache 32KE	BI/Dpercore	, Tightly Coup	led Memory 1	28KB per core	·			
	Dynamic Memory Interface		x32/x64	4: DDR4, LPDD	R4, DDR3, DD	R3L, LPDDR3 V	with ECC				
External Memory	Static Memory Interfaces			NA	ND, 2x Quad-	SPI					
Compared to a	High-Speed Connectivity	PCIe	e® Gen2 x4, 2x	USB3.0, SATA	3.1, DisplayPo	ort, 4x Tri-mod	le Gigabit Ethe	rnet			
Connectivity	General Connectivity		USB 2.0, 2x SD								
Integrated Block	Power Management			Full / Low / F	L / Battery Po	wer Domains					
	Security	RSA, AES, and SHA									
Functionality	AMS - System Monitor	10-bit, 1MSPS – Temperature and Voltage Monitor									
to PL Interface				12 x 3	2/64/128b AX	I Ports					
	System Logic Cells (K)	103	154	192	256	469	504	600			
Programmable	CLB Flip-Flops (K)	94	141	176	234	429	461	548			
Functionality	CLB LUTs (K)	47	71	88	117	215	230	274			
	Max. Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8			
Memory	Total Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1			
	UltraRAM (Mb)		-	13.5	18.0	2	27.0	-			
Clocking	Clock Management Tiles (CMTs)	3	3	4	4	4	8	4			
	DSP Slices	240	360	728	1,248	1,973	1,728	2,520			

For clarity, accused products from the above-referenced table appear below:

• Zyng UltraScale+ MPSoC: CG Devices - ZU2CG, ZU3CG, ZU4CG, ZU5CG, ZU6CG, ZU7CG, ZU9CG

FPGA's are typically used in designs including external memory, like the (D) DRAM memory \rightarrow external memory devices supported by Zyng devices (DDR4, DDR3, DDR3L, LPDDR4, LPDDR3, External Quad-SPI, NAND, eMMC). Board level integration of FPGA's connected or coupled to (D) DRAM memory \rightarrow external memory creates a (CS) computer system.

Source: Xilinx Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide, XMP104 (v2.4)

RL

Exhibit D COS. Patent No. 9,993,347 S XRAX UNFAStale+, UfflaScale, Zynq-7000 An PPf grammable Sot, 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

_	Device Name ⁽¹⁾	711250	7U3EG	7U4EG	711550	THEFE	711750	711050	7111150	THAFFC	7111750	7111050	
Application	Processor Core	ZUZEG	203EG			ZU6EG			[™] up to 1.		2017EG	ZU19EG	
Processor Unit	Memory w/ECC		11							mory 256	SKR		
Real-Time	Processor Core				and the local division of the local division	and the second			p to 600M	State of the local division of the local div	NO.		
Processor Unit	Memory w/ECC		110			A LOW STREET COL				8KB per o	core		
Graphic & Video	Graphics Processing Unit					1ali™-400		and the second second second	the part of the second second second	one por c			
	Memory L2 Cache 64KB												
Acceleration	Dynamic Memory Interface	Dynamic Memory Interface x32/x64: DDR4, LPDDR4, DDR3, DDR3L, LPDDR3 with ECC							1				
External Memory	Static Memory Interfaces), 2x Qua						
External Memory	High-Speed Connectivity		PCle® G	en2 x4, 2	x USB3.0	, SATA 3.	1, Display	Port, 4x	Tri-mode	Gigabit E	Ethernet		
Connectivity	General Connectivity		2xUSB	2.0, 2x S	D/SDIO,	2x UART,	2x CAN	2.0B, 2x	12C, 2x S	PI, 4x 32	b GPIO		
	Power Management				and the second s	Low / PL /			and the second second second				
Integrated Block	Security					RSA,	AES, and	SHA					1
Functionality	AMS - System Monitor			10-	bit, 1MS	PS – Tem	perature	and Volt	age Mon	itor			
5 to PL Interface						12 x 32/	64/128b	AXI Ports	S				
Due museus a bia	System Logic Cells (K)	103	154	192	256	469	504	600	653	747	926	1,143	RL
Programmable Functionality	CLB Flip-Flops (K)	94	141	176	234	429	461	548	597	682	847	1,045	
Functionality	CLB LUTs (K)	47	71	88	117	215	230	274	299	341	423	523	
	Max. Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8	9.1	11.3	8.0	9.8	
Memory	Total Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1	21.1	26.2	28.0	34.6	

For clarity, accused products from the above-referenced table appear below:

• Zynq UltraScale+ MPSoC: EG Devices - ZU2EG, ZU3EG, ZU4EG, ZU5EG, ZU6EG, ZU7EG, ZU9EG, ZU11EG, ZU15EG, ZU17EG, ZU19EG

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Zynq devices (DDR4, DDR3, DDR3L, LPDDR4, LPDDR3, External Quad-SPI, NAND, eMMC). Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide, XMP104 (v2.4)

Exhibit D - O.S. Patent No. 9,193,317 S X MAX Ultrascale+, Fultrascale, Zynq-7600 All Programmable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

	Device Name ⁽¹⁾	ZU4EV	ZU5EV	ZU7EV					
Application	Processor Core	Quad-core	e ARM® Cortex™-A53 MPCore™ u	p to 1.5GHz					
Processor Unit	Memory w/ECC	L1 Cache 32KB I / D per core, L2 Cache 1MB, on-chip Memory 256KB							
Real-Time	Processor Core	Dual-co	re ARM Cortex-R5 MPCore™ up to	o 600MHz					
Processor Unit	Memory w/ECC	L1 Cache 32KB I /	D per core, Tightly Coupled Mem	ory 128KB per core					
Graphic & Video Acceleration	Graphics Processing Unit	Mali™-400 MP2 up to 667MHz							
Acceleration	Memory		L2 Cache 64KB						
External Manager	Dynamic Memory Interface	x32/x64: D	DR4, LPDDR4, DDR3, DDR3L, LPDE	DR3 with ECC					
External Memory	Static Memory Interfaces		NAND, 2x Quad-SPI						
External Memory Connectivity	High-Speed Connectivity	PCle® Gen2 x4, 2x USI	33.0, SATA 3.1, DisplayPort, 4x Tri	-mode Gigabit Ethernet					
Connectivity	General Connectivity	2xUSB 2.0, 2x SD/SD	IO, 2x UART, 2x CAN 2.0B, 2x I2C	, 2x SPI, 4x 32b GPIO					
	Power Management	Fu	II / Low / PL / Battery Power Dom	ains					
Integrated Block	Security		RSA, AES, and SHA						
Functionality	AMS - System Monitor	10-bit, 1	MSPS – Temperature and Voltage	e Monitor					
to PL Interface			12 x 32/64/128b AXI Ports						
Programmable	System Logic Cells (K)	192	256	504					
Functionality	CLB Flip-Flops (K)	176	234	461					
runctionality	CLB LUTs (K)	88	117	230					
	Max. Distributed RAM (Mb)	2.6	3.5	6.2					
Memory	Total Block RAM (Mb)	4.5	5.1	11.0					
	UltraRAM (Mb)	13.5	18.0	27.0					
Clocking	Clock Management Tiles (CMTs)	4	4	8					

For clarity, accused products from the above-referenced table appear below:

• Zynq UltraScale+ MPSoC: EV Devices - ZU4EV, ZU5EV, ZU7EV

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Zynq devices (DDR4, DDR3, DDR3L, LPDDR4, LPDDR3, External Quad-SPI, NAND, eMMC). Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide, XMP104 (v2.4)

Exhibit D COSC Patent No. 9,993,347 S XPACUIT as cale+, Fultra Scale; Zynq-7000 An Programmable Sot; 7 Series FPGA's

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

	Device Name	ZU21DR	ZU25DR	ZU27DR	ZU28DR	ZU29DR	ZU39DR	ZU42	2DR	ZU43DR	ZU46	DR	ZU47DR	ZU48DR	ZU49DR
				Gen 1			Gen 2					Gen	3		
		Quad-	core Arm®	Cortex [®] -A5	3 MPCore™	up to 1.3G	Hz, Dual-co	re Arm	n Cort	ex-R5F MP	Core up	to 533	3MHz		
2-bit RF-ADC	# of ADCs	0	8	8	8	16	16	-		-	-		-	-	-
w/DDC	Max Rate (GSPS)	0	4.096	4.096	4.096	2.058	2.220	-		-	-		-	-	-
4-bit RF-ADC	# of ADCs	-	-	-	-	-	-	8	2	4	8	4	8	8	16
w/DDC	Max Rate (GSPS)	-	-	-	-	-	-	2.5	5.0	5.0	2.5	5.0	5.0	5.0	2.5
4-bit RF-DAC	# of DACs	0	8	8	8	16	16	8		4	12		8	8	16
w/DUC	Max Rate (GSPS)	0	6.554	6.554	6.554	6.554	6.554	10.	.0	10.0	10.	D	10.0	10.0	10.0
	SD-FEC	8	0	0	8	0	0	0		0	8		0	8	0
Number	of DDCs per RF-ADC ⁽¹⁾	0	1	1	1	1	1	1		2	1		1	1	1
R	F input Freq max. GHz			4			5					6			
Deci	mation / Interpolation			1x, 2x, 4x, 8x			1x, 2x, 4x, 8x			1x, 2x, 3x,	4x, 5x, 6x	, 8x, 10	x, 12x, 16x, 20	x, 24x, 40x	
	System Logic Cells (K)	930	678	930	930	930	930	48	9	930	930)	930	930	930
	CLB LUTs (K)	425	310	425	425	425	425	22	4	425	42	5	425	425	425
	Max. Dist. RAM (Mb)	13.0	9.6	13.0	13.0	13.0	13.0	6.8	в	13.0	13.	0	13.0	13.0	13.0
	Total Block RAM (Mb)	38.0	27.8	38.0	38.0	38.0	38.0	22.	8	38.0	38.	0	38.0	38.0	38.0
	UltraRAM (Mb)	22.5	13.5	22.5	22.5	22.5	22.5	45.	.0	22.5	22.	5	22.5	22.5	22.5
	DSP Slices	4,272	3,145	4,272	4,272	4,272	4,272	1,87	72	4,272	4,27	2	4,272	4,272	4,272
	GTY Transceivers	16	8	16	16	16	16	8		16	16		16	16	16
	PCle [⊕] Gen3 x16	2	1	2	2	2	2	-		-	-		-	-	-
PCIeGen3	x16/Gen4 x8 / CCIX ⁽²⁾	-	-	-	-	-	-	0		2	2		2	2	2
	150G Interlaken	1	1	1	1	1	1	0		1	1		1	1	1
100G Ethern	et MAC/PCS w/RS-FEC	2	1	2	2	2	2	0		2	2		2	2	2
	System Monitor	1	1	1	1	1	1	1		1	1		1	1	1

For clarity, accused products from the above-referenced table appear below:

• Zynq UltraScale+ RFSoC Devices - ZU21DR, ZU25DR, ZU27DR, ZU28DR, ZU29DR, ZU39DR, ZU42DR, ZU43DR, ZU46DR, ZU47DR, ZU48DR, ZU49DR

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Zynq devices (DDR4, DDR3, DDR3L, LPDDR4, LPDDR3, External Quad-SPI, NAND, eMMC). Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx Zynq UltraScale+ RFSoC Product Tables and Product Selection Guide, XMP105 (v1.9)

Exhibit D -0.8. Patent No. 9,993,317 S XPAX UNtrascale+, Fultrascale, Zynq-7000 A90 Programmable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

	Device Name	KU025 ⁽¹⁾	KU035	KU040	KU060	KU085	KU095	KU115
	System Logic Cells (K)	318	444	530	726	1,088	1,176	1,451
Logic Resources	CLB Flip-Flops	290,880	406,256	484,800	663,360	995,040	1,075,200	1,326,720
	CLB LUTs	145,440	203,128	242,400	331,680	497,520	537,600	663,360
	Maximum Distributed RAM (Kb)	4,230	5,908	7,050	9,180	13,770	4,800	18,360
	Block RAM/FIFO w/ECC (36Kb each)	360	540	600	1,080	1,620	1,680	2,160
lemory Resources	Block RAM/FIFO (18Kb each)	720	1,080	1,200	2,160	3,240	3,360	4,320
	Total Block RAM (Mb)	12.7	19.0	21.1	38.0	56.9	59.1	75.9
Clock Resources	CMT (1 MMCM, 2 PLLs)	6	10	10	12	22	16	24
CIOCK Resources	I/O DLL	24	40	40	48	56	64	64
	Maximum Single-Ended HP I/Os	208	416	416	520	572	650	676
10.0	Maximum Differential HP I/O Pairs	96	192	192	240	264	288	312
I/O Resources	Maximum Single-Ended HR I/Os	104	104	104	104	104	52	156
	Maximum Differential HR I/O Pairs	48	48	48	48	56	24	72
	DSP Slices	1,152	1,700	1,920	2,760	4,100	768	5,520
	System Monitor	1	1	1	1	2	1	2
Integrated IP	PCle ^e Gen1/2/3	1	2	3	3	4	4	6
Resources	Interlaken	0	0	0	0	0	2	0
	100G Ethernet	0	0	0	0	0	2	0
		10	15	22	22		c a(2)	

For clarity, accused products from the above-referenced table appear below:

• Kintex UltraScale FPGA Devices - KU025, KU035, KU040, KU060, KU085, KU095, KU115

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Virtex devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx UltraScale FPGA Product Tables and Product Selection Guide, XMP102 (v1.7)

Exhibit D -0.8. Patent No. 9,993,317 S XIMX UNtrascale, Führlascale, Zynq-7000 A97 Programmable Bott, 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

	Device Name	XCVU065	XCVU080	XCVU095	XCVU125	XCVU160	XCVU190	XCVU440
Logic Resources	System Logic Cells (K)	783	975	1,176	1,567	2,027	2,350	5,541
and a second second	CLB Flip-Flops	716,160	891,424	1,075,200	1,432,320	1,852,800	2,148,480	5,065,920
	CLB LUTs	358,080	445,712	537,600	716,160	926,400	1,074,240	2,532,960
	Maximum Distributed RAM (Kb)	4,830	3,980	4,800	9,660	12,690	14,490	28,710
Memory Resources	Block RAM/FIFO w/ECC (36Kb each)	1,260	1,421	1,728	2,520	3,276	3,780	2,520
wembry Resources	Block RAM/FIFO (18Kb each)	2,520	2,842	3,456	5,040	6,552	7,560	5,040
	Total Block RAM (Mb)	44.3	50.0	60.8	88.6	115.2	132.9	88.6
	CMT (1 MMCM, 2 PLLs)	10	16	16	20	28	30	30
Clock Resources	I/O DLL	40	64	64	80	120	120	120
	Transceiver Fractional PLL	5	8	8	10	13	15	0
	Maximum Single-Ended HP I/Os	468	780	780	780	650	650	1,404
I/O Resources	Maximum Differential HP I/O Pairs	216	360	360	360	300	300	648
I/O RESOURCES	Maximum Single-Ended HR I/Os	52	52	52	52	52	52	52
	Maximum Differential HR I/O Pairs	24	24	24	24	24	24	24
	DSP Slices	600	672	768	1,200	1,560	1,800	2,880
	System Monitor	1	1	1	2	3	3	3
Integrated IP	PCle [®] Gen1/2/3	2	4	4	4	4	6	6
Resources	Interlaken	3	6	6	6	8	9	0
Resources	100G Ethernet	3	4	4	6	9	9	3
	GTH 16.3Gb/s Transceivers	20	32	32	40	52	60	48

For clarity, accused products from the above-referenced table appear below:

• Virtex UltraScale FPGA Devices - XCVU065, XCVU080, XCVU095, VCVU125, XCVU160, XCVU190, XCVU440

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Virtex devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Source: Xilinx UltraScale FPGA Product Tables and Product Selection Guide, XMP102 (v1.7)

Exhibit D -0:39. Patent No. 9,993,317 S XMAX UNFAScale+, Fuff a Scale, Zynq-7000 An PPf grammable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

		I/O Optimizati (1.0V, 0.95V)	ion at the Lowe	st Cost and Hig	hest Performan	ce-per-Watt		
	Part Number	XC7S6	XC7S15	XC7S25	XC7S50	XC7S75	XC7S100	
	Logic Cells	6,000	12,800	23,360	52,160	76,800	102,400	1
Logic Resources	Slices	938	2,000	3,650	8,150	12,000	16,000	
	CLB Flip-Flops	7,500	16,000	29,200	65,200	96,000	128,000	
	Max. Distributed RAM (Kb)	70	150	313	600	832	1,100	
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	5	10	45	75	90	120	L
	Total Block RAM (Kb)	180	360	1,620	2,700	3,240	4,320	
Clock Resources	Clock Mgmt Tiles (1 MMCM + 1 PLL)	2	2	3	5	8	8	L
1/0 0	Max. Single-Ended I/O Pins	100	100	150	250	400	400	
I/O Resources	Max. Differential I/O Pairs	48	48	72	120	192	192	
	DSP Slices	10	20	80	120	140	160	Τ
Embedded Hard IP Resources	Analog Mixed Signal (AMS) / XADC	0	0	1	1	1	1	
	Configuration AES / HMAC Blocks	0	0	1	1	1	1	
	Commercial Temp (C)	-1,-2	-1,-2	-1,-2	-1,-2	-1,-2	-1,-2	
Speed Grades	Industrial Temp (I)	-1211	-1211	-1211	-1211	-1211	-1211	

For clarity, accused products from the above-referenced table appear below:

• Spartan 7-Series FPGA Devices - XC7S6, XC7S15, XC7S25, XC7S50, XC7S75, XC7S100

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Spartan-7 devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Exhibit D - O.S. Patent No. 9,193,347 S XPinx Ultrascale+, Führlascale, Zynq-7000 An Programmable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

Artix	-7 FPGAs								
		Fransceiver Opti 1.0V, 0.95V, 0.9		owest Cost and I	Highest DSP Band	dwidth			
	Part Number	XC7A12T	XC7A15T	XC7A25T	XC7A35T	XC7A50T	XC7A75T	XC7A100T	XC7A200T
	Logic Cells	12,800	16,640	23,360	33,280	52,160	75,520	101,440	215,360
Logic Resources	Slices	2,000	2,600	3,650	5,200	8,150	11,800	15,850	33,650
Resources	CLB Flip-Flops	16,000	20,800	29,200	41,600	65,200	94,400	126,800	269,200
	Maximum Distributed RAM (Kb)	171	200	313	400	600	892	1,188	2,888
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	20	25	45	50	75	105	135	365
Resources	Total Block RAM (Kb)	720	900	1,620	1,800	2,700	3,780	4,860	13,140
Clock Resources	CMTs (1 MMCM + 1 PLL)	3	5	3	5	5	6	6	10
1/0 0	Maximum Single-Ended I/O	150	250	150	250	250	300	300	500
I/O Resources	Maximum Differential I/O Pairs	72	120	72	120	120	144	144	240
	DSP Slices	40	45	80	90	120	180	240	740
	PCle [®] Gen2 ⁽¹⁾	1	1	1	1	1	1	1	1
Embedded Hard IP Resources	Analog Mixed Signal (AMS) / XADC	1	1	1	1	1	1	1	1
	Configuration AES / HMAC Blocks	1	1	1	1	1	1	1	1
	GTP Transceivers (6.6 Gb/s Max	2	4	4	4	4	8	8	16

For clarity, accused products from the above-referenced table appear below:

Artix 7-Series FPGA Devices - XC7A12T, XC7A15T, XC7A25T, XC7A35T, XC7A50T, XC7A75T, XC7A100T, XC7A200T

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Artix-7 devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Exhibit D - O.S. Patent No. 9,193, 317 S X Rox Ultrascale+, Fultrascale, Zynq-7600 ATPPogrammable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

Kintex-7 FPGAs

	Optimized for Best Price-Performance (1.0V, 0.95V, 0.9V)											
	Part Number	XC7K70T	XC7K160T	XC7K325T	XC7K355T	XC7K410T	XC7K420T	XC7K480T				
	EasyPath™ Cost Reduction Solutions ⁽¹⁾	_	_	XCE7K325T	XCE7K355T	XCE7K410T	XCE7K420T	XCE7K480T				
	Slices	10,250	25,350	50,950	55,650	63,550	65,150	74,650				
Logic Resources	Logic Cells	65,600	162,240	326,080	356,160	406,720	416,960	477,760				
	CLB Flip-Flops	82,000	202,800	407,600	445,200	508,400	521,200	597,200				
	Maximum Distributed RAM (Kb)	838	2,188	4,000	5,088	5,663	5,938	6,788				
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	135	325	445	715	795	835	955				
	Total Block RAM (Kb)	4,860	11,700	16,020	25,740	28,620	30,060	34,380				
Clock Resources	CMTs (1 MMCM + 1 PLL)	6	8	10	6	10	8	8				
1/0 0	Maximum Single-Ended I/O	300	400	500	300	500	400	400				
I/O Resources	Maximum Differential I/O Pairs	144	192	240	144	240	192	192				
	DSP48 Slices	240	600	840	1,440	1,540	1,680	1,920				
	PCIe [®] Gen2 ⁽²⁾	1	1	1	1	1	1	1				
Integrated IP Resources	Analog Mixed Signal (AMS) / XADC	1	1	1	1	1	1	1				
nessarees	Configuration AES / HMAC Blocks	1	1	1	1	1	1	1				

For clarity, accused products from the above-referenced table appear below:

Kintex 7-Series FPGA Devices - XC7K70T, XC7K160T, XC7K325T, XCE7K325T, XC7K355T, XCE7K355T, XC7K410T, XC7K410T, XC7K420T, XCE7K420T, XC7K480T, XCE7K480T

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Kintex-7 devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Exhibit D - O.S. Patent No. 9,193,347 S X Rox Ultrascale+, Fultrascale, Zynq-7600 All Programmable Sot; 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

Virtex-7 FPGAs

		Dptimized for H 1.0V)	lighest System	Performance a	nd Capacity								
	Part Number	XC7V585T	XC7V2000T	XC7VX330T	XC7VX415T	XC7VX485T	XC7VX550T	XC7VX690T	XC7VX980T	XC7VX1140T	XC7VH580T	XC7VH870T	
	EasyPath™ Cost Reduction Solutions ⁽¹⁾	XCE7V585T	-	XCE7VX330T	XCE7VX415T	XCE7VX485T	XCE7VX550T	XCE7VX690T	XCE7VX980T	-	-	-	
Logic	Slices	91,050	305,400	51,000	64,400	75,900	86,600	108,300	153,000	178,000	90,700	136,900	١.
Resources	Logic Cells	582,720	1,954,560	326,400	412,160	485,760	554,240	693,120	979,200	1,139,200	580,480	876,160	F
Resources	CLB Flip-Flops	728,400	2,443,200	408,000	515,200	607,200	692,800	866,400	1,224,000	1,424,000	725,600	1,095,200	
Mamani	Maximum Distributed RAM (Kb)	6,938	21,550	4,388	6,525	8,175	8,725	10,888	13,838	17,700	8,850	13,275	
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	795	1,292	750	880	1,030	1,180	1,470	1,500	1,880	940	1,410	
Resources	Total Block RAM (Kb)	28,620	46,512	27,000	31,680	37,080	42,480	52,920	54,000	67,680	33,840	50,760	
Clocking	CMTs (1 MMCM + 1 PLL)	18	24	14	12	14	20	20	18	24	12	18	
I/O	Maximum Single-Ended I/O	850	1,200	700	600	700	600	1,000	900	1,100	600	300	L
Resources	Maximum Differential I/O Pairs	408	576	336	288	336	288	480	432	528	288	144	
	DSP Slices	1,260	2,160	1,120	2,160	2,800	2,880	3,600	3,600	3,360	1,680	2,520	i.
	PCIe [®] Gen2 ⁽²⁾	3	4	-	-	4	-	-	-	-	-	-	
	PCIe Gen3	-	-	2	2	-	2	3	3	4	2	3	1
Integrated IP	Analog Mixed Signal (AMS) / XADC	1	1	1	1	1	1	1	1	1	1	1	
Resources	Configuration AES / HMAC Blocks	1	1	1	1	1	1	1	1	1	1	1	
	GTX Transceivers (12.5 Gb/s Max Rate) ⁽³⁾	36	36	_	_	56	_	_	_	_	_	_	

For clarity, accused products from the above-referenced table appear below:

Virtex 7-Series FPGA Devices - XC7V585T, XCE7V585T, XC7V2000T, XC7VX330T, XCE7VX330T, XC7VX415T, XCE7VX415T, XC7VX485T, XCE7VX485T, XC7VX550T, XCE7VX550T, XC7VX690T, XCE7VX690T, XC7VX980T, XCE7VX980T, XC7VH580T, XC7VH870T

FPGA's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Virtex-7 devices. Board level integration of FPGA's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

Exhibit D COS. Patent No. 9,993,317 S XRAX UNFAStale+, UfflaScale, Zynq-7000 ATPPfgrammable Sot, 7 Series FPGA's

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

Zynq®-7000 SoC Family

		_	(Cost-Optimi	zed Device	Mid-Range Devices							
	Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100		
	Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100		
	Processor Core	Single-Core ARM® Cortex™-A9 MPCore™ Up to 766MHz			Cor	ual-Core AR tex-A9 MPC Ip to 866MF	Core	Dual-Core ARM Cortex-A9 MPCore Up to 1GHz ⁽¹⁾					
(Sd)	Processor Extensions	ns NEON™ SIMD Engine and Single/Double Precision Floating Point Unit per processor											
E C	L1 Cache	32KB Instruction, 32KB Data per processor											

For clarity, accused products from the above-referenced table appear below:

Zynq-7000 SoC Devices - XC7Z007S, XC7Z012S, XC7Z014S, XC7Z010, XC7Z015, XC7Z020, XC7Z030, XC7Z035, XC7Z045, XC7Z100

SoC's are typically used in designs including external memory, like the (**D**) **DRAM memory** \rightarrow external memory devices supported by Zynq-7000 devices. Board level integration of SoC's connected or coupled to (**D**) **DRAM memory** \rightarrow external memory creates a (**CS**) computer system.

(Primary Interfaces & Interrupts Only)	AXI 64b ACP 16 Interrupts											
7 Series PL Equivalent	Artix®-7	Artix-7	Artix-7	Artix-7	Artix-7	Artix-7	Kintex [®] -7	Kintex-7	Kintex-7	Kintex-7		
Logic Cells	23K	55K	65K	28K	74K	85K	125K	275K	350K	444K		
Look-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400		
Flip-Flops	28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800		
Total Block RAM	1.8Mb	2.5Mb	3.8Mb	2.1Mb	3.3Mb	4.9Mb	9.3Mb	17.6Mb	19.2Mb	26.5Mb		
(# 36Kb Blocks)	(50)	(72)	(107)	(60)	(95)	(140)	(265)	(500)	(545)	(755)		
DSP Slices	66	120	170	80	160	220	400	900	900	2,020		
PCI Express [®]	1-1-1-1	Gen2 x4			Gen2 x4	r ii h -	Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8		

Source: Xilinx Zynq-7000 SoC Product Selection Guide, XMP097 (v1.3.2)

A computer system comprising:

a (D) DRAM memory;

a reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and

Clocks and Memory Interfaces

UltraScale devices contain powerful clock management circuitry, including clock synthesis, buffering, and routing components that together provide a highly capable framework to meet design requirements. The clock network allows for extremely flexible distribution of clocks to minimize the skew, power consumption, and delay associated with clock signals. The clock management technology is tightly integrated with dedicated memory interface circuitry to enable support for high-performance external memories, including DDR4. In addition to parallel memory interfaces, UltraScale devices support serial memories, such as hybrid memory cube (HMC).

Summary of 7 Series FPGA Features

- Advanced high-performance FPGA logic based on real 6-input lookup table (LUT) technology configurable as distributed memory.
- 36 Kb dual-port block RAM with built-in FIFO logic for on-chip data buffering.
- High-performance SelectIO[™] technology with support for DDR3 interfaces up to 1,866 Mb/s.
- High-speed serial connectivity with built-in multi-gigabit transceivers from 600 Mb/s to max. rates of 6.6 Gb/s up to 28.05 Gb/s, offering a special low-power mode, optimized for chip-to-chip interfaces.
- A user configurable analog interface (XADC), incorporating dual 12-bit 1MSPS analog-to-digital converters with on-chip thermal and supply sensors.
- DSP slices with 25 x 18 multiplier, 48-bit accumulator, and pre-adder for high-performance filtering, including optimized symmetric coefficient filtering.

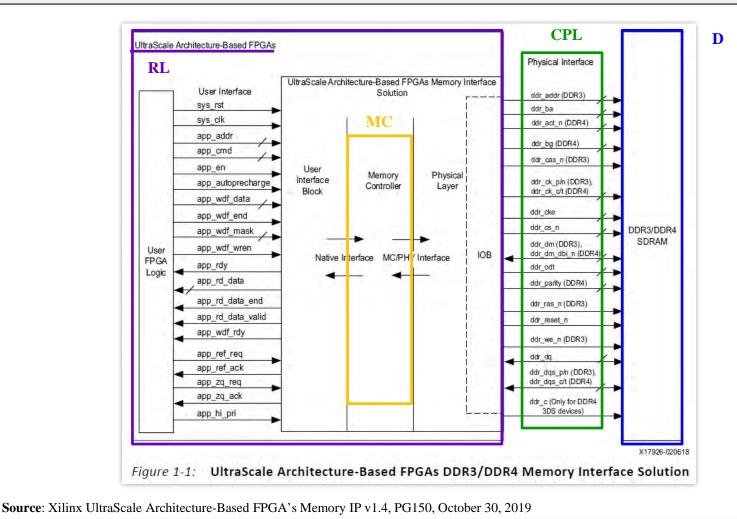
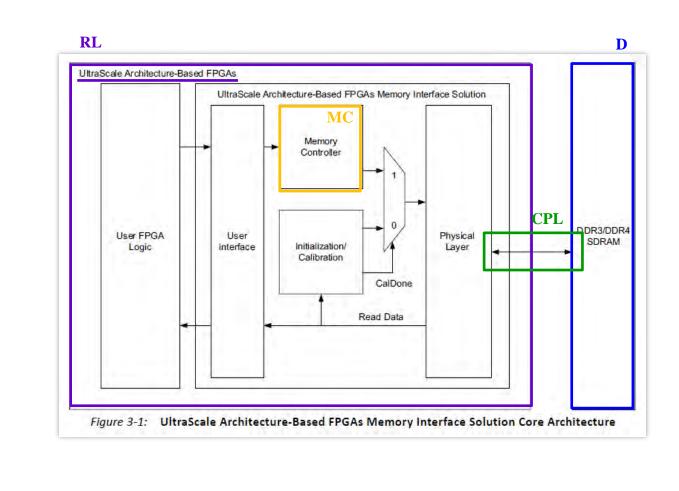

Source: Xilinx 7 Series FPGAs Data Sheet: Overview, DS180 (v2.6), February 27, 2018 Xilinx UltraScale Architecture and Product Data Sheet; Overview, DS890 (v3.10), August 21, 2019

Exhibit D -0.5. Patent No. 9,993,317 S XHAX UNFAScale+, Führ Scale, Zynq-7000 A74 Programmable Sott, 7 Series FPGA's

Claim 1

A computer system comprising:

a (D) DRAM memory;

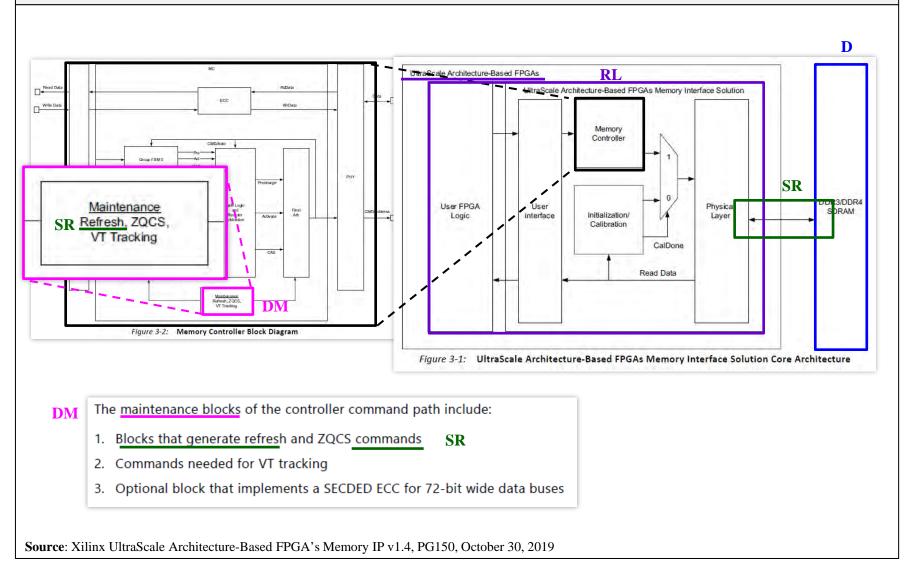

Exhibit D COSE Patent No. 9,993,317 S XIMX UNFRScale+, FUTTAScale, Zyhq-7000 A75PA grammable Sott, 7 Series FPGA's

Claim 1

A computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and



Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

Exhibit D COS. Patent No. 9,993,317 S x Rinx Untrascale+, Fuff a Scale, Zynq-7000 A70 Programmable Sott, 7 Series FPGA's

Claim 1

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

Exhibit D COS. Patent No. 9,993,317 S x Rinx Untrascale+, Fulffa Scale, Zynq-7000 All Programmable Sott, 7 Series FPGA's

Claim 1

said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

- **DM** The <u>maintenance blocks</u> of the controller command path include:
 - 1. Blocks that generate refresh and ZQCS commands SR
 - 2. Commands needed for VT tracking
 - 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh SIL

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

SR

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when <u>Self Refresh or Save-Restore</u> option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/ DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the

ddr3_reset#/ddr4_reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration.

Exhibit D -0.5. Patent No. 9,993,347 S xinnx Untrascale+, Fultrascale, Zyng-7000 A7PPtogrammable Sott, 7 series FPGA's

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Family Comparisons

Table 1: Device Resources RL

	Kintex UltraScale FPGA	Kintex UltraScale+ FPGA	Virtex UltraScale FPGA	Virtex UltraScale+ FPGA	Zynq UltraScale+ MPSoC	Zynq UltraScale+ RFSoC
MPSoC Processing System					1	1
RF-ADC/DAC						1
SD-FEC						1
System Logic Cells (K) FPGA	318-1,451	356-1,143	783-5,541	862-8,938	103-1,143	678-930
Block Memory (Mb)	12.7-75.9	12.7-34.6	44.3-132.9	23.6-94.5	4.5-34.6	27.8-38.0
UltraRAM (Mb)		0-36		90-360	0-36	13.5-22.5
HBM DRAM (GB)				0-16		
DSP (Slices)	768-5,520	1,368-3,528	600-2,880	2,280-12,288	240-3,528	3,145-4,272
DSP Performance (GMAC/s)	8,180	6,287	4,268	21,897	6,287	7,613
Transceivers	12-64	16-76	36-120	32-128	0-72	8-16
Max. Transceiver Speed (Gb/s)	16.3	32.75	30.5	58.0	32.75	32.75
Max. Serial Bandwidth (full duplex) (Gb/s)	2,086	3,268	5,616	8,384	3,268	1,048
Memory Interface Performance (Mb/s)	2,400	2,666	2,400	2,666	2,666	2,666
I/O Pins	312-832	280-668	338-1,456	208-2,072	82-668	280-408

Source: Xilinx UltraScale Architecture and Product Data Sheet; Overview, DS890 (v3.10), August 21, 2019

Exhibit D COSE Patent No. 9,993, JHTS XR0x UNFascale+, Fulfra Scale, Zyng-7000 A79Pf grammable Sott, 7 Series FPGA's

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Application Overview

RL

Zynq UltraScale+ MPSoC is the Xilinx second-generation Zynq platform, combining a powerful processing system (PS) and <u>user-programmable logic (PL)</u> into the same device. The processing system features the Arm® flagship Cortex®-A53 64-bit quad-core or dual-core processor and Cortex-R5 dual-core real-time processor. In addition to the cost and integration benefits previously provided by the Zynq-7000 devices, the Zynq UltraScale+ MPSoC and RFSoC devices also provide these new features and benefits.

Power Management Framework

Introduction

The Zynq
© UltraScale+™ MPSoC is the industry's first heterogeneous multiprocessor SoC (MPSoC) that combines multiple user programmable processors, FPGA, and advanced power management capabilities. FPGA

Source: Xilinx UltraScale Architecture and Product Data Sheet; Overview, DS890 (v3.10), August 21, 2019 Xilinx Zynq UltraScale+ MPSoC Software Developer Guide, UG1137 (v11.0) December 5, 2019

Exhibit D COSE Patent No. 9,993,317 S XROX UNFascale+, FUffascale, Zyng-7000 An Programmable Sott, 7 Series FPGA's

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

RL

General Description FPGA

Xilinx® 7 series FPGAs comprise four FPGA families that address the complete range of system requirements, ranging from low cost, small form factor, cost-sensitive, high-volume applications to ultra high-end connectivity bandwidth, logic capacity, and signal processing capability for the most demanding high-performance applications. The 7 series FPGAs include:

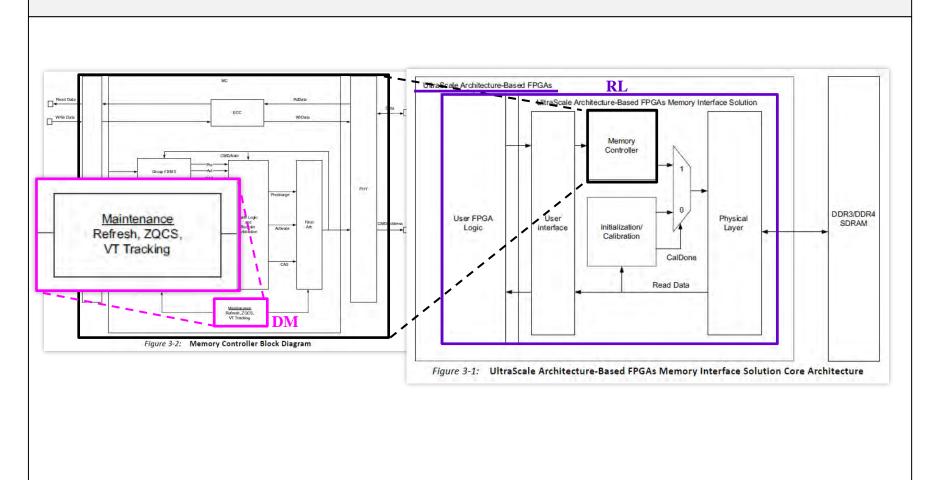
- Spartan®-7 Family: Optimized for low cost, lowest power, and high I/O performance. Available in low-cost, very small form-factor packaging for smallest PCB footprint.
- Artix®-7 Family: Optimized for low power applications requiring serial transceivers and high DSP and logic throughput. Provides the lowest total bill of materials cost for high-throughput, cost-sensitive applications.
- Kintex®-7 Family: Optimized for best price-performance with a 2X improvement compared to previous generation, enabling a new class of FPGAs.
- Virtex®-7 Family: Optimized for highest system performance and capacity with a 2X improvement in system performance. Highest capability devices enabled by stacked silicon interconnect (SSI) technology.

Source: Xilinx 7 Series FPGAs Data Sheet: Overview, DS180 (v2.6), February 27, 2018

Exhibit D -0.5. Patent No. 9,993,317 S x Base Untrascale +, Führla Scale - Zynq-7000 All Programmable Sott, 7 Series FPGA's

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.


_			901 C 1000 PC	SoCs (Co																
1	Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100									
	Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100									
	Xilinx 7 Series Programmable Logic Equivalent FPGA	Artix®-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Kintex®-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA									
	Programmable Logic Cells	23K	55K	65K	28K	74K	85K	125K	275K	350K	444K									
	Look-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400									
0	Flip-Flops	28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800									
le Logic	Block RAM (# 36 Kb Blocks)	1.8 Mb (50)	2.5 Mb (72)	3.8 Mb (107)	2.1 Mb (60)	3.3 Mb (95)	4.9 Mb (140)	9.3 Mb (265)	17.6 Mb (500)	19.2 Mb (545)	26.5 Mb (755)									
ogrammable	DSP Slices (18x25 MACCs)	66	120	170	80	160	220	400	900	900	2,020									
Progra	Peak DSP Performance (Symmetric FIR)	73 GMACs	131 GMACs	187 GMACs	100 GMACs	200 GMACs	276 GMACs	593 GMACs	1,334 GMACs	1,334 GMACs	2,622 GMACs									
	PCI Express (Root Complex or Endpoint) ⁽³⁾		Gen2 x4			Gen2 x4		Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8									
	Analog Mixed Signal (AMS) / XADC				2x 12 bit, 1	MSPS ADCs wi	ith up to 17 Dif	erential Inputs			-									
	Security ⁽²⁾	-	AES and	SHA 256h fo	Poot Code a	nd Drogramma	ble Logic Conf	AES and SHA 256b for Boot Code and Programmable Logic Configuration, Decryption, and Authentication												

Source: Xilinx Zinq-7000 SoC Data Sheet: Overview, DS 190 (v1.11.1) July 2 , 2018

Exhibit D COSE Patent No. 9,993,317 S XROX UNFascale+, FUffascale, Zyng-7000 All Programmable Sott, 7 Series FPGA's

Claim 9

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises said (DM) data maintenance block.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

Exhibit D COSC Patent No. 9,993,317 S XIROX UNFascale+, Führla Scale, Zyng-7000 All Programmable Bott; 7850es FPGA's

Claim 10

The computer system of claim 1 wherein said (**DM**) data maintenance block is (**HSR**) operable to hold said **DRAM memory in** self-refresh mode while said (**RL**) reconfigurable logic device is (**R**) reconfigured.

DM The maintenance blocks of the controller command path include:

- 1. Blocks that generate refresh and ZQCS commands
- 2. Commands needed for VT tracking
- 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh HSR

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

HSR

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when Self Refresh or Save-Restore option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/ DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the *ddr3_reset#/ddr4_reset* port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration; it is used to hold/keep the DRAM memory in selfrefresh mode.

Case 1:20-cv-00601-LPS Document 48 Filed 03/22/21 Page 84 of 113 PageID #: 1851

EXHIBIT E

Casshibi22-CV.S.Patint RS. 9, P55, 511 entities Evandation, 2011 a Real 2012, 511 & Richard Characteristics and a Real Contraction of the Richard States and a Real States and

(1.0)	United States Patent	(10) Patent No.: US 9,153,311 B1 (45) Date of Patent: Oct. 6, 2015
(54)	SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS	6.941,539 B2 9/2005 Hammes 6.961,841 B2 11/2005 Huppenthal et al. 6.964,029 B2 11/2005 Poznanovic et al. 6.983,456 B2 1/2006 Poznanovic et al. 6.996,656 B2 2/2006 Burton
(71)	Applicant: SRC Computers, LLC., Colorado Springs, CO (US)	7,003,593 B2 2/2006 Huppenthal et al. 7,124,211 B2 10/2006 Dickson et al. 7,134,120 B2 11/2006 Hammes 7,149,867 B2 12/2006 Poznanovic et al.
(72)	Inventor: Timothy J. Tewalt, Larkspur, CO (US)	7,155,602 B2 12/2006 Poznanovic 7,155,708 B2 12/2006 Hammes et al.
(73)	Assignee: SRC Computers, LLC, Colorado Springs, CO (US)	7,167,976 B2 1/2007 Poznanovic 7,197,575 B2 3/2007 Huppenthal et al. 7,225,324 B2 5/2007 Huppenthal et al. 7,237,091 B2 6/2007 Huppenthal et al.
(*)	Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	7,299,458 B2 11/2007 Hammes (Continued)
(21)	Appl. No.: 14/288,094	OTHER PUBLICATIONS Allan, Graham, "DDR IP Integration: How to Avoid Landmines in
	Filed: May 27, 2014	Anan, Granam, "DDR IP integration: How to Avoid Landmines in this Quickly Changing Landscape", Chip Design, Jun./Jul. 2007, pp. 20-22.
	Int. Cl.	(Continued)
	G11C 7/00 (2006.01) G11C 11/406 (2006.01)	Primary Examiner - Hoai V Ho
(52)	U.S. Cl. CPC G11C 11/40615 (2013.01)	(74) Attorney. Agent, or Firm — Peter J. Meza; William J. Kubida; Hogan Lovells US LLP
(58)	Field of Classification Search USPC	(57) ABSTRACT
	See application file for complete search history.	A system and method for retaining dynamic random access
(56)	References Cited	memory (DRAM) data when reprogramming reconfigurable devices with DRAM memory controllers such as field pro-
	U.S. PATENT DOCUMENTS	grammable gate arrays (FPGAs). The DRAM memory con- troller is utilized in concert with an internally or externally
	5,026,459 A 2/2000 Huppenthal 5,076,152 A 6/2000 Huppenthal et al.	located data maintenance block wherein the FPGA drives the majority of the DRAM input/output (I/O) and the data main-
	5,247,110 B1 6/2001 Huppenthal et al. 5,295,598 B1 9/2001 Bertoni et al.	tenance block drives the self-refresh command inputs. Even though the FPGA reconfigures and the majority of the DRAM
	5,339,819 B1 1/2002 Huppenthal et al. 5,356,983 B1 3/2002 Purks	inputs are tri-stated, the data maintenance block provides stable input levels on the self-refresh command inputs.
	5,434,687 B1 8/2002 Huppenthal 5,594,736 B1 7/2003 Parks 5,836,823 B2 12/2004 Burton	19 Claims, 2 Drawing Sheets
	(350,825 B2 12/2004 Ballon	19 Clauds, 2 Drawing Succes

Title: SYSTEM AND METHOD FOR RETAINING DRAM DATA WHEN REPROGRAMMING RECONFIGURABLE DEVICES WITH DRAM MEMORY CONTROLLERS

Priority Date: May 27, 2014

Filed Date: May 27, 2014

Issued Date: Oct. 06, 2015

Expiration Date: May 27, 2034

Inventor: Timothy J. Tewalt

Exemplary Claims: 1, 3, 9, 10

A (CS) computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

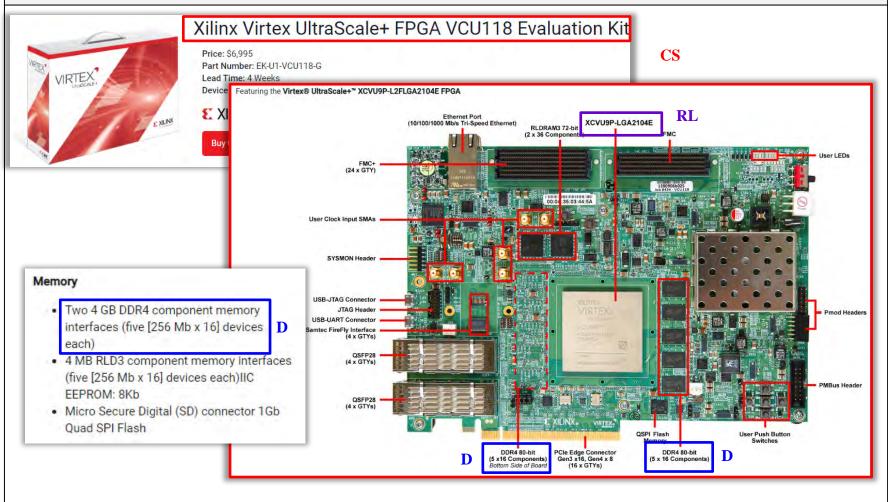
said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Claim 9

The computer system of claim 1 wherein said (**RL**) reconfigurable logic device comprises said (**DM**) data maintenance block.

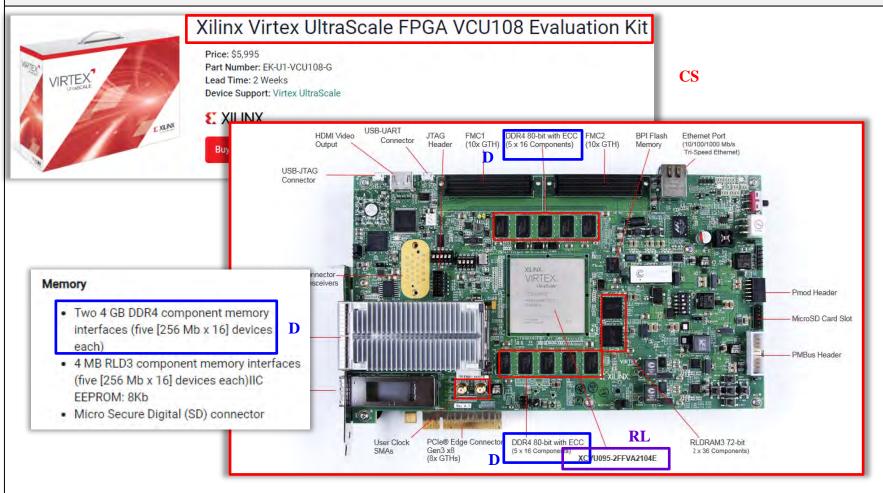

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is operable to hold said (D) DRAM memory in (SR) self-refresh mode while said reconfigurable logic device is (R) reconfigured.

A (CS) computer system comprising:

a (D) DRAM memory;

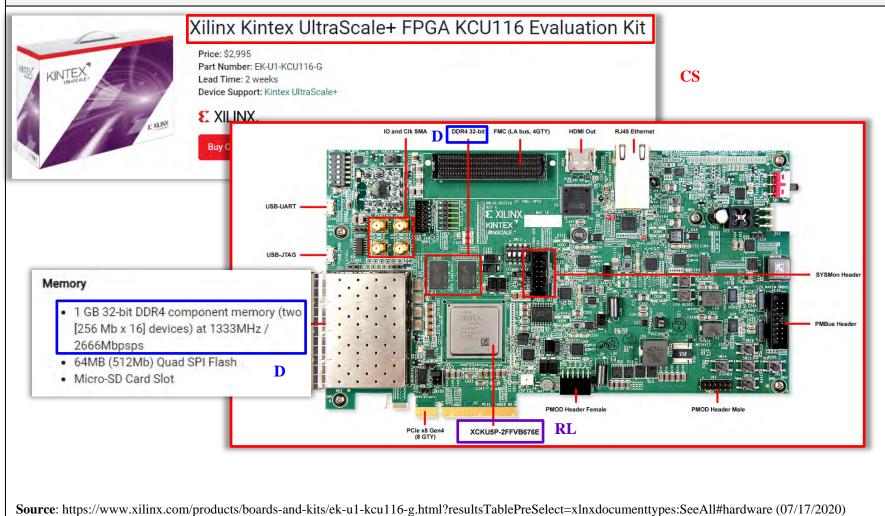
a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and



 $\textbf{Source: https://www.xilinx.com/products/boards-and-kits/vcu118.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#hardware (07/17/2020) and a stablePreSelect=xlnxdocumenttypes:SeeAll#hardware (07/17/2020) and a stablePreSelect=xlnxdocumenttypes:Se$

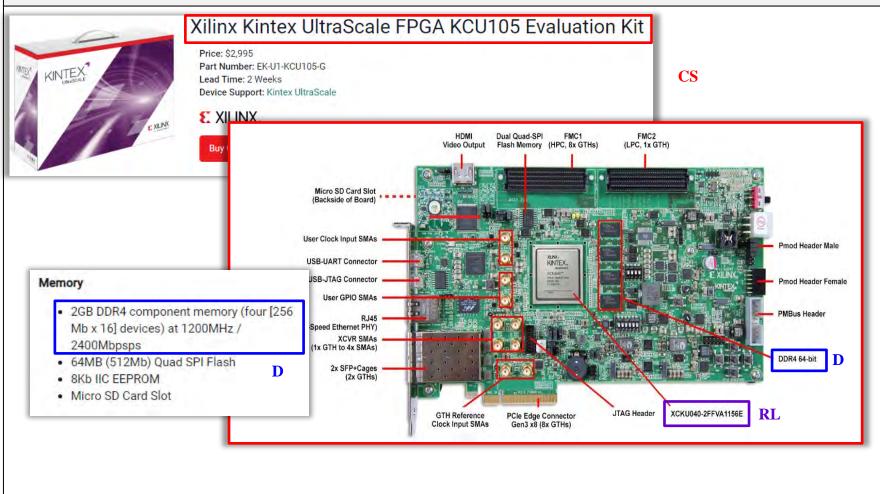
A (CS) computer system comprising:

a (D) DRAM memory;


a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

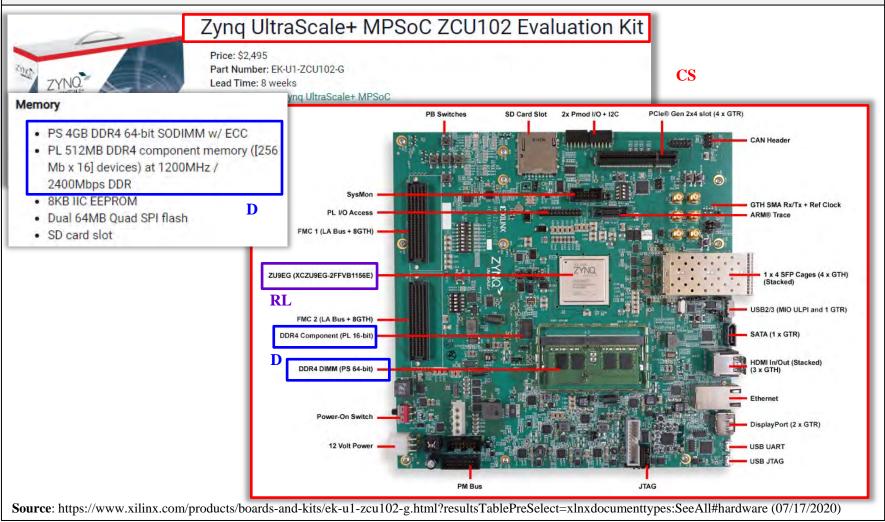
Source: https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#hardware (07/17/2020)

A (CS) computer system comprising:

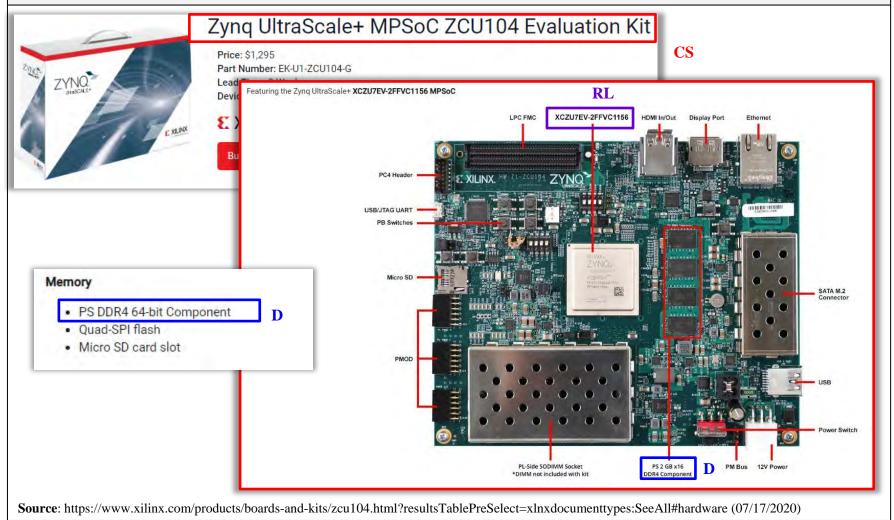

a (D) DRAM memory;

A (CS) computer system comprising:

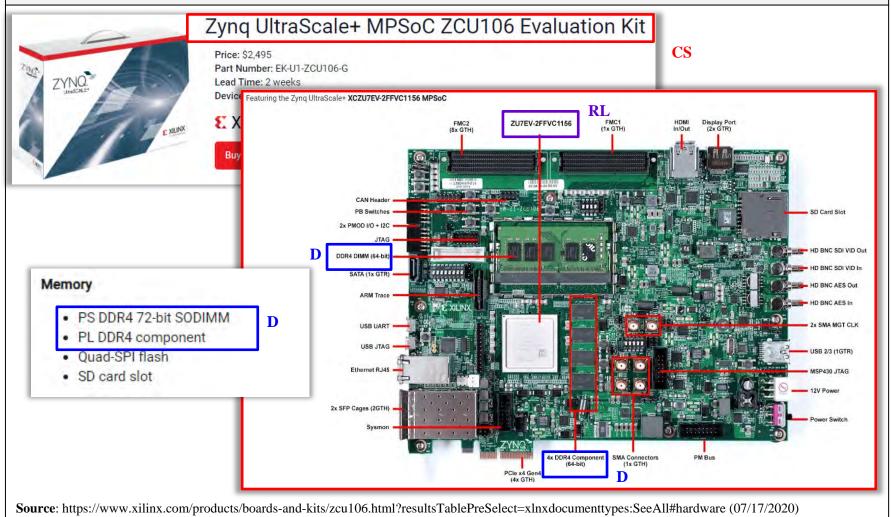
a (D) DRAM memory;


a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

Source: https://www.xilinx.com/products/boards-and-kits/kcu105.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#hardware (07/17/2020)

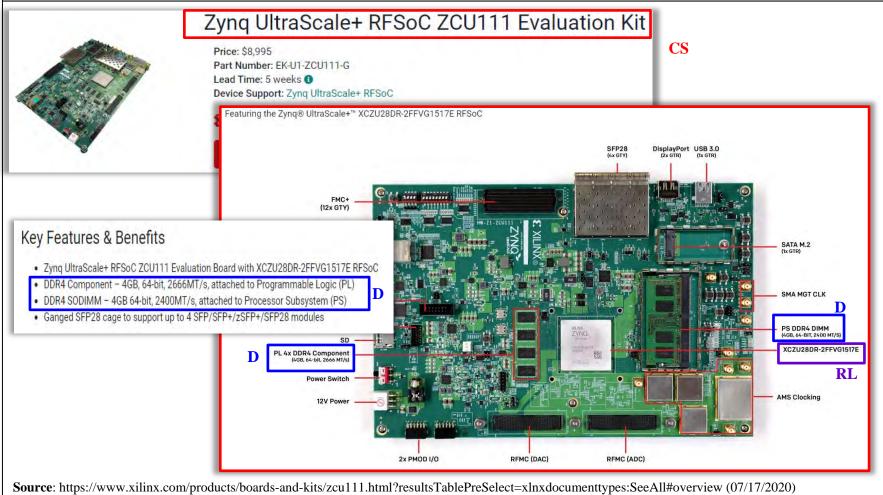

A (CS) computer system comprising:

a (D) DRAM memory;


A (CS) computer system comprising:

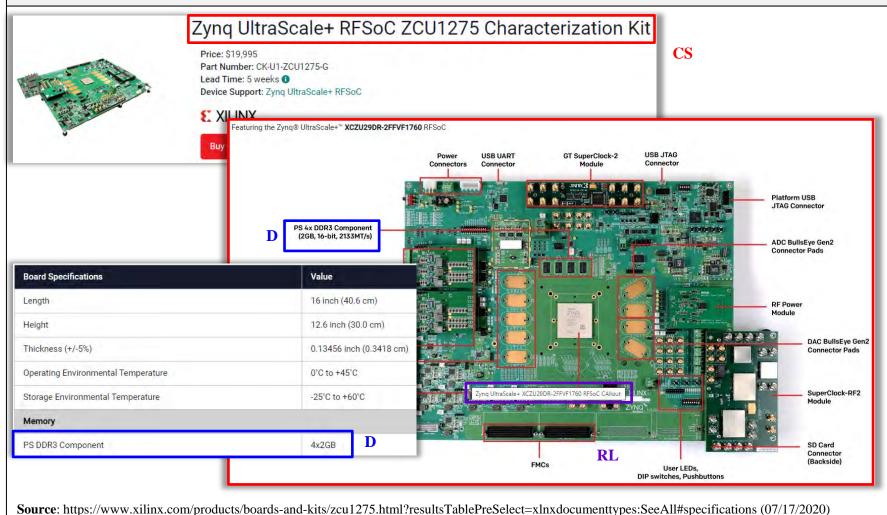
a (D) DRAM memory;

A (CS) computer system comprising:

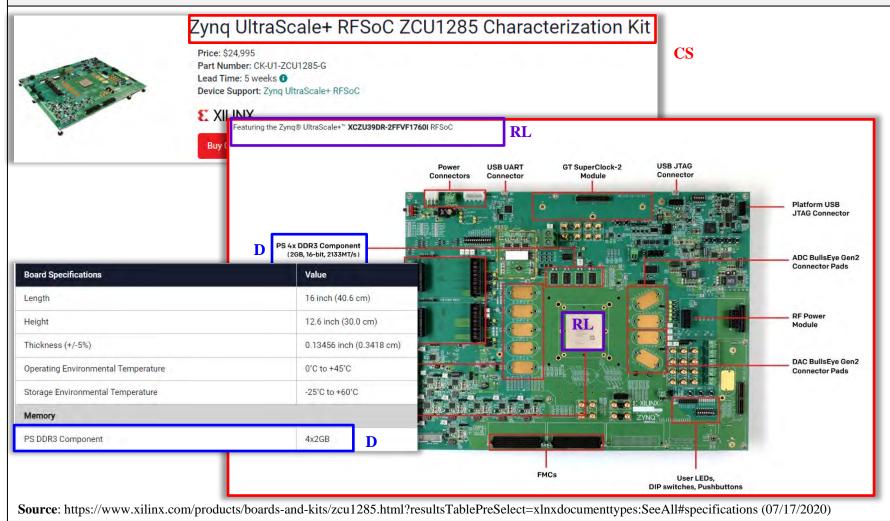

a (D) DRAM memory;

A (CS) computer system comprising:

a (D) DRAM memory;

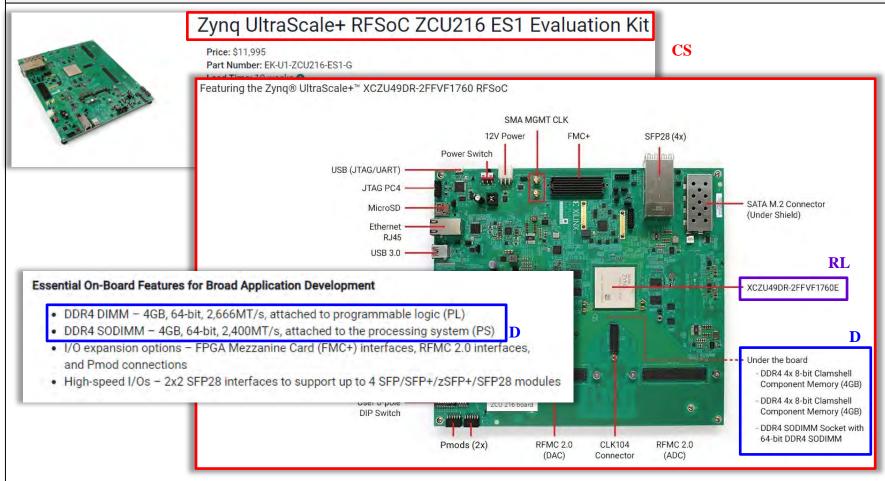

a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

https://www.xilinx.com/products/boards-and-kits/zcu111.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#specifications (07/17/2020)


A (CS) computer system comprising:

a (D) DRAM memory;

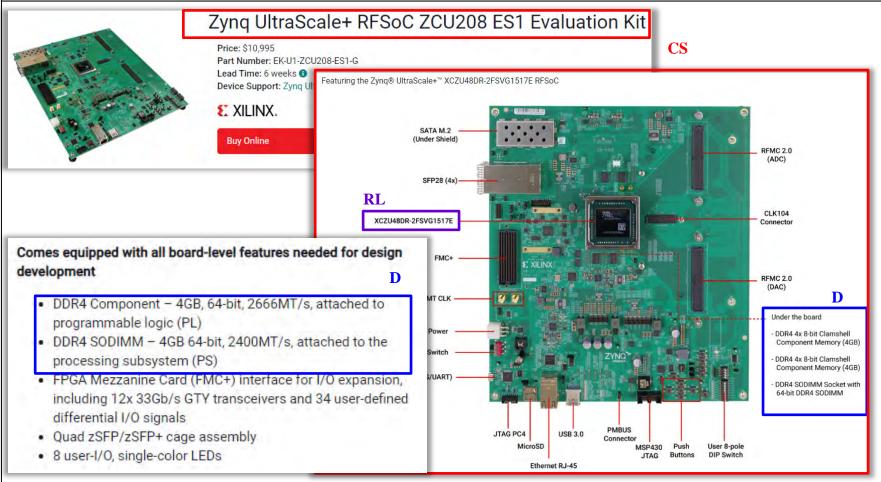
A (CS) computer system comprising:


a (D) DRAM memory;

A (CS) computer system comprising:

a (D) DRAM memory;

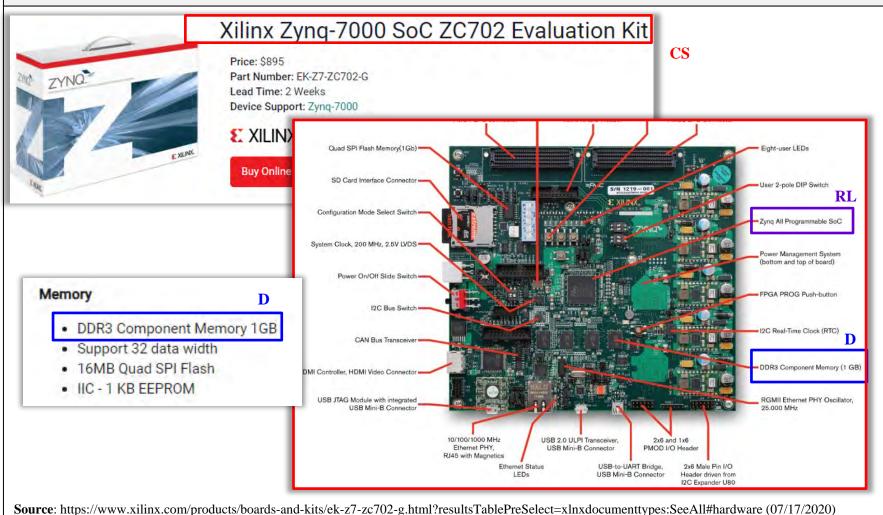
a (RL) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and



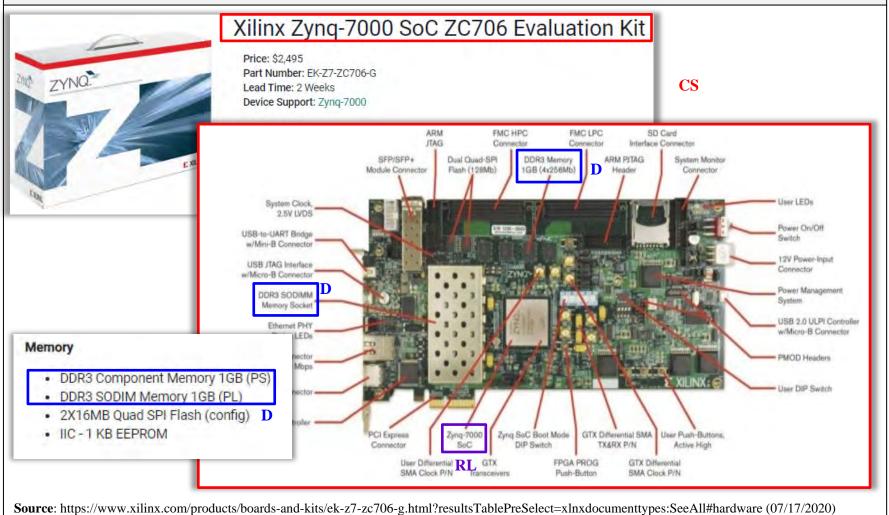
Source: https://www.xilinx.com/products/boards-and-kits/zcu216.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#overview (07/17/2020) https://www.xilinx.com/products/boards-and-kits/zcu216.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#specifications (07/17/2020)

A (CS) computer system comprising:

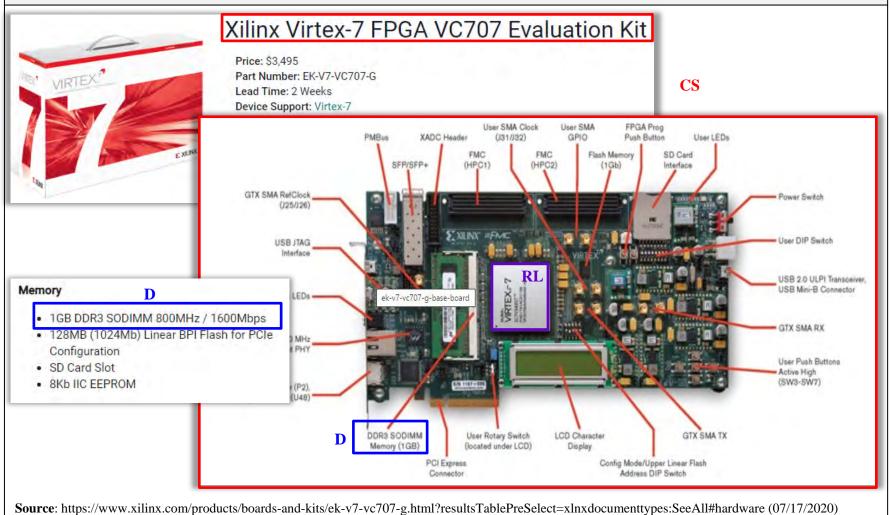
a (D) DRAM memory;


a (**RL**) reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (**D**) **DRAM memory**; and

Source: https://www.xilinx.com/products/boards-and-kits/zcu208.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#overview (07/17/2020) https://www.xilinx.com/products/boards-and-kits/zcu208.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#specifications (07/17/2020)


A (CS) computer system comprising:

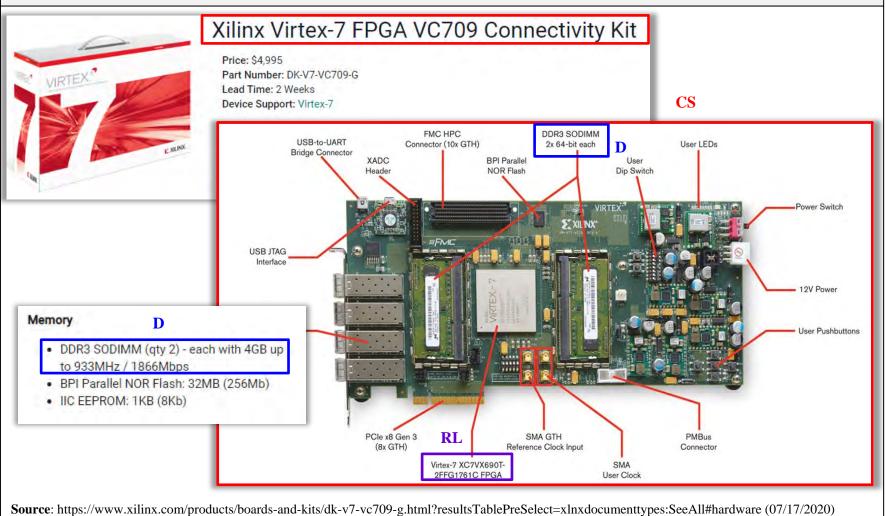
a (D) DRAM memory;


A (CS) computer system comprising:

a (D) DRAM memory;

A (CS) computer system comprising:

a (D) DRAM memory;



Caeshibite cvt99. Fatent RS. 9199,911 Pnt Almx Eilean and a Characterization, 9 and Connectivity Kits 69

Claim 1

A (CS) computer system comprising:

a (D) DRAM memory;

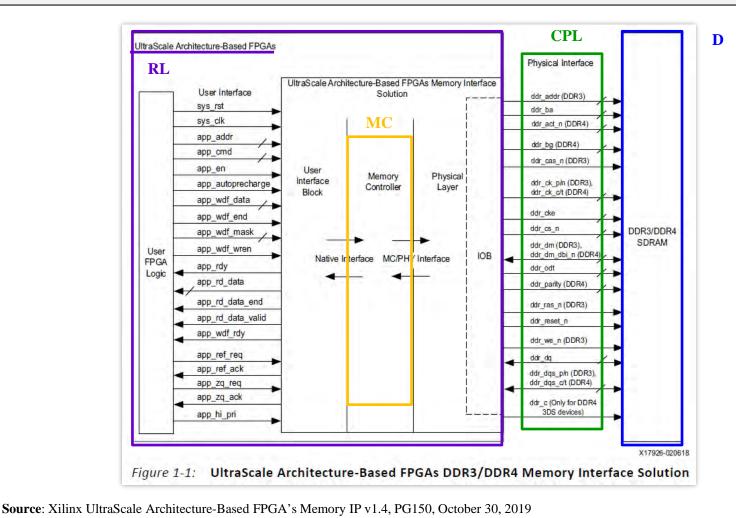
A computer system comprising:

a (D) DRAM memory;

a reconfigurable logic device having a memory controller coupled to selected inputs and outputs of said (D) DRAM memory; and

Clocks and Memory Interfaces

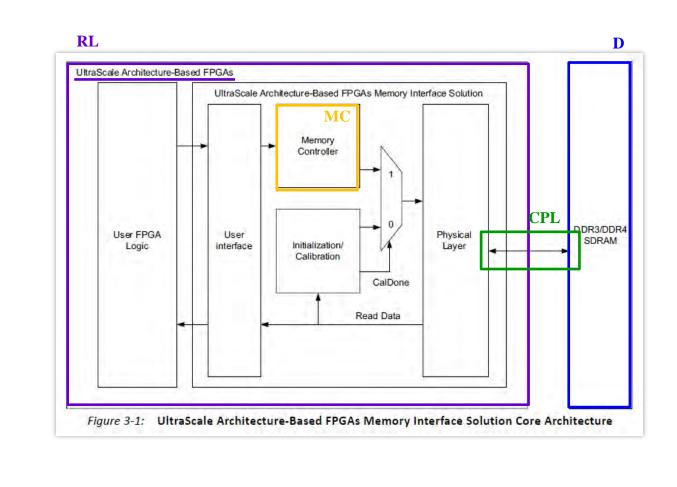
UltraScale devices contain powerful clock management circuitry, including clock synthesis, buffering, and routing components that together provide a highly capable framework to meet design requirements. The clock network allows for extremely flexible distribution of clocks to minimize the skew, power consumption, and delay associated with clock signals. The clock management technology is tightly integrated with dedicated memory interface circuitry to enable support for high-performance external memories, including DDR4. In addition to parallel memory interfaces, UltraScale devices support serial memories, such as hybrid memory cube (HMC).


Summary of 7 Series FPGA Features

- Advanced high-performance FPGA logic based on real 6-input lookup table (LUT) technology configurable as distributed memory.
- 36 Kb dual-port block RAM with built-in FIFO logic for on-chip data buffering.
- High-performance SelectIO[™] technology with support for DDR3 interfaces up to 1,866 Mb/s.
- High-speed serial connectivity with built-in multi-gigabit transceivers from 600 Mb/s to max. rates of 6.6 Gb/s up to 28.05 Gb/s, offering a special low-power mode, optimized for chip-to-chip interfaces.
- A user configurable analog interface (XADC), incorporating dual 12-bit 1MSPS analog-to-digital converters with on-chip thermal and supply sensors.
- DSP slices with 25 x 18 multiplier, 48-bit accumulator, and pre-adder for high-performance filtering, including optimized symmetric coefficient filtering.

Source: Xilinx 7 Series FPGAs Data Sheet: Overview, DS180 (v2.6), February 27, 2018 Xilinx UltraScale Architecture and Product Data Sheet; Overview, DS890 (v3.10), August 21, 2019

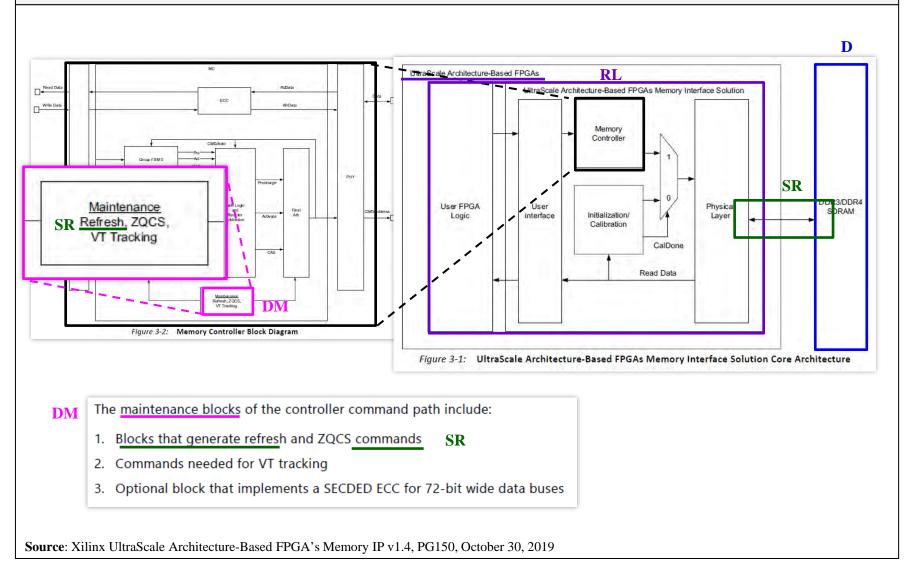
A computer system comprising:


a (D) DRAM memory;

A computer system comprising:

a (D) DRAM memory;

a (RL) reconfigurable logic device having a (MC) memory controller (CPL) coupled to selected inputs and outputs of said (D) DRAM memory; and



Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

Caeshibite cvuss Patent Rs. 9139,911 Pntx timx Elean and a confectivity it is 73

Claim 1

a (DM) data maintenance block coupled to said (RL) reconfigurable logic device and (SR) self-refresh command inputs of said (D) DRAM memory,

Caeshibite cvus. Patent RS. 9139,911Pn x timx Elean and a confectivity it is 74

Claim 1

said (DM) data maintenance block (SIL) operative to provide stable input levels on said (SR) self-refresh command inputs while said (RL) reconfigurable logic device is (R) reconfigured.

- **DM** The <u>maintenance blocks</u> of the controller command path include:
 - 1. Blocks that generate refresh and ZQCS commands SR
 - 2. Commands needed for VT tracking
 - 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh SIL

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

SR

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when <u>Self Refresh or Save-Restore</u> option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the

ddr3_reset#/ddr4_reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration.

Caeshibite vus. Patent No. 9,133,911 PIX Hinx Electron 2007, Characterization, 9 and Connectivity Kits 75

Claim 3

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Family Comparisons

Table 1: Device Resources RL

	Kintex UltraScale FPGA	Kintex UltraScale+ FPGA	Virtex UltraScale FPGA	Virtex UltraScale+ FPGA	Zynq UltraScale+ MPSoC	Zynq UltraScale+ RFSoC
MPSoC Processing System					1	1
RF-ADC/DAC						1
SD-FEC						1
System Logic Cells (K) FPGA	318-1,451	356-1,143	783-5,541	862-8,938	103-1,143	678-930
Block Memory (Mb)	12.7-75.9	12.7-34.6	44.3-132.9	23.6-94.5	4.5-34.6	27.8-38.0
UltraRAM (Mb)		0-36		90-360	0-36	13.5-22.5
HBM DRAM (GB)				0-16		
DSP (Slices)	768-5,520	1,368-3,528	600-2,880	2,280-12,288	240-3,528	3,145-4,272
DSP Performance (GMAC/s)	8,180	6,287	4,268	21,897	6,287	7,613
Transceivers	12-64	16-76	36-120	32-128	0-72	8-16
Max. Transceiver Speed (Gb/s)	16.3	32.75	30.5	58.0	32.75	32.75
Max. Serial Bandwidth (full duplex) (Gb/s)	2,086	3,268	5,616	8,384	3,268	1,048
Memory Interface Performance (Mb/s)	2,400	2,666	2,400	2,666	2,666	2,666
I/O Pins	312-832	280-668	338-1,456	208-2,072	82-668	280-408

Source: Xilinx UltraScale Architecture and Product Data Sheet; Overview, DS890 (v3.10), August 21, 2019

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

Application Overview

RL

Zynq UltraScale+ MPSoC is the Xilinx second-generation Zynq platform, combining a powerful processing system (PS) and <u>user-programmable logic (PL)</u> into the same device. The processing system features the Arm® flagship Cortex®-A53 64-bit quad-core or dual-core processor and Cortex-R5 dual-core real-time processor. In addition to the cost and integration benefits previously provided by the Zynq-7000 devices, the Zynq UltraScale+ MPSoC and RFSoC devices also provide these new features and benefits.

Power Management Framework

Introduction

The Zynq
© UltraScale+™ MPSoC is the industry's first heterogeneous multiprocessor SoC (MPSoC) that combines multiple user programmable processors, FPGA, and advanced power management capabilities. FPGA

Source: Xilinx UltraScale Architecture and Product Data Sheet; Overview, DS890 (v3.10), August 21, 2019 Xilinx Zynq UltraScale+ MPSoC Software Developer Guide, UG1137 (v11.0) December 5, 2019

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.

RL

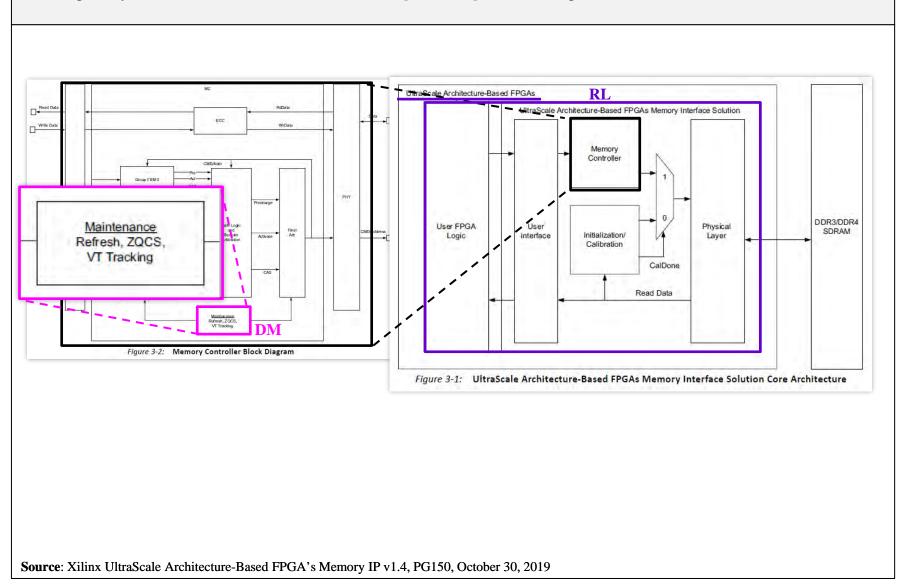
General Description FPGA

Xilinx® 7 series FPGAs comprise four FPGA families that address the complete range of system requirements, ranging from low cost, small form factor, cost-sensitive, high-volume applications to ultra high-end connectivity bandwidth, logic capacity, and signal processing capability for the most demanding high-performance applications. The 7 series FPGAs include:

- Spartan®-7 Family: Optimized for low cost, lowest power, and high I/O performance. Available in low-cost, very small form-factor packaging for smallest PCB footprint.
- Artix®-7 Family: Optimized for low power applications requiring serial transceivers and high DSP and logic throughput. Provides the lowest total bill of materials cost for high-throughput, cost-sensitive applications.
- Kintex®-7 Family: Optimized for best price-performance with a 2X improvement compared to previous generation, enabling a new class of FPGAs.
- Virtex®-7 Family: Optimized for highest system performance and capacity with a 2X improvement in system performance. Highest capability devices enabled by stacked silicon interconnect (SSI) technology.

Source: Xilinx 7 Series FPGAs Data Sheet: Overview, DS180 (v2.6), February 27, 2018

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises an (FPGA) FPGA.


	Device Name	Z-7007S	Z-7012S	SoCs (Col	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100
	Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100
	Xilinx 7 Series Programmable Logic Equivalent FPGA	Artix®-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Artix-7 FPGA	Kintex®-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA	Kintex-7 FPGA
	Programmable Logic Cells	23K	55K	65K	28K	74K	85K	125K	275K	350K	444K
1	Look-Up Tables (LUTs)	14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400
0	Flip-Flops	28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800
le Logic	Block RAM (# 36 Kb Blocks)	1.8 Mb (50)	2.5 Mb (72)	3.8 Mb (107)	2.1 Mb (60)	3.3 Mb (95)	4.9 Mb (140)	9.3 Mb (265)	17.6 Mb (500)	19.2 Mb (545)	26.5 Mb (755)
Programmable	DSP Slices (18x25 MACCs)	66	120	170	80	160	220	400	900	900	2,020
Progra	Peak DSP Performance (Symmetric FIR)	73 GMACs	131 GMACs	187 GMACs	100 GMACs	200 GMACs	276 GMACs	593 GMACs	1,334 GMACs	1,334 GMACs	2,622 GMACs
	PCI Express (Root Complex or Endpoint) ⁽³⁾		Gen2 x4			Gen2 x4		Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8
	Analog Mixed Signal (AMS) / XADC				2x 12 bit, 1	MSPS ADCs wi	ith up to 17 Dif	ferential Inputs			
-	Security ⁽²⁾		AES and	SHA 256b fo	r Boot Code a	nd Programma	hle Logic Conf	inuration Deci	votion and A	uthentication	

Source: Xilinx Zinq-7000 SoC Data Sheet: Overview, DS 190 (v1.11.1) July 2 , 2018

Caeshibite vus. Patent RS. 9,139,911Pntxiinx Eilean and a care in a care in the second state of the second second

The computer system of claim 1 wherein said (RL) reconfigurable logic device comprises said (DM) data maintenance block.

Claim 9

Caeshibite cvus. Patent PS. 9139,911Pn xiimx Eilean and an and a connectivity kits80

Claim 10

The computer system of claim 1 wherein said (DM) data maintenance block is (HSR) operable to hold said DRAM memory in self-refresh mode while said (RL) reconfigurable logic device is (R) reconfigured.

DM The <u>maintenance blocks</u> of the controller command path include:

- 1. Blocks that generate refresh and ZQCS commands
- 2. Commands needed for VT tracking
- 3. Optional block that implements a SECDED ECC for 72-bit wide data buses

Self-Refresh HSR

Self-refresh feature is supported for Controller/PHY mode of the Controller and Physical Layer. This feature is not valid for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs.

Self-refresh feature keeps the DRAM in self-refresh mode. It also provides a set of XSDB ports at the user interface through which, you can save and restore the memory controller calibration data. This way you can drive the DRAM into self-refresh mode, save the calibration data into an external memory, and reprogram the FPGA or turn it off. It is referred as self-refresh entry cycle.

Partial Reconfiguration

The Partial Reconfiguration option can be selected from the **Disable OBUF on reset#** (DDR3) or reset_n (DDR4)option in Advance Memory Options section in the Advanced Options tab (see Figure 5-5 and Figure 5-6) when Self Refresh or Save-Restore option is enabled. When Partial Reconfiguration is enabled, the ddr3_reset#/ddr4_reset_n port is not included in the pin planning list and is a part of the user interface. It is your responsibility to use this port in driving the actual memory interface pin outside the DDR3/ DDR4 IP design. The DDR3/DDR4 IP design is a part of the reconfigurable block, while the driver of the ddr3_reset#/ddr4_reset_n pin stays in the static location.

Source: Xilinx UltraScale Architecture-Based FPGA's Memory IP v1.4, PG150, October 30, 2019

With UltraScale architecture included DDR cores feature a memory controller having a maintenance block implemented as part of the reconfigurable processor. One of the functions this maintenance block supports is "Self Refresh". The "Self Refresh" feature keeps the DRAM in self-refresh mode; for instance during partial reconfiguration. The driver of the *ddr3* reset#/*ddr4* reset port providing stable inputs to DRAM is part of the static region of the FPGA and not affected by the FPGA reconfiguration; it is used to hold/keep the DRAM memory in selfrefresh mode.