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IN THE UNITED STATES DISTRICT COURT 
FOR THE WESTERN DISTRICT OF TEXAS 

WACO DIVISION 

STREAMSCALE, INC., 
 
  Plaintiff, 
 
 v. 
 
CLOUDERA, INC., 
AUTOMATIC DATA PROCESSING, INC., 
EXPERIAN PLC, WARGAMING 
(AUSTIN), INC., and 
INTEL CORPORATION, 
 
  Defendants. 

) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 
) 

 
 
 
 
Civil No. 6:21-cv-00198-ADA 
 
JURY TRIAL DEMANDED 

 
SECONDED AMENDED COMPLAINT FOR PATENT INFRINGEMENT 

Plaintiff StreamScale, Inc. (“Plaintiff” or “StreamScale”) files this Second Amended 

Complaint for patent infringement against Defendants Cloudera, Inc. (“Cloudera”), Automatic 

Data Processing, Inc.1 (“ADP”), Experian plc (“Experian”), Wargaming (Austin), Inc. 

(“Wargaming”), and Intel Corporation (“Intel”) (collectively, “Defendants”) alleging as follows: 

NATURE OF SUIT 

1. This is a claim for patent infringement arising under the patent laws of the United 

States, Title 35 of the United States Code. 

                                                 
1  On June 11, 2021, Defendant Automatic Data Processing, Inc. filed an unopposed motion to 
substitute ADP, Inc. in its place.  Unopposed Motion to Substitute Party, StreamScale, Inc. v. 
Cloudera, Inc., No. 6:21-cv-00198-ADA (W.D. Tex. June 11, 2021), ECF No. 50.  To date, the 
Court has not yet acted on that motion.  To maintain the status quo, StreamScale, Inc. has again 
named Automatic Data Processing, Inc. in this Second Amended Complaint, but its allegations 
apply equally to ADP, Inc. 
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2. StreamScale owns multiple patents relating to accelerated erasure coding.  

StreamScale’s patented technology is a cornerstone of modern data storage, especially cloud-based 

data storage. 

3. Data storage protection from loss used to be a matter of replicating the data.  Data 

replication resulted in redundant data drives, and that redundancy provided an enhanced measure 

of data availability along with some measure of fault tolerance.  For example, if one of the data 

drives were to be corrupted, the original data would still be available on a redundant disk. 

4. Data replication is highly inefficient and no longer commercially practicable.  Take 

a triple replication scheme for example.  If a user desired to save some quantum of data, say 100 

GB, it would require 300 GB of data storage to save that 100 GB of data.  That is only a 33% 

utilization of storage capacity.  And that measure of efficiency gets worse as the amount of 

redundancy in a system increases.  Triple replication is also incredibly expensive because you need 

to buy three times the capacity of your original data.  Triple replication further requires the 

additional, redundant capacity to be packaged, powered, and serviced. 

5. Systems that employ accelerated erasure coding as patented by StreamScale enable 

scalable, high-performance data storage systems that can outperform other systems and do so at 

lower cost.  StreamScale’s inventions significantly reduce storage overhead while achieving 

similar or better fault tolerance than prior systems and methods, and are a quantum leap forward 

from prior systems. 

6. At a high level, erasure coding uses specially designed systems to transform a block 

of original data to be stored into one or more blocks of encoded data that can be distributed across 

numerous storage devices or drives.  The original data can be reconstructed from the encoded data, 

even if some portions of the original data are lost or unavailable.  The data encoding and decoding 
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processes are time and energy intensive.  If erasure coding is performed without appropriately 

configured computers using appropriately organized instructions, it can appear to have only limited 

practical applicability.  Indeed, the widespread view in the industry before the work of StreamScale 

was that there was no way to employ erasure coding at high speeds, including so-called “cache 

line speeds.” 

7. With its accelerated erasure coding technology, StreamScale achieved what was 

thought to be impossible.  StreamScale achieved in one embodiment more than an order of 

magnitude performance increase in actual system performance.  Rather than remaining an 

unobtainable goal with very limited application, storage systems based on StreamScale’s 

accelerated erasure coding immediately became practical and thus had newfound applicability to 

the data storage industry, among others. 

8. The innovations described in—and protected by—StreamScale’s Patents-in-Suit 

have been incorporated into products and services offered by Cloudera, ADP, Experian, and 

Wargaming.  For its part, Intel has induced infringement by at least Cloudera, ADP, Experian, and 

Wargaming through Intel’s collaboration with Cloudera relating to accelerated erasure coding. 

PARTIES 

9. Plaintiff StreamScale, Inc. is a corporation duly organized and existing under the 

laws of the State of Texas, having a principal place of business at 7215 Bosque Blvd., Suite 203, 

Waco, Texas 76710.  StreamScale is the owner of record of the Patents-in-Suit in this action. 

10. Defendant Cloudera, Inc. (“Cloudera”) is a corporation organized under the laws 

of the State of Delaware.  Cloudera maintains an office in this judicial district at 515 Congress, 

Suite 1300, Austin, Texas 78701.  Cloudera can be served with process through its registered agent 

in the State of Texas, Corporation Service Company d/b/a CSC – Lawyers Incorporating Service 

Company, 211 East 7th Street, Suite 620, Austin, Texas 78701-3218. 
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11. Defendant Automatic Data Processing, Inc. (“ADP”) is a corporation organized 

under the laws of the State of Delaware.  ADP maintains offices in this judicial district, including 

at (i) 6500 River Place Blvd., Bldg VII, Austin, Texas 78730, (ii) 1851 North Resler, El Paso, 

Texas 79912, (iii) 7650 San Felipe Dr., El Paso, Texas 79912, and (iv) 211 North Loop 1604 East, 

San Antonio, Texas 78232.  ADP can be served with process through its registered agent in the 

State of Texas, C T Corporation System, 1999 Bryan St., Suite 900, Dallas, Texas 75201. 

12. Defendant Experian PLC is a public limited company registered and incorporated 

under the laws of the Bailiwick of Jersey, having a principal place of business at Newenham House, 

Northern Cross, Malahide Road, Dublin 17, D17 AY61, Ireland, and registered office at 22 

Grenville Street, St Helier, Jersey JE4 8PX, Channel Islands. 

13. Defendant Wargaming (Austin), Inc. (“Wargaming”) is a corporation organized 

under the laws of the State of Delaware, having a principal place of business at 11001 Lakeline 

Blvd., Austin, Texas 78717.  Wargaming can be served with process through its registered agent 

in the State of Texas, C T Corporation System, 1999 Bryan St., Suite 900, Dallas, Texas 75201. 

14. Defendant Intel Corporation (“Intel”) is a corporation organized under the laws of 

the State of Delaware.  Intel maintains an office in this judicial district at 9442 N. Capital of Texas 

Hwy, Bldg 2, Suite 600, Austin, Texas 78759.  Intel can be served with process through its 

registered agent in the State of Texas, C T Corporation System, 1999 Bryan St., Suite 900, Dallas, 

Texas 75201. 

15. Collectively, Cloudera, ADP, Experian, Wargaming, and Intel are referred to herein 

as the “Defendants.” 

JURISDICTION AND VENUE 

16. This action arises under the patent laws of the United States, 35 U.S.C. § 101, et 

seq.  This Court has jurisdiction over this action pursuant to 28 U.S.C. §§ 1331 and 1338(a). 
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17. Cloudera is subject to personal jurisdiction in this Court.  This Court has personal 

jurisdiction over Cloudera because Cloudera has engaged in continuous, systematic, and 

substantial activities within this State, including substantial marketing and sales of products and 

services within this State and this District.  Furthermore, upon information and belief, this Court 

has personal jurisdiction over Cloudera because Cloudera has committed acts giving rise to 

StreamScale’s claims for patent infringement within and directed to this District. 

18. Upon information and belief, Cloudera has conducted and does conduct substantial 

business in this forum, directly and/or through subsidiaries, agents, representatives, or 

intermediaries, such substantial business including but not limited to: (i) at least a portion of the 

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more 

infringing products and services into the stream of commerce with the expectation that they will 

be purchased by consumers in this forum; and/or (iii) regularly doing or soliciting business, 

engaging in other persistent courses of conduct, or deriving substantial revenue from goods and 

services provided to individuals in Texas and in this judicial district.  Thus, Cloudera is subject to 

this Court’s specific and general personal jurisdiction pursuant to due process and the Texas Long 

Arm Statute. 

19. Upon information and belief, Cloudera has committed acts of infringement in this 

District and has one or more regular and established places of business within this District under 

28 U.S.C. § 1400(b).  Thus, venue is proper in this District under 28 U.S.C. § 1400(b). 

20. Cloudera maintains a permanent physical presence within this District.  For 

example, it maintains at least the office location at 515 Congress, Suite 1300, Austin, Texas 78701.  

Cloudera employs numerous employees who work at Cloudera’s location(s) in this District. 
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21. Cloudera’s location(s) in this District, including at least those identified in 

paragraph 20 above, are regular and established places of business under 28 U.S.C. § 1391, 28 

U.S.C. § 1400(b), and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017). 

a. Cloudera’s location(s) in this District, including at least those identified in 

paragraph 20 above, are physical, geographical location(s) in this District.  Each office 

location comprises one or more buildings or office spaces from which the business of 

Cloudera is carried out.  The location(s) are set apart for the purpose of carrying out 

Cloudera’s business, including but not limited to, making, using, selling, offering for sale, 

and/or supporting infringing products and services.  Indeed, Cloudera itself advertises its 

physical location(s) in this District as places of its business. 

b. Cloudera’s location(s) in this District, including at least those identified in 

paragraph 20 above, are regular and established. 

c. Cloudera’s location(s) in this District, including at least those identified in 

paragraph 20 above, are places of business of Cloudera.  Cloudera conducts business from 

its location(s) in this District, including at least those identified in paragraph 20 above, 

including but not limited to, making, using, selling, offering for sale, and/or supporting 

infringing products and services. 

d. Cloudera’s location(s) in this District, including at least those identified in 

paragraph 20 above, are physical, geographical location(s) in this District from which 

Cloudera carries out its business. 

e. Cloudera employees work at Cloudera’s location(s), including at least those 

identified in paragraph 20 above.  Upon information and belief, these Cloudera employees 

are regularly and physically present at Cloudera’s location(s), including at least those 
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identified in paragraph 20 above, during business hours and they are conducting Cloudera’s 

business while working there. 

22. ADP is subject to personal jurisdiction in this Court.  This Court has personal 

jurisdiction over ADP because ADP has engaged in continuous, systematic, and substantial 

activities within this State, including substantial marketing and sales of products and services 

within this State and this District.  Furthermore, upon information and belief, this Court has 

personal jurisdiction over ADP because ADP has committed acts giving rise to StreamScale’s 

claims for patent infringement within and directed to this District. 

23. Upon information and belief, ADP has conducted and does conduct substantial 

business in this forum, directly and/or through subsidiaries, agents, representatives, or 

intermediaries, such substantial business including but not limited to: (i) at least a portion of the 

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more 

infringing products into the stream of commerce with the expectation that they will be purchased 

by consumers in this forum; and/or (iii) regularly doing or soliciting business, engaging in other 

persistent courses of conduct, or deriving substantial revenue from goods and services provided to 

individuals in Texas and in this judicial district.  Thus, ADP is subject to this Court’s specific and 

general personal jurisdiction pursuant to due process and the Texas Long Arm Statute. 

24. Upon information and belief, ADP has committed acts of infringement in this 

District and has one or more regular and established places of business within this District under 

28 U.S.C. § 1400(b).  Thus, venue is proper in this District under 28 U.S.C. § 1400(b). 

25. ADP maintains a permanent physical presence within this District.  For example, it 

maintains office locations at (i) ADP Austin, 6500 River Place Blvd. Bldg. VII, Austin, Texas 

78730; (ii) ADP El Paso, 1851 North Resler, El Paso, Texas 79912; (iii) ADP El Paso, 7650 San 
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Felipe Drive, El Paso, Texas 79912; and (iv) ADP San Antonio, 211 North Loop 1604 East, San 

Antonio, Texas 78232.  ADP employs employees who work at ADP’s locations in this District. 

26. ADP’s location(s) in this District, including at least those identified in paragraph 25 

above, are regular and established places of business under 28 U.S.C. § 1391, 28 U.S.C. § 1400(b), 

and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017). 

a. ADP’s location(s) in this District, including at least those identified in 

paragraph 25 above, are physical, geographical location(s) in this District.  Each office 

location comprises one or more buildings or office spaces from which the business of ADP 

is carried out.  The location(s) are set apart for the purpose carrying out ADP’s business, 

including but not limited to, making, using, selling, offering for sale, and/or supporting 

infringing products and services.  Indeed, ADP itself advertises its physical location(s) in 

this District as places of its business, and it features commercial signage at many of these 

location(s). 

b. ADP’s location(s) in this District, including at least those identified in 

paragraph 25 above, are regular and established.  ADP features commercial signage at 

many of the location(s) identifying the location as a regular and established place of ADP’s 

business. 

c. ADP’s location(s) in this District, including at least those identified in 

paragraph 25 above, are places of business of ADP.  ADP conducts business from its 

location(s) in this District, including at least those identified in paragraph 25 above, 

including but not limited to making, using selling, offering for sale, and/or supporting 

infringing products and services. 
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d. ADP’s location(s) in this District, including at least those identified in 

paragraph 25 above, are physical, geographical location(s) in this District from which ADP 

carries out its business. 

e. ADP employees work at ADP’s location(s), including at least those 

identified in paragraph 25 above.  Upon information and belief, these ADP employees are 

regularly and physically present at ADP’s location(s), including at least those identified in 

paragraph 25 above, during business hours and they are conducting ADP’s business while 

working there. 

27. Experian is subject to personal jurisdiction in this Court.  This Court has personal 

jurisdiction over Experian because, upon information and belief, Experian has engaged in 

continuous, systematic, and substantial activities within this State, for example with and through 

its corporate subsidiaries CSIdentity Corporation and Experian Information Solutions, Inc.  Upon 

information and belief, Experian’s continuous, systematic, and substantial activities within this 

State include substantial marketing and sales of products and services within this State and this 

District, including for example through Experian’s corporate subsidiaries CSIdentity Corporation 

and Experian Information Solutions, Inc.  Furthermore, upon information and belief, this Court 

has personal jurisdiction over Experian because Experian has committed acts giving rise to 

StreamScale’s claims for patent infringement within and directed to this District. 

28. Upon information and belief, Experian has conducted and does conduct substantial 

business in this forum, directly and/or through subsidiaries, agents, representatives, or 

intermediaries, such substantial business including but not limited to: (i) at least a portion of the 

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more 

infringing products into the stream of commerce with the expectation that they will be purchased 
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by consumers in this forum; and/or (iii) regularly doing or soliciting business, engaging in other 

persistent courses of conduct, or deriving substantial revenue from goods and services provided to 

individuals in Texas and in this judicial district.  Thus, Experian is subject to this Court’s specific 

and general personal jurisdiction pursuant to due process and the Texas Long Arm Statute. 

29. To the extent Experian is not subject to jurisdiction in any State’s courts of general 

jurisdiction, this Court has personal jurisdiction of Experian pursuant to Federal Rule of Civil 

Procedure 4(k)(2) because StreamScale’s claims arise under federal law and exercising jurisdiction 

is consistent with the United States Constitution and laws. 

30. Upon information and belief, Experian has committed acts of infringement in this 

District and has, itself or through its corporate subsidiaries, one or more regular and established 

places of business within this District under 28 U.S.C. § 1400(b).  Thus, venue is proper in this 

District under 28 U.S.C. § 1400(b). 

31. Experian, including for example through Experian’s corporate subsidiaries 

CSIdentity Corporation and Experian Information Solutions, Inc., maintains a permanent physical 

presence within this District.  For example, it maintains at least the office location at 1501 South 

MoPac Expressway, Austin, Texas 78746.  Experian employs employees who work at Experian’s 

location(s) in this District. 

32. Experian’s location(s) in this District, including at least those identified in 

paragraph 31 above, are regular and established places of business under 28 U.S.C. § 1391, 28 

U.S.C. § 1400(b), and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017). 

a. Experian’s location(s) in this District, including for example those 

identified in paragraph 31 above, are physical, geographical location(s) in this District.  

Each office location comprises one or more buildings or office spaces from which the 
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business of Experian is carried out.  The location(s) are set apart for the purpose of carrying 

out Experian’s business, including but not limited to, making, using, selling, offering for 

sale, and/or supporting infringing products and services.  Indeed, Experian itself advertises 

its physical location(s) in this District as places of its business, and it features commercial 

signage at these location(s). 

b. Experian’s location(s) in this District, including at least those identified in 

paragraph 31 above, are regular and established.  Experian features commercial signage at 

the location(s) identifying the location as a regular and established place of Experian’s 

business. 

c. Experian’s location(s) in this District, including at least those identified in 

paragraph 31 above, are places of business of Experian, including at least Experian’s 

corporate subsidiaries CSIdentity Corporation and Experian Information Solutions, Inc.  

Experian conducts business from its location(s) in this District, including at least those 

identified in paragraph 31 above, including but not limited to, making, using, selling, 

offering for sale, and/or supporting infringing products and services. 

d. Experian’s location(s) in this District, including at least those identified in 

paragraph 31 above, are physical, geographical location(s) in this District from which 

Experian carries out its business. 

e. Experian employees work at Experian’s location(s), including at least those 

identified in paragraph 31 above.  Upon information and belief, these Experian employees 

are regularly and physically present at Experian’s location(s), including at least those 

identified in paragraph 31 above, during business hours and they are conducting Experian’s 

business while working there. 
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33. To the extent Experian is found not reside in the United States, venue is nonetheless 

proper in this Court as to Experian pursuant to 28 U.S.C. § 1391(c)(3). 

34. Wargaming is subject to personal jurisdiction in this Court.  This Court has personal 

jurisdiction over Wargaming because Wargaming has engaged in continuous, systematic, and 

substantial activities within this State, including substantial marketing and sales of products and 

services within this State and this District.  Furthermore, upon information and belief, this Court 

has personal jurisdiction over Wargaming because Wargaming has committed acts giving rise to 

StreamScale’s claims for patent infringement within and directed to this District. 

35. Upon information and belief, Wargaming has conducted and does conduct 

substantial business in this forum, directly and/or through subsidiaries, agents, representatives, or 

intermediaries, such substantial business including but not limited to: (i) at least a portion of the 

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more 

infringing products and services into the stream of commerce with the expectation that they will 

be purchased by consumers in this forum; and/or (iii) regularly doing or soliciting business, 

engaging in other persistent courses of conduct, or deriving substantial revenue from goods and 

services provided to individuals in Texas and in this judicial district.  Thus, Wargaming is subject 

to this Court’s specific and general personal jurisdiction pursuant to due process and the Texas 

Long Arm Statute. 

36. Upon information and belief, Wargaming has committed acts of infringement in 

this District and has one or more regular and established places of business within this District 

under 28 U.S.C. § 1400(b).  Thus, venue is proper in this District under 28 U.S.C. § 1400(b). 
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37. Wargaming maintains a permanent physical presence within this District.  For 

example, it maintains at least the office location at 11001 Lakeline Blvd., Austin, Texas 78717.  

Wargaming employs numerous employees who work at Wargaming’s location(s) in this District. 

38. Wargaming’s location(s) in this District, including at least those identified in 

paragraph 37 above, are regular and established places of business under 28 U.S.C. § 1391, 28 

U.S.C. § 1400(b), and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017). 

a. Wargaming’s location(s) in this District, including at least those identified 

in paragraph 37 above, are physical, geographical location(s) in this District.  Each office 

location comprises one or more buildings or office spaces from which the business of 

Wargaming is carried out.  The location(s) are set apart for the purpose of carrying out 

Wargaming’s business, including but not limited to, making, using, selling, offering for 

sale, and/or supporting infringing products and services.  Indeed, Wargaming itself 

advertises its physical location(s) in this District as places of its business. 

b. Wargaming’s location(s) in this District, including at least those identified 

in paragraph 37 above, are regular and established. 

c. Wargaming’s location(s) in this District, including at least those identified 

in paragraph 37 above, are places of business of Wargaming.  Wargaming conducts 

business from its location(s) in this District, including at least those identified in 

paragraph 37 above, including but not limited to, making, using, selling, offering for sale, 

and/or supporting infringing products and services. 

d. Wargaming’s location(s) in this District, including at least those identified 

in paragraph 37 above, are physical, geographical location(s) in this District from which 

Wargaming carries out its business. 
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e. Wargaming employees work at Wargaming’s location(s), including at least 

those identified in paragraph 37 above.  Upon information and belief, these Wargaming 

employees are regularly and physically present at Wargaming’s location(s), including at 

least those identified in paragraph 37 above, during business hours and they are conducting 

Wargaming’s business while working there. 

39. Intel is subject to personal jurisdiction in this Court.  This Court has personal 

jurisdiction over Intel because Intel has engaged in continuous, systematic, and substantial 

activities within this State, including substantial marketing and sales of products and services 

within this State and this District.  Furthermore, upon information and belief, this Court has 

personal jurisdiction over Intel because Intel has committed acts giving rise to StreamScale’s 

claims for patent infringement within and directed to this District. 

40. Upon information and belief, Intel has conducted and does conduct substantial 

business in this forum, directly and/or through subsidiaries, agents, representatives, or 

intermediaries, such substantial business including but not limited to: (i) at least a portion of the 

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more 

infringing products into the stream of commerce with the expectation that they will be purchased 

by consumers in this forum; and/or (iii) regularly doing or soliciting business, engaging in other 

persistent courses of conduct, or deriving substantial revenue from goods and services provided to 

individuals in Texas and in this judicial district.  Thus, Intel is subject to this Court’s specific and 

general personal jurisdiction pursuant to due process and the Texas Long Arm Statute. 

41. Upon information and belief, Intel has committed acts of infringement in this 

District and has one or more regular and established places of business within this District under 

28 U.S.C. § 1400(b).  Thus, venue is proper in this District under 28 U.S.C. § 1400(b). 
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42. Intel maintains a permanent physical presence within this District.  For example, it 

maintains at least the office location at 9442 N. Capital of Texas Hwy, Bldg 2, Suite 600, Austin, 

Texas 78759.  Intel employs numerous employees who work at Intel’s location(s) in this District. 

43. Intel’s location(s) in this District, including at least those identified in paragraph 42 

above, are regular and established places of business under 28 U.S.C. § 1391, 28 U.S.C. § 1400(b), 

and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017). 

a. Intel’s location(s) in this District, including at least those identified in 

paragraph 42 above, are physical, geographical location(s) in this District.  Each office 

location comprises one or more buildings or office spaces from which the business of Intel 

is carried out.  The location(s) are set apart for the purpose of carrying out Intel’s business, 

including but not limited to the acts of infringement alleged herein.  Indeed, Intel itself 

advertises its physical location(s) in this District as places of its business. 

b. Intel’s location(s) in this District, including at least those identified in 

paragraph 42 above, are regular and established. 

c. Intel’s location(s) in this District, including at least those identified in 

paragraph 42 above, are places of business of Intel.  Intel conducts business from its 

location(s) in this District, including at least those identified in paragraph 42 above, 

including but not limited to, making, using, selling, offering for sale, and/or supporting 

infringing products and services. 

d. Intel’s location(s) in this District, including at least those identified in 

paragraph 42 above, are physical, geographical location(s) in this District from which Intel 

carries out its business. 
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e. Intel employees work at Intel’s location(s), including at least those 

identified in paragraph 42 above.  Upon information and belief, these Intel employees are 

regularly and physically present at Intel’s location(s), including at least those identified in 

paragraph 42 above, during business hours and they are conducting Intel’s business while 

working there. 

FACTUAL ALLEGATIONS 

I. PATENTS-IN-SUIT 

44. U.S. Patent No. 8,683,296 (“the ’8-296 Patent”) is entitled “Accelerated Erasure 

Coding System and Method.”  The ’8-296 Patent duly and legally issued on March 25, 2014, from 

U.S. Patent Application No. 13/341,833, filed on December 30, 2011.  StreamScale is the current 

owner of all rights, title, and interest in and to the ’8-296 Patent.  A true and correct copy of the 

’8-296 Patent is attached hereto as Exhibit A and is incorporated by reference herein. 

45. U.S. Patent No. 9,160,374 (“the ’374 Patent”) is entitled “Accelerated Erasure 

Coding System and Method.”  The ’374 Patent duly and legally issued on October 13, 2015, from 

U.S. Patent Application No. 14/223,740, filed on March 24, 2014.  The ’374 Patent is a 

continuation of U.S. Patent Application No. 13/341,833, filed on December 30, 2011, now U.S. 

Patent No. 8,683,296.  The ’374 Patent is entitled to the benefit of the December 30, 2011 filing 

date of application No. 13/341,833.  StreamScale is the current owner of all rights, title, and 

interest in and to the ’374 Patent. A true and correct copy of the ’374 Patent is attached hereto as 

Exhibit B and is incorporated by reference herein. 

46. U.S. Patent No. 9,385,759 (“the ’759 Patent”) is entitled “Accelerated Erasure 

Coding System and Method.”  The ’759 Patent duly and legally issued on July 5, 2016, from U.S. 

Patent Application No. 14/852,438, filed on September 11, 2015.  The ’759 Patent is a 

continuation of U.S. Patent Application No. 14/223,740, filed on March 24, 2014, now U.S. Patent 
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No. 9,160,374.  U.S. Patent No. 9,160,374 is a continuation of U.S. Patent Application 

No. 13/341,833, filed on December 30, 2011, now U.S. Patent No. 8,683,296.  The ’759 Patent is 

entitled to the benefit of the December 30, 2011 filing date of application No. 13/341,833.  

StreamScale is the current owner of all rights, title, and interest in and to the ’759 Patent.  A true 

and correct copy of the ’759 Patent is attached hereto as Exhibit C and is incorporated by reference 

herein. 

47. U.S. Patent No. 10,003,358 (“the ’358 Patent”) is entitled “Accelerated Erasure 

Coding System and Method.”  The ’358 Patent duly and legally issued on June 19, 2018, from 

U.S. Patent Application No. 15/201,196, filed on July 1, 2016.  The ’358 Patent is a continuation 

of U.S. Patent Application No. 14/852,438, filed on September 11, 2015, now U.S. Patent 

No. 9,385,759.  U.S. Patent No. 9,385,759 is a continuation of U.S. Patent Application 

No. 14/223,740, filed on March 24, 2014, now U.S. Patent No. 9,160,374.  U.S. Patent 

No. 9,160,374 is a continuation of U.S. Patent Application No. 13/341,833, filed on December 30, 

2011, now U.S. Patent No. 8,683,296.  The ’358 Patent is entitled to the benefit of the 

December 30, 2011 filing date of application No. 13/341,833.  StreamScale is the current owner 

of all rights, title, and interest in and to the ’358 Patent.  A true and correct copy of the ’358 Patent 

is attached hereto as Exhibit D and is incorporated by reference herein.  On or about February 23, 

2021, StreamScale filed a Petition for Correction of Inventorship Under 37 C.F.R. § 1.324, 

including associated documentation and fees, with the United States Patent and Trademark Office 

requesting the correction of inventorship of the ’358 Patent to include inventor Sarah Mann, who 

was not named as an inventor through error.  True and correct copies of that Petition and associated 

documentation are attached as Exhibit E, and that material is incorporated by reference herein. 
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48. U.S. Patent No. 10,291,259 (“the ’259 Patent”) is entitled “Accelerated Erasure 

Coding System and Method.”  The ’259 Patent duly and legally issued on May 14, 2019, from 

U.S. Patent Application No. 15/976,175, filed on May 10, 2018.  The ’259 Patent is a continuation 

of U.S. Patent Application No. 15/201,196, filed on July 1, 2016, now U.S. Patent No. 10,003,358. 

U.S. Patent No. 10,003,358 is a continuation of U.S. Patent Application No. 14/852,438, filed on 

September 11, 2015, now U.S. Patent No. 9,385,759.  U.S. Patent No. 9,385,759 is a continuation 

of U.S. Patent Application No. 14/223,740, filed on March 24, 2014, now U.S. Patent 

No. 9,160,374.  U.S. Patent No. 9,160,374 is a continuation of U.S. Patent Application 

No. 13/341,833, filed on December 30, 2011, now U.S. Patent No. 8,683,296.  The ’259 Patent is 

entitled to the benefit of the December 30, 2011 filing date of application No. 13/341,833.  

StreamScale is the current owner of all rights, title, and interest in and to the ’259 Patent.  A true 

and correct copy of the ’259 Patent is attached hereto as Exhibit F and is incorporated by reference 

herein.  On or about February 23, 2021, StreamScale filed a Petition for Correction of Inventorship 

Under 37 C.F.R. § 1.324, including associated documentation and fees, with the United States 

Patent and Trademark Office requesting the correction of inventorship of the ’259 Patent to include 

inventor Sarah Mann, who was not named as an inventor through error.  True and correct copies 

of that Petition and associated documentation are attached as Exhibit G, and that material is 

incorporated by reference herein. 

49. U.S. Patent No. 10,666,296 (“the ’10-296 Patent”) is entitled “Accelerated Erasure 

Coding System and Method.”  The ’10-296 Patent duly and legally issued on May 26, 2020, from 

U.S. Patent Application No. 16/358,602, filed on March 19, 2019.  The ’10-296 Patent is a 

continuation of U.S. Patent Application No. 15/976,175, filed on May 10, 2018, now U.S. Patent 

No. 10,291,259.  U.S. Patent No. 10,291,259 is a continuation of U.S. Patent Application 
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No. 15/201,196, filed on July 1, 2016, now U.S. Patent No. 10,003,358. U.S. Patent 

No. 10,003,358 is a continuation of U.S. Patent Application No. 14/852,438, filed on 

September 11, 2015, now U.S. Patent No. 9,385,759.  U.S. Patent No. 9,385,759 is a continuation 

of U.S. Patent Application No. 14/223,740, filed on March 24, 2014, now U.S. Patent 

No. 9,160,374. U.S. Patent No. 9,160,374 is a continuation of U.S. Patent Application 

No. 13/341,833, filed on December 30, 2011, now U.S. Patent No. 8,683,296.  The ’10-296 Patent 

is entitled to the benefit of the December 30, 2011 filing date of application No. 13/341,833.  

StreamScale is the current owner of all rights, title, and interest in and to the ’10-296 Patent.  A 

true and correct copy of the ’10-296 Patent is attached hereto as Exhibit H and is incorporated by 

reference herein. 

50. Collectively, the ’8-296 Patent, the ’374 Patent, the ’759 Patent, the ’358 Patent, 

the ’259 Patent, and the ’10-296 Patent are referred to herein as the “Patents-in-Suit.” 

II. ACCELERATED ERASURE CODING INFRINGEMENT 

51. As further discussed below, Cloudera, ADP, Experian, and Wargaming (the “EC 

System Defendants”) directly and/or indirectly infringed—and continue to directly and/or 

indirectly infringe—each of the Patents-in-Suit by engaging in acts constituting infringement 

under 35 U.S.C. § 271(a) and (b), including without limitation by one or more of making, using, 

selling, and/or offering to sell, in this District and elsewhere in the United States, and/or importing 

into this District and elsewhere in the United States, systems that incorporate Cloudera Erasure 

Coding Components.  Cloudera Erasure Coding Components include Cloudera Distribution 

Including Apache Hadoop (“Cloudera CDH”), which may include any related components, and 

any Cloudera product or service that is substantially or reasonably similar, including but not 

limited to Cloudera Enterprise.  The infringing systems that Cloudera runs that use the Cloudera 

Erasure Coding Components are the “Cloudera Infringing Products and Services.” 
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52. Systems built by Cloudera, ADP, Experian, and Wargaming with Cloudera CDH 

or substantially similar technology include accelerated erasure coding (“EC”) technology are the 

“EC Systems.”  These Defendants are “EC System Defendants.”  

53. Under typical configurations, the EC Systems that use the patented technology 

reduce storage cost by at least about 50% compared with triple replication.  Upon information and 

belief, Cloudera and its collaborators recognized that accelerated erasure coding can greatly reduce 

storage overhead without sacrificing data reliability, which makes erasure coding a quite attractive 

alternative for big data storage, particularly for cold data. 

54. EC technology is packaged and shipped with Cloudera CDH.  Additionally, this 

EC technology is enabled by default in Cloudera CDH. 

55. ADP has directly infringed, and continues to directly infringe, each of the Patents-

in-Suit by engaging in acts constituting infringement under 35 U.S.C. § 271(a), including without 

limitation by one or more of making, using, selling and/or offering to sell, in this District and 

elsewhere in the United States, and/or importing into this District and elsewhere in the United 

States, at least ADP’s products and services that use and/or incorporate the Cloudera Erasure 

Coding Components, including but not limited to DataCloud, and any ADP product or service that 

is substantially or reasonably similar (the “ADP Infringing Products and Services”). 

56. As its name implies, data is core to ADP’s business.  Upon information and belief, 

ADP, a provider of human capital management solutions, is responsible for getting one in six 

Americans paid today, which puts tremendous data in ADP’s hands. 

57. Upon information and belief, ADP is now putting that data to use and generating a 

new revenue stream.  For example, upon information and belief, ADP has built at least a product 

called DataCloud, which employs Cloudera Erasure Coding Components, that aggregates 
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information across ADP’s 600,000 clients and generates insights to help clients prevent employee 

churn, ensure salary equality, and maximize human resources.  

58. Upon information and belief, ADP was able to use DataCloud to identify the top 

one percent of at-risk employees in a pilot account, and learned that within that group, turnover 

was actually 50 percent.  When removing that top one percent from the overall analysis, average 

turnover dropped to nine percent.  DataCloud helped the client focus on a small population of 

at-risk employees where they could make a meaningful impact that would drastically improve the 

company’s overall churn; without this insight, they would have spread retention efforts across the 

employee base, requiring more time and resources with a less targeted approach and having a lower 

impact overall. 

59. Reducing employee churn has far-reaching business impacts.  The cost of losing 

one employee is more than a simple hiring replacement. Recruiting and interviewing for that 

person’s replacement is costly.  Productivity is lost while the new hire gets up to speed.  Risk of 

others on the team leaving increases when they’re forced to pick up the slack.  It’s a ripple effect. 

60. The value DataCloud offers is evidenced by the massive growth ADP has seen 

throughout its client base, driving greater success for ADP via this new revenue channel. 

61. Upon information and belief, DataCloud stemmed from a strategic shift at ADP to 

move from primarily processing transactions to also providing insights based on its greatest asset: 

data.  Upon considering building this product, ADP reached out to clients to gauge their interest 

in gaining insights based on aggregated and anonymized benchmarks developed from the data 

spanning ADP’s customer base.  But making the vision a reality presented a technological 

challenge.  Upon information and belief, ADP’s data was spread across data centers and 
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applications.  It needed to be brought together for processing, exploration, and analysis. It wouldn’t 

be feasible using traditional relational database technology.  

62. ADP built DataCloud to allow for the storage and processing of large amounts of 

data in new ways.  According to Jim Haas, Principal Architect of DataCloud, advanced data storage 

and prioritization technologies let companies “maximize CPU time and memory used,” which for 

HR leaders means “getting the big tasks done faster.”2  KPMG reports that 42% of organizations 

will replace their existing HR software with a cloud-based solution, with most citing better 

functionality and higher business value as the motivation.3  But the sheer amount of employee 

data, devices, access permissions, and historical data needed to effectively track current conditions 

and develop long-term policies can easily overwhelm standard infrastructure. 

63. Upon information and belief, DataCloud employs Cloudera Enterprise, comprising 

a 200-terabyte (TB) lab and two 400-TB production data centers, each with replication for disaster 

recovery.  

64. Upon information and belief, ten data domains feed DataCloud a billion records 

every quarter, including: (1) 600,000-plus client databases capturing information on 29 million 

people; (2) mainframe-based data from the 30 to 35 million pay cycles ADP executes annually, 

including compensation, time card punches, bonuses, overtime, and salary increases; (3) Oracle-

based data from the 15 million HR functions managed by ADP annually, such as benefit deductions 

and elections, performance scores, and recruiting processes; (4) data from 15 other ADP 

                                                 
2 Doug Bonderud, HR Cloud Solutions: A Foundation for Better Decision Making, ADP, 
https://www.adp.com/spark/articles/2018/01/hr-cloud-solutions-a-foundation-for-better-decision-
making.aspx (last visited Jan. 19, 2021). 

3 See, e.g., 2016 HR Transformation Survey: Summary Report, KPMG, 
https://assets.kpmg/content/dam/kpmg/in/pdf/2016/11/HR-Transformation-Survey-
Summaryreport.pdf (last visited Jan. 19, 2021). 
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departments—such as Marketing, Sales, Implementations, and Service—who leverage the 

platform as their enterprise data hub (EDH) so they may build their own data products; and 

(5) client data sets such as point-of-sale transactions and revenues. 

65. DataCloud conforms job title and role categorizations across 600,000 companies 

into a comparable standard from which 500 billion aggregates are created.  Those aggregates are 

used to build the benchmarks that are delivered to clients.  Upon information and belief, Jim Haas, 

Principal Architect at ADP has explained, “the data is drawing everybody 

together . . . . Sometimes I call it ‘the little cluster that can’ because it’s just amazing what goes on 

in there in a day.” 

66. Upon information and belief, the ADP Infringing Products and Services are 

configured to support accelerated erasure coding. 

67. Experian has directly infringed, and continues to directly infringe, each of the 

Patents-in-Suit by engaging in acts constituting infringement under 35 U.S.C. §§ 271(a), including 

without limitation by one or more of making, using, selling and/or offering to sell, in this District 

and elsewhere in the United States, and/or importing into this District and elsewhere in the United 

States, at least Experian’s products and services that use and/or incorporate the Cloudera Infringing 

Products and Services, including but not limited to Experian Analytical Sandbox and Velcro, and 

any Experian product or service that is substantially or reasonably similar (the “Experian 

Infringing Products and Services”). 

68. Upon information and belief, Experian integrated Cloudera Enterprise onto its 

cloud environment for its Credit Information Services, Decision Analytics, and Business 

Information Services business lines.  Upon information and belief, Experian employs Cloudera 

Erasure Coding Components in Experian’s Ascend Technology Platform and Analytical Sandbox. 
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69. Experian is doing business in the United States and more particularly in this 

District, including at least through Experian’s corporate subsidiaries CSIdentity Corporation and 

Experian Information Solutions, Inc., by making, using, selling, importing, and/or offering for sale 

the product and services that infringe one or more of the patent claims involved in this action.  

70. Upon information and belief, with 15,000+ employees and annual revenues 

exceeding $4 billion (USD), Experian is a global leader in credit reporting and marketing services 

that is comprised of four main business units: Credit Information Services, Decision Analytics, 

Business Information Services, and Marketing Services.  

71. Experian Marketing Services (“EMS”), for example, helps marketers connect with 

customers through relevant communications across a variety of channels, driven by advanced 

analytics on an extensive database of geographic, demographic, and lifestyle data. 

72. EMS has built its business on the effective collection, analysis, and use of data.  

Upon information and belief, as EMS’s former VP of product strategy Jeff Hassemer once 

explained, “Experian has handled large amounts of data for a very long time: who consumers are, 

how they’re connected, how they interact.  We’ve done this over billions and quadrillions of 

records over time.  But with the proliferation of channels and information that are now flowing 

into client organizations—social media likes, web interactions, email responses—that data has 

gotten so large that it’s maxed the capacity of older systems.  We needed to leap forward in our 

processing ability.  We wanted to process data orders of magnitude faster so we could react to 

tomorrow’s consumer.”  

73. Today’s consumers leave a digital trail of behaviors and preferences for marketers 

to leverage so they can enhance the customer experience, and upon information and belief, 
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Experian’s clients started asking for more frequent updates on consumers’ latest purchasing 

behaviors, online browsing patterns, and social media activity so they can respond in real time.  

74. Upon information and belief, Experian recognized that the data exhaust from these 

digital channels is massive and requires a technological infrastructure that can accommodate rapid 

processing, large-scale storage, and flexible analysis of multi-structured data.  Experian’s 

mainframes were hitting the tipping point in terms of performance, flexibility, and scalability.  

Given the need for immediacy of information and customization of data in real time for clients, 

EMS set an internal goal to process more than 100 million records of data per hour (28,000 records 

per second). 

75. Upon information and belief, instead of trying to fit a square peg in a round hole, 

Experian went out and decided to build an architecture that could handle the new volumes of data 

that it manages and built a system that employs Cloudera CDH.  

76. Upon information and belief, the Experian Infringing Products and Services are 

configured to support accelerated erasure coding. 

77. Wargaming has directly infringed, and continues to directly infringe, each of the 

Patents-in-Suit by engaging in acts constituting infringement under 35 U.S.C. § 271(a), including 

without limitation by one or more of making, using, selling and/or offering to sell, in this District 

and elsewhere in the United States, and/or importing into this District and elsewhere in the United 

States, at least Wargaming’s products and services that use and/or incorporate Cloudera Erasure 

Coding Components, including but not limited to Wargaming’s Player Relationship Management 

Platform (“PRMP”) in support of Wargaming’s online games and massively multiplayer online 

(“MMO”) games, and any Wargaming product or service that is substantially or reasonably similar 

(the “Wargaming Infringing Products and Services”). 
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78. Wargaming provides strategic intelligence analytics services and coordinates the 

data services architecture for Wargaming MMO games.  Wargaming is a global services hub for 

games developed, at least in part, by Wargaming Group Limited and accessible via the portal at 

www.wargaming.net.  Wargaming provides data-driven insights, analysis, and reporting of 

wargaming.net projects, strategic planning, and global game design services through business 

analytics, production, central technology, and regional administrative departments. 

79. Furthermore, Wargaming conducts general research on topics such as the gaming 

industry, player behavior, and game defects. 

80. Wargaming serves more than 150 million registered players in its MMO games.  

Those millions of players generate massive amounts of data.  Wargaming processes over 3 TB of 

data daily.  Upon information and belief, it does this using systems built with Cloudera Erasure 

Coding Components. 

81. Wargaming employees administrate and optimize a series of development and 

production clusters that employ Cloudera Erasure Coding Components. 

82. Upon information and belief, the Wargaming Infringing Products and Services are 

configured to support accelerated erasure coding. 

III. WIDESPREAD KNOWLEDGE OF STREAMSCALE’S PATENTS-IN-SUIT 

83. The United States Patent and Trademark Office published the patent application 

that ultimately led to the ’8-296 Patent on July 4, 2013.  The very next day, July 5, 2013, 

StreamScale sent a letter to USENIX, a computing systems association, notifying USENIX of 

StreamScale’s pending patent applications and providing USENIX with advance notice of 

StreamScale’s intent to issue a press release that StreamScale’s then-patent-pending technology.4  

                                                 
4 Exhibit I, Letter from Michael S. Adler, Counsel for StreamScale, to USENIX (July 5, 2013). 
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Upon information and belief, others in the industry, including but not limited to Intel, learned of 

StreamScale and its patent applications as a consequence of the letter StreamScale wrote to 

USENIX. 

84. On July 10, 2013, while StreamScale awaited a response from USENIX, Intel 

publicly announced its excitement to support development of erasure code solutions.  Intel 

explained that erasure codes reduce the size of data on disk by up to half versus traditional 

replication, decreases costs by more than 50%, and reduces both hardware requirement costs and 

power and cooling costs.5  Intel explained that erasure code was a long overdue technology and 

Intel was excited to support, promote, and use it in cloud environments.6 

85. On July 23, 2013, StreamScale issued a press release noting that its technology is 

protected by then-pending patent applications and was not “open source.”7   

86. Having received the July 5, 2013 letter that StreamScale sent to USENIX, and 

following consultation with its attorneys, USENIX chose to comply with StreamScale’s request to 

remove certain papers and materials from its web site. 

87. On or about August 3, 2013, individuals began posting missives online regarding 

StreamScale and its patent portfolio.  Upon information and belief, H. Peter Anvin, an Intel 

employee was aware of at least some of these online postings.  Indeed, upon information and belief, 

                                                 
5 Exhibit J, Joe Arnold, Save Space: The Final Frontier—Erasure Codes with OpenStack Swift 
(July 10, 2013), previously available at https://swiftstack.com/blog/2013/07/10/erasure-codes-
with-openstack-swift/. 

6 Id. 

7 Exhibit K, StreamScale Provides Notice of Ownership of Fastest Erasure Code Technology 
Disclosed at Fast ’13 (July 23, 2013). 
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at least Mr. Anvin commented on at least some of these online postings, including but not limited 

to on or about August 9, 2013. 

88. Upon information and belief, in early March 2014, Intel employees again learned 

about StreamScale, its patented and patent-pending technology, and its relationship to ISA-L.  On 

March 10, 2014, upon information and belief, one or more Intel employees reviewed and collected 

a significant quantity of information about StreamScale, its attorneys, and its patent applications.  

Upon information and belief, one or more Intel employees visited a number of specific pages on 

StreamScale’s website, including (i) those detailing StreamScale’s then-pending-patent 

applications, (ii) those summarizing StreamScale’s company history and technology, (iii) those 

making recent new and press releases available to the public, (iv) those identifying StreamScale’s 

employees and attorneys, and (v) those hosting academic papers authored by StreamScale’s 

employees.  Furthermore, upon information and belief, one or more Intel employees accessed and 

downloaded electronic copies of one or more of StreamScale’s patents or patent applications, at 

least from StreamScale’s website. 

89. Indeed, upon information and belief, Intel was contacted in February or 

March 2014 and knew about potential issues involving StreamScale, StreamScale’s 

patent-pending technology, and ISA-L.  In August and September 2014, outside counsel for Intel 

corresponded with then-litigation counsel for StreamScale regarding a third party subpoena 

StreamScale issued to Intel involving StreamScale’s intellectual property rights.  Thus, upon 

information and belief, by mid-to-late September 2014, Intel had knowledge of StreamScale, 

StreamScale’s issued and pending patents and intellectual property rights, and their relevance to 

ISA-L. 
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90. Separately, on or about March 5, 2015, Tushar Gohad, an Intel employee, indicated 

that Jerasure and GF-complete were strategically important.  Specifically, Mr. Gohad requested 

that Jerasure and GF-complete be backported to an earlier version of software.  By that time, one 

of the authors of GF-Complete had publicly stated that StreamScale asserts that the use of 

GF-Complete (particularly as part of Jerasure 2.0 or later) or any similar software, method or code 

for erasure coding infringes StreamScale’s issued United States Patent No. 8.683,296. 

91. On or about April 29, 2015, counsel for StreamScale wrote on an online technical 

board and asked that the Jerasure 2.0 and GF-Complete libraries that had been republished be 

removed.8  The next day, April 30, 2015, upon information and belief, StreamScale’s post and a 

Techdirt article regarding StreamScale’s patent rights were brought to the attention of Paul Luse, 

another Intel employee, who responded “we are all well aware of the info you passed on :)”  Upon 

information and belief, Mr. Luse then encouraged others to ignore StreamScale, indicating that 

was always the best option. 

92. Since at least March 5, 2021, when Intel was served through its registered agent 

with the Original Complaint for Patent Infringement in this action, Return of Service, StreamScale, 

Inc. v. Cloudera, Inc., No. 6:21-cv-00198-ADA (W.D. Tex. Mar. 10, 2021), ECF No. 14, Intel has 

had express knowledge of each of the Patents-in-Suit and its infringement thereof.  Intel continues 

to actively induce infringement of the StreamScale Patents-in-Suit. 

93. On July 7, 2021, StreamScale provided Intel express notice of each of the 

Patents-in-Suit, its infringement thereof, and the role of ISA-L in its infringement thereof.  

Exhibit M.  Intel continues to actively induce infringement of the StreamScale Patents-in-Suit. 

                                                 
8 Exhibit L, Michael A. O’Shea, counsel for StreamScale, post to Ubuntu entitled “StreamScale” 
(Apr. 29, 2015), available at https://lists.ubuntu.com/archives/technical-board/2015-
April/002100.html (last visited May 24, 2021). 
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IV. INTEL’S INFRINGEMENT 

94. Upon information and belief, Intel is a Fortune 50 company, with revenues 

exceeding $70 billion annually. 

95. Intel has a long history with United States patent litigation.  Upon information and 

belief, it employs several attorneys and counsel to manage its offensive and defensive patent 

litigation docket.  In addition, upon information and belief, Intel employs several attorneys to 

evaluate, manage, and track patent assertions in its industry. 

96. In addition, upon information and belief, Intel is a member or client of RPX 

Corporation (“RPX”). 

97. RPX offers patent risk management services, including defensive patent buying, 

acquisition syndication, patent intelligence, and advisory services to its members and clients. 

98. Also, upon information and belief, Intel is a member or client of Allied Security 

Trust (“AST”). 

99. AST offers patent risk mitigation services to some of the world’s biggest 

technology companies and was created to combat unwanted patent assertions and litigation. 

100. Intel has a publicly-known corporate policy forbidding its employees from reading 

patents held by outside companies or individuals.  “Intel’s own engineers concede that they avoid 

reviewing other, non-Intel patents so as to avoid willfully infringing them.”  Intel Corp. v. Future 

Link Sys., LLC, 268 F. Supp. 3d 605, 623 (D. Del. 2017).  Upon information and belief, Intel’s 

policy is designed to avoid possible triple damages for willful infringement. 

101. In fact, upon information and belief, Intel has reprimanded its employees for 

inquiring about others’ intellectual property rights, including StreamScale’s patents.  In early 2014, 

upon information and belief, Intel reprimanded one of its cloud software architects specifically for 

suggesting that there was a potential issue with ISA-L in connection with StreamScale. 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 30 of 350



 

Page 31 of 91 

102. Upon information and belief, Intel has rendered itself willfully blind to 

StreamScale’s Patents-in-Suit and the intellectual property rights of others. 

103. As further discussed below, Intel has indirectly infringed, and continues to 

indirectly infringe, each of the Patents-in-Suit by engaging in acts constituting infringement under 

35 U.S.C. § 271(b), including without limitation by actively inducing infringement by the EC 

System Defendants through the deployment and/or use of Intel’s Intelligent Storage Acceleration 

Library (“ISA-L”). 

104. Upon information and belief, and as explained above, Intel has been aware of the 

existence of at least one of the Patents-in-Suit beginning at least in 2014.  Intel also obtained actual 

knowledge of its infringement of the Patents-in-Suit when StreamScale served Intel with its 

Original Complaint in this action on March 5, 2021.  Further, Intel received actual knowledge of 

its infringement of the Patents-in-Suit when StreamScale sent Intel a cease and desist letter on 

July 7, 2021, identifying the Patents-in-Suit and Intel’s infringement thereof.  Exhibit M.  All of 

the Patents-in-Suit are continuations of the application that ultimately issued as the ’8-296 Patent.   

105. ISA-L comprises a collection of optimized low-level functions used for storage 

applications. 

106. ISA-L is optimized for Intel architecture Intel® 64. 

107. ISA-L is packaged and shipped with Cloudera CDH. 

108. Intel collaborated with Cloudera to apply erasure coding, including on changes 

made to the NameNode, DataNode, and the client read and write paths, as well as optimizations 

using Intel ISA-L to accelerate the encoding and decoding calculations. 

109. ISA-L is enabled by default in Cloudera CDH. 
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110. Intel is doing business in the United States and more particularly in this District by 

actively inducing infringement by at least Cloudera, ADP, Experian, and Wargaming of 

StreamScale’s Patents-in-Suit through the deployment and support of ISA-L. 

COUNT 1—INFRINGEMENT OF THE ’8-296 PATENT 

111. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–110 

of this Complaint as though fully set forth herein. 

I. DIRECT INFRINGEMENT 

112. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are 

and have been directly infringing one or more of the ’8-296 Patent’s claims, including at least 

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing 

into the United States, without authority, erasure code products and services, including but not 

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and 

Services, the ADP Infringing Products and Services, the Experian Infringing Products and 

Services, and the Wargaming Infringing Products and Services, as described above. 

113. The EC System Defendants are infringing claims of the ’8-296 Patent, including at 

least Claim 1, literally and/or pursuant to the doctrine of equivalents.  

114. Claim 1 of the ’8-296 Patent is directed to a system for accelerated error-correcting 

code (ECC) processing comprising: a processing core for executing computer instructions and 

accessing data from a main memory; and a non-volatile storage medium for storing the computer 

instructions, wherein the processing core, the non-volatile storage medium, and the computer 

instructions are configured to implement an erasure coding system comprising: a data matrix for 

holding original data in the main memory; a check matrix for holding check data in the main 

memory; an encoding matrix for holding first factors in the main memory, the first factors being 

for encoding the original data into the check data; and a thread for executing on the processing 
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core and comprising: a parallel multiplier for concurrently multiplying multiple data entries of a 

matrix by a single factor; and a first sequencer for ordering operations through the data matrix and 

the encoding matrix using the parallel multiplier to generate the check data. 

A. CLOUDERA’S DIRECT INFRINGEMENT 

115. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’8-296 Patent, including at least Claim 1.  The Cloudera Infringing Products 

and Services are systems capable of performing accelerated ECC.  They comprise a processing 

core, including, for example, one or more Intel, AMD, ARM, and/or PPC64 processing cores.  The 

Cloudera Infringing Products and Services include non-volatile storage (memory) and computer 

instructions to implement accelerated ECC.  The accelerated ECC system of the Cloudera 

Infringing Products and Services includes a data matrix for holding original data, a check matrix 

for holding check data, and an encoding matrix for holding first factors, all in memory.  The first 

factors of the encoding matrix are used in the Cloudera Infringing Products and Services to encode 

the original data into check data.  The Cloudera Infringing Products and Services include a thread 

for executing on the processing core that includes a parallel lookup multiplier and a sequencer for 

ordering operations through the data matrix and encoding matrix to generate the check data. 

B. ADP’S DIRECT INFRINGEMENT 

116. As to ADP, at least the ADP Infringing Products and Services, as defined above, 

comprise hardware and software components that together practice every element of one or more 

claims of the ’8-296 Patent, including at least Claim 1.  The ADP Infringing Products and Services 

are systems capable of performing accelerated ECC.  They comprise a processing core, including, 

for example, one or more Intel, AMD, ARM, and/or PPC64 processing cores.  The ADP Infringing 

Products and Services include non-volatile storage (memory) and computer instructions to 
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implement accelerated ECC.  The accelerated ECC system of the ADP Infringing Products and 

Services includes a data matrix for holding original data, a check matrix for holding check data, 

and an encoding matrix for holding first factors, all in memory.  The first factors of the encoding 

matrix are used in the ADP Infringing Products and Services to encode the original data into check 

data.  The ADP Infringing Products and Services include a thread for executing on the processing 

core that includes a parallel lookup multiplier and a sequencer for ordering operations through the 

data matrix and encoding matrix to generate the check data. 

C. EXPERIAN’S DIRECT INFRINGEMENT 

117. As to Experian, at least the Experian Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’8-296 Patent, including at least Claim 1.  The Experian Infringing Products 

and Services are systems capable of performing accelerated ECC.  They comprise a processing 

core, including, for example, one or more Intel, AMD, ARM, and/or PPC64 processing cores.  The 

Experian Infringing Products and Services include non-volatile storage (memory) and computer 

instructions to implement accelerated ECC.  The accelerated ECC system of the Experian 

Infringing Products and Services includes a data matrix for holding original data, a check matrix 

for holding check data, and an encoding matrix for holding first factors, all in memory.  The first 

factors of the encoding matrix are used in the Experian Infringing Products and Services to encode 

the original data into check data.  The Experian Infringing Products and Services include a thread 

for executing on the processing core that includes a parallel lookup multiplier and a sequencer for 

ordering operations through the data matrix and encoding matrix to generate the check data. 

D. WARGAMING’S DIRECT INFRINGEMENT 

118. As to Wargaming, at least the Wargaming Infringing Products and Services, as 

defined above, comprise hardware and software components that together practice every element 
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of one or more claims of the ’8-296 Patent, including at least Claim 1.  The Wargaming Infringing 

Products and Services are systems capable of performing accelerated ECC.  They comprise a 

processing core, including, for example, one or more Intel, AMD, ARM, and/or PPC64 processing 

cores.  The Wargaming Infringing Products and Services include non-volatile storage (memory) 

and computer instructions to implement accelerated ECC.  The accelerated ECC system of the 

Wargaming Infringing Products and Services includes a data matrix for holding original data, a 

check matrix for holding check data, and an encoding matrix for holding first factors, all in 

memory.  The first factors of the encoding matrix are used in the Wargaming Infringing Products 

and Services to encode the original data into check data.  The Wargaming Infringing Products and 

Services include a thread for executing on the processing core that includes a parallel lookup 

multiplier and a sequencer for ordering operations through the data matrix and encoding matrix to 

generate the check data. 

II. INDIRECT INFRINGEMENT 

119. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of 

the ’8-296 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of 

at least Claim 1 of the ’8-296 Patent by third parties, including for example Cloudera, ADP, 

Experian, and Wargaming, in this District and elsewhere in the United States.  Direct infringement 

is the result of activities performed by users of systems that incorporate, among other features, 

ISA-L, including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at 

least Claim 1 of the ’8-296 Patent. 

120. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof), 

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive 

materials and information concerning operation and use of ISA-L (or portions thereof), and 

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian, 
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and Wargaming to infringe at least Claim 1 of the ’8-296 Patent.  For example, Intel induced 

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’8-296 Patent through 

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products 

and Services.  By and through these acts, Intel knowingly and specifically intended the users of 

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’8-296 Patent.  Intel (1) knew or 

should have known of the ’8-296 Patent since at least 2014, (2) performed and continues to 

perform affirmative acts that constitute induced infringement, and (3) knew or should have known 

that those acts would induce actual infringement of one or more of the ’8-296 Patent’s claims by 

users of ISA-L. 

121. Intel actively markets and instructs the EC System Defendants to create EC 

Systems using ISA-L. 

122. For example, upon information and belief, Intel (i) maintains a website to promote 

ISA-L,9 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use 

that are available to the EC System Defendants on the Intel website,10 (iii) describes case studies 

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel 

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available 

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API 

Reference Manual for ISA-L11 that is available to the EC System Defendants, which it updates 

                                                 
9 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at 
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24, 
2021). 

10 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, 
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021). 

11 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source 
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at 
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regularly.12  Upon information and belief, Intel further offers the EC System Defendants technical 

support for ISA-L and the EC System Defendants’ products. 

123. Upon information and belief, Intel promotes and encourages the EC System 

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC 

System Defendants. 

124. As to Intel, at least ISA-L, as defined above, is designed to be used with other 

components that, when combined with hardware, practice one or more claims of the ’8-296 Patent, 

including at least Claim 1.  EC Systems that employ ISA-L create a data matrix for holding original 

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in 

memory.  The first factors of the encoding matrix are used to encode the original data into check 

data.  The systems also include a thread for executing on the processing core that includes a parallel 

lookup multiplier and a sequencer for ordering operations through the data matrix and encoding 

matrix to generate the check data. 

125. As explained above, Intel had actual knowledge of the ’8-296 Patent prior to this 

lawsuit being filed and had knowledge of the infringing nature of its activities, and the role of 

ISA-L in that infringement of the ’8-296 Patent, yet continues to induce infringement of at least 

Claim 1 of the ’8-296 Patent by Cloudera, ADP, Experian, and Wargaming.   

126. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent 

portfolio, Intel subjectively believed there was a high probability that StreamScale’s 

                                                 
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 
2021). 

12 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference 
Manual (ver. 2.23.0, June 29, 2018), available at 
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 
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Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe 

StreamScale’s Patents-in-Suit, including the ’8-296 Patent.  To the extent that Intel lacked actual 

knowledge of the ’8-296 Patent or the EC System Defendants’ actual infringement of the 

’8-296 Patent, Intel took deliberate actions to avoid learning of those facts.  Indeed, Intel actively 

encouraged others to ignore StreamScale and its patents and further reprimanded at least one 

employee for failing to ignore StreamScale and its patents. 

127. At a minimum, Intel has had actual notice of the ’8-296 Patent since March 5, 2021 

and has knowledge of the infringing nature of its activities, yet continues to induce infringement 

of at least Claim 1 of the ’8-296 Patent by Cloudera, ADP, Experian, and Wargaming. 

128. Despite knowing of the ’8-296 Patent since at least as early as 2014, but in no event 

later than March 5, 2021, upon information and belief, Intel has never undertaken any serious 

investigation to form a good faith belief as to non-infringement or invalidity of the ’8-296 Patent. 

129. Despite knowing of the ’8-296 Patent since at least as early as March 5, 2021, Intel 

has continued to infringe one or more claims of the ’8-296 Patent. 

130. Despite knowing of the ’8-296 Patent since at least July 7, 2021, Intel has continued 

to infringe one or more claims of the ’8-296 Patent. 

131. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of 

the ’8-296 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate, 

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased 

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this 

action pursuant to 35 U.S.C. § 285.  
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III. DAMAGES 

132. Defendants’ acts of infringement have caused damages to StreamScale, and 

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a 

result of Defendants’ wrongful acts in an amount to be determined at trial. 

COUNT 2—INFRINGEMENT OF THE ’374 PATENT 

133. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–132 

of this Complaint as though fully set forth herein. 

I. DIRECT INFRINGEMENT 

134. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are 

and have been directly infringing one or more of the ’374 Patent’s claims, including at least 

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing 

into the United States, without authority, erasure code products and services, including but not 

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and 

Services, the ADP Infringing Products and Services, the Experian Infringing Products and 

Services, and the Wargaming Infringing Products and Services, as described above. 

135. The EC System Defendants are infringing claims of the ’374 Patent, including at 

least Claim 1, literally and/or pursuant to the doctrine of equivalents.  

136. Claim 1 of the ’374 Patent is directed to a system for accelerated error-correcting 

code (ECC) processing comprising: a processing core for executing computer instructions and 

accessing data from a main memory, the processing core comprising at least 16 data registers, each 

of the data registers comprising at least 16 bytes; and a non-volatile storage medium for storing 

the computer instructions, wherein the processing core, the non-volatile storage medium, and the 

computer instructions are configured to implement an erasure coding system comprising: a data 

matrix for holding original data in the main memory; a check matrix for holding check data in the 
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main memory; an encoding matrix for holding first factors in the main memory, the first factors 

being for encoding the original data into the check data; and a thread for executing on the 

processing core and comprising: a parallel multiplier for concurrently multiplying multiple data 

entries of a matrix by a single factor; and a first sequencer for ordering operations through the data 

matrix and the encoding matrix using the parallel multiplier to generate the check data. 

A. CLOUDERA’S DIRECT INFRINGEMENT 

137. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’374 Patent, including at least Claim 1.  The Cloudera Infringing Products 

and Services are systems capable of performing accelerated ECC.  They comprise a processing 

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or 

more Intel, AMD, ARM, and/or PPC64 processing cores.  The Cloudera Infringing Products and 

Services include non-volatile storage (memory) and computer instructions to implement 

accelerated ECC.  The accelerated ECC system of the Cloudera Infringing Products and Services 

includes a data matrix for holding original data, a check matrix for holding check data, and an 

encoding matrix for holding first factors, all in memory.  The first factors of the encoding matrix 

are used in the Cloudera Infringing Products and Services to encode the original data into check 

data.  The Cloudera Infringing Products and Services include a thread for executing on the 

processing core that includes a parallel lookup multiplier and a sequencer for ordering operations 

through the data matrix and encoding matrix to generate the check data. 

B. ADP’S DIRECT INFRINGEMENT 

138. As to ADP, at least the ADP Infringing Products and Services, as defined above, 

comprise hardware and software components that together practice every element of one or more 

claims of the ’374 Patent, including at least Claim 1.  The ADP Infringing Products and Services 
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are systems capable of performing accelerated ECC.  They comprise a processing core comprising 

at least 16 data registers of at least 16 bytes each, including, for example, one or more Intel, AMD, 

ARM, and/or PPC64 processing cores.  The ADP Infringing Products and Services include 

non-volatile storage (memory) and computer instructions to implement accelerated ECC.  The 

accelerated ECC system of the ADP Infringing Products and Services includes a data matrix for 

holding original data, a check matrix for holding check data, and an encoding matrix for holding 

first factors, all in memory.  The first factors of the encoding matrix are used in the ADP Infringing 

Products and Services to encode the original data into check data.  The ADP Infringing Products 

and Services include a thread for executing on the processing core that includes a parallel lookup 

multiplier and a sequencer for ordering operations through the data matrix and encoding matrix to 

generate the check data. 

C. EXPERIAN’S DIRECT INFRINGEMENT 

139. As to Experian, at least the Experian Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’374 Patent, including at least Claim 1.  The Experian Infringing Products 

and Services are systems capable of performing accelerated ECC.  They comprise a processing 

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or 

more Intel, AMD, ARM, and/or PPC64 processing cores.  The Experian Infringing Products and 

Services include non-volatile storage (memory) and computer instructions to implement 

accelerated ECC.  The accelerated ECC system of the Experian Infringing Products and Services 

includes a data matrix for holding original data, a check matrix for holding check data, and an 

encoding matrix for holding first factors, all in memory.  The first factors of the encoding matrix 

are used in the Experian Infringing Products and Services to encode the original data into check 

data.  The Experian Infringing Products and Services include a thread for executing on the 
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processing core that includes a parallel lookup multiplier and a sequencer for ordering operations 

through the data matrix and encoding matrix to generate the check data. 

D. WARGAMING’S DIRECT INFRINGEMENT 

140. As to Wargaming, at least the Wargaming Infringing Products and Services, as 

defined above, comprise hardware and software components that together practice every element 

of one or more claims of the ’374 Patent, including at least Claim 1.  The Wargaming Infringing 

Products and Services are systems capable of performing accelerated ECC.  They comprise a 

processing core comprising at least 16 data registers of at least 16 bytes each, including, for 

example, one or more Intel, AMD, ARM, and/or PPC64 processing cores.  The Wargaming 

Infringing Products and Services include non-volatile storage (memory) and computer instructions 

to implement accelerated ECC.  The accelerated ECC system of the Wargaming Infringing 

Products and Services includes a data matrix for holding original data, a check matrix for holding 

check data, and an encoding matrix for holding first factors, all in memory.  The first factors of 

the encoding matrix are used in the Wargaming Infringing Products and Services to encode the 

original data into check data.  The Wargaming Infringing Products and Services include a thread 

for executing on the processing core that includes a parallel lookup multiplier and a sequencer for 

ordering operations through the data matrix and encoding matrix to generate the check data. 

II. INDIRECT INFRINGEMENT 

141. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of 

the ’374 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at 

least Claim 1 of the ’374 Patent by third parties, including for example Cloudera, ADP, Experian, 

and Wargaming, in this District and elsewhere in the United States.  Direct infringement is the 

result of activities performed by users of systems that incorporate, among other features, ISA-L, 
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including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least 

Claim 1 of the ’374 Patent. 

142. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof), 

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive 

materials and information concerning operation and use of ISA-L (or portions thereof), and 

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian, 

and Wargaming to infringe at least Claim 1 of the ’374 Patent.  For example, Intel induced 

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’374 Patent through 

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products 

and Services.  By and through these acts, Intel knowingly and specifically intended the users of 

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’374 Patent.  Intel (1) knew or should 

have known of the ’374 Patent since at least 2015, (2) performed and continues to perform 

affirmative acts that constitute induced infringement, and (3) knew or should have known that 

those acts would induce actual infringement of one or more of the ’374 Patent’s claims by users 

of ISA-L. 

143. For example, upon information and belief, Intel (i) maintains a website to promote 

ISA-L,13 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use 

that are available to the EC System Defendants on the Intel website,14 (iii) describes case studies 

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel 

                                                 
13 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at 
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24, 
2021). 

14 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, 
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021). 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 43 of 350



 

Page 44 of 91 

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available 

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API 

Reference Manual for ISA-L15 that is available to the EC System Defendants, which it updates 

regularly.16  Upon information and belief, Intel further offers the EC System Defendants technical 

support for ISA-L and the EC System Defendants’ products. 

144. Upon information and belief, Intel promotes and encourages the EC System 

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC 

System Defendants. 

145. As to Intel, at least ISA-L, as defined above, is designed to be used with other 

components that, when combined with hardware, practice one or more claims of the ’374 Patent, 

including at least Claim 1.  EC Systems that employ ISA-L create a data matrix for holding original 

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in 

memory.  The first factors of the encoding matrix are used to encode the original data into check 

data.  The systems also include a thread for executing on the processing core that includes a parallel 

lookup multiplier and a sequencer for ordering operations through the data matrix and encoding 

matrix to generate the check data. 

146. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent 

portfolio, Intel subjectively believed there was a high probability that StreamScale’s 

                                                 
15 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source 
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at 
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 
2021). 

16 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference 
Manual (ver. 2.23.0, June 29, 2018), available at 
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 
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Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe 

StreamScale’s Patents-in-Suit, including the ’374 Patent.  To the extent that Intel lacked actual 

knowledge of the ’374 Patent or the EC System Defendants’ actual infringement of the 

’374 Patent, Intel took deliberate actions to avoid learning of those facts.  Indeed, Intel actively 

encouraged others to ignore StreamScale and its patents and further reprimanded at least one 

employee for failing to ignore StreamScale and its patents. 

147. At a minimum, Intel has had actual notice of the ’374 Patent since March 5, 2021 

and has knowledge of the infringing nature of its activities, yet continues to induce infringement 

of at least Claim 1 of the ’374 Patent by Cloudera, ADP, Experian, and Wargaming. 

148. Despite knowing of the 374 Patent since at least as early as March 5, 2021, upon 

information and belief, Intel has never undertaken any serious investigation to form a good faith 

belief as to non-infringement or invalidity of the ’374 Patent. 

149. Despite knowing of the ’374 Patent since at least as early as March 5, 2021, Intel 

has continued to infringe one or more claims of the ’374 Patent. 

150. Despite knowing of the ’374 Patent since at least July 7, 2021, Intel has continued 

to infringe one or more claims of the ’374 Patent. 

151. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of 

the ’374 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate, 

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased 

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this 

action pursuant to 35 U.S.C. § 285.  
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III. DAMAGES 

152. Defendants’ acts of infringement have caused damages to StreamScale, and 

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a 

result of Defendants’ wrongful acts in an amount to be determined at trial. 

COUNT 3—INFRINGEMENT OF THE ’759 PATENT 

153. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–152 

of this Complaint as though fully set forth herein. 

I. DIRECT INFRINGEMENT 

154. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are 

and have been directly infringing one or more of the ’759 Patent’s claims, including at least 

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing 

into the United States, without authority, erasure code products and services, including but not 

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and 

Services, the ADP Infringing Products and Services, the Experian Infringing Products and 

Services, and the Wargaming Infringing Products and Services, as described above. 

155. The EC System Defendants are infringing claims of the ’759 Patent, including at 

least Claim 1, literally and/or pursuant to the doctrine of equivalents.  

156. Claim 1 of the ’759 Patent is directed to a system for accelerated error-correcting 

code (ECC) processing comprising: a processing core for executing computer instructions and 

accessing data from a main memory, the processing core comprising at least 16 data registers, each 

of the data registers comprising at least 16 bytes; one or more non-volatile storage media for storing 

the computer instructions and the data; and an input/output (I/O) controller for controlling data 

transfers between the main memory and the non-volatile storage media, wherein the processing 

core, the non-volatile storage media, the I/O controller, and the computer instructions are 
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configured to implement an erasure coding system comprising: a data matrix for holding original 

data in the main memory; a check matrix for holding check data in the main memory; an encoding 

matrix for holding first factors in the main memory, the first factors being for encoding the original 

data into the check data; and a thread for executing on the processing core and comprising: a 

parallel multiplier for concurrently multiplying multiple data entries of a matrix by a single factor; 

and a first sequencer for ordering data accesses through the data matrix and the encoding matrix 

using the parallel multiplier to generate the check data. 

A. CLOUDERA’S DIRECT INFRINGEMENT 

157. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’759 Patent, including at least Claim 1.  The Cloudera Infringing Products 

and Services are systems capable of performing accelerated ECC.  They comprise a processing 

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or 

more Intel, AMD, ARM, and/or PPC64 processing cores.  The Cloudera Infringing Products and 

Services include non-volatile storage (memory) for storing computer instructions and data.  The 

Cloudera Infringing Products and Services further include an input/output (I/O) controller to 

coordinate communication and data transfers between the main memory and the non-volatile 

storage media.  The processing core, memory, I/O controller, and computer instructions of the 

Cloudera Infringing Products and Services implement accelerated ECC.  The accelerated ECC 

system of the Cloudera Infringing Products and Services includes a data matrix for holding original 

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in 

memory.  The first factors of the encoding matrix are used in the Cloudera Infringing Products and 

Services to encode the original data into check data.  The Cloudera Infringing Products and 

Services include a thread for executing on the processing core that includes a parallel lookup 
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multiplier and a sequencer for ordering data accesses through the data matrix and encoding matrix 

to generate the check data. 

B. ADP’S DIRECT INFRINGEMENT 

158. As to ADP, at least the ADP Infringing Products and Services, as defined above, 

comprise hardware and software components that together practice every element of one or more 

claims of the ’759 Patent, including at least Claim 1.  The ADP Infringing Products and Services 

are systems capable of performing accelerated ECC.  They comprise a processing core comprising 

at least 16 data registers of at least 16 bytes each, including, for example, one or more Intel, AMD, 

ARM, and/or PPC64 processing cores.  The ADP Infringing Products and Services include 

non-volatile storage (memory) for storing computer instructions and data.  The ADP Infringing 

Products and Services further include an input/output (I/O) controller to coordinate communication 

and data transfers between the main memory and the non-volatile storage media.  The processing 

core, memory, I/O controller, and computer instructions of the ADP Infringing Products and 

Services implement accelerated ECC.  The accelerated ECC system of the ADP Infringing 

Products and Services includes a data matrix for holding original data, a check matrix for holding 

check data, and an encoding matrix for holding first factors, all in memory.  The first factors of 

the encoding matrix are used in the ADP Infringing Products and Services to encode the original 

data into check data.  The ADP Infringing Products and Services include a thread for executing on 

the processing core that includes a parallel lookup multiplier and a sequencer for ordering data 

accesses through the data matrix and encoding matrix to generate the check data. 

C. EXPERIAN’S DIRECT INFRINGEMENT 

159. As to Experian, at least the Experian Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’759 Patent, including at least Claim 1.  The Experian Infringing Products 
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and Services are systems capable of performing accelerated ECC.  They comprise a processing 

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or 

more Intel, AMD, ARM, and/or PPC64 processing cores.  The Experian Infringing Products and 

Services include non-volatile storage (memory) for storing computer instructions and data.  The 

Experian Infringing Products and Services further include an input/output (I/O) controller to 

coordinate communication and data transfers between the main memory and the non-volatile 

storage media.  The processing core, memory, I/O controller, and computer instructions of the 

Experian Infringing Products and Services implement accelerated ECC.  The accelerated ECC 

system of the Experian Infringing Products and Services includes a data matrix for holding original 

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in 

memory.  The first factors of the encoding matrix are used in the Experian Infringing Products and 

Services to encode the original data into check data.  The Experian Infringing Products and 

Services include a thread for executing on the processing core that includes a parallel lookup 

multiplier and a sequencer for ordering data accesses through the data matrix and encoding matrix 

to generate the check data. 

D. WARGAMING’S DIRECT INFRINGEMENT 

160. As to Wargaming, at least the Wargaming Infringing Products and Services, as 

defined above, comprise hardware and software components that together practice every element 

of one or more claims of the ’759 Patent, including at least Claim 1.  The Wargaming Infringing 

Products and Services are systems capable of performing accelerated ECC.  They comprise a 

processing core comprising at least 16 data registers of at least 16 bytes each, including, for 

example, one or more Intel, AMD, ARM, and/or PPC64 processing cores.  The Wargaming 

Infringing Products and Services include non-volatile storage (memory) for storing computer 

instructions and data.  The Wargaming Infringing Products and Services further include an 
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input/output (I/O) controller to coordinate communication and data transfers between the main 

memory and the non-volatile storage media.  The processing core, memory, I/O controller, and 

computer instructions of the Wargaming Infringing Products and Services implement accelerated 

ECC.  The accelerated ECC system of the Wargaming Infringing Products and Services includes 

a data matrix for holding original data, a check matrix for holding check data, and an encoding 

matrix for holding first factors, all in memory.  The first factors of the encoding matrix are used in 

the Wargaming Infringing Products and Services to encode the original data into check data.  The 

Wargaming Infringing Products and Services include a thread for executing on the processing core 

that includes a parallel lookup multiplier and a sequencer for ordering data accesses through the 

data matrix and encoding matrix to generate the check data. 

II. INDIRECT INFRINGEMENT 

161. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of 

the ’759 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at 

least Claim 1 of the ’759 Patent by third parties, including for example Cloudera, ADP, Experian, 

and Wargaming, in this District and elsewhere in the United States.  Direct infringement is the 

result of activities performed by users of systems that incorporate, among other features, ISA-L, 

including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least 

Claim 1 of the ’759 Patent. 

162. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof), 

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive 

materials and information concerning operation and use of ISA-L (or portions thereof), and 

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian, 

and Wargaming to infringe at least Claim 1 of the ’759 Patent.  For example, Intel induced 

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’759 Patent through 
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the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products 

and Services.  By and through these acts, Intel knowingly and specifically intended the users of 

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’759 Patent.  Intel (1) knew or should 

have known of the ’759 Patent since at least 2016, (2) performed and continues to perform 

affirmative acts that constitute induced infringement, and (3) knew or should have known that 

those acts would induce actual infringement of one or more of the ’759 Patent’s claims by users 

of ISA-L. 

163. For example, upon information and belief, Intel (i) maintains a website to promote 

ISA-L,17 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use 

that are available to the EC System Defendants on the Intel website,18 (iii) describes case studies 

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel 

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available 

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API 

Reference Manual for ISA-L19 that is available to the EC System Defendants, which it updates 

                                                 
17 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at 
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24, 
2021). 

18 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, 
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021). 

19 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source 
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at 
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 
2021). 
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regularly.20  Upon information and belief, Intel further offers the EC System Defendants technical 

support for ISA-L and the EC System Defendants’ products. 

164. Upon information and belief, Intel promotes and encourages the EC System 

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC 

System Defendants. 

165. As to Intel, at least ISA-L, as defined above, is designed to be used with other 

components that, when combined with hardware, practice one or more claims of the ’759 Patent, 

including at least Claim 1.  EC Systems that employ ISA-L create a data matrix for holding original 

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in 

memory.  The first factors of the encoding matrix are used to encode the original data into check 

data.  The systems also include a thread for executing on the processing core that includes a parallel 

lookup multiplier and a sequencer for ordering data accesses through the data matrix and encoding 

matrix to generate the check data. 

166. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent 

portfolio, Intel subjectively believed there was a high probability that StreamScale’s 

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe 

StreamScale’s Patents-in-Suit, including the ’759 Patent.  To the extent that Intel lacked actual 

knowledge of the ’759 Patent or the EC System Defendants’ actual infringement of the 

’759 Patent, Intel took deliberate actions to avoid learning of those facts.  Indeed, Intel actively 

encouraged others to ignore StreamScale and its patents and further reprimanded at least one 

employee for failing to ignore StreamScale and its patents. 

                                                 
20 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference 
Manual (ver. 2.23.0, June 29, 2018), available at 
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 
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167. At a minimum, Intel has had actual notice of the ’759 Patent since March 5, 2021 

and has knowledge of the infringing nature of its activities, yet continues to induce infringement 

of at least Claim 1 of the ’759 Patent by Cloudera, ADP, Experian, and Wargaming. 

168. Despite knowing of the ’759 Patent since at least as early as March 5, 2021, upon 

information and belief, Intel has never undertaken any serious investigation to form a good faith 

belief as to non-infringement or invalidity of the ’759 Patent. 

169. Despite knowing of the ’759 Patent since at least as early as March 5, 2021, Intel 

has continued to infringe one or more claims of the ’759 Patent. 

170. Despite knowing of the ’759 Patent since at least July 7, 2021, Intel has continued 

to infringe one or more claims of the ’759 Patent. 

171. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of 

the ’759 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate, 

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased 

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this 

action pursuant to 35 U.S.C. § 285.  

III. DAMAGES 

172. Defendants’ acts of infringement have caused damages to StreamScale, and 

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a 

result of Defendants’ wrongful acts in an amount to be determined at trial. 

COUNT 4—INFRINGEMENT OF THE ’358 PATENT 

173. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–172 

of this Complaint as though fully set forth herein. 
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I. DIRECT INFRINGEMENT 

174. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are 

and have been directly infringing one or more of the ’358 Patent’s claims, including at least 

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing 

into the United States, without authority, erasure code products and services, including but not 

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and 

Services, the ADP Infringing Products and Services, the Experian Infringing Products and 

Services, and the Wargaming Infringing Products and Services, as described above. 

175. The EC System Defendants are infringing claims of the ’358 Patent, including at 

least Claim 1, literally and/or pursuant to the doctrine of equivalents.  

176. Claim 1 of the ’358 Patent is directed to a system adapted to use accelerated error-

correcting code (ECC) processing to improve the storage and retrieval of digital data distributed 

across a plurality of drives, comprising: at least one processor comprising at least one single-

instruction-multiple-data (SIMD) central processing unit (CPU) core that executes SIMD 

instructions and loads original data from a main memory and stores check data to the main 

memory, the SIMD CPU core comprising at least 16 vector registers, each of the vector registers 

storing at least 16 bytes; at least one system drive comprising at least one non-volatile storage 

medium that stores the SIMD instructions; a plurality of data drives each comprising at least one 

non-volatile storage medium that stores at least one block of the original data, the at least one block 

comprising at least 512 bytes; more than two check drives each comprising at least one non-volatile 

storage medium that stores at least one block of the check data; and at least one input/output (I/O) 

controller that stores the at least one block of the check data from the main memory to the check 

drives, wherein the processor, the SIMD instructions, the non-volatile storage media, and the I/O 

controller are configured to implement an erasure coding system comprising: a data matrix 
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comprising at least one vector and comprising a plurality of rows of at least one block of the 

original data in the main memory, each of the rows being stored on a different one of the data 

drives; a check matrix comprising more than two rows of the at least one block of the check data 

in the main memory, each of the rows being stored on a different one of the check drives, one of 

the rows comprising a parity row comprising the Galois Field (GF) summation of all of the rows 

of the data matrix; a thread that executes on the SIMD CPU core and comprising: at least one 

parallel multiplier that multiplies the at least one vector of the data matrix by a single factor to 

compute parallel multiplier results comprising at least one vector; at least one parallel adder that 

adds the at least one vector of the parallel multiplier results and computes a running total; and a 

sequencer wherein the sequencer orders load operations of the original data into at least one of the 

vector registers and computes the check data with the parallel lookup multiplier and the parallel 

adder, and stores the computed check data from the vector registers to the main memory. 

A. CLOUDERA’S DIRECT INFRINGEMENT 

177. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’358 Patent, including at least Claim 1.  The Cloudera Infringing Products 

and Services are systems adapted to use accelerated ECC processing to improve the storage and 

retrieval of digital data that is distributed across multiple drives.  They comprise a processing core 

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that 

executes the SIMD instructions and loads data from main memory and stores data to main memory.  

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores, 

includes at least 16 data registers of at least 16 bytes each.  The Cloudera Infringing Products and 

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer 

instructions.  The Cloudera Infringing Products and Services include multiple data drives, each of 
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which includes a memory that stores blocks of original data that are at least 512 bytes.  The 

Cloudera Infringing Products and Services include more than two check drives, each of which 

includes a memory that stores blocks of check data.  The Cloudera Infringing Products and 

Services further include an input/output (I/O) controller to coordinate communication and data 

transfers between the main memory and the non-volatile storage media and that stores the check 

data from the main memory to the check drives.  The processing core, SIMD instructions, memory, 

and I/O controller of the Cloudera Infringing Products and Services implement accelerated ECC.  

The accelerated ECC system of the Cloudera Infringing Products and Services includes a data 

matrix for holding vectors of original data, with each row of a block of original data stored on a 

different data drive.  The accelerated ECC system of the Cloudera Infringing Products and Services 

includes a check matrix for holding vectors of check data, with each row of a block of check data 

stored on different check drives.  Moreover, one of the rows of the block of check data comprises 

a parity row comprising the Galois Field (GF) summation of all of the rows of the data matrix.  

The Cloudera Infringing Products and Services include a thread for executing on the SIMD CPU 

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The 

parallel lookup multiplier of the Cloudera Infringing Products and Services multiplies a vector of 

the data matrix by a single factor; the parallel adder adds the result of the parallel multiplier to 

compute a running total; and the sequencer orders load operations of the data into the registers, 

computes the check data, and stores the computed check data to main memory. 

B. ADP’S DIRECT INFRINGEMENT 

178. As to ADP, at least the ADP Infringing Products and Services, as defined above, 

comprise hardware and software components that together practice every element of one or more 

claims of the ’358 Patent, including at least Claim 1.  The ADP Infringing Products and Services 

are systems adapted to use accelerated ECC processing to improve the storage and retrieval of 
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digital data that is distributed across multiple drives.  They comprise a processing core comprising 

a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that executes 

the SIMD instructions and loads data from main memory and stores data to main memory.  The 

SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores, 

includes at least 16 data registers of at least 16 bytes each.  The ADP Infringing Products and 

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer 

instructions.  The ADP Infringing Products and Services include multiple data drives, each of 

which includes a memory that stores blocks of original data that are at least 512 bytes.  The ADP 

Infringing Products and Services include more than two check drives, each of which includes a 

memory that stores blocks of check data.  The ADP Infringing Products and Services further 

include an input/output (I/O) controller to coordinate communication and data transfers between 

the main memory and the non-volatile storage media and that stores the check data from the main 

memory to the check drives.  The processing core, SIMD instructions, memory, and I/O controller 

of the ADP Infringing Products and Services implement accelerated ECC.  The accelerated ECC 

system of the ADP Infringing Products and Services includes a data matrix for holding vectors of 

original data, with each row of a block of original data stored on a different data drive.  The 

accelerated ECC system of the ADP Infringing Products and Services includes a check matrix for 

holding vectors of check data, with each row of a block of check data stored on different check 

drives.  Moreover, one of the rows of the block of check data comprises a parity row comprising 

the Galois Field (GF) summation of all of the rows of the data matrix.  The ADP Infringing 

Products and Services include a thread for executing on the SIMD CPU processing core that 

includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The parallel lookup 

multiplier of the ADP Infringing Products and Services multiplies a vector of the data matrix by a 
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single factor; the parallel adder adds the result of the parallel multiplier to compute a running total; 

and the sequencer orders load operations of the data into the registers, computes the check data, 

and stores the computed check data to main memory. 

C. EXPERIAN’S DIRECT INFRINGEMENT 

179. As to Experian, at least the Experian Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’358 Patent, including at least Claim 1.  The Experian Infringing Products 

and Services are systems adapted to use accelerated ECC processing to improve the storage and 

retrieval of digital data that is distributed across multiple drives.  They comprise a processing core 

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that 

executes the SIMD instructions and loads data from main memory and stores data to main memory.  

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores, 

includes at least 16 data registers of at least 16 bytes each.  The Experian Infringing Products and 

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer 

instructions.  The Experian Infringing Products and Services include multiple data drives, each of 

which includes a memory that stores blocks of original data that are at least 512 bytes.  The 

Experian Infringing Products and Services include more than two check drives, each of which 

includes a memory that stores blocks of check data.  The Experian Infringing Products and Services 

further include an input/output (I/O) controller to coordinate communication and data transfers 

between the main memory and the non-volatile storage media and that stores the check data from 

the main memory to the check drives.  The processing core, SIMD instructions, memory, and I/O 

controller of the Experian Infringing Products and Services implement accelerated ECC.  The 

accelerated ECC system of the Experian Infringing Products and Services includes a data matrix 

for holding vectors of original data, with each row of a block of original data stored on a different 
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data drive.  The accelerated ECC system of the Experian Infringing Products and Services includes 

a check matrix for holding vectors of check data, with each row of a block of check data stored on 

different check drives.  Moreover, one of the rows of the block of check data comprises a parity 

row comprising the Galois Field (GF) summation of all of the rows of the data matrix.  The 

Experian Infringing Products and Services include a thread for executing on the SIMD CPU 

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The 

parallel lookup multiplier of the Experian Infringing Products and Services multiplies a vector of 

the data matrix by a single factor; the parallel adder adds the result of the parallel multiplier to 

compute a running total; and the sequencer orders load operations of the data into the registers, 

computes the check data, and stores the computed check data to main memory. 

D. WARGAMING’S DIRECT INFRINGEMENT 

180. As to Wargaming, at least the Wargaming Infringing Products and Services, as 

defined above, comprise hardware and software components that together practice every element 

of one or more claims of the ’358 Patent, including at least Claim 1.  The Wargaming Infringing 

Products and Services are systems adapted to use accelerated ECC processing to improve the 

storage and retrieval of digital data that is distributed across multiple drives.  They comprise a 

processing core comprising a single-instruction-multiple-data (“SIMD”) central processing unit 

(“CPU”) core that executes the SIMD instructions and loads data from main memory and stores 

data to main memory.  The SIMD CPU core, including for example Intel, AMD, ARM, and/or 

PPC64 processing cores, includes at least 16 data registers of at least 16 bytes each.  The 

Wargaming Infringing Products and Services include a system drive with non-volatile storage 

(memory) for storing the SIMD computer instructions.  The Wargaming Infringing Products and 

Services include multiple data drives, each of which includes a memory that stores blocks of 

original data that are at least 512 bytes.  The Wargaming Infringing Products and Services include 
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more than two check drives, each of which includes a memory that stores blocks of check data.  

The Wargaming Infringing Products and Services further include an input/output (I/O) controller 

to coordinate communication and data transfers between the main memory and the non-volatile 

storage media and that stores the check data from the main memory to the check drives.  The 

processing core, SIMD instructions, memory, and I/O controller of the Wargaming Infringing 

Products and Services implement accelerated ECC.  The accelerated ECC system of the 

Wargaming Infringing Products and Services includes a data matrix for holding vectors of original 

data, with each row of a block of original data stored on a different data drive.  The accelerated 

ECC system of the Wargaming Infringing Products and Services includes a check matrix for 

holding vectors of check data, with each row of a block of check data stored on different check 

drives.  Moreover, one of the rows of the block of check data comprises a parity row comprising 

the Galois Field (GF) summation of all of the rows of the data matrix.  The Wargaming Infringing 

Products and Services include a thread for executing on the SIMD CPU processing core that 

includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The parallel lookup 

multiplier of the Wargaming Infringing Products and Services multiplies a vector of the data 

matrix by a single factor; the parallel adder adds the result of the parallel multiplier to compute a 

running total; and the sequencer orders load operations of the data into the registers, computes the 

check data, and stores the computed check data to main memory. 

II. INDIRECT INFRINGEMENT 

181. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of 

the ’358 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at 

least Claim 1 of the ’358 Patent by third parties, including for example Cloudera, ADP, Experian, 

and Wargaming, in this District and elsewhere in the United States.  Direct infringement is the 

result of activities performed by users of systems that incorporate, among other features, ISA-L, 
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including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least 

Claim 1 of the ’358 Patent. 

182. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof), 

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive 

materials and information concerning operation and use of ISA-L (or portions thereof), and 

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian, 

and Wargaming to infringe at least Claim 1 of the ’358 Patent.  For example, Intel induced 

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’358 Patent through 

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products 

and Services.  By and through these acts, Intel knowingly and specifically intended the users of 

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’358 Patent.  Intel (1) knew or should 

have known of the ’358 Patent since at least 2018, (2) performed and continues to perform 

affirmative acts that constitute induced infringement, and (3) knew or should have known that 

those acts would induce actual infringement of one or more of the ’358 Patent’s claims by users 

of ISA-L. 

183. For example, upon information and belief, Intel (i) maintains a website to promote 

ISA-L,21 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use 

that are available to the EC System Defendants on the Intel website,22 (iii) describes case studies 

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel 

                                                 
21 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at 
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24, 
2021). 

22 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, 
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021). 
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website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available 

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API 

Reference Manual for ISA-L23 that is available to the EC System Defendants, which it updates 

regularly.24  Upon information and belief, Intel further offers the EC System Defendants technical 

support for ISA-L and the EC System Defendants’ products. 

184. Upon information and belief, Intel promotes and encourages the EC System 

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC 

System Defendants. 

185. As to Intel, at least ISA-L, as defined above, is designed to be used with other 

components that, when combined with hardware, practice one or more claims of the ’358 Patent, 

including at least Claim 1.  EC Systems that employ ISA-L create a data matrix for holding vectors 

of original data, with each row of a block of original data stored on a different data drive.  The 

systems that employ ISA-L create a check matrix for holding vectors of check data, with each row 

of a block of check data stored on different check drives.  Moreover, one of the rows of the block 

of check data comprises a parity row comprising the Galois Field (GF) summation of all of the 

rows of the data matrix.  The systems also include a thread for executing on the SIMD CPU 

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The 

systems’ parallel lookup multiplier multiplies a vector of the data matrix by a single factor; the 

                                                 
23 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source 
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at 
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 
2021). 

24 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference 
Manual (ver. 2.23.0, June 29, 2018), available at 
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 62 of 350



 

Page 63 of 91 

systems’ parallel adder adds the result of the parallel multiplier to compute a running total; and the 

systems’ sequencer orders load operations of the data into the registers, computes the check data, 

and stores the computed check data to main memory. 

186. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent 

portfolio, Intel subjectively believed there was a high probability that StreamScale’s 

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe 

StreamScale’s Patents-in-Suit, including the ’358 Patent.  To the extent that Intel lacked actual 

knowledge of the ’358 Patent or the EC System Defendants’ actual infringement of the 

’358 Patent, Intel took deliberate actions to avoid learning of those facts.  Indeed, Intel actively 

encouraged others to ignore StreamScale and its patents and further reprimanded at least one 

employee for failing to ignore StreamScale and its patents. 

187. At a minimum, Intel has had actual notice of the ’358 Patent since March 5, 2021 

and has knowledge of the infringing nature of its activities, yet continues to induce infringement 

of at least Claim 1 of the ’358 Patent by Cloudera, ADP, Experian, and Wargaming. 

188. Despite knowing of the ’358 Patent since at least as early as March 5, 2021, upon 

information and belief, Intel has never undertaken any serious investigation to form a good faith 

belief as to non-infringement or invalidity of the ’358 Patent. 

189. Despite knowing of the ’358 Patent since at least as early as March 5, 2021, Intel 

has continued to infringe one or more claims of the ’358 Patent. 

190. Despite knowing of the ’358 Patent since at least July 7, 2021, Intel has continued 

to infringe one or more claims of the ’358 Patent. 

191. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of 

the ’358 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate, 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 63 of 350



 

Page 64 of 91 

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased 

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this 

action pursuant to 35 U.S.C. § 285.  

III. DAMAGES 

192. Defendants’ acts of infringement have caused damages to StreamScale, and 

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a 

result of Defendants’ wrongful acts in an amount to be determined at trial. 

COUNT 5—INFRINGEMENT OF THE ’259 PATENT 

193. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–192 

of this Complaint as though fully set forth herein. 

I. DIRECT INFRINGEMENT 

194. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are 

and have been directly infringing one or more of the ’259 Patent’s claims, including at least 

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing 

into the United States, without authority, erasure code products and services, including but not 

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and 

Services, the ADP Infringing Products and Services, the Experian Infringing Products and 

Services, and the Wargaming Infringing Products and Services, as described above. 

195. The EC System Defendants are infringing claims of the ’259 Patent, including at 

least Claim 1, literally and/or pursuant to the doctrine of equivalents.  

196. Claim 1 of the ’259 Patent is directed to a system adapted to use accelerated error-

correcting code (ECC) processing to improve the storage and retrieval of digital data distributed 

across a plurality of drives, comprising: at least one processor comprising at least one single-

instruction-multiple-data (SIMD) central processing unit (CPU) core that executes SIMD 
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instructions and loads original data from a main memory and stores check data to the main 

memory, the SIMD CPU core comprising at least 16 vector registers, each of the vector registers 

storing at least 16 bytes; at least one system drive comprising at least one non-volatile storage 

medium that stores the SIMD instructions; a plurality of data drives each comprising at least one 

non-volatile storage medium that stores at least one block of the original data, the at least one block 

comprising at least 512 bytes; more than two check drives each comprising at least one non-volatile 

storage medium that stores at least one block of the check data; at least one first input/output (I/O) 

controller that receives the at least one block of the original data from a transmitter and that stores 

the at least one block of the original data to the main memory; and at least one second input/output 

(I/O) controller that stores the at least one block of the check data from the main memory to the 

check drives, wherein the processor, the SIMD instructions, the non-volatile storage medium, and 

the at least one second I/O controller are configured to implement an erasure coding system 

comprising: a data matrix comprising at least one vector and comprising a plurality of rows of at 

least one block of the original data in the main memory, each of the rows being stored on a different 

one of the data drives; a check matrix comprising more than two rows of the at least one block of 

the check data in the main memory, each of the rows being stored on a different one of the check 

drives, one of the rows comprising a parity row comprising the Galois Field (GF) summation of 

all of the rows of the data matrix; and a thread that executes on the SIMD CPU core and 

comprising: at least one parallel multiplier that multiplies the at least one vector of the data matrix 

by a single factor to compute parallel multiplier results comprising at least one vector; at least one 

parallel adder that adds the at least one vector of the parallel multiplier results and computes a 

running total; and a sequencer wherein the sequencer orders load operations of the original data 

into at least one of the vector registers and computes the check data with the parallel multiplier 
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and the parallel adder, and stores the computed check data from the vector registers to the main 

memory. 

A. CLOUDERA’S DIRECT INFRINGEMENT 

197. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’259 Patent, including at least Claim 1.  The Cloudera Infringing Products 

and Services are systems adapted to use accelerated ECC processing to improve the storage and 

retrieval of digital data that is distributed across multiple drives.  They comprise a processing core 

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that 

executes the SIMD instructions and loads data from main memory and stores data to main memory.  

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores, 

includes at least 16 data registers of at least 16 bytes each.  The Cloudera Infringing Products and 

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer 

instructions.  The Cloudera Infringing Products and Services include multiple data drives, each of 

which includes a memory that stores blocks of original data that are at least 512 bytes.  The 

Cloudera Infringing Products and Services include more than two check drives, each of which 

includes a memory that stores blocks of check data.  The Cloudera Infringing Products and 

Services further include a first input/output (I/O) controller to receive blocks of original data from 

a transmitter and store that data to the main memory.  The Cloudera Infringing Products and 

Services further include a second I/O controller to store blocks of check data from the main 

memory to the check drives.  The processing core, SIMD instructions, memory, and I/O controller 

of the Cloudera Infringing Products and Services implement accelerated ECC.  The accelerated 

ECC system of the Cloudera Infringing Products and Services includes a data matrix for holding 

vectors of original data, with each row of a block of original data stored on a different data drive.  
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The accelerated ECC system of the Cloudera Infringing Products and Services includes a check 

matrix for holding vectors of check data, with each row of a block of check data stored on different 

check drives.  Moreover, one of the rows of the block of check data comprises a parity row 

comprising the Galois Field (GF) summation of all of the rows of the data matrix.  The Cloudera 

Infringing Products and Services include a thread for executing on the SIMD CPU processing core 

that includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The parallel lookup 

multiplier of the Cloudera Infringing Products and Services multiplies a vector of the data matrix 

by a single factor; the parallel adder adds the result of the parallel multiplier to compute a running 

total; and the sequencer orders load operations of the data into the registers, computes the check 

data, and stores the computed check data to main memory. 

B. ADP’S DIRECT INFRINGEMENT 

198. As to ADP, at least the ADP Infringing Products and Services, as defined above, 

comprise hardware and software components that together practice every element of one or more 

claims of the ’259 Patent, including at least Claim 1.  The ADP Infringing Products and Services 

are systems adapted to use accelerated ECC processing to improve the storage and retrieval of 

digital data that is distributed across multiple drives.  They comprise a processing core comprising 

a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that executes 

the SIMD instructions and loads data from main memory and stores data to main memory.  The 

SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores, 

includes at least 16 data registers of at least 16 bytes each.  The ADP Infringing Products and 

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer 

instructions.  The ADP Infringing Products and Services include multiple data drives, each of 

which includes a memory that stores blocks of original data that are at least 512 bytes.  The ADP 

Infringing Products and Services include more than two check drives, each of which includes a 
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memory that stores blocks of check data.  The ADP Infringing Products and Services further 

include a first input/output (I/O) controller to receive blocks of original data from a transmitter and 

store that data to the main memory.  The ADP Infringing Products and Services further include a 

second I/O controller to store blocks of check data from the main memory to the check drives.  The 

processing core, SIMD instructions, memory, and I/O controller of the ADP Infringing Products 

and Services implement accelerated ECC.  The accelerated ECC system of the ADP Infringing 

Products and Services includes a data matrix for holding vectors of original data, with each row of 

a block of original data stored on a different data drive.  The accelerated ECC system of the ADP 

Infringing Products and Services includes a check matrix for holding vectors of check data, with 

each row of a block of check data stored on different check drives.  Moreover, one of the rows of 

the block of check data comprises a parity row comprising the Galois Field (GF) summation of all 

of the rows of the data matrix.  The ADP Infringing Products and Services include a thread for 

executing on the SIMD CPU processing core that includes a parallel lookup multiplier, a parallel 

adder, and a sequencer.  The parallel lookup multiplier of the ADP Infringing Products and 

Services multiplies a vector of the data matrix by a single factor; the parallel adder adds the result 

of the parallel multiplier to compute a running total; and the sequencer orders load operations of 

the data into the registers, computes the check data, and stores the computed check data to main 

memory. 

C. EXPERIAN’S DIRECT INFRINGEMENT 

199. As to Experian, at least the Experian Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’259 Patent, including at least Claim 1.  The Experian Infringing Products 

and Services are systems adapted to use accelerated ECC processing to improve the storage and 

retrieval of digital data that is distributed across multiple drives.  They comprise a processing core 
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comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that 

executes the SIMD instructions and loads data from main memory and stores data to main memory.  

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores, 

includes at least 16 data registers of at least 16 bytes each.  The Experian Infringing Products and 

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer 

instructions.  The Experian Infringing Products and Services include multiple data drives, each of 

which includes a memory that stores blocks of original data that are at least 512 bytes.  The 

Experian Infringing Products and Services include more than two check drives, each of which 

includes a memory that stores blocks of check data.  The Experian Infringing Products and Services 

further include a first input/output (I/O) controller to receive blocks of original data from a 

transmitter and store that data to the main memory.  The Experian Infringing Products and Services 

further include a second I/O controller to store blocks of check data from the main memory to the 

check drives.  The processing core, SIMD instructions, memory, and I/O controller of the Experian 

Infringing Products and Services implement accelerated ECC.  The accelerated ECC system of the 

Experian Infringing Products and Services includes a data matrix for holding vectors of original 

data, with each row of a block of original data stored on a different data drive.  The accelerated 

ECC system of the Experian Infringing Products and Services includes a check matrix for holding 

vectors of check data, with each row of a block of check data stored on different check drives.  

Moreover, one of the rows of the block of check data comprises a parity row comprising the Galois 

Field (GF) summation of all of the rows of the data matrix.  The Experian Infringing Products and 

Services include a thread for executing on the SIMD CPU processing core that includes a parallel 

lookup multiplier, a parallel adder, and a sequencer.  The parallel lookup multiplier of the Experian 

Infringing Products and Services multiplies a vector of the data matrix by a single factor; the 
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parallel adder adds the result of the parallel multiplier to compute a running total; and the sequencer 

orders load operations of the data into the registers, computes the check data, and stores the 

computed check data to main memory. 

D. WARGAMING’S DIRECT INFRINGEMENT 

200. As to Wargaming, at least the Wargaming Infringing Products and Services, as 

defined above, comprise hardware and software components that together practice every element 

of one or more claims of the ’259 Patent, including at least Claim 1.  The Wargaming Infringing 

Products and Services are systems adapted to use accelerated ECC processing to improve the 

storage and retrieval of digital data that is distributed across multiple drives.  They comprise a 

processing core comprising a single-instruction-multiple-data (“SIMD”) central processing unit 

(“CPU”) core that executes the SIMD instructions and loads data from main memory and stores 

data to main memory.  The SIMD CPU core, including for example Intel, AMD, ARM, and/or 

PPC64 processing cores, includes at least 16 data registers of at least 16 bytes each.  The 

Wargaming Infringing Products and Services include a system drive with non-volatile storage 

(memory) for storing the SIMD computer instructions.  The Wargaming Infringing Products and 

Services include multiple data drives, each of which includes a memory that stores blocks of 

original data that are at least 512 bytes.  The Wargaming Infringing Products and Services include 

more than two check drives, each of which includes a memory that stores blocks of check data.  

The Wargaming Infringing Products and Services further include a first input/output (I/O) 

controller to receive blocks of original data from a transmitter and store that data to the main 

memory.  The Wargaming Infringing Products and Services further include a second I/O controller 

to store blocks of check data from the main memory to the check drives.  The processing core, 

SIMD instructions, memory, and I/O controller of the Wargaming Infringing Products and 

Services implement accelerated ECC.  The accelerated ECC system of the Wargaming Infringing 
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Products and Services includes a data matrix for holding vectors of original data, with each row of 

a block of original data stored on a different data drive.  The accelerated ECC system of the 

Wargaming Infringing Products and Services includes a check matrix for holding vectors of check 

data, with each row of a block of check data stored on different check drives.  Moreover, one of 

the rows of the block of check data comprises a parity row comprising the Galois Field (GF) 

summation of all of the rows of the data matrix.  The Wargaming Infringing Products and Services 

include a thread for executing on the SIMD CPU processing core that includes a parallel lookup 

multiplier, a parallel adder, and a sequencer.  The parallel lookup multiplier of the Wargaming 

Infringing Products and Services multiplies a vector of the data matrix by a single factor; the 

parallel adder adds the result of the parallel multiplier to compute a running total; and the sequencer 

orders load operations of the data into the registers, computes the check data, and stores the 

computed check data to main memory. 

II. INDIRECT INFRINGEMENT 

201. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of 

the ’259 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at 

least Claim 1 of the ’259 Patent by third parties, including for example Cloudera, ADP, Experian, 

and Wargaming, in this District and elsewhere in the United States.  Direct infringement is the 

result of activities performed by users of systems that incorporate, among other features, ISA-L, 

including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least 

Claim 1 of the ’259 Patent. 

202. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof), 

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive 

materials and information concerning operation and use of ISA-L (or portions thereof), and 

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian, 
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and Wargaming to infringe at least Claim 1 of the ’259 Patent.  For example, Intel induced 

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’259 Patent through 

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products 

and Services.  By and through these acts, Intel knowingly and specifically intended the users of 

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’259 Patent.  Intel (1) knew or should 

have known of the ’259 Patent since at least 2019, (2) performed and continues to perform 

affirmative acts that constitute induced infringement, and (3) knew or should have known that 

those acts would induce actual infringement of one or more of the ’259 Patent’s claims by users 

of ISA-L. 

203. For example, upon information and belief, Intel (i) maintains a website to promote 

ISA-L,25 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use 

that are available to the EC System Defendants on the Intel website,26 (iii) describes case studies 

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel 

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available 

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API 

Reference Manual for ISA-L27 that is available to the EC System Defendants, which it updates 

                                                 
25 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at 
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24, 
2021). 

26 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, 
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021). 

27 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source 
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at 
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 
2021). 
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regularly.28  Upon information and belief, Intel further offers the EC System Defendants technical 

support for ISA-L and the EC System Defendants’ products. 

204. Upon information and belief, Intel promotes and encourages the EC System 

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC 

System Defendants. 

205. As to Intel, at least ISA-L, as defined above, is designed to be used with other 

components that, when combined with hardware, practice one or more claims of the ’259 Patent, 

including at least Claim 1.  EC Systems that employ ISA-L create a data matrix for holding vectors 

of original data, with each row of a block of original data stored on a different data drive.  The 

systems that employ ISA-L create a check matrix for holding vectors of check data, with each row 

of a block of check data stored on different check drives.  Moreover, one of the rows of the block 

of check data comprises a parity row comprising the Galois Field (GF) summation of all of the 

rows of the data matrix.  The systems also include a thread for executing on the SIMD CPU 

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer.  The 

systems’ parallel lookup multiplier multiplies a vector of the data matrix by a single factor; the 

systems’ parallel adder adds the result of the parallel multiplier to compute a running total; and the 

systems’ sequencer orders load operations of the data into the registers, computes the check data, 

and stores the computed check data to main memory. 

206. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent 

portfolio, Intel subjectively believed there was a high probability that StreamScale’s 

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe 

                                                 
28 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference 
Manual (ver. 2.23.0, June 29, 2018), available at 
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 73 of 350



 

Page 74 of 91 

StreamScale’s Patents-in-Suit, including the ’259 Patent.  To the extent that Intel lacked actual 

knowledge of the ’259 Patent or the EC System Defendants’ actual infringement of the 

’259 Patent, Intel took deliberate actions to avoid learning of those facts.  Indeed, Intel actively 

encouraged others to ignore StreamScale and its patents and further reprimanded at least one 

employee for failing to ignore StreamScale and its patents. 

207. At a minimum, Intel has had actual notice of the ’259 Patent since March 5, 2021 

and has knowledge of the infringing nature of its activities, yet continues to induce infringement 

of at least Claim 1 of the ’259 Patent by Cloudera, ADP, Experian, and Wargaming. 

208. Despite knowing of the ’259 Patent since at least as early as March 5, 2021, upon 

information and belief, Intel has never undertaken any serious investigation to form a good faith 

belief as to non-infringement or invalidity of the ’259 Patent. 

209. Despite knowing of the ’259 Patent since at least as early as March 5, 2021, Intel 

has continued to infringe one or more claims of the ’259 Patent. 

210. Despite knowing of the ’259 Patent since at least July 7, 2021, Intel has continued 

to infringe one or more claims of the ’259 Patent. 

211. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of 

the ’259 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate, 

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased 

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this 

action pursuant to 35 U.S.C. § 285.  

III. DAMAGES 

212. Defendants’ acts of infringement have caused damages to StreamScale, and 

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a 

result of Defendants’ wrongful acts in an amount to be determined at trial. 
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COUNT 6—INFRINGEMENT OF THE ’10-296 PATENT 

213. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–212 

of this Complaint as though fully set forth herein. 

I. DIRECT INFRINGEMENT 

214. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are 

and have been directly infringing one or more of the ’10-296 Patent’s claims, including at least 

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing 

into the United States, without authority, erasure code products and services, including but not 

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and 

Services, the ADP Infringing Products and Services, the Experian Infringing Products and 

Services, and the Wargaming Infringing Products and Services, as described above. 

215. The EC System Defendants are infringing claims of the ’10-296 Patent, including 

at least Claim 1, literally and/or pursuant to the doctrine of equivalents.  

216. Claim 1 of the ’10-296 Patent is directed to an accelerated error-correcting code 

(ECC) system operating across multiple drives, comprising: at least one processing circuit 

comprising a plurality of central processing unit (CPU) cores that executes CPU instructions and 

loads original data from a main memory and stores check data to the main memory, each of the 

CPU cores comprising at least 16 registers, and each of the registers storing at least 8 bytes; at 

least one system drive comprising at least one non-volatile storage medium that stores the CPU 

instructions; a plurality of data drives each comprising at least one non-volatile storage medium 

that stores at least one block of the original data; at least four check drives each comprising at least 

one non-volatile storage medium that stores at least one block of the check data corresponding to 

the at least one block of the original data; and at least one input/output (I/O) controller that receives 

the at least one block of the original data from a transmitter and that stores the at least one block 
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of the original data to a main memory; wherein the processing circuit, the CPU instructions, the 

main memory, the plurality of data drives, the at least four check drives, and the at least one I/O 

controller are configured to implement a multi-core erasure encoding system comprising: original 

data in the main memory comprised of the at least one block of original data from the plurality of 

data drives; check data in the main memory comprised of the at least one block of check data; an 

encoding matrix for holding first factors in the main memory, the first factors being for encoding 

the original data in the main memory into the check data in the main memory; and a scheduler for 

generating ECC data in parallel across a plurality of threads by: dividing the original data in the 

main memory into a plurality of data matrices; dividing the check data in the main memory into a 

plurality of check matrices; assigning corresponding ones of the data matrices and the check 

matrices in the main memory to the plurality of threads, wherein each thread comprises an encoder, 

the encoder comprising at least a portion of the encoding matrix, a Galois Field (GF) multiplier, a 

Galois Field (GF) adder, and a sequencer for ordering operations through at least one of the data 

matrices, corresponding ones of the check matrices, and the at least a portion of the encoding 

matrix in the main memory using the GF multiplier and the GF adder to generate the check data 

in the main memory; and assigning the plurality of threads to the plurality of CPU cores of the 

processing circuit to concurrently generate the check matrices in the main memory from 

corresponding ones of the data matrices in the main memory. 

A. CLOUDERA’S DIRECT INFRINGEMENT 

217. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’10-296 Patent, including at least Claim 1.  The Cloudera Infringing Products 

and Services are accelerated ECC systems operating across multiple drives.  They comprise a 

processing circuit comprising multiple central processing unit (“CPU”) cores that execute CPU 
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instructions and loads original data from main memory and stores check data to main memory.  

The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 processing 

cores, each include at least 16 data registers of at least 8 bytes each.  The Cloudera Infringing 

Products and Services include a system drive with non-volatile storage (memory) for storing the 

CPU instructions.  The Cloudera Infringing Products and Services include multiple data drives, 

each of which includes a memory that stores blocks of original data.  The Cloudera Infringing 

Products and Services include at least four check drives, each of which includes a memory that 

stores blocks of check data, each block of check data corresponding to a block of the original data.  

The Cloudera Infringing Products and Services further include an input/output (I/O) controller to 

receive blocks of original data from a transmitter and store that data to the main memory.  The 

processing circuit, CPU instructions, memory, data drives, check drives, and I/O controller of the 

Cloudera Infringing Products and Services implement accelerated ECC.  The accelerated ECC 

system of the Cloudera Infringing Products and Services includes original data blocks in main 

memory from the multiple data drives, check data blocks in main memory, and encoding matrix 

with first factors in main memory where the first factors are for encoding the original data into 

check data, and a scheduler that generates ECC data in parallel across multiple threads.  The 

scheduler of the Cloudera Infringing Products and Services divides the original data in main 

memory into multiple data matrices and the check data in main memory into multiple check 

matrices.  The scheduler of the Cloudera Infringing Products and Services further assigns data and 

check matrices to the threads.  Each thread in the Cloudera Infringing Products and Services 

includes an encoder comprising at least part of the encoding matrix, a Galois Field (GF) multiplier, 

a GF adder, and a sequencer that orders operations of the data to generate the check data in the 

main memory.  The scheduler of the Cloudera Infringing Products and Services further assigns the 
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threads to the various CPU cores of the processing circuit to concurrently generate the check 

matrices from the data matrices in main memory. 

B. ADP’S DIRECT INFRINGEMENT 

218. As to ADP, at least the ADP Infringing Products and Services, as defined above, 

comprise hardware and software components that together practice every element of one or more 

claims of the ’10-296 Patent, including at least Claim 1.  The ADP Infringing Products and 

Services are accelerated ECC systems operating across multiple drives.  They comprise a 

processing circuit comprising multiple central processing unit (“CPU”) cores that execute CPU 

instructions and loads original data from main memory and stores check data to main memory.  

The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 processing 

cores, each include at least 16 data registers of at least 8 bytes each.  The ADP Infringing Products 

and Services include a system drive with non-volatile storage (memory) for storing the CPU 

instructions.  The ADP Infringing Products and Services include multiple data drives, each of 

which includes a memory that stores blocks of original data.  The ADP Infringing Products and 

Services include at least four check drives, each of which includes a memory that stores blocks of 

check data, each block of check data corresponding to a block of the original data.  The ADP 

Infringing Products and Services further include an input/output (I/O) controller to receive blocks 

of original data from a transmitter and store that data to the main memory.  The processing circuit, 

CPU instructions, memory, data drives, check drives, and I/O controller of the ADP Infringing 

Products and Services implement accelerated ECC.  The accelerated ECC system of the ADP 

Infringing Products and Services includes original data blocks in main memory from the multiple 

data drives, check data blocks in main memory, and encoding matrix with first factors in main 

memory where the first factors are for encoding the original data into check data, and a scheduler 

that generates ECC data in parallel across multiple threads.  The scheduler of the ADP Infringing 
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Products and Services divides the original data in main memory into multiple data matrices and 

the check data in main memory into multiple check matrices.  The scheduler of the ADP Infringing 

Products and Services further assigns data and check matrices to the threads.  Each thread in the 

ADP Infringing Products and Services includes an encoder comprising at least part of the encoding 

matrix, a Galois Field (GF) multiplier, a GF adder, and a sequencer that orders operations of the 

data to generate the check data in the main memory.  The scheduler of the ADP Infringing Products 

and Services further assigns the threads to the various CPU cores of the processing circuit to 

concurrently generate the check matrices from the data matrices in main memory. 

C. EXPERIAN’S DIRECT INFRINGEMENT 

219. As to Experian, at least the Experian Infringing Products and Services, as defined 

above, comprise hardware and software components that together practice every element of one 

or more claims of the ’10-296 Patent, including at least Claim 1.  The Experian Infringing Products 

and Services are accelerated ECC systems operating across multiple drives.  They comprise a 

processing circuit comprising multiple central processing unit (“CPU”) cores that execute CPU 

instructions and loads original data from main memory and stores check data to main memory.  

The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 processing 

cores, each include at least 16 data registers of at least 8 bytes each.  The Experian Infringing 

Products and Services include a system drive with non-volatile storage (memory) for storing the 

CPU instructions.  The Experian Infringing Products and Services include multiple data drives, 

each of which includes a memory that stores blocks of original data.  The Experian Infringing 

Products and Services include at least four check drives, each of which includes a memory that 

stores blocks of check data, each block of check data corresponding to a block of the original data.  

The Experian Infringing Products and Services further include an input/output (I/O) controller to 

receive blocks of original data from a transmitter and store that data to the main memory.  The 
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processing circuit, CPU instructions, memory, data drives, check drives, and I/O controller of the 

Experian Infringing Products and Services implement accelerated ECC.  The accelerated ECC 

system of the Experian Infringing Products and Services includes original data blocks in main 

memory from the multiple data drives, check data blocks in main memory, and encoding matrix 

with first factors in main memory where the first factors are for encoding the original data into 

check data, and a scheduler that generates ECC data in parallel across multiple threads.  The 

scheduler of the Experian Infringing Products and Services divides the original data in main 

memory into multiple data matrices and the check data in main memory into multiple check 

matrices.  The scheduler of the Experian Infringing Products and Services further assigns data and 

check matrices to the threads.  Each thread in the Experian Infringing Products and Services 

includes an encoder comprising at least part of the encoding matrix, a Galois Field (GF) multiplier, 

a GF adder, and a sequencer that orders operations of the data to generate the check data in the 

main memory.  The scheduler of the Experian Infringing Products and Services further assigns the 

threads to the various CPU cores of the processing circuit to concurrently generate the check 

matrices from the data matrices in main memory. 

D. WARGAMING’S DIRECT INFRINGEMENT 

220. As to Wargaming, at least the Wargaming Infringing Products and Services, as 

defined above, comprise hardware and software components that together practice every element 

of one or more claims of the ’10-296 Patent, including at least Claim 1.  The Wargaming Infringing 

Products and Services are accelerated ECC systems operating across multiple drives.  They 

comprise a processing circuit comprising multiple central processing unit (“CPU”) cores that 

execute CPU instructions and loads original data from main memory and stores check data to main 

memory.  The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 

processing cores, each include at least 16 data registers of at least 8 bytes each.  The Wargaming 
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Infringing Products and Services include a system drive with non-volatile storage (memory) for 

storing the CPU instructions.  The Wargaming Infringing Products and Services include multiple 

data drives, each of which includes a memory that stores blocks of original data.  The Wargaming 

Infringing Products and Services include at least four check drives, each of which includes a 

memory that stores blocks of check data, each block of check data corresponding to a block of the 

original data.  The Wargaming Infringing Products and Services further include an input/output 

(I/O) controller to receive blocks of original data from a transmitter and store that data to the main 

memory.  The processing circuit, CPU instructions, memory, data drives, check drives, and I/O 

controller of the Wargaming Infringing Products and Services implement accelerated ECC.  The 

accelerated ECC system of the Wargaming Infringing Products and Services includes original data 

blocks in main memory from the multiple data drives, check data blocks in main memory, and 

encoding matrix with first factors in main memory where the first factors are for encoding the 

original data into check data, and a scheduler that generates ECC data in parallel across multiple 

threads.  The scheduler of the Wargaming Infringing Products and Services divides the original 

data in main memory into multiple data matrices and the check data in main memory into multiple 

check matrices.  The scheduler of the Wargaming Infringing Products and Services further assigns 

data and check matrices to the threads.  Each thread in the Wargaming Infringing Products and 

Services includes an encoder comprising at least part of the encoding matrix, a Galois Field (GF) 

multiplier, a GF adder, and a sequencer that orders operations of the data to generate the check 

data in the main memory.  The scheduler of the Wargaming Infringing Products and Services 

further assigns the threads to the various CPU cores of the processing circuit to concurrently 

generate the check matrices from the data matrices in main memory. 
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II. INDIRECT INFRINGEMENT 

221. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of 

the ’10-296 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of 

at least Claim 1 of the ’10-296 Patent by third parties, including for example Cloudera, ADP, 

Experian, and Wargaming, in this District and elsewhere in the United States.  Direct infringement 

is the result of activities performed by users of systems that incorporate, among other features, 

ISA-L, including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at 

least Claim 1 of the ’10-296 Patent. 

222. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof), 

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive 

materials and information concerning operation and use of ISA-L (or portions thereof), and 

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian, 

and Wargaming to infringe at least Claim 1 of the ’10-296 Patent.  For example, Intel induced 

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’10-296 Patent 

through the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing 

Products and Services.  By and through these acts, Intel knowingly and specifically intended the 

users of ISA-L (or portions thereof) to infringe at least Claim 1 of the ’10-296 Patent.  Intel 

(1) knew or should have known of the ’10-296 Patent since at least 2020, (2) performed and 

continues to perform affirmative acts that constitute induced infringement, and (3) knew or should 

have known that those acts would induce actual infringement of one or more of the 

’10-296 Patent’s claims by users of ISA-L. 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 82 of 350



 

Page 83 of 91 

223. For example, upon information and belief, Intel (i) maintains a website to promote 

ISA-L,29 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use 

that are available to the EC System Defendants on the Intel website,30 (iii) describes case studies 

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel 

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available 

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API 

Reference Manual for ISA-L31 that is available to the EC System Defendants, which it updates 

regularly.32  Upon information and belief, Intel further offers the EC System Defendants technical 

support for ISA-L and the EC System Defendants’ products. 

224. Upon information and belief, Intel promotes and encourages the EC System 

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC 

System Defendants. 

225. As to Intel, at least ISA-L, as defined above, is designed to be used with other 

components that, when combined with hardware, practice one or more claims of the 

                                                 
29 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at 
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24, 
2021). 

30 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, 
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021). 

31 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source 
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at 
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 
2021). 

32 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference 
Manual (ver. 2.23.0, June 29, 2018), available at 
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 83 of 350



 

Page 84 of 91 

’10-296 Patent, including at least Claim 1.  EC Systems that employ ISA-L create original data 

blocks in main memory from the multiple data drives, check data blocks in main memory, and 

encoding matrix with first factors in main memory where the first factors are for encoding the 

original data into check data, and a scheduler that generates ECC data in parallel across multiple 

threads.  The scheduler of the systems divides the original and check data in into multiple data and 

check matrices, respectively, and assigns data and check matrices to the threads.  Each thread in 

the systems includes an encoder comprising at least part of the encoding matrix, a Galois Field 

(GF) multiplier, a GF adder, and a sequencer that orders operations of the data to generate the 

check data in the main memory.   

226. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent 

portfolio, Intel subjectively believed there was a high probability that StreamScale’s 

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe 

StreamScale’s Patents-in-Suit, including the ’10-296 Patent.  To the extent that Intel lacked actual 

knowledge of the ’10-296 Patent or the EC System Defendants’ actual infringement of the 

’10-296 Patent, Intel took deliberate actions to avoid learning of those facts.  Indeed, Intel actively 

encouraged others to ignore StreamScale and its patents and further reprimanded at least one 

employee for failing to ignore StreamScale and its patents. 

227. At a minimum, Intel has had actual notice of the ’10-296 Patent since March 5, 

2021 and has knowledge of the infringing nature of its activities, yet continues to induce 

infringement of at least Claim 1 of the ’10-296 Patent by Cloudera, ADP, Experian, and 

Wargaming. 
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228. Despite knowing of the ’10-296 Patent since at least as early as March 5, 2021, 

upon information and belief, Intel has never undertaken any serious investigation to form a good 

faith belief as to non-infringement or invalidity of the ’10-296 Patent. 

229. Despite knowing of the ’10-296 Patent since at least as early as March 5, 2021, 

Intel has continued to infringe one or more claims of the ’10-296 Patent. 

230. Despite knowing of the ’10-296 Patent since at least July 7, 2021, Intel has 

continued to infringe one or more claims of the ’10-296 Patent. 

231. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of 

the ’10-296 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate, 

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased 

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this 

action pursuant to 35 U.S.C. § 285.  

III. DAMAGES 

232. Defendants’ acts of infringement have caused damages to StreamScale, and 

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a 

result of Defendants’ wrongful acts in an amount to be determined at trial. 

DAMAGES 

233. StreamScale is entitled to, and now seeks to, recover damages in an amount not less 

than the maximum amount permitted by law caused by Defendants’ acts of infringement. 

234. As a result of Defendants’ acts of infringement, StreamScale has suffered actual 

and consequential damages.  To the fullest extent permitted by law, StreamScale seeks recovery 

of damages in an amount to compensate for Defendants’ infringement.  StreamScale further seeks 

any other damages to which StreamScale would be entitled to in law or in equity. 
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INJUNCTIVE RELIEF 

235. Defendants’ acts of infringement have caused—and unless restrained and enjoined, 

Defendants’ acts of infringement will continue to cause—irreparable injury and damage to 

StreamScale for which StreamScale has no adequate remedy at law.  Unless preliminarily and 

permanently enjoined by this Court, Defendants will continue to infringe the Patents-in-Suit. 

ATTORNEYS’ FEES 

236. StreamScale is entitled to recover reasonable and necessary attorneys’ fees under 

applicable law. 

DEMAND FOR JURY TRIAL 

Pursuant to Rule 38 of the Federal Rules of Civil Procedure, StreamScale demands a trial 

by jury on all issues so triable. 

PRAYER FOR RELIEF 

StreamScale respectfully requests that the Court enter preliminary and final orders, 

declarations, and judgments against Defendants as are necessary to provide StreamScale with the 

following relief:  

a. A judgment that Defendants have infringed and/or are infringing one or 

more claims of the ’8-296 Patent, literally or under the doctrine of 

equivalents, and directly or indirectly as alleged above; 

b. A judgment that Intel’s infringement of the ’8-296 Patent has been willful; 

c. A judgment that Defendants have infringed and/or are infringing one or 

more claims of the ’374 Patent, literally or under the doctrine of equivalents, 

and directly or indirectly as alleged above; 

d. A judgment that Intel’s infringement of the ’374 Patent has been willful; 
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e. A judgment that Defendants have infringed and/or are infringing one or 

more claims of the ’759 Patent, literally or under the doctrine of equivalents, 

and directly or indirectly as alleged above; 

f. A judgment that Intel’s infringement of the ’759 Patent has been willful; 

g. A judgment that Defendants have infringed and/or are infringing one or 

more claims of the ’358 Patent, literally or under the doctrine of equivalents, 

and directly or indirectly as alleged above; 

h. A judgment that Intel’s infringement of the ’358 Patent has been willful; 

i. A judgment that Defendants have infringed and/or are infringing one or 

more claims of the ’259 Patent, literally or under the doctrine of equivalents, 

and directly or indirectly as alleged above; 

j. A judgment that Intel’s infringement of the ’259 Patent has been willful; 

k. A judgment that Defendants have infringed and/or are infringing one or 

more claims of the ’10-296 Patent, literally or under the doctrine of 

equivalents, and directly or indirectly as alleged above; 

l. A judgment that Intel’s infringement of the ’10-296 Patent has been willful; 

m. An award for all damages arising out of Defendants’ infringement, together 

with prejudgment and post-judgment interest, jointly and severally, in an 

amount according to proof, including without limitation attorneys’ fees and 

litigation costs and expenses; 

n. An accounting of damages and any future compensation due to StreamScale 

for Defendants’ infringement (past, present, or future) not specifically 
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accounted for in a damages award (or other relief), and/or permanent 

injunctive relief; 

o. An award of reasonable attorneys’ fees as provided by 35 U.S.C. § 285 and 

enhanced damages as provided by 35 U.S.C. § 284;  

p. The entry of an order preliminarily and permanently enjoining and 

restraining Defendants and its parents, affiliates, subsidiaries, officers, 

agents, servants, employees, attorneys, successors, and assigns and all those 

person in active concert or participation with them or any of them, from 

making, importing, using, offering for sale, selling, or causing to be sold 

any product falling within the scope of any claim of the Patents-in-Suit, or 

otherwise infringing or inducing infringement of any claim of the 

Patents-in-Suit; and 

q. All further relief in law or in equity as the Court may deem just and proper. 
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ACCELERATED ERASURE CODING SYSTEM 
AND METHOD 

BACKGROUND 

2 
About Erasure Codes:-Reed-Solomon Coding-LDPC 
Coding," slide 15 ( describing computational complexity of 
Reed-Solomon decoding), "Bottom line: When n & m grow, 
it is brutally expensive." Accordingly, there appears to be a 

1. Field 
Aspects of embodiments of the present invention are 

directed toward an accelerated erasure coding system and 
method. 

5 general consensus among experts in the field that erasure 
coding systems are impractical for RAID systems for all but 
small values of M (that is, small numbers of check drives), 
such as 1 or 2. 

Modem disk drives, on the other hand, are much less reli-
2. Description of Related Art 
An erasure code is a type of error-correcting code (ECC) 

useful for forward error-correction in applications like a 
redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data ( or 
original data) is organized in stripes, each of which is broken 

l O able than those envisioned when RAID was proposed. This is 
due to their capacity growing out of proportion to their reli
ability. Accordingly, systems with only a single check disk 
have, for the most part, been discontinued in favor of systems 

15 
with two check disks. 

up into N equal-sized blocks, or data blocks, for some positive 
integer N. The data for each stripe is thus reconstructable by 
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets 
lost, erasure codes also encode an additional M equal-sized 20 

blocks ( called check blocks or check data) from the original N 
data blocks, for some positive integer M. 

In terms of reliability, a higher check disk count is clearly 
more desirable than a lower check disk count. If the count of 
error events on different drives is larger than the check disk 
count, data may be lost and that cannot be reconstructed from 
the correctly functioning drives. Error events extend well 
beyond the traditional measure of advertised mean time 
between failures (MTBF). A simple, real world example is a 
service event on a RAID system where the operator mistak
enly replaces the wrong drive or, worse yet, replaces a good 

The N data blocks and the M check blocks are all the same 
size. Accordingly, there are a total ofN + M equal-sized blocks 
after encoding. The N + M blocks may, for example, be trans
mitted to a receiver as N+M separate packets, or written to 
N+M corresponding disk drives. For ease of description, all 
N+M blocks after encoding will be referred to as encoded 
blocks, though some (for example, N of them) may contain 
unencoded portions of the original data. That is, the encoded 
data refers to the original data together with the check data. 

25 drive with a broken drive. In the absence of any generally 
accepted methodology to train, certify, and measure the effec
tiveness of service technicians, these types of events occur at 
an unknown rate, but certainly occur. The foolproof solution 
for protecting data in the face of multiple error events is to 

30 increase the check disk count. 

The M check blocks build redundancy into the system, in a 
very efficient manner, in that the original data ( as well as any 
lost check data) can be reconstructed if any N of the N+M 
encoded blocks are received by the receiver, or if any N of the 35 

N+M disk drives are functioning correctly. Note that such an 
erasure code is also referred to as "optimal." For ease of 
description, only optimal erasure codes will be discussed in 
this application. In such a code, up to M of the encoded blocks 
can be lost, (e.g., up to M of the disk drives can fail) so that if 40 

any N of the N+M encoded blocks are received successfully 
by the receiver, the original data (as well as the check data) 
can be reconstructed. N/(N+M) is thus the code rate of the 
erasure code encoding (i.e., how much space the original data 
takes up in the encoded data). Erasure codes for select values 45 

ofN and M can be implemented on RAID systems employing 
N+M (disk) drives by spreading the original data among N 
"data" drives, and using the remaining M drives as "check" 
drives. Then, when any N of the N+M drives are correctly 
functioning, the original data can be reconstructed, and the 50 

check data can be regenerated. 
Erasure codes ( or more specifically, erasure coding sys

tems) are generally regarded as impractical for values of M 
larger than 1 ( e.g., RAIDS systems, such as parity drive sys
tems) or 2 (RAID6 systems), that is, for more than one or two 55 

check drives. For example, see H. Peter Anvin, "The math
ematics of RAID-6," the entire content of which is incorpo
rated herein by reference, p. 7, "Thus, in 2-disk-degraded 
mode, performance will be very slow. However, it is expected 
that that will be a rare occurrence, and that performance will 60 

not matter significantly in that case." See also Robert Mad
dock et al., "Surviving Two Disk Failures," p. 6, "The main 
difficulty with this technique is that calculating the check 
codes, and reconstructing data after failures, is quite complex. 
It involves polynomials and thus multiplication, and requires 65 

special hardware, or at least a signal processor, to do it at 
sufficient speed." In addition, see also James S. Plank, "All 

SUMMARY 

Aspects of embodiments of the present invention address 
these problems by providing a practical erasure coding sys
tem that, for byte-level RAID processing (where each byte is 
made up of 8 bits), performs well even for values ofN+M as 
large as 256 drives (for example, N=127 data drives and 
M=129 check drives). Further aspects provide for a single 
precomputed encoding matrix ( or master encoding matrix) S 
of size MmaxxNmax, or (Nmax+Mmax)xNmax or (Mmax-l)x 
N max' elements ( e.g., bytes), which can be used, for example, 
for any combination of NsNmax data drives and MsMmax 
check drives such that Nmax+Mmaxs256 (e.g., Nmax =127 and 
Mmax=l29, or Nmax=63 and Mm==193). This is an improve
ment over prior art solutions that rebuild such matrices from 
scratch every time N or M changes ( such as adding another 
check drive). Still higher values ofN and Mare possible with 
larger processing increments, such as 2 bytes, which affords 
up to N+M=65,536 drives (such as N=32,767 data drives and 
M=32,769 check drives). 

Higher check disk count can offer increased reliability and 
decreased cost. The higher reliability comes from factors 
such as the ability to withstand more drive failures. The 
decreased cost arises from factors such as the ability to create 
larger groups of data drives. For example, systems with two 
checks disks are typically limited to group sizes of 10 or fewer 
drives for reliability reasons. With a higher check disk count, 
larger groups are available, which can lead to fewer overall 
components for the same unit of storage and hence, lower 
cost. 

Additional aspects of embodiments of the present inven
tion further address these problems by providing a standard 
parity drive as part of the encoding matrix. For instance, 
aspects provide for a parity drive for configurations with up to 
127 data drives and up to 128 (non-parity) check drives, for a 
total of up to 256 total drives including the parity drive. 
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Further aspects provide for different breakdowns, such as up 
4 

plurality of check matrices, assigning corresponding ones of 
the data matrices and the check matrices to the threads, and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 

to 63 data drives, a parity drive, and up to 192 (non-parity) 
check drives. Providing a parity drive offers performance 
comparable to RAIDS in comparable circumstances (such as 
single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives. 

5 check matrices from respective ones of the data matrices. 

Further aspects are directed to a system and method for 
implementing a fast solution matrix algorithm for Reed-So
lomon codes. While known solution matrix algorithms com- 10 

pute an N xN solution matrix ( see, for example, J. S. Plank, "A 
tutorial on Reed-Solomon coding for fault-tolerance in 
RAID-like systems," Software-Practice & Experience, 
27(9):995-1012, September 1997, and J. S. Plank and Y. 
Ding, "Note: Correction to the 1997 tutorial on Reed-So- 15 

lomon coding," Technical Report CS-03-504, University of 
Tennessee, April 2003), requiring O(N3

) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FxF solution 
matrix, where F is the number of failed data drives. The 20 

overhead for computing this FxF solution matrix is approxi
mately F3 /3 multiplication operations and the same number 
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives Fis consid
erably smaller than the number of data drives N. Accordingly, 25 

the fast solution matrix algorithm is considerably faster than 
any known approach for practical values ofF and N. 

The data matrix may include a first number of rows. The 
check matrix may include a second number of rows. The 
encoding matrix may include the second number of rows and 
the first number of columns. 

The data matrix may be configured to add rows to the first 
number of rows or the check matrix may be configured to add 
rows to the second number of rows while the first factors 
remain unchanged. 

Each of entries of one of the rows of the encoding matrix 
may include a multiplicative identity factor (such as 1). 

The data matrix may be configured to be divided by rows 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix corresponding 
to lost original data of the original data and including a third 
number of rows. The erasure coding system may further 
include a solution matrix for holding second factors in the 
main memory. The second factors are for decoding the check 
data into the lost original data using the surviving original 
data and the first factors. 

The solution matrix may include the third number of rows 
and the third number of colunms. 

The solution matrix may further include an inverted said 
third number by said third number sub-matrix of the encoding 
matrix. 

The erasure coding system may further include a first list of 
rows of the data matrix corresponding to the surviving data 
matrix, and a second list of rows of the data matrix corre
sponding to the lost data matrix. 

The data matrix may be configured to be divided into a 
surviving data matrix for holding surviving original data of 
the original data, and a lost data matrix corresponding to lost 
original data of the original data. The erasure coding system 
may further include a solution matrix for holding second 
factors in the main memory. The second factors are for decod-

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost ( original and 
check) data reconstruction. Some of these aspects are directed 30 

toward fetching the surviving (original and check) data a 
minimum number of times (that is, at most once) to carry out 
the data reconstruction. Some of these aspects are directed 
toward efficient implementations that can maximize or sig
nificantly leverage the available parallel processing power of 35 

multiple cores working concurrently on the check data gen
eration and the lost data reconstruction. Existing implemen
tations do not attempt to accelerate these aspects of the data 
generation and thus fail to achieve a comparable level of 
performance. 

In an exemplary embodiment of the present invention, a 
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for 
executing computer instructions and accessing data from a 
main memory; and a non-volatile storage medium (for 45 

example, a disk drive, or flash memory) for storing the com
puter instructions. The processing core, the storage medium, 
and the computer instructions are configured to implement an 
erasure coding system. The erasure coding system includes a 
data matrix for holding original data in the main memory, a 50 

check matrix for holding check data in the main memory, an 
encoding matrix for holding first factors in the main memory, 
and a thread for executing on the processing core. The first 
factors are for encoding the original data into the check data. 
The thread includes a parallel multiplier for concurrently 55 

multiplying multiple data entries of a matrix by a single 
factor; and a first sequencer for ordering operations through 
the data matrix and the encoding matrix using the parallel 
multiplier to generate the check data. 

40 ing the check data into the lost original data using the surviv
ing original data and the first factors. The thread may further 
include a second sequencer for ordering operations through 
the surviving data matrix, the encoding matrix, the check 

The first sequencer may be configured to access each entry 60 

of the data matrix from the main memory at most once while 
generating the check data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 65 

generating the check data by dividing the data matrix into a 
plurality of data matrices, dividing the check matrix into a 

matrix, and the solution matrix using the parallel multiplier to 
reconstruct the lost original data. 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main memory 
at most once while reconstructing the lost original data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include: a scheduler for 
generating the check data and reconstructing the lost original 
data by dividing the data matrix into a plurality of data matri
ces; dividing the surviving data matrix into a plurality of 
surviving data matrices; dividing the lost data matrix into a 
plurality oflost data matrices; dividing the check matrix into 
a plurality of check matrices; assigning corresponding ones 
of the data matrices, the surviving data matrices, the lost data 
matrices, and the check matrices to the threads; and assigning 
the threads to the processing cores to concurrently generate 
portions of the check data corresponding to the check matri-
ces from respective ones of the data matrices and to concur
rently reconstruct portions of the lost original data corre
sponding to the lost data matrices from respective ones of the 
surviving data matrices and the check matrices. 

The check matrix may be configured to be divided into a 
surviving check matrix for holding surviving check data of 
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main memory; arranging first factors as an encoding matrix in 
the main memory, the first factors being for encoding the 
original data into check data, the check data being arranged as 
a check matrix in the main memory; and generating the check 

the check data, and a lost check matrix corresponding to lost 
check data of the check data. The second sequencer may be 
configured to order operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier to regenerate the lost 
check data. 

The second sequencer may be further configured to recon
struct the lost original data concurrently with regenerating the 
lost check data. 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main memory 
at most once while reconstructing the lost original data and 
regenerating the lost check data. 

5 data using a parallel multiplier for concurrently multiplying 
multiple data entries of a matrix by a single factor. The gen
erating of the check data includes ordering operations 
through the data matrix and the encoding matrix using the 
parallel multiplier. 

10 The generating of the check data may include accessing 

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 15 

lost original data from the main memory. 
The processing core may include a plurality of processing 

cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data, reconstructing the lost original 20 

data, and regenerating the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviving 
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 
dividing the check matrix into a plurality of check matrices; 25 

dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a 
plurality of lost check matrices; assigning corresponding 
ones of the data matrices, the surviving data matrices, the lost 
data matrices, the check matrices, the surviving check matri- 30 

ces, and the lost check matrices to the threads; and assigning 
the threads to the processing cores to concurrently generate 
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices, to concurrently 
reconstruct portions of the lost original data corresponding to 35 

the lost data matrices from respective ones of the surviving 
data matrices and the surviving check matrices, and to con
currently regenerate portions of the lost check data corre
sponding to the lost check matrices from respective ones of 
the surviving data matrices and respective portions of the 40 

reconstructed lost original data. 
The processing core may include 16 data registers. Each of 

the data registers may include 16 bytes. The parallel multi
plier may be configured to process the data in units of at least 
64 bytes spread over at least fourof the data registers at a time. 45 

Consecutive instructions to process each of the units of the 
data may access separate ones of the data registers to permit 
concurrent execution of the consecutive instructions by the 
processing core. 

each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data by: dividing the data matrix into 
a plurality of data matrices; dividing the check matrix into a 
plurality of check matrices; and assigning corresponding 
ones of the data matrices and the check matrices to the pro-
cessing cores to concurrently generate portions of the check 
data corresponding to the check matrices from respective 
ones of the data matrices. 

The method may further include: dividing the data matrix 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix corresponding 
to lost original data of the original data; arranging second 
factors as a solution matrix in the main memory, the second 
factors being for decoding the check data into the lost original 
data using the surviving original data and the first factors; and 
reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel mul
tiplier. 

The reconstructing of the lost original data may include 
accessing each entry of the surviving data matrix from the 
main memory at most once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data and the reconstructing of the lost 
original data by: dividing the data matrix into a plurality of 
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix 
into a plurality oflost data matrices; dividing the check matrix 
into a plurality of check matrices; and assigning correspond-

The parallel multiplier may include two lookup tables for 
doing concurrent multiplication of 4-bit quantities across 16 
byte-sized entries using the PSHUFB (Packed Shuffle Bytes) 
instruction. 

The parallel multiplier may be further configured to receive 
an input operand in four of the data registers, and return with 
the input operand intact in the four of the data registers. 

50 ing ones of the data matrices, the surviving data matrices, the 
lost data matrices, and the check matrices to the processing 
cores to concurrently generate portions of the check data 
corresponding to the check matrices from respective ones of 

According to another exemplary embodiment of the 
present invention, a method of accelerated error-correcting 
code (ECC) processing on a computing system is provided. 
The computing system includes a non-volatile storage 
medium ( such as a disk drive or flash memory), a processing 
core for accessing instructions and data from a main memory, 
and a computer program including a plurality of computer 
instructions for implementing an erasure coding system. The 
method includes: storing the computer program on the stor
age medium; executing the computer instructions on the pro
cessing core; arranging original data as a data matrix in the 

55 
the data matrices and to concurrently reconstruct portions of 
the lost original data corresponding to the lost data matrices 
from respective ones of the surviving data matrices and the 
check matrices. 

The method may further include: dividing the check matrix 

60 into a surviving check matrix for holding surviving check 
data of the check data, and a lost check matrix corresponding 
to lost check data of the check data; and regenerating the lost 
check data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 

65 matrix using the parallel multiplier. 
The reconstructing of the lost original data may take place 

concurrently with the regenerating of the lost check data. 
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The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each 
entry of the surviving data matrix from the main memory at 
most once. 

8 
The computer instructions may be further configured to 

perform the steps of: dividing the data matrix into a surviving 
data matrix for holding surviving original data of the original 
data, and a lost data matrix corresponding to lost original data 

The regenerating of the lost check data may take place 
without accessing the reconstructed lost original data from 
the main memory. 

5 of the original data; arranging second factors as a solution 
matrix in the main memory, the second factors being for 
decoding the check data into the lost original data using the 
surviving original data and the first factors; and reconstruct
ing the lost original data by ordering operations through the 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data, the reconstructing of the lost 
original data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of surviving 
data matrices; dividing the lost data matrix into a plurality of 
lost data matrices; dividing the check matrix into a plurality of 
check matrices; dividing the surviving check matrix into a 
plurality of surviving check matrices; dividing the lost check 20 

matrix into a plurality of lost check matrices; and assigning 
corresponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the sur
viving check matrices, and the lost check matrices to the 
processing cores to concurrently generate portions of the 25 

check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct 
portions of the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data matrices 
and the surviving check matrices, and to concurrently regen- 30 

erate portions of the lost check data corresponding to the lost 
check matrices from respective ones of the surviving data 
matrices and respective portions of the reconstructed lost 
original data. 

1 o surviving data matrix, the encoding matrix, the check matrix, 
and the solution matrix using the parallel multiplier. 

The computer instructions may be further configured to 
perform the steps of: dividing the check matrix into a surviv
ing check matrix for holding surviving check data of the 

15 check data, and a lost check matrix corresponding to lost 
check data of the check data; and regenerating the lost check 
data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each 
entry of the surviving data matrix from the main memory at 
most once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured to 
perform the step of scheduling the generating of the check 
data, the reconstructing of the lost original data, and the 
regenerating of the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviving 
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 
dividing the check matrix into a plurality of check matrices; 
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a 
plurality oflost check matrices; and assigning corresponding 
ones of the data matrices, the surviving data matrices, the lost 
data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices, to concurrently reconstruct portions of the lost 
original data corresponding to the lost data matrices from 
respective ones of the surviving data matrices and the surviv
ing check matrices, and to concurrently regenerate portions of 
the lost check data corresponding to the lost check matrices 
from respective ones of the surviving data matrices and 
respective portions of the reconstructed lost original data. 

By providing practical and efficient systems and methods 
for erasure coding systems (which for byte-level processing 
can support up to N+M=256 drives, such as N=127 data 
drives and M=129 check drives, including a parity drive), 
applications such as RAID systems that can tolerate far more 
failing drives than was thought to be possible or practical can 
be implemented with accelerated performance significantly 

According to yet another exemplary embodiment of the 35 

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a 
digital video disk (DVD), flash memory, a universal serial bus 
(USB) drive, etc.) containing a computer program including a 
plurality of computer instructions for performing accelerated 40 

error-correcting code (ECC) processing on a computing sys
tem is provided. The computing system includes a processing 
core for accessing instructions and data from a main memory. 
The computer instructions are configured to implement an 
erasure coding system when executed on the computing sys- 45 

tern by performing the steps of: arranging original data as a 
data matrix in the main memory; arranging first factors as an 
encoding matrix in the main memory, the first factors being 
for encoding the original data into check data, the check data 
being arranged as a check matrix in the main memory; and 50 

generating the check data using a parallel multiplier for con
currently multiplying multiple data entries of a matrix by a 
single factor. The generating of the check data includes order
ing operations through the data matrix and the encoding 
matrix using the parallel multiplier. 55 better than any prior art solution. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured to 60 

perform the step of scheduling the generating of the check 
data by: dividing the data matrix into a plurality of data 
matrices; dividing the check matrix into a plurality of check 
matrices; and assigning corresponding ones of the data matri
ces and the check matrices to the processing cores to concur- 65 

rently generate portions of the check data corresponding to 
the check matrices from respective ones of the data matrices. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, together with the specifica
tion, illustrate exemplary embodiments of the present inven
tion and, together with the description, serve to explain 
aspects and principles of the present invention. 

FIG. 1 shows an exemplary stripe of original and check 
data according to an embodiment of the present invention. 

FIG. 2 shows an exemplary method for reconstructing lost 
data after a failure of one or more drives according to an 
embodiment of the present invention. 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 106 of 350



US 8,683,296 B2 
9 

FIG. 3 shows an exemplary method for performing a par
allel lookup Galois field multiplication according to an 
embodiment of the present invention. 

FIG. 4 shows an exemplary method for sequencing the 
parallel lookup multiplier to perform the check data genera- 5 

tion according to an embodiment of the present invention. 
FIGS. 5-7 show an exemplary method for sequencing the 

parallel lookup multiplier to perform the lost data reconstruc
tion according to an embodiment of the present invention. 

FIG. 8 illustrates a multi-core architecture system accord- 10 

ing to an embodiment of the present invention. 
FIG. 9 shows an exemplary disk drive configuration 

according to an embodiment of the present invention. 

10 
It will also be assumed that the block size L is sufficiently 
large that the data can be consistently divided across each 
block to produce subsets of the data that include respective 
portions of the blocks (for efficient concurrent processing by 
different processing units). 

FIG. 1 shows an exemplary stripe 10 of original and check 
data according to an embodiment of the present invention. 

Referring to FIG.1, the stripe 10 can bethought ofnot only 
as the original N data blocks 20 that make up the original data, 
but also the corresponding M check blocks 30 generated from 
the original data (that is, the stripe 10 represents encoded 
data). Each of the N data blocks 20 is composed ofL bytes 25 
(labeled byte 1, byte 2, ... , byte L), and each of the M check 

DETAILED DESCRIPTION 

Hereinafter, exemplary embodiments of the invention will 
be described in more detail with reference to the accompany
ing drawings. In the drawings, like reference numerals refer 
to like elements throughout. 

15 blocks 30 is composed of L bytes 35 (labeled similarly). In 
addition, check drive 1, byte 1, is a linear combination of data 
drive 1, byte 1; data drive 2, byte 1; ... ; data drive N, byte 1. 
Likewise, check drive 1, byte 2, is generated from the same 
linear combination formula as check drive 1, byte 1, only 

While optimal erasure codes have many applications, for 
ease of description, they will be described in this application 
with respect to RAID applications, i.e., erasure coding sys
tems for the storage and retrieval of digital data distributed 
across numerous storage devices ( or drives), though the 
present application is not limited thereto. For further ease of 
description, the storage devices will be assumed to be disk 
drives, though the invention is not limited thereto. In RAID 
systems, the data (or original data) is broken up into stripes, 
each of which includes N uniformly sized blocks ( data 
blocks), and the N blocks are written across N separate drives 
(the data drives), one block per data drive. 

20 using data drive 1, byte 2; data drive 2, byte 2; ... ; data drive 
N, byte 2. In contrast, check drive 2, byte 1, uses a different 
linear combination formula than check drive 1, byte 1, but 
applies it to the same data, namely data drive 1, byte 1; data 
drive 2, byte 1; ... ; data drive N, byte 1. In this fashion, each 

25 of the other check bytes 35 is a linear combination of the 
respective bytes of each of the N data drives 20 and using the 
corresponding linear combination formula for the particular 
check drive 30. 

The stripe 10 in FIG. 1 can also be represented as a matrix 

30 C of encoded data. Chas two sub-matrices, namely original 
data D on top and check data Jon bottom. That is, 

In addition, for ease of description, blocks will be assumed 
to be composed of L elements, each element having a fixed 
size, say 8 bits or one byte. An element, such as a byte, forms 35 

the fundamental unit of operation for the RAID processing, 
but the invention is just as applicable to other size elements, 
such as 16 bits (2 bytes). For simplification, unless otherwise 
indicated, elements will be assumed to be one byte in size 
throughout the description that follows, and the term "ele- 40 

ment(s )" and "byte(s )" will be used synonymously. 
Conceptually, different stripes can distribute their data 

blocks across different combinations of drives, or have dif
ferent block sizes or numbers of blocks, etc., but for simpli
fication and ease of description and implementation, the 45 

described embodiments in the present application assume a 
consistent block size (L bytes) and distribution of blocks 
among the data drives between stripes. Further, all variables, 
such as the number of data drives N, will be assumed to be 
positive integers unless otherwise specified. In addition, since 50 

the N=l case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be 
assumed for simplicity that N~2 throughout. 

The N data blocks from each stripe are combined using 
arithmetic operations (to be described in more detail below) 55 

in M different ways to produce M blocks of check data ( check 
blocks), and the M check blocks written across M drives (the 
check drives) separate from the N data drives, one block per 
check drive. These combinations can take place, for example, 
when new (or changed) data is written to (or back to) disk. 60 

Accordingly, each of the N+M drives (data drives and check 
drives) stores a similar amount of data, namely one block for 
each stripe. As the processing of multiple stripes is concep
tually similar to the processing of one stripe ( only processing 
multiple blocks per drive instead of one), it will be further 65 

assumed for simplification that the data being stored or 
retrieved is only one stripe in size unless otherwise indicated. 

Du D12 D1L 

D21 D22 D2L 

C=[ ~] = 
DNI DN2 DNL 

lu 112 l1L 

h1 h2 hL 

JM! JM2 ]ML 

where D,rbyte j from data drive i and J,rbyte j from check 
drive i. Thus, the rows of encoded data C represent blocks, 
while the colunms represent corresponding bytes of each of 
the drives. 

Further, in case of a disk drive failure of one or more disks, 
the arithmetic operations are designed in such a fashion that 
for any stripe, the original data (and by extension, the check 
data) can be reconstructed from any combination of N data 
and check blocks from the corresponding N+M data and 
check blocks that comprise the stripe. Thus, RAID provides 
both parallel processing (reading and writing the data in 
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data even ifas many as M of 
the drives fail), at the computational cost of generating the 
check data any time new data is written to disk, or changed 
data is written back to disk, as well as the computational cost 
ofreconstructing any lost original data and regenerating any 
lost check data after a disk failure. 

For example, for M =1 check drive, a single parity drive can 
function as the check drive (i.e., a RAID4 system). Here, the 
arithmetic operation is bitwise exclusive OR of each of the N 
corresponding data bytes in each data block of the stripe. In 
addition, as mentioned earlier, the assignment of parity 
blocks from different stripes to the same drive (i.e., RAID4) 
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or different drives (i.e., RAIDS) is arbitrary, but it does sim
plify the description and implementation to use a consistent 
assignment between stripes, so that will be assumed through
out. Since M = 1 reduces to the case of a single parity drive, it 
will further be assumed for simplicity that M;;,;2 throughout. 

For such larger values ofM, Galois field arithmetic is used 
to manipulate the data, as described in more detail later. 
Galois field arithmetic, for Galois fields of powers-of-2 ( such 
as 2i numbers of elements, includes two fundamental opera
tions: (1) addition (which is just bitwise exclusive OR, as with 
the parity drive-only operations for M=l), and (2) multipli
cation. While Galois field (GF) addition is trivial on standard 
processors, GF multiplication is not. Accordingly, a signifi
cant component of RAID performance for M;;,;2 is speeding 
up the performance ofGF multiplication, as will be discussed 
later. For purposes of description, GF addition will be repre
sented by the symbol + throughout while GF multiplication 
will be represented by the symbol x throughout. 

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations 

12 
where H,rfactor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the colunms 
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data J are 

5 related by the formula J=HxD (that is, matrix multiplication), 
or 

lu 112 l1L 
10 

h1 h2 hL 

JM! lM2 ]ML 

15 Hu H12 H1N Du D12 D1L 

H21 H22 H2N D21 D22 D2L 
X 

HM! HM2 HMN DNI DN2 DNL 

20 

( over GF arithmetic) of the N data drives of original data, one 
linear combination (i.e., a GF sum of N terms, where each 
term represents a byte of original data times a corresponding 
factor (using GF multiplication) for the respective data drive) 25 

for each check drive, as applied to respective bytes in each 
block. One such linear combination can be a simple parity, 
i.e., entirely GF addition (all factors equal 1), such as a GF 
sum of the first byte in each block oforiginal data as described 

where J11 =(H11 xD11)+(H12xD21)+ ... +(H1NxDN1), J12= 
(H11XD12)+(H12XD22)+ ... +(H1NXDN2), l21=CH21XD11)+ 
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+ 
(Hi2xD2)+ ... +(H1NxDN/) for lsisM and lsjsL. 

Such an encoding matrix E is also referred to as an infor
mation dispersal matrix (IDM). It should be noted that matri
ces such as check drive encoding matrix Hand identity matrix 
IN also represent encoding matrices, in that they represent 
matrices of factors to produce linear combinations over GF 
arithmetic of the original data. In practice, the identity matrix 
IN is trivial and may not need to be constructed as part of the 
ID M E. Only the encoding matrix E, however, will be referred 
to as the IDM. Methods of building an encoding matrix such 

above. 30 

The remaining M-1 linear combinations include more 
involved calculations that include the nontrivial GF multipli
cation operations ( e.g., performing a GF multiplication of the 
first byte in each block by a corresponding factor for the 
respective data drive, and then performing a GF sum of all 
these products). These linear combinations can be repre
sented by an (N + M)xN matrix ( encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one 
factor for each combination of ( data or check) drive and data 
drive, with one row for each of the N + M data and check drives 
and one colunm for each of the N data drives. The IDM E can 
also be represented as 

where IN represents the NxN identity matrix (i.e., the original 
(unencoded) data) and H represents the MxN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N 
colunms corresponds to one of the N data drives). 

Thus, 

0 0 

0 0 

£=[~]= 0 0 

Hu H12 H1N 

H21 H22 H2N 

HM! HM2 HMN 

35 as IDM E or check drive encoding matrix H are discussed 
below. In further embodiments of the present invention (as 
discussed further in Appendix A), such (N + M)xN ( or MxN) 
matrices can be trivially constructed ( or simply indexed) from 
a master encoding matrix S, which is composed of CNmax+ 

40 Mmax)xNmax (or MmaxxNmax) bytes or elements, where 
N max+ Mmax =256 ( or some other power of two) and N sN max 
and MsMmax· For example, one such master encoding matrix 
Scan include a 127x127 element identity matrix on top (for 
up to N max= 127 data drives), a row of 1 's (for a parity drive), 

45 and a 128x127 element encoding matrix on bottom (for up to 
Mmax = 129 check drives, including the parity drive), for a total 
ofNmax+Mmax =256 drives. 

The original data, in tum, can be represented by an N xL 
50 matrix D of bytes, each of the N rows representing the L bytes 

of a block of the corresponding one of the N data drives. If C 
represents the corresponding (N+M)xL matrix of encoded 
bytes (where each of the N+M rows corresponds to one of the 
N+M data and check drives), then C can be represented as 

55 

ExD= [~]xD= [~:~] = [ ~]. 
60 

where J=HxD is an MxL matrix of check data, with each of 
the M rows representing the L check bytes of the correspond-
ing one of the M check drives. It should be noted that in the 
relationships such as C=ExD or J=HxD, x represents matrix 

65 multiplication over the Galois field (i.e., GF multiplication 
and GF addition being used to generate each of the entries in, 
for example, C or J). 
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In exemplary embodiments of the present invention, the 
first row of the check drive encoding matrix H ( or the (N + 1 )'h 
row of the IDM E) can be all 1 's representing the parity drive. 
For linear combinations involving this row, the GF multipli
cation can be bypassed and replaced with a GF sum of the 5 

corresponding bytes since the products are all trivial products 
involving the identity element 1. Accordingly, in parity drive 
implementations, the check drive encoding matrix H can also 
be thought of as an (M-l)xN matrix of non-trivial factors 
(that is, factors intended to be used in GF multiplication and 10 

not just GF addition). 
Much of the RAID processing involves generating the 

check data when new or changed data is written to ( or back to) 
disk. The other significant event for RAID processing is when 
one or more of the drives fail (data or check drives), or for 15 

whatever reason become unavailable. Assume that in such a 
failure scenario, F data drives fail and G check drives fail, 
where F and G are nonnegative integers. If F=O, then only 
check drives failed and all of the original data D survived. In 
this case, the lost check data can be regenerated from the 20 

original data D. 
Accordingly, assume at least one data drive fails, that is, 

F2:l, and let K=N-F represent the number of data drives that 
survive. K is also a nonnegative integer. In addition, let X 
represent the surviving original data and Y represent the lost 25 

original data. That is, Xis a KxL matrix composed of the K 
rows of the original data matrix D corresponding to the K 
surviving data drives, while Y is an FxL matrix composed of 
the F rows of the original data matrix D corresponding to the 
F failed data drives. 

thus represents a permuted original data matrix D' (that is, the 
original data matrix D, only with the surviving original data X 

30 

35 

on top and the lost original data Y on bottom. It should be 
noted that once the lost original data Y is reconstructed, it can 40 

be combined with the surviving original data X to restore the 
original data D, from which the check data for any of the 
failed check drives can be regenerated. 

It should also be noted that M-G check drives survive. In 
order to reconstruct the lost original data Y, enough (that is, at 45 

least N) total drives must survive. Given that K=N-F data 
drives survive, and that M-G check drives survive, it follows 
that (N-F)+(M-G)2:N must be true to reconstruct the lost 
original data Y. This is equivalent to F+GsM (i.e., no more 
than F +G drives fail), or F sM-G (that is, the numberof failed 50 

data drives does not exceed the number of surviving check 
drives). It will therefore be assumed for simplicity that F sM-
G. 

In the routines that follow, performance can be enhanced 
by prebuilding lists of the failed and surviving data and check 55 

drives (that is, four separate lists). This allows processing of 
the different sets of surviving and failed drives to be done 
more efficiently than existing solutions, which use, for 
example, bit vectors that have to be examined one bit at a time 
and often include large numbers of consecutive zeros ( or 60 

ones) when ones ( or zeros) are the bit values of interest. 
FIG. 2 shows an exemplary method 300 for reconstructing 

lost data after a failure of one or more drives according to an 
embodiment of the present invention. 

While the recovery process is described in more detail 65 

later, briefly it consists of two parts: (1) determining the 
solution matrix, and (2) reconstructing the lost data from the 

14 
surviving data. Determining the solution matrix can be done 
in three steps with the following algorithm (Algorithm 1 ), 
with reference to FIG. 2: 

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to 
an N xN reduced encoding matrix T ( also referred to as 
the transformed IDM) including the K surviving data 
drive rows and any F of the M-G surviving check drive 
rows (for instance, the first F surviving check drive rows, 
as these will include the parity drive if it survived; recall 
that F sM-G was assumed). In addition, the colunms of 
the reduced encoding matrix T are rearranged so that the 
K colunms corresponding to the K surviving data drives 
are on the left side of the matrix and the F colunms 
corresponding to the F failed drives are on the right side 
of the matrix. (Step 320) These F surviving check drives 
selected to rebuild the lost original data Y will hence
forth be referred to as "the F surviving check drives," and 
their check data W will be referred to as "the surviving 
check data," even though M-G check drives survived. It 
should be noted that Wis anFxLmatrix composed of the 
F rows of the check data J corresponding to the F sur
viving check drives. Further, the surviving encoded data 
can be represented as a sub-matrix C' of the encoded data 
C. The surviving encoded data C' is an NxL matrix 
composed of the surviving original data X on top and the 
surviving check data W on bottom, that is, 

2. (Step 330) Splitting the reduced encoding matrix Tinto 
four sub-matrices (that are also encoding matrices): (i) a 
KxK identity matrix IK ( corresponding to the K surviv
ing data drives) in the upper left, (ii) a KxF matrix O of 
zeros in the upper right, (iii) an FxK encoding matrix A 
in the lower left corresponding to the F surviving check 
drive rows and the K surviving data drive columns, and 
(iv) an FxF encoding matrix B in the lower right corre
sponding to the F surviving check drive rows and the F 
failed data drive colunms. Thus, the reduced encoding 
matrix T can be represented as 

3. (Step 340) Calculating the inverse B of the FxF encoding 
matrix B. As is shown in more detail in Appendix A, 
C'=TxD, or 

which is mathematically equivalent to W=AxX+BxY. 
B-1 is the solution matrix, and is itself an FxF encoding 
matrix. Calculating the solution matrix B-1 thus allows 
the lost original data Y to be reconstructed from the 
encoding matrices A and B along with the surviving 
original data X and the surviving check data W. 

The FxK encoding matrix A represents the original encod
ing matrix E, only limited to the K surviving data drives and 
the F surviving check drives. That is, each of the F rows of A 
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represents a different one of the F surviving check drives, 
while each of the K columns of A represents a different one of 
the K surviving data drives. Thus, A provides the encoding 
factors needed to encode the original data for the surviving 
check drives, but only applied to the surviving data drives 5 

(that is, the surviving partial check data). Since the surviving 
original data X is available, A can be used to generate this 
surviving partial check data. 

In similar fashion, the FxF encoding matrix B represents 
the original encoding matrix E, only limited to the F surviving 1 o 
check drives and the F failed data drives. That is, the F rows of 
B correspond to the same F rows of A, while each of the F 
columns of B represents a different one of the F failed data 
drives. Thus, B provides the encoding factors needed to 
encode the original data for the surviving check drives, but 15 

only applied to the failed data drives (that is, the lost partial 
check data). Since the lost original data Y is not available, B 
camiot be used to generate any of the lost partial check data. 
However, this lost partial check data can be determined from 
A and the surviving check data W. Since this lost partial check 20 

data represents the result of applying B to the lost original 
data Y, B- 1 thus represents the necessary factors to reconstruct 
the lost original data Y from the lost partial check data. 

It should be noted that steps 1 and 2 in Algorithm 1 above 
are logical, in that encoding matrices A and B ( or the reduced 25 

encoding matrix T, for that matter) do not have to actually be 
constructed. Appropriate indexing of the IDM E ( or the mas-
ter encoding matrix S) can be used to obtain any of their 
entries. Step 3, however, is a matrix inversion over GF arith
metic and takes O(F3

) operations, as discussed in more detail 30 

later. Nonetheless, this is a significant improvement over 
existing solutions, which require O(N3

) operations, since the 
number of failed data drives Fis usually significantly less than 
the number of data drives N in any practical situation. 

(Step 350 in FIG. 2) Once the encoding matrix A and the 35 

solution matrix B- 1 are known, reconstructing the lost data 
from the surviving data (that is, the surviving original data X 
and the surviving check data W) can be accomplished in four 
steps using the following algorithm (Algorithm 2): 

1. Use A and the surviving original data X (using matrix 40 

multiplication) to generate the surviving check data (i.e., 
AxX), only limited to the K surviving data drives. Call 
this limited check data the surviving partial check data. 

16 
D). In addition, this same equivalence extends to step 4, 
which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the G failed 
check drives (i.e., roughly 1 operation per failed check drive 
per byte of original data D). In summary, the number of 
operations needed to reconstruct the lost data is O(F +G) times 
the amount of original data D (i.e., roughly 1 operation per 
failed drive ( data or check) per byte of original data D). Since 
F +GsM, this means that the computational complexity of 
Algorithm 2 (reconstructing the lost data from the surviving 
data) is no more than that of generating the check data J from 
the original data D. 

As mentioned above, for exemplary purposes and ease of 
description, data is assumed to be organized in 8-bit bytes, 
each byte capable of taking on 28=256 possible values. Such 
data can be manipulated in byte-size elements using GF arith-
metic for a Galois field of size 28=256 elements. It should also 
be noted that the same mathematical principles apply to any 
power-of-two 2P number of elements, not just 256, as Galois 
fields can be constructed for any integral power of a prime 
number. Since Galois fields are finite, and since GF opera-
tions never overflow, all results are the same size as the inputs, 
for example, 8 bits. 

In a Galois field of a power-of-two number of elements, 
addition and subtraction are the same operation, namely a 
bitwise exclusive OR (XOR) of the two operands. This is a 
very fast operation to perform on any current processor. It can 
also be performed on multiple bytes concurrently. Since the 
addition and subtraction operations take place, for example, 
on a byte-level basis, they can be done in parallel by using, for 
instance, x86 architecture Streaming SIMD Extensions 
(SSE) instructions (SIMD stands for single instruction, mul
tiple data, and refers to performing the same instruction on 
different pieces of data, possibly concurrently), such as 
PXOR (Packed (bitwise) Exclusive OR). 

SSE instructions can process, for example, 16-byte regis
ters (XMM registers), and are able to process such registers as 
though they contain 16 separate one-byte operands (or 8 
separate two-byte operands, or four separate four-byte oper
ands, etc.) Accordingly, SSE instructions can do byte-level 
processing 16 times faster than when compared to processing 
a byte at a time. Further, there are 16 XMM registers, so 
dedicating four such registers for operand storage allows the 
data to be processed in 64-byte increments, using the other 12 
registers for temporary storage. That is, individual operations 
can be performed as four consecutive SSE operations on the 
four respective registers (64 bytes), which can often allow 
such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc-

2. Subtract this surviving partial check data from the sur
viving check data W (using matrix subtraction, i.e., 45 

W-AxX, which is just entry-by-entry GF subtraction, 
which is the same as GF addition for this Galois field). 
This generates the surviving check data, only this time 
limited to the F failed data drives. Call this limited check 
data the lost partial check data. 50 tions allows the same processing to be performed on different 

such 64-byte increments of data in parallel using different 
cores. Thus, using four separate cores can potentially speed 
up this processing by an additional factor of 4 over using a 

3. Use the solution matrix B- 1 and the lost partial check 
data (using matrix multiplication, i.e., B- 1 x(W-AxX)to 
reconstruct the lost original data Y. Call this the recov
ered original data Y. 

4. Use the corresponding rows of the IDM E (or master 55 

encoding matrix S) for each of the G failed check drives 
along with the original data D, as reconstructed from the 
surviving and recovered original data X and Y, to regen
erate the lost check data (using matrix multiplication). 

As will be shown in more detail later, steps 1-3 together 60 

require O(F) operations times the amount of original data D to 
reconstruct the lost original data Y for the F failed data drives 
(i.e., roughly 1 operation per failed data drive per byte of 
original data D), which is proportionally equivalent to the 
O(M) operations times the amount of original data D needed 65 

to generate the check data J for the M check drives (i.e., 
roughly 1 operation per check drive per byte of original data 

single core. 
For example, a parallel adder (Parallel Adder) can be built 

using the 16-byte XMM registers and four consecutive PX OR 
instructions. Such parallel processing (that is, 64 bytes at a 
time with only a few machine-level instructions) for GF arith
metic is a significant improvement over doing the addition 
one byte at a time. Since the data is organized in blocks of any 
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4 
KB) or 32,768 bytes (32 KB), a block can be composed of 
numerous such 64-byte chunks (e.g., 64 separate 64-byte 
chunks in 4 KB, or 512 chunks in 32 KB). 

Multiplication in a Galois field is not as straightforward. 
While much of it is bitwise shifts and exclusive OR's (i.e., 
"additions") that are very fast operations, the numbers "wrap" 
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in peculiar ways when they are shifted outside of their normal 
bounds (because the field has only a finite set of elements), 
which can slow down the calculations. This "wrapping" in the 
GF multiplication can be addressed in many ways. For 
example, the multiplication can be implemented serially (Se- 5 
rial Multiplier) as a loop iterating over the bits of one operand 
while performing the shifts, adds, and wraps on the other 
operand. Such processing, however, takes several machine 
instructions per bit for 8 separate bits. In other words, this 
technique requires dozens of machine instructions per byte 

10 
being multiplied. This is inefficient compared to, for example, 
the performance of the Parallel Adder described above. 

For another approach (Serial Lookup Multiplier), multipli
cation tables ( of all the possible products, or at least all the 
non-trivial products) can be pre-computed and built ahead of 
time. For example, a table of256x256=65,536 bytes can hold 15 

all the possible products of the two different one-byte oper
ands). However, such tables can force serialized access on 
what are only byte-level operations, and not take advantage of 
wide ( concurrent) data paths available on modern processors, 
such as those used to implement the Parallel Adder above. 20 

In still another approach (Parallel Multiplier), the GF mul
tiplication can be done on multiple bytes at a time, since the 
same factor in the encoding matrix is multiplied with every 
element in a data block. Thus, the same factor can be multi
plied with 64 consecutive data block bytes at a time. This is 25 

similar to the Parallel Adder described above, only there are 
several more operations needed to perform the operation. 
While this can be implemented as a loop on each bit of the 
factor, as described above, only performing the shifts, adds, 
and wraps on 64 bytes at a time, it can be more efficient to 30 

process the 256 possible factors as a (C language) switch 
statement, with inline code for each of 256 different combi
nations of two primitive GF operations: Multiply-by-2 and 
Add. For example, GF multiplication by the factor 3 can be 
effected by first doing a Multiply-by-2 followed by an Add. 35 

Likewise, GF multiplication by 4 is just a Multiply-by-2 
followed by a Multiply-by-2 while multiplication by 6 is a 
Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2. 

While this Add is identical to the Parallel Adder described 40 

18 
Each lookup table contains 256 sets (one for each possible 
factor) of the 16 possible GF products of that factor and the 16 
possible nibble values. Each lookup table is thus 
256x16=4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multiplica
tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions 
can be used to do all the table lookups for 64 bytes (128 
nibbles). 

Next, in step 420, the Parallel Lookup Multiplier is initial
ized for the next set of 64 bytes of operand data (such as 
original data or surviving original data). In order to save 
loading this data from memory on succeeding calls, the Par-
allel Lookup Multiplier dedicates four registers for this data, 
which are left intact upon exit of the Parallel Lookup Multi
plier. This allows the same data to be called with different 
factors ( such as processing the same data for another check 
drive). 

Next in step 430, to process these 64 bytes of operand data, 
the Parallel Lookup Multiplier can be implemented with 2 
MOVDQA (Move Double Quadword Aligned) instructions 
(from memory) to do the two table lookups and 4 MOVDQA 
instructions (register to register) to initialize registers ( such as 
the output registers). These are followed in steps 440 and 450 
by two nearly identical sets of 17 register-to-register instruc-
tions to carry out the multiplication 32 bytes at a time. Each 
such set starts (in step 440) with 5 more MOVDQA instruc
tions for further initialization, followed by 2 PSRLW (Packed 
Shift Right Logical Word) instructions to realign the high
order nibbles for PSHUFB, and 4 PAND instructions to clear 
the high-order nibbles for PSHUFB. That is, two registers of 
byte operands are converted into four registers of nibble oper-
ands. Then, in step 450, 4 PSHUFB instructions are used to do 
the parallel table lookups, and 2 PXOR instructions to add the 
results of the multiplication on the two nibbles to the output 
registers. 

Thus, the Parallel Lookup Multiplier uses 40 machine 
instructions to perform the parallel multiplication on 64 sepa
rate bytes, which is considerably better than the average 134 
instructions for the Parallel Multiplier above, and only 10 
times as many instructions as needed for the Parallel Adder. 
While some of the Parallel Lookup Multiplier's instructions 

above (e.g., four consecutive PXOR instructions to process 
64 separate bytes), Multiply-by-2 is not as straightforward. 
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4 
consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu
tive PAD DB (Packed Add) instructions, 4 consecutive PAND 
(Bitwise AND) instructions, and 4 consecutive PXOR 
instructions. Though this takes 20 machine instructions, the 
instructions are very fast and results in 64 consecutive bytes 
of data at a time being multiplied by 2. 

45 are more complex than those of the Parallel Adder, much of 
this complexity can be concealed through the pipelined and/ 
or concurrent execution of numerous such contiguous 
instructions (accessing different registers) on modern pipe
lined processors. For example, in exemplary implementa-

For 64 bytes of data, assuming a random factor between 0 
and 255, the total overhead for the Parallel Multiplier is about 
6 calls to multiply-by-2 and about 3.5 calls to add, or about 
6x20+3.5x4=134 machine instructions, or a little over 2 
machine instructions per byte of data. While this compares 
favorably with byte-level processing, it is still possible to 
improve on this by building a parallel multiplier with a table 
lookup (Parallel Lookup Multiplier) using the PSHUFB 
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes). 

FIG. 3 shows an exemplary method 400 for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

Referring to FIG. 3, in step 410, two lookup tables are built 
once: one lookup table for the low-order nibbles in each byte, 
and one lookup table for the high-order nibbles in each byte. 

50 tions, the Parallel Lookup Multiplier has been timed at about 
15 CPU clock cycles per 64 bytes processed per CPU core 
( about 0.36 clock cycles per instruction). In addition, the code 
footprint is practically nonexistent for the Parallel Lookup 
Multiplier ( 40 instructions) compared to that of the Parallel 

55 Multiplier (about 34,300 instructions), even when factoring 
the 8 KB needed for the two lookup tables in the Parallel 
Lookup Multiplier. 

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data (such as the next 

60 64 bytes of surviving original data X to be processed) in four 
consecutive registers, whose contents can be preserved upon 
exiting the Parallel Lookup Multiplier ( and all in the same 40 
machine instructions) such that the Parallel Lookup Multi
plier can be invoked again on the same 64 bytes of data 

65 without having to access main memory to reload the data. 
Through such a protocol, memory accesses can be minimized 
( or significantly reduced) for accessing the original data D 
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during check data generation or the surviving original data X 
during lost data reconstruction. 

Further embodiments of the present invention are directed 
towards sequencing this parallel multiplication (and other 
GF) operations. While the Parallel Lookup Multiplier pro- 5 

cesses a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup Mul
tiplier should be appropriately sequenced to provide efficient 
processing. One such sequencer (Sequencer 1), for example, 
can generate the check data J from the original data D, and is 10 

described further with respect to FIG. 4. 
The parity drive does not need GF multiplication. The 

check data for the parity drive can be obtained, for example, 
by adding corresponding 64-byte chunks for each of the data 
drives to perform the parity operation. The Parallel Adder can 15 

do this using 4 instructions for every 64 bytes of data for each 
of the N data drives, or N/16 instructions per byte. 

The M-1 non-parity check drives can invoke the Parallel 
Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 20 

check drive. One consideration is how to handle the data 
access. Two possible ways are: 

20 
entire stripe. The other such seven calls to Sequencer 1 could 
be to different processing cores, for instance, to carry out the 
check data generation in parallel. The number of 64-byte 
chunks to process at a time could depend on factors such as 
cache dimensions, input/output data structure sizes, etc. 

In step 520, the outer loop processes the next 64-byte 
chunk of data for each of the drives. In order to minimize the 
numberofaccesses of each data drive' s 64-byte chunk of data 
from memory, the data is loaded only once and preserved 
across calls to the Parallel Lookup Multiplier. The first data 
drive is handled specially since the check data has to be 
initialized for each check drive. Using the first data drive to 
initialize the check data saves doing the initialization as a 
separate step followed by updating it with the first data drive' s 
data. In addition to the first data drive, the first check drive is 
also handled specially since it is a parity drive, so its check 
data can be initialized to the first data drive' s data directly 
without needing the Parallel Lookup Multiplier. 

In step 530, the first middle loop is called, in which the 
remainder of the check drives (that is, the non-parity check 
drives) have their check data initialized by the first data 
drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied with 

1) "colunm-by-colunm," i.e., 64 bytes for one data drive, 
followed by the next 64 bytes for that data drive, etc., and 
adding the products to the running total in memory (us
ing the Parallel Adder) before moving onto the next row 
(data drive); and 

25 each of the first data drive's data bytes. This is handled by 
calling the Parallel Lookup Multiplier for each non-parity 
check drive. 

2) "row-by-row," i.e., 64 bytes for one data drive, followed 
by the corresponding 64 bytes for the next data drive, 
etc., and keeping a running total using the Parallel 30 

Adder, then moving onto the next set of 64-byte chunks. 
Colunm-by-colunm can be thought of as "constant factor, 

varying data," in that the (GF multiplication) factor usually 
remains the same between iterations while the ( 64-byte) data 
changes with each iteration. Conversely, row-by-row can be 35 

thought of as "constant data, varying factor," in that the data 
usually remains the same between iterations while the factor 
changes with each iteration. 

Another consideration is how to handle the check drives. 

In step 540, the second middle loop is called, which pro
cesses the other data drives' corresponding 64-byte chunks of 
data. As with the first data drive, each of the other data drives 
is processed separately, loading the respective 64 bytes of 
data into four registers (preserved across calls to the Parallel 
Lookup Multiplier). In addition, since the first check drive is 
the parity drive, its check data can be updated by directly 
adding these 64 bytes to it (using the Parallel Adder) before 
handling the non-parity check drives. 

In step 550, the inner loop is called for the next data drive. 
In the inner loop (as with the first middle loop), each of the 
non-parity check drives is associated with a corresponding 

Two possible ways are: 
a) one at a time, i.e., generate all the check data for one 

check drive before moving onto the next check drive; 
and 

40 factor for the particular data drive. The factor is multiplied 
with each of the next data drive' s data bytes using the Parallel 
Lookup Multiplier, and the results added to the check drive' s 
check data. 

b) all at once, i.e., for each 64-byte chunk of original data, 
do all of the processing for each of the check drives 45 

before moving onto the next chunk of original data. 
While each of these techniques performs the same basic 
operations ( e.g., 40 instructions for every 64 bytes of data for 
each of the N data drives and M-1 non-parity check drives, or 
5N(M-1)/8 instructions per byte for the Parallel Lookup 50 

Multiplier), empirical results show that combination (2)(b ), 
that is, row-by-row data access on all of the check drives 
between data accesses performs best with the Parallel Lookup 
Multiplier. One reason may be that such an approach appears 
to minimize the number of memory accesses (namely, one) to 55 

each chunk of the original data D to generate the check data J. 
This embodiment of Sequencer 1 is described in more detail 
with reference to FIG. 4. 

Another such sequencer (Sequencer 2) can be used to 
reconstruct the lost data from the surviving data (using Algo
rithm 2). While the same colunm-by-colunm and row-by-row 
data access approaches are possible, as well as the same 
choices for handling the check drives, Algorithm 2 adds 
another dimension of complexity because of the four separate 
steps and whether to: (i) do the steps completely serially or (ii) 
do some of the steps concurrently on the same data. For 
example, step 1 (surviving check data generation) and step 4 
(lost check data regeneration) can be done concurrently on the 
same data to reduce or minimize the number of surviving 
original data accesses from memory. 

Empirical results show that method (2)(b )(ii), that is, row
by-row data access on all of the check drives and for both 
surviving check data generation and lost check data regen
eration between data accesses performs best with the Parallel FIG. 4 shows an exemplary method 500 for sequencing the 

Parallel Lookup Multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

Referring to FIG. 4, in step 510, the Sequencer 1 is called. 
Sequencer 1 is called to process multiple 64-byte chunks of 
data for each of the blocks across a stripe of data. For instance, 
Sequencer 1 could be called to process 512 bytes from each 
block. If, for example, the block size L is 4096 bytes, then it 
would take eight such calls to Sequencer 1 to process the 

60 Lookup Multiplier when reconstructing lost data using Algo
rithm 2. Again, this may be due to the apparent minimization 
of the number of memory accesses (namely, one) of each 
chunk of surviving original data X to reconstruct the lost data 
and the absence of memory accesses of reconstructed lost 

65 original data Y when regenerating the lost check data. This 
embodiment of Sequencer 1 is described in more detail with 
reference to FI GS. 5-7. 
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FIGS. 5-7 show an exemplary method 600 for sequencing 
the Parallel Lookup Multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion. 

Referring to FIG. 5, in step 610, the Sequencer 2 is called. 
Sequencer 2 has many similarities with the embodiment of 
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2 
processes the data drive data in 64-byte chunks like 
Sequencer 1. Sequencer 2 is more complex, however, in that 
only some of the data drive data is surviving; the rest has to be 
reconstructed. In addition, lost check data needs to be regen
erated. Like Sequencer 1, Sequencer 2 does these operations 

22 
drive' s 64 bytes of data, which were fetched with one access 
from main memory and preserved in the same four registers 
across steps 660 and 670. 

Next, in step 680, the computation of the partial check data 
5 AxX is complete, so the surviving check data W is added to 

this result (recall that W-AxX is equivalent to W+AxX in 
binary Galois Field arithmetic). This is done by the fourth 
middle loop, which for each surviving check drive adds the 
corresponding 64-byte component of surviving check data W 

10 to the (surviving) partial check data AxX (using the Parallel 
Adder) to produce the (lost) partial check data W-AxX. 

Continuing with FIG. 7, in step 690, the fifth middle loop is 
called, which performs the two dimensional matrix multipli
cation B-1 x(W-AxX) to produce the lost original data Y. The 

15 calculation is performed one row at a time, for a total of F 
rows, initializing the row to the first term of the corresponding 
linear combination of the solution matrix B-1 and the lost 
partial check data W-AxX (using the Parallel Lookup Mul-

in such a way as to minimize memory accesses of the data 
drive data (by loading the data once and calling the Parallel 
Lookup Multiplier multiple times). Assume for ease of 
description that there is at least one surviving data drive; the 
case of no surviving data drives is handled a little differently, 
but not significantly different. In addition, recall from above 
that the driving formula behind data reconstruction is 
Y=B- 1 x(W-AxX), where Y is the lost original data, B-1 is the 20 

solution matrix, Wis the surviving check data, A is the partial 
check data encoding matrix (for the surviving check drives 
and the surviving data drives), and Xis the surviving original 
data. 

tiplier). 
In step 700, the third inner loop is called, which completes 

the remaining F-1 terms of the corresponding linear combi
nation (using the Parallel Lookup Multiplier on each term) 
from the fifth middle loop in step 690 and updates the running 
calculation (using the Parallel Adder) of the next row of 

In step 620, the outer loop processes the next 64-byte 
chunk of data for each of the drives. Like Sequencer!, the first 
surviving data drive is again handled specially since the par
tial check data AxX has to be initialized for each surviving 
check drive. 

In step 630, the first middle loop is called, in which the 
partial check data AxX is initialized for each surviving check 
drive based on the first surviving data drive' s 64 bytes of data. 
In this case, the Parallel Lookup Multiplier is called for each 
surviving check drive with the corresponding factor (from A) 
for the first surviving data drive. 

25 B-1x(W-AxX). This completes the next row (and recon
structs the corresponding failed data drive's lost data) oflost 
original data Y, which can then be stored at an appropriate 
location. 

In step 710, the fourth inner loop is called, in which the lost 
30 check data is updated for each failed check drive by the newly 

reconstructed lost data for the next failed data drive.Using the 
same 64 bytes of the next reconstructed lost data (preserved 
across calls to the Parallel Lookup Multiplier), the Parallel 
Lookup Multiplier is called to update each of the failed check 

35 drives' check data by the corresponding component from the 
next failed data drive. This completes the computations 
involving the next failed data drive's 64 bytes of recon
structed data, which were performed as soon as the data was 

In step 640, the second middle loop is called, in which the 
lost check data is initialized for each failed check drive.Using 
the same 64 bytes of the first surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 630), the 
Parallel Lookup Multiplier is again called, this time to initial- 40 

ize each of the failed check drive's check data to the corre-

reconstructed and without being stored and retrieved from 
main memory. 

Finally, in step 720, the sixth middle loop is called. The lost 
check data has been regenerated, so in this step, the newly 
regenerated check data is stored at an appropriate location (if 
desired). 

sponding component from the first surviving data drive. This 
completes the computations involving the first surviving data 
drive's 64 bytes of data, which were fetched with one access 
from main memory and preserved in the same four registers 45 

across steps 630 and 640. 
Continuing with FIG. 6, in step 650, the third middle loop 

Aspects of the present invention can be also realized in 
other environments, such as two-byte quantities, each such 
two-byte quantity capable of taking on 216=65,536 possible 
values, by using similar constructs (scaled accordingly) to 
those presented here. Such extensions would be readily 

is called, which processes the other surviving data drives' 
corresponding 64-byte chunks of data. As with the first sur
viving data drive, each of the other surviving data drives is 
processed separately, loading the respective 64 bytes of data 
into four registers (preserved across calls to the Parallel 
Lookup Multiplier). 

50 apparent to one of ordinary skill in the art, so their details will 
be omitted for brevity of description. 

In step 660, the first inner loop is called, in which the partial 
check data AxX is updated for each surviving check drive 
based on the next surviving data drive's 64 bytes of data. In 
this case, the Parallel Lookup Multiplier is called for each 
surviving check drive with the corresponding factor (from A) 
for the next surviving data drive. 

Exemplary techniques and methods for doing the Galois 
field manipulation and other mathematics behind RAID error 
correcting codes are described inAppendixA, which contains 

55 a paper "Information Dispersal Matrices for RAID Error 
Correcting Codes" prepared for the present application. 
Multi-Core Considerations 

In step 670, the second inner loop is called, in which the 60 

lost check data is updated for each failed check drive. Using 
the same 64 bytes of the next surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 660), the 
Parallel Lookup Multiplier is again called, this time to update 
each of the failed check drive's check data by the correspond- 65 

ing component from the next surviving data drive. This com
pletes the computations involving the next surviving data 

What follows is an exemplary embodiment for optimizing 
or improving the performance of multi-core architecture sys
tems when implementing the described erasure coding sys
tem routines. In multi-core architecture systems, each proces-
sor die is divided into multiple CPU cores, each with their 
own local caches, together with a memory (bus) interface and 
possible on-die cache to interface with a shared memory with 
other processor dies. 

FIG. 8 illustrates a multi-core architecture system 100 hav
ing two processor dies 110 (namely, Die 0 and Die 1). 
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Referring to FIG. 8, each die 110 includes four central 
processing units (CPUs or cores) 120 each having a local level 

24 
resulting code on specific processing cores. Embodiments 
can also be implemented on fewer resources, such as single
core dies and/or single-die systems, with decreased parallel-
ism and performance optimization. 

The process of subdividing and assigning individual cores 
120 and/or dies 110 to inherently parallelizable tasks will 
result in a performance benefit. For example, on a Linux 
system, software may be organized into "threads," and 
threads may be assigned to specific CPUs and memory sys-

1 (Ll) cache. Each core 120 may have separate functional 
units, for example, an x86 execution unit (for traditional 
instructions) and a SSE execution unit (for software designed 5 

for the newer SSE instruction set). An example application of 
these function units is that the x86 execution unit can be used 
for the RAID control logic software while the SSE execution 
unit can be used for the GF operation software. Each die 110 
also has a level 2 (L2) cache/memory bus interface 130 shared 
between the four cores 120. Main memory 140, in tum, is 
shared between the two dies 110, and is connected to the 
input/output (I/O) controllers 150 that access external devices 
such as disk drives or other non-volatile storage devices via 
interfaces such as Peripheral Component Interconnect (PCI). 15 

10 terns via thekthread_bindfunction when the thread is created. 

Redundant array of independent disks (RAID) controller 
processing can be described as a series of states or functions. 
These states may include: (1) Command Processing, to vali
date and schedule a host request (for example, to load or store 
data from disk storage); (2) Command Translation and Sub- 20 

mission, to translate the host request into multiple disk 
requests and to pass the requests to the physical disks; (3) 
Error Correction, to generate check data and reconstruct lost 
data when some disks are not functioning correctly; and (4) 
Request Completion, to move data from internal buffers to 25 

requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports 
caching, and can be avoided in a cacheless design. 

Creating separate threads to process the GF arithmetic allows 
parallel computations to take place, which multiplies the per
formance of the system. 

Further, creating multiple threads for command processing 
allows for fully overlapped execution of the command pro
cessing states. One way to accomplish this is to number each 
command, then use the arithmetic MOD function (% in C 
language) to choose a separate thread for each command. 
Another technique is to subdivide the data processing portion 
of each command into multiple components, and assign each 
component to a separate thread. 

FIG. 9 shows an exemplary disk drive configuration 200 
according to an embodiment of the present invention. 

Referring to FIG. 9, eight disks are shown, though this 
number can vary in other embodiments. The disks are divided 
into three types: data drives 210, parity drive 220, and check 
drives 230. The eight disks break down as three data drives 
210, one parity drive 220, and four check drives 230 in the 
embodiment of FIG. 9. 

Each of the data drives 210 is used to hold a portion of data. 
The data is distributed uniformly across the data drives 210 in 
stripes, such as 192 KB stripes. For example, the data for an 
application can be broken up into stripes of 192 KB, and each 
of the stripes in tum broken up into three 64 KB blocks, each 

35 of the three blocks being written to a different one of the three 
data drives 210. 

Parallelism is achieved in the embodiment of FIG. 8 by 
assigning different cores 120 to different tasks. For example, 30 

some of the cores 120 can be "command cores," that is, 
assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 and 
the disk drives via the I/O interface 150. Others of the cores 
120 can be "data cores," and assigned to the GF operations, 
that is, generating the check data from the original data, 
reconstructing the lost data from the surviving data, etc., 
including the Parallel Lookup Multiplier and the sequencers 
described above. For example, in exemplary embodiments, a 
scheduler can be used to divide the original data D into 40 

corresponding portions of each block, which can then be 
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc-
tion. 

One of the benefits of this data core/command core subdi- 45 

The parity drive 220 is a special type of check drive in that 
the encoding ofits data is a simple summation (recall that this 
is exclusive OR in binary GF arithmetic) of the corresponding 
bytes of each of the three data drives 210. That is, check data 
generation (Sequencer 1) or regeneration (Sequencer 2) can 
be performed for the parity drive 220 using the Parallel Adder 
(and not the Parallel Lookup Multiplier). Accordingly, the 
check data for the parity drive 220 is relatively straightfor
ward to build. Likewise, when one of the data drives 210 no 
longer functions correctly, the parity drive 220 can be used to 
reconstruct the lost data by adding (same as subtracting in 
binary GF arithmetic) the corresponding bytes from each of 
the two remaining data drives 210. Thus, a single drive failure 

50 of one of the data drives 210 is very straightforward to handle 
when the parity drive 220 is available (no Parallel Lookup 
Multiplier). Accordingly, the parity drive 220 can replace 
much of the GF multiplication operations with GF addition 

vision of processing is ensuring that different code will be 
executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated Ll cache in each core 120, 
and avoids the "pollution" of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on each 
die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. This 55 

helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other 
cores 120, while allowing the other cores 120 to keep the data 
moving between memory 140 and the disk drives via the I/O 
interface 150. 

Embodiments of the present invention yield scalable, high 
performance RAID systems capable of outperforming other 
systems, and at much lower cost, due to the use of high 
volume commodity components that are leveraged to achieve 
the result. This combination can be achieved by utilizing the 
mathematical techniques and code optimizations described 
elsewhere in this application with careful placement of the 

for both check data generation and lost data reconstruction. 
Each of the check drives 230 contains a linear combination 

of the corresponding bytes of each of the data drives 210. The 
linear combination is different for each check drive 230, but in 
general is represented by a summation of different multiples 
of each of the corresponding bytes of the data drives 210 

60 (again, all arithmetic being GF arithmetic). For example, for 
the first check drive 230, each of the bytes of the first data 
drive 210 could be multiplied by 4, each of the bytes of the 
second data drive 210 by 3, and each of the bytes of the third 
data drive 210 by 6, then the corresponding products for each 

65 of the corresponding bytes could be added to produce the first 
check drive data. Similar linear combinations could be used to 
produce the check drive data for the other check drives 230. 
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The specifics of which multiples for which check drive are 
explained in Appendix A. 

With the addition of the parity drive 220 and check drives 
230, eight drives are used in the RAID system 200 of FIG. 9. 
Accordingly, each 192 KB of original data is stored as 512 KB 5 

(i.e., eight blocks of 64 KB) of (original plus check) data. 
Such a system 200, however, is capable of recovering all of 
the original data provided any three of these eight drives 
survive. That is, the system 200 can withstand a concurrent 
failure of up to any five drives and still preserve all of the 10 

original data. 
Exemplary Routines to Implement an Embodiment 

The error correcting code (ECC) portion of an exemplary 
embodiment of the present invention may be written in soft-

15 
ware as, for example, four functions, which could be named 
as ECCinitialize, ECCSolve, ECCGenerate, and ECCRegen
erate. The main functions that perform work are ECCGener-
ate and ECCRegenerate. ECCGenerate generates check 
codes for data that are used to recover data when a drive 20 

26 
For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B-1 (i.e., the solution 
matrix). 

ECCGenerate 
The function ECCGenerate is used to generate check codes 

(that is, the check data matrix J) for a particular configuration 
of data drives and check drives, using Sequencer 1 and the 
Parallel Lookup Multiplier as described above. Prior to call
ing ECCGenerate, ECCSolve is called to compute the appro
priate constants for the particular configuration of data drives 
and check drives, as well as the solution matrix B-1

. 

ECCRegenerate 
The function ECCRegenerate is used to regenerate data 

vectors and check code vectors for a particular configuration 
of data drives and check drives (that is, reconstructing the 
original data matrix D from the surviving data matrix X and 
the surviving check matrix W, as well as regenerating the lost 
check data from the restored original data), this time using 
Sequencer 2 and the Parallel Lookup Multiplier as described 
above. Prior to calling ECCRegenerate, ECCSolve is called 
to compute the appropriate constants for the particular con-
figuration of data drives, check drives, and failed drives, as 
well as the solution matrix B-1

. 

Exemplary Implementation Details 
As discussed in Appendix A, there are two significant 

sources of computational overhead in erasure code process
ing ( such as an erasure coding system used in RAID process
ing): the computation of the solution matrix B-1 for a given 
failure scenario, and the byte-level processing of encoding the 

suffers an outage (that is, ECCGenerate generates the check 
data J from the original data Dusing Sequencer 1). ECCRe
generate uses these check codes and the remaining data to 
recover data after such an outage (that is, ECCRegenerate 
uses the surviving check data W, the surviving original data X, 25 

and Sequencer 2 to reconstruct the lost original data Y while 
also regenerating any of the lost check data). Prior to calling 
either of these functions, ECCSolve is called to compute the 
constants used for a particular configuration of data drives, 
check drives, and failed drives (for example, ECCSolve 
builds the solution matrix B-1 together with the lists of sur
viving and failed data and check drives). Prior to calling 
ECCSolve, ECCinitialize is called to generate constant tables 
used by all of the other functions (for example, ECCinitialize 
builds the IDM E and the two lookup tables for the Parallel 
Lookup Multiplier). 

30 check data J and reconstructing the lost data after a lost packet 
( e.g., data drive failure). By reducing the solution matrix B-1 

to a matrix inversion of a FxF matrix, where F is the number 
of lost packets ( e.g., failed drives), that portion of the com
putational overhead is for all intents and purposes negligible 

ECCinitialize 
The function ECCinitialize creates constant tables that are 

35 compared to the megabytes (MB), gigabytes (GB), and pos
sibly terabytes (TB) of data that needs to be encoded into 
check data or reconstructed from the surviving original and 
check data. Accordingly, the remainder of this section will be 

used by all subsequent functions. It is called once at program 
initialization time. By copying or precomputing these values 40 

up front, these constant tables can be used to replace more 
time-consuming operations with simple table look-ups (such 
as for the Parallel Lookup Multiplier). For example, four 
tables useful for speeding up the GF arithmetic include: 

1. mvct-an array of constants used to perform GF multi- 45 

plication with the PSHUFB instruction that operates on SSE 
registers (that is, the Parallel Lookup Multiplier). 

2. mast----contains the master encoding matrix S ( or the 
Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, such as the 50 

check drive encoding matrix H 

devoted to the byte-level encoding and regenerating process
ing. 

As already mentioned, certain practical simplifications can 
be assumed for most implementations. By using a Galois field 
of256 entries, byte-level processing can be used for all of the 
GF arithmetic. Using the master encoding matrix S described 
in Appendix A, any combination of up to 127 data drives, 1 
parity drive, and 128 check drives can be supported with such 
a Galois field. While, in general, any combination of data 
drives and check drives that adds up to 256 total drives is 
possible, not all combinations provide a parity drive when 
computed directly. Using the master encoding matrix S, on 
the other hand, allows all such combinations (including a 
parity drive) to be built ( or simply indexed) from the same 
such matrix. That is, the appropriate sub-matrix (including 
the parity drive) can be used for configurations ofless than the 

3. mul_tab-contains the results of all possible GF multi
plication operations of any two operands (for example, 256x 
256=65,536 bytes for all of the possible products of two 
different one-byte quantities) 55 maximum number of drives. 

4. div _tab----contains the results of all possible GF division 
operations of any two operands ( can be similar in size to 
mul_tab) 

ECCSolve 
The function ECC Solve creates constant tables that are 60 

In addition, using the master encoding matrix S permits 
further data drives and/or check drives can be added without 
requiring the recomputing of the IDM E (unlike other pro
posed solutions, which recompute E for every change ofN or 
M). Rather, additional indexing ofrows and/or colunms of the 
master encoding matrix S will suffice. As discussed above, used to compute a solution for a particular configuration of 

data drives, check drives, and failed drives. It is called prior to 
using the functions ECCGenerate or ECCRegenerate. It 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 

the use of the parity drive can eliminate or significantly 
reduce the somewhat complex GF multiplication operations 
associated with the other check drives and replaces them with 

65 simple GF addition (bitwise exclusive OR in binary Galois 
fields) operations. It should be noted that master encoding 
matrices with the above properties are possible for any power-
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of-two number of drives 2P =Nmax+Mmax where the maximum 
number of data drives N max is one less than a power of two 
(e.g., Nmax=l27 or 63) and the maximum number of check 
drives Mmax (including the parity drive) is 2P -N max· 

As discussed earlier, in an exemplary embodiment of the 5 

present invention, a modem x86 architecture is used (being 
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions. 
Each XMM register is 128 bits and is available for special 
purpose processing with the SSE instructions. Each of these 10 

XMM registers holds 16 bytes (8-bit), so four such registers 
can be used to store 64 bytes of data. Thus, by using SSE 
instructions (some of which work on different operand sizes, 
for example, treating each of the XMM registers as contain- 15 
ing 16 one-byte operands), 64 bytes of data can be operated at 
a time using four consecutive SSE instructions ( e.g., fetching 
from memory, storing into memory, zeroing, adding, multi
plying), the remaining registers being used for intermediate 
results and temporary storage. With such an architecture, 20 

several routines are useful for optimizing the byte-level per
formance, including the Parallel Lookup Multiplier, 
Sequencer 1, and Sequencer 2 discussed above. 

While the above description contains many specific 
embodiments of the invention, these should not be construed 25 

as limitations on the scope of the invention, but rather as 
examples of specific embodiments thereof. Accordingly, the 
scope of the invention should be determined not by the 
embodiments illustrated, but by the appended claims and 
their equivalents. 30 

28 
-continued 

Glossary of Some Variables 

X surviving original data matrix (K x L) 
Y lost original data matrix (F x L) 

What is claimed is: 
1. A system for accelerated error-correcting code (ECC) 

processing comprising: 
a processing core for executing computer instructions and 

accessing data from a main memory; and 
a non-volatile storage medium for storing the computer 

instructions, 
wherein the processing core, the non-volatile storage 

medium, and the computer instructions are configured to 
implement an erasure coding system comprising: 
a data matrix for holding original data in the main 

memory; 
a check matrix for holding check data in the main 

memory; 
an encoding matrix for holding first factors in the main 

memory, the first factors being for encoding the origi
nal data into the check data; and 

a thread for executing on the processing core and com
prising: 
a parallel multiplier for concurrently multiplying 

multiple data entries of a matrix by a single factor; 
and 

a first sequencer for ordering operations through the 
data matrix and the encoding matrix using the par
allel multiplier to generate the check data. 

Glossary of Some Variables 

encoding matrix (F x K), sub-matrix ofT 
encoding matrix (F x F), sub-matrix ofT 
solution matrix (F x F) 

2. The system of claim 1, wherein the first sequencer is 
35 configured to access each entry of the data matrix from the 

main memory at most once while generating the check data. 
3. The system of claim 1, wherein: 

C 

C' 

D 

D' 

E 

F 
G 
H 
I 

w 

encoded data matrix((N + M) XL)= [ ~] 

surviving encoded data matrix(N x L) = [ : ] 

original data matrix (N x L) 

permuted original data matrix(N x L) = [ ~ ] 

information dispersal matrix(/DM)((N + M) xN) = [ ~] 

number of failed data drives 
number of failed check drives 
check drive encoding matrix (M x N) 
identity matrix (IK = K x K identity matrix, 
IN= N x N identity matrix) 
encoded check data matrix (M x L) 
number of surviving data drives = N - F 
data block size (elements or bytes) 
number of check drives 
maximum value ofM 
number of data drives 
maximum value ofN 
zero matrix (K x F), sub-matrix ofT 
master encoding matrix ((Mm=+ Nmaxl X Nm=) 

transformed IDM(N x N) = [ ~ ~] 

surviving check data matrix (F x L) 

the processing core comprises a plurality of processing 
cores; 

40 the thread comprises a plurality of threads; and 
the erasure coding system further comprises a scheduler 

for generating the check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the check matrix into a plurality of check matri-

45 ces; 
assigning corresponding ones of the data matrices and 

the check matrices to the threads; and 
assigning the threads to the processing cores to concur

rently generate portions of the check data correspond-
50 ing to the check matrices from respective ones of the 

data matrices. 
4. The system of claim 1, wherein: 
the data matrix comprises a first number ofrows; 
the check matrix comprises a second number of rows; and 

55 the encoding matrix comprises the second number of rows 
and the first number of columns. 

5. The system of claim 4, wherein the data matrix is con
figured to add rows to the first number of rows or the check 
matrix is configured to add rows to the second number of rows 

60 while the first factors remain unchanged. 
6. The system of claim 4, wherein each of entries of one of 

the rows of the encoding matrix comprise a multiplicative 
identity factor. 

7. The system of claim 4, wherein: 
65 the data matrix is configured to be divided by rows into: 

a surviving data matrix for holding surviving original 
data of the original data; and 
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a lost data matrix corresponding to lost original data of 
the original data and comprising a third number of 
rows; and 

the erasure coding system further comprises a solution 
matrix for holding second factors in the main memory, 5 

the second factors being for decoding the check data into 
the lost original data using the surviving original data 
and the first factors. 

8. The system of claim 7, wherein the solution matrix 
comprises the third number of rows and the third number of 10 

colunms. 

30 
14. The system of claim 11, wherein: 
the check matrix is configured to be divided into: 

a surviving check matrix for holding surviving check 
data of the check data; and 

a lost check matrix corresponding to lost check data of 
the check data; and 

the second sequencer is configured to order operations 
through the surviving data matrix, the reconstructed lost 
original data, and the encoding matrix using the parallel 
multiplier to regenerate the lost check data. 

15. The system of claim 14, wherein the second sequencer 
is further configured to reconstruct the lost original data con
currently with regenerating the lost check data. 

16. The system of claim 15, wherein the second sequencer 

9. The system of claim 8, wherein the solution matrix 
further comprises an inverted said third number by said third 
number sub-matrix of the encoding matrix. 

10. The system of claim 7, wherein the erasure coding 
system further comprises: 

a first list of rows of the data matrix corresponding to the 
surviving data matrix; and 

15 is further configured to access each entry of the surviving data 
matrix from the main memory at most once while recon
structing the lost original data and regenerating the lost check 
data. 

a second list of rows of the data matrix corresponding to the 20 

lost data matrix. 
11. The system of claim 1, wherein: 
the data matrix is configured to be divided into: 

a surviving data matrix for holding surviving original 
data of the original data; and 25 

a lost data matrix corresponding to lost original data of 
the original data; 

the erasure coding system further comprises a solution 
matrix for holding second factors in the main memory, 
the second factors being for decoding the check data into 30 

the lost original data using the surviving original data 
and the first factors; and 

the thread further comprises a second sequencer for order
ing operations through the surviving data matrix, the 

35 
encoding matrix, the check matrix, and the solution 
matrix using the parallel multiplier to reconstruct the 
lost original data. 

12. The system of claim 11, wherein the second sequencer 
is further configured to access each entry of the surviving data 40 

matrix from the main memory at most once while recon
structing the lost original data. 

13. The system of claim 11, wherein: 
the processing core comprises a plurality of processing 

cores; 45 

the thread comprises a plurality of threads; and 
the erasure coding system further comprises a scheduler 

for generating the check data and reconstructing the lost 
original data by: 
dividing the data matrix into a plurality of data matrices; 50 

dividing the surviving data matrix into a plurality of 
surviving data matrices; 

dividing the lost data matrix into a plurality of lost data 
matrices; 

55 
dividing the check matrix into a plurality of check matri-

17. The system of claim 15, wherein the second sequencer 
is further configured to regenerate the lost check data without 
accessing the reconstructed lost original data from the main 
memory. 

18. The system of claim 14, wherein: 
the processing core comprises a plurality of processing 

cores; 
the thread comprises a plurality of threads; and 
the erasure coding system further comprises a scheduler 

for generating the check data, reconstructing the lost 
original data, and regenerating the lost check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of 

surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 

matrices; 
dividing the check matrix into a plurality of check matri

ces; 
dividing the surviving check matrix into a plurality of 

surviving check matrices; 
dividing the lost check matrix into a plurality of lost 

check matrices; 
assigning corresponding ones of the data matrices, the 

surviving data matrices, the lost data matrices, the 
check matrices, the surviving check matrices, and the 
lost check matrices to the threads; and 

assigning the threads to the processing cores to concur
rently generate portions of the check data correspond
ing to the check matrices from respective ones of the 
data matrices, to concurrently reconstruct portions of 
the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data 
matrices and the surviving check matrices, and to 
concurrently regenerate portions of the lost check 
data corresponding to the lost check matrices from 
respective ones of the surviving data matrices and 
respective portions of the reconstructed lost original 
data. 

ces; 
assigning corresponding ones of the data matrices, the 

surviving data matrices, the lost data matrices, and the 
check matrices to the threads; and 

assigning the threads to the processing cores to concur
rently generate portions of the check data correspond
ing to the check matrices from respective ones of the 
data matrices and to concurrently reconstruct portions 

19. The system of claim 1, wherein the processing core 
comprises 16 data registers, each of the data registers com
prises 16 bytes; and the parallel multiplier is configured to 

60 process the data in units of at least 64 bytes spread over at least 
four of the data registers at a time. 

of the lost original data corresponding to the lost data 65 

matrices from respective ones of the surviving data 
matrices and the check matrices. 

20. The system of claim 19, wherein consecutive instruc
tions to process each of the units of the data access separate 
ones of the data registers to permit concurrent execution of the 
consecutive instructions by the processing core. 

21. The system of claim 19, wherein the parallel multiplier 
comprises two lookup tables for doing concurrent multipli-
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cation of 4-bit quantities across 16 byte-sized entries using 
the PSHUFB (Packed Shuffle Bytes) instruction. 

22. The system of claim 19, wherein the parallel multiplier 
is further configured to: 

receive an input operand in four of the data registers; and 5 

return with the input operand intact in the four of the data 
registers. 

23. A method of accelerated error-correcting code (ECC) 
processing on a computing system comprising a non-volatile 
storage medium, a processing core for accessing instructions 10 

and data from a main memory, and a computer program 
comprising a plurality of computer instructions for imple
menting an erasure coding system, the method comprising: 

storing the computer program on the non-volatile storage 
medium; 15 

executing the computer instructions on the processing 
core; 

arranging original data as a data matrix m the mam 
memory; 

arranging first factors as an encoding matrix in the main 20 

memory, the first factors being for encoding the original 
data into check data, the check data being arranged as a 
check matrix in the main memory; and 

generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a 25 

matrix by a single factor, the generating of the check data 
comprising ordering operations through the data matrix 
and the encoding matrix using the parallel multiplier. 

24. The method of claim 23, wherein the generating of the 
check data comprises accessing each entry of the data matrix 30 

from the main memory at most once. 
25. The method of claim 23, wherein: 
the processing core comprises a plurality of processing 

cores; 
the executing of the computer instructions comprises 35 

executing the computer instructions on the processing 
cores; 

the method further comprises scheduling the generating of 
the check data by: 
dividing the data matrix into a plurality of data matrices; 40 

dividing the check matrix into a plurality of check matri-
ces; and 

assigning corresponding ones of the data matrices and 
the check matrices to the processing cores to concur
rently generate portions of the check data correspond- 45 

ing to the check matrices from respective ones of the 
data matrices. 

26. The method of claim 23, further comprising: 
dividing the data matrix into: 

a surviving data matrix for holding surviving original 50 

data of the original data; and 
a lost data matrix corresponding to lost original data of 

the original data; 
arranging second factors as a solution matrix in the main 

memory, the second factors being for decoding the 55 

check data into the lost original data using the surviving 
original data and the first factors; and 

reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, 
the check matrix, and the solution matrix using the par- 60 

allel multiplier. 
27. The method of claim 26, wherein the reconstructing of 

the lost original data comprises accessing each entry of the 
surviving data matrix from the main memory at most once. 

28. The method of claim 26, wherein: 65 

the processing core comprises a plurality of processing 
cores; 

32 
the executing of the computer instructions comprises 

executing the computer instructions on the processing 
cores; 

the method further comprises scheduling the generating of 
the check data and the reconstructing of the lost original 
data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of 

surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 

matrices; 
dividing the check matrix into a plurality of check matri

ces; and 
assigning corresponding ones of the data matrices, the 

surviving data matrices, the lost data matrices, and the 
check matrices to the processing cores to concurrently 
generate portions of the check data corresponding to 
the check matrices from respective ones of the data 
matrices and to concurrently reconstruct portions of 
the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data 
matrices and the check matrices. 

29. The method of claim 26, further comprising 
dividing the check matrix into: 

a surviving check matrix for holding surviving check 
data of the check data; and 

a lost check matrix corresponding to lost check data of 
the check data; and 

regenerating the lost check data by ordering operations 
through the surviving data matrix, the reconstructed lost 
original data, and the encoding matrix using the parallel 
multiplier. 

30. The method of claim 29, wherein the reconstructing of 
the lost original data takes place concurrently with the regen
erating of the lost check data. 

31. The method of claim 30, wherein the reconstructing of 
the lost original data and the regenerating of the lost check 
data comprise accessing each entry of the surviving data 
matrix from the main memory at most once. 

32. The method of claim 30, wherein the regenerating of 
the lost check data takes place without accessing the recon
structed lost original data from the main memory. 

33. The method of claim 29, wherein: 
the processing core comprises a plurality of processing 

cores; 
the executing of the computer instructions comprises 

executing the computer instructions on the processing 
cores; 

the method further comprises scheduling the generating of 
the check data, the reconstructing of the lost original 
data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of 

surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 

matrices; 
dividing the check matrix into a plurality of check matri

ces; 
dividing the surviving check matrix into a plurality of 

surviving check matrices; 
dividing the lost check matrix into a plurality of lost 

check matrices; and 
assigning corresponding ones of the data matrices, the 

surviving data matrices, the lost data matrices, the 
check matrices, the surviving check matrices, and the 
lost check matrices to the processing cores to concur
rently generate portions of the check data correspond-
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ing to the check matrices from respective ones of the 
data matrices, to concurrently reconstruct portions of 
the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data 
matrices and the surviving check matrices, and to 5 

concurrently regenerate portions of the lost check 
data corresponding to the lost check matrices from 
respective ones of the surviving data matrices and 
respective portions of the reconstructed lost original 
data. 10 

34 
check data into the lost original data using the surviving 
original data and the first factors; and 

reconstructing the lost original data by ordering operations 
through the sui:viving data matrix, the encoding matrix, 
the check matnx, and the solution matrix using the par
allel multiplier. 

. 38. T~e storage medium of claim 37, wherein the computer 
mst~~t~ons are further configured to perform the steps of: 

d1v1dmg the check matrix into: 
a surviving check matrix for holding surviving check 

data of the check data; and 
a lost check matrix corresponding to lost check data of 

the check data; and 
regenerating the lost check data by ordering operations 

through the surviving data matrix, the reconstructed lost 
original data, and the encoding matrix using the parallel 
multiplier. 

34. A non-transitory computer-readable storage medium 
containing a computer program comprising a plurality of 
computer instructions for performing accelerated error-cor
re~t)ng code (ECC) processing on a computing system com
pnsmg a processing core for accessing instructions and data 15 

from a main memory, the computer instructions being con
figured to implement an erasure coding system when 
executed on the computing system by performing the steps of: 39. The storage medium of claim 38, wherein the recon

structing of the lost original data and the regenerating of the 
20 lost check data comprise accessing each entry of the surviving 

data matrix from the main memory at most once. 

arranging original data as a data matrix in the main 
memory; 

arranging first factors as an encoding matrix in the main 
memory, the first factors being for encoding the original 
data into check data, the check data being arranged as a 
check matrix in the main memory; and 

generating the check data using a parallel multiplier for 25 

concurrently multiplying multiple data entries of a 
matrix by a single factor, the generating of the check data 
comprising ordering operations through the data matrix 
and the encoding matrix using the parallel multiplier. 

. 35. The storage medium of claim 34, wherein the generat- 30 

mg of the check data comprises accessing each entry of the 
data matrix from the main memory at most once. 

36. The storage medium of claim 34, wherein: 
the processing core comprises a plurality of processing 

cores; and 
the computer instructions are further configured to perform 

the step of scheduling the generating of the check data 
by: 

35 

dividing the data matrix into a plurality of data matrices· 
dividing the check matrix into a plurality of check matri ~ 40 

ces; and 
assigning corresponding ones of the data matrices and 

the check matrices to the processing cores to concur
:ently generate portions of the check data correspond
mg to the check matrices from respective ones of the 45 

data matrices. 
. 37. T~e storage medium of claim 34, wherein the computer 
mst~~t~ons are further configured to perform the steps of: 

d1v1dmg the data matrix into: 
a surviving data matrix for holding surviving original 50 

data of the original data; and 
a lost data matrix corresponding to lost original data of 

the original data; 
arranging second factors as a solution matrix in the main 

memory, the second factors being for decoding the 

40. The storage medium of claim 38, wherein: 
the processing core comprises a plurality of processing 

cores; 
the computer instructions are further configured to perform 

the step of scheduling the generating of the check data, 
the reconstructing of the lost original data, and the 
regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices· 
dividing the surviving data matrix into a plurality of 

surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 

matrices; 
dividing the check matrix into a plurality of check matri

ces; 
dividin? _the surviving check matrix into a plurality of 

surv1vmg check matrices; 
dividing the lost check matrix into a plurality of lost 

check matrices; and 
assigning corresponding ones of the data matrices the 

surviving data matrices, the lost data matrices' the 
check matrices, the surviving check matrices, and the 
lost check matrices to the processing cores to concur
rently generate portions of the check data correspond
ing to the check matrices from respective ones of the 
data matrices, to concurrently reconstruct portions of 
the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data 
matrices and the surviving check matrices, and to 
concurrently regenerate portions of the lost check 
data corresponding to the lost check matrices from 
respective ones of the surviving data matrices and 
respective portions of the reconstructed lost original 
data. 

* * * * * 
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(57) ABSTRACT 
An accelerated erasure coding system includes a processing 
core for executing computer instructions and accessing data 
from a main memory, and a non-volatile storage medium for 
storing the computer instructions. The processing core, stor
age medium, and computer instructions are configured to 
implement an erasure coding system, which includes: a data 
matrix for holding original data in the main memory; a check 
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1 

ACCELERATED ERASURE CODING SYSTEM 
AND METHOD 

2 
that that will be a rare occurrence, and that performance will 
not matter significantly in that case." See also Robert Mad
dock et al., "Surviving Two Disk Failures," p. 6, "The main 
difficulty with this technique is that calculating the check CROSS-REFERENCE TO RELATED 

APPLICATION 5 codes, and reconstructing data after failures, is quite complex. 

This application is a continuation of U.S. patent applica
tion Ser. No. 13/341,833, filed on Dec. 30, 2011, now U.S. 
Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire con
tents of which is expressly incorporated herein by reference. 

BACKGROUND 

1. Field 

It involves polynomials and thus multiplication, and requires 
special hardware, or at least a signal processor, to do it at 
sufficient speed." In addition, see also James S. Plank, "All 
About Erasure Codes: -Reed-Solomon Coding-LDPC 

1° Coding," slide 15 (describing computational complexity of 
Reed-Solomon decoding), "Bottom line: When n & m grow, 
it is brutally expensive." Accordingly, there appears to be a 
general consensus among experts in the field that erasure 

Aspects of embodiments of the present invention are 15 

directed toward an accelerated erasure coding system and 
method. 

2. Description of Related Art 

coding systems are impractical for RAID systems for all but 
small values of M (that is, small numbers of check drives), 
such as 1 or 2. 

Modem disk drives, on the other hand, are much less reli
able than those envisioned when RAID was proposed. This is An erasure code is a type of error-correcting code (ECC) 

useful for forward error-correction in applications like a 
redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data ( or 
original data) is organized in stripes, each of which is broken 

20 due to their capacity growing out of proportion to their reli
ability. Accordingly, systems with only a single check disk 
have, for the most part, been discontinued in favor of systems 
with two check disks. 

In terms of reliability, a higher check disk count is clearly up into N equal-sized blocks, or data blocks, for some positive 
integer N. The data for each stripe is thus reconstructable by 
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets 
lost, erasure codes also encode an additional M equal-sized 
blocks ( called check blocks or check data) from the original N 
data blocks, for some positive integer M. 

25 more desirable than a lower check disk count. If the count of 
error events on different drives is larger than the check disk 
count, data may be lost and that cannot be reconstructed from 
the correctly functioning drives. Error events extend well 
beyond the traditional measure of advertised mean time 

The N data blocks and the M check blocks are all the same 
size. Accordingly, there are a total ofN + M equal-sized blocks 
after encoding. The N + M blocks may, for example, be trans
mitted to a receiver as N+M separate packets, or written to 
N+M corresponding disk drives. For ease of description, all 
N+M blocks after encoding will be referred to as encoded 
blocks, though some (for example, N of them) may contain 
unencoded portions of the original data. That is, the encoded 
data refers to the original data together with the check data. 

30 between failures (MTBF). A simple, real world example is a 
service event on a RAID system where the operator mistak
enly replaces the wrong drive or, worse yet, replaces a good 
drive with a broken drive. In the absence of any generally 

35 
accepted methodology to train, certify, and measure the effec
tiveness of service technicians, these types of events occur at 
an unknown rate, but certainly occur. The foolproof solution 
for protecting data in the face of multiple error events is to 
increase the check disk count. 

The M check blocks build redundancy into the system, in a 40 

very efficient marmer, in that the original data ( as well as any 
lost check data) can be reconstructed if any N of the N+M 
encoded blocks are received by the receiver, or if any N of the 
N+M disk drives are functioning correctly. Note that such an 
erasure code is also referred to as "optimal." For ease of 45 

description, only optimal erasure codes will be discussed in 
this application. In such a code, up to M of the encoded blocks 
can be lost, (e.g., up to M of the disk drives can fail) so that if 
any N of the N+M encoded blocks are received successfully 
by the receiver, the original data (as well as the check data) 50 

can be reconstructed. N/(N+M) is thus the code rate of the 
erasure code encoding (i.e., how much space the original data 
takes up in the encoded data). Erasure codes for select values 
ofN and M can be implemented on RAID systems employing 
N+M (disk) drives by spreading the original data among N 55 

"data" drives, and using the remaining M drives as "check" 
drives. Then, when any N of the N+M drives are correctly 
functioning, the original data can be reconstructed, and the 
check data can be regenerated. 

Erasure codes ( or more specifically, erasure coding sys- 60 

terns) are generally regarded as impractical for values of M 
larger than 1 ( e.g., RAIDS systems, such as parity drive sys
tems) or 2 (RAID6 systems), that is, for more than one or two 
check drives. For example, see H. Peter Anvin, "The math
ematics of RAID-6," the entire content of which is incorpo- 65 

rated herein by reference, p. 7, "Thus, in 2-disk-degraded 
mode, performance will be very slow. However, it is expected 

SUMMARY 

Aspects of embodiments of the present invention address 
these problems by providing a practical erasure coding sys
tem that, for byte-level RAID processing (where each byte is 
made up of 8 bits), performs well even for values ofN+M as 
large as 256 drives (for example, N=127 data drives and 
M=129 check drives). Further aspects provide for a single 
precomputed encoding matrix ( or master encoding matrix) S 
of size MmaxxNmax, or (Nmax+Mmax)xNmax or (Mmax-l)x 
N max, elements ( e.g., bytes), which can be used, for example, 
for any combination of NsNmax data drives and MsMmax 
check drives such that Nmax+Mmaxs256 (e.g., Nmax =127 and 
Mmax=l29, or Nmax=63 and Mm= =193). This is an improve
ment over prior art solutions that rebuild such matrices from 
scratch every time N or M changes ( such as adding another 
check drive). Still higher values ofN and Mare possible with 
larger processing increments, such as 2 bytes, which affords 
up to N+M=65,536 drives (such as N=32,767 data drives and 
M=32,769 check drives). 

Higher check disk count can offer increased reliability and 
decreased cost. The higher reliability comes from factors 
such as the ability to withstand more drive failures. The 
decreased cost arises from factors such as the ability to create 
larger groups of data drives. For example, systems with two 
checks disks are typically limited to group sizes of 10 or fewer 
drives for reliability reasons. With a higher check disk count, 
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the data matrix and the encoding matrix using the parallel 
multiplier to generate the check data. 

larger groups are available, which can lead to fewer overall 
components for the same unit of storage and hence, lower 
cost. 

Additional aspects of embodiments of the present inven
tion further address these problems by providing a standard 
parity drive as part of the encoding matrix. For instance, 
aspects provide for a parity drive for configurations with up to 
127 data drives and up to 128 (non-parity) check drives, for a 
total of up to 256 total drives including the parity drive. 
Further aspects provide for different breakdowns, such as up 
to 63 data drives, a parity drive, and up to 192 (non-parity) 
check drives. Providing a parity drive offers performance 
comparable to RAIDS in comparable circumstances ( such as 
single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives. 

The first sequencer may be configured to access each entry 
of the data matrix from the main memory at most once while 

5 generating the check data. 
The processing core may include a plurality of processing 

cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data by dividing the data matrix into a 

10 plurality of data matrices, dividing the check matrix into a 
plurality of check matrices, assigning corresponding ones of 
the data matrices and the check matrices to the threads, and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 

15 check matrices from respective ones of the data matrices. 

Further aspects are directed to a system and method for 
implementing a fast solution matrix algorithm for Reed-So
lomon codes. While known solution matrix algorithms com- 20 

pute an N xN solution matrix ( see, for example, J. S. Plank, "A 
tutorial on Reed-Solomon coding for fault-tolerance in 
RAID-like systems," Software-Practice & Experience, 
27(9):995-1012, September 1997, and J. S. Plank and Y. 
Ding, "Note: Correction to the 1997 tutorial on Reed-So- 25 

lomon coding," Technical Report CS-03-504, University of 
Tennessee, April 2003), requiring O(N3

) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FxF solution 
matrix, where F is the number of failed data drives. The 30 

overhead for computing this FxF solution matrix is approxi
mately F3 /3 multiplication operations and the same number 
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives Fis consid
erably smaller than the number of data drives N. Accordingly, 35 

the fast solution matrix algorithm is considerably faster than 
any known approach for practical values ofF and N. 

The data matrix may include a first number of rows. The 
check matrix may include a second number of rows. The 
encoding matrix may include the second number of rows and 
the first number of columns. 

The data matrix may be configured to add rows to the first 
number of rows or the check matrix may be configured to add 
rows to the second number of rows while the first factors 
remain unchanged. 

Each of entries of one of the rows of the encoding matrix 
may include a multiplicative identity factor (such as 1). 

The data matrix may be configured to be divided by rows 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix corresponding 
to lost original data of the original data and including a third 
number of rows. The erasure coding system may further 
include a solution matrix for holding second factors in the 
main memory. The second factors are for decoding the check 
data into the lost original data using the surviving original 
data and the first factors. 

The solution matrix may include the third number of rows 
and the third number of colunms. 

The solution matrix may further include an inverted said 
third number by said third number sub-matrix of the encoding 
matrix. 

The erasure coding system may further include a first list of 
rows of the data matrix corresponding to the surviving data 
matrix, and a second list of rows of the data matrix corre
sponding to the lost data matrix. 

The data matrix may be configured to be divided into a 
surviving data matrix for holding surviving original data of 
the original data, and a lost data matrix corresponding to lost 
original data of the original data. The erasure coding system 
may further include a solution matrix for holding second 
factors in the main memory. The second factors are for decod-

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost ( original and 
check) data reconstruction. Some of these aspects are directed 40 

toward fetching the surviving (original and check) data a 
minimum number of times (that is, at most once) to carry out 
the data reconstruction. Some of these aspects are directed 
toward efficient implementations that can maximize or sig
nificantly leverage the available parallel processing power of 45 

multiple cores working concurrently on the check data gen
eration and the lost data reconstruction. Existing implemen
tations do not attempt to accelerate these aspects of the data 
generation and thus fail to achieve a comparable level of 
performance. 

In an exemplary embodiment of the present invention, a 
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for 
executing computer instructions and accessing data from a 
main memory; and a non-volatile storage medium (for 55 

example, a disk drive, or flash memory) for storing the com
puter instructions. The processing core, the storage medium, 
and the computer instructions are configured to implement an 
erasure coding system. The erasure coding system includes a 
data matrix for holding original data in the main memory, a 60 

check matrix for holding check data in the main memory, an 
encoding matrix for holding first factors in the main memory, 
and a thread for executing on the processing core. The first 
factors are for encoding the original data into the check data. 
The thread includes a parallel multiplier for concurrently 65 

multiplying multiple data entries of a matrix by a single 
factor; and a first sequencer for ordering operations through 

50 ing the check data into the lost original data using the surviv
ing original data and the first factors. The thread may further 
include a second sequencer for ordering operations through 
the surviving data matrix, the encoding matrix, the check 
matrix, and the solution matrix using the parallel multiplier to 
reconstruct the lost original data. 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main memory 
at most once while reconstructing the lost original data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include: a scheduler for 
generating the check data and reconstructing the lost original 
data by dividing the data matrix into a plurality of data matri
ces; dividing the surviving data matrix into a plurality of 
surviving data matrices; dividing the lost data matrix into a 
plurality oflost data matrices; dividing the check matrix into 
a plurality of check matrices; assigning corresponding ones 
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According to another exemplary embodiment of the 
present invention, a method of accelerated error-correcting 
code (ECC) processing on a computing system is provided. 
The computing system includes a non-volatile storage 

of the data matrices, the surviving data matrices, the lost data 
matrices, and the check matrices to the threads; and assigning 
the threads to the processing cores to concurrently generate 
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices and to concur
rently reconstruct portions of the lost original data corre
sponding to the lost data matrices from respective ones of the 
surviving data matrices and the check matrices. 

The check matrix may be configured to be divided into a 
surviving check matrix for holding surviving check data of 
the check data, and a lost check matrix corresponding to lost 
check data of the check data. The second sequencer may be 
configured to order operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier to regenerate the lost 
check data. 

5 medium (such as a disk drive or flash memory), a processing 
core for accessing instructions and data from a main memory, 
and a computer program including a plurality of computer 
instructions for implementing an erasure coding system. The 
method includes: storing the computer program on the stor-

lO age medium; executing the computer instructions on the pro
cessing core; arranging original data as a data matrix in the 
main memory; arranging first factors as an encoding matrix in 
the main memory, the first factors being for encoding the 

The second sequencer may be further configured to recon
struct the lost original data concurrently with regenerating the 
lost check data. 

15 
original data into check data, the check data being arranged as 
a check matrix in the main memory; and generating the check 
data using a parallel multiplier for concurrently multiplying 
multiple data entries of a matrix by a single factor. The gen
erating of the check data includes ordering operations 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main memory 

20 through the data matrix and the encoding matrix using the 
parallel multiplier. 

at most once while reconstructing the lost original data and 
regenerating the lost check data. 

The second sequencer may be further configured to regen- 25 

erate the lost check data without accessing the reconstructed 
lost original data from the main memory. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 30 

generating the check data, reconstructing the lost original 
data, and regenerating the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviving 
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 35 

dividing the check matrix into a plurality of check matrices; 
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a 
plurality of lost check matrices; assigning corresponding 
ones of the data matrices, the surviving data matrices, the lost 40 

data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the threads; and assigning 
the threads to the processing cores to concurrently generate 
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices, to concurrently 45 

reconstruct portions of the lost original data corresponding to 
the lost data matrices from respective ones of the surviving 
data matrices and the surviving check matrices, and to con
currently regenerate portions of the lost check data corre
sponding to the lost check matrices from respective ones of 50 

the surviving data matrices and respective portions of the 
reconstructed lost original data. 

The processing core may include 16 data registers. Each of 
the data registers may include 16 bytes. The parallel multi
plier may be configured to process the data in units of at least 55 

64 bytes spread over at least fourof the data registers at a time. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data by: dividing the data matrix into 
a plurality of data matrices; dividing the check matrix into a 
plurality of check matrices; and assigning corresponding 
ones of the data matrices and the check matrices to the pro
cessing cores to concurrently generate portions of the check 
data corresponding to the check matrices from respective 
ones of the data matrices. 

The method may further include: dividing the data matrix 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix corresponding 
to lost original data of the original data; arranging second 
factors as a solution matrix in the main memory, the second 
factors being for decoding the check data into the lost original 
data using the surviving original data and the first factors; and 
reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel mul
tiplier. 

The reconstructing of the lost original data may include 
accessing each entry of the surviving data matrix from the 
main memory at most once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data and the reconstructing of the lost 
original data by: dividing the data matrix into a plurality of 
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix 
into a plurality oflost data matrices; dividing the check matrix 
into a plurality of check matrices; and assigning correspond-

Consecutive instructions to process each of the units of the 
data may access separate ones of the data registers to permit 
concurrent execution of the consecutive instructions by the 
processing core. 

The parallel multiplier may include two lookup tables for 
doing concurrent multiplication of 4-bit quantities across 16 
byte-sized entries using the PSHUFB (Packed Shuffle Bytes) 
instruction. 

60 ing ones of the data matrices, the surviving data matrices, the 
lost data matrices, and the check matrices to the processing 
cores to concurrently generate portions of the check data 
corresponding to the check matrices from respective ones of 
the data matrices and to concurrently reconstruct portions of 

The parallel multiplier may be further configured to receive 
an input operand in four of the data registers, and return with 
the input operand intact in the four of the data registers. 

65 the lost original data corresponding to the lost data matrices 
from respective ones of the surviving data matrices and the 
check matrices. 
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The method may further include: dividing the check matrix 
into a surviving check matrix for holding surviving check 
data of the check data, and a lost check matrix corresponding 

8 
The processing core may include a plurality of processing 

cores. The computer instructions may be further configured to 
perform the step of scheduling the generating of the check 
data by: dividing the data matrix into a plurality of data to lost check data of the check data; and regenerating the lost 

check data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data may take place 
concurrently with the regenerating of the lost check data. 

5 matrices; dividing the check matrix into a plurality of check 
matrices; and assigning corresponding ones of the data matri
ces and the check matrices to the processing cores to concur
rently generate portions of the check data corresponding to 
the check matrices from respective ones of the data matrices. 

10 The computer instructions may be further configured to The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each 
entry of the surviving data matrix from the main memory at 
most once. 

perform the steps of: dividing the data matrix into a surviving 
data matrix for holding surviving original data of the original 
data, and a lost data matrix corresponding to lost original data 

The regenerating of the lost check data may take place 
without accessing the reconstructed lost original data from 
the main memory. 

15 
of the original data; arranging second factors as a solution 
matrix in the main memory, the second factors being for 
decoding the check data into the lost original data using the 
surviving original data and the first factors; and reconstruct
ing the lost original data by ordering operations through the 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data, the reconstructing of the lost 
original data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of surviving 
data matrices; dividing the lost data matrix into a plurality of 
lost data matrices; dividing the check matrix into a plurality of 
check matrices; dividing the surviving check matrix into a 
plurality of surviving check matrices; dividing the lost check 
matrix into a plurality of lost check matrices; and assigning 
corresponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the sur
viving check matrices, and the lost check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec- 35 

tive ones of the data matrices, to concurrently reconstruct 
portions of the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data matrices 
and the surviving check matrices, and to concurrently regen
erate portions of the lost check data corresponding to the lost 40 

check matrices from respective ones of the surviving data 
matrices and respective portions of the reconstructed lost 
original data. 

20 surviving data matrix, the encoding matrix, the check matrix, 
and the solution matrix using the parallel multiplier. 

The computer instructions may be further configured to 
perform the steps of: dividing the check matrix into a surviv
ing check matrix for holding surviving check data of the 

25 check data, and a lost check matrix corresponding to lost 
check data of the check data; and regenerating the lost check 
data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

30 The reconstructing of the lost original data and the regen-

According to yet another exemplary embodiment of the 
present invention, a non-transitory computer-readable star- 45 

age medium (such as a disk drive, a compact disk (CD), a 
digital video disk (DVD), flash memory, a universal serial bus 
(USB) drive, etc.) containing a computer program including a 
plurality of computer instructions for performing accelerated 
error-correcting code (ECC) processing on a computing sys- 50 

tern is provided. The computing system includes a processing 
core for accessing instructions and data from a main memory. 
The computer instructions are configured to implement an 
erasure coding system when executed on the computing sys
tem by performing the steps of arranging original data as a 55 

data matrix in the main memory; arranging first factors as an 
encoding matrix in the main memory, the first factors being 
for encoding the original data into check data, the check data 
being arranged as a check matrix in the main memory; and 
generating the check data using a parallel multiplier for con- 60 

currently multiplying multiple data entries of a matrix by a 
single factor. The generating of the check data includes order
ing operations through the data matrix and the encoding 
matrix using the parallel multiplier. 

The generating of the check data may include accessing 65 

each entry of the data matrix from the main memory at most 
once. 

erating of the lost check data may include accessing each 
entry of the surviving data matrix from the main memory at 
most once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured to 
perform the step of scheduling the generating of the check 
data, the reconstructing of the lost original data, and the 
regenerating of the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviving 
data matrix into a plurality of surviving data matrices; divid-
ing the lost data matrix into a plurality oflost data matrices; 
dividing the check matrix into a plurality of check matrices; 
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a 
plurality oflost check matrices; and assigning corresponding 
ones of the data matrices, the surviving data matrices, the lost 
data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices, to concurrently reconstruct portions of the lost 
original data corresponding to the lost data matrices from 
respective ones of the surviving data matrices and the surviv
ing check matrices, and to concurrently regenerate portions of 
the lost check data corresponding to the lost check matrices 
from respective ones of the surviving data matrices and 
respective portions of the reconstructed lost original data. 

By providing practical and efficient systems and methods 
for erasure coding systems (which for byte-level processing 
can support up to N+M=256 drives, such as N=127 data 
drives and M=129 check drives, including a parity drive), 
applications such as RAID systems that can tolerate far more 
failing drives than was thought to be possible or practical can 
be implemented with accelerated performance significantly 
better than any prior art solution. 
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BRIEF DESCRIPTION OF THE DRAWINGS 
10 

blocks), and the M check blocks written across M drives (the 
check drives) separate from the N data drives, one block per 
check drive. These combinations can take place, for example, 
when new ( or changed) data is written to ( or back to) disk. 

The accompanying drawings, together with the specifica
tion, illustrate exemplary embodiments of the present inven
tion and, together with the description, serve to explain 
aspects and principles of the present invention. 

FIG. 1 shows an exemplary stripe of original and check 
data according to an embodiment of the present invention. 

FIG. 2 shows an exemplary method for reconstructing lost 
data after a failure of one or more drives according to an 
embodiment of the present invention. 

5 Accordingly, each of the N+M drives (data drives and check 
drives) stores a similar amount of data, namely one block for 
each stripe. As the processing of multiple stripes is concep
tually similar to the processing of one stripe ( only processing 
multiple blocks per drive instead of one), it will be further 

10 assumed for simplification that the data being stored or 
retrieved is only one stripe in size unless otherwise indicated. 
It will also be assumed that the block size L is sufficiently 
large that the data can be consistently divided across each 

FIG. 3 shows an exemplary method for performing a par
allel lookup Galois field multiplication according to an 
embodiment of the present invention. 

FIG. 4 shows an exemplary method for sequencing the 
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

15 
block to produce subsets of the data that include respective 
portions of the blocks (for efficient concurrent processing by 
different processing units). 

FIG. 1 shows an exemplary stripe 10 of original and check 
data according to an embodiment of the present invention. FIGS. 5-7 show an exemplary method for sequencing the 

parallel lookup multiplier to perform the lost data reconstruc
tion according to an embodiment of the present invention. 20 

Referring to FIG.1, the stripe 10 can bethought ofnot only 
as the original N data blocks 20 that make up the original data, 
but also the corresponding M check blocks 30 generated from 
the original data (that is, the stripe 10 represents encoded 
data). Each of the N data blocks 20 is composed ofL bytes 25 

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention. 

FIG. 9 shows an exemplary disk drive configuration 
according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

Hereinafter, exemplary embodiments of the invention will 
be described in more detail with reference to the accompany
ing drawings. In the drawings, like reference numerals refer 
to like elements throughout. 

25 
(labeled byte 1, byte 2, ... , byte L), and each of the M check 
blocks 30 is composed of L bytes 35 (labeled similarly). In 
addition, check drive 1, byte 1, is a linear combination of data 
drive 1, byte 1; data drive 2, byte 1; ... ; data drive N, byte 1. 
Likewise, check drive 1, byte 2, is generated from the same 

30 
linear combination formula as check drive 1, byte 1, only 
using data drive 1, byte 2; data drive 2, byte 2; ... ; data drive 
N, byte 2. In contrast, check drive 2, byte 1, uses a different 
linear combination formula than check drive 1, byte 1, but 
applies it to the same data, namely data drive 1, byte 1; data 

While optimal erasure codes have many applications, for 
ease of description, they will be described in this application 
with respect to RAID applications, i.e., erasure coding sys
tems for the storage and retrieval of digital data distributed 
across numerous storage devices ( or drives), though the 
present application is not limited thereto. For further ease of 
description, the storage devices will be assumed to be disk 
drives, though the invention is not limited thereto. In RAID 
systems, the data (or original data) is broken up into stripes, 40 

each of which includes N uniformly sized blocks ( data 
blocks), and the N blocks are written across N separate drives 
(the data drives), one block per data drive. 

35 
drive 2, byte 1; ... ; data drive N, byte 1. In this fashion, each 
of the other check bytes 35 is a linear combination of the 
respective bytes of each of the N data drives 20 and using the 
corresponding linear combination formula for the particular 
check drive 30. 

In addition, for ease of description, blocks will be assumed 
to be composed of L elements, each element having a fixed 45 

size, say 8 bits or one byte. An element, such as a byte, forms 
the fundamental unit of operation for the RAID processing, 
but the invention is just as applicable to other size elements, 
such as 16 bits (2 bytes). For simplification, unless otherwise 
indicated, elements will be assumed to be one byte in size 50 

throughout the description that follows, and the term "ele
ment(s )" and "byte(s )" will be used synonymously. 

Conceptually, different stripes can distribute their data 
blocks across different combinations of drives, or have dif
ferent block sizes or numbers of blocks, etc., but for simpli- 55 

fication and ease of description and implementation, the 
described embodiments in the present application assume a 
consistent block size (L bytes) and distribution of blocks 
among the data drives between stripes. Further, all variables, 
such as the number of data drives N, will be assumed to be 60 

positive integers unless otherwise specified. In addition, since 
the N=l case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be 
assumed for simplicity that N;;,;2 throughout. 

The N data blocks from each stripe are combined using 65 

arithmetic operations (to be described in more detail below) 
in M different ways to produce M blocks of check data ( check 

The stripe 10 in FIG. 1 can also be represented as a matrix 
C of encoded data. Chas two sub-matrices, namely original 
data D on top and check data Jon bottom. That is, 

Du D12 D1L 

D21 D22 D2L 

C=[ ~] = 
DNI DN2 DNL 

lu 112 iiL 

h1 h2 hL 

JM! JM2 ]ML 

where D,rbyte j from data drive i and J,rbyte j from check 
drive i. Thus, the rows of encoded data C represent blocks, 
while the colunms represent corresponding bytes of each of 
the drives. 

Further, in case of a disk drive failure of one or more disks, 
the arithmetic operations are designed in such a fashion that 
for any stripe, the original data (and by extension, the check 
data) can be reconstructed from any combination of N data 
and check blocks from the corresponding N+M data and 
check blocks that comprise the stripe. Thus, RAID provides 
both parallel processing (reading and writing the data in 
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data even if as many as M of 
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the drives fail), at the computational cost of generating the 
check data any time new data is written to disk, or changed 
data is written back to disk, as well as the computational cost 
of reconstructing any lost original data and regenerating any 
lost check data after a disk failure. 5 

For example, for M = 1 check drive, a single parity drive can 
function as the check drive (i.e., a RAID4 system). Here, the 
arithmetic operation is bitwise exclusive OR of each of the N 
corresponding data bytes in each data block of the stripe. In 10 
addition, as mentioned earlier, the assignment of parity 
blocks from different stripes to the same drive (i.e., RAID4) 
or different drives (i.e., RAIDS) is arbitrary, but it does sim
plify the description and implementation to use a consistent 
assignment between stripes, so that will be assumed through- 15 

out. Since M = 1 reduces to the case of a single parity drive, it 
will further be assumed for simplicity that M;;,;2 throughout. 

For such larger values ofM, Galois field arithmetic is used 

12 
Thus, 

0 0 

0 0 

£=[;]= 0 0 

Hu H12 H1N 

H21 H22 H2N 

HM! HM2 HMN 

where H,rfactor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the colunms 
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data J are 
related by the formula J=HxD (that is, matrix multiplication), to manipulate the data, as described in more detail later. 

Galois field arithmetic, for Galois fields of powers-of-2 ( such 20 or 

as 2i numbers of elements, includes two fundamental opera
tions: (1) addition (which is just bitwise exclusive OR, as with 
the parity drive-only operations for M=l), and (2) multipli
cation. While Galois field (GF) addition is trivial on standard 25 
processors, GF multiplication is not. Accordingly, a signifi
cant component of RAID performance for M;;,;2 is speeding 
up the performance ofGF multiplication, as will be discussed 
later. For purposes of description, GF addition will be repre
sented by the symbol + throughout while GF multiplication 30 

will be represented by the symbol x throughout. 
X 

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations 
( over GF arithmetic) of the N data drives of original data, one 

35 
linear combination (i.e., a GF sum of N terms, where each 

where J11 =(H11 xD11 )+(H12xD21)+ ... +W1NxDN1), J12= 
(H11XD12)+(H12XD22)+ ... +W1NXDN2), l21=CH21XD11)+ 

term represents a byte of original data times a corresponding 
factor (using GF multiplication) for the respective data drive) 
for each check drive, as applied to respective bytes in each 
block. One such linear combination can be a simple parity, 40 
i.e., entirely GF addition (all factors equal 1), such as a GF 
sum of the first byte in each block oforiginal data as described 
above. 

(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+ 
(Hi2 X D2)+ ... +(H,NxDNf) for lsisM and lsjsL. 

Such an encoding matrix E is also referred to as an infor-
mation dispersal matrix (IDM). It should be noted that matri
ces such as check drive encoding matrix Hand identity matrix 
IN also represent encoding matrices, in that they represent 
matrices of factors to produce linear combinations over GF 

The remaining M-1 linear combinations include more 
involved calculations that include the nontrivial GF multipli
cation operations ( e.g., performing a GF multiplication of the 
first byte in each block by a corresponding factor for the 
respective data drive, and then performing a GF sum of all 
these products). These linear combinations can be repre
sented by an (N + M)xN matrix ( encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one 
factor for each combination of ( data or check) drive and data 
drive, with one row for each of the N + M data and check drives 
and one colunm for each of the N data drives. The IDM E can 
also be represented as 

where IN represents the NxN identity matrix (i.e., the original 
(unencoded) data) and H represents the MxN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N 
colunms corresponds to one of the N data drives). 

45 
arithmetic of the original data. In practice, the identity matrix 
IN is trivial and may not need to be constructed as part of the 
ID M E. Only the encoding matrix E, however, will be referred 
to as the IDM. Methods of building an encoding matrix such 
as IDM E or check drive encoding matrix H are discussed 

50 below. In further embodiments of the present invention (as 
discussed further in Appendix A), such (N + M)xN ( or MxN) 
matrices can be trivially constructed ( or simply indexed) from 
a master encoding matrix S, which is composed of CNmax+ 
Mmax)xNmax (or MmaxxNmax) bytes or elements, where 

55 N max+ Mmax =256 ( or some other power of two) and N sN max 
and MsMmax· For example, one such master encoding matrix 
Scan include a 127x127 element identity matrix on top (for 
up to N max= 127 data drives), a row of 1 's (for a parity drive), 
and a 128x127 element encoding matrix on bottom (for up to 

60 Mmax = 129 check drives, including the parity drive), for a total 
ofNmax+Mmax =256 drives. 

The original data, in tum, can be represented by an N xL 
matrix D of bytes, each of the N rows representing the L bytes 
of a block of the corresponding one of the N data drives. If C 

65 represents the corresponding (N+M)xL matrix of encoded 
bytes (where each of the N+M rows corresponds to one of the 
N+M data and check drives), then C can be represented as 
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ExD = [ ~]xD= [ ~:;] = [ ~l 
where J=HxD is an MxL matrix of check data, with each of 
the Mrows representing the L check bytes of the correspond
ing one of the M check drives. It should be noted that in the 
relationships such as C=ExD or J=HxD, x represents matrix 
multiplication over the Galois field (i.e., GF multiplication 
and GF addition being used to generate each of the entries in, 
for example, C or J). 

14 
drives (that is, four separate lists). This allows processing of 
the different sets of surviving and failed drives to be done 
more efficiently than existing solutions, which use, for 
example, bit vectors that have to be examined one bit at a time 

5 and often include large numbers of consecutive zeros ( or 
ones) when ones ( or zeros) are the bit values of interest. 

FIG. 2 shows an exemplary method 300 for reconstructing 
lost data after a failure of one or more drives according to an 
embodiment of the present invention. 

While the recovery process is described in more detail 
10 

later, briefly it consists of two parts: (1) determining the 
solution matrix, and (2) reconstructing the lost data from the 
surviving data. Determining the solution matrix can be done 
in three steps with the following algorithm (Algorithm 1 ), In exemplary embodiments of the present invention, the 

first row of the check drive encoding matrix H ( or the (N + 1 )th 

row of the IDME) can beall 1 's, representing the parity drive. 15 

For linear combinations involving this row, the GF multipli
cation can be bypassed and replaced with a GF sum of the 
corresponding bytes since the products are all trivial products 
involving the identity element 1. Accordingly, in parity drive 
implementations, the check drive encoding matrix H can also 

with reference to FIG. 2: 
1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to 

an N xN reduced encoding matrix T ( also referred to as the 
transformed IDM) including the K surviving data drive rows 
and any F of the M-G surviving check drive rows (for 
instance, the first F surviving check drive rows, as these will 

20 
include the parity drive if it survived; recall that F sM-G was 
assumed). In addition, the colunms of the reduced encoding 
matrix Tare rearranged so that the K colunms corresponding 
to the K surviving data drives are on the left side of the matrix 
and the F colunms corresponding to the F failed drives are on 

be thought of as an (M-l)xN matrix of non-trivial factors 
(that is, factors intended to be used in GF multiplication and 
not just GF addition). 

Much of the RAID processing involves generating the 
check data when new or changed data is written to ( or back to) 
disk. The other significant event for RAID processing is when 
one or more of the drives fail ( data or check drives), or for 
whatever reason become unavailable. Assume that in such a 
failure scenario, F data drives fail and G check drives fail, 
where F and G are nonnegative integers. If F=0, then only 
check drives failed and all of the original data D survived. In 
this case, the lost check data can be regenerated from the 
original data D. 

25 
the right side of the matrix. (Step 320) These F surviving 
check drives selected to rebuild the lost original data Y will 
henceforth be referred to as "the F surviving check drives," 
and their check data W will be referred to as "the surviving 
check data," even though M-G check drives survived. It 

30 
should be noted that W is an FxL matrix composed of the F 
rows of the check data J corresponding to the F surviving 
check drives. Further, the surviving encoded data can be 
represented as a sub-matrix C' of the encoded data C. The 
surviving encoded data C' is an N xL matrix composed of the 

35 
surviving original data X on top and the surviving check data 
Won bottom, that is, 

Accordingly, assume at least one data drive fails, that is, 
F2:l, and let K=N-F represent the number of data drives that 
survive. K is also a nonnegative integer. In addition, let X 
represent the surviving original data and Y represent the lost 
original data. That is, Xis a KxL matrix composed of the K 
rows of the original data matrix D corresponding to the K 
surviving data drives, while Y is an FxL matrix composed of 40 

the F rows of the original data matrix D corresponding to the 
F failed data drives. 

2. (Step 330) Splitting the reduced encoding matrix Tinto 
four sub-matrices (that are also encoding matrices): (i) a KxK 

thus represents a permuted original data matrix D' (that is, the 
original data matrix D, only with the surviving original data X 
on top and the lost original data Y on bottom. It should be 
noted that once the lost original data Y is reconstructed, it can 

45 identity matrix IK ( corresponding to the K surviving data 
drives) in the upper left, (ii) a KxF matrix O of zeros in the 
upper right, (iii) an FxK encoding matrix A in the lower left 
corresponding to the F surviving check drive rows and the K 
surviving data drive colunms, and (iv) an FxF encoding 

50 matrix B in the lower right corresponding to the F surviving 
check drive rows and the F failed data drive colunms. Thus, 
the reduced encoding matrix T can be represented as 

be combined with the surviving original data X to restore the 
original data D, from which the check data for any of the 
failed check drives can be regenerated. 55 

It should also be noted that M-G check drives survive. In 
order to reconstruct the lost original data Y, enough (that is, at 
least N) total drives must survive. Given that K=N-F data 
drives survive, and that M-G check drives survive, it follows 
that (N-F)+(M-G)2:N must be true to reconstruct the lost 60 

original data Y. This is equivalent to F+GsM (i.e., no more 
than F +G drives fail), or F sM-G (that is, the numberof failed 
data drives does not exceed the number of surviving check 
drives). It will therefore be assumed for simplicity that F sM
G. 

In the routines that follow, performance can be enhanced 
by prebuilding lists of the failed and surviving data and check 

65 

3. (Step 340) Calculating the inverse B- 1 of the FxF encod
ing matrix B. As is shown in more detail in Appendix A, 
C'=TxD', or 
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which is mathematically equivalent to W=AxX+BxY. B-1 is 
the solution matrix, and is itself an FxF encoding matrix. 
Calculating the solution matrix B-1 thus allows the lost origi
nal data Y to be reconstructed from the encoding matrices A 
and B along with the surviving original data X and the sur- 5 

viving check data W. 
The FxK encoding matrix A represents the original encod

ing matrix E, only limited to the K surviving data drives and 
the F surviving check drives. That is, each of the F rows of A 
represents a different one of the F surviving check drives, 10 

while each of the K colunms of A represents a different one of 
the K surviving data drives. Thus, A provides the encoding 
factors needed to encode the original data for the surviving 
check drives, but only applied to the surviving data drives 
(that is, the surviving partial check data). Since the surviving 15 

original data X is available, A can be used to generate this 
surviving partial check data. 

In similar fashion, the FxF encoding matrix B represents 
the original encoding matrix E, only limited to the F surviving 
check drives and the F failed data drives. That is, the F rows of 20 

B correspond to the same F rows of A, while each of the F 
colunms of B represents a different one of the F failed data 
drives. Thus, B provides the encoding factors needed to 
encode the original data for the surviving check drives, but 
only applied to the failed data drives (that is, the lost partial 25 

check data). Since the lost original data Y is not available, B 
cannot be used to generate any of the lost partial check data. 
However, this lost partial check data can be determined from 
A and the surviving check data W. Since this lost partial check 
data represents the result of applying B to the lost original 30 

data Y, B-1 thus represents the necessary factors to reconstruct 
the lost original data Y from the lost partial check data. 

It should be noted that steps 1 and 2 in Algorithm 1 above 
are logical, in that encoding matrices A and B ( or the reduced 
encoding matrix T, for that matter) do not have to actually be 35 

constructed. Appropriate indexing of the IDM E ( or the mas-
ter encoding matrix S) can be used to obtain any of their 
entries. Step 3, however, is a matrix inversion over GF arith
metic and takes O(F3

) operations, as discussed in more detail 
later. Nonetheless, this is a significant improvement over 40 

existing solutions, which require O(N3
) operations, since the 

number of failed data drives Fis usually significantly less than 
the number of data drives N in any practical situation. 

(Step 350 in FIG. 2) Once the encoding matrix A and the 
solution matrix B-1 are known, reconstructing the lost data 45 

from the surviving data (that is, the surviving original data X 
and the surviving check data W) can be accomplished in four 
steps using the following algorithm (Algorithm 2): 

1. Use A and the surviving original data X (using matrix 
multiplication) to generate the surviving check data (i.e., 50 

AxX), only limited to the K surviving data drives. Call this 
limited check data the surviving partial check data. 

2. Subtract this surviving partial check data from the sur
viving check data W (using matrix subtraction, i.e., W-AxX, 
which is just entry-by-entry GF subtraction, which is the 55 

same as GF addition for this Galois field). This generates the 
surviving check data, only this time limited to the F failed data 
drives. Call this limited check data the lost partial check data. 

3. Use the solution matrix B-1 and the lost partial check 
data (using matrix multiplication, i.e., B-1x(W-AxX) to 60 

reconstruct the lost original data Y. Call this the recovered 
original data Y. 

4. Use the corresponding rows of the IDM E (or master 
encoding matrix S) for each of the G failed check drives along 
with the original data D, as reconstructed from the surviving 65 

and recovered original data X and Y, to regenerate the lost 
check data (using matrix multiplication). 

16 
As will be shown in more detail later, steps 1-3 together 

require O(F) operations times the amount of original data D to 
reconstruct the lost original data Y for the F failed data drives 
(i.e., roughly 1 operation per failed data drive per byte of 
original data D), which is proportionally equivalent to the 
O(M) operations times the amount of original data D needed 
to generate the check data J for the M check drives (i.e., 
roughly 1 operation per check drive per byte of original data 
D). In addition, this same equivalence extends to step 4, 
which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the G failed 
check drives (i.e., roughly 1 operation per failed check drive 
per byte of original data D). In summary, the number of 
operations needed to reconstruct the lost data is O(F +G) times 
the amount of original data D (i.e., roughly 1 operation per 
failed drive ( data or check) per byte of original data D). Since 
F +GsM, this means that the computational complexity of 
Algorithm 2 (reconstructing the lost data from the surviving 
data) is no more than that of generating the check data J from 
the original data D. 

As mentioned above, for exemplary purposes and ease of 
description, data is assumed to be organized in 8-bit bytes, 
each byte capable of taking on 28=256 possible values. Such 
data can be manipulated in byte-size elements using GF arith
metic for a Galois field of size 28=256 elements. It should also 
be noted that the same mathematical principles apply to any 
power-of-two Z number of elements, not just 256, as Galois 
fields can be constructed for any integral power of a prime 
number. Since Galois fields are finite, and since GF opera
tions never overflow, all results are the same size as the inputs, 
for example, 8 bits. 

In a Galois field of a power-of-two number of elements, 
addition and subtraction are the same operation, namely a 
bitwise exclusive OR (XOR) of the two operands. This is a 
very fast operation to perform on any current processor. It can 
also be performed on multiple bytes concurrently. Since the 
addition and subtraction operations take place, for example, 
on a byte-level basis, they can be done in parallel by using, for 
instance, x86 architecture Streaming SIMD Extensions 
(SSE) instructions (SIMD stands for single instruction, mul
tiple data, and refers to performing the same instruction on 
different pieces of data, possibly concurrently), such as 
PXOR (Packed (bitwise) Exclusive OR). 

SSE instructions can process, for example, 16-byte regis
ters (XMM registers), and are able to process such registers as 
though they contain 16 separate one-byte operands (or 8 
separate two-byte operands, or four separate four-byte oper
ands, etc.) Accordingly, SSE instructions can do byte-level 
processing 16 times faster than when compared to processing 
a byte at a time. Further, there are 16 XMM registers, so 
dedicating four such registers for operand storage allows the 
data to be processed in 64-byte increments, using the other 12 
registers for temporary storage. That is, individual operations 
can be performed as four consecutive SSE operations on the 
four respective registers (64 bytes), which can often allow 
such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc
tions allows the same processing to be performed on different 
such 64-byte increments of data in parallel using different 
cores. Thus, using four separate cores can potentially speed 
up this processing by an additional factor of 4 over using a 
single core. 

For example, a parallel adder (Parallel Adder) can be built 
using the 16-byte XMM registers and four consecutive PX OR 
instructions. Such parallel processing (that is, 64 bytes at a 
time with only a few machine-level instructions) for GF arith
metic is a significant improvement over doing the addition 
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one byte at a time. Since the data is organized in blocks of any 
fixed number of bytes, such as 4096 bytes ( 4 kilobytes, or 4 
KB) or 32,768 bytes (32 KB), a block can be composed of 
numerous such 64-byte chunks (e.g., 64 separate 64-byte 
chunks in 4 KB, or 512 chunks in 32 KB). 

Multiplication in a Galois field is not as straightforward. 
While much of it is bitwise shifts and exclusive OR's (i.e., 
"additions") that are very fast operations, the numbers "wrap" 
in peculiar ways when they are shifted outside of their normal 
bounds (because the field has only a finite set of elements), 
which can slow down the calculations. This "wrapping" in the 
GF multiplication can be addressed in many ways. For 
example, the multiplication can be implemented serially (Se
rial Multiplier) as a loop iterating over the bits of one operand 
while performing the shifts, adds, and wraps on the other 
operand. Such processing, however, takes several machine 
instructions per bit for 8 separate bits. In other words, this 
technique requires dozens of machine instructions per byte 
being multiplied. This is inefficient compared to, for example, 
the performance of the Parallel Adder described above. 

For another approach (Serial Lookup Multiplier), multipli
cation tables ( of all the possible products, or at least all the 
non-trivial products) can be pre-computed and built ahead of 
time. For example, a table of256x256=65,536 bytes can hold 
all the possible products of the two different one-byte oper
ands). However, such tables can force serialized access on 
what are only byte-level operations, and not take advantage of 
wide ( concurrent) data paths available on modern processors, 
such as those used to implement the Parallel Adder above. 

In still another approach (Parallel Multiplier), the GF mul
tiplication can be done on multiple bytes at a time, since the 
same factor in the encoding matrix is multiplied with every 
element in a data block. Thus, the same factor can be multi
plied with 64 consecutive data block bytes at a time. This is 
similar to the Parallel Adder described above, only there are 
several more operations needed to perform the operation. 
While this can be implemented as a loop on each bit of the 
factor, as described above, only performing the shifts, adds, 
and wraps on 64 bytes at a time, it can be more efficient to 
process the 256 possible factors as a (C language) switch 
statement, with inline code for each of 256 different combi
nations of two primitive GF operations: Multiply-by-2 and 
Add. For example, GF multiplication by the factor 3 can be 
effected by first doing a Multiply-by-2 followed by an Add. 
Likewise, GF multiplication by 4 is just a Multiply-by-2 
followed by a Multiply-by-2 while multiplication by 6 is a 
Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2. 

While this Add is identical to the Parallel Adder described 
above (e.g., four consecutive PXOR instructions to process 
64 separate bytes), Multiply-by-2 is not as straightforward. 
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4 
consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu
tive PAD DB (Packed Add) instructions, 4 consecutive PAND 
(Bitwise AND) instructions, and 4 consecutive PXOR 
instructions. Though this takes 20 machine instructions, the 
instructions are very fast and results in 64 consecutive bytes 
of data at a time being multiplied by 2. 

For 64 bytes of data, assuming a random factor between 0 
and 255, the total overhead for the Parallel Multiplier is about 

18 
lookup (Parallel Lookup Multiplier) using the PSHUFB 
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes). 

FIG. 3 shows an exemplary method 400 for performing a 
5 parallel lookup Galois field multiplication according to an 

embodiment of the present invention. 
Referring to FIG. 3, in step 410, two lookup tables are built 

once: one lookup table for the low-order nibbles in each byte, 
and one lookup table for the high-order nibbles in each byte. 

10 Each lookup table contains 256 sets (one for each possible 
factor) of the 16 possible GF products of that factor and the 16 
possible nibble values. Each lookup table is thus 
256x16=4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multiplica-

15 tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions 
can be used to do all the table lookups for 64 bytes (128 
nibbles). 

Next, in step 420, the Parallel Lookup Multiplier is initial-
20 ized for the next set of 64 bytes of operand data (such as 

original data or surviving original data). In order to save 
loading this data from memory on succeeding calls, the Par
allel Lookup Multiplier dedicates four registers for this data, 
which are left intact upon exit of the Parallel Lookup Multi-

25 plier. This allows the same data to be called with different 
factors ( such as processing the same data for another check 
drive). 

Next in step 430, to process these 64 bytes of operand data, 
the Parallel Lookup Multiplier can be implemented with 2 

30 MOVDQA (Move Double Quadword Aligned) instructions 
(from memory) to do the two table lookups and 4 MOVDQA 
instructions (register to register) to initialize registers ( such as 
the output registers). These are followed in steps 440 and 450 
by two nearly identical sets of 17 register-to-register instruc-

35 tions to carry out the multiplication 32 bytes at a time. Each 
such set starts (in step 440) with 5 more MOVDQA instruc
tions for further initialization, followed by 2 PSRLW (Packed 
Shift Right Logical Word) instructions to realign the high
order nibbles for PSHUFB, and 4 PAND instructions to clear 

40 the high-order nibbles for PSHUFB. That is, two registers of 
byte operands are converted into four registers of nibble oper
ands. Then, in step 450, 4 PSHUFB instructions are used to do 
the parallel table lookups, and 2 PXOR instructions to add the 
results of the multiplication on the two nibbles to the output 

45 registers. 
Thus, the Parallel Lookup Multiplier uses 40 machine 

instructions to perform the parallel multiplication on 64 sepa
rate bytes, which is considerably better than the average 134 
instructions for the Parallel Multiplier above, and only 10 

50 times as many instructions as needed for the Parallel Adder. 
While some of the Parallel Lookup Multiplier's instructions 
are more complex than those of the Parallel Adder, much of 
this complexity can be concealed through the pipelined and/ 
or concurrent execution of numerous such contiguous 

55 instructions (accessing different registers) on modern pipe
lined processors. For example, in exemplary implementa
tions, the Parallel Lookup Multiplier has been timed at about 
15 CPU clock cycles per 64 bytes processed per CPU core 
( about 0.36 clock cycles per instruction). In addition, the code 

60 footprint is practically nonexistent for the Parallel Lookup 
Multiplier ( 40 instructions) compared to that of the Parallel 
Multiplier (about 34,300 instructions), even when factoring 
the 8 KB needed for the two lookup tables in the Parallel 6 calls to multiply-by-2 and about 3.5 calls to add, or about 

6x20+3.5x4=134 machine instructions, or a little over 2 
machine instructions per byte of data. While this compares 65 

favorably with byte-level processing, it is still possible to 
improve on this by building a parallel multiplier with a table 

Lookup Multiplier. 
In addition, embodiments of the Parallel Lookup Multi

plier can be passed 64 bytes of operand data (such as the next 
64 bytes of surviving original data X to be processed) in four 
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consecutive registers, whose contents can be preserved upon 
exiting the Parallel Lookup Multiplier ( and all in the same 40 
machine instructions) such that the Parallel Lookup Multi
plier can be invoked again on the same 64 bytes of data 
without having to access main memory to reload the data. 5 

Through such a protocol, memory accesses can be minimized 
( or significantly reduced) for accessing the original data D 
during check data generation or the surviving original data X 
during lost data reconstruction. 

Further embodiments of the present invention are directed 10 

towards sequencing this parallel multiplication (and other 
GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup Mui-

15 
tiplier should be appropriately sequenced to provide efficient 
processing. One such sequencer (Sequencer 1 ), for example, 
can generate the check data J from the original data D, and is 
described further with respect to FIG. 4. 

The parity drive does not need GF multiplication. The 20 

check data for the parity drive can be obtained, for example, 
by adding corresponding 64-byte chunks for each of the data 
drives to perform the parity operation. The Parallel Adder can 

20 
FIG. 4 shows an exemplary method 500 for sequencing the 

Parallel Lookup Multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

Referring to FIG. 4, in step 510, the Sequencer 1 is called. 
Sequencer 1 is called to process multiple 64-byte chunks of 
data for each of the blocks across a stripe of data. For instance, 
Sequencer 1 could be called to process 512 bytes from each 
block. If, for example, the block size L is 4096 bytes, then it 
would take eight such calls to Sequencer 1 to process the 
entire stripe. The other such seven calls to Sequencer 1 could 
be to different processing cores, for instance, to carry out the 
check data generation in parallel. The number of 64-byte 
chunks to process at a time could depend on factors such as 
cache dimensions, input/output data structure sizes, etc. 

In step 520, the outer loop processes the next 64-byte 
chunk of data for each of the drives. In order to minimize the 
numberofaccesses of each data drive' s 64-byte chunk of data 
from memory, the data is loaded only once and preserved 
across calls to the Parallel Lookup Multiplier. The first data 
drive is handled specially since the check data has to be 
initialized for each check drive. Using the first data drive to 
initialize the check data saves doing the initialization as a 
separate step followed by updating it with the first data drive' s 
data. In addition to the first data drive, the first check drive is do this using 4 instructions for every 64 bytes of data for each 

of the N data drives, or N/16 instructions per byte. 
The M-1 non-parity check drives can invoke the Parallel 

Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 
check drive. One consideration is how to handle the data 
access. Two possible ways are: 

25 also handled specially since it is a parity drive, so its check 
data can be initialized to the first data drive' s data directly 
without needing the Parallel Lookup Multiplier. 

1) "colunm-by-colunm," i.e., 64 bytes for one data drive, 
followed by the next 64 bytes for that data drive, etc., and 
adding the products to the rumiing total in memory (us
ing the Parallel Adder) before moving onto the next row 
(data drive); and 

2) "row-by-row," i.e., 64 bytes for one data drive, followed 

In step 530, the first middle loop is called, in which the 
remainder of the check drives (that is, the non-parity check 

30 drives) have their check data initialized by the first data 
drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied with 
each of the first data drive's data bytes. This is handled by 
calling the Parallel Lookup Multiplier for each non-parity 

35 check drive. 

by the corresponding 64 bytes for the next data drive, 
etc., and keeping a running total using the Parallel 
Adder, then moving onto the next set of 64-byte chunks. 40 

In step 540, the second middle loop is called, which pro
cesses the other data drives' corresponding 64-byte chunks of 
data. As with the first data drive, each of the other data drives 
is processed separately, loading the respective 64 bytes of 
data into four registers (preserved across calls to the Parallel 
Lookup Multiplier). In addition, since the first check drive is Colunm-by-colunm can be thought of as "constant factor, 

varying data," in that the (GF multiplication) factor usually 
remains the same between iterations while the ( 64-byte) data 
changes with each iteration. Conversely, row-by-row can be 
thought of as "constant data, varying factor," in that the data 45 

usually remains the same between iterations while the factor 
changes with each iteration. 

the parity drive, its check data can be updated by directly 
adding these 64 bytes to it (using the Parallel Adder) before 
handling the non-parity check drives. 

In step 550, the inner loop is called for the next data drive. 
In the inner loop (as with the first middle loop), each of the 
non-parity check drives is associated with a corresponding 
factor for the particular data drive. The factor is multiplied 
with each of the next data drive' s data bytes using the Parallel 

Another consideration is how to handle the check drives. 
Two possible ways are: 

a) one at a time, i.e., generate all the check data for one 
check drive before moving onto the next check drive; 
and 

b) all at once, i.e., for each 64-byte chunk of original data, 
do all of the processing for each of the check drives 
before moving onto the next chunk of original data. 

While each of these techniques performs the same basic 
operations ( e.g., 40 instructions for every 64 bytes of data for 
each of the N data drives and M-1 non-parity check drives, or 
5N(M-1)/8 instructions per byte for the Parallel Lookup 
Multiplier), empirical results show that combination (2)(b ), 
that is, row-by-row data access on all of the check drives 
between data accesses performs best with the Parallel Lookup 
Multiplier. One reason may be that such an approach appears 
to minimize the number of memory accesses (namely, one) to 
each chunk of the original data D to generate the check data J. 
This embodiment of Sequencer 1 is described in more detail 
with reference to FIG. 4. 

50 Lookup Multiplier, and the results added to the check drive' s 
check data. 

Another such sequencer (Sequencer 2) can be used to 
reconstruct the lost data from the surviving data (using Algo
rithm 2). While the same colunm-by-colunm and row-by-row 

55 data access approaches are possible, as well as the same 
choices for handling the check drives, Algorithm 2 adds 
another dimension of complexity because of the four separate 
steps and whether to: (i) do the steps completely serially or (ii) 
do some of the steps concurrently on the same data. For 

60 example, step 1 (surviving check data generation) and step 4 
(lost check data regeneration) can be done concurrently on the 
same data to reduce or minimize the number of surviving 
original data accesses from memory. 

Empirical results show that method (2)(b )(ii), that is, row-
65 by-row data access on all of the check drives and for both 

surviving check data generation and lost check data regen
eration between data accesses performs best with the Parallel 
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Lookup Multiplier when reconstructing lost data using Algo
rithm 2. Again, this may be due to the apparent minimization 
of the number of memory accesses (namely, one) of each 
chunk of surviving original data X to reconstruct the lost data 
and the absence of memory accesses of reconstructed lost 5 

original data Y when regenerating the lost check data. This 
embodiment of Sequencer 1 is described in more detail with 
reference to FIGS. 5-7. 

In step 670, the second inner loop is called, in which the 
lost check data is updated for each failed check drive. Using 
the same 64 bytes of the next surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 660), the 
Parallel Lookup Multiplier is again called, this time to update 
each of the failed check drive's check data by the correspond-
ing component from the next surviving data drive. This com
pletes the computations involving the next surviving data 
drive' s 64 bytes of data, which were fetched with one access FIGS. 5-7 show an exemplary method 600 for sequencing 

the Parallel Lookup Multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion. 

Referring to FIG. 5, in step 610, the Sequencer 2 is called. 

10 from main memory and preserved in the same four registers 
across steps 660 and 670. 

Next, in step 680, the computation of the partial check data 
AxX is complete, so the surviving check data W is added to 
this result (recall that W-AxX is equivalent to W+AxX in 

15 binary Galois Field arithmetic). This is done by the fourth 
middle loop, which for each surviving check drive adds the 
corresponding 64-byte component of surviving check data W 
to the (surviving) partial check data AxX (using the Parallel 

Sequencer 2 has many similarities with the embodiment of 
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2 
processes the data drive data in 64-byte chunks like 
Sequencer 1. Sequencer 2 is more complex, however, in that 
only some of the data drive data is surviving; the rest has to be 
reconstructed. In addition, lost check data needs to be regen
erated. Like Sequencer 1, Sequencer 2 does these operations 20 

in such a way as to minimize memory accesses of the data 
drive data (by loading the data once and calling the Parallel 
Lookup Multiplier multiple times). Assume for ease of 
description that there is at least one surviving data drive; the 
case of no surviving data drives is handled a little differently, 
but not significantly different. In addition, recall from above 
that the driving formula behind data reconstruction is 
Y=B- 1 x(W-AxX), where Y is the lost original data, B-1 is the 
solution matrix, Wis the surviving check data, A is the partial 
check data encoding matrix (for the surviving check drives 
and the surviving data drives), and Xis the surviving original 
data. 

Adder) to produce the (lost) partial check data W-AxX. 
Continuing with FIG. 7, in step 690, the fifth middle loop is 

called, which performs the two dimensional matrix multipli
cation B-1 x(W-AxX) to produce the lost original data Y. The 
calculation is performed one row at a time, for a total of F 
rows, initializing the row to the first term of the corresponding 

25 linear combination of the solution matrix B-1 and the lost 
partial check data W-AxX (using the Parallel Lookup Mul
tiplier). 

In step 700, the third inner loop is called, which completes 
the remaining F-1 terms of the corresponding linear combi-

30 nation (using the Parallel Lookup Multiplier on each term) 
from the fifth middle loop in step 690 and updates the running 
calculation (using the Parallel Adder) of the next row of 
B-1x(W-AxX). This completes the next row (and recon
structs the corresponding failed data drive's lost data) oflost 

In step 620, the outer loop processes the next 64-byte 
chunk of data for each of the drives. Like Sequencer 1, the first 
surviving data drive is again handled specially since the par
tial check data AxX has to be initialized for each surviving 
check drive. 

In step 630, the first middle loop is called, in which the 
partial check data AxX is initialized for each surviving check 
drive based on the first surviving data drive' s 64 bytes of data. 
In this case, the Parallel Lookup Multiplier is called for each 
surviving check drive with the corresponding factor (from A) 
for the first surviving data drive. 

In step 640, the second middle loop is called, in which the 
lost check data is initialized for each failed check drive.Using 
the same 64 bytes of the first surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 630), the 
Parallel Lookup Multiplier is again called, this time to initial
ize each of the failed check drive's check data to the corre
sponding component from the first surviving data drive. This 
completes the computations involving the first surviving data 
drive's 64 bytes of data, which were fetched with one access 
from main memory and preserved in the same four registers 
across steps 630 and 640. 

Continuing with FIG. 6, in step 650, the third middle loop 

35 original data Y, which can then be stored at an appropriate 
location. 

In step 710, the fourth inner loop is called, in which the lost 
check data is updated for each failed check drive by the newly 
reconstructed lost data for the next failed data drive.Using the 

40 same 64 bytes of the next reconstructed lost data (preserved 
across calls to the Parallel Lookup Multiplier), the Parallel 
Lookup Multiplier is called to update each of the failed check 
drives' check data by the corresponding component from the 
next failed data drive. This completes the computations 

45 involving the next failed data drive's 64 bytes of recon
structed data, which were performed as soon as the data was 
reconstructed and without being stored and retrieved from 
main memory. 

Finally, in step 720, the sixth middle loop is called. The lost 
50 check data has been regenerated, so in this step, the newly 

regenerated check data is stored at an appropriate location (if 
desired). 

Aspects of the present invention can be also realized in 
other environments, such as two-byte quantities, each such 

55 two-byte quantity capable of taking on 216=65,536 possible 
values, by using similar constructs (scaled accordingly) to 
those presented here. Such extensions would be readily 
apparent to one of ordinary skill in the art, so their details will 

is called, which processes the other surviving data drives' 
corresponding 64-byte chunks of data. As with the first sur
viving data drive, each of the other surviving data drives is 
processed separately, loading the respective 64 bytes of data 
into four registers (preserved across calls to the Parallel 60 

Lookup Multiplier). 

be omitted for brevity of description. 
Exemplary techniques and methods for doing the Galois 

field manipulation and other mathematics behind RAID error 
correcting codes are described inAppendixA, which contains 
a paper "Information Dispersal Matrices for RAID Error 
Correcting Codes" prepared for the present application. 

In step 660, the first inner loop is called, in which the partial 
check data AxX is updated for each surviving check drive 
based on the next surviving data drive's 64 bytes of data. In 
this case, the Parallel Lookup Multiplier is called for each 
surviving check drive with the corresponding factor (from A) 
for the next surviving data drive. 

65 Multi-Core Considerations 
What follows is an exemplary embodiment for optimizing 

or improving the performance of multi-core architecture sys-
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terns when implementing the described erasure coding sys
tem routines. In multi-core architecture systems, each proces
sor die is divided into multiple CPU cores, each with their 
own local caches, together with a memory (bus) interface and 
possible on-die cache to interface with a shared memory with 5 

other processor dies. 
FIG. 8 illustrates a multi-core architecture system 100 hav

ing two processor dies 110 (namely, Die O and Die 1). 
Referring to FIG. 8, each die 110 includes four central 

processing units (CPUs or cores) 120 each having a local level 10 

1 (Ll) cache. Each core 120 may have separate functional 
units, for example, an x86 execution unit (for traditional 
instructions) and a SSE execution unit (for software designed 
for the newer SSE instruction set). An example application of 

15 
these function units is that the x86 execution unit can be used 
for the RAID control logic software while the SSE execution 
unit can be used for the GF operation software. Each die 110 
also has a level 2 (L2) cache/memory bus interface 130 shared 
between the four cores 120. Main memory 140, in tum, is 20 

shared between the two dies 110, and is connected to the 
input/output (I/O) controllers 150 that access external devices 
such as disk drives or other non-volatile storage devices via 
interfaces such as Peripheral Component Interconnect (PCI). 

Redundant array of independent disks (RAID) controller 25 

processing can be described as a series of states or functions. 
These states may include: (1) Command Processing, to vali
date and schedule a host request (for example, to load or store 
data from disk storage); (2) Command Translation and Sub
mission, to translate the host request into multiple disk 30 

requests and to pass the requests to the physical disks; (3) 
Error Correction, to generate check data and reconstruct lost 
data when some disks are not functioning correctly; and (4) 
Request Completion, to move data from internal buffers to 

35 
requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports 
caching, and can be avoided in a cacheless design. 

24 
cores 120, while allowing the other cores 120 to keep the data 
moving between memory 140 and the disk drives via the I/O 
interface 150. 

Embodiments of the present invention yield scalable, high 
performance RAID systems capable of outperforming other 
systems, and at much lower cost, due to the use of high 
volume commodity components that are leveraged to achieve 
the result. This combination can be achieved by utilizing the 
mathematical techniques and code optimizations described 
elsewhere in this application with careful placement of the 
resulting code on specific processing cores. Embodiments 
can also be implemented on fewer resources, such as single
core dies and/or single-die systems, with decreased parallel
ism and performance optimization. 

The process of subdividing and assigning individual cores 
120 and/or dies 110 to inherently parallelizable tasks will 
result in a performance benefit. For example, on a Linux 
system, software may be organized into "threads," and 
threads may be assigned to specific CPUs and memory sys
tems via thekthread_bindfunction when the thread is created. 
Creating separate threads to process the GF arithmetic allows 
parallel computations to take place, which multiplies the per
formance of the system. 

Further, creating multiple threads for command processing 
allows for fully overlapped execution of the command pro
cessing states. One way to accomplish this is to number each 
command, then use the arithmetic MOD function (% in C 
language) to choose a separate thread for each command. 
Another technique is to subdivide the data processing portion 
of each command into multiple components, and assign each 
component to a separate thread. 

FIG. 9 shows an exemplary disk drive configuration 200 
according to an embodiment of the present invention. 

Referring to FIG. 9, eight disks are shown, though this 
number can vary in other embodiments. The disks are divided 
into three types: data drives 210, parity drive 220, and check 
drives 230. The eight disks break down as three data drives 
210, one parity drive 220, and four check drives 230 in the 
embodiment of FIG. 9. 

Each of the data drives 210 is used to hold a portion of data. 
The data is distributed uniformly across the data drives 210 in 
stripes, such as 192 KB stripes. For example, the data for an 
application can be broken up into stripes of 192 KB, and each 
of the stripes in tum broken up into three 64 KB blocks, each 

45 of the three blocks being written to a different one of the three 
data drives 210. 

Parallelism is achieved in the embodiment of FIG. 8 by 
assigning different cores 120 to different tasks. For example, 40 

some of the cores 120 can be "command cores," that is, 
assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 and 
the disk drives via the I/O interface 150. Others of the cores 
120 can be "data cores," and assigned to the GF operations, 
that is, generating the check data from the original data, 
reconstructing the lost data from the surviving data, etc., 
including the Parallel Lookup Multiplier and the sequencers 
described above. For example, in exemplary embodiments, a 
scheduler can be used to divide the original data D into 50 

corresponding portions of each block, which can then be 
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc
tion. 

One of the benefits of this data core/command core subdi- 55 

The parity drive 220 is a special type of check drive in that 
the encoding ofits data is a simple summation (recall that this 
is exclusive OR in binary GF arithmetic) of the corresponding 
bytes of each of the three data drives 210. That is, check data 
generation (Sequencer 1) or regeneration (Sequencer 2) can 
be performed for the parity drive 220 using the Parallel Adder 
(and not the Parallel Lookup Multiplier). Accordingly, the 
check data for the parity drive 220 is relatively straightfor
ward to build. Likewise, when one of the data drives 210 no 
longer functions correctly, the parity drive 220 can be used to 
reconstruct the lost data by adding (same as subtracting in 
binary GF arithmetic) the corresponding bytes from each of 
the two remaining data drives 210. Thus, a single drive failure 

vision of processing is ensuring that different code will be 
executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated Ll cache in each core 120, 
and avoids the "pollution" of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on each 
die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. This 65 

helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other 

60 ofone of the data drives 210 is very straightforward to handle 
when the parity drive 220 is available (no Parallel Lookup 
Multiplier). Accordingly, the parity drive 220 can replace 
much of the GF multiplication operations with GF addition 
for both check data generation and lost data reconstruction. 

Each of the check drives 230 contains a linear combination 
of the corresponding bytes of each of the data drives 210. The 
linear combination is different for each check drive 230, but in 
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general is represented by a sunnnation of different multiples 
of each of the corresponding bytes of the data drives 210 
(again, all arithmetic being GF arithmetic). For example, for 
the first check drive 230, each of the bytes of the first data 
drive 210 could be multiplied by 4, each of the bytes of the 5 

second data drive 210 by 3, and each of the bytes of the third 
data drive 210 by 6, then the corresponding products for each 
of the corresponding bytes could be added to produce the first 
check drive data. Similar linear combinations could be used to 
produce the check drive data for the other check drives 230. 10 

The specifics of which multiples for which check drive are 
explained in Appendix A. 

With the addition of the parity drive 220 and check drives 
230, eight drives are used in the RAID system 200 of FIG. 9. 
Accordingly, each 192 KB oforiginal data is stored as 512 KB 15 

(i.e., eight blocks of 64 KB) of (original plus check) data. 
Such a system 200, however, is capable of recovering all of 
the original data provided any three of these eight drives 
survive. That is, the system 200 can withstand a concurrent 
failure of up to any five drives and still preserve all of the 20 

original data. 
Exemplary Routines to Implement an Embodiment 

The error correcting code (ECC) portion of an exemplary 
embodiment of the present invention may be written in soft
ware as, for example, four functions, which could be named 25 

as ECCinitialize, ECCSolve, ECCGenerate, and ECCRegen
erate. The main functions that perform work are ECCGener-

26 
ECCSolve 
The function ECCSolve creates constant tables that are 

used to compute a solution for a particular configuration of 
data drives, check drives, and failed drives. It is called prior to 
using the functions ECCGenerate or ECCRegenerate. It 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 
For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B-1 (i.e., the solution 
matrix). 

ECCGenerate 
The function ECCGenerate is used to generate check codes 

(that is, the check data matrix J) for a particular configuration 
of data drives and check drives, using Sequencer 1 and the 
Parallel Lookup Multiplier as described above. Prior to call
ing ECCGenerate, ECCSolve is called to compute the appro
priate constants for the particular configuration of data drives 
and check drives, as well as the solution matrix B-1

. 

ECCRegenerate 
The function ECCRegenerate is used to regenerate data 

vectors and check code vectors for a particular configuration 
of data drives and check drives (that is, reconstructing the 
original data matrix D from the surviving data matrix X and 
the surviving check matrix W, as well as regenerating the lost 
check data from the restored original data), this time using 
Sequencer 2 and the Parallel Lookup Multiplier as described 
above. Prior to calling ECCRegenerate, ECCSolve is called 

ate and ECCRegenerate. ECCGenerate generates check 
codes for data that are used to recover data when a drive 
suffers an outage (that is, ECCGenerate generates the check 
data J from the original data Dusing Sequencer 1). ECCRe
generate uses these check codes and the remaining data to 
recover data after such an outage (that is, ECCRegenerate 
uses the surviving check data W, the surviving original data X, 
and Sequencer 2 to reconstruct the lost original data Y while 
also regenerating any of the lost check data). Prior to calling 
either of these functions, ECCSolve is called to compute the 
constants used for a particular configuration of data drives, 
check drives, and failed drives (for example, ECCSolve 
builds the solution matrix B-1 together with the lists of sur
viving and failed data and check drives). Prior to calling 
ECCSolve, ECCinitialize is called to generate constant tables 
used by all of the other functions (for example, ECCinitialize 
builds the IDM E and the two lookup tables for the Parallel 
Lookup Multiplier). 

30 to compute the appropriate constants for the particular con
figuration of data drives, check drives, and failed drives, as 
well as the solution matrix B-1

. 

ECCinitialize 
The function ECCinitialize creates constant tables that are 

used by all subsequent functions. It is called once at program 
initialization time. By copying or precomputing these values 

Exemplary Implementation Details 
As discussed in Appendix A, there are two significant 

35 sources of computational overhead in erasure code process
ing ( such as an erasure coding system used in RAID process
ing): the computation of the solution matrix B-1 for a given 
failure scenario, and the byte-level processing of encoding the 
check data J and reconstructing the lost data after a lost packet 

40 ( e.g., data drive failure). By reducing the solution matrix B-1 

to a matrix inversion of a FxF matrix, where F is the number 
of lost packets ( e.g., failed drives), that portion of the com
putational overhead is for all intents and purposes negligible 
compared to the megabytes (MB), gigabytes (GB), and pos-

45 sibly terabytes (TB) of data that needs to be encoded into 
check data or reconstructed from the surviving original and 
check data. Accordingly, the remainder of this section will be 
devoted to the byte-level encoding and regenerating process-
ing. 

up front, these constant tables can be used to replace more 50 

time-consuming operations with simple table look-ups (such 
As already mentioned, certain practical simplifications can 

be assumed for most implementations. By using a Galois field 
of256 entries, byte-level processing can be used for all of the 
GF arithmetic. Using the master encoding matrix S described 
in Appendix A, any combination of up to 127 data drives, 1 
parity drive, and 128 check drives can be supported with such 
a Galois field. While, in general, any combination of data 

as for the Parallel Lookup Multiplier). For example, four 
tables useful for speeding up the GF arithmetic include: 

1. mvct-an array of constants used to perform GF multi
plication with the PSHUFB instruction that operates on SSE 55 

registers (that is, the Parallel Lookup Multiplier). 
drives and check drives that adds up to 256 total drives is 
possible, not all combinations provide a parity drive when 
computed directly. Using the master encoding matrix S, on 

2. mast----contains the master encoding matrix S ( or the 
Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, such as the 
check drive encoding matrix H 

3. mul_tab-contains the results of all possible GF multi
plication operations of any two operands (for example, 256x 
256=65,536 bytes for all of the possible products of two 
different one-byte quantities) 

60 the other hand, allows all such combinations (including a 
parity drive) to be built ( or simply indexed) from the same 
such matrix. That is, the appropriate sub-matrix (including 
the parity drive) can be used for configurations ofless than the 
maximum number of drives. 

4. div _tab----contains the results of all possible GF division 65 

operations of any two operands ( can be similar in size to 
mul_tab) 

In addition, using the master encoding matrix S permits 
further data drives and/or check drives can be added without 
requiring the recomputing of the IDM E (unlike other pro-
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posed solutions, which recompute E for every change ofN or 
M). Rather, additional indexing of rows and/or columns of the 
master encoding matrix S will suffice. As discussed above, 
the use of the parity drive can eliminate or significantly 
reduce the somewhat complex GF multiplication operations 5 

associated with the other check drives and replaces them with 
simple GF addition (bitwise exclusive OR in binary Galois 
fields) operations. It should be noted that master encoding 
matrices with the above properties are possible for any power
of-two number of drives 2P =Nmax+Mmax where the maximum lO 

number of data drives N max is one less than a power of two 
(e.g., Nmax=l27 or 63) and the maximum number of check 
drives Mmax (including the parity drive) is 2P -N max· 

28 
E information dispersal matrix 

(IDM)((N + M)xN) = [ ~] 

F number of failed data drives 
G number of failed check drives 
H check drive encoding matrix (MxN) 
I identity matrix (IK=KxK identity matrix, IN=NxN identity 

matrix) 
J encoded check data matrix (MxL) 
K number of surviving data drives=N-F 
L data block size ( elements or bytes) 

15 M number of check drives As discussed earlier, in an exemplary embodiment of the 
present invention, a modem x86 architecture is used (being 
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions. 
Each XMM register is 128 bits and is available for special 
purpose processing with the SSE instructions. Each of these 20 
XMM registers holds 16 bytes (8-bit), so four such registers 
can be used to store 64 bytes of data. Thus, by using SSE 
instructions (some of which work on different operand sizes, 
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated at 25 
a time using four consecutive SSE instructions ( e.g., fetching 
from memory, storing into memory, zeroing, adding, multi
plying), the remaining registers being used for intermediate 
results and temporary storage. With such an architecture, 
several routines are useful for optimizing the byte-level per- 30 
formance, including the Parallel Lookup Multiplier, 
Sequencer 1, and Sequencer 2 discussed above. 

While the above description contains many specific 
embodiments of the invention, these should not be construed 
as limitations on the scope of the invention, but rather as 35 

examples of specific embodiments thereof. Accordingly, the 
scope of the invention should be determined not by the 
embodiments illustrated, but by the appended claims and 
their equivalents. 

Glossary of Some Variables 

A encoding matrix (FxK), sub-matrix ofT 

B encoding matrix (FxF), sub-matrix ofT 

B- 1 solution matrix (FxF) 

40 

Mmax maximum value ofM 
N number of data drives 
Nmaxmaximum value ofN 
0 zero matrix (KxF), sub-matrix ofT 
S master encoding matrix ((Mmax+Nmax)xNmax) 
T transformed IDM 

[
h o] 

(NxN) = A B 

W surviving check data matrix (FxL) 
X surviving original data matrix (KxL) 
Y lost original data matrix (FxL) 

What is claimed is: 
1. A system for accelerated error-correcting code (ECC) 

processing comprising: 
a processing core for executing computer instructions and 

accessing data from a main memory, the processing core 
comprising at least 16 data registers, each of the data 
registers comprising at least 16 bytes; and 

a non-volatile storage medium for storing the computer 
instructions, 

wherein the processing core, the non-volatile storage 
medium, and the computer instructions are configured to 
implement an erasure coding system comprising: 
a data matrix for holding original data in the main 

memory; 
a check matrix for holding check data in the main 

C encoded data matrix 
45 memory; 

((N + M) XL) = [ ~ l 

C' surviving encoded data matrix 

(NxL) = [:] 

D original data matrix (N xL) 

D' permuted original data matrix 

(NxL)=[~] 

an encoding matrix for holding first factors in the main 
memory, the first factors being for encoding the origi
nal data into the check data; and 

a thread for executing on the processing core and com-
50 prising: 

a parallel multiplier for concurrently multiplying 
multiple data entries of a matrix by a single factor; 
and 

a first sequencer for ordering operations through the 
55 data matrix and the encoding matrix using the par

allel multiplier to generate the check data. 
2. The system of claim 1, wherein the parallel multiplier is 

configured to process the data in units of at least 64 bytes 
spread over at least four of the data registers at a time. 

60 3. The system of claim 2, wherein the parallel multiplier is 
further configured to: 

receive an input operand in the at least four of the data 
registers; and 

return with the input operand intact in the at least four of the 
65 data registers. 

4. The system of claim 2, wherein consecutive ones of the 
computer instructions to process each of the units of the data 
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access separate ones of the data registers to permit concurrent 
execution of the consecutive ones of the computer instruc
tions on the processing core. 

30 
quantities across 16 byte-sized entries using the PSHUFB 
(Packed Shuffle Bytes) or equivalent instruction. 

5. The system of claim 1, wherein the parallel multiplier 
comprises two lookup tables for doing concurrent multipli- 5 

cation of 4-bit quantities across 16 byte-sized entries using 
the PSHUFB (Packed Shuffle Bytes) or equivalent instruc
tion. 

12. The method of claim 7, wherein the generating of the 
check data further comprises: 

receiving by the parallel multiplier an input operand in at 
least one of the data registers; and 

returning by the parallel multiplier the input operand intact 
in the at least one of the data registers. 

13._ ~ non-transitory computer-readable storage medium 
contammg a computer program comprising a plurality of 
computer instructions for performing accelerated error-cor
recting code (ECC) processing on a computing system com-

6. The system of claim 1, wherein the parallel multiplier is 
further configured to: 10 

receive an input operand inat least one of the data registers; 
and 

return with the input operand intact in the at least one of the 
data registers. 

7. A method of accelerated error-correcting code (ECC) 
processing on a computing system comprising a non-volatile 
storage medium, a processing core for accessing instructions 
and data from a main memory, and a computer program 
comprising a plurality of computer instructions for imple-
menting an erasure coding system, the processing core com-
prising at least 16 data registers, each of the data registers 
comprising at least 16 bytes, the method comprising: 

prising a processing core for accessing instructions and data 
from a main memory, the processing core comprising at least 
16data registers, each of the data registers comprising at least 

15 16 bytes, the computer instructions being configured to 
implement an erasure coding system when executed on the 
computing system by performing the steps of: 

20 

arranging original data as a data matrix m the mam 
memory; 

arranging first factors as an encoding matrix in the main 
memory, the first factors being for encoding the original 
data into check data, the check data being arranged as a 
check matrix in the main memory; and 

generating the check data using a parallel multiplier for 
storing the computer program on the non-volatile storage 

medium; 25 
executing the computer instructions on the processing concurrently multiplying multiple data entries of a 

matrix by a single factor, the generating of the check data 
comprising ordering operations through the data matrix 
and the encoding matrix using the parallel multiplier. 

core; 
arranging original data as a data matrix in the main 

memory; 
arranging first factors as an encoding matrix in the main 

memory, the first factors being for encoding the original 
data into check data, the check data being arranged as a 
check matrix in the main memory; and 

generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a 
matrix by a single factor, the generating of the check data 
comprising ordering operations through the data matrix 
and the encoding matrix using the parallel multiplier. 

14. The storage medium of claim 13, wherein the generat-
30 ing of the check data further comprises processing the data by 

the parallel multiplier in units of at least 64 bytes spread over 
at least four of the data registers at a time. 
. 15. The storage medium of claim 14, wherein the generat
mg of the check data further comprises: 

35 receiving by the parallel multiplier an input operand in the 
at least four of the data registers; and 

8. The method of claim 7, wherein the generating of the 
check data further comprises processing the data by the par- 40 
all el multiplier in units of at least 64 bytes spread over at least 
four of the data registers at a time. 

returning by the parallel multiplier the input operand intact 
in the at least four of the data registers. 

16. The storage medium of claim 14, wherein 
consecutive ones of the computer instructions that process 

each of the units of the data access separate ones of the 
data registers, 9. The method of claim 8, wherein the generating of the 

check data further comprises: 
receiving by the parallel multiplier an input operand in the 45 

at least four of the data registers; and 

the executing of the computer instructions on the process
ing core further comprises concurrently executing the 
consecutive ones of the computer instructions on the 
processing core. returning by the parallel multiplier the input operand intact 

in the at least four of the data registers. 
10. The method of claim 8, wherein 
consecutive ones of the computer instructions that process 

each of the units of the data access separate ones of the 
data registers, 

the executing of the computer instructions on the process
ing core further comprises concurrently executing the 
consecutive ones of the computer instructions on the 
processing core. 

11. The method of claim 7, wherein the parallel multiplier 
comprises two lookup tables and the generating of the check 
data further comprises using the parallel multiplier with the 
two lookup tables to do concurrent multiplication of 4-bit 

17. The storage medium of claim 13, wherein the parallel 
multiplier comprises two lookup tables and the generating of 
the check data further comprises using the parallel multiplier 

50 with the two lookup tables to do concurrent multiplication of 
4-bit quantities across 16byte-sized entries using the 
PSHUFB (Packed Shuffle Bytes) or equivalent instruction. 

18. The storage medium of claim 13, wherein the generat-
ing of the check data further comprises: 

55 receiving by the parallel multiplier an input operand in at 
least one of the data registers; and 

returning by the parallel multiplier the input operand intact 
in the at least one of the data registers. 

* * * * * 
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ACCELERATED ERASURE CODING SYSTEM 
AND METHOD 

2 
rated herein by reference, p. 7, "Thus, in 2-disk-degraded 
mode, performance will be very slow. However, it is expected 
that that will be a rare occurrence, and that performance will 
not matter significantly in that case." See also Robert Mad-CROSS-REFERENCE TO RELATED 

APPLICATIONS 

This application is a continuation of U.S. patent applica
tion Ser. No. 14/223,740, filed on Mar. 24, 2014, which is a 
continuation of U.S. patent application Ser. No. 13/341,833, 
filed on Dec. 30, 2011, now U.S. Pat. No. 8,683,296, issued on 
Mar. 25, 2014, the entire contents of each of which are 
expressly incorporated herein by reference. 

5 dock et al., "Surviving Two Disk Failures," p. 6, "The main 
difficulty with this technique is that calculating the check 
codes, and reconstructing data after failures, is quite complex. 
It involves polynomials and thus multiplication, and requires 
special hardware, or at least a signal processor, to do it at 

BACKGROUND 

10 sufficient speed." In addition, see also James S. Plank, "All 
About Erasure Codes: -Reed-Solomon Coding-LDPC 
Coding," slide 15 ( describing computational complexity of 
Reed-Solomon decoding), "Bottom line: When n & m grow, 
it is brutally expensive." Accordingly, there appears to be a 

1. Field 
Aspects of embodiments of the present invention are 

directed toward an accelerated erasure coding system and 
method. 

15 general consensus among experts in the field that erasure 
coding systems are impractical for RAID systems for all but 
small values of M (that is, small numbers of check drives), 
such as 1 or 2. 

Modem disk drives, on the other hand, are much less reli-
2. Description of Related Art 20 able than those envisioned when RAID was proposed. This is 

due to their capacity growing out of proportion to their reli
ability. Accordingly, systems with only a single check disk 
have, for the most part, been discontinued in favor of systems 

An erasure code is a type of error-correcting code (ECC) 
useful for forward error-correction in applications like a 
redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data ( or 
original data) is organized in stripes, each of which is broken 25 

up into N equal-sized blocks, or data blocks, for some positive 
integer N. The data for each stripe is thus reconstructable by 
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets 
lost, erasure codes also encode an additional M equal-sized 30 

blocks ( called check blocks or check data) from the original N 
data blocks, for some positive integer M. 

with two check disks. 
In terms of reliability, a higher check disk count is clearly 

more desirable than a lower check disk count. If the count of 
error events on different drives is larger than the check disk 
count, data may be lost and that cannot be reconstructed from 
the correctly functioning drives. Error events extend well 
beyond the traditional measure of advertised mean time 
between failures (MTBF). A simple, real world example is a 
service event on a RAID system where the operator mistak
enly replaces the wrong drive or, worse yet, replaces a good 
drive with a broken drive. In the absence of any generally 

The N data blocks and the M check blocks are all the same 
size. Accordingly, there are a total ofN + M equal-sized blocks 
after encoding. The N + M blocks may, for example, be trans
mitted to a receiver as N+M separate packets, or written to 
N+M corresponding disk drives. For ease of description, all 
N+M blocks after encoding will be referred to as encoded 
blocks, though some (for example, N of them) may contain 
unencoded portions of the original data. That is, the encoded 40 

data refers to the original data together with the check data. 

35 accepted methodology to train, certify, and measure the effec
tiveness of service technicians, these types of events occur at 
an unknown rate, but certainly occur. The foolproof solution 
for protecting data in the face of multiple error events is to 
increase the check disk count. 

The M check blocks build redundancy into the system, in a 
very efficient manner, in that the original data ( as well as any 
lost check data) can be reconstructed if any N of the N+M 
encoded blocks are received by the receiver, or if any N of the 45 

N+M disk drives are functioning correctly. Note that such an 
erasure code is also referred to as "optimal." For ease of 
description, only optimal erasure codes will be discussed in 
this application. In such a code, up to M of the encoded blocks 
can be lost, (e.g., up to M of the disk drives can fail) so that if 50 

any N of the N+M encoded blocks are received successfully 
by the receiver, the original data (as well as the check data) 
can be reconstructed. N/(N+M) is thus the code rate of the 
erasure code encoding (i.e., how much space the original data 
takes up in the encoded data). Erasure codes for select values 55 

ofN and M can be implemented on RAID systems employing 
N+M (disk) drives by spreading the original data among N 
"data" drives, and using the remaining M drives as "check" 
drives. Then, when any N of the N+M drives are correctly 
functioning, the original data can be reconstructed, and the 60 

check data can be regenerated. 
Erasure codes ( or more specifically, erasure coding sys

tems) are generally regarded as impractical for values of M 
larger than 1 ( e.g., RAIDS systems, such as parity drive sys
tems) or 2 (RAID6 systems), that is, for more than one or two 65 

check drives. For example, see H. Peter Anvin, "The math
ematics of RAID-6," the entire content of which is incorpo-

SUMMARY 

Aspects of embodiments of the present invention address 
these problems by providing a practical erasure coding sys
tem that, for byte-level RAID processing (where each byte is 
made up of 8 bits), performs well even for values ofN+M as 
large as 256 drives (for example, N=127 data drives and 
M=129 check drives). Further aspects provide for a single 
precomputed encoding matrix ( or master encoding matrix) S 
of size MmaxxNmax, or (Nmax+Mmax)xNmax or (Mmax-l)x 
N max, elements ( e.g., bytes), which can be used, for example, 
for any combination of NsNmax data drives and MsMmax 
check drives such that Nmax+Mmaxs256 (e.g., Nmax =127 and 
Mmax=l29, or Nmax=63 and Mm= =193). This is an improve
ment over prior art solutions that rebuild such matrices from 
scratch every time N or M changes ( such as adding another 
check drive). Still higher values ofN and Mare possible with 
larger processing increments, such as 2 bytes, which affords 
up to N+M=65,536 drives (such as N=32,767 data drives and 
M=32,769 check drives). 

Higher check disk count can offer increased reliability and 
decreased cost. The higher reliability comes from factors 
such as the ability to withstand more drive failures. The 
decreased cost arises from factors such as the ability to create 
larger groups of data drives. For example, systems with two 
checks disks are typically limited to group sizes of 10 or fewer 
drives for reliability reasons. With a higher check disk count, 
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the data matrix and the encoding matrix using the parallel 
multiplier to generate the check data. 

larger groups are available, which can lead to fewer overall 
components for the same unit of storage and hence, lower 
cost. 

Additional aspects of embodiments of the present inven
tion further address these problems by providing a standard 
parity drive as part of the encoding matrix. For instance, 
aspects provide for a parity drive for configurations with up to 
127 data drives and up to 128 (non-parity) check drives, for a 
total of up to 256 total drives including the parity drive. 
Further aspects provide for different breakdowns, such as up 
to 63 data drives, a parity drive, and up to 192 (non-parity) 
check drives. Providing a parity drive offers performance 
comparable to RAIDS in comparable circumstances (such as 
single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives. 

The first sequencer may be configured to access each entry 
of the data matrix from the main memory at most once while 

5 generating the check data. 
The processing core may include a plurality of processing 

cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data by dividing the data matrix into a 

10 plurality of data matrices, dividing the check matrix into a 
plurality of check matrices, assigning corresponding ones of 
the data matrices and the check matrices to the threads, and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 

15 check matrices from respective ones of the data matrices. 

Further aspects are directed to a system and method for 
implementing a fast solution matrix algorithm for Reed-So
lomon codes. While known solution matrix algorithms com- 20 

pute an N xN solution matrix ( see, for example, J. S. Plank, "A 
tutorial on Reed-Solomon coding for fault-tolerance in 
RAID-like systems," Software-Practice & Experience, 
27(9):995-1012, September 1997, and J. S. Plank and Y. 
Ding, "Note: Correction to the 1997 tutorial on Reed-So- 25 

lomon coding," Technical Report CS-03-504, University of 
Tennessee, April 2003), requiring O(N3

) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FxF solution 
matrix, where F is the number of failed data drives. The 30 

overhead for computing this FxF solution matrix is approxi
mately F3 /3 multiplication operations and the same number 
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives Fis consid
erably smaller than the number of data drives N. Accordingly, 35 

the fast solution matrix algorithm is considerably faster than 
any known approach for practical values ofF and N. 

The data matrix may include a first number of rows. The 
check matrix may include a second number of rows. The 
encoding matrix may include the second number of rows and 
the first number of columns. 

The data matrix may be configured to add rows to the first 
number of rows or the check matrix may be configured to add 
rows to the second number of rows while the first factors 
remain unchanged. 

Each of entries of one of the rows of the encoding matrix 
may include a multiplicative identity factor (such as 1). 

The data matrix may be configured to be divided by rows 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix corresponding 
to lost original data of the original data and including a third 
number of rows. The erasure coding system may further 
include a solution matrix for holding second factors in the 
main memory. The second factors are for decoding the check 
data into the lost original data using the surviving original 
data and the first factors. 

The solution matrix may include the third number of rows 
and the third number of colunms. 

The solution matrix may further include an inverted said 
third number by said third number sub-matrix of the encoding 
matrix. 

The erasure coding system may further include a first list of 
rows of the data matrix corresponding to the surviving data 
matrix, and a second list of rows of the data matrix corre
sponding to the lost data matrix. 

The data matrix may be configured to be divided into a 
surviving data matrix for holding surviving original data of 
the original data, and a lost data matrix corresponding to lost 
original data of the original data. The erasure coding system 
may further include a solution matrix for holding second 
factors in the main memory. The second factors are for decod-

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost ( original and 
check) data reconstruction. Some of these aspects are directed 40 

toward fetching the surviving (original and check) data a 
minimum number of times (that is, at most once) to carry out 
the data reconstruction. Some of these aspects are directed 
toward efficient implementations that can maximize or sig
nificantly leverage the available parallel processing power of 45 

multiple cores working concurrently on the check data gen
eration and the lost data reconstruction. Existing implemen
tations do not attempt to accelerate these aspects of the data 
generation and thus fail to achieve a comparable level of 
performance. 

In an exemplary embodiment of the present invention, a 
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for 
executing computer instructions and accessing data from a 
main memory; and a non-volatile storage medium (for 55 

example, a disk drive, or flash memory) for storing the com
puter instructions. The processing core, the storage medium, 
and the computer instructions are configured to implement an 
erasure coding system. The erasure coding system includes a 
data matrix for holding original data in the main memory, a 60 

check matrix for holding check data in the main memory, an 
encoding matrix for holding first factors in the main memory, 
and a thread for executing on the processing core. The first 
factors are for encoding the original data into the check data. 
The thread includes a parallel multiplier for concurrently 65 

multiplying multiple data entries of a matrix by a single 
factor; and a first sequencer for ordering operations through 

50 ing the check data into the lost original data using the surviv
ing original data and the first factors. The thread may further 
include a second sequencer for ordering operations through 
the surviving data matrix, the encoding matrix, the check 
matrix, and the solution matrix using the parallel multiplier to 
reconstruct the lost original data. 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main memory 
at most once while reconstructing the lost original data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include: a scheduler for 
generating the check data and reconstructing the lost original 
data by dividing the data matrix into a plurality of data matri
ces; dividing the surviving data matrix into a plurality of 
surviving data matrices; dividing the lost data matrix into a 
plurality oflost data matrices; dividing the check matrix into 
a plurality of check matrices; assigning corresponding ones 
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According to another exemplary embodiment of the 
present invention, a method of accelerated error-correcting 
code (ECC) processing on a computing system is provided. 
The computing system includes a non-volatile storage 

of the data matrices, the surviving data matrices, the lost data 
matrices, and the check matrices to the threads; and assigning 
the threads to the processing cores to concurrently generate 
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices and to concur
rently reconstruct portions of the lost original data corre
sponding to the lost data matrices from respective ones of the 
surviving data matrices and the check matrices. 

The check matrix may be configured to be divided into a 
surviving check matrix for holding surviving check data of 
the check data, and a lost check matrix corresponding to lost 
check data of the check data. The second sequencer may be 
configured to order operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier to regenerate the lost 
check data. 

5 medium (such as a disk drive or flash memory), a processing 
core for accessing instructions and data from a main memory, 
and a computer program including a plurality of computer 
instructions for implementing an erasure coding system. The 
method includes: storing the computer program on the stor-

lO age medium; executing the computer instructions on the pro
cessing core; arranging original data as a data matrix in the 
main memory; arranging first factors as an encoding matrix in 
the main memory, the first factors being for encoding the 

The second sequencer may be further configured to recon
struct the lost original data concurrently with regenerating the 
lost check data. 

15 
original data into check data, the check data being arranged as 
a check matrix in the main memory; and generating the check 
data using a parallel multiplier for concurrently multiplying 
multiple data entries of a matrix by a single factor. The gen
erating of the check data includes ordering operations 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main memory 

20 through the data matrix and the encoding matrix using the 
parallel multiplier. 

at most once while reconstructing the lost original data and 
regenerating the lost check data. 

The second sequencer may be further configured to regen- 25 

erate the lost check data without accessing the reconstructed 
lost original data from the main memory. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 30 

generating the check data, reconstructing the lost original 
data, and regenerating the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviving 
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 35 

dividing the check matrix into a plurality of check matrices; 
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a 
plurality of lost check matrices; assigning corresponding 
ones of the data matrices, the surviving data matrices, the lost 40 

data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the threads; and assigning 
the threads to the processing cores to concurrently generate 
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices, to concurrently 45 

reconstruct portions of the lost original data corresponding to 
the lost data matrices from respective ones of the surviving 
data matrices and the surviving check matrices, and to con
currently regenerate portions of the lost check data corre
sponding to the lost check matrices from respective ones of 50 

the surviving data matrices and respective portions of the 
reconstructed lost original data. 

The processing core may include 16 data registers. Each of 
the data registers may include 16 bytes. The parallel multi
plier may be configured to process the data in units of at least 55 

64 bytes spread over at least fourof the data registers at a time. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data by: dividing the data matrix into 
a plurality of data matrices; dividing the check matrix into a 
plurality of check matrices; and assigning corresponding 
ones of the data matrices and the check matrices to the pro
cessing cores to concurrently generate portions of the check 
data corresponding to the check matrices from respective 
ones of the data matrices. 

The method may further include: dividing the data matrix 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix corresponding 
to lost original data of the original data; arranging second 
factors as a solution matrix in the main memory, the second 
factors being for decoding the check data into the lost original 
data using the surviving original data and the first factors; and 
reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel mul
tiplier. 

The reconstructing of the lost original data may include 
accessing each entry of the surviving data matrix from the 
main memory at most once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data and the reconstructing of the lost 
original data by: dividing the data matrix into a plurality of 
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix 
into a plurality oflost data matrices; dividing the check matrix 
into a plurality of check matrices; and assigning correspond-

Consecutive instructions to process each of the units of the 
data may access separate ones of the data registers to permit 
concurrent execution of the consecutive instructions by the 
processing core. 

The parallel multiplier may include two lookup tables for 
doing concurrent multiplication of 4-bit quantities across 16 
byte-sized entries using the PSHUFB (Packed Shuffle Bytes) 
instruction. 

60 ing ones of the data matrices, the surviving data matrices, the 
lost data matrices, and the check matrices to the processing 
cores to concurrently generate portions of the check data 
corresponding to the check matrices from respective ones of 
the data matrices and to concurrently reconstruct portions of 

The parallel multiplier may be further configured to receive 
an input operand in four of the data registers, and return with 
the input operand intact in the four of the data registers. 

65 the lost original data corresponding to the lost data matrices 
from respective ones of the surviving data matrices and the 
check matrices. 
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The method may further include: dividing the check matrix 
into a surviving check matrix for holding surviving check 
data of the check data, and a lost check matrix corresponding 

8 
The processing core may include a plurality of processing 

cores. The computer instructions may be further configured to 
perform the step of scheduling the generating of the check 
data by: dividing the data matrix into a plurality of data to lost check data of the check data; and regenerating the lost 

check data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data may take place 
concurrently with the regenerating of the lost check data. 

5 matrices; dividing the check matrix into a plurality of check 
matrices; and assigning corresponding ones of the data matri
ces and the check matrices to the processing cores to concur
rently generate portions of the check data corresponding to 
the check matrices from respective ones of the data matrices. 

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each 
entry of the surviving data matrix from the main memory at 
most once. 

10 
The computer instructions may be further configured to 

perform the steps of: dividing the data matrix into a surviving 
data matrix for holding surviving original data of the original 
data, and a lost data matrix corresponding to lost original data 
of the original data; arranging second factors as a solution 
matrix in the main memory, the second factors being for The regenerating of the lost check data may take place 

without accessing the reconstructed lost original data from 
the main memory. 

15 decoding the check data into the lost original data using the 
surviving original data and the first factors; and reconstruct
ing the lost original data by ordering operations through the 
surviving data matrix, the encoding matrix, the check matrix, The processing core may include a plurality of processing 

cores. The executing of the computer instructions may 
include executing the computer instructions on the process- 20 

ing cores. The method may further include scheduling the 
generating of the check data, the reconstructing of the lost 
original data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of surviving 
data matrices; dividing the lost data matrix into a plurality of 
lost data matrices; dividing the check matrix into a plurality of 
check matrices; dividing the surviving check matrix into a 
plurality of surviving check matrices; dividing the lost check 
matrix into a plurality of lost check matrices; and assigning 
corresponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the sur
viving check matrices, and the lost check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct 
portions of the lost original data corresponding to the lost data 
matrices from respective ones of the surviving data matrices 
and the surviving check matrices, and to concurrently regen
erate portions of the lost check data corresponding to the lost 
check matrices from respective ones of the surviving data 
matrices and respective portions of the reconstructed lost 
original data. 

and the solution matrix using the parallel multiplier. 
The computer instructions may be further configured to 

perform the steps of: dividing the check matrix into a surviv
ing check matrix for holding surviving check data of the 
check data, and a lost check matrix corresponding to lost 
check data of the check data; and regenerating the lost check 

25 data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each 

30 
entry of the surviving data matrix from the main memory at 
most once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured to 
perform the step of scheduling the generating of the check 
data, the reconstructing of the lost original data, and the 

35 regenerating of the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviving 
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 
dividing the check matrix into a plurality of check matrices; 

40 dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a 
plurality oflost check matrices; and assigning corresponding 
ones of the data matrices, the surviving data matrices, the lost 
data matrices, the check matrices, the surviving check matri-According to yet another exemplary embodiment of the 

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a 
digital video disk (DVD), flash memory, a universal serial bus 
(USB) drive, etc.) containing a computer program including a 
plurality of computer instructions for performing accelerated 
error-correcting code (ECC) processing on a computing sys
tem is provided. The computing system includes a processing 
core for accessing instructions and data from a main memory. 
The computer instructions are configured to implement an 
erasure coding system when executed on the computing sys
tem by performing the steps of: arranging original data as a 55 

data matrix in the main memory; arranging first factors as an 
encoding matrix in the main memory, the first factors being 
for encoding the original data into check data, the check data 
being arranged as a check matrix in the main memory; and 
generating the check data using a parallel multiplier for con
currently multiplying multiple data entries of a matrix by a 
single factor. The generating of the check data includes order
ing operations through the data matrix and the encoding 
matrix using the parallel multiplier. 

45 ces, and the lost check matrices to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices, to concurrently reconstruct portions of the lost 
original data corresponding to the lost data matrices from 

50 respective ones of the surviving data matrices and the surviv
ing check matrices, and to concurrently regenerate portions of 
the lost check data corresponding to the lost check matrices 
from respective ones of the surviving data matrices and 
respective portions of the reconstructed lost original data. 

By providing practical and efficient systems and methods 
for erasure coding systems (which for byte-level processing 
can support up to N+M=256 drives, such as N=127 data 
drives and M=129 check drives, including a parity drive), 
applications such as RAID systems that can tolerate far more 

60 failing drives than was thought to be possible or practical can 
be implemented with accelerated performance significantly 
better than any prior art solution. 

BRIEF DESCRIPTION OF THE DRAWINGS 
The generating of the check data may include accessing 65 

each entry of the data matrix from the main memory at most 
once. 

The accompanying drawings, together with the specifica
tion, illustrate exemplary embodiments of the present inven-
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tion and, together with the description, serve to explain 
aspects and principles of the present invention. 

FIG. 1 shows an exemplary stripe of original and check 
data according to an embodiment of the present invention. 

FIG. 2 shows an exemplary method for reconstructing lost 5 

data after a failure of one or more drives according to an 
embodiment of the present invention. 

10 
tually similar to the processing of one stripe ( only processing 
multiple blocks per drive instead of one), it will be further 
assumed for simplification that the data being stored or 
retrieved is only one stripe in size unless otherwise indicated. 
It will also be assumed that the block size L is sufficiently 
large that the data can be consistently divided across each 
block to produce subsets of the data that include respective 
portions of the blocks (for efficient concurrent processing by 
different processing units). 

FIG. 3 shows an exemplary method for performing a par
allel lookup Galois field multiplication according to an 
embodiment of the present invention. 10 

FIG. 1 shows an exemplary stripe 10 of original and check 
data according to an embodiment of the present invention. FIG. 4 shows an exemplary method for sequencing the 

parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

FIGS. 5-7 show an exemplary method for sequencing the 
parallel lookup multiplier to perform the lost data reconstruc- 15 
tion according to an embodiment of the present invention. 

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention. 

Referring to FIG.1, the stripe 10 can bethought ofnot only 
as the original N data blocks 20 that make up the original data, 
but also the corresponding M check blocks 30 generated from 
the original data (that is, the stripe 10 represents encoded 
data). Each of the N data blocks 20 is composed ofL bytes 25 
(labeled byte 1, byte 2, ... , byte L), and each of the M check 
blocks 30 is composed of L bytes 35 (labeled similarly). In 
addition, check drive 1, byte 1, is a linear combination of data 
drive 1, byte 1; data drive 2, byte 1; ... ; data drive N, byte 1. 

FIG. 9 shows an exemplary disk drive configuration 
according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

Hereinafter, exemplary embodiments of the invention will 
be described in more detail with reference to the accompany
ing drawings. In the drawings, like reference numerals refer 
to like elements throughout. 

20 Likewise, check drive 1, byte 2, is generated from the same 
linear combination formula as check drive 1, byte 1, only 
using data drive 1, byte 2; data drive 2, byte 2; ... ; data drive 
N, byte 2. In contrast, check drive 2, byte 1, uses a different 
linear combination formula than check drive 1, byte 1, but 

25 applies it to the same data, namely data drive 1, byte 1; data 
drive 2, byte 1; ... ; data drive N, byte 1. In this fashion, each 
of the other check bytes 35 is a linear combination of the 
respective bytes of each of the N data drives 20 and using the 
corresponding linear combination formula for the particular 

While optimal erasure codes have many applications, for 
ease of description, they will be described in this application 
with respect to RAID applications, i.e., erasure coding sys
tems for the storage and retrieval of digital data distributed 
across numerous storage devices ( or drives), though the 
present application is not limited thereto. For further ease of 
description, the storage devices will be assumed to be disk 
drives, though the invention is not limited thereto. In RAID 
systems, the data (or original data) is broken up into stripes, 35 
each of which includes N uniformly sized blocks ( data 
blocks), and the N blocks are written across N separate drives 
(the data drives), one block per data drive. 

30 
check drive 30. 

The stripe 10 in FIG. 1 can also be represented as a matrix 
C of encoded data. Chas two sub-matrices, namely original 
data D on top and check data Jon bottom. That is, 

In addition, for ease of description, blocks will be assumed 
to be composed of L elements, each element having a fixed 
size, say 8 bits or one byte. An element, such as a byte, forms 40 

the fundamental unit of operation for the RAID processing, 
but the invention is just as applicable to other size elements, 
such as 16 bits (2 bytes). For simplification, unless otherwise 
indicated, elements will be assumed to be one byte in size 
throughout the description that follows, and the term "ele- 45 

ment(s )" and "byte(s )" will be used synonymously. 
Conceptually, different stripes can distribute their data 

blocks across different combinations of drives, or have dif
ferent block sizes or numbers of blocks, etc., but for simpli
fication and ease of description and implementation, the 50 

described embodiments in the present application assume a 
consistent block size (L bytes) and distribution of blocks 
among the data drives between stripes. Further, all variables, 
such as the number of data drives N, will be assumed to be 
positive integers unless otherwise specified. In addition, since 

55 
the N=l case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be 
assumed for simplicity that N;;,;2 throughout. 

The N data blocks from each stripe are combined using 
arithmetic operations (to be described in more detail below) 
in M different ways to produce M blocks of check data ( check 60 

blocks), and the M check blocks written across M drives (the 
check drives) separate from the N data drives, one block per 
check drive. These combinations can take place, for example, 
when new ( or changed) data is written to ( or back to) disk. 
Accordingly, each of the N+M drives (data drives and check 65 

drives) stores a similar amount of data, namely one block for 
each stripe. As the processing of multiple stripes is concep-

Du D12 D1L 

D21 D22 D2L 

C= [ ~]= DN1 DN2 DNL 

lu 112 l1L 

h1 h2 hL 

JM! JM2 ]ML 

where D,rbyte j from data drive i and J, =byte j from check 
drive i. Thus, the rows of encoded data uC represent blocks, 
while the colunms represent corresponding bytes of each of 
the drives. 

Further, in case of a disk drive failure of one or more disks 
the arithmetic operations are designed in such a fashion that 
for any stripe, the original data (and by extension, the check 
data) can be reconstructed from any combination of N data 
and check blocks from the corresponding N+M data and 
check blocks that comprise the stripe. Thus, RAID provides 
both parallel processing (reading and writing the data in 
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data even if as many as M of 
the drives fail), at the computational cost of generating the 
check data any time new data is written to disk, or changed 
data is written back to disk, as well as the computational cost 
of reconstructing any lost original data and regenerating any 
lost check data after a disk failure. 

For example, for M = 1 check drive, a single parity drive can 
function as the check drive (i.e., a RAID4 system). Here, the 
arithmetic operation is bitwise exclusive OR of each of the N 
corresponding data bytes in each data block of the stripe. In 
addition, as mentioned earlier, the assignment of parity 
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blocks from different stripes to the same drive (i.e., RAID4) 
or different drives (i.e., RAIDS) is arbitrary, but it does sim
plify the description and implementation to use a consistent 
assignment between stripes, so that will be assumed through
out. Since M = 1 reduces to the case of a single parity drive, it 
will further be assumed for simplicity that M;;,;2 throughout. 

For such larger values ofM, Galois field arithmetic is used 

12 
where H,rfactor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the colunms 
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data J are 

5 related by the formula J=HxD (that is, matrix multiplication), 
or 

lu 112 l1L 
10 

h1 h2 hL 

JM! lM2 ]ML 

15 
Hu H12 H1N Du D12 D1L 

H21 H22 H2N D21 D22 D2L 
X 

HM! HM2 HMN DNI DN2 DNL 

to manipulate the data, as described in more detail later. 
Galois field arithmetic, for Galois fields of powers-of-2 ( such 
as 2i numbers of elements, includes two fundamental opera
tions: (1) addition (which is just bitwise exclusive OR, as with 
the parity drive-only operations for M=l), and (2) multipli
cation. While Galois field (GF) addition is trivial on standard 
processors, GF multiplication is not. Accordingly, a signifi
cant component of RAID performance for M;;,;2 is speeding 
up the performance ofGF multiplication, as will be discussed 
later. For purposes of description, GF addition will be repre
sented by the symbol + throughout while GF multiplication 
will be represented by the symbol x throughout. 

Briefly, in exemplary embodiments of the present inven- 20 

tion, each of the M check drives holds linear combinations 

where lu = (Hu xDu) + (H12 XD21) + ... + (H1N xDNI), 

112 = (Hu XD12) + (H12 XD22) + ... + (H1N xDN2), 

( over GF arithmetic) of the N data drives of original data, one 
linear combination (i.e., a GF sum of N terms, where each 
term represents a byte of original data times a corresponding 
factor (using GF multiplication) for the respective data drive) 25 

for each check drive, as applied to respective bytes in each 
block. One such linear combination can be a simple parity, 
i.e., entirely GF addition (all factors equal 1), such as a GF 
sum of the first byte in each block oforiginal data as described 
above. 30 

h1 = (H21 XDu) + (H22 XD21) + ... + (H2N XDNI), 

and in general, 

forlsisM 

and 1 s j s L. 

The remaining M-1 linear combinations include more 
involved calculations that include the nontrivial GF multipli
cation operations ( e.g., performing a GF multiplication of the 
first byte in each block by a corresponding factor for the 
respective data drive, and then performing a GF sum of all 
these products). These linear combinations can be repre
sented by an (N + M)xN matrix ( encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one 
factor for each combination of ( data or check) drive and data 
drive, with one row for each of the N + M data and check drives 
and one colunm for each of the N data drives. The IDM E can 
also be represented as 

where IN represents the NxN identity matrix (i.e., the original 
(unencoded) data) and H represents the MxN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N 
colunms corresponds to one of the N data drives). 

Thus, 

0 0 

0 0 

£=[~]= 0 0 

Hu H12 H1N 

H21 H22 H2N 

HM! HM2 HMN 

Such an encoding matrix E is also referred to as an infor
mation dispersal matrix (IDM). It should be noted that matri
ces such as check drive encoding matrix Hand identity matrix 
IN also represent encoding matrices, in that they represent 

35 matrices of factors to produce linear combinations over GF 
arithmetic of the original data. In practice, the identity matrix 
IN is trivial and may not need to be constructed as part of the 
ID M E. Only the encoding matrix E, however, will be referred 
to as the IDM. Methods of building an encoding matrix such 

40 as IDM E or check drive encoding matrix H are discussed 
below. In further embodiments of the present invention (as 
discussed further in Appendix A), such (N + M)xN ( or MxN) 
matrices can be trivially constructed ( or simply indexed) from 
a master encoding matrix S, which is composed of CNmax+ 

45 Mmax)xNmax (or MmaxxNmax) bytes or elements, where 
N max+ Mmax =256 ( or some other power of two) and N sN max 
and MsMmax· For example, one such master encoding matrix 
Scan include a 127x127 element identity matrix on top (for 
up to N max= 127 data drives), a row of 1 's (for a parity drive), 

50 and a 128x127 element encoding matrix on bottom (for up to 
Mmax = 129 check drives, including the parity drive), for a total 
ofNmax=256 drives. 

The original data, in tum, can be represented by an N xL 
matrix D of bytes, each of the N rows representing the L bytes 

55 of a block of the corresponding one of the N data drives. If C 
represents the corresponding (N+M)xL matrix of encoded 
bytes (where each of the N+M rows corresponds to one of the 
N + M data and check drives), then C can be represented as Ex 

60 

65 where J=HxD is an MxL matrix of check data, with each of 
the M rows representing the L check bytes of the correspond
ing one of the M check drives. It should be noted that in the 
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relationships such as C=ExD or J=HxD, x represents matrix 
multiplication over the Galois field (i.e., GF multiplication 
and GF addition being used to generate each of the entries in, 
for example, C or J). 

In exemplary embodiments of the present invention, the 5 

first row of the check drive encoding matrix H ( or the (N + 1 )th 

row of the IDM E) can be all 1 's, representing the parity drive. 
For linear combinations involving this row, the GF multipli
cation can be bypassed and replaced with a GF sum of the 
corresponding bytes since the products are all trivial products 10 

involving the identity element 1. Accordingly, in parity drive 
implementations, the check drive encoding matrix H can also 
be thought of as an (M-l)xN matrix of non-trivial factors 
(that is, factors intended to be used in GF multiplication and 

15 
not just GF addition). 

Much of the RAID processing involves generating the 
check data when new or changed data is written to ( or back to) 
disk. The other significant event for RAID processing is when 
one or more of the drives fail ( data or check drives), or for 20 

whatever reason become unavailable. Assume that in such a 
failure scenario, F data drives fail and G check drives fail, 
where F and G are nonnegative integers. If F=O, then only 
check drives failed and all of the original data D survived. In 
this case, the lost check data can be regenerated from the 25 

original data D. 
Accordingly, assume at least one data drive fails, that is, 

F2:l, and let K=N-F represent the number of data drives that 
survive. K is also a nonnegative integer. In addition, let X 
represent the surviving original data and Y represent the lost 30 

original data. That is, Xis a KxL matrix composed of the K 
rows of the original data matrix D corresponding to the K 
surviving data drives, while Y is an FxL matrix composed of 
the F rows of the original data matrix D corresponding to the 

35 
F failed data drives. 

thus represents a permuted original data matrix D' (that is, the 
original data matrix D, only with the surviving original data X 

40 

on top and the lost original data Y on bottom. It should be 
45 

noted that once the lost original data Y is reconstructed, it can 
be combined with the surviving original data X to restore the 
original data D, from which the check data for any of the 
failed check drives can be regenerated. 

It should also be noted that M-G check drives survive. In 50 
order to reconstruct the lost original data Y, enough (that is, at 
least IV) total drives must survive. Given that K=N-F data 
drives survive, and that M-G check drives survive, it follows 
that (N-F)+(M-G)2:N must be true to reconstruct the lost 
original data Y. This is equivalent to F+GsM (i.e., no more 55 

than F +G drives fail), or F sM-G (that is, the numberof failed 
data drives does not exceed the number of surviving check 
drives). It will therefore be assumed for simplicity that F sM-
G. 

In the routines that follow, performance can be enhanced 60 

by prebuilding lists of the failed and surviving data and check 
drives (that is, four separate lists). This allows processing of 
the different sets of surviving and failed drives to be done 
more efficiently than existing solutions, which use, for 
example, bit vectors that have to be examined one bit at a time 65 

and often include large numbers of consecutive zeros ( or 
ones) when ones ( or zeros) are the bit values of interest. 

14 
FIG. 2 shows an exemplary method 300 for reconstructing 

lost data after a failure of one or more drives according to an 
embodiment of the present invention. 

While the recovery process is described in more detail 
later, briefly it consists of two parts: (1) determining the 
solution matrix, and (2) reconstructing the lost data from the 
surviving data. Determining the solution matrix can be done 
in three steps with the following algorithm (Algorithm 1 ), 
with reference to FIG. 2: 

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to 
an N xN reduced encoding matrix T ( also referred to as 
the transformed IDM) including the K surviving data 
drive rows and any F of the M-G surviving check drive 
rows (for instance, the first F surviving check drive rows, 
as these will include the parity drive if it survived; recall 
that F sM-G was assumed). In addition, the colunms of 
the reduced encoding matrix Tare rearranged so that the 
K colunms corresponding to the K surviving data drives 
are on the left side of the matrix and the F colunms 
corresponding to the F failed drives are on the right side 
of the matrix. (Step 320) These F surviving check drives 
selected to rebuild the lost original data Y will hence
forth be referred to as "the F surviving check drives," and 
their check data W will be referred to as "the surviving 
check data," even though M-G check drives survived. It 
should be noted that Wis anFxLmatrix composed of the 
F rows of the check data J corresponding to the F sur
viving check drives. Further, the surviving encoded data 
can be represented as a sub-matrix C' of the encoded data 
C. The surviving encoded data C' is an NxL matrix 
composed of the surviving original data X on top and the 
surviving check data Won bottom, that is, 

2. (Step 330) Splitting the reduced encoding matrix Tinto 
four sub-matrices (that are also encoding matrices): (i) a 
KxK identity matrix IK ( corresponding to the K surviv
ing data drives) in the upper left, (ii) a KxF matrix O of 
zeros in the upper right, (iii) an FxK encoding matrix A 
in the lower left corresponding to the F surviving check 
drive rows and the K surviving data drive columns, and 
(iv) an FxF encoding matrix B in the lower right corre
sponding to the F surviving check drive rows and the F 
failed data drive colunms. Thus, the reduced encoding 
matrix T can be represented as 

3. (Step 340) Calculating the inverse B-1 of the FxF encod
ing matrix B. As is shown in more detail in Appendix A, 

which is mathematically equivalent to W=AxX+BxY. B-1 is 
the solution matrix, and is itself an FxF encoding matrix. 
Calculating the solution matrix B-1 thus allows the lost origi-
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nal data Y to be reconstructed from the encoding matrices A 
and B along with the surviving original data X and the sur
viving check data W. 

16 
reconstruct the lost original data Y for the F failed data drives 
(i.e., roughly 1 operation per failed data drive per byte of 
original data D), which is proportionally equivalent to the 
O(M) operations times the amount of original data D needed The FxK encoding matrix A represents the original encod

ing matrix E, only limited to the K surviving data drives and 
the F surviving check drives. That is, each of the F rows of A 
represents a different one of the F surviving check drives, 
while each of the K colunms of A represents a different one of 
the K surviving data drives. Thus, A provides the encoding 
factors needed to encode the original data for the surviving 
check drives, but only applied to the surviving data drives 
(that is, the surviving partial check data). Since the surviving 
original data X is available, A can be used to generate this 
surviving partial check data. 

5 to generate the check data J for the M check drives (i.e., 
roughly 1 operation per check drive per byte of original data 
D). In addition, this same equivalence extends to step 4, 
which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the G failed 

10 check drives (i.e., roughly 1 operation per failed check drive 
per byte of original data D). In summary, the number of 
operations needed to reconstruct the lost data is O(F +G) times 
the amount of original data D (i.e., roughly 1 operation per 
failed drive ( data or check) per byte of original data D). Since 

In similar fashion, the FxF encoding matrix B represents 
the original encoding matrix E, only limited to the F surviving 
check drives and the F failed data drives. That is, the F rows of 

15 F+GsM, this means that the computational complexity of 
Algorithm 2 (reconstructing the lost data from the surviving 
data) is no more than that of generating the check data J from 
the original data D. B correspond to the same F rows of A, while each of the F 

colunms of B represents a different one of the F failed data 
drives. Thus, B provides the encoding factors needed to 
encode the original data for the surviving check drives, but 
only applied to the failed data drives (that is, the lost partial 
check data). Since the lost original data Y is not available, B 
cannot be used to generate any of the lost partial check data. 
However, this lost partial check data can be determined from 25 

A and the surviving check data W. Since this lost partial check 
data represents the result of applying B to the lost original 
data Y, B- 1 thus represents the necessary factors to reconstruct 
the lost original data Y from the lost partial check data. 

As mentioned above, for exemplary purposes and ease of 
20 description, data is assumed to be organized in 8-bit bytes, 

each byte capable of taking on 28=256 possible values. Such 
data can be manipulated in byte-size elements using GF arith
metic for a Galois field of size 28=256 elements. It should also 

It should be noted that steps 1 and 2 in Algorithm 1 above 30 

are logical, in that encoding matrices A and B ( or the reduced 
encoding matrix T, for that matter) do not have to actually be 
constructed. Appropriate indexing of the IDM E ( or the mas-

be noted that the same mathematical principles apply to any 
power-of-two 2P number of elements, not just 256, as Galois 
fields can be constructed for any integral power of a prime 
number. Since Galois fields are finite, and since GF opera
tions never overflow, all results are the same size as the inputs, 
for example, 8 bits. 

In a Galois field of a power-of-two number of elements, 
addition and subtraction are the same operation, namely a 
bitwise exclusive OR (XOR) of the two operands. This is a 
very fast operation to perform on any current processor. It can 
also be performed on multiple bytes concurrently. Since the 
addition and subtraction operations take place, for example, 
on a byte-level basis, they can be done in parallel by using, for 
instance, x86 architecture Streaming SIMD Extensions 
(SSE) instructions (SIMD stands for single instruction, mul
tiple data, and refers to performing the same instruction on 

ter encoding matrix S) can be used to obtain any of their 
entries. Step 3, however, is a matrix inversion over GF arith- 35 

metic and takes O(F3
) operations, as discussed in more detail 

later. Nonetheless, this is a significant improvement over 
existing solutions, which require O(N3

) operations, since the 
number of failed data drives Fis usually significantly less than 
the number of data drives N in any practical situation. 40 different pieces of data, possibly concurrently), such as 

PXOR (Packed (bitwise) Exclusive OR). (Step 350 in FIG. 2) Once the encoding matrix A and the 
solution matrix B- 1 are known, reconstructing the lost data 
from the surviving data (that is, the surviving original data X 
and the surviving check data W) can be accomplished in four 
steps using the following algorithm (Algorithm 2): 

1. Use A and the surviving original data X (using matrix 
multiplication) to generate the surviving check data (i.e., 
AxX), only limited to the K surviving data drives. Call 
this limited check data the surviving partial check data. 

SSE instructions can process, for example, 16-byte regis
ters (XMM registers), and are able to process such registers as 
though they contain 16 separate one-byte operands (or 8 

45 separate two-byte operands, or four separate four-byte oper
ands, etc.) Accordingly, SSE instructions can do byte-level 
processing 16 times faster than when compared to processing 
a byte at a time. Further, there are 16 XMM registers, so 

2. Subtract this surviving partial check data from the sur- 50 

viving check data W (using matrix subtraction, i.e., 
W-AxX, which is just entry-by-entry GF subtraction, 
which is the same as GF addition for this Galois field). 
This generates the surviving check data, only this time 
limited to the F failed data drives. Call this limited check 55 

data the lost partial check data. 

dedicating four such registers for operand storage allows the 
data to be processed in 64-byte increments, using the other 12 
registers for temporary storage. That is, individual operations 
can be performed as four consecutive SSE operations on the 
four respective registers (64 bytes), which can often allow 
such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc
tions allows the same processing to be performed on different 

3. Use the solution matrix B- 1 and the lost partial check 
data (using matrix multiplication, i.e., B- 1 x(W-AxX)to 
reconstruct the lost original data Y. Call this the recov
ered original data Y. 

4. Use the corresponding rows of the IDM E (or master 
encoding matrix S) for each of the G failed check drives 
along with the original data D, as reconstructed from the 
surviving and recovered original data X and Y, to regen
erate the lost check data (using matrix multiplication). 

As will be shown in more detail later, steps 1-3 together 
require O(F) operations times the amount of original data D to 

such 64-byte increments of data in parallel using different 
cores. Thus, using four separate cores can potentially speed 
up this processing by an additional factor of 4 over using a 

60 single core. 
For example, a parallel adder (Parallel Adder) can be built 

using the 16-byte XMM registers and four consecutive PX OR 
instructions. Such parallel processing (that is, 64 bytes at a 
time with only a few machine-level instructions) for GF arith-

65 metic is a significant improvement over doing the addition 
one byte at a time. Since the data is organized in blocks of any 
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4 
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KB) or 32,768 bytes (32 KB), a block can be composed of 
numerous such 64-byte chunks (e.g., 64 separate 64-byte 
chunks in 4 KB, or 512 chunks in 32 KB). 

Multiplication in a Galois field is not as straightforward. 
While much of it is bitwise shifts and exclusive OR's (i.e., 5 

"additions") that are very fast operations, the numbers "wrap" 
in peculiar ways when they are shifted outside of their normal 
bounds (because the field has only a finite set of elements), 
which can slow down the calculations. This "wrapping" in the 
GF multiplication can be addressed in many ways. For 10 

example, the multiplication can be implemented serially (Se
rial Multiplier) as a loop iterating over the bits of one operand 
while performing the shifts, adds, and wraps on the other 
operand. Such processing, however, takes several machine 

15 
instructions per bit for 8 separate bits. In other words, this 
technique requires dozens of machine instructions per byte 
being multiplied. This is inefficient compared to, for example, 
the performance of the Parallel Adder described above. 

For another approach (Serial Lookup Multiplier), multipli- 20 

cation tables ( of all the possible products, or at least all the 
non-trivial products) can be pre-computed and built ahead of 
time. For example, a table of256x256=65,536 bytes can hold 
all the possible products of the two different one-byte oper
ands). However, such tables can force serialized access on 25 

what are only byte-level operations, and not take advantage of 
wide ( concurrent) data paths available on modern processors, 
such as those used to implement the Parallel Adder above. 

In still another approach (Parallel Multiplier), the GF mul
tiplication can be done on multiple bytes at a time, since the 30 

same factor in the encoding matrix is multiplied with every 
element in a data block. Thus, the same factor can be multi
plied with 64 consecutive data block bytes at a time. This is 
similar to the Parallel Adder described above, only there are 
several more operations needed to perform the operation. 35 

While this can be implemented as a loop on each bit of the 
factor, as described above, only performing the shifts, adds, 
and wraps on 64 bytes at a time, it can be more efficient to 
process the 256 possible factors as a (C language) switch 
statement, with inline code for each of 256 different combi- 40 

nations of two primitive GF operations: Multiply-by-2 and 
Add. For example, GF multiplication by the factor 3 can be 
effected by first doing a Multiply-by-2 followed by an Add. 
Likewise, GF multiplication by 4 is just a Multiply-by-2 
followed by a Multiply-by-2 while multiplication by 6 is a 45 

Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2. 

18 
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes). 

FIG. 3 shows an exemplary method 400 for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

Referring to FIG. 3, in step 410, two lookup tables are built 
once: one lookup table for the low-order nibbles in each byte, 
and one lookup table for the high-order nibbles in each byte. 
Each lookup table contains 256 sets (one for each possible 
factor) of the 16 possible GF products of that factor and the 16 
possible nibble values. Each lookup table is thus 
256x16=4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multiplica
tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions 
can be used to do all the table lookups for 64 bytes (128 
nibbles). 

Next, in step 420, the Parallel Lookup Multiplier is initial
ized for the next set of 64 bytes of operand data (such as 
original data or surviving original data). In order to save 
loading this data from memory on succeeding calls, the Par-
allel Lookup Multiplier dedicates four registers for this data, 
which are left intact upon exit of the Parallel Lookup Multi
plier. This allows the same data to be called with different 
factors ( such as processing the same data for another check 
drive). 

Next in step 430, to process these 64 bytes of operand data, 
the Parallel Lookup Multiplier can be implemented with 2 
MOVDQA (Move Double Quadword Aligned) instructions 
(from memory) to do the two table lookups and 4 MOVDQA 
instructions (register to register) to initialize registers ( such as 
the output registers). These are followed in steps 440 and 450 
by two nearly identical sets of 17 register-to-register instruc
tions to carry out the multiplication 32 bytes at a time. Each 
such set starts (in step 440) with 5 more MOVDQA instruc
tions for further initialization, followed by 2 PSRLW (Packed 
Shift Right Logical Word) instructions to realign the high
order nibbles for PSHUFB, and 4 PAND instructions to clear 
the high-order nibbles for PSHUFB. That is, two registers of 
byte operands are converted into four registers of nibble oper
ands. Then, in step 450, 4 PSHUFB instructions are used to do 
the parallel table lookups, and 2 PXOR instructions to add the 
results of the multiplication on the two nibbles to the output 
registers. 

Thus, the Parallel Lookup Multiplier uses 40 machine 
instructions to perform the parallel multiplication on 64 sepa
rate bytes, which is considerably better than the average 134 
instructions for the Parallel Multiplier above, and only 10 
times as many instructions as needed for the Parallel Adder. 

While this Add is identical to the Parallel Adder described 
above (e.g., four consecutive PXOR instructions to process 
64 separate bytes), Multiply-by-2 is not as straightforward. 
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4 
consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu
tive PAD DB (Packed Add) instructions, 4 consecutive PAND 
(Bitwise AND) instructions, and 4 consecutive PXOR 
instructions. Though this takes 20 machine instructions, the 
instructions are very fast and results in 64 consecutive bytes 

50 While some of the Parallel Lookup Multiplier's instructions 
are more complex than those of the Parallel Adder, much of 
this complexity can be concealed through the pipelined and/ 
or concurrent execution of numerous such contiguous 
instructions (accessing different registers) on modern pipe-

of data at a time being multiplied by 2. 
For 64 bytes of data, assuming a random factor between 0 

and 255, the total overhead for the Parallel Multiplier is about 
6 calls to multiply-by-2 and about 3.5 calls to add, or about 
6x20+3.5x4=134 machine instructions, or a little over 2 
machine instructions per byte of data. While this compares 
favorably with byte-level processing, it is still possible to 
improve on this by building a parallel multiplier with a table 
lookup (Parallel Lookup Multiplier) using the PSHUFB 

55 lined processors. For example, in exemplary implementa
tions, the Parallel Lookup Multiplier has been timed at about 
15 CPU clock cycles per 64 bytes processed per CPU core 
( about 0.36 clock cycles per instruction). In addition, the code 
footprint is practically nonexistent for the Parallel Lookup 

60 Multiplier ( 40 instructions) compared to that of the Parallel 
Multiplier (about 34,300 instructions), even when factoring 
the 8 KB needed for the two lookup tables in the Parallel 
Lookup Multiplier. 

In addition, embodiments of the Parallel Lookup Multi-
65 plier can be passed 64 bytes of operand data (such as the next 

64 bytes of surviving original data X to be processed) in four 
consecutive registers, whose contents can be preserved upon 
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exiting the Parallel Lookup Multiplier ( and all in the same 40 
machine instructions) such that the Parallel Lookup Multi
plier can be invoked again on the same 64 bytes of data 
without having to access main memory to reload the data. 
Through such a protocol, memory accesses can be minimized 5 

( or significantly reduced) for accessing the original data D 
during check data generation or the surviving original data X 
during lost data reconstruction. 

Further embodiments of the present invention are directed 
towards sequencing this parallel multiplication (and other 10 

GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup Mul
tiplier should be appropriately sequenced to provide efficient 
processing. One such sequencer (Sequencer 1 ), for example, 15 

can generate the check data J from the original data D, and is 
described further with respect to FIG. 4. 

The parity drive does not need GF multiplication. The 
check data for the parity drive can be obtained, for example, 
by adding corresponding 64-byte chunks for each of the data 20 

drives to perform the parity operation. The Parallel Adder can 
do this using 4 instructions for every 64 bytes of data for each 
of the N data drives, or N/16 instructions per byte. 

The M-1 non-parity check drives can invoke the Parallel 
Lookup Multiplier on each 64-byte chunk, using the appro- 25 

priate factor for the particular combination of data drive and 
check drive. One consideration is how to handle the data 
access. Two possible ways are: 

20 
Referring to FIG. 4, in step 510, the Sequencer 1 is called. 

Sequencer 1 is called to process multiple 64-byte chunks of 
data for each of the blocks across a stripe of data. For instance, 
Sequencer 1 could be called to process 512 bytes from each 
block. If, for example, the block size L is 4096 bytes, then it 
would take eight such calls to Sequencer 1 to process the 
entire stripe. The other such seven calls to Sequencer 1 could 
be to different processing cores, for instance, to carry out the 
check data generation in parallel. The number of 64-byte 
chunks to process at a time could depend on factors such as 
cache dimensions, input/output data structure sizes, etc. 

In step 520, the outer loop processes the next 64-byte 
chunk of data for each of the drives. In order to minimize the 
numberofaccesses of each data drive' s 64-byte chunk of data 
from memory, the data is loaded only once and preserved 
across calls to the Parallel Lookup Multiplier. The first data 
drive is handled specially since the check data has to be 
initialized for each check drive. Using the first data drive to 
initialize the check data saves doing the initialization as a 
separate step followed by updating it with the first data drive' s 
data. In addition to the first data drive, the first check drive is 
also handled specially since it is a parity drive, so its check 
data can be initialized to the first data drive' s data directly 
without needing the Parallel Lookup Multiplier. 

In step 530, the first middle loop is called, in which the 
remainder of the check drives (that is, the non-parity check 
drives) have their check data initialized by the first data 
drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied with 1) "colunm-by-colunm," i.e., 64 bytes for one data drive, 

followed by the next 64 bytes for that data drive, etc., and 
adding the products to the rumiing total in memory (us
ing the Parallel Adder) before moving onto the next row 
(data drive); and 

30 each of the first data drive's data bytes. This is handled by 
calling the Parallel Lookup Multiplier for each non-parity 
check drive. 

2) "row-by-row," i.e., 64 bytes for one data drive, followed 
by the corresponding 64 bytes for the next data drive, 35 

etc., and keeping a running total using the Parallel 
Adder, then moving onto the next set of 64-byte chunks. 

Colunm-by-colunm can be thought of as "constant factor, 
varying data," in that the (GF multiplication) factor usually 
remains the same between iterations while the ( 64-byte) data 40 

changes with each iteration. Conversely, row-by-row can be 
thought of as "constant data, varying factor," in that the data 
usually remains the same between iterations while the factor 
changes with each iteration. 

Another consideration is how to handle the check drives. 45 

Two possible ways are: 
a) one at a time, i.e., generate all the check data for one 

check drive before moving onto the next check drive; 
and 

In step 540, the second middle loop is called, which pro
cesses the other data drives' corresponding 64-byte chunks of 
data. As with the first data drive, each of the other data drives 
is processed separately, loading the respective 64 bytes of 
data into four registers (preserved across calls to the Parallel 
Lookup Multiplier). In addition, since the first check drive is 
the parity drive, its check data can be updated by directly 
adding these 64 bytes to it (using the Parallel Adder) before 
handling the non-parity check drives. 

In step 550, the inner loop is called for the next data drive. 
In the inner loop (as with the first middle loop), each of the 
non-parity check drives is associated with a corresponding 
factor for the particular data drive. The factor is multiplied 
with each of the next data drive' s data bytes using the Parallel 
Lookup Multiplier, and the results added to the check drive' s 
check data. 

Another such sequencer (Sequencer 2) can be used to 
b) all at once, i.e., for each 64-byte chunk of original data, 

do all of the processing for each of the check drives 
before moving onto the next chunk of original data. 

While each of these techniques performs the same basic 
operations ( e.g., 40 instructions for every 64 bytes of data for 
each of the N data drives and M-1 non-parity check drives, or 
5N(M-1)/8 instructions per byte for the Parallel Lookup 
Multiplier), empirical results show that combination (2)(b ), 
that is, row-by-row data access on all of the check drives 
between data accesses performs best with the Parallel Lookup 
Multiplier. One reason may be that such an approach appears 
to minimize the number of memory accesses (namely, one) to 
each chunk of the original data D to generate the check data J. 
This embodiment of Sequencer 1 is described in more detail 
with reference to FIG. 4. 

50 reconstruct the lost data from the surviving data (using Algo
rithm 2). While the same colunm-by-colunm and row-by-row 
data access approaches are possible, as well as the same 
choices for handling the check drives, Algorithm 2 adds 
another dimension of complexity because of the four separate 

55 steps and whether to: (i) do the steps completely serially or (ii) 
do some of the steps concurrently on the same data. For 
example, step 1 (surviving check data generation) and step 4 
(lost check data regeneration) can be done concurrently on the 
same data to reduce or minimize the number of surviving 

60 original data accesses from memory. 

FIG. 4 shows an exemplary method 500 for sequencing the 65 

Parallel Lookup Multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

Empirical results show that method (2)(b )(ii), that is, row
by-row data access on all of the check drives and for both 
surviving check data generation and lost check data regen
eration between data accesses performs best with the Parallel 
Lookup Multiplier when reconstructing lost data using Algo
rithm 2. Again, this may be due to the apparent minimization 
of the number of memory accesses (namely, one) of each 
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chunk of surviving original data X to reconstruct the lost data 
and the absence of memory accesses of reconstructed lost 
original data Y when regenerating the lost check data. This 
embodiment of Sequencer 1 is described in more detail with 
reference to FIGS. 5-7. 

FIGS. 5-7 show an exemplary method 600 for sequencing 
the Parallel Lookup Multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion. 

Referring to FIG. 5, in step 610, the Sequencer 2 is called. 
Sequencer 2 has many similarities with the embodiment of 
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2 
processes the data drive data in 64-byte chunks like 
Sequencer 1. Sequencer 2 is more complex, however, in that 
only some of the data drive data is surviving; the rest has to be 
reconstructed. In addition, lost check data needs to be regen
erated. Like Sequencer 1, Sequencer 2 does these operations 

22 
across the calls to Parallel Lookup Multiplier in step 660), the 
Parallel Lookup Multiplier is again called, this time to update 
each of the failed check drive's check data by the correspond
ing component from the next surviving data drive. This com-

5 pletes the computations involving the next surviving data 
drive' s 64 bytes of data, which were fetched with one access 
from main memory and preserved in the same four registers 
across steps 660 and 670. 

Next, in step 680, the computation of the partial check data 
10 AxX is complete, so the surviving check data Wis added to 

this result (recall that W-AxX is equivalent to W+AxX in 
binary Galois Field arithmetic). This is done by the fourth 
middle loop, which for each surviving check drive adds the 
corresponding 64-byte component of surviving check data W 

15 to the (surviving) partial check data AxX (using the Parallel 
Adder) to produce the (lost) partial check data W-AxX. 

Continuing with FIG. 7, in step 690, the fifth middle loop is 
called, which performs the two dimensional matrix multipli
cation B- 1 x(W-AxX) to produce the lost original data Y. The 

20 calculation is performed one row at a time, for a total of F 
rows, initializing the row to the first term of the corresponding 
linear combination of the solution matrix B- 1 and the lost 
partial check data W-AxX (using the Parallel Lookup Mul-

in such a way as to minimize memory accesses of the data 
drive data (by loading the data once and calling the Parallel 
Lookup Multiplier multiple times). Assume for ease of 
description that there is at least one surviving data drive; the 
case of no surviving data drives is handled a little differently, 
but not significantly different. In addition, recall from above 
that the driving formula behind data reconstruction is Y= 
B- 1 x(W-AxX), where Y is the lost original data, B- 1 is the 25 

solution matrix, Wis the surviving check data, A is the partial 
check data encoding matrix (for the surviving check drives 
and the surviving data drives), and Xis the surviving original 
data. 

tiplier). 
In step 700, the third inner loop is called, which completes 

the remaining F-1 terms of the corresponding linear combi
nation (using the Parallel Lookup Multiplier on each term) 
from the fifth middle loop in step 690 and updates the running 
calculation (using the Parallel Adder) of the next row of 

In step 620, the outer loop processes the next 64-byte 
chunk of data for each of the drives. Like Sequencer 1, the first 
surviving data drive is again handled specially since the par
tial check data AxX has to be initialized for each surviving 
check drive. 

In step 630, the first middle loop is called, in which the 
partial check data AxX is initialized for each surviving check 
drive based on the first surviving data drive' s 64 bytes of data. 
In this case, the Parallel Lookup Multiplier is called for each 
surviving check drive with the corresponding factor (from A) 
for the first surviving data drive. 

30 B- 1x(W-AxX). This completes the next row (and recon
structs the corresponding failed data drive's lost data) oflost 
original data Y, which can then be stored at an appropriate 
location. 

In step 710, the fourth inner loop is called, in which the lost 
35 check data is updated for each failed check drive by the newly 

reconstructed lost data for the next failed data drive.Using the 
same 64 bytes of the next reconstructed lost data (preserved 
across calls to the Parallel Lookup Multiplier), the Parallel 
Lookup Multiplier is called to update each of the failed check 

40 drives' check data by the corresponding component from the 
next failed data drive. This completes the computations 
involving the next failed data drive's 64 bytes of recon
structed data, which were performed as soon as the data was 

In step 640, the second middle loop is called, in which the 
lost check data is initialized for each failed check drive.Using 
the same 64 bytes of the first surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 630), the 
Parallel Lookup Multiplier is again called, this time to initial- 45 

ize each of the failed check drive's check data to the corre-

reconstructed and without being stored and retrieved from 
main memory. 

Finally, in step 720, the sixth middle loop is called. The lost 
check data has been regenerated, so in this step, the newly 
regenerated check data is stored at an appropriate location (if 
desired). 

sponding component from the first surviving data drive. This 
completes the computations involving the first surviving data 
drive's 64 bytes of data, which were fetched with one access 
from main memory and preserved in the same four registers 50 

across steps 630 and 640. 
Continuing with FIG. 6, in step 650, the third middle loop 

Aspects of the present invention can be also realized in 
other environments, such as two-byte quantities, each such 
two-byte quantity capable of taking on 216=65,536 possible 
values, by using similar constructs (scaled accordingly) to 
those presented here. Such extensions would be readily 

is called, which processes the other surviving data drives' 
corresponding 64-byte chunks of data. As with the first sur
viving data drive, each of the other surviving data drives is 
processed separately, loading the respective 64 bytes of data 
into four registers (preserved across calls to the Parallel 
Lookup Multiplier). 

55 apparent to one of ordinary skill in the art, so their details will 
be omitted for brevity of description. 

In step 660, the first inner loop is called, in which the partial 
check data AxX is updated for each surviving check drive 
based on the next surviving data drive's 64 bytes of data. In 
this case, the Parallel Lookup Multiplier is called for each 
surviving check drive with the corresponding factor (from A) 
for the next surviving data drive. 

Exemplary techniques and methods for doing the Galois 
field manipulation and other mathematics behind RAID error 
correcting codes are described inAppendixA, which contains 

60 a paper "Information Dispersal Matrices for RAID Error 
Correcting Codes" prepared for the present application. 
Multi-Core Considerations 

In step 670, the second inner loop is called, in which the 65 

lost check data is updated for each failed check drive. Using 
the same 64 bytes of the next surviving data drive (preserved 

What follows is an exemplary embodiment for optimizing 
or improving the performance of multi-core architecture sys
tems when implementing the described erasure coding sys
tem routines. In multi-core architecture systems, each proces-
sor die is divided into multiple CPU cores, each with their 
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own local caches, together with a memory (bus) interface and 
possible on-die cache to interface with a shared memory with 
other processor dies. 

24 
systems, and at much lower cost, due to the use of high 
volume commodity components that are leveraged to achieve 
the result. This combination can be achieved by utilizing the 
mathematical techniques and code optimizations described FIG. 8 illustrates a multi-core architecture system 100 hav

ing two processor dies 110 (namely, Die 0 and Die 1). 
Referring to FIG. 8, each die 110 includes four central 

processing units (CPUs or cores) 120 each having a local level 

5 elsewhere in this application with careful placement of the 
resulting code on specific processing cores. Embodiments 
can also be implemented on fewer resources, such as single
core dies and/or single-die systems, with decreased parallel-1 (Ll) cache. Each core 120 may have separate functional 

units, for example, an x86 execution unit (for traditional 
instructions) and a SSE execution unit (for software designed 10 

for the newer SSE instruction set). An example application of 
these function units is that the x86 execution unit can be used 
for the RAID control logic software while the SSE execution 
unit can be used for the GF operation software. Each die 110 
also has a level 2 (L2) cache/memory bus interface 130 shared 15 

between the four cores 120. Main memory 140, in tum, is 
shared between the two dies 110, and is connected to the 
input/output (I/O) controllers 150 that access external devices 
such as disk drives or other non-volatile storage devices via 
interfaces such as Peripheral Component Interconnect (PCI). 20 

Redundant array of independent disks (RAID) controller 
processing can be described as a series of states or functions. 
These states may include: (1) Command Processing, to vali
date and schedule a host request (for example, to load or store 
data from disk storage); (2) Command Translation and Sub- 25 

mission, to translate the host request into multiple disk 
requests and to pass the requests to the physical disks; (3) 
Error Correction, to generate check data and reconstruct lost 
data when some disks are not functioning correctly; and (4) 
Request Completion, to move data from internal buffers to 30 

requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports 
caching, and can be avoided in a cacheless design. 

ism and performance optimization. 
The process of subdividing and assigning individual cores 

120 and/or dies 110 to inherently parallelizable tasks will 
result in a performance benefit. For example, on a Linux 
system, software may be organized into "threads," and 
threads may be assigned to specific CPUs and memory sys
tems via thekthread_bindfunction when the thread is created. 
Creating separate threads to process the GF arithmetic allows 
parallel computations to take place, which multiplies the per
formance of the system. 

Further, creating multiple threads for command processing 
allows for fully overlapped execution of the command pro
cessing states. One way to accomplish this is to number each 
command, then use the arithmetic MOD function (% in C 
language) to choose a separate thread for each command. 
Another technique is to subdivide the data processing portion 
of each command into multiple components, and assign each 
component to a separate thread. 

FIG. 9 shows an exemplary disk drive configuration 200 
according to an embodiment of the present invention. 

Referring to FIG. 9, eight disks are shown, though this 
number can vary in other embodiments. The disks are divided 
into three types: data drives 210, parity drive 220, and check 
drives 230. The eight disks break down as three data drives 
210, one parity drive 220, and four check drives 230 in the 
embodiment of FIG. 9. 

Each of the data drives 210 is used to hold a portion of data. 
The data is distributed uniformly across the data drives 210 in 
stripes, such as 192 KB stripes. For example, the data for an 
application can be broken up into stripes of 192 KB, and each 
of the stripes in tum broken up into three 64 KB blocks, each 

40 of the three blocks being written to a different one of the three 
data drives 210. 

Parallelism is achieved in the embodiment of FIG. 8 by 
assigning different cores 120 to different tasks. For example, 35 

some of the cores 120 can be "command cores," that is, 
assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 and 
the disk drives via the I/O interface 150. Others of the cores 
120 can be "data cores," and assigned to the GF operations, 
that is, generating the check data from the original data, 
reconstructing the lost data from the surviving data, etc., 
including the Parallel Lookup Multiplier and the sequencers 
described above. For example, in exemplary embodiments, a 
scheduler can be used to divide the original data D into 45 

corresponding portions of each block, which can then be 
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc
tion. 

One of the benefits of this data core/command core subdi- 50 

The parity drive 220 is a special type of check drive in that 
the encoding ofits data is a simple summation (recall that this 
is exclusive OR in binary GF arithmetic) of the corresponding 
bytes of each of the three data drives 210. That is, check data 
generation (Sequencer 1) or regeneration (Sequencer 2) can 
be performed for the parity drive 220 using the Parallel Adder 
(and not the Parallel Lookup Multiplier). Accordingly, the 
check data for the parity drive 220 is relatively straightfor
ward to build. Likewise, when one of the data drives 210 no 
longer functions correctly, the parity drive 220 can be used to 
reconstruct the lost data by adding (same as subtracting in 
binary GF arithmetic) the corresponding bytes from each of 
the two remaining data drives 210. Thus, a single drive failure 

55 of one of the data drives 210 is very straightforward to handle 
when the parity drive 220 is available (no Parallel Lookup 
Multiplier). Accordingly, the parity drive 220 can replace 
much of the GF multiplication operations with GF addition 

vision of processing is ensuring that different code will be 
executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated Ll cache in each core 120, 
and avoids the "pollution" of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on each 
die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. This 60 

helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other 
cores 120, while allowing the other cores 120 to keep the data 
moving between memory 140 and the disk drives via the I/O 
interface 150. 

Embodiments of the present invention yield scalable, high 
performance RAID systems capable of outperforming other 

for both check data generation and lost data reconstruction. 
Each of the check drives 230 contains a linear combination 

of the corresponding bytes of each of the data drives 210. The 
linear combination is different for each check drive 230, but in 
general is represented by a summation of different multiples 
of each of the corresponding bytes of the data drives 210 

65 (again, all arithmetic being GF arithmetic). For example, for 
the first check drive 230, each of the bytes of the first data 
drive 210 could be multiplied by 4, each of the bytes of the 
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second data drive 210 by 3, and each of the bytes of the third 
data drive 210 by 6, then the corresponding products for each 
of the corresponding bytes could be added to produce the first 
check drive data. Similar linear combinations could be used to 
produce the check drive data for the other check drives 230. 
The specifics of which multiples for which check drive are 
explained in Appendix A. 

26 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 

5 For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B-1 (i.e., the solution 
matrix). 

With the addition of the parity drive 220 and check drives 
230, eight drives are used in the RAID system 200 of FIG. 9. 
Accordingly, each 192 KB oforiginal data is stored as 512 KB 10 

(i.e., eight blocks of 64 KB) of (original plus check) data. 
Such a system 200, however, is capable of recovering all of 
the original data provided any three of these eight drives 
survive. That is, the system 200 can withstand a concurrent 
failure of up to any five drives and still preserve all of the 15 

original data. 

ECCGenerate 
The function ECCGenerate is used to generate check codes 

(that is, the check data matrix J) for a particular configuration 
of data drives and check drives, using Sequencer 1 and the 
Parallel Lookup Multiplier as described above. Prior to call
ing ECCGenerate, ECCSolve is called to compute the appro
priate constants for the particular configuration of data drives 
and check drives, as well as the solution matrix B-1

. 

ECCRegenerate 
Exemplary Routines to Implement an Embodiment The function ECCRegenerate is used to regenerate data 

The error correcting code (ECC) portion of an exemplary 
embodiment of the present invention may be written in soft
ware as, for example, four functions, which could be named 20 

as ECCinitialize, ECCSolve, ECCGenerate, and ECCRegen
erate. The main functions that perform work are ECCGener-

vectors and check code vectors for a particular configuration 
of data drives and check drives (that is, reconstructing the 
original data matrix D from the surviving data matrix X and 
the surviving check matrix W, as well as regenerating the lost 
check data from the restored original data), this time using 
Sequencer 2 and the Parallel Lookup Multiplier as described 
above. Prior to calling ECCRegenerate, ECCSolve is called 

ate and ECCRegenerate. ECCGenerate generates check 
codes for data that are used to recover data when a drive 
suffers an outage (that is, ECCGenerate generates the check 
data J from the original data Dusing Sequencer 1). ECCRe
generate uses these check codes and the remaining data to 
recover data after such an outage (that is, ECCRegenerate 
uses the surviving check data W, the surviving original data X, 
and Sequencer 2 to reconstruct the lost original data Y while 
also regenerating any of the lost check data). Prior to calling 
either of these functions, ECCSolve is called to compute the 
constants used for a particular configuration of data drives, 
check drives, and failed drives (for example, ECCSolve 
builds the solution matrix B-1 together with the lists of sur
viving and failed data and check drives). Prior to calling 
ECCSolve, ECCinitialize is called to generate constant tables 
used by all of the other functions (for example, ECCinitialize 
builds the IDM E and the two lookup tables for the Parallel 
Lookup Multiplier). 

ECCinitialize 
The function ECCinitialize creates constant tables that are 

used by all subsequent functions. It is called once at program 
initialization time. By copying or precomputing these values 

25 to compute the appropriate constants for the particular con
figuration of data drives, check drives, and failed drives, as 
well as the solution matrix B-1

. 

Exemplary Implementation Details 
As discussed in Appendix A, there are two significant 

30 sources of computational overhead in erasure code process
ing ( such as an erasure coding system used in RAID process
ing): the computation of the solution matrix B-1 for a given 
failure scenario, and the byte-level processing of encoding the 
check data J and reconstructing the lost data after a lost packet 

35 ( e.g., data drive failure). By reducing the solution matrix B-1 

to a matrix inversion of a FxF matrix, where F is the number 
of lost packets ( e.g., failed drives), that portion of the com
putational overhead is for all intents and purposes negligible 
compared to the megabytes (MB), gigabytes (GB), and pos-

40 sibly terabytes (TB) of data that needs to be encoded into 
check data or reconstructed from the surviving original and 
check data. Accordingly, the remainder of this section will be 
devoted to the byte-level encoding and regenerating process-
ing. 

up front, these constant tables can be used to replace more 45 

time-consuming operations with simple table look-ups (such 
As already mentioned, certain practical simplifications can 

be assumed for most implementations. By using a Galois field 
of256 entries, byte-level processing can be used for all of the 
GF arithmetic. Using the master encoding matrix S described 
in Appendix A, any combination of up to 127 data drives, 1 
parity drive, and 128 check drives can be supported with such 
a Galois field. While, in general, any combination of data 

as for the Parallel Lookup Multiplier). For example, four 
tables useful for speeding up the GF arithmetic include: 

1. mvct-an array of constants used to perform GF multi
plication with the PSHUFB instruction that operates on 50 

SSE registers (that is, the Parallel Lookup Multiplier). 
2. mast----contains the master encoding matrix S ( or the 

Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, such as 
the check drive encoding matrix H 

3. mul_tab-contains the results of all possible GF multi
plication operations of any two operands (for example, 
256x256=65,536 bytes for all of the possible products of 
two different one-byte quantities) 

drives and check drives that adds up to 256 total drives is 
possible, not all combinations provide a parity drive when 
computed directly. Using the master encoding matrix S, on 

55 the other hand, allows all such combinations (including a 
parity drive) to be built ( or simply indexed) from the same 
such matrix. That is, the appropriate sub-matrix (including 
the parity drive) can be used for configurations ofless than the 
maximum number of drives. 

4. div _tab----contains the results of all possible GF division 60 

operations of any two operands ( can be similar in size to 
mul_tab) 

In addition, using the master encoding matrix S permits 
further data drives and/or check drives can be added without 
requiring the recomputing of the IDM E (unlike other pro
posed solutions, which recompute E for every change ofN or 
M). Rather, additional indexing ofrows and/or colunms of the 

ECCSolve 
The function ECCSolve creates constant tables that are 

used to compute a solution for a particular configuration of 
data drives, check drives, and failed drives. It is called prior to 
using the functions ECCGenerate or ECCRegenerate. It 

65 master encoding matrix S will suffice. As discussed above, 
the use of the parity drive can eliminate or significantly 
reduce the somewhat complex GF multiplication operations 
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H check drive encoding matrix (MxN) 
I identity matrix (IK=KxK identity matrix, IN=NxN identity 

matrix) 
J encoded check data matrix (MxL) 

associated with the other check drives and replaces them with 
simple GF addition (bitwise exclusive OR in binary Galois 
fields) operations. It should be noted that master encoding 
matrices with the above properties are possible for any power
of-two number of drives 2P =N max Mmax where the maximum 
number of data drives N max is one less than a power of two 
(e.g., Nmax =127 or 63) and the maximum number of check 
drives Mmax (including the parity drive) is 2P -N max· 

5 K number of surviving data drives=N-F 
L data block size ( elements or bytes) 

As discussed earlier, in an exemplary embodiment of the 
present invention, a modem x86 architecture is used (being 10 

readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions. 
Each XMM register is 128 bits and is available for special 
purpose processing with the SSE instructions. Each of these 
XMM registers holds 16 bytes (8-bit), so four such registers 

15 
can be used to store 64 bytes of data. Thus, by using SSE 
instructions (some of which work on different operand sizes, 
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated at 

M number of check drives 
Mmax maximum value ofM 
N number of data drives 
Nmaxmaximum value ofN 
0 zero matrix (KxF), sub-matrix ofT 
S master encoding matrix ((Mmax+Nmax)xNmax) 
T transformed IDM 

[
h o] 

(NxN) = A B 

W surviving check data matrix (FxL) 
X surviving original data matrix (KxL) 
Y lost original data matrix (FxL) 

What is claimed is: 
1. A system for accelerated error-correcting code (ECC) 

a time using four consecutive SSE instructions ( e.g., fetching 
from memory, storing into memory, zeroing, adding, multi- 20 

plying), the remaining registers being used for intermediate 
results and temporary storage. With such an architecture, 
several routines are useful for optimizing the byte-level per
formance, including the Parallel Lookup Multiplier, 
Sequencer 1, and Sequencer 2 discussed above. 25 processing comprising: 

While the above description contains many specific 
embodiments of the invention, these should not be construed 
as limitations on the scope of the invention, but rather as 
examples of specific embodiments thereof. Accordingly, the 
scope of the invention should be determined not by the 30 

embodiments illustrated, but by the appended claims and 
their equivalents. 

a processing core for executing computer instructions and 
accessing data from a main memory, the processing core 
comprising at least 16 data registers, each of the data 
registers comprising at least 16 bytes; 

one or more non-volatile storage media for storing the 
computer instructions and the data; and 

an input/output (I/O) controller for controlling data trans
fers between the main memory and the non-volatile 
storage media, GLOSSARY OF SOME VARIABLES 

A encoding matrix (FxK), sub-matrix ofT 
B encoding matrix (FxF), sub-matrix ofT 
B-1 solution matrix (FxF) 
C encoded data matrix 

((N+M)xL)=[~] 

C' surviving encoded data matrix 

(NxL)=[:] 

D original data matrix (N xL) 
D' permuted original data matrix 

(NxL)=[~] 

E information dispersal matrix 

(IDM)((N + M)xN) = [;] 

F number of failed data drives 
G number of failed check drives 

35 

40 

45 

50 

wherein the processing core, the non-volatile storage 
media, the I/O controller, and the computer instructions 
are configured to implement an erasure coding system 
comprising: 
a data matrix for holding original data in the main 

memory; 
a check matrix for holding check data in the main 

memory; 
an encoding matrix for holding first factors in the main 

memory, the first factors being for encoding the origi
nal data into the check data; and 

a thread for executing on the processing core and com
prising: 
a parallel multiplier for concurrently multiplying 

multiple data entries of a matrix by a single factor; 
and 

a first sequencer for ordering data accesses through 
the data matrix and the encoding matrix using the 
parallel multiplier to generate the check data. 

2. The system of claim 1, wherein the parallel multiplier is 
55 configured to process the data in units of at least 64 bytes 

spread over at least four of the data registers at a time. 
3. The system of claim 2, wherein the parallel multiplier is 

further configured to: 
receive an input operand in the at least four of the data 

60 registers; and 
return with the input operand intact in the at least four of the 

data registers. 
4. The system of claim 2, wherein consecutive ones of the 

computer instructions to process each of the units of the data 
65 access separate ones of the data registers to permit concurrent 

execution of the consecutive ones of the computer instruc
tions on the processing core. 
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5. T~e system of claim 1, wherein the parallel multiplier 
co~pnses two lookup tables for doing concurrent multipli
cat10n of 4-bit quantities across 16 byte-sized entries using 
the PSHUFB (Packed Shuffle Bytes) or equivalent instruc
tion. 

6. The system of claim 1, wherein the parallel multiplier is 
further configured to: 

receive an input operand inat least one of the data registers; 
and 

return with the input operand intact in the at least one of the 10 

data registers. 
7. The system of claim 1, wherein the first sequencer is 

configured to access each entry of the data matrix from the 
main memory at most once while generating the check data. 

8. A _method of accelerated error-correcting code (ECC) 15 

processmg on a computing system comprising a processing 
core for accessing instructions and data from a main memory, 
?ne or. more non-volatile storage media for storing the 
mstruct10ns and the data, an input/output (I/O) controller for 
controlling data transfers between the main memory and the 20 

non-volatile storage media, and a computer program com
prising a plurality of computer instructions for implementing 
an erasure coding system, the processing core comprising at 
least 16 data registers, each of the data registers comprising at 
least 16 bytes, the method comprising: 

storing the computer program on the non-volatile storage 
media; 

executing the computer instructions on the processing 
core; 

25 

transferring the data between the main memory and the 30 

non-volatile storage media using the I/O controller; 
arranging original data as a data matrix in the main 

memory; 

30 
quantities across 16 byte-sized entries using the PSHUFB 
(Packed Shuffle Bytes) or equivalent instruction. 

13. The method of claim 8, wherein the generating of the 
check data further comprises: 

receiving by the parallel multiplier an input operand in at 
least one of the data registers; and 

returning by the parallel multiplier the input operand intact 
in the at least one of the data registers. 

14. The method of claim 8, wherein the generating of the 
check data comprises accessing each entry of the data matrix 
from the main memory at most once. 

15. A non-transitory computer-readable storage medium 
containing a computer program comprising a plurality of 
computer instructions for performing accelerated error-cor
recting code (ECC) processing on a computing system com
prising a processing core for accessing instructions and data 
from a main memory, the processing core comprising at least 
16 data registers, each of the data registers comprising at least 
~ 6 bytes, the computer instructions being configured to 
implement an erasure coding system when executed on the 
computing system by performing the steps of: 

arranging original data as a data matrix m the mam 
memory; 

arranging first factors as an encoding matrix in the main 
mem_ory, the first factors being for encoding the original 
data mto check data, the check data being arranged as a 
check matrix in the main memory; and 

generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a 
matrix by a single factor, the generating of the check data 
comprising ordering data accesses through the data 
matrix and the encoding matrix using the parallel mul
tiplier. arranging first factors as an encoding matrix in the main 

memory, the first factors being for encoding the original 
data into check data, the check data being arranged as a 
check matrix in the main memory; and 

generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a 
matrix by a single factor, the generating of the check data 
comprising ordering data accesses through the data 
matrix and the encoding matrix using the parallel mul
tiplier. 

35 
. 16. The storage medium of claim 15, wherein the generat
mg of the check data further comprises processing the data by 
the parallel multiplier in units of at least 64 bytes spread over 
at least four of the data registers at a time. 
. 17. The storage medium of claim 16, wherein the generat-

40 mg of the check data further comprises: 
receiving by the parallel multiplier an input operand in the 

at least four of the data registers; and 

9. The method of claim 8, wherein the generating of the 
check data further comprises processing the data by the par- 45 

all el multiplier in units of at least 64 bytes spread over at least 
four of the data registers at a time. 

returning by the parallel multiplier the input operand intact 
in the at least four of the data registers. 

18. The storage medium of claim 16, wherein 
consecutive ones of the computer instructions that process 

each of the units of the data access separate ones of the 
data registers, 10. The method of claim 9, wherein the generating of the 

check data further comprises: 
receiving by the parallel multiplier an input operand in the 50 

at least four of the data registers; and 

th~ executing of the computer instructions on the process
mg core further comprises concurrently executing the 
consecutive ones of the computer instructions on the 
processing core. returning by the parallel multiplier the input operand intact 

in the at least four of the data registers. 
11. The method of claim 9, wherein 
consecutive ones of the computer instructions that process 

each of the units of the data access separate ones of the 
data registers, 

th~ executing of the computer instructions on the process
mg core further comprises concurrently executing the 
consecutive ones of the computer instructions on the 
processing core. 

12. !he method of claim 8, wherein the parallel multiplier 
compnses two lookup tables and the generating of the check 
data further comprises using the parallel multiplier with the 
two lookup tables to do concurrent multiplication of 4-bit 

19. The storage medium of claim 15, wherein the parallel 
multiplier comprises two lookup tables and the generating of 

55 
th~ check data further comprises using the parallel multiplier 
with the two lookup tables to do concurrent multiplication of 
4-bit quantities across 16 byte-sized entries using the 
PSHUFB (Packed Shuffle Bytes) or equivalent instruction. 
. 20. The storage medium of claim 15, wherein the generat-

60 mg of the check data further comprises: 
receiving by the parallel multiplier an input operand in at 

least one of the data registers; and 
returning by the parallel multiplier the input operand intact 

in the at least one of the data registers. 

* * * * * 
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ACCELERATED ERASURE CODING 
SYSTEM AND METHOD 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica
tion Ser. No. 14/852,438, filed on Sep. 11, 2015, which is a 
continuation of U.S. patent application Ser. No. 14/223,740, 
filed on Mar. 24, 2014, now U.S. Pat. No. 9,160,374, issued 
on Oct. 13, 2015, which is a continuation of U.S. patent 
application Ser. No. 13/341,833, filed on Dec. 30, 2011, now 
U.S. Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire 
contents of each of which are expressly incorporated herein 
by reference. 

BACKGROUND 

Field 
Aspects of embodiments of the present invention are 

directed toward an accelerated erasure coding system and 
method. 

Description of Related Art 
An erasure code is a type of error-correcting code (ECC) 

useful for forward error-correction in applications like a 
redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data ( or 
original data) is organized in stripes, each of which is broken 

2 
Erasure codes ( or more specifically, erasure coding sys

tems) are generally regarded as impractical for values of M 
larger than 1 ( e.g., RAIDS systems, such as parity drive 
systems) or 2 (RAID6 systems), that is, for more than one or 

5 two check drives. For example, see H. Peter Anvin, "The 
mathematics of RAID-6," the entire content of which is 
incorporated herein by reference, p. 7, "Thus, in 2-disk
degraded mode, performance will be very slow. However, it 
is expected that that will be a rare occurrence, and that 

10 performance will not matter significantly in that case." See 
also Robert Maddock et al., "Surviving Two Disk Failures," 
p. 6, "The main difficulty with this technique is that calcu
lating the check codes, and reconstructing data after failures, 

15 
is quite complex. It involves polynomials and thus multi
plication, and requires special hardware, or at least a signal 
processor, to do it at sufficient speed." In addition, see also 
James S. Plank, "All About Erasure Codes: -Reed-Solo
mon Coding-LDPC Coding," slide 15 (describing compu-

20 tational complexity of Reed-Solomon decoding), "Bottom 
line: When n & m grow, it is brutally expensive." Accord
ingly, there appears to be a general consensus among experts 
in the field that erasure coding systems are impractical for 
RAID systems for all but small values of M (that is, small 

25 numbers of check drives), such as 1 or 2. 
Modem disk drives, on the other hand, are much less 

reliable than those envisioned when RAID was proposed. 
This is due to their capacity growing out of proportion to 
their reliability. Accordingly, systems with only a single 

30 check disk have, for the most part, been discontinued in 
favor of systems with two check disks. 

up into N equal-sized blocks, or data blocks, for some 
positive integer N. The data for each stripe is thus recon
structable by putting the N data blocks together. However, to 
handle situations where one or more of the original N data 
blocks gets lost, erasure codes also encode an additional M 
equal-sized blocks (called check blocks or check data) from 35 

the original N data blocks, for some positive integer M. 

In terms of reliability, a higher check disk count is clearly 
more desirable than a lower check disk count. If the count 
of error events on different drives is larger than the check 
disk count, data may be lost and that cannot be reconstructed 
from the correctly functioning drives. Error events extend 
well beyond the traditional measure of advertised mean time 
between failures (MTBF). A simple, real world example is 
a service event on a RAID system where the operator 

The N data blocks and the M check blocks are all the same 
size. Accordingly, there are a total of N+M equal-sized 
blocks after encoding. The N+M blocks may, for example, 
be transmitted to a receiver as N+M separate packets, or 
written to N+M corresponding disk drives. For ease of 
description, all N+M blocks after encoding will be referred 
to as encoded blocks, though some (for example, N of them) 
may contain unencoded portions of the original data. That is, 
the encoded data refers to the original data together with the 
check data. 

40 mistakenly replaces the wrong drive or, worse yet, replaces 
a good drive with a broken drive. In the absence of any 
generally accepted methodology to train, certify, and mea
sure the effectiveness of service technicians, these types of 
events occur at an unknown rate, but certainly occur. The 

45 foolproof solution for protecting data in the face of multiple 
error events is to increase the check disk count. 

The M check blocks build redundancy into the system, in 
a very efficient manner, in that the original data (as well as 
any lost check data) can be reconstructed if any N of the 
N+M encoded blocks are received by the receiver, or if any 50 

N of the N+M disk drives are functioning correctly. Note 
that such an erasure code is also referred to as "optimal." For 
ease of description, only optimal erasure codes will be 
discussed in this application. In such a code, up to M of the 
encoded blocks can be lost, (e.g., up to M of the disk drives 55 

can fail) so that if any N of the N+M encoded blocks are 
received successfully by the receiver, the original data (as 
well as the check data) can be reconstructed. N/(N+M) is 
thus the code rate of the erasure code encoding (i.e., how 
much space the original data takes up in the encoded data). 60 

Erasure codes for select values of N and M can be imple
mented on RAID systems employing N+M (disk) drives by 
spreading the original data among N "data" drives, and using 
the remaining M drives as "check" drives. Then, when any 
N of the N+M drives are correctly functioning, the original 65 

data can be reconstructed, and the check data can be 
regenerated. 

SUMMARY 

Aspects of embodiments of the present invention address 
these problems by providing a practical erasure coding 
system that, for byte-level RAID processing (where each 
byte is made up of 8 bits), performs well even for values of 
N+M as large as 256 drives (for example, N=127 data drives 
and M=129 check drives). Further aspects provide for a 
single precomputed encoding matrix ( or master encoding 
matrix) s of size MmaxxNmax, or CNmax+Mmax)xNmax or 
(Mmax-l)xNmax, elements (e.g., bytes), which can be used, 
for example, for any combination ofN sN max data drives and 
MsMmax check drives such that Nmax+Mmaxs256 (e.g., 
Nmax=l27 andMmax=l29, orNm==63 andMm==193). This 
is an improvement over prior art solutions that rebuild such 
matrices from scratch every time N or M changes ( such as 
adding another check drive). Still higher values of N and M 
are possible with larger processing increments, such as 2 
bytes, which affords up to N+M=65,536 drives (such as 
N=32,767 data drives and M=32,769 check drives). 
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main memory, a check matrix for holding check data in the 
main memory, an encoding matrix for holding first factors in 
the main memory, and a thread for executing on the pro
cessing core. The first factors are for encoding the original 

Higher check disk count can offer increased reliability and 
decreased cost. The higher reliability comes from factors 
such as the ability to withstand more drive failures. The 
decreased cost arises from factors such as the ability to 
create larger groups of data drives. For example, systems 
with two checks disks are typically limited to group sizes of 
10 or fewer drives for reliability reasons. With a higher 
check disk count, larger groups are available, which can lead 
to fewer overall components for the same unit of storage and 
hence, lower cost. 

5 data into the check data. The thread includes a parallel 
multiplier for concurrently multiplying multiple data entries 
of a matrix by a single factor; and a first sequencer for 
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier to generate the check 

10 data. 
Additional aspects of embodiments of the present inven

tion further address these problems by providing a standard 
parity drive as part of the encoding matrix. For instance, 
aspects provide for a parity drive for configurations with up 
to 127 data drives and up to 128 (non-parity) check drives, 15 

for a total ofup to 256 total drives including the parity drive. 
Further aspects provide for different breakdowns, such as up 
to 63 data drives, a parity drive, and up to 192 (non-parity) 
check drives. Providing a parity drive offers performance 
comparable to RAIDS in comparable circumstances (such as 20 

single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives. 

Further aspects are directed to a system and method for 
implementing a fast solution matrix algorithm for Reed- 25 

Solomon codes. While known solution matrix algorithms 
compute an NxN solution matrix (see, for example, J. S. 
Plank, "A tutorial on Reed-Solomon coding for fault-toler
ance in RAID-like systems," Software-Practice & Expe
rience, 27(9):995-1012, September 1997, andJ. S. Plank and 30 

Y. Ding, "Note: Correction to the 1997 tutorial on Reed
Solomon coding," Technical Report CS-03-504, University 
of Tennessee, April 2003), requiring O(N3

) operations, 
regardless of the number of failed data drives, aspects of 
embodiments of the present invention compute only an FxF 35 

solution matrix, where F is the number of failed data drives. 
The overhead for computing this FxF solution matrix is 
approximately F3/3 multiplication operations and the same 
number of addition operations. Not only is FsN, in almost 
any practical application, the number of failed data drives F 40 

is considerably smaller than the number of data drives N. 
Accordingly, the fast solution matrix algorithm is consider
ably faster than any known approach for practical values of 
F and N. 

The first sequencer may be configured to access each 
entry of the data matrix from the main memory at most once 
while generating the check data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data by dividing the data matrix into a 
plurality of data matrices, dividing the check matrix into a 
plurality of check matrices, assigning corresponding ones of 
the data matrices and the check matrices to the threads, and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 
check matrices from respective ones of the data matrices. 

The data matrix may include a first number of rows. The 
check matrix may include a second number of rows. The 
encoding matrix may include the second number of rows 
and the first number of colunms. 

The data matrix may be configured to add rows to the first 
number of rows or the check matrix may be configured to 
add rows to the second number of rows while the first factors 
remain unchanged. 

Each of entries of one of the rows of the encoding matrix 
may include a multiplicative identity factor (such as 1). 

The data matrix may be configured to be divided by rows 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data and including a 
third number of rows. The erasure coding system may 
further include a solution matrix for holding second factors 
in the main memory. The second factors are for decoding the 
check data into the lost original data using the surviving 
original data and the first factors. 

The solution matrix may include the third number of rows 
and the third number of colunms. 

The solution matrix may further include an inverted said 
third number by said third number sub-matrix of the encod
ing matrix. 

Still further aspects are directed toward fast implementa- 45 

tions of the check data generation and the lost ( original and 
check) data reconstruction. Some of these aspects are 
directed toward fetching the surviving ( original and check) 
data a minimum number of times (that is, at most once) to 
carry out the data reconstruction. Some of these aspects are 
directed toward efficient implementations that can maximize 

The erasure coding system may further include a first list 
of rows of the data matrix corresponding to the surviving 

50 data matrix, and a second list of rows of the data matrix 
corresponding to the lost data matrix. 

or significantly leverage the available parallel processing 
power of multiple cores working concurrently on the check 
data generation and the lost data reconstruction. Existing 
implementations do not attempt to accelerate these aspects 
of the data generation and thus fail to achieve a comparable 
level of performance. 

In an exemplary embodiment of the present invention, a 
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for 
executing computer instructions and accessing data from a 
main memory; and a non-volatile storage medium (for 
example, a disk drive, or flash memory) for storing the 
computer instructions. The processing core, the storage 
medium, and the computer instructions are configured to 
implement an erasure coding system. The erasure coding 
system includes a data matrix for holding original data in the 

The data matrix may be configured to be divided into a 
surviving data matrix for holding surviving original data of 
the original data, and a lost data matrix corresponding to lost 

55 original data of the original data. The erasure coding system 
may further include a solution matrix for holding second 
factors in the main memory. The second factors are for 
decoding the check data into the lost original data using the 
surviving original data and the first factors. The thread may 

60 further include a second sequencer for ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel 
multiplier to reconstruct the lost original data. 

The second sequencer may be further configured to access 
65 each entry of the surviving data matrix from the main 

memory at most once while reconstructing the lost original 
data. 
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The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include: a scheduler for 
generating the check data and reconstructing the lost original 
data by dividing the data matrix into a plurality of data 5 

matrices; dividing the surviving data matrix into a plurality 
of surviving data matrices; dividing the lost data matrix into 
a plurality of lost data matrices; dividing the check matrix 
into a plurality of check matrices; assigning corresponding 
ones of the data matrices, the surviving data matrices, the 10 

lost data matrices, and the check matrices to the threads; and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 
check matrices from respective ones of the data matrices and 

15 
to concurrently reconstruct portions of the lost original data 
corresponding to the lost data matrices from respective ones 
of the surviving data matrices and the check matrices. 

The check matrix may be configured to be divided into a 
surviving check matrix for holding surviving check data of 20 

the check data, and a lost check matrix corresponding to lost 
check data of the check data. The second sequencer may be 
configured to order operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier to regenerate the lost 25 

check data. 
The second sequencer may be further configured to recon

struct the lost original data concurrently with regenerating 
the lost check data. 

6 
Consecutive instructions to process each of the units of 

the data may access separate ones of the data registers to 
permit concurrent execution of the consecutive instructions 
by the processing core. 

The parallel multiplier may include two lookup tables for 
doing concurrent multiplication of 4-bit quantities across 16 
byte-sized entries using the PSHUFB (Packed Shuffle Bytes) 
instruction. 

The parallel multiplier may be further configured to 
receive an input operand in four of the data registers, and 
return with the input operand intact in the four of the data 
registers. 

According to another exemplary embodiment of the pres
ent invention, a method of accelerated error-correcting code 
(ECC) processing on a computing system is provided. The 
computing system includes a non-volatile storage medium 
(such as a disk drive or flash memory), a processing core for 
accessing instructions and data from a main memory, and a 
computer program including a plurality of computer instruc
tions for implementing an erasure coding system. The 
method includes: storing the computer program on the 
storage medium; executing the computer instructions on the 
processing core; arranging original data as a data matrix in 
the main memory; arranging first factors as an encoding 
matrix in the main memory, the first factors being for 
encoding the original data into check data, the check data 
being arranged as a check matrix in the main memory; and 
generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a matrix by 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main 
memory at most once while reconstructing the lost original 
data and regenerating the lost check data. 

30 a single factor. The generating of the check data includes 
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier. 

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 35 

lost original data from the main memory. 
The processing core may include a plurality of processing 

cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data, reconstructing the lost original 40 

data, and regenerating the lost check data by: dividing the 
data matrix into a plurality of data matrices; dividing the 
surviving data matrix into a plurality of surviving data 
matrices; dividing the lost data matrix into a plurality oflost 
data matrices; dividing the check matrix into a plurality of 45 

check matrices; dividing the surviving check matrix into a 
plurality of surviving check matrices; dividing the lost check 
matrix into a plurality of lost check matrices; assigning 
corresponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the 50 

surviving check matrices, and the lost check matrices to the 
threads; and assigning the threads to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices, to concurrently reconstruct portions of the lost 55 

original data corresponding to the lost data matrices from 
respective ones of the surviving data matrices and the 
surviving check matrices, and to concurrently regenerate 
portions of the lost check data corresponding to the lost 
check matrices from respective ones of the surviving data 60 

matrices and respective portions of the reconstructed lost 
original data. 

The processing core may include 16 data registers. Each 
of the data registers may include 16 bytes. The parallel 
multiplier may be configured to process the data in units of 65 

at least 64 bytes spread over at least four of the data registers 
at a time. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data by: dividing the data matrix into 
a plurality of data matrices; dividing the check matrix into 
a plurality of check matrices; and assigning corresponding 
ones of the data matrices and the check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec
tive ones of the data matrices. 

The method may further include: dividing the data matrix 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data; arranging second 
factors as a solution matrix in the main memory, the second 
factors being for decoding the check data into the lost 
original data using the surviving original data and the first 
factors; and reconstructing the lost original data by ordering 
operations through the surviving data matrix, the encoding 
matrix, the check matrix, and the solution matrix using the 
parallel multiplier. 

The reconstructing of the lost original data may include 
accessing each entry of the surviving data matrix from the 
main memory at most once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data and the reconstructing of the 
lost original data by: dividing the data matrix into a plurality 
of data matrices; dividing the surviving data matrix into a 
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memory; arranging first factors as an encoding matrix in the 
main memory, the first factors being for encoding the 
original data into check data, the check data being arranged 
as a check matrix in the main memory; and generating the 

plurality of surviving data matrices; dividing the lost data 
matrix into a plurality of lost data matrices; dividing the 
check matrix into a plurality of check matrices; and assign
ing corresponding ones of the data matrices, the surviving 
data matrices, the lost data matrices, and the check matrices 
to the processing cores to concurrently generate portions of 
the check data corresponding to the check matrices from 
respective ones of the data matrices and to concurrently 
reconstruct portions of the lost original data corresponding 

5 check data using a parallel multiplier for concurrently mul
tiplying multiple data entries of a matrix by a single factor. 
The generating of the check data includes ordering opera
tions through the data matrix and the encoding matrix using 

to the lost data matrices from respective ones of the surviv- 10 

ing data matrices and the check matrices. 
The method may further include: dividing the check 

matrix into a surviving check matrix for holding surviving 
check data of the check data, and a lost check matrix 
corresponding to lost check data of the check data; and 15 

regenerating the lost check data by ordering operations 
through the surviving data matrix, the reconstructed lost 
original data, and the encoding matrix using the parallel 
multiplier. 

The reconstructing of the lost original data may take place 20 

concurrently with the regenerating of the lost check data. 

the parallel multiplier. 
The generating of the check data may include accessing 

each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured 
to perform the step of scheduling the generating of the check 
data by: dividing the data matrix into a plurality of data 
matrices; dividing the check matrix into a plurality of check 
matrices; and assigning corresponding ones of the data 
matrices and the check matrices to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices. 

The computer instructions may be further configured to 
perform the steps of: dividing the data matrix into a surviv-

The reconstructing of the lost original data and the 
regenerating of the lost check data may include accessing 
each entry of the surviving data matrix from the main 
memory at most once. 

The regenerating of the lost check data may take place 
without accessing the reconstructed lost original data from 
the main memory. 

25 ing data matrix for holding surviving original data of the 
original data, and a lost data matrix corresponding to lost 
original data of the original data; arranging second factors as 
a solution matrix in the main memory, the second factors 
being for decoding the check data into the lost original data The processing core may include a plurality of processing 

cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data, the reconstructing of the lost 
original data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 35 

dividing the surviving data matrix into a plurality of sur
viving data matrices; dividing the lost data matrix into a 
plurality oflost data matrices; dividing the check matrix into 

30 using the surviving original data and the first factors; and 
reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel 
multiplier. 

The computer instructions may be further configured to 
perform the steps of: dividing the check matrix into a 
surviving check matrix for holding surviving check data of 
the check data, and a lost check matrix corresponding to lost 
check data of the check data; and regenerating the lost check a plurality of check matrices; dividing the surviving check 

matrix into a plurality of surviving check matrices; dividing 
the lost check matrix into a plurality oflost check matrices; 
and assigning corresponding ones of the data matrices, the 
surviving data matrices, the lost data matrices, the check 
matrices, the surviving check matrices, and the lost check 
matrices to the processing cores to concurrently generate 
portions of the check data corresponding to the check 
matrices from respective ones of the data matrices, to 
concurrently reconstruct portions of the lost original data 
corresponding to the lost data matrices from respective ones 

40 data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data and the 
regenerating of the lost check data may include accessing 

45 each entry of the surviving data matrix from the main 

of the surviving data matrices and the surviving check 50 

matrices, and to concurrently regenerate portions of the lost 
check data corresponding to the lost check matrices from 
respective ones of the surviving data matrices and respective 
portions of the reconstructed lost original data. 

According to yet another exemplary embodiment of the 55 

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a 
digital video disk (DVD), flash memory, a universal serial 
bus (USB) drive, etc.) containing a computer program 
including a plurality of computer instructions for performing 60 

accelerated error-correcting code (ECC) processing on a 
computing system is provided. The computing system 
includes a processing core for accessing instructions and 
data from a main memory. The computer instructions are 
configured to implement an erasure coding system when 65 

executed on the computing system by performing the steps 
of: arranging original data as a data matrix in the main 

memory at most once. 
The processing core may include a plurality of processing 

cores. The computer instructions may be further configured 
to perform the step of scheduling the generating of the check 
data, the reconstructing of the lost original data, and the 
regenerating of the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviv
ing data matrix into a plurality of surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 
matrices; dividing the check matrix into a plurality of check 
matrices; dividing the surviving check matrix into a plurality 
of surviving check matrices; dividing the lost check matrix 
into a plurality of lost check matrices; and assigning corre
sponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the 
surviving check matrices, and the lost check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct 
portions of the lost original data corresponding to the lost 
data matrices from respective ones of the surviving data 
matrices and the surviving check matrices, and to concur-

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 190 of 350



US 10,003,358 B2 
9 

rently regenerate portions of the lost check data correspond
ing to the lost check matrices from respective ones of the 
surviving data matrices and respective portions of the recon
structed lost original data. 

10 
simplification and ease of description and implementation, 
the described embodiments in the present application 
assume a consistent block size (L bytes) and distribution of 

By providing practical and efficient systems and methods 5 

for erasure coding systems (which for byte-level processing 
can support up to N+M=256 drives, such as N=127 data 
drives and M=129 check drives, including a parity drive), 
applications such as RAID systems that can tolerate far more 
failing drives than was thought to be possible or practical 10 

can be implemented with accelerated performance signifi
cantly better than any prior art solution. 

blocks among the data drives between stripes. Further, all 
variables, such as the number of data drives N, will be 
assumed to be positive integers unless otherwise specified. 
In addition, since the N=l case reduces to simple data 
mirroring (that is, copying the same data drive multiple 
times), it will also be assumed for simplicity that N;;,;2 
throughout. 

The N data blocks from each stripe are combined using 
arithmetic operations (to be described in more detail below) 
in M different ways to produce M blocks of check data 
( check blocks), and the M check blocks written across M BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, together with the specifi
cation, illustrate exemplary embodiments of the present 
invention and, together with the description, serve to explain 
aspects and principles of the present invention. 

FIG. 1 shows an exemplary stripe of original and check 
data according to an embodiment of the present invention. 

FIG. 2 shows an exemplary method for reconstructing lost 
data after a failure of one or more drives according to an 
embodiment of the present invention. 

FIG. 3 shows an exemplary method for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

FIG. 4 shows an exemplary method for sequencing the 
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

FIGS. 5-7 show an exemplary method for sequencing the 
parallel lookup multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion. 

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention. 

FIG. 9 shows an exemplary disk drive configuration 
according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

Hereinafter, exemplary embodiments of the invention will 
be described in more detail with reference to the accompa
nying drawings. In the drawings, like reference numerals 
refer to like elements throughout. 

While optimal erasure codes have many applications, for 
ease of description, they will be described in this application 
with respect to RAID applications, i.e., erasure coding 
systems for the storage and retrieval of digital data distrib
uted across numerous storage devices ( or drives), though the 
present application is not limited thereto. For further ease of 
description, the storage devices will be assumed to be disk 
drives, though the invention is not limited thereto. In RAID 
systems, the data (or original data) is broken up into stripes, 
each of which includes N uniformly sized blocks ( data 
blocks), and the N blocks are written across N separate 
drives (the data drives), one block per data drive. 

In addition, for ease of description, blocks will be 
assumed to be composed ofL elements, each element having 

15 
drives (the check drives) separate from the N data drives, 
one block per check drive. These combinations can take 
place, for example, when new ( or changed) data is written to 
(or back to) disk. Accordingly, each of the N+M drives (data 
drives and check drives) stores a similar amount of data, 
namely one block for each stripe. As the processing of 

20 multiple stripes is conceptually similar to the processing of 
one stripe ( only processing multiple blocks per drive instead 
of one), it will be further assumed for simplification that the 
data being stored or retrieved is only one stripe in size unless 
otherwise indicated. It will also be assumed that the block 

25 size L is sufficiently large that the data can be consistently 
divided across each block to produce subsets of the data that 
include respective portions of the blocks (for efficient con
current processing by different processing units). 

FIG. 1 shows an exemplary stripe 10 of original and check 
30 data according to an embodiment of the present invention. 

Referring to FIG. 1, the stripe 10 can be thought of not 
only as the original N data blocks 20 that make up the 
original data, but also the corresponding M check blocks 30 
generated from the original data (that is, the stripe 10 

35 
represents encoded data). Each of the N data blocks 20 is 
composed of L bytes 25 (labeled byte 1, byte 2, ... , byte 
L), and each of the M check blocks 30 is composed of L 
bytes 35 (labeled similarly). In addition, check drive 1, byte 
1, is a linear combination of data drive 1, byte 1; data drive 
2, byte 1; ... ; data drive N, byte 1. Likewise, check drive 

40 1, byte 2, is generated from the same linear combination 
formula as check drive 1, byte 1, only using data drive 1, 
byte 2; data drive 2, byte 2; ... ; data drive N, byte 2. In 
contrast, check drive 2, byte 1, uses a different linear 
combination formula than check drive 1, byte 1, but applies 

45 it to the same data, namely data drive 1, byte 1; data drive 
2, byte 1; ... ; data drive N, byte 1. In this fashion, each of 
the other check bytes 35 is a linear combination of the 
respective bytes of each of the N data drives 20 and using the 
corresponding linear combination formula for the particular 

50 check drive 30. 

55 

The stripe 10 in FIG. 1 can also be represented as a matrix 
C of encoded data. Chas two sub-matrices, namely original 
data D on top and check data Jon bottom. That is, 

Du D12 D1L 

D21 D22 D2L 

a fixed size, say 8 bits or one byte. An element, such as a 
byte, forms the fundamental unit of operation for the RAID 
processing, but the invention is just as applicable to other 
size elements, such as 16 bits (2 bytes). For simplification, 60 

unless otherwise indicated, elements will be assumed to be 
one byte in size throughout the description that follows, and 
the term "element(s)" and "byte(s)" will be used synony
mously. 

C= [~]= DN! DN2 DNL 

lu 112 l1L 

h1 h2 hL 

JM! lM2 ]ML 

where D,rbyte j from data drive i and J, =byte j from check 
drive i. Thus, the rows of encoded data uC represent blocks, 
while the colunms represent corresponding bytes of each of 
the drives. 

Conceptually, different stripes can distribute their data 65 

blocks across different combinations of drives, or have 
different block sizes or numbers of blocks, etc., but for 
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Further, in case of a disk drive failure of one or more 
disks, the arithmetic operations are designed in such a 
fashion that for any stripe, the original data (and by exten
sion, the check data) can be reconstructed from any com
bination ofN data and check blocks from the corresponding 5 

N+M data and check blocks that comprise the stripe. Thus, 
RAID provides both parallel processing (reading and writing 
the data in stripes across multiple drives concurrently) and 
fault tolerance (regeneration of the original data even if as 
many as M of the drives fail), at the computational cost of 10 

generating the check data any time new data is written to 
disk, or changed data is written back to disk, as well as the 
computational cost of reconstructing any lost original data 
and regenerating any lost check data after a disk failure. 

For example, for M=l check drive, a single parity drive 15 
can function as the check drive (i.e., a RAID4 system). Here, 
the arithmetic operation is bitwise exclusive OR of each of 
the N corresponding data bytes in each data block of the 
stripe. In addition, as mentioned earlier, the assignment of 
parity blocks from different stripes to the same drive (i.e., 
RAID4) or different drives (i.e., RAIDS) is arbitrary, but it 20 

does simplify the description and implementation to use a 
consistent assignment between stripes, so that will be 
assumed throughout. Since M=l reduces to the case of a 
single parity drive, it will further be assumed for simplicity 
that M;;,;2 throughout. 25 

For such larger values ofM, Galois field arithmetic is used 
to manipulate the data, as described in more detail later. 
Galois field arithmetic, for Galois fields of powers-of-2 
( such as 2i numbers of elements, includes two fundamental 
operations: (1) addition (which is just bitwise exclusive OR, 
as with the parity drive-only operations for M=l), and (2) 
multiplication. While Galois field (GF) addition is trivial on 
standard processors, GF multiplication is not. Accordingly, 
a significant component of RAID performance for M;;,;2 is 
speeding up the performance ofGF multiplication, as will be 
discussed later. For purposes of description, GF addition will 
be represented by the symbol+throughout while GF multi
plication will be represented by the symbolxthroughout. 

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations 

30 

35 

( over GF arithmetic) of the N data drives of original data, 40 

one linear combination (i.e., a GF sum of N terms, where 
each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective 
data drive) for each check drive, as applied to respective 
bytes in each block. One such linear combination can be a 45 

simple parity, i.e., entirely GF addition (all factors equal 1), 
such as a GF sum of the first byte in each block of original 
data as described above. 

12 
factors for the check drives (where each of the M rows 
corresponds to one of the M check drives and each of the N 
colunms corresponds to one of the N data drives). 

Thus, 

0 0 

0 0 

£=[~]= 0 0 

Hu H12 H1N 

H21 H22 hN 

HM! HM2 HMN 

where H,rfactor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the colunms 
represent corresponding bytes of each of the drives. In 
addition, check factors H, original data D, and check data J 
are related by the formula J=HxD (that is, matrix multipli
cation), or 

lu 112 l1L Hu H12 H1N 

h1 h2 hL H21 H22 H2N 
X 

JM! lM2 ]ML HM! HM2 HMN 

Du D12 D1L 

D21 D22 D2L 

DN1 DN2 DNL 

where J11=(H11 xD11 )+(H12xD21 )+ ... +(H1NxDN1), J12= 
(H11 xD12)+(H12xD22)+ ... +ANxDN2), J21 =(H21 xD11)+ 
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+ 
(Hi2xD2)+ ... +(H,NxDNf) for lsisM and lsjsL. 

Such an encoding matrix E is also referred to as an 
information dispersal matrix (IDM). It should be noted that 
matrices such as check drive encoding matrix H and identity 
matrix IN also represent encoding matrices, in that they 
represent matrices of factors to produce linear combinations 
over GF arithmetic of the original data. In practice, the 
identity matrix IN is trivial and may not need to be con
structed as part of the IDM E. Only the encoding matrix E, 
however, will be referred to as the IDM. Methods ofbuilding 

50 an encoding matrix such as IDM E or check drive encoding 
matrix Hare discussed below. In further embodiments of the 

The remaining M-1 linear combinations include more 
involved calculations that include the nontrivial GF multi
plication operations ( e.g., performing a GF multiplication of 
the first byte in each block by a corresponding factor for the 
respective data drive, and then performing a GF sum of all 
these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or infor-

55 
mation dispersal matrix (IDM)) E of the different factors, 
one factor for each combination of ( data or check) drive and 
data drive, with one row for each of the N+M data and check 
drives and one colunm for each of the N data drives. The 
IDM E can also be represented as 

where IN represents the NxN identity matrix (i.e., the origi
nal (unencoded) data) and H represents the MxN matrix of 

present invention ( as discussed further in Appendix A), such 
(N+M)xN (or MxN) matrices can be trivially constructed 
( or simply indexed) from a master encoding matrix S, which 
is composed of (Nmax+Mmax)xNmax (or MmaxxNmax) bytes 
or elements, where Nmax+Mmax =256 (or some other power 
of two) and NsNmax and MsMmax· For example, one such 
master encoding matrix S can include a 127x127 element 
identity matrix on top (for up to Nmax=l27 data drives), a 

60 row of 1 's (for a parity drive), and a 128x127 element 
encoding matrix on bottom (for up to Mmax=l29 check 
drives, including the parity drive), for a total of Nmax+ 
Mmax =256 drives. 

The original data, in tum, can be represented by an N xL 
65 matrix D of bytes, each of the N rows representing the L 

bytes of a block of the corresponding one of the N data 
drives. If C represents the corresponding (N+M)xL matrix 
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of encoded bytes (where each of the N+M rows corresponds 
to one of the N+M data and check drives), then C can be 
represented as Ex 

14 
cessing of the different sets of surviving and failed drives to 
be done more efficiently than existing solutions, which use, 
for example, bit vectors that have to be examined one bit at 
a time and often include large numbers of consecutive zeros 

5 ( or ones) when ones ( or zeros) are the bit values of interest. 
FIG. 2 shows an exemplary method 300 for reconstruct

ing lost data after a failure of one or more drives according 
to an embodiment of the present invention. 

While the recovery process is described in more detail where J=HxD is an MxL matrix of check data, with each of 
the M rows representing the L check bytes of the corre
sponding one of the M check drives. It should be noted that 
in the relationships such as C=ExD or J=HxD, x represents 
matrix multiplication over the Galois field (i.e., GF multi
plication and GF addition being used to generate each of the 

10 later, briefly it consists of two parts: (1) determining the 
solution matrix, and (2) reconstructing the lost data from the 
surviving data. Determining the solution matrix can be done 
in three steps with the following algorithm (Algorithm 1 ), 
with reference to FIG. 2: 

entries in, for example, C or J). 
15 

In exemplary embodiments of the present invention, the 
first row of the check drive encoding matrix H ( or the 
(N+lr row of the IDM E) can be all l's, representing the 
parity drive. For linear combinations involving this row, the 
GF multiplication can be bypassed and replaced with a GF 
sum of the corresponding bytes since the products are all 20 

trivial products involving the identity element 1. Accord
ingly, in parity drive implementations, the check drive 
encoding matrix H can also be thought of as an (M-l)xN 
matrix of non-trivial factors (that is, factors intended to be 
used in GF multiplication and not just GF addition). 

Much of the RAID processing involves generating the 
check data when new or changed data is written to ( or back 
to) disk. The other significant event for RAID processing is 
when one or more of the drives fail ( data or check drives), 

25 

or for whatever reason become unavailable. Assume that in 30 
such a failure scenario, F data drives fail and G check drives 
fail, where F and G are nonnegative integers. If F=0, then 
only check drives failed and all of the original data D 
survived. In this case, the lost check data can be regenerated 
from the original data D. 

35 
Accordingly, assume at least one data drive fails, that is, 

F2:l, and let K=N-F represent the number of data drives that 
survive. K is also a nonnegative integer. In addition, let X 
represent the surviving original data and Y represent the lost 
original data. That is, Xis a KxL matrix composed of the K 
rows of the original data matrix D corresponding to the K 40 

surviving data drives, while Y is an FxL matrix composed of 
the F rows of the original data matrix D corresponding to the 
F failed data drives. 

45 

thus represents a permuted original data matrix D' (that is, 
the original data matrix D, only with the surviving original 50 

data X on top and the lost original data Y on bottom. It 
should be noted that once the lost original data Y is recon
structed, it can be combined with the surviving original data 
X to restore the original data D, from which the check data 
for any of the failed check drives can be regenerated. 

55 
It should also be noted that M-G check drives survive. In 

order to reconstruct the lost original data Y, enough (that is, 

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to 
an N xN reduced encoding matrix T ( also referred to as 
the transformed IDM) including the K surviving data 
drive rows and any F of the M-G surviving check drive 
rows (for instance, the first F surviving check drive 
rows, as these will include the parity drive if it sur
vived; recall that FsM-G was assumed). In addition, 
the colunms of the reduced encoding matrix T are 
rearranged so that the K colunms corresponding to the 
K surviving data drives are on the left side of the matrix 
and the F colunms corresponding to the F failed drives 
are on the right side of the matrix. (Step 320) These F 
surviving check drives selected to rebuild the lost 
original data Y will henceforth be referred to as "the F 
surviving check drives," and their check data W will be 
referred to as "the surviving check data," even though 
M-G check drives survived. It should be noted that W 
is an FxL matrix composed of the F rows of the check 
data J corresponding to the F surviving check drives. 
Further, the surviving encoded data can be represented 
as a sub-matrix C' of the encoded data C. The surviving 
encoded data C' is an N xL matrix composed of the 
surviving original data X on top and the surviving 
check data Won bottom, that is, 

2. (Step 330) Splitting the reduced encoding matrix Tinto 
four sub-matrices (that are also encoding matrices): (i) 
a KxK identity matrix IK ( corresponding to the K 
surviving data drives) in the upper left, (ii) a KxF 
matrix O of zeros in the upper right, (iii) an FxK 
encoding matrix A in the lower left corresponding to 
the F surviving check drive rows and the K surviving 
data drive colunms, and (iv) an FxF encoding matrix B 
in the lower right corresponding to the F surviving 
check drive rows and the F failed data drive columns. 
Thus, the reduced encoding matrix T can be repre
sented as 

3. (Step 340) Calculating the inverse B-1 of the FxF 
encoding matrix B. As is shown in more detail in 
Appendix A, C'=TxD', or 

at least N) total drives must survive. Given that K=N-F data 
drives survive, and that M-G check drives survive, it 
follows that (N-F)+(M-G)2:N must be true to reconstruct 
the lost original data Y. This is equivalent to F+GsM (i.e., 60 

no more than F+G drives fail), or FsM-G (that is, the 
number of failed data drives does not exceed the number of 
surviving check drives). It will therefore be assumed for 
simplicity that FsM-G. 

65 which is mathematically equivalent to W=AxX+BxY. B-1 is 
the solution matrix, and is itself an FxF encoding matrix. 
Calculating the solution matrix B-1 thus allows the lost 

In the routines that follow, performance can be enhanced 
by prebuilding lists of the failed and surviving data and 
check drives (that is, four separate lists). This allows pro-
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original data Y to be reconstructed from the encoding 
matrices A and B along with the surviving original data X 
and the surviving check data W. 

The FxK encoding matrix A represents the original encod
ing matrix E, only limited to the K surviving data drives and 
the F surviving check drives. That is, each of the F rows of 
A represents a different one of the F surviving check drives, 
while each of the K colunms of A represents a different one 
of the K surviving data drives. Thus, A provides the encod
ing factors needed to encode the original data for the 
surviving check drives, but only applied to the surviving 
data drives (that is, the surviving partial check data). Since 
the surviving original data X is available, A can be used to 
generate this surviving partial check data. 

In similar fashion, the FxF encoding matrix B represents 
the original encoding matrix E, only limited to the F 
surviving check drives and the F failed data drives. That is, 
the F rows of B correspond to the same F rows of A, while 
each of the F colunms of B represents a different one of the 
F failed data drives. Thus, B provides the encoding factors 
needed to encode the original data for the surviving check 
drives, but only applied to the failed data drives (that is, the 
lost partial check data). Since the lost original data Y is not 
available, B cannot be used to generate any of the lost partial 
check data. However, this lost partial check data can be 
determined from A and the surviving check data W. Since 
this lost partial check data represents the result of applying 

16 
the surviving and recovered original data X and Y, to 
regenerate the lost check data (using matrix multipli
cation). 

As will be shown in more detail later, steps 1-3 together 
5 require O(F) operations times the amount of original data D 

to reconstruct the lost original data Y for the F failed data 
drives (i.e., roughly 1 operation per failed data drive per byte 
of original data D), which is proportionally equivalent to the 
O(M) operations times the amount of original data D needed 

10 to generate the check data J for the M check drives (i.e., 
roughly 1 operation per check drive per byte of original data 
D). In addition, this same equivalence extends to step 4, 
which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the G 

15 failed check drives (i.e., roughly 1 operation per failed check 
drive per byte of original data D). In summary, the number 
of operations needed to reconstruct the lost data is O(F +G) 
times the amount of original data D (i.e., roughly 1 operation 
per failed drive ( data or check) per byte of original data D). 

20 Since F+GsM, this means that the computational complex
ity of Algorithm 2 (reconstructing the lost data from the 
surviving data) is no more than that of generating the check 
data J from the original data D. 

As mentioned above, for exemplary purposes and ease of 
25 description, data is assumed to be organized in 8-bit bytes, 

each byte capable of taking on 28=256 possible values. Such 
data can be manipulated in byte-size elements using GF 
arithmetic for a Galois field of size 28=256 elements. It 

B to the lost original data Y, B- 1 thus represents the neces
sary factors to reconstruct the lost original data Y from the 30 

lost partial check data. 

should also be noted that the same mathematical principles 
apply to any power-of-two 2P number of elements, not just 
256, as Galois fields can be constructed for any integral 

It should be noted that steps 1 and 2 in Algorithm 1 above 
are logical, in that encoding matrices A and B ( or the reduced 
encoding matrix T, for that matter) do not have to actually 

power of a prime number. Since Galois fields are finite, and 
since GF operations never overflow, all results are the same 
size as the inputs, for example, 8 bits. 

be constructed. Appropriate indexing of the IDM E ( or the 35 

master encoding matrix 5) can be used to obtain any of their 
entries. Step 3, however, is a matrix inversion over GF 
arithmetic and takes O(F3

) operations, as discussed in more 
detail later. Nonetheless, this is a significant improvement 
over existing solutions, which require O(N3

) operations, 40 

since the number of failed data drives F is usually signifi
cantly less than the number of data drives N in any practical 
situation. 

In a Galois field of a power-of-two number of elements, 
addition and subtraction are the same operation, namely a 
bitwise exclusive OR (XOR) of the two operands. This is a 
very fast operation to perform on any current processor. It 
can also be performed on multiple bytes concurrently. Since 
the addition and subtraction operations take place, for 
example, on a byte-level basis, they can be done in parallel 
by using, for instance, x86 architecture Streaming SIMD 
Extensions (SSE) instructions (SIMD stands for single 
instruction, multiple data, and refers to performing the same (Step 350 in FIG. 2) Once the encoding matrix A and the 

solution matrix B- 1 are known, reconstructing the lost data 
from the surviving data (that is, the surviving original data 
X and the surviving check data W) can be accomplished in 
four steps using the following algorithm (Algorithm 2): 

1. Use A and the surviving original data X (using matrix 
multiplication) to generate the surviving check data 
(i.e., AxX), only limited to the K surviving data drives. 
Call this limited check data the surviving partial check 
data. 

2. Subtract this surviving partial check data from the 
surviving check data W (using matrix subtraction, i.e., 
W-AxX, which is just entry-by-entry GF subtraction, 
which is the same as GF addition for this Galois field). 
This generates the surviving check data, only this time 
limited to the F failed data drives. Call this limited 
check data the lost partial check data. 

3. Use the solution matrix B- 1 and the lost partial check 
data (using matrix multiplication, i.e., B- 1x(W-AxX) 
to reconstruct the lost original data Y. Call this the 
recovered original data Y. 

4. Use the corresponding rows of the IDM E (or master 
encoding matrix S) for each of the G failed check drives 
along with the original data D, as reconstructed from 

45 instruction on different pieces of data, possibly concur
rently), such as PXOR (Packed (bitwise) Exclusive OR). 

SSE instructions can process, for example, 16-byte reg
isters (XMM registers), and are able to process such regis
ters as though they contain 16 separate one-byte operands 

50 (or 8 separate two-byte operands, or four separate four-byte 
operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to 
processing a byte at a time. Further, there are 16 XMM 
registers, so dedicating four such registers for operand 

55 storage allows the data to be processed in 64-byte incre
ments, using the other 12 registers for temporary storage. 
That is, individual operations can be performed as four 
consecutive SSE operations on the four respective registers 
(64 bytes), which can often allow such instructions to be 

60 efficiently pipelined and/or concurrently executed by the 
processor. In addition, the SSE instructions allows the same 
processing to be performed on different such 64-byte incre
ments of data in parallel using different cores. Thus, using 
four separate cores can potentially speed up this processing 

65 by an additional factor of 4 over using a single core. 
For example, a parallel adder (Parallel Adder) can be built 

using the 16-byte XMM registers and four consecutive 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 194 of 350



US 10,003,358 B2 
17 

PXOR instructions. Such parallel processing (that is, 64 
bytes at a time with only a few machine-level instructions) 
for GF arithmetic is a significant improvement over doing 
the addition one byte at a time. Since the data is organized 

18 
about 6 calls to multiply-by-2 and about 3.5 calls to add, or 
about 6x20+3.5x4=134 machine instructions, or a little over 
2 machine instructions per byte of data. While this compares 

in blocks of any fixed number of bytes, such as 4096 bytes 5 

( 4 kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can 
be composed of numerous such 64-byte chunks (e.g., 64 
separate 64-byte chunks in 4 KB, or 512 chunks in 32 KB). 

favorably with byte-level processing, it is still possible to 
improve on this by building a parallel multiplier with a table 
lookup (Parallel Lookup Multiplier) using the PSHUFB 
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes). 

Multiplication in a Galois field is not as straightforward. 
While much of it is bitwise shifts and exclusive OR's (i.e., 10 

"additions") that are very fast operations, the numbers 
"wrap" in peculiar ways when they are shifted outside of 
their normal bounds (because the field has only a finite set 

FIG. 3 shows an exemplary method 400 for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

Referring to FIG. 3, in step 410, two lookup tables are 
built once: one lookup table for the low-order nibbles in each 
byte, and one lookup table for the high-order nibbles in each 
byte. Each lookup table contains 256 sets (one for each 
possible factor) of the 16 possible GF products of that factor 

of elements), which can slow down the calculations. This 
"wrapping" in the GF multiplication can be addressed in 15 

many ways. For example, the multiplication can be imple
mented serially (Serial Multiplier) as a loop iterating over 
the bits of one operand while performing the shifts, adds, 
and wraps on the other operand. Such processing, however, 
takes several machine instructions per bit for 8 separate bits. 20 

In other words, this technique requires dozens of machine 
instructions per byte being multiplied. This is inefficient 
compared to, for example, the performance of the Parallel 
Adder described above. 

and the 16 possible nibble values. Each lookup table is thus 
256x16=4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multipli
cation table. In addition, PSHUFB does 16 separate table 
lookups at once, each for one nibble, so 8 PSHUFB instruc-
tions can be used to do all the table lookups for 64 bytes (128 
nibbles). 

Next, in step 420, the Parallel Lookup Multiplier is 
For another approach (Serial Lookup Multiplier), multi

plication tables ( of all the possible products, or at least all the 
non-trivial products) can be pre-computed and built ahead of 
time. For example, a table of 256x256=65,536 bytes can 
hold all the possible products of the two different one-byte 
operands). However, such tables can force serialized access 
on what are only byte-level operations, and not take advan
tage of wide (concurrent) data paths available on modern 
processors, such as those used to implement the Parallel 
Adder above. 

In still another approach (Parallel Multiplier), the GF 
multiplication can be done on multiple bytes at a time, since 
the same factor in the encoding matrix is multiplied with 
every element in a data block. Thus, the same factor can be 
multiplied with 64 consecutive data block bytes at a time. 
This is similar to the Parallel Adder described above, only 
there are several more operations needed to perform the 
operation. While this can be implemented as a loop on each 
bit of the factor, as described above, only performing the 
shifts, adds, and wraps on 64 bytes at a time, it can be more 
efficient to process the 256 possible factors as a (C language) 
switch statement, with inline code for each of 256 different 
combinations of two primitive GF operations: Multiply-by-2 
and Add. For example, GF multiplication by the factor 3 can 
be effected by first doing a Multiply-by-2 followed by an 
Add. Likewise, GF multiplication by 4 is just a Multiply
by-2 followed by a Multiply-by-2 while multiplication by 6 
is a Multiply-by-2 followed by an Add and then by another 
Multiply-by-2. 

While this Add is identical to the Parallel Adder described 
above (e.g., four consecutive PXOR instructions to process 
64 separate bytes), Multiply-by-2 is not as straightforward. 
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4 
consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive 
PAND (Bitwise AND) instructions, and 4 consecutive 
PXOR instructions. Though this takes 20 machine instruc
tions, the instructions are very fast and results in 64 con
secutive bytes of data at a time being multiplied by 2. 

For 64 bytes of data, assuming a random factor between 
0 and 255, the total overhead for the Parallel Multiplier is 

25 initialized for the next set of 64 bytes of operand data (such 
as original data or surviving original data). In order to save 
loading this data from memory on succeeding calls, the 
Parallel Lookup Multiplier dedicates four registers for this 
data, which are left intact upon exit of the Parallel Lookup 

30 Multiplier. This allows the same data to be called with 
different factors (such as processing the same data for 
another check drive). 

Next in step 430, to process these 64 bytes of operand 
data, the Parallel Lookup Multiplier can be implemented 

35 with 2 MOVDQA (Move Double Quadword Aligned) 
instructions (from memory) to do the two table lookups and 
4 MOVDQA instructions (register to register) to initialize 
registers (such as the output registers). These are followed in 
steps 440 and 450 by two nearly identical sets of 17 

40 register-to-register instructions to carry out the multiplica
tion 32 bytes at a time. Each such set starts (in step 440) with 
5 more MOVDQA instructions for further initialization, 
followed by 2 PSRLW (Packed Shift Right Logical Word) 
instructions to realign the high-order nibbles for PSHUFB, 

45 and 4 PAND instructions to clear the high-order nibbles for 
PSHUFB. That is, two registers of byte operands are con
verted into four registers of nibble operands. Then, in step 
450, 4 PSHUFB instructions are used to do the parallel table 
lookups, and 2 PXOR instructions to add the results of the 

50 multiplication on the two nibbles to the output registers. 
Thus, the Parallel Lookup Multiplier uses 40 machine 

instructions to perform the parallel multiplication on 64 
separate bytes, which is considerably better than the average 
134 instructions for the Parallel Multiplier above, and only 

55 10 times as many instructions as needed for the Parallel 
Adder. While some of the Parallel Lookup Multiplier's 
instructions are more complex than those of the Parallel 
Adder, much of this complexity can be concealed through 
the pipelined and/or concurrent execution of numerous such 

60 contiguous instructions (accessing different registers) on 
modern pipelined processors. For example, in exemplary 
implementations, the Parallel Lookup Multiplier has been 
timed at about 15 CPU clock cycles per 64 bytes processed 
per CPU core (about 0.36 clock cycles per instruction). In 

65 addition, the code footprint is practically nonexistent for the 
Parallel Lookup Multiplier ( 40 instructions) compared to 
that of the Parallel Multiplier (about 34,300 instructions), 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 195 of 350



US 10,003,358 B2 
19 

even when factoring the 8 KB needed for the two lookup 
tables in the Parallel Lookup Multiplier. 

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data ( such as the next 
64 bytes of surviving original data X to be processed) in four 5 

consecutive registers, whose contents can be preserved upon 
exiting the Parallel Lookup Multiplier (and all in the same 
40 machine instructions) such that the Parallel Lookup 
Multiplier can be invoked again on the same 64 bytes of data 
without having to access main memory to reload the data. 10 

Through such a protocol, memory accesses can be mini
mized ( or significantly reduced) for accessing the original 
data D during check data generation or the surviving original 
data X during lost data reconstruction. 

Further embodiments of the present invention are directed 15 

towards sequencing this parallel multiplication (and other 
GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup 
Multiplier should be appropriately sequenced to provide 20 

efficient processing. One such sequencer (Sequencer 1 ), for 
example, can generate the check data J from the original data 
D, and is described further with respect to FIG. 4. 

The parity drive does not need GF multiplication. The 
check data for the parity drive can be obtained, for example, 25 

by adding corresponding 64-byte chunks for each of the data 
drives to perform the parity operation. The Parallel Adder 
can do this using 4 instructions for every 64 bytes of data for 
each of the N data drives, or N/16 instructions per byte. 

The M-1 non-parity check drives can invoke the Parallel 30 

Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 
check drive. One consideration is how to handle the data 
access. Two possible ways are: 

20 
approach appears to mimm1ze the number of memory 
accesses (namely, one) to each chunk of the original data D 
to generate the check data J. This embodiment of Sequencer 
1 is described in more detail with reference to FIG. 4. 

FIG. 4 shows an exemplary method 500 for sequencing 
the Parallel Lookup Multiplier to perform the check data 
generation according to an embodiment of the present 
invention. 

Referring to FIG. 4, in step 510, the Sequencer 1 is called. 
Sequencer 1 is called to process multiple 64-byte chunks of 
data for each of the blocks across a stripe of data. For 
instance, Sequencer 1 could be called to process 512 bytes 
from each block. If, for example, the block size L is 4096 
bytes, then it would take eight such calls to Sequencer 1 to 
process the entire stripe. The other such seven calls to 
Sequencer 1 could be to different processing cores, for 
instance, to carry out the check data generation in parallel. 
The number of 64-byte chunks to process at a time could 
depend on factors such as cache dimensions, input/output 
data structure sizes, etc. 

In step 520, the outer loop processes the next 64-byte 
chunk of data for each of the drives. In order to minimize the 
number of accesses of each data drive's 64-byte chunk of 
data from memory, the data is loaded only once and pre
served across calls to the Parallel Lookup Multiplier. The 
first data drive is handled specially since the check data has 
to be initialized for each check drive. Using the first data 
drive to initialize the check data saves doing the initializa
tion as a separate step followed by updating it with the first 
data drive' s data. In addition to the first data drive, the first 
check drive is also handled specially since it is a parity drive, 
so its check data can be initialized to the first data drive's 
data directly without needing the Parallel Lookup Multiplier. 

In step 530, the first middle loop is called, in which the 
1) "colunm-by-colunm," i.e., 64 bytes for one data drive, 

followed by the next 64 bytes for that data drive, etc., 
and adding the products to the running total in memory 
(using the Parallel Adder) before moving onto the next 
row (data drive); and 

35 remainder of the check drives (that is, the non-parity check 
drives) have their check data initialized by the first data 
drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied 
with each of the first data drive's data bytes. This is handled 

2) "row-by-row," i.e., 64 bytes for one data drive, fol
lowed by the corresponding 64 bytes for the next data 
drive, etc., and keeping a running total using the 
Parallel Adder, then moving onto the next set of 64-byte 
chunks. 

Colunm-by-colunm can be thought of as "constant factor, 
varying data," in that the (GF multiplication) factor usually 
remains the same between iterations while the ( 64-byte) data 
changes with each iteration. Conversely, row-by-row can be 
thought of as "constant data, varying factor," in that the data 
usually remains the same between iterations while the factor 
changes with each iteration. 

Another consideration is how to handle the check drives. 
Two possible ways are: 

a) one at a time, i.e., generate all the check data for one 
check drive before moving onto the next check drive; 
and 

b) all at once, i.e., for each 64-byte chunk of original data, 
do all of the processing for each of the check drives 
before moving onto the next chunk of original data. 

40 by calling the Parallel Lookup Multiplier for each non-parity 
check drive. 

In step 540, the second middle loop is called, which 
processes the other data drives' corresponding 64-byte 
chunks of data. As with the first data drive, each of the other 

45 data drives is processed separately, loading the respective 64 
bytes of data into four registers (preserved across calls to the 
Parallel Lookup Multiplier). In addition, since the first check 
drive is the parity drive, its check data can be updated by 
directly adding these 64 bytes to it (using the Parallel Adder) 

50 before handling the non-parity check drives. 
In step 550, the inner loop is called for the next data drive. 

In the inner loop (as with the first middle loop), each of the 
non-parity check drives is associated with a corresponding 
factor for the particular data drive. The factor is multiplied 

55 with each of the next data drive's data bytes using the 
Parallel Lookup Multiplier, and the results added to the 
check drive's check data. 

While each of these techniques performs the same basic 60 

operations (e.g., 40 instructions for every 64 bytes of data 
for each of the N data drives and M-1 non-parity check 
drives, or 5N(M-1)/8 instructions per byte for the Parallel 
Lookup Multiplier), empirical results show that combination 
(2)(b), that is, row-by-row data access on all of the check 65 

drives between data accesses performs best with the Parallel 
Lookup Multiplier. One reason may be that such an 

Another such sequencer (Sequencer 2) can be used to 
reconstruct the lost data from the surviving data (using 
Algorithm 2). While the same colunm-by-colunm and row
by-row data access approaches are possible, as well as the 
same choices for handling the check drives, Algorithm 2 
adds another dimension of complexity because of the four 
separate steps and whether to: (i) do the steps completely 
serially or (ii) do some of the steps concurrently on the same 
data. For example, step 1 (surviving check data generation) 
and step 4 (lost check data regeneration) can be done 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 196 of 350



US 10,003,358 B2 
21 

concurrently on the same data to reduce or minimize the 
number of surviving original data accesses from memory. 

Empirical results show that method (2)(b)(ii), that is, 
row-by-row data access on all of the check drives and for 
both surviving check data generation and lost check data 5 

regeneration between data accesses performs best with the 
Parallel Lookup Multiplier when reconstructing lost data 
using Algorithm 2. Again, this may be due to the apparent 
minimization of the number of memory accesses (namely, 
one) of each chunk of surviving original data X to recon- 10 

struct the lost data and the absence of memory accesses of 
reconstructed lost original data Y when regenerating the lost 
check data. This embodiment of Sequencer 1 is described in 
more detail with reference to FIGS. 5-7. 

FIGS. 5-7 show an exemplary method 600 for sequencing 15 

the Parallel Lookup Multiplier to perform the lost data 
reconstruction according to an embodiment of the present 
invention. 

Referring to FIG. 5, in step 610, the Sequencer 2 is called. 

22 
In step 660, the first inner loop is called, in which the 

partial check data AxX is updated for each surviving check 
drive based on the next surviving data drive's 64 bytes of 
data. In this case, the Parallel Lookup Multiplier is called for 
each surviving check drive with the corresponding factor 
(from A) for the next surviving data drive. 

In step 670, the second inner loop is called, in which the 
lost check data is updated for each failed check drive. Using 
the same 64 bytes of the next surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 660), 
the Parallel Lookup Multiplier is again called, this time to 
update each of the failed check drive's check data by the 
corresponding component from the next surviving data 
drive. This completes the computations involving the next 
surviving data drive's 64 bytes of data, which were fetched 
with one access from main memory and preserved in the 
same four registers across steps 660 and 670. 

Next, in step 680, the computation of the partial check 
Sequencer 2 has many similarities with the embodiment of 
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2 
processes the data drive data in 64-byte chunks like 
Sequencer 1. Sequencer 2 is more complex, however, in that 
only some of the data drive data is surviving; the rest has to 
be reconstructed. In addition, lost check data needs to be 
regenerated. Like Sequencer 1, Sequencer 2 does these 
operations in such a way as to minimize memory accesses of 
the data drive data (by loading the data once and calling the 
Parallel Lookup Multiplier multiple times). Assume for ease 

20 data AxX is complete, so the surviving check data W is 
added to this result (recall that W-AxX is equivalent to 
W+AxX in binary Galois Field arithmetic). This is done by 
the fourth middle loop, which for each surviving check drive 
adds the corresponding 64-byte component of surviving 

25 check data W to the (surviving) partial check data AxX 
(using the Parallel Adder) to produce the (lost) partial check 
data W-AxX. 

of description that there is at least one surviving data drive; 30 

the case of no surviving data drives is handled a little 
differently, but not significantly different. In addition, recall 
from above that the driving formula behind data reconstruc
tion is Y=B- 1 x(W-AxX), where Y is the lost original data, 
B-1 is the solution matrix, Wis the surviving check data, A 35 

is the partial check data encoding matrix (for the surviving 
check drives and the surviving data drives), and X is the 
surviving original data. 

In step 620, the outer loop processes the next 64-byte 
chunk of data for each of the drives. Like Sequencer 1, the 40 

first surviving data drive is again handled specially since the 
partial check data AxX has to be initialized for each sur
viving check drive. 

In step 630, the first middle loop is called, in which the 
partial check data AxX is initialized for each surviving 45 

check drive based on the first surviving data drive's 64 bytes 
of data. In this case, the Parallel Lookup Multiplier is called 
for each surviving check drive with the corresponding factor 
(from A) for the first surviving data drive. 

In step 640, the second middle loop is called, in which the 50 

lost check data is initialized for each failed check drive. 

Continuing with FIG. 7, in step 690, the fifth middle loop 
is called, which performs the two dimensional matrix mul
tiplication B-1 x(W-AxX) to produce the lost original data 
Y. The calculation is performed one row at a time, for a total 
of F rows, initializing the row to the first term of the 
corresponding linear combination of the solution matrix B-1 

and the lost partial check data W-AxX (using the Parallel 
Lookup Multiplier). 

In step 700, the third inner loop is called, which completes 
the remaining F-1 terms of the corresponding linear com
bination (using the Parallel Lookup Multiplier on each term) 
from the fifth middle loop in step 690 and updates the 
running calculation (using the Parallel Adder) of the next 
row of B-1 x(W-AxX). This completes the next row (and 
reconstructs the corresponding failed data drive's lost data) 
of lost original data Y, which can then be stored at an 
appropriate location. 

In step 710, the fourth inner loop is called, in which the 
lost check data is updated for each failed check drive by the 
newly reconstructed lost data for the next failed data drive. 
Using the same 64 bytes of the next reconstructed lost data 
(preserved across calls to the Parallel Lookup Multiplier), 
the Parallel Lookup Multiplier is called to update each of the 
failed check drives' check data by the corresponding com-
ponent from the next failed data drive. This completes the 
computations involving the next failed data drive's 64 bytes 
of reconstructed data, which were performed as soon as the 

Using the same 64 bytes of the first surviving data drive 
(preserved across the calls to Parallel Lookup Multiplier in 
step 630), the Parallel Lookup Multiplier is again called, this 
time to initialize each of the failed check drive's check data 
to the corresponding component from the first surviving data 
drive. This completes the computations involving the first 
surviving data drive's 64 bytes of data, which were fetched 
with one access from main memory and preserved in the 
same four registers across steps 630 and 640. 

55 data was reconstructed and without being stored and 
retrieved from main memory. 

Continuing with FIG. 6, in step 650, the third middle loop 
is called, which processes the other surviving data drives' 
corresponding 64-byte chunks of data. As with the first 
surviving data drive, each of the other surviving data drives 
is processed separately, loading the respective 64 bytes of 
data into four registers (preserved across calls to the Parallel 
Lookup Multiplier). 

Finally, in step 720, the sixth middle loop is called. The 
lost check data has been regenerated, so in this step, the 
newly regenerated check data is stored at an appropriate 

60 location (if desired). 
Aspects of the present invention can be also realized in 

other environments, such as two-byte quantities, each such 
two-byte quantity capable of taking on 216=65,536 possible 
values, by using similar constructs (scaled accordingly) to 

65 those presented here. Such extensions would be readily 
apparent to one of ordinary skill in the art, so their details 
will be omitted for brevity of description. 
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Exemplary teclmiques and methods for doing the Galois 
field manipulation and other mathematics behind RAID 
error correcting codes are described in Appendix A, which 
contains a paper "Information Dispersal Matrices for RAID 
Error Correcting Codes" prepared for the present applica- 5 

tion. 
Multi-Core Considerations 

What follows is an exemplary embodiment for optimizing 

24 
each die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. 
This helps localize the Parallel Lookup Multiplier code and 
associated data to a single core 120 and not compete with 
other cores 120, while allowing the other cores 120 to keep 
the data moving between memory 140 and the disk drives 
via the I/O interface 150. 

Embodiments of the present invention yield scalable, high 
performance RAID systems capable of outperforming other 
systems, and at much lower cost, due to the use of high 
volume commodity components that are leveraged to 
achieve the result. This combination can be achieved by 
utilizing the mathematical teclmiques and code optimiza-

or improving the performance of multi-core architecture 
systems when implementing the described erasure coding 10 

system routines. In multi-core architecture systems, each 
processor die is divided into multiple CPU cores, each with 
their own local caches, together with a memory (bus) 
interface and possible on-die cache to interface with a shared 
memory with other processor dies. 15 tions described elsewhere in this application with careful 

placement of the resulting code on specific processing cores. 
Embodiments can also be implemented on fewer resources, 
such as single-core dies and/or single-die systems, with 

FIG. 8 illustrates a multi-core architecture system 100 
having two processor dies 110 (namely, Die O and Die 1). 

Referring to FIG. 8, each die 110 includes four central 
processing units (CPUs or cores) 120 each having a local 
level 1 (Ll) cache. Each core 120 may have separate 

20 functional units, for example, an x86 execution unit (for 
traditional instructions) and a SSE execution unit (for soft
ware designed for the newer SSE instruction set). An 
example application of these function units is that the x86 
execution unit can be used for the RAID control logic 
software while the SSE execution unit can be used for the 25 

GF operation software. Each die 110 also has a level 2 (L2) 
cache/memory bus interface 130 shared between the four 
cores 120. Main memory 140, in tum, is shared between the 
two dies 110, and is connected to the input/output (I/O) 
controllers 150 that access external devices such as disk 30 

drives or other non-volatile storage devices via interfaces 
such as Peripheral Component Interconnect (PCI). 

Redundant array of independent disks (RAID) controller 
processing can be described as a series of states or functions. 
These states may include: (1) Command Processing, to 
validate and schedule a host request (for example, to load or 
store data from disk storage); (2) Command Translation and 
Submission, to translate the host request into multiple disk 
requests and to pass the requests to the physical disks; (3) 
Error Correction, to generate check data and reconstruct lost 
data when some disks are not functioning correctly; and (4) 
Request Completion, to move data from internal buffers to 
requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports 
caching, and can be avoided in a cacheless design. 

decreased parallelism and performance optimization. 
The process of subdividing and assigning individual cores 

120 and/or dies 110 to inherently parallelizable tasks will 
result in a performance benefit. For example, on a Linux 
system, software may be organized into "threads," and 
threads may be assigned to specific CPUs and memory 
systems via the kthread_bind function when the thread is 
created. Creating separate threads to process the GF arith
metic allows parallel computations to take place, which 
multiplies the performance of the system. 

Further, creating multiple threads for command process
ing allows for fully overlapped execution of the command 
processing states. One way to accomplish this is to number 
each command, then use the arithmetic MOD function(% in 
C language) to choose a separate thread for each command. 
Another technique is to subdivide the data processing por
tion of each command into multiple components, and assign 

35 each component to a separate thread. 
FIG. 9 shows an exemplary disk drive configuration 200 

according to an embodiment of the present invention. 
Referring to FIG. 9, eight disks are shown, though this 

number can vary in other embodiments. The disks are 
divided into three types: data drives 210, parity drive 220, 

40 and check drives 230. The eight disks break down as three 
data drives 210, one parity drive 220, and four check drives 
230 in the embodiment of FIG. 9. 

Each of the data drives 210 is used to hold a portion of 
data. The data is distributed uniformly across the data drives 

45 210 in stripes, such as 192 KB stripes. For example, the data 
for an application can be broken up into stripes of 192 KB, 
and each of the stripes in turn broken up into three 64 KB 
blocks, each of the three blocks being written to a different 
one of the three data drives 210. 

Parallelism is achieved in the embodiment of FIG. 8 by 
assigning different cores 120 to different tasks. For example, 
some of the cores 120 can be "command cores," that is, 
assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 
and the disk drives via the I/O interface 150. Others of the 50 

cores 120 can be "data cores," and assigned to the GF 
operations, that is, generating the check data from the 
original data, reconstructing the lost data from the surviving 
data, etc., including the Parallel Lookup Multiplier and the 
sequencers described above. For example, in exemplary 
embodiments, a scheduler can be used to divide the original 
data D into corresponding portions of each block, which can 
then be processed independently by different cores 120 for 
applications such as check data generation and lost data 
reconstruction. 

The parity drive 220 is a special type of check drive in that 
the encoding of its data is a simple summation (recall that 
this is exclusive OR in binary GF arithmetic) of the corre
sponding bytes of each of the three data drives 210. That is, 
check data generation (Sequencer 1) or regeneration (Se-

55 quencer 2) can be performed for the parity drive 220 using 
the Parallel Adder (and not the Parallel Lookup Multiplier). 
Accordingly, the check data for the parity drive 220 is 
relatively straightforward to build. Likewise, when one of 
the data drives 210 no longer functions correctly, the parity 
drive 220 can be used to reconstruct the lost data by adding 

One of the benefits of this data core/command core 
subdivision of processing is ensuring that different code will 
be executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated Ll cache in each core 120, 
and avoids the "pollution" of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on 

60 (same as subtracting in binary GF arithmetic) the corre
sponding bytes from each of the two remaining data drives 
210. Thus, a single drive failure of one of the data drives 210 
is very straightforward to handle when the parity drive 220 
is available (no Parallel Lookup Multiplier). Accordingly, 

65 the parity drive 220 can replace much of the GF multipli
cation operations with GF addition for both check data 
generation and lost data reconstruction. 
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Each of the check drives 230 contains a linear combina
tion of the corresponding bytes of each of the data drives 
210. The linear combination is different for each check drive 
230, but in general is represented by a summation of 
different multiples of each of the corresponding bytes of the 5 

data drives 210 (again, all arithmetic being GF arithmetic). 
For example, for the first check drive 230, each of the bytes 
of the first data drive 210 could be multiplied by 4, each of 
the bytes of the second data drive 210 by 3, and each of the 
bytes of the third data drive 210 by 6, then the corresponding 10 

products for each of the corresponding bytes could be added 

26 
ECCSolve 
The function ECCSolve creates constant tables that are 

used to compute a solution for a particular configuration of 
data drives, check drives, and failed drives. It is called prior 
to using the functions ECCGenerate or ECCRegenerate. It 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 
For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B-1 (i.e., the solution 
matrix). 

ECCGenerate 
The function ECCGenerate is used to generate check 

to produce the first check drive data. Similar linear combi
nations could be used to produce the check drive data for the 
other check drives 230. The specifics of which multiples for 
which check drive are explained in Appendix A. 

With the addition of the parity drive 220 and check drives 
230, eight drives are used in the RAID system 200 of FIG. 
9. Accordingly, each 192 KB of original data is stored as 512 
KB (i.e., eight blocks of 64 KB) of (original plus check) 

15 codes (that is, the check data matrix J) for a particular 
configuration of data drives and check drives, using 
Sequencer 1 and the Parallel Lookup Multiplier as described 
above. Prior to calling ECCGenerate, ECCSolve is called to 

~~ta~?:eh irf ~~=rd!~~,p~~~~:~r,a~/~k:~e o~f t:;s~v:rgt~ 20 

drives survive. That is, the system 200 can withstand a 
concurrent failure of up to any five drives and still preserve 
all of the original data. 
Exemplary Routines to Implement an Embodiment 

The error correcting code (ECC) portion of an exemplary 25 

embodiment of the present invention may be written in 
software as, for example, four functions, which could be 
named as ECCinitialize, ECCSolve, ECCGenerate, and 
ECCRegenerate. The main functions that perform work are 
ECCGenerate and ECCRegenerate. ECCGenerate generates 30 

check codes for data that are used to recover data when a 
drive suffers an outage (that is, ECCGenerate generates the 
check data J from the original data D using Sequencer 1 ). 
ECCRegenerate uses these check codes and the remaining 
data to recover data after such an outage (that is, ECCRe- 35 
generate uses the surviving check data W, the surviving 
original data X, and Sequencer 2 to reconstruct the lost 
original data Y while also regenerating any of the lost check 
data). Prior to calling either of these functions, ECCSolve is 
called to compute the constants used for a particular con
figuration of data drives, check drives, and failed drives (for 40 

example, ECCSolve builds the solution matrix B-1 together 
with the lists of surviving and failed data and check drives). 
Prior to calling ECCSolve, ECCinitialize is called to gen
erate constant tables used by all of the other functions (for 
example, ECCinitialize builds the IDM E and the two 45 

lookup tables for the Parallel Lookup Multiplier). 
ECCinitialize 

compute the appropriate constants for the particular con
figuration of data drives and check drives, as well as the 
solution matrix B-1

. 

ECCRegenerate 
The function ECCRegenerate is used to regenerate data 

vectors and check code vectors for a particular configuration 
of data drives and check drives (that is, reconstructing the 
original data matrix D from the surviving data matrix X and 
the surviving check matrix W, as well as regenerating the 
lost check data from the restored original data), this time 
using Sequencer 2 and the Parallel Lookup Multiplier as 
described above. Prior to calling ECCRegenerate, 
ECCSolve is called to compute the appropriate constants for 
the particular configuration of data drives, check drives, and 
failed drives, as well as the solution matrix B-1

. 

Exemplary Implementation Details 

As discussed in Appendix A, there are two significant 
sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID 
processing): the computation of the solution matrix B-1 for 
a given failure scenario, and the byte-level processing of 
encoding the check data J and reconstructing the lost data 
after a lost packet (e.g., data drive failure). By reducing the 
solution matrix B-1 to a matrix inversion of a FxF matrix, 
where F is the number of lost packets (e.g., failed drives), 
that portion of the computational overhead is for all intents 
and purposes negligible compared to the megabytes (MB), 
gigabytes (GB), and possibly terabytes (TB) of data that 
needs to be encoded into check data or reconstructed from 
the surviving original and check data. Accordingly, the 
remainder of this section will be devoted to the byte-level 

The function ECCinitialize creates constant tables that are 
used by all subsequent functions. It is called once at program 
initialization time. By copying or precomputing these values 
up front, these constant tables can be used to replace more 
time-consuming operations with simple table look-ups (such 

50 encoding and regenerating processing. 

as for the Parallel Lookup Multiplier). For example, four 
tables useful for speeding up the GF arithmetic include: 

1. mvct-an array of constants used to perform GF 
multiplication with the PSHUFB instruction that operates on 
SSE registers (that is, the Parallel Lookup Multiplier). 

2. mast----contains the master encoding matrix S ( or the 
Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, such as the 
check drive encoding matrix H 

3. mul_tab----contains the results of all possible GF mul
tiplication operations of any two operands (for example, 
256x256=65,536 bytes for all of the possible products of 
two different one-byte quantities) 

As already mentioned, certain practical simplifications 
can be assumed for most implementations. By using a Galois 
field of 256 entries, byte-level processing can be used for all 
of the GF arithmetic. Using the master encoding matrix S 

55 
described in Appendix A, any combination of up to 127 data 
drives, 1 parity drive, and 128 check drives can be supported 
with such a Galois field. While, in general, any combination 
of data drives and check drives that adds up to 256 total 
drives is possible, not all combinations provide a parity drive 
when computed directly. Using the master encoding matrix 

60 S, on the other hand, allows all such combinations (includ
ing a parity drive) to be built ( or simply indexed) from the 
same such matrix. That is, the appropriate sub-matrix (in
cluding the parity drive) can be used for configurations of 
less than the maximum number of drives. 

4. div _tab----contains the results of all possible GF divi- 65 

sion operations of any two operands ( can be similar in size 
In addition, using the master encoding matrix S permits 

further data drives and/or check drives can be added without 
requiring the recomputing of the IDM E (unlike other to mul_tab) 
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proposed solutions, which recompute E for every change of 
Nor M). Rather, additional indexing of rows and/or colunms 

28 
F number of failed data drives 
G number of failed check drives 
H check drive encoding matrix (MxN) 
I identity matrix (IK=KxK identity matrix, IN=NxN identity 
matrix) 
J encoded check data matrix (MxL) 
K number of surviving data drives=N-F 
L data block size (elements or bytes) 
M number of check drives 

of the master encoding matrix S will suffice. As discussed 
above, the use of the parity drive can eliminate or signifi
cantly reduce the somewhat complex GF multiplication 

5 
operations associated with the other check drives and 
replaces them with simple GF addition (bitwise exclusive 
OR in binary Galois fields) operations. It should be noted 
that master encoding matrices with the above properties are 
possible for any power-of-two number of drives 2P =Nmax+ 
Mmax where the maximum number of data drives N max is one 
less than a power of two (e.g., Nm==127 or 63) and the 
maximum number of check drives Mmax (including the 
parity drive) is 2P -Nmax· 

10 Mmax maximum value of M 
N number of data drives 

As discussed earlier, in an exemplary embodiment of the 
present invention, a modern x86 architecture is used (being 15 
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions. 
Each XMM register is 128 bits and is available for special 
purpose processing with the SSE instructions. Each of these 
XMM registers holds 16 bytes (8-bit), so four such registers 

20 
can be used to store 64 bytes of data. Thus, by using SSE 
instructions (some of which work on different operand sizes, 
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated 
at a time using four consecutive SSE instructions ( e.g., 
fetching from memory, storing into memory, zeroing, add- 25 

ing, multiplying), the remaining registers being used for 
intermediate results and temporary storage. With such an 
architecture, several routines are useful for optimizing the 
byte-level performance, including the Parallel Lookup Mul
tiplier, Sequencer 1, and Sequencer 2 discussed above. 30 

While the above description contains many specific 
embodiments of the invention, these should not be construed 
as limitations on the scope of the invention, but rather as 
examples of specific embodiments thereof. Accordingly, the 
scope of the invention should be determined not by the 35 
embodiments illustrated, but by the appended claims and 
their equivalents. 

Glossary of Some Variables 

A encoding matrix (FxK), sub-matrix of T 
B encoding matrix (FxF), sub-matrix of T 
B- 1 solution matrix (FxF) 
C encoded data matrix 

((N+M)xL)=[~] 

C' surviving encoded data matrix 

(NxL)=[:] 

D original data matrix (N xL) 
D' permuted original data matrix 

(NxL)=[~] 

E information dispersal matrix 

(IDM)((N + M)xN) = [ ~] 

40 

45 

50 

55 

60 

65 

N max maximum value of N 
0 zero matrix (KxF), sub-matrix of T 
S master encoding matrix ((Mmax+Nmax)xNmax) 
T transformed IDM 

[
h o] 

(NxN) = A B 

W surviving check data matrix (FxL) 
X surviving original data matrix (KxL) 
Y lost original data matrix (FxL) 

What is claimed is: 
1. A system adapted to use accelerated error-correcting 

code (ECC) processing to improve the storage and retrieval 
of digital data distributed across a plurality of drives, com
prising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
loads original data from a main memory and stores 
check data to the main memory, the SIMD CPU core 
comprising at least 16 vector registers, each of the 
vector registers storing at least 16 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; and 

at least one input/output (I/0) controller that stores the at 
least one block of the check data from the main 
memory to the check drives, 

wherein the processor, the SIMD instructions, the non
volatile storage media, and the I/0 controller are con
figured to implement an erasure coding system com
prising: 
a data matrix comprising at least one vector and com

prising a plurality of rows of at least one block of the 
original data in the main memory, each of the rows 
being stored on a different one of the data drives; 

a check matrix comprising more than two rows of the 
at least one block of the check data in the main 
memory, each of the rows being stored on a different 
one of the check drives, one of the rows comprising 
a parity row comprising the Galois Field (GF) sum
mation of all of the rows of the data matrix; 

a thread that executes on the SIMD CPU core and 
comprising: 
at least one parallel multiplier that multiplies the at 

least one vector of the data matrix by a single 
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factor to compute parallel multiplier results com
prising at least one vector; 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a running total; and 

30 
9. The system of claim 7, wherein the encoding matrix 

further comprises a fourth number of rows and a plurality of 
third factors in the fourth number of rows, 

wherein the check drives further comprise the fourth 
number of check drives, and 

wherein the first factors are independent of the fourth 
number. 

a sequencer wherein the sequencer orders load 
operations of the original data into at least one of 
the vector registers and computes the check data 
with the parallel lookup multiplier and the parallel 
adder, and stores the computed check data from 
the vector registers to the main memory. 

10. The system of claim 5, wherein the multiplicative 
identity factor is 1. 

10 11. The system of claim 1, wherein the at least one parallel 

2. The system of claim 1, wherein: 
multiplier multiplies the at least one vector of the data matrix 
by the single factor in the encoding matrix at a rate of less 
than about 2 machine instructions per byte of the data the processor comprises a first CPU core and a second 

CPU core; 
15 

matrix. 
the thread comprises a plurality of threads comprising a 

first thread group and a second thread group; and 
the erasure coding system further comprises a scheduler 

for performing data operations to generate the check 
data and, concurrently, performing I/O operations using 20 

the I/O controller by: 
assigning the data operations to the first thread group, 

and not assigning the I/O operations to the first 
thread group; 

assigning the I/O operations to the second thread group 25 

and not assigning the data operations to the second 
thread group; 

assigning the first thread group to the first CPU core; 
assigning the second thread group to the second CPU 

core; and 
concurrently executing the first thread group on the first 

CPU core and the second thread group on the second 
CPU core to concurrently generate the check data 
and perform the I/O operations. 

30 

3. The system of claim 1, wherein the sequencer loads 35 

each entry of the data matrix from the main memory into a 
vector register at most once while generating the check data. 

4. The system of claim 1, wherein the at least one 
processor is an x86 architecture processor. 

5. The system of claim 1, wherein the erasure coding 40 

system further comprises: 
an encoding matrix comprising more than two but not 

more than 254 rows and more than one but not more 
than 253 columns of factors in the main memory, 
wherein each of the entries of one of the rows of the 45 

encoding matrix comprises a multiplicative identity 
factor, the factors being for encoding the original data 
into the check data. 

6. The system of claim 5, wherein the at least one parallel 
multiplier multiplies the at least one vector of the data matrix 50 

in units of at least 64 bytes. 
7. The system of claim 5, wherein the data matrix com

prises a first number of rows and the data drives comprise 
the first number of data drives, 

wherein the check matrix comprises a second number of 55 

rows and the check drives comprise the second number 
of check drives, and 

wherein the encoding matrix comprises a plurality of first 
factors in the second number of rows and the first 
number of colunms. 

8. The system of claim 7, wherein the encoding matrix 
further comprises a third number of columns and a plurality 
of second factors in the third number of colunms, 

wherein the data drives further comprise the third number 

60 

of data drives, and 65 

wherein the first factors are independent of the third 
number. 

12. A system adapted to use accelerated error-correcting 
code (ECC) processing to improve the storage and retrieval 
of digital data distributed across a plurality of drives, com
prising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
loads surviving original data and surviving check data 
from a main memory and stores lost original data to the 
main memory, the SIMD CPU core comprising at least 
16 vector registers, each of the vector registers storing 
at least 16 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; and 

at least one input/output (I/O) controller that reads at least 
one block of the check data from the check drives and 
stores the at least one block of the check data to the 
main memory, 

wherein the processor, the SIMD instructions, the non
volatile storage media and the I/O controller implement 
the accelerated ECC processing, comprising: 
a surviving data matrix comprising at least one vector 

and comprising at least one row of at least one block 
of the surviving original data in the main memory, 
each row of the at least one row being stored on a 
different one of the data drives, and a lost data matrix 
comprising at least one block of the lost original data 
in the main memory; 

a surviving check matrix comprising at least one row of 
at least one block of the surviving check data in the 
main memory, each row of the at least one row being 
stored on a different one of the check drives; 

a solution matrix that holds factors in the main memory, 
the factors of the solution matrix being for decoding 
the surviving original data and the surviving check 
data into the lost original data; 

and 
a thread that executes on the SIMD CPU core and 

comprising: 
at least one parallel multiplier that multiplies the at 

least one vector of the surviving data matrix by a 
single factor in the solution matrix to compute 
parallel multiplier results comprising at least one 
vector; 
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at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a running total; and 

a sequencer wherein the sequencer: 
orders load operations of the surviving original 5 

data into at least one of the vector registers and 
load operations of the surviving check data into 
at least one of the vector registers; 

computes the lost original data with the parallel 
multiplier and the parallel adder; and 10 

stores the computed lost original data from the 
vector registers to the lost data matrix. 

13. The system of claim 12, wherein: 
the processing core comprises a first CPU core and a 

15 
second CPU core; 

the thread comprises a plurality of threads comprising a 
first thread group and a second thread group; and 

the erasure coding system further comprises a scheduler 
for performing data operations to regenerate the lost 20 

original data and, concurrently, performing I/O opera
tions using the I/O controller by: 
assigning the data operations to the first thread group, 

and not assigning the I/O operations to the first 
thread group; 25 

assigning the I/O operations to the second thread group, 
and not assigning the data operations to the second 
thread group; 

assigning the first thread group to the first CPU core; 
assigning the second thread group to the second CPU 30 

core; and 
concurrently executing the first thread group on the first 

CPU core and the second thread group on the second 
CPU core to concurrently regenerate the lost original 

35 
data and perform the I/O operations. 

14. The system of claim 12, wherein the sequencer loads 
each entry of the surviving original data from the main 
memory into a vector register at most once while regener-
ating the lost original data. 40 

15. The system of claim 12, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix in units of at least 64 bytes. 

16. The system of claim 12, wherein the processor is an 
x86 architecture processor. 45 

17. The system of claim 12, wherein the solution matrix 
comprises an inverted sub-matrix of an encoding matrix and 
wherein each of entries of one of the rows of the encoding 
matrix comprises a multiplicative identity factor, the factors 
of the encoding matrix being for encoding the original data 50 

into the check data. 
18. The system of claim 17, wherein the multiplicative 

identity factor is 1. 
19. The system of claim 12, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 55 

surviving data matrix by the single factor in the solution 
matrix at a rate ofless than about 2 machine instructions per 
byte of the surviving data matrix. 

20. A method for accelerated error-correcting code (ECC) 
processing to improve the storage and retrieval of digital 60 

data distributed across a plurality of drives using a comput
ing system, the computing system comprising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes a computer program 65 

including SIMD computer instructions and loads origi
nal data from a main memory and stores check data to 

32 
the main memory, the SIMD CPU core comprising at 
least 16 vector registers, each of the vector registers 
storing at least 16 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD computer 
instructions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; and 

at least one input/output (I/O) controller that stores the at 
least one block of the check data from the main 
memory to the check drives, the method comprising: 
accessing the SIMD instructions from the system drive; 
executing the SIMD instructions on the SIMD CPU 

core; 
arranging the original data as a data matrix comprising 

at least one vector and comprising a plurality of rows 
of at least one block of the original data in the main 
memory, each of the rows being stored on a different 
one of the data drives; 

arranging the check data as a check matrix comprising 
more than two rows of the at least one block of the 
check data in the main memory, each of the rows 
being stored on a different one of the check drives, 
one of the rows comprising a parity row comprising 
the Galois Field (GF) summation of all of the rows 
of the data matrix; and 

encoding the original data into the check data using: 
at least one parallel multiplier that multiplies the at 

least one vector of the data matrix by a single 
factor to compute parallel multiplier results com
prising at least one vector; and 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a running total, 

the encoding of the check data comprising: 
loading the original data into at least one of the 

vector registers; 
computing the check data with the parallel multiplier 

and the parallel adder; and 
storing the computed check data from the vector 

registers into the main memory. 
21. The method of claim 20, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 
the executing of the SIMD instructions comprises execut

ing the SIMD instructions on the first CPU core to 
perform data operations to generate the check data and, 
concurrently, to perform I/O operations on the second 
CPU core to control the I/O controller; 

the method further comprises scheduling the data opera
tions concurrently with the I/O operations by: 
assigning the data operations to the first CPU core, and 

not assigning the I/O operations to the first CPU 
core; and 

assigning the I/O operations to the second CPU core 
and not assigning the data operations to the second 
CPU core. 

22. The method of claim 20, further comprising loading 
each entry of the data matrix from the main memory into a 
vector register at most once while generating the check data. 

23. The method of claim 20, wherein the processor is an 
x86 architecture processor. 
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24. The method of claim 20, further comprising: 
arranging factors as an encoding matrix comprising more 

than two but not more than 254 rows and more than one 
but not more than 253 colunms of factors in the main 
memory, wherein each of the entries of one of the rows 5 

of the encoding matrix comprises a multiplicative iden
tity factor, the factors being for encoding the original 
data into the check data. 

25. The method of claim 24, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 10 

data matrix in units of at least 64 bytes. 
26. The method of claim 24, wherein the data matrix 

comprises a first number of rows and the data drives 
comprise the first number of data drives, 

wherein the check matrix comprises a second number of 
rows and the check drives comprise the second number 
of check drives, and 

15 

wherein the encoding matrix comprises a plurality of first 
factors in the second number of rows and the first 20 

number of colunms. 
27. The method of claim 26, further comprising: 
adding a third number of data drives to the data drives by 

expanding the encoding matrix to further comprise the 
third number of colunms and a plurality of second 25 

factors in the third number of colunms, 
wherein the first factors are independent of the third 

number. 
28. The method of claim 26, further comprising: 
adding a fourth number of check drives to the check 30 

drives by expanding the encoding matrix to further 
comprise the fourth number of rows and a plurality of 
third factors in the fourth number of rows, 

wherein the first factors are independent of the fourth 
35 

number. 
29. The method of claim 24, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 
data matrix by the single factor in the encoding matrix at a 
rate of less than about 2 machine instructions per byte of the 40 

data matrix. 
30. The method of claim 20, wherein the multiplicative 

identity factor is 1. 
31. A method for accelerated error-correcting code (ECC) 

processing to improve the storage and retrieval of digital 45 

data distributed across a plurality of drives using a comput
ing system, the computing system comprising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes a computer program 50 

including SIMD instructions and loads surviving origi
nal data and surviving check data from a main memory 
and stores lost original data to the main memory, the 
SIMD CPU core comprising at least 16 vector registers, 
each of the vector registers storing at least 16 bytes; 55 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 60 

block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 65 

at least one input/output (I/O) controller that reads at least 
one block of the surviving check data from the check 

34 
drives and stores the at least one block of the surviving 
check data to the main memory, the method compris
ing: 
accessing the SIMD instructions from the system drive; 
executing the SIMD instructions on the SIMD CPU 

core; 
arranging the original data as a surviving data matrix 

comprising at least one vector and comprising at 
least one row of at least one block of the surviving 
original data in the main memory, each row of the at 
least one row being stored on a different one of the 
data drives, and a lost data matrix comprising at least 
one block of the lost original data in the main 
memory; 

arranging factors as a solution matrix that holds the 
factors in the main memory, the factors being for 
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data being arranged as a surviving check 
matrix comprising at least one row of at least one 
block of the surviving check data in the main 
memory, each row of the at least one row being 
stored on a different one of the check drives; 

decoding the surviving check data into the lost original 
data using: 
at least one parallel multiplier that multiplies the at 

least one vector of the surviving data matrix by a 
single factor in the solution matrix to compute par
allel multiplier results comprising at least one vector; 
and 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and computes 
a running total, 

the decoding the surviving check data into the lost 
original data comprising: 
loading the surviving original data into at least one of 

the vector registers; 
loading the surviving check data into at least one of 

the vector registers; 
computing the lost original data with the parallel 

multiplier and the parallel adder; and 
storing the computed lost original data from the 

vector registers into the lost data matrix. 
32. The method of claim 31, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 
the executing of the SIMD instructions comprises execut

ing the SIMD instructions on the first CPU core to 
perform data operations to reconstruct the lost original 
data and, concurrently, to perform I/O operations on the 
second CPU core to control the I/O controller; 

the method further comprises scheduling the data opera
tions to be performed concurrently with the I/O opera
tions by: 
assigning the data operations to the first CPU core, and 

not assigning the I/O operations to the first CPU 
core; and 

assigning the I/O operations to the second CPU core, 
and not assigning the data operations to the first CPU 
core. 

33. The method of claim 31, further comprising loading 
each entry of the surviving original data from the main 
memory into a vector register at most once while regener
ating the lost original data. 

34. The method of claim 31, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix in units of at least 64 bytes. 
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35. The method of claim 31, wherein the processor is an 
x86 architecture processor. 

36. The method of claim 31, wherein the solution matrix 
comprises an inverted sub-matrix of an encoding matrix and 
wherein each of entries of one of the rows of the encoding 5 

matrix comprises a multiplicative identity factor, the factors 
of the encoding matrix being for encoding the original data 
into the check data. 

37. The method of claim 36, wherein the multiplicative 
identity factor is 1. 10 

38. The method of claim 31, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix by the single factor in the solution 
matrix at a rate ofless than about 2 machine instructions per 

15 
byte of the surviving data matrix. 

39. A system drive comprising at least one non-transitory 
computer-readable storage medium containing a computer 
program comprising a plurality of computer instructions 
that, when executed by a computing system, cause the 20 

computing system to perform accelerated error-correcting 
code (ECC) processing that improves the storage and 
retrieval of digital data distributed across a plurality of 
drives, the computing system comprising: 

at least one processor comprising at least one single- 25 

instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
loads original data from a main memory and stores 
check data to the main memory, the SIMD CPU core 
comprising at least 16 vector registers, each of the 30 

vector registers storing at least 16 bytes; 
a plurality of data drives each comprising at least one 

non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 35 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; and 

at least one input/output (I/O) controller that stores the at 
least one block of the check data from the main 40 

memory to the check drives, 
the computer instructions implementing protection of the 

original data in the main memory when executed on the 
computing system by: 
arranging the original data as a data matrix comprising 45 

at least one vector and comprising a plurality of rows 
of at least one block of the original data in the main 
memory, each of the rows being stored on a different 
one of the data drives; 

arranging the check data as a check matrix comprising 50 

more than two rows of the at least one block of the 
check data in the main memory, each of the rows 
being stored on a different one of the check drives, 
one of the rows comprising a parity row comprising 
the Galois Field (GF) summation of all of the rows 55 

of the data matrix; and 
encoding the original data into the check data using: 

at least one parallel multiplier that multiplies the at 
least one vector of the data matrix by a single 
factor in the encoding matrix to compute parallel 60 

multiplier results comprising at least one vector; 
and 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com-
putes a rumiing total, 65 

the encoding the original data into the check data 
comprising: 

36 
loading the original data into at least one of the 

vector registers; 
computing the check data with the parallel multiplier 

and the parallel adder; and 
storing the computed check data from the vector 

registers into the main memory. 
40. The system drive of claim 39, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 
the executing of the computer instructions comprises 

executing the computer instructions on the first CPU 
core to perform data operations to generate the check 
data and, concurrently, to perform I/O operations on the 
second CPU core to control the I/O controller; 

the computer instructions implementing the protection of 
the original data comprise instructions that schedule the 
data operations to be performed concurrently with the 
I/O operations by: 
assigning the data operations to the first CPU core, and 

not assigning the I/O operations to the first CPU 
core; and 

assigning the I/O operations to the second CPU core 
and not assigning the data operations to the second 
CPU core. 

41. The system drive of claim 39, wherein the computer 
instructions further comprise computer instructions that, 
when executed by the computing system, cause the com
puting system to load each entry of the data matrix from the 
main memory into a vector register at most once while 
generating the check data. 

42. The system drive of claim 39, wherein the processor 
is an x86 architecture processor. 

43. The system drive of claim 39, wherein the computer 
instructions implementing the protection of the original data 
comprise instructions to: 

arrange factors as an encoding matrix comprising more 
than two but not more than 254 rows and more than one 
but not more than 253 colunms of factors in the main 
memory, wherein each of the entries of one of the rows 
of the encoding matrix comprises a multiplicative iden
tity factor, the factors being for encoding the original 
data into the check data. 

44. The system drive of claim 43, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
data matrix in units of at least 64 bytes. 

45. The system drive of claim 43, wherein the data matrix 
comprises a first number of rows and the data drives 
comprise the first number of data drives, 

wherein the check matrix comprises a second number of 
rows and the check drives comprise the second number 
of check drives, and 

wherein the encoding matrix comprises a plurality of first 
factors in the second number of rows and the first 
number of colunms. 

46. The system drive of claim 45, wherein the computer 
instructions further comprise instructions that, when 
executed on the computing system, cause the computing 
system to: 

add a third number of data drives to the data drives by 
expanding the encoding matrix to further comprise the 
third number of colunms and a plurality of second 
factors in the third number of colunms, 

wherein the first factors are independent of the third 
number. 
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. 47. T.he system drive of claim 45, wherein the computer 
mstruct10ns further comprise instructions that, when 
executed on the computing system, cause the computing 
system to: 

add a fourth number of check drives to the check drives 5 

by expanding the encoding matrix to further comprise 
the fourth number of rows and a plurality of third 
factors in the fourth number of rows 

wherein the first factors are independ~nt of the fourth 
number. 

~8. !he S_Ystem drive of claim 43, wherein the multipli
cative identity factor is 1. 

10 

49. The system drive of claim 43, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
data matrix by the single factor in the encoding matrix at a 15 

rate of less than about 2 machine instructions per byte of the 
data matrix. 

50. A system drive comprising at least one non-transitory 
computer-readable storage medium containing a computer 
program comprising a plurality of computer instructions 20 

that, when executed by a computing system, cause the 
computing system to perform accelerated error-correcting 
cod~ (ECC) processing that improves the storage and 
re~neval of digital data distributed across a plurality of 
dnves, the en-a-computing system comprising: 25 

at least one processor comprising at least one single
ins_truction-multiple-data (SIMD) central processing 
umt (CPU) core that executes SIMD instructions and 
loads surviving original data and surviving check data 
from a main memory and stores lost original data to the 30 

main memory, the SIMD CPU core comprising at least 
16 vector registers, each of the vector registers storing 
at least 16 bytes; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 35 

block of the original data, the at least one block 
comprising at least 512 bytes; 

38 
decoding the surviving check data into the lost original 

data using: 
at least one parallel multiplier that multiplies the at 

least one vector of the surviving data matrix by a 
single factor in the solution matrix to compute 
parallel multiplier results comprising at least one 
vector; and 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a rumJing total, 

decoding the surviving check data into the lost original 
data comprising: 
loading the surviving original data into at least one of 

the vector registers; 
loading the surviving check data into at least one of 

the vector registers; 
computing the lost original data with the parallel 

multiplier and the parallel adder; and 
storing the computed lost original data from the 

vector registers into the lost data matrix. 
51. The system drive of claim 50, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 
the executing of the computer instructions comprises 

executing the computer instructions on the first CPU 
core to perform data operations to reconstruct the lost 
~riginal data and, concurrently, to perform I/O opera
tions on the second CPU core to control the I/O 
controller; 

the computer instructions further comprise instructions 
that schedule the data operations to be performed 
concurrently with the I/O operations by: 
assigning the data operations to the first CPU core and 

not assigning the I/O operations to the first CPU 
core; and 

assigning the I/O operations to the second CPU core 
and not assigning the data operations to the first CPU 
core. 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 

at least one input/output (I/O) controller that reads at least 
one block of the check data from the check drives and 
stores the at least one block of the check data to the 
main memory; 

40 
. 52. T_he system drive of claim 50, wherein the computer 
mstruct10ns further comprise computer instructions that, 
when executed on the computing system, cause the com
puting system to load each entry of the surviving original 
data from the main memory into a vector register at most 

the computer instructions implementing protection of the 45 

original data in the main memory when executed on the 
computing system by: 
arranging the surviving original data as a surviving data 

matrix comprising at least one vector and comprising 

once while regenerating the lost original data. 
53. The system drive of claim 50, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 
surviving data matrix in units of at least 64 bytes. 

54. The system drive of claim 50, wherein the processor 
is an x86 architecture processor. 

55. The system drive of claim 50 wherein the solution 
matrix comprises an inverted sub-matrix of an encoding 
matrix and wherein each of entries of one of the rows of the 
encoding matrix comprises a multiplicative identity factor, 

at least one row of at least one block of the surviving 50 

original data in the main memory, each row of the at 
least one row being stored on a different one of the 
data drives, and a lost data matrix comprising at least 
one block of the lost original data in the main 
memory; 55 

the factors of the encoding matrix being for encoding the 
original data into the check data. arranging factors as a solution matrix that holds the 

factors in the main memory, the factors being for 
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data arranged as a surviving check matrix 
comprising at least one row of at least one block of 
the surviving check data in the main memory, each 
row of the at least one row being stored on a different 
one of the check drives; and 

~6. !he s_ystem drive of claim 55, wherein the multipli
cative identity factor is 1. 

57. The system drive of claim 50, wherein the at least one 

60 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix by the single factor in the solution 
matrix at a rate ofless than about 2 machine instructions per 
byte of the surviving data matrix. 

* * * * * 
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auH1orlzHtion for acc:::ss by a fon.:il~~n H=) t)ffice(s). instet:;tj~ Forrn F~~r()/St3/3t1 or fYT()l*St3/e9 rnust t-::t~ used ::1s ::1ppropnate. 

Propert:v Offlce{s} 
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I 
I 
I 
I 

the inst.ant app~ication. ! 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! 

resuns frorn tf1e ;nstant 
:application. 
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_;..\ttorney [)oche't r-...iurnber 

~'J::.1n1e of the [}ece~:lse(i or LeqaUy !ncapac.itated lrrJ~:;ntor: ~ j ! 
··· ii' tr 1 e · /'>_pp I \cant· is· an· Or9 an izati on· ch 1}d,i hen,, . ·············· (J ..... l·.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- l 

_$~ddrHss 1 ·t~4~~~~t~TT:~nT1i1:Hcy~~R~:}au~~--t:tn:~t~:z- _?~)·1 ~:.; _ Bosqt.:e_ G:-...,•d .. _ ("Juite_ ~~:;~-; ! 
I 

.l\ddres!:; 2 j 
I 

us 

Provldln9 a~~s\1nr1H .. :!nt inforn1aUon in this secUon does not substtute for cornpHance '..:Vith any requin:H"nent of part :3 of ·rith:: ! 
37 of (~FR to have ~:u~ ~:~s.signrnent recorded by the ()ff!ce.. ! 

I 
I 
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_;..\ttorney [)oche't r-...iurnber 
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i\ssign~~~ ·1 ! 
Compide this sedion if ::,s,-ignee ,r,fc,rn,ai:<:-n, incl1Jding nrn,-::,ppli,~ant as,-if;:~,,"e inforrnaticm, ,,. je::;i,ed to bE, ,r,c:ujed on the pElt,:'ni: I 
:-?r:,,:;,.,-::.iir,;--- :'· •h~;cati,•,;-. _.:'1;-, ;1-;-:~igr"'{~~.:::-..s,r:)lic-::.,.,t ;_.-{{-:-'·,t:+k::_r: :.,, ~+1° "i\:'p~ic::F1t ~,~,-:: .... )r•:,a~·;cq'~ -.:~a.ci: ... w, \,vp: a:,1:·'car f:r, i-:-,.:::-. ;JJi-C"''t :::-.:·'p~i,,Jt; .... )q ! 

I ~;:;:~~~;~;,:~~:;\'~~:,i~~:
1
~:~,~~•i~:::~;0;·;0:-.. ~,., .a~;siqne,.,,.appiicm·iL. con1pid;;, .1his. ~;edhn. c:n!y it.ide:-,tificdion. a, .. a:-,. ,,;s,.,nnee. i~; .,,dso .;:!e,.,r<:,d. c:n. t,,0 ..l 
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f--------------l ........................................................ I : i 

i\ddrton~:~t !\~;si9neE~ or !~on ..... /\pp!icant l\s.signf.;e [)ata n-1ay b~=.= sr:;n:.=.:rat:.=.:d vv~thin U-1;s -forrn t1~l 
se~ecUnq tfH:~ .. -:\dd L:J~\t)n. 

I 
F":!rst Narne [h~r-.:-id l-\ L-::~st Narne P;uiTde~/ F~e9Istrat!on f'-,,!urnbe:r -~·7··)ns ! 
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i\ddHlona{ Sl[inature rnay o,:.: gen,:.:rat,:.:cl \:VHh!n this i~Jrrn by s<7;!ecUng th:.:: .Add button, ! 
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_;..\ttorney [)oche't r-...iurnber 

This cone•~tion vf :nfvnT:athJn ls required by 37 C~FR ·1.76. The infvrrnation is r•~quirc.-::: to obtain or retain a bent~fit by th~ pub!i•.: \:',...-hie-h 
is to file {and t~~{ ihH USPT() t.o proc{:~s~.) an ::~ppiicat~on. r:onTident:al~ty is govt~rn-&d by 3fi U.S {:. ·! 22 anc: 3? (:F-'f-< ·:. ·i 4 This 
GoH~::ct:on i~; t~stln·:att~d tc tak~~ :~:3 rninutBs io Gon·:p!Bt::.:, inc!udinf} fF:~u~~~r~nft pn~p~~rln9: ;:~nd subfnitilnf~ iht~ cornpk:t}::d app:::.::.ation d~~ta 
she~:;t fonn to th~: USFYrc~. ~;·:r~ .2 ~ ... ;~; \. 2h / l.;c:)t(h._;;, 19 .... ,~_.(), ~ ~ht ~~ 10:~:;d ... ~-::~; \..-d ~..... }\-~y- c·,r·1•'·•-.::.:r,.tc: (:~~ -::-., .... a•"• .. c· ,,, .. 1.;. c~ -:;, . ..,.y, y<:r ~ :r·cr~u;,~., '-r· 

con-:piet~ this forrn and/or sug9~stlvns for reducin9 this burden, -sh-:.1uid be s0nt to tl:~: C~~-1!~:f infvnnat~vn C1fi1c,er. U.S. F·\::tent anc: 
Trade:-r-:,~rk ()tf:cr:\ U.S. [)ep:~rt::1ent ot r:on1rnE±rcB. ~.;. (). Box -~4~:.;{\ :'\k:xandna .. \//; 22~~ ·i3 .... i4~:.;o [)(} NC)T SEN[) FEES (}:'"<. 
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PATENT 

iN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

lnventor(s) 
A • .. ~ss1gnee 
Patent No. 
Issued 
j\ nn!lr-... Hr.n No 

,'4.1-'i-'"'-'"-'"''-'· ' • 

Filed 

Michae! H. Anderson et a!. 
STREAMSCALE, !NC. 
10,003,358 
June 19, 2018 
15/201, 196 
July 1, 2016 

Confirmation No. 1895 

Title 
Docket No. 

ACCELERATED ER,6-SURE CODING SYSTEM AND METHOD 
124596 (411563-00010) 

STATEMENT OF MICHAEL H. ANDERSON IN SUPPORT OF PETITION FOR 
CORRECTION OF INVENTORSHIP PURSUANT TO 37 C.F .R. § 1.324 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Commissioner: 

Post Office Box 29001 
Glendale, CA 91209-9001 

I, the undersigned, declare and state as follows: 

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the 

inventorship in the above-ldentlfled patent. I am the named inventor of the above

identified patent. i understand that the petition seeks to add SARAH MANN as an inventor 

to this patent and I agree to the requested change of lnventorsh1p. 

Executed. this 
._-i-/ \I I 

i !1\r · r, > 
/ \'11-, J ,,1\'-

~l\ 
t"'-[ / ,t' .-

t I ( ! / ""j--·/~ I ' 

of -+---'e=<-Y\~---' 202·1 in -'=•./_....a-=f_,_>~"---'I..._L..,__r_t ~c.:'~t\......_i ___ _ 

DAP/srd 

-i-
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Pl\TENT 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

!nventor(s) 
Assignee 
Patent No. 
Issued 
Application. No. 
Flied 

Michael H. Anderson et a!. 
STREA.~v1SCALE, INC. 
10,003,358 
June 19, 2018 
15/201, 196 
July 1, 2016 

Confirmation No. 1895 

Title ACCELERATED ERASURE CODING SYSTEM AND METHOD 
Docket No, 124596(411563-00010) 

STATEMENT OF ASSIGNEE IN SUPPORT OF PETITION 
FOR CORRECTION OF INVENTORSHIP UNDER 37 C.F.R. § 1.324 AND 

COMPLYING WITH 37 C.F.R. § 3.73{c) 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

The beiow signed individual declares as follows: 

Post Office Box 29001 
Glendale, CA 91209-9001 

1. I am authorized to act on behalf of STREAMSCALE, INC. and have the 

title indicated below. 

2. STREAMSCALE, INC. is the assignee of the entire interest of the patent 

identified above, by virtue of the following Assignments from the inventors. 

(a) An Assignment of this invention by inventor Michael H. Anderson 

was recorded on February 28, 2018 at Reei No. 045061 and Frame No. 0217. 

(b) A second Assignment of this invention by inventor Sarah Mann, the 

inventor to be added on this patent, is attached hereto. 

3. The Assignee agrees to the addition of Sarah Mann as an inventor on the 

patent. 

DAP/srd 

11336961 L1 
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DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73 

Title of Invention: 

Docket No.: 
Application No. 

INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

ACCELERATED ERASURE CODING SYSTEM AND METHOD 

124596 ( 411563-00010) 
15/201, 196 

INVENTOR'S DECLARATION 

As a below named inventor, I hereby declare that: 

This declaration is directed to the attached application unless the following is checked: 

PATENT 

_x_ United States Application or PCT International Application Number 15/201, 196 filed on 
July 1, 2016. 

The above-identified application was made or authorized to be made by me. 

I believe that I am the original inventor or an original joint inventor of a claimed invention in the 
above-identified application. 

I have reviewed and understand the contents of the above-identified application, including the 
claims. 

I acknowledge the duty to disclose information which is material to patentability as defined in 
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which 
became available between the filing date of the prior application and the national or PCT 
international filing date of the continuation-in-part application. 

I acknowledge that any willful false statement made in this declaration is punishable under 
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both. 

ASSIGNMENT 

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged, 
the undersigned, 

(1) Sarah Mann 

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO 

~) STREAMSCALE INC. 

having a place of business at 

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710 

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all 
improvements which are disclosed in the application for United States Letters Patent entitled 

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD 

which application was executed on even date herewith or was 

1 of 2 
113443392.1 
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DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73 

INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

Docket No.: 124596 (411563-00010) 
Application No.: 15/201, 196 

(a) executed on (Sa): 

(b) filed on (Sb): ~Ju=ly~1~, 2~0~1~6 ___ _ 

Application No.: 15/201 196 

including any and all United States Patents 

(LEWIS ROCA ROTHGERBER CHRISTIE 
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the 
specified data, when known. 

which may be granted on said application, and any and all extensions, divisions, reissues, 
substitutes, renewals or continuations of said application and patents, and the right to all benefits 
under all international conventions for the protection of industrial property and applications for 
said improvements. 

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said 
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its 
designee. 

Upon said consideration, it is further agreed that, when requested, without charge to but at the 
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute, 
renewal, and reissue patent applications; execute all rightful other papers; and generally do 
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and 
maintaining patent protection as provided herein. 

Sarah Mann 
Legal Name of Inventor 

.. ~.~~oocuSigned by: 

' I IS (M"tili, ~ 
"srgwgmrg430 

WITNESSES: 

113443392.1 

2/18/2021 

Date 

2 of 2 
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DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73 

PATENT 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Inventor( s) 
Assignee 
Patent No. 
Issued 
Application No. 
Filed 

Michael H. Anderson et al. Confirmation No. 1895 
STREAMSCALE, INC. 
10,003,358 
June 19, 2018 
15/201, 196 
July 1, 2016 

Title 
Docket No. 

ACCELERATED ERASURE CODING SYSTEM AND METHOD 
124596 (411563-00010) 

STATEMENT OF SARAH MANN IN SUPPORT OF PETITION FOR CORRECTION OF 
INVENTORSHIP PURSUANT TO 37 C.F.R. § 1.324 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Commissioner: 

I, the undersigned, declare and state as follows: 

Post Office Box 29001 
Glendale, CA 91209-9001 

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the 

inventorship in the above-identified patent. I understand that the petition seeks to add 

me, the undersigned, as an inventor to this patent and I agree to the requested change 

of inventorship. 

Executed this 18 of February , 2021 in oakl and 
---

CA 

DAP/srd 

113443728.1 

Respectfully, 
.• ~.~~oocuSigned by: 

' I IS (M"tili, ~ 

-1-
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DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73 

Title of Invention: 

Docket No.: 
Application No. 

INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

ACCELERATED ERASURE CODING SYSTEM AND METHOD 

124596 ( 411563-00010) 
15/201, 196 

INVENTOR'S DECLARATION 

As a below named inventor, I hereby declare that: 

This declaration is directed to the attached application unless the following is checked: 

PATENT 

_x_ United States Application or PCT International Application Number 15/201, 196 filed on 
July 1, 2016. 

The above-identified application was made or authorized to be made by me. 

I believe that I am the original inventor or an original joint inventor of a claimed invention in the 
above-identified application. 

I have reviewed and understand the contents of the above-identified application, including the 
claims. 

I acknowledge the duty to disclose information which is material to patentability as defined in 
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which 
became available between the filing date of the prior application and the national or PCT 
international filing date of the continuation-in-part application. 

I acknowledge that any willful false statement made in this declaration is punishable under 
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both. 

ASSIGNMENT 

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged, 
the undersigned, 

(1) Sarah Mann 

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO 

~) STREAMSCALE INC. 

having a place of business at 

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710 

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all 
improvements which are disclosed in the application for United States Letters Patent entitled 

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD 

which application was executed on even date herewith or was 

1 of 2 
113443392.1 
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DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73 

INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

Docket No.: 124596 (411563-00010) 
Application No.: 15/201, 196 

(a) executed on (Sa): 

(b) filed on (Sb): ~Ju=ly~1~, 2~0~1~6 ___ _ 

Application No.: 15/201 196 

including any and all United States Patents 

(LEWIS ROCA ROTHGERBER CHRISTIE 
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the 
specified data, when known. 

which may be granted on said application, and any and all extensions, divisions, reissues, 
substitutes, renewals or continuations of said application and patents, and the right to all benefits 
under all international conventions for the protection of industrial property and applications for 
said improvements. 

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said 
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its 
designee. 

Upon said consideration, it is further agreed that, when requested, without charge to but at the 
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute, 
renewal, and reissue patent applications; execute all rightful other papers; and generally do 
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and 
maintaining patent protection as provided herein. 

Sarah Mann 
Legal Name of Inventor 

.. ~.~~oocuSigned by: 

' I IS (M"tili, ~ 
"srgwgmrg430 

WITNESSES: 

113443392.1 

2/18/2021 

Date 

2 of 2 
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Electronic Patent Application Fee Transmittal 

Application Number: 15201196 

Filing Date: 01-Jul-2016 

Title of Invention: ACCELERATED ERASURE CODING SYSTEM AND METHOD 

First Named Inventor/Applicant Name: Michael H. Anderson 

Filer: David A. Plumley/Jennifer Guerra 

Attorney Docket Number: 124596/411563-00010 

Filed as Small Entity 

Filing Fees for Utility under 35 USC 111 (a) 

Description Fee Code Quantity Amount 
Sub-Total in 

USO($) 

Basic Filing: 

Pages: 

Claims: 

Miscellaneous-Filing: 

Petition: 

Patent-Appeals-and-Interference: 

Post-Allowance-and-Post-Issuance: 

PROCESSING FEE CORRECTING INVENTORSHIP 2816 1 160 160 
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Description Fee Code Quantity Amount 
Sub-Total in 

USO($) 

Extension-of-Time: 

Miscellaneous: 

Total in USO($) 160 
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Electronic Acknowledgement Receipt 

EFSID: 42002759 

Application Number: 15201196 

International Application Number: 

Confirmation Number: 1895 

Title of Invention: ACCELERATED ERASURE CODING SYSTEM AND METHOD 

First Named Inventor/Applicant Name: Michael H. Anderson 

Customer Number: 23363 

Filer: David A. Plumley/Jennifer Guerra 

Filer Authorized By: David A. Plumley 

Attorney Docket Number: 124596/411563-00010 

Receipt Date: 23-FEB-2021 

Filing Date: 01-JUL-2016 

Time Stamp: 20:16:14 

Application Type: Utility under 35 USC 111 (a) 

Payment information: 

Submitted with Payment yes 

Payment Type CARD 

Payment was successfully received in RAM $160 

RAM confirmation Number E20212MK16314302 

Deposit Account 

Authorized User 

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 
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File Listing: 

Document 
Document Description File Name 

File Size(Bytes}/ Multi Pages 
Number Message Digest Part /.zip (if appl.) 

105472 

1 
Petition for review by the Office of 

124596_Petition.pdf no 2 
Petitions 

f7 eba6fd 26cc6344e63d ea3d44 b81 f3 b7 c96 
bfed 

Warnings: 

Information: 

4775871 

2 Application Data Sheet 124596_CorrectedADS.pdf no 9 
SeScdba 12bc73ec957756821 0cac6c6dbca 

6e3aa 

Warnings: 

Information: 

This is not an USPTO supplied ADS fillable form 

294382 

3 Examination support document 124596_Anderson_Stm.pdf no 1 
b22856785f3fc0c87cf0dabe30c1 cb979b55 

f9a0 

Warnings: 

Information: 

452860 

4 Examination support document 124596_StreamScale_Stm.pdf no 3 
1684c07553306143d3c05df3319dad98204 

45ee1 

Warnings: 

Information: 

206157 

5 Examination support document 124596_Mann_Stm.pdf no 1 
4 76d 14ce1 2d287c1 3498f7f069e5ecdca6f5 

eSOb 

Warnings: 

The PDF file has been signed with a digital signature and the legal effect of the document will be based on the contents of the file not the 
digital signature. 

Information: 

211412 

6 Oath or Declaration filed 124596_Mann_Dec1Asg.pdf no 2 
02169f30b7c2691 b2c394bdb2a28dd4ef4a 

3ba39 
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Warnings: 

The PDF file has been signed with a digital signature and the legal effect of the document will be based on the contents of the file not the 
digital signature. 

Information: 

30467 

7 Fee Worksheet (5B06) fee-info.pdf no 2 
7d9072e4b519ad 1630619f8a6b74 7a7b78C 

69fcd 

Warnings: 

Information: 

Total Files Size (in bytes) 6076621 

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, 
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a 
Post Card, as described in MPEP 503. 

New Agglications Under 35 U.S.C. 111 
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this 
Acknowledgement Receipt will establish the filing date of the application. 
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ACCELERATED ERASURE CODING 
SYSTEM AND METHOD 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica
tion Ser. No. 15/201,196, filed on Jul. 1, 2016, which is a 
continuation of U.S. patent application Ser. No. 14/852,438, 
filed on Sep. 11, 2015, now U.S. Pat. No. 9,385,759, issued 
on Jul. 5, 2016, which is a continuation of U.S. patent 
application Ser. No. 14/223,740, filed on Mar. 24, 2014, now 
U.S. Pat. No. 9,160,374, issued on Oct. 13, 2015, which is 
a continuation of U.S. patent application Ser. No. 13/341, 
833, filed on Dec. 30, 2011, now U.S. Pat. No. 8,683,296, 
issued on Mar. 25, 2014, the entire contents of each of which 
are expressly incorporated herein by reference. 

BACKGROUND 

Field 
Aspects of embodiments of the present invention are 

directed toward an accelerated erasure coding system and 
method. 

Description of Related Art 
An erasure code is a type of error-correcting code (ECC) 

useful for forward error-correction in applications like a 
redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data ( or 
original data) is organized in stripes, each of which is broken 
up into N equal-sized blocks, or data blocks, for some 
positive integer N. The data for each stripe is thus recon
structable by putting the N data blocks together. However, to 
handle situations where one or more of the original N data 
blocks gets lost, erasure codes also encode an additional M 
equal-sized blocks (called check blocks or check data) from 
the original N data blocks, for some positive integer M. 

2 
N of the N+M drives are correctly functioning, the original 
data can be reconstructed, and the check data can be 
regenerated. 

Erasure codes ( or more specifically, erasure coding sys-
5 terns) are generally regarded as impractical for values of M 

larger than 1 ( e.g., RAIDS systems, such as parity drive 
systems) or 2 (RAID6 systems), that is, for more than one or 
two check drives. For example, see H. Peter Anvin, "The 
mathematics of RAID-6," the entire content of which is 

10 incorporated herein by reference, p. 7, "Thus, in 2-disk
degraded mode, performance will be very slow. However, it 
is expected that that will be a rare occurrence, and that 
performance will not matter significantly in that case." See 
also Robert Maddock et al., "Surviving Two Disk Failures," 

15 p. 6, "The main difficulty with this technique is that calcu
lating the check codes, and reconstructing data after failures, 
is quite complex. It involves polynomials and thus multi
plication, and requires special hardware, or at least a signal 
processor, to do it at sufficient speed." In addition, see also 

20 James S. Plank, "All About Erasure Codes: -Reed-Solo
mon Coding-LDPC Coding," slide 15 (describing compu
tational complexity of Reed-Solomon decoding), "Bottom 
line: When n & m grow, it is brutally expensive." Accord
ingly, there appears to be a general consensus among experts 

25 in the field that erasure coding systems are impractical for 
RAID systems for all but small values of M (that is, small 
numbers of check drives), such as 1 or 2. 

Modem disk drives, on the other hand, are much less 
reliable than those envisioned when RAID was proposed. 

30 This is due to their capacity growing out of proportion to 
their reliability. Accordingly, systems with only a single 
check disk have, for the most part, been discontinued in 
favor of systems with two check disks. 

In terms of reliability, a higher check disk count is clearly 
35 more desirable than a lower check disk count. If the count 

of error events on different drives is larger than the check 
disk count, data may be lost and that cannot be reconstructed 
from the correctly functioning drives. Error events extend 

The N data blocks and the M check blocks are all the same 40 
well beyond the traditional measure of advertised mean time 
between failures (MTBF). A simple, real world example is 
a service event on a RAID system where the operator 
mistakenly replaces the wrong drive or, worse yet, replaces 
a good drive with a broken drive. In the absence of any 
generally accepted methodology to train, certify, and mea-

size. Accordingly, there are a total of N+M equal-sized 
blocks after encoding. The N+M blocks may, for example, 
be transmitted to a receiver as N+M separate packets, or 
written to N+M corresponding disk drives. For ease of 
description, all N+M blocks after encoding will be referred 
to as encoded blocks, though some (for example, N of them) 
may contain unencoded portions of the original data. That is, 
the encoded data refers to the original data together with the 
check data. 

45 sure the effectiveness of service technicians, these types of 
events occur at an unknown rate, but certainly occur. The 
foolproof solution for protecting data in the face of multiple 
error events is to increase the check disk count. 

The M check blocks build redundancy into the system, in 50 

a very efficient marmer, in that the original data (as well as 
any lost check data) can be reconstructed if any N of the 
N+M encoded blocks are received by the receiver, or if any 
N of the N+M disk drives are functioning correctly. Note 
that such an erasure code is also referred to as "optimal." For 55 

ease of description, only optimal erasure codes will be 
discussed in this application. In such a code, up to M of the 
encoded blocks can be lost, (e.g., up to M of the disk drives 
can fail) so that if any N of the N+M encoded blocks are 
received successfully by the receiver, the original data (as 60 

well as the check data) can be reconstructed. N/(N+M) is 
thus the code rate of the erasure code encoding (i.e., how 
much space the original data takes up in the encoded data). 
Erasure codes for select values of N and M can be imple
mented on RAID systems employing N+M (disk) drives by 65 

spreading the original data among N "data" drives, and using 
the remaining M drives as "check" drives. Then, when any 

SUMMARY 

Aspects of embodiments of the present invention address 
these problems by providing a practical erasure coding 
system that, for byte-level RAID processing (where each 
byte is made up of 8 bits), performs well even for values of 
N+M as large as 256 drives (for example, N=127 data drives 
and M=129 check drives). Further aspects provide for a 
single precomputed encoding matrix ( or master encoding 
matrix) s of size MmaxxNmax, or CNmax+Mmax)xNmax or 
(Mmax-l)xNmax, elements (e.g., bytes), which can be used, 
for example, for any combination ofN sN max data drives and 
MsMmax check drives such that Nmax+Mmaxs256 (e.g., 
Nmax=l27 andMmax=l29, orNm==63 andMm==193). This 
is an improvement over prior art solutions that rebuild such 
matrices from scratch every time N or M changes ( such as 
adding another check drive). Still higher values of N and M 
are possible with larger processing increments, such as 2 
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bytes, which affords up to N+M=65,536 drives (such as 
N=32,767 data drives and M=32,769 check drives). 

4 
implement an erasure coding system. The erasure coding 
system includes a data matrix for holding original data in the 
main memory, a check matrix for holding check data in the 
main memory, an encoding matrix for holding first factors in 

Higher check disk count can offer increased reliability and 
decreased cost. The higher reliability comes from factors 
such as the ability to withstand more drive failures. The 
decreased cost arises from factors such as the ability to 
create larger groups of data drives. For example, systems 
with two checks disks are typically limited to group sizes of 
10 or fewer drives for reliability reasons. With a higher 
check disk count, larger groups are available, which can lead 
to fewer overall components for the same unit of storage and 
hence, lower cost. 

5 the main memory, and a thread for executing on the pro
cessing core. The first factors are for encoding the original 
data into the check data. The thread includes a parallel 
multiplier for concurrently multiplying multiple data entries 
of a matrix by a single factor; and a first sequencer for 

10 ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier to generate the check 
data. Additional aspects of embodiments of the present inven

tion further address these problems by providing a standard 
parity drive as part of the encoding matrix. For instance, 15 

aspects provide for a parity drive for configurations with up 
to 127 data drives and up to 128 (non-parity) check drives, 
for a total ofup to 256 total drives including the parity drive. 
Further aspects provide for different breakdowns, such as up 

The first sequencer may be configured to access each 
entry of the data matrix from the main memory at most once 
while generating the check data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data by dividing the data matrix into a 
plurality of data matrices, dividing the check matrix into a 
plurality of check matrices, assigning corresponding ones of 
the data matrices and the check matrices to the threads, and 
assigning the threads to the processing cores to concurrently 

to 63 data drives, a parity drive, and up to 192 (non-parity) 20 

check drives. Providing a parity drive offers performance 
comparable to RAIDS in comparable circumstances (such as 
single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives. 

Further aspects are directed to a system and method for 
implementing a fast solution matrix algorithm for Reed
Solomon codes. While known solution matrix algorithms 
compute an NxN solution matrix (see, for example, J. S. 
Plank, "A tutorial on Reed-Solomon coding for fault-taler- 30 

ance in RAID-like systems," Software-Practice & Expe
rience, 27(9):995-1012, September 1997, and J. S. Plank and 

25 generate portions of the check data corresponding to the 
check matrices from respective ones of the data matrices. 

Y. Ding, "Note: Correction to the 1997 tutorial on Reed
Solomon coding," Technical Report CS-03-504, University 
of Tennessee, April 2003), requiring O(N3

) operations, 35 

regardless of the number of failed data drives, aspects of 
embodiments of the present invention compute only an FxF 
solution matrix, where F is the number of failed data drives. 
The overhead for computing this FxF solution matrix is 
approximately F3/3 multiplication operations and the same 40 

number of addition operations. Not only is FsN, in almost 
any practical application, the number of failed data drives F 
is considerably smaller than the number of data drives N. 
Accordingly, the fast solution matrix algorithm is consider
ably faster than any known approach for practical values of 45 

F and N. 

The data matrix may include a first number of rows. The 
check matrix may include a second number of rows. The 
encoding matrix may include the second number of rows 
and the first number of colunms. 

The data matrix may be configured to add rows to the first 
number of rows or the check matrix may be configured to 
add rows to the second number of rows while the first factors 
remain unchanged. 

Each of entries of one of the rows of the encoding matrix 
may include a multiplicative identity factor (such as 1). 

The data matrix may be configured to be divided by rows 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data and including a 
third number of rows. The erasure coding system may 
further include a solution matrix for holding second factors 
in the main memory. The second factors are for decoding the 
check data into the lost original data using the surviving 
original data and the first factors. 

The solution matrix may include the third number of rows 
and the third number of colunms. 

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost ( original and 
check) data reconstruction. Some of these aspects are 
directed toward fetching the surviving ( original and check) 
data a minimum number of times (that is, at most once) to 
carry out the data reconstruction. Some of these aspects are 
directed toward efficient implementations that can maximize 

The solution matrix may further include an inverted said 
50 third number by said third number sub-matrix of the encod-

or significantly leverage the available parallel processing 
power of multiple cores working concurrently on the check 55 

data generation and the lost data reconstruction. Existing 
implementations do not attempt to accelerate these aspects 
of the data generation and thus fail to achieve a comparable 
level of performance. 

In an exemplary embodiment of the present invention, a 60 

system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for 
executing computer instructions and accessing data from a 
main memory; and a non-volatile storage medium (for 
example, a disk drive, or flash memory) for storing the 65 

computer instructions. The processing core, the storage 
medium, and the computer instructions are configured to 

ing matrix. 
The erasure coding system may further include a first list 

of rows of the data matrix corresponding to the surviving 
data matrix, and a second list of rows of the data matrix 
corresponding to the lost data matrix. 

The data matrix may be configured to be divided into a 
surviving data matrix for holding surviving original data of 
the original data, and a lost data matrix corresponding to lost 
original data of the original data. The erasure coding system 
may further include a solution matrix for holding second 
factors in the main memory. The second factors are for 
decoding the check data into the lost original data using the 
surviving original data and the first factors. The thread may 
further include a second sequencer for ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel 
multiplier to reconstruct the lost original data. 
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multiplier may be configured to process the data in units of 
at least 64 bytes spread over at least four of the data registers 
at a time. 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main 
memory at most once while reconstructing the lost original 
data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include: a scheduler for 
generating the check data and reconstructing the lost original 
data by dividing the data matrix into a plurality of data 
matrices; dividing the surviving data matrix into a plurality 

Consecutive instructions to process each of the units of 
5 the data may access separate ones of the data registers to 

permit concurrent execution of the consecutive instructions 
by the processing core. 

The parallel multiplier may include two lookup tables for 
doing concurrent multiplication of 4-bit quantities across 16 

10 byte-sized entries using the PSHUFB (Packed Shuffle Bytes) 
of surviving data matrices; dividing the lost data matrix into 
a plurality of lost data matrices; dividing the check matrix 
into a plurality of check matrices; assigning corresponding 
ones of the data matrices, the surviving data matrices, the 
lost data matrices, and the check matrices to the threads; and 15 

assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 
check matrices from respective ones of the data matrices and 
to concurrently reconstruct portions of the lost original data 
corresponding to the lost data matrices from respective ones 20 

of the surviving data matrices and the check matrices. 
The check matrix may be configured to be divided into a 

surviving check matrix for holding surviving check data of 
the check data, and a lost check matrix corresponding to lost 
check data of the check data. The second sequencer may be 25 

configured to order operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier to regenerate the lost 
check data. 

The second sequencer may be further configured to recon- 30 

struct the lost original data concurrently with regenerating 
the lost check data. 

instruction. 
The parallel multiplier may be further configured to 

receive an input operand in four of the data registers, and 
return with the input operand intact in the four of the data 
registers. 

According to another exemplary embodiment of the pres
ent invention, a method of accelerated error-correcting code 
(ECC) processing on a computing system is provided. The 
computing system includes a non-volatile storage medium 
(such as a disk drive or flash memory), a processing core for 
accessing instructions and data from a main memory, and a 
computer program including a plurality of computer instruc
tions for implementing an erasure coding system. The 
method includes: storing the computer program on the 
storage medium; executing the computer instructions on the 
processing core; arranging original data as a data matrix in 
the main memory; arranging first factors as an encoding 
matrix in the main memory, the first factors being for 
encoding the original data into check data, the check data 
being arranged as a check matrix in the main memory; and 
generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a matrix by 
a single factor. The generating of the check data includes 
ordering operations through the data matrix and the encod-

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main 
memory at most once while reconstructing the lost original 
data and regenerating the lost check data. 

35 ing matrix using the parallel multiplier. 

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 
lost original data from the main memory. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data by: dividing the data matrix into 
a plurality of data matrices; dividing the check matrix into 
a plurality of check matrices; and assigning corresponding 
ones of the data matrices and the check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec
tive ones of the data matrices. 

The method may further include: dividing the data matrix 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data; arranging second 
factors as a solution matrix in the main memory, the second 
factors being for decoding the check data into the lost 
original data using the surviving original data and the first 
factors; and reconstructing the lost original data by ordering 
operations through the surviving data matrix, the encoding 
matrix, the check matrix, and the solution matrix using the 
parallel multiplier. 

The reconstructing of the lost original data may include 
accessing each entry of the surviving data matrix from the 
main memory at most once. 

The processing core may include a plurality of processing 40 

cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data, reconstructing the lost original 
data, and regenerating the lost check data by: dividing the 
data matrix into a plurality of data matrices; dividing the 45 

surviving data matrix into a plurality of surviving data 
matrices; dividing the lost data matrix into a plurality oflost 
data matrices; dividing the check matrix into a plurality of 
check matrices; dividing the surviving check matrix into a 
plurality of surviving check matrices; dividing the lost check 50 

matrix into a plurality of lost check matrices; assigning 
corresponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the 
surviving check matrices, and the lost check matrices to the 
threads; and assigning the threads to the processing cores to 55 

concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices, to concurrently reconstruct portions of the lost 
original data corresponding to the lost data matrices from 
respective ones of the surviving data matrices and the 60 

surviving check matrices, and to concurrently regenerate 
portions of the lost check data corresponding to the lost 
check matrices from respective ones of the surviving data 
matrices and respective portions of the reconstructed lost 
original data. 

The processing core may include a plurality of processing 
65 cores. The executing of the computer instructions may 

include executing the computer instructions on the process
ing cores. The method may further include scheduling the 

The processing core may include 16 data registers. Each 
of the data registers may include 16 bytes. The parallel 
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generating of the check data and the reconstructing of the 
lost original data by: dividing the data matrix into a plurality 

8 
configured to implement an erasure coding system when 
executed on the computing system by performing the steps 
of: arranging original data as a data matrix in the main 
memory; arranging first factors as an encoding matrix in the 

of data matrices; dividing the surviving data matrix into a 
plurality of surviving data matrices; dividing the lost data 
matrix into a plurality of lost data matrices; dividing the 
check matrix into a plurality of check matrices; and assign
ing corresponding ones of the data matrices, the surviving 
data matrices, the lost data matrices, and the check matrices 
to the processing cores to concurrently generate portions of 
the check data corresponding to the check matrices from 
respective ones of the data matrices and to concurrently 
reconstruct portions of the lost original data corresponding 

5 main memory, the first factors being for encoding the 
original data into check data, the check data being arranged 
as a check matrix in the main memory; and generating the 
check data using a parallel multiplier for concurrently mul
tiplying multiple data entries of a matrix by a single factor. 

10 The generating of the check data includes ordering opera
tions through the data matrix and the encoding matrix using 
the parallel multiplier. 

to the lost data matrices from respective ones of the surviv
ing data matrices and the check matrices. 

The method may further include: dividing the check 15 

matrix into a surviving check matrix for holding surviving 
check data of the check data, and a lost check matrix 
corresponding to lost check data of the check data; and 
regenerating the lost check data by ordering operations 
through the surviving data matrix, the reconstructed lost 20 

original data, and the encoding matrix using the parallel 
multiplier. 

The reconstructing of the lost original data may take place 
concurrently with the regenerating of the lost check data. 

The reconstructing of the lost original data and the 25 

regenerating of the lost check data may include accessing 
each entry of the surviving data matrix from the main 
memory at most once. 

The regenerating of the lost check data may take place 
without accessing the reconstructed lost original data from 30 

the main memory. 
The processing core may include a plurality of processing 

cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 35 

generating of the check data, the reconstructing of the lost 
original data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 
dividing the surviving data matrix into a plurality of sur
viving data matrices; dividing the lost data matrix into a 40 

plurality oflost data matrices; dividing the check matrix into 
a plurality of check matrices; dividing the surviving check 
matrix into a plurality of surviving check matrices; dividing 
the lost check matrix into a plurality oflost check matrices; 
and assigning corresponding ones of the data matrices, the 45 

surviving data matrices, the lost data matrices, the check 
matrices, the surviving check matrices, and the lost check 
matrices to the processing cores to concurrently generate 
portions of the check data corresponding to the check 
matrices from respective ones of the data matrices, to 50 

concurrently reconstruct portions of the lost original data 
corresponding to the lost data matrices from respective ones 
of the surviving data matrices and the surviving check 
matrices, and to concurrently regenerate portions of the lost 
check data corresponding to the lost check matrices from 55 

respective ones of the surviving data matrices and respective 
portions of the reconstructed lost original data. 

According to yet another exemplary embodiment of the 
present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a 60 

digital video disk (DVD), flash memory, a universal serial 
bus (USB) drive, etc.) containing a computer program 
including a plurality of computer instructions for performing 
accelerated error-correcting code (ECC) processing on a 
computing system is provided. The computing system 65 

includes a processing core for accessing instructions and 
data from a main memory. The computer instructions are 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured 
to perform the step of scheduling the generating of the check 
data by: dividing the data matrix into a plurality of data 
matrices; dividing the check matrix into a plurality of check 
matrices; and assigning corresponding ones of the data 
matrices and the check matrices to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices. 

The computer instructions may be further configured to 
perform the steps of: dividing the data matrix into a surviv
ing data matrix for holding surviving original data of the 
original data, and a lost data matrix corresponding to lost 
original data of the original data; arranging second factors as 
a solution matrix in the main memory, the second factors 
being for decoding the check data into the lost original data 
using the surviving original data and the first factors; and 
reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel 
multiplier. 

The computer instructions may be further configured to 
perform the steps of: dividing the check matrix into a 
surviving check matrix for holding surviving check data of 
the check data, and a lost check matrix corresponding to lost 
check data of the check data; and regenerating the lost check 
data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data and the 
regenerating of the lost check data may include accessing 
each entry of the surviving data matrix from the main 
memory at most once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured 
to perform the step of scheduling the generating of the check 
data, the reconstructing of the lost original data, and the 
regenerating of the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviv
ing data matrix into a plurality of surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 
matrices; dividing the check matrix into a plurality of check 
matrices; dividing the surviving check matrix into a plurality 
of surviving check matrices; dividing the lost check matrix 
into a plurality of lost check matrices; and assigning corre-
sponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the 
surviving check matrices, and the lost check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec-
tive ones of the data matrices, to concurrently reconstruct 
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portions of the lost original data corresponding to the lost 
data matrices from respective ones of the surviving data 
matrices and the surviving check matrices, and to concur
rently regenerate portions of the lost check data correspond
ing to the lost check matrices from respective ones of the 
surviving data matrices and respective portions of the recon
structed lost original data. 

10 
one byte in size throughout the description that follows, and 
the term "element(s)" and "byte(s)" will be used synony
mously. 

Conceptually, different stripes can distribute their data 
5 blocks across different combinations of drives, or have 

different block sizes or numbers of blocks, etc., but for 
simplification and ease of description and implementation, 
the described embodiments in the present application 
assume a consistent block size (L bytes) and distribution of 
blocks among the data drives between stripes. Further, all 
variables, such as the number of data drives N, will be 
assumed to be positive integers unless otherwise specified. 

By providing practical and efficient systems and methods 
for erasure coding systems (which for byte-level processing 
can support up to N+M=256 drives, such as N=127 data 10 

drives and M=129 check drives, including a parity drive), 
applications such as RAID systems that can tolerate far more 
failing drives than was thought to be possible or practical 
can be implemented with accelerated performance signifi
cantly better than any prior art solution. 15 

In addition, since the N=l case reduces to simple data 
mirroring (that is, copying the same data drive multiple 
times), it will also be assumed for simplicity that N;;,;2 
throughout. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, together with the specifi
cation, illustrate exemplary embodiments of the present 20 

invention and, together with the description, serve to explain 
aspects and principles of the present invention. 

The N data blocks from each stripe are combined using 
arithmetic operations (to be described in more detail below) 
in M different ways to produce M blocks of check data 
( check blocks), and the M check blocks written across M 

FIG. 1 shows an exemplary stripe of original and check 
data according to an embodiment of the present invention. 

FIG. 2 shows an exemplary method for reconstructing lost 
data after a failure of one or more drives according to an 
embodiment of the present invention. 

FIG. 3 shows an exemplary method for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

FIG. 4 shows an exemplary method for sequencing the 
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

FIGS. 5-7 show an exemplary method for sequencing the 
parallel lookup multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion. 

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention. 

FIG. 9 shows an exemplary disk drive configuration 
according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

Hereinafter, exemplary embodiments of the invention will 
be described in more detail with reference to the accompa
nying drawings. In the drawings, like reference numerals 
refer to like elements throughout. 

While optimal erasure codes have many applications, for 
ease of description, they will be described in this application 
with respect to RAID applications, i.e., erasure coding 
systems for the storage and retrieval of digital data distrib
uted across numerous storage devices ( or drives), though the 
present application is not limited thereto. For further ease of 
description, the storage devices will be assumed to be disk 
drives, though the invention is not limited thereto. In RAID 
systems, the data (or original data) is broken up into stripes, 
each of which includes N uniformly sized blocks ( data 
blocks), and the N blocks are written across N separate 
drives (the data drives), one block per data drive. 

In addition, for ease of description, blocks will be 
assumed to be composed ofL elements, each element having 

drives (the check drives) separate from the N data drives, 

25 one block per check drive. These combinations can take 

30 

place, for example, when new ( or changed) data is written to 
(or back to) disk. Accordingly, each of the N+M drives (data 
drives and check drives) stores a similar amount of data, 
namely one block for each stripe. As the processing of 
multiple stripes is conceptually similar to the processing of 
one stripe ( only processing multiple blocks per drive instead 
of one), it will be further assumed for simplification that the 
data being stored or retrieved is only one stripe in size unless 

35 otherwise indicated. It will also be assumed that the block 
size L is sufficiently large that the data can be consistently 
divided across each block to produce subsets of the data that 
include respective portions of the blocks (for efficient con-

40 current processing by different processing units). 
FIG. 1 shows an exemplary stripe 10 of original and check 

data according to an embodiment of the present invention. 
Referring to FIG. 1, the stripe 10 can be thought of not 

only as the original N data blocks 20 that make up the 
45 original data, but also the corresponding M check blocks 30 

generated from the original data (that is, the stripe 10 
represents encoded data). Each of the N data blocks 20 is 
composed of L bytes 25 (labeled byte 1, byte 2, ... , byte 

50 
L), and each of the M check blocks 30 is composed of L 
bytes 35 (labeled similarly). In addition, check drive 1, byte 
1, is a linear combination of data drive 1, byte 1; data drive 
2, byte 1; ... ; data drive N, byte 1. Likewise, check drive 
1, byte 2, is generated from the same linear combination 

55 formula as check drive 1, byte 1, only using data drive 1, 
byte 2; data drive 2, byte 2; ... ; data drive N, byte 2. In 
contrast, check drive 2, byte 1, uses a different linear 
combination formula than check drive 1, byte 1, but applies 
it to the same data, namely data drive 1, byte 1; data drive 

60 2, byte 1; ... ; data drive N, byte 1. In this fashion, each of 
the other check bytes 35 is a linear combination of the 
respective bytes of each of the N data drives 20 and using the 
corresponding linear combination formula for the particular 
check drive 30. 

a fixed size, say 8 bits or one byte. An element, such as a 
byte, forms the fundamental unit of operation for the RAID 
processing, but the invention is just as applicable to other 65 

size elements, such as 16 bits (2 bytes). For simplification, 
unless otherwise indicated, elements will be assumed to be 

The stripe 10 in FIG. 1 can also be represented as a matrix 
C of encoded data. Chas two sub-matrices, namely original 
data D on top and check data J on bottom. That is, 
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12 
The remaining M-1 linear combinations include more 

involved calculations that include the nontrivial GF multi
plication operations ( e.g., performing a GF multiplication of 
the first byte in each block by a corresponding factor for the 

C= [~] = DN! DN2 

lu 112 

h1 h2 

JM! lM2 

DNL 

l1L 

hL 

]ML 

5 respective data drive, and then performing a GF sum of all 
these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or infor
mation dispersal matrix (IDM)) E of the different factors, 
one factor for each combination of ( data or check) drive and 

10 data drive, with one row for each of the N+M data and check 
drives and one colunm for each of the N data drives. The 

where D,rbyte j from data drive i and J,rbyte j from check 
drive i. Thus, the rows of encoded data C represent blocks, 
while the colunms represent corresponding bytes of each of 15 
the drives. 

Further, in case of a disk drive failure of one or more 
disks, the arithmetic operations are designed in such a 
fashion that for any stripe, the original data (and by exten
sion, the check data) can be reconstructed from any com- 20 

bination ofN data and check blocks from the corresponding 
N+M data and check blocks that comprise the stripe. Thus, 
RAID provides both parallel processing (reading and writing 
the data in stripes across multiple drives concurrently) and 
fault tolerance (regeneration of the original data even if as 25 

many as M of the drives fail), at the computational cost of 
generating the check data any time new data is written to 
disk, or changed data is written back to disk, as well as the 
computational cost of reconstructing any lost original data 

30 
and regenerating any lost check data after a disk failure. 

For example, for M=l check drive, a single parity drive 
can function as the check drive (i.e., a RAID4 system). Here, 
the arithmetic operation is bitwise exclusive OR of each of 
the N corresponding data bytes in each data block of the 35 
stripe. In addition, as mentioned earlier, the assignment of 
parity blocks from different stripes to the same drive (i.e., 
RAID4) or different drives (i.e., RAIDS) is arbitrary, but it 
does simplify the description and implementation to use a 
consistent assignment between stripes, so that will be 40 

assumed throughout. Since M=l reduces to the case of a 
single parity drive, it will further be assumed for simplicity 
that M;;,;2 throughout. 

For such larger values ofM, Galois field arithmetic is used 
to manipulate the data, as described in more detail later. 
Galois field arithmetic, for Galois fields of powers-of-2 
( such as 2i numbers of elements, includes two fundamental 
operations: (1) addition (which is just bitwise exclusive OR, 
as with the parity drive-only operations for M=l), and (2) 
multiplication. While Galois field (GF) addition is trivial on 
standard processors, GF multiplication is not. Accordingly, 
a significant component of RAID performance for M;;,;2 is 
speeding up the performance ofGF multiplication, as will be 
discussed later. For purposes of description, GF addition will 
be represented by the symbol + throughout while GF mul
tiplication will be represented by the symbol x throughout. 

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations 

45 

50 

55 

( over GF arithmetic) of the N data drives of original data, 
one linear combination (i.e., a GF sum of N terms, where 60 

each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective 
data drive) for each check drive, as applied to respective 
bytes in each block. One such linear combination can be a 
simple parity, i.e., entirely GF addition (all factors equal 1), 65 

such as a GF sum of the first byte in each block of original 
data as described above. 

IDM E can also be represented as 

where IN represents the NxN identity matrix (i.e., the origi
nal (unencoded) data) and H represents the MxN matrix of 
factors for the check drives (where each of the M rows 
corresponds to one of the M check drives and each of the N 
colunms corresponds to one of the N data drives). 

Thus, 

0 0 

0 0 

£=[;]= 0 0 

Hu H12 H1N 

H21 H22 H2N 

HM! HM2 HMN 

where H,rfactor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the colunms 
represent corresponding bytes of each of the drives. In 
addition, check factors H, original data D, and check data J 
are related by the formula J=HxD (that is, matrix multipli
cation), or 

lu 112 l1L 

h1 h2 hL 

JM! JM2 ]ML 

Hu H12 H1N Du D12 D1L 

H21 H22 H2N D21 D22 D2L 
X 

HM! HM2 HMN DNI DN2 DNL 

where J11=(H11 xD11 )+(H12xD21 )+ ... +(H1NxDN1), J12= 
(H11XD12)+(H12XD22)+ ... +(H1NXDN2), l21=CH21XD11)+ 
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+ 
(Hi2xD2)+ ... +(H,NxDNf) for lsisM and lsjsL. 

Such an encoding matrix E is also referred to as an 
information dispersal matrix (IDM). It should be noted that 
matrices such as check drive encoding matrix H and identity 
matrix IN also represent encoding matrices, in that they 
represent matrices of factors to produce linear combinations 
over GF arithmetic of the original data. In practice, the 
identity matrix IN is trivial and may not need to be con-
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structed as part of the IDM E. Only the encoding matrix E, 
however, will be referred to as the IDM. Methods of building 
an encoding matrix such as IDM E or check drive encoding 
matrix Hare discussed below. In further embodiments of the 
present invention (as discussed further in Appendix A), such 5 

(N+M)xN (or MxN) matrices can be trivially constructed 
( or simply indexed) from a master encoding matrix S, which 
is composed of (Nmax+Mmax)xNmax (or MmaxxNmax) bytes 
or elements, where Nmax+Mmax=256 (or some other power 
of two) and NsNmax and MsMmax· For example, one such lO 

master encoding matrix S can include a 127x127 element 
identity matrix on top (for up to Nmax=l27 data drives), a 
row of l's (for a parity drive), and a 128x127 element 
encoding matrix on bottom (for up to Mmax=l29 check 

15 
drives, including the parity drive), for a total of Nmax+ 
Mmax =256 drives. 

The original data, in turn, can be represented by an NxL 
matrix D of bytes, each of the N rows representing the L 
bytes of a block of the corresponding one of the N data 20 

drives. If C represents the corresponding (N+M)xL matrix 
of encoded bytes (where each of the N+M rows corresponds 
to one of the N+M data and check drives), then C can be 
represented as 

14 

thus represents a permuted original data matrix D' (that is, 
the original data matrix D, only with the surviving original 
data X on top and the lost original data Y on bottom. It 
should be noted that once the lost original data Y is recon
structed, it can be combined with the surviving original data 
X to restore the original data D, from which the check data 
for any of the failed check drives can be regenerated. 

It should also be noted that M-G check drives survive. In 
order to reconstruct the lost original data Y, enough (that is, 
at least N) total drives must survive. Given that K=N-F data 
drives survive, and that M-G check drives survive, it 
follows that (N-F)+(M-G);;,;N must be true to reconstruct 
the lost original data Y. This is equivalent to F+GsM (i.e., 
no more than F+G drives fail), or FsM-G (that is, the 
number of failed data drives does not exceed the number of 
surviving check drives). It will therefore be assumed for 
simplicity that FsM-G. 

In the routines that follow, performance can be enhanced 
by prebuilding lists of the failed and surviving data and 
check drives (that is, four separate lists). This allows pro
cessing of the different sets of surviving and failed drives to 

[/N] [/NxD] [D] 
ExD = H xD = HxD = J , 

25 be done more efficiently than existing solutions, which use, 
for example, bit vectors that have to be examined one bit at 
a time and often include large numbers of consecutive zeros 
( or ones) when ones ( or zeros) are the bit values of interest. 

where J=HxD is an MxL matrix of check data, with each of 
the M rows representing the L check bytes of the corre
sponding one of the M check drives. It should be noted that 

FIG. 2 shows an exemplary method 300 for reconstruct-
30 ing lost data after a failure of one or more drives according 

to an embodiment of the present invention. 

in the relationships such as C=ExD or J=HxD, x represents 
matrix multiplication over the Galois field (i.e., GF multi
plication and GF addition being used to generate each of the 
entries in, for example, C or J). 

While the recovery process is described in more detail 
later, briefly it consists of two parts: (1) determining the 
solution matrix, and (2) reconstructing the lost data from the 
surviving data. Determining the solution matrix can be done 

35 in three steps with the following algorithm (Algorithm 1 ), 
with reference to FIG. 2: 

In exemplary embodiments of the present invention, the 
first row of the check drive encoding matrix H ( or the 
(N+l)'h row of the IDM E) can be all l's, representing the 40 

parity drive. For linear combinations involving this row, the 
GF multiplication can be bypassed and replaced with a GF 
sum of the corresponding bytes since the products are all 
trivial products involving the identity element 1. Accord
ingly, in parity drive implementations, the check drive 45 

encoding matrix H can also be thought of as an (M-l)xN 
matrix of non-trivial factors (that is, factors intended to be 
used in GF multiplication and not just GF addition). 

Much of the RAID processing involves generating the 
check data when new or changed data is written to ( or back 50 

to) disk. The other significant event for RAID processing is 
when one or more of the drives fail ( data or check drives), 
or for whatever reason become unavailable. Assume that in 
such a failure scenario, F data drives fail and G check drives 
fail, where F and G are nonnegative integers. If F=0, then 55 

only check drives failed and all of the original data D 
survived. In this case, the lost check data can be regenerated 
from the original data D. 

Accordingly, assume at least one data drive fails, that is, 
F;;,;l, and let K=N-F represent the number of data drives that 60 

survive. K is also a nonnegative integer. In addition, let X 
represent the surviving original data and Y represent the lost 
original data. That is, Xis a KxL matrix composed of the K 
rows of the original data matrix D corresponding to the K 
surviving data drives, while Y is an FxL matrix composed of 65 

the F rows of the original data matrix D corresponding to the 
F failed data drives. 

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to 
an N xN reduced encoding matrix T ( also referred to as 
the transformed IDM) including the K surviving data 
drive rows and any F of the M-G surviving check drive 
rows (for instance, the first F surviving check drive 
rows, as these will include the parity drive if it sur
vived; recall that FsM-G was assumed). In addition, 
the colunms of the reduced encoding matrix T are 
rearranged so that the K colunms corresponding to the 
K surviving data drives are on the left side of the matrix 
and the F colunms corresponding to the F failed drives 
are on the right side of the matrix. (Step 320) These F 
surviving check drives selected to rebuild the lost 
original data Y will henceforth be referred to as "the F 
surviving check drives," and their check data W will be 
referred to as "the surviving check data," even though 
M-G check drives survived. It should be noted that W 
is an FxL matrix composed of the F rows of the check 
data J corresponding to the F surviving check drives. 
Further, the surviving encoded data can be represented 
as a sub-matrix C' of the encoded data C. The surviving 
encoded data C' is an N xL matrix composed of the 
surviving original data X on top and the surviving 
check data Won bottom, that is, 

2. (Step 330) Splitting the reduced encoding matrix Tinto 
four sub-matrices (that are also encoding matrices): (i) 
a KxK identity matrix IK ( corresponding to the K 
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surv1vmg data drives) in the upper left, (ii) a KxF 
matrix O of zeros in the upper right, (iii) an FxK 
encoding matrix A in the lower left corresponding to 
the F surviving check drive rows and the K surviving 
data drive colunms, and (iv) an FxF encoding matrix B 5 

in the lower right corresponding to the F surviving 
check drive rows and the F failed data drive colunms. 
Thus, the reduced encoding matrix T can be repre
sented as 

3. (Step 340) Calculating the inverse B-1 of the FxF 
encoding matrix B. As is shown in more detail in 
Appendix A, C'=TxD', or 

10 

15 

20 

which is mathematically equivalent to W=AxX+BxY. B-1 is 25 

the solution matrix, and is itself an FxF encoding matrix. 
Calculating the solution matrix B-1 thus allows the lost 
original data Y to be reconstructed from the encoding 
matrices A and B along with the surviving original data X 
and the surviving check data W. 30 

The FxK encoding matrix A represents the original encod
ing matrix E, only limited to the K surviving data drives and 
the F surviving check drives. That is, each of the F rows of 

16 
since the number of failed data drives F is usually signifi
cantly less than the number of data drives N in any practical 
situation. 

(Step 350 in FIG. 2) Once the encoding matrix A and the 
solution matrix B-1 are known, reconstructing the lost data 
from the surviving data (that is, the surviving original data 
X and the surviving check data W) can be accomplished in 
four steps using the following algorithm (Algorithm 2): 

1. Use A and the surviving original data X (using matrix 
multiplication) to generate the surviving check data 
(i.e., AxX), only limited to the K surviving data drives. 
Call this limited check data the surviving partial check 
data. 

2. Subtract this surviving partial check data from the 
surviving check data W (using matrix subtraction, i.e., 
W-AxX, which is just entry-by-entry GF subtraction, 
which is the same as GF addition for this Galois field). 
This generates the surviving check data, only this time 
limited to the F failed data drives. Call this limited 
check data the lost partial check data. 

3. Use the solution matrix B-1 and the lost partial check 
data (using matrix multiplication, i.e., B-1x(W-AxX) 
to reconstruct the lost original data Y. Call this the 
recovered original data Y. 

4. Use the corresponding rows of the IDM E (or master 
encoding matrix S) for each of the G failed check drives 
along with the original data D, as reconstructed from 
the surviving and recovered original data X and Y, to 
regenerate the lost check data (using matrix multipli
cation). 

As will be shown in more detail later, steps 1-3 together 
require O(F) operations times the amount of original data D 
to reconstruct the lost original data Y for the F failed data 
drives (i.e., roughly 1 operation per failed data drive per byte A represents a different one of the F surviving check drives, 

while each of the K colunms of A represents a different one 
of the K surviving data drives. Thus, A provides the encod
ing factors needed to encode the original data for the 
surviving check drives, but only applied to the surviving 
data drives (that is, the surviving partial check data). Since 
the surviving original data X is available, A can be used to 
generate this surviving partial check data. 

35 of original data D), which is proportionally equivalent to the 
O(M) operations times the amount of original data D needed 
to generate the check data J for the M check drives (i.e., 
roughly 1 operation per check drive per byte of original data 
D). In addition, this same equivalence extends to step 4, 

In similar fashion, the FxF encoding matrix B represents 
the original encoding matrix E, only limited to the F 
surviving check drives and the F failed data drives. That is, 
the F rows of B correspond to the same F rows of A, while 
each of the F colunms of B represents a different one of the 
F failed data drives. Thus, B provides the encoding factors 
needed to encode the original data for the surviving check 
drives, but only applied to the failed data drives (that is, the 
lost partial check data). Since the lost original data Y is not 
available, B cannot be used to generate any of the lost partial 
check data. However, this lost partial check data can be 
determined from A and the surviving check data W. Since 
this lost partial check data represents the result of applying 
B to the lost original data Y, B-1 thus represents the neces
sary factors to reconstruct the lost original data Y from the 
lost partial check data. 

40 which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the G 
failed check drives (i.e., roughly 1 operation per failed check 
drive per byte of original data D). In summary, the number 
of operations needed to reconstruct the lost data is O(F +G) 

45 times the amount of original data D (i.e., roughly 1 operation 
per failed drive ( data or check) per byte of original data D). 
Since F+GsM, this means that the computational complex
ity of Algorithm 2 (reconstructing the lost data from the 
surviving data) is no more than that of generating the check 

50 data J from the original data D. 
As mentioned above, for exemplary purposes and ease of 

description, data is assumed to be organized in 8-bit bytes, 
each byte capable of taking on 28=256 possible values. Such 
data can be manipulated in byte-size elements using GF 

55 arithmetic for a Galois field of size 28=256 elements. It 

It should be noted that steps 1 and 2 in Algorithm 1 above 
are logical, in that encoding matrices A and B ( or the reduced 60 

encoding matrix T, for that matter) do not have to actually 

should also be noted that the same mathematical principles 
apply to any power-of-two 2P number of elements, not just 
256, as Galois fields can be constructed for any integral 
power of a prime number. Since Galois fields are finite, and 
since GF operations never overflow, all results are the same 
size as the inputs, for example, 8 bits. 

be constructed. Appropriate indexing of the ID M E ( or the 
master encoding matrix S) can be used to obtain any of their 
entries. Step 3, however, is a matrix inversion over GF 
arithmetic and takes O(F3

) operations, as discussed in more 65 

detail later. Nonetheless, this is a significant improvement 
over existing solutions, which require O(N3

) operations, 

In a Galois field of a power-of-two number of elements, 
addition and subtraction are the same operation, namely a 
bitwise exclusive OR (XOR) of the two operands. This is a 
very fast operation to perform on any current processor. It 
can also be performed on multiple bytes concurrently. Since 
the addition and subtraction operations take place, for 
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example, on a byte-level basis, they can be done in parallel 
by using, for instance, x86 architecture Streaming SIMD 
Extensions (SSE) instructions (SIMD stands for single 
instruction, multiple data, and refers to performing the same 
instruction on different pieces of data, possibly concur- 5 

rently), such as PXOR (Packed (bitwise) Exclusive OR). 
SSE instructions can process, for example, 16-byte reg

isters (XMM registers), and are able to process such regis
ters as though they contain 16 separate one-byte operands 
(or 8 separate two-byte operands, or four separate four-byte 10 

operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to 
processing a byte at a time. Further, there are 16 XMM 
registers, so dedicating four such registers for operand 
storage allows the data to be processed in 64-byte incre- 15 

ments, using the other 12 registers for temporary storage. 
That is, individual operations can be performed as four 
consecutive SSE operations on the four respective registers 
(64 bytes), which can often allow such instructions to be 
efficiently pipelined and/or concurrently executed by the 20 

processor. In addition, the SSE instructions allows the same 
processing to be performed on different such 64-byte incre
ments of data in parallel using different cores. Thus, using 
four separate cores can potentially speed up this processing 

18 
there are several more operations needed to perform the 
operation. While this can be implemented as a loop on each 
bit of the factor, as described above, only performing the 
shifts, adds, and wraps on 64 bytes at a time, it can be more 
efficient to process the 256 possible factors as a (C language) 
switch statement, with inline code for each of 256 different 
combinations of two primitive GF operations: Multiply-by-2 
and Add. For example, GF multiplication by the factor 3 can 
be effected by first doing a Multiply-by-2 followed by an 
Add. Likewise, GF multiplication by 4 is just a Multiply
by-2 followed by a Multiply-by-2 while multiplication by 6 
is a Multiply-by-2 followed by an Add and then by another 
Multiply-by-2. 

While this Add is identical to the Parallel Adder described 
above (e.g., four consecutive PXOR instructions to process 
64 separate bytes), Multiply-by-2 is not as straightforward. 
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4 
consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive 
PAND (Bitwise AND) instructions, and 4 consecutive 
PXOR instructions. Though this takes 20 machine instruc
tions, the instructions are very fast and results in 64 con-

by an additional factor of 4 over using a single core. 25 secutive bytes of data at a time being multiplied by 2. 
For example, a parallel adder (Parallel Adder) can be built 

using the 16-byte XMM registers and four consecutive 
PXOR instructions. Such parallel processing (that is, 64 
bytes at a time with only a few machine-level instructions) 
for GF arithmetic is a significant improvement over doing 30 

the addition one byte at a time. Since the data is organized 
in blocks of any fixed number of bytes, such as 4096 bytes 
( 4 kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can 
be composed of numerous such 64-byte chunks (e.g., 64 
separate 64-byte chunks in 4 KB, or 512 chunks in 32 KB). 35 

Multiplication in a Galois field is not as straightforward. 
While much of it is bitwise shifts and exclusive OR's (i.e., 
"additions") that are very fast operations, the numbers 
"wrap" in peculiar ways when they are shifted outside of 
their normal bounds (because the field has only a finite set 40 

of elements), which can slow down the calculations. This 
"wrapping" in the GF multiplication can be addressed in 
many ways. For example, the multiplication can be imple
mented serially (Serial Multiplier) as a loop iterating over 
the bits of one operand while performing the shifts, adds, 45 

and wraps on the other operand. Such processing, however, 
takes several machine instructions per bit for 8 separate bits. 
In other words, this technique requires dozens of machine 
instructions per byte being multiplied. This is inefficient 
compared to, for example, the performance of the Parallel 50 

Adder described above. 

For 64 bytes of data, assuming a random factor between 
0 and 255, the total overhead for the Parallel Multiplier is 
about 6 calls to multiply-by-2 and about 3.5 calls to add, or 
about 6x20+3.5x4=134 machine instructions, or a little over 
2 machine instructions per byte of data. While this compares 
favorably with byte-level processing, it is still possible to 
improve on this by building a parallel multiplier with a table 
lookup (Parallel Lookup Multiplier) using the PSHUFB 
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes). 

FIG. 3 shows an exemplary method 400 for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

Referring to FIG. 3, in step 410, two lookup tables are 
built once: one lookup table for the low-order nibbles in each 
byte, and one lookup table for the high-order nibbles in each 
byte. Each lookup table contains 256 sets (one for each 
possible factor) of the 16 possible GF products of that factor 
and the 16 possible nibble values. Each lookup table is thus 
256x16=4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multipli-
cation table. In addition, PSHUFB does 16 separate table 
lookups at once, each for one nibble, so 8 PSHUFB instruc
tions can be used to do all the table lookups for 64 bytes (128 
nibbles). 

Next, in step 420, the Parallel Lookup Multiplier is 
initialized for the next set of 64 bytes of operand data (such 
as original data or surviving original data). In order to save 
loading this data from memory on succeeding calls, the 

For another approach (Serial Lookup Multiplier), multi
plication tables ( of all the possible products, or at least all the 
non-trivial products) can be pre-computed and built ahead of 
time. For example, a table of 256x256=65,536 bytes can 
hold all the possible products of the two different one-byte 
operands). However, such tables can force serialized access 

55 Parallel Lookup Multiplier dedicates four registers for this 
data, which are left intact upon exit of the Parallel Lookup 
Multiplier. This allows the same data to be called with 
different factors (such as processing the same data for on what are only byte-level operations, and not take advan

tage of wide (concurrent) data paths available on modern 
processors, such as those used to implement the Parallel 60 

Adder above. 
In still another approach (Parallel Multiplier), the GF 

multiplication can be done on multiple bytes at a time, since 
the same factor in the encoding matrix is multiplied with 
every element in a data block. Thus, the same factor can be 
multiplied with 64 consecutive data block bytes at a time. 
This is similar to the Parallel Adder described above, only 

another check drive). 
Next in step 430, to process these 64 bytes of operand 

data, the Parallel Lookup Multiplier can be implemented 
with 2 MOVDQA (Move Double Quadword Aligned) 
instructions (from memory) to do the two table lookups and 
4 MOVDQA instructions (register to register) to initialize 

65 registers (such as the output registers). These are followed in 
steps 440 and 450 by two nearly identical sets of 17 
register-to-register instructions to carry out the multiplica-
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tion 32 bytes at a time. Each such set starts (in step 440) with 
5 more MOVDQA instructions for further initialization, 
followed by 2 PSRLW (Packed Shift Right Logical Word) 
instructions to realign the high-order nibbles for PSHUFB, 
and 4 PAND instructions to clear the high-order nibbles for 5 

PSHUFB. That is, two registers of byte operands are con
verted into four registers of nibble operands. Then, in step 
450, 4 PSHUFB instructions are used to do the parallel table 
lookups, and 2 PXOR instructions to add the results of the 
multiplication on the two nibbles to the output registers. 10 

20 
2) "row-by-row," i.e., 64 bytes for one data drive, fol

lowed by the corresponding 64 bytes for the next data 
drive, etc., and keeping a running total using the 
Parallel Adder, then moving onto the next set of 64-byte 
chunks. 

Colunm-by-colunm can be thought of as "constant factor, 
varying data," in that the (GF multiplication) factor usually 
remains the same between iterations while the ( 64-byte) data 
changes with each iteration. Conversely, row-by-row can be 
thought of as "constant data, varying factor," in that the data 
usually remains the same between iterations while the factor 
changes with each iteration. 

Another consideration is how to handle the check drives. 
Two possible ways are: 

a) one at a time, i.e., generate all the check data for one 
check drive before moving onto the next check drive; 
and 

b) all at once, i.e., for each 64-byte chunk of original data, 
do all of the processing for each of the check drives 
before moving onto the next chunk of original data. 

While each of these techniques performs the same basic 
operations ( e.g., 40 instructions for every 64 bytes of data 
for each of the N data drives and M-1 non-parity check 
drives, or 5N(M-1)/8 instructions per byte for the Parallel 
Lookup Multiplier), empirical results show that combination 
(2)(b ), that is, row-by-row data access on all of the check 
drives between data accesses performs best with the Parallel 
Lookup Multiplier. One reason may be that such an 

Thus, the Parallel Lookup Multiplier uses 40 machine 
instructions to perform the parallel multiplication on 64 
separate bytes, which is considerably better than the average 
134 instructions for the Parallel Multiplier above, and only 

15 
10 times as many instructions as needed for the Parallel 
Adder. While some of the Parallel Lookup Multiplier's 
instructions are more complex than those of the Parallel 
Adder, much of this complexity can be concealed through 
the pipelined and/or concurrent execution of numerous such 20 

contiguous instructions (accessing different registers) on 
modern pipelined processors. For example, in exemplary 
implementations, the Parallel Lookup Multiplier has been 
timed at about 15 CPU clock cycles per 64 bytes processed 
per CPU core (about 0.36 clock cycles per instruction). In 25 

addition, the code footprint is practically nonexistent for the 
Parallel Lookup Multiplier (40 instructions) compared to 
that of the Parallel Multiplier (about 34,300 instructions), 
even when factoring the 8 KB needed for the two lookup 
tables in the Parallel Lookup Multiplier. 30 approach appears to minimize the number of memory 

accesses (namely, one) to each chunk of the original data D 
to generate the check data J. This embodiment of Sequencer 
1 is described in more detail with reference to FIG. 4. 

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data ( such as the next 
64 bytes of surviving original data X to be processed) in four 
consecutive registers, whose contents can be preserved upon 
exiting the Parallel Lookup Multiplier (and all in the same 35 

40 machine instructions) such that the Parallel Lookup 
Multiplier can be invoked again on the same 64 bytes of data 
without having to access main memory to reload the data. 
Through such a protocol, memory accesses can be mini
mized ( or significantly reduced) for accessing the original 40 

data D during check data generation or the surviving original 
data X during lost data reconstruction. 

Further embodiments of the present invention are directed 
towards sequencing this parallel multiplication (and other 
GF) operations. While the Parallel Lookup Multiplier pro- 45 

cesses a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup 
Multiplier should be appropriately sequenced to provide 
efficient processing. One such sequencer (Sequencer 1), for 
example, can generate the check data J from the original data 50 

D, and is described further with respect to FIG. 4. 
The parity drive does not need GF multiplication. The 

check data for the parity drive can be obtained, for example, 
by adding corresponding 64-byte chunks for each of the data 
drives to perform the parity operation. The Parallel Adder 55 

can do this using 4 instructions for every 64 bytes of data for 
each of the N data drives, or N/16 instructions per byte. 

The M-1 non-parity check drives can invoke the Parallel 
Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 60 

check drive. One consideration is how to handle the data 
access. Two possible ways are: 

FIG. 4 shows an exemplary method 500 for sequencing 
the Parallel Lookup Multiplier to perform the check data 
generation according to an embodiment of the present 
invention. 

Referring to FIG. 4, in step 510, the Sequencer 1 is called. 
Sequencer 1 is called to process multiple 64-byte chunks of 
data for each of the blocks across a stripe of data. For 
instance, Sequencer 1 could be called to process 512 bytes 
from each block. If, for example, the block size L is 4096 
bytes, then it would take eight such calls to Sequencer 1 to 
process the entire stripe. The other such seven calls to 
Sequencer 1 could be to different processing cores, for 
instance, to carry out the check data generation in parallel. 
The number of 64-byte chunks to process at a time could 
depend on factors such as cache dimensions, input/output 
data structure sizes, etc. 

In step 520, the outer loop processes the next 64-byte 
chunk of data for each of the drives. In order to minimize the 
number of accesses of each data drive's 64-byte chunk of 
data from memory, the data is loaded only once and pre
served across calls to the Parallel Lookup Multiplier. The 
first data drive is handled specially since the check data has 
to be initialized for each check drive. Using the first data 
drive to initialize the check data saves doing the initializa
tion as a separate step followed by updating it with the first 
data drive' s data. In addition to the first data drive, the first 
check drive is also handled specially since it is a parity drive, 
so its check data can be initialized to the first data drive's 
data directly without needing the Parallel Lookup Multiplier. 

1) "colunm-by-colunm," i.e., 64 bytes for one data drive, 
followed by the next 64 bytes for that data drive, etc., 
and adding the products to the running total in memory 
(using the Parallel Adder) before moving onto the next 
row (data drive); and 

In step 530, the first middle loop is called, in which the 
remainder of the check drives (that is, the non-parity check 

65 drives) have their check data initialized by the first data 
drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied 
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with each of the first data drive's data bytes. This is handled 
by calling the Parallel Lookup Multiplier for each non-parity 
check drive. 

In step 540, the second middle loop is called, which 
processes the other data drives' corresponding 64-byte 5 

chunks of data. As with the first data drive, each of the other 
data drives is processed separately, loading the respective 64 
bytes of data into four registers (preserved across calls to the 
Parallel Lookup Multiplier). In addition, since the first check 
drive is the parity drive, its check data can be updated by 10 

directly adding these 64 bytes to it (using the Parallel Adder) 
before handling the non-parity check drives. 

In step 550, the inner loop is called for the next data drive. 
In the inner loop (as with the first middle loop), each of the 
non-parity check drives is associated with a corresponding 15 

factor for the particular data drive. The factor is multiplied 
with each of the next data drive's data bytes using the 
Parallel Lookup Multiplier, and the results added to the 
check drive's check data. 

Another such sequencer (Sequencer 2) can be used to 20 

reconstruct the lost data from the surviving data (using 
Algorithm 2). While the same column-by-colunm and row
by-row data access approaches are possible, as well as the 
same choices for handling the check drives, Algorithm 2 
adds another dimension of complexity because of the four 25 

separate steps and whether to: (i) do the steps completely 
serially or (ii) do some of the steps concurrently on the same 
data. For example, step 1 (surviving check data generation) 
and step 4 (lost check data regeneration) can be done 
concurrently on the same data to reduce or minimize the 30 

number of surviving original data accesses from memory. 
Empirical results show that method (2)(b )(ii), that is, 

row-by-row data access on all of the check drives and for 
both surviving check data generation and lost check data 
regeneration between data accesses performs best with the 35 

Parallel Lookup Multiplier when reconstructing lost data 
using Algorithm 2. Again, this may be due to the apparent 
minimization of the number of memory accesses (namely, 
one) of each chunk of surviving original data X to recon
struct the lost data and the absence of memory accesses of 40 

reconstructed lost original data Y when regenerating the lost 
check data. This embodiment of Sequencer 1 is described in 
more detail with reference to FIGS. 5-7. 

22 
In step 620, the outer loop processes the next 64-byte 

chunk of data for each of the drives Like Sequencer 1, the 
first surviving data drive is again handled specially since the 
partial check data AxX has to be initialized for each sur
viving check drive. 

In step 630, the first middle loop is called, in which the 
partial check data AxX is initialized for each surviving 
check drive based on the first surviving data drive's 64 bytes 
of data. In this case, the Parallel Lookup Multiplier is called 
for each surviving check drive with the corresponding factor 
(from A) for the first surviving data drive. 

In step 640, the second middle loop is called, in which the 
lost check data is initialized for each failed check drive. 
Using the same 64 bytes of the first surviving data drive 
(preserved across the calls to Parallel Lookup Multiplier in 
step 630), the Parallel Lookup Multiplier is again called, this 
time to initialize each of the failed check drive's check data 
to the corresponding component from the first surviving data 
drive. This completes the computations involving the first 
surviving data drive's 64 bytes of data, which were fetched 
with one access from main memory and preserved in the 
same four registers across steps 630 and 640. 

Continuing with FIG. 6, in step 650, the third middle loop 
is called, which processes the other surviving data drives' 
corresponding 64-byte chunks of data. As with the first 
surviving data drive, each of the other surviving data drives 
is processed separately, loading the respective 64 bytes of 
data into four registers (preserved across calls to the Parallel 
Lookup Multiplier). 

In step 660, the first inner loop is called, in which the 
partial check data AxX is updated for each surviving check 
drive based on the next surviving data drive's 64 bytes of 
data. In this case, the Parallel Lookup Multiplier is called for 
each surviving check drive with the corresponding factor 
(from A) for the next surviving data drive. 

In step 670, the second inner loop is called, in which the 
lost check data is updated for each failed check drive. Using 
the same 64 bytes of the next surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 660), 
the Parallel Lookup Multiplier is again called, this time to 
update each of the failed check drive's check data by the 
corresponding component from the next surviving data 
drive. This completes the computations involving the next 
surviving data drive's 64 bytes of data, which were fetched FIGS. 5-7 show an exemplary method 600 for sequencing 

the Parallel Lookup Multiplier to perform the lost data 
reconstruction according to an embodiment of the present 
invention. 

45 with one access from main memory and preserved in the 
same four registers across steps 660 and 670. 

Referring to FIG. 5, in step 610, the Sequencer 2 is called. 
Next, in step 680, the computation of the partial check 

data AxX is complete, so the surviving check data W is 
added to this result (recall that W-AxX is equivalent to Sequencer 2 has many similarities with the embodiment of 

Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2 
processes the data drive data in 64-byte chunks like 
Sequencer 1. Sequencer 2 is more complex, however, in that 
only some of the data drive data is surviving; the rest has to 
be reconstructed. In addition, lost check data needs to be 
regenerated. Like Sequencer 1, Sequencer 2 does these 
operations in such a way as to minimize memory accesses of 
the data drive data (by loading the data once and calling the 
Parallel Lookup Multiplier multiple times). Assume for ease 

50 W+AxX in binary Galois Field arithmetic). This is done by 
the fourth middle loop, which for each surviving check drive 
adds the corresponding 64-byte component of surviving 
check data W to the (surviving) partial check data AxX 
(using the Parallel Adder) to produce the (lost) partial check 

55 data W-AxX. 

of description that there is at least one surviving data drive; 
the case of no surviving data drives is handled a little 60 

differently, but not significantly different. In addition, recall 
from above that the driving formula behind data reconstruc
tion is Y=B- 1 x(W-AxX), where Y is the lost original data, 
B- 1 is the solution matrix, Wis the surviving check data, A 
is the partial check data encoding matrix (for the surviving 65 

check drives and the surviving data drives), and X is the 
surviving original data. 

Continuing with FIG. 7, in step 690, the fifth middle loop 
is called, which performs the two dimensional matrix mul
tiplication B- 1 x(W-AxX) to produce the lost original data 
Y. The calculation is performed one row at a time, for a total 
of F rows, initializing the row to the first term of the 
corresponding linear combination of the solution matrix B- 1 

and the lost partial check data W-AxX (using the Parallel 
Lookup Multiplier). 

In step 700, the third inner loop is called, which completes 
the remaining F-1 terms of the corresponding linear com
bination (using the Parallel Lookup Multiplier on each term) 
from the fifth middle loop in step 690 and updates the 
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running calculation (using the Parallel Adder) of the next 
row of B- 1 x(W-AxX). This completes the next row (and 
reconstructs the corresponding failed data drive's lost data) 

24 
requests and to pass the requests to the physical disks; (3) 
Error Correction, to generate check data and reconstruct lost 
data when some disks are not functioning correctly; and (4) 
Request Completion, to move data from internal buffers to of lost original data Y, which can then be stored at an 

appropriate location. 
In step 710, the fourth inner loop is called, in which the 

lost check data is updated for each failed check drive by the 
newly reconstructed lost data for the next failed data drive. 
Using the same 64 bytes of the next reconstructed lost data 
(preserved across calls to the Parallel Lookup Multiplier), 
the Parallel Lookup Multiplier is called to update each of the 
failed check drives' check data by the corresponding com
ponent from the next failed data drive. This completes the 
computations involving the next failed data drive's 64 bytes 

5 requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports 
caching, and can be avoided in a cacheless design. 

Parallelism is achieved in the embodiment of FIG. 8 by 
assigning different cores 120 to different tasks. For example, 

10 some of the cores 120 can be "command cores," that is, 
assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 
and the disk drives via the I/O interface 150. Others of the 

of reconstructed data, which were performed as soon as the 15 

data was reconstructed and without being stored and 
retrieved from main memory. 

Finally, in step 720, the sixth middle loop is called. The 
lost check data has been regenerated, so in this step, the 
newly regenerated check data is stored at an appropriate 20 

location (if desired). 
Aspects of the present invention can be also realized in 

other environments, such as two-byte quantities, each such 
two-byte quantity capable of taking on 216=65,536 possible 
values, by using similar constructs (scaled accordingly) to 25 

those presented here. Such extensions would be readily 
apparent to one of ordinary skill in the art, so their details 
will be omitted for brevity of description. 

Exemplary techniques and methods for doing the Galois 
field manipulation and other mathematics behind RAID 30 

error correcting codes are described in Appendix A, which 
contains a paper "Information Dispersal Matrices for RAID 
Error Correcting Codes" prepared for the present applica-
tion. 

cores 120 can be "data cores," and assigned to the GF 
operations, that is, generating the check data from the 
original data, reconstructing the lost data from the surviving 
data, etc., including the Parallel Lookup Multiplier and the 
sequencers described above. For example, in exemplary 
embodiments, a scheduler can be used to divide the original 
data D into corresponding portions of each block, which can 
then be processed independently by different cores 120 for 
applications such as check data generation and lost data 
reconstruction. 

One of the benefits of this data core/command core 
subdivision of processing is ensuring that different code will 
be executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated Ll cache in each core 120, 
and avoids the "pollution" of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on 
each die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. 

Multi-core Considerations 
What follows is an exemplary embodiment for optimizing 

35 This helps localize the Parallel Lookup Multiplier code and 
associated data to a single core 120 and not compete with 
other cores 120, while allowing the other cores 120 to keep 
the data moving between memory 140 and the disk drives 
via the I/O interface 150. 

or improving the performance of multi-core architecture 
systems when implementing the described erasure coding 
system routines. In multi-core architecture systems, each 
processor die is divided into multiple CPU cores, each with 40 

their own local caches, together with a memory (bus) 
interface and possible on-die cache to interface with a shared 
memory with other processor dies. 

FIG. 8 illustrates a multi-core architecture system 100 
having two processor dies 110 (namely, Die 0 and Die 1). 45 

Referring to FIG. 8, each die 110 includes four central 
processing units (CPUs or cores) 120 each having a local 
level 1 (Ll) cache. Each core 120 may have separate 
functional units, for example, an x86 execution unit (for 
traditional instructions) and a SSE execution unit (for soft- 50 

ware designed for the newer SSE instruction set). An 
example application of these function units is that the x86 
execution unit can be used for the RAID control logic 
software while the SSE execution unit can be used for the 
GF operation software. Each die 110 also has a level 2 (L2) 55 

cache/memory bus interface 130 shared between the four 
cores 120. Main memory 140, in tum, is shared between the 
two dies 110, and is connected to the input/output (I/O) 
controllers 150 that access external devices such as disk 
drives or other non-volatile storage devices via interfaces 60 

such as Peripheral Component Interconnect (PCI). 

Embodiments of the present invention yield scalable, high 
performance RAID systems capable of outperforming other 
systems, and at much lower cost, due to the use of high 
volume commodity components that are leveraged to 
achieve the result. This combination can be achieved by 
utilizing the mathematical techniques and code optimiza
tions described elsewhere in this application with careful 
placement of the resulting code on specific processing cores. 
Embodiments can also be implemented on fewer resources, 
such as single-core dies and/or single-die systems, with 
decreased parallelism and performance optimization. 

The process of subdividing and assigning individual cores 
120 and/or dies 110 to inherently parallelizable tasks will 
result in a performance benefit. For example, on a Linux 
system, software may be organized into "threads," and 
threads may be assigned to specific CPUs and memory 
systems via the kthread_bind function when the thread is 
created. Creating separate threads to process the GF arith
metic allows parallel computations to take place, which 
multiplies the performance of the system. 

Further, creating multiple threads for command process-
ing allows for fully overlapped execution of the command 
processing states. One way to accomplish this is to number 
each command, then use the arithmetic MOD function(% in 
C language) to choose a separate thread for each command. 

Redundant array of independent disks (RAID) controller 
processing can be described as a series of states or functions. 
These states may include: (1) Command Processing, to 
validate and schedule a host request (for example, to load or 
store data from disk storage); (2) Command Translation and 
Submission, to translate the host request into multiple disk 

65 Another technique is to subdivide the data processing por
tion of each command into multiple components, and assign 
each component to a separate thread. 
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FIG. 9 shows an exemplary disk drive configuration 200 
according to an embodiment of the present invention. 

Referring to FIG. 9, eight disks are shown, though this 
number can vary in other embodiments. The disks are 
divided into three types: data drives 210, parity drive 220, 5 

and check drives 230. The eight disks break down as three 
data drives 210, one parity drive 220, and four check drives 
230 in the embodiment of FIG. 9. 

26 
check data J from the original data D using Sequencer 1). 
ECCRegenerate uses these check codes and the remaining 
data to recover data after such an outage (that is, ECCRe-
generate uses the surviving check data W, the surviving 
original data X, and Sequencer 2 to reconstruct the lost 
original data Y while also regenerating any of the lost check 
data). Prior to calling either of these functions, ECCSolve is 
called to compute the constants used for a particular con
figuration of data drives, check drives, and failed drives (for Each of the data drives 210 is used to hold a portion of 

data. The data is distributed uniformly across the data drives 
210 in stripes, such as 192 KB stripes. For example, the data 
for an application can be broken up into stripes of 192 KB, 
and each of the stripes in turn broken up into three 64 KB 
blocks, each of the three blocks being written to a different 
one of the three data drives 210. 

10 example, ECCSolve builds the solution matrix B-1 together 
with the lists of surviving and failed data and check drives). 
Prior to calling ECCSolve, ECCinitialize is called to gen
erate constant tables used by all of the other functions (for 
example, ECCinitialize builds the IDM E and the two 

15 lookup tables for the Parallel Lookup Multiplier). 
The parity drive 220 is a special type of check drive in that 

the encoding of its data is a simple summation (recall that 
this is exclusive OR in binary GF arithmetic) of the corre
sponding bytes of each of the three data drives 210. That is, 
check data generation (Sequencer 1) or regeneration (Se- 20 

quencer 2) can be performed for the parity drive 220 using 
the Parallel Adder (and not the Parallel Lookup Multiplier). 
Accordingly, the check data for the parity drive 220 is 
relatively straightforward to build. Likewise, when one of 
the data drives 210 no longer functions correctly, the parity 25 

drive 220 can be used to reconstruct the lost data by adding 
(same as subtracting in binary GF arithmetic) the corre
sponding bytes from each of the two remaining data drives 
210. Thus, a single drive failure of one of the data drives 210 
is very straightforward to handle when the parity drive 220 30 

is available (no Parallel Lookup Multiplier). Accordingly, 
the parity drive 220 can replace much of the GF multipli
cation operations with GF addition for both check data 
generation and lost data reconstruction. 

Each of the check drives 230 contains a linear combina- 35 

tion of the corresponding bytes of each of the data drives 
210. The linear combination is different for each check drive 
230, but in general is represented by a summation of 
different multiples of each of the corresponding bytes of the 
data drives 210 (again, all arithmetic being GF arithmetic). 40 

For example, for the first check drive 230, each of the bytes 
of the first data drive 210 could be multiplied by 4, each of 
the bytes of the second data drive 210 by 3, and each of the 
bytes of the third data drive 210 by 6, then the corresponding 
products for each of the corresponding bytes could be added 45 

to produce the first check drive data. Similar linear combi
nations could be used to produce the check drive data for the 
other check drives 230. The specifics of which multiples for 
which check drive are explained in Appendix A. 

With the addition of the parity drive 220 and check drives 50 

230, eight drives are used in the RAID system 200 of FIG. 
9. Accordingly, each 192 KB of original data is stored as 512 
KB (i.e., eight blocks of 64 KB) of (original plus check) 
data. Such a system 200, however, is capable of recovering 
all of the original data provided any three of these eight 55 

drives survive. That is, the system 200 can withstand a 
concurrent failure of up to any five drives and still preserve 
all of the original data. 
Exemplary Routines to Implement an Embodiment 

The error correcting code (ECC) portion of an exemplary 60 

embodiment of the present invention may be written in 
software as, for example, four functions, which could be 
named as ECCinitialize, ECCSolve, ECCGenerate, and 
ECCRegenerate. The main functions that perform work are 
ECCGenerate and ECCRegenerate. ECCGenerate generates 65 

check codes for data that are used to recover data when a 
drive suffers an outage (that is, ECCGenerate generates the 

ECCinitialize 
The function ECCinitialize creates constant tables that are 

used by all subsequent functions. It is called once at program 
initialization time. By copying or precomputing these values 
up front, these constant tables can be used to replace more 
time-consuming operations with simple table look-ups (such 
as for the Parallel Lookup Multiplier). For example, four 
tables useful for speeding up the GF arithmetic include: 

1. mvct-an array of constants used to perform GF 
multiplication with the PSHUFB instruction that oper
ates on SSE registers (that is, the Parallel Lookup 
Multiplier). 

2. mast----contains the master encoding matrix S (or the 
Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, such as 
the check drive encoding matrix H 

3. mul_tab----contains the results of all possible GF mul
tiplication operations of any two operands (for 
example, 256x256=65,536 bytes for all of the possible 
products of two different one-byte quantities) 

4. div_tab----contains the results of all possible GF divi
sion operations of any two operands ( can be similar in 
size to mul_tab) 

ECCSolve 
The function ECCSolve creates constant tables that are 

used to compute a solution for a particular configuration of 
data drives, check drives, and failed drives. It is called prior 
to using the functions ECCGenerate or ECCRegenerate. It 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 
For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B-1 (i.e., the solution 
matrix). 

ECCGenerate 
The function ECCGenerate is used to generate check 

codes (that is, the check data matrix J) for a particular 
configuration of data drives and check drives, using 
Sequencer 1 and the Parallel Lookup Multiplier as described 
above. Prior to calling ECCGenerate, ECCSolve is called to 
compute the appropriate constants for the particular con
figuration of data drives and check drives, as well as the 
solution matrix B-1

. 

ECCRegenerate 
The function ECCRegenerate is used to regenerate data 

vectors and check code vectors for a particular configuration 
of data drives and check drives (that is, reconstructing the 
original data matrix D from the surviving data matrix X and 
the surviving check matrix W, as well as regenerating the 
lost check data from the restored original data), this time 
using Sequencer 2 and the Parallel Lookup Multiplier as 
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byte-level performance, including the Parallel Lookup Mul
tiplier, Sequencer 1, and Sequencer 2 discussed above. 

While the above description contains many specific 
embodiments of the invention, these should not be construed 

described above. Prior to calling ECCRegenerate, 
ECCSolve is called to compute the appropriate constants for 
the particular configuration of data drives, check drives, and 
failed drives, as well as the solution matrix B-1

. 

Exemplary Implementation Details 
As discussed in Appendix A, there are two significant 

sources of computational overhead in erasure code process
ing ( such as an erasure coding system used in RAID 
processing): the computation of the solution matrix B-1 for 

5 as limitations on the scope of the invention, but rather as 
examples of specific embodiments thereof. Accordingly, the 
scope of the invention should be determined not by the 
embodiments illustrated, but by the appended claims and 
their equivalents. 

a given failure scenario, and the byte-level processing of 10 

encoding the check data J and reconstructing the lost data 
after a lost packet (e.g., data drive failure). By reducing the 
solution matrix B-1 to a matrix inversion of a FxF matrix, 
where F is the number of lost packets (e.g., failed drives), 
that portion of the computational overhead is for all intents 15 

and purposes negligible compared to the megabytes (MB), 
gigabytes (GB), and possibly terabytes (TB) of data that 
needs to be encoded into check data or reconstructed from 
the surviving original and check data. Accordingly, the 
remainder of this section will be devoted to the byte-level 20 

encoding and regenerating processing. 
As already mentioned, certain practical simplifications 

can be assumed for most implementations. By using a Galois 
field of 256 entries, byte-level processing can be used for all 
of the GF arithmetic. Using the master encoding matrix S 25 

described in Appendix A, any combination of up to 127 data 
drives, 1 parity drive, and 128 check drives can be supported 
with such a Galois field. While, in general, any combination 

GLOSSARY OF SOME VARIABLES 

A encoding matrix (FxK), sub-matrix of T 
B encoding matrix (FxF), sub-matrix of T 
B-1 solution matrix (FxF) 
C encoded data matrix 

((N +M)xL) = [ ~] 

C' surviving encoded data matrix 

(NxL)= [:] 

D original data matrix (N xL) of data drives and check drives that adds up to 256 total 
drives is possible, not all combinations provide a parity drive 
when computed directly. Using the master encoding matrix 

30 D' permuted original data matrix 

S, on the other hand, allows all such combinations (includ
ing a parity drive) to be built ( or simply indexed) from the 
same such matrix. That is, the appropriate sub-matrix (in
cluding the parity drive) can be used for configurations of 35 
less than the maximum number of drives. 

(NxL) = [:] 

E information dispersal matrix 

(IDM)((N + M) xN) = [ ~] 

F number of failed data drives 

In addition, using the master encoding matrix S permits 
further data drives and/or check drives can be added without 
requiring the recomputing of the IDM E (unlike other 
proposed solutions, which recompute E for every change of 
Nor M). Rather, additional indexing of rows and/or colunms 40 

of the master encoding matrix S will suffice. As discussed 
above, the use of the parity drive can eliminate or signifi
cantly reduce the somewhat complex GF multiplication 
operations associated with the other check drives and 
replaces them with simple GF addition (bitwise exclusive 
OR in binary Galois fields) operations. It should be noted 
that master encoding matrices with the above properties are 
possible for any power-of-two number of drives 2P =Nmax+ 
Mmax where the maximum number of data drives N max is one 
less than a power of two (e.g., Nm==127 or 63) and the 50 

maximum number of check drives Mmax (including the 
parity drive) is 2P -Nmax· 

45 G number of failed check drives 

As discussed earlier, in an exemplary embodiment of the 
present invention, a modern x86 architecture is used (being 
readily available and inexpensive). In particular, this archi-

55 
tecture supports 16 XMM registers and the SSE instructions. 
Each XMM register is 128 bits and is available for special 
purpose processing with the SSE instructions. Each of these 
XMM registers holds 16 bytes (8-bit), so four such registers 
can be used to store 64 bytes of data. Thus, by using SSE 
instructions (some of which work on different operand sizes, 60 

for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated 
at a time using four consecutive SSE instructions ( e.g., 
fetching from memory, storing into memory, zeroing, add
ing, multiplying), the remaining registers being used for 65 

intermediate results and temporary storage. With such an 
architecture, several routines are useful for optimizing the 

H check drive encoding matrix (MxN) 
I identity matrix (IK=KxK identity matrix, IN=NxN identity 

matrix) 
J encoded check data matrix (MxL) 
K number of surviving data drives=N-F 
L data block size (elements or bytes) 
M number of check drives 
Mmax maximum value of M 
N number of data drives 
N max maximum value of N 
0 zero matrix (KxF), sub-matrix of T 
S master encoding matrix ((Mmax+Nmax)xNmax) 
T transformed IDM 

[
h o] 

(NxN) = A B 

W surviving check data matrix (FxL) 
X surviving original data matrix (KxL) 
Y lost original data matrix (FxL) 
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What is claimed is: 
1. A system adapted to use accelerated error-correcting 

code (ECC) processing to improve the storage and retrieval 
of digital data distributed across a plurality of drives, com
prising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
loads original data from a main memory and stores 
check data to the main memory, the SIMD CPU core 10 

comprising at least 16 vector registers, each of the 
vector registers storing at least 16 bytes; 

30 
assigning the data operations to the first thread group, 

and not assigning the I/O operations to the first 
thread group; 

assigning the I/O operations to the second thread group 
and not assigning the data operations to the second 
thread group; 

assigning the first thread group to the first CPU core; 
assigning the second thread group to the second CPU 

core; and 
concurrently executing the first thread group on the first 

CPU core and the second thread group on the second 
CPU core to concurrently generate the check data 
and perform the I/O operations. 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

3. The system of claim 1, wherein the sequencer loads 
15 each entry of the data matrix from the main memory into a 

vector register at most once while generating the check data. 
4. The system of claim 1, wherein the at least one 

processor is an x86 architecture processor. 
5. The system of claim 1, wherein the erasure coding 

20 system further comprises: 
more than two check drives each comprising at least one 

non-volatile storage medium that stores at least one 
block of the check data; 

at least one first input/output (I/O) controller that receives 
the at least one block of the original data from a 25 

transmitter and that stores the at least one block of the 
original data to the main memory; and 

an encoding matrix comprising more than two but not 
more than 254 rows and more than one but not more 
than 253 colunms of factors in the main memory, 
wherein each of the entries of one of the rows of the 
encoding matrix comprises a multiplicative identity 
factor, the factors being for encoding the original data 
into the check data. 

at least one second input/output (I/O) controller that stores 
the at least one block of the check data from the main 
memory to the check drives, wherein the processor, the 
SIMD instructions, the non-volatile storage medium, 
and the at least one second I/O controller are configured 

6. The system of claim 5, wherein the at least one parallel 
multiplier multiplies the at least one vector of the data matrix 

30 in units of at least 64 bytes. 

to implement an erasure coding system comprising: 
a data matrix comprising at least one vector and com

prising a plurality of rows of at least one block of the 35 

original data in the main memory, each of the rows 
being stored on a different one of the data drives; 

a check matrix comprising more than two rows of the 
at least one block of the check data in the main 
memory, each of the rows being stored on a different 40 

one of the check drives, one of the rows comprising 
a parity row comprising the Galois Field (GF) sum
mation of all of the rows of the data matrix; and 

a thread that executes on the SIMD CPU core and 
comprising: 
at least one parallel multiplier that multiplies the at 

least one vector of the data matrix by a single 
factor to compute parallel multiplier results com
prising at least one vector; 

45 

at least one parallel adder that adds the at least one 50 

vector of the parallel multiplier results and com
putes a running total; and 

7. The system of claim 5, wherein the data matrix com
prises a first number of rows and the data drives comprise 
the first number of data drives, 

wherein the check matrix comprises a second number of 
rows and the check drives comprise the second number 
of check drives, and 

wherein the encoding matrix comprises a plurality of first 
factors in the second number of rows and the first 
number of colunms. 

8. The system of claim 7, wherein the encoding matrix 
further comprises a third number of colunms and a plurality 
of second factors in the third number of colunms, 

wherein the data drives further comprise the third number 
of data drives, and 

wherein the first factors are independent of the third 
number. 

9. The system of claim 7, wherein the encoding matrix 
further comprises a fourth number of rows and a plurality of 
third factors in the fourth number of rows, 

wherein the check drives further comprise the fourth 
number of check drives, and 

wherein the first factors are independent of the fourth 
number. a sequencer wherein the sequencer orders load 

operations of the original data into at least one of 
the vector registers and computes the check data 
with the parallel multiplier and the parallel adder, 
and stores the computed check data from the 
vector registers to the main memory. 

10. The system of claim 5, wherein the multiplicative 
55 identity factor is 1. 

2. The system of claim 1, wherein: 
the processor comprises a first CPU core and a second 60 

CPU core; 
the thread comprises a plurality of threads comprising a 

first thread group and a second thread group; and 
the erasure coding system further comprises a scheduler 

for performing data operations to generate the check 65 

data and, concurrently, performing I/O operations using 
the at least one second I/O controller by: 

11. The system of claim 5, wherein the at least one parallel 
multiplier multiplies the at least one vector of the data matrix 
by the single factor in the encoding matrix at a rate of less 
than about 2 machine instructions per byte of the data 
matrix. 

12. A system adapted to use accelerated error-correcting 
code (ECC) processing to improve the storage and retrieval 
of digital data distributed across a plurality of drives, com
prising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
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loads surviving original data and surviving check data 
from a main memory and stores lost original data to the 
main memory, the SIMD CPU core comprising at least 
16 vector registers, each of the vector registers storing 
at least 16 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 10 

block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 

at least one first input/output (I/O) controller that trans
mits at least one block of computed lost original data 
from the main memory to a receiver; and 

at least one second input/output (I/O) controller that reads 

15 

at least one block of the check data from the check 20 

drives and stores the at least one block of the check data 
to the main memory, 

wherein the processor, the SIMD instructions, the non
volatile storage medium and the at least one second I/O 
controller implement the accelerated ECC processing, 25 

comprising: 
a surviving data matrix comprising at least one vector 

and comprising at least one row of at least one block 

32 
concurrently, performing I/O operations using the at 
least one second I/O controller by: 
assigning the data operations to the first thread group, 

and not assigning the I/O operations to the first 
thread group; 

assigning the I/O operations to the second thread group, 
and not assigning the data operations to the second 
thread group; 

assigning the first thread group to the first CPU core; 
assigning the second thread group to the second CPU 

core; and 
concurrently executing the first thread group on the first 

CPU core and the second thread group on the second 
CPU core to concurrently regenerate the lost original 
data and perform the I/O operations. 

14. The system of claim 12, wherein the sequencer loads 
each entry of the surviving original data from the main 
memory into a vector register at most once while regener
ating the lost original data. 

15. The system of claim 12, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix in units of at least 64 bytes. 

16. The system of claim 12, wherein the processor is an 
x86 architecture processor. 

17. The system of claim 12, wherein the solution matrix 
comprises an inverted sub-matrix of an encoding matrix and 
wherein each of entries of one of the rows of the encoding 
matrix comprises a multiplicative identity factor, the factors 
of the encoding matrix being for encoding the original data of the surviving original data in the main memory, 

each row of the at least one row being stored on a 
different one of the data drives, and a lost data matrix 
comprising at least one block of the lost original data 

30 into the check data. 

in the main memory; 
a surviving check matrix comprising at least one row of 

at least one block of the surviving check data in the 35 

main memory, each row of the at least one row being 
stored on a different one of the check drives; 

a solution matrix that holds factors in the main memory, 
the factors of the solution matrix being for decoding 
the surviving original data and the surviving check 40 

data into the lost original data; and 
a thread that executes on the SIMD CPU core and 

comprising: 
at least one parallel multiplier that multiplies the at 

least one vector of the surviving data matrix by a 45 

single factor in the solution matrix to compute 
parallel multiplier results comprising at least one 
vector; 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com- 50 

putes a rumiing total; and 
a sequencer wherein the sequencer: 

orders load operations of the surviving original 
data into at least one of the vector registers and 
load operations of the surviving check data into 55 

at least one of the vector registers; 
computes the lost original data with the parallel 

multiplier and the parallel adder; and 
stores the computed lost original data from the 

vector registers to the lost data matrix. 
13. The system of claim 12, wherein: 
the processing core comprises a first CPU core and a 

second CPU core; 
the thread comprises a plurality of threads comprising a 

first thread group and a second thread group; and 
the system further comprises a scheduler for performing 

data operations to regenerate the lost original data and, 

60 

65 

18. The system of claim 17, wherein the multiplicative 
identity factor is 1. 

19. The system of claim 12, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix by the single factor in the solution 
matrix at a rate ofless than about 2 machine instructions per 
byte of the surviving data matrix. 

20. A method for accelerated error-correcting code (ECC) 
processing to improve the storage and retrieval of digital 
data distributed across a plurality of drives using a comput
ing system, the computing system comprising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes a computer program 
including SIMD computer instructions and loads origi
nal data from a main memory and stores check data to 
the main memory, the SIMD CPU core comprising at 
least 16 vector registers, each of the vector registers 
storing at least 16 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD computer 
instructions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 

at least one first input/output (I/O) controller that receives 
the at least one block of the original data from a 
transmitter and that stores the at least one block of the 
original data to the main memory; and 

at least one second input/output (I/O) controller that stores 
the at least one block of the check data from the main 
memory to the check drives, the method comprising: 
accessing the SIMD instructions from the system drive; 
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executing the SIMD instructions on the SIMD CPU 
core; 

arranging the original data as a data matrix comprising 
at least one vector and comprising a plurality of rows 
of at least one block of the original data in the main 5 

memory, each of the rows being stored on a different 
one of the data drives; 

arranging the check data as a check matrix comprising 
more than two rows of the at least one block of the 
check data in the main memory, each of the rows 10 

being stored on a different one of the check drives, 
one of the rows comprising a parity row comprising 
the Galois Field (GF) summation of all of the rows 
of the data matrix; and 

encoding the original data into the check data using: 
at least one parallel multiplier that multiplies the at 

least one vector of the data matrix by a single 
factor to compute parallel multiplier results com
prising at least one vector; and 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a =ing total, 

the encoding of the check data comprising: 

15 

20 

loading the original data into at least one of the 25 

vector registers; 
computing the check data with the parallel multiplier 

and the parallel adder; and 

34 
wherein the check matrix comprises a second number of 

rows and the check drives comprise the second number 
of check drives, and 

wherein the encoding matrix comprises a plurality of first 
factors in the second number of rows and the first 
number of colunms. 

27. The method of claim 26, further comprising: 
adding a third number of data drives to the data drives by 

expanding the encoding matrix to further comprise the 
third number of colunms and a plurality of second 
factors in the third number of colunms, 

wherein the first factors are independent of the third 
number. 

28. The method of claim 26, further comprising: 
adding a fourth number of check drives to the check 

drives by expanding the encoding matrix to further 
comprise the fourth number of rows and a plurality of 
third factors in the fourth number of rows, 

wherein the first factors are independent of the fourth 
number. 

29. The method of claim 24, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
data matrix by the single factor in the encoding matrix at a 
rate of less than about 2 machine instructions per byte of the 
data matrix. 

30. The method of claim 24, wherein the multiplicative 
identity factor is 1. 

storing the computed check data from the vector 
registers into the main memory. 

21. The method of claim 20, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 

31. A method for accelerated error-correcting code (ECC) 
30 processing to improve the storage and retrieval of digital 

data distributed across a plurality of drives using a comput
ing system, the computing system comprising: 

the executing of the SIMD instructions comprises execut-
35 

ing the SIMD instructions on the first CPU core to 
perform data operations to generate the check data and, 
concurrently, to perform I/O operations on the second 
CPU core to control the at least one second I/O con
troller; 40 

the method further comprises scheduling the data opera
tions concurrently with the I/O operations by: 
assigning the data operations to the first CPU core, and 

not assigning the I/O operations to the first CPU 
core; and 

assigning the I/O operations to the second CPU core 
and not assigning the data operations to the second 
CPU core. 

45 

22. The method of claim 20, further comprising loading 
each entry of the data matrix from the main memory into a 50 

vector register at most once while generating the check data. 
23. The method of claim 20, wherein the processor is an 

x86 architecture processor. 
24. The method of claim 20, further comprising: 
arranging factors as an encoding matrix comprising more 55 

than two but not more than 254 rows and more than one 
but not more than 253 colunms of factors in the main 
memory, wherein each of the entries of one of the rows 
of the encoding matrix comprises a multiplicative iden
tity factor, the factors being for encoding the original 60 

data into the check data. 
25. The method of claim 24, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 
data matrix in units of at least 64 bytes. 

26. The method of claim 24, wherein the data matrix 65 

comprises a first number of rows and the data drives 
comprise the first number of data drives, 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes a computer program 
including SIMD instructions and loads surviving origi
nal data and surviving check data from a main memory 
and stores lost original data to the main memory, the 
SIMD CPU core comprising at least 16 vector registers, 
each of the vector registers storing at least 16 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 

at least one first input/output (I/O) controller that transmit 
at least one block of computed lost original data from 
the main memory to a receiver; and 

at least one second input/output (I/O) controller that reads 
at least one block of the surviving check data from the 
check drives and stores the at least one block of the 
surviving check data to the main memory, the method 
comprising: 
accessing the SIMD instructions from the system drive; 
executing the SIMD instructions on the SIMD CPU 

core; 
arranging the original data as a surviving data matrix 

comprising at least one vector and comprising at 
least one row of at least one block of the surviving 
original data in the main memory, each row of the at 
least one row being stored on a different one of the 
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data drives, and a lost data matrix comprising at least 
one block of the lost original data in the main 
memory; 

36 
38. The method of claim 31, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 
surviving data matrix by the single factor in the solution 
matrix at a rate ofless than about 2 machine instructions per arranging factors as a solution matrix that holds the 

factors in the main memory, the factors being for 
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data being arranged as a surviving check 
matrix comprising at least one row of at least one 
block of the surviving check data in the main 
memory, each row of the at least one row being 
stored on a different one of the check drives; 

5 byte of the surviving data matrix. 

decoding the surviving check data into the lost original 
data using: 

39. A system drive comprising at least one non-transitory 
computer-readable storage medium containing a computer 
program comprising a plurality of computer instructions 
that, when executed by a computing system, cause the 

10 computing system to perform accelerated error-correcting 
code (ECC) processing that improves the storage and 
retrieval of digital data distributed across a plurality of 
drives, the computing system comprising: 

at least one parallel multiplier that multiplies the at 15 

least one vector of the surviving data matrix by a 
single factor in the solution matrix to compute 
parallel multiplier results comprising at least one 
vector; and 

at least one parallel adder that adds the at least one 20 

vector of the parallel multiplier results and com
putes a rumiing total, 

the decoding the surviving check data into the lost 
original data comprising: 
loading the surviving original data into at least one 25 

of the vector registers; 
loading the surviving check data into at least one 

of the vector registers; 
computing the lost original data with the parallel 

multiplier and the parallel adder; and 
storing the computed lost original data from the 

vector registers into the lost data matrix. 
32. The method of claim 31, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 

30 

35 

the executing of the SIMD instructions comprises execut
ing the SIMD instructions on the first CPU core to 
perform data operations to reconstruct the lost original 
data and, concurrently, to perform I/O operations on the 
second CPU core to control the at least one second I/O 40 

controller; 
the method further comprises scheduling the data opera

tions to be performed concurrently with the I/O opera
tions by: 
assigning the data operations to the first CPU core, and 45 

not assigning the I/O operations to the first CPU 
core; and 

assigning the I/O operations to the second CPU core, 
and not assigning the data operations to the first CPU 
core. 

33. The method of claim 31, further comprising loading 
each entry of the surviving original data from the main 
memory into a vector register at most once while regener
ating the lost original data. 

50 

34. The method of claim 31, wherein the at least one 55 

parallel multiplier multiplies the at least one vector of the 
surviving data matrix in units of at least 64 bytes. 

35. The method of claim 31, wherein the processor is an 
x86 architecture processor. 

36. The method of claim 31, wherein the solution matrix 60 

comprises an inverted sub-matrix of an encoding matrix and 
wherein each of entries of one of the rows of the encoding 
matrix comprises a multiplicative identity factor, the factors 
of the encoding matrix being for encoding the original data 
into the check data. 

37. The method of claim 36, wherein the multiplicative 
identity factor is 1. 

65 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
loads original data from a main memory and stores 
check data to the main memory, the SIMD CPU core 
comprising at least 16 vector registers, each of the 
vector registers storing at least 16 bytes; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 

at least one first input/output (I/O) controller that receives 
the at least one block of the original data from a 
transmitter and that stores the at least one block of the 
original data to the main memory; and 

at least one second input/output (I/O) controller that stores 
the at least one block of the check data from the main 
memory to the check drives, 

the computer instructions implementing protection of the 
original data in the main memory when executed on the 
computing system by: 
arranging the original data as a data matrix comprising 

at least one vector and comprising a plurality of rows 
of at least one block of the original data in the main 
memory, each of the rows being stored on a different 
one of the data drives; 

arranging the check data as a check matrix comprising 
more than two rows of the at least one block of the 
check data in the main memory, each of the rows 
being stored on a different one of the check drives, 
one of the rows comprising a parity row comprising 
the Galois Field (GF) summation of all of the rows 
of the data matrix; and 

encoding the original data into the check data using: 
at least one parallel multiplier that multiplies the at 

least one vector of the data matrix by a single 
factor in an encoding matrix to compute parallel 
multiplier results comprising at least one vector; 
and 

at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a rumiing total, 

the encoding the original data into the check data 
comprising: 
loading the original data into at least one of the 

vector registers; 
computing the check data with the parallel multiplier 

and the parallel adder; and 
storing the computed check data from the vector 

registers into the main memory. 
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40. The system drive of claim 39, wherein: 
the processor comprises a first CPU core and a second 

CPU core; 
the executing of the computer instructions comprises 

executing the computer instructions on the first CPU 5 

core to perform data operations to generate the check 
data and, concurrently, to perform I/O operations on the 
second CPU core to control the at least one second I/O 
controller; 

the computer instructions implementing the protection of 10 

the original data comprise instructions that schedule the 
data operations to be performed concurrently with the 
I/O operations by: 
assigning the data operations to the first CPU core, and 

not assigning the I/O operations to the first CPU 15 

core; and 
assigning the I/O operations to the second CPU core 

and not assigning the data operations to the second 
CPU core. 

41. The system drive of claim 39, wherein the computer 20 

instructions further comprise computer instructions that, 
when executed by the computing system, cause the com
puting system to load each entry of the data matrix from the 
main memory into a vector register at most once while 
generating the check data. 25 

42. The system drive of claim 39, wherein the processor 
is an x86 architecture processor. 

43. The system drive of claim 39, wherein the computer 
instructions implementing the protection of the original data 
comprise instructions to: 30 

arrange factors as an encoding matrix comprising more 
than two but not more than 254 rows and more than one 
but not more than 253 colunms of factors in the main 
memory, wherein each of the entries of one of the rows 
of the encoding matrix comprises a multiplicative iden- 35 

tity factor, the factors being for encoding the original 
data into the check data. 

44. The system drive of claim 43, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
data matrix in units of at least 64 bytes. 40 

45. The system drive of claim 43, wherein the data matrix 
comprises a first number of rows and the data drives 
comprise the first number of data drives, 

wherein the check matrix comprises a second number of 
rows and the check drives comprise the second number 45 

of check drives, and 
wherein the encoding matrix comprises a plurality of first 

factors in the second number of rows and the first 
number of colunms. 

46. The system drive of claim 45, wherein the computer 50 

instructions further comprise instructions that, when 
executed on the computing system, cause the computing 
system to: 

add a third number of data drives to the data drives by 
expanding the encoding matrix to further comprise the 55 

third number of colunms and a plurality of second 
factors in the third number of colunms, 

wherein the first factors are independent of the third 
number. 

47. The system drive of claim 45, wherein the computer 60 

instructions further comprise instructions that, when 
executed on the computing system, cause the computing 
system to: 

add a fourth number of check drives to the check drives 
by expanding the encoding matrix to further comprise 65 

the fourth number of rows and a plurality of third 
factors in the fourth number of rows, 

38 
wherein the first factors are independent of the fourth 

number. 
48. The system drive of claim 45, wherein the multipli

cative identity factor is 1. 
49. The system drive of claim 45, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 
data matrix by the single factor in the encoding matrix at a 
rate of less than about 2 machine instructions per byte of the 
data matrix. 

50. A system drive comprising at least one non-transitory 
computer-readable storage medium containing a computer 
program comprising a plurality of computer instructions 
that, when executed by a computing system, cause the 
computing system to perform accelerated error-correcting 
code (ECC) processing that improves the storage and 
retrieval of digital data distributed across a plurality of 
drives, the computing system comprising: 

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing 
unit (CPU) core that executes SIMD instructions and 
loads surviving original data and surviving check data 
from a main memory and stores lost original data to the 
main memory, the SIMD CPU core comprising at least 
16 vector registers, each of the vector registers storing 
at least 16 bytes; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data, the at least one block 
comprising at least 512 bytes; 

more than two check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data; 

at least one first input/output (I/O) controller that trans
mits at least one block of computed lost original data 
from the main memory to a receiver; and 

at least one second input/output (I/O) controller that reads 
at least one block of the check data from the check 
drives and stores the at least one block of the check data 
to the main memory; 

the computer instructions implementing protection of the 
original data in the main memory when executed on the 
computing system by: 
arranging the surviving original data as a surviving data 

matrix comprising at least one vector and comprising 
at least one row of at least one block of the surviving 
original data in the main memory, each row of the at 
least one row being stored on a different one of the 
data drives, and a lost data matrix comprising at least 
one block of the lost original data in the main 
memory; 

arranging factors as a solution matrix that holds the 
factors in the main memory, the factors being for 
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data arranged as a surviving check matrix 
comprising at least one row of at least one block of 
the surviving check data in the main memory, each 
row of the at least one row being stored on a different 
one of the check drives; and 

decoding the surviving check data into the lost original 
data using: 
at least one parallel multiplier that multiplies the at 

least one vector of the surviving data matrix by a 
single factor in the solution matrix to compute 
parallel multiplier results comprising at least one 
vector; and 
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at least one parallel adder that adds the at least one 
vector of the parallel multiplier results and com
putes a running total, 

40 
assigning the I/O operations to the second CPU core, 

and not assigning the data operations to the first CPU 
core. 

the decoding the surviving check data into the lost 
original data comprising: 
loading the surviving original data into at least one of 

the vector registers; 
loading the surviving check data into at least one of 

the vector registers; 

. 52. 1:he system drive of claim 50, wherein the computer 
5 mstruct10ns further comprise computer instructions that, 

when executed on the computing system, cause the com
puting system to load each entry of the surviving original 
data from the main memory into a vector register at most 

computing the lost original data with the parallel 10 

multiplier and the parallel adder; and 
storing the computed lost original data from the 

vector registers into the lost data matrix. 
51. The system drive of claim 50, wherein: 
the processor comprises a first CPU core and a second 15 

CPU core; 
the executing of the computer instructions comprises 

executing the computer instructions on the first CPU 
core to perform data operations to reconstruct the lost 
original data and, concurrently, to perform I/O opera- 20 

tions on the second CPU core to control the at least one 
second I/O controller; 

the computer instructions further comprise instructions 
that schedule the data operations to be performed 
concurrently with the I/O operations by: 25 

assigning the data operations to the first CPU core, and 
not assigning the I/O operations to the first CPU 
core; and 

once while regenerating the lost original data. 
53. The system drive of claim 50, wherein the at least one 

parallel multiplier multiplies the at least one vector of the 
surviving data matrix in units of at least 64 bytes. 

54. The system drive of claim 50, wherein the processor 
is an x86 architecture processor. 

55. The system drive of claim 50 wherein the solution 
matrix comprises an inverted sub-matrix of an encoding 
matrix and wherein each of entries of one of the rows of the 
encoding matrix comprises a multiplicative identity factor, 
the factors of the encoding matrix being for encoding the 
original data into the check data. 

56. The system drive of claim 55, wherein the multipli
cative identity factor is 1. 

57. The system drive of claim 50, wherein the at least one 
parallel multiplier multiplies the at least one vector of the 
surviving data matrix by the single factor in the solution 
matrix at a rate ofless than about 2 machine instructions per 
byte of the surviving data matrix. 

* * * * * 
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Docket No. 157162/411563-00014 

PETITION FOR CORRECTION OF INVENTORSHIP 
UNDER 37 CFR § 1.324 

Mail Stop Petition 
Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Commissioner: 

Post Office Box 29001 
Glendale, CA 91209-9001 

February 23, 2021 

Pursuant to 37 C.F.R. §1.324, Applicant respectfully requests the correction of 

inventorship for the above issued patent to include inventor Sarah Mann. Ms. Mann was 

not named as an inventor through error. 

Enclosed are: 

(1) Statement of Sarah Mann in Support of Petition for Correction of lnventorship 

Pursuant to 37 C.F.R. §1.324; 

(2) Statement of Michael Anderson in Support of Petition for Correction of 

lnventorship Pursuant to 37 C.F.R. §1.324; 

113653285.1 
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Patent No. 10,291,259 

(3) Statement of Assignee, Stream scale, Inc., in Support of Petition for 

Correction of lnventorship Pursuant to 37 C.F.R. §1.324 and Complying with 37 C.F.R. 

§3.73(c). 

(4) Executed Inventors Declaration and Assignment document signed by Sarah 

Mann; and 

(5) Application Data Sheet. 

The required fee of $160.00 as required by §1.20(b). The Commissioner is 

hereby authorized to charge any fees as required by this petition to Deposit Account No. 

03-1728. Please show our docket number with any charge or credit to our deposit 

account. 

DAP/jhg 
Enclosures 

113653285.1 

Respectfully submitted, 

LEWIS ROCA ROTHGERBER CHRISTIE LLP 

By /David A Plumley/ 
David A Plumley 
Reg. No. 37,208 
626/795-9900 

-2-
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I 
I 

Title of !rP./Hflt1on ;.\C;(:ELEF~i\TE[) ER.4SURE :..-:c.:D~N(3 S'{STEl\/1 .:\i',JD f\i}ETH()[) ! 
I 
I 

Th, appl,cai:o:: data she;,t :f, ;nr, oI H1e p:-,Nif::nnal nr n;;nprovif,k,n;~I applk~,,;;;;n rm wt,i;;h it ,i: r;e,r:g sut)m:tted Th~, iollowir:q fo:n, ;;;;ntains tt,•:c I 
b:t::lh9:-apf::c d::1ta arr::~fV]f:t] in a fo:n~::1t :;p:::c:f:ed by i:hE un:tf:d ~)i:ate:; ~:.•:~tf:-ni: :::nd Tr:::d<::rYE~:-k ()ff::,.;.f: as c~ut::n::--:d :n 37 CFF: i Jfi ! 

I 
Th:s docur::Ent rn::~y t:-:~ ~~o:-r:pJ,:::t~:d ;:-1<:""C'k··''.'k~-•:y and S:.ibrn:ttEd ~o i:h~; ()ff:c0 :n ~!,>::t;:: U, ~;~.- ~-t.,f.:d~ 02::, :~_} :he E}:::ct:-~·::nk. F":Hng Sy~;:,::::-r: (!::.F~)) \,X tt-1:~ ! 
:.!~::curn,:::::t rn::1y b<:: prt::::~d ;:~nd :ndudEd ::: a p::~}X:!f 'i'U<:::.! :~pp::cat:or:. j 

v B;<,:Ci%;: n 1 

f }'.:':':,'.'f?~'. /l 
1 

.. }r!:~::::·;t~)r"'"''"'·t. ..................................................................................................................................................................................................................................................... j 
~-..~~~t:-:::a Nah~~~ ! 

...... i 

...... .. ' - \ ..... . ... ;,', ~ ! .. ... ~ - : t .. ~~ty ! :._os .. .:\n9ei-::-:s ! Stalt~iPrO\{§rH;e ! ~ ... 1-\ ! (;z)tH1tf)-.; !Jf R~ssdt~nct~ US 1 __________________ t __________________________________________________________________________ t ____________________________________________ t _________________ l ___________________ · _________________________________________ : ____________________________________________________________ ~ 

I 
I 
I 
I 

,..r--..;~-~i-3-ii-.. S-f-1t_]_. -l:-_;__,:,_!t-.. S-r--t .... -~s-:"!-s-, _<_l_f_~-r-i,-i--t .... -~r-i_t_;::
1
-.r-·-: ---------------------------------------------------~] 

I 
' 

.. . Addn~ss. 1 ................................... ... 642~'! .f\ibnterey .Ro=::d,. Unit.2 ......................................................................................................................................................... ..1 
Address 2 ! 

I 

I !···0r1lffi%?''''l 1 

---~~1\letitt)r ______ 2 _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ J 
Le~1ai Narne ! 

I 
I 

E:ntfn-- (~§ther Custosn(~r Nusnbt~r or cornpiett:~ the (~orrespondence infortllatSon Sf.}ction he~o~v, 
Fr)r ftHi:ht~r ijnfor1rH~t~on see 37 CFR. ·S .,33{a}~ 
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I 
Cust{)01~r Nurnber 233fi3 ! 
Email Addn=:s~~ r::·TO@LY·{F~C.CO:\!i 1 ·························································, ·:~\·,;·,;,,·;\,·,;,,\·,························-, j 

Uid:ty 

{):-:~y co:·npk•t;_:- thf~. s<:~::::lon \:vhen flHn~~ an ,:!ppik,::tk:-n by refer{:~nce un~:it-::· 3S U.S,C, ·; ·: 1 (c) ;:::·:d 37 er:~ 157(a). Do not cornpiete this ~:.:-cth>n if 
;3ppt!c3ton papt:rs in-::l:..!cHn9 a spt:dfk:aHnn and ,:H1y- dr.:~~:-..:fr:9s ,:H<:~ b<:~in9 n:t:tt i\ny dcrn-::~stk benefit or fnreiqn pdcri:;...- ~nfcrn~..::t~cn n~ust b<:: 
pro\r~ded :nth':· :~pprop:·iate s.t:(tion(s) bek}il,f (Le., .-;Dornes.tk :3enefit/Nai:io:--:al Sta~f:' ~nf:.:::-rrr~:~t::.:::-n:"' ar:d ''Forei,;F~ t':.•riority tnforrni:tior{}. 

F-or ·U~e purpo::~:-s of ::i fW:-:9 date under 37 CFH 1. 53(b),. -u~e cie:;c:·:pUo:·: ::;n~:i ~H1y dra,,\doq~.: of the pi{:~~.rnt :::ppHcabc:·: are repiac(•d by this 
n:''ference tc th.::: p:·e;_:~nusJy r::~:~:i -=~ppHc.jtk~n; s:..!bje-::t :o condtr:(H~s >:H1d n:quh'en:f~:·:ts of .T7 CFR : .57{:3). 

}\ppii~:atio:·: nurnber of the ~HE~,..:iousJy 
fl~ed appl:cat:on 

35 ll.s.c:. ·;22(b) and eert!!\-' t~·~at UH:: invention dls.c!osed in th{:: attached applicahon has not i~nd \:V~1~ ntJt t~{:: the 
subject of an app~1cat1on -fHf~d in another country·, or unt~er a n1ulb1at::.tra! ~nternation=:1i a9reernent, U:at requ~res 
pubHcatnn at e\Jhteen rnonths 3fer !Hinq. 

Re~pre'$et:iat~VE~ ;: ~tt .. ::t:dtit,:': shGu~d be providt::d for all pr:::ctHlon,~rs ha\:in~~ 2~ po\:v~::r Gf attc:,rn,~y ~n tl"h:: •:::JF~;c.a~~ .... -n. :'. d\,;J;n~~ 
p--.;,:~ lr·.rc::·--;::r:•~cr, ir, p~·c _.t, rr,:: ...... '-r:-;cr, :-h1-:•·1 s~~·a-c-:- .-~c-,---:: •--.. :t ,,:_-:r,·--::t;tu-:-c a r•:0,;:,_.nr c~ r·-:•t,•,,·ncy iq ~~ .... c '-"'P:,~~(\~ti,•,q ~::r,0 --x7 c:-.:q -: _3·:1;. 
E~thE-:r ~-=~nter (:u~:iorr~er :\h.::-r-:b~~r or con~plE1h:~ thE-: f~~~pre~;entaiive Narne s-::-:ction b::do\•V. ~f boU1 sE:ct:ons are con.,:p!etr~d th<:-: cu~:kHner 
Ntant)i::r '/./ill t~:~ u~:t~d -for HH:: Ft:pr~::si::ntat:vt~ inforrn;:~Uon ::h.ff:n9 p:-oc:~s:;fr:9. 

I 
I 
I 
I 

,.._-__ -P--!-e-1~-:1-S_f:_" __ [_)_£_1_1£-:,-::~-t-_(-:~-:f_;_e _____ -__ -__ -__ -__ -__ ·,_-__ -(-~-)-__ -__ -c_;_(_-:s_t_c_.r_r'-)E_H ___ -r-~-u-r--)_~-t:-,E-H-._-__ -__ -__ -lr_-_ '-____ -~~-.1_-__ -L_i_S ___ -r-.... --(-,-tE_:_n_t __ r----r ... -=~-:::--i-~t-:(_)_n_t~-,-.. -.. -.. --,.1-__ -_{-~~~-.-~.-)_-__ -_-L.-::_T_·.,-.h--.~-(.-: _-f"\--{-l_(:_C_•~;-~:-.~-:-t_h __ )-r--, __ C_3_? ___ (~-.. :-::·-f;.--·-_ --:_-_.l_.'_]_) ___ -__ ~ __ l 
I 

Cu~;t.orner Nurnbf:r 23:363 ! 
I 

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 268 of 350



Tl1is s:::ction ;:_)i;O\:\/S for U1e applicant to etU·1:::r c!t:dtn benefit un::.it~f ~)~~ LJ.}3 .. C~. ·1 ·l 9{fa\ ·12(\ ·121, 3~3~~(c\ or 386(c) or indic=:lte ! 
I 

NaUona! Sta9•~~ entry fron-1 a }"')C:-T· appHcation, F'ro\tidinq benefit ch~~fr: infc.:nr:atk::r1 in the i\ppHcation l)ata ~-;heet constitutes! 
I 

th~:: spec:i"lc rfaferfance requ~rfad l:1y 35 LL~1.C:. ·i ~19(.e) or ·120{ anj 37 C~FF-~ ·i. 70. ! 
V\HH:.Hl rf.lerrinQ tn the C.lHre:nt applk~atk)f\ please le.ave the ''/\ppHeaUon Nurnt)e(: fieki tA.ank ! 

.J),_ppii'.~:::ilon 
Nurnber 

.J),_ppiic=::ilon 
Nurnber 

l~pplication 
Nurnb~~r 

c:.ontinuaton of 

Prier .:~ppl:c.a"tion 
NurnbE~r 

14-223?40 

Prior _,.:.\ppl:cat~on 
Nurnber 

Frnnf~ Date 
('()_. . ..,.lY-fvlr-/1-Dl)) 

Finnf~ Date 
('(\._. . ..,.lY-~il;\.-·1-Dl)) 

.20"!4-03--24 

Finn~~ :-;:~te 
('(\~\/Y -•f\ll!\:·1--[}C)) 

_,e..(:d:tfon::1: L)on·1~:;s.Uc BEH)efit/NaUona~ St:age [)ata rr~ay be ger::.=.:rat:.=.:d \:v~thin this rorrn 
by ~~e!ec't~n9 the Add button. 

F·iitnn or 37 ·; {c} c:ate 
("('{\···-.,'{ --~AiVlu[)[}) 

{Y\··yy .. fv~~\ .. ~ -DD) 

I 

;-\tidith:"Jnai Forei9n F'rlc.:rHy ()at.a rnay· be 9en{::rat:H.i v .... Hhin this forrn try- se!echnq the ! 
I 

Add t1utton. ! 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------J 
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16, 20·!3 and 
contains; or contained <.1t any t1tne, 

[~] 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

____________ 16, __ 20 ·;_3~_ Vi~~~_ be_ exarn~ned_ untier_ the _first _~nventor to_ fi~e_ prov~s1r,ns_ of_ th{:: _l-\J::.\, --------------------------------------------------------------------------------------- j 
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V\./hen u·:is i\ppHcat1on [)ata ~:;!lr::fat is properly S1Gined ~:lnd filed \:'ilth th':~ appHc:.:1t;on, applk.-:.ant has ptG\lkje::.i \·vritten 
authority tG perrn!t a r.~articlp~~Un9 fnrei9n intei;ectuai propert~:l {lP) ofnc{:: access to U·H:: !nstant .applic~~t~on~-~~s-,fi~ed (s::}e 
pan.1~1rapi·1 f\ in subsection ·i be!ovv) <'.:1nj the E:tH{!pt:iE~n F~atent ()ffice (E:J:.-:()) acce~-;s to any search re~-;uHs frorn t~·H:} instant 
app~~caHon (see para9raph 8 in subs.ecth°)n ·i t.3e!O\·V) 

Should appHcant chr)ose not to provitie an auU-~orlzaton idenhf1ed in subsec.Hon ·1 beh::r·.t./~ appHc~~nt tr~ust oot-... -()Ut of thf: 
auH1orlzHtion by· ch:.:Jc;•dn~~ the corn::spon(nn~~ box t6.. or t3 or t1oth in ~-;ubst~ct;on 2 t)f~lcr,v. 

application ... ~\fter the ~n~Ha~ f!linQ Gf an app!ication, .an /\pp~icaUon [).ata SrH::et c.annot t::e u~=;eti to provld{:: or resc~nd 
auH1orlzHtion for acc:::ss by a fort:Jl~~n H=) t)ffice(s). instt:Jt':;tj~ Forrn F~~r()/St3/3t1 or fYT()l*St3/e9 rnust t-::t~ used ::1s ::1ppropnate. 

Propert:v Offlce{s} 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

unders~on{:H.i flereby· -~ir~_nt$_JtHt_t~SEIQ __ ~H.ftJl~}r§t~l to provh-J~~~ th{:: E:uropean F~atent CJ!fc.e (l":F'O)~ the .Japan FJatent C)ffice ! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

HnrJ (3) 

37 CFR 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

T"he appnc.ant is rerninded that U-~e r:~"')C~\; F~uie ·14 ·1 ( ·;) EF--1C~ (Eurc:pean f1 atent c::onvf:ntk3n) requires applicants to subrr:~t a! 
I 
I 
I 
I 

the inst.ant app~ication. ! 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------! 

resuns frorn tf1e ;nstant 
:application. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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~'J::.1n1e of the [}ece~:lse(i or LeqaUy !ncapac.itated lrrJ~:;ntor: ~ j ! 
··· ii' tr 1 e · /'>_pp I \cant· is· an· Or9 an izati on· ch 1}d,i hen,, . ·············· (J ..... l·.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- l 

us 

Provldln9 a~~s\1nr1H .. :!nt inforn1aUon in this secUon does not substtute for cornpHance '-.:Vith any requin:~rnent of part :3 of ·rith:: ! 
37 of (~FR to have ~:u~ ~:~s.signrnent recorded by the ()ff!ce.. ! 

I 
I 
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I 
I 
I 

i\ssign~~~ ·1 ! 
Compide this sedion if ::,s,-ignee ,r,fc,rn,ai:<:-n, incl1Jding nrn,-::,ppli,~ant as,-if;:~,,"e inforrnaticm, ,,. je::;i,ed to bE, ,r,c:ujed on the pElt,:'ni: I 
:-?r:,,:;,.,-::.iir,;--- :'· •h~;cati,•,;-. _.:'1;-, ;:::-;-:~igr"'{~~.:::-..s,r:)lic-::.,.,t ;_.-{{-:-'·•t:+k::_r: :.,, ~+1° "i\:'p~ic::F1t ~,~1.::")r•:,a~·;cq'~ -.:~a.ci: .... 1,.' \,vp: a:~1:·'car f:r, t-:-,.:::-. ;JJh~"''t :::-.:·'p~i,,Jt; .... w~ ! 

I ~;:;:~~~;~;,:~~:;\'~~:,i~~:
1
~:~,~~•i~:::~;0;·;0:-.. ~,., .a~;siqne,.,,.appiicm·iL. con1pid;;, .1his. ~;edhn. c:n!y it.ide:-,tificdion. a, .. a:-,. ,,;s,.,nnee. i~; .,,dso .;:!e,.,r<:,d. c:n. t,,0 ..l 

I 
I 
I 
I 
I 
I 
I 

,... .-- ) ..., - .. ! ~ .. .. . ...... ·~ .. 1 •"' -~ ! 
t,.)~-t~~--~-- ! l;~ven N·~r~-::.-. : :,,-1:.···\1:.::.~ :\:~n1e f .. a~11q·H N·~f~¢. : "-...t:fnx i 

... • .. ' ." ,h ........................................ [ .. : • ' ... '.' ' .. ' .. ,;,:, ,>~• ....................... j .... "'''•'. •'-••. • ."·. •.> • ' ••••••••••••••••••••••••••••••• ,. ,hj' .. ' .. >;<, ,>~• .................... [ ... '" .. ,. ,,. ...................................... 1 
l I t I 
l I t I 

f--------------l ........................................................ I t i 

i\ddrton~:~{ !\~;si9neE~ or !~on"i\pp!icant l\s.signf.;e [)ata n-1ay b~=.= sr:;n:.=.:rat:.=.:d vv~thin U-1;s -forrn t1~l 
se~ecUnq tfH:~ .. -:\dd L:J~\t)fL 

I 
F":!rst Narne [.h~r-lid / .. \ L-::~st Narne P;uiTde~/ F~e9Istrat!on f'-,,!urnbe:r -·:r7··)ns ! 

............................................................................................................................................................ i .................................................................. • ............................................................................................................................................................................................................................................ • .......................................................................................... l 
I 
I 

i\ddHlona{ Sl[inature rnay o,:.: gen,:.:rat,:.:cl \:VHh!n this i~Jrrn by s<7;!ecUng th:.:: .Add button, ! 
I 
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This cone•~tion vf :nfvnT:athJn ls required by 37 C~FR ·1.76. The infvrrnation is r•~quirc.-::: to obtain or retain a bent~fit by th~ pub!i•.: \:',...-hie-h 
is to file {and t~~{ ihH USPT() t.o proc{:~s~.) an ::~ppiicat~on. r:onTident:al~ty is govt~rn-&d by 3fi U.S {:. ·! 22 anc: 3? (:F-'f-< ·:. ·i 4 This 
GoH~::ct:on i~; t~stln·:att~d tc tak~~ :~:3 rninutBs io Gon·:p!Bt::.:, inc!udinf} fF:~th::.~r~nft pn~p~~rln9: ;:~nd subfnitilnf~ iht~ cornpk:t}::d app:::.::.ation d~~ta 
she~:;t fonn to th~: USFYrc~. ~;·:r~ .2 ~ ... ;~; \. 2h / l.;c:)t(h._;;, 19 .... ,~_.(), ~ ~ht ~~ 10:~:;d ... ~-::~; \..-d ~..... }\-~y, c·,r·1•'·•-.::.:r,.tc: (:~~ -::-., .... a•"• .. c· ,,, .. 1.;. c~ -:;, . ..,.y, y<:r ~ :r·cr~u;,~., '-r· 

con-:piet~ this forrn and/or sug9~stlvns for reducin9 this burden, -sh-:.1uid be s0nt to tl:~: C~~-1!~:f infvnnat~vn C1fi1c,er. U.S. F·\::tent anc: 
Trade:-r-:,~rk ()tf:cr:\ U.S. [)ep:~rt::1ent 01' r:o:T:rnE±rcB. ~.;- (). Box -~4~:.;{\ :'\k:xandna .. \//; 22~~ ·i3 .... i4~:.;o [)(} NC)T SEN[) FEES (}:'"<. 
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PATENT 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

lnventor(s) 
Assignee 
Patent No. 
Issued 
Application No. 
Fiied 
Title 
Docket No. 

Michael H. Anderson et al. Confirmation No. 5095 
STREAMSCALE, INC. 
10,291,259 

· May 14, 2019 
15/976,175 
May 10, 2018 

: ACCELERATED ERASURE CODING SYSTEM AND METHOD 
: 157162 (411563-00014} 

STATEMENT OF MICHAEL H. ANDERSON IN SUPPORT OF PETITION FOR 
CORRECTION OF INVENTOR.SHIP PURSUANT TO 37 C.F .R. § 1.324 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Commissioner: 

Post Office Box 29001 
Glendale, CA 91209-9001 

I, the undersigned, declare and state as follows: 

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the 

inventorship in the above-identified patent. l am the named inventor of the above

identified patent. I understand that the petition seeks to add SARAH MANN as an inventor 

to this patent and I agree to the requested change of inventorship. 
·" I l { (, ' I I \ ! ....4-- ' 

Executed this ~i::J of_~\1-,-._e_h_, ___ , 2021 in LJ ~OV\ / 11"\(Z ~ f 
...Li I \ 

I /,, I""'> :( , .c1 \ 
I k \ c:;, \ l ,, Y\ <,: 

DAP/srd 

-1-
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DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73 

Title of Invention: 

Docket No.: 
Application No. 

INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

ACCELERATED ERASURE CODING SYSTEM AND METHOD 

157162 (411563-00014) 
15/976, 175 

INVENTOR'S DECLARATION 

As a below named inventor, I hereby declare that: 

This declaration is directed to the attached application unless the following is checked: 

PATENT 

_x_ United States Application or PCT International Application Number 15/976, 175 filed on 
May 10, 2018. 

The above-identified application was made or authorized to be made by me. 

I believe that I am the original inventor or an original joint inventor of a claimed invention in the 
above-identified application. 

I have reviewed and understand the contents of the above-identified application, including the 
claims. 

I acknowledge the duty to disclose information which is material to patentability as defined in 
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which 
became available between the filing date of the prior application and the national or PCT 
international filing date of the continuation-in-part application. 

I acknowledge that any willful false statement made in this declaration is punishable under 
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both. 

ASSIGNMENT 

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged, 
the undersigned, 

(1) Sarah Mann 

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO 

~) STREAMSCALE INC. 

having a place of business at 

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710 

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all 
improvements which are disclosed in the application for United States Letters Patent entitled 

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD 

which application was executed on even date herewith or was 
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INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

Docket No.: 157162 (411563-00014) 
Application No.: 15/976, 175 

(a) executed on (Sa): 

(b) filed on (Sb): May 10, 2018 

Application No.: 15/976 175 

(LEWIS ROCA ROTHGERBER CHRISTIE 
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the 
specified data, when known. 

including any and all United States Patents 
which may be granted on said application, and any and all extensions, divisions, reissues, 
substitutes, renewals or continuations of said application and patents, and the right to all benefits 
under all international conventions for the protection of industrial property and applications for 
said improvements. 

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said 
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its 
designee. 

Upon said consideration, it is further agreed that, when requested, without charge to but at the 
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute, 
renewal, and reissue patent applications; execute all rightful other papers; and generally do 
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and 
maintaining patent protection as provided herein. 

Sarah Mann 
2/18/2021 

Legal Name of Inventor Date 

, .. .,...._..._.,OocuSigned by: 

1 rso.Yoi~ 

WITNESSES: 
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IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

lnventor(s) 
Assignee 
Patent No. 
issued 
Application No. 
Filed 

: Michael H. Anderson et al. Confirmation No. 5095 

Title 

: STREAMSCALE, INC. 
: 10,291,259 
: May 14, 2019 
: 15/976, 175 
: May 10, 2018 

Docket No. 
: ACCELERATED ERASURE CODING SYSTEM AND METHOD 
: 157162 (411563-00014) 

STATEMENT OF ASSIGNEE IN SUPPORT OF PETITION 
FOR CORRECTION OF INVENTORSHIP UNDER 37 C.F.R. § 1.324 AND 

COMPL YiNG WITH 37 C.F.R. § 3.73(c) 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Commissioner: 

Post Office Box 29001 
Glendale, CA 91209-9001 

1. I am authorized to act on behalf of STREAMSCALE, INC. and have the title 

indicated below. 

2. STREAMSCALE, INC. is the assignee of the entire interest of the patent 

identified above, by virtue of the following Assignments from the inventors. 

(a) An Assignment of this invention by inventor Michael H. Anderson 

was recorded on May 16, 2018 at Reel No. 045816 and Frame No. 0289. 

{b) A second Assignment of this invention by inventor Sarah Mann, the 

lnventor to be added on this patent. is attached hereto. 

3. The Assignee agrees to the addition of Sarah Mann as an inventor on the 

patent 

Date ~ eh <-. " :l
,., 

, I\ 
.._ V" 

DAP/srd 
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PATENT 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

Inventor( s) 
Assignee 
Patent No. 
Issued 
Application No. 
Filed 

Michael H. Anderson et al. Confirmation No. 5095 
STREAMSCALE, INC. 
10,291,259 
May 14, 2019 
15/976, 175 
May 10, 2018 

Title 
Docket No. 

ACCELERATED ERASURE CODING SYSTEM AND METHOD 
157162 (411563-00014) 

STATEMENT OF SARAH MANN IN SUPPORT OF PETITION FOR CORRECTION OF 
INVENTORSHIP PURSUANT TO 37 C.F.R. § 1.324 

Commissioner for Patents 
P.O. Box 1450 
Alexandria, VA 22313-1450 

Commissioner: 

I, the undersigned, declare and state as follows: 

Post Office Box 29001 
Glendale, CA 91209-9001 

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the 

inventorship in the above-identified patent. I understand that the petition seeks to add 

me, the undersigned, as an inventor to this patent and I agree to the requested change 

of inventorship. 

Executed this 18 of February --- 2021 in oakl and , 
CA 

Respectfully, 
,..~ DocuStgned by: 

I I<; IJJl'o.L, ~ 

DAP/srd 
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113444914.1 
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Title of Invention: 

Docket No.: 
Application No. 

INVENTOR'S DECLARATION AND ASSIGNMENT 
FOR PA TENT APPLICATION 

ACCELERATED ERASURE CODING SYSTEM AND METHOD 

157162 (411563-00014) 
15/976, 175 

INVENTOR'S DECLARATION 

As a below named inventor, I hereby declare that: 

This declaration is directed to the attached application unless the following is checked: 

PATENT 

_x_ United States Application or PCT International Application Number 15/976, 175 filed on 
May 10, 2018. 

The above-identified application was made or authorized to be made by me. 

I believe that I am the original inventor or an original joint inventor of a claimed invention in the 
above-identified application. 

I have reviewed and understand the contents of the above-identified application, including the 
claims. 

I acknowledge the duty to disclose information which is material to patentability as defined in 
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which 
became available between the filing date of the prior application and the national or PCT 
international filing date of the continuation-in-part application. 

I acknowledge that any willful false statement made in this declaration is punishable under 
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both. 

ASSIGNMENT 

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged, 
the undersigned, 

(1) Sarah Mann 

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO 

~) STREAMSCALE INC. 

having a place of business at 

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710 

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all 
improvements which are disclosed in the application for United States Letters Patent entitled 

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD 

which application was executed on even date herewith or was 
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Docket No.: 157162 (411563-00014) 
Application No.: 15/976, 175 

(a) executed on (Sa): 

(b) filed on (Sb): May 10, 2018 

Application No.: 15/976 175 

(LEWIS ROCA ROTHGERBER CHRISTIE 
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the 
specified data, when known. 

including any and all United States Patents 
which may be granted on said application, and any and all extensions, divisions, reissues, 
substitutes, renewals or continuations of said application and patents, and the right to all benefits 
under all international conventions for the protection of industrial property and applications for 
said improvements. 

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said 
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its 
designee. 

Upon said consideration, it is further agreed that, when requested, without charge to but at the 
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute, 
renewal, and reissue patent applications; execute all rightful other papers; and generally do 
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and 
maintaining patent protection as provided herein. 

Sarah Mann 
2/18/2021 

Legal Name of Inventor Date 

, .. .,...._..._.,OocuSigned by: 

1 rso.Yoi~ 

WITNESSES: 
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(57) ABSTRACT 
An accelerated erasure coding system includes a processing 
core for executing computer instructions and accessing data 
from a main memory, and a non-volatile storage medium for 
storing the computer instructions. The processing core, 
storage medium, and computer instructions are configured to 
implement an erasure coding system, which includes: a data 
matrix for holding original data in the main memory; a check 
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ACCELERATED ERASURE CODING 
SYSTEM AND METHOD 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica
tion Ser. No. 15/976,175 filed May 10, 2018, which is a 
continuation of U.S. patent application Ser. No. 15/201,196, 
filed on Jul. 1, 2016, now U.S. Pat. No. 10,003,358, issued 
on Jun. 19, 2018, which is a continuation of U.S. patent 
application Ser. No. 14/852,438, filed on Sep. 11, 2015, now 
U.S. Pat. No. 9,385,759, issued on Jul. 5, 2016, which is a 
continuation of U.S. patent application Ser. No. 14/223,740, 
filed on Mar. 24, 2014, now U.S. Pat. No. 9,160,374, issued 
on Oct. 13, 2015, which is a continuation of U.S. patent 
application Ser. No. 13/341,833, filed on Dec. 30, 2011, now 
U.S. Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire 
contents of each of which are expressly incorporated herein 
by reference. 

BACKGROUND 

Field 

Aspects of embodiments of the present invention are 
directed toward an accelerated erasure coding system and 
method. 

Description of Related Art 

An erasure code is a type of error-correcting code (ECC) 
useful for forward error-correction in applications like a 
redundant array of independent disks (RAID) or high-speed 
communication systems. In a typical erasure code, data ( or 
original data) is organized in stripes, each of which is broken 

2 
Erasure codes for select values of N and M can be imple
mented on RAID systems employing N+M (disk) drives by 
spreading the original data among N "data" drives, and using 
the remaining M drives as "check" drives. Then, when any 

5 N of the N+M drives are correctly functioning, the original 
data can be reconstructed, and the check data can be 
regenerated. 

Erasure codes ( or more specifically, erasure coding sys
tems) are generally regarded as impractical for values of M 

10 larger than 1 (e.g., RAIDS systems, such as parity drive 
systems) or 2 (RAID6 systems), that is, for more than one or 
two check drives. For example, see H. Peter Anvin, "The 
mathematics of RAID-6," the entire content of which is 
incorporated herein by reference, p. 7, "Thus, in 2-disk-

15 degraded mode, performance will be very slow. However, it 
is expected that that will be a rare occurrence, and that 
performance will not matter significantly in that case." See 
also Robert Maddock et al., "Surviving Two Disk Failures," 
p. 6, "The main difficulty with this technique is that calcu-

20 lating the check codes, and reconstructing data after failures, 
is quite complex. It involves polynomials and thus multi
plication, and requires special hardware, or at least a signal 
processor, to do it at sufficient speed." In addition, see also 
James S. Plank, "All About Erasure Codes:-Reed-Solomon 

25 Coding-LDPC Coding," slide 15 (describing computa
tional complexity of Reed-Solomon decoding), "Bottom 
line: When n & m grow, it is brutally expensive." Accord
ingly, there appears to be a general consensus among experts 
in the field that erasure coding systems are impractical for 

30 RAID systems for all but small values of M (that is, small 
numbers of check drives), such as 1 or 2. 

Modem disk drives, on the other hand, are much less 
reliable than those envisioned when RAID was proposed. 
This is due to their capacity growing out of proportion to 

35 their reliability. Accordingly, systems with only a single 
check disk have, for the most part, been discontinued in 
favor of systems with two check disks. up into N equal-sized blocks, or data blocks, for some 

positive integer N. The data for each stripe is thus recon
structable by putting the N data blocks together. However, to 
handle situations where one or more of the original N data 40 

blocks gets lost, erasure codes also encode an additional M 
equal-sized blocks (called check blocks or check data) from 
the original N data blocks, for some positive integer M. 

In terms of reliability, a higher check disk count is clearly 
more desirable than a lower check disk count. If the count 
of error events on different drives is larger than the check 
disk count, data may be lost and that cannot be reconstructed 
from the correctly functioning drives. Error events extend 
well beyond the traditional measure of advertised mean time 
between failures (MTBF). A simple, real world example is The N data blocks and the M check blocks are all the same 

size. Accordingly, there are a total of N+M equal-sized 
blocks after encoding. The N+M blocks may, for example, 
be transmitted to a receiver as N+M separate packets, or 
written to N+M corresponding disk drives. For ease of 
description, all N+M blocks after encoding will be referred 
to as encoded blocks, though some (for example, N of them) 
may contain unencoded portions of the original data. That is, 
the encoded data refers to the original data together with the 
check data. 

45 a service event on a RAID system where the operator 
mistakenly replaces the wrong drive or, worse yet, replaces 
a good drive with a broken drive. In the absence of any 
generally accepted methodology to train, certify, and mea
sure the effectiveness of service technicians, these types of 

50 events occur at an unknown rate, but certainly occur. The 
foolproof solution for protecting data in the face of multiple 
error events is to increase the check disk count. 

The M check blocks build redundancy into the system, in 
a very efficient marmer, in that the original data (as well as 55 

any lost check data) can be reconstructed if any N of the 
N+M encoded blocks are received by the receiver, or if any 
N of the N+M disk drives are functioning correctly. Note 
that such an erasure code is also referred to as "optimal." For 
ease of description, only optimal erasure codes will be 60 

discussed in this application. In such a code, up to M of the 
encoded blocks can be lost, (e.g., up to M of the disk drives 
can fail) so that if any N of the N+M encoded blocks are 
received successfully by the receiver, the original data (as 
well as the check data) can be reconstructed. N/(N+M) is 65 

thus the code rate of the erasure code encoding (i.e., how 
much space the original data takes up in the encoded data). 

SUMMARY 

Aspects of embodiments of the present invention address 
these problems by providing a practical erasure coding 
system that, for byte-level RAID processing (where each 
byte is made up of 8 bits), performs well even for values of 
N+M as large as 256 drives (for example, N=127 data drives 
and M=129 check drives). Further aspects provide for a 
single precomputed encoding matrix ( or master encoding 
matrix) s of size MmaxxNmax' or CNmax+Mmax)xNmax or 
(Mmax-l)xNmax, elements (e.g., bytes), which can be used, 
for example, for any combination ofN sN max data drives and 
MsMmax check drives such that Nmax+Mmaxs256 (e.g., 
Nmax=l27 andMmax=l29, orNm==63 andMm==193). This 
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is an improvement over prior art solutions that rebuild such 
matrices from scratch every time Nor M changes (such as 
adding another check drive). Still higher values ofN and M 
are possible with larger processing increments, such as 2 
bytes, which affords up to N+M=65,536 drives (such as 5 

N=32,767 data drives and M=32,769 check drives). 
Higher check disk count can offer increased reliability and 

decreased cost. The higher reliability comes from factors 
such as the ability to withstand more drive failures. The 
decreased cost arises from factors such as the ability to 10 

create larger groups of data drives. For example, systems 
with two checks disks are typically limited to group sizes of 
10 or fewer drives for reliability reasons. With a higher 
check disk count, larger groups are available, which can lead 
to fewer overall components for the same unit of storage and 15 

hence, lower cost. 
Additional aspects of embodiments of the present inven

tion further address these problems by providing a standard 
parity drive as part of the encoding matrix. For instance, 
aspects provide for a parity drive for configurations with up 20 

to 127 data drives and up to 128 (non-parity) check drives, 
for a total ofup to 256 total drives including the parity drive. 
Further aspects provide for different breakdowns, such as up 
to 63 data drives, a parity drive, and up to 192 (non-parity) 
check drives. Providing a parity drive offers performance 25 

comparable to RAIDS in comparable circumstances (such as 
single data drive failures) while also being able to tolerate 
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives. 

Further aspects are directed to a system and method for 30 

implementing a fast solution matrix algorithm for Reed
Solomon codes. While known solution matrix algorithms 
compute an NxN solution matrix (see, for example, J. S. 
Plank, "A tutorial on Reed-Solomon coding for fault-toler
ance in RAID-like systems," Software-Practice & Expe- 35 

rience, 27(9):995-1012, September 1997, and J. S. Plank and 
Y. Ding, "Note: Correction to the 1997 tutorial on Reed
Solomon coding," Technical Report CS-03-504, University 
of Tennessee, April 2003), requiring O(N3

) operations, 
regardless of the number of failed data drives, aspects of 40 

embodiments of the present invention compute only an FxF 
solution matrix, where F is the number of failed data drives. 
The overhead for computing this FxF solution matrix is 
approximately F3/3 multiplication operations and the same 
number of addition operations. Not only is FsN, in almost 45 

any practical application, the number of failed data drives F 

4 
main memory; and a non-volatile storage medium (for 
example, a disk drive, or flash memory) for storing the 
computer instructions. The processing core, the storage 
medium, and the computer instructions are configured to 
implement an erasure coding system. The erasure coding 
system includes a data matrix for holding original data in the 
main memory, a check matrix for holding check data in the 
main memory, an encoding matrix for holding first factors in 
the main memory, and a thread for executing on the pro
cessing core. The first factors are for encoding the original 
data into the check data. The thread includes a parallel 
multiplier for concurrently multiplying multiple data entries 
of a matrix by a single factor; and a first sequencer for 
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier to generate the check 
data. 

The first sequencer may be configured to access each 
entry of the data matrix from the main memory at most once 
while generating the check data. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data by dividing the data matrix into a 
plurality of data matrices, dividing the check matrix into a 
plurality of check matrices, assigning corresponding ones of 
the data matrices and the check matrices to the threads, and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 
check matrices from respective ones of the data matrices. 

The data matrix may include a first number of rows. The 
check matrix may include a second number of rows. The 
encoding matrix may include the second number of rows 
and the first number of colunms. 

The data matrix may be configured to add rows to the first 
number of rows or the check matrix may be configured to 
add rows to the second number of rows while the first factors 
remain unchanged. 

Each of entries of one of the rows of the encoding matrix 
may include a multiplicative identity factor (such as 1). 

The data matrix may be configured to be divided by rows 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data and including a 
third number of rows. The erasure coding system may 
further include a solution matrix for holding second factors 
in the main memory. The second factors are for decoding the 
check data into the lost original data using the surviving 
original data and the first factors. 

is considerably smaller than the number of data drives N. 
Accordingly, the fast solution matrix algorithm is consider
ably faster than any known approach for practical values of 
F and N. 

The solution matrix may include the third number of rows 
50 and the third number of colunms. 

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost ( original and 
check) data reconstruction. Some of these aspects are 
directed toward fetching the surviving ( original and check) 
data a minimum number of times (that is, at most once) to 55 

carry out the data reconstruction. Some of these aspects are 
directed toward efficient implementations that can maximize 
or significantly leverage the available parallel processing 
power of multiple cores working concurrently on the check 
data generation and the lost data reconstruction. Existing 60 

implementations do not attempt to accelerate these aspects 
of the data generation and thus fail to achieve a comparable 
level of performance. 

In an exemplary embodiment of the present invention, a 
system for accelerated error-correcting code (ECC) process- 65 

ing is provided. The system includes a processing core for 
executing computer instructions and accessing data from a 

The solution matrix may further include an inverted said 
third number by said third number sub-matrix of the encod
ing matrix. 

The erasure coding system may further include a first list 
of rows of the data matrix corresponding to the surviving 
data matrix, and a second list of rows of the data matrix 
corresponding to the lost data matrix. 

The data matrix may be configured to be divided into a 
surviving data matrix for holding surviving original data of 
the original data, and a lost data matrix corresponding to lost 
original data of the original data. The erasure coding system 
may further include a solution matrix for holding second 
factors in the main memory. The second factors are for 
decoding the check data into the lost original data using the 
surviving original data and the first factors. The thread may 
further include a second sequencer for ordering operations 
through the surviving data matrix, the encoding matrix, the 
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check matrix, and the solution matrix using the parallel 
multiplier to reconstruct the lost original data. 

6 
The processing core may include 16 data registers. Each 

of the data registers may include 16 bytes. The parallel 
multiplier may be configured to process the data in units of 
at least 64 bytes spread over at least four of the data registers 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main 
memory at most once while reconstructing the lost original 
data. 

5 at a time. 

The processing core may include a plurality of processing 
cores. The thread may include a plurality of threads. The 
erasure coding system may further include: a scheduler for 
generating the check data and reconstructing the lost original 10 

data by dividing the data matrix into a plurality of data 
matrices; dividing the surviving data matrix into a plurality 
of surviving data matrices; dividing the lost data matrix into 
a plurality of lost data matrices; dividing the check matrix 
into a plurality of check matrices; assigning corresponding 15 

ones of the data matrices, the surviving data matrices, the 
lost data matrices, and the check matrices to the threads; and 
assigning the threads to the processing cores to concurrently 
generate portions of the check data corresponding to the 
check matrices from respective ones of the data matrices and 20 

to concurrently reconstruct portions of the lost original data 
corresponding to the lost data matrices from respective ones 
of the surviving data matrices and the check matrices. 

The check matrix may be configured to be divided into a 
surviving check matrix for holding surviving check data of 25 

the check data, and a lost check matrix corresponding to lost 
check data of the check data. The second sequencer may be 
configured to order operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier to regenerate the lost 30 

check data. 
The second sequencer may be further configured to recon

struct the lost original data concurrently with regenerating 
the lost check data. 

Consecutive instructions to process each of the units of 
the data may access separate ones of the data registers to 
permit concurrent execution of the consecutive instructions 
by the processing core. 

The parallel multiplier may include two lookup tables for 
doing concurrent multiplication of 4-bit quantities across 16 
byte-sized entries using the PSHUFB (Packed Shuffle Bytes) 
instruction. 

The parallel multiplier may be further configured to 
receive an input operand in four of the data registers, and 
return with the input operand intact in the four of the data 
registers. 

According to another exemplary embodiment of the pres
ent invention, a method of accelerated error-correcting code 
(ECC) processing on a computing system is provided. The 
computing system includes a non-volatile storage medium 
(such as a disk drive or flash memory), a processing core for 
accessing instructions and data from a main memory, and a 
computer program including a plurality of computer instruc
tions for implementing an erasure coding system. The 
method includes: storing the computer program on the 
storage medium; executing the computer instructions on the 
processing core; arranging original data as a data matrix in 
the main memory; arranging first factors as an encoding 
matrix in the main memory, the first factors being for 
encoding the original data into check data, the check data 
being arranged as a check matrix in the main memory; and 
generating the check data using a parallel multiplier for 
concurrently multiplying multiple data entries of a matrix by 

The second sequencer may be further configured to access 
each entry of the surviving data matrix from the main 
memory at most once while reconstructing the lost original 
data and regenerating the lost check data. 

35 a single factor. The generating of the check data includes 
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier. 

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 40 

lost original data from the main memory. 
The processing core may include a plurality of processing 

cores. The thread may include a plurality of threads. The 
erasure coding system may further include a scheduler for 
generating the check data, reconstructing the lost original 45 

data, and regenerating the lost check data by: dividing the 
data matrix into a plurality of data matrices; dividing the 
surviving data matrix into a plurality of surviving data 
matrices; dividing the lost data matrix into a plurality oflost 
data matrices; dividing the check matrix into a plurality of 50 

check matrices; dividing the surviving check matrix into a 
plurality of surviving check matrices; dividing the lost check 
matrix into a plurality of lost check matrices; assigning 
corresponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the 55 

surviving check matrices, and the lost check matrices to the 
threads; and assigning the threads to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices, to concurrently reconstruct portions of the lost 60 

original data corresponding to the lost data matrices from 
respective ones of the surviving data matrices and the 
surviving check matrices, and to concurrently regenerate 
portions of the lost check data corresponding to the lost 
check matrices from respective ones of the surviving data 65 

matrices and respective portions of the reconstructed lost 
original data. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data by: dividing the data matrix into 
a plurality of data matrices; dividing the check matrix into 
a plurality of check matrices; and assigning corresponding 
ones of the data matrices and the check matrices to the 
processing cores to concurrently generate portions of the 
check data corresponding to the check matrices from respec
tive ones of the data matrices. 

The method may further include: dividing the data matrix 
into a surviving data matrix for holding surviving original 
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data; arranging second 
factors as a solution matrix in the main memory, the second 
factors being for decoding the check data into the lost 
original data using the surviving original data and the first 
factors; and reconstructing the lost original data by ordering 
operations through the surviving data matrix, the encoding 
matrix, the check matrix, and the solution matrix using the 
parallel multiplier. 

The reconstructing of the lost original data may include 
accessing each entry of the surviving data matrix from the 
main memory at most once. 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 
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include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data and the reconstructing of the 
lost original data by: dividing the data matrix into a plurality 
of data matrices; dividing the surviving data matrix into a 5 

plurality of surviving data matrices; dividing the lost data 
matrix into a plurality of lost data matrices; dividing the 
check matrix into a plurality of check matrices; and assign
ing corresponding ones of the data matrices, the surviving 
data matrices, the lost data matrices, and the check matrices 10 

to the processing cores to concurrently generate portions of 
the check data corresponding to the check matrices from 
respective ones of the data matrices and to concurrently 
reconstruct portions of the lost original data corresponding 
to the lost data matrices from respective ones of the surviv- 15 

ing data matrices and the check matrices. 
The method may further include: dividing the check 

matrix into a surviving check matrix for holding surviving 
check data of the check data, and a lost check matrix 
corresponding to lost check data of the check data; and 20 

regenerating the lost check data by ordering operations 
through the surviving data matrix, the reconstructed lost 
original data, and the encoding matrix using the parallel 
multiplier. 

The reconstructing of the lost original data may take place 25 

concurrently with the regenerating of the lost check data. 

8 
includes a processing core for accessing instructions and 
data from a main memory. The computer instructions are 
configured to implement an erasure coding system when 
executed on the computing system by performing the steps 
of: arranging original data as a data matrix in the main 
memory; arranging first factors as an encoding matrix in the 
main memory, the first factors being for encoding the 
original data into check data, the check data being arranged 
as a check matrix in the main memory; and generating the 
check data using a parallel multiplier for concurrently mul
tiplying multiple data entries of a matrix by a single factor. 
The generating of the check data includes ordering opera
tions through the data matrix and the encoding matrix using 
the parallel multiplier. 

The generating of the check data may include accessing 
each entry of the data matrix from the main memory at most 
once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured 
to perform the step of scheduling the generating of the check 
data by: dividing the data matrix into a plurality of data 
matrices; dividing the check matrix into a plurality of check 
matrices; and assigning corresponding ones of the data 
matrices and the check matrices to the processing cores to 
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data 
matrices. 

The computer instructions may be further configured to 
perform the steps of: dividing the data matrix into a surviv-

The reconstructing of the lost original data and the 
regenerating of the lost check data may include accessing 
each entry of the surviving data matrix from the main 
memory at most once. 

The regenerating of the lost check data may take place 
without accessing the reconstructed lost original data from 
the main memory. 

30 ing data matrix for holding surviving original data of the 
original data, and a lost data matrix corresponding to lost 
original data of the original data; arranging second factors as 
a solution matrix in the main memory, the second factors 

The processing core may include a plurality of processing 
cores. The executing of the computer instructions may 35 

include executing the computer instructions on the process
ing cores. The method may further include scheduling the 
generating of the check data, the reconstructing of the lost 
original data, and the regenerating of the lost check data by: 
dividing the data matrix into a plurality of data matrices; 40 

dividing the surviving data matrix into a plurality of sur
viving data matrices; dividing the lost data matrix into a 
plurality oflost data matrices; dividing the check matrix into 
a plurality of check matrices; dividing the surviving check 
matrix into a plurality of surviving check matrices; dividing 45 

the lost check matrix into a plurality oflost check matrices; 
and assigning corresponding ones of the data matrices, the 
surviving data matrices, the lost data matrices, the check 
matrices, the surviving check matrices, and the lost check 
matrices to the processing cores to concurrently generate 50 

portions of the check data corresponding to the check 
matrices from respective ones of the data matrices, to 
concurrently reconstruct portions of the lost original data 
corresponding to the lost data matrices from respective ones 
of the surviving data matrices and the surviving check 55 

matrices, and to concurrently regenerate portions of the lost 
check data corresponding to the lost check matrices from 
respective ones of the surviving data matrices and respective 
portions of the reconstructed lost original data. 

According to yet another exemplary embodiment of the 60 

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a 
digital video disk (DVD), flash memory, a universal serial 
bus (USB) drive, etc.) containing a computer program 
including a plurality of computer instructions for performing 65 

accelerated error-correcting code (ECC) processing on a 
computing system is provided. The computing system 

being for decoding the check data into the lost original data 
using the surviving original data and the first factors; and 
reconstructing the lost original data by ordering operations 
through the surviving data matrix, the encoding matrix, the 
check matrix, and the solution matrix using the parallel 
multiplier. 

The computer instructions may be further configured to 
perform the steps of: dividing the check matrix into a 
surviving check matrix for holding surviving check data of 
the check data, and a lost check matrix corresponding to lost 
check data of the check data; and regenerating the lost check 
data by ordering operations through the surviving data 
matrix, the reconstructed lost original data, and the encoding 
matrix using the parallel multiplier. 

The reconstructing of the lost original data and the 
regenerating of the lost check data may include accessing 
each entry of the surviving data matrix from the main 
memory at most once. 

The processing core may include a plurality of processing 
cores. The computer instructions may be further configured 
to perform the step of scheduling the generating of the check 
data, the reconstructing of the lost original data, and the 
regenerating of the lost check data by: dividing the data 
matrix into a plurality of data matrices; dividing the surviv
ing data matrix into a plurality of surviving data matrices; 
dividing the lost data matrix into a plurality of lost data 
matrices; dividing the check matrix into a plurality of check 
matrices; dividing the surviving check matrix into a plurality 
of surviving check matrices; dividing the lost check matrix 
into a plurality of lost check matrices; and assigning corre
sponding ones of the data matrices, the surviving data 
matrices, the lost data matrices, the check matrices, the 
surviving check matrices, and the lost check matrices to the 
processing cores to concurrently generate portions of the 
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check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct 
portions of the lost original data corresponding to the lost 
data matrices from respective ones of the surviving data 
matrices and the surviving check matrices, and to concur
rently regenerate portions of the lost check data correspond
ing to the lost check matrices from respective ones of the 
surviving data matrices and respective portions of the recon
structed lost original data. 

10 
size elements, such as 16 bits (2 bytes). For simplification, 
unless otherwise indicated, elements will be assumed to be 
one byte in size throughout the description that follows, and 
the term "element(s)" and "byte(s)" will be used synony-

5 mously. 

By providing practical and efficient systems and methods 10 

for erasure coding systems (which for byte-level processing 
can support up to N+M=256 drives, such as N=127 data 
drives and M=129 check drives, including a parity drive), 
applications such as RAID systems that can tolerate far more 
failing drives than was thought to be possible or practical 15 

can be implemented with accelerated performance signifi
cantly better than any prior art solution. 

Conceptually, different stripes can distribute their data 
blocks across different combinations of drives, or have 
different block sizes or numbers of blocks, etc., but for 
simplification and ease of description and implementation, 
the described embodiments in the present application 
assume a consistent block size (L bytes) and distribution of 
blocks among the data drives between stripes. Further, all 
variables, such as the number of data drives N, will be 
assumed to be positive integers unless otherwise specified. 
In addition, since the N=l case reduces to simple data 
mirroring (that is, copying the same data drive multiple 
times), it will also be assumed for simplicity that N;;,;2 
throughout. BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, together with the specifi
cation, illustrate exemplary embodiments of the present 
invention and, together with the description, serve to explain 
aspects and principles of the present invention. 

FIG. 1 shows an exemplary stripe of original and check 
data according to an embodiment of the present invention. 

FIG. 2 shows an exemplary method for reconstructing lost 
data after a failure of one or more drives according to an 
embodiment of the present invention. 

FIG. 3 shows an exemplary method for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

FIG. 4 shows an exemplary method for sequencing the 
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention. 

FIGS. 5-7 show an exemplary method for sequencing the 
parallel lookup multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion. 

20 
The N data blocks from each stripe are combined using 

arithmetic operations (to be described in more detail below) 
in M different ways to produce M blocks of check data 
( check blocks), and the M check blocks written across M 

25 drives (the check drives) separate from the N data drives, 
one block per check drive. These combinations can take 
place, for example, when new ( or changed) data is written to 
(or back to) disk. Accordingly, each of the N+M drives (data 
drives and check drives) stores a similar amount of data, 

30 namely one block for each stripe. As the processing of 
multiple stripes is conceptually similar to the processing of 
one stripe ( only processing multiple blocks per drive instead 
of one), it will be further assumed for simplification that the 
data being stored or retrieved is only one stripe in size unless 

35 otherwise indicated. It will also be assumed that the block 
size L is sufficiently large that the data can be consistently 
divided across each block to produce subsets of the data that 
include respective portions of the blocks (for efficient con-

FIG. 8 illustrates a multi-core architecture system accord- 40 

ing to an embodiment of the present invention. 

current processing by different processing units). 

FIG. 1 shows an exemplary stripe 10 of original and check 
data according to an embodiment of the present invention. FIG. 9 shows an exemplary disk drive configuration 

according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

Hereinafter, exemplary embodiments of the invention will 
be described in more detail with reference to the accompa
nying drawings. In the drawings, like reference numerals 
refer to like elements throughout. 

While optimal erasure codes have many applications, for 
ease of description, they will be described in this application 
with respect to RAID applications, i.e., erasure coding 
systems for the storage and retrieval of digital data distrib
uted across numerous storage devices ( or drives), though the 
present application is not limited thereto. For further ease of 
description, the storage devices will be assumed to be disk 
drives, though the invention is not limited thereto. In RAID 
systems, the data (or original data) is broken up into stripes, 
each of which includes N uniformly sized blocks ( data 
blocks), and the N blocks are written across N separate 
drives (the data drives), one block per data drive. 

In addition, for ease of description, blocks will be 
assumed to be composed ofL elements, each element having 

Referring to FIG. 1, the stripe 10 can be thought of not 
only as the original N data blocks 20 that make up the 

45 original data, but also the corresponding M check blocks 30 
generated from the original data (that is, the stripe 10 
represents encoded data). Each of the N data blocks 20 is 
composed of L bytes 25 (labeled byte 1, byte 2, ... , byte 
L), and each of the M check blocks 30 is composed of L 

50 
bytes 35 (labeled similarly). In addition, check drive 1, byte 
1, is a linear combination of data drive 1, byte 1; data drive 
2, byte 1; ... ; data drive N, byte 1. Likewise, check drive 
1, byte 2, is generated from the same linear combination 

55 formula as check drive 1, byte 1, only using data drive 1, 
byte 2; data drive 2, byte 2; ... ; data drive N, byte 2. In 
contrast, check drive 2, byte 1, uses a different linear 
combination formula than check drive 1, byte 1, but applies 
it to the same data, namely data drive 1, byte 1; data drive 

60 2, byte 1; ... ; data drive N, byte 1. In this fashion, each of 
the other check bytes 35 is a linear combination of the 
respective bytes of each of the N data drives 20 and using the 
corresponding linear combination formula for the particular 
check drive 30. 

a fixed size, say 8 bits or one byte. An element, such as a 65 

byte, forms the fundamental unit of operation for the RAID 
processing, but the invention is just as applicable to other 

The stripe 10 in FIG. 1 can also be represented as a matrix 
C of encoded data. Chas two sub-matrices, namely original 
data D on top and check data Jon bottom. That is, 
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D21 D22 

D1L 

D2L 

12 
The remaining M-1 linear combinations include more 

involved calculations that include the nontrivial GF multi
plication operations ( e.g., performing a GF multiplication of 
the first byte in each block by a corresponding factor for the 

C= [~] = DN! DN2 

lu 112 

h1 h2 

JM! lM2 

DNL 

l1L 

hL 

]ML 

5 respective data drive, and then performing a GF sum of all 
these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or infor
mation dispersal matrix (IDM)) E of the different factors, 
one factor for each combination of ( data or check) drive and 

10 data drive, with one row for each of the N+M data and check 
drives and one colunm for each of the N data drives. The 

where D,rbyte j from data drive i and J,rbyte j from check 
drive i. Thus, the rows of encoded data C represent blocks, 
while the colunms represent corresponding bytes of each of 15 
the drives. 

Further, in case of a disk drive failure of one or more 
disks, the arithmetic operations are designed in such a 
fashion that for any stripe, the original data (and by exten
sion, the check data) can be reconstructed from any com- 20 

bination ofN data and check blocks from the corresponding 
N+M data and check blocks that comprise the stripe. Thus, 
RAID provides both parallel processing (reading and writing 
the data in stripes across multiple drives concurrently) and 
fault tolerance (regeneration of the original data even if as 25 

many as M of the drives fail), at the computational cost of 
generating the check data any time new data is written to 
disk, or changed data is written back to disk, as well as the 
computational cost of reconstructing any lost original data 

30 
and regenerating any lost check data after a disk failure. 

For example, for M=l check drive, a single parity drive 
can function as the check drive (i.e., a RAID4 system). Here, 
the arithmetic operation is bitwise exclusive OR of each of 
the N corresponding data bytes in each data block of the 35 
stripe. In addition, as mentioned earlier, the assignment of 
parity blocks from different stripes to the same drive (i.e., 
RAID4) or different drives (i.e., RAIDS) is arbitrary, but it 
does simplify the description and implementation to use a 
consistent assignment between stripes, so that will be 40 

assumed throughout. Since M=l reduces to the case of a 
single parity drive, it will further be assumed for simplicity 
that M;;,;2 throughout. 

For such larger values ofM, Galois field arithmetic is used 
to manipulate the data, as described in more detail later. 
Galois field arithmetic, for Galois fields of powers-of-2 
( such as 2i numbers of elements, includes two fundamental 
operations: (1) addition (which is just bitwise exclusive OR, 
as with the parity drive-only operations for M=l), and (2) 
multiplication. While Galois field (GF) addition is trivial on 
standard processors, GF multiplication is not. Accordingly, 
a significant component of RAID performance for M;;,;2 is 
speeding up the performance ofGF multiplication, as will be 
discussed later. For purposes of description, GF addition will 
be represented by the symbol+throughout while GF multi
plication will be represented by the symbolxthroughout. 

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations 

45 

50 

55 

( over GF arithmetic) of the N data drives of original data, 
one linear combination (i.e., a GF sum of N terms, where 60 

each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective 
data drive) for each check drive, as applied to respective 
bytes in each block. One such linear combination can be a 
simple parity, i.e., entirely GF addition (all factors equal 1), 65 

such as a GF sum of the first byte in each block of original 
data as described above. 

IDM E can also be represented as 

where IN represents the NxN identity matrix (i.e., the origi
nal (unencoded) data) and H represents the MxN matrix of 
factors for the check drives (where each of the M rows 
corresponds to one of the M check drives and each of the N 
colunms corresponds to one of the N data drives). 

Thus, 

0 0 

0 0 

£=[;]= 0 0 

Hu H12 H1N 

H21 H22 H2N 

HM! HM2 HMN 

where H,rfactor for check drive i and data drive j. Thus, the 
rows of encoded data C represent blocks, while the colunms 
represent corresponding bytes of each of the drives. In 
addition, check factors H, original data D, and check data J 
are related by the formula J=HxD (that is, matrix multipli
cation), or 

lu 112 l1L Hu H12 H1N 

h1 h2 hL H21 H22 H2N 
X 

JM! JM2 ]ML HM! HM2 HMN 

Du D12 D1L 

D21 D22 D2L 

DNI DN2 DNL 

where J11=(H11 xD11 )+(H12xD21 )+ ... +(H1NxDN1), J12= 
(H11XD12)+(H12XD22)+ ... +(H1NXDN2), l21=CH21XD11)+ 
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xDv)+ 
(Hi2xD2)+ ... +(H,NxDNf) for lsisM and lsjsL. 

Such an encoding matrix E is also referred to as an 
information dispersal matrix (IDM). It should be noted that 
matrices such as check drive encoding matrix H and identity 
matrix IN also represent encoding matrices, in that they 
represent matrices of factors to produce linear combinations 
over GF arithmetic of the original data. In practice, the 
identity matrix IN is trivial and may not need to be con-
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structed as part of the IDM E. Only the encoding matrix E, 
however, will be referred to as the IDM. Methods of building 
an encoding matrix such as IDM E or check drive encoding 
matrix Hare discussed below. In further embodiments of the 
present invention (as discussed further in Appendix A), such 5 

(N+M)xN (or MxN) matrices can be trivially constructed 
( or simply indexed) from a master encoding matrix S, which 
is composed of (Nmax+Mmax)xNmax (or MmaxxNmax) bytes 
or elements, where Nmax+Mmax=256 (or some other power 
of two) and NsNmax and MsMmax· For example, one such lO 

master encoding matrix S can include a 127x127 element 
identity matrix on top (for up to Nmax=l27 data drives), a 
row of l's (for a parity drive), and a 128x127 element 
encoding matrix on bottom (for up to Mmax=l29 check 

15 
drives, including the parity drive), for a total of Nmax+ 
Mmax =256 drives. 

The original data, in turn, can be represented by an NxL 
matrix D of bytes, each of the N rows representing the L 
bytes of a block of the corresponding one of the N data 20 

drives. If C represents the corresponding (N+M)xL matrix 
of encoded bytes (where each of the N+M rows corresponds 
to one of the N+M data and check drives), then C can be 

14 

thus represents a permuted original data matrix D' (that is, 
the original data matrix D, only with the surviving original 
data X on top and the lost original data Y on bottom. It 
should be noted that once the lost original data Y is recon-
structed, it can be combined with the surviving original data 
X to restore the original data D, from which the check data 
for any of the failed check drives can be regenerated. 

It should also be noted that M-G check drives survive. In 
order to reconstruct the lost original data Y, enough (that is, 
at least N) total drives must survive. Given that K=N-F data 
drives survive, and that M-G check drives survive, it 
follows that (N-F)+(M-G);;,;N must be true to reconstruct 
the lost original data Y. This is equivalent to F+GsM (i.e., 
no more than F+G drives fail), or FsM-G (that is, the 
number of failed data drives does not exceed the number of 
surviving check drives). It will therefore be assumed for 
simplicity that FsM-G. 

In the routines that follow, performance can be enhanced 
by prebuilding lists of the failed and surviving data and 
check drives (that is, four separate lists). This allows pro-represented as 

[/N] [/NxD] [D] 
ExD = H xD = HxD = J , 

25 cessing of the different sets of surviving and failed drives to 
be done more efficiently than existing solutions, which use, 
for example, bit vectors that have to be examined one bit at 
a time and often include large numbers of consecutive zeros 
( or ones) when ones ( or zeros) are the bit values of interest. 

30 
FIG. 2 shows an exemplary method 300 for reconstruct-

ing lost data after a failure of one or more drives according 
to an embodiment of the present invention. 

where J=HxD is an MxL matrix of check data, with each of 
the M rows representing the L check bytes of the corre
sponding one of the M check drives. It should be noted that 
in the relationships such as C=ExD or J=HxD, x represents 
matrix multiplication over the Galois field (i.e., GF multi
plication and GF addition being used to generate each of the 
entries in, for example, C or 

While the recovery process is described in more detail 
later, briefly it consists of two parts: (1) determining the 
solution matrix, and (2) reconstructing the lost data from the 

35 surviving data. Determining the solution matrix can be done 
in three steps with the following algorithm (Algorithm 1 ), 
with reference to FIG. 2: 

In exemplary embodiments of the present invention, the 
first row of the check drive encoding matrix H ( or the 
(N+l)'h row of the IDM E) can be all l's, representing the 40 

parity drive. For linear combinations involving this row, the 
GF multiplication can be bypassed and replaced with a GF 
sum of the corresponding bytes since the products are all 
trivial products involving the identity element 1. Accord
ingly, in parity drive implementations, the check drive 45 

encoding matrix H can also be thought of as an (M-l)xN 
matrix of non-trivial factors (that is, factors intended to be 
used in GF multiplication and not just GF addition). 

Much of the RAID processing involves generating the 
check data when new or changed data is written to ( or back 50 

to) disk. The other significant event for RAID processing is 
when one or more of the drives fail ( data or check drives), 
or for whatever reason become unavailable. Assume that in 
such a failure scenario, F data drives fail and G check drives 
fail, where F and G are nonnegative integers. If F=0, then 55 

only check drives failed and all of the original data D 
survived. In this case, the lost check data can be regenerated 
from the original data D. 

Accordingly, assume at least one data drive fails, that is, 
F;;,;l, and let K=N-F represent the number of data drives that 60 

survive. K is also a nonnegative integer. In addition, let X 
represent the surviving original data and Y represent the lost 
original data. That is, Xis a KxL matrix composed of the K 
rows of the original data matrix D corresponding to the K 
surviving data drives, while Y is an FxL matrix composed of 65 

the F rows of the original data matrix D corresponding to the 
F failed data drives. 

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to 
an N xN reduced encoding matrix T ( also referred to as 
the transformed IDM) including the K surviving data 
drive rows and any F of the M-G surviving check drive 
rows (for instance, the first F surviving check drive 
rows, as these will include the parity drive if it sur
vived; recall that FsM-G was assumed). In addition, 
the colunms of the reduced encoding matrix T are 
rearranged so that the K colunms corresponding to the 
K surviving data drives are on the left side of the matrix 
and the F colunms corresponding to the F failed drives 
are on the right side of the matrix. (Step 320) These F 
surviving check drives selected to rebuild the lost 
original data Y will henceforth be referred to as "the F 
surviving check drives," and their check data W will be 
referred to as "the surviving check data," even though 
M-G check drives survived. It should be noted that W 
is an FxL matrix composed of the F rows of the check 
data J corresponding to the F surviving check drives. 
Further, the surviving encoded data can be represented 
as a sub-matrix C' of the encoded data C. The surviving 
encoded data C' is an N xL matrix composed of the 
surviving original data X on top and the surviving 
check data Won bottom, that is, 
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2. (Step 330) Splitting the reduced encoding matrix Tinto 
four sub-matrices (that are also encoding matrices): (i) 

16 

a KxK identity matrix IK (corresponding to the K 
surviving data drives) in the upper left, (ii) a KxF 
matrix O of zeros in the upper right, (iii) an FxK 5 

encoding matrix A in the lower left corresponding to 
the F surviving check drive rows and the K surviving 
data drive colunms, and (iv) an FxF encoding matrix B 

detail later. Nonetheless, this is a significant improvement 
over existing solutions, which require O(N3

) operations, 
since the number of failed data drives F is usually signifi-
cantly less than the number of data drives N in any practical 
situation. 

(Step 350 in FIG. 2) Once the encoding matrix A and the 
solution matrix B-1 are known, reconstructing the lost data 
from the surviving data (that is, the surviving original data 
X and the surviving check data W) can be accomplished in 
four steps using the following algorithm (Algorithm 2): 

in the lower right corresponding to the F surviving 
check drive rows and the F failed data drive colunms. 10 

1. Use A and the surviving original data X (using matrix 
multiplication) to generate the surviving check data 
(i.e., AxX), only limited to the K surviving data drives. 

Thus, the reduced encoding matrix T can be repre
sented as 

15 

Call this limited check data the surviving partial check 
data. 

3. (Step 340) Calculating the inverse B-1 of the FxF 
encoding matrix B. As is shown in more detail in 20 

Appendix A, C'=TxD', or 

2. Subtract this surviving partial check data from the 
surviving check data W (using matrix subtraction, i.e., 
W-AxX, which is just entry-by-entry GF subtraction, 
which is the same as GF addition for this Galois field). 
This generates the surviving check data, only this time 
limited to the F failed data drives. Call this limited 
check data the lost partial check data. 

25 

3. Use the solution matrix B-1 and the lost partial check 
data (using matrix multiplication, i.e., B-1x(W-AxX) 
to reconstruct the lost original data Y. Call this the 
recovered original data Y. 

4. Use the corresponding rows of the IDM E (or master 
which is mathematically equivalent to W=AxX+BxY. B-1 is 
the solution matrix, and is itself an FxF encoding matrix. 
Calculating the solution matrix B-1 thus allows the lost 30 

original data Y to be reconstructed from the encoding 
matrices A and B along with the surviving original data X 
and the surviving check data W. 

encoding matrix 5) for each of the G failed check drives 
along with the original data D, as reconstructed from 
the surviving and recovered original data X and Y, to 
regenerate the lost check data (using matrix multipli-
cation). 

As will be shown in more detail later, steps 1-3 together 
require O(F) operations times the amount of original data D The FxK encoding matrix A represents the original encod

ing matrix E, only limited to the K surviving data drives and 
the F surviving check drives. That is, each of the F rows of 
A represents a different one of the F surviving check drives, 
while each of the K colunms of A represents a different one 
of the K surviving data drives. Thus, A provides the encod
ing factors needed to encode the original data for the 
surviving check drives, but only applied to the surviving 
data drives (that is, the surviving partial check data). Since 
the surviving original data X is available, A can be used to 
generate this surviving partial check data. 

In similar fashion, the FxF encoding matrix B represents 
the original encoding matrix E, only limited to the F 
surviving check drives and the F failed data drives. That is, 
the F rows of B correspond to the same F rows of A, while 
each of the F colunms of B represents a different one of the 
F failed data drives. Thus, B provides the encoding factors 
needed to encode the original data for the surviving check 
drives, but only applied to the failed data drives (that is, the 
lost partial check data). Since the lost original data Y is not 
available, B cannot be used to generate any of the lost partial 
check data. However, this lost partial check data can be 
determined from A and the surviving check data W. Since 
this lost partial check data represents the result of applying 
B to the lost original data Y, B-1 thus represents the neces
sary factors to reconstruct the lost original data Y from the 
lost partial check data. 

It should be noted that steps 1 and 2 in Algorithm 1 above 
are logical, in that encoding matrices A and B ( or the reduced 
encoding matrix T, for that matter) do not have to actually 

35 to reconstruct the lost original data Y for the F failed data 
drives (i.e., roughly 1 operation per failed data drive per byte 
of original data D), which is proportionally equivalent to the 
O(M) operations times the amount of original data D needed 
to generate the check data J for the M check drives (i.e., 

40 roughly 1 operation per check drive per byte of original data 
D). In addition, this same equivalence extends to step 4, 
which takes O(G) operations times the amount of original 
data D needed to regenerate the lost check data for the G 
failed check drives (i.e., roughly 1 operation per failed check 

45 drive per byte of original data D). In summary, the number 
of operations needed to reconstruct the lost data is O(F +G) 
times the amount of original data D (i.e., roughly 1 operation 
per failed drive ( data or check) per byte of original data D). 
Since F+GsM, this means that the computational complex-

50 ity of Algorithm 2 (reconstructing the lost data from the 
surviving data) is no more than that of generating the check 
data J from the original data D. 

As mentioned above, for exemplary purposes and ease of 
description, data is assumed to be organized in 8-bit bytes, 

55 each byte capable of taking on 28=256 possible values. Such 
data can be manipulated in byte-size elements using GF 
arithmetic for a Galois field of size 28=256 elements. It 
should also be noted that the same mathematical principles 
apply to any power-of-two 2P number of elements, not just 

60 256, as Galois fields can be constructed for any integral 
power of a prime number. Since Galois fields are finite, and 
since GF operations never overflow, all results are the same 
size as the inputs, for example, 8 bits. 

be constructed. Appropriate indexing of the ID M E ( or the 
master encoding matrix S) can be used to obtain any of their 65 

entries. Step 3, however, is a matrix inversion over GF 
arithmetic and takes O(F3

) operations, as discussed in more 

In a Galois field of a power-of-two number of elements, 
addition and subtraction are the same operation, namely a 
bitwise exclusive OR (XOR) of the two operands. This is a 
very fast operation to perform on any current processor. It 
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can also be performed on multiple bytes concurrently. Since 
the addition and subtraction operations take place, for 
example, on a byte-level basis, they can be done in parallel 
by using, for instance, x86 architecture Streaming SIMD 
Extensions (SSE) instructions (SIMD stands for single 5 

instruction, multiple data, and refers to performing the same 
instruction on different pieces of data, possibly concur
rently), such as PXOR (Packed (bitwise) Exclusive OR). 

SSE instructions can process, for example, 16-byte reg
isters (XMM registers), and are able to process such regis- 10 

ters as though they contain 16 separate one-byte operands 
(or 8 separate two-byte operands, or four separate four-byte 
operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to 
processing a byte at a time. Further, there are 16 XMM 15 

registers, so dedicating four such registers for operand 
storage allows the data to be processed in 64-byte incre
ments, using the other 12 registers for temporary storage. 
That is, individual operations can be performed as four 
consecutive SSE operations on the four respective registers 20 

(64 bytes), which can often allow such instructions to be 
efficiently pipelined and/or concurrently executed by the 
processor. In addition, the SSE instructions allows the same 
processing to be performed on different such 64-byte incre
ments of data in parallel using different cores. Thus, using 25 

four separate cores can potentially speed up this processing 
by an additional factor of 4 over using a single core. 

For example, a parallel adder (Parallel Adder) can be built 
using the 16-byte XMM registers and four consecutive 
PXOR instructions. Such parallel processing (that is, 64 30 

bytes at a time with only a few machine-level instructions) 
for GF arithmetic is a significant improvement over doing 
the addition one byte at a time. Since the data is organized 
in blocks of any fixed number of bytes, such as 4096 bytes 
( 4 kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can 35 

be composed of numerous such 64-byte chunks (e.g., 64 
separate 64-byte chunks in 4 KB, or 512 chunks in 32 KB). 

Multiplication in a Galois field is not as straightforward. 
While much of it is bitwise shifts and exclusive OR's (i.e., 
"additions") that are very fast operations, the numbers 40 

"wrap" in peculiar ways when they are shifted outside of 
their normal bounds (because the field has only a finite set 
of elements), which can slow down the calculations. This 
"wrapping" in the GF multiplication can be addressed in 
many ways. For example, the multiplication can be imple- 45 

mented serially (Serial Multiplier) as a loop iterating over 
the bits of one operand while performing the shifts, adds, 
and wraps on the other operand. Such processing, however, 
takes several machine instructions per bit for 8 separate bits. 
In other words, this technique requires dozens of machine 50 

instructions per byte being multiplied. This is inefficient 
compared to, for example, the performance of the Parallel 
Adder described above. 

18 
multiplied with 64 consecutive data block bytes at a time. 
This is similar to the Parallel Adder described above, only 
there are several more operations needed to perform the 
operation. While this can be implemented as a loop on each 
bit of the factor, as described above, only performing the 
shifts, adds, and wraps on 64 bytes at a time, it can be more 
efficient to process the 256 possible factors as a (C language) 
switch statement, with inline code for each of 256 different 
combinations of two primitive GF operations: Multiply-by-2 
and Add. For example, GF multiplication by the factor 3 can 
be effected by first doing a Multiply-by-2 followed by an 
Add. Likewise, GF multiplication by 4 is just a Multiply
by-2 followed by a Multiply-by-2 while multiplication by 6 
is a Multiply-by-2 followed by an Add and then by another 
Multiply-by-2. 

While this Add is identical to the Parallel Adder described 
above (e.g., four consecutive PXOR instructions to process 
64 separate bytes), Multiply-by-2 is not as straightforward. 
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4 
consecutive PXOR instructions, 4 consecutive PCMPGTB 
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive 
PAND (Bitwise AND) instructions, and 4 consecutive 
PXOR instructions. Though this takes 20 machine instruc
tions, the instructions are very fast and results in 64 con-
secutive bytes of data at a time being multiplied by 2. 

For 64 bytes of data, assuming a random factor between 
0 and 255, the total overhead for the Parallel Multiplier is 
about 6 calls to multiply-by-2 and about 3.5 calls to add, or 
about 6x20+3.5x4=134 machine instructions, or a little over 
2 machine instructions per byte of data. While this compares 
favorably with byte-level processing, it is still possible to 
improve on this by building a parallel multiplier with a table 
lookup (Parallel Lookup Multiplier) using the PSHUFB 
(Packed Shuffle Bytes) instruction and doing the GF multi-
plication in 4-bit nibbles (half bytes). 

FIG. 3 shows an exemplary method 400 for performing a 
parallel lookup Galois field multiplication according to an 
embodiment of the present invention. 

Referring to FIG. 3, in step 410, two lookup tables are 
built once: one lookup table for the low-order nibbles in each 
byte, and one lookup table for the high-order nibbles in each 
byte. Each lookup table contains 256 sets (one for each 
possible factor) of the 16 possible GF products of that factor 
and the 16 possible nibble values. Each lookup table is thus 
256x16=4096 bytes, which is considerably smaller than the 
65,536 bytes needed to store a complete one-byte multipli
cation table. In addition, PSHUFB does 16 separate table 
lookups at once, each for one nibble, so 8 PSHUFB instruc
tions can be used to do all the table lookups for 64 bytes (128 
nibbles). 

Next, in step 420, the Parallel Lookup Multiplier is 
initialized for the next set of 64 bytes of operand data (such For another approach (Serial Lookup Multiplier), multi

plication tables ( of all the possible products, or at least all the 
non-trivial products) can be pre-computed and built ahead of 
time. For example, a table of 256x256=65,536 bytes can 
hold all the possible products of the two different one-byte 
operands). However, such tables can force serialized access 
on what are only byte-level operations, and not take advan
tage of wide (concurrent) data paths available on modern 
processors, such as those used to implement the Parallel 
Adder above. 

55 as original data or surviving original data). In order to save 
loading this data from memory on succeeding calls, the 
Parallel Lookup Multiplier dedicates four registers for this 
data, which are left intact upon exit of the Parallel Lookup 
Multiplier. This allows the same data to be called with 

In still another approach (Parallel Multiplier), the GF 
multiplication can be done on multiple bytes at a time, since 
the same factor in the encoding matrix is multiplied with 
every element in a data block. Thus, the same factor can be 

60 different factors (such as processing the same data for 
another check drive). 

Next in step 430, to process these 64 bytes of operand 
data, the Parallel Lookup Multiplier can be implemented 
with 2 MOVDQA (Move Double Quadword Aligned) 

65 instructions (from memory) to do the two table lookups and 
4 MOVDQA instructions (register to register) to initialize 
registers (such as the output registers). These are followed in 
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steps 440 and 450 by two nearly identical sets of 17 
register-to-register instructions to carry out the multiplica
tion 32 bytes at a time. Each such set starts (in step 440) with 
5 more MOVDQA instructions for further initialization, 
followed by 2 PSRLW (Packed Shift Right Logical Word) 5 

instructions to realign the high-order nibbles for PSHUFB, 
and 4 PAND instructions to clear the high-order nibbles for 
PSHUFB. That is, two registers of byte operands are con
verted into four registers of nibble operands. Then, in step 
450, 4 PSHUFB instructions are used to do the parallel table 10 

lookups, and 2 PXOR instructions to add the results of the 
multiplication on the two nibbles to the output registers. 

Thus, the Parallel Lookup Multiplier uses 40 machine 
instructions to perform the parallel multiplication on 64 

15 
separate bytes, which is considerably better than the average 
134 instructions for the Parallel Multiplier above, and only 
10 times as many instructions as needed for the Parallel 
Adder. While some of the Parallel Lookup Multiplier's 
instructions are more complex than those of the Parallel 20 

Adder, much of this complexity can be concealed through 
the pipelined and/or concurrent execution of numerous such 
contiguous instructions (accessing different registers) on 
modern pipelined processors. For example, in exemplary 
implementations, the Parallel Lookup Multiplier has been 25 

timed at about 15 CPU clock cycles per 64 bytes processed 
per CPU core (about 0.36 clock cycles per instruction). In 
addition, the code footprint is practically nonexistent for the 
Parallel Lookup Multiplier (40 instructions) compared to 
that of the Parallel Multiplier (about 34,300 instructions), 30 

even when factoring the 8 KB needed for the two lookup 
tables in the Parallel Lookup Multiplier. 

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data ( such as the next 

35 
64 bytes of surviving original data X to be processed) in four 
consecutive registers, whose contents can be preserved upon 
exiting the Parallel Lookup Multiplier (and all in the same 

20 
and adding the products to the =ing total in memory 
(using the Parallel Adder) before moving onto the next 
row ( data drive); and 

2) "row-by-row," i.e., 64 bytes for one data drive, fol
lowed by the corresponding 64 bytes for the next data 
drive, etc., and keeping a running total using the 
Parallel Adder, then moving onto the next set of 64-byte 
chunks. 

Colunm-by-colunm can be thought of as "constant factor, 
varying data," in that the (GF multiplication) factor usually 
remains the same between iterations while the ( 64-byte) data 
changes with each iteration. Conversely, row-by-row can be 
thought of as "constant data, varying factor," in that the data 
usually remains the same between iterations while the factor 
changes with each iteration. 

Another consideration is how to handle the check drives. 
Two possible ways are: 

a) one at a time, i.e., generate all the check data for one 
check drive before moving onto the next check drive; 
and 

b) all at once, i.e., for each 64-byte chunk of original data, 
do all of the processing for each of the check drives 
before moving onto the next chunk of original data. 

While each of these techniques performs the same basic 
operations ( e.g., 40 instructions for every 64 bytes of data 
for each of the N data drives and M-1 non-parity check 
drives, or 5N(M-1)/8 instructions per byte for the Parallel 
Lookup Multiplier), empirical results show that combination 
(2)(b ), that is, row-by-row data access on all of the check 
drives between data accesses performs best with the Parallel 
Lookup Multiplier. One reason may be that such an 
approach appears to minimize the number of memory 
accesses (namely, one) to each chunk of the original data D 
to generate the check data J. This embodiment of Sequencer 
1 is described in more detail with reference to FIG. 4. 

FIG. 4 shows an exemplary method 500 for sequencing 
the Parallel Lookup Multiplier to perform the check data 
generation according to an embodiment of the present 
invention. 

Referring to FIG. 4, in step 510, the Sequencer 1 is called. 
Sequencer 1 is called to process multiple 64-byte chunks of 
data for each of the blocks across a stripe of data. For 
instance, Sequencer 1 could be called to process 512 bytes 
from each block. If, for example, the block size L is 4096 

40 machine instructions) such that the Parallel Lookup 
Multiplier can be invoked again on the same 64 bytes of data 40 

without having to access main memory to reload the data. 
Through such a protocol, memory accesses can be mini
mized ( or significantly reduced) for accessing the original 
data D during check data generation or the surviving original 
data X during lost data reconstruction. 

Further embodiments of the present invention are directed 
towards sequencing this parallel multiplication (and other 
GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data 
times a specified factor, the calls to the Parallel Lookup 50 

Multiplier should be appropriately sequenced to provide 
efficient processing. One such sequencer (Sequencer 1), for 
example, can generate the check data J from the original data 

45 bytes, then it would take eight such calls to Sequencer 1 to 
process the entire stripe. The other such seven calls to 
Sequencer 1 could be to different processing cores, for 
instance, to carry out the check data generation in parallel. 

D, and is described further with respect to FIG. 4. 

The number of 64-byte chunks to process at a time could 
depend on factors such as cache dimensions, input/output 
data structure sizes, etc. 

In step 520, the outer loop processes the next 64-byte 

The parity drive does not need GF multiplication. The 55 

check data for the parity drive can be obtained, for example, 

chunk of data for each of the drives. In order to minimize the 
number of accesses of each data drive's 64-byte chunk of 
data from memory, the data is loaded only once and pre
served across calls to the Parallel Lookup Multiplier. The 

by adding corresponding 64-byte chunks for each of the data 
drives to perform the parity operation. The Parallel Adder 
can do this using 4 instructions for every 64 bytes of data for 
each of the N data drives, or N/16 instructions per byte. 

The M-1 non-parity check drives can invoke the Parallel 
Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 
check drive. One consideration is how to handle the data 
access. Two possible ways are: 

1) "colunm-by-colunm," i.e., 64 bytes for one data drive, 
followed by the next 64 bytes for that data drive, etc., 

first data drive is handled specially since the check data has 
to be initialized for each check drive. Using the first data 
drive to initialize the check data saves doing the initializa-

60 tion as a separate step followed by updating it with the first 
data drive' s data. In addition to the first data drive, the first 
check drive is also handled specially since it is a parity drive, 
so its check data can be initialized to the first data drive's 

65 

data directly without needing the Parallel Lookup Multiplier. 
In step 530, the first middle loop is called, in which the 

remainder of the check drives (that is, the non-parity check 
drives) have their check data initialized by the first data 
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drive's data. In this case, there is a corresponding factor (that 
varies with each check drive) that needs to be multiplied 
with each of the first data drive's data bytes. This is handled 
by calling the Parallel Lookup Multiplier for each non-parity 
check drive. 

In step 540, the second middle loop is called, which 
processes the other data drives' corresponding 64-byte 
chunks of data. As with the first data drive, each of the other 
data drives is processed separately, loading the respective 64 
bytes of data into four registers (preserved across calls to the 
Parallel Lookup Multiplier). In addition, since the first check 
drive is the parity drive, its check data can be updated by 
directly adding these 64 bytes to it (using the Parallel Adder) 
before handling the non-parity check drives. 

In step 550, the inner loop is called for the next data drive. 
In the inner loop (as with the first middle loop), each of the 
non-parity check drives is associated with a corresponding 
factor for the particular data drive. The factor is multiplied 
with each of the next data drive's data bytes using the 
Parallel Lookup Multiplier, and the results added to the 
check drive's check data. 

Another such sequencer (Sequencer 2) can be used to 
reconstruct the lost data from the surviving data (using 
Algorithm 2). While the same column-by-colunm and row
by-row data access approaches are possible, as well as the 
same choices for handling the check drives, Algorithm 2 
adds another dimension of complexity because of the four 
separate steps and whether to: (i) do the steps completely 
serially or (ii) do some of the steps concurrently on the same 
data. For example, step 1 (surviving check data generation) 
and step 4 (lost check data regeneration) can be done 
concurrently on the same data to reduce or minimize the 
number of surviving original data accesses from memory. 

22 
is the partial check data encoding matrix (for the surviving 
check drives and the surviving data drives), and X is the 
surviving original data. 

In step 620, the outer loop processes the next 64-byte 
5 chunk of data for each of the drives. Like Sequencer 1, the 

first surviving data drive is again handled specially since the 
partial check data AxX has to be initialized for each sur
viving check drive. 

In step 630, the first middle loop is called, in which the 
10 partial check data AxX is initialized for each surviving 

check drive based on the first surviving data drive's 64 bytes 
of data. In this case, the Parallel Lookup Multiplier is called 
for each surviving check drive with the corresponding factor 

15 
(from A) for the first surviving data drive. 

In step 640, the second middle loop is called, in which the 
lost check data is initialized for each failed check drive. 
Using the same 64 bytes of the first surviving data drive 
(preserved across the calls to Parallel Lookup Multiplier in 

20 step 630), the Parallel Lookup Multiplier is again called, this 
time to initialize each of the failed check drive's check data 
to the corresponding component from the first surviving data 
drive. This completes the computations involving the first 
surviving data drive's 64 bytes of data, which were fetched 

25 with one access from main memory and preserved in the 
same four registers across steps 630 and 640. 

Continuing with FIG. 6, in step 650, the third middle loop 
is called, which processes the other surviving data drives' 
corresponding 64-byte chunks of data. As with the first 

30 surviving data drive, each of the other surviving data drives 
is processed separately, loading the respective 64 bytes of 
data into four registers (preserved across calls to the Parallel 
Lookup Multiplier). 

In step 660, the first inner loop is called, in which the 
35 partial check data AxX is updated for each surviving check 

drive based on the next surviving data drive's 64 bytes of 
data. In this case, the Parallel Lookup Multiplier is called for 
each surviving check drive with the corresponding factor 

Empirical results show that method (2)(b )(ii), that is, 
row-by-row data access on all of the check drives and for 
both surviving check data generation and lost check data 
regeneration between data accesses performs best with the 
Parallel Lookup Multiplier when reconstructing lost data 
using Algorithm 2. Again, this may be due to the apparent 40 

minimization of the number of memory accesses (namely, 
one) of each chunk of surviving original data X to recon
struct the lost data and the absence of memory accesses of 
reconstructed lost original data Y when regenerating the lost 
check data. This embodiment of Sequencer 1 is described in 
more detail with reference to FIGS. 5-7. 

(from A) for the next surviving data drive. 
In step 670, the second inner loop is called, in which the 

lost check data is updated for each failed check drive. Using 
the same 64 bytes of the next surviving data drive (preserved 
across the calls to Parallel Lookup Multiplier in step 660), 
the Parallel Lookup Multiplier is again called, this time to 

45 update each of the failed check drive's check data by the 
corresponding component from the next surviving data 
drive. This completes the computations involving the next 
surviving data drive's 64 bytes of data, which were fetched 
with one access from main memory and preserved in the 

FIGS. 5-7 show an exemplary method 600 for sequencing 
the Parallel Lookup Multiplier to perform the lost data 
reconstruction according to an embodiment of the present 
invention. 50 same four registers across steps 660 and 670. 

Referring to FIG. 5, in step 610, the Sequencer 2 is called. Next, in step 680, the computation of the partial check 
data AxX is complete, so the surviving check data W is 
added to this result (recall that W-AxX is equivalent to 
W+AxX in binary Galois Field arithmetic). This is done by 

Sequencer 2 has many similarities with the embodiment of 
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2 
processes the data drive data in 64-byte chunks like 
Sequencer 1. Sequencer 2 is more complex, however, in that 
only some of the data drive data is surviving; the rest has to 

55 the fourth middle loop, which for each surviving check drive 
adds the corresponding 64-byte component of surviving 
check data W to the (surviving) partial check data AxX 
(using the Parallel Adder) to produce the (lost) partial check 
data W-AxX. 

be reconstructed. In addition, lost check data needs to be 
regenerated. Like Sequencer 1, Sequencer 2 does these 
operations in such a way as to minimize memory accesses of 
the data drive data (by loading the data once and calling the 60 

Parallel Lookup Multiplier multiple times). Assume for ease 
of description that there is at least one surviving data drive; 
the case of no surviving data drives is handled a little 
differently, but not significantly different. In addition, recall 
from above that the driving formula behind data reconstruc- 65 

tion is Y=B- 1x(W-Axx), where Y is the lost original data, 
B- 1 is the solution matrix, Wis the surviving check data, A 

Continuing with FIG. 7, in step 690, the fifth middle loop 
is called, which performs the two dimensional matrix mul
tiplication B- 1 x(W-AxX) to produce the lost original data 
Y. The calculation is performed one row at a time, for a total 
of F rows, initializing the row to the first term of the 
corresponding linear combination of the solution matrix B- 1 

and the lost partial check data W-AxX (using the Parallel 
Lookup Multiplier). 
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These states may include: (1) Command Processing, to 
validate and schedule a host request (for example, to load or 
store data from disk storage); (2) Command Translation and 
Submission, to translate the host request into multiple disk 

In step 700, the third inner loop is called, which completes 
the remaining F-1 terms of the corresponding linear com
bination (using the Parallel Lookup Multiplier on each term) 
from the fifth middle loop in step 690 and updates the 
running calculation (using the Parallel Adder) of the next 
row of B- 1 x(W-AxX). This completes the next row (and 
reconstructs the corresponding failed data drive's lost data) 
of lost original data Y, which can then be stored at an 
appropriate location. 

5 requests and to pass the requests to the physical disks; (3) 
Error Correction, to generate check data and reconstruct lost 
data when some disks are not functioning correctly; and (4) 
Request Completion, to move data from internal buffers to 
requestor buffers. Note that the final state, Request Comple-

In step 710, the fourth inner loop is called, in which the 
lost check data is updated for each failed check drive by the 
newly reconstructed lost data for the next failed data drive. 
Using the same 64 bytes of the next reconstructed lost data 
(preserved across calls to the Parallel Lookup Multiplier), 
the Parallel Lookup Multiplier is called to update each of the 
failed check drives' check data by the corresponding com
ponent from the next failed data drive. This completes the 
computations involving the next failed data drive's 64 bytes 

10 tion, may only be needed for a RAID controller that supports 
caching, and can be avoided in a cacheless design. 

Parallelism is achieved in the embodiment of FIG. 8 by 
assigning different cores 120 to different tasks. For example, 
some of the cores 120 can be "command cores," that is, 

15 assigned to the I/O operations, which includes reading and 
storing the data and check bytes to and from memory 140 
and the disk drives via the I/O interface 150. Others of the 
cores 120 can be "data cores," and assigned to the GF 

of reconstructed data, which were performed as soon as the 
data was reconstructed and without being stored and 20 

retrieved from main memory. 

operations, that is, generating the check data from the 
original data, reconstructing the lost data from the surviving 
data, etc., including the Parallel Lookup Multiplier and the 
sequencers described above. For example, in exemplary 
embodiments, a scheduler can be used to divide the original 
data D into corresponding portions of each block, which can 

Finally, in step 720, the sixth middle loop is called. The 
lost check data has been regenerated, so in this step, the 
newly regenerated check data is stored at an appropriate 
location (if desired). 25 then be processed independently by different cores 120 for 

applications such as check data generation and lost data Aspects of the present invention can be also realized in 
other environments, such as two-byte quantities, each such 
two-byte quantity capable of taking on 216=65,536 possible 
values, by using similar constructs (scaled accordingly) to 
those presented here. Such extensions would be readily 30 

apparent to one of ordinary skill in the art, so their details 
will be omitted for brevity of description. 

Exemplary techniques and methods for doing the Galois 
field manipulation and other mathematics behind RAID 
error correcting codes are described in Appendix A, which 35 

contains a paper "Information Dispersal Matrices for RAID 
Error Correcting Codes" prepared for the present applica
tion. 
Multi-Core Considerations 

reconstruction. 
One of the benefits of this data core/command core 

subdivision of processing is ensuring that different code will 
be executed in different cores 120 (that is, command code in 
command cores, and data code in data cores). This improves 
the performance of the associated Ll cache in each core 120, 
and avoids the "pollution" of these caches with code that is 
less frequently executed. In addition, empirical results show 
that the dies 110 perform best when only one core 120 on 
each die 110 does the GF operations (i.e., Sequencer 1 or 
Sequencer 2, with corresponding calls to Parallel Lookup 
Multiplier) and the other cores 120 do the I/O operations. 
This helps localize the Parallel Lookup Multiplier code and 

What follows is an exemplary embodiment for optimizing 40 associated data to a single core 120 and not compete with 
other cores 120, while allowing the other cores 120 to keep 
the data moving between memory 140 and the disk drives 
via the I/O interface 150. 

or improving the performance of multi-core architecture 
systems when implementing the described erasure coding 
system routines. In multi-core architecture systems, each 
processor die is divided into multiple CPU cores, each with 
their own local caches, together with a memory (bus) 45 

interface and possible on-die cache to interface with a shared 
memory with other processor dies. 

FIG. 8 illustrates a multi-core architecture system 100 
having two processor dies 110 (namely, Die O and Die 1). 

Embodiments of the present invention yield scalable, high 
performance RAID systems capable of outperforming other 
systems, and at much lower cost, due to the use of high 
volume commodity components that are leveraged to 
achieve the result. This combination can be achieved by 
utilizing the mathematical techniques and code optimiza-
tions described elsewhere in this application with careful 
placement of the resulting code on specific processing cores. 
Embodiments can also be implemented on fewer resources, 
such as single-core dies and/or single-die systems, with 
decreased parallelism and performance optimization. 

The process of subdividing and assigning individual cores 
120 and/or dies 110 to inherently parallelizable tasks will 
result in a performance benefit. For example, on a Linux 
system, software may be organized into "threads," and 
threads may be assigned to specific CPUs and memory 
systems via the kthread_bind function when the thread is 
created. Creating separate threads to process the GF arith-
metic allows parallel computations to take place, which 
multiplies the performance of the system. 

Referring to FIG. 8, each die 110 includes four central 50 

processing units (CPUs or cores) 120 each having a local 
level 1 (Ll) cache. Each core 120 may have separate 
functional units, for example, an x86 execution unit (for 
traditional instructions) and a SSE execution unit (for soft
ware designed for the newer SSE instruction set). An 55 

example application of these function units is that the x86 
execution unit can be used for the RAID control logic 
software while the SSE execution unit can be used for the 
GF operation software. Each die 110 also has a level 2 (L2) 
cache/memory bus interface 130 shared between the four 60 

cores 120. Main memory 140, in tum, is shared between the 
two dies 110, and is connected to the input/output (I/O) 
controllers 150 that access external devices such as disk 
drives or other non-volatile storage devices via interfaces 
such as Peripheral Component Interconnect (PCI). 

Further, creating multiple threads for command process-
65 ing allows for fully overlapped execution of the command 

processing states. One way to accomplish this is to number 
each command, then use the arithmetic MOD function(% in 

Redundant array of independent disks (RAID) controller 
processing can be described as a series of states or functions. 
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C language) to choose a separate thread for each command. 
Another technique is to subdivide the data processing por
tion of each command into multiple components, and assign 
each component to a separate thread. 

FIG. 9 shows an exemplary disk drive configuration 200 5 

according to an embodiment of the present invention. 
Referring to FIG. 9, eight disks are shown, though this 

number can vary in other embodiments. The disks are 
divided into three types: data drives 210, parity drive 220, 
and check drives 230. The eight disks break down as three 10 

data drives 210, one parity drive 220, and four check drives 
230 in the embodiment of FIG. 9. 

26 
named as ECCinitialize, ECCSolve, ECCGenerate, and 
ECCRegenerate. The main functions that perform work are 
ECCGenerate and ECCRegenerate. ECCGenerate generates 
check codes for data that are used to recover data when a 
drive suffers an outage (that is, ECCGenerate generates the 
check data J from the original data D using Sequencer 1). 
ECCRegenerate uses these check codes and the remaining 
data to recover data after such an outage (that is, ECCRe
generate uses the surviving check data W, the surviving 
original data X, and Sequencer 2 to reconstruct the lost 
original data Y while also regenerating any of the lost check 
data). Prior to calling either of these functions, ECCSolve is 
called to compute the constants used for a particular con
figuration of data drives, check drives, and failed drives (for 

Each of the data drives 210 is used to hold a portion of 
data. The data is distributed uniformly across the data drives 
210 in stripes, such as 192 KB stripes. For example, the data 
for an application can be broken up into stripes of 192 KB, 
and each of the stripes in turn broken up into three 64 KB 
blocks, each of the three blocks being written to a different 
one of the three data drives 210. 

15 example, ECCSolve builds the solution matrix B-1 together 
with the lists of surviving and failed data and check drives). 
Prior to calling ECCSolve, ECCinitialize is called to gen
erate constant tables used by all of the other functions (for 
example, ECCinitialize builds the IDM E and the two 

20 lookup tables for the Parallel Lookup Multiplier). The parity drive 220 is a special type of check drive in that 
the encoding of its data is a simple summation (recall that 
this is exclusive OR in binary GF arithmetic) of the corre
sponding bytes of each of the three data drives 210. That is, 
check data generation (Sequencer 1) or regeneration (Se
quencer 2) can be performed for the parity drive 220 using 25 

the Parallel Adder (and not the Parallel Lookup Multiplier). 
Accordingly, the check data for the parity drive 220 is 
relatively straightforward to build. Likewise, when one of 
the data drives 210 no longer functions correctly, the parity 
drive 220 can be used to reconstruct the lost data by adding 30 

(same as subtracting in binary GF arithmetic) the corre
sponding bytes from each of the two remaining data drives 
210. Thus, a single drive failure of one of the data drives 210 
is very straightforward to handle when the parity drive 220 
is available (no Parallel Lookup Multiplier). Accordingly, 35 

the parity drive 220 can replace much of the GF multipli
cation operations with GF addition for both check data 
generation and lost data reconstruction. 

Each of the check drives 230 contains a linear combina
tion of the corresponding bytes of each of the data drives 40 

210. The linear combination is different for each check drive 
230, but in general is represented by a summation of 
different multiples of each of the corresponding bytes of the 
data drives 210 (again, all arithmetic being GF arithmetic). 
For example, for the first check drive 230, each of the bytes 45 

of the first data drive 210 could be multiplied by 4, each of 
the bytes of the second data drive 210 by 3, and each of the 
bytes of the third data drive 210 by 6, then the corresponding 
products for each of the corresponding bytes could be added 
to produce the first check drive data. Similar linear combi- 50 

nations could be used to produce the check drive data for the 
other check drives 230. The specifics of which multiples for 
which check drive are explained in Appendix A. 

With the addition of the parity drive 220 and check drives 
230, eight drives are used in the RAID system 200 of FIG. 55 

9. Accordingly, each 192 KB of original data is stored as 512 
KB (i.e., eight blocks of 64 KB) of (original plus check) 
data. Such a system 200, however, is capable of recovering 

ECCinitialize 
The function ECCinitialize creates constant tables that are 

used by all subsequent functions. It is called once at program 
initialization time. By copying or precomputing these values 
up front, these constant tables can be used to replace more 
time-consuming operations with simple table look-ups (such 
as for the Parallel Lookup Multiplier). For example, four 
tables useful for speeding up the GF arithmetic include: 

1. mvct-an array of constants used to perform GF 
multiplication with the PSHUFB instruction that operates on 
SSE registers (that is, the Parallel Lookup Multiplier). 

2. mast----contains the master encoding matrix S (or the 
Information Dispersal Matrix (IDM) E, as described in 
Appendix A), or at least the nontrivial portion, such as the 
check drive encoding matrix H 

3. mul_tab----contains the results of all possible GF mul
tiplication operations of any two operands (for example, 
256x256=65,536 bytes for all of the possible products of 
two different one-byte quantities) 

4. div_tab----contains the results of all possible GF divi
sion operations of any two operands ( can be similar in size 
to mul_tab) 

ECC Solve 
The function ECCSolve creates constant tables that are 

used to compute a solution for a particular configuration of 
data drives, check drives, and failed drives. It is called prior 
to using the functions ECCGenerate or ECCRegenerate. It 
allows the user to identify a particular case of failure by 
describing the logical configuration of data drives, check 
drives, and failed drives. It returns the constants, tables, and 
lists used to either generate check codes or regenerate data. 
For example, it can return the matrix B that needs to be 
inverted as well as the inverted matrix B-1 (i.e., the solution 
matrix). 

ECCGenerate 
The function ECCGenerate is used to generate check 

codes (that is, the check data matrix J) for a particular 
configuration of data drives and check drives, using 
Sequencer 1 and the Parallel Lookup Multiplier as described all of the original data provided any three of these eight 

drives survive. 
That is, the system 200 can withstand a concurrent failure 

of up to any five drives and still preserve all of the original 
data. 

60 above. Prior to calling ECCGenerate, ECCSolve is called to 
compute the appropriate constants for the particular con
figuration of data drives and check drives, as well as the 
solution matrix B-1

. 

Exemplary Routines to Implement an Embodiment 
The error correcting code (ECC) portion of an exemplary 65 

embodiment of the present invention may be written in 
software as, for example, four functions, which could be 

ECCRegenerate 
The function ECCRegenerate is used to regenerate data 

vectors and check code vectors for a particular configuration 
of data drives and check drives (that is, reconstructing the 
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original data matrix D from the surviving data matrix X and 
the surviving check matrix W, as well as regenerating the 
lost check data from the restored original data), this time 
using Sequencer 2 and the Parallel Lookup Multiplier as 
described above. Prior to calling ECCRegenerate, 
ECCSolve is called to compute the appropriate constants for 
the particular configuration of data drives, check drives, and 
failed drives, as well as the solution matrix B-1

. 

Exemplary Implementation Details 

As discussed in Appendix A, there are two significant 
sources of computational overhead in erasure code process
ing ( such as an erasure coding system used in RAID 
processing): the computation of the solution matrix B-1 for 
a given failure scenario, and the byte-level processing of 
encoding the check data J and reconstructing the lost data 
after a lost packet (e.g., data drive failure). By reducing the 
solution matrix B-1 to a matrix inversion of a FxF matrix, 
where F is the number of lost packets (e.g., failed drives), 
that portion of the computational overhead is for all intents 
and purposes negligible compared to the megabytes (MB), 
gigabytes (GB), and possibly terabytes (TB) of data that 
needs to be encoded into check data or reconstructed from 
the surviving original and check data. Accordingly, the 
remainder of this section will be devoted to the byte-level 
encoding and regenerating processing. 

As already mentioned, certain practical simplifications 
can be assumed for most implementations. By using a Galois 
field of 256 entries, byte-level processing can be used for all 
of the GF arithmetic. Using the master encoding matrix S 
described in Appendix A, any combination of up to 127 data 
drives, 1 parity drive, and 128 check drives can be supported 
with such a Galois field. While, in general, any combination 
of data drives and check drives that adds up to 256 total 
drives is possible, not all combinations provide a parity drive 
when computed directly. Using the master encoding matrix 
S, on the other hand, allows all such combinations (includ
ing a parity drive) to be built ( or simply indexed) from the 
same such matrix. That is, the appropriate sub-matrix (in
cluding the parity drive) can be used for configurations of 
less than the maximum number of drives. 

In addition, using the master encoding matrix S permits 
further data drives and/or check drives can be added without 
requiring the recomputing of the IDM E (unlike other 
proposed solutions, which recompute E for every change of 
Nor M). Rather, additional indexing of rows and/or colunms 
of the master encoding matrix S will suffice. As discussed 
above, the use of the parity drive can eliminate or signifi
cantly reduce the somewhat complex GF multiplication 
operations associated with the other check drives and 
replaces them with simple GF addition (bitwise exclusive 
OR in binary Galois fields) operations. It should be noted 
that master encoding matrices with the above properties are 
possible for any power-of-two number of drives 2P =Nmax+ 

Mmax where the maximum number of data drives N max is one 
less than a power of two (e.g., Nm==127 or 63) and the 
maximum number of check drives Mmax (including the 
parity drive) is 2P -Nmax· 

28 
instructions (some of which work on different operand sizes, 
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated 
at a time using four consecutive SSE instructions (e.g., 

5 fetching from memory, storing into memory, zeroing, add
ing, multiplying), the remaining registers being used for 
intermediate results and temporary storage. With such an 
architecture, several routines are useful for optimizing the 
byte-level performance, including the Parallel Lookup Mul-

10 tiplier, Sequencer 1, and Sequencer 2 discussed above. 
While the above description contains many specific 

embodiments of the invention, these should not be construed 
as limitations on the scope of the invention, but rather as 
examples of specific embodiments thereof. Accordingly, the 

15 scope of the invention should be determined not by the 
embodiments illustrated, but by the appended claims and 
their equivalents. 

20 Glossary of Some Variables 

A encoding matrix (F x K), sub-matrix of T 
B encoding matrix (F x F) , sub-matrix of T 
B-1 solution matrix (F x F) 

25 C 
encoded data matrix ((N + M) XL) = [ ~] 

C' 
surviving encoded data matrix (N XL) = [ ~] 

30 

D original data matrix (N x L) 

D' 
permuted original data matrix (N x L) = [ ~] 

35 
E 

information dispersal matrix (IDM)((N +M) xN) = [ ~] 

F number of failed data drives 

40 
G number of failed check drives 
H check drive encoding matrix (M x N) 

identity matrix (IK = K x K identity matrix, IN= N x N identity 
matrix) 
encoded check data matrix (M x L) 

K nwnber of surviving data drives = N - F 
L data block size (elements or bytes) 

45 M nwnber of check drives 
Mmax maximum value of M 
N number of data drives 
Nmax maximum value of N 
0 zero matrix (K x F), sub-matrix of T 
s master encoding matrix ((Mmax + Nmaxl X Nmaxl 

50 
T 

[ IK ~] transformed IDM (NxN) = A 

w surviving check data matrix (F x L) 
X surviving original data matrix (K x L) 

55 y lost original data matrix (F x L) 

What is claimed is: 
As discussed earlier, in an exemplary embodiment of the 60 

present invention, a modern x86 architecture is used (being 
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions. 
Each XMM register is 128 bits and is available for special 
purpose processing with the SSE instructions. Each of these 65 

XMM registers holds 16 bytes (8-bit), so four such registers 
can be used to store 64 bytes of data. Thus, by using SSE 

1. An accelerated error-correcting code (ECC) system 
operating across multiple drives, comprising: 

at least one processing circuit comprising a plurality of 
central processing unit (CPU) cores that executes CPU 
instructions and loads original data from a main 
memory and stores check data to the main memory, 
each of the CPU cores comprising at least 16 registers, 
and each of the registers storing at least 8 bytes; 
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at least one system drive comprising at least one non
volatile storage medium that stores the CPU instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 5 

block of the original data; 
at least four check drives each comprising at least one 

non-volatile storage medium that stores at least one 
block of the check data corresponding to the at least one 
block of the original data; and 

at least one input/output (I/O) controller that receives the 
at least one block of the original data from a transmitter 
and that stores the at least one block of the original data 
to a main memory; 

10 

wherein the processing circuit, the CPU instructions, the 15 

main memory, the plurality of data drives, the at least 
four check drives, and the at least one I/O controller are 
configured to implement a multi-core erasure encoding 
system comprising: 
original data in the main memory comprised of the at 20 

least one block of original data from the plurality of 
data drives; 

check data in the main memory comprised of the at 
least one block of check data; 

an encoding matrix for holding first factors in the main 25 

memory, the first factors being for encoding the 
original data in the main memory into the check data 
in the main memory; and 

a scheduler for generating ECC data in parallel across 
a plurality of threads by: 
dividing the original data in the main memory into a 

plurality of data matrices; 
dividing the check data in the main memory into a 

plurality of check matrices; 

30 

assigning corresponding ones of the data matrices 35 

and the check matrices in the main memory to the 
plurality of threads, wherein each thread com
prises an encoder, the encoder comprising at least 
a portion of the encoding matrix, a Galois Field 
(GF) multiplier, a Galois Field (GF) adder, and a 40 

sequencer for ordering operations through at least 
one of the data matrices, corresponding ones of 
the check matrices, and the at least a portion of the 
encoding matrix in the main memory using the GF 
multiplier and the GF adder to generate the check 45 

data in the main memory; and assigning the plu
rality of threads to the plurality of CPU cores of 
the processing circuit to concurrently generate the 
check matrices in the main memory from corre
sponding ones of the data matrices in the main 50 

memory. 
2. The system of claim 1, wherein the scheduler divides 

the original data in the main memory and the check data in 
the main memory into a plurality of stripes, each of the 
plurality of stripes comprising at least: 

one block of the original data; and 
one corresponding block of the check data. 
3. The system of claim 2, wherein the scheduler assigns 

the stripes to the plurality of threads such that, for each stripe 

55 

of the plurality of stripes, the check data of the stripe is 60 

computed by no more than one of the plurality of threads. 

30 
at least one processing circuit comprising a plurality of 

central processing unit (CPU) cores that executes CPU 
instructions and loads original data and check data from 
a main memory and stores decoded check data corre
sponding to lost original data to the main memory, each 
of the CPU cores comprising at least 16 registers, and 
each of the registers storing at least 8 bytes; 

at least one system drive comprising at least one non
volatile storage medium that stores the CPU instruc
tions; 

a plurality of data drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the original data; 

at least four check drives each comprising at least one 
non-volatile storage medium that stores at least one 
block of the check data corresponding to the at least one 
block of the original data; and 

at least one input/output (I/O) controller that receives the 
at least one block of the original data from a transmitter 
and that stores the at least one block of the original data 
to a main memory; 

wherein the processing circuit, the CPU instructions, the 
main memory, the plurality of data drives, the at least 
four check drives, and the at least one I/O controller are 
configured to implement a multi-core erasure decoding 
system comprising: 
original data in the main memory comprised of the at 

least one block of original data from the plurality of 
data drives; 

check data in the main memory comprised of the at 
least one block of check data from the at least four 
check drives; 

a solution matrix, the solution matrix comprising fac
tors for decoding the check data in the main memory 
to reproduce lost original data in the main memory; 
and 

a scheduler for decoding ECC data in parallel across a 
plurality of threads by: 
dividing the original data in the main memory into a 

plurality of data matrices; 
dividing the check data in the main memory into a 

plurality of check matrices; 
assigning corresponding ones of the data matrices 

and the check matrices in the main memory to the 
plurality of threads, wherein each thread com
prises a decoder, the decoder comprising at least a 
portion of the solution matrix, a Galois Field (GF) 
multiplier, a Galois Field (GF) adder, and a 
sequencer for ordering operations through at least 
one of the data matrices, corresponding ones of 
the check matrices, and the at least a portion of the 
solution matrix in the main memory using the GF 
multiplier and the GF adder to decode the check 
data in the main memory into lost original data in 
the main memory; and 

assigning the plurality of threads to the plurality of CPU 
cores of the processing circuit to concurrently regen
erate portions of the data matrices corresponding to lost 
original data in the main memory from corresponding 
ones of the check matrices in the main memory. 

4. The system of claim 3, wherein each of the plurality of 
threads corresponding to at least one of the plurality of 
stripes is assigned to a respective one of the plurality of CPU 
cores of the processing circuit. 

6. The system of claim 5, wherein the scheduler divides 
the original data in the main memory and the check data in 
the main memory into a plurality of stripes, each of the 

65 plurality of stripes comprising at least: 
5. An accelerated error-correcting code (ECC) decoding 

system operating across multiple drives, comprising: 
one block of the original data; and 
one corresponding block of the check data. 
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7. The system of claim 6, wherein the scheduler assigns 
the stripes to the plurality of threads such that, for each stripe 
of the plurality of stripes, the decoding of the check data of 
the stripe corresponding to the lost original data is computed 
by no more than one of the plurality of threads. 

8. The system of claim 7, wherein each of the plurality of 
threads corresponding to at least one of the plurality of 
stripes is assigned to a respective one of the plurality of CPU 
cores of the processing circuit. 

* * * * * 
10 

32 
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Home / SwiftStack Blog /
Save Space: the final frontier  Erasure Codes with OpenStack Swift

Save Space: The Final Frontier -
Erasure Codes With OpenStack 
Swift

Today we’re really excited to announce an initiative to introduce 
erasure codes in OpenStack Swift. Swift currently uses replicas, but a 
question has come up – could we save space by using erasure codes?

This initiative enables deployers to store data with erasure coding 
instead of or in addition to Swift’s 3replica model. Though using 3 
replicas provides for excellent performance and availability, it’s 
incurred in both the acquisition and operating cost of storage 

SwiftStack
Blog
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hardware. Swift has already enabled many companies to radically lower 
their storage costs with commodity hardware and the introduction of 
erasure coding within Swift will enable costs to drop even further.

The development of this feature will proceed with the same open 
mindset that has guided the OpenStack project from its inception. Just 
like all projects within OpenStack, Swift has many contributors. The 
companies who are heavily involved with Swift include SwiftStack, 
Rackspace, Red Hat, IBM and HP.

For erasure coding, multiple companies — Intel, SwiftStack, Box and 
EVault are committing effort for this specific project –

“Intel is excited to support the development of an erasure code 
solution for OpenStack Swift with the Swift development community. 
Helping our customers reduce the size of data on disk by up to half 
versus regular triple replication, helps decrease their costs by more 
than 50%. Erasure code solutions reduce both hardware requirement 
costs as well as the power and cooling required to run that hardware, ” 
says Bev Crair, Intel Storage Division GM. “Erasure code is a technology 
that is long overdue and Intel is pleased to be supporting efforts to 
promote and use it in cloud environments like OpenStack Swift.”

“EVault is excited to work with Swiftstack and the broader OpenStack 
Object Storage community to add erasure codes.” says George Hoenig, 
Vice President, Products & Services at EVault. “Erasure codes, 
particularly for write intensive workloads, will enable users to deploy 
systems using less storage and bandwidth than replicated systems of 
similar durability.”

Starting from a production-
grade system
By using Swift as a starting point, we stand on the shoulders of the 
existing, battlehardened mechanisms that Swift already has.

We are also enlisting some of the thought leaders in information theory 
and erasure coding who are contributing code and guidance for this 
project.

The design goal is to be able to have erasurecoded storage plus 
replicas coexisting in a single Swift cluster. This will allow a choice in 
how to store data and will allow applications to make the right 
tradeoffs based on their use case.

There are already proposals and code on the table for this effort. And 
we will be collaborating over these designs over the coming months to 
build a solution to best meet the needs of the Swift deployers.

Page 2 of 5Save Space: the final frontier - Erasure Codes with OpenStack Swift - SwiftStack

6/21/2014https://swiftstack.com/blog/2013/07/10/erasure-codes-with-openstack-swift/

Case 6:21-cv-00198-ADA   Document 67   Filed 07/26/21   Page 338 of 350



Global Clusters and more: 
Swift 1.9.0

Erasure Codes with 
OpenStack Swift –

Digging Deeper

Development as a community
We have a big project ahead of us. But we have rallied as a community 
before and have pulled off some big efforts. For example, region 
support is now included in the latest version of Swift which allows a 
cluster to span distant data centers.

This effort continues to demonstrate the focus of the Swift project – to 
grow an already great object storage system into the new areas where 
haven’t gone before. With continued efforts such as this, Swift is well 
on its way ensure your data can “live long and prosper”.

Joe Arnold
CEO, SwiftStack

@joearnold
joe@swiftstack.com
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StreamScale
O'Shea, Michael A. moshea at hunton.com 
Wed Apr 29 15:15:09 UTC 2015

• Previous message: MRE - neutron-*aas 
• Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]

To:          technical-board at lists.ubuntu.com<mailto:technical-board at lists.ubuntu.com> 

I am writing to you today regarding Ubuntu's recent republication and redistribution of the libraries JErasure 2.0 and GF_Complete, 
authored by Dr. James Plank. 

These libraries were the subject of confidential trade secret litigation between my client, StreamScale Inc., and the author, Dr. James 
Plank (JAMS case #1220047807). Subsequent to that litigation, Dr. Plank removed JErasure 2.0 and GF_Complete from publication, leaving 
only an archived copy for non-commercial use, and publicly announced that he would no longer support either library 
(http://web.eecs.utk.edu/~plank/plank/www/software.html<https://urldefense.proofpoint.com/v2/url?u=http-
3A__web.eecs.utk.edu_-7Eplank_plank_www_software.html&d=AwMFAg&c=jxhwBfk-
KSV6FFIot0PGng&r=OsbfxgvwkC1XeDQMkz1i9dGxH4gYoBogKZbCGO22AwM&m=nwTBnMf0mln1kQVj42tenme0z2BKWCLL0XbbEdhy3Zc&s=aclLu9_Bo7RA0XpRp7M_xyVV3894VL3

We believe that even a cursory review of the facts surrounding these libraries will make it clear to you that they do not constitute "Free 
Software" by any reasonable definition. StreamScale developed an extensive litigation database related to the libraries JErasure 2.0 and 
GF_Complete, including patent claim charts, trade secret listings, copyright infringement analysis, damage estimates and citations of 
relevant case law. We could make these materials available to you under a suitable NDA at your request to provide any reasonable 
clarification you might need. 

We respectfully ask that you voluntarily remove and not republish the libraries JErasure 2.0 and GF_Complete, as well as any other 
packages or releases that incorporate them or depend on them. We believe these packages and releases include: libjerasure-dev, 
libjerasure2, libgf-complete-dev, libgf-complete1, liberasurecode-dev, liberasurecode1, Pyeclib, CEPH (see ceph/src/erasure-code/jerasure) 
and Swift 2.3.0. 

Thank you for your consideration in this matter, and please feel free to contact me regarding any questions you might have. 

Best, 

Michael O'Shea 

  Bio<http://webdownload.hunton.com/esignature/bio.aspx?U=12011>    vCard<http://webdownload.hunton.com/esignature/vcard.aspx?U=12011> 

[Hunton and Williams] 

Michael O'Shea 
Partner 
moshea at hunton.com<mailto:moshea at hunton.com> 

Hunton & Williams LLP 
2200 Pennsylvania Avenue, NW 
Washington, DC 20037 
Direct: 202.419.2183 
Fax: 202.778.7434 
www.hunton.com<http://www.hunton.com/> 
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StreamScale, Inc.      

 

July 7, 2021 

Via E-mail  

Benjamin R. Ostapuk 

Intel Corporation 

2200 Mission College Blvd. 

Santa Clara, CA  95054-1537 

benjamin.r.ostapuk@intel.com 

 

Re: Notice of  Infr ingement of  StreamScale Patents 

Dear Mr. Ostapuk: 

I write on behalf of StreamScale, Inc. (“StreamScale”) to notify Intel Corporation (“Intel”) that it is inducing, for 

example, Cloudera, Inc., ADP, Inc., Experian plc, and Wargaming (Austin), Inc. (collectively, “the Direct Infringers”) to 

infringe certain StreamScale United States Patents.   

Intel is inducing infringement of: (1) U.S. Patent No. 8,683,296; (2) U.S. Patent No. 9,160,374; (3) U.S. Patent 

No. 9,385,759; (4) U.S. Patent No. 10,003,358; (5) U.S. Patent No. 10,291,259; and (6) U.S. Patent No. 10,666,296 

(collectively, “the StreamScale Patents”).  The StreamScale Patents are continuations of one another and each of the 

StreamScale Patents relates to the field of accelerated erasure coding. 

Intel actively markets and instructs the Direct Infringers to create erasure coding systems using Intel’s Intelligent Storage 

Acceleration Library (“ISA-L”).  For example, Intel (i) maintains a website to promote ISA-L, including to the Direct 

Infringers,1 (ii) produces videos regarding ISA-L and its use that are available to the Direct Infringers on the Intel website,2 

(iii) describes case studies on big data optimization using ISA-L that are available to the Direct Infringers on the Intel 

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available to the Direct Infringers on 

the Intel website, and (v) publishes and makes available an API Reference Manual for ISA-L3 that is available to the Direct 

Infringers, which it updates regularly.4  Intel further offers the Direct Infringers technical support for ISA-L. 

Intel designed ISA-L to be used with other components that, when combined with hardware, practice one or more 

claims of each of the StreamScale Patents.  ISA-L is a collection of functions used in storage applications, including functions 

pertaining to erasure codes that implement a general Reed-Solomon type encoding for blocks of data to protect against 

erasure of whole blocks.5  The claims of the StreamScale Patents require, variously, data and check matrices to hold original 

and check data in memory, respectively.  These matrices correspond with parameters described in ISA-L documentation 

associated with, for example, the function ec_encode_data.6  The “data” parameter corresponds to the data matrix in the 

claims of the StreamScale Patents.  The “coding” parameter corresponds to the check matrix in the claims of the 

                                                        
1 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at https://software.intel.com/content/www/us/en/develop/tools/isa-
l.html (last visited May 24, 2021). 
2 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, available at 2 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, available at 
https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-lsolution-video.html (last visited May 24, 2021). 
3 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source Version, API Reference Manual (ver. 2.8, 
Sept. 27, 2013), available at https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 2021). 
4 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference Manual (ver. 2.23.0, June 29, 2018), 
available at https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021). 
5 E.g., Intel Corporation, Intel® Intelligent Storage Acceleration Library (Intel® ISA L) Open Source Version, API Reference Manual 
§§ 1.2–1.3 (Version 2.14, July 16, 2015). 
6 E.g., id. § 5.1.2.1. 
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StreamScale Patents.  And the “gftbls” parameter corresponds to the encoding matrix referenced in the claims of the 

StreamScale Patents.  Similarly, the claims of the StreamScale Patents variously require a parallel multiplier, which ISA-L 

provides in various permutations of vect_dot_prod functions.7 

Given Intel’s enormous size, sophistication, and resources, StreamScale is confident Intel can deeply appreciate how 

ISA-L indirectly infringes the claims of the StreamScale Patents.  StreamScale requests that Intel cease its above-identified 

infringing activities relating to the StreamScale Patents.  In the alternative, StreamScale is willing to discuss an appropriate 

license to StreamScale’s inventions and how StreamScale and Intel can work together to move the industry forward with new 

technology and innovations. 

 

Best regards, 

Bryan D. Richardson 

Chief Intellectual Property Officer 
 
cc: Sonal Mehta, Esq.  (sonal.mehta@wilmerhale.com) 

                                                        
7 E.g., Intel, ISA-L, ec_highlevel_func.c, available at https://github.com/intel/isa-l/blob/master/erasure_code/ec_highlevel_func.c (last 
visited Nov. 23, 2020) (lines 33–68). 
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