Www.J. McSherry, Jr. (WJM-1194)

ARENT FOX PLLC

1675 Broadway

New York, New York 10019

Tel. No.: 212-484-3900 Fax No.: 212-484-3990

Barry Golob (BG-0550) Erik B. Cherdak (EC-7435) ARENT FOX PLLC 1050 Connecticut Ave., NW Washington, D.C. 20036 Tel. No. 202-857-6000 Fax No. 202-857-6359

UNITED STATES DISTRICT COURT

SOUTHERN DISTRICT OF NEW YORK

RUTHERFORD CONTROLS INT'L CORP., a Virginia Corporation,
-andRUTHERFORD CONTROLS INT'L CORP., a Canadian Corporation,

Plaintiffs,

-against-

TRINE ACCESS TECHNOLOGY
-andFRED M. SCHILDWACHTER & SONS, INC.

Defendants.

04 CV 01796

"ECF CASE"

COMPLAINT

04 Civ. 01796

Plaintiffs, as and for their Complaint, allege as follows.

THE PARTIES

1. Plaintiff Rutherford Controls Int'l Corp. ("RCI-VA") is incorporated in the Commonwealth of Virginia and has its principal place of business at 2697 International Parkway, Parkway 5, Virginia Beach, VA 23452.

- Plaintiff Rutherford Controls Int'l Corp. ("RCI-CAN"), is incorporated in Ontario, Canada and has its principal place of business at 210 Shearson Crescent, Cambridge,
 ON Canada N1T 1J6.
- 3. Upon information and belief, Defendant Trine Access Technology ("Trine") is incorporated in the State of New York and has its principal place of business at 1440 Ferris Place, Bronx, NY 10461.
- 4. Upon information and belief, Defendant Fred M. Schildwachter & Sons, Inc. ("Schildwachter") is incorporated in the State of New York and has its principal place of business at 1400 Ferris Ave., Bronx, NY 10461.

JURISDICTION AND VENUE

- 5. This Complaint seeks declaratory relief under the Declaratory Judgment Act, Title 28, United States Code, Sections 2201 and 2202 and arises under the patent laws of the United States, 35 U.S.C. Section 1 *et seq.*
- 6. This Court has jurisdiction over the claims asserted herein under Title 28, United States Code, Sections 1331 and 1338(a).
- 7. Venue is proper in this Court under Title 28, United States Code, Section 1391(b) as the Defendants, upon information and belief, are organized in accordance with the laws of the State of New York and have principal places of business in this State.

THE PATENT AT ISSUE

8. On January 15, 1991, the United States Patent and Trademark Office ("USPTO") issued U.S. Patent No. 4,984,835 (" '835 patent," attached as Exhibit A) entitled and directed to a STRIKE WITH RECTILINEARLY MOVABLE KEEPER LOCKING MECHANISM, based upon U.S. Patent Application Serial No. 555,358 filed on June 8, 1990.

- 9. Upon information and belief, Defendant Schildwachter is the current assignee and owner of the '835 patent. Upon information and belief, Defendant Trine has rights under the '835 patent.
- 10. The patent application which issued as the '835 patent was a Continuation type application identified as U.S. Patent Application Serial No. 289,216 filed on December 23, 1988, which original application was abandoned in favor of continued examination before the USPTO in U.S. Patent Application Serial No. 555,358, now issued as the '835 patent.

COUNT ONE

(DECLARATORY RELIEF REGARDING THE '835 PATENT)

- 11. Plaintiffs RCI-VA and RCI-CAN (hereafter collectively "RCI") repeat and reallege each and every allegation contained in paragraphs 1 through 10 of this Complaint as if fully set forth herein.
- 12. With roots dating back to the 1920's, RCI provides architectural hardware, locksmith, and security markets with the best in electric locks, door hardware and access control products. Plaintiffs' products include electric door strike products such as those illustrated and described at Plaintiffs' website www.rutherfordcontrols.com.
- 13. Through counsel and in a letter to Plaintiff RCI-CAN dated November 3, 2003, Defendant Trine identified a particular electric door strike product having designations 46CA and L65 currently marketed by Plaintiffs. In the November 3rd letter, Defendant alleged that Plaintiff RCI's door strike (the identified door strike) is "an infringement of the claims [*sic*: of the '835 patent]." Accordingly, Plaintiff RCI's door strike is hereinafter referred to as the "accused device." A copy of Defendant's Counsel's November 3rd letter to Plaintiff RCI is attached hereto as Exhibit B.

- 14. In the November 3rd letter mentioned in paragraph 13 above, Defendant Trine accused RCI-CAN of manufacturing and selling electronic strikes that infringe the '835 patent. Defendant Trine further stated that it "demands that RCI immediately cease and desist the manufacture, use and sale of the RCI product [sic: the accused device]." (Exhibit B.) Without providing RCI and its counsel with a reasonable time to conduct due diligence, on March 1, 2004 counsel for Defendant Trine once again demanded that "Rutherford Controls . . . immediately cease and desist its manufacture and sale of the accused product." In the same letter, Trine's counsel also stated: "We have lost patience with Rutherford Controls' excuses and delays in respect of this matter." (Defendant's Counsel's letter dated March 1, 2004 is attached as Exhibit C.) As a result, RCI has rightfully formed the reasonable apprehension and belief that Defendant Trine will sue Plaintiff RCI for infringement of the '835 patent under the U.S. Patent Act (35 U.S.C. Section 1 et seq).
 - 15. RCI has not infringed and does not infringe the '835 patent.
- 16. An actual controversy exists between Defendants Trine and Schildwachter and RCI concerning the non-infringement of the '835 patent, and RCI is entitled to a Declaratory Judgment that the claims of the '835 patent are not infringed by RCI.

WHEREFORE, RCI demands judgment as follows:

- (a) For a declaration that RCI's accused products do not infringe any claim of the '835 patent;
- (b) For a permanent injunction enjoining Trine, its agents, servants, employees and attorneys, and all persons acting in concert with them, from instituting or prosecuting any lawsuit or proceeding asserting the '835 patent or any continuing

applications thereof or reissues or re-examinations thereof, against RCI's accused products;

- (c) Reasonable attorneys fees and costs associated with this suit; and
- (d) For such other and further relief as the Court may deem proper.

Dated: March 5, 2004

ARENT FOX PLLC

William J. McSherry, Jr. (W/M-1194)

1675 Broadway

New York, New York 10019

Tel. No.: 212-484-3900 Fax No.: 212-484-3990

and

Barry Golob (BG-0550) Erik B. Cherdak (EC-7435) ARENT FOX PLLC 1050 Connecticut Ave., NW Washington, D.C. 20036 Tel. No. 202-857-6000 Fax No. 202-857-6359

Attorneys for Plaintiffs RUTHERFORD CONTROLS INT'L CORP.

Exhibit A

United States Patent [19] Vadacchino et al. [54] STRIKE WITH RECTILINEARLY MOVABLE KEEPER LOCKING MEMBER [75] Inventors: Joseph Vadacchino, Elmont, N.Y.; William L. Herron, Elizabeth, N.J. [73] Assignee: Trine Products Corp., Bronx, N.Y. [21] Appl. No.: 555,358 [22] Filed: Jun. 8, 1990 Related U.S. Application Data [63] Continuation of Ser. No. 289,216, Dec. 23, 1988, aban-Int. Cl.5 E05C 19/16 [52] U.S. Cl. 292/341.16; 292/144 [58] Field of Search 292/341.16, 144, 201, 292/216 [56] References Cited U.S. PATENT DOCUMENTS 419,766 1/1890 Glaeser 292/341.16 526,909 10/1894 Pratt 292/341.16 1,481,878 1/1924 Palmer 292/341.16 3,325,203 6/1967 3,521,921 7/1970 292/201 Moler .. Miyazaki 292/341.16 3,638,984 2/1972 Davidson 292/341.16

Balzano

3,910,617 10/1975 Scalza et al.

..... 292/341.16

...... 292/341.16

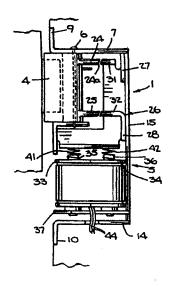
3,749,435 7/1973

[11] Patent Number: 4,984,835

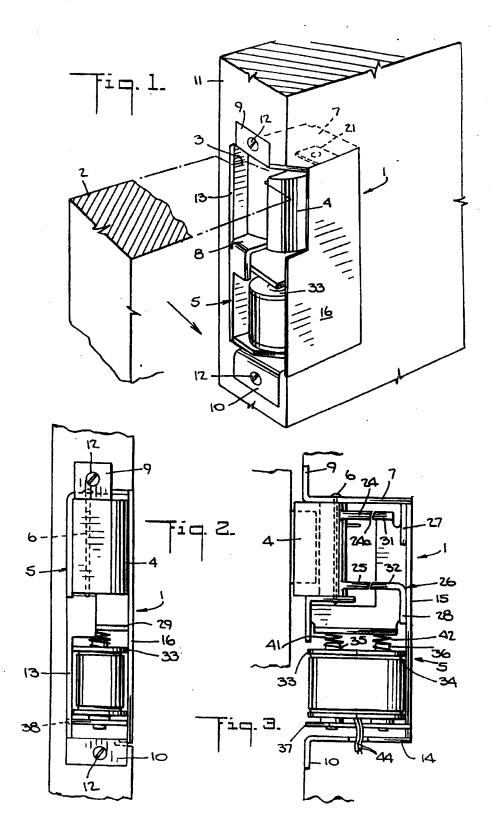
[45] Date of Patent: Jan. 15, 1991

4,056,277	11/1977	Gamus et al 292/341.16
4,088,354	5/1978	Kolendowicz 292/201
4,471,983	9/1984	Bischoff et al 292/341.16

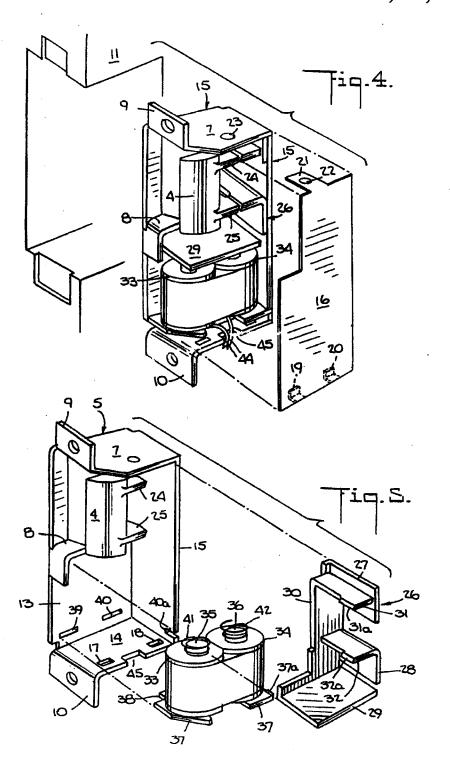
FOREIGN PATENT DOCUMENTS


26341	of 1912	United	Kingdom	******	292/341.16
352481	7/1931	United	Kingdom	********	292/341.16

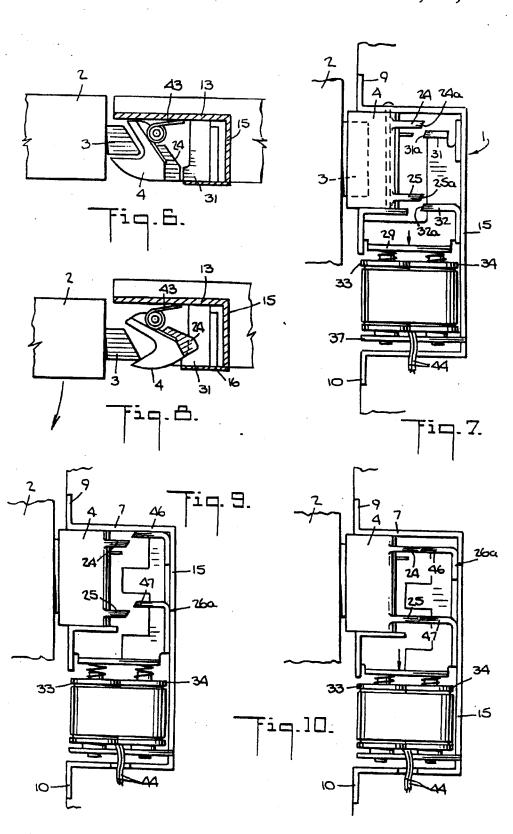
Primary Examiner—Eric K. Nicholson Attorney, Agent, or Firm—Brooks Haidt Haffner & Delahunty


57] ABSTRACT

An electrically operable strike with a pivotable keeper and a rectilinearly slidable locking member with arms which in one position of the locking member prevent pivoting of the keeper and which in a second, different position of the locking member, permit the keeper to pivot. The locking member has a magnetic portion and is moved from one position to the other by the magnetic field of a pair of electrically energizable coils. By selection of the spacing of the arms, the strike can be either normally locking or normally unlocking. Two locking members can be used to convert the strike from normally locking to normally unlocking or one locking member with adjustable or removable arms can be used for such conversion.


15 Claims, 4 Drawing Sheets

U.S. Patent Jan. 15, 1991 Sheet 1 of 4 4,984,835


U.S. Patent Jan. 15, 1991 Sheet 2 of 4 4,984,835

U.S. Patent Jan. 15, 1991

Sheet 3 of 4

1,984,835

U.S. Patent Jan. 15, 1991 4,984,835 Sheet 4 of 4 iq.11. iq.12. 4111 iq.13. 1111/22 50 129 iq.15. iq.16. 58

STRIKE WITH RECTILINEARLY MOVABLE KEEPER LOCKING MEMBER

This application is a division of application Ser. No. 5 289,216, filed Dec. 23, 1988 now abandoned.

ACKGROUND OF THE INVENTION

The invention relates to a strike used to prevent the opening of an associated access obstructing member, 10 such as a door.

Electrically operable strikes are well known in the art, and for example, they are used frequently in connection with the main access door of an apartment building to prevent entry into the building until a sole- 15 noid associated with the strike is electrically energized to permit pivoting of the strike keeper. See, for example, U.S. Pat. Nos. 4,471,983; 3,638 984 and 3,749,435. Normally, the solenoid is energized by means of a circuit completing switch remote from the strike.

It is also known in the art to prevent release of the latch or keeper of the strike and opening of the door by electrically energizing the solenoid. However, usually there are substantial differences between the components of a strike which will release the keeper with energization of the solenoid and the components of a strike which will lock the keeper with energization of the solenoid.

In addition, the known strikes usually require several components, such as pivotable levers, etc. which increases the assembly problems and the likelihood of malfunctioning because of misalignment, binding or corrosion. Also, if opening force is being applied to the door, the solenoid generally will be unable to cause 35 release of the keeper and/or the components may be unable to prevent opening of the door if a sufficient opening force is applied to the door due to breaking or bending of the locking components.

which has a winding of a conductor which, when electrically energized, actuates a centrally disposed armature which has a locking member connected thereto and biassed by a spring so that the keeper prevents pivoting of the locking member unless the solenoid is electrically 45 energized. To keep the energizing current low, the biassing spring usually has a force which is only slightly more than the force required to return the locking member and the armature to their locking or unlocking positions. Such spring return force may, at times, such as 50 will be apparent from the following detailed description with misalignment of parts, accumulation of foreign matter, etc., be insufficient to return them to their unlocking or locking positions.

It is also known in the art to use an air actuated piston and cylinder assembly with the piston connected to the 55 electrically operable strike mounted on a door frame locking member to actuate the locking member.

OBJECTS OF THE INVENTION

One object of the invention is to provide a strike of simplified construction.

Another object of the invention is to provide a strike which, by simple replacement of the locking device or simple modification of a single locking member, permits the strike to be changed from locking of the keeper with energization of the actuating means to unlocking of the 65 keeper with energization of the actuating means.

Another object of the invention is to provide a strike construction which requires a force to break the locking

member which is greater than the force required to break prior art locking mechanisms.

Another object of the invention is to provide a strike construction in which the locking member can be moved by the actuating means even if substantial force is applied to the keeper.

A further object of the invention is to provide a strike with an electromagnet and improved magnetic circuit for the electromagnet so that the locking member operating force for a given amount of electrical current is greater than in prior art strikes.

Other objects of the invention are to make assembly of the strike less critical and to provide a strike which operates equally as well in any orientation.

BRIEF SUMMARY OF THE INVENTION

The objects of the invention are attained in the preferred embodiment of the invention by pivotally mounting a keeper on a housing, such keeper having a pair of arms or lugs extending in planes perpendicular to the pivot axis, and by slidably mounting a locking member of magnetic material and having arms engageable with or spaced from the lugs on the keeper depending on the position of the locking member. The keeper is urged into its locking position by a spring, and the locking member is urged into the desired position, locking or unlocking, by a spring. The locking member bears against the housing so that any force applied thereto by the keeper is transmitted to a wall of the housing. A pair 30 of electromagnet coils in the housing attract the locking member, causing it to move rectilinearly, when the coils are electrically energized.

In one embodiment of the invention, two locking members, one having said arms differently positioned from the arms of the other, are provided so that by the mere substitution of one locking member for the other, the keeper is normally locked or is free to pivot until the electromagnetic coils are energized,

In general, prior art strikes comprise a single solenoid 40 member has four arms, two of which can be removed to In another embodiment of the invention, the locking cause it normally to lock or permit pivoting of the keeper until the coils are energized.

In a further embodiment of the invention, the arms of the locking member are adjustably mounted on the locking member so that by adjusting the positions of the arms, the keeper is normally locked or free to pivot.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the present invention of the presently preferred embodiments thereof, which description should be considered in conjunction with the accompanying drawings in which:

FIG. 1 is a perspective view of an embodiment of the and a portion of a door controlled thereby;

FIGS. 2 and 3 are, respectively, front and side elevation views of the strike shown in FIG. 1, the strike cover being omitted in FIG. 3;

FIGS. 4 and 5 are, respectively, partly exploded and exploded perspective views of the strike shown in FIG. 1, the strike cover being omitted in FIG. 5:

FIGS. 6 and 8 are cross-sectional plan views of the strike shown in FIG. 1 illustrating locked and unlocked positions of the locking member and the keeper;

FIG. 7 is a side elevation view of the strike shown in FIG. 1 with the locking member in its unlocked posi-

FIGS. 9 and 10 are side elevation views of an alternative embodiment of the locking member with the locking member in, respectively, unlocked and locked positions:

FIG. 11 is a perspective view of the locking member 5 shown in FIGS. 9 and 10;

FiGS. 12, 13 and 14, are, respectively, perspective front elevation and side elevation views of a further embodiment of the locking member; and

FIGS. 15 and 16 are, respectively, perspective and 10 side elevation views of a further embodiment of the locking member.

With reference to FIGS. 1-5, the preferred embodiment of the electrically operable strike 1 of the invention is illustrated in FIG. 1 as mounted in a recess of a 15 door frame 11 associated with a door 2 having a latch 3 engaging a keeper 4 of the strike 1. The keeper 4 is pivotally mounted on the housing 5 by means of a pin or rod 6 secured at one end to the top wall 7 and at its opposite end to a tab 8 integral with the housing 5, the 20 keeper 4 being pivotable around the pin 6. The housing 5 also has a pair of tabs 9 and 10 integral therewith for securing it to the door frame 11, such as by means of the screws 12.

The housing 5 has a side wall 13, a bottom wall 14, a 25 rear wall 15 and a cover 16. The bottom wall 14 has a pair of slots 17 and 18 (see FIG. 5) for receiving arms 19 and 20 (see FIG. 4) at one end of the cover 16 which with a tab 21 at the opposite end of the cover 16 having a dimple 22 receivable in a recess 23 (see FIG. 4) in the 30 top wall 7 releasably secure the cover 16 to the housing 5.

As seen in FIGS. 3-5, the keeper 4 has, at the rear thereof, a pair of lugs 24 and 25 extending perpendicularly to the axis of the pin 6. The lugs 24 and 25 are 35 spaced apart in the direction of said axis by a predetermined distance, and although the end faces of the lugs 24 and 25 can be in planes perpendicular to the lengths of the lugs 24 and 25, for reasons set forth hereinafter, the lugs 24 and 25 preferably have bevelled end faces 40 24a and 25a (see FIG. 3):

A locking member 26 (see particularly FIG. 5) is slidably mounted in the housing 5 and has a pair of wall sections 27 and 28 which bear against the rear wall 15 of the housing 5, a bottom portion 29, a side wall 30 and a 45 pair of arms 31 and 32 which extend toward the lugs 24 and 25. Although the end faces of the arms 31 and 32 can be in planes perpendicular to the lengths of the arms 31 and 32, particularly if the end faces of the lugs 24 and 25 are not bevelled, preferably, the arms 31 and 32 have 50 bevelled end faces 31a and 32a, the bevelling being opposite to the bevelling of the end faces 24a and 25a of the lugs 24 and 25 for the reasons set forth hereinafter. Preferably, the locking member 26 is entirely made of magnetic steel, but in any event, at least the bottom 55 portion 29 is made of a magnetic material for completing the magnetic circuit of the remotely and electrically energizable coils 33 and 34 and causing the locking member 26 move toward the coils 33 and 34 when they are energized. The coils 33 and 34 comprise windings or 60 coils of insulated wire covered by tape and cores 35 and 36 of magnetic material (see FIGS. 3 and 5), and the cores 35 and 36 are secured to a plate 37 of magnetic material which has as pair of ears, only one of which, 38, is shown in FIGS. 2 and 5, which fit into slots 39 and 65 40 (see FIG. 5) in the side wall 13 of the housing 5. The plate 37 also has an ear 37a which fits into a slot 40a in the rear wall 15. The cover 16 maintains such ears in the

slots 39 and 40 when it is in place, but with removal of the cover 16, the coil assembly may be easily removed and replaced.

Biassing means in the form of compression springs 41 and 42 encircling the cores 35 and 36 act between the locking member 26 and housing 5 through the coil assembly to urge the locking member 26 upwardly, as viewed in FIGS. 1, 3 and 4, and into the position shown in these FIGS. in which position the arms 31 and 32, which have the same spacing as the lugs 24 and 25, are engageable with the lugs 24 and 25 and prevent pivoting of the keeper 4.

Biassing means in the form of a spring 43 (see FIGS. 6 and 8) acts between the keeper 4 and the housing side wall 13 to urge the keeper 4 into its locking position shown in FIGS. 1-5 and 6.

The embodiment of the strike illustrated in FIGS. 1-7 is of the normally locked type and is unlocked by electrical energization of the coils 33 and 34, electrical energy being supplied thereto by the wire leads 44 (see FIGS. 3 and 4) which pass through an aperture 45 in the bottom wall of the housing 5.

Accordingly, as long as the locking member 26 is in its upper, keeper locking position, the door 2 is prevented from opening, but when the coils 33 and 34 are electrically energized, the locking member 26 slides rectilinearly in the downward direction to a keeper unlocking position, as illustrated in FIG. 7. In the latter position, the keeper 4 is free to pivot because the arms 31 and 32 are out of the paths of movement of the lugs 24 and 25, the movement of the keeper 4 and its lugs being shown in FIGS. 6 and 8. In FIG. 6, the keeper 4 is locked, and in FIG. 8, the keeper 4 is unlocked.

Of course, when energization of the coils 33 and 34 is discontinued, the keeper 4 is moved into its locking position by the spring 43 and the locking member 26 is moved into its locking position by the springs 41 and 42.

It will be observed that when pressure is applied to the door 2 to open it, the latch 3 applies a pivoting force to the keeper 4 urging it toward its unlocking position, such force is applied to the arms 31 and 32 by way of the lugs 24 and 25 and thence, to the rear wall 15 of the housing 5. The arms 31 and 32 can be relatively sturdy and are subject to only small bending forces, and therefore, the locking member 26 can withstand relatively high forces applied thereto by a person attempting to force the door 2 open.

While the end faces 24a and 25a and the end faces 31a and 32a can be perpendicular to the lengths of the lugs 24 and 25 and the arms 31 and 32, and hence, parallel to the pivot axis of the keeper 4, if a relatively large force is applied to the door 2 in the opening direction, the pulling force of the coils 33 and 34 can be insufficient to move the locking member 26. To aid in causing the locking member 26 to move its unlocking position with such a force, without significantly reducing the ability of the locking member 26 to resist relatively large door forces, the end faces 24a, 25a, 31a and 32a preferably are oppositely bevelled at an angle, such as 10° , but not more than 15° , as indicated in the drawings.

While a single coil could be used in the strike of the invention, such as by omitting one of the coils 33 or 34 and centering the remaining coil with respect to the magnetic portion 29 of the locking member 26, the use of two coils 33 and 34 provides, in the arrangement shown, an improvement in the pulling force exerted on the locking member 26 over what one would expect

from merely using two coils or increased energization of a coil. This result is apparently due to the magnetic circuit provided by the structure shown, it being observed that the magnetic circuit is relatively short and is by way of the plate 37 and the magnetic portion 29 and 5 not solely by way of the walls of the housing 5. Furthermore, since the movement of the locking member 26 can be relatively small due to the fact that the lugs 24 and 25 and the arms 31 and 32 can have a small thickness, the magnetic portion 29 can be relatively close to 10 the ends of the cores 35 and 36 in the locking position of the locking member 26.

It will be observed that the strike of the invention has only one moving part for locking and unlocking the keeper 4. Also, it will be observed that the upper end of 15 the wall section 27 abuts the inner surface of the top wall 7 of the housing 5 (see particularly FIG. 3) and is maintained in such position, in the absence of energization of the coils 33 and 34, by the springs 41 and 42. Accordingly, gravity is not relied upon to position the 20 locking member 26 so that the strike of the invention can be used in any desired orientation.

Since only one moving part is required for locking and unlocking of the keeper 4 and whether the keeper 4 is normally locked or unlocked depends upon the positions of the arms 31 and 32 on the locking member 26, it is a simple matter to change the strike from one in which the keeper 4 is normally locked to one in which the keeper 4 is normally unlocked by either substituting a locking member with its arms differently positioned or 30 by making the arms adjustable.

FIGS. 9, 10 and 11 illustrate a locking member 26a having arms 46 and 47 positioned thereon so that when the locking member 26a abuts the top wall 7, as shown in FIG. 9, the arms 46 and 47 are out of the path of 35 movement of the lugs 24 and 25. When the coils 33 and 34 are energized, the locking member 26a is pulled into its locking position shown in FIG. 10, in which position, the arms 46 and 47 can engage the lugs 24 and 25 and prevent pivoting of the keeper 4.

It will be observed from a comparision of FIGS. 5 and 11 that in addition to the positioning of the arms 46 and 47, the locking member 26a differs from the locking member 26 in other features. However, the locking member 26a can, except for the positioning of the arms 45 46 and 47, be of the same structure as the locking member 26 or the locking member 26 can be of the same structure as the locking member 26a except for the positioning of the arms 24 and 25 relative to the end of the locking member which abuts the top wall 7.

FIGS. 12-14 illustrate an embodiment of a locking member with arms 48 and 49 which can be adjusted so that the keeper 4 is either normally locked or normally unlocked The locking member 26b shown in FIGS. 12-14 has the arms 48 and 49 secured thereto, such as by 55 screws 50 and 51, which extend through slots 52 and 53 in the arms 48 and 49. Thus, the arms 48 and 49 can be held in the positions shown in FIGS. 12-14 by the screws 50 and 51, which positions correspond to the normally unlocked condition of the keeper 4. However, 60 by loosening the screws 50 and 51 and moving the arms 48 and 49 downwardly, as viewed in FIGS. 12-14, and then, tightening the screws 50 and 51, the arms 48 and 49 can be secured in positions which correspond to the positions of the arms 31 and 32 and hence, the normally 65 locked condition of the keeper 4.

Another embodiment of a single locking member which can be used for normally locking or unlocking

the keeper 4 is illustrated in FIGS. 15 and 16. The locking member 26c shown in these figures has four arms 54, 55, 56 and 57, arms 54 and 56 having positions corresponding to the positions of the arms 46 and 47 and arms 55 and 57 having positions corresponding to the positions of the arms 31 and 32. Each of the arms 54–57 has a line of weakening 58 (see FIG. 16) so that by bending an arm transversely to its length and at the line 58, such as with pliers, any arm can be removed. For example, if it is desired to have the keeper 4 be normally unlocked, the arms 55 and 57 would be removed leaving the arms 54 and 56 in place. Similarly, if it is desired to have the keeper 4 normally locked, the arms 54 and 56 would be removed leaving the arms 55 and 57 in place.

Accordingly with the embodiments of the locking member illustrated in FIGS. 12-16, it is necessary to manufacture only a single locking member which can be used to provide a strike with a keeper which is either normally locked or normally unlocked. If it is not known whether the strike will be installed with a normally locked or a normally unlocked keeper, it is unnecessary to supply a strike with two locking members 26a and 26b or to stock two strikes, one with a locking member 26a and one with a locking member 26b.

It will be apparent to those skilled in the art that various modifications of the invention may be made. For example, the arms of the locking member may be held in a fixed position and the keeper may be moved rectilinearly by the coil. Also, instead of pivoting, the keeper can slide toward and away from the latch and be permitted or prevented from so sliding by the arms of the slidable locking member. In addition, although not preferred, one of the arms on the locking member, e.g. 31 or 32 or 46 or 47, and the corresponding lug on the keeper 4 may be omitted.

Furthermore, although the preferred embodiment comprises a pair of coils 33 and 34 with fixed cores 35 and 36 which are energizable from outside the housing for moving the locking member, it will be apparent that such cores and coils can be replaced by a different type of locking member actuating means such as a solenoid with a movable armature pivotally connected to the locking member or an air operable piston and cylinder assembly with the piston pivotally connected to the locking member. The coils 33 and 34 are preferred because of their simplicity and because no mechanical connection to the locking member is required.

Although preferred embodiments of the present invention have been described and illustrated, it will be so apparent to those skilled in the art that various modifications may be made without departing from the principles of the invention.

We claim:

- 1. A strike comprising:
- a housing with a plurality of walls;
- a keeper mounted on said housing for movement from a first position to a second position for respectively engaging a latch and moving away from the latch, said keeper having at least one lug extending therefrom toward a wall of said housing and movable along a predetermined path in a plane with movement of said keeper;
- a locking member slidable mounted on said housing intermediate said keeper and said wall of said housing and movable rectilinearly in the direction transverse to said plane and said predetermined path of movement of said lug, said locking member having at least one arm thereon extending toward said lug,

transversely of and away from aid wall and transversely to the direction of sliding movement of said locking member, said arm being engageable with said lug in one position of said locking member relative to said keeper for preventing movement of 5 said keeper and said arm being out of the path of movement of said lug when said locking member is in another position relative to said keeper;

biassing means acting between said locking member and said housing and urging said locking member 10 into one of the relative positions thereof; and

- locking member actuating means for moving said locking member from the last-mentioned said one relative said position thereof into the other relative position thereof.
- 2. A strike as set forth in claim 1 wherein said locking member actuating means is an electrically energizable coil and said locking member has a magnetic portion adjacent but spaced from said coil which is urged toward said coil by the magnetic field thereof when said 20 coil is electrically energized.
- A strike as set forth in claim 2 wherein said biassing means is intermediate said magnetic portion and said coil.
- 4. A strike as set forth in claim 3 wherein said locking 25 member actuating means comprises a pair of wire coils in laterally spaced relation and a pair of magnetic cores, one core within one of said coils and the other core within the other of said coils and wherein said magnetic portion of said locking member extends from adjacent 30 one of said cores to adjacent the other of said cores.
- 5. A strike as set forth in claim 1 wherein said housing has a wall extending in a plane substantially perpendicular to the length of said arm and said locking member is in contact with said wall of said housing.
 - 6. A strike comprising:
 - a housing;
 - a keeper pivotally mounted on said housing for pivotal movement around an axis from a first position to a second position for respectively engaging a 40 latch and moving away from the latch, said keeper having two lugs extending therefrom transversely to said axis and spaced from each other in the direction of said axis by a predetermined distance;
 - a locking member mounted on said housing for rectilinear sliding movement in the direction substantially parallel to said axis, said locking member
 having two arms thereon, each arm extending,
 respectively, toward one of said lugs and being
 engageable with the respective one of said lugs in 50
 one position of said locking member relative to said
 keeper for preventing movement of said keeper and
 being out of the paths of movement of said lugs
 when said locking member is in another position
 relative to said keeper, and one of said arms being
 55
 spaced from the other of said arms by said predetermined distance;
 - biassing means acting between said locking member and said housing and urging said locking member into one of the relative positions thereof; and
 - locking member actuating means for moving said locking member from the last-mentioned said one relative said position thereof into the other relative position thereof.
 - 7. A strike comprising:
 - a housing, said housing having a front wall, a rear wall spaced from said front wall and a top wall extending from said front wall to said rear wall;

a keeper pivotally mounted at said front wall for pivotal movement around an axis substantially parallel to said rear wall for movement from a first position to a second position for respectively engaging a latch and moving away from the latch, said keeper having two lugs thereon extending therefrom toward said rear wall but terminating in spaced relation to said rear wall, said lugs being

spaced from each other in the direction of said axis by a predetermined distance;

a locking member mounted in said housing for rectilinear sliding movement substantially parallel to
said axis, said locking member being mounted intermediate said front wall and said rear wall and
slidably abutting said rear wall, said locking member having two arms spaced from each other by
said predetermine distance and extending, respectively, toward one of said lugs, said locking member being slidable between one position and another position, said arms being engageable with
said lugs in one position of said locking member to
prevent pivoting of said keeper and being out of the
paths of movement of said lugs with pivoting of
said keeper in the other position of said locking
member to permit pivoting of said keeper;

biassing means acting between said locking member and said housing for urging said locking member into à position fixed in relation to said top wall; and

- locking member actuating means mounted at the side of said locking member opposite from said top wall for pulling said locking member from said position thereof which is fixed in relation to aid top wall toward said locking member actuating means upon energialical thereof.
- 8. A strike comprising:

a housing with a plurality of walls;

- a keeper mounted on said housing for movement from a first position to a second position for respectively engaging a latch and moving away from the latch, said keeper having at least one lug extending therefrom toward a wall of aid housing and movable along a predetermined path in a plane with movement of said keeper;
- a locking member slidably mounted on said housing intermediate said keeper and said wall of said housing and movable rectilinearly in the direction transverse to said plane and said predetermined path of movement of said lug, said locking member having means thereon extending transversely to said predetermined path of movement of said lug, said means being engageable with said lug in one position of said locking member relative to said keeper for preventing movement of said keeper and said means being out of the path of movement of said lug when said locking member is in another position relative to said keeper to permit movement of said keeper;
- biassing means acting between said locking member and said housing and urging said locking member into one of the relative positions thereof; and
- locking member actuating means for moving said locking member from the last-mentioned said one relative said position thereof into the other relative position thereof.
- 9. A strike as set forth in claim 6 further comprising biassing means acting between said housing and said keeper for urging said keeper into said first position thereof.

4,984,835

Q

10. A strike as set forth in claim 6 wherein said lugs and said arms have interengaging surfaces which lie in planes extending at an angle of less than about 15° to said axis.

11. A strike as set forth in claim 7 wherein in said first 5 position of said locking member said arms are engageable with said lugs.

12. A strike as set forth in claim 7 wherein in said first position of said locking member said arms are out of the paths of movement of said lugs when said keeper is 10 pivoted.

13. A strike as set forth in claim 7 further comprising biassing means acting between said keeper and said housing and urging said keeper into said first position.

14. A strike as set forth in claim 7 wherein said locking member has a magnetic portion adjacent but spaced from said locking member actuating means, wherein said locking member actuating means comprises a pair

of wire coils in laterally spaced relation and a pair of magnetic cores, one core within one of said coils and the other core within the other of said coils and wherein said magnetic portion of said locking member extends from adjacent one of said cores to adjacent the other of said cores.

10

15. A replacement locking member for the strike as set forth in claim 7, said replacement locking member having arms which are positioned on said replacement locking member so that in said one of said positions of said locking member, the last-mentioned said arms are out of the path of movement of said lugs when said keeper is pivoted to permit pivoting of said keeper and that in said other of said positions of said locking member said arms are engageable with said lugs to prevent pivoting of said keeper.

20

20

25

30

35

40

45

50

55

60

65

NORRIS MCLAUGHLIN & MARCUS, PA ATTORNEYS AT LAW

richard a. Norris G. ROBERT MARCUS WILLIAM A. DREIER PETER D. HUTCHEON JOEL N. JACOBSON J. ANTHONY MANGER WALTER G. REINHARD VICTOR 3. ELGORT KENNETH O. MESKIN KEVIN T. CRRIEN M. KAREN THOMPSON" IRA S. NOVAK EDWARD G. SPONZILLI* LORIMER P. BROOKS! WILLIAM B. BOBINSON CARL G. WEISENFELD THEODORE MARGOLIS JAMES J. SHRAGER JOSEPH J. FLEISCHMAN ANTHONY J. GIURICED JOHN J. EAGAN

JAMES H. LASKEY KURT G. BRISCOE? WILLIAM C. GERSTENZANG BRUCE S. LONDA EDWARD A. HOGAN STUART J. FREEDMAN DAVID R. STRICKLER ROBERT C. GARRIELSKI PATRICK T. COLLING GARY N. MAR MICHAEL F. CHADEEL LAWRENCE N. LAVIGHE DOUGLAS R. EROWN MARTHA N. DONOVAN CHARLES W. MILLER, III ROBERT MAHONEY NICHOLAS F. PELLITTA JOHN N. VANARTHOS MICHAEL K. LIGORAND HICHAEL W. BOZANSKY, JR. DANIEL R. QUADALUPE

MARION K, LITTMAN
STEVEN A, KARG
DAVID C, ROBERTS
ALISON L, CALER
ANDREW N, PARFOMAK
RIKKI L, PIELD
DAVY E, ZONERAICH
MARGARET R, FLOOD
MARK A, MONTANA
LINDA B, BECMPP

ELBA A. GOODMAN
JERALYN I. LAWRENGE
GOOTT M. BAAGH
ANNMARIE, SIMEONE
MAEKYOUNG SUH
FERNANDO M. PINGUELO
LINDA A. TANCE
ALYSSA A. VERDERAMI
PADRAIG P. FLANAGAN

JEREMY I, SILBERMAN
CAVID S. BLATTEIS
MARIANIE CALABRESE
THEODORE A. OOTTLIEB
ROBERT L. SCHMIDT
JOHN A. JAKUB
MARGOT M. DEKONTE
PATRICK T. MOTTOLA
BUZANA LONCAR
RACHEL A. WINGERTER
DEANNA L. KOESTEL
SONAL L. PATEL
CARMINE RATTAFARANO

op Couhècl: Michele S. Marcus Christa Hildebrand

*CERTIFIED BY THE SUPPEME COURT OF NEW JERSEY AS A CIVIL TRIAL ATTORNEY I NT BAR ONLY MAILING ADDRESS: RO. BOX 1018 SOMERVILLE, NJ 08876-1018 (908) 722-0700 (908) 722-0755 FACSIMILE

> HAND DELIVERY: 721 ROUTE CO2-206 BRIDGEWATER, NJ OBSO7

> > 220 EAST 42KD STREET 307H FLOOR NEW YORK, NY 10017

INFO@NMHLAW.COM E-MAIL

MEMBER: MERITAS LAW FIRMS WORLDWIDE

November 3, 2003

VIA UPS

Ms. Victoria C. Rutherford President Rutherford Controls International Corp. 210 Shearson Crescent Cambridge, Ontario Canada N1T 1J6

Re:

RCI Electric Door Strike and

Trine Access U.S. Patent No. 4,984,835

Our File: 101463-012

Dear Ms. Rutherford:

Our firm represents Trine Access Technology, Inc. and Trine recently brought to our attention a sample of RCI's electric door strike product. The label on the RCI product (copy attached) contains the RCI logo, the legend "Burglary Resistant Electric Door Strike for Indoor Use Only" and the designations 46CA and L65.

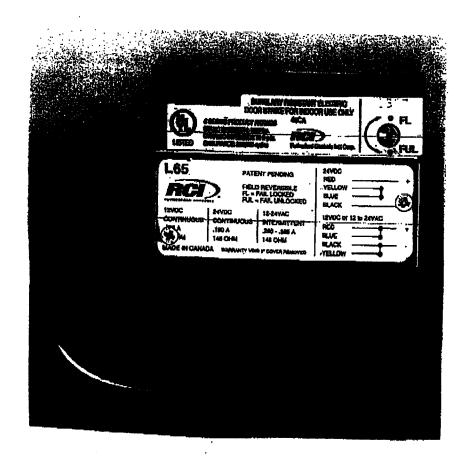
Trine is the owner of U.S. Patent No. 4,984,835 (the "835 Patent", copy attached) and international counterparts in Canada, Mexico, Australia and Germany. Trine also manufactures and sells a product of the 835 patent and their patent number is marked on the product. We have compared the claims of the 835 patent with the RCI product and the RCI product is an infringement of the claims.

Norris McLaughlin & Marcus, PA

November 3, 2003 Page 2

While Trine is willing to discuss a basis for settling this matter with RCI, Trine also demands that RCI immediately cease and desist the manufacture, use and sale of the RCI product.

We look forward to hearing back from you after you have had an opportunity to consider this matter.


Sincerely,

NORRIS, McLAUGHLIN & MARCUS

William R. Robinson

WRR/cps Enclosures

cc: Mr. William Schildwachter (w/enc.)

NORRIS MCLAUGHLIN & MARCUS, PA

ATTORNEYS AT LAW

RICHARD A. NORRIS G. ROBERT MARCUS WILLIAM A. DREIER PETER D. HUTCHEON JOEL N. JACOBSON J. ANTHONY MANGER WALTER G. REINHARD VICTOR S. ELGORT KENNETH D. MESKIN KEVIN T. O'BRIEN M. KAREN THOMPSON* IRA S. NOVAK EDWARD G. SPONZILLI* LORIMER P. BROOKS! WILLIAM R. ROBINSON CARL G. WEISENFELD THEODORE MARGOLIS JAMES J. SHRAGER JOSEPK J. FLEISCHMAN ANTHONY J. GIURICEO JOHN J. EAGAN

JAMES H. LASKEY KURT G. BRISCOE² WILLIAM C. GERSTENZANG! BRUCE S. LONDA! EDWARD A. HOGAN STUART J. FREEDMAN DAVID R. STRICKLER ROBERT C. GABRIELSKI PATRICK T. COLLINS GARY N. MARKS MICHAEL F. CHAZKEL* LAWRENCE N. LAVIGNE DOUGLAS R. BROWN MARTHA N. DONOVAN CHARLES W. MILLER, III ROBERT MAHONEY NICHOLAS F. PELLITTA JOHN N. VANARTHOS MICHAEL K. LIGORANO MICHAEL W. SOZANSKY, JR. DANIEL R. GUADALUPE

MARION K. LITTMAN STEVEN A. KARG DAVID C. ROBERTS ALISON L. GALER ANDREW N. PARFOMAK RIKKI L. FIELD DAVY E. ZONERAICH MARGARET R. FLOOD MARK A. MONTANA CHRISTA HILDEBRAND JERALYN L. LAWRENCE SCOTT M. BAACH

LINDA R. BROWER JEREMY I. SILBERMAN DAVID S. BLATTEIS ANNMARIE SIMEONE LINDA A. TANCS ELGA A. GOODMAN HAEKYOUNG SUH

FERNANDO M. PINGUELO RACHEL A. WINGERTER ALYSSA A. VERDERAMI PÁDRAIG P. FLANAGAN ROBERT L. SCHMIDT MARIANNE CALABRESE JOHN A. JAKUB PATRICK T. MOTTOLA CARMINE BATTAFARANO THEODORE A. GOTTLIEBI SUZANA LONCAR DEANNA L. KOESTEL SONAL I. PATEL KEITH D. MCDONALD MELISSA A. PEÑA GLENN L. STEIN

MICHELE S. MARCUS

CERTIFIED BY THE SUPREMI COURT OF NEW JERSE CIVIL TRIAL ATTORNEY 1 NY BAR ONLY 2 MD BAR ONLY

MAILING ADDRESS: P.O. BOX 1018 SOMERVILLE, NJ 08876-1018 (908) 722-0700 (908) 722-0755 FACSIMILE

> HAND DELIVERY: 721 ROUTE 202-206 BRIDGEWATER, NJ 08807

> > 220 EAST 42ND STREET 30TH FLOOR NEW YORK, NY 10017

WWW.NMMLAW.COM E-MAIL

MERITAS LAW FIRMS WORLDWIDE

March 1, 2004

Via Facsimile No.: 202-857-6395 Confirmation by Mail

Erik B. Cherdak, Esq. Arent Fox Kintner Plotkin & Kahn, PLLC 1050 Connecticut Avenue, NW Washington, DC 20036-5339

Re:

RCI Electric Door Strike and

Trine Access U.S. Patent No. 4,984,835

Our File: 101463-012

Dear Mr. Cherdak:

We have received your letter of February 27, 2004 and I must say we were disappointed with the lack of substance in your response, particularly in view of the fact that we first wrote to your client about their infringement of our client's patent four months ago, on November 3, 2003. If you have substantive bases for concluding noninfringement or "issues surrounding the prior art" we would appreciate it if you would share them with us.

You have indicated that your client would like to resolve this situation in a business-like amicable way and our client is willing to open a dialogue with your client based upon the following:

Norris McLaughlin & Marcus, PA

March 1, 2004 Page 2

- 1. Rutherford Controls will immediately cease and desist its manufacture and sale of the accused product.
- 2. Rutherford Controls will pay the legal fees of Trine Access in respect of this dispute from inception through settlement.
- 3. Rutherford Controls will provide a complete accounting of all accused product manufactured or sold and the parties shall negotiate a damages payment amount. In this regard, we remind you that our client has marked their product with the patent number continuously for several years. Rutherford Controls, accordingly, has been on notice of the patent and is liable for damages from the first date of their manufacture or sale, going back at least as far as permitted by the statute of limitations.

We have lost patience with Rutherford Controls' ongoing excuses and delays in respect of this matter. Accordingly, we expect a prompt and substantive response to this letter within five (5) business days.

Sincerely,

NORRIS, McLAUGHLIN & MARCUS

William R. Robinson

WRR/cps

cc: Mr. William Schildwachter (By E-mail)