

Page 1 of 91

IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS

WACO DIVISION

STREAMSCALE, INC.,

 Plaintiff,

 v.

CLOUDERA, INC.,
AUTOMATIC DATA PROCESSING, INC.,
EXPERIAN PLC, WARGAMING
(AUSTIN), INC., and
INTEL CORPORATION,

 Defendants.

)
)
)
)
)
)
)
)
)
)
)
)
)

Civil No. 6:21-cv-00198-ADA

JURY TRIAL DEMANDED

SECONDED AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff StreamScale, Inc. (“Plaintiff” or “StreamScale”) files this Second Amended

Complaint for patent infringement against Defendants Cloudera, Inc. (“Cloudera”), Automatic

Data Processing, Inc.1 (“ADP”), Experian plc (“Experian”), Wargaming (Austin), Inc.

(“Wargaming”), and Intel Corporation (“Intel”) (collectively, “Defendants”) alleging as follows:

NATURE OF SUIT

1. This is a claim for patent infringement arising under the patent laws of the United

States, Title 35 of the United States Code.

1 On June 11, 2021, Defendant Automatic Data Processing, Inc. filed an unopposed motion to
substitute ADP, Inc. in its place. Unopposed Motion to Substitute Party, StreamScale, Inc. v.
Cloudera, Inc., No. 6:21-cv-00198-ADA (W.D. Tex. June 11, 2021), ECF No. 50. To date, the
Court has not yet acted on that motion. To maintain the status quo, StreamScale, Inc. has again
named Automatic Data Processing, Inc. in this Second Amended Complaint, but its allegations
apply equally to ADP, Inc.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 1 of 350

Page 2 of 91

2. StreamScale owns multiple patents relating to accelerated erasure coding.

StreamScale’s patented technology is a cornerstone of modern data storage, especially cloud-based

data storage.

3. Data storage protection from loss used to be a matter of replicating the data. Data

replication resulted in redundant data drives, and that redundancy provided an enhanced measure

of data availability along with some measure of fault tolerance. For example, if one of the data

drives were to be corrupted, the original data would still be available on a redundant disk.

4. Data replication is highly inefficient and no longer commercially practicable. Take

a triple replication scheme for example. If a user desired to save some quantum of data, say 100

GB, it would require 300 GB of data storage to save that 100 GB of data. That is only a 33%

utilization of storage capacity. And that measure of efficiency gets worse as the amount of

redundancy in a system increases. Triple replication is also incredibly expensive because you need

to buy three times the capacity of your original data. Triple replication further requires the

additional, redundant capacity to be packaged, powered, and serviced.

5. Systems that employ accelerated erasure coding as patented by StreamScale enable

scalable, high-performance data storage systems that can outperform other systems and do so at

lower cost. StreamScale’s inventions significantly reduce storage overhead while achieving

similar or better fault tolerance than prior systems and methods, and are a quantum leap forward

from prior systems.

6. At a high level, erasure coding uses specially designed systems to transform a block

of original data to be stored into one or more blocks of encoded data that can be distributed across

numerous storage devices or drives. The original data can be reconstructed from the encoded data,

even if some portions of the original data are lost or unavailable. The data encoding and decoding

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 2 of 350

Page 3 of 91

processes are time and energy intensive. If erasure coding is performed without appropriately

configured computers using appropriately organized instructions, it can appear to have only limited

practical applicability. Indeed, the widespread view in the industry before the work of StreamScale

was that there was no way to employ erasure coding at high speeds, including so-called “cache

line speeds.”

7. With its accelerated erasure coding technology, StreamScale achieved what was

thought to be impossible. StreamScale achieved in one embodiment more than an order of

magnitude performance increase in actual system performance. Rather than remaining an

unobtainable goal with very limited application, storage systems based on StreamScale’s

accelerated erasure coding immediately became practical and thus had newfound applicability to

the data storage industry, among others.

8. The innovations described in—and protected by—StreamScale’s Patents-in-Suit

have been incorporated into products and services offered by Cloudera, ADP, Experian, and

Wargaming. For its part, Intel has induced infringement by at least Cloudera, ADP, Experian, and

Wargaming through Intel’s collaboration with Cloudera relating to accelerated erasure coding.

PARTIES

9. Plaintiff StreamScale, Inc. is a corporation duly organized and existing under the

laws of the State of Texas, having a principal place of business at 7215 Bosque Blvd., Suite 203,

Waco, Texas 76710. StreamScale is the owner of record of the Patents-in-Suit in this action.

10. Defendant Cloudera, Inc. (“Cloudera”) is a corporation organized under the laws

of the State of Delaware. Cloudera maintains an office in this judicial district at 515 Congress,

Suite 1300, Austin, Texas 78701. Cloudera can be served with process through its registered agent

in the State of Texas, Corporation Service Company d/b/a CSC – Lawyers Incorporating Service

Company, 211 East 7th Street, Suite 620, Austin, Texas 78701-3218.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 3 of 350

Page 4 of 91

11. Defendant Automatic Data Processing, Inc. (“ADP”) is a corporation organized

under the laws of the State of Delaware. ADP maintains offices in this judicial district, including

at (i) 6500 River Place Blvd., Bldg VII, Austin, Texas 78730, (ii) 1851 North Resler, El Paso,

Texas 79912, (iii) 7650 San Felipe Dr., El Paso, Texas 79912, and (iv) 211 North Loop 1604 East,

San Antonio, Texas 78232. ADP can be served with process through its registered agent in the

State of Texas, C T Corporation System, 1999 Bryan St., Suite 900, Dallas, Texas 75201.

12. Defendant Experian PLC is a public limited company registered and incorporated

under the laws of the Bailiwick of Jersey, having a principal place of business at Newenham House,

Northern Cross, Malahide Road, Dublin 17, D17 AY61, Ireland, and registered office at 22

Grenville Street, St Helier, Jersey JE4 8PX, Channel Islands.

13. Defendant Wargaming (Austin), Inc. (“Wargaming”) is a corporation organized

under the laws of the State of Delaware, having a principal place of business at 11001 Lakeline

Blvd., Austin, Texas 78717. Wargaming can be served with process through its registered agent

in the State of Texas, C T Corporation System, 1999 Bryan St., Suite 900, Dallas, Texas 75201.

14. Defendant Intel Corporation (“Intel”) is a corporation organized under the laws of

the State of Delaware. Intel maintains an office in this judicial district at 9442 N. Capital of Texas

Hwy, Bldg 2, Suite 600, Austin, Texas 78759. Intel can be served with process through its

registered agent in the State of Texas, C T Corporation System, 1999 Bryan St., Suite 900, Dallas,

Texas 75201.

15. Collectively, Cloudera, ADP, Experian, Wargaming, and Intel are referred to herein

as the “Defendants.”

JURISDICTION AND VENUE

16. This action arises under the patent laws of the United States, 35 U.S.C. § 101, et

seq. This Court has jurisdiction over this action pursuant to 28 U.S.C. §§ 1331 and 1338(a).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 4 of 350

Page 5 of 91

17. Cloudera is subject to personal jurisdiction in this Court. This Court has personal

jurisdiction over Cloudera because Cloudera has engaged in continuous, systematic, and

substantial activities within this State, including substantial marketing and sales of products and

services within this State and this District. Furthermore, upon information and belief, this Court

has personal jurisdiction over Cloudera because Cloudera has committed acts giving rise to

StreamScale’s claims for patent infringement within and directed to this District.

18. Upon information and belief, Cloudera has conducted and does conduct substantial

business in this forum, directly and/or through subsidiaries, agents, representatives, or

intermediaries, such substantial business including but not limited to: (i) at least a portion of the

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more

infringing products and services into the stream of commerce with the expectation that they will

be purchased by consumers in this forum; and/or (iii) regularly doing or soliciting business,

engaging in other persistent courses of conduct, or deriving substantial revenue from goods and

services provided to individuals in Texas and in this judicial district. Thus, Cloudera is subject to

this Court’s specific and general personal jurisdiction pursuant to due process and the Texas Long

Arm Statute.

19. Upon information and belief, Cloudera has committed acts of infringement in this

District and has one or more regular and established places of business within this District under

28 U.S.C. § 1400(b). Thus, venue is proper in this District under 28 U.S.C. § 1400(b).

20. Cloudera maintains a permanent physical presence within this District. For

example, it maintains at least the office location at 515 Congress, Suite 1300, Austin, Texas 78701.

Cloudera employs numerous employees who work at Cloudera’s location(s) in this District.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 5 of 350

Page 6 of 91

21. Cloudera’s location(s) in this District, including at least those identified in

paragraph 20 above, are regular and established places of business under 28 U.S.C. § 1391, 28

U.S.C. § 1400(b), and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017).

a. Cloudera’s location(s) in this District, including at least those identified in

paragraph 20 above, are physical, geographical location(s) in this District. Each office

location comprises one or more buildings or office spaces from which the business of

Cloudera is carried out. The location(s) are set apart for the purpose of carrying out

Cloudera’s business, including but not limited to, making, using, selling, offering for sale,

and/or supporting infringing products and services. Indeed, Cloudera itself advertises its

physical location(s) in this District as places of its business.

b. Cloudera’s location(s) in this District, including at least those identified in

paragraph 20 above, are regular and established.

c. Cloudera’s location(s) in this District, including at least those identified in

paragraph 20 above, are places of business of Cloudera. Cloudera conducts business from

its location(s) in this District, including at least those identified in paragraph 20 above,

including but not limited to, making, using, selling, offering for sale, and/or supporting

infringing products and services.

d. Cloudera’s location(s) in this District, including at least those identified in

paragraph 20 above, are physical, geographical location(s) in this District from which

Cloudera carries out its business.

e. Cloudera employees work at Cloudera’s location(s), including at least those

identified in paragraph 20 above. Upon information and belief, these Cloudera employees

are regularly and physically present at Cloudera’s location(s), including at least those

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 6 of 350

Page 7 of 91

identified in paragraph 20 above, during business hours and they are conducting Cloudera’s

business while working there.

22. ADP is subject to personal jurisdiction in this Court. This Court has personal

jurisdiction over ADP because ADP has engaged in continuous, systematic, and substantial

activities within this State, including substantial marketing and sales of products and services

within this State and this District. Furthermore, upon information and belief, this Court has

personal jurisdiction over ADP because ADP has committed acts giving rise to StreamScale’s

claims for patent infringement within and directed to this District.

23. Upon information and belief, ADP has conducted and does conduct substantial

business in this forum, directly and/or through subsidiaries, agents, representatives, or

intermediaries, such substantial business including but not limited to: (i) at least a portion of the

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more

infringing products into the stream of commerce with the expectation that they will be purchased

by consumers in this forum; and/or (iii) regularly doing or soliciting business, engaging in other

persistent courses of conduct, or deriving substantial revenue from goods and services provided to

individuals in Texas and in this judicial district. Thus, ADP is subject to this Court’s specific and

general personal jurisdiction pursuant to due process and the Texas Long Arm Statute.

24. Upon information and belief, ADP has committed acts of infringement in this

District and has one or more regular and established places of business within this District under

28 U.S.C. § 1400(b). Thus, venue is proper in this District under 28 U.S.C. § 1400(b).

25. ADP maintains a permanent physical presence within this District. For example, it

maintains office locations at (i) ADP Austin, 6500 River Place Blvd. Bldg. VII, Austin, Texas

78730; (ii) ADP El Paso, 1851 North Resler, El Paso, Texas 79912; (iii) ADP El Paso, 7650 San

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 7 of 350

Page 8 of 91

Felipe Drive, El Paso, Texas 79912; and (iv) ADP San Antonio, 211 North Loop 1604 East, San

Antonio, Texas 78232. ADP employs employees who work at ADP’s locations in this District.

26. ADP’s location(s) in this District, including at least those identified in paragraph 25

above, are regular and established places of business under 28 U.S.C. § 1391, 28 U.S.C. § 1400(b),

and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017).

a. ADP’s location(s) in this District, including at least those identified in

paragraph 25 above, are physical, geographical location(s) in this District. Each office

location comprises one or more buildings or office spaces from which the business of ADP

is carried out. The location(s) are set apart for the purpose carrying out ADP’s business,

including but not limited to, making, using, selling, offering for sale, and/or supporting

infringing products and services. Indeed, ADP itself advertises its physical location(s) in

this District as places of its business, and it features commercial signage at many of these

location(s).

b. ADP’s location(s) in this District, including at least those identified in

paragraph 25 above, are regular and established. ADP features commercial signage at

many of the location(s) identifying the location as a regular and established place of ADP’s

business.

c. ADP’s location(s) in this District, including at least those identified in

paragraph 25 above, are places of business of ADP. ADP conducts business from its

location(s) in this District, including at least those identified in paragraph 25 above,

including but not limited to making, using selling, offering for sale, and/or supporting

infringing products and services.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 8 of 350

Page 9 of 91

d. ADP’s location(s) in this District, including at least those identified in

paragraph 25 above, are physical, geographical location(s) in this District from which ADP

carries out its business.

e. ADP employees work at ADP’s location(s), including at least those

identified in paragraph 25 above. Upon information and belief, these ADP employees are

regularly and physically present at ADP’s location(s), including at least those identified in

paragraph 25 above, during business hours and they are conducting ADP’s business while

working there.

27. Experian is subject to personal jurisdiction in this Court. This Court has personal

jurisdiction over Experian because, upon information and belief, Experian has engaged in

continuous, systematic, and substantial activities within this State, for example with and through

its corporate subsidiaries CSIdentity Corporation and Experian Information Solutions, Inc. Upon

information and belief, Experian’s continuous, systematic, and substantial activities within this

State include substantial marketing and sales of products and services within this State and this

District, including for example through Experian’s corporate subsidiaries CSIdentity Corporation

and Experian Information Solutions, Inc. Furthermore, upon information and belief, this Court

has personal jurisdiction over Experian because Experian has committed acts giving rise to

StreamScale’s claims for patent infringement within and directed to this District.

28. Upon information and belief, Experian has conducted and does conduct substantial

business in this forum, directly and/or through subsidiaries, agents, representatives, or

intermediaries, such substantial business including but not limited to: (i) at least a portion of the

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more

infringing products into the stream of commerce with the expectation that they will be purchased

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 9 of 350

Page 10 of 91

by consumers in this forum; and/or (iii) regularly doing or soliciting business, engaging in other

persistent courses of conduct, or deriving substantial revenue from goods and services provided to

individuals in Texas and in this judicial district. Thus, Experian is subject to this Court’s specific

and general personal jurisdiction pursuant to due process and the Texas Long Arm Statute.

29. To the extent Experian is not subject to jurisdiction in any State’s courts of general

jurisdiction, this Court has personal jurisdiction of Experian pursuant to Federal Rule of Civil

Procedure 4(k)(2) because StreamScale’s claims arise under federal law and exercising jurisdiction

is consistent with the United States Constitution and laws.

30. Upon information and belief, Experian has committed acts of infringement in this

District and has, itself or through its corporate subsidiaries, one or more regular and established

places of business within this District under 28 U.S.C. § 1400(b). Thus, venue is proper in this

District under 28 U.S.C. § 1400(b).

31. Experian, including for example through Experian’s corporate subsidiaries

CSIdentity Corporation and Experian Information Solutions, Inc., maintains a permanent physical

presence within this District. For example, it maintains at least the office location at 1501 South

MoPac Expressway, Austin, Texas 78746. Experian employs employees who work at Experian’s

location(s) in this District.

32. Experian’s location(s) in this District, including at least those identified in

paragraph 31 above, are regular and established places of business under 28 U.S.C. § 1391, 28

U.S.C. § 1400(b), and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017).

a. Experian’s location(s) in this District, including for example those

identified in paragraph 31 above, are physical, geographical location(s) in this District.

Each office location comprises one or more buildings or office spaces from which the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 10 of 350

Page 11 of 91

business of Experian is carried out. The location(s) are set apart for the purpose of carrying

out Experian’s business, including but not limited to, making, using, selling, offering for

sale, and/or supporting infringing products and services. Indeed, Experian itself advertises

its physical location(s) in this District as places of its business, and it features commercial

signage at these location(s).

b. Experian’s location(s) in this District, including at least those identified in

paragraph 31 above, are regular and established. Experian features commercial signage at

the location(s) identifying the location as a regular and established place of Experian’s

business.

c. Experian’s location(s) in this District, including at least those identified in

paragraph 31 above, are places of business of Experian, including at least Experian’s

corporate subsidiaries CSIdentity Corporation and Experian Information Solutions, Inc.

Experian conducts business from its location(s) in this District, including at least those

identified in paragraph 31 above, including but not limited to, making, using, selling,

offering for sale, and/or supporting infringing products and services.

d. Experian’s location(s) in this District, including at least those identified in

paragraph 31 above, are physical, geographical location(s) in this District from which

Experian carries out its business.

e. Experian employees work at Experian’s location(s), including at least those

identified in paragraph 31 above. Upon information and belief, these Experian employees

are regularly and physically present at Experian’s location(s), including at least those

identified in paragraph 31 above, during business hours and they are conducting Experian’s

business while working there.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 11 of 350

Page 12 of 91

33. To the extent Experian is found not reside in the United States, venue is nonetheless

proper in this Court as to Experian pursuant to 28 U.S.C. § 1391(c)(3).

34. Wargaming is subject to personal jurisdiction in this Court. This Court has personal

jurisdiction over Wargaming because Wargaming has engaged in continuous, systematic, and

substantial activities within this State, including substantial marketing and sales of products and

services within this State and this District. Furthermore, upon information and belief, this Court

has personal jurisdiction over Wargaming because Wargaming has committed acts giving rise to

StreamScale’s claims for patent infringement within and directed to this District.

35. Upon information and belief, Wargaming has conducted and does conduct

substantial business in this forum, directly and/or through subsidiaries, agents, representatives, or

intermediaries, such substantial business including but not limited to: (i) at least a portion of the

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more

infringing products and services into the stream of commerce with the expectation that they will

be purchased by consumers in this forum; and/or (iii) regularly doing or soliciting business,

engaging in other persistent courses of conduct, or deriving substantial revenue from goods and

services provided to individuals in Texas and in this judicial district. Thus, Wargaming is subject

to this Court’s specific and general personal jurisdiction pursuant to due process and the Texas

Long Arm Statute.

36. Upon information and belief, Wargaming has committed acts of infringement in

this District and has one or more regular and established places of business within this District

under 28 U.S.C. § 1400(b). Thus, venue is proper in this District under 28 U.S.C. § 1400(b).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 12 of 350

Page 13 of 91

37. Wargaming maintains a permanent physical presence within this District. For

example, it maintains at least the office location at 11001 Lakeline Blvd., Austin, Texas 78717.

Wargaming employs numerous employees who work at Wargaming’s location(s) in this District.

38. Wargaming’s location(s) in this District, including at least those identified in

paragraph 37 above, are regular and established places of business under 28 U.S.C. § 1391, 28

U.S.C. § 1400(b), and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017).

a. Wargaming’s location(s) in this District, including at least those identified

in paragraph 37 above, are physical, geographical location(s) in this District. Each office

location comprises one or more buildings or office spaces from which the business of

Wargaming is carried out. The location(s) are set apart for the purpose of carrying out

Wargaming’s business, including but not limited to, making, using, selling, offering for

sale, and/or supporting infringing products and services. Indeed, Wargaming itself

advertises its physical location(s) in this District as places of its business.

b. Wargaming’s location(s) in this District, including at least those identified

in paragraph 37 above, are regular and established.

c. Wargaming’s location(s) in this District, including at least those identified

in paragraph 37 above, are places of business of Wargaming. Wargaming conducts

business from its location(s) in this District, including at least those identified in

paragraph 37 above, including but not limited to, making, using, selling, offering for sale,

and/or supporting infringing products and services.

d. Wargaming’s location(s) in this District, including at least those identified

in paragraph 37 above, are physical, geographical location(s) in this District from which

Wargaming carries out its business.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 13 of 350

Page 14 of 91

e. Wargaming employees work at Wargaming’s location(s), including at least

those identified in paragraph 37 above. Upon information and belief, these Wargaming

employees are regularly and physically present at Wargaming’s location(s), including at

least those identified in paragraph 37 above, during business hours and they are conducting

Wargaming’s business while working there.

39. Intel is subject to personal jurisdiction in this Court. This Court has personal

jurisdiction over Intel because Intel has engaged in continuous, systematic, and substantial

activities within this State, including substantial marketing and sales of products and services

within this State and this District. Furthermore, upon information and belief, this Court has

personal jurisdiction over Intel because Intel has committed acts giving rise to StreamScale’s

claims for patent infringement within and directed to this District.

40. Upon information and belief, Intel has conducted and does conduct substantial

business in this forum, directly and/or through subsidiaries, agents, representatives, or

intermediaries, such substantial business including but not limited to: (i) at least a portion of the

acts of infringement alleged herein; (ii) purposefully and voluntarily placing one or more

infringing products into the stream of commerce with the expectation that they will be purchased

by consumers in this forum; and/or (iii) regularly doing or soliciting business, engaging in other

persistent courses of conduct, or deriving substantial revenue from goods and services provided to

individuals in Texas and in this judicial district. Thus, Intel is subject to this Court’s specific and

general personal jurisdiction pursuant to due process and the Texas Long Arm Statute.

41. Upon information and belief, Intel has committed acts of infringement in this

District and has one or more regular and established places of business within this District under

28 U.S.C. § 1400(b). Thus, venue is proper in this District under 28 U.S.C. § 1400(b).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 14 of 350

Page 15 of 91

42. Intel maintains a permanent physical presence within this District. For example, it

maintains at least the office location at 9442 N. Capital of Texas Hwy, Bldg 2, Suite 600, Austin,

Texas 78759. Intel employs numerous employees who work at Intel’s location(s) in this District.

43. Intel’s location(s) in this District, including at least those identified in paragraph 42

above, are regular and established places of business under 28 U.S.C. § 1391, 28 U.S.C. § 1400(b),

and In re Cray, Inc., 871 F.3d 1355, 1360 (Fed. Cir. 2017).

a. Intel’s location(s) in this District, including at least those identified in

paragraph 42 above, are physical, geographical location(s) in this District. Each office

location comprises one or more buildings or office spaces from which the business of Intel

is carried out. The location(s) are set apart for the purpose of carrying out Intel’s business,

including but not limited to the acts of infringement alleged herein. Indeed, Intel itself

advertises its physical location(s) in this District as places of its business.

b. Intel’s location(s) in this District, including at least those identified in

paragraph 42 above, are regular and established.

c. Intel’s location(s) in this District, including at least those identified in

paragraph 42 above, are places of business of Intel. Intel conducts business from its

location(s) in this District, including at least those identified in paragraph 42 above,

including but not limited to, making, using, selling, offering for sale, and/or supporting

infringing products and services.

d. Intel’s location(s) in this District, including at least those identified in

paragraph 42 above, are physical, geographical location(s) in this District from which Intel

carries out its business.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 15 of 350

Page 16 of 91

e. Intel employees work at Intel’s location(s), including at least those

identified in paragraph 42 above. Upon information and belief, these Intel employees are

regularly and physically present at Intel’s location(s), including at least those identified in

paragraph 42 above, during business hours and they are conducting Intel’s business while

working there.

FACTUAL ALLEGATIONS

I. PATENTS-IN-SUIT

44. U.S. Patent No. 8,683,296 (“the ’8-296 Patent”) is entitled “Accelerated Erasure

Coding System and Method.” The ’8-296 Patent duly and legally issued on March 25, 2014, from

U.S. Patent Application No. 13/341,833, filed on December 30, 2011. StreamScale is the current

owner of all rights, title, and interest in and to the ’8-296 Patent. A true and correct copy of the

’8-296 Patent is attached hereto as Exhibit A and is incorporated by reference herein.

45. U.S. Patent No. 9,160,374 (“the ’374 Patent”) is entitled “Accelerated Erasure

Coding System and Method.” The ’374 Patent duly and legally issued on October 13, 2015, from

U.S. Patent Application No. 14/223,740, filed on March 24, 2014. The ’374 Patent is a

continuation of U.S. Patent Application No. 13/341,833, filed on December 30, 2011, now U.S.

Patent No. 8,683,296. The ’374 Patent is entitled to the benefit of the December 30, 2011 filing

date of application No. 13/341,833. StreamScale is the current owner of all rights, title, and

interest in and to the ’374 Patent. A true and correct copy of the ’374 Patent is attached hereto as

Exhibit B and is incorporated by reference herein.

46. U.S. Patent No. 9,385,759 (“the ’759 Patent”) is entitled “Accelerated Erasure

Coding System and Method.” The ’759 Patent duly and legally issued on July 5, 2016, from U.S.

Patent Application No. 14/852,438, filed on September 11, 2015. The ’759 Patent is a

continuation of U.S. Patent Application No. 14/223,740, filed on March 24, 2014, now U.S. Patent

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 16 of 350

Page 17 of 91

No. 9,160,374. U.S. Patent No. 9,160,374 is a continuation of U.S. Patent Application

No. 13/341,833, filed on December 30, 2011, now U.S. Patent No. 8,683,296. The ’759 Patent is

entitled to the benefit of the December 30, 2011 filing date of application No. 13/341,833.

StreamScale is the current owner of all rights, title, and interest in and to the ’759 Patent. A true

and correct copy of the ’759 Patent is attached hereto as Exhibit C and is incorporated by reference

herein.

47. U.S. Patent No. 10,003,358 (“the ’358 Patent”) is entitled “Accelerated Erasure

Coding System and Method.” The ’358 Patent duly and legally issued on June 19, 2018, from

U.S. Patent Application No. 15/201,196, filed on July 1, 2016. The ’358 Patent is a continuation

of U.S. Patent Application No. 14/852,438, filed on September 11, 2015, now U.S. Patent

No. 9,385,759. U.S. Patent No. 9,385,759 is a continuation of U.S. Patent Application

No. 14/223,740, filed on March 24, 2014, now U.S. Patent No. 9,160,374. U.S. Patent

No. 9,160,374 is a continuation of U.S. Patent Application No. 13/341,833, filed on December 30,

2011, now U.S. Patent No. 8,683,296. The ’358 Patent is entitled to the benefit of the

December 30, 2011 filing date of application No. 13/341,833. StreamScale is the current owner

of all rights, title, and interest in and to the ’358 Patent. A true and correct copy of the ’358 Patent

is attached hereto as Exhibit D and is incorporated by reference herein. On or about February 23,

2021, StreamScale filed a Petition for Correction of Inventorship Under 37 C.F.R. § 1.324,

including associated documentation and fees, with the United States Patent and Trademark Office

requesting the correction of inventorship of the ’358 Patent to include inventor Sarah Mann, who

was not named as an inventor through error. True and correct copies of that Petition and associated

documentation are attached as Exhibit E, and that material is incorporated by reference herein.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 17 of 350

Page 18 of 91

48. U.S. Patent No. 10,291,259 (“the ’259 Patent”) is entitled “Accelerated Erasure

Coding System and Method.” The ’259 Patent duly and legally issued on May 14, 2019, from

U.S. Patent Application No. 15/976,175, filed on May 10, 2018. The ’259 Patent is a continuation

of U.S. Patent Application No. 15/201,196, filed on July 1, 2016, now U.S. Patent No. 10,003,358.

U.S. Patent No. 10,003,358 is a continuation of U.S. Patent Application No. 14/852,438, filed on

September 11, 2015, now U.S. Patent No. 9,385,759. U.S. Patent No. 9,385,759 is a continuation

of U.S. Patent Application No. 14/223,740, filed on March 24, 2014, now U.S. Patent

No. 9,160,374. U.S. Patent No. 9,160,374 is a continuation of U.S. Patent Application

No. 13/341,833, filed on December 30, 2011, now U.S. Patent No. 8,683,296. The ’259 Patent is

entitled to the benefit of the December 30, 2011 filing date of application No. 13/341,833.

StreamScale is the current owner of all rights, title, and interest in and to the ’259 Patent. A true

and correct copy of the ’259 Patent is attached hereto as Exhibit F and is incorporated by reference

herein. On or about February 23, 2021, StreamScale filed a Petition for Correction of Inventorship

Under 37 C.F.R. § 1.324, including associated documentation and fees, with the United States

Patent and Trademark Office requesting the correction of inventorship of the ’259 Patent to include

inventor Sarah Mann, who was not named as an inventor through error. True and correct copies

of that Petition and associated documentation are attached as Exhibit G, and that material is

incorporated by reference herein.

49. U.S. Patent No. 10,666,296 (“the ’10-296 Patent”) is entitled “Accelerated Erasure

Coding System and Method.” The ’10-296 Patent duly and legally issued on May 26, 2020, from

U.S. Patent Application No. 16/358,602, filed on March 19, 2019. The ’10-296 Patent is a

continuation of U.S. Patent Application No. 15/976,175, filed on May 10, 2018, now U.S. Patent

No. 10,291,259. U.S. Patent No. 10,291,259 is a continuation of U.S. Patent Application

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 18 of 350

Page 19 of 91

No. 15/201,196, filed on July 1, 2016, now U.S. Patent No. 10,003,358. U.S. Patent

No. 10,003,358 is a continuation of U.S. Patent Application No. 14/852,438, filed on

September 11, 2015, now U.S. Patent No. 9,385,759. U.S. Patent No. 9,385,759 is a continuation

of U.S. Patent Application No. 14/223,740, filed on March 24, 2014, now U.S. Patent

No. 9,160,374. U.S. Patent No. 9,160,374 is a continuation of U.S. Patent Application

No. 13/341,833, filed on December 30, 2011, now U.S. Patent No. 8,683,296. The ’10-296 Patent

is entitled to the benefit of the December 30, 2011 filing date of application No. 13/341,833.

StreamScale is the current owner of all rights, title, and interest in and to the ’10-296 Patent. A

true and correct copy of the ’10-296 Patent is attached hereto as Exhibit H and is incorporated by

reference herein.

50. Collectively, the ’8-296 Patent, the ’374 Patent, the ’759 Patent, the ’358 Patent,

the ’259 Patent, and the ’10-296 Patent are referred to herein as the “Patents-in-Suit.”

II. ACCELERATED ERASURE CODING INFRINGEMENT

51. As further discussed below, Cloudera, ADP, Experian, and Wargaming (the “EC

System Defendants”) directly and/or indirectly infringed—and continue to directly and/or

indirectly infringe—each of the Patents-in-Suit by engaging in acts constituting infringement

under 35 U.S.C. § 271(a) and (b), including without limitation by one or more of making, using,

selling, and/or offering to sell, in this District and elsewhere in the United States, and/or importing

into this District and elsewhere in the United States, systems that incorporate Cloudera Erasure

Coding Components. Cloudera Erasure Coding Components include Cloudera Distribution

Including Apache Hadoop (“Cloudera CDH”), which may include any related components, and

any Cloudera product or service that is substantially or reasonably similar, including but not

limited to Cloudera Enterprise. The infringing systems that Cloudera runs that use the Cloudera

Erasure Coding Components are the “Cloudera Infringing Products and Services.”

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 19 of 350

Page 20 of 91

52. Systems built by Cloudera, ADP, Experian, and Wargaming with Cloudera CDH

or substantially similar technology include accelerated erasure coding (“EC”) technology are the

“EC Systems.” These Defendants are “EC System Defendants.”

53. Under typical configurations, the EC Systems that use the patented technology

reduce storage cost by at least about 50% compared with triple replication. Upon information and

belief, Cloudera and its collaborators recognized that accelerated erasure coding can greatly reduce

storage overhead without sacrificing data reliability, which makes erasure coding a quite attractive

alternative for big data storage, particularly for cold data.

54. EC technology is packaged and shipped with Cloudera CDH. Additionally, this

EC technology is enabled by default in Cloudera CDH.

55. ADP has directly infringed, and continues to directly infringe, each of the Patents-

in-Suit by engaging in acts constituting infringement under 35 U.S.C. § 271(a), including without

limitation by one or more of making, using, selling and/or offering to sell, in this District and

elsewhere in the United States, and/or importing into this District and elsewhere in the United

States, at least ADP’s products and services that use and/or incorporate the Cloudera Erasure

Coding Components, including but not limited to DataCloud, and any ADP product or service that

is substantially or reasonably similar (the “ADP Infringing Products and Services”).

56. As its name implies, data is core to ADP’s business. Upon information and belief,

ADP, a provider of human capital management solutions, is responsible for getting one in six

Americans paid today, which puts tremendous data in ADP’s hands.

57. Upon information and belief, ADP is now putting that data to use and generating a

new revenue stream. For example, upon information and belief, ADP has built at least a product

called DataCloud, which employs Cloudera Erasure Coding Components, that aggregates

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 20 of 350

Page 21 of 91

information across ADP’s 600,000 clients and generates insights to help clients prevent employee

churn, ensure salary equality, and maximize human resources.

58. Upon information and belief, ADP was able to use DataCloud to identify the top

one percent of at-risk employees in a pilot account, and learned that within that group, turnover

was actually 50 percent. When removing that top one percent from the overall analysis, average

turnover dropped to nine percent. DataCloud helped the client focus on a small population of

at-risk employees where they could make a meaningful impact that would drastically improve the

company’s overall churn; without this insight, they would have spread retention efforts across the

employee base, requiring more time and resources with a less targeted approach and having a lower

impact overall.

59. Reducing employee churn has far-reaching business impacts. The cost of losing

one employee is more than a simple hiring replacement. Recruiting and interviewing for that

person’s replacement is costly. Productivity is lost while the new hire gets up to speed. Risk of

others on the team leaving increases when they’re forced to pick up the slack. It’s a ripple effect.

60. The value DataCloud offers is evidenced by the massive growth ADP has seen

throughout its client base, driving greater success for ADP via this new revenue channel.

61. Upon information and belief, DataCloud stemmed from a strategic shift at ADP to

move from primarily processing transactions to also providing insights based on its greatest asset:

data. Upon considering building this product, ADP reached out to clients to gauge their interest

in gaining insights based on aggregated and anonymized benchmarks developed from the data

spanning ADP’s customer base. But making the vision a reality presented a technological

challenge. Upon information and belief, ADP’s data was spread across data centers and

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 21 of 350

Page 22 of 91

applications. It needed to be brought together for processing, exploration, and analysis. It wouldn’t

be feasible using traditional relational database technology.

62. ADP built DataCloud to allow for the storage and processing of large amounts of

data in new ways. According to Jim Haas, Principal Architect of DataCloud, advanced data storage

and prioritization technologies let companies “maximize CPU time and memory used,” which for

HR leaders means “getting the big tasks done faster.”2 KPMG reports that 42% of organizations

will replace their existing HR software with a cloud-based solution, with most citing better

functionality and higher business value as the motivation.3 But the sheer amount of employee

data, devices, access permissions, and historical data needed to effectively track current conditions

and develop long-term policies can easily overwhelm standard infrastructure.

63. Upon information and belief, DataCloud employs Cloudera Enterprise, comprising

a 200-terabyte (TB) lab and two 400-TB production data centers, each with replication for disaster

recovery.

64. Upon information and belief, ten data domains feed DataCloud a billion records

every quarter, including: (1) 600,000-plus client databases capturing information on 29 million

people; (2) mainframe-based data from the 30 to 35 million pay cycles ADP executes annually,

including compensation, time card punches, bonuses, overtime, and salary increases; (3) Oracle-

based data from the 15 million HR functions managed by ADP annually, such as benefit deductions

and elections, performance scores, and recruiting processes; (4) data from 15 other ADP

2 Doug Bonderud, HR Cloud Solutions: A Foundation for Better Decision Making, ADP,
https://www.adp.com/spark/articles/2018/01/hr-cloud-solutions-a-foundation-for-better-decision-
making.aspx (last visited Jan. 19, 2021).

3 See, e.g., 2016 HR Transformation Survey: Summary Report, KPMG,
https://assets.kpmg/content/dam/kpmg/in/pdf/2016/11/HR-Transformation-Survey-
Summaryreport.pdf (last visited Jan. 19, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 22 of 350

Page 23 of 91

departments—such as Marketing, Sales, Implementations, and Service—who leverage the

platform as their enterprise data hub (EDH) so they may build their own data products; and

(5) client data sets such as point-of-sale transactions and revenues.

65. DataCloud conforms job title and role categorizations across 600,000 companies

into a comparable standard from which 500 billion aggregates are created. Those aggregates are

used to build the benchmarks that are delivered to clients. Upon information and belief, Jim Haas,

Principal Architect at ADP has explained, “the data is drawing everybody

together Sometimes I call it ‘the little cluster that can’ because it’s just amazing what goes on

in there in a day.”

66. Upon information and belief, the ADP Infringing Products and Services are

configured to support accelerated erasure coding.

67. Experian has directly infringed, and continues to directly infringe, each of the

Patents-in-Suit by engaging in acts constituting infringement under 35 U.S.C. §§ 271(a), including

without limitation by one or more of making, using, selling and/or offering to sell, in this District

and elsewhere in the United States, and/or importing into this District and elsewhere in the United

States, at least Experian’s products and services that use and/or incorporate the Cloudera Infringing

Products and Services, including but not limited to Experian Analytical Sandbox and Velcro, and

any Experian product or service that is substantially or reasonably similar (the “Experian

Infringing Products and Services”).

68. Upon information and belief, Experian integrated Cloudera Enterprise onto its

cloud environment for its Credit Information Services, Decision Analytics, and Business

Information Services business lines. Upon information and belief, Experian employs Cloudera

Erasure Coding Components in Experian’s Ascend Technology Platform and Analytical Sandbox.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 23 of 350

Page 24 of 91

69. Experian is doing business in the United States and more particularly in this

District, including at least through Experian’s corporate subsidiaries CSIdentity Corporation and

Experian Information Solutions, Inc., by making, using, selling, importing, and/or offering for sale

the product and services that infringe one or more of the patent claims involved in this action.

70. Upon information and belief, with 15,000+ employees and annual revenues

exceeding $4 billion (USD), Experian is a global leader in credit reporting and marketing services

that is comprised of four main business units: Credit Information Services, Decision Analytics,

Business Information Services, and Marketing Services.

71. Experian Marketing Services (“EMS”), for example, helps marketers connect with

customers through relevant communications across a variety of channels, driven by advanced

analytics on an extensive database of geographic, demographic, and lifestyle data.

72. EMS has built its business on the effective collection, analysis, and use of data.

Upon information and belief, as EMS’s former VP of product strategy Jeff Hassemer once

explained, “Experian has handled large amounts of data for a very long time: who consumers are,

how they’re connected, how they interact. We’ve done this over billions and quadrillions of

records over time. But with the proliferation of channels and information that are now flowing

into client organizations—social media likes, web interactions, email responses—that data has

gotten so large that it’s maxed the capacity of older systems. We needed to leap forward in our

processing ability. We wanted to process data orders of magnitude faster so we could react to

tomorrow’s consumer.”

73. Today’s consumers leave a digital trail of behaviors and preferences for marketers

to leverage so they can enhance the customer experience, and upon information and belief,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 24 of 350

Page 25 of 91

Experian’s clients started asking for more frequent updates on consumers’ latest purchasing

behaviors, online browsing patterns, and social media activity so they can respond in real time.

74. Upon information and belief, Experian recognized that the data exhaust from these

digital channels is massive and requires a technological infrastructure that can accommodate rapid

processing, large-scale storage, and flexible analysis of multi-structured data. Experian’s

mainframes were hitting the tipping point in terms of performance, flexibility, and scalability.

Given the need for immediacy of information and customization of data in real time for clients,

EMS set an internal goal to process more than 100 million records of data per hour (28,000 records

per second).

75. Upon information and belief, instead of trying to fit a square peg in a round hole,

Experian went out and decided to build an architecture that could handle the new volumes of data

that it manages and built a system that employs Cloudera CDH.

76. Upon information and belief, the Experian Infringing Products and Services are

configured to support accelerated erasure coding.

77. Wargaming has directly infringed, and continues to directly infringe, each of the

Patents-in-Suit by engaging in acts constituting infringement under 35 U.S.C. § 271(a), including

without limitation by one or more of making, using, selling and/or offering to sell, in this District

and elsewhere in the United States, and/or importing into this District and elsewhere in the United

States, at least Wargaming’s products and services that use and/or incorporate Cloudera Erasure

Coding Components, including but not limited to Wargaming’s Player Relationship Management

Platform (“PRMP”) in support of Wargaming’s online games and massively multiplayer online

(“MMO”) games, and any Wargaming product or service that is substantially or reasonably similar

(the “Wargaming Infringing Products and Services”).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 25 of 350

Page 26 of 91

78. Wargaming provides strategic intelligence analytics services and coordinates the

data services architecture for Wargaming MMO games. Wargaming is a global services hub for

games developed, at least in part, by Wargaming Group Limited and accessible via the portal at

www.wargaming.net. Wargaming provides data-driven insights, analysis, and reporting of

wargaming.net projects, strategic planning, and global game design services through business

analytics, production, central technology, and regional administrative departments.

79. Furthermore, Wargaming conducts general research on topics such as the gaming

industry, player behavior, and game defects.

80. Wargaming serves more than 150 million registered players in its MMO games.

Those millions of players generate massive amounts of data. Wargaming processes over 3 TB of

data daily. Upon information and belief, it does this using systems built with Cloudera Erasure

Coding Components.

81. Wargaming employees administrate and optimize a series of development and

production clusters that employ Cloudera Erasure Coding Components.

82. Upon information and belief, the Wargaming Infringing Products and Services are

configured to support accelerated erasure coding.

III. WIDESPREAD KNOWLEDGE OF STREAMSCALE’S PATENTS-IN-SUIT

83. The United States Patent and Trademark Office published the patent application

that ultimately led to the ’8-296 Patent on July 4, 2013. The very next day, July 5, 2013,

StreamScale sent a letter to USENIX, a computing systems association, notifying USENIX of

StreamScale’s pending patent applications and providing USENIX with advance notice of

StreamScale’s intent to issue a press release that StreamScale’s then-patent-pending technology.4

4 Exhibit I, Letter from Michael S. Adler, Counsel for StreamScale, to USENIX (July 5, 2013).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 26 of 350

Page 27 of 91

Upon information and belief, others in the industry, including but not limited to Intel, learned of

StreamScale and its patent applications as a consequence of the letter StreamScale wrote to

USENIX.

84. On July 10, 2013, while StreamScale awaited a response from USENIX, Intel

publicly announced its excitement to support development of erasure code solutions. Intel

explained that erasure codes reduce the size of data on disk by up to half versus traditional

replication, decreases costs by more than 50%, and reduces both hardware requirement costs and

power and cooling costs.5 Intel explained that erasure code was a long overdue technology and

Intel was excited to support, promote, and use it in cloud environments.6

85. On July 23, 2013, StreamScale issued a press release noting that its technology is

protected by then-pending patent applications and was not “open source.”7

86. Having received the July 5, 2013 letter that StreamScale sent to USENIX, and

following consultation with its attorneys, USENIX chose to comply with StreamScale’s request to

remove certain papers and materials from its web site.

87. On or about August 3, 2013, individuals began posting missives online regarding

StreamScale and its patent portfolio. Upon information and belief, H. Peter Anvin, an Intel

employee was aware of at least some of these online postings. Indeed, upon information and belief,

5 Exhibit J, Joe Arnold, Save Space: The Final Frontier—Erasure Codes with OpenStack Swift
(July 10, 2013), previously available at https://swiftstack.com/blog/2013/07/10/erasure-codes-
with-openstack-swift/.

6 Id.

7 Exhibit K, StreamScale Provides Notice of Ownership of Fastest Erasure Code Technology
Disclosed at Fast ’13 (July 23, 2013).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 27 of 350

Page 28 of 91

at least Mr. Anvin commented on at least some of these online postings, including but not limited

to on or about August 9, 2013.

88. Upon information and belief, in early March 2014, Intel employees again learned

about StreamScale, its patented and patent-pending technology, and its relationship to ISA-L. On

March 10, 2014, upon information and belief, one or more Intel employees reviewed and collected

a significant quantity of information about StreamScale, its attorneys, and its patent applications.

Upon information and belief, one or more Intel employees visited a number of specific pages on

StreamScale’s website, including (i) those detailing StreamScale’s then-pending-patent

applications, (ii) those summarizing StreamScale’s company history and technology, (iii) those

making recent new and press releases available to the public, (iv) those identifying StreamScale’s

employees and attorneys, and (v) those hosting academic papers authored by StreamScale’s

employees. Furthermore, upon information and belief, one or more Intel employees accessed and

downloaded electronic copies of one or more of StreamScale’s patents or patent applications, at

least from StreamScale’s website.

89. Indeed, upon information and belief, Intel was contacted in February or

March 2014 and knew about potential issues involving StreamScale, StreamScale’s

patent-pending technology, and ISA-L. In August and September 2014, outside counsel for Intel

corresponded with then-litigation counsel for StreamScale regarding a third party subpoena

StreamScale issued to Intel involving StreamScale’s intellectual property rights. Thus, upon

information and belief, by mid-to-late September 2014, Intel had knowledge of StreamScale,

StreamScale’s issued and pending patents and intellectual property rights, and their relevance to

ISA-L.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 28 of 350

Page 29 of 91

90. Separately, on or about March 5, 2015, Tushar Gohad, an Intel employee, indicated

that Jerasure and GF-complete were strategically important. Specifically, Mr. Gohad requested

that Jerasure and GF-complete be backported to an earlier version of software. By that time, one

of the authors of GF-Complete had publicly stated that StreamScale asserts that the use of

GF-Complete (particularly as part of Jerasure 2.0 or later) or any similar software, method or code

for erasure coding infringes StreamScale’s issued United States Patent No. 8.683,296.

91. On or about April 29, 2015, counsel for StreamScale wrote on an online technical

board and asked that the Jerasure 2.0 and GF-Complete libraries that had been republished be

removed.8 The next day, April 30, 2015, upon information and belief, StreamScale’s post and a

Techdirt article regarding StreamScale’s patent rights were brought to the attention of Paul Luse,

another Intel employee, who responded “we are all well aware of the info you passed on :)” Upon

information and belief, Mr. Luse then encouraged others to ignore StreamScale, indicating that

was always the best option.

92. Since at least March 5, 2021, when Intel was served through its registered agent

with the Original Complaint for Patent Infringement in this action, Return of Service, StreamScale,

Inc. v. Cloudera, Inc., No. 6:21-cv-00198-ADA (W.D. Tex. Mar. 10, 2021), ECF No. 14, Intel has

had express knowledge of each of the Patents-in-Suit and its infringement thereof. Intel continues

to actively induce infringement of the StreamScale Patents-in-Suit.

93. On July 7, 2021, StreamScale provided Intel express notice of each of the

Patents-in-Suit, its infringement thereof, and the role of ISA-L in its infringement thereof.

Exhibit M. Intel continues to actively induce infringement of the StreamScale Patents-in-Suit.

8 Exhibit L, Michael A. O’Shea, counsel for StreamScale, post to Ubuntu entitled “StreamScale”
(Apr. 29, 2015), available at https://lists.ubuntu.com/archives/technical-board/2015-
April/002100.html (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 29 of 350

Page 30 of 91

IV. INTEL’S INFRINGEMENT

94. Upon information and belief, Intel is a Fortune 50 company, with revenues

exceeding $70 billion annually.

95. Intel has a long history with United States patent litigation. Upon information and

belief, it employs several attorneys and counsel to manage its offensive and defensive patent

litigation docket. In addition, upon information and belief, Intel employs several attorneys to

evaluate, manage, and track patent assertions in its industry.

96. In addition, upon information and belief, Intel is a member or client of RPX

Corporation (“RPX”).

97. RPX offers patent risk management services, including defensive patent buying,

acquisition syndication, patent intelligence, and advisory services to its members and clients.

98. Also, upon information and belief, Intel is a member or client of Allied Security

Trust (“AST”).

99. AST offers patent risk mitigation services to some of the world’s biggest

technology companies and was created to combat unwanted patent assertions and litigation.

100. Intel has a publicly-known corporate policy forbidding its employees from reading

patents held by outside companies or individuals. “Intel’s own engineers concede that they avoid

reviewing other, non-Intel patents so as to avoid willfully infringing them.” Intel Corp. v. Future

Link Sys., LLC, 268 F. Supp. 3d 605, 623 (D. Del. 2017). Upon information and belief, Intel’s

policy is designed to avoid possible triple damages for willful infringement.

101. In fact, upon information and belief, Intel has reprimanded its employees for

inquiring about others’ intellectual property rights, including StreamScale’s patents. In early 2014,

upon information and belief, Intel reprimanded one of its cloud software architects specifically for

suggesting that there was a potential issue with ISA-L in connection with StreamScale.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 30 of 350

Page 31 of 91

102. Upon information and belief, Intel has rendered itself willfully blind to

StreamScale’s Patents-in-Suit and the intellectual property rights of others.

103. As further discussed below, Intel has indirectly infringed, and continues to

indirectly infringe, each of the Patents-in-Suit by engaging in acts constituting infringement under

35 U.S.C. § 271(b), including without limitation by actively inducing infringement by the EC

System Defendants through the deployment and/or use of Intel’s Intelligent Storage Acceleration

Library (“ISA-L”).

104. Upon information and belief, and as explained above, Intel has been aware of the

existence of at least one of the Patents-in-Suit beginning at least in 2014. Intel also obtained actual

knowledge of its infringement of the Patents-in-Suit when StreamScale served Intel with its

Original Complaint in this action on March 5, 2021. Further, Intel received actual knowledge of

its infringement of the Patents-in-Suit when StreamScale sent Intel a cease and desist letter on

July 7, 2021, identifying the Patents-in-Suit and Intel’s infringement thereof. Exhibit M. All of

the Patents-in-Suit are continuations of the application that ultimately issued as the ’8-296 Patent.

105. ISA-L comprises a collection of optimized low-level functions used for storage

applications.

106. ISA-L is optimized for Intel architecture Intel® 64.

107. ISA-L is packaged and shipped with Cloudera CDH.

108. Intel collaborated with Cloudera to apply erasure coding, including on changes

made to the NameNode, DataNode, and the client read and write paths, as well as optimizations

using Intel ISA-L to accelerate the encoding and decoding calculations.

109. ISA-L is enabled by default in Cloudera CDH.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 31 of 350

Page 32 of 91

110. Intel is doing business in the United States and more particularly in this District by

actively inducing infringement by at least Cloudera, ADP, Experian, and Wargaming of

StreamScale’s Patents-in-Suit through the deployment and support of ISA-L.

COUNT 1—INFRINGEMENT OF THE ’8-296 PATENT

111. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–110

of this Complaint as though fully set forth herein.

I. DIRECT INFRINGEMENT

112. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are

and have been directly infringing one or more of the ’8-296 Patent’s claims, including at least

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing

into the United States, without authority, erasure code products and services, including but not

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and

Services, the ADP Infringing Products and Services, the Experian Infringing Products and

Services, and the Wargaming Infringing Products and Services, as described above.

113. The EC System Defendants are infringing claims of the ’8-296 Patent, including at

least Claim 1, literally and/or pursuant to the doctrine of equivalents.

114. Claim 1 of the ’8-296 Patent is directed to a system for accelerated error-correcting

code (ECC) processing comprising: a processing core for executing computer instructions and

accessing data from a main memory; and a non-volatile storage medium for storing the computer

instructions, wherein the processing core, the non-volatile storage medium, and the computer

instructions are configured to implement an erasure coding system comprising: a data matrix for

holding original data in the main memory; a check matrix for holding check data in the main

memory; an encoding matrix for holding first factors in the main memory, the first factors being

for encoding the original data into the check data; and a thread for executing on the processing

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 32 of 350

Page 33 of 91

core and comprising: a parallel multiplier for concurrently multiplying multiple data entries of a

matrix by a single factor; and a first sequencer for ordering operations through the data matrix and

the encoding matrix using the parallel multiplier to generate the check data.

A. CLOUDERA’S DIRECT INFRINGEMENT

115. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’8-296 Patent, including at least Claim 1. The Cloudera Infringing Products

and Services are systems capable of performing accelerated ECC. They comprise a processing

core, including, for example, one or more Intel, AMD, ARM, and/or PPC64 processing cores. The

Cloudera Infringing Products and Services include non-volatile storage (memory) and computer

instructions to implement accelerated ECC. The accelerated ECC system of the Cloudera

Infringing Products and Services includes a data matrix for holding original data, a check matrix

for holding check data, and an encoding matrix for holding first factors, all in memory. The first

factors of the encoding matrix are used in the Cloudera Infringing Products and Services to encode

the original data into check data. The Cloudera Infringing Products and Services include a thread

for executing on the processing core that includes a parallel lookup multiplier and a sequencer for

ordering operations through the data matrix and encoding matrix to generate the check data.

B. ADP’S DIRECT INFRINGEMENT

116. As to ADP, at least the ADP Infringing Products and Services, as defined above,

comprise hardware and software components that together practice every element of one or more

claims of the ’8-296 Patent, including at least Claim 1. The ADP Infringing Products and Services

are systems capable of performing accelerated ECC. They comprise a processing core, including,

for example, one or more Intel, AMD, ARM, and/or PPC64 processing cores. The ADP Infringing

Products and Services include non-volatile storage (memory) and computer instructions to

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 33 of 350

Page 34 of 91

implement accelerated ECC. The accelerated ECC system of the ADP Infringing Products and

Services includes a data matrix for holding original data, a check matrix for holding check data,

and an encoding matrix for holding first factors, all in memory. The first factors of the encoding

matrix are used in the ADP Infringing Products and Services to encode the original data into check

data. The ADP Infringing Products and Services include a thread for executing on the processing

core that includes a parallel lookup multiplier and a sequencer for ordering operations through the

data matrix and encoding matrix to generate the check data.

C. EXPERIAN’S DIRECT INFRINGEMENT

117. As to Experian, at least the Experian Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’8-296 Patent, including at least Claim 1. The Experian Infringing Products

and Services are systems capable of performing accelerated ECC. They comprise a processing

core, including, for example, one or more Intel, AMD, ARM, and/or PPC64 processing cores. The

Experian Infringing Products and Services include non-volatile storage (memory) and computer

instructions to implement accelerated ECC. The accelerated ECC system of the Experian

Infringing Products and Services includes a data matrix for holding original data, a check matrix

for holding check data, and an encoding matrix for holding first factors, all in memory. The first

factors of the encoding matrix are used in the Experian Infringing Products and Services to encode

the original data into check data. The Experian Infringing Products and Services include a thread

for executing on the processing core that includes a parallel lookup multiplier and a sequencer for

ordering operations through the data matrix and encoding matrix to generate the check data.

D. WARGAMING’S DIRECT INFRINGEMENT

118. As to Wargaming, at least the Wargaming Infringing Products and Services, as

defined above, comprise hardware and software components that together practice every element

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 34 of 350

Page 35 of 91

of one or more claims of the ’8-296 Patent, including at least Claim 1. The Wargaming Infringing

Products and Services are systems capable of performing accelerated ECC. They comprise a

processing core, including, for example, one or more Intel, AMD, ARM, and/or PPC64 processing

cores. The Wargaming Infringing Products and Services include non-volatile storage (memory)

and computer instructions to implement accelerated ECC. The accelerated ECC system of the

Wargaming Infringing Products and Services includes a data matrix for holding original data, a

check matrix for holding check data, and an encoding matrix for holding first factors, all in

memory. The first factors of the encoding matrix are used in the Wargaming Infringing Products

and Services to encode the original data into check data. The Wargaming Infringing Products and

Services include a thread for executing on the processing core that includes a parallel lookup

multiplier and a sequencer for ordering operations through the data matrix and encoding matrix to

generate the check data.

II. INDIRECT INFRINGEMENT

119. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of

the ’8-296 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of

at least Claim 1 of the ’8-296 Patent by third parties, including for example Cloudera, ADP,

Experian, and Wargaming, in this District and elsewhere in the United States. Direct infringement

is the result of activities performed by users of systems that incorporate, among other features,

ISA-L, including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at

least Claim 1 of the ’8-296 Patent.

120. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof),

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive

materials and information concerning operation and use of ISA-L (or portions thereof), and

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 35 of 350

Page 36 of 91

and Wargaming to infringe at least Claim 1 of the ’8-296 Patent. For example, Intel induced

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’8-296 Patent through

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products

and Services. By and through these acts, Intel knowingly and specifically intended the users of

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’8-296 Patent. Intel (1) knew or

should have known of the ’8-296 Patent since at least 2014, (2) performed and continues to

perform affirmative acts that constitute induced infringement, and (3) knew or should have known

that those acts would induce actual infringement of one or more of the ’8-296 Patent’s claims by

users of ISA-L.

121. Intel actively markets and instructs the EC System Defendants to create EC

Systems using ISA-L.

122. For example, upon information and belief, Intel (i) maintains a website to promote

ISA-L,9 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use

that are available to the EC System Defendants on the Intel website,10 (iii) describes case studies

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API

Reference Manual for ISA-L11 that is available to the EC System Defendants, which it updates

9 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24,
2021).

10 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L,
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021).

11 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 36 of 350

Page 37 of 91

regularly.12 Upon information and belief, Intel further offers the EC System Defendants technical

support for ISA-L and the EC System Defendants’ products.

123. Upon information and belief, Intel promotes and encourages the EC System

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC

System Defendants.

124. As to Intel, at least ISA-L, as defined above, is designed to be used with other

components that, when combined with hardware, practice one or more claims of the ’8-296 Patent,

including at least Claim 1. EC Systems that employ ISA-L create a data matrix for holding original

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in

memory. The first factors of the encoding matrix are used to encode the original data into check

data. The systems also include a thread for executing on the processing core that includes a parallel

lookup multiplier and a sequencer for ordering operations through the data matrix and encoding

matrix to generate the check data.

125. As explained above, Intel had actual knowledge of the ’8-296 Patent prior to this

lawsuit being filed and had knowledge of the infringing nature of its activities, and the role of

ISA-L in that infringement of the ’8-296 Patent, yet continues to induce infringement of at least

Claim 1 of the ’8-296 Patent by Cloudera, ADP, Experian, and Wargaming.

126. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent

portfolio, Intel subjectively believed there was a high probability that StreamScale’s

https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24,
2021).

12 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference
Manual (ver. 2.23.0, June 29, 2018), available at
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 37 of 350

Page 38 of 91

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe

StreamScale’s Patents-in-Suit, including the ’8-296 Patent. To the extent that Intel lacked actual

knowledge of the ’8-296 Patent or the EC System Defendants’ actual infringement of the

’8-296 Patent, Intel took deliberate actions to avoid learning of those facts. Indeed, Intel actively

encouraged others to ignore StreamScale and its patents and further reprimanded at least one

employee for failing to ignore StreamScale and its patents.

127. At a minimum, Intel has had actual notice of the ’8-296 Patent since March 5, 2021

and has knowledge of the infringing nature of its activities, yet continues to induce infringement

of at least Claim 1 of the ’8-296 Patent by Cloudera, ADP, Experian, and Wargaming.

128. Despite knowing of the ’8-296 Patent since at least as early as 2014, but in no event

later than March 5, 2021, upon information and belief, Intel has never undertaken any serious

investigation to form a good faith belief as to non-infringement or invalidity of the ’8-296 Patent.

129. Despite knowing of the ’8-296 Patent since at least as early as March 5, 2021, Intel

has continued to infringe one or more claims of the ’8-296 Patent.

130. Despite knowing of the ’8-296 Patent since at least July 7, 2021, Intel has continued

to infringe one or more claims of the ’8-296 Patent.

131. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of

the ’8-296 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate,

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this

action pursuant to 35 U.S.C. § 285.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 38 of 350

Page 39 of 91

III. DAMAGES

132. Defendants’ acts of infringement have caused damages to StreamScale, and

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a

result of Defendants’ wrongful acts in an amount to be determined at trial.

COUNT 2—INFRINGEMENT OF THE ’374 PATENT

133. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–132

of this Complaint as though fully set forth herein.

I. DIRECT INFRINGEMENT

134. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are

and have been directly infringing one or more of the ’374 Patent’s claims, including at least

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing

into the United States, without authority, erasure code products and services, including but not

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and

Services, the ADP Infringing Products and Services, the Experian Infringing Products and

Services, and the Wargaming Infringing Products and Services, as described above.

135. The EC System Defendants are infringing claims of the ’374 Patent, including at

least Claim 1, literally and/or pursuant to the doctrine of equivalents.

136. Claim 1 of the ’374 Patent is directed to a system for accelerated error-correcting

code (ECC) processing comprising: a processing core for executing computer instructions and

accessing data from a main memory, the processing core comprising at least 16 data registers, each

of the data registers comprising at least 16 bytes; and a non-volatile storage medium for storing

the computer instructions, wherein the processing core, the non-volatile storage medium, and the

computer instructions are configured to implement an erasure coding system comprising: a data

matrix for holding original data in the main memory; a check matrix for holding check data in the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 39 of 350

Page 40 of 91

main memory; an encoding matrix for holding first factors in the main memory, the first factors

being for encoding the original data into the check data; and a thread for executing on the

processing core and comprising: a parallel multiplier for concurrently multiplying multiple data

entries of a matrix by a single factor; and a first sequencer for ordering operations through the data

matrix and the encoding matrix using the parallel multiplier to generate the check data.

A. CLOUDERA’S DIRECT INFRINGEMENT

137. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’374 Patent, including at least Claim 1. The Cloudera Infringing Products

and Services are systems capable of performing accelerated ECC. They comprise a processing

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or

more Intel, AMD, ARM, and/or PPC64 processing cores. The Cloudera Infringing Products and

Services include non-volatile storage (memory) and computer instructions to implement

accelerated ECC. The accelerated ECC system of the Cloudera Infringing Products and Services

includes a data matrix for holding original data, a check matrix for holding check data, and an

encoding matrix for holding first factors, all in memory. The first factors of the encoding matrix

are used in the Cloudera Infringing Products and Services to encode the original data into check

data. The Cloudera Infringing Products and Services include a thread for executing on the

processing core that includes a parallel lookup multiplier and a sequencer for ordering operations

through the data matrix and encoding matrix to generate the check data.

B. ADP’S DIRECT INFRINGEMENT

138. As to ADP, at least the ADP Infringing Products and Services, as defined above,

comprise hardware and software components that together practice every element of one or more

claims of the ’374 Patent, including at least Claim 1. The ADP Infringing Products and Services

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 40 of 350

Page 41 of 91

are systems capable of performing accelerated ECC. They comprise a processing core comprising

at least 16 data registers of at least 16 bytes each, including, for example, one or more Intel, AMD,

ARM, and/or PPC64 processing cores. The ADP Infringing Products and Services include

non-volatile storage (memory) and computer instructions to implement accelerated ECC. The

accelerated ECC system of the ADP Infringing Products and Services includes a data matrix for

holding original data, a check matrix for holding check data, and an encoding matrix for holding

first factors, all in memory. The first factors of the encoding matrix are used in the ADP Infringing

Products and Services to encode the original data into check data. The ADP Infringing Products

and Services include a thread for executing on the processing core that includes a parallel lookup

multiplier and a sequencer for ordering operations through the data matrix and encoding matrix to

generate the check data.

C. EXPERIAN’S DIRECT INFRINGEMENT

139. As to Experian, at least the Experian Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’374 Patent, including at least Claim 1. The Experian Infringing Products

and Services are systems capable of performing accelerated ECC. They comprise a processing

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or

more Intel, AMD, ARM, and/or PPC64 processing cores. The Experian Infringing Products and

Services include non-volatile storage (memory) and computer instructions to implement

accelerated ECC. The accelerated ECC system of the Experian Infringing Products and Services

includes a data matrix for holding original data, a check matrix for holding check data, and an

encoding matrix for holding first factors, all in memory. The first factors of the encoding matrix

are used in the Experian Infringing Products and Services to encode the original data into check

data. The Experian Infringing Products and Services include a thread for executing on the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 41 of 350

Page 42 of 91

processing core that includes a parallel lookup multiplier and a sequencer for ordering operations

through the data matrix and encoding matrix to generate the check data.

D. WARGAMING’S DIRECT INFRINGEMENT

140. As to Wargaming, at least the Wargaming Infringing Products and Services, as

defined above, comprise hardware and software components that together practice every element

of one or more claims of the ’374 Patent, including at least Claim 1. The Wargaming Infringing

Products and Services are systems capable of performing accelerated ECC. They comprise a

processing core comprising at least 16 data registers of at least 16 bytes each, including, for

example, one or more Intel, AMD, ARM, and/or PPC64 processing cores. The Wargaming

Infringing Products and Services include non-volatile storage (memory) and computer instructions

to implement accelerated ECC. The accelerated ECC system of the Wargaming Infringing

Products and Services includes a data matrix for holding original data, a check matrix for holding

check data, and an encoding matrix for holding first factors, all in memory. The first factors of

the encoding matrix are used in the Wargaming Infringing Products and Services to encode the

original data into check data. The Wargaming Infringing Products and Services include a thread

for executing on the processing core that includes a parallel lookup multiplier and a sequencer for

ordering operations through the data matrix and encoding matrix to generate the check data.

II. INDIRECT INFRINGEMENT

141. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of

the ’374 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at

least Claim 1 of the ’374 Patent by third parties, including for example Cloudera, ADP, Experian,

and Wargaming, in this District and elsewhere in the United States. Direct infringement is the

result of activities performed by users of systems that incorporate, among other features, ISA-L,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 42 of 350

Page 43 of 91

including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least

Claim 1 of the ’374 Patent.

142. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof),

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive

materials and information concerning operation and use of ISA-L (or portions thereof), and

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian,

and Wargaming to infringe at least Claim 1 of the ’374 Patent. For example, Intel induced

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’374 Patent through

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products

and Services. By and through these acts, Intel knowingly and specifically intended the users of

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’374 Patent. Intel (1) knew or should

have known of the ’374 Patent since at least 2015, (2) performed and continues to perform

affirmative acts that constitute induced infringement, and (3) knew or should have known that

those acts would induce actual infringement of one or more of the ’374 Patent’s claims by users

of ISA-L.

143. For example, upon information and belief, Intel (i) maintains a website to promote

ISA-L,13 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use

that are available to the EC System Defendants on the Intel website,14 (iii) describes case studies

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel

13 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24,
2021).

14 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L,
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 43 of 350

Page 44 of 91

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API

Reference Manual for ISA-L15 that is available to the EC System Defendants, which it updates

regularly.16 Upon information and belief, Intel further offers the EC System Defendants technical

support for ISA-L and the EC System Defendants’ products.

144. Upon information and belief, Intel promotes and encourages the EC System

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC

System Defendants.

145. As to Intel, at least ISA-L, as defined above, is designed to be used with other

components that, when combined with hardware, practice one or more claims of the ’374 Patent,

including at least Claim 1. EC Systems that employ ISA-L create a data matrix for holding original

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in

memory. The first factors of the encoding matrix are used to encode the original data into check

data. The systems also include a thread for executing on the processing core that includes a parallel

lookup multiplier and a sequencer for ordering operations through the data matrix and encoding

matrix to generate the check data.

146. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent

portfolio, Intel subjectively believed there was a high probability that StreamScale’s

15 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24,
2021).

16 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference
Manual (ver. 2.23.0, June 29, 2018), available at
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 44 of 350

Page 45 of 91

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe

StreamScale’s Patents-in-Suit, including the ’374 Patent. To the extent that Intel lacked actual

knowledge of the ’374 Patent or the EC System Defendants’ actual infringement of the

’374 Patent, Intel took deliberate actions to avoid learning of those facts. Indeed, Intel actively

encouraged others to ignore StreamScale and its patents and further reprimanded at least one

employee for failing to ignore StreamScale and its patents.

147. At a minimum, Intel has had actual notice of the ’374 Patent since March 5, 2021

and has knowledge of the infringing nature of its activities, yet continues to induce infringement

of at least Claim 1 of the ’374 Patent by Cloudera, ADP, Experian, and Wargaming.

148. Despite knowing of the 374 Patent since at least as early as March 5, 2021, upon

information and belief, Intel has never undertaken any serious investigation to form a good faith

belief as to non-infringement or invalidity of the ’374 Patent.

149. Despite knowing of the ’374 Patent since at least as early as March 5, 2021, Intel

has continued to infringe one or more claims of the ’374 Patent.

150. Despite knowing of the ’374 Patent since at least July 7, 2021, Intel has continued

to infringe one or more claims of the ’374 Patent.

151. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of

the ’374 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate,

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this

action pursuant to 35 U.S.C. § 285.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 45 of 350

Page 46 of 91

III. DAMAGES

152. Defendants’ acts of infringement have caused damages to StreamScale, and

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a

result of Defendants’ wrongful acts in an amount to be determined at trial.

COUNT 3—INFRINGEMENT OF THE ’759 PATENT

153. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–152

of this Complaint as though fully set forth herein.

I. DIRECT INFRINGEMENT

154. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are

and have been directly infringing one or more of the ’759 Patent’s claims, including at least

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing

into the United States, without authority, erasure code products and services, including but not

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and

Services, the ADP Infringing Products and Services, the Experian Infringing Products and

Services, and the Wargaming Infringing Products and Services, as described above.

155. The EC System Defendants are infringing claims of the ’759 Patent, including at

least Claim 1, literally and/or pursuant to the doctrine of equivalents.

156. Claim 1 of the ’759 Patent is directed to a system for accelerated error-correcting

code (ECC) processing comprising: a processing core for executing computer instructions and

accessing data from a main memory, the processing core comprising at least 16 data registers, each

of the data registers comprising at least 16 bytes; one or more non-volatile storage media for storing

the computer instructions and the data; and an input/output (I/O) controller for controlling data

transfers between the main memory and the non-volatile storage media, wherein the processing

core, the non-volatile storage media, the I/O controller, and the computer instructions are

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 46 of 350

Page 47 of 91

configured to implement an erasure coding system comprising: a data matrix for holding original

data in the main memory; a check matrix for holding check data in the main memory; an encoding

matrix for holding first factors in the main memory, the first factors being for encoding the original

data into the check data; and a thread for executing on the processing core and comprising: a

parallel multiplier for concurrently multiplying multiple data entries of a matrix by a single factor;

and a first sequencer for ordering data accesses through the data matrix and the encoding matrix

using the parallel multiplier to generate the check data.

A. CLOUDERA’S DIRECT INFRINGEMENT

157. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’759 Patent, including at least Claim 1. The Cloudera Infringing Products

and Services are systems capable of performing accelerated ECC. They comprise a processing

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or

more Intel, AMD, ARM, and/or PPC64 processing cores. The Cloudera Infringing Products and

Services include non-volatile storage (memory) for storing computer instructions and data. The

Cloudera Infringing Products and Services further include an input/output (I/O) controller to

coordinate communication and data transfers between the main memory and the non-volatile

storage media. The processing core, memory, I/O controller, and computer instructions of the

Cloudera Infringing Products and Services implement accelerated ECC. The accelerated ECC

system of the Cloudera Infringing Products and Services includes a data matrix for holding original

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in

memory. The first factors of the encoding matrix are used in the Cloudera Infringing Products and

Services to encode the original data into check data. The Cloudera Infringing Products and

Services include a thread for executing on the processing core that includes a parallel lookup

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 47 of 350

Page 48 of 91

multiplier and a sequencer for ordering data accesses through the data matrix and encoding matrix

to generate the check data.

B. ADP’S DIRECT INFRINGEMENT

158. As to ADP, at least the ADP Infringing Products and Services, as defined above,

comprise hardware and software components that together practice every element of one or more

claims of the ’759 Patent, including at least Claim 1. The ADP Infringing Products and Services

are systems capable of performing accelerated ECC. They comprise a processing core comprising

at least 16 data registers of at least 16 bytes each, including, for example, one or more Intel, AMD,

ARM, and/or PPC64 processing cores. The ADP Infringing Products and Services include

non-volatile storage (memory) for storing computer instructions and data. The ADP Infringing

Products and Services further include an input/output (I/O) controller to coordinate communication

and data transfers between the main memory and the non-volatile storage media. The processing

core, memory, I/O controller, and computer instructions of the ADP Infringing Products and

Services implement accelerated ECC. The accelerated ECC system of the ADP Infringing

Products and Services includes a data matrix for holding original data, a check matrix for holding

check data, and an encoding matrix for holding first factors, all in memory. The first factors of

the encoding matrix are used in the ADP Infringing Products and Services to encode the original

data into check data. The ADP Infringing Products and Services include a thread for executing on

the processing core that includes a parallel lookup multiplier and a sequencer for ordering data

accesses through the data matrix and encoding matrix to generate the check data.

C. EXPERIAN’S DIRECT INFRINGEMENT

159. As to Experian, at least the Experian Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’759 Patent, including at least Claim 1. The Experian Infringing Products

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 48 of 350

Page 49 of 91

and Services are systems capable of performing accelerated ECC. They comprise a processing

core comprising at least 16 data registers of at least 16 bytes each, including, for example, one or

more Intel, AMD, ARM, and/or PPC64 processing cores. The Experian Infringing Products and

Services include non-volatile storage (memory) for storing computer instructions and data. The

Experian Infringing Products and Services further include an input/output (I/O) controller to

coordinate communication and data transfers between the main memory and the non-volatile

storage media. The processing core, memory, I/O controller, and computer instructions of the

Experian Infringing Products and Services implement accelerated ECC. The accelerated ECC

system of the Experian Infringing Products and Services includes a data matrix for holding original

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in

memory. The first factors of the encoding matrix are used in the Experian Infringing Products and

Services to encode the original data into check data. The Experian Infringing Products and

Services include a thread for executing on the processing core that includes a parallel lookup

multiplier and a sequencer for ordering data accesses through the data matrix and encoding matrix

to generate the check data.

D. WARGAMING’S DIRECT INFRINGEMENT

160. As to Wargaming, at least the Wargaming Infringing Products and Services, as

defined above, comprise hardware and software components that together practice every element

of one or more claims of the ’759 Patent, including at least Claim 1. The Wargaming Infringing

Products and Services are systems capable of performing accelerated ECC. They comprise a

processing core comprising at least 16 data registers of at least 16 bytes each, including, for

example, one or more Intel, AMD, ARM, and/or PPC64 processing cores. The Wargaming

Infringing Products and Services include non-volatile storage (memory) for storing computer

instructions and data. The Wargaming Infringing Products and Services further include an

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 49 of 350

Page 50 of 91

input/output (I/O) controller to coordinate communication and data transfers between the main

memory and the non-volatile storage media. The processing core, memory, I/O controller, and

computer instructions of the Wargaming Infringing Products and Services implement accelerated

ECC. The accelerated ECC system of the Wargaming Infringing Products and Services includes

a data matrix for holding original data, a check matrix for holding check data, and an encoding

matrix for holding first factors, all in memory. The first factors of the encoding matrix are used in

the Wargaming Infringing Products and Services to encode the original data into check data. The

Wargaming Infringing Products and Services include a thread for executing on the processing core

that includes a parallel lookup multiplier and a sequencer for ordering data accesses through the

data matrix and encoding matrix to generate the check data.

II. INDIRECT INFRINGEMENT

161. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of

the ’759 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at

least Claim 1 of the ’759 Patent by third parties, including for example Cloudera, ADP, Experian,

and Wargaming, in this District and elsewhere in the United States. Direct infringement is the

result of activities performed by users of systems that incorporate, among other features, ISA-L,

including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least

Claim 1 of the ’759 Patent.

162. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof),

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive

materials and information concerning operation and use of ISA-L (or portions thereof), and

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian,

and Wargaming to infringe at least Claim 1 of the ’759 Patent. For example, Intel induced

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’759 Patent through

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 50 of 350

Page 51 of 91

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products

and Services. By and through these acts, Intel knowingly and specifically intended the users of

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’759 Patent. Intel (1) knew or should

have known of the ’759 Patent since at least 2016, (2) performed and continues to perform

affirmative acts that constitute induced infringement, and (3) knew or should have known that

those acts would induce actual infringement of one or more of the ’759 Patent’s claims by users

of ISA-L.

163. For example, upon information and belief, Intel (i) maintains a website to promote

ISA-L,17 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use

that are available to the EC System Defendants on the Intel website,18 (iii) describes case studies

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API

Reference Manual for ISA-L19 that is available to the EC System Defendants, which it updates

17 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24,
2021).

18 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L,
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021).

19 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24,
2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 51 of 350

Page 52 of 91

regularly.20 Upon information and belief, Intel further offers the EC System Defendants technical

support for ISA-L and the EC System Defendants’ products.

164. Upon information and belief, Intel promotes and encourages the EC System

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC

System Defendants.

165. As to Intel, at least ISA-L, as defined above, is designed to be used with other

components that, when combined with hardware, practice one or more claims of the ’759 Patent,

including at least Claim 1. EC Systems that employ ISA-L create a data matrix for holding original

data, a check matrix for holding check data, and an encoding matrix for holding first factors, all in

memory. The first factors of the encoding matrix are used to encode the original data into check

data. The systems also include a thread for executing on the processing core that includes a parallel

lookup multiplier and a sequencer for ordering data accesses through the data matrix and encoding

matrix to generate the check data.

166. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent

portfolio, Intel subjectively believed there was a high probability that StreamScale’s

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe

StreamScale’s Patents-in-Suit, including the ’759 Patent. To the extent that Intel lacked actual

knowledge of the ’759 Patent or the EC System Defendants’ actual infringement of the

’759 Patent, Intel took deliberate actions to avoid learning of those facts. Indeed, Intel actively

encouraged others to ignore StreamScale and its patents and further reprimanded at least one

employee for failing to ignore StreamScale and its patents.

20 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference
Manual (ver. 2.23.0, June 29, 2018), available at
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 52 of 350

Page 53 of 91

167. At a minimum, Intel has had actual notice of the ’759 Patent since March 5, 2021

and has knowledge of the infringing nature of its activities, yet continues to induce infringement

of at least Claim 1 of the ’759 Patent by Cloudera, ADP, Experian, and Wargaming.

168. Despite knowing of the ’759 Patent since at least as early as March 5, 2021, upon

information and belief, Intel has never undertaken any serious investigation to form a good faith

belief as to non-infringement or invalidity of the ’759 Patent.

169. Despite knowing of the ’759 Patent since at least as early as March 5, 2021, Intel

has continued to infringe one or more claims of the ’759 Patent.

170. Despite knowing of the ’759 Patent since at least July 7, 2021, Intel has continued

to infringe one or more claims of the ’759 Patent.

171. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of

the ’759 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate,

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this

action pursuant to 35 U.S.C. § 285.

III. DAMAGES

172. Defendants’ acts of infringement have caused damages to StreamScale, and

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a

result of Defendants’ wrongful acts in an amount to be determined at trial.

COUNT 4—INFRINGEMENT OF THE ’358 PATENT

173. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–172

of this Complaint as though fully set forth herein.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 53 of 350

Page 54 of 91

I. DIRECT INFRINGEMENT

174. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are

and have been directly infringing one or more of the ’358 Patent’s claims, including at least

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing

into the United States, without authority, erasure code products and services, including but not

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and

Services, the ADP Infringing Products and Services, the Experian Infringing Products and

Services, and the Wargaming Infringing Products and Services, as described above.

175. The EC System Defendants are infringing claims of the ’358 Patent, including at

least Claim 1, literally and/or pursuant to the doctrine of equivalents.

176. Claim 1 of the ’358 Patent is directed to a system adapted to use accelerated error-

correcting code (ECC) processing to improve the storage and retrieval of digital data distributed

across a plurality of drives, comprising: at least one processor comprising at least one single-

instruction-multiple-data (SIMD) central processing unit (CPU) core that executes SIMD

instructions and loads original data from a main memory and stores check data to the main

memory, the SIMD CPU core comprising at least 16 vector registers, each of the vector registers

storing at least 16 bytes; at least one system drive comprising at least one non-volatile storage

medium that stores the SIMD instructions; a plurality of data drives each comprising at least one

non-volatile storage medium that stores at least one block of the original data, the at least one block

comprising at least 512 bytes; more than two check drives each comprising at least one non-volatile

storage medium that stores at least one block of the check data; and at least one input/output (I/O)

controller that stores the at least one block of the check data from the main memory to the check

drives, wherein the processor, the SIMD instructions, the non-volatile storage media, and the I/O

controller are configured to implement an erasure coding system comprising: a data matrix

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 54 of 350

Page 55 of 91

comprising at least one vector and comprising a plurality of rows of at least one block of the

original data in the main memory, each of the rows being stored on a different one of the data

drives; a check matrix comprising more than two rows of the at least one block of the check data

in the main memory, each of the rows being stored on a different one of the check drives, one of

the rows comprising a parity row comprising the Galois Field (GF) summation of all of the rows

of the data matrix; a thread that executes on the SIMD CPU core and comprising: at least one

parallel multiplier that multiplies the at least one vector of the data matrix by a single factor to

compute parallel multiplier results comprising at least one vector; at least one parallel adder that

adds the at least one vector of the parallel multiplier results and computes a running total; and a

sequencer wherein the sequencer orders load operations of the original data into at least one of the

vector registers and computes the check data with the parallel lookup multiplier and the parallel

adder, and stores the computed check data from the vector registers to the main memory.

A. CLOUDERA’S DIRECT INFRINGEMENT

177. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’358 Patent, including at least Claim 1. The Cloudera Infringing Products

and Services are systems adapted to use accelerated ECC processing to improve the storage and

retrieval of digital data that is distributed across multiple drives. They comprise a processing core

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that

executes the SIMD instructions and loads data from main memory and stores data to main memory.

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores,

includes at least 16 data registers of at least 16 bytes each. The Cloudera Infringing Products and

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer

instructions. The Cloudera Infringing Products and Services include multiple data drives, each of

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 55 of 350

Page 56 of 91

which includes a memory that stores blocks of original data that are at least 512 bytes. The

Cloudera Infringing Products and Services include more than two check drives, each of which

includes a memory that stores blocks of check data. The Cloudera Infringing Products and

Services further include an input/output (I/O) controller to coordinate communication and data

transfers between the main memory and the non-volatile storage media and that stores the check

data from the main memory to the check drives. The processing core, SIMD instructions, memory,

and I/O controller of the Cloudera Infringing Products and Services implement accelerated ECC.

The accelerated ECC system of the Cloudera Infringing Products and Services includes a data

matrix for holding vectors of original data, with each row of a block of original data stored on a

different data drive. The accelerated ECC system of the Cloudera Infringing Products and Services

includes a check matrix for holding vectors of check data, with each row of a block of check data

stored on different check drives. Moreover, one of the rows of the block of check data comprises

a parity row comprising the Galois Field (GF) summation of all of the rows of the data matrix.

The Cloudera Infringing Products and Services include a thread for executing on the SIMD CPU

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer. The

parallel lookup multiplier of the Cloudera Infringing Products and Services multiplies a vector of

the data matrix by a single factor; the parallel adder adds the result of the parallel multiplier to

compute a running total; and the sequencer orders load operations of the data into the registers,

computes the check data, and stores the computed check data to main memory.

B. ADP’S DIRECT INFRINGEMENT

178. As to ADP, at least the ADP Infringing Products and Services, as defined above,

comprise hardware and software components that together practice every element of one or more

claims of the ’358 Patent, including at least Claim 1. The ADP Infringing Products and Services

are systems adapted to use accelerated ECC processing to improve the storage and retrieval of

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 56 of 350

Page 57 of 91

digital data that is distributed across multiple drives. They comprise a processing core comprising

a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that executes

the SIMD instructions and loads data from main memory and stores data to main memory. The

SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores,

includes at least 16 data registers of at least 16 bytes each. The ADP Infringing Products and

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer

instructions. The ADP Infringing Products and Services include multiple data drives, each of

which includes a memory that stores blocks of original data that are at least 512 bytes. The ADP

Infringing Products and Services include more than two check drives, each of which includes a

memory that stores blocks of check data. The ADP Infringing Products and Services further

include an input/output (I/O) controller to coordinate communication and data transfers between

the main memory and the non-volatile storage media and that stores the check data from the main

memory to the check drives. The processing core, SIMD instructions, memory, and I/O controller

of the ADP Infringing Products and Services implement accelerated ECC. The accelerated ECC

system of the ADP Infringing Products and Services includes a data matrix for holding vectors of

original data, with each row of a block of original data stored on a different data drive. The

accelerated ECC system of the ADP Infringing Products and Services includes a check matrix for

holding vectors of check data, with each row of a block of check data stored on different check

drives. Moreover, one of the rows of the block of check data comprises a parity row comprising

the Galois Field (GF) summation of all of the rows of the data matrix. The ADP Infringing

Products and Services include a thread for executing on the SIMD CPU processing core that

includes a parallel lookup multiplier, a parallel adder, and a sequencer. The parallel lookup

multiplier of the ADP Infringing Products and Services multiplies a vector of the data matrix by a

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 57 of 350

Page 58 of 91

single factor; the parallel adder adds the result of the parallel multiplier to compute a running total;

and the sequencer orders load operations of the data into the registers, computes the check data,

and stores the computed check data to main memory.

C. EXPERIAN’S DIRECT INFRINGEMENT

179. As to Experian, at least the Experian Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’358 Patent, including at least Claim 1. The Experian Infringing Products

and Services are systems adapted to use accelerated ECC processing to improve the storage and

retrieval of digital data that is distributed across multiple drives. They comprise a processing core

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that

executes the SIMD instructions and loads data from main memory and stores data to main memory.

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores,

includes at least 16 data registers of at least 16 bytes each. The Experian Infringing Products and

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer

instructions. The Experian Infringing Products and Services include multiple data drives, each of

which includes a memory that stores blocks of original data that are at least 512 bytes. The

Experian Infringing Products and Services include more than two check drives, each of which

includes a memory that stores blocks of check data. The Experian Infringing Products and Services

further include an input/output (I/O) controller to coordinate communication and data transfers

between the main memory and the non-volatile storage media and that stores the check data from

the main memory to the check drives. The processing core, SIMD instructions, memory, and I/O

controller of the Experian Infringing Products and Services implement accelerated ECC. The

accelerated ECC system of the Experian Infringing Products and Services includes a data matrix

for holding vectors of original data, with each row of a block of original data stored on a different

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 58 of 350

Page 59 of 91

data drive. The accelerated ECC system of the Experian Infringing Products and Services includes

a check matrix for holding vectors of check data, with each row of a block of check data stored on

different check drives. Moreover, one of the rows of the block of check data comprises a parity

row comprising the Galois Field (GF) summation of all of the rows of the data matrix. The

Experian Infringing Products and Services include a thread for executing on the SIMD CPU

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer. The

parallel lookup multiplier of the Experian Infringing Products and Services multiplies a vector of

the data matrix by a single factor; the parallel adder adds the result of the parallel multiplier to

compute a running total; and the sequencer orders load operations of the data into the registers,

computes the check data, and stores the computed check data to main memory.

D. WARGAMING’S DIRECT INFRINGEMENT

180. As to Wargaming, at least the Wargaming Infringing Products and Services, as

defined above, comprise hardware and software components that together practice every element

of one or more claims of the ’358 Patent, including at least Claim 1. The Wargaming Infringing

Products and Services are systems adapted to use accelerated ECC processing to improve the

storage and retrieval of digital data that is distributed across multiple drives. They comprise a

processing core comprising a single-instruction-multiple-data (“SIMD”) central processing unit

(“CPU”) core that executes the SIMD instructions and loads data from main memory and stores

data to main memory. The SIMD CPU core, including for example Intel, AMD, ARM, and/or

PPC64 processing cores, includes at least 16 data registers of at least 16 bytes each. The

Wargaming Infringing Products and Services include a system drive with non-volatile storage

(memory) for storing the SIMD computer instructions. The Wargaming Infringing Products and

Services include multiple data drives, each of which includes a memory that stores blocks of

original data that are at least 512 bytes. The Wargaming Infringing Products and Services include

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 59 of 350

Page 60 of 91

more than two check drives, each of which includes a memory that stores blocks of check data.

The Wargaming Infringing Products and Services further include an input/output (I/O) controller

to coordinate communication and data transfers between the main memory and the non-volatile

storage media and that stores the check data from the main memory to the check drives. The

processing core, SIMD instructions, memory, and I/O controller of the Wargaming Infringing

Products and Services implement accelerated ECC. The accelerated ECC system of the

Wargaming Infringing Products and Services includes a data matrix for holding vectors of original

data, with each row of a block of original data stored on a different data drive. The accelerated

ECC system of the Wargaming Infringing Products and Services includes a check matrix for

holding vectors of check data, with each row of a block of check data stored on different check

drives. Moreover, one of the rows of the block of check data comprises a parity row comprising

the Galois Field (GF) summation of all of the rows of the data matrix. The Wargaming Infringing

Products and Services include a thread for executing on the SIMD CPU processing core that

includes a parallel lookup multiplier, a parallel adder, and a sequencer. The parallel lookup

multiplier of the Wargaming Infringing Products and Services multiplies a vector of the data

matrix by a single factor; the parallel adder adds the result of the parallel multiplier to compute a

running total; and the sequencer orders load operations of the data into the registers, computes the

check data, and stores the computed check data to main memory.

II. INDIRECT INFRINGEMENT

181. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of

the ’358 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at

least Claim 1 of the ’358 Patent by third parties, including for example Cloudera, ADP, Experian,

and Wargaming, in this District and elsewhere in the United States. Direct infringement is the

result of activities performed by users of systems that incorporate, among other features, ISA-L,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 60 of 350

Page 61 of 91

including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least

Claim 1 of the ’358 Patent.

182. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof),

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive

materials and information concerning operation and use of ISA-L (or portions thereof), and

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian,

and Wargaming to infringe at least Claim 1 of the ’358 Patent. For example, Intel induced

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’358 Patent through

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products

and Services. By and through these acts, Intel knowingly and specifically intended the users of

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’358 Patent. Intel (1) knew or should

have known of the ’358 Patent since at least 2018, (2) performed and continues to perform

affirmative acts that constitute induced infringement, and (3) knew or should have known that

those acts would induce actual infringement of one or more of the ’358 Patent’s claims by users

of ISA-L.

183. For example, upon information and belief, Intel (i) maintains a website to promote

ISA-L,21 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use

that are available to the EC System Defendants on the Intel website,22 (iii) describes case studies

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel

21 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24,
2021).

22 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L,
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 61 of 350

Page 62 of 91

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API

Reference Manual for ISA-L23 that is available to the EC System Defendants, which it updates

regularly.24 Upon information and belief, Intel further offers the EC System Defendants technical

support for ISA-L and the EC System Defendants’ products.

184. Upon information and belief, Intel promotes and encourages the EC System

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC

System Defendants.

185. As to Intel, at least ISA-L, as defined above, is designed to be used with other

components that, when combined with hardware, practice one or more claims of the ’358 Patent,

including at least Claim 1. EC Systems that employ ISA-L create a data matrix for holding vectors

of original data, with each row of a block of original data stored on a different data drive. The

systems that employ ISA-L create a check matrix for holding vectors of check data, with each row

of a block of check data stored on different check drives. Moreover, one of the rows of the block

of check data comprises a parity row comprising the Galois Field (GF) summation of all of the

rows of the data matrix. The systems also include a thread for executing on the SIMD CPU

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer. The

systems’ parallel lookup multiplier multiplies a vector of the data matrix by a single factor; the

23 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24,
2021).

24 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference
Manual (ver. 2.23.0, June 29, 2018), available at
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 62 of 350

Page 63 of 91

systems’ parallel adder adds the result of the parallel multiplier to compute a running total; and the

systems’ sequencer orders load operations of the data into the registers, computes the check data,

and stores the computed check data to main memory.

186. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent

portfolio, Intel subjectively believed there was a high probability that StreamScale’s

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe

StreamScale’s Patents-in-Suit, including the ’358 Patent. To the extent that Intel lacked actual

knowledge of the ’358 Patent or the EC System Defendants’ actual infringement of the

’358 Patent, Intel took deliberate actions to avoid learning of those facts. Indeed, Intel actively

encouraged others to ignore StreamScale and its patents and further reprimanded at least one

employee for failing to ignore StreamScale and its patents.

187. At a minimum, Intel has had actual notice of the ’358 Patent since March 5, 2021

and has knowledge of the infringing nature of its activities, yet continues to induce infringement

of at least Claim 1 of the ’358 Patent by Cloudera, ADP, Experian, and Wargaming.

188. Despite knowing of the ’358 Patent since at least as early as March 5, 2021, upon

information and belief, Intel has never undertaken any serious investigation to form a good faith

belief as to non-infringement or invalidity of the ’358 Patent.

189. Despite knowing of the ’358 Patent since at least as early as March 5, 2021, Intel

has continued to infringe one or more claims of the ’358 Patent.

190. Despite knowing of the ’358 Patent since at least July 7, 2021, Intel has continued

to infringe one or more claims of the ’358 Patent.

191. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of

the ’358 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 63 of 350

Page 64 of 91

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this

action pursuant to 35 U.S.C. § 285.

III. DAMAGES

192. Defendants’ acts of infringement have caused damages to StreamScale, and

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a

result of Defendants’ wrongful acts in an amount to be determined at trial.

COUNT 5—INFRINGEMENT OF THE ’259 PATENT

193. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–192

of this Complaint as though fully set forth herein.

I. DIRECT INFRINGEMENT

194. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are

and have been directly infringing one or more of the ’259 Patent’s claims, including at least

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing

into the United States, without authority, erasure code products and services, including but not

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and

Services, the ADP Infringing Products and Services, the Experian Infringing Products and

Services, and the Wargaming Infringing Products and Services, as described above.

195. The EC System Defendants are infringing claims of the ’259 Patent, including at

least Claim 1, literally and/or pursuant to the doctrine of equivalents.

196. Claim 1 of the ’259 Patent is directed to a system adapted to use accelerated error-

correcting code (ECC) processing to improve the storage and retrieval of digital data distributed

across a plurality of drives, comprising: at least one processor comprising at least one single-

instruction-multiple-data (SIMD) central processing unit (CPU) core that executes SIMD

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 64 of 350

Page 65 of 91

instructions and loads original data from a main memory and stores check data to the main

memory, the SIMD CPU core comprising at least 16 vector registers, each of the vector registers

storing at least 16 bytes; at least one system drive comprising at least one non-volatile storage

medium that stores the SIMD instructions; a plurality of data drives each comprising at least one

non-volatile storage medium that stores at least one block of the original data, the at least one block

comprising at least 512 bytes; more than two check drives each comprising at least one non-volatile

storage medium that stores at least one block of the check data; at least one first input/output (I/O)

controller that receives the at least one block of the original data from a transmitter and that stores

the at least one block of the original data to the main memory; and at least one second input/output

(I/O) controller that stores the at least one block of the check data from the main memory to the

check drives, wherein the processor, the SIMD instructions, the non-volatile storage medium, and

the at least one second I/O controller are configured to implement an erasure coding system

comprising: a data matrix comprising at least one vector and comprising a plurality of rows of at

least one block of the original data in the main memory, each of the rows being stored on a different

one of the data drives; a check matrix comprising more than two rows of the at least one block of

the check data in the main memory, each of the rows being stored on a different one of the check

drives, one of the rows comprising a parity row comprising the Galois Field (GF) summation of

all of the rows of the data matrix; and a thread that executes on the SIMD CPU core and

comprising: at least one parallel multiplier that multiplies the at least one vector of the data matrix

by a single factor to compute parallel multiplier results comprising at least one vector; at least one

parallel adder that adds the at least one vector of the parallel multiplier results and computes a

running total; and a sequencer wherein the sequencer orders load operations of the original data

into at least one of the vector registers and computes the check data with the parallel multiplier

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 65 of 350

Page 66 of 91

and the parallel adder, and stores the computed check data from the vector registers to the main

memory.

A. CLOUDERA’S DIRECT INFRINGEMENT

197. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’259 Patent, including at least Claim 1. The Cloudera Infringing Products

and Services are systems adapted to use accelerated ECC processing to improve the storage and

retrieval of digital data that is distributed across multiple drives. They comprise a processing core

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that

executes the SIMD instructions and loads data from main memory and stores data to main memory.

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores,

includes at least 16 data registers of at least 16 bytes each. The Cloudera Infringing Products and

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer

instructions. The Cloudera Infringing Products and Services include multiple data drives, each of

which includes a memory that stores blocks of original data that are at least 512 bytes. The

Cloudera Infringing Products and Services include more than two check drives, each of which

includes a memory that stores blocks of check data. The Cloudera Infringing Products and

Services further include a first input/output (I/O) controller to receive blocks of original data from

a transmitter and store that data to the main memory. The Cloudera Infringing Products and

Services further include a second I/O controller to store blocks of check data from the main

memory to the check drives. The processing core, SIMD instructions, memory, and I/O controller

of the Cloudera Infringing Products and Services implement accelerated ECC. The accelerated

ECC system of the Cloudera Infringing Products and Services includes a data matrix for holding

vectors of original data, with each row of a block of original data stored on a different data drive.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 66 of 350

Page 67 of 91

The accelerated ECC system of the Cloudera Infringing Products and Services includes a check

matrix for holding vectors of check data, with each row of a block of check data stored on different

check drives. Moreover, one of the rows of the block of check data comprises a parity row

comprising the Galois Field (GF) summation of all of the rows of the data matrix. The Cloudera

Infringing Products and Services include a thread for executing on the SIMD CPU processing core

that includes a parallel lookup multiplier, a parallel adder, and a sequencer. The parallel lookup

multiplier of the Cloudera Infringing Products and Services multiplies a vector of the data matrix

by a single factor; the parallel adder adds the result of the parallel multiplier to compute a running

total; and the sequencer orders load operations of the data into the registers, computes the check

data, and stores the computed check data to main memory.

B. ADP’S DIRECT INFRINGEMENT

198. As to ADP, at least the ADP Infringing Products and Services, as defined above,

comprise hardware and software components that together practice every element of one or more

claims of the ’259 Patent, including at least Claim 1. The ADP Infringing Products and Services

are systems adapted to use accelerated ECC processing to improve the storage and retrieval of

digital data that is distributed across multiple drives. They comprise a processing core comprising

a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that executes

the SIMD instructions and loads data from main memory and stores data to main memory. The

SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores,

includes at least 16 data registers of at least 16 bytes each. The ADP Infringing Products and

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer

instructions. The ADP Infringing Products and Services include multiple data drives, each of

which includes a memory that stores blocks of original data that are at least 512 bytes. The ADP

Infringing Products and Services include more than two check drives, each of which includes a

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 67 of 350

Page 68 of 91

memory that stores blocks of check data. The ADP Infringing Products and Services further

include a first input/output (I/O) controller to receive blocks of original data from a transmitter and

store that data to the main memory. The ADP Infringing Products and Services further include a

second I/O controller to store blocks of check data from the main memory to the check drives. The

processing core, SIMD instructions, memory, and I/O controller of the ADP Infringing Products

and Services implement accelerated ECC. The accelerated ECC system of the ADP Infringing

Products and Services includes a data matrix for holding vectors of original data, with each row of

a block of original data stored on a different data drive. The accelerated ECC system of the ADP

Infringing Products and Services includes a check matrix for holding vectors of check data, with

each row of a block of check data stored on different check drives. Moreover, one of the rows of

the block of check data comprises a parity row comprising the Galois Field (GF) summation of all

of the rows of the data matrix. The ADP Infringing Products and Services include a thread for

executing on the SIMD CPU processing core that includes a parallel lookup multiplier, a parallel

adder, and a sequencer. The parallel lookup multiplier of the ADP Infringing Products and

Services multiplies a vector of the data matrix by a single factor; the parallel adder adds the result

of the parallel multiplier to compute a running total; and the sequencer orders load operations of

the data into the registers, computes the check data, and stores the computed check data to main

memory.

C. EXPERIAN’S DIRECT INFRINGEMENT

199. As to Experian, at least the Experian Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’259 Patent, including at least Claim 1. The Experian Infringing Products

and Services are systems adapted to use accelerated ECC processing to improve the storage and

retrieval of digital data that is distributed across multiple drives. They comprise a processing core

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 68 of 350

Page 69 of 91

comprising a single-instruction-multiple-data (“SIMD”) central processing unit (“CPU”) core that

executes the SIMD instructions and loads data from main memory and stores data to main memory.

The SIMD CPU core, including for example Intel, AMD, ARM, and/or PPC64 processing cores,

includes at least 16 data registers of at least 16 bytes each. The Experian Infringing Products and

Services include a system drive with non-volatile storage (memory) for storing the SIMD computer

instructions. The Experian Infringing Products and Services include multiple data drives, each of

which includes a memory that stores blocks of original data that are at least 512 bytes. The

Experian Infringing Products and Services include more than two check drives, each of which

includes a memory that stores blocks of check data. The Experian Infringing Products and Services

further include a first input/output (I/O) controller to receive blocks of original data from a

transmitter and store that data to the main memory. The Experian Infringing Products and Services

further include a second I/O controller to store blocks of check data from the main memory to the

check drives. The processing core, SIMD instructions, memory, and I/O controller of the Experian

Infringing Products and Services implement accelerated ECC. The accelerated ECC system of the

Experian Infringing Products and Services includes a data matrix for holding vectors of original

data, with each row of a block of original data stored on a different data drive. The accelerated

ECC system of the Experian Infringing Products and Services includes a check matrix for holding

vectors of check data, with each row of a block of check data stored on different check drives.

Moreover, one of the rows of the block of check data comprises a parity row comprising the Galois

Field (GF) summation of all of the rows of the data matrix. The Experian Infringing Products and

Services include a thread for executing on the SIMD CPU processing core that includes a parallel

lookup multiplier, a parallel adder, and a sequencer. The parallel lookup multiplier of the Experian

Infringing Products and Services multiplies a vector of the data matrix by a single factor; the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 69 of 350

Page 70 of 91

parallel adder adds the result of the parallel multiplier to compute a running total; and the sequencer

orders load operations of the data into the registers, computes the check data, and stores the

computed check data to main memory.

D. WARGAMING’S DIRECT INFRINGEMENT

200. As to Wargaming, at least the Wargaming Infringing Products and Services, as

defined above, comprise hardware and software components that together practice every element

of one or more claims of the ’259 Patent, including at least Claim 1. The Wargaming Infringing

Products and Services are systems adapted to use accelerated ECC processing to improve the

storage and retrieval of digital data that is distributed across multiple drives. They comprise a

processing core comprising a single-instruction-multiple-data (“SIMD”) central processing unit

(“CPU”) core that executes the SIMD instructions and loads data from main memory and stores

data to main memory. The SIMD CPU core, including for example Intel, AMD, ARM, and/or

PPC64 processing cores, includes at least 16 data registers of at least 16 bytes each. The

Wargaming Infringing Products and Services include a system drive with non-volatile storage

(memory) for storing the SIMD computer instructions. The Wargaming Infringing Products and

Services include multiple data drives, each of which includes a memory that stores blocks of

original data that are at least 512 bytes. The Wargaming Infringing Products and Services include

more than two check drives, each of which includes a memory that stores blocks of check data.

The Wargaming Infringing Products and Services further include a first input/output (I/O)

controller to receive blocks of original data from a transmitter and store that data to the main

memory. The Wargaming Infringing Products and Services further include a second I/O controller

to store blocks of check data from the main memory to the check drives. The processing core,

SIMD instructions, memory, and I/O controller of the Wargaming Infringing Products and

Services implement accelerated ECC. The accelerated ECC system of the Wargaming Infringing

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 70 of 350

Page 71 of 91

Products and Services includes a data matrix for holding vectors of original data, with each row of

a block of original data stored on a different data drive. The accelerated ECC system of the

Wargaming Infringing Products and Services includes a check matrix for holding vectors of check

data, with each row of a block of check data stored on different check drives. Moreover, one of

the rows of the block of check data comprises a parity row comprising the Galois Field (GF)

summation of all of the rows of the data matrix. The Wargaming Infringing Products and Services

include a thread for executing on the SIMD CPU processing core that includes a parallel lookup

multiplier, a parallel adder, and a sequencer. The parallel lookup multiplier of the Wargaming

Infringing Products and Services multiplies a vector of the data matrix by a single factor; the

parallel adder adds the result of the parallel multiplier to compute a running total; and the sequencer

orders load operations of the data into the registers, computes the check data, and stores the

computed check data to main memory.

II. INDIRECT INFRINGEMENT

201. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of

the ’259 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of at

least Claim 1 of the ’259 Patent by third parties, including for example Cloudera, ADP, Experian,

and Wargaming, in this District and elsewhere in the United States. Direct infringement is the

result of activities performed by users of systems that incorporate, among other features, ISA-L,

including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at least

Claim 1 of the ’259 Patent.

202. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof),

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive

materials and information concerning operation and use of ISA-L (or portions thereof), and

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 71 of 350

Page 72 of 91

and Wargaming to infringe at least Claim 1 of the ’259 Patent. For example, Intel induced

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’259 Patent through

the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing Products

and Services. By and through these acts, Intel knowingly and specifically intended the users of

ISA-L (or portions thereof) to infringe at least Claim 1 of the ’259 Patent. Intel (1) knew or should

have known of the ’259 Patent since at least 2019, (2) performed and continues to perform

affirmative acts that constitute induced infringement, and (3) knew or should have known that

those acts would induce actual infringement of one or more of the ’259 Patent’s claims by users

of ISA-L.

203. For example, upon information and belief, Intel (i) maintains a website to promote

ISA-L,25 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use

that are available to the EC System Defendants on the Intel website,26 (iii) describes case studies

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API

Reference Manual for ISA-L27 that is available to the EC System Defendants, which it updates

25 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24,
2021).

26 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L,
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021).

27 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24,
2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 72 of 350

Page 73 of 91

regularly.28 Upon information and belief, Intel further offers the EC System Defendants technical

support for ISA-L and the EC System Defendants’ products.

204. Upon information and belief, Intel promotes and encourages the EC System

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC

System Defendants.

205. As to Intel, at least ISA-L, as defined above, is designed to be used with other

components that, when combined with hardware, practice one or more claims of the ’259 Patent,

including at least Claim 1. EC Systems that employ ISA-L create a data matrix for holding vectors

of original data, with each row of a block of original data stored on a different data drive. The

systems that employ ISA-L create a check matrix for holding vectors of check data, with each row

of a block of check data stored on different check drives. Moreover, one of the rows of the block

of check data comprises a parity row comprising the Galois Field (GF) summation of all of the

rows of the data matrix. The systems also include a thread for executing on the SIMD CPU

processing core that includes a parallel lookup multiplier, a parallel adder, and a sequencer. The

systems’ parallel lookup multiplier multiplies a vector of the data matrix by a single factor; the

systems’ parallel adder adds the result of the parallel multiplier to compute a running total; and the

systems’ sequencer orders load operations of the data into the registers, computes the check data,

and stores the computed check data to main memory.

206. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent

portfolio, Intel subjectively believed there was a high probability that StreamScale’s

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe

28 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference
Manual (ver. 2.23.0, June 29, 2018), available at
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 73 of 350

Page 74 of 91

StreamScale’s Patents-in-Suit, including the ’259 Patent. To the extent that Intel lacked actual

knowledge of the ’259 Patent or the EC System Defendants’ actual infringement of the

’259 Patent, Intel took deliberate actions to avoid learning of those facts. Indeed, Intel actively

encouraged others to ignore StreamScale and its patents and further reprimanded at least one

employee for failing to ignore StreamScale and its patents.

207. At a minimum, Intel has had actual notice of the ’259 Patent since March 5, 2021

and has knowledge of the infringing nature of its activities, yet continues to induce infringement

of at least Claim 1 of the ’259 Patent by Cloudera, ADP, Experian, and Wargaming.

208. Despite knowing of the ’259 Patent since at least as early as March 5, 2021, upon

information and belief, Intel has never undertaken any serious investigation to form a good faith

belief as to non-infringement or invalidity of the ’259 Patent.

209. Despite knowing of the ’259 Patent since at least as early as March 5, 2021, Intel

has continued to infringe one or more claims of the ’259 Patent.

210. Despite knowing of the ’259 Patent since at least July 7, 2021, Intel has continued

to infringe one or more claims of the ’259 Patent.

211. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of

the ’259 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate,

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this

action pursuant to 35 U.S.C. § 285.

III. DAMAGES

212. Defendants’ acts of infringement have caused damages to StreamScale, and

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a

result of Defendants’ wrongful acts in an amount to be determined at trial.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 74 of 350

Page 75 of 91

COUNT 6—INFRINGEMENT OF THE ’10-296 PATENT

213. StreamScale incorporates by reference the allegations set forth in Paragraphs 1–212

of this Complaint as though fully set forth herein.

I. DIRECT INFRINGEMENT

214. In violation of 35 U.S.C. § 271(a), Cloudera, ADP, Experian, and Wargaming are

and have been directly infringing one or more of the ’10-296 Patent’s claims, including at least

Claim 1, by making, using, selling, and/or offering for sale in the United States, and/or importing

into the United States, without authority, erasure code products and services, including but not

limited to those utilizing ISA-L, including without limitation the Cloudera Infringing Products and

Services, the ADP Infringing Products and Services, the Experian Infringing Products and

Services, and the Wargaming Infringing Products and Services, as described above.

215. The EC System Defendants are infringing claims of the ’10-296 Patent, including

at least Claim 1, literally and/or pursuant to the doctrine of equivalents.

216. Claim 1 of the ’10-296 Patent is directed to an accelerated error-correcting code

(ECC) system operating across multiple drives, comprising: at least one processing circuit

comprising a plurality of central processing unit (CPU) cores that executes CPU instructions and

loads original data from a main memory and stores check data to the main memory, each of the

CPU cores comprising at least 16 registers, and each of the registers storing at least 8 bytes; at

least one system drive comprising at least one non-volatile storage medium that stores the CPU

instructions; a plurality of data drives each comprising at least one non-volatile storage medium

that stores at least one block of the original data; at least four check drives each comprising at least

one non-volatile storage medium that stores at least one block of the check data corresponding to

the at least one block of the original data; and at least one input/output (I/O) controller that receives

the at least one block of the original data from a transmitter and that stores the at least one block

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 75 of 350

Page 76 of 91

of the original data to a main memory; wherein the processing circuit, the CPU instructions, the

main memory, the plurality of data drives, the at least four check drives, and the at least one I/O

controller are configured to implement a multi-core erasure encoding system comprising: original

data in the main memory comprised of the at least one block of original data from the plurality of

data drives; check data in the main memory comprised of the at least one block of check data; an

encoding matrix for holding first factors in the main memory, the first factors being for encoding

the original data in the main memory into the check data in the main memory; and a scheduler for

generating ECC data in parallel across a plurality of threads by: dividing the original data in the

main memory into a plurality of data matrices; dividing the check data in the main memory into a

plurality of check matrices; assigning corresponding ones of the data matrices and the check

matrices in the main memory to the plurality of threads, wherein each thread comprises an encoder,

the encoder comprising at least a portion of the encoding matrix, a Galois Field (GF) multiplier, a

Galois Field (GF) adder, and a sequencer for ordering operations through at least one of the data

matrices, corresponding ones of the check matrices, and the at least a portion of the encoding

matrix in the main memory using the GF multiplier and the GF adder to generate the check data

in the main memory; and assigning the plurality of threads to the plurality of CPU cores of the

processing circuit to concurrently generate the check matrices in the main memory from

corresponding ones of the data matrices in the main memory.

A. CLOUDERA’S DIRECT INFRINGEMENT

217. As to Cloudera, at least the Cloudera Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’10-296 Patent, including at least Claim 1. The Cloudera Infringing Products

and Services are accelerated ECC systems operating across multiple drives. They comprise a

processing circuit comprising multiple central processing unit (“CPU”) cores that execute CPU

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 76 of 350

Page 77 of 91

instructions and loads original data from main memory and stores check data to main memory.

The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 processing

cores, each include at least 16 data registers of at least 8 bytes each. The Cloudera Infringing

Products and Services include a system drive with non-volatile storage (memory) for storing the

CPU instructions. The Cloudera Infringing Products and Services include multiple data drives,

each of which includes a memory that stores blocks of original data. The Cloudera Infringing

Products and Services include at least four check drives, each of which includes a memory that

stores blocks of check data, each block of check data corresponding to a block of the original data.

The Cloudera Infringing Products and Services further include an input/output (I/O) controller to

receive blocks of original data from a transmitter and store that data to the main memory. The

processing circuit, CPU instructions, memory, data drives, check drives, and I/O controller of the

Cloudera Infringing Products and Services implement accelerated ECC. The accelerated ECC

system of the Cloudera Infringing Products and Services includes original data blocks in main

memory from the multiple data drives, check data blocks in main memory, and encoding matrix

with first factors in main memory where the first factors are for encoding the original data into

check data, and a scheduler that generates ECC data in parallel across multiple threads. The

scheduler of the Cloudera Infringing Products and Services divides the original data in main

memory into multiple data matrices and the check data in main memory into multiple check

matrices. The scheduler of the Cloudera Infringing Products and Services further assigns data and

check matrices to the threads. Each thread in the Cloudera Infringing Products and Services

includes an encoder comprising at least part of the encoding matrix, a Galois Field (GF) multiplier,

a GF adder, and a sequencer that orders operations of the data to generate the check data in the

main memory. The scheduler of the Cloudera Infringing Products and Services further assigns the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 77 of 350

Page 78 of 91

threads to the various CPU cores of the processing circuit to concurrently generate the check

matrices from the data matrices in main memory.

B. ADP’S DIRECT INFRINGEMENT

218. As to ADP, at least the ADP Infringing Products and Services, as defined above,

comprise hardware and software components that together practice every element of one or more

claims of the ’10-296 Patent, including at least Claim 1. The ADP Infringing Products and

Services are accelerated ECC systems operating across multiple drives. They comprise a

processing circuit comprising multiple central processing unit (“CPU”) cores that execute CPU

instructions and loads original data from main memory and stores check data to main memory.

The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 processing

cores, each include at least 16 data registers of at least 8 bytes each. The ADP Infringing Products

and Services include a system drive with non-volatile storage (memory) for storing the CPU

instructions. The ADP Infringing Products and Services include multiple data drives, each of

which includes a memory that stores blocks of original data. The ADP Infringing Products and

Services include at least four check drives, each of which includes a memory that stores blocks of

check data, each block of check data corresponding to a block of the original data. The ADP

Infringing Products and Services further include an input/output (I/O) controller to receive blocks

of original data from a transmitter and store that data to the main memory. The processing circuit,

CPU instructions, memory, data drives, check drives, and I/O controller of the ADP Infringing

Products and Services implement accelerated ECC. The accelerated ECC system of the ADP

Infringing Products and Services includes original data blocks in main memory from the multiple

data drives, check data blocks in main memory, and encoding matrix with first factors in main

memory where the first factors are for encoding the original data into check data, and a scheduler

that generates ECC data in parallel across multiple threads. The scheduler of the ADP Infringing

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 78 of 350

Page 79 of 91

Products and Services divides the original data in main memory into multiple data matrices and

the check data in main memory into multiple check matrices. The scheduler of the ADP Infringing

Products and Services further assigns data and check matrices to the threads. Each thread in the

ADP Infringing Products and Services includes an encoder comprising at least part of the encoding

matrix, a Galois Field (GF) multiplier, a GF adder, and a sequencer that orders operations of the

data to generate the check data in the main memory. The scheduler of the ADP Infringing Products

and Services further assigns the threads to the various CPU cores of the processing circuit to

concurrently generate the check matrices from the data matrices in main memory.

C. EXPERIAN’S DIRECT INFRINGEMENT

219. As to Experian, at least the Experian Infringing Products and Services, as defined

above, comprise hardware and software components that together practice every element of one

or more claims of the ’10-296 Patent, including at least Claim 1. The Experian Infringing Products

and Services are accelerated ECC systems operating across multiple drives. They comprise a

processing circuit comprising multiple central processing unit (“CPU”) cores that execute CPU

instructions and loads original data from main memory and stores check data to main memory.

The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64 processing

cores, each include at least 16 data registers of at least 8 bytes each. The Experian Infringing

Products and Services include a system drive with non-volatile storage (memory) for storing the

CPU instructions. The Experian Infringing Products and Services include multiple data drives,

each of which includes a memory that stores blocks of original data. The Experian Infringing

Products and Services include at least four check drives, each of which includes a memory that

stores blocks of check data, each block of check data corresponding to a block of the original data.

The Experian Infringing Products and Services further include an input/output (I/O) controller to

receive blocks of original data from a transmitter and store that data to the main memory. The

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 79 of 350

Page 80 of 91

processing circuit, CPU instructions, memory, data drives, check drives, and I/O controller of the

Experian Infringing Products and Services implement accelerated ECC. The accelerated ECC

system of the Experian Infringing Products and Services includes original data blocks in main

memory from the multiple data drives, check data blocks in main memory, and encoding matrix

with first factors in main memory where the first factors are for encoding the original data into

check data, and a scheduler that generates ECC data in parallel across multiple threads. The

scheduler of the Experian Infringing Products and Services divides the original data in main

memory into multiple data matrices and the check data in main memory into multiple check

matrices. The scheduler of the Experian Infringing Products and Services further assigns data and

check matrices to the threads. Each thread in the Experian Infringing Products and Services

includes an encoder comprising at least part of the encoding matrix, a Galois Field (GF) multiplier,

a GF adder, and a sequencer that orders operations of the data to generate the check data in the

main memory. The scheduler of the Experian Infringing Products and Services further assigns the

threads to the various CPU cores of the processing circuit to concurrently generate the check

matrices from the data matrices in main memory.

D. WARGAMING’S DIRECT INFRINGEMENT

220. As to Wargaming, at least the Wargaming Infringing Products and Services, as

defined above, comprise hardware and software components that together practice every element

of one or more claims of the ’10-296 Patent, including at least Claim 1. The Wargaming Infringing

Products and Services are accelerated ECC systems operating across multiple drives. They

comprise a processing circuit comprising multiple central processing unit (“CPU”) cores that

execute CPU instructions and loads original data from main memory and stores check data to main

memory. The CPU processing cores, including for example Intel, AMD, ARM, and/or PPC64

processing cores, each include at least 16 data registers of at least 8 bytes each. The Wargaming

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 80 of 350

Page 81 of 91

Infringing Products and Services include a system drive with non-volatile storage (memory) for

storing the CPU instructions. The Wargaming Infringing Products and Services include multiple

data drives, each of which includes a memory that stores blocks of original data. The Wargaming

Infringing Products and Services include at least four check drives, each of which includes a

memory that stores blocks of check data, each block of check data corresponding to a block of the

original data. The Wargaming Infringing Products and Services further include an input/output

(I/O) controller to receive blocks of original data from a transmitter and store that data to the main

memory. The processing circuit, CPU instructions, memory, data drives, check drives, and I/O

controller of the Wargaming Infringing Products and Services implement accelerated ECC. The

accelerated ECC system of the Wargaming Infringing Products and Services includes original data

blocks in main memory from the multiple data drives, check data blocks in main memory, and

encoding matrix with first factors in main memory where the first factors are for encoding the

original data into check data, and a scheduler that generates ECC data in parallel across multiple

threads. The scheduler of the Wargaming Infringing Products and Services divides the original

data in main memory into multiple data matrices and the check data in main memory into multiple

check matrices. The scheduler of the Wargaming Infringing Products and Services further assigns

data and check matrices to the threads. Each thread in the Wargaming Infringing Products and

Services includes an encoder comprising at least part of the encoding matrix, a Galois Field (GF)

multiplier, a GF adder, and a sequencer that orders operations of the data to generate the check

data in the main memory. The scheduler of the Wargaming Infringing Products and Services

further assigns the threads to the various CPU cores of the processing circuit to concurrently

generate the check matrices from the data matrices in main memory.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 81 of 350

Page 82 of 91

II. INDIRECT INFRINGEMENT

221. In violation of 35 U.S.C. §§ 271(b), Intel is and has been infringing one or more of

the ’10-296 Patent’s claims, including at least Claim 1, indirectly by inducing the infringement of

at least Claim 1 of the ’10-296 Patent by third parties, including for example Cloudera, ADP,

Experian, and Wargaming, in this District and elsewhere in the United States. Direct infringement

is the result of activities performed by users of systems that incorporate, among other features,

ISA-L, including for example Cloudera, ADP, Experian, and Wargaming, in accordance with at

least Claim 1 of the ’10-296 Patent.

222. Intel’s affirmative acts of selling and/or distributing ISA-L (or portions thereof),

causing ISA-L (or portions thereof) to be manufactured and distributed, providing instructive

materials and information concerning operation and use of ISA-L (or portions thereof), and

providing maintenance/service for such products or services, induced Cloudera, ADP, Experian,

and Wargaming to infringe at least Claim 1 of the ’10-296 Patent. For example, Intel induced

Cloudera, ADP, Experian, and Wargaming to infringe at least Claim 1 of the ’10-296 Patent

through the implementation of ISA-L in the Cloudera, ADP, Experian, and Wargaming Infringing

Products and Services. By and through these acts, Intel knowingly and specifically intended the

users of ISA-L (or portions thereof) to infringe at least Claim 1 of the ’10-296 Patent. Intel

(1) knew or should have known of the ’10-296 Patent since at least 2020, (2) performed and

continues to perform affirmative acts that constitute induced infringement, and (3) knew or should

have known that those acts would induce actual infringement of one or more of the

’10-296 Patent’s claims by users of ISA-L.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 82 of 350

Page 83 of 91

223. For example, upon information and belief, Intel (i) maintains a website to promote

ISA-L,29 including to the EC System Defendants, (ii) produces videos regarding ISA-L and its use

that are available to the EC System Defendants on the Intel website,30 (iii) describes case studies

on big data optimization using ISA-L that are available to the EC System Defendants on the Intel

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available

to the EC System Defendants on the Intel website, and (v) publishes and makes available an API

Reference Manual for ISA-L31 that is available to the EC System Defendants, which it updates

regularly.32 Upon information and belief, Intel further offers the EC System Defendants technical

support for ISA-L and the EC System Defendants’ products.

224. Upon information and belief, Intel promotes and encourages the EC System

Defendants to use ISA-L in order to drive sales of other Intel products and services to the EC

System Defendants.

225. As to Intel, at least ISA-L, as defined above, is designed to be used with other

components that, when combined with hardware, practice one or more claims of the

29 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at
https://software.intel.com/content/www/us/en/develop/tools/isa-l.html (last visited May 24,
2021).

30 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L,
available at https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-l-
solution-video.html (last visited May 24, 2021).

31 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source
Version, API Reference Manual (ver. 2.8, Sept. 27, 2013), available at
https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24,
2021).

32 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference
Manual (ver. 2.23.0, June 29, 2018), available at
https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 83 of 350

Page 84 of 91

’10-296 Patent, including at least Claim 1. EC Systems that employ ISA-L create original data

blocks in main memory from the multiple data drives, check data blocks in main memory, and

encoding matrix with first factors in main memory where the first factors are for encoding the

original data into check data, and a scheduler that generates ECC data in parallel across multiple

threads. The scheduler of the systems divides the original and check data in into multiple data and

check matrices, respectively, and assigns data and check matrices to the threads. Each thread in

the systems includes an encoder comprising at least part of the encoding matrix, a Galois Field

(GF) multiplier, a GF adder, and a sequencer that orders operations of the data to generate the

check data in the main memory.

226. Especially in light of its actual knowledge of StreamScale and StreamScale’s patent

portfolio, Intel subjectively believed there was a high probability that StreamScale’s

Patents-in-Suit implicated ISA-L and that EC System Defendants use of ISA-L would infringe

StreamScale’s Patents-in-Suit, including the ’10-296 Patent. To the extent that Intel lacked actual

knowledge of the ’10-296 Patent or the EC System Defendants’ actual infringement of the

’10-296 Patent, Intel took deliberate actions to avoid learning of those facts. Indeed, Intel actively

encouraged others to ignore StreamScale and its patents and further reprimanded at least one

employee for failing to ignore StreamScale and its patents.

227. At a minimum, Intel has had actual notice of the ’10-296 Patent since March 5,

2021 and has knowledge of the infringing nature of its activities, yet continues to induce

infringement of at least Claim 1 of the ’10-296 Patent by Cloudera, ADP, Experian, and

Wargaming.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 84 of 350

Page 85 of 91

228. Despite knowing of the ’10-296 Patent since at least as early as March 5, 2021,

upon information and belief, Intel has never undertaken any serious investigation to form a good

faith belief as to non-infringement or invalidity of the ’10-296 Patent.

229. Despite knowing of the ’10-296 Patent since at least as early as March 5, 2021,

Intel has continued to infringe one or more claims of the ’10-296 Patent.

230. Despite knowing of the ’10-296 Patent since at least July 7, 2021, Intel has

continued to infringe one or more claims of the ’10-296 Patent.

231. Therefore, upon information and belief, Intel’s infringement of at least Claim 1 of

the ’10-296 Patent has been and continues to be willful, wanton, malicious, bad-faith, deliberate,

consciously wrongful, flagrant, or characteristic of a pirate, entitling StreamScale to increased

damages pursuant to 35 U.S.C. § 284 and to attorneys’ fees and costs incurred in prosecuting this

action pursuant to 35 U.S.C. § 285.

III. DAMAGES

232. Defendants’ acts of infringement have caused damages to StreamScale, and

StreamScale is entitled to recover from Defendants the damages sustained by StreamScale as a

result of Defendants’ wrongful acts in an amount to be determined at trial.

DAMAGES

233. StreamScale is entitled to, and now seeks to, recover damages in an amount not less

than the maximum amount permitted by law caused by Defendants’ acts of infringement.

234. As a result of Defendants’ acts of infringement, StreamScale has suffered actual

and consequential damages. To the fullest extent permitted by law, StreamScale seeks recovery

of damages in an amount to compensate for Defendants’ infringement. StreamScale further seeks

any other damages to which StreamScale would be entitled to in law or in equity.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 85 of 350

Page 86 of 91

INJUNCTIVE RELIEF

235. Defendants’ acts of infringement have caused—and unless restrained and enjoined,

Defendants’ acts of infringement will continue to cause—irreparable injury and damage to

StreamScale for which StreamScale has no adequate remedy at law. Unless preliminarily and

permanently enjoined by this Court, Defendants will continue to infringe the Patents-in-Suit.

ATTORNEYS’ FEES

236. StreamScale is entitled to recover reasonable and necessary attorneys’ fees under

applicable law.

DEMAND FOR JURY TRIAL

Pursuant to Rule 38 of the Federal Rules of Civil Procedure, StreamScale demands a trial

by jury on all issues so triable.

PRAYER FOR RELIEF

StreamScale respectfully requests that the Court enter preliminary and final orders,

declarations, and judgments against Defendants as are necessary to provide StreamScale with the

following relief:

a. A judgment that Defendants have infringed and/or are infringing one or

more claims of the ’8-296 Patent, literally or under the doctrine of

equivalents, and directly or indirectly as alleged above;

b. A judgment that Intel’s infringement of the ’8-296 Patent has been willful;

c. A judgment that Defendants have infringed and/or are infringing one or

more claims of the ’374 Patent, literally or under the doctrine of equivalents,

and directly or indirectly as alleged above;

d. A judgment that Intel’s infringement of the ’374 Patent has been willful;

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 86 of 350

Page 87 of 91

e. A judgment that Defendants have infringed and/or are infringing one or

more claims of the ’759 Patent, literally or under the doctrine of equivalents,

and directly or indirectly as alleged above;

f. A judgment that Intel’s infringement of the ’759 Patent has been willful;

g. A judgment that Defendants have infringed and/or are infringing one or

more claims of the ’358 Patent, literally or under the doctrine of equivalents,

and directly or indirectly as alleged above;

h. A judgment that Intel’s infringement of the ’358 Patent has been willful;

i. A judgment that Defendants have infringed and/or are infringing one or

more claims of the ’259 Patent, literally or under the doctrine of equivalents,

and directly or indirectly as alleged above;

j. A judgment that Intel’s infringement of the ’259 Patent has been willful;

k. A judgment that Defendants have infringed and/or are infringing one or

more claims of the ’10-296 Patent, literally or under the doctrine of

equivalents, and directly or indirectly as alleged above;

l. A judgment that Intel’s infringement of the ’10-296 Patent has been willful;

m. An award for all damages arising out of Defendants’ infringement, together

with prejudgment and post-judgment interest, jointly and severally, in an

amount according to proof, including without limitation attorneys’ fees and

litigation costs and expenses;

n. An accounting of damages and any future compensation due to StreamScale

for Defendants’ infringement (past, present, or future) not specifically

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 87 of 350

Page 88 of 91

accounted for in a damages award (or other relief), and/or permanent

injunctive relief;

o. An award of reasonable attorneys’ fees as provided by 35 U.S.C. § 285 and

enhanced damages as provided by 35 U.S.C. § 284;

p. The entry of an order preliminarily and permanently enjoining and

restraining Defendants and its parents, affiliates, subsidiaries, officers,

agents, servants, employees, attorneys, successors, and assigns and all those

person in active concert or participation with them or any of them, from

making, importing, using, offering for sale, selling, or causing to be sold

any product falling within the scope of any claim of the Patents-in-Suit, or

otherwise infringing or inducing infringement of any claim of the

Patents-in-Suit; and

q. All further relief in law or in equity as the Court may deem just and proper.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 88 of 350

Page 89 of 91

Dated: July 9, 2021 Respectfully submitted,

/s/ Jamie H. McDole

 Jamie H. McDole
 State Bar No. 24082049
Phillip B. Philbin
 State Bar No. 15909020
Michael D. Karson
 State Bar No. 24090198
Nadia E. Haghighatian
 State Bar No. 24087652
Austin C. Teng
 State Bar No. 24093247
THOMPSON & KNIGHT LLP
One Arts Plaza
1722 Routh St., Suite 1500
Dallas, Texas 75201
Tel.: 214.969.1700
Fax: 214.969.1751
Email: jamie.mcdole@tklaw.com
 phillip.philbin@tklaw.com
 michael.karson@tklaw.com
 nadia.haghighatian@tklaw.com
 austin.teng@tklaw.com

Attorneys for Plaintiff StreamScale, Inc.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 89 of 350

Page 90 of 91

CERTIFICATE OF SERVICE

I hereby certify that, on July 9, 2021, I electronically submitted the foregoing document

with the clerk of the United States District Court for the Western District of Texas, using the

electronic case management CM/ECF system of the Court which will send notification of such

filing to the following:

Brock S. Weber
Christopher Kao
Pillsbury Winthrop Shaw Pittman LLP
4 Embarcadero Center, 22nd Floor
San Francisco, CA 94111

Steven P. Tepera
Pillsbury Winthrop Shaw Pittman LLP
401 Congress Avenue
Suite 1700
Austin, TX 78701

Counsel for Defendants Cloudera, Inc. &
Experian plc

Christopher S. Ponder
Harper Batts
Sheppard, Mullin, Richter & Hampton LLP
379 Lytton Avenue
Palo Alto, CA 94301

Jennifer Klein Ayers
Sheppard Mullin Richter & Hampton LLP
2200 Ross Avenue, 24th Floor
Dallas, TX 75201

Counsel for Defendant Wargaming (Austin),
Inc.

Amanda L. Major
Wilmer Cutler Pickering Hale and Dorr LLP
1875 Pennsylvania Ave., NW
Washington, DC 20006

Annaleigh E. Curtis
Wilmer Cutler Pickering Hale and Dorr LLP
60 State Street
Boston, MA 02109

Jennifer J. John
Sonal N. Mehta
Wilmer Cutler Pickering Hale and Dorr LLP
2600 El Camino Real, Suite 400
Palo Alto, CA 94306

Joseph Taylor Gooch
Wilmer Cutler Pickering Hale and Dorr LLP
One Front Street, Suite 3500
San Francisco, CA 94111

Jose Carlos Villarreal
Perkins Coie LLP
500 W. 2nd Street
Suite 1900
Austin, TX 78701

Counsel for Defendant Automatic Data
Processing, Inc.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 90 of 350

Page 91 of 91

Vikram Iyer
Wilmer Cutler Pickering Hale and Dorr LLP
350 South Grand Avenue, Suite 2400
Los Angeles, CA 90071

Austin Michael Schnell
Brian Christopher Nash
Pillsbury Winthrop Shaw Pittman LLP
401 Congress Ave, Suite 1700
Austin, TX 78701

Counsel for Defendant Intel Corp.

 /s/ Jamie H. McDole
 Jamie H. McDole

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 91 of 350

EXHIBIT A

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 92 of 350

c12) United States Patent
Anderson et al.

(54) ACCELERATED ERASURE CODING SYSTEM
AND METHOD

(75) Inventors: Michael H. Anderson, Los Angeles, CA
(US); Sarah Mann, Tucson, AZ (US)

(73) Assignee: Streamscale, Inc., Los Angeles, CA
(US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 313 days.

(21) Appl. No.: 13/341,833

(22) Filed:

(65)

Dec. 30, 2011

Prior Publication Data

US 2013/0173996 Al Jul. 4, 2013

(51) Int. Cl.
GllC 29100
H03M 13/00
G06F 11100

(52) U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

USPC 714/763; 714/6.24; 714/752; 714/758;
714/768; 714/770; 714/773; 714/784; 714/786

(58) Field of Classification Search
USPC 714/6.24, 763, 752, 758, 768, 770, 773,

714/784, 786
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,654,924 Bl *
6,823,425 B2 *
7,350,126 B2 *
7,930,337 B2
8,145,941 B2 *
8,352,847 B2 *

2011/00297 56 Al *
2012/0272036 Al*

11/2003 Hassner et al. 714/758
11/2004 Ghosh et al 711/114
3/2008 Winograd et al. 714/752
4/2011 Hasenplaugh et al.
3/2012 Jacobson 714/6.24
1/2013 Gunnam 714/801
2/2011 Biscondi et al. 712/22

10/2012 Muralimanohar et al 711/202

100 "-._

I 1111111111111111 11111 1111111111 lllll lllll 111111111111111 111111111111111111

1/0

US008683296B2

(IO) Patent No.: US 8,683,296 B2
Mar.25,2014 (45) Date of Patent:

2013/0108048 Al *
2013/0110962 Al *
2013/0111552 Al*
2013/0124932 Al*
2013/0173956 Al*

5/2013 Grube et al 380/270
5/2013 Grube et al 709/213
5/2013 Grube et al 726/3
5/2013 Schuh et al. 714/718
7/2013 Anderson 714/6.24

OTHER PUBLICATIONS

Hafner et al., Matrix Methods for Lost Data Reconstruction in Era
sure Codes, Nov. 16, 2005, USENIX FAST '05 Paper, pp. 1-26.*
Anvin; The mathematics ofRAID-6; First Version Jan. 20, 2004; Last
Updated Dec. 20, 2011; pp. 1-9.
Maddock, et al.; White Paper, Surviving Two Disk Failures Introduc
ing Various "Raid 6" Implementations; Xyratex; pp. 1-13.
Plank; All About Erasure Codes:-Reed-Solomon Coding-LDPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL
Aug. 20, 2004; 52 sheets.

* cited by examiner

Primary Examiner - John J Tabone, Jr.
(74) Attorney, Agent, or Firm -Christie, Parker & Hale,
LLP

(57) ABSTRACT

An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core, stor
age medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an encod
ing matrix for holding first factors in the main memory, the
first factors being for encoding the original data into the check
data; and a thread for executing on the processing core. The
thread includes: a parallel multiplier for concurrently multi
plying multiple entries of the data matrix by a single entry of
the encoding matrix; and a first sequencer for ordering opera
tions through the data matrix and the encoding matrix using
the parallel multiplier to generate the check data.

40 Claims, 9 Drawing Sheets

150

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 93 of 350

~

00

F
IG

.
1

•

1
0

\
~

25

~

~

~
 =

~

20

da
ta

 1
,

by
te

 1

da
ta

 1
 , b

yt
e

2
l .

. •
 . •

 . •
 . .

 •
\ d

at
a

1 ,
 b

yt
e

L
~

I d
at

a
2,

 b
yt

e
2

II ·
 .
..

..
..

..
..

 I
 da

ta
 2

,
by

te
 L

~

da
ta

 2
,

by
te

 1

:-: N

~U
l

•
N

•
0

•
.i;

...

da
ta

 N
,

by
te

 1

da
ta

 N
,

by
te

 2

•
•

•
•

•
•

•
•

•
•

da
ta

 N
,

by
te

 L

rJ
J =- ('D ('D

30

ch
ec

k
1 ,

 b
yt

e
1

ch
ec

k
1,

 b
yt

e
2

•
•

•
•

•
•

•
•

•
•

ch
ec

k
1,

 b
yt

e
L

.... 0 1
,0

ch
ec

k
2,

 b
yt

e
1

ch
ec

k
2,

 b
yt

e
2

•
•

•
•

•
•

•
•

•
•

ch
ec

k
2,

 b
yt

e
L

• • •

ch
ec

k
M

,
by

te
 1

ch

ec
k

M
,

by
te

 2

. .
 . .

 . .
 . . .

 ..
ch

ec
k

M
,

by
te

 L

d r.,;
_

0
0

O

'I
0

0

w

35

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 94 of 350

30
0 \

31
0

-

32
0

-

33
0

-

34
0

-

35
0

-

F
IG

.
2

R
ed

uc
e

fu
ll

si
ze

 e
nc

od
in

g
m

at
ri

x
E

 to
 r

ed
uc

ed
 s

iz
e

en
co

di
ng

 m
at

ri
x

T

by
 r

em
ov

in
g

th
e

F
 fa

ile
d

da
ta

 d
riv

e
ro

w
s

w
hi

le
 k

ee
pi

ng
 o

nl
y

F
 s

ur
vi

vi
ng

ch

ec
k

dr
iv

e
ro

w
s,

 m
ov

in
g

th
e

F
 fa

ile
d

da
ta

 d
ri

ve
 c

ol
um

ns
 t

o
 th

e
rig

ht

l
R

ed
uc

e
fu

ll
si

ze
 e

nc
od

ed
 d

at
a

m
at

ri
x

C
 to

 r
ed

uc
ed

 s
iz

e
en

co
di

ng
 m

at
rix

 C
'

by
 r

em
ov

in
g

th
e

F
 lo

st
 d

at
a

ro
w

s
w

hi
le

 k
ee

pi
ng

 o
nl

y
F

 s
ur

vi
vi

ng
 c

he
ck

 d
at

a
ro

w
s,

 l
ea

vi
ng

 s
ur

vi
vi

ng
 d

at
a

X
 o

n
to

p
an

d
su

rv
iv

in
g

ch
ec

k
da

ta
 W

 o
n

bo
tto

m

1
S

pl
it

en
co

di
ng

 m
at

ri
x

T
in

to
 fo

u
r

su
b-

m
at

ric
es

:
id

en
tit

y
m

at
ri

x
IK

 (
K

xK
)

in
 u

pp
er

 le
ft,

 z
er

o
m

at
ri

x
O

 (
K

xF
)

in
 u

pp
er

 r
ig

ht
,

en
co

di
ng

 m
at

ri
x

A

(F
xK

)
in

 l
ow

er
 le

ft,
 a

nd
 e

nc
od

in
g

m
at

ri
x

B
 (

F
xF

)
in

 l
ow

er
 r

ig
ht

1
In

ve
rt

 e
nc

od
in

g
m

at
rix

 B
 to

 p
ro

du
ce

 s
ol

ut
io

n
m

at
ri

x
s-

1
;
lo

st
 d

at
a

Y

sa
tis

fie
s

th
e

re
la

tio
ns

hi
p

W
 =

 A
xX

 +
 B

xY
,

so
 Y

 =
 s

-1
 x

 (
W

 -
A

xX
)

l
R

ec
on

st
ru

ct
 lo

st
 d

at
a

Y
 fr

om
 s

ur
vi

vi
ng

 d
at

a
X

,
su

rv
iv

in
g

ch
ec

k
da

ta
 W

,
en

co
di

ng
 m

at
ri

x
A

,
an

d
so

lu
tio

n
m

at
ri

x
s-

1
us

in
g

fo
rm

ul
a;

 r
eg

ne
ra

te
 a

ny

lo
st

 c
he

ck
 d

at
a

fr
om

 s
ur

vi
vi

ng
 d

at
a

X
 a

nd
 r

ec
on

st
ru

ct
ed

 l
os

t
da

ta
 Y

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 95 of 350

40
0 \

41
0

-

42
0

-

43
0

-

44
0

-

45
0

-

F
IG

.
3

In
iti

al
iz

e
(o

ne
 t

im
e)

 -
bu

ild
 t

w
o

lo
ok

up
 t

ab
le

s,
 o

ne
 f

or
 lo

w
-o

rd
er

ni

bb
le

s,
 o

ne
 f

or
 h

ig
h-

or
de

r
ni

bb
le

s,
 e

ac
h

on
e

co
nt

ai
ni

ng
 2

56

en
tr

ie
s

o
f t

he
 1

6
po

ss
ib

le
 p

ro
du

ct
s

o
f o

ne
 n

ib
bl

e
an

d
on

e
fa

ct
or

t
P

re
pa

re
 (

 on
ce

 p
e

r
op

er
an

d
da

ta
)

-
lo

ad
 n

ex
t

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

fr
om

m

em
or

y
in

to
 f

ou
r

op
er

an
d

re
gi

st
er

s;
 t

he
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

w
ill

 l
ea

ve

th
es

e
re

gi
st

er
s

al
on

e
to

 a
vo

id
 r

el
oa

di
ng

 f
ro

m
 m

em
or

y
on

 s
uc

ce
ed

in
g

ca
lls

l
E

xe
cu

te
 (

on
ce

 p
er

 c
al

l)
-

lo
ad

 t
he

 1
6

po
ss

ib
le

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

fr
om

 m
em

or
y

fo
r

th
e

cu
rr

en
t f

ac
to

r
in

to
 o

ne
 r

eg
is

te
r;

 r
ep

ea
t f

or
 th

e
lo

w
-

or
de

r
ni

bb
le

 p
ro

du
ct

s
in

to
 a

no
th

er
 r

eg
is

te
r;

 c
le

ar
 fo

ur
 o

ut
pu

t
re

gi
st

er
s

l
E

xe
cu

te
 (

on
ce

 p
er

 3
2

by
te

s
o

f d
at

a)
 -

m
ov

e
tw

o
re

gi
st

er
s

of

op
er

an
d

da
ta

 (
by

te
s)

 in
to

 f
ou

r
re

gi
st

er
s

of
 s

cr
at

ch
 d

at
a

(n
ib

bl
es

)

l
M

ul
tip

ly
 (

 on
ce

 p
er

 3
2

by
te

s
o

f d
at

a)
 -

us
e

P
S

H
U

F
B

 o
n

th
e

ni
bb

le

da
ta

 in
 t

he
 s

cr
at

ch
 r

eg
is

te
rs

,
ac

cu
m

ul
at

in
g

th
e

co
rr

es
po

nd
in

g
lo

w
-

or
de

r
ni

bb
le

 a
nd

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

in
 t

he
 o

ut
pu

t
re

gi
st

er
s

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 96 of 350

50
0 \

51
0

-

52
0

-

53
0

-

54
0

-

55
0

-

F
IG

.
4

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 g

en
er

at
e

ch
ec

k
da

ta
 f

or
 c

on
se

cu
tiv

e
gr

ou
ps

 o
f c

or
re

sp
on

di
ng

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

ut
er

 lo
op

 -
pr

oc
es

s
ne

xt
 g

ro
up

 o
f 6

4-
by

te
 c

hu
nk

s
o

f o
pe

ra
nd

 d
at

a
fr

om

ea
ch

 o
f t

he
 b

lo
ck

s
o

f t
he

 s
tr

ip
e;

 l
oa

d
ne

xt
 6

4
by

te
s

o
f o

pe
ra

nd
 d

at
a

fo
r

fir
st

 d
at

a
dr

iv
e

fr
om

 m
em

or
y

an
d

in
iti

al
iz

e
pa

rit
y

ch
ec

k
dr

iv
e

ch
ec

k
da

ta

1
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-
pa

rit
y

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 f
irs

t
da

ta
 d

ri
ve

's

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

no
n-

pa
ri

ty
 c

he
ck

 d
riv

e
ch

ec
k

da
ta

1
S

ec
on

d
m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
da

ta
 d

riv
es

:
fo

r
ea

ch
 o

f t
he

 o
th

er

da
ta

 d
riv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om
 m

em
or

y
(p

re
se

rv
ed

ac

ro
ss

 in
ne

r
lo

op
),

 a
dd

 t
hi

s
to

 p
ar

ity
 d

riv
e

ch
ec

k
da

ta
,

an
d

ca
ll

in
ne

r
lo

op

l
In

ne
r

lo
op

 -
pr

oc
es

s
ne

xt
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-
pa

rit
y

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t
dr

iv
e'

s
64

by

te
s

o
f o

pe
ra

nd
 d

at
a

to
 u

pd
at

e
th

e
no

n-
pa

ri
ty

 c
he

ck
 d

riv
e

ch
ec

k
da

ta

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 97 of 350

60
0 \

61
0

-

62
0

-

63
0

-

64
0

-

F
IG

.
5

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 r

ec
on

st
ru

ct
 lo

st
 o

rig
in

al
 d

at
a

an
d

re
ge

ne
ra

te

lo
st

 c
he

ck
 d

at
a

fo
r

m
ul

tip
le

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

ut
er

 lo
op

 -
pr

oc
es

s
ne

xt
 g

ro
up

 o
f 6

4-
by

te
 c

hu
nk

s
o

f o
pe

ra
nd

 d
at

a;
 l

oa
d

ne
xt

 6
4

by
te

s
o

f o
pe

ra
nd

 d
at

a
fo

r
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e

fr
om

 m
em

or
y

t
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e:

lo

op
 t

hr
ou

gh
 e

ac
h

o
f

th
e

su
rv

iv
in

g
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

irs
t

su
rv

iv
in

g
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

pa
rt

ia
l

ch
ec

k
da

ta
 A

xX

1
S

ec
on

d
m

id
dl

e
lo

op
 -

in
iti

al
iz

e
fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 i
ni

tia
liz

e
th

ei
r

ch
ec

k
da

ta
 b

as
ed

 o
n

th
e

fir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

i

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 98 of 350

60
0 \

65
0

-

66
0

-

67
0

-

68
0

-

F
IG

.
6

l
T

hi
rd

 m
id

dl
e

lo
op

 -
pr

oc
es

s
ot

he
r

su
rv

iv
in

g
da

ta
 d

riv
es

:
fo

r
ea

ch
 o

f t
he

 o
th

e
r

su
rv

iv
in

g
da

ta
 d

riv
es

,
lo

ad
 n

ex
t

64
 b

yt
es

 o
f

op
er

an
d

da
ta

 f
ro

m
 m

em
or

y
(p

re
se

rv
ed

 a
cr

os
s

in
ne

r
lo

op
s)

l
F

irs
t

in
ne

r
lo

op
 -

pr
oc

es
s

ne
xt

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f
th

e
su

rv
iv

in
g

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t
su

rv
iv

in
g

da
ta

 d
ri

ve
's

 6
4

by
te

s
o

f o
pe

ra
nd

 d
at

a
to

 u
pd

at
e

pa
rt

ia
l

ch
ec

k
da

ta
 A

xX

l
S

ec
on

d
in

ne
r

lo
op

 -
up

da
te

 f
ai

le
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

ec
k

da
ta

 b
as

ed
 o

n
th

e
ne

xt
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e'

s
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a

l
F

ou
rt

h
m

id
dl

e
lo

op
 -

ad
d

su
rv

iv
in

g
ch

ec
k

da
ta

 t
o

pr
od

uc
e

W
 -

A
xX

:
lo

op
 t

hr
ou

gh
 e

ac
h

o
f t

he
 s

ur
vi

vi
ng

 c
he

ck
 d

riv
es

,
ca

lli
ng

 p
ar

al
le

l
ad

de
r

to
 a

dd
 t

he
ir

 6
4

by
te

s
o

f d
at

a
to

 p
ar

tia
l

ch
ec

k
da

ta
 A

xX

i

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 99 of 350

60
0 \

69
0

-

70
0

-

71
0

-

72
0

-

F
IG

.
7

i
F

ift
h

m
id

dl
e

lo
op

 -
lo

st
 o

rig
in

al
 d

at
a

Y
:

in
 c

om
bi

na
tio

n
w

ith
 t

hi
rd

 i
nn

er

lo
op

,
ca

lc
ul

at
e

s-
1

x
(W

 -
A

xX
);

st
ar

t
by

 in
iti

al
iz

in
g

ne
xt

 r
ow

 o
f Y

 to
 f

irs
t

co
m

bi
na

tio
n

o
f s

ol
ut

io
n

m
at

ri
x

s-
1

an
d

lo
st

 p
ar

tia
l c

he
ck

 d
at

a
W

 -
A

xX

l
T

hi
rd

 i
nn

er
 lo

op
 -

co
m

pl
et

e
ne

xt
 r

ow
 o

f Y
 b

y
ad

di
ng

 in
 p

ro
du

ct
 o

f
ne

xt

fa
ct

or
 o

f
s-

1
an

d
W

 -
A

xX
 (

us
in

g
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r)
;

th
is

re

co
ns

tr
uc

ts
 n

ex
t f

ai
le

d
dr

iv
e'

s
lo

st
 d

at
a,

 w
hi

ch
 c

an
 b

e
st

or
ed

 (
if

de
si

re
d)

I ~

F
ou

rt
h

in
ne

r
lo

op
 -

up
da

te
 fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

 f
ai

le
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

ec
k

da
ta

ba

se
d

on
 t

he
 n

ex
t f

ai
le

d
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f r

ec
on

st
ru

ct
ed

 l
os

t d
at

a

i
S

ix
th

 m
id

dl
e

lo
op

 -
fo

r
ea

ch
 f

ai
le

d
ch

ec
k

dr
iv

e,

st
or

e
ne

w
ly

 g
en

er
at

ed
 c

he
ck

 d
at

a
(i

f d
es

ire
d)

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 100 of 350

U.S. Patent

co

CJ
LL

0
0
~

I

Mar.25,2014

:::J ~
Cl. -'
O+

~

:::J ~
Cl. _J

f+--t,

0 +

lo ~--
~
/

0
N
~

"'-

I/

I",

:::J ~
Cl. _J

O+

:::J ~
Cl.I
() +

~

i.-.

Sheet 8 of 9 US 8,683,296 B2

~

(I)
:::J ~

0 Cl. _J

0 +
~

N
o-1

0 Cf) ~ :::J ~ I.!')
~ Cl. _J ~ • 0 +

I,

~
0

0 E - -- -_
(I) -
~

'

'
:::J ~
Cl. _J

~ 0 +
N

o-'
C'0 ~
~ :::J ~

0 Cl.I

(I) 0 +
0

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 101 of 350

0
0
(\J

/

U.S. Patent

0)
.

(9 -LL.

Mar. 25, 2014 Sheet
9

of
9

Ds 8,683,296 B2

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 102 of 350

US 8,683,296 B2
1

ACCELERATED ERASURE CODING SYSTEM
AND METHOD

BACKGROUND

2
About Erasure Codes:-Reed-Solomon Coding-LDPC
Coding," slide 15 (describing computational complexity of
Reed-Solomon decoding), "Bottom line: When n & m grow,
it is brutally expensive." Accordingly, there appears to be a

1. Field
Aspects of embodiments of the present invention are

directed toward an accelerated erasure coding system and
method.

5 general consensus among experts in the field that erasure
coding systems are impractical for RAID systems for all but
small values of M (that is, small numbers of check drives),
such as 1 or 2.

Modem disk drives, on the other hand, are much less reli-
2. Description of Related Art
An erasure code is a type of error-correcting code (ECC)

useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken

l O able than those envisioned when RAID was proposed. This is
due to their capacity growing out of proportion to their reli
ability. Accordingly, systems with only a single check disk
have, for the most part, been discontinued in favor of systems

15
with two check disks.

up into N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets
lost, erasure codes also encode an additional M equal-sized 20

blocks (called check blocks or check data) from the original N
data blocks, for some positive integer M.

In terms of reliability, a higher check disk count is clearly
more desirable than a lower check disk count. If the count of
error events on different drives is larger than the check disk
count, data may be lost and that cannot be reconstructed from
the correctly functioning drives. Error events extend well
beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is a
service event on a RAID system where the operator mistak
enly replaces the wrong drive or, worse yet, replaces a good

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total ofN + M equal-sized blocks
after encoding. The N + M blocks may, for example, be trans
mitted to a receiver as N+M separate packets, or written to
N+M corresponding disk drives. For ease of description, all
N+M blocks after encoding will be referred to as encoded
blocks, though some (for example, N of them) may contain
unencoded portions of the original data. That is, the encoded
data refers to the original data together with the check data.

25 drive with a broken drive. In the absence of any generally
accepted methodology to train, certify, and measure the effec
tiveness of service technicians, these types of events occur at
an unknown rate, but certainly occur. The foolproof solution
for protecting data in the face of multiple error events is to

30 increase the check disk count.

The M check blocks build redundancy into the system, in a
very efficient manner, in that the original data (as well as any
lost check data) can be reconstructed if any N of the N+M
encoded blocks are received by the receiver, or if any N of the 35

N+M disk drives are functioning correctly. Note that such an
erasure code is also referred to as "optimal." For ease of
description, only optimal erasure codes will be discussed in
this application. In such a code, up to M of the encoded blocks
can be lost, (e.g., up to M of the disk drives can fail) so that if 40

any N of the N+M encoded blocks are received successfully
by the receiver, the original data (as well as the check data)
can be reconstructed. N/(N+M) is thus the code rate of the
erasure code encoding (i.e., how much space the original data
takes up in the encoded data). Erasure codes for select values 45

ofN and M can be implemented on RAID systems employing
N+M (disk) drives by spreading the original data among N
"data" drives, and using the remaining M drives as "check"
drives. Then, when any N of the N+M drives are correctly
functioning, the original data can be reconstructed, and the 50

check data can be regenerated.
Erasure codes (or more specifically, erasure coding sys

tems) are generally regarded as impractical for values of M
larger than 1 (e.g., RAIDS systems, such as parity drive sys
tems) or 2 (RAID6 systems), that is, for more than one or two 55

check drives. For example, see H. Peter Anvin, "The math
ematics of RAID-6," the entire content of which is incorpo
rated herein by reference, p. 7, "Thus, in 2-disk-degraded
mode, performance will be very slow. However, it is expected
that that will be a rare occurrence, and that performance will 60

not matter significantly in that case." See also Robert Mad
dock et al., "Surviving Two Disk Failures," p. 6, "The main
difficulty with this technique is that calculating the check
codes, and reconstructing data after failures, is quite complex.
It involves polynomials and thus multiplication, and requires 65

special hardware, or at least a signal processor, to do it at
sufficient speed." In addition, see also James S. Plank, "All

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding sys
tem that, for byte-level RAID processing (where each byte is
made up of 8 bits), performs well even for values ofN+M as
large as 256 drives (for example, N=127 data drives and
M=129 check drives). Further aspects provide for a single
precomputed encoding matrix (or master encoding matrix) S
of size MmaxxNmax, or (Nmax+Mmax)xNmax or (Mmax-l)x
N max' elements (e.g., bytes), which can be used, for example,
for any combination of NsNmax data drives and MsMmax
check drives such that Nmax+Mmaxs256 (e.g., Nmax =127 and
Mmax=l29, or Nmax=63 and Mm==193). This is an improve
ment over prior art solutions that rebuild such matrices from
scratch every time N or M changes (such as adding another
check drive). Still higher values ofN and Mare possible with
larger processing increments, such as 2 bytes, which affords
up to N+M=65,536 drives (such as N=32,767 data drives and
M=32,769 check drives).

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to create
larger groups of data drives. For example, systems with two
checks disks are typically limited to group sizes of 10 or fewer
drives for reliability reasons. With a higher check disk count,
larger groups are available, which can lead to fewer overall
components for the same unit of storage and hence, lower
cost.

Additional aspects of embodiments of the present inven
tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up to
127 data drives and up to 128 (non-parity) check drives, for a
total of up to 256 total drives including the parity drive.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 103 of 350

US 8,683,296 B2
3

Further aspects provide for different breakdowns, such as up
4

plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the

to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.

5 check matrices from respective ones of the data matrices.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed-So
lomon codes. While known solution matrix algorithms com- 10

pute an N xN solution matrix (see, for example, J. S. Plank, "A
tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems," Software-Practice & Experience,
27(9):995-1012, September 1997, and J. S. Plank and Y.
Ding, "Note: Correction to the 1997 tutorial on Reed-So- 15

lomon coding," Technical Report CS-03-504, University of
Tennessee, April 2003), requiring O(N3

) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FxF solution
matrix, where F is the number of failed data drives. The 20

overhead for computing this FxF solution matrix is approxi
mately F3 /3 multiplication operations and the same number
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives Fis consid
erably smaller than the number of data drives N. Accordingly, 25

the fast solution matrix algorithm is considerably faster than
any known approach for practical values ofF and N.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows and
the first number of columns.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to add
rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data and including a third
number of rows. The erasure coding system may further
include a solution matrix for holding second factors in the
main memory. The second factors are for decoding the check
data into the lost original data using the surviving original
data and the first factors.

The solution matrix may include the third number of rows
and the third number of colunms.

The solution matrix may further include an inverted said
third number by said third number sub-matrix of the encoding
matrix.

The erasure coding system may further include a first list of
rows of the data matrix corresponding to the surviving data
matrix, and a second list of rows of the data matrix corre
sponding to the lost data matrix.

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost
original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for decod-

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are directed 30

toward fetching the surviving (original and check) data a
minimum number of times (that is, at most once) to carry out
the data reconstruction. Some of these aspects are directed
toward efficient implementations that can maximize or sig
nificantly leverage the available parallel processing power of 35

multiple cores working concurrently on the check data gen
eration and the lost data reconstruction. Existing implemen
tations do not attempt to accelerate these aspects of the data
generation and thus fail to achieve a comparable level of
performance.

In an exemplary embodiment of the present invention, a
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a
main memory; and a non-volatile storage medium (for 45

example, a disk drive, or flash memory) for storing the com
puter instructions. The processing core, the storage medium,
and the computer instructions are configured to implement an
erasure coding system. The erasure coding system includes a
data matrix for holding original data in the main memory, a 50

check matrix for holding check data in the main memory, an
encoding matrix for holding first factors in the main memory,
and a thread for executing on the processing core. The first
factors are for encoding the original data into the check data.
The thread includes a parallel multiplier for concurrently 55

multiplying multiple data entries of a matrix by a single
factor; and a first sequencer for ordering operations through
the data matrix and the encoding matrix using the parallel
multiplier to generate the check data.

40 ing the check data into the lost original data using the surviv
ing original data and the first factors. The thread may further
include a second sequencer for ordering operations through
the surviving data matrix, the encoding matrix, the check

The first sequencer may be configured to access each entry 60

of the data matrix from the main memory at most once while
generating the check data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for 65

generating the check data by dividing the data matrix into a
plurality of data matrices, dividing the check matrix into a

matrix, and the solution matrix using the parallel multiplier to
reconstruct the lost original data.

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main memory
at most once while reconstructing the lost original data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original
data by dividing the data matrix into a plurality of data matri
ces; dividing the surviving data matrix into a plurality of
surviving data matrices; dividing the lost data matrix into a
plurality oflost data matrices; dividing the check matrix into
a plurality of check matrices; assigning corresponding ones
of the data matrices, the surviving data matrices, the lost data
matrices, and the check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri-
ces from respective ones of the data matrices and to concur
rently reconstruct portions of the lost original data corre
sponding to the lost data matrices from respective ones of the
surviving data matrices and the check matrices.

The check matrix may be configured to be divided into a
surviving check matrix for holding surviving check data of

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 104 of 350

US 8,683,296 B2
5 6

main memory; arranging first factors as an encoding matrix in
the main memory, the first factors being for encoding the
original data into check data, the check data being arranged as
a check matrix in the main memory; and generating the check

the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be
configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost
check data.

The second sequencer may be further configured to recon
struct the lost original data concurrently with regenerating the
lost check data.

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main memory
at most once while reconstructing the lost original data and
regenerating the lost check data.

5 data using a parallel multiplier for concurrently multiplying
multiple data entries of a matrix by a single factor. The gen
erating of the check data includes ordering operations
through the data matrix and the encoding matrix using the
parallel multiplier.

10 The generating of the check data may include accessing

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 15

lost original data from the main memory.
The processing core may include a plurality of processing

cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data, reconstructing the lost original 20

data, and regenerating the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices;
dividing the check matrix into a plurality of check matrices; 25

dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a
plurality of lost check matrices; assigning corresponding
ones of the data matrices, the surviving data matrices, the lost
data matrices, the check matrices, the surviving check matri- 30

ces, and the lost check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices, to concurrently
reconstruct portions of the lost original data corresponding to 35

the lost data matrices from respective ones of the surviving
data matrices and the surviving check matrices, and to con
currently regenerate portions of the lost check data corre
sponding to the lost check matrices from respective ones of
the surviving data matrices and respective portions of the 40

reconstructed lost original data.
The processing core may include 16 data registers. Each of

the data registers may include 16 bytes. The parallel multi
plier may be configured to process the data in units of at least
64 bytes spread over at least fourof the data registers at a time. 45

Consecutive instructions to process each of the units of the
data may access separate ones of the data registers to permit
concurrent execution of the consecutive instructions by the
processing core.

each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into a
plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the pro-
cessing cores to concurrently generate portions of the check
data corresponding to the check matrices from respective
ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost original
data using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel mul
tiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data and the reconstructing of the lost
original data by: dividing the data matrix into a plurality of
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix
into a plurality oflost data matrices; dividing the check matrix
into a plurality of check matrices; and assigning correspond-

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16
byte-sized entries using the PSHUFB (Packed Shuffle Bytes)
instruction.

The parallel multiplier may be further configured to receive
an input operand in four of the data registers, and return with
the input operand intact in the four of the data registers.

50 ing ones of the data matrices, the surviving data matrices, the
lost data matrices, and the check matrices to the processing
cores to concurrently generate portions of the check data
corresponding to the check matrices from respective ones of

According to another exemplary embodiment of the
present invention, a method of accelerated error-correcting
code (ECC) processing on a computing system is provided.
The computing system includes a non-volatile storage
medium (such as a disk drive or flash memory), a processing
core for accessing instructions and data from a main memory,
and a computer program including a plurality of computer
instructions for implementing an erasure coding system. The
method includes: storing the computer program on the stor
age medium; executing the computer instructions on the pro
cessing core; arranging original data as a data matrix in the

55
the data matrices and to concurrently reconstruct portions of
the lost original data corresponding to the lost data matrices
from respective ones of the surviving data matrices and the
check matrices.

The method may further include: dividing the check matrix

60 into a surviving check matrix for holding surviving check
data of the check data, and a lost check matrix corresponding
to lost check data of the check data; and regenerating the lost
check data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding

65 matrix using the parallel multiplier.
The reconstructing of the lost original data may take place

concurrently with the regenerating of the lost check data.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 105 of 350

US 8,683,296 B2
7

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

8
The computer instructions may be further configured to

perform the steps of: dividing the data matrix into a surviving
data matrix for holding surviving original data of the original
data, and a lost data matrix corresponding to lost original data

The regenerating of the lost check data may take place
without accessing the reconstructed lost original data from
the main memory.

5 of the original data; arranging second factors as a solution
matrix in the main memory, the second factors being for
decoding the check data into the lost original data using the
surviving original data and the first factors; and reconstruct
ing the lost original data by ordering operations through the

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of surviving
data matrices; dividing the lost data matrix into a plurality of
lost data matrices; dividing the check matrix into a plurality of
check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check 20

matrix into a plurality of lost check matrices; and assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the sur
viving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the 25

check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct
portions of the lost original data corresponding to the lost data
matrices from respective ones of the surviving data matrices
and the surviving check matrices, and to concurrently regen- 30

erate portions of the lost check data corresponding to the lost
check matrices from respective ones of the surviving data
matrices and respective portions of the reconstructed lost
original data.

1 o surviving data matrix, the encoding matrix, the check matrix,
and the solution matrix using the parallel multiplier.

The computer instructions may be further configured to
perform the steps of: dividing the check matrix into a surviv
ing check matrix for holding surviving check data of the

15 check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check
data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the
regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices;
dividing the check matrix into a plurality of check matrices;
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a
plurality oflost check matrices; and assigning corresponding
ones of the data matrices, the surviving data matrices, the lost
data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost
original data corresponding to the lost data matrices from
respective ones of the surviving data matrices and the surviv
ing check matrices, and to concurrently regenerate portions of
the lost check data corresponding to the lost check matrices
from respective ones of the surviving data matrices and
respective portions of the reconstructed lost original data.

By providing practical and efficient systems and methods
for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical can
be implemented with accelerated performance significantly

According to yet another exemplary embodiment of the 35

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a
digital video disk (DVD), flash memory, a universal serial bus
(USB) drive, etc.) containing a computer program including a
plurality of computer instructions for performing accelerated 40

error-correcting code (ECC) processing on a computing sys
tem is provided. The computing system includes a processing
core for accessing instructions and data from a main memory.
The computer instructions are configured to implement an
erasure coding system when executed on the computing sys- 45

tern by performing the steps of: arranging original data as a
data matrix in the main memory; arranging first factors as an
encoding matrix in the main memory, the first factors being
for encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and 50

generating the check data using a parallel multiplier for con
currently multiplying multiple data entries of a matrix by a
single factor. The generating of the check data includes order
ing operations through the data matrix and the encoding
matrix using the parallel multiplier. 55 better than any prior art solution.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured to 60

perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data matri
ces and the check matrices to the processing cores to concur- 65

rently generate portions of the check data corresponding to
the check matrices from respective ones of the data matrices.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifica
tion, illustrate exemplary embodiments of the present inven
tion and, together with the description, serve to explain
aspects and principles of the present invention.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 106 of 350

US 8,683,296 B2
9

FIG. 3 shows an exemplary method for performing a par
allel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera- 5

tion according to an embodiment of the present invention.
FIGS. 5-7 show an exemplary method for sequencing the

parallel lookup multiplier to perform the lost data reconstruc
tion according to an embodiment of the present invention.

FIG. 8 illustrates a multi-core architecture system accord- 10

ing to an embodiment of the present invention.
FIG. 9 shows an exemplary disk drive configuration

according to an embodiment of the present invention.

10
It will also be assumed that the block size L is sufficiently
large that the data can be consistently divided across each
block to produce subsets of the data that include respective
portions of the blocks (for efficient concurrent processing by
different processing units).

FIG. 1 shows an exemplary stripe 10 of original and check
data according to an embodiment of the present invention.

Referring to FIG.1, the stripe 10 can bethought ofnot only
as the original N data blocks 20 that make up the original data,
but also the corresponding M check blocks 30 generated from
the original data (that is, the stripe 10 represents encoded
data). Each of the N data blocks 20 is composed ofL bytes 25
(labeled byte 1, byte 2, ... , byte L), and each of the M check

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompany
ing drawings. In the drawings, like reference numerals refer
to like elements throughout.

15 blocks 30 is composed of L bytes 35 (labeled similarly). In
addition, check drive 1, byte 1, is a linear combination of data
drive 1, byte 1; data drive 2, byte 1; ... ; data drive N, byte 1.
Likewise, check drive 1, byte 2, is generated from the same
linear combination formula as check drive 1, byte 1, only

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding sys
tems for the storage and retrieval of digital data distributed
across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes,
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate drives
(the data drives), one block per data drive.

20 using data drive 1, byte 2; data drive 2, byte 2; ... ; data drive
N, byte 2. In contrast, check drive 2, byte 1, uses a different
linear combination formula than check drive 1, byte 1, but
applies it to the same data, namely data drive 1, byte 1; data
drive 2, byte 1; ... ; data drive N, byte 1. In this fashion, each

25 of the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular
check drive 30.

The stripe 10 in FIG. 1 can also be represented as a matrix

30 C of encoded data. Chas two sub-matrices, namely original
data D on top and check data Jon bottom. That is,

In addition, for ease of description, blocks will be assumed
to be composed of L elements, each element having a fixed
size, say 8 bits or one byte. An element, such as a byte, forms 35

the fundamental unit of operation for the RAID processing,
but the invention is just as applicable to other size elements,
such as 16 bits (2 bytes). For simplification, unless otherwise
indicated, elements will be assumed to be one byte in size
throughout the description that follows, and the term "ele- 40

ment(s)" and "byte(s)" will be used synonymously.
Conceptually, different stripes can distribute their data

blocks across different combinations of drives, or have dif
ferent block sizes or numbers of blocks, etc., but for simpli
fication and ease of description and implementation, the 45

described embodiments in the present application assume a
consistent block size (L bytes) and distribution of blocks
among the data drives between stripes. Further, all variables,
such as the number of data drives N, will be assumed to be
positive integers unless otherwise specified. In addition, since 50

the N=l case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be
assumed for simplicity that N~2 throughout.

The N data blocks from each stripe are combined using
arithmetic operations (to be described in more detail below) 55

in M different ways to produce M blocks of check data (check
blocks), and the M check blocks written across M drives (the
check drives) separate from the N data drives, one block per
check drive. These combinations can take place, for example,
when new (or changed) data is written to (or back to) disk. 60

Accordingly, each of the N+M drives (data drives and check
drives) stores a similar amount of data, namely one block for
each stripe. As the processing of multiple stripes is concep
tually similar to the processing of one stripe (only processing
multiple blocks per drive instead of one), it will be further 65

assumed for simplification that the data being stored or
retrieved is only one stripe in size unless otherwise indicated.

Du D12 D1L

D21 D22 D2L

C=[~] =
DNI DN2 DNL

lu 112 l1L

h1 h2 hL

JM! JM2]ML

where D,rbyte j from data drive i and J,rbyte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the colunms represent corresponding bytes of each of
the drives.

Further, in case of a disk drive failure of one or more disks,
the arithmetic operations are designed in such a fashion that
for any stripe, the original data (and by extension, the check
data) can be reconstructed from any combination of N data
and check blocks from the corresponding N+M data and
check blocks that comprise the stripe. Thus, RAID provides
both parallel processing (reading and writing the data in
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data even ifas many as M of
the drives fail), at the computational cost of generating the
check data any time new data is written to disk, or changed
data is written back to disk, as well as the computational cost
ofreconstructing any lost original data and regenerating any
lost check data after a disk failure.

For example, for M =1 check drive, a single parity drive can
function as the check drive (i.e., a RAID4 system). Here, the
arithmetic operation is bitwise exclusive OR of each of the N
corresponding data bytes in each data block of the stripe. In
addition, as mentioned earlier, the assignment of parity
blocks from different stripes to the same drive (i.e., RAID4)

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 107 of 350

US 8,683,296 B2
11

or different drives (i.e., RAIDS) is arbitrary, but it does sim
plify the description and implementation to use a consistent
assignment between stripes, so that will be assumed through
out. Since M = 1 reduces to the case of a single parity drive, it
will further be assumed for simplicity that M;;,;2 throughout.

For such larger values ofM, Galois field arithmetic is used
to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2 (such
as 2i numbers of elements, includes two fundamental opera
tions: (1) addition (which is just bitwise exclusive OR, as with
the parity drive-only operations for M=l), and (2) multipli
cation. While Galois field (GF) addition is trivial on standard
processors, GF multiplication is not. Accordingly, a signifi
cant component of RAID performance for M;;,;2 is speeding
up the performance ofGF multiplication, as will be discussed
later. For purposes of description, GF addition will be repre
sented by the symbol + throughout while GF multiplication
will be represented by the symbol x throughout.

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations

12
where H,rfactor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the colunms
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data J are

5 related by the formula J=HxD (that is, matrix multiplication),
or

lu 112 l1L
10

h1 h2 hL

JM! lM2]ML

15 Hu H12 H1N Du D12 D1L

H21 H22 H2N D21 D22 D2L
X

HM! HM2 HMN DNI DN2 DNL

20

(over GF arithmetic) of the N data drives of original data, one
linear combination (i.e., a GF sum of N terms, where each
term represents a byte of original data times a corresponding
factor (using GF multiplication) for the respective data drive) 25

for each check drive, as applied to respective bytes in each
block. One such linear combination can be a simple parity,
i.e., entirely GF addition (all factors equal 1), such as a GF
sum of the first byte in each block oforiginal data as described

where J11 =(H11 xD11)+(H12xD21)+ ... +(H1NxDN1), J12=
(H11XD12)+(H12XD22)+ ... +(H1NXDN2), l21=CH21XD11)+
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+
(Hi2xD2)+ ... +(H1NxDN/) for lsisM and lsjsL.

Such an encoding matrix E is also referred to as an infor
mation dispersal matrix (IDM). It should be noted that matri
ces such as check drive encoding matrix Hand identity matrix
IN also represent encoding matrices, in that they represent
matrices of factors to produce linear combinations over GF
arithmetic of the original data. In practice, the identity matrix
IN is trivial and may not need to be constructed as part of the
ID M E. Only the encoding matrix E, however, will be referred
to as the IDM. Methods of building an encoding matrix such

above. 30

The remaining M-1 linear combinations include more
involved calculations that include the nontrivial GF multipli
cation operations (e.g., performing a GF multiplication of the
first byte in each block by a corresponding factor for the
respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre
sented by an (N + M)xN matrix (encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one
factor for each combination of (data or check) drive and data
drive, with one row for each of the N + M data and check drives
and one colunm for each of the N data drives. The IDM E can
also be represented as

where IN represents the NxN identity matrix (i.e., the original
(unencoded) data) and H represents the MxN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N
colunms corresponds to one of the N data drives).

Thus,

0 0

0 0

£=[~]= 0 0

Hu H12 H1N

H21 H22 H2N

HM! HM2 HMN

35 as IDM E or check drive encoding matrix H are discussed
below. In further embodiments of the present invention (as
discussed further in Appendix A), such (N + M)xN (or MxN)
matrices can be trivially constructed (or simply indexed) from
a master encoding matrix S, which is composed of CNmax+

40 Mmax)xNmax (or MmaxxNmax) bytes or elements, where
N max+ Mmax =256 (or some other power of two) and N sN max
and MsMmax· For example, one such master encoding matrix
Scan include a 127x127 element identity matrix on top (for
up to N max= 127 data drives), a row of 1 's (for a parity drive),

45 and a 128x127 element encoding matrix on bottom (for up to
Mmax = 129 check drives, including the parity drive), for a total
ofNmax+Mmax =256 drives.

The original data, in tum, can be represented by an N xL
50 matrix D of bytes, each of the N rows representing the L bytes

of a block of the corresponding one of the N data drives. If C
represents the corresponding (N+M)xL matrix of encoded
bytes (where each of the N+M rows corresponds to one of the
N+M data and check drives), then C can be represented as

55

ExD= [~]xD= [~:~] = [~].
60

where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L check bytes of the correspond-
ing one of the M check drives. It should be noted that in the
relationships such as C=ExD or J=HxD, x represents matrix

65 multiplication over the Galois field (i.e., GF multiplication
and GF addition being used to generate each of the entries in,
for example, C or J).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 108 of 350

US 8,683,296 B2
13

In exemplary embodiments of the present invention, the
first row of the check drive encoding matrix H (or the (N + 1)'h
row of the IDM E) can be all 1 's representing the parity drive.
For linear combinations involving this row, the GF multipli
cation can be bypassed and replaced with a GF sum of the 5

corresponding bytes since the products are all trivial products
involving the identity element 1. Accordingly, in parity drive
implementations, the check drive encoding matrix H can also
be thought of as an (M-l)xN matrix of non-trivial factors
(that is, factors intended to be used in GF multiplication and 10

not just GF addition).
Much of the RAID processing involves generating the

check data when new or changed data is written to (or back to)
disk. The other significant event for RAID processing is when
one or more of the drives fail (data or check drives), or for 15

whatever reason become unavailable. Assume that in such a
failure scenario, F data drives fail and G check drives fail,
where F and G are nonnegative integers. If F=O, then only
check drives failed and all of the original data D survived. In
this case, the lost check data can be regenerated from the 20

original data D.
Accordingly, assume at least one data drive fails, that is,

F2:l, and let K=N-F represent the number of data drives that
survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost 25

original data. That is, Xis a KxL matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, while Y is an FxL matrix composed of
the F rows of the original data matrix D corresponding to the
F failed data drives.

thus represents a permuted original data matrix D' (that is, the
original data matrix D, only with the surviving original data X

30

35

on top and the lost original data Y on bottom. It should be
noted that once the lost original data Y is reconstructed, it can 40

be combined with the surviving original data X to restore the
original data D, from which the check data for any of the
failed check drives can be regenerated.

It should also be noted that M-G check drives survive. In
order to reconstruct the lost original data Y, enough (that is, at 45

least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it follows
that (N-F)+(M-G)2:N must be true to reconstruct the lost
original data Y. This is equivalent to F+GsM (i.e., no more
than F +G drives fail), or F sM-G (that is, the numberof failed 50

data drives does not exceed the number of surviving check
drives). It will therefore be assumed for simplicity that F sM-
G.

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and check 55

drives (that is, four separate lists). This allows processing of
the different sets of surviving and failed drives to be done
more efficiently than existing solutions, which use, for
example, bit vectors that have to be examined one bit at a time
and often include large numbers of consecutive zeros (or 60

ones) when ones (or zeros) are the bit values of interest.
FIG. 2 shows an exemplary method 300 for reconstructing

lost data after a failure of one or more drives according to an
embodiment of the present invention.

While the recovery process is described in more detail 65

later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the

14
surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an N xN reduced encoding matrix T (also referred to as
the transformed IDM) including the K surviving data
drive rows and any F of the M-G surviving check drive
rows (for instance, the first F surviving check drive rows,
as these will include the parity drive if it survived; recall
that F sM-G was assumed). In addition, the colunms of
the reduced encoding matrix T are rearranged so that the
K colunms corresponding to the K surviving data drives
are on the left side of the matrix and the F colunms
corresponding to the F failed drives are on the right side
of the matrix. (Step 320) These F surviving check drives
selected to rebuild the lost original data Y will hence
forth be referred to as "the F surviving check drives," and
their check data W will be referred to as "the surviving
check data," even though M-G check drives survived. It
should be noted that Wis anFxLmatrix composed of the
F rows of the check data J corresponding to the F sur
viving check drives. Further, the surviving encoded data
can be represented as a sub-matrix C' of the encoded data
C. The surviving encoded data C' is an NxL matrix
composed of the surviving original data X on top and the
surviving check data W on bottom, that is,

2. (Step 330) Splitting the reduced encoding matrix Tinto
four sub-matrices (that are also encoding matrices): (i) a
KxK identity matrix IK (corresponding to the K surviv
ing data drives) in the upper left, (ii) a KxF matrix O of
zeros in the upper right, (iii) an FxK encoding matrix A
in the lower left corresponding to the F surviving check
drive rows and the K surviving data drive columns, and
(iv) an FxF encoding matrix B in the lower right corre
sponding to the F surviving check drive rows and the F
failed data drive colunms. Thus, the reduced encoding
matrix T can be represented as

3. (Step 340) Calculating the inverse B of the FxF encoding
matrix B. As is shown in more detail in Appendix A,
C'=TxD, or

which is mathematically equivalent to W=AxX+BxY.
B-1 is the solution matrix, and is itself an FxF encoding
matrix. Calculating the solution matrix B-1 thus allows
the lost original data Y to be reconstructed from the
encoding matrices A and B along with the surviving
original data X and the surviving check data W.

The FxK encoding matrix A represents the original encod
ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of A

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 109 of 350

US 8,683,296 B2
15

represents a different one of the F surviving check drives,
while each of the K columns of A represents a different one of
the K surviving data drives. Thus, A provides the encoding
factors needed to encode the original data for the surviving
check drives, but only applied to the surviving data drives 5

(that is, the surviving partial check data). Since the surviving
original data X is available, A can be used to generate this
surviving partial check data.

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F surviving 1 o
check drives and the F failed data drives. That is, the F rows of
B correspond to the same F rows of A, while each of the F
columns of B represents a different one of the F failed data
drives. Thus, B provides the encoding factors needed to
encode the original data for the surviving check drives, but 15

only applied to the failed data drives (that is, the lost partial
check data). Since the lost original data Y is not available, B
camiot be used to generate any of the lost partial check data.
However, this lost partial check data can be determined from
A and the surviving check data W. Since this lost partial check 20

data represents the result of applying B to the lost original
data Y, B- 1 thus represents the necessary factors to reconstruct
the lost original data Y from the lost partial check data.

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced 25

encoding matrix T, for that matter) do not have to actually be
constructed. Appropriate indexing of the IDM E (or the mas-
ter encoding matrix S) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF arith
metic and takes O(F3

) operations, as discussed in more detail 30

later. Nonetheless, this is a significant improvement over
existing solutions, which require O(N3

) operations, since the
number of failed data drives Fis usually significantly less than
the number of data drives N in any practical situation.

(Step 350 in FIG. 2) Once the encoding matrix A and the 35

solution matrix B- 1 are known, reconstructing the lost data
from the surviving data (that is, the surviving original data X
and the surviving check data W) can be accomplished in four
steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix 40

multiplication) to generate the surviving check data (i.e.,
AxX), only limited to the K surviving data drives. Call
this limited check data the surviving partial check data.

16
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G failed
check drives (i.e., roughly 1 operation per failed check drive
per byte of original data D). In summary, the number of
operations needed to reconstruct the lost data is O(F +G) times
the amount of original data D (i.e., roughly 1 operation per
failed drive (data or check) per byte of original data D). Since
F +GsM, this means that the computational complexity of
Algorithm 2 (reconstructing the lost data from the surviving
data) is no more than that of generating the check data J from
the original data D.

As mentioned above, for exemplary purposes and ease of
description, data is assumed to be organized in 8-bit bytes,
each byte capable of taking on 28=256 possible values. Such
data can be manipulated in byte-size elements using GF arith-
metic for a Galois field of size 28=256 elements. It should also
be noted that the same mathematical principles apply to any
power-of-two 2P number of elements, not just 256, as Galois
fields can be constructed for any integral power of a prime
number. Since Galois fields are finite, and since GF opera-
tions never overflow, all results are the same size as the inputs,
for example, 8 bits.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It can
also be performed on multiple bytes concurrently. Since the
addition and subtraction operations take place, for example,
on a byte-level basis, they can be done in parallel by using, for
instance, x86 architecture Streaming SIMD Extensions
(SSE) instructions (SIMD stands for single instruction, mul
tiple data, and refers to performing the same instruction on
different pieces of data, possibly concurrently), such as
PXOR (Packed (bitwise) Exclusive OR).

SSE instructions can process, for example, 16-byte regis
ters (XMM registers), and are able to process such registers as
though they contain 16 separate one-byte operands (or 8
separate two-byte operands, or four separate four-byte oper
ands, etc.) Accordingly, SSE instructions can do byte-level
processing 16 times faster than when compared to processing
a byte at a time. Further, there are 16 XMM registers, so
dedicating four such registers for operand storage allows the
data to be processed in 64-byte increments, using the other 12
registers for temporary storage. That is, individual operations
can be performed as four consecutive SSE operations on the
four respective registers (64 bytes), which can often allow
such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc-

2. Subtract this surviving partial check data from the sur
viving check data W (using matrix subtraction, i.e., 45

W-AxX, which is just entry-by-entry GF subtraction,
which is the same as GF addition for this Galois field).
This generates the surviving check data, only this time
limited to the F failed data drives. Call this limited check
data the lost partial check data. 50 tions allows the same processing to be performed on different

such 64-byte increments of data in parallel using different
cores. Thus, using four separate cores can potentially speed
up this processing by an additional factor of 4 over using a

3. Use the solution matrix B- 1 and the lost partial check
data (using matrix multiplication, i.e., B- 1 x(W-AxX)to
reconstruct the lost original data Y. Call this the recov
ered original data Y.

4. Use the corresponding rows of the IDM E (or master 55

encoding matrix S) for each of the G failed check drives
along with the original data D, as reconstructed from the
surviving and recovered original data X and Y, to regen
erate the lost check data (using matrix multiplication).

As will be shown in more detail later, steps 1-3 together 60

require O(F) operations times the amount of original data D to
reconstruct the lost original data Y for the F failed data drives
(i.e., roughly 1 operation per failed data drive per byte of
original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed 65

to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data

single core.
For example, a parallel adder (Parallel Adder) can be built

using the 16-byte XMM registers and four consecutive PX OR
instructions. Such parallel processing (that is, 64 bytes at a
time with only a few machine-level instructions) for GF arith
metic is a significant improvement over doing the addition
one byte at a time. Since the data is organized in blocks of any
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4
KB) or 32,768 bytes (32 KB), a block can be composed of
numerous such 64-byte chunks (e.g., 64 separate 64-byte
chunks in 4 KB, or 512 chunks in 32 KB).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR's (i.e.,
"additions") that are very fast operations, the numbers "wrap"

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 110 of 350

US 8,683,296 B2
17

in peculiar ways when they are shifted outside of their normal
bounds (because the field has only a finite set of elements),
which can slow down the calculations. This "wrapping" in the
GF multiplication can be addressed in many ways. For
example, the multiplication can be implemented serially (Se- 5
rial Multiplier) as a loop iterating over the bits of one operand
while performing the shifts, adds, and wraps on the other
operand. Such processing, however, takes several machine
instructions per bit for 8 separate bits. In other words, this
technique requires dozens of machine instructions per byte

10
being multiplied. This is inefficient compared to, for example,
the performance of the Parallel Adder described above.

For another approach (Serial Lookup Multiplier), multipli
cation tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of256x256=65,536 bytes can hold 15

all the possible products of the two different one-byte oper
ands). However, such tables can force serialized access on
what are only byte-level operations, and not take advantage of
wide (concurrent) data paths available on modern processors,
such as those used to implement the Parallel Adder above. 20

In still another approach (Parallel Multiplier), the GF mul
tiplication can be done on multiple bytes at a time, since the
same factor in the encoding matrix is multiplied with every
element in a data block. Thus, the same factor can be multi
plied with 64 consecutive data block bytes at a time. This is 25

similar to the Parallel Adder described above, only there are
several more operations needed to perform the operation.
While this can be implemented as a loop on each bit of the
factor, as described above, only performing the shifts, adds,
and wraps on 64 bytes at a time, it can be more efficient to 30

process the 256 possible factors as a (C language) switch
statement, with inline code for each of 256 different combi
nations of two primitive GF operations: Multiply-by-2 and
Add. For example, GF multiplication by the factor 3 can be
effected by first doing a Multiply-by-2 followed by an Add. 35

Likewise, GF multiplication by 4 is just a Multiply-by-2
followed by a Multiply-by-2 while multiplication by 6 is a
Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2.

While this Add is identical to the Parallel Adder described 40

18
Each lookup table contains 256 sets (one for each possible
factor) of the 16 possible GF products of that factor and the 16
possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multiplica
tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions
can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is initial
ized for the next set of 64 bytes of operand data (such as
original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the Par-
allel Lookup Multiplier dedicates four registers for this data,
which are left intact upon exit of the Parallel Lookup Multi
plier. This allows the same data to be called with different
factors (such as processing the same data for another check
drive).

Next in step 430, to process these 64 bytes of operand data,
the Parallel Lookup Multiplier can be implemented with 2
MOVDQA (Move Double Quadword Aligned) instructions
(from memory) to do the two table lookups and 4 MOVDQA
instructions (register to register) to initialize registers (such as
the output registers). These are followed in steps 440 and 450
by two nearly identical sets of 17 register-to-register instruc-
tions to carry out the multiplication 32 bytes at a time. Each
such set starts (in step 440) with 5 more MOVDQA instruc
tions for further initialization, followed by 2 PSRLW (Packed
Shift Right Logical Word) instructions to realign the high
order nibbles for PSHUFB, and 4 PAND instructions to clear
the high-order nibbles for PSHUFB. That is, two registers of
byte operands are converted into four registers of nibble oper-
ands. Then, in step 450, 4 PSHUFB instructions are used to do
the parallel table lookups, and 2 PXOR instructions to add the
results of the multiplication on the two nibbles to the output
registers.

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64 sepa
rate bytes, which is considerably better than the average 134
instructions for the Parallel Multiplier above, and only 10
times as many instructions as needed for the Parallel Adder.
While some of the Parallel Lookup Multiplier's instructions

above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PAD DB (Packed Add) instructions, 4 consecutive PAND
(Bitwise AND) instructions, and 4 consecutive PXOR
instructions. Though this takes 20 machine instructions, the
instructions are very fast and results in 64 consecutive bytes
of data at a time being multiplied by 2.

45 are more complex than those of the Parallel Adder, much of
this complexity can be concealed through the pipelined and/
or concurrent execution of numerous such contiguous
instructions (accessing different registers) on modern pipe
lined processors. For example, in exemplary implementa-

For 64 bytes of data, assuming a random factor between 0
and 255, the total overhead for the Parallel Multiplier is about
6 calls to multiply-by-2 and about 3.5 calls to add, or about
6x20+3.5x4=134 machine instructions, or a little over 2
machine instructions per byte of data. While this compares
favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are built
once: one lookup table for the low-order nibbles in each byte,
and one lookup table for the high-order nibbles in each byte.

50 tions, the Parallel Lookup Multiplier has been timed at about
15 CPU clock cycles per 64 bytes processed per CPU core
(about 0.36 clock cycles per instruction). In addition, the code
footprint is practically nonexistent for the Parallel Lookup
Multiplier (40 instructions) compared to that of the Parallel

55 Multiplier (about 34,300 instructions), even when factoring
the 8 KB needed for the two lookup tables in the Parallel
Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data (such as the next

60 64 bytes of surviving original data X to be processed) in four
consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same 40
machine instructions) such that the Parallel Lookup Multi
plier can be invoked again on the same 64 bytes of data

65 without having to access main memory to reload the data.
Through such a protocol, memory accesses can be minimized
(or significantly reduced) for accessing the original data D

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 111 of 350

US 8,683,296 B2
19

during check data generation or the surviving original data X
during lost data reconstruction.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro- 5

cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup Mul
tiplier should be appropriately sequenced to provide efficient
processing. One such sequencer (Sequencer 1), for example,
can generate the check data J from the original data D, and is 10

described further with respect to FIG. 4.
The parity drive does not need GF multiplication. The

check data for the parity drive can be obtained, for example,
by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder can 15

do this using 4 instructions for every 64 bytes of data for each
of the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel
Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 20

check drive. One consideration is how to handle the data
access. Two possible ways are:

20
entire stripe. The other such seven calls to Sequencer 1 could
be to different processing cores, for instance, to carry out the
check data generation in parallel. The number of 64-byte
chunks to process at a time could depend on factors such as
cache dimensions, input/output data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
numberofaccesses of each data drive' s 64-byte chunk of data
from memory, the data is loaded only once and preserved
across calls to the Parallel Lookup Multiplier. The first data
drive is handled specially since the check data has to be
initialized for each check drive. Using the first data drive to
initialize the check data saves doing the initialization as a
separate step followed by updating it with the first data drive' s
data. In addition to the first data drive, the first check drive is
also handled specially since it is a parity drive, so its check
data can be initialized to the first data drive' s data directly
without needing the Parallel Lookup Multiplier.

In step 530, the first middle loop is called, in which the
remainder of the check drives (that is, the non-parity check
drives) have their check data initialized by the first data
drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied with

1) "colunm-by-colunm," i.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc., and
adding the products to the running total in memory (us
ing the Parallel Adder) before moving onto the next row
(data drive); and

25 each of the first data drive's data bytes. This is handled by
calling the Parallel Lookup Multiplier for each non-parity
check drive.

2) "row-by-row," i.e., 64 bytes for one data drive, followed
by the corresponding 64 bytes for the next data drive,
etc., and keeping a running total using the Parallel 30

Adder, then moving onto the next set of 64-byte chunks.
Colunm-by-colunm can be thought of as "constant factor,

varying data," in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be 35

thought of as "constant data, varying factor," in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives.

In step 540, the second middle loop is called, which pro
cesses the other data drives' corresponding 64-byte chunks of
data. As with the first data drive, each of the other data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier). In addition, since the first check drive is
the parity drive, its check data can be updated by directly
adding these 64 bytes to it (using the Parallel Adder) before
handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding

Two possible ways are:
a) one at a time, i.e., generate all the check data for one

check drive before moving onto the next check drive;
and

40 factor for the particular data drive. The factor is multiplied
with each of the next data drive' s data bytes using the Parallel
Lookup Multiplier, and the results added to the check drive' s
check data.

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives 45

before moving onto the next chunk of original data.
While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data for
each of the N data drives and M-1 non-parity check drives, or
5N(M-1)/8 instructions per byte for the Parallel Lookup 50

Multiplier), empirical results show that combination (2)(b),
that is, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel Lookup
Multiplier. One reason may be that such an approach appears
to minimize the number of memory accesses (namely, one) to 55

each chunk of the original data D to generate the check data J.
This embodiment of Sequencer 1 is described in more detail
with reference to FIG. 4.

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using Algo
rithm 2). While the same colunm-by-colunm and row-by-row
data access approaches are possible, as well as the same
choices for handling the check drives, Algorithm 2 adds
another dimension of complexity because of the four separate
steps and whether to: (i) do the steps completely serially or (ii)
do some of the steps concurrently on the same data. For
example, step 1 (surviving check data generation) and step 4
(lost check data regeneration) can be done concurrently on the
same data to reduce or minimize the number of surviving
original data accesses from memory.

Empirical results show that method (2)(b)(ii), that is, row
by-row data access on all of the check drives and for both
surviving check data generation and lost check data regen
eration between data accesses performs best with the Parallel FIG. 4 shows an exemplary method 500 for sequencing the

Parallel Lookup Multiplier to perform the check data genera
tion according to an embodiment of the present invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each of the blocks across a stripe of data. For instance,
Sequencer 1 could be called to process 512 bytes from each
block. If, for example, the block size L is 4096 bytes, then it
would take eight such calls to Sequencer 1 to process the

60 Lookup Multiplier when reconstructing lost data using Algo
rithm 2. Again, this may be due to the apparent minimization
of the number of memory accesses (namely, one) of each
chunk of surviving original data X to reconstruct the lost data
and the absence of memory accesses of reconstructed lost

65 original data Y when regenerating the lost check data. This
embodiment of Sequencer 1 is described in more detail with
reference to FI GS. 5-7.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 112 of 350

US 8,683,296 B2
21

FIGS. 5-7 show an exemplary method 600 for sequencing
the Parallel Lookup Multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion.

Referring to FIG. 5, in step 610, the Sequencer 2 is called.
Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to be
reconstructed. In addition, lost check data needs to be regen
erated. Like Sequencer 1, Sequencer 2 does these operations

22
drive' s 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 660 and 670.

Next, in step 680, the computation of the partial check data
5 AxX is complete, so the surviving check data W is added to

this result (recall that W-AxX is equivalent to W+AxX in
binary Galois Field arithmetic). This is done by the fourth
middle loop, which for each surviving check drive adds the
corresponding 64-byte component of surviving check data W

10 to the (surviving) partial check data AxX (using the Parallel
Adder) to produce the (lost) partial check data W-AxX.

Continuing with FIG. 7, in step 690, the fifth middle loop is
called, which performs the two dimensional matrix multipli
cation B-1 x(W-AxX) to produce the lost original data Y. The

15 calculation is performed one row at a time, for a total of F
rows, initializing the row to the first term of the corresponding
linear combination of the solution matrix B-1 and the lost
partial check data W-AxX (using the Parallel Lookup Mul-

in such a way as to minimize memory accesses of the data
drive data (by loading the data once and calling the Parallel
Lookup Multiplier multiple times). Assume for ease of
description that there is at least one surviving data drive; the
case of no surviving data drives is handled a little differently,
but not significantly different. In addition, recall from above
that the driving formula behind data reconstruction is
Y=B- 1 x(W-AxX), where Y is the lost original data, B-1 is the 20

solution matrix, Wis the surviving check data, A is the partial
check data encoding matrix (for the surviving check drives
and the surviving data drives), and Xis the surviving original
data.

tiplier).
In step 700, the third inner loop is called, which completes

the remaining F-1 terms of the corresponding linear combi
nation (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop in step 690 and updates the running
calculation (using the Parallel Adder) of the next row of

In step 620, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer!, the first
surviving data drive is again handled specially since the par
tial check data AxX has to be initialized for each surviving
check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving check
drive based on the first surviving data drive' s 64 bytes of data.
In this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the first surviving data drive.

25 B-1x(W-AxX). This completes the next row (and recon
structs the corresponding failed data drive's lost data) oflost
original data Y, which can then be stored at an appropriate
location.

In step 710, the fourth inner loop is called, in which the lost
30 check data is updated for each failed check drive by the newly

reconstructed lost data for the next failed data drive.Using the
same 64 bytes of the next reconstructed lost data (preserved
across calls to the Parallel Lookup Multiplier), the Parallel
Lookup Multiplier is called to update each of the failed check

35 drives' check data by the corresponding component from the
next failed data drive. This completes the computations
involving the next failed data drive's 64 bytes of recon
structed data, which were performed as soon as the data was

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive.Using
the same 64 bytes of the first surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 630), the
Parallel Lookup Multiplier is again called, this time to initial- 40

ize each of the failed check drive's check data to the corre-

reconstructed and without being stored and retrieved from
main memory.

Finally, in step 720, the sixth middle loop is called. The lost
check data has been regenerated, so in this step, the newly
regenerated check data is stored at an appropriate location (if
desired).

sponding component from the first surviving data drive. This
completes the computations involving the first surviving data
drive's 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers 45

across steps 630 and 640.
Continuing with FIG. 6, in step 650, the third middle loop

Aspects of the present invention can be also realized in
other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 216=65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily

is called, which processes the other surviving data drives'
corresponding 64-byte chunks of data. As with the first sur
viving data drive, each of the other surviving data drives is
processed separately, loading the respective 64 bytes of data
into four registers (preserved across calls to the Parallel
Lookup Multiplier).

50 apparent to one of ordinary skill in the art, so their details will
be omitted for brevity of description.

In step 660, the first inner loop is called, in which the partial
check data AxX is updated for each surviving check drive
based on the next surviving data drive's 64 bytes of data. In
this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the next surviving data drive.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID error
correcting codes are described inAppendixA, which contains

55 a paper "Information Dispersal Matrices for RAID Error
Correcting Codes" prepared for the present application.
Multi-Core Considerations

In step 670, the second inner loop is called, in which the 60

lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660), the
Parallel Lookup Multiplier is again called, this time to update
each of the failed check drive's check data by the correspond- 65

ing component from the next surviving data drive. This com
pletes the computations involving the next surviving data

What follows is an exemplary embodiment for optimizing
or improving the performance of multi-core architecture sys
tems when implementing the described erasure coding sys
tem routines. In multi-core architecture systems, each proces-
sor die is divided into multiple CPU cores, each with their
own local caches, together with a memory (bus) interface and
possible on-die cache to interface with a shared memory with
other processor dies.

FIG. 8 illustrates a multi-core architecture system 100 hav
ing two processor dies 110 (namely, Die 0 and Die 1).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 113 of 350

US 8,683,296 B2
23

Referring to FIG. 8, each die 110 includes four central
processing units (CPUs or cores) 120 each having a local level

24
resulting code on specific processing cores. Embodiments
can also be implemented on fewer resources, such as single
core dies and/or single-die systems, with decreased parallel-
ism and performance optimization.

The process of subdividing and assigning individual cores
120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into "threads," and
threads may be assigned to specific CPUs and memory sys-

1 (Ll) cache. Each core 120 may have separate functional
units, for example, an x86 execution unit (for traditional
instructions) and a SSE execution unit (for software designed 5

for the newer SSE instruction set). An example application of
these function units is that the x86 execution unit can be used
for the RAID control logic software while the SSE execution
unit can be used for the GF operation software. Each die 110
also has a level 2 (L2) cache/memory bus interface 130 shared
between the four cores 120. Main memory 140, in tum, is
shared between the two dies 110, and is connected to the
input/output (I/O) controllers 150 that access external devices
such as disk drives or other non-volatile storage devices via
interfaces such as Peripheral Component Interconnect (PCI). 15

10 terns via thekthread_bindfunction when the thread is created.

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to vali
date and schedule a host request (for example, to load or store
data from disk storage); (2) Command Translation and Sub- 20

mission, to translate the host request into multiple disk
requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to 25

requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

Creating separate threads to process the GF arithmetic allows
parallel computations to take place, which multiplies the per
formance of the system.

Further, creating multiple threads for command processing
allows for fully overlapped execution of the command pro
cessing states. One way to accomplish this is to number each
command, then use the arithmetic MOD function (% in C
language) to choose a separate thread for each command.
Another technique is to subdivide the data processing portion
of each command into multiple components, and assign each
component to a separate thread.

FIG. 9 shows an exemplary disk drive configuration 200
according to an embodiment of the present invention.

Referring to FIG. 9, eight disks are shown, though this
number can vary in other embodiments. The disks are divided
into three types: data drives 210, parity drive 220, and check
drives 230. The eight disks break down as three data drives
210, one parity drive 220, and four check drives 230 in the
embodiment of FIG. 9.

Each of the data drives 210 is used to hold a portion of data.
The data is distributed uniformly across the data drives 210 in
stripes, such as 192 KB stripes. For example, the data for an
application can be broken up into stripes of 192 KB, and each
of the stripes in tum broken up into three 64 KB blocks, each

35 of the three blocks being written to a different one of the three
data drives 210.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example, 30

some of the cores 120 can be "command cores," that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140 and
the disk drives via the I/O interface 150. Others of the cores
120 can be "data cores," and assigned to the GF operations,
that is, generating the check data from the original data,
reconstructing the lost data from the surviving data, etc.,
including the Parallel Lookup Multiplier and the sequencers
described above. For example, in exemplary embodiments, a
scheduler can be used to divide the original data D into 40

corresponding portions of each block, which can then be
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc-
tion.

One of the benefits of this data core/command core subdi- 45

The parity drive 220 is a special type of check drive in that
the encoding ofits data is a simple summation (recall that this
is exclusive OR in binary GF arithmetic) of the corresponding
bytes of each of the three data drives 210. That is, check data
generation (Sequencer 1) or regeneration (Sequencer 2) can
be performed for the parity drive 220 using the Parallel Adder
(and not the Parallel Lookup Multiplier). Accordingly, the
check data for the parity drive 220 is relatively straightfor
ward to build. Likewise, when one of the data drives 210 no
longer functions correctly, the parity drive 220 can be used to
reconstruct the lost data by adding (same as subtracting in
binary GF arithmetic) the corresponding bytes from each of
the two remaining data drives 210. Thus, a single drive failure

50 of one of the data drives 210 is very straightforward to handle
when the parity drive 220 is available (no Parallel Lookup
Multiplier). Accordingly, the parity drive 220 can replace
much of the GF multiplication operations with GF addition

vision of processing is ensuring that different code will be
executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated Ll cache in each core 120,
and avoids the "pollution" of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on each
die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations. This 55

helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other
cores 120, while allowing the other cores 120 to keep the data
moving between memory 140 and the disk drives via the I/O
interface 150.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to achieve
the result. This combination can be achieved by utilizing the
mathematical techniques and code optimizations described
elsewhere in this application with careful placement of the

for both check data generation and lost data reconstruction.
Each of the check drives 230 contains a linear combination

of the corresponding bytes of each of the data drives 210. The
linear combination is different for each check drive 230, but in
general is represented by a summation of different multiples
of each of the corresponding bytes of the data drives 210

60 (again, all arithmetic being GF arithmetic). For example, for
the first check drive 230, each of the bytes of the first data
drive 210 could be multiplied by 4, each of the bytes of the
second data drive 210 by 3, and each of the bytes of the third
data drive 210 by 6, then the corresponding products for each

65 of the corresponding bytes could be added to produce the first
check drive data. Similar linear combinations could be used to
produce the check drive data for the other check drives 230.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 114 of 350

US 8,683,296 B2
25

The specifics of which multiples for which check drive are
explained in Appendix A.

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG. 9.
Accordingly, each 192 KB of original data is stored as 512 KB 5

(i.e., eight blocks of 64 KB) of (original plus check) data.
Such a system 200, however, is capable of recovering all of
the original data provided any three of these eight drives
survive. That is, the system 200 can withstand a concurrent
failure of up to any five drives and still preserve all of the 10

original data.
Exemplary Routines to Implement an Embodiment

The error correcting code (ECC) portion of an exemplary
embodiment of the present invention may be written in soft-

15
ware as, for example, four functions, which could be named
as ECCinitialize, ECCSolve, ECCGenerate, and ECCRegen
erate. The main functions that perform work are ECCGener-
ate and ECCRegenerate. ECCGenerate generates check
codes for data that are used to recover data when a drive 20

26
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B-1 (i.e., the solution
matrix).

ECCGenerate
The function ECCGenerate is used to generate check codes

(that is, the check data matrix J) for a particular configuration
of data drives and check drives, using Sequencer 1 and the
Parallel Lookup Multiplier as described above. Prior to call
ing ECCGenerate, ECCSolve is called to compute the appro
priate constants for the particular configuration of data drives
and check drives, as well as the solution matrix B-1

.

ECCRegenerate
The function ECCRegenerate is used to regenerate data

vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the lost
check data from the restored original data), this time using
Sequencer 2 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCRegenerate, ECCSolve is called
to compute the appropriate constants for the particular con-
figuration of data drives, check drives, and failed drives, as
well as the solution matrix B-1

.

Exemplary Implementation Details
As discussed in Appendix A, there are two significant

sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID process
ing): the computation of the solution matrix B-1 for a given
failure scenario, and the byte-level processing of encoding the

suffers an outage (that is, ECCGenerate generates the check
data J from the original data Dusing Sequencer 1). ECCRe
generate uses these check codes and the remaining data to
recover data after such an outage (that is, ECCRegenerate
uses the surviving check data W, the surviving original data X, 25

and Sequencer 2 to reconstruct the lost original data Y while
also regenerating any of the lost check data). Prior to calling
either of these functions, ECCSolve is called to compute the
constants used for a particular configuration of data drives,
check drives, and failed drives (for example, ECCSolve
builds the solution matrix B-1 together with the lists of sur
viving and failed data and check drives). Prior to calling
ECCSolve, ECCinitialize is called to generate constant tables
used by all of the other functions (for example, ECCinitialize
builds the IDM E and the two lookup tables for the Parallel
Lookup Multiplier).

30 check data J and reconstructing the lost data after a lost packet
(e.g., data drive failure). By reducing the solution matrix B-1

to a matrix inversion of a FxF matrix, where F is the number
of lost packets (e.g., failed drives), that portion of the com
putational overhead is for all intents and purposes negligible

ECCinitialize
The function ECCinitialize creates constant tables that are

35 compared to the megabytes (MB), gigabytes (GB), and pos
sibly terabytes (TB) of data that needs to be encoded into
check data or reconstructed from the surviving original and
check data. Accordingly, the remainder of this section will be

used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values 40

up front, these constant tables can be used to replace more
time-consuming operations with simple table look-ups (such
as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct-an array of constants used to perform GF multi- 45

plication with the PSHUFB instruction that operates on SSE
registers (that is, the Parallel Lookup Multiplier).

2. mast----contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as the 50

check drive encoding matrix H

devoted to the byte-level encoding and regenerating process
ing.

As already mentioned, certain practical simplifications can
be assumed for most implementations. By using a Galois field
of256 entries, byte-level processing can be used for all of the
GF arithmetic. Using the master encoding matrix S described
in Appendix A, any combination of up to 127 data drives, 1
parity drive, and 128 check drives can be supported with such
a Galois field. While, in general, any combination of data
drives and check drives that adds up to 256 total drives is
possible, not all combinations provide a parity drive when
computed directly. Using the master encoding matrix S, on
the other hand, allows all such combinations (including a
parity drive) to be built (or simply indexed) from the same
such matrix. That is, the appropriate sub-matrix (including
the parity drive) can be used for configurations ofless than the

3. mul_tab-contains the results of all possible GF multi
plication operations of any two operands (for example, 256x
256=65,536 bytes for all of the possible products of two
different one-byte quantities) 55 maximum number of drives.

4. div _tab----contains the results of all possible GF division
operations of any two operands (can be similar in size to
mul_tab)

ECCSolve
The function ECC Solve creates constant tables that are 60

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other pro
posed solutions, which recompute E for every change ofN or
M). Rather, additional indexing ofrows and/or colunms of the
master encoding matrix S will suffice. As discussed above, used to compute a solution for a particular configuration of

data drives, check drives, and failed drives. It is called prior to
using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.

the use of the parity drive can eliminate or significantly
reduce the somewhat complex GF multiplication operations
associated with the other check drives and replaces them with

65 simple GF addition (bitwise exclusive OR in binary Galois
fields) operations. It should be noted that master encoding
matrices with the above properties are possible for any power-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 115 of 350

US 8,683,296 B2
27

of-two number of drives 2P =Nmax+Mmax where the maximum
number of data drives N max is one less than a power of two
(e.g., Nmax=l27 or 63) and the maximum number of check
drives Mmax (including the parity drive) is 2P -N max·

As discussed earlier, in an exemplary embodiment of the 5

present invention, a modem x86 architecture is used (being
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these 10

XMM registers holds 16 bytes (8-bit), so four such registers
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain- 15
ing 16 one-byte operands), 64 bytes of data can be operated at
a time using four consecutive SSE instructions (e.g., fetching
from memory, storing into memory, zeroing, adding, multi
plying), the remaining registers being used for intermediate
results and temporary storage. With such an architecture, 20

several routines are useful for optimizing the byte-level per
formance, including the Parallel Lookup Multiplier,
Sequencer 1, and Sequencer 2 discussed above.

While the above description contains many specific
embodiments of the invention, these should not be construed 25

as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents. 30

28
-continued

Glossary of Some Variables

X surviving original data matrix (K x L)
Y lost original data matrix (F x L)

What is claimed is:
1. A system for accelerated error-correcting code (ECC)

processing comprising:
a processing core for executing computer instructions and

accessing data from a main memory; and
a non-volatile storage medium for storing the computer

instructions,
wherein the processing core, the non-volatile storage

medium, and the computer instructions are configured to
implement an erasure coding system comprising:
a data matrix for holding original data in the main

memory;
a check matrix for holding check data in the main

memory;
an encoding matrix for holding first factors in the main

memory, the first factors being for encoding the origi
nal data into the check data; and

a thread for executing on the processing core and com
prising:
a parallel multiplier for concurrently multiplying

multiple data entries of a matrix by a single factor;
and

a first sequencer for ordering operations through the
data matrix and the encoding matrix using the par
allel multiplier to generate the check data.

Glossary of Some Variables

encoding matrix (F x K), sub-matrix ofT
encoding matrix (F x F), sub-matrix ofT
solution matrix (F x F)

2. The system of claim 1, wherein the first sequencer is
35 configured to access each entry of the data matrix from the

main memory at most once while generating the check data.
3. The system of claim 1, wherein:

C

C'

D

D'

E

F
G
H
I

w

encoded data matrix((N + M) XL)= [~]

surviving encoded data matrix(N x L) = [:]

original data matrix (N x L)

permuted original data matrix(N x L) = [~]

information dispersal matrix(/DM)((N + M) xN) = [~]

number of failed data drives
number of failed check drives
check drive encoding matrix (M x N)
identity matrix (IK = K x K identity matrix,
IN= N x N identity matrix)
encoded check data matrix (M x L)
number of surviving data drives = N - F
data block size (elements or bytes)
number of check drives
maximum value ofM
number of data drives
maximum value ofN
zero matrix (K x F), sub-matrix ofT
master encoding matrix ((Mm=+ Nmaxl X Nm=)

transformed IDM(N x N) = [~ ~]

surviving check data matrix (F x L)

the processing core comprises a plurality of processing
cores;

40 the thread comprises a plurality of threads; and
the erasure coding system further comprises a scheduler

for generating the check data by:
dividing the data matrix into a plurality of data matrices;
dividing the check matrix into a plurality of check matri-

45 ces;
assigning corresponding ones of the data matrices and

the check matrices to the threads; and
assigning the threads to the processing cores to concur

rently generate portions of the check data correspond-
50 ing to the check matrices from respective ones of the

data matrices.
4. The system of claim 1, wherein:
the data matrix comprises a first number ofrows;
the check matrix comprises a second number of rows; and

55 the encoding matrix comprises the second number of rows
and the first number of columns.

5. The system of claim 4, wherein the data matrix is con
figured to add rows to the first number of rows or the check
matrix is configured to add rows to the second number of rows

60 while the first factors remain unchanged.
6. The system of claim 4, wherein each of entries of one of

the rows of the encoding matrix comprise a multiplicative
identity factor.

7. The system of claim 4, wherein:
65 the data matrix is configured to be divided by rows into:

a surviving data matrix for holding surviving original
data of the original data; and

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 116 of 350

US 8,683,296 B2
29

a lost data matrix corresponding to lost original data of
the original data and comprising a third number of
rows; and

the erasure coding system further comprises a solution
matrix for holding second factors in the main memory, 5

the second factors being for decoding the check data into
the lost original data using the surviving original data
and the first factors.

8. The system of claim 7, wherein the solution matrix
comprises the third number of rows and the third number of 10

colunms.

30
14. The system of claim 11, wherein:
the check matrix is configured to be divided into:

a surviving check matrix for holding surviving check
data of the check data; and

a lost check matrix corresponding to lost check data of
the check data; and

the second sequencer is configured to order operations
through the surviving data matrix, the reconstructed lost
original data, and the encoding matrix using the parallel
multiplier to regenerate the lost check data.

15. The system of claim 14, wherein the second sequencer
is further configured to reconstruct the lost original data con
currently with regenerating the lost check data.

16. The system of claim 15, wherein the second sequencer

9. The system of claim 8, wherein the solution matrix
further comprises an inverted said third number by said third
number sub-matrix of the encoding matrix.

10. The system of claim 7, wherein the erasure coding
system further comprises:

a first list of rows of the data matrix corresponding to the
surviving data matrix; and

15 is further configured to access each entry of the surviving data
matrix from the main memory at most once while recon
structing the lost original data and regenerating the lost check
data.

a second list of rows of the data matrix corresponding to the 20

lost data matrix.
11. The system of claim 1, wherein:
the data matrix is configured to be divided into:

a surviving data matrix for holding surviving original
data of the original data; and 25

a lost data matrix corresponding to lost original data of
the original data;

the erasure coding system further comprises a solution
matrix for holding second factors in the main memory,
the second factors being for decoding the check data into 30

the lost original data using the surviving original data
and the first factors; and

the thread further comprises a second sequencer for order
ing operations through the surviving data matrix, the

35
encoding matrix, the check matrix, and the solution
matrix using the parallel multiplier to reconstruct the
lost original data.

12. The system of claim 11, wherein the second sequencer
is further configured to access each entry of the surviving data 40

matrix from the main memory at most once while recon
structing the lost original data.

13. The system of claim 11, wherein:
the processing core comprises a plurality of processing

cores; 45

the thread comprises a plurality of threads; and
the erasure coding system further comprises a scheduler

for generating the check data and reconstructing the lost
original data by:
dividing the data matrix into a plurality of data matrices; 50

dividing the surviving data matrix into a plurality of
surviving data matrices;

dividing the lost data matrix into a plurality of lost data
matrices;

55
dividing the check matrix into a plurality of check matri-

17. The system of claim 15, wherein the second sequencer
is further configured to regenerate the lost check data without
accessing the reconstructed lost original data from the main
memory.

18. The system of claim 14, wherein:
the processing core comprises a plurality of processing

cores;
the thread comprises a plurality of threads; and
the erasure coding system further comprises a scheduler

for generating the check data, reconstructing the lost
original data, and regenerating the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of

surviving data matrices;
dividing the lost data matrix into a plurality of lost data

matrices;
dividing the check matrix into a plurality of check matri

ces;
dividing the surviving check matrix into a plurality of

surviving check matrices;
dividing the lost check matrix into a plurality of lost

check matrices;
assigning corresponding ones of the data matrices, the

surviving data matrices, the lost data matrices, the
check matrices, the surviving check matrices, and the
lost check matrices to the threads; and

assigning the threads to the processing cores to concur
rently generate portions of the check data correspond
ing to the check matrices from respective ones of the
data matrices, to concurrently reconstruct portions of
the lost original data corresponding to the lost data
matrices from respective ones of the surviving data
matrices and the surviving check matrices, and to
concurrently regenerate portions of the lost check
data corresponding to the lost check matrices from
respective ones of the surviving data matrices and
respective portions of the reconstructed lost original
data.

ces;
assigning corresponding ones of the data matrices, the

surviving data matrices, the lost data matrices, and the
check matrices to the threads; and

assigning the threads to the processing cores to concur
rently generate portions of the check data correspond
ing to the check matrices from respective ones of the
data matrices and to concurrently reconstruct portions

19. The system of claim 1, wherein the processing core
comprises 16 data registers, each of the data registers com
prises 16 bytes; and the parallel multiplier is configured to

60 process the data in units of at least 64 bytes spread over at least
four of the data registers at a time.

of the lost original data corresponding to the lost data 65

matrices from respective ones of the surviving data
matrices and the check matrices.

20. The system of claim 19, wherein consecutive instruc
tions to process each of the units of the data access separate
ones of the data registers to permit concurrent execution of the
consecutive instructions by the processing core.

21. The system of claim 19, wherein the parallel multiplier
comprises two lookup tables for doing concurrent multipli-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 117 of 350

US 8,683,296 B2
31

cation of 4-bit quantities across 16 byte-sized entries using
the PSHUFB (Packed Shuffle Bytes) instruction.

22. The system of claim 19, wherein the parallel multiplier
is further configured to:

receive an input operand in four of the data registers; and 5

return with the input operand intact in the four of the data
registers.

23. A method of accelerated error-correcting code (ECC)
processing on a computing system comprising a non-volatile
storage medium, a processing core for accessing instructions 10

and data from a main memory, and a computer program
comprising a plurality of computer instructions for imple
menting an erasure coding system, the method comprising:

storing the computer program on the non-volatile storage
medium; 15

executing the computer instructions on the processing
core;

arranging original data as a data matrix m the mam
memory;

arranging first factors as an encoding matrix in the main 20

memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a 25

matrix by a single factor, the generating of the check data
comprising ordering operations through the data matrix
and the encoding matrix using the parallel multiplier.

24. The method of claim 23, wherein the generating of the
check data comprises accessing each entry of the data matrix 30

from the main memory at most once.
25. The method of claim 23, wherein:
the processing core comprises a plurality of processing

cores;
the executing of the computer instructions comprises 35

executing the computer instructions on the processing
cores;

the method further comprises scheduling the generating of
the check data by:
dividing the data matrix into a plurality of data matrices; 40

dividing the check matrix into a plurality of check matri-
ces; and

assigning corresponding ones of the data matrices and
the check matrices to the processing cores to concur
rently generate portions of the check data correspond- 45

ing to the check matrices from respective ones of the
data matrices.

26. The method of claim 23, further comprising:
dividing the data matrix into:

a surviving data matrix for holding surviving original 50

data of the original data; and
a lost data matrix corresponding to lost original data of

the original data;
arranging second factors as a solution matrix in the main

memory, the second factors being for decoding the 55

check data into the lost original data using the surviving
original data and the first factors; and

reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix,
the check matrix, and the solution matrix using the par- 60

allel multiplier.
27. The method of claim 26, wherein the reconstructing of

the lost original data comprises accessing each entry of the
surviving data matrix from the main memory at most once.

28. The method of claim 26, wherein: 65

the processing core comprises a plurality of processing
cores;

32
the executing of the computer instructions comprises

executing the computer instructions on the processing
cores;

the method further comprises scheduling the generating of
the check data and the reconstructing of the lost original
data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of

surviving data matrices;
dividing the lost data matrix into a plurality of lost data

matrices;
dividing the check matrix into a plurality of check matri

ces; and
assigning corresponding ones of the data matrices, the

surviving data matrices, the lost data matrices, and the
check matrices to the processing cores to concurrently
generate portions of the check data corresponding to
the check matrices from respective ones of the data
matrices and to concurrently reconstruct portions of
the lost original data corresponding to the lost data
matrices from respective ones of the surviving data
matrices and the check matrices.

29. The method of claim 26, further comprising
dividing the check matrix into:

a surviving check matrix for holding surviving check
data of the check data; and

a lost check matrix corresponding to lost check data of
the check data; and

regenerating the lost check data by ordering operations
through the surviving data matrix, the reconstructed lost
original data, and the encoding matrix using the parallel
multiplier.

30. The method of claim 29, wherein the reconstructing of
the lost original data takes place concurrently with the regen
erating of the lost check data.

31. The method of claim 30, wherein the reconstructing of
the lost original data and the regenerating of the lost check
data comprise accessing each entry of the surviving data
matrix from the main memory at most once.

32. The method of claim 30, wherein the regenerating of
the lost check data takes place without accessing the recon
structed lost original data from the main memory.

33. The method of claim 29, wherein:
the processing core comprises a plurality of processing

cores;
the executing of the computer instructions comprises

executing the computer instructions on the processing
cores;

the method further comprises scheduling the generating of
the check data, the reconstructing of the lost original
data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of

surviving data matrices;
dividing the lost data matrix into a plurality of lost data

matrices;
dividing the check matrix into a plurality of check matri

ces;
dividing the surviving check matrix into a plurality of

surviving check matrices;
dividing the lost check matrix into a plurality of lost

check matrices; and
assigning corresponding ones of the data matrices, the

surviving data matrices, the lost data matrices, the
check matrices, the surviving check matrices, and the
lost check matrices to the processing cores to concur
rently generate portions of the check data correspond-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 118 of 350

US 8,683,296 B2
33

ing to the check matrices from respective ones of the
data matrices, to concurrently reconstruct portions of
the lost original data corresponding to the lost data
matrices from respective ones of the surviving data
matrices and the surviving check matrices, and to 5

concurrently regenerate portions of the lost check
data corresponding to the lost check matrices from
respective ones of the surviving data matrices and
respective portions of the reconstructed lost original
data. 10

34
check data into the lost original data using the surviving
original data and the first factors; and

reconstructing the lost original data by ordering operations
through the sui:viving data matrix, the encoding matrix,
the check matnx, and the solution matrix using the par
allel multiplier.

. 38. T~e storage medium of claim 37, wherein the computer
mst~~t~ons are further configured to perform the steps of:

d1v1dmg the check matrix into:
a surviving check matrix for holding surviving check

data of the check data; and
a lost check matrix corresponding to lost check data of

the check data; and
regenerating the lost check data by ordering operations

through the surviving data matrix, the reconstructed lost
original data, and the encoding matrix using the parallel
multiplier.

34. A non-transitory computer-readable storage medium
containing a computer program comprising a plurality of
computer instructions for performing accelerated error-cor
re~t)ng code (ECC) processing on a computing system com
pnsmg a processing core for accessing instructions and data 15

from a main memory, the computer instructions being con
figured to implement an erasure coding system when
executed on the computing system by performing the steps of: 39. The storage medium of claim 38, wherein the recon

structing of the lost original data and the regenerating of the
20 lost check data comprise accessing each entry of the surviving

data matrix from the main memory at most once.

arranging original data as a data matrix in the main
memory;

arranging first factors as an encoding matrix in the main
memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for 25

concurrently multiplying multiple data entries of a
matrix by a single factor, the generating of the check data
comprising ordering operations through the data matrix
and the encoding matrix using the parallel multiplier.

. 35. The storage medium of claim 34, wherein the generat- 30

mg of the check data comprises accessing each entry of the
data matrix from the main memory at most once.

36. The storage medium of claim 34, wherein:
the processing core comprises a plurality of processing

cores; and
the computer instructions are further configured to perform

the step of scheduling the generating of the check data
by:

35

dividing the data matrix into a plurality of data matrices·
dividing the check matrix into a plurality of check matri ~ 40

ces; and
assigning corresponding ones of the data matrices and

the check matrices to the processing cores to concur
:ently generate portions of the check data correspond
mg to the check matrices from respective ones of the 45

data matrices.
. 37. T~e storage medium of claim 34, wherein the computer
mst~~t~ons are further configured to perform the steps of:

d1v1dmg the data matrix into:
a surviving data matrix for holding surviving original 50

data of the original data; and
a lost data matrix corresponding to lost original data of

the original data;
arranging second factors as a solution matrix in the main

memory, the second factors being for decoding the

40. The storage medium of claim 38, wherein:
the processing core comprises a plurality of processing

cores;
the computer instructions are further configured to perform

the step of scheduling the generating of the check data,
the reconstructing of the lost original data, and the
regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices·
dividing the surviving data matrix into a plurality of

surviving data matrices;
dividing the lost data matrix into a plurality of lost data

matrices;
dividing the check matrix into a plurality of check matri

ces;
dividin? _the surviving check matrix into a plurality of

surv1vmg check matrices;
dividing the lost check matrix into a plurality of lost

check matrices; and
assigning corresponding ones of the data matrices the

surviving data matrices, the lost data matrices' the
check matrices, the surviving check matrices, and the
lost check matrices to the processing cores to concur
rently generate portions of the check data correspond
ing to the check matrices from respective ones of the
data matrices, to concurrently reconstruct portions of
the lost original data corresponding to the lost data
matrices from respective ones of the surviving data
matrices and the surviving check matrices, and to
concurrently regenerate portions of the lost check
data corresponding to the lost check matrices from
respective ones of the surviving data matrices and
respective portions of the reconstructed lost original
data.

* * * * *

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 119 of 350

EXHIBIT B

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 120 of 350

c12) United States Patent
Anderson

(54) ACCELERATED ERASURE CODING SYSTEM
AND METHOD

(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US)

(72) Inventor: Michael H. Anderson, Los Angeles, CA
(US)

(73) Assignee: STREAMSCALE, INC., Los Angeles,
CA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 14/223,740

(22) Filed:

(65)

Mar. 24, 2014

Prior Publication Data

US 2015/0012796 Al Jan. 8, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/341,833, filed on
Dec. 30, 2011, now Pat. No. 8,683,296.

(51) Int. Cl.
H03M 13/00
H03M 13137

(52) U.S. Cl.

(2006.01)
(2006.01)

(Continued)

CPC H03M 131616 (2013.01); G06F 1111076
(2013.01); G06F 1111092 (2013.01);

(Continued)

(58) Field of Classification Search
CPC H03M 13/373; H03M 13/3761; H03M

13/3776; H03M 13/616; H03M 13/1191;
H03M 13/134; H03M 13/1515; H04L 1/0043;

100 °",.

120

I 1111111111111111 11111 111111111111111 IIIII 111111111111111 IIIIII IIII IIII IIII

110

1/0

US009160374B2

(IO) Patent No.: US 9,160,374 B2
*Oct. 13, 2015 (45) Date of Patent:

(56)

H04L 1/0057; G06F 11/1076; G06F 11/1092;
G06F 11/1096; G06F 12/0238; G06F 12/06;

G06F 2211/1057; G06F 2211/109
USPC 714/6.24, 6.1, 6.11, 6.2, 6.21, 6.32,

714/763, 752,758,768,770,773,784,786
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,654,924 Bl * 11/2003 Hassner et al. 714/758
6,823,425 B2 * 11/2004 Ghosh et al. 711/114

(Continued)
OTHER PUBLICATIONS

Hafner et al., Matrix Methods for Lost Data Reconstruction in Era
sure Codes, Nov. 16, 2005, USENIX FAST '05 Paper, pp. 1-26.*
Anvin; The mathematics ofRAID-6; First Version Jan. 20, 2004; Last
Updated Dec. 20, 2011; pp. 1-9.
Maddock, et al.; White Paper, Surviving Two Disk Failures Introduc
ing Various "RAID 6" Implementations; Xyratex; pp. 1-13.

(Continued)

Primary Examiner - John J Tabone, Jr.
(74) Attorney, Agent, or Firm -Christie, Parker & Hale,
LLP

(57) ABSTRACT
An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core, stor
age medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an encod
ing matrix for holding first factors in the main memory, the
first factors being for encoding the original data into the check
data; and a thread for executing on the processing core. The
thread includes: a parallel multiplier for concurrently multi
plying multiple entries of the data matrix by a single entry of
the encoding matrix; and a first sequencer for ordering opera
tions through the data matrix and the encoding matrix using
the parallel multiplier to generate the check data.

18 Claims, 9 Drawing Sheets

150

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 121 of 350

(51) Int. Cl.
H03M13/13 (2006.01)

H04Ll/00 (2006.01)

G06F 11110 (2006.01)

G06F 12102 (2006.01)

G06F 12106 (2006.01)

H03M 13115 (2006.01)

H03M13/ll (2006.01)

US 9,160,374 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,350,126 B2 * 3/2008 Winograd et al. 714/752
7,930,337 B2 4/2011 Hasenplaugh et al.
8,145,941 B2 * 3/2012 Jacobson 714/6.24
8,352,847 B2 * 1/2013 Gunnam 714/801

2011/0029756 Al* 2/2011 Biscondi et al. 712/22
2012/0272036 Al* 10/2012 Muralimanohar et al 711/202
2013/0108048 Al* 5/2013 Grube et al 380/270
2013/0110962 Al* 5/2013 Grube et al 709/213

(52) U.S. Cl. 2013/0111552 Al* 5/2013 Grube et al 726/3
CPC G06Fll/1096 (2013.01); G06F 1210238

(2013.01); G06F 12106 (2013.01); H03M
13/1191 (2013.01); H03M 13/134 (2013.01);

H03M 1311515 (2013.01); H03M 131373
(2013.01); H03M 1313761 (2013.01); H03M
1313776 (2013.01); H04L 110043 (2013.01);

H04L 110057 (2013.01); G06F 2211/1057
(2013.01)

2013/0124932 Al* 5/2013 Schuh et al. 714/718
2013/0173956 Al* 7/2013 Anderson 714/6.24

OTHER PUBLICATIONS
Plank; All About Erasure Codes:-Reed-Solomon Coding-LDPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL
Aug. 20, 2004; 52 sheets.

* cited by examiner

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 122 of 350

10
 \
.

25

/
20

I d

at
a

1 ,
 b

yt
e

1
1

1

da

ta
 1

 , b
yt

e
2

da
ta

 2
,

by
te

 1

I d
at

a
2,

 b
yt

e
2

F
IG

.
1

I
•

•
•

•
•

•
•

•
•

•
1

1

da

ta
 1

,
by

te
 L

]
I

·
•

•
•

•
•

•
•

•
•

1
1

da

ta
 2

,
by

te
 L

• • •

I
da

ta
 N

,
by

te
 1

11

da

ta
 N

,
by

te
 2

11

·

·
·

·
·

·
·

·
·

·
11

da

ta
 N

,
by

te
 L

30

I
ch

ec
k

1 ,
 b

yt
e

1
11

ch

ec
k

1 ,
 b

yt
e

2
I
I

•
•

·
·

·
·

•
•

•
•

11

ch

ec
k

1,
 b

yt
e

L
I

ch
ec

k
2,

 b
yt

e
1

I
ch

ec
k

2,
 b

yt
e

2
1

1

•
•

•
•

•
•

•
•

•
•

11

ch

ec
k

2,
 b

yt
e

L
I

• • •

I
ch

ec
k

M
,

by
te

 1
 1

1
ch

ec
k

M
,

by
te

 2
 1

1

•
•

•
•

•
•

•
•

•
·

11

ch

ec
k

M
,

by
te

 L
 I

~
/

35

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

 0 1

,0

d r.,;
_

_."
-0 """
'

0-
-,

 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 123 of 350

30
0 \

31
0

32
0

33
0

34
0

35
0

F
IG

.
2

R
ed

uc
e

fu
ll

si
ze

 e
nc

od
in

g
m

at
ri

x
E

 to
 r

ed
uc

ed
 s

iz
e

en
co

di
ng

 m
at

ri
x

T
 b

y
re

m
ov

in
g

th
e

 F
 fa

ile
d

da
ta

 d
ri

ve
 r

ow
s

w
hi

le
 k

ee
pi

ng
 o

nl
y

F
 s

ur
vi

vi
ng

 c
h

e
ck

d

ri
ve

 r
ow

s,
 m

ov
in

g
th

e
F

 fa
ile

d
da

ta
 d

ri
ve

 c
ol

um
ns

 t
o

th
e

rig
ht

l
R

ed
uc

e
fu

ll
si

ze
 e

nc
od

ed
 d

at
a

m
at

ri
x

C
 to

 r
ed

uc
ed

 s
iz

e
en

co
di

ng
 m

at
ri

x
C

' b
y

re
m

ov
in

g
th

e
 F

 lo
st

 d
at

a
ro

w
s

w
hi

le
 k

ee
pi

ng
 o

nl
y

F
 s

ur
vi

vi
ng

 c
h

e
ck

 d
at

a
ro

w
s,

le

av
in

g
su

rv
iv

in
g

da
ta

 X
 o

n
to

p
an

d
su

rv
iv

in
g

ch
e

ck
 d

at
a

W
o

n
 b

ot
to

m

l
S

p
lit

 e
nc

od
in

g
m

at
ri

x
T

in
to

 f
o

u
r

su
b-

m
at

ri
ce

s:

id
en

tit
y

m
at

ri
x

IK
 (

K
xK

)
in

u

p
p

e
r

le
ft,

 z
er

o
m

at
ri

x
O

 (
K

xF
)

in
 u

p
p

e
r

rig
ht

,
en

co
di

ng
 m

at
ri

x
A

 (
F

xK
)

in

lo
w

e
r

le
ft,

 a
nd

 e
nc

od
in

g
m

at
ri

x
B

 (
F

xF
)

in
 l

o
w

e
r

rig
ht

l
In

ve
rt

 e
nc

od
in

g
m

at
ri

x
B

 to
 p

ro
du

ce
 s

ol
ut

io
n

m
at

ri
x

s-
1 ;

lo
st

 d
at

a
Y

sa

tis
fie

s
th

e
re

la
tio

ns
hi

p
W

 =
 Ax

X
 +

 B
xY

,
so

 Y
 =

 s-
1

x
(W

 -
A

xX
)

l
R

ec
on

st
ru

ct
 lo

st
 d

at
a

Y
 fr

om
 s

ur
vi

vi
ng

 d
at

a
X

,
su

rv
iv

in
g

ch
e

ck
 d

at
a

W
,

en
co

di
ng

 m
at

ri
x

A
,

an
d

so
lu

tio
n

m
at

ri
x

s-
1

us
in

g
fo

rm
ul

a;
 r

eg
ne

ra
te

 a
n

y
lo

st

ch
e

ck
 d

at
a

fr
om

 s
ur

vi
vi

ng
 d

at
a

X
 a

nd
 r

ec
on

st
ru

ct
ed

 l
os

t
da

ta
 Y

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

N

0 1
,0

d r.,;
_

_."
-0 ""'"

'
0-

-,
 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 124 of 350

40
0
\

41
0

42
0

43
0

44
0

45
0

F
IG

.
3

In
iti

al
iz

e
(o

ne
 t

im
e)

 -
bu

ild
 t

w
o

lo
ok

up
 t

ab
le

s,
 o

ne
 f

o
r

lo
w

-o
rd

er

ni
bb

le
s,

 o
ne

 f
o

r
hi

gh
-o

rd
er

 n
ib

bl
es

,
ea

ch
 o

ne
 c

on
ta

in
in

g
25

6
en

tr
ie

s
o

f t
he

 1
6

po
ss

ib
le

 p
ro

du
ct

s
o

f o
ne

 n
ib

bl
e

an
d

on
e

fa
ct

or

l
P

re
pa

re
 (

on
ce

 p
er

 o
pe

ra
nd

 d
at

a)
 -

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om

m
em

or
y

in
to

 f
o

u
r

op
er

an
d

re
gi

st
er

s;
 t

he
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

w
ill

 l
ea

ve
 th

es
e

re
gi

st
er

s
al

on
e

to
 a

vo
id

 r
el

oa
di

ng
 f

ro
m

 m
em

or
y

on
 s

uc
ce

ed
in

g
ca

lls

l
E

xe
cu

te
 (

on
ce

 p
er

 c
a

ll
)-

lo
ad

 t
he

 1
6

po
ss

ib
le

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

fr
om

 m
em

or
y

fo
r

th
e

cu
rr

en
t f

ac
to

r
in

to
 o

ne
 r

eg
is

te
r;

 r
ep

ea
t

fo
r

th
e

lo
w

-o
rd

er

ni
bb

le
 p

ro
du

ct
s

in
to

 a
no

th
er

 r
eg

is
te

r;
 c

le
ar

 fo
u

r
ou

tp
ut

 r
eg

is
te

rs

l
E

xe
cu

te
 (

on
ce

 p
er

 3
2

by
te

s
o

f d
at

a)
 -

m
ov

e
tw

o
re

gi
st

er
s

o
f o

pe
ra

nd

da
ta

 (
by

te
s)

 i
nt

o
fo

ur
 r

eg
is

te
rs

 o
f s

cr
at

ch
 d

at
a

(n
ib

bl
es

)

l
M

ul
tip

ly
 (

on
ce

 p
er

 3
2

by
te

s
o

f d
at

a)
 -

us
e

P
S

H
U

F
B

 o
n

th
e

ni
bb

le
 d

at
a

in
 t

he
 s

cr
at

ch
 r

eg
is

te
rs

,
ac

cu
m

ul
at

in
g

th
e

co
rr

es
po

nd
in

g
lo

w
-o

rd
er

ni

bb
le

 a
nd

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

in
 t

he
 o

ut
pu

t
re

gi
st

er
s

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

~

0 1
,0

d r.,;
_

_."
-0 "'""

'
0-

-,
 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 125 of 350

50
0 \

51
0

52
0

53
0

54
0

55
0

FI
G

.
4

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 g

en
er

at
e

ch
ec

k
da

ta
 f

or
 c

on
se

cu
tiv

e
gr

ou
ps

o

f c
or

re
sp

on
di

ng
 6

4-
by

te
 c

hu
nk

s
ac

ro
ss

 a
 s

tr
ip

e
o

f d
at

a

l
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f 6
4-

by
te

 c
hu

nk
s

o
f o

pe
ra

nd
 d

at
a

fr
om

ea

ch
 o

f t
he

 b
lo

ck
s

o
f t

he
 s

tr
ip

e;
 l

oa
d

ne
xt

 6
4

by
te

s
o

f o
pe

ra
nd

 d
at

a
fo

r
fir

st

da
ta

 d
ri

ve
 fr

om
 m

em
or

y
an

d
in

iti
al

iz
e

pa
rit

y
ch

ec
k

dr
iv

e
ch

ec
k

da
ta

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-
pa

rit
y

ch
e

ck
 d

riv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 f
irs

t
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

no
n-

pa
ri

ty
 c

he
ck

 d
riv

e
ch

ec
k

da
ta

1
S

ec
on

d
m

id
dl

e
lo

op
 -

pr
oc

es
s

o
th

e
r

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
e

r
da

ta

dr
iv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om
 m

em
or

y
(p

re
se

rv
ed

 a
cr

os
s

in
ne

r
lo

op
),

 a
dd

 t
hi

s
to

 p
ar

ity
 d

ri
ve

 c
he

ck
 d

at
a,

 a
nd

 c
al

l
in

ne
r

lo
op

l
In

ne
r

lo
op

 -
pr

oc
es

s
ne

xt
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-p
ar

ity

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t d
ri

ve
's

 6
4

by
te

s
o

f
op

er
an

d
da

ta
 t

o
up

da
te

 th
e

no
n-

pa
ri

ty
 c

he
ck

 d
ri

ve
 c

he
ck

 d
at

a

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

.i;
...

0 1
,0

d r.,;
_

_."
-0 "'""

'
0-

-,
 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 126 of 350

60
0
\

61
0

62
0

63
0

64
0

F
IG

.
5

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 r

ec
on

st
ru

ct
 lo

st
 o

rig
in

al
 d

at
a

an
d

re
ge

ne
ra

te
 l

os
t

ch
ec

k
da

ta
 f

o
r

m
ul

tip
le

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f 6
4-

by
te

 c
hu

nk
s

o
f o

pe
ra

nd
 d

at
a;

 l
oa

d
ne

xt

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

fo
r

fir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e
fr

om
 m

em
or

y

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e:

lo

op
 t

hr
ou

gh
 e

ac
h

o
f t

he

su
rv

iv
in

g
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

irs
t

su
rv

iv
in

g
da

ta

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

pa
rt

ia
l

ch
ec

k
da

ta
 A

xX

l
S

ec
on

d
m

id
dl

e
lo

op
 -

in
iti

al
iz

e
fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 i
ni

tia
liz

e
th

ei
r

ch
ec

k
da

ta
 b

as
ed

 o
n

th
e

fir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

U
l

0 1
,0

d r.,;
_

_."
-0 """
'

0-
-,

 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 127 of 350

60
0
\

65
0

66
0

67
0

68
0

F
IG

.
6

T
hi

rd
 m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
su

rv
iv

in
g

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
er

 s
ur

vi
vi

ng
 d

at
a

dr
iv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f
op

er
an

d
da

ta
 f

ro
m

 m
em

or
y

(p
re

se
rv

ed
 a

cr
os

s
in

ne
r

lo
op

s)

l
F

irs
t

in
ne

r
lo

op
 -

pr
oc

es
s

ne
xt

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

su

rv
iv

in
g

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t
su

rv
iv

in
g

da
ta

dr

iv
e'

s
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
to

 u
pd

at
e

pa
rt

ia
l

ch
ec

k
da

ta
 A

xX

l
S

ec
on

d
in

ne
r

lo
op

 -
up

da
te

 fa
ile

d
ch

ec
k

dr
iv

e
da

ta
:

fo
r

ea
ch

 o
f t

he
 fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

ec
k

da
ta

 b
as

ed

on
 t

he
 n

ex
t

su
rv

iv
in

g
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f o

pe
ra

nd
 d

at
a

l
F

ou
rt

h
m

id
dl

e
lo

op
 -

ad
d

su
rv

iv
in

g
ch

ec
k

da
ta

 to
 p

ro
du

ce
 W

 -
A

xX
:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 s
ur

vi
vi

ng
 c

he
ck

 d
riv

es
,

ca
lli

ng
 p

ar
al

le
l

a
d

d
e

r
to

ad

d
th

e
ir

 6
4

by
te

s
o

f d
at

a
to

 p
ar

tia
l

ch
ec

k
da

ta
 A

xX

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

O
'I

0 1
,0

d r.,;
_

_."
-0 "'""

'
0-

-,
 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 128 of 350

60
0 \

69
0

70
0

71
0

72
0

F
IG

.
7

F
ift

h
m

id
dl

e
lo

op
 -

lo
st

 o
rig

in
al

 d
at

a
Y:

in

 c
om

bi
na

tio
n

w
ith

 t
hi

rd
 i

nn
er

 lo
op

,
ca

lc
ul

at
e

s-
1

x
(W

 -
A

xX
);

st
ar

t
by

 in
iti

al
iz

in
g

ne
xt

 r
ow

 o
f Y

 to
 f

ir
st

co

m
bi

na
tio

n
o

f s
ol

ut
io

n
m

at
ri

x
s-

1
an

d
lo

st
 p

ar
tia

l
ch

ec
k

da
ta

 W
 -

A
xX

l
T

hi
rd

 i
n

n
e

r
lo

op
 -

co
m

pl
et

e
ne

xt
 r

ow
 o

f Y
 b

y
ad

di
ng

 i
n

pr
od

uc
t

o
f n

ex
t f

ac
to

r
o

f s
-1

an
d

W
 -

A
xX

 (
us

in
g

pa
ra

lle
l

lo
ok

up
 m

ul
tip

lie
r)

;
th

is
 r

ec
on

st
ru

ct
s

ne
xt

fa

ile
d

dr
iv

e'
s

lo
st

 d
at

a,
 w

hi
ch

 c
an

 b
e

st
or

ed
 (

if
de

si
re

d)

I i
F

ou
rt

h
in

ne
r

lo
op

 -
up

da
te

 fa
ile

d
ch

ec
k

dr
iv

e
da

ta
:

fo
r

ea
ch

 o
f t

he
 f

ai
le

d
ch

ec
k

dr
iv

es
,

ca
ll

pa
ra

lle
l

lo
ok

up
 m

ul
tip

lie
r

to
 u

pd
at

e
th

ei
r

ch
ec

k
da

ta
 b

as
ed

on

 t
he

 n
ex

t f
ai

le
d

da
ta

 d
ri

ve
's

 6
4

by
te

s
o

f r
ec

on
st

ru
ct

ed
 l

os
t d

at
a

l
S

ix
th

 m
id

dl
e

lo
op

 -
fo

r
ea

ch
 f

ai
le

d
ch

ec
k

dr
iv

e,

st
or

e
ne

w
ly

 g
en

er
at

ed
 c

he
ck

 d
at

a
(i

f d
es

ir
ed

)

~

0
0

• ~

~

~

~
 =

~

0 ('
) :-+
- ~ '" N

0 U
l

rJ
J = ('D ('

D

-...
.J

0 1
,0

d r.,;
_

_."
-0 "'""

'
0-

-,
 =

w

-...
.l
~
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 129 of 350

U.S. Patent

co
.

CJ
LL

0
0
'°"

I

Oct. 13, 2015

::) -r-
a_I

(.) +
i+----.

::) -r- I+--+
a_I
(.) +

0 ~--
~
/

0
N
'°"

""

/

"'

::) -r-
a_I

(.) + i+----.

I+--+
::) -r-
a_I

(.) +

Sheet 8 of 9 US 9,160,374 B2

-r-

(])
::) -r-

0 a_J

() +
i+----.

N
.....J

0 0 C'J i+----. ::) -r- LO '°" a_J
' '°" (.) +

'

~
0

0 E -_
(]) -
~

'

::) -r-
' a_J

i+----. (.)+
N
.....J

0
C'J i+----.
'°" ::) -r-

a_J
0 () +
(])

0

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 130 of 350

0
0
C\J

/

lJ.s. Patent

0)

(9 -LL.

0 ,-
C\J

Oct. 13, 2015

0 ,-.
C\J

Sheet 9 of9

0
('I')
C\J

0 ,-.
C\J

VS 9,160,374 B2

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 131 of 350

US 9,160,374 B2
1

ACCELERATED ERASURE CODING SYSTEM
AND METHOD

2
that that will be a rare occurrence, and that performance will
not matter significantly in that case." See also Robert Mad
dock et al., "Surviving Two Disk Failures," p. 6, "The main
difficulty with this technique is that calculating the check CROSS-REFERENCE TO RELATED

APPLICATION 5 codes, and reconstructing data after failures, is quite complex.

This application is a continuation of U.S. patent applica
tion Ser. No. 13/341,833, filed on Dec. 30, 2011, now U.S.
Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire con
tents of which is expressly incorporated herein by reference.

BACKGROUND

1. Field

It involves polynomials and thus multiplication, and requires
special hardware, or at least a signal processor, to do it at
sufficient speed." In addition, see also James S. Plank, "All
About Erasure Codes: -Reed-Solomon Coding-LDPC

1° Coding," slide 15 (describing computational complexity of
Reed-Solomon decoding), "Bottom line: When n & m grow,
it is brutally expensive." Accordingly, there appears to be a
general consensus among experts in the field that erasure

Aspects of embodiments of the present invention are 15

directed toward an accelerated erasure coding system and
method.

2. Description of Related Art

coding systems are impractical for RAID systems for all but
small values of M (that is, small numbers of check drives),
such as 1 or 2.

Modem disk drives, on the other hand, are much less reli
able than those envisioned when RAID was proposed. This is An erasure code is a type of error-correcting code (ECC)

useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken

20 due to their capacity growing out of proportion to their reli
ability. Accordingly, systems with only a single check disk
have, for the most part, been discontinued in favor of systems
with two check disks.

In terms of reliability, a higher check disk count is clearly up into N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets
lost, erasure codes also encode an additional M equal-sized
blocks (called check blocks or check data) from the original N
data blocks, for some positive integer M.

25 more desirable than a lower check disk count. If the count of
error events on different drives is larger than the check disk
count, data may be lost and that cannot be reconstructed from
the correctly functioning drives. Error events extend well
beyond the traditional measure of advertised mean time

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total ofN + M equal-sized blocks
after encoding. The N + M blocks may, for example, be trans
mitted to a receiver as N+M separate packets, or written to
N+M corresponding disk drives. For ease of description, all
N+M blocks after encoding will be referred to as encoded
blocks, though some (for example, N of them) may contain
unencoded portions of the original data. That is, the encoded
data refers to the original data together with the check data.

30 between failures (MTBF). A simple, real world example is a
service event on a RAID system where the operator mistak
enly replaces the wrong drive or, worse yet, replaces a good
drive with a broken drive. In the absence of any generally

35
accepted methodology to train, certify, and measure the effec
tiveness of service technicians, these types of events occur at
an unknown rate, but certainly occur. The foolproof solution
for protecting data in the face of multiple error events is to
increase the check disk count.

The M check blocks build redundancy into the system, in a 40

very efficient marmer, in that the original data (as well as any
lost check data) can be reconstructed if any N of the N+M
encoded blocks are received by the receiver, or if any N of the
N+M disk drives are functioning correctly. Note that such an
erasure code is also referred to as "optimal." For ease of 45

description, only optimal erasure codes will be discussed in
this application. In such a code, up to M of the encoded blocks
can be lost, (e.g., up to M of the disk drives can fail) so that if
any N of the N+M encoded blocks are received successfully
by the receiver, the original data (as well as the check data) 50

can be reconstructed. N/(N+M) is thus the code rate of the
erasure code encoding (i.e., how much space the original data
takes up in the encoded data). Erasure codes for select values
ofN and M can be implemented on RAID systems employing
N+M (disk) drives by spreading the original data among N 55

"data" drives, and using the remaining M drives as "check"
drives. Then, when any N of the N+M drives are correctly
functioning, the original data can be reconstructed, and the
check data can be regenerated.

Erasure codes (or more specifically, erasure coding sys- 60

terns) are generally regarded as impractical for values of M
larger than 1 (e.g., RAIDS systems, such as parity drive sys
tems) or 2 (RAID6 systems), that is, for more than one or two
check drives. For example, see H. Peter Anvin, "The math
ematics of RAID-6," the entire content of which is incorpo- 65

rated herein by reference, p. 7, "Thus, in 2-disk-degraded
mode, performance will be very slow. However, it is expected

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding sys
tem that, for byte-level RAID processing (where each byte is
made up of 8 bits), performs well even for values ofN+M as
large as 256 drives (for example, N=127 data drives and
M=129 check drives). Further aspects provide for a single
precomputed encoding matrix (or master encoding matrix) S
of size MmaxxNmax, or (Nmax+Mmax)xNmax or (Mmax-l)x
N max, elements (e.g., bytes), which can be used, for example,
for any combination of NsNmax data drives and MsMmax
check drives such that Nmax+Mmaxs256 (e.g., Nmax =127 and
Mmax=l29, or Nmax=63 and Mm= =193). This is an improve
ment over prior art solutions that rebuild such matrices from
scratch every time N or M changes (such as adding another
check drive). Still higher values ofN and Mare possible with
larger processing increments, such as 2 bytes, which affords
up to N+M=65,536 drives (such as N=32,767 data drives and
M=32,769 check drives).

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to create
larger groups of data drives. For example, systems with two
checks disks are typically limited to group sizes of 10 or fewer
drives for reliability reasons. With a higher check disk count,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 132 of 350

US 9,160,374 B2
3 4

the data matrix and the encoding matrix using the parallel
multiplier to generate the check data.

larger groups are available, which can lead to fewer overall
components for the same unit of storage and hence, lower
cost.

Additional aspects of embodiments of the present inven
tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up to
127 data drives and up to 128 (non-parity) check drives, for a
total of up to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.

The first sequencer may be configured to access each entry
of the data matrix from the main memory at most once while

5 generating the check data.
The processing core may include a plurality of processing

cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data by dividing the data matrix into a

10 plurality of data matrices, dividing the check matrix into a
plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the

15 check matrices from respective ones of the data matrices.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed-So
lomon codes. While known solution matrix algorithms com- 20

pute an N xN solution matrix (see, for example, J. S. Plank, "A
tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems," Software-Practice & Experience,
27(9):995-1012, September 1997, and J. S. Plank and Y.
Ding, "Note: Correction to the 1997 tutorial on Reed-So- 25

lomon coding," Technical Report CS-03-504, University of
Tennessee, April 2003), requiring O(N3

) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FxF solution
matrix, where F is the number of failed data drives. The 30

overhead for computing this FxF solution matrix is approxi
mately F3 /3 multiplication operations and the same number
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives Fis consid
erably smaller than the number of data drives N. Accordingly, 35

the fast solution matrix algorithm is considerably faster than
any known approach for practical values ofF and N.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows and
the first number of columns.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to add
rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data and including a third
number of rows. The erasure coding system may further
include a solution matrix for holding second factors in the
main memory. The second factors are for decoding the check
data into the lost original data using the surviving original
data and the first factors.

The solution matrix may include the third number of rows
and the third number of colunms.

The solution matrix may further include an inverted said
third number by said third number sub-matrix of the encoding
matrix.

The erasure coding system may further include a first list of
rows of the data matrix corresponding to the surviving data
matrix, and a second list of rows of the data matrix corre
sponding to the lost data matrix.

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost
original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for decod-

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are directed 40

toward fetching the surviving (original and check) data a
minimum number of times (that is, at most once) to carry out
the data reconstruction. Some of these aspects are directed
toward efficient implementations that can maximize or sig
nificantly leverage the available parallel processing power of 45

multiple cores working concurrently on the check data gen
eration and the lost data reconstruction. Existing implemen
tations do not attempt to accelerate these aspects of the data
generation and thus fail to achieve a comparable level of
performance.

In an exemplary embodiment of the present invention, a
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a
main memory; and a non-volatile storage medium (for 55

example, a disk drive, or flash memory) for storing the com
puter instructions. The processing core, the storage medium,
and the computer instructions are configured to implement an
erasure coding system. The erasure coding system includes a
data matrix for holding original data in the main memory, a 60

check matrix for holding check data in the main memory, an
encoding matrix for holding first factors in the main memory,
and a thread for executing on the processing core. The first
factors are for encoding the original data into the check data.
The thread includes a parallel multiplier for concurrently 65

multiplying multiple data entries of a matrix by a single
factor; and a first sequencer for ordering operations through

50 ing the check data into the lost original data using the surviv
ing original data and the first factors. The thread may further
include a second sequencer for ordering operations through
the surviving data matrix, the encoding matrix, the check
matrix, and the solution matrix using the parallel multiplier to
reconstruct the lost original data.

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main memory
at most once while reconstructing the lost original data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original
data by dividing the data matrix into a plurality of data matri
ces; dividing the surviving data matrix into a plurality of
surviving data matrices; dividing the lost data matrix into a
plurality oflost data matrices; dividing the check matrix into
a plurality of check matrices; assigning corresponding ones

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 133 of 350

US 9,160,374 B2
5 6

According to another exemplary embodiment of the
present invention, a method of accelerated error-correcting
code (ECC) processing on a computing system is provided.
The computing system includes a non-volatile storage

of the data matrices, the surviving data matrices, the lost data
matrices, and the check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices and to concur
rently reconstruct portions of the lost original data corre
sponding to the lost data matrices from respective ones of the
surviving data matrices and the check matrices.

The check matrix may be configured to be divided into a
surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be
configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost
check data.

5 medium (such as a disk drive or flash memory), a processing
core for accessing instructions and data from a main memory,
and a computer program including a plurality of computer
instructions for implementing an erasure coding system. The
method includes: storing the computer program on the stor-

lO age medium; executing the computer instructions on the pro
cessing core; arranging original data as a data matrix in the
main memory; arranging first factors as an encoding matrix in
the main memory, the first factors being for encoding the

The second sequencer may be further configured to recon
struct the lost original data concurrently with regenerating the
lost check data.

15
original data into check data, the check data being arranged as
a check matrix in the main memory; and generating the check
data using a parallel multiplier for concurrently multiplying
multiple data entries of a matrix by a single factor. The gen
erating of the check data includes ordering operations

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main memory

20 through the data matrix and the encoding matrix using the
parallel multiplier.

at most once while reconstructing the lost original data and
regenerating the lost check data.

The second sequencer may be further configured to regen- 25

erate the lost check data without accessing the reconstructed
lost original data from the main memory.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for 30

generating the check data, reconstructing the lost original
data, and regenerating the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 35

dividing the check matrix into a plurality of check matrices;
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a
plurality of lost check matrices; assigning corresponding
ones of the data matrices, the surviving data matrices, the lost 40

data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices, to concurrently 45

reconstruct portions of the lost original data corresponding to
the lost data matrices from respective ones of the surviving
data matrices and the surviving check matrices, and to con
currently regenerate portions of the lost check data corre
sponding to the lost check matrices from respective ones of 50

the surviving data matrices and respective portions of the
reconstructed lost original data.

The processing core may include 16 data registers. Each of
the data registers may include 16 bytes. The parallel multi
plier may be configured to process the data in units of at least 55

64 bytes spread over at least fourof the data registers at a time.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into a
plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the pro
cessing cores to concurrently generate portions of the check
data corresponding to the check matrices from respective
ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost original
data using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel mul
tiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data and the reconstructing of the lost
original data by: dividing the data matrix into a plurality of
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix
into a plurality oflost data matrices; dividing the check matrix
into a plurality of check matrices; and assigning correspond-

Consecutive instructions to process each of the units of the
data may access separate ones of the data registers to permit
concurrent execution of the consecutive instructions by the
processing core.

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16
byte-sized entries using the PSHUFB (Packed Shuffle Bytes)
instruction.

60 ing ones of the data matrices, the surviving data matrices, the
lost data matrices, and the check matrices to the processing
cores to concurrently generate portions of the check data
corresponding to the check matrices from respective ones of
the data matrices and to concurrently reconstruct portions of

The parallel multiplier may be further configured to receive
an input operand in four of the data registers, and return with
the input operand intact in the four of the data registers.

65 the lost original data corresponding to the lost data matrices
from respective ones of the surviving data matrices and the
check matrices.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 134 of 350

US 9,160,374 B2
7

The method may further include: dividing the check matrix
into a surviving check matrix for holding surviving check
data of the check data, and a lost check matrix corresponding

8
The processing core may include a plurality of processing

cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data to lost check data of the check data; and regenerating the lost

check data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data may take place
concurrently with the regenerating of the lost check data.

5 matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data matri
ces and the check matrices to the processing cores to concur
rently generate portions of the check data corresponding to
the check matrices from respective ones of the data matrices.

10 The computer instructions may be further configured to The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

perform the steps of: dividing the data matrix into a surviving
data matrix for holding surviving original data of the original
data, and a lost data matrix corresponding to lost original data

The regenerating of the lost check data may take place
without accessing the reconstructed lost original data from
the main memory.

15
of the original data; arranging second factors as a solution
matrix in the main memory, the second factors being for
decoding the check data into the lost original data using the
surviving original data and the first factors; and reconstruct
ing the lost original data by ordering operations through the

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of surviving
data matrices; dividing the lost data matrix into a plurality of
lost data matrices; dividing the check matrix into a plurality of
check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check
matrix into a plurality of lost check matrices; and assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the sur
viving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec- 35

tive ones of the data matrices, to concurrently reconstruct
portions of the lost original data corresponding to the lost data
matrices from respective ones of the surviving data matrices
and the surviving check matrices, and to concurrently regen
erate portions of the lost check data corresponding to the lost 40

check matrices from respective ones of the surviving data
matrices and respective portions of the reconstructed lost
original data.

20 surviving data matrix, the encoding matrix, the check matrix,
and the solution matrix using the parallel multiplier.

The computer instructions may be further configured to
perform the steps of: dividing the check matrix into a surviv
ing check matrix for holding surviving check data of the

25 check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check
data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

30 The reconstructing of the lost original data and the regen-

According to yet another exemplary embodiment of the
present invention, a non-transitory computer-readable star- 45

age medium (such as a disk drive, a compact disk (CD), a
digital video disk (DVD), flash memory, a universal serial bus
(USB) drive, etc.) containing a computer program including a
plurality of computer instructions for performing accelerated
error-correcting code (ECC) processing on a computing sys- 50

tern is provided. The computing system includes a processing
core for accessing instructions and data from a main memory.
The computer instructions are configured to implement an
erasure coding system when executed on the computing sys
tem by performing the steps of arranging original data as a 55

data matrix in the main memory; arranging first factors as an
encoding matrix in the main memory, the first factors being
for encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and
generating the check data using a parallel multiplier for con- 60

currently multiplying multiple data entries of a matrix by a
single factor. The generating of the check data includes order
ing operations through the data matrix and the encoding
matrix using the parallel multiplier.

The generating of the check data may include accessing 65

each entry of the data matrix from the main memory at most
once.

erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the
regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid-
ing the lost data matrix into a plurality oflost data matrices;
dividing the check matrix into a plurality of check matrices;
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a
plurality oflost check matrices; and assigning corresponding
ones of the data matrices, the surviving data matrices, the lost
data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost
original data corresponding to the lost data matrices from
respective ones of the surviving data matrices and the surviv
ing check matrices, and to concurrently regenerate portions of
the lost check data corresponding to the lost check matrices
from respective ones of the surviving data matrices and
respective portions of the reconstructed lost original data.

By providing practical and efficient systems and methods
for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical can
be implemented with accelerated performance significantly
better than any prior art solution.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 135 of 350

US 9,160,374 B2
9

BRIEF DESCRIPTION OF THE DRAWINGS
10

blocks), and the M check blocks written across M drives (the
check drives) separate from the N data drives, one block per
check drive. These combinations can take place, for example,
when new (or changed) data is written to (or back to) disk.

The accompanying drawings, together with the specifica
tion, illustrate exemplary embodiments of the present inven
tion and, together with the description, serve to explain
aspects and principles of the present invention.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

5 Accordingly, each of the N+M drives (data drives and check
drives) stores a similar amount of data, namely one block for
each stripe. As the processing of multiple stripes is concep
tually similar to the processing of one stripe (only processing
multiple blocks per drive instead of one), it will be further

10 assumed for simplification that the data being stored or
retrieved is only one stripe in size unless otherwise indicated.
It will also be assumed that the block size L is sufficiently
large that the data can be consistently divided across each

FIG. 3 shows an exemplary method for performing a par
allel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention.

15
block to produce subsets of the data that include respective
portions of the blocks (for efficient concurrent processing by
different processing units).

FIG. 1 shows an exemplary stripe 10 of original and check
data according to an embodiment of the present invention. FIGS. 5-7 show an exemplary method for sequencing the

parallel lookup multiplier to perform the lost data reconstruc
tion according to an embodiment of the present invention. 20

Referring to FIG.1, the stripe 10 can bethought ofnot only
as the original N data blocks 20 that make up the original data,
but also the corresponding M check blocks 30 generated from
the original data (that is, the stripe 10 represents encoded
data). Each of the N data blocks 20 is composed ofL bytes 25

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompany
ing drawings. In the drawings, like reference numerals refer
to like elements throughout.

25
(labeled byte 1, byte 2, ... , byte L), and each of the M check
blocks 30 is composed of L bytes 35 (labeled similarly). In
addition, check drive 1, byte 1, is a linear combination of data
drive 1, byte 1; data drive 2, byte 1; ... ; data drive N, byte 1.
Likewise, check drive 1, byte 2, is generated from the same

30
linear combination formula as check drive 1, byte 1, only
using data drive 1, byte 2; data drive 2, byte 2; ... ; data drive
N, byte 2. In contrast, check drive 2, byte 1, uses a different
linear combination formula than check drive 1, byte 1, but
applies it to the same data, namely data drive 1, byte 1; data

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding sys
tems for the storage and retrieval of digital data distributed
across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes, 40

each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate drives
(the data drives), one block per data drive.

35
drive 2, byte 1; ... ; data drive N, byte 1. In this fashion, each
of the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular
check drive 30.

In addition, for ease of description, blocks will be assumed
to be composed of L elements, each element having a fixed 45

size, say 8 bits or one byte. An element, such as a byte, forms
the fundamental unit of operation for the RAID processing,
but the invention is just as applicable to other size elements,
such as 16 bits (2 bytes). For simplification, unless otherwise
indicated, elements will be assumed to be one byte in size 50

throughout the description that follows, and the term "ele
ment(s)" and "byte(s)" will be used synonymously.

Conceptually, different stripes can distribute their data
blocks across different combinations of drives, or have dif
ferent block sizes or numbers of blocks, etc., but for simpli- 55

fication and ease of description and implementation, the
described embodiments in the present application assume a
consistent block size (L bytes) and distribution of blocks
among the data drives between stripes. Further, all variables,
such as the number of data drives N, will be assumed to be 60

positive integers unless otherwise specified. In addition, since
the N=l case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be
assumed for simplicity that N;;,;2 throughout.

The N data blocks from each stripe are combined using 65

arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data (check

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. Chas two sub-matrices, namely original
data D on top and check data Jon bottom. That is,

Du D12 D1L

D21 D22 D2L

C=[~] =
DNI DN2 DNL

lu 112 iiL

h1 h2 hL

JM! JM2]ML

where D,rbyte j from data drive i and J,rbyte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the colunms represent corresponding bytes of each of
the drives.

Further, in case of a disk drive failure of one or more disks,
the arithmetic operations are designed in such a fashion that
for any stripe, the original data (and by extension, the check
data) can be reconstructed from any combination of N data
and check blocks from the corresponding N+M data and
check blocks that comprise the stripe. Thus, RAID provides
both parallel processing (reading and writing the data in
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data even if as many as M of

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 136 of 350

US 9,160,374 B2
11

the drives fail), at the computational cost of generating the
check data any time new data is written to disk, or changed
data is written back to disk, as well as the computational cost
of reconstructing any lost original data and regenerating any
lost check data after a disk failure. 5

For example, for M = 1 check drive, a single parity drive can
function as the check drive (i.e., a RAID4 system). Here, the
arithmetic operation is bitwise exclusive OR of each of the N
corresponding data bytes in each data block of the stripe. In 10
addition, as mentioned earlier, the assignment of parity
blocks from different stripes to the same drive (i.e., RAID4)
or different drives (i.e., RAIDS) is arbitrary, but it does sim
plify the description and implementation to use a consistent
assignment between stripes, so that will be assumed through- 15

out. Since M = 1 reduces to the case of a single parity drive, it
will further be assumed for simplicity that M;;,;2 throughout.

For such larger values ofM, Galois field arithmetic is used

12
Thus,

0 0

0 0

£=[;]= 0 0

Hu H12 H1N

H21 H22 H2N

HM! HM2 HMN

where H,rfactor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the colunms
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data J are
related by the formula J=HxD (that is, matrix multiplication), to manipulate the data, as described in more detail later.

Galois field arithmetic, for Galois fields of powers-of-2 (such 20 or

as 2i numbers of elements, includes two fundamental opera
tions: (1) addition (which is just bitwise exclusive OR, as with
the parity drive-only operations for M=l), and (2) multipli
cation. While Galois field (GF) addition is trivial on standard 25
processors, GF multiplication is not. Accordingly, a signifi
cant component of RAID performance for M;;,;2 is speeding
up the performance ofGF multiplication, as will be discussed
later. For purposes of description, GF addition will be repre
sented by the symbol + throughout while GF multiplication 30

will be represented by the symbol x throughout.
X

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations
(over GF arithmetic) of the N data drives of original data, one

35
linear combination (i.e., a GF sum of N terms, where each

where J11 =(H11 xD11)+(H12xD21)+ ... +W1NxDN1), J12=
(H11XD12)+(H12XD22)+ ... +W1NXDN2), l21=CH21XD11)+

term represents a byte of original data times a corresponding
factor (using GF multiplication) for the respective data drive)
for each check drive, as applied to respective bytes in each
block. One such linear combination can be a simple parity, 40
i.e., entirely GF addition (all factors equal 1), such as a GF
sum of the first byte in each block oforiginal data as described
above.

(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+
(Hi2 X D2)+ ... +(H,NxDNf) for lsisM and lsjsL.

Such an encoding matrix E is also referred to as an infor-
mation dispersal matrix (IDM). It should be noted that matri
ces such as check drive encoding matrix Hand identity matrix
IN also represent encoding matrices, in that they represent
matrices of factors to produce linear combinations over GF

The remaining M-1 linear combinations include more
involved calculations that include the nontrivial GF multipli
cation operations (e.g., performing a GF multiplication of the
first byte in each block by a corresponding factor for the
respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre
sented by an (N + M)xN matrix (encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one
factor for each combination of (data or check) drive and data
drive, with one row for each of the N + M data and check drives
and one colunm for each of the N data drives. The IDM E can
also be represented as

where IN represents the NxN identity matrix (i.e., the original
(unencoded) data) and H represents the MxN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N
colunms corresponds to one of the N data drives).

45
arithmetic of the original data. In practice, the identity matrix
IN is trivial and may not need to be constructed as part of the
ID M E. Only the encoding matrix E, however, will be referred
to as the IDM. Methods of building an encoding matrix such
as IDM E or check drive encoding matrix H are discussed

50 below. In further embodiments of the present invention (as
discussed further in Appendix A), such (N + M)xN (or MxN)
matrices can be trivially constructed (or simply indexed) from
a master encoding matrix S, which is composed of CNmax+
Mmax)xNmax (or MmaxxNmax) bytes or elements, where

55 N max+ Mmax =256 (or some other power of two) and N sN max
and MsMmax· For example, one such master encoding matrix
Scan include a 127x127 element identity matrix on top (for
up to N max= 127 data drives), a row of 1 's (for a parity drive),
and a 128x127 element encoding matrix on bottom (for up to

60 Mmax = 129 check drives, including the parity drive), for a total
ofNmax+Mmax =256 drives.

The original data, in tum, can be represented by an N xL
matrix D of bytes, each of the N rows representing the L bytes
of a block of the corresponding one of the N data drives. If C

65 represents the corresponding (N+M)xL matrix of encoded
bytes (where each of the N+M rows corresponds to one of the
N+M data and check drives), then C can be represented as

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 137 of 350

US 9,160,374 B2
13

ExD = [~]xD= [~:;] = [~l
where J=HxD is an MxL matrix of check data, with each of
the Mrows representing the L check bytes of the correspond
ing one of the M check drives. It should be noted that in the
relationships such as C=ExD or J=HxD, x represents matrix
multiplication over the Galois field (i.e., GF multiplication
and GF addition being used to generate each of the entries in,
for example, C or J).

14
drives (that is, four separate lists). This allows processing of
the different sets of surviving and failed drives to be done
more efficiently than existing solutions, which use, for
example, bit vectors that have to be examined one bit at a time

5 and often include large numbers of consecutive zeros (or
ones) when ones (or zeros) are the bit values of interest.

FIG. 2 shows an exemplary method 300 for reconstructing
lost data after a failure of one or more drives according to an
embodiment of the present invention.

While the recovery process is described in more detail
10

later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the
surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1), In exemplary embodiments of the present invention, the

first row of the check drive encoding matrix H (or the (N + 1)th

row of the IDME) can beall 1 's, representing the parity drive. 15

For linear combinations involving this row, the GF multipli
cation can be bypassed and replaced with a GF sum of the
corresponding bytes since the products are all trivial products
involving the identity element 1. Accordingly, in parity drive
implementations, the check drive encoding matrix H can also

with reference to FIG. 2:
1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to

an N xN reduced encoding matrix T (also referred to as the
transformed IDM) including the K surviving data drive rows
and any F of the M-G surviving check drive rows (for
instance, the first F surviving check drive rows, as these will

20
include the parity drive if it survived; recall that F sM-G was
assumed). In addition, the colunms of the reduced encoding
matrix Tare rearranged so that the K colunms corresponding
to the K surviving data drives are on the left side of the matrix
and the F colunms corresponding to the F failed drives are on

be thought of as an (M-l)xN matrix of non-trivial factors
(that is, factors intended to be used in GF multiplication and
not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back to)
disk. The other significant event for RAID processing is when
one or more of the drives fail (data or check drives), or for
whatever reason become unavailable. Assume that in such a
failure scenario, F data drives fail and G check drives fail,
where F and G are nonnegative integers. If F=0, then only
check drives failed and all of the original data D survived. In
this case, the lost check data can be regenerated from the
original data D.

25
the right side of the matrix. (Step 320) These F surviving
check drives selected to rebuild the lost original data Y will
henceforth be referred to as "the F surviving check drives,"
and their check data W will be referred to as "the surviving
check data," even though M-G check drives survived. It

30
should be noted that W is an FxL matrix composed of the F
rows of the check data J corresponding to the F surviving
check drives. Further, the surviving encoded data can be
represented as a sub-matrix C' of the encoded data C. The
surviving encoded data C' is an N xL matrix composed of the

35
surviving original data X on top and the surviving check data
Won bottom, that is,

Accordingly, assume at least one data drive fails, that is,
F2:l, and let K=N-F represent the number of data drives that
survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost
original data. That is, Xis a KxL matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, while Y is an FxL matrix composed of 40

the F rows of the original data matrix D corresponding to the
F failed data drives.

2. (Step 330) Splitting the reduced encoding matrix Tinto
four sub-matrices (that are also encoding matrices): (i) a KxK

thus represents a permuted original data matrix D' (that is, the
original data matrix D, only with the surviving original data X
on top and the lost original data Y on bottom. It should be
noted that once the lost original data Y is reconstructed, it can

45 identity matrix IK (corresponding to the K surviving data
drives) in the upper left, (ii) a KxF matrix O of zeros in the
upper right, (iii) an FxK encoding matrix A in the lower left
corresponding to the F surviving check drive rows and the K
surviving data drive colunms, and (iv) an FxF encoding

50 matrix B in the lower right corresponding to the F surviving
check drive rows and the F failed data drive colunms. Thus,
the reduced encoding matrix T can be represented as

be combined with the surviving original data X to restore the
original data D, from which the check data for any of the
failed check drives can be regenerated. 55

It should also be noted that M-G check drives survive. In
order to reconstruct the lost original data Y, enough (that is, at
least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it follows
that (N-F)+(M-G)2:N must be true to reconstruct the lost 60

original data Y. This is equivalent to F+GsM (i.e., no more
than F +G drives fail), or F sM-G (that is, the numberof failed
data drives does not exceed the number of surviving check
drives). It will therefore be assumed for simplicity that F sM
G.

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and check

65

3. (Step 340) Calculating the inverse B- 1 of the FxF encod
ing matrix B. As is shown in more detail in Appendix A,
C'=TxD', or

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 138 of 350

US 9,160,374 B2
15

which is mathematically equivalent to W=AxX+BxY. B-1 is
the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B-1 thus allows the lost origi
nal data Y to be reconstructed from the encoding matrices A
and B along with the surviving original data X and the sur- 5

viving check data W.
The FxK encoding matrix A represents the original encod

ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of A
represents a different one of the F surviving check drives, 10

while each of the K colunms of A represents a different one of
the K surviving data drives. Thus, A provides the encoding
factors needed to encode the original data for the surviving
check drives, but only applied to the surviving data drives
(that is, the surviving partial check data). Since the surviving 15

original data X is available, A can be used to generate this
surviving partial check data.

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F surviving
check drives and the F failed data drives. That is, the F rows of 20

B correspond to the same F rows of A, while each of the F
colunms of B represents a different one of the F failed data
drives. Thus, B provides the encoding factors needed to
encode the original data for the surviving check drives, but
only applied to the failed data drives (that is, the lost partial 25

check data). Since the lost original data Y is not available, B
cannot be used to generate any of the lost partial check data.
However, this lost partial check data can be determined from
A and the surviving check data W. Since this lost partial check
data represents the result of applying B to the lost original 30

data Y, B-1 thus represents the necessary factors to reconstruct
the lost original data Y from the lost partial check data.

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced
encoding matrix T, for that matter) do not have to actually be 35

constructed. Appropriate indexing of the IDM E (or the mas-
ter encoding matrix S) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF arith
metic and takes O(F3

) operations, as discussed in more detail
later. Nonetheless, this is a significant improvement over 40

existing solutions, which require O(N3
) operations, since the

number of failed data drives Fis usually significantly less than
the number of data drives N in any practical situation.

(Step 350 in FIG. 2) Once the encoding matrix A and the
solution matrix B-1 are known, reconstructing the lost data 45

from the surviving data (that is, the surviving original data X
and the surviving check data W) can be accomplished in four
steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data (i.e., 50

AxX), only limited to the K surviving data drives. Call this
limited check data the surviving partial check data.

2. Subtract this surviving partial check data from the sur
viving check data W (using matrix subtraction, i.e., W-AxX,
which is just entry-by-entry GF subtraction, which is the 55

same as GF addition for this Galois field). This generates the
surviving check data, only this time limited to the F failed data
drives. Call this limited check data the lost partial check data.

3. Use the solution matrix B-1 and the lost partial check
data (using matrix multiplication, i.e., B-1x(W-AxX) to 60

reconstruct the lost original data Y. Call this the recovered
original data Y.

4. Use the corresponding rows of the IDM E (or master
encoding matrix S) for each of the G failed check drives along
with the original data D, as reconstructed from the surviving 65

and recovered original data X and Y, to regenerate the lost
check data (using matrix multiplication).

16
As will be shown in more detail later, steps 1-3 together

require O(F) operations times the amount of original data D to
reconstruct the lost original data Y for the F failed data drives
(i.e., roughly 1 operation per failed data drive per byte of
original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed
to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G failed
check drives (i.e., roughly 1 operation per failed check drive
per byte of original data D). In summary, the number of
operations needed to reconstruct the lost data is O(F +G) times
the amount of original data D (i.e., roughly 1 operation per
failed drive (data or check) per byte of original data D). Since
F +GsM, this means that the computational complexity of
Algorithm 2 (reconstructing the lost data from the surviving
data) is no more than that of generating the check data J from
the original data D.

As mentioned above, for exemplary purposes and ease of
description, data is assumed to be organized in 8-bit bytes,
each byte capable of taking on 28=256 possible values. Such
data can be manipulated in byte-size elements using GF arith
metic for a Galois field of size 28=256 elements. It should also
be noted that the same mathematical principles apply to any
power-of-two Z number of elements, not just 256, as Galois
fields can be constructed for any integral power of a prime
number. Since Galois fields are finite, and since GF opera
tions never overflow, all results are the same size as the inputs,
for example, 8 bits.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It can
also be performed on multiple bytes concurrently. Since the
addition and subtraction operations take place, for example,
on a byte-level basis, they can be done in parallel by using, for
instance, x86 architecture Streaming SIMD Extensions
(SSE) instructions (SIMD stands for single instruction, mul
tiple data, and refers to performing the same instruction on
different pieces of data, possibly concurrently), such as
PXOR (Packed (bitwise) Exclusive OR).

SSE instructions can process, for example, 16-byte regis
ters (XMM registers), and are able to process such registers as
though they contain 16 separate one-byte operands (or 8
separate two-byte operands, or four separate four-byte oper
ands, etc.) Accordingly, SSE instructions can do byte-level
processing 16 times faster than when compared to processing
a byte at a time. Further, there are 16 XMM registers, so
dedicating four such registers for operand storage allows the
data to be processed in 64-byte increments, using the other 12
registers for temporary storage. That is, individual operations
can be performed as four consecutive SSE operations on the
four respective registers (64 bytes), which can often allow
such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc
tions allows the same processing to be performed on different
such 64-byte increments of data in parallel using different
cores. Thus, using four separate cores can potentially speed
up this processing by an additional factor of 4 over using a
single core.

For example, a parallel adder (Parallel Adder) can be built
using the 16-byte XMM registers and four consecutive PX OR
instructions. Such parallel processing (that is, 64 bytes at a
time with only a few machine-level instructions) for GF arith
metic is a significant improvement over doing the addition

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 139 of 350

US 9,160,374 B2
17

one byte at a time. Since the data is organized in blocks of any
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4
KB) or 32,768 bytes (32 KB), a block can be composed of
numerous such 64-byte chunks (e.g., 64 separate 64-byte
chunks in 4 KB, or 512 chunks in 32 KB).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR's (i.e.,
"additions") that are very fast operations, the numbers "wrap"
in peculiar ways when they are shifted outside of their normal
bounds (because the field has only a finite set of elements),
which can slow down the calculations. This "wrapping" in the
GF multiplication can be addressed in many ways. For
example, the multiplication can be implemented serially (Se
rial Multiplier) as a loop iterating over the bits of one operand
while performing the shifts, adds, and wraps on the other
operand. Such processing, however, takes several machine
instructions per bit for 8 separate bits. In other words, this
technique requires dozens of machine instructions per byte
being multiplied. This is inefficient compared to, for example,
the performance of the Parallel Adder described above.

For another approach (Serial Lookup Multiplier), multipli
cation tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of256x256=65,536 bytes can hold
all the possible products of the two different one-byte oper
ands). However, such tables can force serialized access on
what are only byte-level operations, and not take advantage of
wide (concurrent) data paths available on modern processors,
such as those used to implement the Parallel Adder above.

In still another approach (Parallel Multiplier), the GF mul
tiplication can be done on multiple bytes at a time, since the
same factor in the encoding matrix is multiplied with every
element in a data block. Thus, the same factor can be multi
plied with 64 consecutive data block bytes at a time. This is
similar to the Parallel Adder described above, only there are
several more operations needed to perform the operation.
While this can be implemented as a loop on each bit of the
factor, as described above, only performing the shifts, adds,
and wraps on 64 bytes at a time, it can be more efficient to
process the 256 possible factors as a (C language) switch
statement, with inline code for each of 256 different combi
nations of two primitive GF operations: Multiply-by-2 and
Add. For example, GF multiplication by the factor 3 can be
effected by first doing a Multiply-by-2 followed by an Add.
Likewise, GF multiplication by 4 is just a Multiply-by-2
followed by a Multiply-by-2 while multiplication by 6 is a
Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PAD DB (Packed Add) instructions, 4 consecutive PAND
(Bitwise AND) instructions, and 4 consecutive PXOR
instructions. Though this takes 20 machine instructions, the
instructions are very fast and results in 64 consecutive bytes
of data at a time being multiplied by 2.

For 64 bytes of data, assuming a random factor between 0
and 255, the total overhead for the Parallel Multiplier is about

18
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
5 parallel lookup Galois field multiplication according to an

embodiment of the present invention.
Referring to FIG. 3, in step 410, two lookup tables are built

once: one lookup table for the low-order nibbles in each byte,
and one lookup table for the high-order nibbles in each byte.

10 Each lookup table contains 256 sets (one for each possible
factor) of the 16 possible GF products of that factor and the 16
possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multiplica-

15 tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions
can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is initial-
20 ized for the next set of 64 bytes of operand data (such as

original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the Par
allel Lookup Multiplier dedicates four registers for this data,
which are left intact upon exit of the Parallel Lookup Multi-

25 plier. This allows the same data to be called with different
factors (such as processing the same data for another check
drive).

Next in step 430, to process these 64 bytes of operand data,
the Parallel Lookup Multiplier can be implemented with 2

30 MOVDQA (Move Double Quadword Aligned) instructions
(from memory) to do the two table lookups and 4 MOVDQA
instructions (register to register) to initialize registers (such as
the output registers). These are followed in steps 440 and 450
by two nearly identical sets of 17 register-to-register instruc-

35 tions to carry out the multiplication 32 bytes at a time. Each
such set starts (in step 440) with 5 more MOVDQA instruc
tions for further initialization, followed by 2 PSRLW (Packed
Shift Right Logical Word) instructions to realign the high
order nibbles for PSHUFB, and 4 PAND instructions to clear

40 the high-order nibbles for PSHUFB. That is, two registers of
byte operands are converted into four registers of nibble oper
ands. Then, in step 450, 4 PSHUFB instructions are used to do
the parallel table lookups, and 2 PXOR instructions to add the
results of the multiplication on the two nibbles to the output

45 registers.
Thus, the Parallel Lookup Multiplier uses 40 machine

instructions to perform the parallel multiplication on 64 sepa
rate bytes, which is considerably better than the average 134
instructions for the Parallel Multiplier above, and only 10

50 times as many instructions as needed for the Parallel Adder.
While some of the Parallel Lookup Multiplier's instructions
are more complex than those of the Parallel Adder, much of
this complexity can be concealed through the pipelined and/
or concurrent execution of numerous such contiguous

55 instructions (accessing different registers) on modern pipe
lined processors. For example, in exemplary implementa
tions, the Parallel Lookup Multiplier has been timed at about
15 CPU clock cycles per 64 bytes processed per CPU core
(about 0.36 clock cycles per instruction). In addition, the code

60 footprint is practically nonexistent for the Parallel Lookup
Multiplier (40 instructions) compared to that of the Parallel
Multiplier (about 34,300 instructions), even when factoring
the 8 KB needed for the two lookup tables in the Parallel 6 calls to multiply-by-2 and about 3.5 calls to add, or about

6x20+3.5x4=134 machine instructions, or a little over 2
machine instructions per byte of data. While this compares 65

favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table

Lookup Multiplier.
In addition, embodiments of the Parallel Lookup Multi

plier can be passed 64 bytes of operand data (such as the next
64 bytes of surviving original data X to be processed) in four

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 140 of 350

US 9,160,374 B2
19

consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same 40
machine instructions) such that the Parallel Lookup Multi
plier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data. 5

Through such a protocol, memory accesses can be minimized
(or significantly reduced) for accessing the original data D
during check data generation or the surviving original data X
during lost data reconstruction.

Further embodiments of the present invention are directed 10

towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup Mui-

15
tiplier should be appropriately sequenced to provide efficient
processing. One such sequencer (Sequencer 1), for example,
can generate the check data J from the original data D, and is
described further with respect to FIG. 4.

The parity drive does not need GF multiplication. The 20

check data for the parity drive can be obtained, for example,
by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder can

20
FIG. 4 shows an exemplary method 500 for sequencing the

Parallel Lookup Multiplier to perform the check data genera
tion according to an embodiment of the present invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each of the blocks across a stripe of data. For instance,
Sequencer 1 could be called to process 512 bytes from each
block. If, for example, the block size L is 4096 bytes, then it
would take eight such calls to Sequencer 1 to process the
entire stripe. The other such seven calls to Sequencer 1 could
be to different processing cores, for instance, to carry out the
check data generation in parallel. The number of 64-byte
chunks to process at a time could depend on factors such as
cache dimensions, input/output data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
numberofaccesses of each data drive' s 64-byte chunk of data
from memory, the data is loaded only once and preserved
across calls to the Parallel Lookup Multiplier. The first data
drive is handled specially since the check data has to be
initialized for each check drive. Using the first data drive to
initialize the check data saves doing the initialization as a
separate step followed by updating it with the first data drive' s
data. In addition to the first data drive, the first check drive is do this using 4 instructions for every 64 bytes of data for each

of the N data drives, or N/16 instructions per byte.
The M-1 non-parity check drives can invoke the Parallel

Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and
check drive. One consideration is how to handle the data
access. Two possible ways are:

25 also handled specially since it is a parity drive, so its check
data can be initialized to the first data drive' s data directly
without needing the Parallel Lookup Multiplier.

1) "colunm-by-colunm," i.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc., and
adding the products to the rumiing total in memory (us
ing the Parallel Adder) before moving onto the next row
(data drive); and

2) "row-by-row," i.e., 64 bytes for one data drive, followed

In step 530, the first middle loop is called, in which the
remainder of the check drives (that is, the non-parity check

30 drives) have their check data initialized by the first data
drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied with
each of the first data drive's data bytes. This is handled by
calling the Parallel Lookup Multiplier for each non-parity

35 check drive.

by the corresponding 64 bytes for the next data drive,
etc., and keeping a running total using the Parallel
Adder, then moving onto the next set of 64-byte chunks. 40

In step 540, the second middle loop is called, which pro
cesses the other data drives' corresponding 64-byte chunks of
data. As with the first data drive, each of the other data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier). In addition, since the first check drive is Colunm-by-colunm can be thought of as "constant factor,

varying data," in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as "constant data, varying factor," in that the data 45

usually remains the same between iterations while the factor
changes with each iteration.

the parity drive, its check data can be updated by directly
adding these 64 bytes to it (using the Parallel Adder) before
handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding
factor for the particular data drive. The factor is multiplied
with each of the next data drive' s data bytes using the Parallel

Another consideration is how to handle the check drives.
Two possible ways are:

a) one at a time, i.e., generate all the check data for one
check drive before moving onto the next check drive;
and

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data for
each of the N data drives and M-1 non-parity check drives, or
5N(M-1)/8 instructions per byte for the Parallel Lookup
Multiplier), empirical results show that combination (2)(b),
that is, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel Lookup
Multiplier. One reason may be that such an approach appears
to minimize the number of memory accesses (namely, one) to
each chunk of the original data D to generate the check data J.
This embodiment of Sequencer 1 is described in more detail
with reference to FIG. 4.

50 Lookup Multiplier, and the results added to the check drive' s
check data.

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using Algo
rithm 2). While the same colunm-by-colunm and row-by-row

55 data access approaches are possible, as well as the same
choices for handling the check drives, Algorithm 2 adds
another dimension of complexity because of the four separate
steps and whether to: (i) do the steps completely serially or (ii)
do some of the steps concurrently on the same data. For

60 example, step 1 (surviving check data generation) and step 4
(lost check data regeneration) can be done concurrently on the
same data to reduce or minimize the number of surviving
original data accesses from memory.

Empirical results show that method (2)(b)(ii), that is, row-
65 by-row data access on all of the check drives and for both

surviving check data generation and lost check data regen
eration between data accesses performs best with the Parallel

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 141 of 350

US 9,160,374 B2
21 22

Lookup Multiplier when reconstructing lost data using Algo
rithm 2. Again, this may be due to the apparent minimization
of the number of memory accesses (namely, one) of each
chunk of surviving original data X to reconstruct the lost data
and the absence of memory accesses of reconstructed lost 5

original data Y when regenerating the lost check data. This
embodiment of Sequencer 1 is described in more detail with
reference to FIGS. 5-7.

In step 670, the second inner loop is called, in which the
lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660), the
Parallel Lookup Multiplier is again called, this time to update
each of the failed check drive's check data by the correspond-
ing component from the next surviving data drive. This com
pletes the computations involving the next surviving data
drive' s 64 bytes of data, which were fetched with one access FIGS. 5-7 show an exemplary method 600 for sequencing

the Parallel Lookup Multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion.

Referring to FIG. 5, in step 610, the Sequencer 2 is called.

10 from main memory and preserved in the same four registers
across steps 660 and 670.

Next, in step 680, the computation of the partial check data
AxX is complete, so the surviving check data W is added to
this result (recall that W-AxX is equivalent to W+AxX in

15 binary Galois Field arithmetic). This is done by the fourth
middle loop, which for each surviving check drive adds the
corresponding 64-byte component of surviving check data W
to the (surviving) partial check data AxX (using the Parallel

Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to be
reconstructed. In addition, lost check data needs to be regen
erated. Like Sequencer 1, Sequencer 2 does these operations 20

in such a way as to minimize memory accesses of the data
drive data (by loading the data once and calling the Parallel
Lookup Multiplier multiple times). Assume for ease of
description that there is at least one surviving data drive; the
case of no surviving data drives is handled a little differently,
but not significantly different. In addition, recall from above
that the driving formula behind data reconstruction is
Y=B- 1 x(W-AxX), where Y is the lost original data, B-1 is the
solution matrix, Wis the surviving check data, A is the partial
check data encoding matrix (for the surviving check drives
and the surviving data drives), and Xis the surviving original
data.

Adder) to produce the (lost) partial check data W-AxX.
Continuing with FIG. 7, in step 690, the fifth middle loop is

called, which performs the two dimensional matrix multipli
cation B-1 x(W-AxX) to produce the lost original data Y. The
calculation is performed one row at a time, for a total of F
rows, initializing the row to the first term of the corresponding

25 linear combination of the solution matrix B-1 and the lost
partial check data W-AxX (using the Parallel Lookup Mul
tiplier).

In step 700, the third inner loop is called, which completes
the remaining F-1 terms of the corresponding linear combi-

30 nation (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop in step 690 and updates the running
calculation (using the Parallel Adder) of the next row of
B-1x(W-AxX). This completes the next row (and recon
structs the corresponding failed data drive's lost data) oflost

In step 620, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer 1, the first
surviving data drive is again handled specially since the par
tial check data AxX has to be initialized for each surviving
check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving check
drive based on the first surviving data drive' s 64 bytes of data.
In this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the first surviving data drive.

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive.Using
the same 64 bytes of the first surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 630), the
Parallel Lookup Multiplier is again called, this time to initial
ize each of the failed check drive's check data to the corre
sponding component from the first surviving data drive. This
completes the computations involving the first surviving data
drive's 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 630 and 640.

Continuing with FIG. 6, in step 650, the third middle loop

35 original data Y, which can then be stored at an appropriate
location.

In step 710, the fourth inner loop is called, in which the lost
check data is updated for each failed check drive by the newly
reconstructed lost data for the next failed data drive.Using the

40 same 64 bytes of the next reconstructed lost data (preserved
across calls to the Parallel Lookup Multiplier), the Parallel
Lookup Multiplier is called to update each of the failed check
drives' check data by the corresponding component from the
next failed data drive. This completes the computations

45 involving the next failed data drive's 64 bytes of recon
structed data, which were performed as soon as the data was
reconstructed and without being stored and retrieved from
main memory.

Finally, in step 720, the sixth middle loop is called. The lost
50 check data has been regenerated, so in this step, the newly

regenerated check data is stored at an appropriate location (if
desired).

Aspects of the present invention can be also realized in
other environments, such as two-byte quantities, each such

55 two-byte quantity capable of taking on 216=65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily
apparent to one of ordinary skill in the art, so their details will

is called, which processes the other surviving data drives'
corresponding 64-byte chunks of data. As with the first sur
viving data drive, each of the other surviving data drives is
processed separately, loading the respective 64 bytes of data
into four registers (preserved across calls to the Parallel 60

Lookup Multiplier).

be omitted for brevity of description.
Exemplary techniques and methods for doing the Galois

field manipulation and other mathematics behind RAID error
correcting codes are described inAppendixA, which contains
a paper "Information Dispersal Matrices for RAID Error
Correcting Codes" prepared for the present application.

In step 660, the first inner loop is called, in which the partial
check data AxX is updated for each surviving check drive
based on the next surviving data drive's 64 bytes of data. In
this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the next surviving data drive.

65 Multi-Core Considerations
What follows is an exemplary embodiment for optimizing

or improving the performance of multi-core architecture sys-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 142 of 350

US 9,160,374 B2
23

terns when implementing the described erasure coding sys
tem routines. In multi-core architecture systems, each proces
sor die is divided into multiple CPU cores, each with their
own local caches, together with a memory (bus) interface and
possible on-die cache to interface with a shared memory with 5

other processor dies.
FIG. 8 illustrates a multi-core architecture system 100 hav

ing two processor dies 110 (namely, Die O and Die 1).
Referring to FIG. 8, each die 110 includes four central

processing units (CPUs or cores) 120 each having a local level 10

1 (Ll) cache. Each core 120 may have separate functional
units, for example, an x86 execution unit (for traditional
instructions) and a SSE execution unit (for software designed
for the newer SSE instruction set). An example application of

15
these function units is that the x86 execution unit can be used
for the RAID control logic software while the SSE execution
unit can be used for the GF operation software. Each die 110
also has a level 2 (L2) cache/memory bus interface 130 shared
between the four cores 120. Main memory 140, in tum, is 20

shared between the two dies 110, and is connected to the
input/output (I/O) controllers 150 that access external devices
such as disk drives or other non-volatile storage devices via
interfaces such as Peripheral Component Interconnect (PCI).

Redundant array of independent disks (RAID) controller 25

processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to vali
date and schedule a host request (for example, to load or store
data from disk storage); (2) Command Translation and Sub
mission, to translate the host request into multiple disk 30

requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to

35
requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

24
cores 120, while allowing the other cores 120 to keep the data
moving between memory 140 and the disk drives via the I/O
interface 150.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to achieve
the result. This combination can be achieved by utilizing the
mathematical techniques and code optimizations described
elsewhere in this application with careful placement of the
resulting code on specific processing cores. Embodiments
can also be implemented on fewer resources, such as single
core dies and/or single-die systems, with decreased parallel
ism and performance optimization.

The process of subdividing and assigning individual cores
120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into "threads," and
threads may be assigned to specific CPUs and memory sys
tems via thekthread_bindfunction when the thread is created.
Creating separate threads to process the GF arithmetic allows
parallel computations to take place, which multiplies the per
formance of the system.

Further, creating multiple threads for command processing
allows for fully overlapped execution of the command pro
cessing states. One way to accomplish this is to number each
command, then use the arithmetic MOD function (% in C
language) to choose a separate thread for each command.
Another technique is to subdivide the data processing portion
of each command into multiple components, and assign each
component to a separate thread.

FIG. 9 shows an exemplary disk drive configuration 200
according to an embodiment of the present invention.

Referring to FIG. 9, eight disks are shown, though this
number can vary in other embodiments. The disks are divided
into three types: data drives 210, parity drive 220, and check
drives 230. The eight disks break down as three data drives
210, one parity drive 220, and four check drives 230 in the
embodiment of FIG. 9.

Each of the data drives 210 is used to hold a portion of data.
The data is distributed uniformly across the data drives 210 in
stripes, such as 192 KB stripes. For example, the data for an
application can be broken up into stripes of 192 KB, and each
of the stripes in tum broken up into three 64 KB blocks, each

45 of the three blocks being written to a different one of the three
data drives 210.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example, 40

some of the cores 120 can be "command cores," that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140 and
the disk drives via the I/O interface 150. Others of the cores
120 can be "data cores," and assigned to the GF operations,
that is, generating the check data from the original data,
reconstructing the lost data from the surviving data, etc.,
including the Parallel Lookup Multiplier and the sequencers
described above. For example, in exemplary embodiments, a
scheduler can be used to divide the original data D into 50

corresponding portions of each block, which can then be
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc
tion.

One of the benefits of this data core/command core subdi- 55

The parity drive 220 is a special type of check drive in that
the encoding ofits data is a simple summation (recall that this
is exclusive OR in binary GF arithmetic) of the corresponding
bytes of each of the three data drives 210. That is, check data
generation (Sequencer 1) or regeneration (Sequencer 2) can
be performed for the parity drive 220 using the Parallel Adder
(and not the Parallel Lookup Multiplier). Accordingly, the
check data for the parity drive 220 is relatively straightfor
ward to build. Likewise, when one of the data drives 210 no
longer functions correctly, the parity drive 220 can be used to
reconstruct the lost data by adding (same as subtracting in
binary GF arithmetic) the corresponding bytes from each of
the two remaining data drives 210. Thus, a single drive failure

vision of processing is ensuring that different code will be
executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated Ll cache in each core 120,
and avoids the "pollution" of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on each
die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations. This 65

helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other

60 ofone of the data drives 210 is very straightforward to handle
when the parity drive 220 is available (no Parallel Lookup
Multiplier). Accordingly, the parity drive 220 can replace
much of the GF multiplication operations with GF addition
for both check data generation and lost data reconstruction.

Each of the check drives 230 contains a linear combination
of the corresponding bytes of each of the data drives 210. The
linear combination is different for each check drive 230, but in

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 143 of 350

US 9,160,374 B2
25

general is represented by a sunnnation of different multiples
of each of the corresponding bytes of the data drives 210
(again, all arithmetic being GF arithmetic). For example, for
the first check drive 230, each of the bytes of the first data
drive 210 could be multiplied by 4, each of the bytes of the 5

second data drive 210 by 3, and each of the bytes of the third
data drive 210 by 6, then the corresponding products for each
of the corresponding bytes could be added to produce the first
check drive data. Similar linear combinations could be used to
produce the check drive data for the other check drives 230. 10

The specifics of which multiples for which check drive are
explained in Appendix A.

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG. 9.
Accordingly, each 192 KB oforiginal data is stored as 512 KB 15

(i.e., eight blocks of 64 KB) of (original plus check) data.
Such a system 200, however, is capable of recovering all of
the original data provided any three of these eight drives
survive. That is, the system 200 can withstand a concurrent
failure of up to any five drives and still preserve all of the 20

original data.
Exemplary Routines to Implement an Embodiment

The error correcting code (ECC) portion of an exemplary
embodiment of the present invention may be written in soft
ware as, for example, four functions, which could be named 25

as ECCinitialize, ECCSolve, ECCGenerate, and ECCRegen
erate. The main functions that perform work are ECCGener-

26
ECCSolve
The function ECCSolve creates constant tables that are

used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior to
using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B-1 (i.e., the solution
matrix).

ECCGenerate
The function ECCGenerate is used to generate check codes

(that is, the check data matrix J) for a particular configuration
of data drives and check drives, using Sequencer 1 and the
Parallel Lookup Multiplier as described above. Prior to call
ing ECCGenerate, ECCSolve is called to compute the appro
priate constants for the particular configuration of data drives
and check drives, as well as the solution matrix B-1

.

ECCRegenerate
The function ECCRegenerate is used to regenerate data

vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the lost
check data from the restored original data), this time using
Sequencer 2 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCRegenerate, ECCSolve is called

ate and ECCRegenerate. ECCGenerate generates check
codes for data that are used to recover data when a drive
suffers an outage (that is, ECCGenerate generates the check
data J from the original data Dusing Sequencer 1). ECCRe
generate uses these check codes and the remaining data to
recover data after such an outage (that is, ECCRegenerate
uses the surviving check data W, the surviving original data X,
and Sequencer 2 to reconstruct the lost original data Y while
also regenerating any of the lost check data). Prior to calling
either of these functions, ECCSolve is called to compute the
constants used for a particular configuration of data drives,
check drives, and failed drives (for example, ECCSolve
builds the solution matrix B-1 together with the lists of sur
viving and failed data and check drives). Prior to calling
ECCSolve, ECCinitialize is called to generate constant tables
used by all of the other functions (for example, ECCinitialize
builds the IDM E and the two lookup tables for the Parallel
Lookup Multiplier).

30 to compute the appropriate constants for the particular con
figuration of data drives, check drives, and failed drives, as
well as the solution matrix B-1

.

ECCinitialize
The function ECCinitialize creates constant tables that are

used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values

Exemplary Implementation Details
As discussed in Appendix A, there are two significant

35 sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID process
ing): the computation of the solution matrix B-1 for a given
failure scenario, and the byte-level processing of encoding the
check data J and reconstructing the lost data after a lost packet

40 (e.g., data drive failure). By reducing the solution matrix B-1

to a matrix inversion of a FxF matrix, where F is the number
of lost packets (e.g., failed drives), that portion of the com
putational overhead is for all intents and purposes negligible
compared to the megabytes (MB), gigabytes (GB), and pos-

45 sibly terabytes (TB) of data that needs to be encoded into
check data or reconstructed from the surviving original and
check data. Accordingly, the remainder of this section will be
devoted to the byte-level encoding and regenerating process-
ing.

up front, these constant tables can be used to replace more 50

time-consuming operations with simple table look-ups (such
As already mentioned, certain practical simplifications can

be assumed for most implementations. By using a Galois field
of256 entries, byte-level processing can be used for all of the
GF arithmetic. Using the master encoding matrix S described
in Appendix A, any combination of up to 127 data drives, 1
parity drive, and 128 check drives can be supported with such
a Galois field. While, in general, any combination of data

as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct-an array of constants used to perform GF multi
plication with the PSHUFB instruction that operates on SSE 55

registers (that is, the Parallel Lookup Multiplier).
drives and check drives that adds up to 256 total drives is
possible, not all combinations provide a parity drive when
computed directly. Using the master encoding matrix S, on

2. mast----contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as the
check drive encoding matrix H

3. mul_tab-contains the results of all possible GF multi
plication operations of any two operands (for example, 256x
256=65,536 bytes for all of the possible products of two
different one-byte quantities)

60 the other hand, allows all such combinations (including a
parity drive) to be built (or simply indexed) from the same
such matrix. That is, the appropriate sub-matrix (including
the parity drive) can be used for configurations ofless than the
maximum number of drives.

4. div _tab----contains the results of all possible GF division 65

operations of any two operands (can be similar in size to
mul_tab)

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other pro-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 144 of 350

US 9,160,374 B2
27

posed solutions, which recompute E for every change ofN or
M). Rather, additional indexing of rows and/or columns of the
master encoding matrix S will suffice. As discussed above,
the use of the parity drive can eliminate or significantly
reduce the somewhat complex GF multiplication operations 5

associated with the other check drives and replaces them with
simple GF addition (bitwise exclusive OR in binary Galois
fields) operations. It should be noted that master encoding
matrices with the above properties are possible for any power
of-two number of drives 2P =Nmax+Mmax where the maximum lO

number of data drives N max is one less than a power of two
(e.g., Nmax=l27 or 63) and the maximum number of check
drives Mmax (including the parity drive) is 2P -N max·

28
E information dispersal matrix

(IDM)((N + M)xN) = [~]

F number of failed data drives
G number of failed check drives
H check drive encoding matrix (MxN)
I identity matrix (IK=KxK identity matrix, IN=NxN identity

matrix)
J encoded check data matrix (MxL)
K number of surviving data drives=N-F
L data block size (elements or bytes)

15 M number of check drives As discussed earlier, in an exemplary embodiment of the
present invention, a modem x86 architecture is used (being
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these 20
XMM registers holds 16 bytes (8-bit), so four such registers
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated at 25
a time using four consecutive SSE instructions (e.g., fetching
from memory, storing into memory, zeroing, adding, multi
plying), the remaining registers being used for intermediate
results and temporary storage. With such an architecture,
several routines are useful for optimizing the byte-level per- 30
formance, including the Parallel Lookup Multiplier,
Sequencer 1, and Sequencer 2 discussed above.

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as 35

examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.

Glossary of Some Variables

A encoding matrix (FxK), sub-matrix ofT

B encoding matrix (FxF), sub-matrix ofT

B- 1 solution matrix (FxF)

40

Mmax maximum value ofM
N number of data drives
Nmaxmaximum value ofN
0 zero matrix (KxF), sub-matrix ofT
S master encoding matrix ((Mmax+Nmax)xNmax)
T transformed IDM

[
h o]

(NxN) = A B

W surviving check data matrix (FxL)
X surviving original data matrix (KxL)
Y lost original data matrix (FxL)

What is claimed is:
1. A system for accelerated error-correcting code (ECC)

processing comprising:
a processing core for executing computer instructions and

accessing data from a main memory, the processing core
comprising at least 16 data registers, each of the data
registers comprising at least 16 bytes; and

a non-volatile storage medium for storing the computer
instructions,

wherein the processing core, the non-volatile storage
medium, and the computer instructions are configured to
implement an erasure coding system comprising:
a data matrix for holding original data in the main

memory;
a check matrix for holding check data in the main

C encoded data matrix
45 memory;

((N + M) XL) = [~ l

C' surviving encoded data matrix

(NxL) = [:]

D original data matrix (N xL)

D' permuted original data matrix

(NxL)=[~]

an encoding matrix for holding first factors in the main
memory, the first factors being for encoding the origi
nal data into the check data; and

a thread for executing on the processing core and com-
50 prising:

a parallel multiplier for concurrently multiplying
multiple data entries of a matrix by a single factor;
and

a first sequencer for ordering operations through the
55 data matrix and the encoding matrix using the par

allel multiplier to generate the check data.
2. The system of claim 1, wherein the parallel multiplier is

configured to process the data in units of at least 64 bytes
spread over at least four of the data registers at a time.

60 3. The system of claim 2, wherein the parallel multiplier is
further configured to:

receive an input operand in the at least four of the data
registers; and

return with the input operand intact in the at least four of the
65 data registers.

4. The system of claim 2, wherein consecutive ones of the
computer instructions to process each of the units of the data

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 145 of 350

US 9,160,374 B2
29

access separate ones of the data registers to permit concurrent
execution of the consecutive ones of the computer instruc
tions on the processing core.

30
quantities across 16 byte-sized entries using the PSHUFB
(Packed Shuffle Bytes) or equivalent instruction.

5. The system of claim 1, wherein the parallel multiplier
comprises two lookup tables for doing concurrent multipli- 5

cation of 4-bit quantities across 16 byte-sized entries using
the PSHUFB (Packed Shuffle Bytes) or equivalent instruc
tion.

12. The method of claim 7, wherein the generating of the
check data further comprises:

receiving by the parallel multiplier an input operand in at
least one of the data registers; and

returning by the parallel multiplier the input operand intact
in the at least one of the data registers.

13._ ~ non-transitory computer-readable storage medium
contammg a computer program comprising a plurality of
computer instructions for performing accelerated error-cor
recting code (ECC) processing on a computing system com-

6. The system of claim 1, wherein the parallel multiplier is
further configured to: 10

receive an input operand inat least one of the data registers;
and

return with the input operand intact in the at least one of the
data registers.

7. A method of accelerated error-correcting code (ECC)
processing on a computing system comprising a non-volatile
storage medium, a processing core for accessing instructions
and data from a main memory, and a computer program
comprising a plurality of computer instructions for imple-
menting an erasure coding system, the processing core com-
prising at least 16 data registers, each of the data registers
comprising at least 16 bytes, the method comprising:

prising a processing core for accessing instructions and data
from a main memory, the processing core comprising at least
16data registers, each of the data registers comprising at least

15 16 bytes, the computer instructions being configured to
implement an erasure coding system when executed on the
computing system by performing the steps of:

20

arranging original data as a data matrix m the mam
memory;

arranging first factors as an encoding matrix in the main
memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for
storing the computer program on the non-volatile storage

medium; 25
executing the computer instructions on the processing concurrently multiplying multiple data entries of a

matrix by a single factor, the generating of the check data
comprising ordering operations through the data matrix
and the encoding matrix using the parallel multiplier.

core;
arranging original data as a data matrix in the main

memory;
arranging first factors as an encoding matrix in the main

memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a
matrix by a single factor, the generating of the check data
comprising ordering operations through the data matrix
and the encoding matrix using the parallel multiplier.

14. The storage medium of claim 13, wherein the generat-
30 ing of the check data further comprises processing the data by

the parallel multiplier in units of at least 64 bytes spread over
at least four of the data registers at a time.
. 15. The storage medium of claim 14, wherein the generat
mg of the check data further comprises:

35 receiving by the parallel multiplier an input operand in the
at least four of the data registers; and

8. The method of claim 7, wherein the generating of the
check data further comprises processing the data by the par- 40
all el multiplier in units of at least 64 bytes spread over at least
four of the data registers at a time.

returning by the parallel multiplier the input operand intact
in the at least four of the data registers.

16. The storage medium of claim 14, wherein
consecutive ones of the computer instructions that process

each of the units of the data access separate ones of the
data registers, 9. The method of claim 8, wherein the generating of the

check data further comprises:
receiving by the parallel multiplier an input operand in the 45

at least four of the data registers; and

the executing of the computer instructions on the process
ing core further comprises concurrently executing the
consecutive ones of the computer instructions on the
processing core. returning by the parallel multiplier the input operand intact

in the at least four of the data registers.
10. The method of claim 8, wherein
consecutive ones of the computer instructions that process

each of the units of the data access separate ones of the
data registers,

the executing of the computer instructions on the process
ing core further comprises concurrently executing the
consecutive ones of the computer instructions on the
processing core.

11. The method of claim 7, wherein the parallel multiplier
comprises two lookup tables and the generating of the check
data further comprises using the parallel multiplier with the
two lookup tables to do concurrent multiplication of 4-bit

17. The storage medium of claim 13, wherein the parallel
multiplier comprises two lookup tables and the generating of
the check data further comprises using the parallel multiplier

50 with the two lookup tables to do concurrent multiplication of
4-bit quantities across 16byte-sized entries using the
PSHUFB (Packed Shuffle Bytes) or equivalent instruction.

18. The storage medium of claim 13, wherein the generat-
ing of the check data further comprises:

55 receiving by the parallel multiplier an input operand in at
least one of the data registers; and

returning by the parallel multiplier the input operand intact
in the at least one of the data registers.

* * * * *

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 146 of 350

EXHIBIT C

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 147 of 350

c12) United States Patent
Anderson

(54) ACCELERATED ERASURE CODING SYSTEM
AND METHOD

(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US)

(72) Inventor: Michael H. Anderson, Los Angeles, CA
(US)

(73) Assignee: STREAMSCALE, INC., Los Angeles,
CA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 14/852,438

(22) Filed:

(65)

Sep. 11, 2015

Prior Publication Data

US 2016/0072525 Al Mar. 10, 2016

Related U.S. Application Data

(63) Continuation of application No. 14/223,740, filed on
Mar. 24, 2014, now Pat. No. 9,160,374, which is a
continuation of application No. 13/341,833, filed on
Dec. 30, 2011, now Pat. No. 8,683,296.

(51) Int. Cl.
H03M 13/00
H03M 13137

(52) U.S. Cl.

(2006.01)
(2006.01)

(Continued)

CPC H03M 131616 (2013.01); G06F 1111076
(2013.01); G06F 1111092 (2013.01);

(Continued)

(58) Field of Classification Search
CPC H03M 13/373; H03M 13/3761; H03M

13/3776; H03M 13/616; H03M 13/1191;

100"--.

120

I 1111111111111111 11111 111111111111111 IIIII IIIII IIIII 111111111111111 IIII IIII

110

1/0

US009385759B2

(IO) Patent No.: US 9,385,759 B2
(45) Date of Patent: *Jul. 5, 2016

H03M 13/134; H03M 13/1515; H04L 1/0043;
H04L 1/0057; G06F 11/1076; G06F 11/1092;

G06F 11/1096; G06F 12/0238; G06F 12/06;
G06F 2211/1057; G06F 2211/109

USPC 714/6.24, 6.1, 6.11, 6.2, 6.21, 6.32,
714/763, 752,758,768,770,773,784,786

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,654,924 Bl* 11/2003 Hassner GllB 20/1813
714/758

6,823,425 B2 * 11/2004 Ghosh G06F 11/1076
711/114

(Continued)
OTHER PUBLICATIONS

Hafner et al., Matrix Methods for Lost Data Reconstruction in Era
sure Codes, Nov. 16, 2005, USENIX FAST '05 Paper, pp. 1-26.*

(Continued)

Primary Examiner - John J Tabone, Jr.
(74) Attorney, Agent, or Firm -Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT
An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core, stor
age medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an encod
ing matrix for holding first factors in the main memory, the
first factors being for encoding the original data into the check
data; and a thread for executing on the processing core. The
thread includes: a parallel multiplier for concurrently multi
plying multiple entries of the data matrix by a single entry of
the encoding matrix; and a first sequencer for ordering opera
tions through the data matrix and the encoding matrix using
the parallel multiplier to generate the check data.

20 Claims, 9 Drawing Sheets

150

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 148 of 350

(51) Int. Cl.
H03M13/13 (2006.01)
H04Ll/00 (2006.01)
G06F 11110 (2006.01)
G06F 12102 (2006.01)
G06F 12106 (2006.01)
H03M13/ll (2006.01)
H03M 13115 (2006.01)

US 9,385,759 B2
Page 2

9,160,374 B2 *

2011/00297 56 Al *

2012/0272036 Al*

2013/0108048 Al *

2013/0110962 Al *

10/2015

2/2011

10/2012

5/2013

5/2013

Anderson H03M 13/373
714/763

Biscondi . H03M 13/1114
712/22

Muralimanohar .. G06F 12/0238
711/202

Grube . H04W 12/00
380/270

Grube . H04W 12/00
709/213

(52) U.S. Cl. 2013/0111552 Al* 5/2013 Grube H04Ql2/00

(56)

CPC G06Fll/1096 (2013.01); G06F 1210238
(2013.01); G06F 12106 (2013.01); H03M

13/1191 (2013.01); H03M 13/134 (2013.01);
H03M 1311515 (2013.01); H03M 131373

(2013.01); H03M 1313761 (2013.01); H03M
1313776 (2013.01); H04L 110043 (2013.01);

H04L 110057 (2013.01); G06F 2211/1057
(2013.01)

References Cited

U.S. PATENT DOCUMENTS

7,350,126 B2 * 3/2008 Winograd G06F 11/1076
714/752

7,930,337 B2 4/2011 Hasenplaugh et al.
8,145,941 B2 * 3/2012 Jacobson G06F 11/1076

714/6.24
8,352,847 B2 * 1/2013 Gunnam G06F 17/16

714/758
8,683,296 B2 * 3/2014 Anderson H03M 13/134

714/6.24

726/3
2013/0124932 Al* 5/2013 Schuh G06F 9/44

714/718
2013/0173956 Al* 7/2013 Anderson G06F 11/1076

714/6.24
2013/0173996 Al* 7/2013 Anderson H03M 13/134

714/770
2015/0012796 Al* 1/2015 Anderson H03M 13/134

714/763

OTHER PUBLICATIONS

Anvin; The mathematics ofRaid-6; First Version Jan. 20, 2004; Last

Updated Dec. 20, 2011; pp. 1-9.
Maddock, et al.; White Paper, Surviving Two Disk Failures Introduc
ing Various "RAID 6" Implementations; Xyratex; pp. 1-13.
Plank; All About Erasure Codes:-Reed-Solomon Coding-LDPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL
Aug. 20, 2004; 52 sheets.

* cited by examiner

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 149 of 350

10

FI
G

.
1

\
25

,---
-_L

-,/

'
20

 -
I

da
ta

 1
,

by
te

 1

J
J
da

ta
 1

 ,
by

te
 2

11

• •
 •

• •
 •

• •
 •

•
J

J
da

ta
 1

 ,
by

te
 L

I

da
ta

 2
,

by
te

 1

J
da

ta
 2

,
by

te
 2

J

J
·

•
•

•
•

•
•

•
•

•
J

J
da

ta
 2

,
by

te
 L

• • •

J
da

ta
 N

,
by

te
 1

J

J
da

ta
 N

,
by

te
 2

J

J
•

•
•

•
•

•
•

•
•

•
J

J
da

ta
 N

,
by

te
 L

30
 -
-
1

 c
he

ck
 1

 ,
by

te
 1

11

ch
ec

k
1 ,

 b
yt

e
2

11
• •

 •
• •

 •
• •

 •
•

11
ch

e
ck

 1
 , b

yt
e

L
I

ch
e

ck
 2

,
by

te
 1

I c

h
e

ck
 2

,
by

te
 2

11

• •
 •

• •
 •

• •
 •

•
11

ch
ec

k
2,

 b
yt

e
L

I
• • •

I c
he

ck
 M

,
by

te
 1

 1
1

ch
e

ck
 M

,
by

te
 2

 1
1

•
•

•
•

•
•

•
•

•
•

II
ch

e
ck

 M
,

by
te

 L
 I

~
/

35

~

0
0

• ~

~

~

~
 =

~

2' :-
'

~U
l

N

0 O
'I

rJ
J = ('D ('

D

 0 1

,0

d r.,;
_

\0

w

0
0

U

I
~

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 150 of 350

30
0 \

31
0

32
0

33
0

34
0

35
0

F
IG

.
2

R
e

d
u

ce
 fu

ll
si

ze
 e

n
co

d
in

g
 m

a
tr

ix
 E

 t
o

 r
ed

uc
ed

 s
iz

e
e

n
co

d
in

g
 m

a
tr

ix
 T

 b
y

re
m

o
vi

n
g

 t
h

e
 F

 fa
ile

d
d

a
ta

 d
ri

ve
 r

ow
s

w
h

ile
 k

ee
pi

ng
 o

n
ly

 F
 s

u
rv

iv
in

g
 c

h
e

ck

d
ri

ve
 r

ow
s,

 m
o

vi
n

g
 t

he
 F

 fa
ile

d
d

a
ta

 d
ri

ve
 c

o
lu

m
n

s
to

 t
h

e
 r

ig
ht

l
R

e
d

u
ce

 fu
ll

si
ze

 e
n

co
d

e
d

 d
a

ta
 m

a
tr

ix
 C

 t
o

re
du

ce
d

si
ze

 e
n

co
d

in
g

 m
a

tr
ix

 C
' b

y
re

m
o

vi
n

g
 t

h
e

 F
 l

o
st

 d
a

ta
 r

ow
s

w
h

ile
 k

ee
pi

ng
 o

n
ly

 F
 s

u
rv

iv
in

g
 c

h
e

ck
 d

a
ta

 r
ow

s,

le
a

vi
n

g
 s

u
rv

iv
in

g
 d

a
ta

 X
 o

n
to

p
an

d
su

rv
iv

in
g

 c
h

e
ck

 d
at

a
W

o
n

 b
ot

to
m

l
S

p
lit

 e
n

co
d

in
g

 m
a

tr
ix

 T
 i

nt
o

fo
u

r
su

b
-m

a
tr

ic
e

s:

id
e

n
tit

y
m

a
tr

ix
 IK

 (
K

xK
)

in

u
p

p
e

r
le

ft,
 z

e
ro

 m
a

tr
ix

 O
 (

K
xF

)
in

 u
p

p
e

r
rig

ht
,

e
n

co
d

in
g

 m
a

tr
ix

 A
 (

F
xK

)
in

lo

w
e

r
le

ft,
 a

nd
 e

n
co

d
in

g
 m

a
tr

ix
 8

 (
F

xF
)

in
 l

o
w

e
r

ri
gh

t

l
In

ve
rt

 e
n

co
d

in
g

 m
a

tr
ix

 B
 t

o
 p

ro
d

u
ce

 s
ol

ut
io

n
m

a
tr

ix
 s

-1
;

lo
st

 d
a

ta
 Y

sa

tis
fie

s
th

e
re

la
tio

n
sh

ip
 W

 =
 A

xX
 +

 B
xY

,
so

 Y
 =

 9
-1

 x
 (

W
 -

A
xX

)

l
R

e
co

n
st

ru
ct

 lo
st

 d
a

ta
 Y

 f
ro

m
 s

u
rv

iv
in

g
 d

a
ta

 X
,

su
rv

iv
in

g
 c

h
e

ck
 d

a
ta

 W
,

e
n

co
d

in
g

 m
a

tr
ix

 A
,

an
d

so
lu

tio
n

m
a

tr
ix

 9
-1

 u
si

ng
 f

or
m

ul
a;

 r
e

g
n

e
ra

te
 a

n
y

lo
st

ch

e
ck

 d
a

ta
 f

ro
m

 s
u

rv
iv

in
g

 d
a

ta
 X

 a
nd

 r
e

co
n

st
ru

ct
e

d
 l

o
st

 d
a

ta
 Y

~

0
0

• ~

~

~

~
 =

~

2' :-
'

~U
l

N

0 O
'I

rJ
J = ('D ('

D

N

0 1
,0

d r.,;
_

\0

w

0
0

U

I
~

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 151 of 350

40
0
\

41
0

42
0

43
0

44
0

45
0

F
IG

.
3

In
iti

al
iz

e
(o

ne
 t

im
e)

 -
bu

ild
 t

w
o

lo
ok

up
 t

ab
le

s,
 o

ne
 f

o
r

lo
w

-o
rd

er

ni
bb

le
s,

 o
ne

 f
or

 h
ig

h-
or

de
r

ni
bb

le
s,

 e
ac

h
on

e
co

nt
ai

ni
ng

 2
56

 e
nt

rie
s

o
f t

he
 1

6
po

ss
ib

le
 p

ro
du

ct
s

o
f o

ne
 n

ib
bl

e
an

d
on

e
fa

ct
or

l
P

re
pa

re
 (

on
ce

 p
er

 o
pe

ra
nd

 d
at

a)
 -

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om

m
e

m
o

ry
 in

to
 f

o
u

r
op

er
an

d
re

gi
st

er
s;

 t
he

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r w
ill

 l
ea

ve
 th

es
e

re
gi

st
er

s
al

on
e

to
 a

vo
id

 r
el

oa
di

ng
 f

ro
m

 m
em

or
y

on
 s

uc
ce

ed
in

g
ca

lls

l
E

xe
cu

te
 (

 on
ce

 p
er

 c
al

l)
-

lo
ad

 t
he

 1
6

po
ss

ib
le

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

fr
om

 m
e

m
o

ry
 fo

r
th

e
cu

rr
en

t
fa

ct
or

 in
to

 o
ne

 r
eg

is
te

r;
 r

ep
ea

t f
o

r
th

e
lo

w
-o

rd
er

ni

bb
le

 p
ro

du
ct

s
in

to
 a

no
th

er
 r

eg
is

te
r;

 c
le

ar
 fo

u
r

ou
tp

ut
 r

eg
is

te
rs

l
E

xe
cu

te
 (

on
ce

 p
er

 3
2

by
te

s
o

f d
at

a)
 -

m
ov

e
tw

o
re

gi
st

er
s

o
f o

pe
ra

nd

da
ta

 (
by

te
s)

 i
nt

o
fo

u
r

re
gi

st
er

s
o

f s
cr

at
ch

 d
at

a
(n

ib
bl

es
)

l
M

ul
tip

ly
 (

on
ce

 p
er

 3
2

by
te

s
o

f d
a

ta
)-

us
e

P
S

H
U

F
B

 o
n

th
e

ni
bb

le
 d

at
a

in
 t

he
 s

cr
at

ch
 r

eg
is

te
rs

,
ac

cu
m

ul
at

in
g

th
e

co
rr

es
po

nd
in

g
lo

w
-o

rd
er

ni

bb
le

 a
nd

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

in
 t

he
 o

ut
pu

t
re

gi
st

er
s

~

0
0

• ~

~

~

~
 =

~

2' :-
'

~U
l

N

0 O
'I

rJ
J = ('D ('

D

~

0 1
,0

d r.,;
_

\0

w

0
0

U

I
~

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 152 of 350

50
0 \

51
0

52
0

53
0

54
0

55
0

F
IG

.
4

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 g

en
er

at
e

ch
ec

k
da

ta
 f

o
r

co
ns

ec
ut

iv
e

gr
ou

ps

o
f c

or
re

sp
on

di
ng

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f 6
4-

by
te

 c
hu

nk
s

o
f o

pe
ra

nd
 d

at
a

fr
om

ea

ch
 o

f t
he

 b
lo

ck
s

o
f t

he
 s

tr
ip

e;
 l

oa
d

ne
xt

 6
4

by
te

s
o

f o
pe

ra
nd

 d
at

a
fo

r
fir

st

da
ta

 d
ri

ve
 fr

om
 m

em
or

y
an

d
in

iti
al

iz
e

pa
rit

y
ch

ec
k

dr
iv

e
ch

ec
k

da
ta

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-
pa

ri
ty

 c
he

ck
 d

riv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 f
ir

st
 d

at
a

dr
iv

e'
s

64

by
te

s
o

f o
pe

ra
nd

 d
at

a
to

 i
ni

tia
liz

e
no

n-
pa

ri
ty

 c
he

ck
 d

ri
ve

 c
he

ck
 d

at
a

l
S

ec
on

d
m

id
dl

e
lo

op
 -

pr
oc

es
s

o
th

e
r

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
e

r
da

ta

dr
iv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om
 m

em
or

y
(p

re
se

rv
ed

 a
cr

os
s

in
n

e
r

lo
op

),
 a

dd
 t

hi
s

to
 p

ar
ity

 d
ri

ve
 c

he
ck

 d
at

a,
 a

nd
 c

al
l

in
ne

r
lo

op

l
In

ne
r

lo
op

 -
pr

oc
es

s
ne

xt
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-p
ar

ity

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t
dr

iv
e'

s
64

 b
yt

es
 o

f
op

er
an

d
da

ta
 t

o
up

da
te

 t
he

 n
on

-p
ar

ity
 c

he
ck

 d
ri

ve
 c

he
ck

 d
at

a

~

0
0

• ~

~

~

~
 =

~

2' :-
'

~U
l

N

0 O
'I

rJ
J = ('D ('

D

.i;
...

0 1
,0

d r.,;
_

\0

w

0
0

U

I
~

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 153 of 350

60
0 \

61
0

62
0

63
0

64
0

F
IG

.
5

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 r

ec
on

st
ru

ct
 l

os
t o

rig
in

al
 d

at
a

an
d

re
ge

ne
ra

te
 l

os
t

ch
ec

k
da

ta
 f

o
r

m
ul

tip
le

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

ut
er

 lo
op

 -
pr

oc
es

s
n

e
xt

 g
ro

up
 o

f 6
4-

by
te

 c
hu

nk
s

o
f o

pe
ra

nd
 d

at
a;

 l
oa

d
n

e
xt

64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fo

r
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e

fr
om

 m
em

or
y

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e:

lo

op
 t

hr
ou

gh
 e

ac
h

o
f t

he

su
rv

iv
in

g
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

ir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

pa
rt

ia
l

ch
ec

k
da

ta
 A

xX

l
S

ec
on

d
m

id
dl

e
lo

op
 -

in
iti

al
iz

e
fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 i
ni

tia
liz

e
th

ei
r

ch
ec

k
da

ta
 b

as
ed

 o
n

th
e

fir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

~

0
0

• ~

~

~

~
 =

~

2' :-
'

~U
l

N

0 O
'I

rJ
J = ('D ('

D

U
l

0 1
,0

d r.,;
_

\0

w

0
0

U

I
~

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 154 of 350

60
0
\

65
0

66
0

67
0

68
0

F
IG

.
6

T
hi

rd
 m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
su

rv
iv

in
g

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
er

 s
ur

vi
vi

ng
 d

at
a

dr
iv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f
op

er
an

d
da

ta
 f

ro
m

 m
em

or
y

(p
re

se
rv

ed
 a

cr
os

s
in

ne
r

lo
op

s)

l
F

irs
t

in
ne

r
lo

op
 -

pr
oc

es
s

ne
xt

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

su

rv
iv

in
g

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

to
 u

pd
at

e
pa

rt
ia

l
ch

ec
k

da
ta

 A
xX

l
S

ec
on

d
in

ne
r

lo
op

 -
up

da
te

 f
ai

le
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

 f
ai

le
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

ec
k

da
ta

 b
as

ed

on
 t

he
 n

ex
t

su
rv

iv
in

g
da

ta
 d

riv
e'

s
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a

l
F

ou
rt

h
m

id
dl

e
lo

op
 -

ad
d

su
rv

iv
in

g
ch

ec
k

da
ta

 to
 p

ro
du

ce
 W

 -
A

xX
:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 s
ur

vi
vi

ng
 c

he
ck

 d
riv

es
,

ca
lli

ng
 p

ar
al

le
l a

dd
er

 to

ad
d

th
ei

r
64

 b
yt

es
 o

f d
at

a
to

 p
ar

tia
l

ch
ec

k
da

ta
 A

xX

~

0
0

• ~

~

~

~
 =

~

2' :-
'

~U
l

N

0 O
'I

rJ
J = ('D ('

D

O
'I

0 1
,0

d r.,;
_

\0

w

0
0

U

I
~

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 155 of 350

60
0 \

69
0

70
0

71
0

72
0

F
IG

.
7

.

F
ift

h
m

id
dl

e
lo

op
 -

lo
st

 o
rig

in
al

 d
at

a
Y:

in

 c
om

bi
na

tio
n

w
ith

 t
hi

rd
 i

nn
er

 lo
op

,
ca

lc
ul

at
e

s-
1

x
(W

 -
A

xX
);

st
ar

t
by

 i
ni

tia
liz

in
g

ne
xt

 r
ow

 o
f Y

 to
 f

irs
t

co
m

bi
na

tio
n

o
f s

ol
ut

io
n

m
at

rix
 s

-1
 a

nd
 l

os
t

pa
rt

ia
l

ch
ec

k
da

ta
 W

 -
A

xX

l
T

hi
rd

 i
nn

er
 lo

op
 -

co
m

pl
et

e
ne

xt
 r

ow
 o

f Y
 b

y
ad

di
ng

 in
 p

ro
du

ct
 o

f n
ex

t f
ac

to
r

o
f s

-1
 a

nd
 W

 -
A

xX
 (

us
in

g
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r)
;

th
is

 r
ec

on
st

ru
ct

s
ne

xt

fa
ile

d
dr

iv
e'

s
lo

st
 d

at
a,

 w
hi

ch
 c

an
 b

e
st

or
ed

 (
if

de
si

re
d)

I +

F
ou

rt
h

in
ne

r
lo

op
 -

up
da

te
 fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

 f
ai

le
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
e

ir
 c

he
ck

 d
at

a
ba

se
d

on
 t

he
 n

ex
t f

ai
le

d
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f r

ec
on

st
ru

ct
ed

 l
os

t
da

ta

i
S

ix
th

 m
id

dl
e

lo
op

 -
fo

r
ea

ch
 f

ai
le

d
ch

ec
k

dr
iv

e,

st
or

e
ne

w
ly

 g
en

er
at

ed
 c

he
ck

 d
at

a
(i

f d
es

ire
d)

~

0
0

• ~

~

~

~
 =

~

2' :-
'

"'
U

l
N

0 O

'I

rJ
J = ('D ('

D

-...
.J

0 1
,0

d r.,;
_

\0

w

0
0

"'

UI

-...
.l

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 156 of 350

U.S. Patent

co
(9

LL

0
0
~

I

Jul. 5, 2016

::::::>~
CLI
0 +

I+-+

::::::>~ I+-+
CLI
O+

lo ~---
~
/

0
N
~

~

V

I"-

::::::>~
CLI
O+

::::::>~
CLI
O+

~

~

0
C")
~

0
C")
~

Sheet 8 of 9 US 9,385,759 B2

~

Cl) ::::::>~
0 CLI

0+
~

N
__J

0
~ ::::::>~ L()

CLI ~

O+

~
0 0 E -- -Cl) -
~

• ::::::> ~ a.. _J

f+--+ O+
N
__J

~

::::::>~
0.. __J

0 0 +
Cl)

0

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 157 of 350

U.S. Patent

0)
.

(.9 -LL

/
0
0
C'\I

0
CV)
C'\I

Jul. 5, 2016

0
CV)
C'\I

Sheet 9 of9

0

0
CV)
C'\I

C'\I - - -
C'\I

VS 9,385,759 B2

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 158 of 350

US 9,385,759 B2
1

ACCELERATED ERASURE CODING SYSTEM
AND METHOD

2
rated herein by reference, p. 7, "Thus, in 2-disk-degraded
mode, performance will be very slow. However, it is expected
that that will be a rare occurrence, and that performance will
not matter significantly in that case." See also Robert Mad-CROSS-REFERENCE TO RELATED

APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 14/223,740, filed on Mar. 24, 2014, which is a
continuation of U.S. patent application Ser. No. 13/341,833,
filed on Dec. 30, 2011, now U.S. Pat. No. 8,683,296, issued on
Mar. 25, 2014, the entire contents of each of which are
expressly incorporated herein by reference.

5 dock et al., "Surviving Two Disk Failures," p. 6, "The main
difficulty with this technique is that calculating the check
codes, and reconstructing data after failures, is quite complex.
It involves polynomials and thus multiplication, and requires
special hardware, or at least a signal processor, to do it at

BACKGROUND

10 sufficient speed." In addition, see also James S. Plank, "All
About Erasure Codes: -Reed-Solomon Coding-LDPC
Coding," slide 15 (describing computational complexity of
Reed-Solomon decoding), "Bottom line: When n & m grow,
it is brutally expensive." Accordingly, there appears to be a

1. Field
Aspects of embodiments of the present invention are

directed toward an accelerated erasure coding system and
method.

15 general consensus among experts in the field that erasure
coding systems are impractical for RAID systems for all but
small values of M (that is, small numbers of check drives),
such as 1 or 2.

Modem disk drives, on the other hand, are much less reli-
2. Description of Related Art 20 able than those envisioned when RAID was proposed. This is

due to their capacity growing out of proportion to their reli
ability. Accordingly, systems with only a single check disk
have, for the most part, been discontinued in favor of systems

An erasure code is a type of error-correcting code (ECC)
useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken 25

up into N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ
ations where one or more of the original N data blocks gets
lost, erasure codes also encode an additional M equal-sized 30

blocks (called check blocks or check data) from the original N
data blocks, for some positive integer M.

with two check disks.
In terms of reliability, a higher check disk count is clearly

more desirable than a lower check disk count. If the count of
error events on different drives is larger than the check disk
count, data may be lost and that cannot be reconstructed from
the correctly functioning drives. Error events extend well
beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is a
service event on a RAID system where the operator mistak
enly replaces the wrong drive or, worse yet, replaces a good
drive with a broken drive. In the absence of any generally

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total ofN + M equal-sized blocks
after encoding. The N + M blocks may, for example, be trans
mitted to a receiver as N+M separate packets, or written to
N+M corresponding disk drives. For ease of description, all
N+M blocks after encoding will be referred to as encoded
blocks, though some (for example, N of them) may contain
unencoded portions of the original data. That is, the encoded 40

data refers to the original data together with the check data.

35 accepted methodology to train, certify, and measure the effec
tiveness of service technicians, these types of events occur at
an unknown rate, but certainly occur. The foolproof solution
for protecting data in the face of multiple error events is to
increase the check disk count.

The M check blocks build redundancy into the system, in a
very efficient manner, in that the original data (as well as any
lost check data) can be reconstructed if any N of the N+M
encoded blocks are received by the receiver, or if any N of the 45

N+M disk drives are functioning correctly. Note that such an
erasure code is also referred to as "optimal." For ease of
description, only optimal erasure codes will be discussed in
this application. In such a code, up to M of the encoded blocks
can be lost, (e.g., up to M of the disk drives can fail) so that if 50

any N of the N+M encoded blocks are received successfully
by the receiver, the original data (as well as the check data)
can be reconstructed. N/(N+M) is thus the code rate of the
erasure code encoding (i.e., how much space the original data
takes up in the encoded data). Erasure codes for select values 55

ofN and M can be implemented on RAID systems employing
N+M (disk) drives by spreading the original data among N
"data" drives, and using the remaining M drives as "check"
drives. Then, when any N of the N+M drives are correctly
functioning, the original data can be reconstructed, and the 60

check data can be regenerated.
Erasure codes (or more specifically, erasure coding sys

tems) are generally regarded as impractical for values of M
larger than 1 (e.g., RAIDS systems, such as parity drive sys
tems) or 2 (RAID6 systems), that is, for more than one or two 65

check drives. For example, see H. Peter Anvin, "The math
ematics of RAID-6," the entire content of which is incorpo-

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding sys
tem that, for byte-level RAID processing (where each byte is
made up of 8 bits), performs well even for values ofN+M as
large as 256 drives (for example, N=127 data drives and
M=129 check drives). Further aspects provide for a single
precomputed encoding matrix (or master encoding matrix) S
of size MmaxxNmax, or (Nmax+Mmax)xNmax or (Mmax-l)x
N max, elements (e.g., bytes), which can be used, for example,
for any combination of NsNmax data drives and MsMmax
check drives such that Nmax+Mmaxs256 (e.g., Nmax =127 and
Mmax=l29, or Nmax=63 and Mm= =193). This is an improve
ment over prior art solutions that rebuild such matrices from
scratch every time N or M changes (such as adding another
check drive). Still higher values ofN and Mare possible with
larger processing increments, such as 2 bytes, which affords
up to N+M=65,536 drives (such as N=32,767 data drives and
M=32,769 check drives).

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to create
larger groups of data drives. For example, systems with two
checks disks are typically limited to group sizes of 10 or fewer
drives for reliability reasons. With a higher check disk count,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 159 of 350

US 9,385,759 B2
3 4

the data matrix and the encoding matrix using the parallel
multiplier to generate the check data.

larger groups are available, which can lead to fewer overall
components for the same unit of storage and hence, lower
cost.

Additional aspects of embodiments of the present inven
tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up to
127 data drives and up to 128 (non-parity) check drives, for a
total of up to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.

The first sequencer may be configured to access each entry
of the data matrix from the main memory at most once while

5 generating the check data.
The processing core may include a plurality of processing

cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data by dividing the data matrix into a

10 plurality of data matrices, dividing the check matrix into a
plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the

15 check matrices from respective ones of the data matrices.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed-So
lomon codes. While known solution matrix algorithms com- 20

pute an N xN solution matrix (see, for example, J. S. Plank, "A
tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems," Software-Practice & Experience,
27(9):995-1012, September 1997, and J. S. Plank and Y.
Ding, "Note: Correction to the 1997 tutorial on Reed-So- 25

lomon coding," Technical Report CS-03-504, University of
Tennessee, April 2003), requiring O(N3

) operations, regard
less of the number of failed data drives, aspects of embodi
ments of the present invention compute only an FxF solution
matrix, where F is the number of failed data drives. The 30

overhead for computing this FxF solution matrix is approxi
mately F3 /3 multiplication operations and the same number
of addition operations. Not only is FsN, in almost any prac
tical application, the number of failed data drives Fis consid
erably smaller than the number of data drives N. Accordingly, 35

the fast solution matrix algorithm is considerably faster than
any known approach for practical values ofF and N.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows and
the first number of columns.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to add
rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data and including a third
number of rows. The erasure coding system may further
include a solution matrix for holding second factors in the
main memory. The second factors are for decoding the check
data into the lost original data using the surviving original
data and the first factors.

The solution matrix may include the third number of rows
and the third number of colunms.

The solution matrix may further include an inverted said
third number by said third number sub-matrix of the encoding
matrix.

The erasure coding system may further include a first list of
rows of the data matrix corresponding to the surviving data
matrix, and a second list of rows of the data matrix corre
sponding to the lost data matrix.

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost
original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for decod-

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are directed 40

toward fetching the surviving (original and check) data a
minimum number of times (that is, at most once) to carry out
the data reconstruction. Some of these aspects are directed
toward efficient implementations that can maximize or sig
nificantly leverage the available parallel processing power of 45

multiple cores working concurrently on the check data gen
eration and the lost data reconstruction. Existing implemen
tations do not attempt to accelerate these aspects of the data
generation and thus fail to achieve a comparable level of
performance.

In an exemplary embodiment of the present invention, a
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a
main memory; and a non-volatile storage medium (for 55

example, a disk drive, or flash memory) for storing the com
puter instructions. The processing core, the storage medium,
and the computer instructions are configured to implement an
erasure coding system. The erasure coding system includes a
data matrix for holding original data in the main memory, a 60

check matrix for holding check data in the main memory, an
encoding matrix for holding first factors in the main memory,
and a thread for executing on the processing core. The first
factors are for encoding the original data into the check data.
The thread includes a parallel multiplier for concurrently 65

multiplying multiple data entries of a matrix by a single
factor; and a first sequencer for ordering operations through

50 ing the check data into the lost original data using the surviv
ing original data and the first factors. The thread may further
include a second sequencer for ordering operations through
the surviving data matrix, the encoding matrix, the check
matrix, and the solution matrix using the parallel multiplier to
reconstruct the lost original data.

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main memory
at most once while reconstructing the lost original data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original
data by dividing the data matrix into a plurality of data matri
ces; dividing the surviving data matrix into a plurality of
surviving data matrices; dividing the lost data matrix into a
plurality oflost data matrices; dividing the check matrix into
a plurality of check matrices; assigning corresponding ones

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 160 of 350

US 9,385,759 B2
5 6

According to another exemplary embodiment of the
present invention, a method of accelerated error-correcting
code (ECC) processing on a computing system is provided.
The computing system includes a non-volatile storage

of the data matrices, the surviving data matrices, the lost data
matrices, and the check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices and to concur
rently reconstruct portions of the lost original data corre
sponding to the lost data matrices from respective ones of the
surviving data matrices and the check matrices.

The check matrix may be configured to be divided into a
surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be
configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost
check data.

5 medium (such as a disk drive or flash memory), a processing
core for accessing instructions and data from a main memory,
and a computer program including a plurality of computer
instructions for implementing an erasure coding system. The
method includes: storing the computer program on the stor-

lO age medium; executing the computer instructions on the pro
cessing core; arranging original data as a data matrix in the
main memory; arranging first factors as an encoding matrix in
the main memory, the first factors being for encoding the

The second sequencer may be further configured to recon
struct the lost original data concurrently with regenerating the
lost check data.

15
original data into check data, the check data being arranged as
a check matrix in the main memory; and generating the check
data using a parallel multiplier for concurrently multiplying
multiple data entries of a matrix by a single factor. The gen
erating of the check data includes ordering operations

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main memory

20 through the data matrix and the encoding matrix using the
parallel multiplier.

at most once while reconstructing the lost original data and
regenerating the lost check data.

The second sequencer may be further configured to regen- 25

erate the lost check data without accessing the reconstructed
lost original data from the main memory.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for 30

generating the check data, reconstructing the lost original
data, and regenerating the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices; 35

dividing the check matrix into a plurality of check matrices;
dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a
plurality of lost check matrices; assigning corresponding
ones of the data matrices, the surviving data matrices, the lost 40

data matrices, the check matrices, the surviving check matri
ces, and the lost check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri
ces from respective ones of the data matrices, to concurrently 45

reconstruct portions of the lost original data corresponding to
the lost data matrices from respective ones of the surviving
data matrices and the surviving check matrices, and to con
currently regenerate portions of the lost check data corre
sponding to the lost check matrices from respective ones of 50

the surviving data matrices and respective portions of the
reconstructed lost original data.

The processing core may include 16 data registers. Each of
the data registers may include 16 bytes. The parallel multi
plier may be configured to process the data in units of at least 55

64 bytes spread over at least fourof the data registers at a time.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into a
plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the pro
cessing cores to concurrently generate portions of the check
data corresponding to the check matrices from respective
ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost original
data using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel mul
tiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data and the reconstructing of the lost
original data by: dividing the data matrix into a plurality of
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix
into a plurality oflost data matrices; dividing the check matrix
into a plurality of check matrices; and assigning correspond-

Consecutive instructions to process each of the units of the
data may access separate ones of the data registers to permit
concurrent execution of the consecutive instructions by the
processing core.

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16
byte-sized entries using the PSHUFB (Packed Shuffle Bytes)
instruction.

60 ing ones of the data matrices, the surviving data matrices, the
lost data matrices, and the check matrices to the processing
cores to concurrently generate portions of the check data
corresponding to the check matrices from respective ones of
the data matrices and to concurrently reconstruct portions of

The parallel multiplier may be further configured to receive
an input operand in four of the data registers, and return with
the input operand intact in the four of the data registers.

65 the lost original data corresponding to the lost data matrices
from respective ones of the surviving data matrices and the
check matrices.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 161 of 350

US 9,385,759 B2
7

The method may further include: dividing the check matrix
into a surviving check matrix for holding surviving check
data of the check data, and a lost check matrix corresponding

8
The processing core may include a plurality of processing

cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data to lost check data of the check data; and regenerating the lost

check data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data may take place
concurrently with the regenerating of the lost check data.

5 matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data matri
ces and the check matrices to the processing cores to concur
rently generate portions of the check data corresponding to
the check matrices from respective ones of the data matrices.

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

10
The computer instructions may be further configured to

perform the steps of: dividing the data matrix into a surviving
data matrix for holding surviving original data of the original
data, and a lost data matrix corresponding to lost original data
of the original data; arranging second factors as a solution
matrix in the main memory, the second factors being for The regenerating of the lost check data may take place

without accessing the reconstructed lost original data from
the main memory.

15 decoding the check data into the lost original data using the
surviving original data and the first factors; and reconstruct
ing the lost original data by ordering operations through the
surviving data matrix, the encoding matrix, the check matrix, The processing core may include a plurality of processing

cores. The executing of the computer instructions may
include executing the computer instructions on the process- 20

ing cores. The method may further include scheduling the
generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of surviving
data matrices; dividing the lost data matrix into a plurality of
lost data matrices; dividing the check matrix into a plurality of
check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check
matrix into a plurality of lost check matrices; and assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the sur
viving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct
portions of the lost original data corresponding to the lost data
matrices from respective ones of the surviving data matrices
and the surviving check matrices, and to concurrently regen
erate portions of the lost check data corresponding to the lost
check matrices from respective ones of the surviving data
matrices and respective portions of the reconstructed lost
original data.

and the solution matrix using the parallel multiplier.
The computer instructions may be further configured to

perform the steps of: dividing the check matrix into a surviv
ing check matrix for holding surviving check data of the
check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check

25 data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data and the regen
erating of the lost check data may include accessing each

30
entry of the surviving data matrix from the main memory at
most once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the

35 regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid
ing the lost data matrix into a plurality oflost data matrices;
dividing the check matrix into a plurality of check matrices;

40 dividing the surviving check matrix into a plurality of surviv
ing check matrices; dividing the lost check matrix into a
plurality oflost check matrices; and assigning corresponding
ones of the data matrices, the surviving data matrices, the lost
data matrices, the check matrices, the surviving check matri-According to yet another exemplary embodiment of the

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a
digital video disk (DVD), flash memory, a universal serial bus
(USB) drive, etc.) containing a computer program including a
plurality of computer instructions for performing accelerated
error-correcting code (ECC) processing on a computing sys
tem is provided. The computing system includes a processing
core for accessing instructions and data from a main memory.
The computer instructions are configured to implement an
erasure coding system when executed on the computing sys
tem by performing the steps of: arranging original data as a 55

data matrix in the main memory; arranging first factors as an
encoding matrix in the main memory, the first factors being
for encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and
generating the check data using a parallel multiplier for con
currently multiplying multiple data entries of a matrix by a
single factor. The generating of the check data includes order
ing operations through the data matrix and the encoding
matrix using the parallel multiplier.

45 ces, and the lost check matrices to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost
original data corresponding to the lost data matrices from

50 respective ones of the surviving data matrices and the surviv
ing check matrices, and to concurrently regenerate portions of
the lost check data corresponding to the lost check matrices
from respective ones of the surviving data matrices and
respective portions of the reconstructed lost original data.

By providing practical and efficient systems and methods
for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more

60 failing drives than was thought to be possible or practical can
be implemented with accelerated performance significantly
better than any prior art solution.

BRIEF DESCRIPTION OF THE DRAWINGS
The generating of the check data may include accessing 65

each entry of the data matrix from the main memory at most
once.

The accompanying drawings, together with the specifica
tion, illustrate exemplary embodiments of the present inven-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 162 of 350

US 9,385,759 B2
9

tion and, together with the description, serve to explain
aspects and principles of the present invention.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost 5

data after a failure of one or more drives according to an
embodiment of the present invention.

10
tually similar to the processing of one stripe (only processing
multiple blocks per drive instead of one), it will be further
assumed for simplification that the data being stored or
retrieved is only one stripe in size unless otherwise indicated.
It will also be assumed that the block size L is sufficiently
large that the data can be consistently divided across each
block to produce subsets of the data that include respective
portions of the blocks (for efficient concurrent processing by
different processing units).

FIG. 3 shows an exemplary method for performing a par
allel lookup Galois field multiplication according to an
embodiment of the present invention. 10

FIG. 1 shows an exemplary stripe 10 of original and check
data according to an embodiment of the present invention. FIG. 4 shows an exemplary method for sequencing the

parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention.

FIGS. 5-7 show an exemplary method for sequencing the
parallel lookup multiplier to perform the lost data reconstruc- 15
tion according to an embodiment of the present invention.

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention.

Referring to FIG.1, the stripe 10 can bethought ofnot only
as the original N data blocks 20 that make up the original data,
but also the corresponding M check blocks 30 generated from
the original data (that is, the stripe 10 represents encoded
data). Each of the N data blocks 20 is composed ofL bytes 25
(labeled byte 1, byte 2, ... , byte L), and each of the M check
blocks 30 is composed of L bytes 35 (labeled similarly). In
addition, check drive 1, byte 1, is a linear combination of data
drive 1, byte 1; data drive 2, byte 1; ... ; data drive N, byte 1.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompany
ing drawings. In the drawings, like reference numerals refer
to like elements throughout.

20 Likewise, check drive 1, byte 2, is generated from the same
linear combination formula as check drive 1, byte 1, only
using data drive 1, byte 2; data drive 2, byte 2; ... ; data drive
N, byte 2. In contrast, check drive 2, byte 1, uses a different
linear combination formula than check drive 1, byte 1, but

25 applies it to the same data, namely data drive 1, byte 1; data
drive 2, byte 1; ... ; data drive N, byte 1. In this fashion, each
of the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding sys
tems for the storage and retrieval of digital data distributed
across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes, 35
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate drives
(the data drives), one block per data drive.

30
check drive 30.

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. Chas two sub-matrices, namely original
data D on top and check data Jon bottom. That is,

In addition, for ease of description, blocks will be assumed
to be composed of L elements, each element having a fixed
size, say 8 bits or one byte. An element, such as a byte, forms 40

the fundamental unit of operation for the RAID processing,
but the invention is just as applicable to other size elements,
such as 16 bits (2 bytes). For simplification, unless otherwise
indicated, elements will be assumed to be one byte in size
throughout the description that follows, and the term "ele- 45

ment(s)" and "byte(s)" will be used synonymously.
Conceptually, different stripes can distribute their data

blocks across different combinations of drives, or have dif
ferent block sizes or numbers of blocks, etc., but for simpli
fication and ease of description and implementation, the 50

described embodiments in the present application assume a
consistent block size (L bytes) and distribution of blocks
among the data drives between stripes. Further, all variables,
such as the number of data drives N, will be assumed to be
positive integers unless otherwise specified. In addition, since

55
the N=l case reduces to simple data mirroring (that is, copy
ing the same data drive multiple times), it will also be
assumed for simplicity that N;;,;2 throughout.

The N data blocks from each stripe are combined using
arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data (check 60

blocks), and the M check blocks written across M drives (the
check drives) separate from the N data drives, one block per
check drive. These combinations can take place, for example,
when new (or changed) data is written to (or back to) disk.
Accordingly, each of the N+M drives (data drives and check 65

drives) stores a similar amount of data, namely one block for
each stripe. As the processing of multiple stripes is concep-

Du D12 D1L

D21 D22 D2L

C= [~]= DN1 DN2 DNL

lu 112 l1L

h1 h2 hL

JM! JM2]ML

where D,rbyte j from data drive i and J, =byte j from check
drive i. Thus, the rows of encoded data uC represent blocks,
while the colunms represent corresponding bytes of each of
the drives.

Further, in case of a disk drive failure of one or more disks
the arithmetic operations are designed in such a fashion that
for any stripe, the original data (and by extension, the check
data) can be reconstructed from any combination of N data
and check blocks from the corresponding N+M data and
check blocks that comprise the stripe. Thus, RAID provides
both parallel processing (reading and writing the data in
stripes across multiple drives concurrently) and fault toler
ance (regeneration of the original data even if as many as M of
the drives fail), at the computational cost of generating the
check data any time new data is written to disk, or changed
data is written back to disk, as well as the computational cost
of reconstructing any lost original data and regenerating any
lost check data after a disk failure.

For example, for M = 1 check drive, a single parity drive can
function as the check drive (i.e., a RAID4 system). Here, the
arithmetic operation is bitwise exclusive OR of each of the N
corresponding data bytes in each data block of the stripe. In
addition, as mentioned earlier, the assignment of parity

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 163 of 350

US 9,385,759 B2
11

blocks from different stripes to the same drive (i.e., RAID4)
or different drives (i.e., RAIDS) is arbitrary, but it does sim
plify the description and implementation to use a consistent
assignment between stripes, so that will be assumed through
out. Since M = 1 reduces to the case of a single parity drive, it
will further be assumed for simplicity that M;;,;2 throughout.

For such larger values ofM, Galois field arithmetic is used

12
where H,rfactor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the colunms
represent corresponding bytes of each of the drives. In addi
tion, check factors H, original data D, and check data J are

5 related by the formula J=HxD (that is, matrix multiplication),
or

lu 112 l1L
10

h1 h2 hL

JM! lM2]ML

15
Hu H12 H1N Du D12 D1L

H21 H22 H2N D21 D22 D2L
X

HM! HM2 HMN DNI DN2 DNL

to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2 (such
as 2i numbers of elements, includes two fundamental opera
tions: (1) addition (which is just bitwise exclusive OR, as with
the parity drive-only operations for M=l), and (2) multipli
cation. While Galois field (GF) addition is trivial on standard
processors, GF multiplication is not. Accordingly, a signifi
cant component of RAID performance for M;;,;2 is speeding
up the performance ofGF multiplication, as will be discussed
later. For purposes of description, GF addition will be repre
sented by the symbol + throughout while GF multiplication
will be represented by the symbol x throughout.

Briefly, in exemplary embodiments of the present inven- 20

tion, each of the M check drives holds linear combinations

where lu = (Hu xDu) + (H12 XD21) + ... + (H1N xDNI),

112 = (Hu XD12) + (H12 XD22) + ... + (H1N xDN2),

(over GF arithmetic) of the N data drives of original data, one
linear combination (i.e., a GF sum of N terms, where each
term represents a byte of original data times a corresponding
factor (using GF multiplication) for the respective data drive) 25

for each check drive, as applied to respective bytes in each
block. One such linear combination can be a simple parity,
i.e., entirely GF addition (all factors equal 1), such as a GF
sum of the first byte in each block oforiginal data as described
above. 30

h1 = (H21 XDu) + (H22 XD21) + ... + (H2N XDNI),

and in general,

forlsisM

and 1 s j s L.

The remaining M-1 linear combinations include more
involved calculations that include the nontrivial GF multipli
cation operations (e.g., performing a GF multiplication of the
first byte in each block by a corresponding factor for the
respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre
sented by an (N + M)xN matrix (encoding matrix or informa
tion dispersal matrix (IDM)) E of the different factors, one
factor for each combination of (data or check) drive and data
drive, with one row for each of the N + M data and check drives
and one colunm for each of the N data drives. The IDM E can
also be represented as

where IN represents the NxN identity matrix (i.e., the original
(unencoded) data) and H represents the MxN matrix of fac
tors for the check drives (where each of the M rows corre
sponds to one of the M check drives and each of the N
colunms corresponds to one of the N data drives).

Thus,

0 0

0 0

£=[~]= 0 0

Hu H12 H1N

H21 H22 H2N

HM! HM2 HMN

Such an encoding matrix E is also referred to as an infor
mation dispersal matrix (IDM). It should be noted that matri
ces such as check drive encoding matrix Hand identity matrix
IN also represent encoding matrices, in that they represent

35 matrices of factors to produce linear combinations over GF
arithmetic of the original data. In practice, the identity matrix
IN is trivial and may not need to be constructed as part of the
ID M E. Only the encoding matrix E, however, will be referred
to as the IDM. Methods of building an encoding matrix such

40 as IDM E or check drive encoding matrix H are discussed
below. In further embodiments of the present invention (as
discussed further in Appendix A), such (N + M)xN (or MxN)
matrices can be trivially constructed (or simply indexed) from
a master encoding matrix S, which is composed of CNmax+

45 Mmax)xNmax (or MmaxxNmax) bytes or elements, where
N max+ Mmax =256 (or some other power of two) and N sN max
and MsMmax· For example, one such master encoding matrix
Scan include a 127x127 element identity matrix on top (for
up to N max= 127 data drives), a row of 1 's (for a parity drive),

50 and a 128x127 element encoding matrix on bottom (for up to
Mmax = 129 check drives, including the parity drive), for a total
ofNmax=256 drives.

The original data, in tum, can be represented by an N xL
matrix D of bytes, each of the N rows representing the L bytes

55 of a block of the corresponding one of the N data drives. If C
represents the corresponding (N+M)xL matrix of encoded
bytes (where each of the N+M rows corresponds to one of the
N + M data and check drives), then C can be represented as Ex

60

65 where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L check bytes of the correspond
ing one of the M check drives. It should be noted that in the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 164 of 350

US 9,385,759 B2
13

relationships such as C=ExD or J=HxD, x represents matrix
multiplication over the Galois field (i.e., GF multiplication
and GF addition being used to generate each of the entries in,
for example, C or J).

In exemplary embodiments of the present invention, the 5

first row of the check drive encoding matrix H (or the (N + 1)th

row of the IDM E) can be all 1 's, representing the parity drive.
For linear combinations involving this row, the GF multipli
cation can be bypassed and replaced with a GF sum of the
corresponding bytes since the products are all trivial products 10

involving the identity element 1. Accordingly, in parity drive
implementations, the check drive encoding matrix H can also
be thought of as an (M-l)xN matrix of non-trivial factors
(that is, factors intended to be used in GF multiplication and

15
not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back to)
disk. The other significant event for RAID processing is when
one or more of the drives fail (data or check drives), or for 20

whatever reason become unavailable. Assume that in such a
failure scenario, F data drives fail and G check drives fail,
where F and G are nonnegative integers. If F=O, then only
check drives failed and all of the original data D survived. In
this case, the lost check data can be regenerated from the 25

original data D.
Accordingly, assume at least one data drive fails, that is,

F2:l, and let K=N-F represent the number of data drives that
survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost 30

original data. That is, Xis a KxL matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, while Y is an FxL matrix composed of
the F rows of the original data matrix D corresponding to the

35
F failed data drives.

thus represents a permuted original data matrix D' (that is, the
original data matrix D, only with the surviving original data X

40

on top and the lost original data Y on bottom. It should be
45

noted that once the lost original data Y is reconstructed, it can
be combined with the surviving original data X to restore the
original data D, from which the check data for any of the
failed check drives can be regenerated.

It should also be noted that M-G check drives survive. In 50
order to reconstruct the lost original data Y, enough (that is, at
least IV) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it follows
that (N-F)+(M-G)2:N must be true to reconstruct the lost
original data Y. This is equivalent to F+GsM (i.e., no more 55

than F +G drives fail), or F sM-G (that is, the numberof failed
data drives does not exceed the number of surviving check
drives). It will therefore be assumed for simplicity that F sM-
G.

In the routines that follow, performance can be enhanced 60

by prebuilding lists of the failed and surviving data and check
drives (that is, four separate lists). This allows processing of
the different sets of surviving and failed drives to be done
more efficiently than existing solutions, which use, for
example, bit vectors that have to be examined one bit at a time 65

and often include large numbers of consecutive zeros (or
ones) when ones (or zeros) are the bit values of interest.

14
FIG. 2 shows an exemplary method 300 for reconstructing

lost data after a failure of one or more drives according to an
embodiment of the present invention.

While the recovery process is described in more detail
later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the
surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an N xN reduced encoding matrix T (also referred to as
the transformed IDM) including the K surviving data
drive rows and any F of the M-G surviving check drive
rows (for instance, the first F surviving check drive rows,
as these will include the parity drive if it survived; recall
that F sM-G was assumed). In addition, the colunms of
the reduced encoding matrix Tare rearranged so that the
K colunms corresponding to the K surviving data drives
are on the left side of the matrix and the F colunms
corresponding to the F failed drives are on the right side
of the matrix. (Step 320) These F surviving check drives
selected to rebuild the lost original data Y will hence
forth be referred to as "the F surviving check drives," and
their check data W will be referred to as "the surviving
check data," even though M-G check drives survived. It
should be noted that Wis anFxLmatrix composed of the
F rows of the check data J corresponding to the F sur
viving check drives. Further, the surviving encoded data
can be represented as a sub-matrix C' of the encoded data
C. The surviving encoded data C' is an NxL matrix
composed of the surviving original data X on top and the
surviving check data Won bottom, that is,

2. (Step 330) Splitting the reduced encoding matrix Tinto
four sub-matrices (that are also encoding matrices): (i) a
KxK identity matrix IK (corresponding to the K surviv
ing data drives) in the upper left, (ii) a KxF matrix O of
zeros in the upper right, (iii) an FxK encoding matrix A
in the lower left corresponding to the F surviving check
drive rows and the K surviving data drive columns, and
(iv) an FxF encoding matrix B in the lower right corre
sponding to the F surviving check drive rows and the F
failed data drive colunms. Thus, the reduced encoding
matrix T can be represented as

3. (Step 340) Calculating the inverse B-1 of the FxF encod
ing matrix B. As is shown in more detail in Appendix A,

which is mathematically equivalent to W=AxX+BxY. B-1 is
the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B-1 thus allows the lost origi-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 165 of 350

US 9,385,759 B2
15

nal data Y to be reconstructed from the encoding matrices A
and B along with the surviving original data X and the sur
viving check data W.

16
reconstruct the lost original data Y for the F failed data drives
(i.e., roughly 1 operation per failed data drive per byte of
original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed The FxK encoding matrix A represents the original encod

ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of A
represents a different one of the F surviving check drives,
while each of the K colunms of A represents a different one of
the K surviving data drives. Thus, A provides the encoding
factors needed to encode the original data for the surviving
check drives, but only applied to the surviving data drives
(that is, the surviving partial check data). Since the surviving
original data X is available, A can be used to generate this
surviving partial check data.

5 to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G failed

10 check drives (i.e., roughly 1 operation per failed check drive
per byte of original data D). In summary, the number of
operations needed to reconstruct the lost data is O(F +G) times
the amount of original data D (i.e., roughly 1 operation per
failed drive (data or check) per byte of original data D). Since

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F surviving
check drives and the F failed data drives. That is, the F rows of

15 F+GsM, this means that the computational complexity of
Algorithm 2 (reconstructing the lost data from the surviving
data) is no more than that of generating the check data J from
the original data D. B correspond to the same F rows of A, while each of the F

colunms of B represents a different one of the F failed data
drives. Thus, B provides the encoding factors needed to
encode the original data for the surviving check drives, but
only applied to the failed data drives (that is, the lost partial
check data). Since the lost original data Y is not available, B
cannot be used to generate any of the lost partial check data.
However, this lost partial check data can be determined from 25

A and the surviving check data W. Since this lost partial check
data represents the result of applying B to the lost original
data Y, B- 1 thus represents the necessary factors to reconstruct
the lost original data Y from the lost partial check data.

As mentioned above, for exemplary purposes and ease of
20 description, data is assumed to be organized in 8-bit bytes,

each byte capable of taking on 28=256 possible values. Such
data can be manipulated in byte-size elements using GF arith
metic for a Galois field of size 28=256 elements. It should also

It should be noted that steps 1 and 2 in Algorithm 1 above 30

are logical, in that encoding matrices A and B (or the reduced
encoding matrix T, for that matter) do not have to actually be
constructed. Appropriate indexing of the IDM E (or the mas-

be noted that the same mathematical principles apply to any
power-of-two 2P number of elements, not just 256, as Galois
fields can be constructed for any integral power of a prime
number. Since Galois fields are finite, and since GF opera
tions never overflow, all results are the same size as the inputs,
for example, 8 bits.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It can
also be performed on multiple bytes concurrently. Since the
addition and subtraction operations take place, for example,
on a byte-level basis, they can be done in parallel by using, for
instance, x86 architecture Streaming SIMD Extensions
(SSE) instructions (SIMD stands for single instruction, mul
tiple data, and refers to performing the same instruction on

ter encoding matrix S) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF arith- 35

metic and takes O(F3
) operations, as discussed in more detail

later. Nonetheless, this is a significant improvement over
existing solutions, which require O(N3

) operations, since the
number of failed data drives Fis usually significantly less than
the number of data drives N in any practical situation. 40 different pieces of data, possibly concurrently), such as

PXOR (Packed (bitwise) Exclusive OR). (Step 350 in FIG. 2) Once the encoding matrix A and the
solution matrix B- 1 are known, reconstructing the lost data
from the surviving data (that is, the surviving original data X
and the surviving check data W) can be accomplished in four
steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data (i.e.,
AxX), only limited to the K surviving data drives. Call
this limited check data the surviving partial check data.

SSE instructions can process, for example, 16-byte regis
ters (XMM registers), and are able to process such registers as
though they contain 16 separate one-byte operands (or 8

45 separate two-byte operands, or four separate four-byte oper
ands, etc.) Accordingly, SSE instructions can do byte-level
processing 16 times faster than when compared to processing
a byte at a time. Further, there are 16 XMM registers, so

2. Subtract this surviving partial check data from the sur- 50

viving check data W (using matrix subtraction, i.e.,
W-AxX, which is just entry-by-entry GF subtraction,
which is the same as GF addition for this Galois field).
This generates the surviving check data, only this time
limited to the F failed data drives. Call this limited check 55

data the lost partial check data.

dedicating four such registers for operand storage allows the
data to be processed in 64-byte increments, using the other 12
registers for temporary storage. That is, individual operations
can be performed as four consecutive SSE operations on the
four respective registers (64 bytes), which can often allow
such instructions to be efficiently pipelined and/or concur
rently executed by the processor. In addition, the SSE instruc
tions allows the same processing to be performed on different

3. Use the solution matrix B- 1 and the lost partial check
data (using matrix multiplication, i.e., B- 1 x(W-AxX)to
reconstruct the lost original data Y. Call this the recov
ered original data Y.

4. Use the corresponding rows of the IDM E (or master
encoding matrix S) for each of the G failed check drives
along with the original data D, as reconstructed from the
surviving and recovered original data X and Y, to regen
erate the lost check data (using matrix multiplication).

As will be shown in more detail later, steps 1-3 together
require O(F) operations times the amount of original data D to

such 64-byte increments of data in parallel using different
cores. Thus, using four separate cores can potentially speed
up this processing by an additional factor of 4 over using a

60 single core.
For example, a parallel adder (Parallel Adder) can be built

using the 16-byte XMM registers and four consecutive PX OR
instructions. Such parallel processing (that is, 64 bytes at a
time with only a few machine-level instructions) for GF arith-

65 metic is a significant improvement over doing the addition
one byte at a time. Since the data is organized in blocks of any
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 166 of 350

US 9,385,759 B2
17

KB) or 32,768 bytes (32 KB), a block can be composed of
numerous such 64-byte chunks (e.g., 64 separate 64-byte
chunks in 4 KB, or 512 chunks in 32 KB).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR's (i.e., 5

"additions") that are very fast operations, the numbers "wrap"
in peculiar ways when they are shifted outside of their normal
bounds (because the field has only a finite set of elements),
which can slow down the calculations. This "wrapping" in the
GF multiplication can be addressed in many ways. For 10

example, the multiplication can be implemented serially (Se
rial Multiplier) as a loop iterating over the bits of one operand
while performing the shifts, adds, and wraps on the other
operand. Such processing, however, takes several machine

15
instructions per bit for 8 separate bits. In other words, this
technique requires dozens of machine instructions per byte
being multiplied. This is inefficient compared to, for example,
the performance of the Parallel Adder described above.

For another approach (Serial Lookup Multiplier), multipli- 20

cation tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of256x256=65,536 bytes can hold
all the possible products of the two different one-byte oper
ands). However, such tables can force serialized access on 25

what are only byte-level operations, and not take advantage of
wide (concurrent) data paths available on modern processors,
such as those used to implement the Parallel Adder above.

In still another approach (Parallel Multiplier), the GF mul
tiplication can be done on multiple bytes at a time, since the 30

same factor in the encoding matrix is multiplied with every
element in a data block. Thus, the same factor can be multi
plied with 64 consecutive data block bytes at a time. This is
similar to the Parallel Adder described above, only there are
several more operations needed to perform the operation. 35

While this can be implemented as a loop on each bit of the
factor, as described above, only performing the shifts, adds,
and wraps on 64 bytes at a time, it can be more efficient to
process the 256 possible factors as a (C language) switch
statement, with inline code for each of 256 different combi- 40

nations of two primitive GF operations: Multiply-by-2 and
Add. For example, GF multiplication by the factor 3 can be
effected by first doing a Multiply-by-2 followed by an Add.
Likewise, GF multiplication by 4 is just a Multiply-by-2
followed by a Multiply-by-2 while multiplication by 6 is a 45

Multiply-by-2 followed by an Add and then by another Mul
tiply-by-2.

18
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are built
once: one lookup table for the low-order nibbles in each byte,
and one lookup table for the high-order nibbles in each byte.
Each lookup table contains 256 sets (one for each possible
factor) of the 16 possible GF products of that factor and the 16
possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multiplica
tion table. In addition, PSHUFB does 16 separate table look
ups at once, each for one nibble, so 8 PSHUFB instructions
can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is initial
ized for the next set of 64 bytes of operand data (such as
original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the Par-
allel Lookup Multiplier dedicates four registers for this data,
which are left intact upon exit of the Parallel Lookup Multi
plier. This allows the same data to be called with different
factors (such as processing the same data for another check
drive).

Next in step 430, to process these 64 bytes of operand data,
the Parallel Lookup Multiplier can be implemented with 2
MOVDQA (Move Double Quadword Aligned) instructions
(from memory) to do the two table lookups and 4 MOVDQA
instructions (register to register) to initialize registers (such as
the output registers). These are followed in steps 440 and 450
by two nearly identical sets of 17 register-to-register instruc
tions to carry out the multiplication 32 bytes at a time. Each
such set starts (in step 440) with 5 more MOVDQA instruc
tions for further initialization, followed by 2 PSRLW (Packed
Shift Right Logical Word) instructions to realign the high
order nibbles for PSHUFB, and 4 PAND instructions to clear
the high-order nibbles for PSHUFB. That is, two registers of
byte operands are converted into four registers of nibble oper
ands. Then, in step 450, 4 PSHUFB instructions are used to do
the parallel table lookups, and 2 PXOR instructions to add the
results of the multiplication on the two nibbles to the output
registers.

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64 sepa
rate bytes, which is considerably better than the average 134
instructions for the Parallel Multiplier above, and only 10
times as many instructions as needed for the Parallel Adder.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PAD DB (Packed Add) instructions, 4 consecutive PAND
(Bitwise AND) instructions, and 4 consecutive PXOR
instructions. Though this takes 20 machine instructions, the
instructions are very fast and results in 64 consecutive bytes

50 While some of the Parallel Lookup Multiplier's instructions
are more complex than those of the Parallel Adder, much of
this complexity can be concealed through the pipelined and/
or concurrent execution of numerous such contiguous
instructions (accessing different registers) on modern pipe-

of data at a time being multiplied by 2.
For 64 bytes of data, assuming a random factor between 0

and 255, the total overhead for the Parallel Multiplier is about
6 calls to multiply-by-2 and about 3.5 calls to add, or about
6x20+3.5x4=134 machine instructions, or a little over 2
machine instructions per byte of data. While this compares
favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using the PSHUFB

55 lined processors. For example, in exemplary implementa
tions, the Parallel Lookup Multiplier has been timed at about
15 CPU clock cycles per 64 bytes processed per CPU core
(about 0.36 clock cycles per instruction). In addition, the code
footprint is practically nonexistent for the Parallel Lookup

60 Multiplier (40 instructions) compared to that of the Parallel
Multiplier (about 34,300 instructions), even when factoring
the 8 KB needed for the two lookup tables in the Parallel
Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi-
65 plier can be passed 64 bytes of operand data (such as the next

64 bytes of surviving original data X to be processed) in four
consecutive registers, whose contents can be preserved upon

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 167 of 350

US 9,385,759 B2
19

exiting the Parallel Lookup Multiplier (and all in the same 40
machine instructions) such that the Parallel Lookup Multi
plier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data.
Through such a protocol, memory accesses can be minimized 5

(or significantly reduced) for accessing the original data D
during check data generation or the surviving original data X
during lost data reconstruction.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other 10

GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup Mul
tiplier should be appropriately sequenced to provide efficient
processing. One such sequencer (Sequencer 1), for example, 15

can generate the check data J from the original data D, and is
described further with respect to FIG. 4.

The parity drive does not need GF multiplication. The
check data for the parity drive can be obtained, for example,
by adding corresponding 64-byte chunks for each of the data 20

drives to perform the parity operation. The Parallel Adder can
do this using 4 instructions for every 64 bytes of data for each
of the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel
Lookup Multiplier on each 64-byte chunk, using the appro- 25

priate factor for the particular combination of data drive and
check drive. One consideration is how to handle the data
access. Two possible ways are:

20
Referring to FIG. 4, in step 510, the Sequencer 1 is called.

Sequencer 1 is called to process multiple 64-byte chunks of
data for each of the blocks across a stripe of data. For instance,
Sequencer 1 could be called to process 512 bytes from each
block. If, for example, the block size L is 4096 bytes, then it
would take eight such calls to Sequencer 1 to process the
entire stripe. The other such seven calls to Sequencer 1 could
be to different processing cores, for instance, to carry out the
check data generation in parallel. The number of 64-byte
chunks to process at a time could depend on factors such as
cache dimensions, input/output data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
numberofaccesses of each data drive' s 64-byte chunk of data
from memory, the data is loaded only once and preserved
across calls to the Parallel Lookup Multiplier. The first data
drive is handled specially since the check data has to be
initialized for each check drive. Using the first data drive to
initialize the check data saves doing the initialization as a
separate step followed by updating it with the first data drive' s
data. In addition to the first data drive, the first check drive is
also handled specially since it is a parity drive, so its check
data can be initialized to the first data drive' s data directly
without needing the Parallel Lookup Multiplier.

In step 530, the first middle loop is called, in which the
remainder of the check drives (that is, the non-parity check
drives) have their check data initialized by the first data
drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied with 1) "colunm-by-colunm," i.e., 64 bytes for one data drive,

followed by the next 64 bytes for that data drive, etc., and
adding the products to the rumiing total in memory (us
ing the Parallel Adder) before moving onto the next row
(data drive); and

30 each of the first data drive's data bytes. This is handled by
calling the Parallel Lookup Multiplier for each non-parity
check drive.

2) "row-by-row," i.e., 64 bytes for one data drive, followed
by the corresponding 64 bytes for the next data drive, 35

etc., and keeping a running total using the Parallel
Adder, then moving onto the next set of 64-byte chunks.

Colunm-by-colunm can be thought of as "constant factor,
varying data," in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data 40

changes with each iteration. Conversely, row-by-row can be
thought of as "constant data, varying factor," in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives. 45

Two possible ways are:
a) one at a time, i.e., generate all the check data for one

check drive before moving onto the next check drive;
and

In step 540, the second middle loop is called, which pro
cesses the other data drives' corresponding 64-byte chunks of
data. As with the first data drive, each of the other data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier). In addition, since the first check drive is
the parity drive, its check data can be updated by directly
adding these 64 bytes to it (using the Parallel Adder) before
handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding
factor for the particular data drive. The factor is multiplied
with each of the next data drive' s data bytes using the Parallel
Lookup Multiplier, and the results added to the check drive' s
check data.

Another such sequencer (Sequencer 2) can be used to
b) all at once, i.e., for each 64-byte chunk of original data,

do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data for
each of the N data drives and M-1 non-parity check drives, or
5N(M-1)/8 instructions per byte for the Parallel Lookup
Multiplier), empirical results show that combination (2)(b),
that is, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel Lookup
Multiplier. One reason may be that such an approach appears
to minimize the number of memory accesses (namely, one) to
each chunk of the original data D to generate the check data J.
This embodiment of Sequencer 1 is described in more detail
with reference to FIG. 4.

50 reconstruct the lost data from the surviving data (using Algo
rithm 2). While the same colunm-by-colunm and row-by-row
data access approaches are possible, as well as the same
choices for handling the check drives, Algorithm 2 adds
another dimension of complexity because of the four separate

55 steps and whether to: (i) do the steps completely serially or (ii)
do some of the steps concurrently on the same data. For
example, step 1 (surviving check data generation) and step 4
(lost check data regeneration) can be done concurrently on the
same data to reduce or minimize the number of surviving

60 original data accesses from memory.

FIG. 4 shows an exemplary method 500 for sequencing the 65

Parallel Lookup Multiplier to perform the check data genera
tion according to an embodiment of the present invention.

Empirical results show that method (2)(b)(ii), that is, row
by-row data access on all of the check drives and for both
surviving check data generation and lost check data regen
eration between data accesses performs best with the Parallel
Lookup Multiplier when reconstructing lost data using Algo
rithm 2. Again, this may be due to the apparent minimization
of the number of memory accesses (namely, one) of each

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 168 of 350

US 9,385,759 B2
21

chunk of surviving original data X to reconstruct the lost data
and the absence of memory accesses of reconstructed lost
original data Y when regenerating the lost check data. This
embodiment of Sequencer 1 is described in more detail with
reference to FIGS. 5-7.

FIGS. 5-7 show an exemplary method 600 for sequencing
the Parallel Lookup Multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion.

Referring to FIG. 5, in step 610, the Sequencer 2 is called.
Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to be
reconstructed. In addition, lost check data needs to be regen
erated. Like Sequencer 1, Sequencer 2 does these operations

22
across the calls to Parallel Lookup Multiplier in step 660), the
Parallel Lookup Multiplier is again called, this time to update
each of the failed check drive's check data by the correspond
ing component from the next surviving data drive. This com-

5 pletes the computations involving the next surviving data
drive' s 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 660 and 670.

Next, in step 680, the computation of the partial check data
10 AxX is complete, so the surviving check data Wis added to

this result (recall that W-AxX is equivalent to W+AxX in
binary Galois Field arithmetic). This is done by the fourth
middle loop, which for each surviving check drive adds the
corresponding 64-byte component of surviving check data W

15 to the (surviving) partial check data AxX (using the Parallel
Adder) to produce the (lost) partial check data W-AxX.

Continuing with FIG. 7, in step 690, the fifth middle loop is
called, which performs the two dimensional matrix multipli
cation B- 1 x(W-AxX) to produce the lost original data Y. The

20 calculation is performed one row at a time, for a total of F
rows, initializing the row to the first term of the corresponding
linear combination of the solution matrix B- 1 and the lost
partial check data W-AxX (using the Parallel Lookup Mul-

in such a way as to minimize memory accesses of the data
drive data (by loading the data once and calling the Parallel
Lookup Multiplier multiple times). Assume for ease of
description that there is at least one surviving data drive; the
case of no surviving data drives is handled a little differently,
but not significantly different. In addition, recall from above
that the driving formula behind data reconstruction is Y=
B- 1 x(W-AxX), where Y is the lost original data, B- 1 is the 25

solution matrix, Wis the surviving check data, A is the partial
check data encoding matrix (for the surviving check drives
and the surviving data drives), and Xis the surviving original
data.

tiplier).
In step 700, the third inner loop is called, which completes

the remaining F-1 terms of the corresponding linear combi
nation (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop in step 690 and updates the running
calculation (using the Parallel Adder) of the next row of

In step 620, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer 1, the first
surviving data drive is again handled specially since the par
tial check data AxX has to be initialized for each surviving
check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving check
drive based on the first surviving data drive' s 64 bytes of data.
In this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the first surviving data drive.

30 B- 1x(W-AxX). This completes the next row (and recon
structs the corresponding failed data drive's lost data) oflost
original data Y, which can then be stored at an appropriate
location.

In step 710, the fourth inner loop is called, in which the lost
35 check data is updated for each failed check drive by the newly

reconstructed lost data for the next failed data drive.Using the
same 64 bytes of the next reconstructed lost data (preserved
across calls to the Parallel Lookup Multiplier), the Parallel
Lookup Multiplier is called to update each of the failed check

40 drives' check data by the corresponding component from the
next failed data drive. This completes the computations
involving the next failed data drive's 64 bytes of recon
structed data, which were performed as soon as the data was

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive.Using
the same 64 bytes of the first surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 630), the
Parallel Lookup Multiplier is again called, this time to initial- 45

ize each of the failed check drive's check data to the corre-

reconstructed and without being stored and retrieved from
main memory.

Finally, in step 720, the sixth middle loop is called. The lost
check data has been regenerated, so in this step, the newly
regenerated check data is stored at an appropriate location (if
desired).

sponding component from the first surviving data drive. This
completes the computations involving the first surviving data
drive's 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers 50

across steps 630 and 640.
Continuing with FIG. 6, in step 650, the third middle loop

Aspects of the present invention can be also realized in
other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 216=65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily

is called, which processes the other surviving data drives'
corresponding 64-byte chunks of data. As with the first sur
viving data drive, each of the other surviving data drives is
processed separately, loading the respective 64 bytes of data
into four registers (preserved across calls to the Parallel
Lookup Multiplier).

55 apparent to one of ordinary skill in the art, so their details will
be omitted for brevity of description.

In step 660, the first inner loop is called, in which the partial
check data AxX is updated for each surviving check drive
based on the next surviving data drive's 64 bytes of data. In
this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the next surviving data drive.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID error
correcting codes are described inAppendixA, which contains

60 a paper "Information Dispersal Matrices for RAID Error
Correcting Codes" prepared for the present application.
Multi-Core Considerations

In step 670, the second inner loop is called, in which the 65

lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved

What follows is an exemplary embodiment for optimizing
or improving the performance of multi-core architecture sys
tems when implementing the described erasure coding sys
tem routines. In multi-core architecture systems, each proces-
sor die is divided into multiple CPU cores, each with their

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 169 of 350

US 9,385,759 B2
23

own local caches, together with a memory (bus) interface and
possible on-die cache to interface with a shared memory with
other processor dies.

24
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to achieve
the result. This combination can be achieved by utilizing the
mathematical techniques and code optimizations described FIG. 8 illustrates a multi-core architecture system 100 hav

ing two processor dies 110 (namely, Die 0 and Die 1).
Referring to FIG. 8, each die 110 includes four central

processing units (CPUs or cores) 120 each having a local level

5 elsewhere in this application with careful placement of the
resulting code on specific processing cores. Embodiments
can also be implemented on fewer resources, such as single
core dies and/or single-die systems, with decreased parallel-1 (Ll) cache. Each core 120 may have separate functional

units, for example, an x86 execution unit (for traditional
instructions) and a SSE execution unit (for software designed 10

for the newer SSE instruction set). An example application of
these function units is that the x86 execution unit can be used
for the RAID control logic software while the SSE execution
unit can be used for the GF operation software. Each die 110
also has a level 2 (L2) cache/memory bus interface 130 shared 15

between the four cores 120. Main memory 140, in tum, is
shared between the two dies 110, and is connected to the
input/output (I/O) controllers 150 that access external devices
such as disk drives or other non-volatile storage devices via
interfaces such as Peripheral Component Interconnect (PCI). 20

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to vali
date and schedule a host request (for example, to load or store
data from disk storage); (2) Command Translation and Sub- 25

mission, to translate the host request into multiple disk
requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to 30

requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

ism and performance optimization.
The process of subdividing and assigning individual cores

120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into "threads," and
threads may be assigned to specific CPUs and memory sys
tems via thekthread_bindfunction when the thread is created.
Creating separate threads to process the GF arithmetic allows
parallel computations to take place, which multiplies the per
formance of the system.

Further, creating multiple threads for command processing
allows for fully overlapped execution of the command pro
cessing states. One way to accomplish this is to number each
command, then use the arithmetic MOD function (% in C
language) to choose a separate thread for each command.
Another technique is to subdivide the data processing portion
of each command into multiple components, and assign each
component to a separate thread.

FIG. 9 shows an exemplary disk drive configuration 200
according to an embodiment of the present invention.

Referring to FIG. 9, eight disks are shown, though this
number can vary in other embodiments. The disks are divided
into three types: data drives 210, parity drive 220, and check
drives 230. The eight disks break down as three data drives
210, one parity drive 220, and four check drives 230 in the
embodiment of FIG. 9.

Each of the data drives 210 is used to hold a portion of data.
The data is distributed uniformly across the data drives 210 in
stripes, such as 192 KB stripes. For example, the data for an
application can be broken up into stripes of 192 KB, and each
of the stripes in tum broken up into three 64 KB blocks, each

40 of the three blocks being written to a different one of the three
data drives 210.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example, 35

some of the cores 120 can be "command cores," that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140 and
the disk drives via the I/O interface 150. Others of the cores
120 can be "data cores," and assigned to the GF operations,
that is, generating the check data from the original data,
reconstructing the lost data from the surviving data, etc.,
including the Parallel Lookup Multiplier and the sequencers
described above. For example, in exemplary embodiments, a
scheduler can be used to divide the original data D into 45

corresponding portions of each block, which can then be
processed independently by different cores 120 for applica
tions such as check data generation and lost data reconstruc
tion.

One of the benefits of this data core/command core subdi- 50

The parity drive 220 is a special type of check drive in that
the encoding ofits data is a simple summation (recall that this
is exclusive OR in binary GF arithmetic) of the corresponding
bytes of each of the three data drives 210. That is, check data
generation (Sequencer 1) or regeneration (Sequencer 2) can
be performed for the parity drive 220 using the Parallel Adder
(and not the Parallel Lookup Multiplier). Accordingly, the
check data for the parity drive 220 is relatively straightfor
ward to build. Likewise, when one of the data drives 210 no
longer functions correctly, the parity drive 220 can be used to
reconstruct the lost data by adding (same as subtracting in
binary GF arithmetic) the corresponding bytes from each of
the two remaining data drives 210. Thus, a single drive failure

55 of one of the data drives 210 is very straightforward to handle
when the parity drive 220 is available (no Parallel Lookup
Multiplier). Accordingly, the parity drive 220 can replace
much of the GF multiplication operations with GF addition

vision of processing is ensuring that different code will be
executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated Ll cache in each core 120,
and avoids the "pollution" of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on each
die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations. This 60

helps localize the Parallel Lookup Multiplier code and asso
ciated data to a single core 120 and not compete with other
cores 120, while allowing the other cores 120 to keep the data
moving between memory 140 and the disk drives via the I/O
interface 150.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other

for both check data generation and lost data reconstruction.
Each of the check drives 230 contains a linear combination

of the corresponding bytes of each of the data drives 210. The
linear combination is different for each check drive 230, but in
general is represented by a summation of different multiples
of each of the corresponding bytes of the data drives 210

65 (again, all arithmetic being GF arithmetic). For example, for
the first check drive 230, each of the bytes of the first data
drive 210 could be multiplied by 4, each of the bytes of the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 170 of 350

US 9,385,759 B2
25

second data drive 210 by 3, and each of the bytes of the third
data drive 210 by 6, then the corresponding products for each
of the corresponding bytes could be added to produce the first
check drive data. Similar linear combinations could be used to
produce the check drive data for the other check drives 230.
The specifics of which multiples for which check drive are
explained in Appendix A.

26
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.

5 For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B-1 (i.e., the solution
matrix).

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG. 9.
Accordingly, each 192 KB oforiginal data is stored as 512 KB 10

(i.e., eight blocks of 64 KB) of (original plus check) data.
Such a system 200, however, is capable of recovering all of
the original data provided any three of these eight drives
survive. That is, the system 200 can withstand a concurrent
failure of up to any five drives and still preserve all of the 15

original data.

ECCGenerate
The function ECCGenerate is used to generate check codes

(that is, the check data matrix J) for a particular configuration
of data drives and check drives, using Sequencer 1 and the
Parallel Lookup Multiplier as described above. Prior to call
ing ECCGenerate, ECCSolve is called to compute the appro
priate constants for the particular configuration of data drives
and check drives, as well as the solution matrix B-1

.

ECCRegenerate
Exemplary Routines to Implement an Embodiment The function ECCRegenerate is used to regenerate data

The error correcting code (ECC) portion of an exemplary
embodiment of the present invention may be written in soft
ware as, for example, four functions, which could be named 20

as ECCinitialize, ECCSolve, ECCGenerate, and ECCRegen
erate. The main functions that perform work are ECCGener-

vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the lost
check data from the restored original data), this time using
Sequencer 2 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCRegenerate, ECCSolve is called

ate and ECCRegenerate. ECCGenerate generates check
codes for data that are used to recover data when a drive
suffers an outage (that is, ECCGenerate generates the check
data J from the original data Dusing Sequencer 1). ECCRe
generate uses these check codes and the remaining data to
recover data after such an outage (that is, ECCRegenerate
uses the surviving check data W, the surviving original data X,
and Sequencer 2 to reconstruct the lost original data Y while
also regenerating any of the lost check data). Prior to calling
either of these functions, ECCSolve is called to compute the
constants used for a particular configuration of data drives,
check drives, and failed drives (for example, ECCSolve
builds the solution matrix B-1 together with the lists of sur
viving and failed data and check drives). Prior to calling
ECCSolve, ECCinitialize is called to generate constant tables
used by all of the other functions (for example, ECCinitialize
builds the IDM E and the two lookup tables for the Parallel
Lookup Multiplier).

ECCinitialize
The function ECCinitialize creates constant tables that are

used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values

25 to compute the appropriate constants for the particular con
figuration of data drives, check drives, and failed drives, as
well as the solution matrix B-1

.

Exemplary Implementation Details
As discussed in Appendix A, there are two significant

30 sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID process
ing): the computation of the solution matrix B-1 for a given
failure scenario, and the byte-level processing of encoding the
check data J and reconstructing the lost data after a lost packet

35 (e.g., data drive failure). By reducing the solution matrix B-1

to a matrix inversion of a FxF matrix, where F is the number
of lost packets (e.g., failed drives), that portion of the com
putational overhead is for all intents and purposes negligible
compared to the megabytes (MB), gigabytes (GB), and pos-

40 sibly terabytes (TB) of data that needs to be encoded into
check data or reconstructed from the surviving original and
check data. Accordingly, the remainder of this section will be
devoted to the byte-level encoding and regenerating process-
ing.

up front, these constant tables can be used to replace more 45

time-consuming operations with simple table look-ups (such
As already mentioned, certain practical simplifications can

be assumed for most implementations. By using a Galois field
of256 entries, byte-level processing can be used for all of the
GF arithmetic. Using the master encoding matrix S described
in Appendix A, any combination of up to 127 data drives, 1
parity drive, and 128 check drives can be supported with such
a Galois field. While, in general, any combination of data

as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct-an array of constants used to perform GF multi
plication with the PSHUFB instruction that operates on 50

SSE registers (that is, the Parallel Lookup Multiplier).
2. mast----contains the master encoding matrix S (or the

Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as
the check drive encoding matrix H

3. mul_tab-contains the results of all possible GF multi
plication operations of any two operands (for example,
256x256=65,536 bytes for all of the possible products of
two different one-byte quantities)

drives and check drives that adds up to 256 total drives is
possible, not all combinations provide a parity drive when
computed directly. Using the master encoding matrix S, on

55 the other hand, allows all such combinations (including a
parity drive) to be built (or simply indexed) from the same
such matrix. That is, the appropriate sub-matrix (including
the parity drive) can be used for configurations ofless than the
maximum number of drives.

4. div _tab----contains the results of all possible GF division 60

operations of any two operands (can be similar in size to
mul_tab)

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other pro
posed solutions, which recompute E for every change ofN or
M). Rather, additional indexing ofrows and/or colunms of the

ECCSolve
The function ECCSolve creates constant tables that are

used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior to
using the functions ECCGenerate or ECCRegenerate. It

65 master encoding matrix S will suffice. As discussed above,
the use of the parity drive can eliminate or significantly
reduce the somewhat complex GF multiplication operations

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 171 of 350

US 9,385,759 B2
27 28

H check drive encoding matrix (MxN)
I identity matrix (IK=KxK identity matrix, IN=NxN identity

matrix)
J encoded check data matrix (MxL)

associated with the other check drives and replaces them with
simple GF addition (bitwise exclusive OR in binary Galois
fields) operations. It should be noted that master encoding
matrices with the above properties are possible for any power
of-two number of drives 2P =N max Mmax where the maximum
number of data drives N max is one less than a power of two
(e.g., Nmax =127 or 63) and the maximum number of check
drives Mmax (including the parity drive) is 2P -N max·

5 K number of surviving data drives=N-F
L data block size (elements or bytes)

As discussed earlier, in an exemplary embodiment of the
present invention, a modem x86 architecture is used (being 10

readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these
XMM registers holds 16 bytes (8-bit), so four such registers

15
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated at

M number of check drives
Mmax maximum value ofM
N number of data drives
Nmaxmaximum value ofN
0 zero matrix (KxF), sub-matrix ofT
S master encoding matrix ((Mmax+Nmax)xNmax)
T transformed IDM

[
h o]

(NxN) = A B

W surviving check data matrix (FxL)
X surviving original data matrix (KxL)
Y lost original data matrix (FxL)

What is claimed is:
1. A system for accelerated error-correcting code (ECC)

a time using four consecutive SSE instructions (e.g., fetching
from memory, storing into memory, zeroing, adding, multi- 20

plying), the remaining registers being used for intermediate
results and temporary storage. With such an architecture,
several routines are useful for optimizing the byte-level per
formance, including the Parallel Lookup Multiplier,
Sequencer 1, and Sequencer 2 discussed above. 25 processing comprising:

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the 30

embodiments illustrated, but by the appended claims and
their equivalents.

a processing core for executing computer instructions and
accessing data from a main memory, the processing core
comprising at least 16 data registers, each of the data
registers comprising at least 16 bytes;

one or more non-volatile storage media for storing the
computer instructions and the data; and

an input/output (I/O) controller for controlling data trans
fers between the main memory and the non-volatile
storage media, GLOSSARY OF SOME VARIABLES

A encoding matrix (FxK), sub-matrix ofT
B encoding matrix (FxF), sub-matrix ofT
B-1 solution matrix (FxF)
C encoded data matrix

((N+M)xL)=[~]

C' surviving encoded data matrix

(NxL)=[:]

D original data matrix (N xL)
D' permuted original data matrix

(NxL)=[~]

E information dispersal matrix

(IDM)((N + M)xN) = [;]

F number of failed data drives
G number of failed check drives

35

40

45

50

wherein the processing core, the non-volatile storage
media, the I/O controller, and the computer instructions
are configured to implement an erasure coding system
comprising:
a data matrix for holding original data in the main

memory;
a check matrix for holding check data in the main

memory;
an encoding matrix for holding first factors in the main

memory, the first factors being for encoding the origi
nal data into the check data; and

a thread for executing on the processing core and com
prising:
a parallel multiplier for concurrently multiplying

multiple data entries of a matrix by a single factor;
and

a first sequencer for ordering data accesses through
the data matrix and the encoding matrix using the
parallel multiplier to generate the check data.

2. The system of claim 1, wherein the parallel multiplier is
55 configured to process the data in units of at least 64 bytes

spread over at least four of the data registers at a time.
3. The system of claim 2, wherein the parallel multiplier is

further configured to:
receive an input operand in the at least four of the data

60 registers; and
return with the input operand intact in the at least four of the

data registers.
4. The system of claim 2, wherein consecutive ones of the

computer instructions to process each of the units of the data
65 access separate ones of the data registers to permit concurrent

execution of the consecutive ones of the computer instruc
tions on the processing core.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 172 of 350

US 9,385,759 B2
29

5. T~e system of claim 1, wherein the parallel multiplier
co~pnses two lookup tables for doing concurrent multipli
cat10n of 4-bit quantities across 16 byte-sized entries using
the PSHUFB (Packed Shuffle Bytes) or equivalent instruc
tion.

6. The system of claim 1, wherein the parallel multiplier is
further configured to:

receive an input operand inat least one of the data registers;
and

return with the input operand intact in the at least one of the 10

data registers.
7. The system of claim 1, wherein the first sequencer is

configured to access each entry of the data matrix from the
main memory at most once while generating the check data.

8. A _method of accelerated error-correcting code (ECC) 15

processmg on a computing system comprising a processing
core for accessing instructions and data from a main memory,
?ne or. more non-volatile storage media for storing the
mstruct10ns and the data, an input/output (I/O) controller for
controlling data transfers between the main memory and the 20

non-volatile storage media, and a computer program com
prising a plurality of computer instructions for implementing
an erasure coding system, the processing core comprising at
least 16 data registers, each of the data registers comprising at
least 16 bytes, the method comprising:

storing the computer program on the non-volatile storage
media;

executing the computer instructions on the processing
core;

25

transferring the data between the main memory and the 30

non-volatile storage media using the I/O controller;
arranging original data as a data matrix in the main

memory;

30
quantities across 16 byte-sized entries using the PSHUFB
(Packed Shuffle Bytes) or equivalent instruction.

13. The method of claim 8, wherein the generating of the
check data further comprises:

receiving by the parallel multiplier an input operand in at
least one of the data registers; and

returning by the parallel multiplier the input operand intact
in the at least one of the data registers.

14. The method of claim 8, wherein the generating of the
check data comprises accessing each entry of the data matrix
from the main memory at most once.

15. A non-transitory computer-readable storage medium
containing a computer program comprising a plurality of
computer instructions for performing accelerated error-cor
recting code (ECC) processing on a computing system com
prising a processing core for accessing instructions and data
from a main memory, the processing core comprising at least
16 data registers, each of the data registers comprising at least
~ 6 bytes, the computer instructions being configured to
implement an erasure coding system when executed on the
computing system by performing the steps of:

arranging original data as a data matrix m the mam
memory;

arranging first factors as an encoding matrix in the main
mem_ory, the first factors being for encoding the original
data mto check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a
matrix by a single factor, the generating of the check data
comprising ordering data accesses through the data
matrix and the encoding matrix using the parallel mul
tiplier. arranging first factors as an encoding matrix in the main

memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a
matrix by a single factor, the generating of the check data
comprising ordering data accesses through the data
matrix and the encoding matrix using the parallel mul
tiplier.

35
. 16. The storage medium of claim 15, wherein the generat
mg of the check data further comprises processing the data by
the parallel multiplier in units of at least 64 bytes spread over
at least four of the data registers at a time.
. 17. The storage medium of claim 16, wherein the generat-

40 mg of the check data further comprises:
receiving by the parallel multiplier an input operand in the

at least four of the data registers; and

9. The method of claim 8, wherein the generating of the
check data further comprises processing the data by the par- 45

all el multiplier in units of at least 64 bytes spread over at least
four of the data registers at a time.

returning by the parallel multiplier the input operand intact
in the at least four of the data registers.

18. The storage medium of claim 16, wherein
consecutive ones of the computer instructions that process

each of the units of the data access separate ones of the
data registers, 10. The method of claim 9, wherein the generating of the

check data further comprises:
receiving by the parallel multiplier an input operand in the 50

at least four of the data registers; and

th~ executing of the computer instructions on the process
mg core further comprises concurrently executing the
consecutive ones of the computer instructions on the
processing core. returning by the parallel multiplier the input operand intact

in the at least four of the data registers.
11. The method of claim 9, wherein
consecutive ones of the computer instructions that process

each of the units of the data access separate ones of the
data registers,

th~ executing of the computer instructions on the process
mg core further comprises concurrently executing the
consecutive ones of the computer instructions on the
processing core.

12. !he method of claim 8, wherein the parallel multiplier
compnses two lookup tables and the generating of the check
data further comprises using the parallel multiplier with the
two lookup tables to do concurrent multiplication of 4-bit

19. The storage medium of claim 15, wherein the parallel
multiplier comprises two lookup tables and the generating of

55
th~ check data further comprises using the parallel multiplier
with the two lookup tables to do concurrent multiplication of
4-bit quantities across 16 byte-sized entries using the
PSHUFB (Packed Shuffle Bytes) or equivalent instruction.
. 20. The storage medium of claim 15, wherein the generat-

60 mg of the check data further comprises:
receiving by the parallel multiplier an input operand in at

least one of the data registers; and
returning by the parallel multiplier the input operand intact

in the at least one of the data registers.

* * * * *

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 173 of 350

EXHIBIT D

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 174 of 350

c12) United States Patent
Anderson

(54) ACCELERATED ERASURE CODING
SYSTEM AND METHOD

(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US)

(72) Inventor: Michael H. Anderson, Los Angeles,
CA (US)

(73) Assignee: StreamScale, Inc., Los Angeles, CA
(US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days. days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 15/201,196

(22) Filed:

(65)

Jul. 1, 2016

Prior Publication Data

US 2017/0005671 Al Jan. 5, 2017

Related U.S. Application Data

(63) Continuation of application No. 14/852,438, filed on
Sep. 11, 2015, now Pat. No. 9,385,759, which is a

(51) Int. Cl.
H03M 13115
G06F 11110

(52) U.S. Cl.

(Continued)

(2006.01)
(2006.01)

(Continued)

CPC H03M 131154 (2013.01); G06F 1111068
(2013.01); G06F 1111076 (2013.01);

(Continued)
(58) Field of Classification Search

CPC H03M 13/373; H03M 13/3761; H03M
13/3776; H03M 13/616; H03M 13/1191;

(Continued)

100"-..

120

I 1111111111111111 1111111111 11111 11111 111111111111111 IIIII IIIIII IIII IIII IIII

110

1/0

US010003358B2

(IO) Patent No.: US 10,003,358 B2
(45) Date of Patent: *Jun. 19, 2018

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,054 A
5,754,563 A

ll/ 1996 Pharris
5/1998 White

(Continued)

OTHER PUBLICATIONS

M. Lalam, et al. "Sliding Encoding-Window for Reed-Solomon

code decoding," 4th International Symposium on Turbo Codes &

Related Topics; 6th International ITG-Conference on Source and
Channel Coding, Munich, Germany, 2006, pp. 1-6.

(Continued)

Primary Examiner - John J Tabone, Jr.
(74) Attorney, Agent, or Firm - Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT

An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core,
storage medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an
encoding matrix for holding first factors in the main
memory, the first factors being for encoding the original data
into the check data; and a thread for executing on the
processing core. The thread includes: a parallel multiplier
for concurrently multiplying multiple entries of the data
matrix by a single entry of the encoding matrix; and a first
sequencer for ordering operations through the data matrix
and the encoding matrix using the parallel multiplier to
generate the check data.

57 Claims, 9 Drawing Sheets

150

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 175 of 350

US 10,003,358 B2
Page 2

Related U.S. Application Data

continuation of application No. 14/223,740, filed on
Mar. 24, 2014, now Pat. No. 9,160,374, which is a
continuation of application No. 13/341,833, filed on
Dec. 30, 2011, now Pat. No. 8,683,296.

(51) Int. Cl.
H03M 13111 (2006.01)
H03M 13/13 (2006.01)
G06F 12102 (2006.01)
G06F 12106 (2006.01)
H03M 13137 (2006.01)
H03M 13/00 (2006.01)
H04L 1100 (2006.01)
GllC 29152 (2006.01)

(52) U.S. Cl.
CPC G06F 1111092 (2013.01); G06F 1111096

(2013.01); G06F 1210238 (2013.01); G06F
12106 (2013.01); GllC 29152 (2013.01);

H03M 13/1191 (2013.01); H03M 13/134
(2013.01); H03M 1311515 (2013.01); H03M
131373 (2013.01); H03M 1313761 (2013.01);

H03M 1313776 (2013.01); H03M 131616
(2013.01); H03M 13/6502 (2013.01); H04L
110043 (2013.01); H04L 110057 (2013.01);

G06F 2211/109 (2013.01); G06F 2211/1057
(2013.01)

(58) Field of Classification Search

(56)

CPC H03M 13/134; H03M 13/1515; H03M
13/154; H03M 13/6502; H04L 1/0043;

H04L 1/0057; G06F 11/1076; G06F
11/1092; G06F 11/1096; G06F 12/0238;

G06F 12/06; G06F 2211/1057; G06F
2211/109; G06F 11/1068; GllC 29/52

USPC 714/6.24, 6.1, 6.11, 6.2, 6.21, 6.32, 763,
714/752, 758, 768, 770, 773, 784, 786

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,486,803 Bl 11/2002 Luby et al.
6,654,924 Bl* 11/2003 Hassner GllB 20/1813

714/758
6,823,425 B2 * 11/2004 Ghosh G06F 11/1076

7,350,126 B2 * 3/2008

7,865,809 Bl 1/2011
7,930,337 B2 4/2011
8,145,941 B2 * 3/2012

8,352,847 B2 * 1/2013

8,683,296 B2 * 3/2014

8,914,706 B2 * 12/2014

711/114
Winograd G06F 11/1076

Lee et al.
Hasenplaugh et al.

714/752

Jacobson G06F ll/ 107 6
714/6.24

Gunnam G06F 17/16

Anderson
714/758

H03M 13/1515
714/6.24

Anderson G06F 11/1076

9,160,374 B2 *
9,385,759 B2 *

2009/0055717 Al
2009/0249170 Al
2010/0293439 Al
2011/00297 56 Al *

10/2015
7/2016
2/2009

10/2009
11/2010
2/2011

Anderson
Anderson
Au et al.
Maiuzzo
Flynn et al.

714/6.24
H03M 13/134
H03M 13/373

Biscondi H03M 13/1114
712/22

2012/0272036 Al* 10/2012 Muralimanohar .. G06F 12/0238
711/202

2013/0108048 Al*

2013/0110962 Al*

2013/0111552 Al*

2013/0124932 Al*

5/2013 Grube

5/2013 Grube

5/2013 Grube

5/2013 Schuh

H04W 12/00
380/270

H04W 12/00
709/213

H04W 12/00
726/3

....................... G06F 9/44
714/718

2013/0173956 Al* 7/2013 Anderson G06F 11/1076
714/6.24

2013/0173996 Al* 7/2013 Anderson H03M 13/134

2014/0040708 Al
2014/0068391 Al
2015/0012796 Al *

2/2014 Maiuzzo
3/2014 Goel et al.
1/2015 Anderson

OTHER PUBLICATIONS

714/770

H03M 13/134
714/763

Neifeld, M.A & Sridharan, S. K. (1997). Parallel error correction

using spectral Reed-Solomon codes. Journal of Optical Communi
cations, 18(4), pp. 144-150.
Casey Henderson: Letter to the USENIX Community <https://www.
usenix.org/systern/files/conference/fast 13/fastl 3 _memo_ 021715.
pdf> Feb. 17, 2015.
Chandan Kumar Singh: EC Jerasure plugin and StreamScale Inc,
<http://www.spinics.net/lists/ceph-devel/msg29944 .html> Apr. 20,
2016.
Code Poetry and Text Adventures: <http://catid.mechafetus.com/
news/news.php?view~381> Dec. 14, 2014.
Curtis Chan: StreamScale Announces Settlement of Erasure Code
Technology Patent Litigation, <http://www.prweb.com/releases/
2014/12/prwebl2368357.htrn>, Dec. 3, 2014.
Ethan Miller, <https:/ /plus.google.corn/ 113956021908222328905/
posts/bPcYevPkJWd>, Aug. 2, 2013.
H. Peter Anvin. "The mathematics ofRAID-6." 2004, 2011.
Hafner et al., Matrix Methods for Lost Data Reconstruction in
Erasure Codes, Nov. 16, 2005, USENIX FAST '05 Paper, pp. 1-26.
James S. Plank, Ethan L. Miller, Will B. Houston: GP-Complete: A
Comprehensive Open Source Library for Galois Field Arithmetic,
<http://web.eecs.utk.edu/-plank/plank/papers/CS- l 3-703 .html>
Jan. 2013.
James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu,
Zooko Wlcox-O'Hearn: A Performance Evaluation and Examina
tion of Open-Source Erasure Coding Libraries for Storage, <https://
www.usenix.org/legacy/event/fast09/tech/full_papers/plank/
plank_html/ _22 2009.
Kevin M. Greenan, Ethan L. Miller, Thomas J.E. Schwarz, S. J.:
Optimizing Galois Field Arithmetic for Diverse Processor Archi
tectures and Applications, Proceedings of the 16th IEEE Interna
tional Symposium on Modeling, Analysis, and Simulation of Com
puter and Telecommunication Systems (MASCOTS 2008),
Baltimore, MD, Sep. 2008.
Lee, "High-Speed VLSI Architecture for Parallel Reed-Solomon
Decoder", IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, No. 2, Apr. 2003, pp. 288-294.
Li et al.; Preventing Silent Data Corruptions from Propagating
During Data Reconstruction; IEEE Transactions on Computers, vol.
59, No. 12, Dec. 2010; pp. 1611-1624.
Li Han and Qian Huan-yan. "Parallelized Network Coding with
SIMD instruction sets." In Computer Science and Computational
Technology, 2008. ISCSCT'08. International Symposium on, vol. 1,
pp. 364-369. IEEE, 2008.
Loic Dachary: Deadline ofGithub pull request for Hammer release,
<http://www.spinics.net/lists/ceph-devel/msg2200 l .html> Jan. 13,
2015.
Louis Lavile: <https://twitter.corn/louislavile> Nov. 13, 2014.
Maddock, et al.; White Paper, Surviving Two Disk Failures Intro
ducing Various "RAID 6" Implementations; Xyratex; pp. 1-13.
Mann, "The Original View of Reed-Solomon Coding and the Welch
Berlekamp Decoding Algorithm", A Dissertation Submitted to the
Faculty of the Graduate Interdisciplinary Program in Applied Math
ematics, The University of Arizona, Jul. 19, 2013, 143 sheets.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 176 of 350

US 10,003,358 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Marius Gedminas: <http://eavesdrop.openstack.org/irclogs/
%23openstack-swift/%23openstack-swift.2015-04-30 .log.html>
Apr. 29, 2015.
Matthew L. Curry, Anthony Skjellum, H. Lee Ward, and Ron
Brightwell. "Arbitrary dimension reed-solomon coding and decod
ing for extended raid on gpus." In Petascale Data Storage Work
shop, 2008. PDSW'08. 3rd, pp. 1-3. IEEE, 2008.
Matthew L. Curry, Anthony Skjellum, H. Lee Ward, Ron
Brightwell: Gibraltar: A Reed-Solomon coding library for storage
applications on progranunable graphics processors. Concurrency
and Computation: Practice and Experience 23(18): pp. 2477-2495
(2011).
Matthew L. Curry, H. Lee Ward, Anthony Skjellum, Ron
Brightwell: A Lightweight, GPU-Based Software RAID System.
ICPP 2010: pp. 565-572.
Matthew L. Curry, Lee H. Ward, Anthony Skjellum, and Ron B.
Brightwell: Accelerating Reed-Solomon Coding in RAID Systems
With GPUs, Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on. IEEE, 2008.
Michael A. O'Shea: StrearnScale, <https://lists.ubuntu.corn/ar
chives/technical-board/20 l 5-April/002100 .html> Apr. 29, 2015.
Mike Masnik: Patent Troll Kills Open Source Project on Speeding
Up the Computation of Erasure Codes, <https://www.techdirt.com/

articles/20141115/07113 5 29155/patent-troll-kills-open-source-
proj ect-speedinq-up-computation-erasure-codes. shtml>, Nov. 19,
2014.
Plank; All About Erasure Codes:-Reed-Solomon Coding-LDPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL
Aug. 20, 2004; 52 sheets.
Robert Louis Cloud, Matthew L. Curry, H. Lee Ward, Anthony
Skjellum, Purushotharn Bangalore: Accelerating Lossless Data
Compression with GPUs. CoRR abs/1107.1525 (2011).
Roy Schestowitz: US Patent Reform (on Trolls Only) More or Less
Buried or Ineffective, <http:/ /techrights.org/2014/12/12/us-patent
reforrn/> Dec. 12, 2014.
Wei bin Sun, Robert Ricci, Matthew L. Curry: GPU store: harnessing
GPU computing for storage systems in the OS kernel. SYSTOR
2012: p. 6.
Xin Zhou, Anthony Skjellum, Matthew L. Curry: Abstract:
Extended Abstract for Evaluating Asynchrony in Gibraltar RAID's
GPU Reed-Solomon Coding Library. SC Companion 2012: pp.
1496-1497.
Xin Zhou, Anthony Skjellum, Matthew L. Curry: Poster: Evaluating
Asynchrony in Gibraltar RAID's GPU Reed-Solomon Coding
Library. SC Companion 2012: p. 1498.

* cited by examiner

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 177 of 350

1
0

\
F

IG
.

1

/2
5

20

I d
at

a
1,

 b
yt

e
1

1
1

da

ta
 1

,
by

te
 2

I

•
•

•
•

•
•

•
•

•
•

11

da

ta
 1

 ,
by

te
 L

da
ta

 2
,

by
te

 1

I d
at

a
2,

 b
yt

e
2

]
I

•
•

•
•

•
•

•
•

•
•

11

da

ta
 2

,
by

te
 L

• • •

I
da

ta
 N

,
by

te
 1

1

1

da

ta
 N

,
by

te
 2

1

1

·
•

•
•

•
•

•
•

•
•

1
1

da

ta
 N

,
by

te
 L

30

I
ch

ec
k

1 ,
 b

yt
e

1
1

1

ch

ec
k

1
, b

yt
e

2
1

1

·
·

·
•

•
•

•
•

•
•

1
1

ch

ec
k

1 ,
 b

yt
e

L
I

ch
e

ck
 2

,
by

te
 1

I
ch

ec
k

2,
 b

yt
e

2
1

1

•
•

•
•

•
•

•
•

•
•

1
1

ch

ec
k

2,
 b

yt
e

L
I

• • •

I
ch

e
ck

 M
,

by
te

 1
 1

1

ch

ec
k

M
,

by
te

 2
 1

1

•
•

•
•

•
•

•
•

•
•

1
1

ch

ec
k

M
,

by
te

 L
 I

~
/

35

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

 0 \,C
i d r.,;
_ ""'"
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 178 of 350

30
0 \

31
0

32
0

33
0

34
0

35
0

F
IG

.
2

R
e

d
u

ce
 f

ul
l

si
ze

 e
n

co
d

in
g

 m
a

tr
ix

 E
 to

 r
ed

uc
ed

 s
iz

e
 e

n
co

d
in

g
 m

a
tr

ix
 T

 b
y

re
m

o
vi

n
g

 t
h

e
 F

 f
ai

le
d

d
a

ta
 d

ri
ve

 r
ow

s
w

h
ile

 k
ee

pi
ng

 o
n

ly
 F

 s
u

rv
iv

in
g

 c
h

e
ck

d

ri
ve

 r
ow

s,
 m

o
vi

n
g

 t
h

e
 F

 fa
ile

d
d

a
ta

 d
ri

ve
 c

o
lu

m
n

s
to

 t
h

e
 r

ig
h

t

1
R

e
d

u
ce

 fu
ll

si
ze

 e
n

co
d

e
d

 d
a

ta
 m

a
tr

ix
 C

 t
o

re
du

ce
d

si
ze

 e
n

co
d

in
g

 m
a

tr
ix

 C
' b

y
re

m
o

vi
n

g
 t

h
e

 F
 lo

st
 d

a
ta

 r
ow

s
w

h
ile

 k
ee

pi
ng

 o
n

ly
 F

 s
u

rv
iv

in
g

 c
h

e
ck

 d
a

ta
 r

ow
s,

le

a
vi

n
g

 s
u

rv
iv

in
g

 d
a

ta
 X

 o
n

to
p

 a
nd

 s
u

rv
iv

in
g

 c
h

e
ck

 d
a

ta
 W

 o
n

bo
tt

om

I
S

p
lit

 e
n

co
d

in
g

 m
a

tr
ix

 T
 i

nt
o

fo
u

r
su

b
-m

a
tr

ic
e

s:

id
e

n
tit

y
m

a
tr

ix
 IK

 (
K

xK
)

in

u
p

p
e

r
le

ft,
 z

e
ro

 m
a

tr
ix

 O
 (

K
xF

)
in

 u
p

p
e

r
rig

ht
,

e
n

co
d

in
g

 m
a

tr
ix

 A
 (

F
xK

)
in

lo

w
e

r
le

ft,
 a

nd
 e

n
co

d
in

g
 m

a
tr

ix
 B

 (
F

xF
)

in
 l

o
w

e
r

ri
gh

t

l
In

ve
rt

 e
n

co
d

in
g

 m
a

tr
ix

 B
 t

o
p

ro
d

u
ce

 s
o

lu
tio

n
 m

a
tr

ix
 s

-1
;

lo
st

 d
a

ta
 Y

sa

tis
fie

s
th

e
 r

e
la

tio
n

sh
ip

 W
 =

 Ax
X

 +
 B

xY
,

so
 Y

 =
 s-

1
x

(W
 -

A
xX

)

1
R

e
co

n
st

ru
ct

 lo
st

 d
a

ta
 Y

 f
ro

m
 s

u
rv

iv
in

g
 d

a
ta

 X
,

su
rv

iv
in

g
 c

h
e

ck
 d

a
ta

 W
,

e
n

co
d

in
g

 m
a

tr
ix

 A
,

an
d

so
lu

tio
n

 m
a

tr
ix

 s
-1

 u
si

ng
 f

or
m

ul
a;

 r
e

g
n

e
ra

te
 a

n
y

lo
st

ch

e
ck

 d
a

ta
 f

ro
m

 s
u

rv
iv

in
g

 d
a

ta
 X

 a
nd

 r
ec

on
st

ru
ct

ed
 l

os
t

d
a

ta
 Y

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

N

0 \,C
i d r.,;
_ "'""
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 179 of 350

40
0
\

41
0

42
0

43
0

44
0

45
0

F
IG

.
3

In
iti

al
iz

e
(o

ne
 t

im
e)

 -
bu

ild
 t

w
o

lo
ok

up
 ta

bl
es

,
on

e
fo

r
lo

w
-o

rd
er

ni

bb
le

s,
 o

ne
 f

o
r

hi
gh

-o
rd

er
 n

ib
bl

es
,

ea
ch

 o
ne

 c
on

ta
in

in
g

25
6

en
tr

ie
s

o
f t

he
 1

6
po

ss
ib

le
 p

ro
du

ct
s

o
f o

ne
 n

ib
bl

e
an

d
on

e
fa

ct
or

l
P

re
pa

re
 (

on
ce

 p
er

 o
pe

ra
nd

 d
at

a)
 -

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om

m
em

or
y

in
to

 f
o

u
r

op
er

an
d

re
gi

st
er

s;
 t

he
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

w
ill

 l
ea

ve
 t

he
se

re

gi
st

er
s

al
on

e
to

 a
vo

id
 r

el
oa

di
ng

 f
ro

m
 m

em
or

y
on

 s
uc

ce
ed

in
g

ca
lls

l
E

xe
cu

te
 (

 o
nc

e
p

e
r

ca
ll)

 -
lo

ad
 t

he
 1

6
po

ss
ib

le
 h

ig
h-

or
de

r
ni

bb
le

 p
ro

du
ct

s
fr

om
 m

e
m

o
ry

 fo
r

th
e

cu
rr

en
t f

a
ct

o
r

in
to

 o
ne

 r
eg

is
te

r;
 r

ep
ea

t
fo

r
th

e
lo

w
-o

rd
er

ni

bb
le

 p
ro

du
ct

s
in

to
 a

n
o

th
e

r
re

gi
st

er
;

cl
ea

r
fo

u
r

ou
tp

ut
 r

eg
is

te
rs

l
E

xe
cu

te
 (

on
ce

 p
e

r
32

 b
yt

es
 o

f d
a

ta
)-

m
ov

e
tw

o
re

gi
st

er
s

o
f o

pe
ra

nd

da
ta

 (
by

te
s)

 i
nt

o
fo

ur
 r

eg
is

te
rs

 o
f s

cr
at

ch
 d

at
a

(n
ib

bl
es

)

l
M

ul
tip

ly
 (

on
ce

 p
e

r
32

 b
yt

es
 o

f d
at

a)
 -

us
e

P
S

H
U

F
B

 o
n

th
e

ni
bb

le
 d

at
a

in
 t

he
 s

cr
at

ch
 r

eg
is

te
rs

,
ac

cu
m

ul
at

in
g

th
e

co
rr

es
po

nd
in

g
lo

w
-o

rd
er

ni

bb
le

 a
nd

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

in
 t

he
 o

ut
pu

t
re

gi
st

er
s

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

~

0 \,C
i d r.,;
_ "'""
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 180 of 350

50
0 \

51
0

52
0

53
0

54
0

55
0

F
IG

.
4

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 g

en
er

at
e

ch
ec

k
da

ta
 f

o
r

co
ns

ec
ut

iv
e

gr
ou

ps

o
f c

or
re

sp
on

di
ng

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f 6
4-

by
te

 c
hu

nk
s

o
f o

pe
ra

nd
 d

at
a

fr
om

ea

ch
 o

f t
he

 b
lo

ck
s

o
f t

he
 s

tr
ip

e;
 l

oa
d

ne
xt

 6
4

by
te

s
o

f o
pe

ra
nd

 d
at

a
fo

r
fir

st

da
ta

 d
ri

ve
 fr

om
 m

em
or

y
an

d
in

iti
al

iz
e

pa
rit

y
ch

ec
k

dr
iv

e
ch

ec
k

da
ta

l
F

ir
st

 m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

 n
on

-
pa

ri
ty

 c
he

ck
 d

riv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 f
irs

t
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

no
n-

pa
ri

ty
 c

he
ck

 d
ri

ve
 c

he
ck

 d
at

a

l
S

ec
on

d
m

id
dl

e
lo

op
 -

pr
oc

es
s

o
th

e
r

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
e

r
da

ta

dr
iv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a
fr

om
 m

em
or

y
(p

re
se

rv
ed

 a
cr

os
s

in
n

e
r

lo
op

),
 a

dd
 t

hi
s

to
 p

ar
ity

 d
ri

ve
 c

he
ck

 d
at

a,
 a

nd
 c

al
l

in
ne

r
lo

op

l
In

ne
r

lo
op

 -
pr

oc
es

s
ne

xt
 d

at
a

dr
iv

e:

lo
op

 th
ro

ug
h

ea
ch

 o
f t

he
 n

on
-p

ar
ity

ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 n

ex
t

dr
iv

e'
s

64
 b

yt
es

 o
f

op
er

an
d

da
ta

 to
 u

pd
at

e
th

e
no

n-
pa

ri
ty

 c
he

ck
 d

ri
ve

 c
he

ck
 d

at
a

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

.i;
...

0 \,C
i d r.,;
_ "'""
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 181 of 350

60
0
\

61
0

62
0

63
0

64
0

F
IG

.
5

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 r

ec
on

st
ru

ct
 lo

st
 o

rig
in

al
 d

at
a

an
d

re
ge

ne
ra

te
 l

os
t

ch
e

ck
 d

at
a

fo
r

m
ul

tip
le

 6
4-

by
te

 c
hu

nk
s

ac
ro

ss
 a

 s
tr

ip
e

o
f d

at
a

l
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f 6
4-

by
te

 c
hu

nk
s

o
f o

pe
ra

nd
 d

at
a;

 l
oa

d
ne

xt

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

fo
r

fir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e
fr

om
 m

em
or

y

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e:

lo

op
 t

hr
ou

gh
 e

ac
h

o
f t

he

su
rv

iv
in

g
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

ir
st

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

to
 i

ni
tia

liz
e

pa
rt

ia
l

ch
ec

k
da

ta
 A

xX

l
S

ec
on

d
m

id
dl

e
lo

op
 -

in
iti

al
iz

e
fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 i
ni

tia
liz

e
th

e
ir

 c
he

ck

da
ta

 b
as

ed
 o

n
th

e
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e'

s
64

 b
yt

es
 o

f o
pe

ra
nd

 d
at

a

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

U
l

0 \,C
i d r.,;
_ ""'"
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 182 of 350

60
0
\

65
0

66
0

67
0

68
0

F
IG

.
6

.

T
hi

rd
 m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
su

rv
iv

in
g

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
er

 s
ur

vi
vi

ng
 d

at
a

dr
iv

es
,

lo
ad

 n
ex

t 6
4

by
te

s
o

f
op

er
an

d
da

ta
 fr

om
 m

em
or

y
(p

re
se

rv
ed

 a
cr

os
s

in
ne

r
lo

op
s)

l
F

irs
t

in
ne

r
lo

op
 -

pr
oc

es
s

ne
xt

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
o

f t
he

su

rv
iv

in
g

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 n
ex

t s
ur

vi
vi

ng
 d

at
a

dr
iv

e'
s

64
 b

yt
es

 o
f o

pe
ra

nd
 d

at
a

to
 u

pd
at

e
pa

rt
ia

l
ch

ec
k

da
ta

 A
xX

l
S

ec
on

d
in

ne
r

lo
op

 -
up

da
te

 fa
ile

d
ch

ec
k

dr
iv

e
da

ta
:

fo
r

ea
ch

 o
f t

he
 fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

ec
k

da
ta

 b
as

ed

on
 t

he
 n

ex
t

su
rv

iv
in

g
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f o

pe
ra

nd
 d

at
a

l
F

ou
rt

h
m

id
dl

e
lo

op
 -

ad
d

su
rv

iv
in

g
ch

ec
k

da
ta

 t
o

pr
od

uc
e

W
 -

A
xX

:
lo

op
 t

hr
ou

gh
 e

ac
h

o
f t

he
 s

ur
vi

vi
ng

 c
he

ck
 d

riv
es

,
ca

lli
ng

 p
ar

al
le

l a
d

d
e

r
to

ad

d
th

e
ir

 6
4

by
te

s
o

f d
at

a
to

 p
ar

tia
l

ch
ec

k
da

ta
 A

xX

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

O
'I

0 \,C
i d r.,;
_ "'""
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 183 of 350

60
0 \

69
0

70
0

71
0

72
0

F
IG

.
7

F
ift

h
m

id
dl

e
lo

op
 -

lo
st

 o
rig

in
al

 d
at

a
Y:

in

 c
om

bi
na

tio
n

w
ith

 t
hi

rd
 i

nn
er

 lo
op

,
ca

lc
ul

at
e

s-
1

x
(W

 -
A

xX
);

st
ar

t
by

 i
ni

tia
liz

in
g

ne
xt

 r
ow

 o
f Y

 to
 f

ir
st

co

m
bi

na
tio

n
o

f s
ol

ut
io

n
m

at
rix

 s
-1

 a
nd

 l
os

t
pa

rt
ia

l
ch

ec
k

da
ta

 W
 -

A
xX

l
T

hi
rd

 i
nn

er
 lo

op
 -

co
m

pl
et

e
ne

xt
 r

ow
 o

f Y
 b

y
ad

di
ng

 in
 p

ro
du

ct
 o

f n
ex

t f
a

ct
o

r
o

f s
-1

 a
nd

 W
 -

A
xX

 (
us

in
g

pa
ra

lle
l

lo
ok

up
 m

ul
tip

lie
r)

;
th

is
 r

ec
on

st
ru

ct
s

ne
xt

fa

ile
d

dr
iv

e'
s

lo
st

 d
at

a,
 w

hi
ch

 c
an

 b
e

st
or

ed
 (

if
de

si
re

d)

I +

F
ou

rt
h

in
ne

r
lo

op
 -

up
da

te
 fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

 f
ai

le
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
e

ir
 c

he
ck

 d
at

a
ba

se
d

on
 t

he
 n

ex
t f

ai
le

d
da

ta
 d

ri
ve

's
 6

4
by

te
s

o
f r

ec
on

st
ru

ct
ed

 l
os

t d
at

a

l
S

ix
th

 m
id

dl
e

lo
op

 -
fo

r
ea

ch
 f

ai
le

d
ch

ec
k

dr
iv

e,

st
or

e
ne

w
ly

 g
en

er
at

ed
 c

he
ck

 d
at

a
(i

f d
es

ir
ed

)

e • 0
0

• ~

~

~

~
 =

~

2' ? '"
\,C

i

N

0 Q
O

rJ
J = ('D ('

D

...,.
_

-...
.J

0 \,C
i d r.,;
_ "'""
' '"=
 =

=

w

w

U
I

0
0

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 184 of 350

U.S. Patent

co .
(.')

LL

0
0
~

I

Jun.19,2018

:J ~ a..I
() +

+--+

:J ~ +--+
a..I
() +

lo ~--
~
/

0
N
~

""

V

I'-

:J ~
a..I
() +

:J ~
CLI
() +

+-+

+-+

Sheet 8 of 9 US 10,003,358 B2

~

(])
:J ~

0 a..I
() +

+--+

N
....I

0 0 C'0 +--+ :J ~ LC)
~ CLI ~

' () +

~
0 0 E -(])

~

:J ~
CLI

~ () +
N
....I

0
C'0 ~
~ :J ~

CLI
0 () +
(])

0

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 185 of 350

U.S. Patent

0)

(9
LL

I
0
0
N

Jun.19,2018

0
('I')
N

0
~

N

0
('I')
N

Sheet 9 of 9

0
~

N

0
('I')
N

US 10,003,358 B2

0
~

N

0
('I')
N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 186 of 350

US 10,003,358 B2
1

ACCELERATED ERASURE CODING
SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 14/852,438, filed on Sep. 11, 2015, which is a
continuation of U.S. patent application Ser. No. 14/223,740,
filed on Mar. 24, 2014, now U.S. Pat. No. 9,160,374, issued
on Oct. 13, 2015, which is a continuation of U.S. patent
application Ser. No. 13/341,833, filed on Dec. 30, 2011, now
U.S. Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire
contents of each of which are expressly incorporated herein
by reference.

BACKGROUND

Field
Aspects of embodiments of the present invention are

directed toward an accelerated erasure coding system and
method.

Description of Related Art
An erasure code is a type of error-correcting code (ECC)

useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken

2
Erasure codes (or more specifically, erasure coding sys

tems) are generally regarded as impractical for values of M
larger than 1 (e.g., RAIDS systems, such as parity drive
systems) or 2 (RAID6 systems), that is, for more than one or

5 two check drives. For example, see H. Peter Anvin, "The
mathematics of RAID-6," the entire content of which is
incorporated herein by reference, p. 7, "Thus, in 2-disk
degraded mode, performance will be very slow. However, it
is expected that that will be a rare occurrence, and that

10 performance will not matter significantly in that case." See
also Robert Maddock et al., "Surviving Two Disk Failures,"
p. 6, "The main difficulty with this technique is that calcu
lating the check codes, and reconstructing data after failures,

15
is quite complex. It involves polynomials and thus multi
plication, and requires special hardware, or at least a signal
processor, to do it at sufficient speed." In addition, see also
James S. Plank, "All About Erasure Codes: -Reed-Solo
mon Coding-LDPC Coding," slide 15 (describing compu-

20 tational complexity of Reed-Solomon decoding), "Bottom
line: When n & m grow, it is brutally expensive." Accord
ingly, there appears to be a general consensus among experts
in the field that erasure coding systems are impractical for
RAID systems for all but small values of M (that is, small

25 numbers of check drives), such as 1 or 2.
Modem disk drives, on the other hand, are much less

reliable than those envisioned when RAID was proposed.
This is due to their capacity growing out of proportion to
their reliability. Accordingly, systems with only a single

30 check disk have, for the most part, been discontinued in
favor of systems with two check disks.

up into N equal-sized blocks, or data blocks, for some
positive integer N. The data for each stripe is thus recon
structable by putting the N data blocks together. However, to
handle situations where one or more of the original N data
blocks gets lost, erasure codes also encode an additional M
equal-sized blocks (called check blocks or check data) from 35

the original N data blocks, for some positive integer M.

In terms of reliability, a higher check disk count is clearly
more desirable than a lower check disk count. If the count
of error events on different drives is larger than the check
disk count, data may be lost and that cannot be reconstructed
from the correctly functioning drives. Error events extend
well beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is
a service event on a RAID system where the operator

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total of N+M equal-sized
blocks after encoding. The N+M blocks may, for example,
be transmitted to a receiver as N+M separate packets, or
written to N+M corresponding disk drives. For ease of
description, all N+M blocks after encoding will be referred
to as encoded blocks, though some (for example, N of them)
may contain unencoded portions of the original data. That is,
the encoded data refers to the original data together with the
check data.

40 mistakenly replaces the wrong drive or, worse yet, replaces
a good drive with a broken drive. In the absence of any
generally accepted methodology to train, certify, and mea
sure the effectiveness of service technicians, these types of
events occur at an unknown rate, but certainly occur. The

45 foolproof solution for protecting data in the face of multiple
error events is to increase the check disk count.

The M check blocks build redundancy into the system, in
a very efficient manner, in that the original data (as well as
any lost check data) can be reconstructed if any N of the
N+M encoded blocks are received by the receiver, or if any 50

N of the N+M disk drives are functioning correctly. Note
that such an erasure code is also referred to as "optimal." For
ease of description, only optimal erasure codes will be
discussed in this application. In such a code, up to M of the
encoded blocks can be lost, (e.g., up to M of the disk drives 55

can fail) so that if any N of the N+M encoded blocks are
received successfully by the receiver, the original data (as
well as the check data) can be reconstructed. N/(N+M) is
thus the code rate of the erasure code encoding (i.e., how
much space the original data takes up in the encoded data). 60

Erasure codes for select values of N and M can be imple
mented on RAID systems employing N+M (disk) drives by
spreading the original data among N "data" drives, and using
the remaining M drives as "check" drives. Then, when any
N of the N+M drives are correctly functioning, the original 65

data can be reconstructed, and the check data can be
regenerated.

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding
system that, for byte-level RAID processing (where each
byte is made up of 8 bits), performs well even for values of
N+M as large as 256 drives (for example, N=127 data drives
and M=129 check drives). Further aspects provide for a
single precomputed encoding matrix (or master encoding
matrix) s of size MmaxxNmax, or CNmax+Mmax)xNmax or
(Mmax-l)xNmax, elements (e.g., bytes), which can be used,
for example, for any combination ofN sN max data drives and
MsMmax check drives such that Nmax+Mmaxs256 (e.g.,
Nmax=l27 andMmax=l29, orNm==63 andMm==193). This
is an improvement over prior art solutions that rebuild such
matrices from scratch every time N or M changes (such as
adding another check drive). Still higher values of N and M
are possible with larger processing increments, such as 2
bytes, which affords up to N+M=65,536 drives (such as
N=32,767 data drives and M=32,769 check drives).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 187 of 350

US 10,003,358 B2
3 4

main memory, a check matrix for holding check data in the
main memory, an encoding matrix for holding first factors in
the main memory, and a thread for executing on the pro
cessing core. The first factors are for encoding the original

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to
create larger groups of data drives. For example, systems
with two checks disks are typically limited to group sizes of
10 or fewer drives for reliability reasons. With a higher
check disk count, larger groups are available, which can lead
to fewer overall components for the same unit of storage and
hence, lower cost.

5 data into the check data. The thread includes a parallel
multiplier for concurrently multiplying multiple data entries
of a matrix by a single factor; and a first sequencer for
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier to generate the check

10 data.
Additional aspects of embodiments of the present inven

tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up
to 127 data drives and up to 128 (non-parity) check drives, 15

for a total ofup to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as 20

single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed- 25

Solomon codes. While known solution matrix algorithms
compute an NxN solution matrix (see, for example, J. S.
Plank, "A tutorial on Reed-Solomon coding for fault-toler
ance in RAID-like systems," Software-Practice & Expe
rience, 27(9):995-1012, September 1997, andJ. S. Plank and 30

Y. Ding, "Note: Correction to the 1997 tutorial on Reed
Solomon coding," Technical Report CS-03-504, University
of Tennessee, April 2003), requiring O(N3

) operations,
regardless of the number of failed data drives, aspects of
embodiments of the present invention compute only an FxF 35

solution matrix, where F is the number of failed data drives.
The overhead for computing this FxF solution matrix is
approximately F3/3 multiplication operations and the same
number of addition operations. Not only is FsN, in almost
any practical application, the number of failed data drives F 40

is considerably smaller than the number of data drives N.
Accordingly, the fast solution matrix algorithm is consider
ably faster than any known approach for practical values of
F and N.

The first sequencer may be configured to access each
entry of the data matrix from the main memory at most once
while generating the check data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data by dividing the data matrix into a
plurality of data matrices, dividing the check matrix into a
plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows
and the first number of colunms.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to
add rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data and including a
third number of rows. The erasure coding system may
further include a solution matrix for holding second factors
in the main memory. The second factors are for decoding the
check data into the lost original data using the surviving
original data and the first factors.

The solution matrix may include the third number of rows
and the third number of colunms.

The solution matrix may further include an inverted said
third number by said third number sub-matrix of the encod
ing matrix.

Still further aspects are directed toward fast implementa- 45

tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are
directed toward fetching the surviving (original and check)
data a minimum number of times (that is, at most once) to
carry out the data reconstruction. Some of these aspects are
directed toward efficient implementations that can maximize

The erasure coding system may further include a first list
of rows of the data matrix corresponding to the surviving

50 data matrix, and a second list of rows of the data matrix
corresponding to the lost data matrix.

or significantly leverage the available parallel processing
power of multiple cores working concurrently on the check
data generation and the lost data reconstruction. Existing
implementations do not attempt to accelerate these aspects
of the data generation and thus fail to achieve a comparable
level of performance.

In an exemplary embodiment of the present invention, a
system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a
main memory; and a non-volatile storage medium (for
example, a disk drive, or flash memory) for storing the
computer instructions. The processing core, the storage
medium, and the computer instructions are configured to
implement an erasure coding system. The erasure coding
system includes a data matrix for holding original data in the

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost

55 original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for
decoding the check data into the lost original data using the
surviving original data and the first factors. The thread may

60 further include a second sequencer for ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel
multiplier to reconstruct the lost original data.

The second sequencer may be further configured to access
65 each entry of the surviving data matrix from the main

memory at most once while reconstructing the lost original
data.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 188 of 350

US 10,003,358 B2
5

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original
data by dividing the data matrix into a plurality of data 5

matrices; dividing the surviving data matrix into a plurality
of surviving data matrices; dividing the lost data matrix into
a plurality of lost data matrices; dividing the check matrix
into a plurality of check matrices; assigning corresponding
ones of the data matrices, the surviving data matrices, the 10

lost data matrices, and the check matrices to the threads; and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices and

15
to concurrently reconstruct portions of the lost original data
corresponding to the lost data matrices from respective ones
of the surviving data matrices and the check matrices.

The check matrix may be configured to be divided into a
surviving check matrix for holding surviving check data of 20

the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be
configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost 25

check data.
The second sequencer may be further configured to recon

struct the lost original data concurrently with regenerating
the lost check data.

6
Consecutive instructions to process each of the units of

the data may access separate ones of the data registers to
permit concurrent execution of the consecutive instructions
by the processing core.

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16
byte-sized entries using the PSHUFB (Packed Shuffle Bytes)
instruction.

The parallel multiplier may be further configured to
receive an input operand in four of the data registers, and
return with the input operand intact in the four of the data
registers.

According to another exemplary embodiment of the pres
ent invention, a method of accelerated error-correcting code
(ECC) processing on a computing system is provided. The
computing system includes a non-volatile storage medium
(such as a disk drive or flash memory), a processing core for
accessing instructions and data from a main memory, and a
computer program including a plurality of computer instruc
tions for implementing an erasure coding system. The
method includes: storing the computer program on the
storage medium; executing the computer instructions on the
processing core; arranging original data as a data matrix in
the main memory; arranging first factors as an encoding
matrix in the main memory, the first factors being for
encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and
generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a matrix by

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main
memory at most once while reconstructing the lost original
data and regenerating the lost check data.

30 a single factor. The generating of the check data includes
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier.

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 35

lost original data from the main memory.
The processing core may include a plurality of processing

cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data, reconstructing the lost original 40

data, and regenerating the lost check data by: dividing the
data matrix into a plurality of data matrices; dividing the
surviving data matrix into a plurality of surviving data
matrices; dividing the lost data matrix into a plurality oflost
data matrices; dividing the check matrix into a plurality of 45

check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check
matrix into a plurality of lost check matrices; assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the 50

surviving check matrices, and the lost check matrices to the
threads; and assigning the threads to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost 55

original data corresponding to the lost data matrices from
respective ones of the surviving data matrices and the
surviving check matrices, and to concurrently regenerate
portions of the lost check data corresponding to the lost
check matrices from respective ones of the surviving data 60

matrices and respective portions of the reconstructed lost
original data.

The processing core may include 16 data registers. Each
of the data registers may include 16 bytes. The parallel
multiplier may be configured to process the data in units of 65

at least 64 bytes spread over at least four of the data registers
at a time.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into
a plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec
tive ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost
original data using the surviving original data and the first
factors; and reconstructing the lost original data by ordering
operations through the surviving data matrix, the encoding
matrix, the check matrix, and the solution matrix using the
parallel multiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data and the reconstructing of the
lost original data by: dividing the data matrix into a plurality
of data matrices; dividing the surviving data matrix into a

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 189 of 350

US 10,003,358 B2
7 8

memory; arranging first factors as an encoding matrix in the
main memory, the first factors being for encoding the
original data into check data, the check data being arranged
as a check matrix in the main memory; and generating the

plurality of surviving data matrices; dividing the lost data
matrix into a plurality of lost data matrices; dividing the
check matrix into a plurality of check matrices; and assign
ing corresponding ones of the data matrices, the surviving
data matrices, the lost data matrices, and the check matrices
to the processing cores to concurrently generate portions of
the check data corresponding to the check matrices from
respective ones of the data matrices and to concurrently
reconstruct portions of the lost original data corresponding

5 check data using a parallel multiplier for concurrently mul
tiplying multiple data entries of a matrix by a single factor.
The generating of the check data includes ordering opera
tions through the data matrix and the encoding matrix using

to the lost data matrices from respective ones of the surviv- 10

ing data matrices and the check matrices.
The method may further include: dividing the check

matrix into a surviving check matrix for holding surviving
check data of the check data, and a lost check matrix
corresponding to lost check data of the check data; and 15

regenerating the lost check data by ordering operations
through the surviving data matrix, the reconstructed lost
original data, and the encoding matrix using the parallel
multiplier.

The reconstructing of the lost original data may take place 20

concurrently with the regenerating of the lost check data.

the parallel multiplier.
The generating of the check data may include accessing

each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured
to perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data
matrices and the check matrices to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices.

The computer instructions may be further configured to
perform the steps of: dividing the data matrix into a surviv-

The reconstructing of the lost original data and the
regenerating of the lost check data may include accessing
each entry of the surviving data matrix from the main
memory at most once.

The regenerating of the lost check data may take place
without accessing the reconstructed lost original data from
the main memory.

25 ing data matrix for holding surviving original data of the
original data, and a lost data matrix corresponding to lost
original data of the original data; arranging second factors as
a solution matrix in the main memory, the second factors
being for decoding the check data into the lost original data The processing core may include a plurality of processing

cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices; 35

dividing the surviving data matrix into a plurality of sur
viving data matrices; dividing the lost data matrix into a
plurality oflost data matrices; dividing the check matrix into

30 using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel
multiplier.

The computer instructions may be further configured to
perform the steps of: dividing the check matrix into a
surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check a plurality of check matrices; dividing the surviving check

matrix into a plurality of surviving check matrices; dividing
the lost check matrix into a plurality oflost check matrices;
and assigning corresponding ones of the data matrices, the
surviving data matrices, the lost data matrices, the check
matrices, the surviving check matrices, and the lost check
matrices to the processing cores to concurrently generate
portions of the check data corresponding to the check
matrices from respective ones of the data matrices, to
concurrently reconstruct portions of the lost original data
corresponding to the lost data matrices from respective ones

40 data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data and the
regenerating of the lost check data may include accessing

45 each entry of the surviving data matrix from the main

of the surviving data matrices and the surviving check 50

matrices, and to concurrently regenerate portions of the lost
check data corresponding to the lost check matrices from
respective ones of the surviving data matrices and respective
portions of the reconstructed lost original data.

According to yet another exemplary embodiment of the 55

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a
digital video disk (DVD), flash memory, a universal serial
bus (USB) drive, etc.) containing a computer program
including a plurality of computer instructions for performing 60

accelerated error-correcting code (ECC) processing on a
computing system is provided. The computing system
includes a processing core for accessing instructions and
data from a main memory. The computer instructions are
configured to implement an erasure coding system when 65

executed on the computing system by performing the steps
of: arranging original data as a data matrix in the main

memory at most once.
The processing core may include a plurality of processing

cores. The computer instructions may be further configured
to perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the
regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviv
ing data matrix into a plurality of surviving data matrices;
dividing the lost data matrix into a plurality of lost data
matrices; dividing the check matrix into a plurality of check
matrices; dividing the surviving check matrix into a plurality
of surviving check matrices; dividing the lost check matrix
into a plurality of lost check matrices; and assigning corre
sponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the
surviving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct
portions of the lost original data corresponding to the lost
data matrices from respective ones of the surviving data
matrices and the surviving check matrices, and to concur-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 190 of 350

US 10,003,358 B2
9

rently regenerate portions of the lost check data correspond
ing to the lost check matrices from respective ones of the
surviving data matrices and respective portions of the recon
structed lost original data.

10
simplification and ease of description and implementation,
the described embodiments in the present application
assume a consistent block size (L bytes) and distribution of

By providing practical and efficient systems and methods 5

for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical 10

can be implemented with accelerated performance signifi
cantly better than any prior art solution.

blocks among the data drives between stripes. Further, all
variables, such as the number of data drives N, will be
assumed to be positive integers unless otherwise specified.
In addition, since the N=l case reduces to simple data
mirroring (that is, copying the same data drive multiple
times), it will also be assumed for simplicity that N;;,;2
throughout.

The N data blocks from each stripe are combined using
arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data
(check blocks), and the M check blocks written across M BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifi
cation, illustrate exemplary embodiments of the present
invention and, together with the description, serve to explain
aspects and principles of the present invention.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

FIG. 3 shows an exemplary method for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention.

FIGS. 5-7 show an exemplary method for sequencing the
parallel lookup multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion.

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompa
nying drawings. In the drawings, like reference numerals
refer to like elements throughout.

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding
systems for the storage and retrieval of digital data distrib
uted across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes,
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate
drives (the data drives), one block per data drive.

In addition, for ease of description, blocks will be
assumed to be composed ofL elements, each element having

15
drives (the check drives) separate from the N data drives,
one block per check drive. These combinations can take
place, for example, when new (or changed) data is written to
(or back to) disk. Accordingly, each of the N+M drives (data
drives and check drives) stores a similar amount of data,
namely one block for each stripe. As the processing of

20 multiple stripes is conceptually similar to the processing of
one stripe (only processing multiple blocks per drive instead
of one), it will be further assumed for simplification that the
data being stored or retrieved is only one stripe in size unless
otherwise indicated. It will also be assumed that the block

25 size L is sufficiently large that the data can be consistently
divided across each block to produce subsets of the data that
include respective portions of the blocks (for efficient con
current processing by different processing units).

FIG. 1 shows an exemplary stripe 10 of original and check
30 data according to an embodiment of the present invention.

Referring to FIG. 1, the stripe 10 can be thought of not
only as the original N data blocks 20 that make up the
original data, but also the corresponding M check blocks 30
generated from the original data (that is, the stripe 10

35
represents encoded data). Each of the N data blocks 20 is
composed of L bytes 25 (labeled byte 1, byte 2, ... , byte
L), and each of the M check blocks 30 is composed of L
bytes 35 (labeled similarly). In addition, check drive 1, byte
1, is a linear combination of data drive 1, byte 1; data drive
2, byte 1; ... ; data drive N, byte 1. Likewise, check drive

40 1, byte 2, is generated from the same linear combination
formula as check drive 1, byte 1, only using data drive 1,
byte 2; data drive 2, byte 2; ... ; data drive N, byte 2. In
contrast, check drive 2, byte 1, uses a different linear
combination formula than check drive 1, byte 1, but applies

45 it to the same data, namely data drive 1, byte 1; data drive
2, byte 1; ... ; data drive N, byte 1. In this fashion, each of
the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular

50 check drive 30.

55

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. Chas two sub-matrices, namely original
data D on top and check data Jon bottom. That is,

Du D12 D1L

D21 D22 D2L

a fixed size, say 8 bits or one byte. An element, such as a
byte, forms the fundamental unit of operation for the RAID
processing, but the invention is just as applicable to other
size elements, such as 16 bits (2 bytes). For simplification, 60

unless otherwise indicated, elements will be assumed to be
one byte in size throughout the description that follows, and
the term "element(s)" and "byte(s)" will be used synony
mously.

C= [~]= DN! DN2 DNL

lu 112 l1L

h1 h2 hL

JM! lM2]ML

where D,rbyte j from data drive i and J, =byte j from check
drive i. Thus, the rows of encoded data uC represent blocks,
while the colunms represent corresponding bytes of each of
the drives.

Conceptually, different stripes can distribute their data 65

blocks across different combinations of drives, or have
different block sizes or numbers of blocks, etc., but for

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 191 of 350

US 10,003,358 B2
11

Further, in case of a disk drive failure of one or more
disks, the arithmetic operations are designed in such a
fashion that for any stripe, the original data (and by exten
sion, the check data) can be reconstructed from any com
bination ofN data and check blocks from the corresponding 5

N+M data and check blocks that comprise the stripe. Thus,
RAID provides both parallel processing (reading and writing
the data in stripes across multiple drives concurrently) and
fault tolerance (regeneration of the original data even if as
many as M of the drives fail), at the computational cost of 10

generating the check data any time new data is written to
disk, or changed data is written back to disk, as well as the
computational cost of reconstructing any lost original data
and regenerating any lost check data after a disk failure.

For example, for M=l check drive, a single parity drive 15
can function as the check drive (i.e., a RAID4 system). Here,
the arithmetic operation is bitwise exclusive OR of each of
the N corresponding data bytes in each data block of the
stripe. In addition, as mentioned earlier, the assignment of
parity blocks from different stripes to the same drive (i.e.,
RAID4) or different drives (i.e., RAIDS) is arbitrary, but it 20

does simplify the description and implementation to use a
consistent assignment between stripes, so that will be
assumed throughout. Since M=l reduces to the case of a
single parity drive, it will further be assumed for simplicity
that M;;,;2 throughout. 25

For such larger values ofM, Galois field arithmetic is used
to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2
(such as 2i numbers of elements, includes two fundamental
operations: (1) addition (which is just bitwise exclusive OR,
as with the parity drive-only operations for M=l), and (2)
multiplication. While Galois field (GF) addition is trivial on
standard processors, GF multiplication is not. Accordingly,
a significant component of RAID performance for M;;,;2 is
speeding up the performance ofGF multiplication, as will be
discussed later. For purposes of description, GF addition will
be represented by the symbol+throughout while GF multi
plication will be represented by the symbolxthroughout.

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations

30

35

(over GF arithmetic) of the N data drives of original data, 40

one linear combination (i.e., a GF sum of N terms, where
each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective
data drive) for each check drive, as applied to respective
bytes in each block. One such linear combination can be a 45

simple parity, i.e., entirely GF addition (all factors equal 1),
such as a GF sum of the first byte in each block of original
data as described above.

12
factors for the check drives (where each of the M rows
corresponds to one of the M check drives and each of the N
colunms corresponds to one of the N data drives).

Thus,

0 0

0 0

£=[~]= 0 0

Hu H12 H1N

H21 H22 hN

HM! HM2 HMN

where H,rfactor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the colunms
represent corresponding bytes of each of the drives. In
addition, check factors H, original data D, and check data J
are related by the formula J=HxD (that is, matrix multipli
cation), or

lu 112 l1L Hu H12 H1N

h1 h2 hL H21 H22 H2N
X

JM! lM2]ML HM! HM2 HMN

Du D12 D1L

D21 D22 D2L

DN1 DN2 DNL

where J11=(H11 xD11)+(H12xD21)+ ... +(H1NxDN1), J12=
(H11 xD12)+(H12xD22)+ ... +ANxDN2), J21 =(H21 xD11)+
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+
(Hi2xD2)+ ... +(H,NxDNf) for lsisM and lsjsL.

Such an encoding matrix E is also referred to as an
information dispersal matrix (IDM). It should be noted that
matrices such as check drive encoding matrix H and identity
matrix IN also represent encoding matrices, in that they
represent matrices of factors to produce linear combinations
over GF arithmetic of the original data. In practice, the
identity matrix IN is trivial and may not need to be con
structed as part of the IDM E. Only the encoding matrix E,
however, will be referred to as the IDM. Methods ofbuilding

50 an encoding matrix such as IDM E or check drive encoding
matrix Hare discussed below. In further embodiments of the

The remaining M-1 linear combinations include more
involved calculations that include the nontrivial GF multi
plication operations (e.g., performing a GF multiplication of
the first byte in each block by a corresponding factor for the
respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or infor-

55
mation dispersal matrix (IDM)) E of the different factors,
one factor for each combination of (data or check) drive and
data drive, with one row for each of the N+M data and check
drives and one colunm for each of the N data drives. The
IDM E can also be represented as

where IN represents the NxN identity matrix (i.e., the origi
nal (unencoded) data) and H represents the MxN matrix of

present invention (as discussed further in Appendix A), such
(N+M)xN (or MxN) matrices can be trivially constructed
(or simply indexed) from a master encoding matrix S, which
is composed of (Nmax+Mmax)xNmax (or MmaxxNmax) bytes
or elements, where Nmax+Mmax =256 (or some other power
of two) and NsNmax and MsMmax· For example, one such
master encoding matrix S can include a 127x127 element
identity matrix on top (for up to Nmax=l27 data drives), a

60 row of 1 's (for a parity drive), and a 128x127 element
encoding matrix on bottom (for up to Mmax=l29 check
drives, including the parity drive), for a total of Nmax+
Mmax =256 drives.

The original data, in tum, can be represented by an N xL
65 matrix D of bytes, each of the N rows representing the L

bytes of a block of the corresponding one of the N data
drives. If C represents the corresponding (N+M)xL matrix

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 192 of 350

US 10,003,358 B2
13

of encoded bytes (where each of the N+M rows corresponds
to one of the N+M data and check drives), then C can be
represented as Ex

14
cessing of the different sets of surviving and failed drives to
be done more efficiently than existing solutions, which use,
for example, bit vectors that have to be examined one bit at
a time and often include large numbers of consecutive zeros

5 (or ones) when ones (or zeros) are the bit values of interest.
FIG. 2 shows an exemplary method 300 for reconstruct

ing lost data after a failure of one or more drives according
to an embodiment of the present invention.

While the recovery process is described in more detail where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L check bytes of the corre
sponding one of the M check drives. It should be noted that
in the relationships such as C=ExD or J=HxD, x represents
matrix multiplication over the Galois field (i.e., GF multi
plication and GF addition being used to generate each of the

10 later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the
surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

entries in, for example, C or J).
15

In exemplary embodiments of the present invention, the
first row of the check drive encoding matrix H (or the
(N+lr row of the IDM E) can be all l's, representing the
parity drive. For linear combinations involving this row, the
GF multiplication can be bypassed and replaced with a GF
sum of the corresponding bytes since the products are all 20

trivial products involving the identity element 1. Accord
ingly, in parity drive implementations, the check drive
encoding matrix H can also be thought of as an (M-l)xN
matrix of non-trivial factors (that is, factors intended to be
used in GF multiplication and not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back
to) disk. The other significant event for RAID processing is
when one or more of the drives fail (data or check drives),

25

or for whatever reason become unavailable. Assume that in 30
such a failure scenario, F data drives fail and G check drives
fail, where F and G are nonnegative integers. If F=0, then
only check drives failed and all of the original data D
survived. In this case, the lost check data can be regenerated
from the original data D.

35
Accordingly, assume at least one data drive fails, that is,

F2:l, and let K=N-F represent the number of data drives that
survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost
original data. That is, Xis a KxL matrix composed of the K
rows of the original data matrix D corresponding to the K 40

surviving data drives, while Y is an FxL matrix composed of
the F rows of the original data matrix D corresponding to the
F failed data drives.

45

thus represents a permuted original data matrix D' (that is,
the original data matrix D, only with the surviving original 50

data X on top and the lost original data Y on bottom. It
should be noted that once the lost original data Y is recon
structed, it can be combined with the surviving original data
X to restore the original data D, from which the check data
for any of the failed check drives can be regenerated.

55
It should also be noted that M-G check drives survive. In

order to reconstruct the lost original data Y, enough (that is,

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an N xN reduced encoding matrix T (also referred to as
the transformed IDM) including the K surviving data
drive rows and any F of the M-G surviving check drive
rows (for instance, the first F surviving check drive
rows, as these will include the parity drive if it sur
vived; recall that FsM-G was assumed). In addition,
the colunms of the reduced encoding matrix T are
rearranged so that the K colunms corresponding to the
K surviving data drives are on the left side of the matrix
and the F colunms corresponding to the F failed drives
are on the right side of the matrix. (Step 320) These F
surviving check drives selected to rebuild the lost
original data Y will henceforth be referred to as "the F
surviving check drives," and their check data W will be
referred to as "the surviving check data," even though
M-G check drives survived. It should be noted that W
is an FxL matrix composed of the F rows of the check
data J corresponding to the F surviving check drives.
Further, the surviving encoded data can be represented
as a sub-matrix C' of the encoded data C. The surviving
encoded data C' is an N xL matrix composed of the
surviving original data X on top and the surviving
check data Won bottom, that is,

2. (Step 330) Splitting the reduced encoding matrix Tinto
four sub-matrices (that are also encoding matrices): (i)
a KxK identity matrix IK (corresponding to the K
surviving data drives) in the upper left, (ii) a KxF
matrix O of zeros in the upper right, (iii) an FxK
encoding matrix A in the lower left corresponding to
the F surviving check drive rows and the K surviving
data drive colunms, and (iv) an FxF encoding matrix B
in the lower right corresponding to the F surviving
check drive rows and the F failed data drive columns.
Thus, the reduced encoding matrix T can be repre
sented as

3. (Step 340) Calculating the inverse B-1 of the FxF
encoding matrix B. As is shown in more detail in
Appendix A, C'=TxD', or

at least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it
follows that (N-F)+(M-G)2:N must be true to reconstruct
the lost original data Y. This is equivalent to F+GsM (i.e., 60

no more than F+G drives fail), or FsM-G (that is, the
number of failed data drives does not exceed the number of
surviving check drives). It will therefore be assumed for
simplicity that FsM-G.

65 which is mathematically equivalent to W=AxX+BxY. B-1 is
the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B-1 thus allows the lost

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and
check drives (that is, four separate lists). This allows pro-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 193 of 350

US 10,003,358 B2
15

original data Y to be reconstructed from the encoding
matrices A and B along with the surviving original data X
and the surviving check data W.

The FxK encoding matrix A represents the original encod
ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of
A represents a different one of the F surviving check drives,
while each of the K colunms of A represents a different one
of the K surviving data drives. Thus, A provides the encod
ing factors needed to encode the original data for the
surviving check drives, but only applied to the surviving
data drives (that is, the surviving partial check data). Since
the surviving original data X is available, A can be used to
generate this surviving partial check data.

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F
surviving check drives and the F failed data drives. That is,
the F rows of B correspond to the same F rows of A, while
each of the F colunms of B represents a different one of the
F failed data drives. Thus, B provides the encoding factors
needed to encode the original data for the surviving check
drives, but only applied to the failed data drives (that is, the
lost partial check data). Since the lost original data Y is not
available, B cannot be used to generate any of the lost partial
check data. However, this lost partial check data can be
determined from A and the surviving check data W. Since
this lost partial check data represents the result of applying

16
the surviving and recovered original data X and Y, to
regenerate the lost check data (using matrix multipli
cation).

As will be shown in more detail later, steps 1-3 together
5 require O(F) operations times the amount of original data D

to reconstruct the lost original data Y for the F failed data
drives (i.e., roughly 1 operation per failed data drive per byte
of original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed

10 to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G

15 failed check drives (i.e., roughly 1 operation per failed check
drive per byte of original data D). In summary, the number
of operations needed to reconstruct the lost data is O(F +G)
times the amount of original data D (i.e., roughly 1 operation
per failed drive (data or check) per byte of original data D).

20 Since F+GsM, this means that the computational complex
ity of Algorithm 2 (reconstructing the lost data from the
surviving data) is no more than that of generating the check
data J from the original data D.

As mentioned above, for exemplary purposes and ease of
25 description, data is assumed to be organized in 8-bit bytes,

each byte capable of taking on 28=256 possible values. Such
data can be manipulated in byte-size elements using GF
arithmetic for a Galois field of size 28=256 elements. It

B to the lost original data Y, B- 1 thus represents the neces
sary factors to reconstruct the lost original data Y from the 30

lost partial check data.

should also be noted that the same mathematical principles
apply to any power-of-two 2P number of elements, not just
256, as Galois fields can be constructed for any integral

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced
encoding matrix T, for that matter) do not have to actually

power of a prime number. Since Galois fields are finite, and
since GF operations never overflow, all results are the same
size as the inputs, for example, 8 bits.

be constructed. Appropriate indexing of the IDM E (or the 35

master encoding matrix 5) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF
arithmetic and takes O(F3

) operations, as discussed in more
detail later. Nonetheless, this is a significant improvement
over existing solutions, which require O(N3

) operations, 40

since the number of failed data drives F is usually signifi
cantly less than the number of data drives N in any practical
situation.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It
can also be performed on multiple bytes concurrently. Since
the addition and subtraction operations take place, for
example, on a byte-level basis, they can be done in parallel
by using, for instance, x86 architecture Streaming SIMD
Extensions (SSE) instructions (SIMD stands for single
instruction, multiple data, and refers to performing the same (Step 350 in FIG. 2) Once the encoding matrix A and the

solution matrix B- 1 are known, reconstructing the lost data
from the surviving data (that is, the surviving original data
X and the surviving check data W) can be accomplished in
four steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data
(i.e., AxX), only limited to the K surviving data drives.
Call this limited check data the surviving partial check
data.

2. Subtract this surviving partial check data from the
surviving check data W (using matrix subtraction, i.e.,
W-AxX, which is just entry-by-entry GF subtraction,
which is the same as GF addition for this Galois field).
This generates the surviving check data, only this time
limited to the F failed data drives. Call this limited
check data the lost partial check data.

3. Use the solution matrix B- 1 and the lost partial check
data (using matrix multiplication, i.e., B- 1x(W-AxX)
to reconstruct the lost original data Y. Call this the
recovered original data Y.

4. Use the corresponding rows of the IDM E (or master
encoding matrix S) for each of the G failed check drives
along with the original data D, as reconstructed from

45 instruction on different pieces of data, possibly concur
rently), such as PXOR (Packed (bitwise) Exclusive OR).

SSE instructions can process, for example, 16-byte reg
isters (XMM registers), and are able to process such regis
ters as though they contain 16 separate one-byte operands

50 (or 8 separate two-byte operands, or four separate four-byte
operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to
processing a byte at a time. Further, there are 16 XMM
registers, so dedicating four such registers for operand

55 storage allows the data to be processed in 64-byte incre
ments, using the other 12 registers for temporary storage.
That is, individual operations can be performed as four
consecutive SSE operations on the four respective registers
(64 bytes), which can often allow such instructions to be

60 efficiently pipelined and/or concurrently executed by the
processor. In addition, the SSE instructions allows the same
processing to be performed on different such 64-byte incre
ments of data in parallel using different cores. Thus, using
four separate cores can potentially speed up this processing

65 by an additional factor of 4 over using a single core.
For example, a parallel adder (Parallel Adder) can be built

using the 16-byte XMM registers and four consecutive

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 194 of 350

US 10,003,358 B2
17

PXOR instructions. Such parallel processing (that is, 64
bytes at a time with only a few machine-level instructions)
for GF arithmetic is a significant improvement over doing
the addition one byte at a time. Since the data is organized

18
about 6 calls to multiply-by-2 and about 3.5 calls to add, or
about 6x20+3.5x4=134 machine instructions, or a little over
2 machine instructions per byte of data. While this compares

in blocks of any fixed number of bytes, such as 4096 bytes 5

(4 kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can
be composed of numerous such 64-byte chunks (e.g., 64
separate 64-byte chunks in 4 KB, or 512 chunks in 32 KB).

favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR's (i.e., 10

"additions") that are very fast operations, the numbers
"wrap" in peculiar ways when they are shifted outside of
their normal bounds (because the field has only a finite set

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are
built once: one lookup table for the low-order nibbles in each
byte, and one lookup table for the high-order nibbles in each
byte. Each lookup table contains 256 sets (one for each
possible factor) of the 16 possible GF products of that factor

of elements), which can slow down the calculations. This
"wrapping" in the GF multiplication can be addressed in 15

many ways. For example, the multiplication can be imple
mented serially (Serial Multiplier) as a loop iterating over
the bits of one operand while performing the shifts, adds,
and wraps on the other operand. Such processing, however,
takes several machine instructions per bit for 8 separate bits. 20

In other words, this technique requires dozens of machine
instructions per byte being multiplied. This is inefficient
compared to, for example, the performance of the Parallel
Adder described above.

and the 16 possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multipli
cation table. In addition, PSHUFB does 16 separate table
lookups at once, each for one nibble, so 8 PSHUFB instruc-
tions can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is
For another approach (Serial Lookup Multiplier), multi

plication tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of 256x256=65,536 bytes can
hold all the possible products of the two different one-byte
operands). However, such tables can force serialized access
on what are only byte-level operations, and not take advan
tage of wide (concurrent) data paths available on modern
processors, such as those used to implement the Parallel
Adder above.

In still another approach (Parallel Multiplier), the GF
multiplication can be done on multiple bytes at a time, since
the same factor in the encoding matrix is multiplied with
every element in a data block. Thus, the same factor can be
multiplied with 64 consecutive data block bytes at a time.
This is similar to the Parallel Adder described above, only
there are several more operations needed to perform the
operation. While this can be implemented as a loop on each
bit of the factor, as described above, only performing the
shifts, adds, and wraps on 64 bytes at a time, it can be more
efficient to process the 256 possible factors as a (C language)
switch statement, with inline code for each of 256 different
combinations of two primitive GF operations: Multiply-by-2
and Add. For example, GF multiplication by the factor 3 can
be effected by first doing a Multiply-by-2 followed by an
Add. Likewise, GF multiplication by 4 is just a Multiply
by-2 followed by a Multiply-by-2 while multiplication by 6
is a Multiply-by-2 followed by an Add and then by another
Multiply-by-2.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive
PAND (Bitwise AND) instructions, and 4 consecutive
PXOR instructions. Though this takes 20 machine instruc
tions, the instructions are very fast and results in 64 con
secutive bytes of data at a time being multiplied by 2.

For 64 bytes of data, assuming a random factor between
0 and 255, the total overhead for the Parallel Multiplier is

25 initialized for the next set of 64 bytes of operand data (such
as original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the
Parallel Lookup Multiplier dedicates four registers for this
data, which are left intact upon exit of the Parallel Lookup

30 Multiplier. This allows the same data to be called with
different factors (such as processing the same data for
another check drive).

Next in step 430, to process these 64 bytes of operand
data, the Parallel Lookup Multiplier can be implemented

35 with 2 MOVDQA (Move Double Quadword Aligned)
instructions (from memory) to do the two table lookups and
4 MOVDQA instructions (register to register) to initialize
registers (such as the output registers). These are followed in
steps 440 and 450 by two nearly identical sets of 17

40 register-to-register instructions to carry out the multiplica
tion 32 bytes at a time. Each such set starts (in step 440) with
5 more MOVDQA instructions for further initialization,
followed by 2 PSRLW (Packed Shift Right Logical Word)
instructions to realign the high-order nibbles for PSHUFB,

45 and 4 PAND instructions to clear the high-order nibbles for
PSHUFB. That is, two registers of byte operands are con
verted into four registers of nibble operands. Then, in step
450, 4 PSHUFB instructions are used to do the parallel table
lookups, and 2 PXOR instructions to add the results of the

50 multiplication on the two nibbles to the output registers.
Thus, the Parallel Lookup Multiplier uses 40 machine

instructions to perform the parallel multiplication on 64
separate bytes, which is considerably better than the average
134 instructions for the Parallel Multiplier above, and only

55 10 times as many instructions as needed for the Parallel
Adder. While some of the Parallel Lookup Multiplier's
instructions are more complex than those of the Parallel
Adder, much of this complexity can be concealed through
the pipelined and/or concurrent execution of numerous such

60 contiguous instructions (accessing different registers) on
modern pipelined processors. For example, in exemplary
implementations, the Parallel Lookup Multiplier has been
timed at about 15 CPU clock cycles per 64 bytes processed
per CPU core (about 0.36 clock cycles per instruction). In

65 addition, the code footprint is practically nonexistent for the
Parallel Lookup Multiplier (40 instructions) compared to
that of the Parallel Multiplier (about 34,300 instructions),

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 195 of 350

US 10,003,358 B2
19

even when factoring the 8 KB needed for the two lookup
tables in the Parallel Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data (such as the next
64 bytes of surviving original data X to be processed) in four 5

consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same
40 machine instructions) such that the Parallel Lookup
Multiplier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data. 10

Through such a protocol, memory accesses can be mini
mized (or significantly reduced) for accessing the original
data D during check data generation or the surviving original
data X during lost data reconstruction.

Further embodiments of the present invention are directed 15

towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup
Multiplier should be appropriately sequenced to provide 20

efficient processing. One such sequencer (Sequencer 1), for
example, can generate the check data J from the original data
D, and is described further with respect to FIG. 4.

The parity drive does not need GF multiplication. The
check data for the parity drive can be obtained, for example, 25

by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder
can do this using 4 instructions for every 64 bytes of data for
each of the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel 30

Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and
check drive. One consideration is how to handle the data
access. Two possible ways are:

20
approach appears to mimm1ze the number of memory
accesses (namely, one) to each chunk of the original data D
to generate the check data J. This embodiment of Sequencer
1 is described in more detail with reference to FIG. 4.

FIG. 4 shows an exemplary method 500 for sequencing
the Parallel Lookup Multiplier to perform the check data
generation according to an embodiment of the present
invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each of the blocks across a stripe of data. For
instance, Sequencer 1 could be called to process 512 bytes
from each block. If, for example, the block size L is 4096
bytes, then it would take eight such calls to Sequencer 1 to
process the entire stripe. The other such seven calls to
Sequencer 1 could be to different processing cores, for
instance, to carry out the check data generation in parallel.
The number of 64-byte chunks to process at a time could
depend on factors such as cache dimensions, input/output
data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
number of accesses of each data drive's 64-byte chunk of
data from memory, the data is loaded only once and pre
served across calls to the Parallel Lookup Multiplier. The
first data drive is handled specially since the check data has
to be initialized for each check drive. Using the first data
drive to initialize the check data saves doing the initializa
tion as a separate step followed by updating it with the first
data drive' s data. In addition to the first data drive, the first
check drive is also handled specially since it is a parity drive,
so its check data can be initialized to the first data drive's
data directly without needing the Parallel Lookup Multiplier.

In step 530, the first middle loop is called, in which the
1) "colunm-by-colunm," i.e., 64 bytes for one data drive,

followed by the next 64 bytes for that data drive, etc.,
and adding the products to the running total in memory
(using the Parallel Adder) before moving onto the next
row (data drive); and

35 remainder of the check drives (that is, the non-parity check
drives) have their check data initialized by the first data
drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied
with each of the first data drive's data bytes. This is handled

2) "row-by-row," i.e., 64 bytes for one data drive, fol
lowed by the corresponding 64 bytes for the next data
drive, etc., and keeping a running total using the
Parallel Adder, then moving onto the next set of 64-byte
chunks.

Colunm-by-colunm can be thought of as "constant factor,
varying data," in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as "constant data, varying factor," in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives.
Two possible ways are:

a) one at a time, i.e., generate all the check data for one
check drive before moving onto the next check drive;
and

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

40 by calling the Parallel Lookup Multiplier for each non-parity
check drive.

In step 540, the second middle loop is called, which
processes the other data drives' corresponding 64-byte
chunks of data. As with the first data drive, each of the other

45 data drives is processed separately, loading the respective 64
bytes of data into four registers (preserved across calls to the
Parallel Lookup Multiplier). In addition, since the first check
drive is the parity drive, its check data can be updated by
directly adding these 64 bytes to it (using the Parallel Adder)

50 before handling the non-parity check drives.
In step 550, the inner loop is called for the next data drive.

In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding
factor for the particular data drive. The factor is multiplied

55 with each of the next data drive's data bytes using the
Parallel Lookup Multiplier, and the results added to the
check drive's check data.

While each of these techniques performs the same basic 60

operations (e.g., 40 instructions for every 64 bytes of data
for each of the N data drives and M-1 non-parity check
drives, or 5N(M-1)/8 instructions per byte for the Parallel
Lookup Multiplier), empirical results show that combination
(2)(b), that is, row-by-row data access on all of the check 65

drives between data accesses performs best with the Parallel
Lookup Multiplier. One reason may be that such an

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using
Algorithm 2). While the same colunm-by-colunm and row
by-row data access approaches are possible, as well as the
same choices for handling the check drives, Algorithm 2
adds another dimension of complexity because of the four
separate steps and whether to: (i) do the steps completely
serially or (ii) do some of the steps concurrently on the same
data. For example, step 1 (surviving check data generation)
and step 4 (lost check data regeneration) can be done

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 196 of 350

US 10,003,358 B2
21

concurrently on the same data to reduce or minimize the
number of surviving original data accesses from memory.

Empirical results show that method (2)(b)(ii), that is,
row-by-row data access on all of the check drives and for
both surviving check data generation and lost check data 5

regeneration between data accesses performs best with the
Parallel Lookup Multiplier when reconstructing lost data
using Algorithm 2. Again, this may be due to the apparent
minimization of the number of memory accesses (namely,
one) of each chunk of surviving original data X to recon- 10

struct the lost data and the absence of memory accesses of
reconstructed lost original data Y when regenerating the lost
check data. This embodiment of Sequencer 1 is described in
more detail with reference to FIGS. 5-7.

FIGS. 5-7 show an exemplary method 600 for sequencing 15

the Parallel Lookup Multiplier to perform the lost data
reconstruction according to an embodiment of the present
invention.

Referring to FIG. 5, in step 610, the Sequencer 2 is called.

22
In step 660, the first inner loop is called, in which the

partial check data AxX is updated for each surviving check
drive based on the next surviving data drive's 64 bytes of
data. In this case, the Parallel Lookup Multiplier is called for
each surviving check drive with the corresponding factor
(from A) for the next surviving data drive.

In step 670, the second inner loop is called, in which the
lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660),
the Parallel Lookup Multiplier is again called, this time to
update each of the failed check drive's check data by the
corresponding component from the next surviving data
drive. This completes the computations involving the next
surviving data drive's 64 bytes of data, which were fetched
with one access from main memory and preserved in the
same four registers across steps 660 and 670.

Next, in step 680, the computation of the partial check
Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to
be reconstructed. In addition, lost check data needs to be
regenerated. Like Sequencer 1, Sequencer 2 does these
operations in such a way as to minimize memory accesses of
the data drive data (by loading the data once and calling the
Parallel Lookup Multiplier multiple times). Assume for ease

20 data AxX is complete, so the surviving check data W is
added to this result (recall that W-AxX is equivalent to
W+AxX in binary Galois Field arithmetic). This is done by
the fourth middle loop, which for each surviving check drive
adds the corresponding 64-byte component of surviving

25 check data W to the (surviving) partial check data AxX
(using the Parallel Adder) to produce the (lost) partial check
data W-AxX.

of description that there is at least one surviving data drive; 30

the case of no surviving data drives is handled a little
differently, but not significantly different. In addition, recall
from above that the driving formula behind data reconstruc
tion is Y=B- 1 x(W-AxX), where Y is the lost original data,
B-1 is the solution matrix, Wis the surviving check data, A 35

is the partial check data encoding matrix (for the surviving
check drives and the surviving data drives), and X is the
surviving original data.

In step 620, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer 1, the 40

first surviving data drive is again handled specially since the
partial check data AxX has to be initialized for each sur
viving check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving 45

check drive based on the first surviving data drive's 64 bytes
of data. In this case, the Parallel Lookup Multiplier is called
for each surviving check drive with the corresponding factor
(from A) for the first surviving data drive.

In step 640, the second middle loop is called, in which the 50

lost check data is initialized for each failed check drive.

Continuing with FIG. 7, in step 690, the fifth middle loop
is called, which performs the two dimensional matrix mul
tiplication B-1 x(W-AxX) to produce the lost original data
Y. The calculation is performed one row at a time, for a total
of F rows, initializing the row to the first term of the
corresponding linear combination of the solution matrix B-1

and the lost partial check data W-AxX (using the Parallel
Lookup Multiplier).

In step 700, the third inner loop is called, which completes
the remaining F-1 terms of the corresponding linear com
bination (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop in step 690 and updates the
running calculation (using the Parallel Adder) of the next
row of B-1 x(W-AxX). This completes the next row (and
reconstructs the corresponding failed data drive's lost data)
of lost original data Y, which can then be stored at an
appropriate location.

In step 710, the fourth inner loop is called, in which the
lost check data is updated for each failed check drive by the
newly reconstructed lost data for the next failed data drive.
Using the same 64 bytes of the next reconstructed lost data
(preserved across calls to the Parallel Lookup Multiplier),
the Parallel Lookup Multiplier is called to update each of the
failed check drives' check data by the corresponding com-
ponent from the next failed data drive. This completes the
computations involving the next failed data drive's 64 bytes
of reconstructed data, which were performed as soon as the

Using the same 64 bytes of the first surviving data drive
(preserved across the calls to Parallel Lookup Multiplier in
step 630), the Parallel Lookup Multiplier is again called, this
time to initialize each of the failed check drive's check data
to the corresponding component from the first surviving data
drive. This completes the computations involving the first
surviving data drive's 64 bytes of data, which were fetched
with one access from main memory and preserved in the
same four registers across steps 630 and 640.

55 data was reconstructed and without being stored and
retrieved from main memory.

Continuing with FIG. 6, in step 650, the third middle loop
is called, which processes the other surviving data drives'
corresponding 64-byte chunks of data. As with the first
surviving data drive, each of the other surviving data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier).

Finally, in step 720, the sixth middle loop is called. The
lost check data has been regenerated, so in this step, the
newly regenerated check data is stored at an appropriate

60 location (if desired).
Aspects of the present invention can be also realized in

other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 216=65,536 possible
values, by using similar constructs (scaled accordingly) to

65 those presented here. Such extensions would be readily
apparent to one of ordinary skill in the art, so their details
will be omitted for brevity of description.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 197 of 350

US 10,003,358 B2
23

Exemplary teclmiques and methods for doing the Galois
field manipulation and other mathematics behind RAID
error correcting codes are described in Appendix A, which
contains a paper "Information Dispersal Matrices for RAID
Error Correcting Codes" prepared for the present applica- 5

tion.
Multi-Core Considerations

What follows is an exemplary embodiment for optimizing

24
each die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations.
This helps localize the Parallel Lookup Multiplier code and
associated data to a single core 120 and not compete with
other cores 120, while allowing the other cores 120 to keep
the data moving between memory 140 and the disk drives
via the I/O interface 150.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to
achieve the result. This combination can be achieved by
utilizing the mathematical teclmiques and code optimiza-

or improving the performance of multi-core architecture
systems when implementing the described erasure coding 10

system routines. In multi-core architecture systems, each
processor die is divided into multiple CPU cores, each with
their own local caches, together with a memory (bus)
interface and possible on-die cache to interface with a shared
memory with other processor dies. 15 tions described elsewhere in this application with careful

placement of the resulting code on specific processing cores.
Embodiments can also be implemented on fewer resources,
such as single-core dies and/or single-die systems, with

FIG. 8 illustrates a multi-core architecture system 100
having two processor dies 110 (namely, Die O and Die 1).

Referring to FIG. 8, each die 110 includes four central
processing units (CPUs or cores) 120 each having a local
level 1 (Ll) cache. Each core 120 may have separate

20 functional units, for example, an x86 execution unit (for
traditional instructions) and a SSE execution unit (for soft
ware designed for the newer SSE instruction set). An
example application of these function units is that the x86
execution unit can be used for the RAID control logic
software while the SSE execution unit can be used for the 25

GF operation software. Each die 110 also has a level 2 (L2)
cache/memory bus interface 130 shared between the four
cores 120. Main memory 140, in tum, is shared between the
two dies 110, and is connected to the input/output (I/O)
controllers 150 that access external devices such as disk 30

drives or other non-volatile storage devices via interfaces
such as Peripheral Component Interconnect (PCI).

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to
validate and schedule a host request (for example, to load or
store data from disk storage); (2) Command Translation and
Submission, to translate the host request into multiple disk
requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to
requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

decreased parallelism and performance optimization.
The process of subdividing and assigning individual cores

120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into "threads," and
threads may be assigned to specific CPUs and memory
systems via the kthread_bind function when the thread is
created. Creating separate threads to process the GF arith
metic allows parallel computations to take place, which
multiplies the performance of the system.

Further, creating multiple threads for command process
ing allows for fully overlapped execution of the command
processing states. One way to accomplish this is to number
each command, then use the arithmetic MOD function(% in
C language) to choose a separate thread for each command.
Another technique is to subdivide the data processing por
tion of each command into multiple components, and assign

35 each component to a separate thread.
FIG. 9 shows an exemplary disk drive configuration 200

according to an embodiment of the present invention.
Referring to FIG. 9, eight disks are shown, though this

number can vary in other embodiments. The disks are
divided into three types: data drives 210, parity drive 220,

40 and check drives 230. The eight disks break down as three
data drives 210, one parity drive 220, and four check drives
230 in the embodiment of FIG. 9.

Each of the data drives 210 is used to hold a portion of
data. The data is distributed uniformly across the data drives

45 210 in stripes, such as 192 KB stripes. For example, the data
for an application can be broken up into stripes of 192 KB,
and each of the stripes in turn broken up into three 64 KB
blocks, each of the three blocks being written to a different
one of the three data drives 210.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example,
some of the cores 120 can be "command cores," that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140
and the disk drives via the I/O interface 150. Others of the 50

cores 120 can be "data cores," and assigned to the GF
operations, that is, generating the check data from the
original data, reconstructing the lost data from the surviving
data, etc., including the Parallel Lookup Multiplier and the
sequencers described above. For example, in exemplary
embodiments, a scheduler can be used to divide the original
data D into corresponding portions of each block, which can
then be processed independently by different cores 120 for
applications such as check data generation and lost data
reconstruction.

The parity drive 220 is a special type of check drive in that
the encoding of its data is a simple summation (recall that
this is exclusive OR in binary GF arithmetic) of the corre
sponding bytes of each of the three data drives 210. That is,
check data generation (Sequencer 1) or regeneration (Se-

55 quencer 2) can be performed for the parity drive 220 using
the Parallel Adder (and not the Parallel Lookup Multiplier).
Accordingly, the check data for the parity drive 220 is
relatively straightforward to build. Likewise, when one of
the data drives 210 no longer functions correctly, the parity
drive 220 can be used to reconstruct the lost data by adding

One of the benefits of this data core/command core
subdivision of processing is ensuring that different code will
be executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated Ll cache in each core 120,
and avoids the "pollution" of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on

60 (same as subtracting in binary GF arithmetic) the corre
sponding bytes from each of the two remaining data drives
210. Thus, a single drive failure of one of the data drives 210
is very straightforward to handle when the parity drive 220
is available (no Parallel Lookup Multiplier). Accordingly,

65 the parity drive 220 can replace much of the GF multipli
cation operations with GF addition for both check data
generation and lost data reconstruction.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 198 of 350

US 10,003,358 B2
25

Each of the check drives 230 contains a linear combina
tion of the corresponding bytes of each of the data drives
210. The linear combination is different for each check drive
230, but in general is represented by a summation of
different multiples of each of the corresponding bytes of the 5

data drives 210 (again, all arithmetic being GF arithmetic).
For example, for the first check drive 230, each of the bytes
of the first data drive 210 could be multiplied by 4, each of
the bytes of the second data drive 210 by 3, and each of the
bytes of the third data drive 210 by 6, then the corresponding 10

products for each of the corresponding bytes could be added

26
ECCSolve
The function ECCSolve creates constant tables that are

used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior
to using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B-1 (i.e., the solution
matrix).

ECCGenerate
The function ECCGenerate is used to generate check

to produce the first check drive data. Similar linear combi
nations could be used to produce the check drive data for the
other check drives 230. The specifics of which multiples for
which check drive are explained in Appendix A.

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG.
9. Accordingly, each 192 KB of original data is stored as 512
KB (i.e., eight blocks of 64 KB) of (original plus check)

15 codes (that is, the check data matrix J) for a particular
configuration of data drives and check drives, using
Sequencer 1 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCGenerate, ECCSolve is called to

~~ta~?:eh irf ~~=rd!~~,p~~~~:~r,a~/~k:~e o~f t:;s~v:rgt~ 20

drives survive. That is, the system 200 can withstand a
concurrent failure of up to any five drives and still preserve
all of the original data.
Exemplary Routines to Implement an Embodiment

The error correcting code (ECC) portion of an exemplary 25

embodiment of the present invention may be written in
software as, for example, four functions, which could be
named as ECCinitialize, ECCSolve, ECCGenerate, and
ECCRegenerate. The main functions that perform work are
ECCGenerate and ECCRegenerate. ECCGenerate generates 30

check codes for data that are used to recover data when a
drive suffers an outage (that is, ECCGenerate generates the
check data J from the original data D using Sequencer 1).
ECCRegenerate uses these check codes and the remaining
data to recover data after such an outage (that is, ECCRe- 35
generate uses the surviving check data W, the surviving
original data X, and Sequencer 2 to reconstruct the lost
original data Y while also regenerating any of the lost check
data). Prior to calling either of these functions, ECCSolve is
called to compute the constants used for a particular con
figuration of data drives, check drives, and failed drives (for 40

example, ECCSolve builds the solution matrix B-1 together
with the lists of surviving and failed data and check drives).
Prior to calling ECCSolve, ECCinitialize is called to gen
erate constant tables used by all of the other functions (for
example, ECCinitialize builds the IDM E and the two 45

lookup tables for the Parallel Lookup Multiplier).
ECCinitialize

compute the appropriate constants for the particular con
figuration of data drives and check drives, as well as the
solution matrix B-1

.

ECCRegenerate
The function ECCRegenerate is used to regenerate data

vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the
lost check data from the restored original data), this time
using Sequencer 2 and the Parallel Lookup Multiplier as
described above. Prior to calling ECCRegenerate,
ECCSolve is called to compute the appropriate constants for
the particular configuration of data drives, check drives, and
failed drives, as well as the solution matrix B-1

.

Exemplary Implementation Details

As discussed in Appendix A, there are two significant
sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID
processing): the computation of the solution matrix B-1 for
a given failure scenario, and the byte-level processing of
encoding the check data J and reconstructing the lost data
after a lost packet (e.g., data drive failure). By reducing the
solution matrix B-1 to a matrix inversion of a FxF matrix,
where F is the number of lost packets (e.g., failed drives),
that portion of the computational overhead is for all intents
and purposes negligible compared to the megabytes (MB),
gigabytes (GB), and possibly terabytes (TB) of data that
needs to be encoded into check data or reconstructed from
the surviving original and check data. Accordingly, the
remainder of this section will be devoted to the byte-level

The function ECCinitialize creates constant tables that are
used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values
up front, these constant tables can be used to replace more
time-consuming operations with simple table look-ups (such

50 encoding and regenerating processing.

as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct-an array of constants used to perform GF
multiplication with the PSHUFB instruction that operates on
SSE registers (that is, the Parallel Lookup Multiplier).

2. mast----contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as the
check drive encoding matrix H

3. mul_tab----contains the results of all possible GF mul
tiplication operations of any two operands (for example,
256x256=65,536 bytes for all of the possible products of
two different one-byte quantities)

As already mentioned, certain practical simplifications
can be assumed for most implementations. By using a Galois
field of 256 entries, byte-level processing can be used for all
of the GF arithmetic. Using the master encoding matrix S

55
described in Appendix A, any combination of up to 127 data
drives, 1 parity drive, and 128 check drives can be supported
with such a Galois field. While, in general, any combination
of data drives and check drives that adds up to 256 total
drives is possible, not all combinations provide a parity drive
when computed directly. Using the master encoding matrix

60 S, on the other hand, allows all such combinations (includ
ing a parity drive) to be built (or simply indexed) from the
same such matrix. That is, the appropriate sub-matrix (in
cluding the parity drive) can be used for configurations of
less than the maximum number of drives.

4. div _tab----contains the results of all possible GF divi- 65

sion operations of any two operands (can be similar in size
In addition, using the master encoding matrix S permits

further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other to mul_tab)

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 199 of 350

US 10,003,358 B2
27

proposed solutions, which recompute E for every change of
Nor M). Rather, additional indexing of rows and/or colunms

28
F number of failed data drives
G number of failed check drives
H check drive encoding matrix (MxN)
I identity matrix (IK=KxK identity matrix, IN=NxN identity
matrix)
J encoded check data matrix (MxL)
K number of surviving data drives=N-F
L data block size (elements or bytes)
M number of check drives

of the master encoding matrix S will suffice. As discussed
above, the use of the parity drive can eliminate or signifi
cantly reduce the somewhat complex GF multiplication

5
operations associated with the other check drives and
replaces them with simple GF addition (bitwise exclusive
OR in binary Galois fields) operations. It should be noted
that master encoding matrices with the above properties are
possible for any power-of-two number of drives 2P =Nmax+
Mmax where the maximum number of data drives N max is one
less than a power of two (e.g., Nm==127 or 63) and the
maximum number of check drives Mmax (including the
parity drive) is 2P -Nmax·

10 Mmax maximum value of M
N number of data drives

As discussed earlier, in an exemplary embodiment of the
present invention, a modern x86 architecture is used (being 15
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these
XMM registers holds 16 bytes (8-bit), so four such registers

20
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated
at a time using four consecutive SSE instructions (e.g.,
fetching from memory, storing into memory, zeroing, add- 25

ing, multiplying), the remaining registers being used for
intermediate results and temporary storage. With such an
architecture, several routines are useful for optimizing the
byte-level performance, including the Parallel Lookup Mul
tiplier, Sequencer 1, and Sequencer 2 discussed above. 30

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the 35
embodiments illustrated, but by the appended claims and
their equivalents.

Glossary of Some Variables

A encoding matrix (FxK), sub-matrix of T
B encoding matrix (FxF), sub-matrix of T
B- 1 solution matrix (FxF)
C encoded data matrix

((N+M)xL)=[~]

C' surviving encoded data matrix

(NxL)=[:]

D original data matrix (N xL)
D' permuted original data matrix

(NxL)=[~]

E information dispersal matrix

(IDM)((N + M)xN) = [~]

40

45

50

55

60

65

N max maximum value of N
0 zero matrix (KxF), sub-matrix of T
S master encoding matrix ((Mmax+Nmax)xNmax)
T transformed IDM

[
h o]

(NxN) = A B

W surviving check data matrix (FxL)
X surviving original data matrix (KxL)
Y lost original data matrix (FxL)

What is claimed is:
1. A system adapted to use accelerated error-correcting

code (ECC) processing to improve the storage and retrieval
of digital data distributed across a plurality of drives, com
prising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
comprising at least 16 vector registers, each of the
vector registers storing at least 16 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data; and

at least one input/output (I/0) controller that stores the at
least one block of the check data from the main
memory to the check drives,

wherein the processor, the SIMD instructions, the non
volatile storage media, and the I/0 controller are con
figured to implement an erasure coding system com
prising:
a data matrix comprising at least one vector and com

prising a plurality of rows of at least one block of the
original data in the main memory, each of the rows
being stored on a different one of the data drives;

a check matrix comprising more than two rows of the
at least one block of the check data in the main
memory, each of the rows being stored on a different
one of the check drives, one of the rows comprising
a parity row comprising the Galois Field (GF) sum
mation of all of the rows of the data matrix;

a thread that executes on the SIMD CPU core and
comprising:
at least one parallel multiplier that multiplies the at

least one vector of the data matrix by a single

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 200 of 350

US 10,003,358 B2
29

factor to compute parallel multiplier results com
prising at least one vector;

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a running total; and

30
9. The system of claim 7, wherein the encoding matrix

further comprises a fourth number of rows and a plurality of
third factors in the fourth number of rows,

wherein the check drives further comprise the fourth
number of check drives, and

wherein the first factors are independent of the fourth
number.

a sequencer wherein the sequencer orders load
operations of the original data into at least one of
the vector registers and computes the check data
with the parallel lookup multiplier and the parallel
adder, and stores the computed check data from
the vector registers to the main memory.

10. The system of claim 5, wherein the multiplicative
identity factor is 1.

10 11. The system of claim 1, wherein the at least one parallel

2. The system of claim 1, wherein:
multiplier multiplies the at least one vector of the data matrix
by the single factor in the encoding matrix at a rate of less
than about 2 machine instructions per byte of the data the processor comprises a first CPU core and a second

CPU core;
15

matrix.
the thread comprises a plurality of threads comprising a

first thread group and a second thread group; and
the erasure coding system further comprises a scheduler

for performing data operations to generate the check
data and, concurrently, performing I/O operations using 20

the I/O controller by:
assigning the data operations to the first thread group,

and not assigning the I/O operations to the first
thread group;

assigning the I/O operations to the second thread group 25

and not assigning the data operations to the second
thread group;

assigning the first thread group to the first CPU core;
assigning the second thread group to the second CPU

core; and
concurrently executing the first thread group on the first

CPU core and the second thread group on the second
CPU core to concurrently generate the check data
and perform the I/O operations.

30

3. The system of claim 1, wherein the sequencer loads 35

each entry of the data matrix from the main memory into a
vector register at most once while generating the check data.

4. The system of claim 1, wherein the at least one
processor is an x86 architecture processor.

5. The system of claim 1, wherein the erasure coding 40

system further comprises:
an encoding matrix comprising more than two but not

more than 254 rows and more than one but not more
than 253 columns of factors in the main memory,
wherein each of the entries of one of the rows of the 45

encoding matrix comprises a multiplicative identity
factor, the factors being for encoding the original data
into the check data.

6. The system of claim 5, wherein the at least one parallel
multiplier multiplies the at least one vector of the data matrix 50

in units of at least 64 bytes.
7. The system of claim 5, wherein the data matrix com

prises a first number of rows and the data drives comprise
the first number of data drives,

wherein the check matrix comprises a second number of 55

rows and the check drives comprise the second number
of check drives, and

wherein the encoding matrix comprises a plurality of first
factors in the second number of rows and the first
number of colunms.

8. The system of claim 7, wherein the encoding matrix
further comprises a third number of columns and a plurality
of second factors in the third number of colunms,

wherein the data drives further comprise the third number

60

of data drives, and 65

wherein the first factors are independent of the third
number.

12. A system adapted to use accelerated error-correcting
code (ECC) processing to improve the storage and retrieval
of digital data distributed across a plurality of drives, com
prising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads surviving original data and surviving check data
from a main memory and stores lost original data to the
main memory, the SIMD CPU core comprising at least
16 vector registers, each of the vector registers storing
at least 16 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data; and

at least one input/output (I/O) controller that reads at least
one block of the check data from the check drives and
stores the at least one block of the check data to the
main memory,

wherein the processor, the SIMD instructions, the non
volatile storage media and the I/O controller implement
the accelerated ECC processing, comprising:
a surviving data matrix comprising at least one vector

and comprising at least one row of at least one block
of the surviving original data in the main memory,
each row of the at least one row being stored on a
different one of the data drives, and a lost data matrix
comprising at least one block of the lost original data
in the main memory;

a surviving check matrix comprising at least one row of
at least one block of the surviving check data in the
main memory, each row of the at least one row being
stored on a different one of the check drives;

a solution matrix that holds factors in the main memory,
the factors of the solution matrix being for decoding
the surviving original data and the surviving check
data into the lost original data;

and
a thread that executes on the SIMD CPU core and

comprising:
at least one parallel multiplier that multiplies the at

least one vector of the surviving data matrix by a
single factor in the solution matrix to compute
parallel multiplier results comprising at least one
vector;

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 201 of 350

US 10,003,358 B2
31

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a running total; and

a sequencer wherein the sequencer:
orders load operations of the surviving original 5

data into at least one of the vector registers and
load operations of the surviving check data into
at least one of the vector registers;

computes the lost original data with the parallel
multiplier and the parallel adder; and 10

stores the computed lost original data from the
vector registers to the lost data matrix.

13. The system of claim 12, wherein:
the processing core comprises a first CPU core and a

15
second CPU core;

the thread comprises a plurality of threads comprising a
first thread group and a second thread group; and

the erasure coding system further comprises a scheduler
for performing data operations to regenerate the lost 20

original data and, concurrently, performing I/O opera
tions using the I/O controller by:
assigning the data operations to the first thread group,

and not assigning the I/O operations to the first
thread group; 25

assigning the I/O operations to the second thread group,
and not assigning the data operations to the second
thread group;

assigning the first thread group to the first CPU core;
assigning the second thread group to the second CPU 30

core; and
concurrently executing the first thread group on the first

CPU core and the second thread group on the second
CPU core to concurrently regenerate the lost original

35
data and perform the I/O operations.

14. The system of claim 12, wherein the sequencer loads
each entry of the surviving original data from the main
memory into a vector register at most once while regener-
ating the lost original data. 40

15. The system of claim 12, wherein the at least one
parallel multiplier multiplies the at least one vector of the
surviving data matrix in units of at least 64 bytes.

16. The system of claim 12, wherein the processor is an
x86 architecture processor. 45

17. The system of claim 12, wherein the solution matrix
comprises an inverted sub-matrix of an encoding matrix and
wherein each of entries of one of the rows of the encoding
matrix comprises a multiplicative identity factor, the factors
of the encoding matrix being for encoding the original data 50

into the check data.
18. The system of claim 17, wherein the multiplicative

identity factor is 1.
19. The system of claim 12, wherein the at least one

parallel multiplier multiplies the at least one vector of the 55

surviving data matrix by the single factor in the solution
matrix at a rate ofless than about 2 machine instructions per
byte of the surviving data matrix.

20. A method for accelerated error-correcting code (ECC)
processing to improve the storage and retrieval of digital 60

data distributed across a plurality of drives using a comput
ing system, the computing system comprising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes a computer program 65

including SIMD computer instructions and loads origi
nal data from a main memory and stores check data to

32
the main memory, the SIMD CPU core comprising at
least 16 vector registers, each of the vector registers
storing at least 16 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD computer
instructions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data; and

at least one input/output (I/O) controller that stores the at
least one block of the check data from the main
memory to the check drives, the method comprising:
accessing the SIMD instructions from the system drive;
executing the SIMD instructions on the SIMD CPU

core;
arranging the original data as a data matrix comprising

at least one vector and comprising a plurality of rows
of at least one block of the original data in the main
memory, each of the rows being stored on a different
one of the data drives;

arranging the check data as a check matrix comprising
more than two rows of the at least one block of the
check data in the main memory, each of the rows
being stored on a different one of the check drives,
one of the rows comprising a parity row comprising
the Galois Field (GF) summation of all of the rows
of the data matrix; and

encoding the original data into the check data using:
at least one parallel multiplier that multiplies the at

least one vector of the data matrix by a single
factor to compute parallel multiplier results com
prising at least one vector; and

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a running total,

the encoding of the check data comprising:
loading the original data into at least one of the

vector registers;
computing the check data with the parallel multiplier

and the parallel adder; and
storing the computed check data from the vector

registers into the main memory.
21. The method of claim 20, wherein:
the processor comprises a first CPU core and a second

CPU core;
the executing of the SIMD instructions comprises execut

ing the SIMD instructions on the first CPU core to
perform data operations to generate the check data and,
concurrently, to perform I/O operations on the second
CPU core to control the I/O controller;

the method further comprises scheduling the data opera
tions concurrently with the I/O operations by:
assigning the data operations to the first CPU core, and

not assigning the I/O operations to the first CPU
core; and

assigning the I/O operations to the second CPU core
and not assigning the data operations to the second
CPU core.

22. The method of claim 20, further comprising loading
each entry of the data matrix from the main memory into a
vector register at most once while generating the check data.

23. The method of claim 20, wherein the processor is an
x86 architecture processor.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 202 of 350

US 10,003,358 B2
33

24. The method of claim 20, further comprising:
arranging factors as an encoding matrix comprising more

than two but not more than 254 rows and more than one
but not more than 253 colunms of factors in the main
memory, wherein each of the entries of one of the rows 5

of the encoding matrix comprises a multiplicative iden
tity factor, the factors being for encoding the original
data into the check data.

25. The method of claim 24, wherein the at least one
parallel multiplier multiplies the at least one vector of the 10

data matrix in units of at least 64 bytes.
26. The method of claim 24, wherein the data matrix

comprises a first number of rows and the data drives
comprise the first number of data drives,

wherein the check matrix comprises a second number of
rows and the check drives comprise the second number
of check drives, and

15

wherein the encoding matrix comprises a plurality of first
factors in the second number of rows and the first 20

number of colunms.
27. The method of claim 26, further comprising:
adding a third number of data drives to the data drives by

expanding the encoding matrix to further comprise the
third number of colunms and a plurality of second 25

factors in the third number of colunms,
wherein the first factors are independent of the third

number.
28. The method of claim 26, further comprising:
adding a fourth number of check drives to the check 30

drives by expanding the encoding matrix to further
comprise the fourth number of rows and a plurality of
third factors in the fourth number of rows,

wherein the first factors are independent of the fourth
35

number.
29. The method of claim 24, wherein the at least one

parallel multiplier multiplies the at least one vector of the
data matrix by the single factor in the encoding matrix at a
rate of less than about 2 machine instructions per byte of the 40

data matrix.
30. The method of claim 20, wherein the multiplicative

identity factor is 1.
31. A method for accelerated error-correcting code (ECC)

processing to improve the storage and retrieval of digital 45

data distributed across a plurality of drives using a comput
ing system, the computing system comprising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes a computer program 50

including SIMD instructions and loads surviving origi
nal data and surviving check data from a main memory
and stores lost original data to the main memory, the
SIMD CPU core comprising at least 16 vector registers,
each of the vector registers storing at least 16 bytes; 55

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one 60

block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data; 65

at least one input/output (I/O) controller that reads at least
one block of the surviving check data from the check

34
drives and stores the at least one block of the surviving
check data to the main memory, the method compris
ing:
accessing the SIMD instructions from the system drive;
executing the SIMD instructions on the SIMD CPU

core;
arranging the original data as a surviving data matrix

comprising at least one vector and comprising at
least one row of at least one block of the surviving
original data in the main memory, each row of the at
least one row being stored on a different one of the
data drives, and a lost data matrix comprising at least
one block of the lost original data in the main
memory;

arranging factors as a solution matrix that holds the
factors in the main memory, the factors being for
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data being arranged as a surviving check
matrix comprising at least one row of at least one
block of the surviving check data in the main
memory, each row of the at least one row being
stored on a different one of the check drives;

decoding the surviving check data into the lost original
data using:
at least one parallel multiplier that multiplies the at

least one vector of the surviving data matrix by a
single factor in the solution matrix to compute par
allel multiplier results comprising at least one vector;
and

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and computes
a running total,

the decoding the surviving check data into the lost
original data comprising:
loading the surviving original data into at least one of

the vector registers;
loading the surviving check data into at least one of

the vector registers;
computing the lost original data with the parallel

multiplier and the parallel adder; and
storing the computed lost original data from the

vector registers into the lost data matrix.
32. The method of claim 31, wherein:
the processor comprises a first CPU core and a second

CPU core;
the executing of the SIMD instructions comprises execut

ing the SIMD instructions on the first CPU core to
perform data operations to reconstruct the lost original
data and, concurrently, to perform I/O operations on the
second CPU core to control the I/O controller;

the method further comprises scheduling the data opera
tions to be performed concurrently with the I/O opera
tions by:
assigning the data operations to the first CPU core, and

not assigning the I/O operations to the first CPU
core; and

assigning the I/O operations to the second CPU core,
and not assigning the data operations to the first CPU
core.

33. The method of claim 31, further comprising loading
each entry of the surviving original data from the main
memory into a vector register at most once while regener
ating the lost original data.

34. The method of claim 31, wherein the at least one
parallel multiplier multiplies the at least one vector of the
surviving data matrix in units of at least 64 bytes.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 203 of 350

US 10,003,358 B2
35

35. The method of claim 31, wherein the processor is an
x86 architecture processor.

36. The method of claim 31, wherein the solution matrix
comprises an inverted sub-matrix of an encoding matrix and
wherein each of entries of one of the rows of the encoding 5

matrix comprises a multiplicative identity factor, the factors
of the encoding matrix being for encoding the original data
into the check data.

37. The method of claim 36, wherein the multiplicative
identity factor is 1. 10

38. The method of claim 31, wherein the at least one
parallel multiplier multiplies the at least one vector of the
surviving data matrix by the single factor in the solution
matrix at a rate ofless than about 2 machine instructions per

15
byte of the surviving data matrix.

39. A system drive comprising at least one non-transitory
computer-readable storage medium containing a computer
program comprising a plurality of computer instructions
that, when executed by a computing system, cause the 20

computing system to perform accelerated error-correcting
code (ECC) processing that improves the storage and
retrieval of digital data distributed across a plurality of
drives, the computing system comprising:

at least one processor comprising at least one single- 25

instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
comprising at least 16 vector registers, each of the 30

vector registers storing at least 16 bytes;
a plurality of data drives each comprising at least one

non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes; 35

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data; and

at least one input/output (I/O) controller that stores the at
least one block of the check data from the main 40

memory to the check drives,
the computer instructions implementing protection of the

original data in the main memory when executed on the
computing system by:
arranging the original data as a data matrix comprising 45

at least one vector and comprising a plurality of rows
of at least one block of the original data in the main
memory, each of the rows being stored on a different
one of the data drives;

arranging the check data as a check matrix comprising 50

more than two rows of the at least one block of the
check data in the main memory, each of the rows
being stored on a different one of the check drives,
one of the rows comprising a parity row comprising
the Galois Field (GF) summation of all of the rows 55

of the data matrix; and
encoding the original data into the check data using:

at least one parallel multiplier that multiplies the at
least one vector of the data matrix by a single
factor in the encoding matrix to compute parallel 60

multiplier results comprising at least one vector;
and

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com-
putes a rumiing total, 65

the encoding the original data into the check data
comprising:

36
loading the original data into at least one of the

vector registers;
computing the check data with the parallel multiplier

and the parallel adder; and
storing the computed check data from the vector

registers into the main memory.
40. The system drive of claim 39, wherein:
the processor comprises a first CPU core and a second

CPU core;
the executing of the computer instructions comprises

executing the computer instructions on the first CPU
core to perform data operations to generate the check
data and, concurrently, to perform I/O operations on the
second CPU core to control the I/O controller;

the computer instructions implementing the protection of
the original data comprise instructions that schedule the
data operations to be performed concurrently with the
I/O operations by:
assigning the data operations to the first CPU core, and

not assigning the I/O operations to the first CPU
core; and

assigning the I/O operations to the second CPU core
and not assigning the data operations to the second
CPU core.

41. The system drive of claim 39, wherein the computer
instructions further comprise computer instructions that,
when executed by the computing system, cause the com
puting system to load each entry of the data matrix from the
main memory into a vector register at most once while
generating the check data.

42. The system drive of claim 39, wherein the processor
is an x86 architecture processor.

43. The system drive of claim 39, wherein the computer
instructions implementing the protection of the original data
comprise instructions to:

arrange factors as an encoding matrix comprising more
than two but not more than 254 rows and more than one
but not more than 253 colunms of factors in the main
memory, wherein each of the entries of one of the rows
of the encoding matrix comprises a multiplicative iden
tity factor, the factors being for encoding the original
data into the check data.

44. The system drive of claim 43, wherein the at least one
parallel multiplier multiplies the at least one vector of the
data matrix in units of at least 64 bytes.

45. The system drive of claim 43, wherein the data matrix
comprises a first number of rows and the data drives
comprise the first number of data drives,

wherein the check matrix comprises a second number of
rows and the check drives comprise the second number
of check drives, and

wherein the encoding matrix comprises a plurality of first
factors in the second number of rows and the first
number of colunms.

46. The system drive of claim 45, wherein the computer
instructions further comprise instructions that, when
executed on the computing system, cause the computing
system to:

add a third number of data drives to the data drives by
expanding the encoding matrix to further comprise the
third number of colunms and a plurality of second
factors in the third number of colunms,

wherein the first factors are independent of the third
number.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 204 of 350

US 10,003,358 B2
37

. 47. T.he system drive of claim 45, wherein the computer
mstruct10ns further comprise instructions that, when
executed on the computing system, cause the computing
system to:

add a fourth number of check drives to the check drives 5

by expanding the encoding matrix to further comprise
the fourth number of rows and a plurality of third
factors in the fourth number of rows

wherein the first factors are independ~nt of the fourth
number.

~8. !he S_Ystem drive of claim 43, wherein the multipli
cative identity factor is 1.

10

49. The system drive of claim 43, wherein the at least one
parallel multiplier multiplies the at least one vector of the
data matrix by the single factor in the encoding matrix at a 15

rate of less than about 2 machine instructions per byte of the
data matrix.

50. A system drive comprising at least one non-transitory
computer-readable storage medium containing a computer
program comprising a plurality of computer instructions 20

that, when executed by a computing system, cause the
computing system to perform accelerated error-correcting
cod~ (ECC) processing that improves the storage and
re~neval of digital data distributed across a plurality of
dnves, the en-a-computing system comprising: 25

at least one processor comprising at least one single
ins_truction-multiple-data (SIMD) central processing
umt (CPU) core that executes SIMD instructions and
loads surviving original data and surviving check data
from a main memory and stores lost original data to the 30

main memory, the SIMD CPU core comprising at least
16 vector registers, each of the vector registers storing
at least 16 bytes;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one 35

block of the original data, the at least one block
comprising at least 512 bytes;

38
decoding the surviving check data into the lost original

data using:
at least one parallel multiplier that multiplies the at

least one vector of the surviving data matrix by a
single factor in the solution matrix to compute
parallel multiplier results comprising at least one
vector; and

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a rumJing total,

decoding the surviving check data into the lost original
data comprising:
loading the surviving original data into at least one of

the vector registers;
loading the surviving check data into at least one of

the vector registers;
computing the lost original data with the parallel

multiplier and the parallel adder; and
storing the computed lost original data from the

vector registers into the lost data matrix.
51. The system drive of claim 50, wherein:
the processor comprises a first CPU core and a second

CPU core;
the executing of the computer instructions comprises

executing the computer instructions on the first CPU
core to perform data operations to reconstruct the lost
~riginal data and, concurrently, to perform I/O opera
tions on the second CPU core to control the I/O
controller;

the computer instructions further comprise instructions
that schedule the data operations to be performed
concurrently with the I/O operations by:
assigning the data operations to the first CPU core and

not assigning the I/O operations to the first CPU
core; and

assigning the I/O operations to the second CPU core
and not assigning the data operations to the first CPU
core.

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data;

at least one input/output (I/O) controller that reads at least
one block of the check data from the check drives and
stores the at least one block of the check data to the
main memory;

40
. 52. T_he system drive of claim 50, wherein the computer
mstruct10ns further comprise computer instructions that,
when executed on the computing system, cause the com
puting system to load each entry of the surviving original
data from the main memory into a vector register at most

the computer instructions implementing protection of the 45

original data in the main memory when executed on the
computing system by:
arranging the surviving original data as a surviving data

matrix comprising at least one vector and comprising

once while regenerating the lost original data.
53. The system drive of claim 50, wherein the at least one

parallel multiplier multiplies the at least one vector of the
surviving data matrix in units of at least 64 bytes.

54. The system drive of claim 50, wherein the processor
is an x86 architecture processor.

55. The system drive of claim 50 wherein the solution
matrix comprises an inverted sub-matrix of an encoding
matrix and wherein each of entries of one of the rows of the
encoding matrix comprises a multiplicative identity factor,

at least one row of at least one block of the surviving 50

original data in the main memory, each row of the at
least one row being stored on a different one of the
data drives, and a lost data matrix comprising at least
one block of the lost original data in the main
memory; 55

the factors of the encoding matrix being for encoding the
original data into the check data. arranging factors as a solution matrix that holds the

factors in the main memory, the factors being for
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data arranged as a surviving check matrix
comprising at least one row of at least one block of
the surviving check data in the main memory, each
row of the at least one row being stored on a different
one of the check drives; and

~6. !he s_ystem drive of claim 55, wherein the multipli
cative identity factor is 1.

57. The system drive of claim 50, wherein the at least one

60
parallel multiplier multiplies the at least one vector of the
surviving data matrix by the single factor in the solution
matrix at a rate ofless than about 2 machine instructions per
byte of the surviving data matrix.

* * * * *

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 205 of 350

PATENT NO.
APPLICATION NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

: 10,003,358 B2
: 15/201196
: June 19, 2018
: Michael H. Anderson

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 28, Line 63, Claim 1, after "matric;" insert -- and --

Column 29, Line 9, Claim 1, after "parallel" delete "lookup"

Column 37, Line 25, Claim 50, delete "en-a-computing" and insert -- computing --

Column 38, Line 11, Claim 50, before "decoding" insert -- the --

Signed and Sealed this
Eleventh Day of December, 2018

~"""'-
Andrei Iancu

Director of the United States Patent and Trademark Office

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 206 of 350

EXHIBIT E

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 207 of 350

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

I hereby certify that this correspondence is being EFS-Web transmitted to the United States
Patent and Trademark Office on February 23, 2021 at or before 11: 59 p. m. Pacific Time under
the Rules of 37 CFR § 1.8.

/Jennifer Guerra/
Jennifer Guerra

Inventor(s)
Assignee
Patent No.
Issued
Application No.
Filed

Michael H. Anderson et al. Confirmation No. 1895
Streamscale, Inc.
10,003,358
June 19, 2018
15/201, 196
July 1, 2016

Title ACCELERATED ERASURE CODING SYSTEM AND METHOD

Docket No. 124596/411563-00010

PETITION FOR CORRECTION OF INVENTORSHIP
UNDER 37 CFR § 1.324

Mail Stop Petition
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

Post Office Box 29001
Glendale, CA 91209-9001

February 23, 2021

Pursuant to 37 C.F.R. §1.324, Applicant respectfully requests the correction of

inventorship for the above issued patent to include inventor Sarah Mann. Ms. Mann was

not named as an inventor through error.

Enclosed are:

(1) Statement of Sarah Mann in Support of Petition for Correction of lnventorship

Pursuant to 37 C.F.R. §1.324;

(2) Statement of Michael Anderson in Support of Petition for Correction of

lnventorship Pursuant to 37 C.F.R. §1.324;

113652175.1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 208 of 350

Patent No. 10,003,358

(3) Statement of Assignee, Stream scale, Inc., in Support of Petition for

Correction of lnventorship Pursuant to 37 C.F.R. §1.324 and Complying with 37 C.F.R.

§3.73(c);

(4) Executed Inventors Declaration and Assignment document signed by Sarah

Mann; and

(5) Application Data Sheet.

The required fee of $160.00 as required by §1.20(b). The Commissioner is

hereby authorized to charge any fees as required by this petition to Deposit Account No.

03-1728. Please show our docket number with any charge or credit to our deposit

account.

DAP/jhg
Enclosures

113652175.1

Respectfully submitted,

LEWIS ROCA ROTHGERBER CHRISTIE LLP

By /David A Plumley/
David A Plumley
Reg. No. 37,208
626/795-9900

-2-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 209 of 350

I
I

Title of !rP./Hflt1on ;.\C;(:ELEF~i\TE[) ER.4SURE :..-:c.:D~N(3 S'{STEl\/1 .:\i',JD f\i}ETH()[) !
I
I

Th, appl,cai:o:: data she;,t :f, ;nr, oI H1e p:-,Nif::nnal nr n;;nprovif,k,n;~I applk~,,;;;;n rm wt,i;;h it ,i: r;e,r:g sut)m:tted Th~, iollowir:q fo:n, ;;;;ntains tt,•:c I
b:t::lh9:-apf::c d::1ta arr::~fV]f:t] in a fo:n~::1t :;p:::c:f:ed by i:hE un:tf:d ~)i:ate:; ~:.•:~tf:-ni: :::nd Tr:::d<::rYE~:-k ()ff::,.;.f: as c~ut::n::--:d :n 37 CFF: i Jfi !

I
Th:s docur::Ent rn::~y t:-:~ ~~o:-r:pJ,:::t~:d ;:-1<:""C'k··''.'k~-•:y and S:.ibrn:ttEd ~o i:h~; ()ff:c0 :n ~!,>::t;:: U, ~;~.- ~-t.,f.:d~ 02::, :~_} :he E}:::ct:-~·::nk. F":Hng Sy~;:,::::-r: (!::.F~)) \,X tt-1:~ !
:.!~::curn,:::::t rn::1y b<:: prt::::~d ;:~nd :ndudEd ::: a p::~}X:!f 'i'U<:::.! :~pp::cat:or:. j

v B;<,:Ci%;: n 1

f }'.:':':,'.'f?~'. /l
1

.. }r!:~::::·;t~)r"'"''"'·t. ... j
~-..~~~t:-:::a Nah~~~ !

...... i

...... .. ' - \ ;,', ~ ! ~ - : t .. ~~ty ! :._os .. .:\n9ei-::-:s ! Stalt~iPrO\{§rH;e ! ~ ... 1-\ ! (;z)tH1tf)-.; !Jf R~ssdt~nct~ US 1 __________________ t __ t __ t _________________ l ___________________ · ___ : __ ~

I
I
I
I

,..r--..;~-~i-3-ii-.. S-f-1t_]_. -l:-_;__,:,_!t-.. S-r--t -~s-:"!-s-, _<_l_f_~-r-i,-i--t -~r-i_t_;::
1
-.r-·-: --1

I
'

.. . Addn~ss. 1 642~'! .f\ibnterey .Ro=::d,. Unit.21
Address 2 !

I

I !···0r1lffi%?''''l 1

---~~1\letitt)r ______ 2 ___ J
Le~1ai Narne !

I
I

R~s~dt~nct~ ~ntorrn.t~t~on {S~~t~c.t Ont::) (~) US F-~~:sidenc'/ (.. ': Non US :-<.e~:ide::c).. (~) .. .:\cti,,..-::-: US t..llliit,:;:ry S-::-:rdiC~f !

... City ... j Oakbnd···_j Btat,:i/Prov!nc.e ... j .. ~~:t~ J .. country. of .Hm,klenc~ .. 1 ~~.~~······································ j
I
I
I
I

o----------~-------~-----------------.,----------~-------~--~~--~--------------------l
f~lJSta ij C' ,--..~~ •:-. 9-4 6 ·1 ·1 : t""" (-..~ ~ "' -=-..-·\t i lJ ~3

···!-\ii··· !nve~::::: ···Mu~,t··· Be·· Li
1

st;:id··· ----· 1-Viziitior.t:i··· inver.trn_-·· inf~;,.:~::~:;!: .'t;iocks·1· rn,,1y··· be··j

generdec! vv!thin this liJrrn by sdecl!ng lht:, Add button. - I

E:ntf~r t~§ther Custosnt~r Nusnbt~r or cornpiett:~ the (~orrespondence infortllatSon Sf.}ction he~o~v,
Fr)r ftHi:ht~r ijnfor1nat~on see 37 CFR. ·S .,33{a}~

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 210 of 350

_;..\ttorney [)oche't r-...iurnber

I
Cust{)01~r Nun1ber 233fi3 !
Email Addn=:s~~ r::·TO@LY·{F~C.CO:\!i 1 ···, ·:~\·,;·,;,,·;\,·,;,,\·,························-, j

Uid:ty

{):-:~y co:·npk•t;_:- thf~. s<:~::::lon \:vhen flHn~~ an ,:!ppik,:!tk:-n by refer<:~rKe un~:it-::· 3S U.S,C, ·; ·: 1 (c) ;:::·:d 37 er:~ 157(a). Do not cornpiete this ~:.:-ct;on if
;3ppt!c3ton papt:rs :n-::l:..!t:i~n9 a spt:dfk:aHnn and .jny- dr.:~~:-..:fr:9s ,jf<:~ b<:~in9 n:t:t:i. i\ny dcrn<:~stk benefit or fnreiqn pdnri:;...- ~nfcrn~..::t~nn n~ust b<::
pro\r~ded :nth':· :~pprop:·iate s.t:(tion(s) bek}il,f (Le., .-;Dornes.tk :3enefit/Nai:io:--:al Sta~f:' ~nfr:-rrr~:~t::.:::-n:"' ar:d ;.Forei,;F~ t':.•riority tnfonn..:::tion"'}.

r-or-u~e purpo::~:-s of ::i fW:-:9 date under 37 CF-H 1. 53(b).. -u~e €:ie:;c:·:pbo:·: ::irE:i -:H1y dr2r,,\do9~.: of the pi<:~~.rnt ::ippHcabc:·: are repiac(•d by this
n:>'ference tc th<:: p:·e..._:~::rusJy f::t:~:i -=~ppik:.jtiOn; s:..!bje-::t :o condtr:(H~s >:H1d n:quh'en:f~:·:ts of .T7 CFR : .57{:3).

}\ppii~:atio:·: nurnber of the ~HE~'--:iousJy
fl~ed appl:cat:on

35 ll.s.c:. ·;22(b) and eert!f\: t~·~at UH:: invention dls.c!osed in th{:: attached applicahon has not i~nd \:V~1~ ntJt t~{:: the
subject of an app~1cat1on -fHf~d in another country·, or unt~er a n1ulb1at::.tra! ~nternation=:1i a9reernent, U:at requ~res
pubHcatnn at e\Jhteen rnonths 3fer !Hinq.

Re~pre'$et:iat~VE~ ;: ~tt .. ::t:dtit,:': shGu~d be providt::d for all pr:::ctHlon,~rs ha\:in~~ 2~ po\:v~::r Gf attc:,rn,~y ~n tl"h:: •:::JF~;c.a~~ -n. :'. d\,;J;n~~
p--.i,:~ lr·.rc::·--;::r:•~cr, ir, p~-c _..t, rr,::.,;::r:-;cr- :-h1-:•·1 s~~-cc-:- -·~c-,---:: •--.. :t >'f•r,·--::t;tu-:-c :J r•:")';:,-'nf c~ r·-:•t,•,,·ncy iq ~~'C ;::--p:,~~(\~ti,•w1 ~::r,o --x7 c:-.:q -: _3·:1).
E~thE-:r ~-=~nter (:u~:iorr~er r,,h.:n1b~~r or con-:plE1h:~ thE-: f~~~pre~;entaiive Narne s-::-:ction b::do\•V. ~f boU1 sE:ct:ons are con.,:p!etr~d th<:-: cu~:kHner
Ntant)i::r '/./ill t~:~ u~:t~d -for HH:: Ft:pr~::si::ntat:vt~ inforrn;:~Uon ::h.ff:n9 p:-oc:~s:;fr:9.

I
I
I
I

,.._-__ -P-·!_e_1~-:l-S_f:_" __ [_)_£_i_l£-:,-::~-t-_(-:~-:f_;_e _____ -__ -__ -__ -__ -__ ·,_-__ -(-~-)-__ -__ -c_;_(_-:s_t_c_.r_r'-)E_H ___ -r-~-u-r--)_~-t:-,E-H-._-__ -__ -__ -lr.-_ '--... -~~-,l--.. -L-i_S ___ -r-.... --(-,-tE_:_n_t __ r----r -=~-:::--i-~t-:(_)_n_t~-,-.. -.. -.. --,.1-__ -_{-~~~-.-~--)_-__ -_-L.-::_T_·.,-.h--.~-(.-: _-f'\--{-l_(:_C_•~;-~:-.~-:-t_h __)-r--, __ C_3_? ___ (~-.. :-::·-f;.--·-_ --:_-.. l-.'_]_) ___ -__ ~ __ l
I

Cu~;torner Nurnbf:r 23:363 !
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 211 of 350

_;..\ttorney [)oche't r-...iurnber

Tl1is s:::ction ;:_)i;O\:\/S for U1e applicant to etU·1:::r c!t:drn benefit un::.it~f ~)~~ LJ.}3 .. C~. ·1 ·l 9{fa\ ·12(\ ·121, 3~3~~(c\ or 386(c) or indic=:lte !
I

NaUona! Sta9•~~ entry fron-1 a }"')C:-T· appHcation, F'ro\tidinq benefit ch~~fr: infc.:nr:atk::r1 in the i\ppHcation l)ata ~-;heet constitutes!
I

th~:: specific rfaferfance requ~rfad l:1y 35 LL~1.c:_ ·i ~19(.e) or ·120{ anj 37 C~FF-~ ·i. 70. !
V\HH:.H1 rf.lerrinQ tn the C.lHre:nt applk~atk)f\ please le.ave the ''/\ppHeaUon Nurnt)e(: fieki tA.ank !

/\pplic:::Uon
Nun-1hcr

/\ppiic=::ilon
Nurnber

·1.:~223740

I
! Patented
I.

PriGr i\pplicat~on
Nuff:ber

FU!ng Date
{'·t'{'f'\{-PJiR:]-D1))

20 ·; •!'f.-OJ--24

20·; 1·-12--:30

8160874

I

2014-03<2S

i\ddlHonai [)ornestic Benefit/NaUona~ Staqe C)ata rn~~y t.:e 9en{::rat.{::d vvHhin this forn-1 !
___ ~:1y __ seif:~cting_ the_/idd _button. ___ _l

consttutes the ci::~frT~ t(11· priority as r-.:~quirt:...-:~ by 35 LJ.~s.c:. ·1 ·t 9(b) and 37 C~-FR ·1.5_5 VVh€~n pri(.1rity is c!ain·1ed to a -fore:gn application

' t:·::~t i~; ~~Hn~bl~~ i\:ff rEth"fr~'./al under the priodty docurnE1nt ~~xchanqe profwarn (PD.X:}' the :nfonriat:on v·/Hl be ust-:c: by t:-:~~ ()fi~cr:: to

l·;.dd !JuttOE).

i
C~ountr:/

1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 212 of 350

_;..\ttorney [)oche't r-...iurnber

•T'his applk~;:1tion (·1) c~ain1s priorit:v- to or the benefit of an c:ppHcation filed tefore \larch ·16, 20·13 and (2) also
cont:uns er conta;ned :at any t!rne. {:j ch:t~rn to a c~a~rnecl in lenhGn u·1c1t h{l:3 an t=.tft:~ct{\/e fiHn9 d{:~te on or {:~!Yer fViarcn

[::] ·1 f\ 20 ·13_
N()TE~. By prG\i!dlng this staternent under 37 c:r-·R ·; .St3 or .. ~ .78, H1!s app!;c{:thon, vv·lth a -f!Hni; date on or a1·=t<7;r l\:'larch
·16~ 201 :\ v .. dn be exarnined un{ier the fk~~t ~n;,..-entor to fi~e provisions of 'the l-\ll.\

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 213 of 350

_;..\ttorney [)oche't r-...iurnber

V\./hen u·:is i\ppHcat1on [)ata ~:;!lr::fat is properly S1Gined ~:lnd filed \:'ilth th':~ appHc:.:1t;on, applk.-:.ant has ptG\lkje::.i \·vritten
authority tG perrn!t a r.~articlp~~Un9 fnrei9n intei;ectuai propert~:l {lP) ofnc{:: access to U·H:: !nstant .applic~~t~on~-~~s-,fi~ed (s::}e
pan.1~1rapi·1 f\ in subsection ·i be!ovv) <anj the E:tH{!pt:iE~n F~atent ()ffice (E:J:.-:()) acce~-;s to any search re~-;uHs frorn t~·H:} instant
app~~caHon (see para9raph 8 in subs.ecth°)n ·i t.3e!O\·V)

Should appHcant chr)ose not to provitie an auU-~orlzaton idenhf1ed in subsec.Hon ·1 beh::r·.t./~ appHc~~nt tr~ust oot-... -()Ut of thf:
auH1orlzHtion by· cht:iC;·dn~~ the corn::spon(nn~~ box t6.. or t3 or t1oth in ~-;ubst~ct;on 2 t)f~lcr,v.

application ... ~\fter the ~n~Ha~ f!linQ Gf an app!ication, .an /\pp~icaUon [).ata SrH::et c.annot t::e u~=;eti to provld{:: or resc~nd
auH1orlzHtion for acc:::ss by a fon.:il~~n H=) t)ffice(s). instet:;tj~ Forrn F~~r()/St3/3t1 or fYT()l*St3/e9 rnust t-::t~ used ::1s ::1ppropnate.

Propert:v Offlce{s}

I
I
I
I
I
I
I
I
I
I
I
I
I

unders~on{:H.i flereby· -~ir~_nt$_JJJ§t_t~SEIQ __ ~H-fthJ}r§t~l to provh-J~~~ th{:: E:uropean F~atent CJ!fc.e (l":F'O)~ the .Japan FJatent C)ffice !
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

HnrJ (3)

37 CFR

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

T"he appnc.ant is rerninded that U-~e r:~"')C~\; F~uie ·14 ·1 (·;) EF--1C~ (Eurc:pean f1 atent c::onvf:ntk3n) requires app~icants to subrr:~t a!
I
I
I
I

the inst.ant app~ication. !
--!

resuns frorn tf1e ;nstant
:application.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 214 of 350

_;..\ttorney [)oche't r-...iurnber

~'J::.1n1e of the [}ece~:lse(i or LeqaUy !ncapac.itated lrrJ~:;ntor: ~ j !
··· ii' tr 1 e · /'>_pp I \cant· is· an· Or9 an izati on· ch 1}d,i hen,, . ·············· (J l·.- l

_$~ddrHss 1 ·t~4~~~~t~TT:~nT1i1:Hcy~~R~:}au~~--t:tn:~t~:z- _?~)·1 ~:.; _ Bosqt.:e_ G:-...,•d .. _ ("Juite_ ~~:;~-; !
I

.l\ddres!:; 2 j
I

us

Provldln9 a~~s\1nr1H .. :!nt inforn1aUon in this secUon does not substtute for cornpHance '..:Vith any requin:H"nent of part :3 of ·rith:: !
37 of (~FR to have ~:u~ ~:~s.signrnent recorded by the ()ff!ce.. !

I
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 215 of 350

_;..\ttorney [)oche't r-...iurnber

I
I
I

i\ssign~~~ ·1 !
Compide this sedion if ::,s,-ignee ,r,fc,rn,ai:<:-n, incl1Jding nrn,-::,ppli,~ant as,-if;:~,,"e inforrnaticm, ,,. je::;i,ed to bE, ,r,c:ujed on the pElt,:'ni: I
:-?r:,,:;,.,-::.iir,;--- :'· •h~;cati,•,;-. _.:'1;-, ;1-;-:~igr"'{~~.:::-..s,r:)lic-::.,.,t ;_.-{{-:-'·,t:+k::_r: :.,, ~+1° "i\:'p~ic::F1t ~,~,-::)r•:,a~·;cq'~ -.:~a.ci: ... w, \,vp: a:,1:·'car f:r, i-:-,.:::-. ;JJi-C"''t :::-.:·'p~i,,Jt;)q !

I ~;:;:~~~;~;,:~~:;\'~~:,i~~:
1
~:~,~~•i~:::~;0;·;0:-.. ~,., .a~;siqne,.,,.appiicm·iL. con1pid;;, .1his. ~;edhn. c:n!y it.ide:-,tificdion. a, .. a:-,. ,,;s,.,nnee. i~; .,,dso .;:!e,.,r<:,d. c:n. t,,0 ..l

I
I
I
I
I
I
I

...... ,-·) ..., ! ~ ·~ .. 1 -~ !
t-)~·t~~--~-- ! l;~ven t-l~r~-::.-. : :,,-1:,•··\1:~=-~ :\:~n1e f--arnq,~ N·~r~-::.-. : ~)fnx i

... • .. ' ." ,h .. [.. : • ' ... '.' ' .. ' .. ,;,:, ,>~• j "'''•'. •'-••. • ."·. •.> • ' ••••••••••••••••••••••••••••••• ,. ,hj' .. ' .. >;<, ,>~• [... '" .. ,. ,,. 1
l I l I
l I l I

f--------------l .. I : i

i\ddrton~:~t !\~;si9neE~ or !~on /\pp!icant l\s.signf.;e [)ata n-1ay b~=.= sr:;n:.=.:rat:.=.:d vv~thin U-1;s -forrn t1~l
se~ecUnq tfH:~ .. -:\dd L:J~\t)n.

I
F":!rst Narne [h~r-.:-id l-\ L-::~st Narne P;uiTde~/ F~e9Istrat!on f'-,,!urnbe:r -~·7··)ns !

••• i ••••••••••••••••••••••••••••••••• • •• • ••• l
I
I

i\ddHlona{ Sl[inature rnay o,:.: gen,:.:rat,:.:cl \:VHh!n this i~Jrrn by s<7;!ecUng th:.:: .Add button, !
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 216 of 350

_;..\ttorney [)oche't r-...iurnber

This cone•~tion vf :nfvnT:athJn ls required by 37 C~FR ·1.76. The infvrrnation is r•~quirc.-::: to obtain or retain a bent~fit by th~ pub!i•.: \:',...-hie-h
is to file {and t~~{ ihH USPT() t.o proc{:~s~.) an ::~ppiicat~on. r:onTident:al~ty is govt~rn-&d by 3fi U.S {:. ·! 22 anc: 3? (:F-'f-< ·:. ·i 4 This
GoH~::ct:on i~; t~stln·:att~d tc tak~~ :~:3 rninutBs io Gon·:p!Bt::.:, inc!udinf} fF:~u~~~r~nft pn~p~~rln9: ;:~nd subfnitilnf~ iht~ cornpk:t}::d app:::.::.ation d~~ta
she~:;t fonn to th~: USFYrc~. ~;·:r~ .2 ~ ... ;~; \. 2h / l.;c:)t(h._;;, 19 ,~_.(), ~ ~ht ~~ 10:~:;d ... ~-::~; \..-d ~..... }\-~y- c·,r·1•'·•-.::.:r,.tc: (:~~ -::-., a•"• .. c· ,,, .. 1.;. c~ -:;, . ..,.y, y<:r ~ :r·cr~u;,~., '-r·

con-:piet~ this forrn and/or sug9~stlvns for reducin9 this burden, -sh-:.1uid be s0nt to tl:~: C~~-1!~:f infvnnat~vn C1fi1c,er. U.S. F·\::tent anc:
Trade:-r-:,~rk ()tf:cr:\ U.S. [)ep:~rt::1ent ot r:on1rnE±rcB. ~.;. (). Box -~4~:.;{\ :'\k:xandna .. \//; 22~~ ·i3 i4~:.;o [)(} NC)T SEN[) FEES (}:'"<.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 217 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 218 of 350

PATENT

iN THE UNITED STATES PATENT AND TRADEMARK OFFICE

lnventor(s)
A • .. ~ss1gnee
Patent No.
Issued
j\ nn!lr-... Hr.n No

,'4.1-'i-'"'-'"-'"''-'· ' •

Filed

Michae! H. Anderson et a!.
STREAMSCALE, !NC.
10,003,358
June 19, 2018
15/201, 196
July 1, 2016

Confirmation No. 1895

Title
Docket No.

ACCELERATED ER,6-SURE CODING SYSTEM AND METHOD
124596 (411563-00010)

STATEMENT OF MICHAEL H. ANDERSON IN SUPPORT OF PETITION FOR
CORRECTION OF INVENTORSHIP PURSUANT TO 37 C.F .R. § 1.324

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

Post Office Box 29001
Glendale, CA 91209-9001

I, the undersigned, declare and state as follows:

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the

inventorship in the above-ldentlfled patent. I am the named inventor of the above

identified patent. i understand that the petition seeks to add SARAH MANN as an inventor

to this patent and I agree to the requested change of lnventorsh1p.

Executed. this
._-i-/ \I I

i !1\r · r, >
/ \'11-, J ,,1\'-

~l\
t"'-[/ ,t' .-

t I (! / ""j--·/~ I '

of -+---'e=<-Y\~---' 202·1 in -'=•./_....a-=f_,_>~"---'I..._L..,__r_t ~c.:'~t\......_i ___ _

DAP/srd

-i-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 219 of 350

Pl\TENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

!nventor(s)
Assignee
Patent No.
Issued
Application. No.
Flied

Michael H. Anderson et a!.
STREA.~v1SCALE, INC.
10,003,358
June 19, 2018
15/201, 196
July 1, 2016

Confirmation No. 1895

Title ACCELERATED ERASURE CODING SYSTEM AND METHOD
Docket No, 124596(411563-00010)

STATEMENT OF ASSIGNEE IN SUPPORT OF PETITION
FOR CORRECTION OF INVENTORSHIP UNDER 37 C.F.R. § 1.324 AND

COMPLYING WITH 37 C.F.R. § 3.73{c)

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

The beiow signed individual declares as follows:

Post Office Box 29001
Glendale, CA 91209-9001

1. I am authorized to act on behalf of STREAMSCALE, INC. and have the

title indicated below.

2. STREAMSCALE, INC. is the assignee of the entire interest of the patent

identified above, by virtue of the following Assignments from the inventors.

(a) An Assignment of this invention by inventor Michael H. Anderson

was recorded on February 28, 2018 at Reei No. 045061 and Frame No. 0217.

(b) A second Assignment of this invention by inventor Sarah Mann, the

inventor to be added on this patent, is attached hereto.

3. The Assignee agrees to the addition of Sarah Mann as an inventor on the

patent.

DAP/srd

11336961 L1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 220 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

Title of Invention:

Docket No.:
Application No.

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

ACCELERATED ERASURE CODING SYSTEM AND METHOD

124596 (411563-00010)
15/201, 196

INVENTOR'S DECLARATION

As a below named inventor, I hereby declare that:

This declaration is directed to the attached application unless the following is checked:

PATENT

x United States Application or PCT International Application Number 15/201, 196 filed on
July 1, 2016.

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the
above-identified application.

I have reviewed and understand the contents of the above-identified application, including the
claims.

I acknowledge the duty to disclose information which is material to patentability as defined in
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which
became available between the filing date of the prior application and the national or PCT
international filing date of the continuation-in-part application.

I acknowledge that any willful false statement made in this declaration is punishable under
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both.

ASSIGNMENT

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged,
the undersigned,

(1) Sarah Mann

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO

~) STREAMSCALE INC.

having a place of business at

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all
improvements which are disclosed in the application for United States Letters Patent entitled

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD

which application was executed on even date herewith or was

1 of 2
113443392.1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 221 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

Docket No.: 124596 (411563-00010)
Application No.: 15/201, 196

(a) executed on (Sa):

(b) filed on (Sb): ~Ju=ly~1~, 2~0~1~6 ___ _

Application No.: 15/201 196

including any and all United States Patents

(LEWIS ROCA ROTHGERBER CHRISTIE
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the
specified data, when known.

which may be granted on said application, and any and all extensions, divisions, reissues,
substitutes, renewals or continuations of said application and patents, and the right to all benefits
under all international conventions for the protection of industrial property and applications for
said improvements.

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its
designee.

Upon said consideration, it is further agreed that, when requested, without charge to but at the
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute,
renewal, and reissue patent applications; execute all rightful other papers; and generally do
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and
maintaining patent protection as provided herein.

Sarah Mann
Legal Name of Inventor

.. ~.~~oocuSigned by:

' I IS (M"tili, ~
"srgwgmrg430

WITNESSES:

113443392.1

2/18/2021

Date

2 of 2

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 222 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor(s)
Assignee
Patent No.
Issued
Application No.
Filed

Michael H. Anderson et al. Confirmation No. 1895
STREAMSCALE, INC.
10,003,358
June 19, 2018
15/201, 196
July 1, 2016

Title
Docket No.

ACCELERATED ERASURE CODING SYSTEM AND METHOD
124596 (411563-00010)

STATEMENT OF SARAH MANN IN SUPPORT OF PETITION FOR CORRECTION OF
INVENTORSHIP PURSUANT TO 37 C.F.R. § 1.324

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

I, the undersigned, declare and state as follows:

Post Office Box 29001
Glendale, CA 91209-9001

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the

inventorship in the above-identified patent. I understand that the petition seeks to add

me, the undersigned, as an inventor to this patent and I agree to the requested change

of inventorship.

Executed this 18 of February , 2021 in oakl and

CA

DAP/srd

113443728.1

Respectfully,
.• ~.~~oocuSigned by:

' I IS (M"tili, ~

-1-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 223 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

Title of Invention:

Docket No.:
Application No.

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

ACCELERATED ERASURE CODING SYSTEM AND METHOD

124596 (411563-00010)
15/201, 196

INVENTOR'S DECLARATION

As a below named inventor, I hereby declare that:

This declaration is directed to the attached application unless the following is checked:

PATENT

x United States Application or PCT International Application Number 15/201, 196 filed on
July 1, 2016.

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the
above-identified application.

I have reviewed and understand the contents of the above-identified application, including the
claims.

I acknowledge the duty to disclose information which is material to patentability as defined in
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which
became available between the filing date of the prior application and the national or PCT
international filing date of the continuation-in-part application.

I acknowledge that any willful false statement made in this declaration is punishable under
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both.

ASSIGNMENT

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged,
the undersigned,

(1) Sarah Mann

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO

~) STREAMSCALE INC.

having a place of business at

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all
improvements which are disclosed in the application for United States Letters Patent entitled

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD

which application was executed on even date herewith or was

1 of 2
113443392.1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 224 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

Docket No.: 124596 (411563-00010)
Application No.: 15/201, 196

(a) executed on (Sa):

(b) filed on (Sb): ~Ju=ly~1~, 2~0~1~6 ___ _

Application No.: 15/201 196

including any and all United States Patents

(LEWIS ROCA ROTHGERBER CHRISTIE
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the
specified data, when known.

which may be granted on said application, and any and all extensions, divisions, reissues,
substitutes, renewals or continuations of said application and patents, and the right to all benefits
under all international conventions for the protection of industrial property and applications for
said improvements.

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its
designee.

Upon said consideration, it is further agreed that, when requested, without charge to but at the
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute,
renewal, and reissue patent applications; execute all rightful other papers; and generally do
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and
maintaining patent protection as provided herein.

Sarah Mann
Legal Name of Inventor

.. ~.~~oocuSigned by:

' I IS (M"tili, ~
"srgwgmrg430

WITNESSES:

113443392.1

2/18/2021

Date

2 of 2

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 225 of 350

Electronic Patent Application Fee Transmittal

Application Number: 15201196

Filing Date: 01-Jul-2016

Title of Invention: ACCELERATED ERASURE CODING SYSTEM AND METHOD

First Named Inventor/Applicant Name: Michael H. Anderson

Filer: David A. Plumley/Jennifer Guerra

Attorney Docket Number: 124596/411563-00010

Filed as Small Entity

Filing Fees for Utility under 35 USC 111 (a)

Description Fee Code Quantity Amount
Sub-Total in

USO($)

Basic Filing:

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

PROCESSING FEE CORRECTING INVENTORSHIP 2816 1 160 160

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 226 of 350

Description Fee Code Quantity Amount
Sub-Total in

USO($)

Extension-of-Time:

Miscellaneous:

Total in USO($) 160

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 227 of 350

Electronic Acknowledgement Receipt

EFSID: 42002759

Application Number: 15201196

International Application Number:

Confirmation Number: 1895

Title of Invention: ACCELERATED ERASURE CODING SYSTEM AND METHOD

First Named Inventor/Applicant Name: Michael H. Anderson

Customer Number: 23363

Filer: David A. Plumley/Jennifer Guerra

Filer Authorized By: David A. Plumley

Attorney Docket Number: 124596/411563-00010

Receipt Date: 23-FEB-2021

Filing Date: 01-JUL-2016

Time Stamp: 20:16:14

Application Type: Utility under 35 USC 111 (a)

Payment information:

Submitted with Payment yes

Payment Type CARD

Payment was successfully received in RAM $160

RAM confirmation Number E20212MK16314302

Deposit Account

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 228 of 350

File Listing:

Document
Document Description File Name

File Size(Bytes}/ Multi Pages
Number Message Digest Part /.zip (if appl.)

105472

1
Petition for review by the Office of

124596_Petition.pdf no 2
Petitions

f7 eba6fd 26cc6344e63d ea3d44 b81 f3 b7 c96
bfed

Warnings:

Information:

4775871

2 Application Data Sheet 124596_CorrectedADS.pdf no 9
SeScdba 12bc73ec957756821 0cac6c6dbca

6e3aa

Warnings:

Information:

This is not an USPTO supplied ADS fillable form

294382

3 Examination support document 124596_Anderson_Stm.pdf no 1
b22856785f3fc0c87cf0dabe30c1 cb979b55

f9a0

Warnings:

Information:

452860

4 Examination support document 124596_StreamScale_Stm.pdf no 3
1684c07553306143d3c05df3319dad98204

45ee1

Warnings:

Information:

206157

5 Examination support document 124596_Mann_Stm.pdf no 1
4 76d 14ce1 2d287c1 3498f7f069e5ecdca6f5

eSOb

Warnings:

The PDF file has been signed with a digital signature and the legal effect of the document will be based on the contents of the file not the
digital signature.

Information:

211412

6 Oath or Declaration filed 124596_Mann_Dec1Asg.pdf no 2
02169f30b7c2691 b2c394bdb2a28dd4ef4a

3ba39

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 229 of 350

Warnings:

The PDF file has been signed with a digital signature and the legal effect of the document will be based on the contents of the file not the
digital signature.

Information:

30467

7 Fee Worksheet (5B06) fee-info.pdf no 2
7d9072e4b519ad 1630619f8a6b74 7a7b78C

69fcd

Warnings:

Information:

Total Files Size (in bytes) 6076621

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Agglications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Agglication under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.
New International Agglication Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 181 O), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/1 OS) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 230 of 350

EXHIBIT F

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 231 of 350

c12) United States Patent
Anderson

(54) ACCELERATED ERASURE CODING
SYSTEM AND METHOD

(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US)

(72) Inventor: Michael H. Anderson, Los Angeles,
CA (US)

(73)

(*)

Assignee: STREAMSCALE, INC., Los Angeles,
CA (US)

Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 15/976,175

(22) Filed:

(65)

May 10, 2018

Prior Publication Data

US 2018/0262212 Al Sep. 13, 2018

Related U.S. Application Data

(63) Continuation of application No. 15/201,196, filed on
Jul. 1, 2016, now Pat. No. 10,003,358, which is a

(51) Int. Cl.
H03M 13115
G06F 11110

(52) U.S. Cl.

(Continued)

(2006.01)
(2006.01)

(Continued)

CPC H03M 131154 (2013.01); G06F 1111068
(2013.01); G06F 1111076 (2013.01);

(Continued)
(58) Field of Classification Search

CPC H03M 13/154; H03M 13/1191; H03M
13/134; H03M 13/151; H03M 13/373;

(Continued)

100
"·,.

I 1111111111111111 1111111111 111111111111111 IIIII IIIII 111111111111111 IIII IIII
US010291259B2

(IO) Patent No.: US 10,291,259 B2
May 14, 2019 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,054 A
5,754,563 A

ll/ 1996 Pharris
5/1998 White

(Continued)

OTHER PUBLICATIONS

Casey Henderson: Letter to the USENIX Connnunity <https://www.
usenix.org/system/files/conference/fast13/fastl3 memo 021715.
pdf>Feb. 17,2015.

(Continued)

Primary Examiner - John J Tabone, Jr.
(74) Attorney, Agent, or Firm - Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT

An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core,
storage medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an
encoding matrix for holding first factors in the main
memory, the first factors being for encoding the original data
into the check data; and a thread for executing on the
processing core. The thread includes: a parallel multiplier
for concurrently multiplying multiple entries of the data
matrix by a single entry of the encoding matrix; and a first
sequencer for ordering operations through the data matrix
and the encoding matrix using the parallel multiplier to
generate the check data.

57 Claims, 9 Drawing Sheets

/
120

'-..
110

/ ~
/ ' // 140 -~ CPU CPU CPU CPU

+ L1 + L1 I + L 1 + L1
I I I I I

1130 I
1130

I Die 1 Die 0 L2
I

Memory I L2

I 1 I I
CPU CPU CPU CPU
+ L1 + L1 + L1 + L1

1/0
-------------150

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 232 of 350

US 10,291,259 B2
Page 2

Related U.S. Application Data

continuation of application No. 14/852,438, filed on
Sep. 11, 2015, now Pat. No. 9,385,759, which is a
continuation of application No. 14/223,740, filed on
Mar. 24, 2014, now Pat. No. 9,160,374, which is a
continuation of application No. 13/341,833, filed on
Dec. 30, 2011, now Pat. No. 8,683,296.

(51) Int. Cl.
H03M 13111
H03M 13/13
G06F 12102
G06F 12106
H03M 13137
H03M 13/00
H04L 1100
GllC 29152

(52) U.S. Cl.

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

CPC G06F 1111092 (2013.01); G06F 1111096
(2013.01); G06F 1210238 (2013.01); G06F

12106 (2013.01); GllC 29152 (2013.01);
H03M 13/1191 (2013.01); H03M 13/134

(2013.01); H03M 1311515 (2013.01); H03M
131373 (2013.01); H03M 1313761 (2013.01);

H03M 1313776 (2013.01); H03M 131616
(2013.01); H03M 13/6502 (2013.01); H04L
110043 (2013.01); H04L 110057 (2013.01);

G06F 2211/109 (2013.01); G06F 2211/1057
(2013.01)

(58) Field of Classification Search
CPC H03M 13/3761; H03M 13/3776; H03M

13/616; H03M 13/6502; G06F 11/1068;
G06F 11/1076; G06F 11/1092; G06F
11/1096; G06F 12/0238; G06F 12/06;

G06F 2211/1057; G06F 2211/109; GllC
29/52; H04L 1/0043; H04L 1/0057

USPC 714/6.24, 6.1, 6.11, 6.2, 6.21, 6.32, 763,
714/764, 752, 758, 768, 770, 773, 784,

714/786
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,486,803 Bl 11/2002 Luby et al.
6,654,924 Bl * 11/2003 Hassner GllB 20/1813

714/758
6,823,425 B2 * 11/2004 Ghosh G06F 11/1076

711/ll4
7,350,126 B2 * 3/2008 Winograd G06F 11/1076

714/752
7,865,809 Bl l/20ll Lee et al.
7,930,337 B2 4/20ll Hasenplaugh et al.
8,145,941 B2 * 3/2012 Jacobson G06F ll/ 107 6

714/6.24
8,352,847 B2 * 1/2013 Gunnam G06F 17/16

714/758
8,683,296 B2 * 3/2014 Anderson H03M 13/1515

714/763
8,914,706 B2 * 12/2014 Anderson G06F 11/1076

714/6.24
9,160,374 B2 * 10/2015 Anderson H03M 13/3761
9,258,014 B2 * 2/2016 Anderson G06F 11/1076
9,385,759 B2 * 7/2016 Anderson H03M 13/3761

10,003,358 B2 * 6/2018 Anderson H03M 13/154
2009/0055717 Al 2/2009 Au et al.
2009/0249170 Al 10/2009 Maiuzzo
2010/0293439 Al 11/2010 Flynn et al.

2011/00297 56 Al*

2012/0272036 Al*

2013/0108048 Al*

2013/0ll0962 Al*

2013/0lll552 Al*

2013/0124932 Al*

2013/0173956 Al*

2013/0173996 Al*

2014/0040708 Al
2014/0068391 Al
2015/0012796 Al *

2017 /0005671 Al *

2/20 ll Biscondi H03M 13/lll4
712/22

10/2012 Muralimanohar .. G06F 12/0238
711/202

5/2013 Grube H04W 12/00
380/270

5/2013 Grube H04W 12/00
709/213

5/2013 Grube H04W 12/00
726/3

5/2013 Schuh G06F 9/44

7/2013 Anderson

7/2013 Anderson

2/2014 Maiuzzo
3/2014 Goel et al.
1/2015 Anderson

1/2017 Anderson

714/718
........... G06F 11/1076

714/6.24
H03M 13/3761

714/770

H03M 13/3761
714/763

H03M 13/3761

OTHER PUBLICATIONS

Chandan Kumar Singh: EC Jerasure plugin and StreamScale Inc,

<http://www.spinics.net/lists/ceph-devel/msg29944.html> Apr. 20, 2016.
Code Poetry and Text Adventures: <http://catid.mechafetus.com/
news/news.php?view~38l>Dec. 14, 2014.
Curtis Chan: StreamScale Announces Settlement of Erasure Code
Technology Patent Litigation, <http://www.prweb.com/releases/
2014/12/prwebl2368357.htm>, Dec. 3, 2014.
Ethan Miller, <https:/ /plus.google.com/ ll3956021908222328905/
posts/bPcYevPkJWd>, Aug. 2, 2013.
H. Peter Anvin. "The mathematics ofRAID-6." 2004, 2011.
Hafner et al., Matrix Methods for Lost Data Reconstruction in
Erasure Codes, Nov. 16, 2005, USenix Fast '05 Paper, pp. 1-26.
James S. Plank, Ethan L. Miller, Will B. Houston: Ge-Complete: a
Comprehensive Open Source Library for Galois Field Arithmetic,
<httio://web.eecs.utk.edu/-plank/q lank/paqers/Cs-13-703 .html> Jan.
2013.
James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu,
Zooko Wlcox-O'Hearn: A Performance Evaluation and Examina
tion of Open-Source Erasure Coding Libraries for Storage, <https://
www.usenix.org/legacy/event/fast09/tech/full papers/plank/plank html/>
2009.
Kevin M. Greenan, Ethan L. Miller, Thomas J.E. Schwarz, S. J.:
Optimizing Galois Field Arithmetic for Diverse Processor Archi
tectures and Applications, Proceedings of the 16th IEEE Interna
tional Symposium on Modeling, Analysis, and Simulation of Com
puter and Telecommunication Systems (Mascots 2008), Baltimore,
MD, Sep. 2008.
Lee, "High-Speed VLSI Architecture for Parallel Reed-Solomon
Decoder", IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. ll, No. 2, Apr. 2003, pp. 288-294 .
Li et al.; Preventing Silent Data Corruptions from Propagating
During Data Reconstruction; IEEE Transactions on Computers, vol.
59, No. 12, Dec. 2010; pp. 16ll-1624.
Li Han and Qian Huan-yan. "Parallelized Network Coding with
SIMD instruction sets."in Computer Science and Computational
Technology, 2008. ISCSCT'08. International Symposium on , vol.
1, pp. 364-369. IEEE, 2008.
Loic Dachary: Deadline ofGithub pull request for Hammer release,
<http://www.spinics.net/lists/ceph-devel/msg2200 l .htrnl> Jan. 13,
2015.
Louis Lavile: <https://twittercom/louislavile> Nov. 13, 2014.
M. Lalam, et al. "Sliding Encoding-Window for Reed-Solomon
code decoding,"4th International Symposium on Turbo Codes &
Related Topics; 6th International ITG-Conference on Source and
Channel Coding, Munich, Germany, 2006, pp. 1-6.
Maddock, et al.; White Paper, Surviving Two Disk Failures Intro
ducing Various "RAID 6"Implementations; Xyratex; pp. 1-13.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 233 of 350

US 10,291,259 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Mann, "The Original View of Reed-Solomon Coding and the
Welch-Berlekamp Decoding Algorithm", A Dissertation Submitted
to the Faculty of the Graduate Interdisciplinary Program in Applied
Mathematics, The University of Arizona, Jul. 19, 2013, 143 sheets.
Marius Gedminas: <http://eavesdrop.openstack.org/irclogs/%
23openstack-swift/%23openstack-swift.2015-04-30 .log.html> Apr.
29, 2015.
Matthew L. Curry, Anthony Skjellum, H. Lee Ward, and Ron
Brightwell. "Arbitrary dimension reed-solomon coding and decod
ing for extended raid on gpus." In Petascale Data Storage Workshop,
2008. PDSW'08. 3rd, pp. 1-3. IEEE, 2008.
Matthew L. Curry, Anthony Skjellum, H. Lee Ward, Ron Brightwell:
Gibraltar: a Reed-Solomon coding library for storage applications
on programmable graphics processors. Concurrency and Computa
tion: Practice and Experience 23(18): pp. 2477-2495 (2011).
Matthew L. Curry, H. Lee Ward, Anthony Skjellum, Ron Brightwell:
a Lightweight, Gpu-Based Software Raid System. ICPP 2010: pp.
565-572.
Matthew L. Curry, Lee H. Ward, Anthony Skjellum, and Ron B.
Brightwell: Accelerating Reed-Solomon Coding in Raid Systems
With GPU s, Parallel and Distributed Processing, 2008. Ipdps 2008.
IEEE International Symposium on.IEEE, 2008.
Michael a. O'Shea: StreamScale, <https://lists.ubuntu.corn/archives/
technical-board/2015-April/002100.html >Apr. 29, 2015.

Mike Masnik: Patent Troll Kills Open Source Project on Speeding
Up the Computation of Erasure Codes, <https://www.techdirt.com/
articles/2014 l l 15/07113529155/patent-troll-kills-open-source-project
speeding-up-computation-erasure-codes.shtml>, Nov. 19, 2014.
Neifeld, M.A & Sridharan, S. K. (1997). Parallel error correction
using spectral Reed-Solomon codes. Journal of Optical Communi
cations, 18(4), pp. 144-150.
Plank; All About Erasure Codes: - Reed-Solomon Coding - LDPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL -
Aug. 20, 2004; 52 sheets.
Robert Louis Cloud, Matthew L. Curry, H. Lee Ward, Anthony
Skjellum, Purushotham Bangalore: Accelerating Lossless Data Com
pression with GPUs. CoRR abs/1107.1525 (2011).
Roy Schestowitz: US Patent Reform (on Trolls Only) More or Less
Buried or Ineffective, <http:/ /techrights.org/2014/12/12/us-patent
reforrn/> Dec. 12, 2014.
Wei bin Sun, Robert Ricci, Matthew L. Curry: GPU store: harnessing
Gpu computing for storage systems in the OS kernel. SYSTOR
2012: p. 6.
Xin Zhou, Anthony Skjellum, Matthew L. Curry: Abstract: Extended
Abstract for Evaluating Asynchrony in Gibraltar Raid's GPU Reed
Solomon Coding Library. SC Companion 2012: pp. 1496-1497.
Xin Zhou, Anthony Skjellum, Matthew L. Curry: Poster: Evaluating
Asynchrony in Gibraltar RAID's GPU Reed-Solomon Coding Library.
SC Companion 2012: p. 1498.

* cited by examiner

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 234 of 350

e •

1
0

\
F

IG
.

1
0

0

•

25

~

~

~

~
 =

~

20

I d
at

a
1 ,

 b
yt

e
1

II d
at

a
1 ,

 b
yt

e
2

II
•

•
•

•
•

•
•

•
•

•
I d

at
a

1 ,
 b

yt
e

L

~

I d
at

a
2,

 b
yt

e
2

II
•

•
•

•
•

•
•

•
•

•
I d

at
a

2,
 b

yt
e

L
I

~

da
ta

 2
,

by
te

 1

~
 ~ ...

•
N

•
0

•
1

,0

da
ta

 N
,

by
te

 1

I d
at

a
N

,
by

te
 2

I •

 •
• •

 •
• •

 •
• •

 I
 d

at
a

N
,

by
te

 L

I
rJ

J =- ('D ('
D

30

ch
ec

k
1 ,

 b
yt

e
1

I c
he

ck
 1

 , b
yt

e
2

I •
 •

• •
 •

• •
 •

• •
 I

 ch
ec

k
1 ,

 b
yt

e
L

I
.... 0 1

,0

ch
ec

k
2,

 b
yt

e
1

I c
he

ck
 2

,
by

te
 2

I •

 •
• •

 •
• •

 •
• •

 I
 c

he
ck

 2
,

by
te

 L

I
• • •

d r.,;
_

ch
ec

k
M

,
by

te
 1

 I
ch

ec
k

M
,

by
te

 2
 I

 •
• •

 •
• •

 •
• •

 •
I c

he
ck

 M
,

by
te

 L
 I

"""
' =

'N

\0

"""
'

'N

35

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 235 of 350

30
0 \

31
0

32
0

33
0

34
0

35
0

F
IG

.
2

R
ed

uc
e

fu
ll

si
ze

 e
n

co
d

in
g

 m
a

tr
ix

 E
 to

 r
ed

uc
ed

 s
iz

e
e

n
co

d
in

g
 m

at
ri

x
T

b

y
re

m
o

vi
n

g
 t

h
e

 F
 fa

ile
d

d
a

ta
 d

ri
ve

 r
ow

s
w

h
ile

 k
ee

pi
ng

 o
n

ly
 F

 s
u

rv
iv

in
g

ch

e
ck

 d
ri

ve
 r

ow
s,

 m
o

vi
n

g
 t

h
e

 F
 fa

ile
d

d
a

ta
 d

ri
ve

 c
o

lu
m

n
s

to
 t

h
e

 r
ig

ht

l
R

ed
uc

e
fu

ll
si

ze
 e

n
co

d
e

d
 d

a
ta

 m
a

tr
ix

 C
 t

o
re

du
ce

d
si

ze
 e

n
co

d
in

g
 m

a
tr

ix
 C

'
b

y
re

m
o

vi
n

g
 t

he
 F

 lo
st

 d
a

ta
 r

ow
s

w
hi

le
 k

e
e

p
in

g
 o

n
ly

 F
 s

u
rv

iv
in

g
 c

h
e

ck
 d

a
ta

ro

w
s,

 l
ea

vi
ng

 s
u

rv
iv

in
g

 d
a

ta
 X

 o
n

to
p

an
d

su
rv

iv
in

g
 c

h
e

ck
 d

a
ta

 W
 o

n
b

o
tt

o
m

l
S

pl
it

e
n

co
d

in
g

 m
at

ri
x

T
in

to
 f

o
u

r
su

b
-m

a
tr

ic
e

s:

id
e

n
tit

y
m

a
tr

ix
 IK

 (
K

xK
)

in
 u

p
p

e
r

le
ft,

 z
er

o
m

a
tr

ix
 O

 (
K

x
F)

 i
n

u
p

p
e

r
rig

ht
,

e
n

co
d

in
g

 m
at

ri
x

A

(F
xK

)
in

 l
o

w
e

r
le

ft,
 a

nd
 e

n
co

d
in

g
 m

a
tr

ix
 B

 (
F

xF
)

in
 l

o
w

e
r

ri
gh

t

l
In

ve
rt

 e
n

co
d

in
g

 m
at

ri
x

B
 to

 p
ro

d
u

ce
 s

ol
ut

io
n

m
at

ri
x

B
-1

;
lo

st
 d

a
ta

 Y

sa
tis

fie
s

th
e

re
la

tio
ns

hi
p

W
 =

 A
xX

 +
 B

xY
,

so
 Y

 =
 B

-1
x

(W
 -

A
x
X

)

l
R

e
co

n
st

ru
ct

 lo
st

 d
a

ta
 Y

 f
ro

m
 s

u
rv

iv
in

g
 d

a
ta

 X
,

su
rv

iv
in

g
ch

e
ck

 d
a

ta
 W

,
e

n
co

d
in

g
 m

at
ri

x
A

,
a

n
d

 s
o

lu
tio

n
 m

at
ri

x
s-

1
us

in
g

fo
rm

ul
a;

 r
eg

ne
ra

te
 a

n
y

lo
st

 c
h

e
ck

 d
a

ta
 fr

om
 s

u
rv

iv
in

g
 d

a
ta

 X
 a

nd
 r

e
co

n
st

ru
ct

e
d

 l
os

t d
a

ta
 Y

e • 0
0

• ~

~

~

~
 =

~

~

~
 ~ ... N

0 1
,0

rJ
J = ('D ('

D

N

0 1
,0

d r.,;
_ "'""
' =

'N

\0

"'""
'

'N

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 236 of 350

40
0 \

41
0

42
0

43
0

44
0

45
0

F
IG

.
3

In
iti

al
iz

e
(o

ne
 t

im
e)

 -
bu

ild
 t

w
o

lo
ok

up
 ta

bl
es

,
on

e
fo

r
lo

w
-o

rd
er

ni

bb
le

s,
 o

ne
 f

or
 h

ig
h-

or
de

r
ni

bb
le

s,
 e

ac
h

on
e

co
nt

ai
ni

ng
 2

56

en
tr

ie
s

of
 th

e
16

 p
os

si
bl

e
pr

od
uc

ts
 o

f
on

e
ni

bb
le

 a
nd

 o
ne

 f
ac

to
r

l
P

re
pa

re
 (

 on
ce

 p
er

 o
pe

ra
nd

 d
at

a)
 -

lo
ad

 n
ex

t
64

 b
yt

es
 o

f
op

er
an

d
d

a
ta

 fr
om

m

em
or

y
in

to
 f

ou
r

op
er

an
d

re
gi

st
er

s;
 t

he
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

w
ill

 l
ea

ve

th
es

e
re

gi
st

er
s

al
on

e
to

 a
vo

id
 r

el
oa

di
ng

 f
ro

m
 m

em
or

y
on

 s
uc

ce
ed

in
g

ca
lls

l
E

xe
cu

te
 (

 on
ce

 p
er

 c
al

l)
-

lo
ad

 t
he

 1
6

po
ss

ib
le

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

fr
om

 m
em

or
y

fo
r

th
e

cu
rr

en
t

fa
ct

or
 in

to
 o

ne
 r

eg
is

te
r;

 r
ep

ea
t

fo
r

th
e

lo
w

-
or

de
r

ni
bb

le
 p

ro
du

ct
s

in
to

 a
no

th
er

 r
eg

is
te

r;
 c

le
a

r
fo

ur
 o

ut
pu

t
re

gi
st

er
s

l
E

xe
cu

te
 (

 on
ce

 p
er

 3
2

by
te

s
of

 d
at

a)
 -

m
o

ve
 tw

o
re

gi
st

er
s

of

op
er

an
d

da
ta

 (
by

te
s)

 i
nt

o
fo

ur
 r

eg
is

te
rs

 o
f

sc
ra

tc
h

d
a

ta
 (

ni
bb

le
s)

l
M

ul
tip

ly
 (

on
ce

 p
er

 3
2

by
te

s
o

f d
at

a)
 -

us
e

P
S

H
U

F
B

 o
n

th
e

ni
bb

le

d
a

ta
 in

 t
he

 s
cr

at
ch

 r
eg

is
te

rs
,

ac
cu

m
ul

at
in

g
th

e
co

rr
es

po
nd

in
g

lo
w

-
or

de
r

ni
bb

le
 a

nd
 h

ig
h-

or
de

r
ni

bb
le

 p
ro

du
ct

s
in

 t
he

 o
ut

pu
t

re
gi

st
er

s

e • 0
0

• ~

~

~

~
 =

~

~

~
 ~ ... N

0 1
,0

rJ
J = ('D ('

D

~

0 1
,0

d r.,;
_ "'""
' =

'N

\0

"'""
'

'N

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 237 of 350

50
0 \

51
0

52
0

53
0

54
0

55
0

F
IG

.
4

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 g

en
er

at
e

ch
e

ck
 d

a
ta

 fo
r

co
ns

ec
ut

iv
e

gr
ou

ps
 o

f c
or

re
sp

on
di

ng
 6

4-
by

te
 c

hu
nk

s
ac

ro
ss

 a
 s

tr
ip

e
of

 d
a

ta

i
O

ut
er

 lo
op

 -
pr

oc
es

s
ne

xt
 g

ro
u

p
 o

f
64

-b
yt

e
ch

un
ks

 o
f

op
er

an
d

da
ta

 fr
om

ea

ch
 o

f t
he

 b
lo

ck
s

of
 t

he
 s

tr
ip

e;
 l

oa
d

ne
xt

 6
4

by
te

s
of

 o
pe

ra
nd

 d
at

a
fo

r
fir

st
 d

at
a

dr
iv

e
fr

om
 m

em
or

y
an

d
in

iti
al

iz
e

pa
ri

ty
 c

h
e

ck
 d

ri
ve

 c
he

ck
 d

a
ta

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 d

at
a

dr
iv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
of

 th
e

no
n-

pa
rit

y
ch

e
ck

 d
riv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

irs
t

da
ta

 d
ri

ve
's

64

 b
yt

es
 o

f
op

er
an

d
d

a
ta

 to
 i

ni
tia

liz
e

no
n-

pa
ri

ty
 c

h
e

ck
 d

ri
ve

 c
he

ck
 d

a
ta

l
S

ec
on

d
m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
d

a
ta

 d
ri

ve
s:

fo

r
ea

ch
 o

f t
he

 o
th

er

da
ta

 d
riv

es
,

lo
ad

 n
ex

t
64

 b
yt

es
 o

f o
pe

ra
nd

 d
a

ta
 fr

om
 m

em
or

y
(p

re
se

rv
ed

ac

ro
ss

 in
ne

r
lo

op
),

 a
dd

 t
hi

s
to

 p
ar

ity
 d

ri
ve

 c
h

e
ck

 d
at

a,
 a

nd
 c

al
l

in
ne

r
lo

op

l
In

ne
r

lo
op

 -
pr

oc
es

s
ne

xt
 d

a
ta

 d
riv

e:

lo
op

 th
ro

ug
h

ea
ch

 o
f t

he
 n

on
-

pa
rit

y
ch

e
ck

 d
riv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 n

ex
t

dr
iv

e'
s

64

by
te

s
of

 o
pe

ra
nd

 d
a

ta
 to

 u
pd

at
e

th
e

no
n-

pa
ri

ty
 c

h
e

ck
 d

ri
ve

 c
he

ck
 d

a
ta

e • 0
0

• ~

~

~

~
 =

~

~

~
 ~ ... N

0 1
,0

rJ
J = ('D ('

D

 ... 0 1

,0

d r.,;
_ "'""
' =

'N

\0

"'""
'

'N

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 238 of 350

60
0 \

61
0

62
0

63
0

64
0

F
IG

.
5

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 r

ec
on

st
ru

ct
 lo

st
 o

rig
in

al
 d

a
ta

 a
nd

 r
eg

en
er

at
e

lo
st

 c
h

e
ck

 d
at

a
fo

r
m

ul
tip

le
 6

4-
by

te
 c

hu
nk

s
ac

ro
ss

 a
 s

tr
ip

e
of

 d
at

a

l
O

ut
er

 lo
op

 -
pr

oc
es

s
ne

xt
 g

ro
up

 o
f

64
-b

yt
e

ch
un

ks
 o

f
op

er
an

d
da

ta
;

lo
ad

ne

xt
 6

4
by

te
s

of
 o

pe
ra

nd
 d

at
a

fo
r

fir
st

 s
ur

vi
vi

ng
 d

a
ta

 d
ri

ve
 f

ro
m

 m
em

or
y

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 s

ur
vi

vi
ng

 d
a

ta
 d

riv
e:

lo

op
 t

hr
ou

gh
 e

ac
h

of

th
e

su
rv

iv
in

g
ch

e
ck

 d
riv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

irs
t

su
rv

iv
in

g
da

ta
 d

ri
ve

's
 6

4
by

te
s

of
 o

pe
ra

nd
 d

a
ta

 to
 i

ni
tia

liz
e

pa
rt

ia
l c

h
e

ck
 d

at
a

A
xX

l
S

ec
on

d
m

id
dl

e
lo

op
 -

in
iti

al
iz

e
fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
e

ck
 d

riv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 i
ni

tia
liz

e
th

e
ir

 c
he

ck

d
a

ta
 b

as
ed

 o
n

th
e

fir
st

 s
ur

vi
vi

ng
 d

a
ta

 d
ri

ve
's

 6
4

by
te

s
of

 o
pe

ra
nd

 d
at

a

e • 0
0

• ~

~

~

~
 =

~

~

~
 ~ ... N

0 1
,0

rJ
J = ('D ('

D

U
l

0 1
,0

d r.,;
_ "'""
' =

'N

\0

"'""
'

'N

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 239 of 350

60
0 \

65
0

66
0

67
0

68
0

F
IG

.
6

T
hi

rd
 m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
su

rv
iv

in
g

da
ta

 d
riv

es
:

fo
r

ea
ch

 o
f t

he
 o

th
er

 s
ur

vi
vi

ng
 d

at
a

dr
iv

es
,

lo
ad

 n
ex

t 6
4

by
te

s
of

op

er
an

d
da

ta
 fr

om
 m

em
or

y
(p

re
se

rv
ed

 a
cr

os
s

in
ne

r
lo

op
s)

l
F

irs
t

in
ne

r
lo

op
 -

pr
oc

es
s

ne
xt

 s
ur

vi
vi

ng
 d

at
a

dr
iv

e:

lo
op

 th
ro

ug
h

ea
ch

 o
f

th
e

su
rv

iv
in

g
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 n

ex
t

su
rv

iv
in

g
da

ta
 d

ri
ve

's
 6

4
by

te
s

of
 o

pe
ra

nd
 d

at
a

to
 u

pd
at

e
pa

rt
ia

l c
he

ck
 d

at
a

A
xX

l
S

ec
on

d
in

ne
r

lo
op

 -
up

da
te

 f
ai

le
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
ec

k
dr

iv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

ec
k

da
ta

 b
as

ed
 o

n
th

e
ne

xt
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e'

s
64

 b
yt

es
 o

f
op

er
an

d
da

ta

l
F

ou
rt

h
m

id
dl

e
lo

op
 -

ad
d

su
rv

iv
in

g
ch

ec
k

da
ta

 to
 p

ro
du

ce
 W

 -
A

xX
:

lo
op

 t
hr

ou
gh

 e
ac

h
of

 th
e

su
rv

iv
in

g
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

ad
de

r
to

 a
dd

 t
he

ir
64

 b
yt

es
 o

f d
at

a
to

 p
ar

tia
l c

he
ck

 d
at

a
A

xX

e • 0
0

• ~

~

~

~
 =

~

~

~
 ~ ... N

0 1
,0

rJ
J = ('D ('

D

O
'I

0 1
,0

d r.,;
_ "'""
' =

'N

\0

"'""
'

'N

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 240 of 350

60
0 \

69
0

70
0

71
0

72
0

F
IG

.
7

F
ift

h
m

id
dl

e
lo

op
 -

lo
st

 o
rig

in
al

 d
a

ta
 Y

:
in

 c
om

bi
na

tio
n

w
ith

 t
hi

rd
 i

nn
er

lo

op
,

ca
lc

ul
at

e
B

-1
x

(W
 -

A
x
X

);
 s

ta
rt

 b
y

in
iti

al
iz

in
g

ne
xt

 r
ow

 o
f Y

 to
 f

irs
t

co
m

bi
na

tio
n

of
 s

ol
ut

io
n

m
at

ri
x

B
-1

an
d

lo
st

 p
ar

tia
l c

h
e

ck
 d

a
ta

 W
 -

A
x
X

l
T

hi
rd

 i
nn

er
 lo

op
 -

co
m

pl
et

e
ne

xt
 r

ow
 o

f Y
 b

y
ad

di
ng

 in
 p

ro
d

u
ct

 o
f

ne
xt

fa

ct
o

r
of

 B
-1

an
d

W
 -A

xX
 (u

si
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r)
;

th
is

re

co
ns

tr
uc

ts
 n

ex
t f

ai
le

d
dr

iv
e'

s
lo

st
 d

at
a,

 w
hi

ch
 c

an
 b

e
st

or
ed

 (
if

de
si

re
d)

I i

F
ou

rt
h

in
ne

r
lo

op
 -

up
da

te
 f

ai
le

d
ch

e
ck

 d
ri

ve
 d

at
a:

fo

r
ea

ch
 o

f t
he

 f
ai

le
d

ch
e

ck
 d

riv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

e
ck

 d
a

ta

ba
se

d
on

 t
he

 n
ex

t
fa

ile
d

d
a

ta
 d

ri
ve

's
 6

4
by

te
s

of
 r

ec
on

st
ru

ct
ed

 l
os

t d
a

ta

l
S

ix
th

 m
id

dl
e

lo
op

 -
fo

r
ea

ch
 f

ai
le

d
ch

e
ck

 d
ri

ve
,

st
or

e
ne

w
ly

 g
e

n
e

ra
te

d
 c

h
e

ck
 d

a
ta

 (
if

de
si

re
d)

e • 0
0

• ~

~

~

~
 =

~

~

~
 ~ ... N

0 1
,0

rJ
J = ('D ('

D

-...
.J

0 1
,0

d r.,;
_ "'""
' =

'N

\0

"'""
'

'N

U
I

\0
 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 241 of 350

U.S. Patent

co .
CJ
LL

0
0 .,...

I

May 14, 2019

::J ,.....
CL ...J
0 +

~

::J ,.....
CL ...J

~

0 +

lo
0 .,... .,... ~--
~
/

0
C\I .,...
~

::J ,.....
CL ...J

V 0 +

~
::J ,.....
CL ...J
0 +

~

~

Sheet 8 of 9 US 10,291,259 B2

,.....
(])

::J ,.....
0 CL ...J

0 +
~

C\J
o...J

0 Ct) ~ ::J ,- LO ,-- CL ...J ,--..
0 +

H

>,
l,,_

0 0 E - --(]) -
~

'

::J ,.....
I CL ...J
~ 0 +

C\J
_J

0
Ct) ~ .,... ::J ,-

CL ...J 0
(]) 0 +
0

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 242 of 350

U.S. Patent

.
CJ -LL.

0
0
C\J

/

0 .,.....
C\J

0
(\')
C\J

May 14, 2019

0
(\')
C\J

0 .,.....
C\J

Sheet 9 of 9

0
(\')
C\J

VS 10,291,259 B2

0 .,.....
C\J

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 243 of 350

US 10,291,259 B2
1

ACCELERATED ERASURE CODING
SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 15/201,196, filed on Jul. 1, 2016, which is a
continuation of U.S. patent application Ser. No. 14/852,438,
filed on Sep. 11, 2015, now U.S. Pat. No. 9,385,759, issued
on Jul. 5, 2016, which is a continuation of U.S. patent
application Ser. No. 14/223,740, filed on Mar. 24, 2014, now
U.S. Pat. No. 9,160,374, issued on Oct. 13, 2015, which is
a continuation of U.S. patent application Ser. No. 13/341,
833, filed on Dec. 30, 2011, now U.S. Pat. No. 8,683,296,
issued on Mar. 25, 2014, the entire contents of each of which
are expressly incorporated herein by reference.

BACKGROUND

Field
Aspects of embodiments of the present invention are

directed toward an accelerated erasure coding system and
method.

Description of Related Art
An erasure code is a type of error-correcting code (ECC)

useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken
up into N equal-sized blocks, or data blocks, for some
positive integer N. The data for each stripe is thus recon
structable by putting the N data blocks together. However, to
handle situations where one or more of the original N data
blocks gets lost, erasure codes also encode an additional M
equal-sized blocks (called check blocks or check data) from
the original N data blocks, for some positive integer M.

2
N of the N+M drives are correctly functioning, the original
data can be reconstructed, and the check data can be
regenerated.

Erasure codes (or more specifically, erasure coding sys-
5 terns) are generally regarded as impractical for values of M

larger than 1 (e.g., RAIDS systems, such as parity drive
systems) or 2 (RAID6 systems), that is, for more than one or
two check drives. For example, see H. Peter Anvin, "The
mathematics of RAID-6," the entire content of which is

10 incorporated herein by reference, p. 7, "Thus, in 2-disk
degraded mode, performance will be very slow. However, it
is expected that that will be a rare occurrence, and that
performance will not matter significantly in that case." See
also Robert Maddock et al., "Surviving Two Disk Failures,"

15 p. 6, "The main difficulty with this technique is that calcu
lating the check codes, and reconstructing data after failures,
is quite complex. It involves polynomials and thus multi
plication, and requires special hardware, or at least a signal
processor, to do it at sufficient speed." In addition, see also

20 James S. Plank, "All About Erasure Codes: -Reed-Solo
mon Coding-LDPC Coding," slide 15 (describing compu
tational complexity of Reed-Solomon decoding), "Bottom
line: When n & m grow, it is brutally expensive." Accord
ingly, there appears to be a general consensus among experts

25 in the field that erasure coding systems are impractical for
RAID systems for all but small values of M (that is, small
numbers of check drives), such as 1 or 2.

Modem disk drives, on the other hand, are much less
reliable than those envisioned when RAID was proposed.

30 This is due to their capacity growing out of proportion to
their reliability. Accordingly, systems with only a single
check disk have, for the most part, been discontinued in
favor of systems with two check disks.

In terms of reliability, a higher check disk count is clearly
35 more desirable than a lower check disk count. If the count

of error events on different drives is larger than the check
disk count, data may be lost and that cannot be reconstructed
from the correctly functioning drives. Error events extend

The N data blocks and the M check blocks are all the same 40
well beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is
a service event on a RAID system where the operator
mistakenly replaces the wrong drive or, worse yet, replaces
a good drive with a broken drive. In the absence of any
generally accepted methodology to train, certify, and mea-

size. Accordingly, there are a total of N+M equal-sized
blocks after encoding. The N+M blocks may, for example,
be transmitted to a receiver as N+M separate packets, or
written to N+M corresponding disk drives. For ease of
description, all N+M blocks after encoding will be referred
to as encoded blocks, though some (for example, N of them)
may contain unencoded portions of the original data. That is,
the encoded data refers to the original data together with the
check data.

45 sure the effectiveness of service technicians, these types of
events occur at an unknown rate, but certainly occur. The
foolproof solution for protecting data in the face of multiple
error events is to increase the check disk count.

The M check blocks build redundancy into the system, in 50

a very efficient marmer, in that the original data (as well as
any lost check data) can be reconstructed if any N of the
N+M encoded blocks are received by the receiver, or if any
N of the N+M disk drives are functioning correctly. Note
that such an erasure code is also referred to as "optimal." For 55

ease of description, only optimal erasure codes will be
discussed in this application. In such a code, up to M of the
encoded blocks can be lost, (e.g., up to M of the disk drives
can fail) so that if any N of the N+M encoded blocks are
received successfully by the receiver, the original data (as 60

well as the check data) can be reconstructed. N/(N+M) is
thus the code rate of the erasure code encoding (i.e., how
much space the original data takes up in the encoded data).
Erasure codes for select values of N and M can be imple
mented on RAID systems employing N+M (disk) drives by 65

spreading the original data among N "data" drives, and using
the remaining M drives as "check" drives. Then, when any

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding
system that, for byte-level RAID processing (where each
byte is made up of 8 bits), performs well even for values of
N+M as large as 256 drives (for example, N=127 data drives
and M=129 check drives). Further aspects provide for a
single precomputed encoding matrix (or master encoding
matrix) s of size MmaxxNmax, or CNmax+Mmax)xNmax or
(Mmax-l)xNmax, elements (e.g., bytes), which can be used,
for example, for any combination ofN sN max data drives and
MsMmax check drives such that Nmax+Mmaxs256 (e.g.,
Nmax=l27 andMmax=l29, orNm==63 andMm==193). This
is an improvement over prior art solutions that rebuild such
matrices from scratch every time N or M changes (such as
adding another check drive). Still higher values of N and M
are possible with larger processing increments, such as 2

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 244 of 350

US 10,291,259 B2
3

bytes, which affords up to N+M=65,536 drives (such as
N=32,767 data drives and M=32,769 check drives).

4
implement an erasure coding system. The erasure coding
system includes a data matrix for holding original data in the
main memory, a check matrix for holding check data in the
main memory, an encoding matrix for holding first factors in

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to
create larger groups of data drives. For example, systems
with two checks disks are typically limited to group sizes of
10 or fewer drives for reliability reasons. With a higher
check disk count, larger groups are available, which can lead
to fewer overall components for the same unit of storage and
hence, lower cost.

5 the main memory, and a thread for executing on the pro
cessing core. The first factors are for encoding the original
data into the check data. The thread includes a parallel
multiplier for concurrently multiplying multiple data entries
of a matrix by a single factor; and a first sequencer for

10 ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier to generate the check
data. Additional aspects of embodiments of the present inven

tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance, 15

aspects provide for a parity drive for configurations with up
to 127 data drives and up to 128 (non-parity) check drives,
for a total ofup to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up

The first sequencer may be configured to access each
entry of the data matrix from the main memory at most once
while generating the check data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data by dividing the data matrix into a
plurality of data matrices, dividing the check matrix into a
plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently

to 63 data drives, a parity drive, and up to 192 (non-parity) 20

check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed
Solomon codes. While known solution matrix algorithms
compute an NxN solution matrix (see, for example, J. S.
Plank, "A tutorial on Reed-Solomon coding for fault-taler- 30

ance in RAID-like systems," Software-Practice & Expe
rience, 27(9):995-1012, September 1997, and J. S. Plank and

25 generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices.

Y. Ding, "Note: Correction to the 1997 tutorial on Reed
Solomon coding," Technical Report CS-03-504, University
of Tennessee, April 2003), requiring O(N3

) operations, 35

regardless of the number of failed data drives, aspects of
embodiments of the present invention compute only an FxF
solution matrix, where F is the number of failed data drives.
The overhead for computing this FxF solution matrix is
approximately F3/3 multiplication operations and the same 40

number of addition operations. Not only is FsN, in almost
any practical application, the number of failed data drives F
is considerably smaller than the number of data drives N.
Accordingly, the fast solution matrix algorithm is consider
ably faster than any known approach for practical values of 45

F and N.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows
and the first number of colunms.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to
add rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data and including a
third number of rows. The erasure coding system may
further include a solution matrix for holding second factors
in the main memory. The second factors are for decoding the
check data into the lost original data using the surviving
original data and the first factors.

The solution matrix may include the third number of rows
and the third number of colunms.

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are
directed toward fetching the surviving (original and check)
data a minimum number of times (that is, at most once) to
carry out the data reconstruction. Some of these aspects are
directed toward efficient implementations that can maximize

The solution matrix may further include an inverted said
50 third number by said third number sub-matrix of the encod-

or significantly leverage the available parallel processing
power of multiple cores working concurrently on the check 55

data generation and the lost data reconstruction. Existing
implementations do not attempt to accelerate these aspects
of the data generation and thus fail to achieve a comparable
level of performance.

In an exemplary embodiment of the present invention, a 60

system for accelerated error-correcting code (ECC) process
ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a
main memory; and a non-volatile storage medium (for
example, a disk drive, or flash memory) for storing the 65

computer instructions. The processing core, the storage
medium, and the computer instructions are configured to

ing matrix.
The erasure coding system may further include a first list

of rows of the data matrix corresponding to the surviving
data matrix, and a second list of rows of the data matrix
corresponding to the lost data matrix.

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost
original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for
decoding the check data into the lost original data using the
surviving original data and the first factors. The thread may
further include a second sequencer for ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel
multiplier to reconstruct the lost original data.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 245 of 350

US 10,291,259 B2
5 6

multiplier may be configured to process the data in units of
at least 64 bytes spread over at least four of the data registers
at a time.

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main
memory at most once while reconstructing the lost original
data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original
data by dividing the data matrix into a plurality of data
matrices; dividing the surviving data matrix into a plurality

Consecutive instructions to process each of the units of
5 the data may access separate ones of the data registers to

permit concurrent execution of the consecutive instructions
by the processing core.

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16

10 byte-sized entries using the PSHUFB (Packed Shuffle Bytes)
of surviving data matrices; dividing the lost data matrix into
a plurality of lost data matrices; dividing the check matrix
into a plurality of check matrices; assigning corresponding
ones of the data matrices, the surviving data matrices, the
lost data matrices, and the check matrices to the threads; and 15

assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices and
to concurrently reconstruct portions of the lost original data
corresponding to the lost data matrices from respective ones 20

of the surviving data matrices and the check matrices.
The check matrix may be configured to be divided into a

surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be 25

configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost
check data.

The second sequencer may be further configured to recon- 30

struct the lost original data concurrently with regenerating
the lost check data.

instruction.
The parallel multiplier may be further configured to

receive an input operand in four of the data registers, and
return with the input operand intact in the four of the data
registers.

According to another exemplary embodiment of the pres
ent invention, a method of accelerated error-correcting code
(ECC) processing on a computing system is provided. The
computing system includes a non-volatile storage medium
(such as a disk drive or flash memory), a processing core for
accessing instructions and data from a main memory, and a
computer program including a plurality of computer instruc
tions for implementing an erasure coding system. The
method includes: storing the computer program on the
storage medium; executing the computer instructions on the
processing core; arranging original data as a data matrix in
the main memory; arranging first factors as an encoding
matrix in the main memory, the first factors being for
encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and
generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a matrix by
a single factor. The generating of the check data includes
ordering operations through the data matrix and the encod-

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main
memory at most once while reconstructing the lost original
data and regenerating the lost check data.

35 ing matrix using the parallel multiplier.

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed
lost original data from the main memory.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into
a plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec
tive ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost
original data using the surviving original data and the first
factors; and reconstructing the lost original data by ordering
operations through the surviving data matrix, the encoding
matrix, the check matrix, and the solution matrix using the
parallel multiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing 40

cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data, reconstructing the lost original
data, and regenerating the lost check data by: dividing the
data matrix into a plurality of data matrices; dividing the 45

surviving data matrix into a plurality of surviving data
matrices; dividing the lost data matrix into a plurality oflost
data matrices; dividing the check matrix into a plurality of
check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check 50

matrix into a plurality of lost check matrices; assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the
surviving check matrices, and the lost check matrices to the
threads; and assigning the threads to the processing cores to 55

concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost
original data corresponding to the lost data matrices from
respective ones of the surviving data matrices and the 60

surviving check matrices, and to concurrently regenerate
portions of the lost check data corresponding to the lost
check matrices from respective ones of the surviving data
matrices and respective portions of the reconstructed lost
original data.

The processing core may include a plurality of processing
65 cores. The executing of the computer instructions may

include executing the computer instructions on the process
ing cores. The method may further include scheduling the

The processing core may include 16 data registers. Each
of the data registers may include 16 bytes. The parallel

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 246 of 350

US 10,291,259 B2
7

generating of the check data and the reconstructing of the
lost original data by: dividing the data matrix into a plurality

8
configured to implement an erasure coding system when
executed on the computing system by performing the steps
of: arranging original data as a data matrix in the main
memory; arranging first factors as an encoding matrix in the

of data matrices; dividing the surviving data matrix into a
plurality of surviving data matrices; dividing the lost data
matrix into a plurality of lost data matrices; dividing the
check matrix into a plurality of check matrices; and assign
ing corresponding ones of the data matrices, the surviving
data matrices, the lost data matrices, and the check matrices
to the processing cores to concurrently generate portions of
the check data corresponding to the check matrices from
respective ones of the data matrices and to concurrently
reconstruct portions of the lost original data corresponding

5 main memory, the first factors being for encoding the
original data into check data, the check data being arranged
as a check matrix in the main memory; and generating the
check data using a parallel multiplier for concurrently mul
tiplying multiple data entries of a matrix by a single factor.

10 The generating of the check data includes ordering opera
tions through the data matrix and the encoding matrix using
the parallel multiplier.

to the lost data matrices from respective ones of the surviv
ing data matrices and the check matrices.

The method may further include: dividing the check 15

matrix into a surviving check matrix for holding surviving
check data of the check data, and a lost check matrix
corresponding to lost check data of the check data; and
regenerating the lost check data by ordering operations
through the surviving data matrix, the reconstructed lost 20

original data, and the encoding matrix using the parallel
multiplier.

The reconstructing of the lost original data may take place
concurrently with the regenerating of the lost check data.

The reconstructing of the lost original data and the 25

regenerating of the lost check data may include accessing
each entry of the surviving data matrix from the main
memory at most once.

The regenerating of the lost check data may take place
without accessing the reconstructed lost original data from 30

the main memory.
The processing core may include a plurality of processing

cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the 35

generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of sur
viving data matrices; dividing the lost data matrix into a 40

plurality oflost data matrices; dividing the check matrix into
a plurality of check matrices; dividing the surviving check
matrix into a plurality of surviving check matrices; dividing
the lost check matrix into a plurality oflost check matrices;
and assigning corresponding ones of the data matrices, the 45

surviving data matrices, the lost data matrices, the check
matrices, the surviving check matrices, and the lost check
matrices to the processing cores to concurrently generate
portions of the check data corresponding to the check
matrices from respective ones of the data matrices, to 50

concurrently reconstruct portions of the lost original data
corresponding to the lost data matrices from respective ones
of the surviving data matrices and the surviving check
matrices, and to concurrently regenerate portions of the lost
check data corresponding to the lost check matrices from 55

respective ones of the surviving data matrices and respective
portions of the reconstructed lost original data.

According to yet another exemplary embodiment of the
present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a 60

digital video disk (DVD), flash memory, a universal serial
bus (USB) drive, etc.) containing a computer program
including a plurality of computer instructions for performing
accelerated error-correcting code (ECC) processing on a
computing system is provided. The computing system 65

includes a processing core for accessing instructions and
data from a main memory. The computer instructions are

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured
to perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data
matrices and the check matrices to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices.

The computer instructions may be further configured to
perform the steps of: dividing the data matrix into a surviv
ing data matrix for holding surviving original data of the
original data, and a lost data matrix corresponding to lost
original data of the original data; arranging second factors as
a solution matrix in the main memory, the second factors
being for decoding the check data into the lost original data
using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel
multiplier.

The computer instructions may be further configured to
perform the steps of: dividing the check matrix into a
surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check
data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data and the
regenerating of the lost check data may include accessing
each entry of the surviving data matrix from the main
memory at most once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured
to perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the
regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviv
ing data matrix into a plurality of surviving data matrices;
dividing the lost data matrix into a plurality of lost data
matrices; dividing the check matrix into a plurality of check
matrices; dividing the surviving check matrix into a plurality
of surviving check matrices; dividing the lost check matrix
into a plurality of lost check matrices; and assigning corre-
sponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the
surviving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec-
tive ones of the data matrices, to concurrently reconstruct

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 247 of 350

US 10,291,259 B2
9

portions of the lost original data corresponding to the lost
data matrices from respective ones of the surviving data
matrices and the surviving check matrices, and to concur
rently regenerate portions of the lost check data correspond
ing to the lost check matrices from respective ones of the
surviving data matrices and respective portions of the recon
structed lost original data.

10
one byte in size throughout the description that follows, and
the term "element(s)" and "byte(s)" will be used synony
mously.

Conceptually, different stripes can distribute their data
5 blocks across different combinations of drives, or have

different block sizes or numbers of blocks, etc., but for
simplification and ease of description and implementation,
the described embodiments in the present application
assume a consistent block size (L bytes) and distribution of
blocks among the data drives between stripes. Further, all
variables, such as the number of data drives N, will be
assumed to be positive integers unless otherwise specified.

By providing practical and efficient systems and methods
for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data 10

drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical
can be implemented with accelerated performance signifi
cantly better than any prior art solution. 15

In addition, since the N=l case reduces to simple data
mirroring (that is, copying the same data drive multiple
times), it will also be assumed for simplicity that N;;,;2
throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifi
cation, illustrate exemplary embodiments of the present 20

invention and, together with the description, serve to explain
aspects and principles of the present invention.

The N data blocks from each stripe are combined using
arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data
(check blocks), and the M check blocks written across M

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

FIG. 3 shows an exemplary method for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention.

FIGS. 5-7 show an exemplary method for sequencing the
parallel lookup multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion.

FIG. 8 illustrates a multi-core architecture system accord
ing to an embodiment of the present invention.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompa
nying drawings. In the drawings, like reference numerals
refer to like elements throughout.

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding
systems for the storage and retrieval of digital data distrib
uted across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes,
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate
drives (the data drives), one block per data drive.

In addition, for ease of description, blocks will be
assumed to be composed ofL elements, each element having

drives (the check drives) separate from the N data drives,

25 one block per check drive. These combinations can take

30

place, for example, when new (or changed) data is written to
(or back to) disk. Accordingly, each of the N+M drives (data
drives and check drives) stores a similar amount of data,
namely one block for each stripe. As the processing of
multiple stripes is conceptually similar to the processing of
one stripe (only processing multiple blocks per drive instead
of one), it will be further assumed for simplification that the
data being stored or retrieved is only one stripe in size unless

35 otherwise indicated. It will also be assumed that the block
size L is sufficiently large that the data can be consistently
divided across each block to produce subsets of the data that
include respective portions of the blocks (for efficient con-

40 current processing by different processing units).
FIG. 1 shows an exemplary stripe 10 of original and check

data according to an embodiment of the present invention.
Referring to FIG. 1, the stripe 10 can be thought of not

only as the original N data blocks 20 that make up the
45 original data, but also the corresponding M check blocks 30

generated from the original data (that is, the stripe 10
represents encoded data). Each of the N data blocks 20 is
composed of L bytes 25 (labeled byte 1, byte 2, ... , byte

50
L), and each of the M check blocks 30 is composed of L
bytes 35 (labeled similarly). In addition, check drive 1, byte
1, is a linear combination of data drive 1, byte 1; data drive
2, byte 1; ... ; data drive N, byte 1. Likewise, check drive
1, byte 2, is generated from the same linear combination

55 formula as check drive 1, byte 1, only using data drive 1,
byte 2; data drive 2, byte 2; ... ; data drive N, byte 2. In
contrast, check drive 2, byte 1, uses a different linear
combination formula than check drive 1, byte 1, but applies
it to the same data, namely data drive 1, byte 1; data drive

60 2, byte 1; ... ; data drive N, byte 1. In this fashion, each of
the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular
check drive 30.

a fixed size, say 8 bits or one byte. An element, such as a
byte, forms the fundamental unit of operation for the RAID
processing, but the invention is just as applicable to other 65

size elements, such as 16 bits (2 bytes). For simplification,
unless otherwise indicated, elements will be assumed to be

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. Chas two sub-matrices, namely original
data D on top and check data J on bottom. That is,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 248 of 350

US 10,291,259 B2
11

Du D12

D21 D22

D1L

D2L

12
The remaining M-1 linear combinations include more

involved calculations that include the nontrivial GF multi
plication operations (e.g., performing a GF multiplication of
the first byte in each block by a corresponding factor for the

C= [~] = DN! DN2

lu 112

h1 h2

JM! lM2

DNL

l1L

hL

]ML

5 respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or infor
mation dispersal matrix (IDM)) E of the different factors,
one factor for each combination of (data or check) drive and

10 data drive, with one row for each of the N+M data and check
drives and one colunm for each of the N data drives. The

where D,rbyte j from data drive i and J,rbyte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the colunms represent corresponding bytes of each of 15
the drives.

Further, in case of a disk drive failure of one or more
disks, the arithmetic operations are designed in such a
fashion that for any stripe, the original data (and by exten
sion, the check data) can be reconstructed from any com- 20

bination ofN data and check blocks from the corresponding
N+M data and check blocks that comprise the stripe. Thus,
RAID provides both parallel processing (reading and writing
the data in stripes across multiple drives concurrently) and
fault tolerance (regeneration of the original data even if as 25

many as M of the drives fail), at the computational cost of
generating the check data any time new data is written to
disk, or changed data is written back to disk, as well as the
computational cost of reconstructing any lost original data

30
and regenerating any lost check data after a disk failure.

For example, for M=l check drive, a single parity drive
can function as the check drive (i.e., a RAID4 system). Here,
the arithmetic operation is bitwise exclusive OR of each of
the N corresponding data bytes in each data block of the 35
stripe. In addition, as mentioned earlier, the assignment of
parity blocks from different stripes to the same drive (i.e.,
RAID4) or different drives (i.e., RAIDS) is arbitrary, but it
does simplify the description and implementation to use a
consistent assignment between stripes, so that will be 40

assumed throughout. Since M=l reduces to the case of a
single parity drive, it will further be assumed for simplicity
that M;;,;2 throughout.

For such larger values ofM, Galois field arithmetic is used
to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2
(such as 2i numbers of elements, includes two fundamental
operations: (1) addition (which is just bitwise exclusive OR,
as with the parity drive-only operations for M=l), and (2)
multiplication. While Galois field (GF) addition is trivial on
standard processors, GF multiplication is not. Accordingly,
a significant component of RAID performance for M;;,;2 is
speeding up the performance ofGF multiplication, as will be
discussed later. For purposes of description, GF addition will
be represented by the symbol + throughout while GF mul
tiplication will be represented by the symbol x throughout.

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations

45

50

55

(over GF arithmetic) of the N data drives of original data,
one linear combination (i.e., a GF sum of N terms, where 60

each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective
data drive) for each check drive, as applied to respective
bytes in each block. One such linear combination can be a
simple parity, i.e., entirely GF addition (all factors equal 1), 65

such as a GF sum of the first byte in each block of original
data as described above.

IDM E can also be represented as

where IN represents the NxN identity matrix (i.e., the origi
nal (unencoded) data) and H represents the MxN matrix of
factors for the check drives (where each of the M rows
corresponds to one of the M check drives and each of the N
colunms corresponds to one of the N data drives).

Thus,

0 0

0 0

£=[;]= 0 0

Hu H12 H1N

H21 H22 H2N

HM! HM2 HMN

where H,rfactor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the colunms
represent corresponding bytes of each of the drives. In
addition, check factors H, original data D, and check data J
are related by the formula J=HxD (that is, matrix multipli
cation), or

lu 112 l1L

h1 h2 hL

JM! JM2]ML

Hu H12 H1N Du D12 D1L

H21 H22 H2N D21 D22 D2L
X

HM! HM2 HMN DNI DN2 DNL

where J11=(H11 xD11)+(H12xD21)+ ... +(H1NxDN1), J12=
(H11XD12)+(H12XD22)+ ... +(H1NXDN2), l21=CH21XD11)+
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xD1)+
(Hi2xD2)+ ... +(H,NxDNf) for lsisM and lsjsL.

Such an encoding matrix E is also referred to as an
information dispersal matrix (IDM). It should be noted that
matrices such as check drive encoding matrix H and identity
matrix IN also represent encoding matrices, in that they
represent matrices of factors to produce linear combinations
over GF arithmetic of the original data. In practice, the
identity matrix IN is trivial and may not need to be con-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 249 of 350

US 10,291,259 B2
13

structed as part of the IDM E. Only the encoding matrix E,
however, will be referred to as the IDM. Methods of building
an encoding matrix such as IDM E or check drive encoding
matrix Hare discussed below. In further embodiments of the
present invention (as discussed further in Appendix A), such 5

(N+M)xN (or MxN) matrices can be trivially constructed
(or simply indexed) from a master encoding matrix S, which
is composed of (Nmax+Mmax)xNmax (or MmaxxNmax) bytes
or elements, where Nmax+Mmax=256 (or some other power
of two) and NsNmax and MsMmax· For example, one such lO

master encoding matrix S can include a 127x127 element
identity matrix on top (for up to Nmax=l27 data drives), a
row of l's (for a parity drive), and a 128x127 element
encoding matrix on bottom (for up to Mmax=l29 check

15
drives, including the parity drive), for a total of Nmax+
Mmax =256 drives.

The original data, in turn, can be represented by an NxL
matrix D of bytes, each of the N rows representing the L
bytes of a block of the corresponding one of the N data 20

drives. If C represents the corresponding (N+M)xL matrix
of encoded bytes (where each of the N+M rows corresponds
to one of the N+M data and check drives), then C can be
represented as

14

thus represents a permuted original data matrix D' (that is,
the original data matrix D, only with the surviving original
data X on top and the lost original data Y on bottom. It
should be noted that once the lost original data Y is recon
structed, it can be combined with the surviving original data
X to restore the original data D, from which the check data
for any of the failed check drives can be regenerated.

It should also be noted that M-G check drives survive. In
order to reconstruct the lost original data Y, enough (that is,
at least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it
follows that (N-F)+(M-G);;,;N must be true to reconstruct
the lost original data Y. This is equivalent to F+GsM (i.e.,
no more than F+G drives fail), or FsM-G (that is, the
number of failed data drives does not exceed the number of
surviving check drives). It will therefore be assumed for
simplicity that FsM-G.

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and
check drives (that is, four separate lists). This allows pro
cessing of the different sets of surviving and failed drives to

[/N] [/NxD] [D]
ExD = H xD = HxD = J ,

25 be done more efficiently than existing solutions, which use,
for example, bit vectors that have to be examined one bit at
a time and often include large numbers of consecutive zeros
(or ones) when ones (or zeros) are the bit values of interest.

where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L check bytes of the corre
sponding one of the M check drives. It should be noted that

FIG. 2 shows an exemplary method 300 for reconstruct-
30 ing lost data after a failure of one or more drives according

to an embodiment of the present invention.

in the relationships such as C=ExD or J=HxD, x represents
matrix multiplication over the Galois field (i.e., GF multi
plication and GF addition being used to generate each of the
entries in, for example, C or J).

While the recovery process is described in more detail
later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the
surviving data. Determining the solution matrix can be done

35 in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

In exemplary embodiments of the present invention, the
first row of the check drive encoding matrix H (or the
(N+l)'h row of the IDM E) can be all l's, representing the 40

parity drive. For linear combinations involving this row, the
GF multiplication can be bypassed and replaced with a GF
sum of the corresponding bytes since the products are all
trivial products involving the identity element 1. Accord
ingly, in parity drive implementations, the check drive 45

encoding matrix H can also be thought of as an (M-l)xN
matrix of non-trivial factors (that is, factors intended to be
used in GF multiplication and not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back 50

to) disk. The other significant event for RAID processing is
when one or more of the drives fail (data or check drives),
or for whatever reason become unavailable. Assume that in
such a failure scenario, F data drives fail and G check drives
fail, where F and G are nonnegative integers. If F=0, then 55

only check drives failed and all of the original data D
survived. In this case, the lost check data can be regenerated
from the original data D.

Accordingly, assume at least one data drive fails, that is,
F;;,;l, and let K=N-F represent the number of data drives that 60

survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost
original data. That is, Xis a KxL matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, while Y is an FxL matrix composed of 65

the F rows of the original data matrix D corresponding to the
F failed data drives.

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an N xN reduced encoding matrix T (also referred to as
the transformed IDM) including the K surviving data
drive rows and any F of the M-G surviving check drive
rows (for instance, the first F surviving check drive
rows, as these will include the parity drive if it sur
vived; recall that FsM-G was assumed). In addition,
the colunms of the reduced encoding matrix T are
rearranged so that the K colunms corresponding to the
K surviving data drives are on the left side of the matrix
and the F colunms corresponding to the F failed drives
are on the right side of the matrix. (Step 320) These F
surviving check drives selected to rebuild the lost
original data Y will henceforth be referred to as "the F
surviving check drives," and their check data W will be
referred to as "the surviving check data," even though
M-G check drives survived. It should be noted that W
is an FxL matrix composed of the F rows of the check
data J corresponding to the F surviving check drives.
Further, the surviving encoded data can be represented
as a sub-matrix C' of the encoded data C. The surviving
encoded data C' is an N xL matrix composed of the
surviving original data X on top and the surviving
check data Won bottom, that is,

2. (Step 330) Splitting the reduced encoding matrix Tinto
four sub-matrices (that are also encoding matrices): (i)
a KxK identity matrix IK (corresponding to the K

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 250 of 350

US 10,291,259 B2
15

surv1vmg data drives) in the upper left, (ii) a KxF
matrix O of zeros in the upper right, (iii) an FxK
encoding matrix A in the lower left corresponding to
the F surviving check drive rows and the K surviving
data drive colunms, and (iv) an FxF encoding matrix B 5

in the lower right corresponding to the F surviving
check drive rows and the F failed data drive colunms.
Thus, the reduced encoding matrix T can be repre
sented as

3. (Step 340) Calculating the inverse B-1 of the FxF
encoding matrix B. As is shown in more detail in
Appendix A, C'=TxD', or

10

15

20

which is mathematically equivalent to W=AxX+BxY. B-1 is 25

the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B-1 thus allows the lost
original data Y to be reconstructed from the encoding
matrices A and B along with the surviving original data X
and the surviving check data W. 30

The FxK encoding matrix A represents the original encod
ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of

16
since the number of failed data drives F is usually signifi
cantly less than the number of data drives N in any practical
situation.

(Step 350 in FIG. 2) Once the encoding matrix A and the
solution matrix B-1 are known, reconstructing the lost data
from the surviving data (that is, the surviving original data
X and the surviving check data W) can be accomplished in
four steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data
(i.e., AxX), only limited to the K surviving data drives.
Call this limited check data the surviving partial check
data.

2. Subtract this surviving partial check data from the
surviving check data W (using matrix subtraction, i.e.,
W-AxX, which is just entry-by-entry GF subtraction,
which is the same as GF addition for this Galois field).
This generates the surviving check data, only this time
limited to the F failed data drives. Call this limited
check data the lost partial check data.

3. Use the solution matrix B-1 and the lost partial check
data (using matrix multiplication, i.e., B-1x(W-AxX)
to reconstruct the lost original data Y. Call this the
recovered original data Y.

4. Use the corresponding rows of the IDM E (or master
encoding matrix S) for each of the G failed check drives
along with the original data D, as reconstructed from
the surviving and recovered original data X and Y, to
regenerate the lost check data (using matrix multipli
cation).

As will be shown in more detail later, steps 1-3 together
require O(F) operations times the amount of original data D
to reconstruct the lost original data Y for the F failed data
drives (i.e., roughly 1 operation per failed data drive per byte A represents a different one of the F surviving check drives,

while each of the K colunms of A represents a different one
of the K surviving data drives. Thus, A provides the encod
ing factors needed to encode the original data for the
surviving check drives, but only applied to the surviving
data drives (that is, the surviving partial check data). Since
the surviving original data X is available, A can be used to
generate this surviving partial check data.

35 of original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed
to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F
surviving check drives and the F failed data drives. That is,
the F rows of B correspond to the same F rows of A, while
each of the F colunms of B represents a different one of the
F failed data drives. Thus, B provides the encoding factors
needed to encode the original data for the surviving check
drives, but only applied to the failed data drives (that is, the
lost partial check data). Since the lost original data Y is not
available, B cannot be used to generate any of the lost partial
check data. However, this lost partial check data can be
determined from A and the surviving check data W. Since
this lost partial check data represents the result of applying
B to the lost original data Y, B-1 thus represents the neces
sary factors to reconstruct the lost original data Y from the
lost partial check data.

40 which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G
failed check drives (i.e., roughly 1 operation per failed check
drive per byte of original data D). In summary, the number
of operations needed to reconstruct the lost data is O(F +G)

45 times the amount of original data D (i.e., roughly 1 operation
per failed drive (data or check) per byte of original data D).
Since F+GsM, this means that the computational complex
ity of Algorithm 2 (reconstructing the lost data from the
surviving data) is no more than that of generating the check

50 data J from the original data D.
As mentioned above, for exemplary purposes and ease of

description, data is assumed to be organized in 8-bit bytes,
each byte capable of taking on 28=256 possible values. Such
data can be manipulated in byte-size elements using GF

55 arithmetic for a Galois field of size 28=256 elements. It

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced 60

encoding matrix T, for that matter) do not have to actually

should also be noted that the same mathematical principles
apply to any power-of-two 2P number of elements, not just
256, as Galois fields can be constructed for any integral
power of a prime number. Since Galois fields are finite, and
since GF operations never overflow, all results are the same
size as the inputs, for example, 8 bits.

be constructed. Appropriate indexing of the ID M E (or the
master encoding matrix S) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF
arithmetic and takes O(F3

) operations, as discussed in more 65

detail later. Nonetheless, this is a significant improvement
over existing solutions, which require O(N3

) operations,

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It
can also be performed on multiple bytes concurrently. Since
the addition and subtraction operations take place, for

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 251 of 350

US 10,291,259 B2
17

example, on a byte-level basis, they can be done in parallel
by using, for instance, x86 architecture Streaming SIMD
Extensions (SSE) instructions (SIMD stands for single
instruction, multiple data, and refers to performing the same
instruction on different pieces of data, possibly concur- 5

rently), such as PXOR (Packed (bitwise) Exclusive OR).
SSE instructions can process, for example, 16-byte reg

isters (XMM registers), and are able to process such regis
ters as though they contain 16 separate one-byte operands
(or 8 separate two-byte operands, or four separate four-byte 10

operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to
processing a byte at a time. Further, there are 16 XMM
registers, so dedicating four such registers for operand
storage allows the data to be processed in 64-byte incre- 15

ments, using the other 12 registers for temporary storage.
That is, individual operations can be performed as four
consecutive SSE operations on the four respective registers
(64 bytes), which can often allow such instructions to be
efficiently pipelined and/or concurrently executed by the 20

processor. In addition, the SSE instructions allows the same
processing to be performed on different such 64-byte incre
ments of data in parallel using different cores. Thus, using
four separate cores can potentially speed up this processing

18
there are several more operations needed to perform the
operation. While this can be implemented as a loop on each
bit of the factor, as described above, only performing the
shifts, adds, and wraps on 64 bytes at a time, it can be more
efficient to process the 256 possible factors as a (C language)
switch statement, with inline code for each of 256 different
combinations of two primitive GF operations: Multiply-by-2
and Add. For example, GF multiplication by the factor 3 can
be effected by first doing a Multiply-by-2 followed by an
Add. Likewise, GF multiplication by 4 is just a Multiply
by-2 followed by a Multiply-by-2 while multiplication by 6
is a Multiply-by-2 followed by an Add and then by another
Multiply-by-2.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive
PAND (Bitwise AND) instructions, and 4 consecutive
PXOR instructions. Though this takes 20 machine instruc
tions, the instructions are very fast and results in 64 con-

by an additional factor of 4 over using a single core. 25 secutive bytes of data at a time being multiplied by 2.
For example, a parallel adder (Parallel Adder) can be built

using the 16-byte XMM registers and four consecutive
PXOR instructions. Such parallel processing (that is, 64
bytes at a time with only a few machine-level instructions)
for GF arithmetic is a significant improvement over doing 30

the addition one byte at a time. Since the data is organized
in blocks of any fixed number of bytes, such as 4096 bytes
(4 kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can
be composed of numerous such 64-byte chunks (e.g., 64
separate 64-byte chunks in 4 KB, or 512 chunks in 32 KB). 35

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR's (i.e.,
"additions") that are very fast operations, the numbers
"wrap" in peculiar ways when they are shifted outside of
their normal bounds (because the field has only a finite set 40

of elements), which can slow down the calculations. This
"wrapping" in the GF multiplication can be addressed in
many ways. For example, the multiplication can be imple
mented serially (Serial Multiplier) as a loop iterating over
the bits of one operand while performing the shifts, adds, 45

and wraps on the other operand. Such processing, however,
takes several machine instructions per bit for 8 separate bits.
In other words, this technique requires dozens of machine
instructions per byte being multiplied. This is inefficient
compared to, for example, the performance of the Parallel 50

Adder described above.

For 64 bytes of data, assuming a random factor between
0 and 255, the total overhead for the Parallel Multiplier is
about 6 calls to multiply-by-2 and about 3.5 calls to add, or
about 6x20+3.5x4=134 machine instructions, or a little over
2 machine instructions per byte of data. While this compares
favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are
built once: one lookup table for the low-order nibbles in each
byte, and one lookup table for the high-order nibbles in each
byte. Each lookup table contains 256 sets (one for each
possible factor) of the 16 possible GF products of that factor
and the 16 possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multipli-
cation table. In addition, PSHUFB does 16 separate table
lookups at once, each for one nibble, so 8 PSHUFB instruc
tions can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is
initialized for the next set of 64 bytes of operand data (such
as original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the

For another approach (Serial Lookup Multiplier), multi
plication tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of 256x256=65,536 bytes can
hold all the possible products of the two different one-byte
operands). However, such tables can force serialized access

55 Parallel Lookup Multiplier dedicates four registers for this
data, which are left intact upon exit of the Parallel Lookup
Multiplier. This allows the same data to be called with
different factors (such as processing the same data for on what are only byte-level operations, and not take advan

tage of wide (concurrent) data paths available on modern
processors, such as those used to implement the Parallel 60

Adder above.
In still another approach (Parallel Multiplier), the GF

multiplication can be done on multiple bytes at a time, since
the same factor in the encoding matrix is multiplied with
every element in a data block. Thus, the same factor can be
multiplied with 64 consecutive data block bytes at a time.
This is similar to the Parallel Adder described above, only

another check drive).
Next in step 430, to process these 64 bytes of operand

data, the Parallel Lookup Multiplier can be implemented
with 2 MOVDQA (Move Double Quadword Aligned)
instructions (from memory) to do the two table lookups and
4 MOVDQA instructions (register to register) to initialize

65 registers (such as the output registers). These are followed in
steps 440 and 450 by two nearly identical sets of 17
register-to-register instructions to carry out the multiplica-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 252 of 350

US 10,291,259 B2
19

tion 32 bytes at a time. Each such set starts (in step 440) with
5 more MOVDQA instructions for further initialization,
followed by 2 PSRLW (Packed Shift Right Logical Word)
instructions to realign the high-order nibbles for PSHUFB,
and 4 PAND instructions to clear the high-order nibbles for 5

PSHUFB. That is, two registers of byte operands are con
verted into four registers of nibble operands. Then, in step
450, 4 PSHUFB instructions are used to do the parallel table
lookups, and 2 PXOR instructions to add the results of the
multiplication on the two nibbles to the output registers. 10

20
2) "row-by-row," i.e., 64 bytes for one data drive, fol

lowed by the corresponding 64 bytes for the next data
drive, etc., and keeping a running total using the
Parallel Adder, then moving onto the next set of 64-byte
chunks.

Colunm-by-colunm can be thought of as "constant factor,
varying data," in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as "constant data, varying factor," in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives.
Two possible ways are:

a) one at a time, i.e., generate all the check data for one
check drive before moving onto the next check drive;
and

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data
for each of the N data drives and M-1 non-parity check
drives, or 5N(M-1)/8 instructions per byte for the Parallel
Lookup Multiplier), empirical results show that combination
(2)(b), that is, row-by-row data access on all of the check
drives between data accesses performs best with the Parallel
Lookup Multiplier. One reason may be that such an

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64
separate bytes, which is considerably better than the average
134 instructions for the Parallel Multiplier above, and only

15
10 times as many instructions as needed for the Parallel
Adder. While some of the Parallel Lookup Multiplier's
instructions are more complex than those of the Parallel
Adder, much of this complexity can be concealed through
the pipelined and/or concurrent execution of numerous such 20

contiguous instructions (accessing different registers) on
modern pipelined processors. For example, in exemplary
implementations, the Parallel Lookup Multiplier has been
timed at about 15 CPU clock cycles per 64 bytes processed
per CPU core (about 0.36 clock cycles per instruction). In 25

addition, the code footprint is practically nonexistent for the
Parallel Lookup Multiplier (40 instructions) compared to
that of the Parallel Multiplier (about 34,300 instructions),
even when factoring the 8 KB needed for the two lookup
tables in the Parallel Lookup Multiplier. 30 approach appears to minimize the number of memory

accesses (namely, one) to each chunk of the original data D
to generate the check data J. This embodiment of Sequencer
1 is described in more detail with reference to FIG. 4.

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data (such as the next
64 bytes of surviving original data X to be processed) in four
consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same 35

40 machine instructions) such that the Parallel Lookup
Multiplier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data.
Through such a protocol, memory accesses can be mini
mized (or significantly reduced) for accessing the original 40

data D during check data generation or the surviving original
data X during lost data reconstruction.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro- 45

cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup
Multiplier should be appropriately sequenced to provide
efficient processing. One such sequencer (Sequencer 1), for
example, can generate the check data J from the original data 50

D, and is described further with respect to FIG. 4.
The parity drive does not need GF multiplication. The

check data for the parity drive can be obtained, for example,
by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder 55

can do this using 4 instructions for every 64 bytes of data for
each of the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel
Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and 60

check drive. One consideration is how to handle the data
access. Two possible ways are:

FIG. 4 shows an exemplary method 500 for sequencing
the Parallel Lookup Multiplier to perform the check data
generation according to an embodiment of the present
invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each of the blocks across a stripe of data. For
instance, Sequencer 1 could be called to process 512 bytes
from each block. If, for example, the block size L is 4096
bytes, then it would take eight such calls to Sequencer 1 to
process the entire stripe. The other such seven calls to
Sequencer 1 could be to different processing cores, for
instance, to carry out the check data generation in parallel.
The number of 64-byte chunks to process at a time could
depend on factors such as cache dimensions, input/output
data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
number of accesses of each data drive's 64-byte chunk of
data from memory, the data is loaded only once and pre
served across calls to the Parallel Lookup Multiplier. The
first data drive is handled specially since the check data has
to be initialized for each check drive. Using the first data
drive to initialize the check data saves doing the initializa
tion as a separate step followed by updating it with the first
data drive' s data. In addition to the first data drive, the first
check drive is also handled specially since it is a parity drive,
so its check data can be initialized to the first data drive's
data directly without needing the Parallel Lookup Multiplier.

1) "colunm-by-colunm," i.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc.,
and adding the products to the running total in memory
(using the Parallel Adder) before moving onto the next
row (data drive); and

In step 530, the first middle loop is called, in which the
remainder of the check drives (that is, the non-parity check

65 drives) have their check data initialized by the first data
drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 253 of 350

US 10,291,259 B2
21

with each of the first data drive's data bytes. This is handled
by calling the Parallel Lookup Multiplier for each non-parity
check drive.

In step 540, the second middle loop is called, which
processes the other data drives' corresponding 64-byte 5

chunks of data. As with the first data drive, each of the other
data drives is processed separately, loading the respective 64
bytes of data into four registers (preserved across calls to the
Parallel Lookup Multiplier). In addition, since the first check
drive is the parity drive, its check data can be updated by 10

directly adding these 64 bytes to it (using the Parallel Adder)
before handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding 15

factor for the particular data drive. The factor is multiplied
with each of the next data drive's data bytes using the
Parallel Lookup Multiplier, and the results added to the
check drive's check data.

Another such sequencer (Sequencer 2) can be used to 20

reconstruct the lost data from the surviving data (using
Algorithm 2). While the same column-by-colunm and row
by-row data access approaches are possible, as well as the
same choices for handling the check drives, Algorithm 2
adds another dimension of complexity because of the four 25

separate steps and whether to: (i) do the steps completely
serially or (ii) do some of the steps concurrently on the same
data. For example, step 1 (surviving check data generation)
and step 4 (lost check data regeneration) can be done
concurrently on the same data to reduce or minimize the 30

number of surviving original data accesses from memory.
Empirical results show that method (2)(b)(ii), that is,

row-by-row data access on all of the check drives and for
both surviving check data generation and lost check data
regeneration between data accesses performs best with the 35

Parallel Lookup Multiplier when reconstructing lost data
using Algorithm 2. Again, this may be due to the apparent
minimization of the number of memory accesses (namely,
one) of each chunk of surviving original data X to recon
struct the lost data and the absence of memory accesses of 40

reconstructed lost original data Y when regenerating the lost
check data. This embodiment of Sequencer 1 is described in
more detail with reference to FIGS. 5-7.

22
In step 620, the outer loop processes the next 64-byte

chunk of data for each of the drives Like Sequencer 1, the
first surviving data drive is again handled specially since the
partial check data AxX has to be initialized for each sur
viving check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving
check drive based on the first surviving data drive's 64 bytes
of data. In this case, the Parallel Lookup Multiplier is called
for each surviving check drive with the corresponding factor
(from A) for the first surviving data drive.

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive.
Using the same 64 bytes of the first surviving data drive
(preserved across the calls to Parallel Lookup Multiplier in
step 630), the Parallel Lookup Multiplier is again called, this
time to initialize each of the failed check drive's check data
to the corresponding component from the first surviving data
drive. This completes the computations involving the first
surviving data drive's 64 bytes of data, which were fetched
with one access from main memory and preserved in the
same four registers across steps 630 and 640.

Continuing with FIG. 6, in step 650, the third middle loop
is called, which processes the other surviving data drives'
corresponding 64-byte chunks of data. As with the first
surviving data drive, each of the other surviving data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier).

In step 660, the first inner loop is called, in which the
partial check data AxX is updated for each surviving check
drive based on the next surviving data drive's 64 bytes of
data. In this case, the Parallel Lookup Multiplier is called for
each surviving check drive with the corresponding factor
(from A) for the next surviving data drive.

In step 670, the second inner loop is called, in which the
lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660),
the Parallel Lookup Multiplier is again called, this time to
update each of the failed check drive's check data by the
corresponding component from the next surviving data
drive. This completes the computations involving the next
surviving data drive's 64 bytes of data, which were fetched FIGS. 5-7 show an exemplary method 600 for sequencing

the Parallel Lookup Multiplier to perform the lost data
reconstruction according to an embodiment of the present
invention.

45 with one access from main memory and preserved in the
same four registers across steps 660 and 670.

Referring to FIG. 5, in step 610, the Sequencer 2 is called.
Next, in step 680, the computation of the partial check

data AxX is complete, so the surviving check data W is
added to this result (recall that W-AxX is equivalent to Sequencer 2 has many similarities with the embodiment of

Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to
be reconstructed. In addition, lost check data needs to be
regenerated. Like Sequencer 1, Sequencer 2 does these
operations in such a way as to minimize memory accesses of
the data drive data (by loading the data once and calling the
Parallel Lookup Multiplier multiple times). Assume for ease

50 W+AxX in binary Galois Field arithmetic). This is done by
the fourth middle loop, which for each surviving check drive
adds the corresponding 64-byte component of surviving
check data W to the (surviving) partial check data AxX
(using the Parallel Adder) to produce the (lost) partial check

55 data W-AxX.

of description that there is at least one surviving data drive;
the case of no surviving data drives is handled a little 60

differently, but not significantly different. In addition, recall
from above that the driving formula behind data reconstruc
tion is Y=B- 1 x(W-AxX), where Y is the lost original data,
B- 1 is the solution matrix, Wis the surviving check data, A
is the partial check data encoding matrix (for the surviving 65

check drives and the surviving data drives), and X is the
surviving original data.

Continuing with FIG. 7, in step 690, the fifth middle loop
is called, which performs the two dimensional matrix mul
tiplication B- 1 x(W-AxX) to produce the lost original data
Y. The calculation is performed one row at a time, for a total
of F rows, initializing the row to the first term of the
corresponding linear combination of the solution matrix B- 1

and the lost partial check data W-AxX (using the Parallel
Lookup Multiplier).

In step 700, the third inner loop is called, which completes
the remaining F-1 terms of the corresponding linear com
bination (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop in step 690 and updates the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 254 of 350

US 10,291,259 B2
23

running calculation (using the Parallel Adder) of the next
row of B- 1 x(W-AxX). This completes the next row (and
reconstructs the corresponding failed data drive's lost data)

24
requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to of lost original data Y, which can then be stored at an

appropriate location.
In step 710, the fourth inner loop is called, in which the

lost check data is updated for each failed check drive by the
newly reconstructed lost data for the next failed data drive.
Using the same 64 bytes of the next reconstructed lost data
(preserved across calls to the Parallel Lookup Multiplier),
the Parallel Lookup Multiplier is called to update each of the
failed check drives' check data by the corresponding com
ponent from the next failed data drive. This completes the
computations involving the next failed data drive's 64 bytes

5 requestor buffers. Note that the final state, Request Comple
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example,

10 some of the cores 120 can be "command cores," that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140
and the disk drives via the I/O interface 150. Others of the

of reconstructed data, which were performed as soon as the 15

data was reconstructed and without being stored and
retrieved from main memory.

Finally, in step 720, the sixth middle loop is called. The
lost check data has been regenerated, so in this step, the
newly regenerated check data is stored at an appropriate 20

location (if desired).
Aspects of the present invention can be also realized in

other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 216=65,536 possible
values, by using similar constructs (scaled accordingly) to 25

those presented here. Such extensions would be readily
apparent to one of ordinary skill in the art, so their details
will be omitted for brevity of description.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID 30

error correcting codes are described in Appendix A, which
contains a paper "Information Dispersal Matrices for RAID
Error Correcting Codes" prepared for the present applica-
tion.

cores 120 can be "data cores," and assigned to the GF
operations, that is, generating the check data from the
original data, reconstructing the lost data from the surviving
data, etc., including the Parallel Lookup Multiplier and the
sequencers described above. For example, in exemplary
embodiments, a scheduler can be used to divide the original
data D into corresponding portions of each block, which can
then be processed independently by different cores 120 for
applications such as check data generation and lost data
reconstruction.

One of the benefits of this data core/command core
subdivision of processing is ensuring that different code will
be executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated Ll cache in each core 120,
and avoids the "pollution" of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on
each die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations.

Multi-core Considerations
What follows is an exemplary embodiment for optimizing

35 This helps localize the Parallel Lookup Multiplier code and
associated data to a single core 120 and not compete with
other cores 120, while allowing the other cores 120 to keep
the data moving between memory 140 and the disk drives
via the I/O interface 150.

or improving the performance of multi-core architecture
systems when implementing the described erasure coding
system routines. In multi-core architecture systems, each
processor die is divided into multiple CPU cores, each with 40

their own local caches, together with a memory (bus)
interface and possible on-die cache to interface with a shared
memory with other processor dies.

FIG. 8 illustrates a multi-core architecture system 100
having two processor dies 110 (namely, Die 0 and Die 1). 45

Referring to FIG. 8, each die 110 includes four central
processing units (CPUs or cores) 120 each having a local
level 1 (Ll) cache. Each core 120 may have separate
functional units, for example, an x86 execution unit (for
traditional instructions) and a SSE execution unit (for soft- 50

ware designed for the newer SSE instruction set). An
example application of these function units is that the x86
execution unit can be used for the RAID control logic
software while the SSE execution unit can be used for the
GF operation software. Each die 110 also has a level 2 (L2) 55

cache/memory bus interface 130 shared between the four
cores 120. Main memory 140, in tum, is shared between the
two dies 110, and is connected to the input/output (I/O)
controllers 150 that access external devices such as disk
drives or other non-volatile storage devices via interfaces 60

such as Peripheral Component Interconnect (PCI).

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to
achieve the result. This combination can be achieved by
utilizing the mathematical techniques and code optimiza
tions described elsewhere in this application with careful
placement of the resulting code on specific processing cores.
Embodiments can also be implemented on fewer resources,
such as single-core dies and/or single-die systems, with
decreased parallelism and performance optimization.

The process of subdividing and assigning individual cores
120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into "threads," and
threads may be assigned to specific CPUs and memory
systems via the kthread_bind function when the thread is
created. Creating separate threads to process the GF arith
metic allows parallel computations to take place, which
multiplies the performance of the system.

Further, creating multiple threads for command process-
ing allows for fully overlapped execution of the command
processing states. One way to accomplish this is to number
each command, then use the arithmetic MOD function(% in
C language) to choose a separate thread for each command.

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to
validate and schedule a host request (for example, to load or
store data from disk storage); (2) Command Translation and
Submission, to translate the host request into multiple disk

65 Another technique is to subdivide the data processing por
tion of each command into multiple components, and assign
each component to a separate thread.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 255 of 350

US 10,291,259 B2
25

FIG. 9 shows an exemplary disk drive configuration 200
according to an embodiment of the present invention.

Referring to FIG. 9, eight disks are shown, though this
number can vary in other embodiments. The disks are
divided into three types: data drives 210, parity drive 220, 5

and check drives 230. The eight disks break down as three
data drives 210, one parity drive 220, and four check drives
230 in the embodiment of FIG. 9.

26
check data J from the original data D using Sequencer 1).
ECCRegenerate uses these check codes and the remaining
data to recover data after such an outage (that is, ECCRe-
generate uses the surviving check data W, the surviving
original data X, and Sequencer 2 to reconstruct the lost
original data Y while also regenerating any of the lost check
data). Prior to calling either of these functions, ECCSolve is
called to compute the constants used for a particular con
figuration of data drives, check drives, and failed drives (for Each of the data drives 210 is used to hold a portion of

data. The data is distributed uniformly across the data drives
210 in stripes, such as 192 KB stripes. For example, the data
for an application can be broken up into stripes of 192 KB,
and each of the stripes in turn broken up into three 64 KB
blocks, each of the three blocks being written to a different
one of the three data drives 210.

10 example, ECCSolve builds the solution matrix B-1 together
with the lists of surviving and failed data and check drives).
Prior to calling ECCSolve, ECCinitialize is called to gen
erate constant tables used by all of the other functions (for
example, ECCinitialize builds the IDM E and the two

15 lookup tables for the Parallel Lookup Multiplier).
The parity drive 220 is a special type of check drive in that

the encoding of its data is a simple summation (recall that
this is exclusive OR in binary GF arithmetic) of the corre
sponding bytes of each of the three data drives 210. That is,
check data generation (Sequencer 1) or regeneration (Se- 20

quencer 2) can be performed for the parity drive 220 using
the Parallel Adder (and not the Parallel Lookup Multiplier).
Accordingly, the check data for the parity drive 220 is
relatively straightforward to build. Likewise, when one of
the data drives 210 no longer functions correctly, the parity 25

drive 220 can be used to reconstruct the lost data by adding
(same as subtracting in binary GF arithmetic) the corre
sponding bytes from each of the two remaining data drives
210. Thus, a single drive failure of one of the data drives 210
is very straightforward to handle when the parity drive 220 30

is available (no Parallel Lookup Multiplier). Accordingly,
the parity drive 220 can replace much of the GF multipli
cation operations with GF addition for both check data
generation and lost data reconstruction.

Each of the check drives 230 contains a linear combina- 35

tion of the corresponding bytes of each of the data drives
210. The linear combination is different for each check drive
230, but in general is represented by a summation of
different multiples of each of the corresponding bytes of the
data drives 210 (again, all arithmetic being GF arithmetic). 40

For example, for the first check drive 230, each of the bytes
of the first data drive 210 could be multiplied by 4, each of
the bytes of the second data drive 210 by 3, and each of the
bytes of the third data drive 210 by 6, then the corresponding
products for each of the corresponding bytes could be added 45

to produce the first check drive data. Similar linear combi
nations could be used to produce the check drive data for the
other check drives 230. The specifics of which multiples for
which check drive are explained in Appendix A.

With the addition of the parity drive 220 and check drives 50

230, eight drives are used in the RAID system 200 of FIG.
9. Accordingly, each 192 KB of original data is stored as 512
KB (i.e., eight blocks of 64 KB) of (original plus check)
data. Such a system 200, however, is capable of recovering
all of the original data provided any three of these eight 55

drives survive. That is, the system 200 can withstand a
concurrent failure of up to any five drives and still preserve
all of the original data.
Exemplary Routines to Implement an Embodiment

The error correcting code (ECC) portion of an exemplary 60

embodiment of the present invention may be written in
software as, for example, four functions, which could be
named as ECCinitialize, ECCSolve, ECCGenerate, and
ECCRegenerate. The main functions that perform work are
ECCGenerate and ECCRegenerate. ECCGenerate generates 65

check codes for data that are used to recover data when a
drive suffers an outage (that is, ECCGenerate generates the

ECCinitialize
The function ECCinitialize creates constant tables that are

used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values
up front, these constant tables can be used to replace more
time-consuming operations with simple table look-ups (such
as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct-an array of constants used to perform GF
multiplication with the PSHUFB instruction that oper
ates on SSE registers (that is, the Parallel Lookup
Multiplier).

2. mast----contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as
the check drive encoding matrix H

3. mul_tab----contains the results of all possible GF mul
tiplication operations of any two operands (for
example, 256x256=65,536 bytes for all of the possible
products of two different one-byte quantities)

4. div_tab----contains the results of all possible GF divi
sion operations of any two operands (can be similar in
size to mul_tab)

ECCSolve
The function ECCSolve creates constant tables that are

used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior
to using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B-1 (i.e., the solution
matrix).

ECCGenerate
The function ECCGenerate is used to generate check

codes (that is, the check data matrix J) for a particular
configuration of data drives and check drives, using
Sequencer 1 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCGenerate, ECCSolve is called to
compute the appropriate constants for the particular con
figuration of data drives and check drives, as well as the
solution matrix B-1

.

ECCRegenerate
The function ECCRegenerate is used to regenerate data

vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the
lost check data from the restored original data), this time
using Sequencer 2 and the Parallel Lookup Multiplier as

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 256 of 350

US 10,291,259 B2
27 28

byte-level performance, including the Parallel Lookup Mul
tiplier, Sequencer 1, and Sequencer 2 discussed above.

While the above description contains many specific
embodiments of the invention, these should not be construed

described above. Prior to calling ECCRegenerate,
ECCSolve is called to compute the appropriate constants for
the particular configuration of data drives, check drives, and
failed drives, as well as the solution matrix B-1

.

Exemplary Implementation Details
As discussed in Appendix A, there are two significant

sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID
processing): the computation of the solution matrix B-1 for

5 as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.

a given failure scenario, and the byte-level processing of 10

encoding the check data J and reconstructing the lost data
after a lost packet (e.g., data drive failure). By reducing the
solution matrix B-1 to a matrix inversion of a FxF matrix,
where F is the number of lost packets (e.g., failed drives),
that portion of the computational overhead is for all intents 15

and purposes negligible compared to the megabytes (MB),
gigabytes (GB), and possibly terabytes (TB) of data that
needs to be encoded into check data or reconstructed from
the surviving original and check data. Accordingly, the
remainder of this section will be devoted to the byte-level 20

encoding and regenerating processing.
As already mentioned, certain practical simplifications

can be assumed for most implementations. By using a Galois
field of 256 entries, byte-level processing can be used for all
of the GF arithmetic. Using the master encoding matrix S 25

described in Appendix A, any combination of up to 127 data
drives, 1 parity drive, and 128 check drives can be supported
with such a Galois field. While, in general, any combination

GLOSSARY OF SOME VARIABLES

A encoding matrix (FxK), sub-matrix of T
B encoding matrix (FxF), sub-matrix of T
B-1 solution matrix (FxF)
C encoded data matrix

((N +M)xL) = [~]

C' surviving encoded data matrix

(NxL)= [:]

D original data matrix (N xL) of data drives and check drives that adds up to 256 total
drives is possible, not all combinations provide a parity drive
when computed directly. Using the master encoding matrix

30 D' permuted original data matrix

S, on the other hand, allows all such combinations (includ
ing a parity drive) to be built (or simply indexed) from the
same such matrix. That is, the appropriate sub-matrix (in
cluding the parity drive) can be used for configurations of 35
less than the maximum number of drives.

(NxL) = [:]

E information dispersal matrix

(IDM)((N + M) xN) = [~]

F number of failed data drives

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other
proposed solutions, which recompute E for every change of
Nor M). Rather, additional indexing of rows and/or colunms 40

of the master encoding matrix S will suffice. As discussed
above, the use of the parity drive can eliminate or signifi
cantly reduce the somewhat complex GF multiplication
operations associated with the other check drives and
replaces them with simple GF addition (bitwise exclusive
OR in binary Galois fields) operations. It should be noted
that master encoding matrices with the above properties are
possible for any power-of-two number of drives 2P =Nmax+
Mmax where the maximum number of data drives N max is one
less than a power of two (e.g., Nm==127 or 63) and the 50

maximum number of check drives Mmax (including the
parity drive) is 2P -Nmax·

45 G number of failed check drives

As discussed earlier, in an exemplary embodiment of the
present invention, a modern x86 architecture is used (being
readily available and inexpensive). In particular, this archi-

55
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these
XMM registers holds 16 bytes (8-bit), so four such registers
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes, 60

for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated
at a time using four consecutive SSE instructions (e.g.,
fetching from memory, storing into memory, zeroing, add
ing, multiplying), the remaining registers being used for 65

intermediate results and temporary storage. With such an
architecture, several routines are useful for optimizing the

H check drive encoding matrix (MxN)
I identity matrix (IK=KxK identity matrix, IN=NxN identity

matrix)
J encoded check data matrix (MxL)
K number of surviving data drives=N-F
L data block size (elements or bytes)
M number of check drives
Mmax maximum value of M
N number of data drives
N max maximum value of N
0 zero matrix (KxF), sub-matrix of T
S master encoding matrix ((Mmax+Nmax)xNmax)
T transformed IDM

[
h o]

(NxN) = A B

W surviving check data matrix (FxL)
X surviving original data matrix (KxL)
Y lost original data matrix (FxL)

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 257 of 350

US 10,291,259 B2
29

What is claimed is:
1. A system adapted to use accelerated error-correcting

code (ECC) processing to improve the storage and retrieval
of digital data distributed across a plurality of drives, com
prising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core 10

comprising at least 16 vector registers, each of the
vector registers storing at least 16 bytes;

30
assigning the data operations to the first thread group,

and not assigning the I/O operations to the first
thread group;

assigning the I/O operations to the second thread group
and not assigning the data operations to the second
thread group;

assigning the first thread group to the first CPU core;
assigning the second thread group to the second CPU

core; and
concurrently executing the first thread group on the first

CPU core and the second thread group on the second
CPU core to concurrently generate the check data
and perform the I/O operations.

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

3. The system of claim 1, wherein the sequencer loads
15 each entry of the data matrix from the main memory into a

vector register at most once while generating the check data.
4. The system of claim 1, wherein the at least one

processor is an x86 architecture processor.
5. The system of claim 1, wherein the erasure coding

20 system further comprises:
more than two check drives each comprising at least one

non-volatile storage medium that stores at least one
block of the check data;

at least one first input/output (I/O) controller that receives
the at least one block of the original data from a 25

transmitter and that stores the at least one block of the
original data to the main memory; and

an encoding matrix comprising more than two but not
more than 254 rows and more than one but not more
than 253 colunms of factors in the main memory,
wherein each of the entries of one of the rows of the
encoding matrix comprises a multiplicative identity
factor, the factors being for encoding the original data
into the check data.

at least one second input/output (I/O) controller that stores
the at least one block of the check data from the main
memory to the check drives, wherein the processor, the
SIMD instructions, the non-volatile storage medium,
and the at least one second I/O controller are configured

6. The system of claim 5, wherein the at least one parallel
multiplier multiplies the at least one vector of the data matrix

30 in units of at least 64 bytes.

to implement an erasure coding system comprising:
a data matrix comprising at least one vector and com

prising a plurality of rows of at least one block of the 35

original data in the main memory, each of the rows
being stored on a different one of the data drives;

a check matrix comprising more than two rows of the
at least one block of the check data in the main
memory, each of the rows being stored on a different 40

one of the check drives, one of the rows comprising
a parity row comprising the Galois Field (GF) sum
mation of all of the rows of the data matrix; and

a thread that executes on the SIMD CPU core and
comprising:
at least one parallel multiplier that multiplies the at

least one vector of the data matrix by a single
factor to compute parallel multiplier results com
prising at least one vector;

45

at least one parallel adder that adds the at least one 50

vector of the parallel multiplier results and com
putes a running total; and

7. The system of claim 5, wherein the data matrix com
prises a first number of rows and the data drives comprise
the first number of data drives,

wherein the check matrix comprises a second number of
rows and the check drives comprise the second number
of check drives, and

wherein the encoding matrix comprises a plurality of first
factors in the second number of rows and the first
number of colunms.

8. The system of claim 7, wherein the encoding matrix
further comprises a third number of colunms and a plurality
of second factors in the third number of colunms,

wherein the data drives further comprise the third number
of data drives, and

wherein the first factors are independent of the third
number.

9. The system of claim 7, wherein the encoding matrix
further comprises a fourth number of rows and a plurality of
third factors in the fourth number of rows,

wherein the check drives further comprise the fourth
number of check drives, and

wherein the first factors are independent of the fourth
number. a sequencer wherein the sequencer orders load

operations of the original data into at least one of
the vector registers and computes the check data
with the parallel multiplier and the parallel adder,
and stores the computed check data from the
vector registers to the main memory.

10. The system of claim 5, wherein the multiplicative
55 identity factor is 1.

2. The system of claim 1, wherein:
the processor comprises a first CPU core and a second 60

CPU core;
the thread comprises a plurality of threads comprising a

first thread group and a second thread group; and
the erasure coding system further comprises a scheduler

for performing data operations to generate the check 65

data and, concurrently, performing I/O operations using
the at least one second I/O controller by:

11. The system of claim 5, wherein the at least one parallel
multiplier multiplies the at least one vector of the data matrix
by the single factor in the encoding matrix at a rate of less
than about 2 machine instructions per byte of the data
matrix.

12. A system adapted to use accelerated error-correcting
code (ECC) processing to improve the storage and retrieval
of digital data distributed across a plurality of drives, com
prising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 258 of 350

US 10,291,259 B2
31

loads surviving original data and surviving check data
from a main memory and stores lost original data to the
main memory, the SIMD CPU core comprising at least
16 vector registers, each of the vector registers storing
at least 16 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one 10

block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data;

at least one first input/output (I/O) controller that trans
mits at least one block of computed lost original data
from the main memory to a receiver; and

at least one second input/output (I/O) controller that reads

15

at least one block of the check data from the check 20

drives and stores the at least one block of the check data
to the main memory,

wherein the processor, the SIMD instructions, the non
volatile storage medium and the at least one second I/O
controller implement the accelerated ECC processing, 25

comprising:
a surviving data matrix comprising at least one vector

and comprising at least one row of at least one block

32
concurrently, performing I/O operations using the at
least one second I/O controller by:
assigning the data operations to the first thread group,

and not assigning the I/O operations to the first
thread group;

assigning the I/O operations to the second thread group,
and not assigning the data operations to the second
thread group;

assigning the first thread group to the first CPU core;
assigning the second thread group to the second CPU

core; and
concurrently executing the first thread group on the first

CPU core and the second thread group on the second
CPU core to concurrently regenerate the lost original
data and perform the I/O operations.

14. The system of claim 12, wherein the sequencer loads
each entry of the surviving original data from the main
memory into a vector register at most once while regener
ating the lost original data.

15. The system of claim 12, wherein the at least one
parallel multiplier multiplies the at least one vector of the
surviving data matrix in units of at least 64 bytes.

16. The system of claim 12, wherein the processor is an
x86 architecture processor.

17. The system of claim 12, wherein the solution matrix
comprises an inverted sub-matrix of an encoding matrix and
wherein each of entries of one of the rows of the encoding
matrix comprises a multiplicative identity factor, the factors
of the encoding matrix being for encoding the original data of the surviving original data in the main memory,

each row of the at least one row being stored on a
different one of the data drives, and a lost data matrix
comprising at least one block of the lost original data

30 into the check data.

in the main memory;
a surviving check matrix comprising at least one row of

at least one block of the surviving check data in the 35

main memory, each row of the at least one row being
stored on a different one of the check drives;

a solution matrix that holds factors in the main memory,
the factors of the solution matrix being for decoding
the surviving original data and the surviving check 40

data into the lost original data; and
a thread that executes on the SIMD CPU core and

comprising:
at least one parallel multiplier that multiplies the at

least one vector of the surviving data matrix by a 45

single factor in the solution matrix to compute
parallel multiplier results comprising at least one
vector;

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com- 50

putes a rumiing total; and
a sequencer wherein the sequencer:

orders load operations of the surviving original
data into at least one of the vector registers and
load operations of the surviving check data into 55

at least one of the vector registers;
computes the lost original data with the parallel

multiplier and the parallel adder; and
stores the computed lost original data from the

vector registers to the lost data matrix.
13. The system of claim 12, wherein:
the processing core comprises a first CPU core and a

second CPU core;
the thread comprises a plurality of threads comprising a

first thread group and a second thread group; and
the system further comprises a scheduler for performing

data operations to regenerate the lost original data and,

60

65

18. The system of claim 17, wherein the multiplicative
identity factor is 1.

19. The system of claim 12, wherein the at least one
parallel multiplier multiplies the at least one vector of the
surviving data matrix by the single factor in the solution
matrix at a rate ofless than about 2 machine instructions per
byte of the surviving data matrix.

20. A method for accelerated error-correcting code (ECC)
processing to improve the storage and retrieval of digital
data distributed across a plurality of drives using a comput
ing system, the computing system comprising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes a computer program
including SIMD computer instructions and loads origi
nal data from a main memory and stores check data to
the main memory, the SIMD CPU core comprising at
least 16 vector registers, each of the vector registers
storing at least 16 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD computer
instructions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data;

at least one first input/output (I/O) controller that receives
the at least one block of the original data from a
transmitter and that stores the at least one block of the
original data to the main memory; and

at least one second input/output (I/O) controller that stores
the at least one block of the check data from the main
memory to the check drives, the method comprising:
accessing the SIMD instructions from the system drive;

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 259 of 350

US 10,291,259 B2
33

executing the SIMD instructions on the SIMD CPU
core;

arranging the original data as a data matrix comprising
at least one vector and comprising a plurality of rows
of at least one block of the original data in the main 5

memory, each of the rows being stored on a different
one of the data drives;

arranging the check data as a check matrix comprising
more than two rows of the at least one block of the
check data in the main memory, each of the rows 10

being stored on a different one of the check drives,
one of the rows comprising a parity row comprising
the Galois Field (GF) summation of all of the rows
of the data matrix; and

encoding the original data into the check data using:
at least one parallel multiplier that multiplies the at

least one vector of the data matrix by a single
factor to compute parallel multiplier results com
prising at least one vector; and

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a =ing total,

the encoding of the check data comprising:

15

20

loading the original data into at least one of the 25

vector registers;
computing the check data with the parallel multiplier

and the parallel adder; and

34
wherein the check matrix comprises a second number of

rows and the check drives comprise the second number
of check drives, and

wherein the encoding matrix comprises a plurality of first
factors in the second number of rows and the first
number of colunms.

27. The method of claim 26, further comprising:
adding a third number of data drives to the data drives by

expanding the encoding matrix to further comprise the
third number of colunms and a plurality of second
factors in the third number of colunms,

wherein the first factors are independent of the third
number.

28. The method of claim 26, further comprising:
adding a fourth number of check drives to the check

drives by expanding the encoding matrix to further
comprise the fourth number of rows and a plurality of
third factors in the fourth number of rows,

wherein the first factors are independent of the fourth
number.

29. The method of claim 24, wherein the at least one
parallel multiplier multiplies the at least one vector of the
data matrix by the single factor in the encoding matrix at a
rate of less than about 2 machine instructions per byte of the
data matrix.

30. The method of claim 24, wherein the multiplicative
identity factor is 1.

storing the computed check data from the vector
registers into the main memory.

21. The method of claim 20, wherein:
the processor comprises a first CPU core and a second

CPU core;

31. A method for accelerated error-correcting code (ECC)
30 processing to improve the storage and retrieval of digital

data distributed across a plurality of drives using a comput
ing system, the computing system comprising:

the executing of the SIMD instructions comprises execut-
35

ing the SIMD instructions on the first CPU core to
perform data operations to generate the check data and,
concurrently, to perform I/O operations on the second
CPU core to control the at least one second I/O con
troller; 40

the method further comprises scheduling the data opera
tions concurrently with the I/O operations by:
assigning the data operations to the first CPU core, and

not assigning the I/O operations to the first CPU
core; and

assigning the I/O operations to the second CPU core
and not assigning the data operations to the second
CPU core.

45

22. The method of claim 20, further comprising loading
each entry of the data matrix from the main memory into a 50

vector register at most once while generating the check data.
23. The method of claim 20, wherein the processor is an

x86 architecture processor.
24. The method of claim 20, further comprising:
arranging factors as an encoding matrix comprising more 55

than two but not more than 254 rows and more than one
but not more than 253 colunms of factors in the main
memory, wherein each of the entries of one of the rows
of the encoding matrix comprises a multiplicative iden
tity factor, the factors being for encoding the original 60

data into the check data.
25. The method of claim 24, wherein the at least one

parallel multiplier multiplies the at least one vector of the
data matrix in units of at least 64 bytes.

26. The method of claim 24, wherein the data matrix 65

comprises a first number of rows and the data drives
comprise the first number of data drives,

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes a computer program
including SIMD instructions and loads surviving origi
nal data and surviving check data from a main memory
and stores lost original data to the main memory, the
SIMD CPU core comprising at least 16 vector registers,
each of the vector registers storing at least 16 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the SIMD instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data;

at least one first input/output (I/O) controller that transmit
at least one block of computed lost original data from
the main memory to a receiver; and

at least one second input/output (I/O) controller that reads
at least one block of the surviving check data from the
check drives and stores the at least one block of the
surviving check data to the main memory, the method
comprising:
accessing the SIMD instructions from the system drive;
executing the SIMD instructions on the SIMD CPU

core;
arranging the original data as a surviving data matrix

comprising at least one vector and comprising at
least one row of at least one block of the surviving
original data in the main memory, each row of the at
least one row being stored on a different one of the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 260 of 350

US 10,291,259 B2
35

data drives, and a lost data matrix comprising at least
one block of the lost original data in the main
memory;

36
38. The method of claim 31, wherein the at least one

parallel multiplier multiplies the at least one vector of the
surviving data matrix by the single factor in the solution
matrix at a rate ofless than about 2 machine instructions per arranging factors as a solution matrix that holds the

factors in the main memory, the factors being for
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data being arranged as a surviving check
matrix comprising at least one row of at least one
block of the surviving check data in the main
memory, each row of the at least one row being
stored on a different one of the check drives;

5 byte of the surviving data matrix.

decoding the surviving check data into the lost original
data using:

39. A system drive comprising at least one non-transitory
computer-readable storage medium containing a computer
program comprising a plurality of computer instructions
that, when executed by a computing system, cause the

10 computing system to perform accelerated error-correcting
code (ECC) processing that improves the storage and
retrieval of digital data distributed across a plurality of
drives, the computing system comprising:

at least one parallel multiplier that multiplies the at 15

least one vector of the surviving data matrix by a
single factor in the solution matrix to compute
parallel multiplier results comprising at least one
vector; and

at least one parallel adder that adds the at least one 20

vector of the parallel multiplier results and com
putes a rumiing total,

the decoding the surviving check data into the lost
original data comprising:
loading the surviving original data into at least one 25

of the vector registers;
loading the surviving check data into at least one

of the vector registers;
computing the lost original data with the parallel

multiplier and the parallel adder; and
storing the computed lost original data from the

vector registers into the lost data matrix.
32. The method of claim 31, wherein:
the processor comprises a first CPU core and a second

CPU core;

30

35

the executing of the SIMD instructions comprises execut
ing the SIMD instructions on the first CPU core to
perform data operations to reconstruct the lost original
data and, concurrently, to perform I/O operations on the
second CPU core to control the at least one second I/O 40

controller;
the method further comprises scheduling the data opera

tions to be performed concurrently with the I/O opera
tions by:
assigning the data operations to the first CPU core, and 45

not assigning the I/O operations to the first CPU
core; and

assigning the I/O operations to the second CPU core,
and not assigning the data operations to the first CPU
core.

33. The method of claim 31, further comprising loading
each entry of the surviving original data from the main
memory into a vector register at most once while regener
ating the lost original data.

50

34. The method of claim 31, wherein the at least one 55

parallel multiplier multiplies the at least one vector of the
surviving data matrix in units of at least 64 bytes.

35. The method of claim 31, wherein the processor is an
x86 architecture processor.

36. The method of claim 31, wherein the solution matrix 60

comprises an inverted sub-matrix of an encoding matrix and
wherein each of entries of one of the rows of the encoding
matrix comprises a multiplicative identity factor, the factors
of the encoding matrix being for encoding the original data
into the check data.

37. The method of claim 36, wherein the multiplicative
identity factor is 1.

65

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads original data from a main memory and stores
check data to the main memory, the SIMD CPU core
comprising at least 16 vector registers, each of the
vector registers storing at least 16 bytes;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data;

at least one first input/output (I/O) controller that receives
the at least one block of the original data from a
transmitter and that stores the at least one block of the
original data to the main memory; and

at least one second input/output (I/O) controller that stores
the at least one block of the check data from the main
memory to the check drives,

the computer instructions implementing protection of the
original data in the main memory when executed on the
computing system by:
arranging the original data as a data matrix comprising

at least one vector and comprising a plurality of rows
of at least one block of the original data in the main
memory, each of the rows being stored on a different
one of the data drives;

arranging the check data as a check matrix comprising
more than two rows of the at least one block of the
check data in the main memory, each of the rows
being stored on a different one of the check drives,
one of the rows comprising a parity row comprising
the Galois Field (GF) summation of all of the rows
of the data matrix; and

encoding the original data into the check data using:
at least one parallel multiplier that multiplies the at

least one vector of the data matrix by a single
factor in an encoding matrix to compute parallel
multiplier results comprising at least one vector;
and

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a rumiing total,

the encoding the original data into the check data
comprising:
loading the original data into at least one of the

vector registers;
computing the check data with the parallel multiplier

and the parallel adder; and
storing the computed check data from the vector

registers into the main memory.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 261 of 350

US 10,291,259 B2
37

40. The system drive of claim 39, wherein:
the processor comprises a first CPU core and a second

CPU core;
the executing of the computer instructions comprises

executing the computer instructions on the first CPU 5

core to perform data operations to generate the check
data and, concurrently, to perform I/O operations on the
second CPU core to control the at least one second I/O
controller;

the computer instructions implementing the protection of 10

the original data comprise instructions that schedule the
data operations to be performed concurrently with the
I/O operations by:
assigning the data operations to the first CPU core, and

not assigning the I/O operations to the first CPU 15

core; and
assigning the I/O operations to the second CPU core

and not assigning the data operations to the second
CPU core.

41. The system drive of claim 39, wherein the computer 20

instructions further comprise computer instructions that,
when executed by the computing system, cause the com
puting system to load each entry of the data matrix from the
main memory into a vector register at most once while
generating the check data. 25

42. The system drive of claim 39, wherein the processor
is an x86 architecture processor.

43. The system drive of claim 39, wherein the computer
instructions implementing the protection of the original data
comprise instructions to: 30

arrange factors as an encoding matrix comprising more
than two but not more than 254 rows and more than one
but not more than 253 colunms of factors in the main
memory, wherein each of the entries of one of the rows
of the encoding matrix comprises a multiplicative iden- 35

tity factor, the factors being for encoding the original
data into the check data.

44. The system drive of claim 43, wherein the at least one
parallel multiplier multiplies the at least one vector of the
data matrix in units of at least 64 bytes. 40

45. The system drive of claim 43, wherein the data matrix
comprises a first number of rows and the data drives
comprise the first number of data drives,

wherein the check matrix comprises a second number of
rows and the check drives comprise the second number 45

of check drives, and
wherein the encoding matrix comprises a plurality of first

factors in the second number of rows and the first
number of colunms.

46. The system drive of claim 45, wherein the computer 50

instructions further comprise instructions that, when
executed on the computing system, cause the computing
system to:

add a third number of data drives to the data drives by
expanding the encoding matrix to further comprise the 55

third number of colunms and a plurality of second
factors in the third number of colunms,

wherein the first factors are independent of the third
number.

47. The system drive of claim 45, wherein the computer 60

instructions further comprise instructions that, when
executed on the computing system, cause the computing
system to:

add a fourth number of check drives to the check drives
by expanding the encoding matrix to further comprise 65

the fourth number of rows and a plurality of third
factors in the fourth number of rows,

38
wherein the first factors are independent of the fourth

number.
48. The system drive of claim 45, wherein the multipli

cative identity factor is 1.
49. The system drive of claim 45, wherein the at least one

parallel multiplier multiplies the at least one vector of the
data matrix by the single factor in the encoding matrix at a
rate of less than about 2 machine instructions per byte of the
data matrix.

50. A system drive comprising at least one non-transitory
computer-readable storage medium containing a computer
program comprising a plurality of computer instructions
that, when executed by a computing system, cause the
computing system to perform accelerated error-correcting
code (ECC) processing that improves the storage and
retrieval of digital data distributed across a plurality of
drives, the computing system comprising:

at least one processor comprising at least one single
instruction-multiple-data (SIMD) central processing
unit (CPU) core that executes SIMD instructions and
loads surviving original data and surviving check data
from a main memory and stores lost original data to the
main memory, the SIMD CPU core comprising at least
16 vector registers, each of the vector registers storing
at least 16 bytes;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data, the at least one block
comprising at least 512 bytes;

more than two check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data;

at least one first input/output (I/O) controller that trans
mits at least one block of computed lost original data
from the main memory to a receiver; and

at least one second input/output (I/O) controller that reads
at least one block of the check data from the check
drives and stores the at least one block of the check data
to the main memory;

the computer instructions implementing protection of the
original data in the main memory when executed on the
computing system by:
arranging the surviving original data as a surviving data

matrix comprising at least one vector and comprising
at least one row of at least one block of the surviving
original data in the main memory, each row of the at
least one row being stored on a different one of the
data drives, and a lost data matrix comprising at least
one block of the lost original data in the main
memory;

arranging factors as a solution matrix that holds the
factors in the main memory, the factors being for
decoding the surviving original data and the surviv
ing check data into the lost original data, the surviv
ing check data arranged as a surviving check matrix
comprising at least one row of at least one block of
the surviving check data in the main memory, each
row of the at least one row being stored on a different
one of the check drives; and

decoding the surviving check data into the lost original
data using:
at least one parallel multiplier that multiplies the at

least one vector of the surviving data matrix by a
single factor in the solution matrix to compute
parallel multiplier results comprising at least one
vector; and

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 262 of 350

US 10,291,259 B2
39

at least one parallel adder that adds the at least one
vector of the parallel multiplier results and com
putes a running total,

40
assigning the I/O operations to the second CPU core,

and not assigning the data operations to the first CPU
core.

the decoding the surviving check data into the lost
original data comprising:
loading the surviving original data into at least one of

the vector registers;
loading the surviving check data into at least one of

the vector registers;

. 52. 1:he system drive of claim 50, wherein the computer
5 mstruct10ns further comprise computer instructions that,

when executed on the computing system, cause the com
puting system to load each entry of the surviving original
data from the main memory into a vector register at most

computing the lost original data with the parallel 10

multiplier and the parallel adder; and
storing the computed lost original data from the

vector registers into the lost data matrix.
51. The system drive of claim 50, wherein:
the processor comprises a first CPU core and a second 15

CPU core;
the executing of the computer instructions comprises

executing the computer instructions on the first CPU
core to perform data operations to reconstruct the lost
original data and, concurrently, to perform I/O opera- 20

tions on the second CPU core to control the at least one
second I/O controller;

the computer instructions further comprise instructions
that schedule the data operations to be performed
concurrently with the I/O operations by: 25

assigning the data operations to the first CPU core, and
not assigning the I/O operations to the first CPU
core; and

once while regenerating the lost original data.
53. The system drive of claim 50, wherein the at least one

parallel multiplier multiplies the at least one vector of the
surviving data matrix in units of at least 64 bytes.

54. The system drive of claim 50, wherein the processor
is an x86 architecture processor.

55. The system drive of claim 50 wherein the solution
matrix comprises an inverted sub-matrix of an encoding
matrix and wherein each of entries of one of the rows of the
encoding matrix comprises a multiplicative identity factor,
the factors of the encoding matrix being for encoding the
original data into the check data.

56. The system drive of claim 55, wherein the multipli
cative identity factor is 1.

57. The system drive of claim 50, wherein the at least one
parallel multiplier multiplies the at least one vector of the
surviving data matrix by the single factor in the solution
matrix at a rate ofless than about 2 machine instructions per
byte of the surviving data matrix.

* * * * *

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 263 of 350

EXHIBIT G

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 264 of 350

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

I hereby certify that this correspondence is being EFS-Web transmitted to the United States
Patent and Trademark Office on February 23, 2021 at or before 11: 59 p. m. Pacific Time under
the Rules of 37 CFR § 1.8.

/Jennifer Guerra/
Jennifer Guerra

Inventor(s)
Assignee
Patent No.
Issued
Application No.
Filed

Michael H. Anderson et al. Confirmation No. 5095
Streamscale, Inc.
10,291,259
May 14, 2019
15/976, 175
May 10, 2018

Title ACCELERATED ERASURE CODING SYSTEM AND METHOD

Docket No. 157162/411563-00014

PETITION FOR CORRECTION OF INVENTORSHIP
UNDER 37 CFR § 1.324

Mail Stop Petition
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

Post Office Box 29001
Glendale, CA 91209-9001

February 23, 2021

Pursuant to 37 C.F.R. §1.324, Applicant respectfully requests the correction of

inventorship for the above issued patent to include inventor Sarah Mann. Ms. Mann was

not named as an inventor through error.

Enclosed are:

(1) Statement of Sarah Mann in Support of Petition for Correction of lnventorship

Pursuant to 37 C.F.R. §1.324;

(2) Statement of Michael Anderson in Support of Petition for Correction of

lnventorship Pursuant to 37 C.F.R. §1.324;

113653285.1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 265 of 350

Patent No. 10,291,259

(3) Statement of Assignee, Stream scale, Inc., in Support of Petition for

Correction of lnventorship Pursuant to 37 C.F.R. §1.324 and Complying with 37 C.F.R.

§3.73(c).

(4) Executed Inventors Declaration and Assignment document signed by Sarah

Mann; and

(5) Application Data Sheet.

The required fee of $160.00 as required by §1.20(b). The Commissioner is

hereby authorized to charge any fees as required by this petition to Deposit Account No.

03-1728. Please show our docket number with any charge or credit to our deposit

account.

DAP/jhg
Enclosures

113653285.1

Respectfully submitted,

LEWIS ROCA ROTHGERBER CHRISTIE LLP

By /David A Plumley/
David A Plumley
Reg. No. 37,208
626/795-9900

-2-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 266 of 350

I
I

Title of !rP./Hflt1on ;.\C;(:ELEF~i\TE[) ER.4SURE :..-:c.:D~N(3 S'{STEl\/1 .:\i',JD f\i}ETH()[) !
I
I

Th, appl,cai:o:: data she;,t :f, ;nr, oI H1e p:-,Nif::nnal nr n;;nprovif,k,n;~I applk~,,;;;;n rm wt,i;;h it ,i: r;e,r:g sut)m:tted Th~, iollowir:q fo:n, ;;;;ntains tt,•:c I
b:t::lh9:-apf::c d::1ta arr::~fV]f:t] in a fo:n~::1t :;p:::c:f:ed by i:hE un:tf:d ~)i:ate:; ~:.•:~tf:-ni: :::nd Tr:::d<::rYE~:-k ()ff::,.;.f: as c~ut::n::--:d :n 37 CFF: i Jfi !

I
Th:s docur::Ent rn::~y t:-:~ ~~o:-r:pJ,:::t~:d ;:-1<:""C'k··''.'k~-•:y and S:.ibrn:ttEd ~o i:h~; ()ff:c0 :n ~!,>::t;:: U, ~;~.- ~-t.,f.:d~ 02::, :~_} :he E}:::ct:-~·::nk. F":Hng Sy~;:,::::-r: (!::.F~)) \,X tt-1:~ !
:.!~::curn,:::::t rn::1y b<:: prt::::~d ;:~nd :ndudEd ::: a p::~}X:!f 'i'U<:::.! :~pp::cat:or:. j

v B;<,:Ci%;: n 1

f }'.:':':,'.'f?~'. /l
1

.. }r!:~::::·;t~)r"'"''"'·t. ... j
~-..~~~t:-:::a Nah~~~ !

...... i

...... .. ' - \ ;,', ~ ! ~ - : t .. ~~ty ! :._os .. .:\n9ei-::-:s ! Stalt~iPrO\{§rH;e ! ~ ... 1-\ ! (;z)tH1tf)-.; !Jf R~ssdt~nct~ US 1 __________________ t __ t __ t _________________ l ___________________ · ___ : __ ~

I
I
I
I

,..r--..;~-~i-3-ii-.. S-f-1t_]_. -l:-_;__,:,_!t-.. S-r--t -~s-:"!-s-, _<_l_f_~-r-i,-i--t -~r-i_t_;::
1
-.r-·-: ---~]

I
'

.. . Addn~ss. 1 642~'! .f\ibnterey .Ro=::d,. Unit.21
Address 2 !

I

I !···0r1lffi%?''''l 1

---~~1\letitt)r ______ 2 ___ J
Le~1ai Narne !

I
I

E:ntfn-- (~§ther Custosn(~r Nusnbt~r or cornpiett:~ the (~orrespondence infortllatSon Sf.}ction he~o~v,
Fr)r ftHi:ht~r ijnfor1rH~t~on see 37 CFR. ·S .,33{a}~

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 267 of 350

I
Cust{)01~r Nurnber 233fi3 !
Email Addn=:s~~ r::·TO@LY·{F~C.CO:\!i 1 ···, ·:~\·,;·,;,,·;\,·,;,,\·,························-, j

Uid:ty

{):-:~y co:·npk•t;_:- thf~. s<:~::::lon \:vhen flHn~~ an ,:!ppik,::tk:-n by refer{:~nce un~:it-::· 3S U.S,C, ·; ·: 1 (c) ;:::·:d 37 er:~ 157(a). Do not cornpiete this ~:.:-cth>n if
;3ppt!c3ton papt:rs in-::l:..!cHn9 a spt:dfk:aHnn and ,:H1y- dr.:~~:-..:fr:9s ,:H<:~ b<:~in9 n:t:tt i\ny dcrn-::~stk benefit or fnreiqn pdcri:;...- ~nfcrn~..::t~cn n~ust b<::
pro\r~ded :nth':· :~pprop:·iate s.t:(tion(s) bek}il,f (Le., .-;Dornes.tk :3enefit/Nai:io:--:al Sta~f:' ~nf:.:::-rrr~:~t::.:::-n:"' ar:d ''Forei,;F~ t':.•riority tnforrni:tior{}.

F-or ·U~e purpo::~:-s of ::i fW:-:9 date under 37 CFH 1. 53(b),. -u~e cie:;c:·:pUo:·: ::;n~:i ~H1y dra,,\doq~.: of the pi{:~~.rnt :::ppHcabc:·: are repiac(•d by this
n:''ference tc th.::: p:·e;_:~nusJy r::~:~:i -=~ppHc.jtk~n; s:..!bje-::t :o condtr:(H~s >:H1d n:quh'en:f~:·:ts of .T7 CFR : .57{:3).

}\ppii~:atio:·: nurnber of the ~HE~,..:iousJy
fl~ed appl:cat:on

35 ll.s.c:. ·;22(b) and eert!!\-' t~·~at UH:: invention dls.c!osed in th{:: attached applicahon has not i~nd \:V~1~ ntJt t~{:: the
subject of an app~1cat1on -fHf~d in another country·, or unt~er a n1ulb1at::.tra! ~nternation=:1i a9reernent, U:at requ~res
pubHcatnn at e\Jhteen rnonths 3fer !Hinq.

Re~pre'$et:iat~VE~ ;: ~tt .. ::t:dtit,:': shGu~d be providt::d for all pr:::ctHlon,~rs ha\:in~~ 2~ po\:v~::r Gf attc:,rn,~y ~n tl"h:: •:::JF~;c.a~~ -n. :'. d\,;J;n~~
p--.;,:~ lr·.rc::·--;::r:•~cr, ir, p~·c _.t, rr,:: '-r:-;cr, :-h1-:•·1 s~~·a-c-:- .-~c-,---:: •--.. :t ,,:_-:r,·--::t;tu-:-c a r•:0,;:,_.nr c~ r·-:•t,•,,·ncy iq ~~ c '-"'P:,~~(\~ti,•,q ~::r,0 --x7 c:-.:q -: _3·:1;.
E~thE-:r ~-=~nter (:u~:iorr~er :\h.::-r-:b~~r or con~plE1h:~ thE-: f~~~pre~;entaiive Narne s-::-:ction b::do\•V. ~f boU1 sE:ct:ons are con.,:p!etr~d th<:-: cu~:kHner
Ntant)i::r '/./ill t~:~ u~:t~d -for HH:: Ft:pr~::si::ntat:vt~ inforrn;:~Uon ::h.ff:n9 p:-oc:~s:;fr:9.

I
I
I
I

,.._-__ -P--!-e-1~-:1-S_f:_" __ [_)_£_1_1£-:,-::~-t-_(-:~-:f_;_e _____ -__ -__ -__ -__ -__ ·,_-__ -(-~-)-__ -__ -c_;_(_-:s_t_c_.r_r'-)E_H ___ -r-~-u-r--)_~-t:-,E-H-._-__ -__ -__ -lr_-_ '-____ -~~-.1_-__ -L_i_S ___ -r-.... --(-,-tE_:_n_t __ r----r ... -=~-:::--i-~t-:(_)_n_t~-,-.. -.. -.. --,.1-__ -_{-~~~-.-~.-)_-__ -_-L.-::_T_·.,-.h--.~-(.-: _-f"\--{-l_(:_C_•~;-~:-.~-:-t_h __)-r--, __ C_3_? ___ (~-.. :-::·-f;.--·-_ --:_-_.l_.'_]_) ___ -__ ~ __ l
I

Cu~;t.orner Nurnbf:r 23:363 !
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 268 of 350

Tl1is s:::ction ;:_)i;O\:\/S for U1e applicant to etU·1:::r c!t:dtn benefit un::.it~f ~)~~ LJ.}3 .. C~. ·1 ·l 9{fa\ ·12(\ ·121, 3~3~~(c\ or 386(c) or indic=:lte !
I

NaUona! Sta9•~~ entry fron-1 a }"')C:-T· appHcation, F'ro\tidinq benefit ch~~fr: infc.:nr:atk::r1 in the i\ppHcation l)ata ~-;heet constitutes!
I

th~:: spec:i"lc rfaferfance requ~rfad l:1y 35 LL~1.C:. ·i ~19(.e) or ·120{ anj 37 C~FF-~ ·i. 70. !
V\HH:.Hl rf.lerrinQ tn the C.lHre:nt applk~atk)f\ please le.ave the ''/\ppHeaUon Nurnt)e(: fieki tA.ank !

.J),_ppii'.~:::ilon
Nurnber

.J),_ppiic=::ilon
Nurnber

l~pplication
Nurnb~~r

c:.ontinuaton of

Prier .:~ppl:c.a"tion
NurnbE~r

14-223?40

Prior _,.:.\ppl:cat~on
Nurnber

Frnnf~ Date
('()_. . ..,.lY-fvlr-/1-Dl))

Finnf~ Date
('(\._. . ..,.lY-~il;\.-·1-Dl))

.20"!4-03--24

Finn~~ :-;:~te
('(\~\/Y -•f\ll!\:·1--[}C))

_,e..(:d:tfon::1: L)on·1~:;s.Uc BEH)efit/NaUona~ St:age [)ata rr~ay be ger::.=.:rat:.=.:d \:v~thin this rorrn
by ~~e!ec't~n9 the Add button.

F·iitnn or 37 ·; {c} c:ate
("('{\···-.,'{ --~AiVlu[)[})

{Y\··yy .. fv~~\ .. ~ -DD)

I

;-\tidith:"Jnai Forei9n F'rlc.:rHy ()at.a rnay· be 9en{::rat:H.i v Hhin this forrn try- se!echnq the !
I

Add t1utton. !
---J

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 269 of 350

16, 20·!3 and
contains; or contained <.1t any t1tne,

[~]

I
I
I
I
I
I
I
I
I
I
I
I

____________ 16, __ 20 ·;_3~_ Vi~~~_ be_ exarn~ned_ untier_ the _first _~nventor to_ fi~e_ prov~s1r,ns_ of_ th{:: _l-\J::.\, --- j

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 270 of 350

V\./hen u·:is i\ppHcat1on [)ata ~:;!lr::fat is properly S1Gined ~:lnd filed \:'ilth th':~ appHc:.:1t;on, applk.-:.ant has ptG\lkje::.i \·vritten
authority tG perrn!t a r.~articlp~~Un9 fnrei9n intei;ectuai propert~:l {lP) ofnc{:: access to U·H:: !nstant .applic~~t~on~-~~s-,fi~ed (s::}e
pan.1~1rapi·1 f\ in subsection ·i be!ovv) <'.:1nj the E:tH{!pt:iE~n F~atent ()ffice (E:J:.-:()) acce~-;s to any search re~-;uHs frorn t~·H:} instant
app~~caHon (see para9raph 8 in subs.ecth°)n ·i t.3e!O\·V)

Should appHcant chr)ose not to provitie an auU-~orlzaton idenhf1ed in subsec.Hon ·1 beh::r·.t./~ appHc~~nt tr~ust oot-... -()Ut of thf:
auH1orlzHtion by· ch:.:Jc;•dn~~ the corn::spon(nn~~ box t6.. or t3 or t1oth in ~-;ubst~ct;on 2 t)f~lcr,v.

application ... ~\fter the ~n~Ha~ f!linQ Gf an app!ication, .an /\pp~icaUon [).ata SrH::et c.annot t::e u~=;eti to provld{:: or resc~nd
auH1orlzHtion for acc:::ss by a fort:Jl~~n H=) t)ffice(s). instt:Jt':;tj~ Forrn F~~r()/St3/3t1 or fYT()l*St3/e9 rnust t-::t~ used ::1s ::1ppropnate.

Propert:v Offlce{s}

I
I
I
I
I
I
I
I
I
I
I
I
I

unders~on{:H.i flereby· -~ir~_nt$_JtHt_t~SEIQ __ ~H.ftJl~}r§t~l to provh-J~~~ th{:: E:uropean F~atent CJ!fc.e (l":F'O)~ the .Japan FJatent C)ffice !
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

HnrJ (3)

37 CFR

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

T"he appnc.ant is rerninded that U-~e r:~"')C~\; F~uie ·14 ·1 (·;) EF--1C~ (Eurc:pean f1 atent c::onvf:ntk3n) requires applicants to subrr:~t a!
I
I
I
I

the inst.ant app~ication. !
--!

resuns frorn tf1e ;nstant
:application.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 271 of 350

~'J::.1n1e of the [}ece~:lse(i or LeqaUy !ncapac.itated lrrJ~:;ntor: ~ j !
··· ii' tr 1 e · /'>_pp I \cant· is· an· Or9 an izati on· ch 1}d,i hen,, . ·············· (J l·.- l

us

Provldln9 a~~s\1nr1H .. :!nt inforn1aUon in this secUon does not substtute for cornpHance '-.:Vith any requin:~rnent of part :3 of ·rith:: !
37 of (~FR to have ~:u~ ~:~s.signrnent recorded by the ()ff!ce.. !

I
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 272 of 350

I
I
I

i\ssign~~~ ·1 !
Compide this sedion if ::,s,-ignee ,r,fc,rn,ai:<:-n, incl1Jding nrn,-::,ppli,~ant as,-if;:~,,"e inforrnaticm, ,,. je::;i,ed to bE, ,r,c:ujed on the pElt,:'ni: I
:-?r:,,:;,.,-::.iir,;--- :'· •h~;cati,•,;-. _.:'1;-, ;:::-;-:~igr"'{~~.:::-..s,r:)lic-::.,.,t ;_.-{{-:-'·•t:+k::_r: :.,, ~+1° "i\:'p~ic::F1t ~,~1.::")r•:,a~·;cq'~ -.:~a.ci: 1,.' \,vp: a:~1:·'car f:r, t-:-,.:::-. ;JJh~"''t :::-.:·'p~i,,Jt; w~ !

I ~;:;:~~~;~;,:~~:;\'~~:,i~~:
1
~:~,~~•i~:::~;0;·;0:-.. ~,., .a~;siqne,.,,.appiicm·iL. con1pid;;, .1his. ~;edhn. c:n!y it.ide:-,tificdion. a, .. a:-,. ,,;s,.,nnee. i~; .,,dso .;:!e,.,r<:,d. c:n. t,,0 ..l

I
I
I
I
I
I
I

,... .--) ..., - .. ! ~ ·~ .. 1 •"' -~ !
t,.)~-t~~--~-- ! l;~ven N·~r~-::.-. : :,,-1:.···\1:.::.~ :\:~n1e f .. a~11q·H N·~f~¢. : "-...t:fnx i

... • .. ' ." ,h .. [.. : • ' ... '.' ' .. ' .. ,;,:, ,>~• j "'''•'. •'-••. • ."·. •.> • ' ••••••••••••••••••••••••••••••• ,. ,hj' .. ' .. >;<, ,>~• [... '" .. ,. ,,. 1
l I t I
l I t I

f--------------l .. I t i

i\ddrton~:~{ !\~;si9neE~ or !~on"i\pp!icant l\s.signf.;e [)ata n-1ay b~=.= sr:;n:.=.:rat:.=.:d vv~thin U-1;s -forrn t1~l
se~ecUnq tfH:~ .. -:\dd L:J~\t)fL

I
F":!rst Narne [.h~r-lid / .. \ L-::~st Narne P;uiTde~/ F~e9Istrat!on f'-,,!urnbe:r -·:r7··)ns !

.. i .. • .. • .. l
I
I

i\ddHlona{ Sl[inature rnay o,:.: gen,:.:rat,:.:cl \:VHh!n this i~Jrrn by s<7;!ecUng th:.:: .Add button, !
I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 273 of 350

This cone•~tion vf :nfvnT:athJn ls required by 37 C~FR ·1.76. The infvrrnation is r•~quirc.-::: to obtain or retain a bent~fit by th~ pub!i•.: \:',...-hie-h
is to file {and t~~{ ihH USPT() t.o proc{:~s~.) an ::~ppiicat~on. r:onTident:al~ty is govt~rn-&d by 3fi U.S {:. ·! 22 anc: 3? (:F-'f-< ·:. ·i 4 This
GoH~::ct:on i~; t~stln·:att~d tc tak~~ :~:3 rninutBs io Gon·:p!Bt::.:, inc!udinf} fF:~th::.~r~nft pn~p~~rln9: ;:~nd subfnitilnf~ iht~ cornpk:t}::d app:::.::.ation d~~ta
she~:;t fonn to th~: USFYrc~. ~;·:r~ .2 ~ ... ;~; \. 2h / l.;c:)t(h._;;, 19 ,~_.(), ~ ~ht ~~ 10:~:;d ... ~-::~; \..-d ~..... }\-~y, c·,r·1•'·•-.::.:r,.tc: (:~~ -::-., a•"• .. c· ,,, .. 1.;. c~ -:;, . ..,.y, y<:r ~ :r·cr~u;,~., '-r·

con-:piet~ this forrn and/or sug9~stlvns for reducin9 this burden, -sh-:.1uid be s0nt to tl:~: C~~-1!~:f infvnnat~vn C1fi1c,er. U.S. F·\::tent anc:
Trade:-r-:,~rk ()tf:cr:\ U.S. [)ep:~rt::1ent 01' r:o:T:rnE±rcB. ~.;- (). Box -~4~:.;{\ :'\k:xandna .. \//; 22~~ ·i3 i4~:.;o [)(} NC)T SEN[) FEES (}:'"<.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 274 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 275 of 350

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

lnventor(s)
Assignee
Patent No.
Issued
Application No.
Fiied
Title
Docket No.

Michael H. Anderson et al. Confirmation No. 5095
STREAMSCALE, INC.
10,291,259

· May 14, 2019
15/976,175
May 10, 2018

: ACCELERATED ERASURE CODING SYSTEM AND METHOD
: 157162 (411563-00014}

STATEMENT OF MICHAEL H. ANDERSON IN SUPPORT OF PETITION FOR
CORRECTION OF INVENTOR.SHIP PURSUANT TO 37 C.F .R. § 1.324

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

Post Office Box 29001
Glendale, CA 91209-9001

I, the undersigned, declare and state as follows:

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the

inventorship in the above-identified patent. l am the named inventor of the above

identified patent. I understand that the petition seeks to add SARAH MANN as an inventor

to this patent and I agree to the requested change of inventorship.
·" I l { (, ' I I \ !4-- '

Executed this ~i::J of_~\1-,-._e_h_, ___ , 2021 in LJ ~OV\ / 11"\(Z ~ f
...Li I \

I /,, I""'> :(, .c1 \
I k \ c:;, \ l ,, Y\ <,:

DAP/srd

-1-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 276 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

Title of Invention:

Docket No.:
Application No.

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

ACCELERATED ERASURE CODING SYSTEM AND METHOD

157162 (411563-00014)
15/976, 175

INVENTOR'S DECLARATION

As a below named inventor, I hereby declare that:

This declaration is directed to the attached application unless the following is checked:

PATENT

x United States Application or PCT International Application Number 15/976, 175 filed on
May 10, 2018.

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the
above-identified application.

I have reviewed and understand the contents of the above-identified application, including the
claims.

I acknowledge the duty to disclose information which is material to patentability as defined in
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which
became available between the filing date of the prior application and the national or PCT
international filing date of the continuation-in-part application.

I acknowledge that any willful false statement made in this declaration is punishable under
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both.

ASSIGNMENT

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged,
the undersigned,

(1) Sarah Mann

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO

~) STREAMSCALE INC.

having a place of business at

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all
improvements which are disclosed in the application for United States Letters Patent entitled

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD

which application was executed on even date herewith or was

1 of 2
113444 779 .1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 277 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

Docket No.: 157162 (411563-00014)
Application No.: 15/976, 175

(a) executed on (Sa):

(b) filed on (Sb): May 10, 2018

Application No.: 15/976 175

(LEWIS ROCA ROTHGERBER CHRISTIE
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the
specified data, when known.

including any and all United States Patents
which may be granted on said application, and any and all extensions, divisions, reissues,
substitutes, renewals or continuations of said application and patents, and the right to all benefits
under all international conventions for the protection of industrial property and applications for
said improvements.

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its
designee.

Upon said consideration, it is further agreed that, when requested, without charge to but at the
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute,
renewal, and reissue patent applications; execute all rightful other papers; and generally do
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and
maintaining patent protection as provided herein.

Sarah Mann
2/18/2021

Legal Name of Inventor Date

, .. .,...._..._.,OocuSigned by:

1 rso.Yoi~

WITNESSES:

2 of 2
113444 779 .1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 278 of 350

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

lnventor(s)
Assignee
Patent No.
issued
Application No.
Filed

: Michael H. Anderson et al. Confirmation No. 5095

Title

: STREAMSCALE, INC.
: 10,291,259
: May 14, 2019
: 15/976, 175
: May 10, 2018

Docket No.
: ACCELERATED ERASURE CODING SYSTEM AND METHOD
: 157162 (411563-00014)

STATEMENT OF ASSIGNEE IN SUPPORT OF PETITION
FOR CORRECTION OF INVENTORSHIP UNDER 37 C.F.R. § 1.324 AND

COMPL YiNG WITH 37 C.F.R. § 3.73(c)

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

Post Office Box 29001
Glendale, CA 91209-9001

1. I am authorized to act on behalf of STREAMSCALE, INC. and have the title

indicated below.

2. STREAMSCALE, INC. is the assignee of the entire interest of the patent

identified above, by virtue of the following Assignments from the inventors.

(a) An Assignment of this invention by inventor Michael H. Anderson

was recorded on May 16, 2018 at Reel No. 045816 and Frame No. 0289.

{b) A second Assignment of this invention by inventor Sarah Mann, the

lnventor to be added on this patent. is attached hereto.

3. The Assignee agrees to the addition of Sarah Mann as an inventor on the

patent

Date ~ eh <-. " :l
,.,

, I\
.._ V"

DAP/srd

-1-
113444914.1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 279 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor(s)
Assignee
Patent No.
Issued
Application No.
Filed

Michael H. Anderson et al. Confirmation No. 5095
STREAMSCALE, INC.
10,291,259
May 14, 2019
15/976, 175
May 10, 2018

Title
Docket No.

ACCELERATED ERASURE CODING SYSTEM AND METHOD
157162 (411563-00014)

STATEMENT OF SARAH MANN IN SUPPORT OF PETITION FOR CORRECTION OF
INVENTORSHIP PURSUANT TO 37 C.F.R. § 1.324

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Commissioner:

I, the undersigned, declare and state as follows:

Post Office Box 29001
Glendale, CA 91209-9001

I submit this statement in support of STREAMSCALE, INC.'s petition to correct the

inventorship in the above-identified patent. I understand that the petition seeks to add

me, the undersigned, as an inventor to this patent and I agree to the requested change

of inventorship.

Executed this 18 of February --- 2021 in oakl and ,
CA

Respectfully,
,..~ DocuStgned by:

I I<; IJJl'o.L, ~

DAP/srd

-1-
113444914.1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 280 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

Title of Invention:

Docket No.:
Application No.

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

ACCELERATED ERASURE CODING SYSTEM AND METHOD

157162 (411563-00014)
15/976, 175

INVENTOR'S DECLARATION

As a below named inventor, I hereby declare that:

This declaration is directed to the attached application unless the following is checked:

PATENT

x United States Application or PCT International Application Number 15/976, 175 filed on
May 10, 2018.

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the
above-identified application.

I have reviewed and understand the contents of the above-identified application, including the
claims.

I acknowledge the duty to disclose information which is material to patentability as defined in
37 C.F.R. § 1.56, including for continuation-in-part applications, material information which
became available between the filing date of the prior application and the national or PCT
international filing date of the continuation-in-part application.

I acknowledge that any willful false statement made in this declaration is punishable under
18 U.S.C. § 1001 by fine or imprisonment of not more than five (5) years, or both.

ASSIGNMENT

In consideration of good and valuable consideration, the receipt of which is hereby acknowledged,
the undersigned,

(1) Sarah Mann

HEREBY SELL(S), ASSIGN(S) AND TRANSFER(S) TO

~) STREAMSCALE INC.

having a place of business at

(3) 7215 Bosque Blvd., Suite 203, Waco, Texas 76710

(hereinafter called "ASSIGNEE") the entire right, title and interest in and to any and all
improvements which are disclosed in the application for United States Letters Patent entitled

(4) ACCELERATED ERASURE CODING SYSTEM AND METHOD

which application was executed on even date herewith or was

1 of 2
113444 779 .1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 281 of 350

DocuSign Envelope ID: 27 A83300-2498-4CD0-9C8B-F33F25263E73

INVENTOR'S DECLARATION AND ASSIGNMENT
FOR PA TENT APPLICATION

Docket No.: 157162 (411563-00014)
Application No.: 15/976, 175

(a) executed on (Sa):

(b) filed on (Sb): May 10, 2018

Application No.: 15/976 175

(LEWIS ROCA ROTHGERBER CHRISTIE
LLP, P.O. Box 29001, Glendale, CA 91209-
9001) is hereby authorized to insert in (b) the
specified data, when known.

including any and all United States Patents
which may be granted on said application, and any and all extensions, divisions, reissues,
substitutes, renewals or continuations of said application and patents, and the right to all benefits
under all international conventions for the protection of industrial property and applications for
said improvements.

It is hereby authorized and requested that the Commissioner of Patents issue any and all of said
Letters Patent, when granted, to said ASSIGNEE, its assigns or its successors in interest or its
designee.

Upon said consideration, it is further agreed that, when requested, without charge to but at the
expense of said ASSIGNEE, the undersigned will execute all divisional, continuing, substitute,
renewal, and reissue patent applications; execute all rightful other papers; and generally do
everything possible which said ASSIGNEE shall consider desirable for aiding in securing and
maintaining patent protection as provided herein.

Sarah Mann
2/18/2021

Legal Name of Inventor Date

, .. .,...._..._.,OocuSigned by:

1 rso.Yoi~

WITNESSES:

2 of 2
113444 779 .1

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 282 of 350

Electronic Patent Application Fee Transmittal

Application Number: 15976175

Filing Date: 1 0-May-2018

Title of Invention: ACCELERATED ERASURE CODING SYSTEM AND METHOD

First Named Inventor/Applicant Name: Michael H. Anderson

Filer: David A. Plumley/Jennifer Guerra

Attorney Docket Number: 157162/411563-00014

Filed as Small Entity

Filing Fees for Utility under 35 USC 111 (a)

Description Fee Code Quantity Amount
Sub-Total in

USO($)

Basic Filing:

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

PROCESSING FEE CORRECTING INVENTORSHIP 2816 1 160 160

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 283 of 350

Description Fee Code Quantity Amount
Sub-Total in

USO($)

Extension-of-Time:

Miscellaneous:

Total in USO($) 160

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 284 of 350

Electronic Acknowledgement Receipt

EFSID: 42002889

Application Number: 15976175

International Application Number:

Confirmation Number: 5095

Title of Invention: ACCELERATED ERASURE CODING SYSTEM AND METHOD

First Named Inventor/Applicant Name: Michael H. Anderson

Customer Number: 23363

Filer: David A. Plumley/Jennifer Guerra

Filer Authorized By: David A. Plumley

Attorney Docket Number: 157162/411563-00014

Receipt Date: 23-FEB-2021

Filing Date: 10-MAY-2018

Time Stamp: 20:54:53

Application Type: Utility under 35 USC 111 (a)

Payment information:

Submitted with Payment yes

Payment Type DA

Payment was successfully received in RAM $160

RAM confirmation Number E20212MK55084580

Deposit Account

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 285 of 350

File Listing:

Document
Document Description File Name

File Size(Bytes}/ Multi Pages
Number Message Digest Part /.zip (if appl.)

105663

1
Petition for review by the Office of

157162_Petition.pdf no 2
Petitions

0144 54d d2 40ed 03 acS e 38018a2fad a4a 7 4e
eebd7

Warnings:

Information:

4848887

2 Application Data Sheet 157162_CorrectedADS.pdf no 9
7a2 923 7 b634a 1 b2c0314d48f6a62f25489 5

92967

Warnings:

Information:

This is not an USPTO supplied ADS fillable form

294455

3 Examination support document 157162_Stm_Anderson.pdf no 1
a9bb66cd5190b5b 1764424e4 75731 af8c23

96551

Warnings:

Information:

445215

4 157162_Stm_StreamScale.pdf yes 3
1007b91 ec7c027f6437850317936c2e3c98

16244

Multipart Description/PDF files in .zip description

Document Description Start End

Assignee showing of ownership per 37 CFR 3.73 2 3

Examination support document 1 1

Warnings:

Information:

205328

5 Examination support document 157162_Stm_Mann.pdf no 1
32fbe2e1 Sf9d 14666085c651447f5b9bcfca

ab60

Warnings:

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 286 of 350

The PDF file has been signed with a digital signature and the legal effect of the document will be based on the contents of the file not the
digital signature.

Information:

211055

6 Oath or Declaration filed 157162_Dec1Asg.pdf no 2
40d 7b 794b6feb 781 e6f01 f3 3c0fd402edac2

085e

Warnings:

The PDF file has been signed with a digital signature and the legal effect of the document will be based on the contents of the file not the
digital signature.

Information:

30496

7 Fee Worksheet (5B06) fee-info.pdf no 2
9335c3147ded48be 7905137d4196ed5df1

bbeSb

Warnings:

Information:

Total Files Size (in bytes) 6141099

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Agglications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Agglication under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.
New International Agglication Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 181 O), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/1 OS) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 287 of 350

EXHIBIT H

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 288 of 350

I 1111111111111111 1111111111 lllll lllll lllll 111111111111111 lll111111111111111

c12) United States Patent
Anderson

(54) ACCELERATED ERASURE CODING
SYSTEM AND METHOD

(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US)

(72) Inventor: Michael H. Anderson, Los Angeles,
CA (US)

(73) Assignee: STREAMSCALE, INC., Los Angeles,
CA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 16/358,602

(22) Filed:

(65)

Mar. 19, 2019

Prior Publication Data

US 2019/0215013 Al Jul. 11, 2019

Related U.S. Application Data

(63) Continuation of application No. 15/976,175, filed on
May 10, 2018, now Pat. No. 10,291,259, which is a

(Continued)

(51) Int. Cl.
H03M 13115
G06F 11110

(52) U.S. Cl.

(2006.01)
(2006.01)

(Continued)

CPC H03M 131154 (2013.01); G06F 1111068
(2013.01); G06F 1111076 (2013.01);

(Continued)

25

20 data 1 , byte 1 data 1 , byte 2

~ data 2, byte 1 II data 2, byte 2

data N, byte 1 data N, byte 2

USO 10666296B2

(IO) Patent No.: US 10,666,296 B2
*May 26, 2020 (45) Date of Patent:

(58) Field of Classification Search

(56)

CPC G06F 11/1076; G06F 3/0619; G06F 3/064;
G06F 3/0683; G06F 11/1096;

(Continued)

References Cited

U.S. PATENT DOCUMENTS

5,577,054 A
5,754,563 A

ll/ 1996 Pharris
5/1998 White

(Continued)

OTHER PUBLICATIONS

Casey Henderson: Letter to the USENIX Connnunity <https://www.
usenix.org/system/files/conference/fast13/fastl3 _memo_02 l 7 l 5.
pdf> Feb. 17, 2015.

(Continued)

Primary Examiner - John J Tabone, Jr.
(74) Attorney, Agent, or Firm - Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT
An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core,
storage medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an
encoding matrix for holding first factors in the main
memory, the first factors being for encoding the original data
into the check data; and a thread for executing on the
processing core. The thread includes: a parallel multiplier
for concurrently multiplying multiple entries of the data
matrix by a single entry of the encoding matrix; and a first
sequencer for ordering operations through the data matrix
and the encoding matrix using the parallel multiplier to
generate the check data.

8 Claims, 9 Drawing Sheets

I • ••••••••• I data 1, byte L

II • • • • · • · · • • I data 2, byte L

.......... data N, byte L

30 check 1 , byte 1 check 1 , byte 2 check 1 , byte L

check 2, byte 1 check 2, byte 2 check 2, byte L

check M, byte 1 check M, byte 2 check M, byte L

35

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 289 of 350

US 10,666,296 B2
Page 2

(51)

Related U.S. Application Data

continuation of application No. 15/201,196, filed on
Jul. 1, 2016, now Pat. No. 10,003,358, which is a
continuation of application No. 14/852,438, filed on
Sep. 11, 2015, now Pat. No. 9,385,759, which is a
continuation of application No. 14/223,740, filed on
Mar. 24, 2014, now Pat. No. 9,160,374, which is a
continuation of application No. 13/341,833, filed on
Dec. 30, 2011, now Pat. No. 8,683,296.

Int. Cl.
H03M 13111 (2006.01)
H03M 13/13 (2006.01)
G06F 12102 (2006.01)
G06F 12106 (2006.01)
H03M 13137 (2006.01)
H04L 1100 (2006.01)
H03M 13/00 (2006.01)
GllC 29152 (2006.01)

(52) U.S. Cl.
CPC G06F 1111092 (2013.01); G06F 1111096

(2013.01); G06F 1210238 (2013.01); G06F
12106 (2013.01); GllC 29152 (2013.01);

H03M 13/1191 (2013.01); H03M 13/134
(2013.01); H03M 1311515 (2013.01); H03M
131373 (2013.01); H03M 1313761 (2013.01);

H03M 1313776 (2013.01); H03M 131616
(2013.01); H03M 13/6502 (2013.01); H04L
110043 (2013.01); H04L 110057 (2013.01);

G06F 2211/109 (2013.01); G06F 2211/1057
(2013.01)

(58) Field of Classification Search
CPC .. G06F 12/0238; G06F 12/06; G06F 11/1092;

G06F 2211/1057; G06F 2211/109; H03M
13/11; H03M 13/1191; H03M 13/134;
H03M 13/1515; H03M 13/154; H03M

13/158; H03M 13/373; H03M 13/3761;
H03M 13/3776; H03M 13/616; H04L

1/0043
USPC 714/764, 6.24, 6.1, 6.11, 6.2, 6.21, 6.32,

714/763, 752, 758, 768, 770, 773, 784,
714/786

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,486,803 Bl 11/2002 Luby et al.
6,654,924 Bl * 11/2003 Hassner GllB 20/1813

714/758
6,823,425 B2 * 11/2004 Ghosh G06F 11/1076

711/ll4
7,350,126 B2 * 3/2008 Winograd G06F 11/1076

714/752
7,865,809 Bl l/20ll Lee et al.
7,930,337 B2 4/20ll Hasenplaugh et al.
8,145,941 B2 * 3/2012 Jacobson G06F ll/ 107 6

714/6.24
8,352,847 B2 * 1/2013 Gunnam G06F 17/16

714/758
8,683,296 B2 * 3/2014 Anderson H03M 13/1515

714/763
8,914,706 B2 * 12/2014 Anderson G06F 11/1076

714/6.24
9,160,374 B2 10/2015 Anderson
9,258,014 B2 2/2016 Anderson
9,385,759 B2 7/2016 Anderson

10,003,358 B2
2009/0055717 Al
2009/0249170 Al
2010/0293439 Al
2011/00297 56 Al*

2012/0272036 Al*

2013/0108048 Al*

2013/0ll0962 Al*

2013/0lll552 Al*

2013/0124932 Al*

2013/0173956 Al*

2013/0173996 Al*

2014/0040708 Al
2014/0068391 Al
2015/0012796 Al *

2017 /0005671 Al

6/2018 Anderson
2/2009 Au et al.

10/2009 Maiuzzo
11/2010 Flynn et al.
2/20 ll Biscondi H03M 13/lll4

712/22
10/2012 Muralimanohar .. G06F 12/0238

711/202
5/2013 Grube H04W 12/00

380/270
5/2013 Grube H04W 12/00

709/213
5/2013 Grube H04W 12/00

726/3
5/2013 Schuh GllC 29/16

714/718
7/2013 Anderson G06F 11/1076

7/2013 Anderson

2/2014 Maiuzzo
3/2014 Goel et al.
1/2015 Anderson

1/2017 Anderson

714/6.24
H03M 13/3761

714/770

H03M 13/3761
714/763

OTHER PUBLICATIONS

Chandan Kumar Singh: EC Jerasure plugin and StreamScale Inc,

<http://www.spinics.net/lists/ceph-devel/msg29944 .html> Apr. 20,
2016.
Code Poetry and Text Adventures: <http://catid.mechafetus.com/
news/news.php?view~381> Dec. 14, 2014.
Curtis Chan: StreamScale Announces Settlement of Erasure Code
Technology Patent Litigation, <http://www.prweb.com/releases/
2014/12/prwebl2368357.htm>, Dec. 3, 2014.
Ethan Miller, <https:/ /plus.google.com/ ll3956021908222328905/
posts/bPcYevPkJWd>, Aug. 2, 2013.
H. Peter Anvin. "The mathematics ofRAID-6." 2004, 2011.
Hafner et al., Matrix Methods for Lost Data Reconstruction in
Erasure Codes, Nov. 16, 2005, USENIX FAST '05 Paper, pp. 1-26.
James S. Plank, Ethan L. Miller, Will B. Houston: GP-Complete: A
Comprehensive Open Source Library for Galois Field Arithmetic,
<http://web.eecs.utk.edu/-plank/plank/papers/CS-l 3-703 .html> Jan.
2013.
James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu,
Zooko Wlcox-O'Hearn: A Performance Evaluation and Examina
tion of Open-Source Erasure Coding Libraries For Storage, <https://
www.usenix.org/legacy/event/fast09/tech/full_papers/plank/plank_
html/> 2009.
Kevin M. Greenan, Ethan L. Miller, Thomas J.E. Schwarz, S. J.:
Optimizing Galois Field Arithmetic for Diverse Processor Archi
tectures and Applications, Proceedings of the 16th IEEE interna
tional Symposium on Modeling, Analysis, and Simulation of Com
puter and Telecommunication Systems (MASCOTS 2008), Baltimore,
MD, Sep. 2008.
Lee, "High-Speed VLSI Architecture for Parallel Reed-Solomon
Decoder", IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. ll, No. 2, Apr. 2003, pp. 288-294.
Li et al.; Preventing Silent Data Corruptions from Propagating
During Data Reconstruction; IEEE Transactions on Computers, vol.
59, No. 12, Dec. 2010; pp. 16ll-1624.
Li Han and Qian Huan-yan. "Parallelized Network Coding with
SIMD instruction sets." In Computer Science and Computational
Technology, 2008. ISCSCT'08. International Symposium on, vol. 1,
pp. 364-369. IEEE, 2008.
Loic Dachary: Deadline ofGithub pull request for Hammer release,
<http://www.spinics.net/lists/ceph-devel/msg2200 l .html> Jan. 13,
2015.
Louis Lavile: <https://twitter.com/louislavile> Nov. 13, 2014.
M. Lalam, et al. "Sliding Encoding-Window for Reed-Solomon
code decoding," 4th International Symposium on Turbo Codes &

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 290 of 350

US 10,666,296 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Related Topics; 6th International ITG-Conference on Source and
Channel Coding, Munich, Germany, 2006, pp. 1-6.
Maddock, et al.; White Paper, Surviving Two Disk Failures Intro
ducing Various "RAID 6" Implementations; Xyratex; pp. 1-13.
Mann, "The Original View of Reed-Solomon Coding and the Welch
Berlekamp Decoding Algorithm", A Dissertation Submitted to the
Faculty of the Graduate Interdisciplinary Program in Applied Math
ematics, The University of Arizona, Jul. 19, 2013, 143 sheets.
Marius Gedminas: <http://eavesdrop.openstack.org/irclogs/%
23openstack-swift/%23openstack-swift.2015-04-30 .log.html> Apr.
29, 2015.
Matthew L. Curry, Anthony Skjellum, H. Lee Ward, and Ron
Brightwell. "Arbitrary dimension reed-solomon coding and decod
ing for extended raid on gpus." In Petascale Data Storage Work
shop, 2008. PDSW'08. 3rd, pp. 1-3. IEEE, 2008.
Matthew L. Curry, Anthony Skjellum, H. Lee Ward, Ron Brightwell:
Gibraltar: A Reed-Solomon coding library for storage applications
on programmable graphics processors. Concurrency and Computa
tion: Practice and Experience 23(18): pp. 2477-2495 (2011).
Matthew L. Curry, H. Lee Ward, Anthony Skjellum, Ron Brightwell:
A Lightweight, GPU-Based Software RAID System. ICPP 2010:
pp. 565-572.
Matthew L. Curry, Lee H. Ward, Anthony Skjellum, and Ron B.
Brightwell: Accelerating Reed-Solomon Coding in RAID Systems
With GPUs, Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on. IEEE, 2008.

Michael A. O'Shea: StreamScale, <https://lists.ubuntu.corn/archives/
technical-board/2015-April/002100.htrnl> Apr. 29, 2015.
Mike Masnik: Patent Troll Kills Open Source Project on Speeding
Up The Computation of Erasure Codes, <https://www.techdirt.com/
articles/2014 l l 15/07113529155/patent-troll-kills-open-source-project
speeding-up-computation-erasure-codes.shtrnl>, Nov. 19, 2014.
Neifeld, M.A & Sridharan, S. K. (1997). Parallel error correction
using spectral Reed-Solomon codes. Journal of Optical Communi
cations, 18(4), pp. 144-150.
Plank; All About Erasure Codes:-Reed-Solomon Coding-LDPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL
Aug. 20, 2004; 52 sheets.
Robert Louis Cloud, Matthew L. Curry, H. Lee Ward, Anthony
Skjellum, Purushotham Bangalore: Accelerating Lossless Data Com
pression with GPUs. CoRR abs/1107.1525 (2011).
Roy Schestowitz: US Patent Reform (on Trolls Only) More or Less
Buried or Ineffective, <http:/ /techrights.org/2014/12/12/us-patent
reforrn/> Dec. 12, 2014.
Wei bin Sun, Robert Ricci, Matthew L. Curry: GPU store: harnessing
GPU computing for storage systems in the OS kernel. SYSTOR
2012: p. 6.
Xin Zhou, Anthony Skjellum, Matthew L. Curry: Abstract: Extended
Abstract for Evaluating Asynchrony in Gibraltar RAID's GPU
Reed-Solomon Coding Library. SC Companion 2012: pp. 1496-
1497.
Xin Zhou, Anthony Skjellum, Matthew L. Curry: Poster: Evaluating
Asynchrony in Gibraltar RAID's GPU Reed-Solomon Coding Library.
SC Companion 2012: p. 1498.

* cited by examiner

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 291 of 350

F
IG

.
1

e
1

0
\

• 0
0

•

. 2
5

.
~

~

~

~
 =

II •
 •

• •
 •

• •
 •

• •
 I

 d
a

ta
 1

,
by

te
 L

I

~

20

I d
a

ta
 1

 , b
yt

e
1

II
da

ta
 1

 , b
yt

e
2

~

I d
at

a
2,

 b
yt

e
2

II •
 •

• •
 •

• •
 •

• •
 I

 d
a

ta
 2

,
by

te
 L

I

d
a

ta
 2

,
by

te
 1

~

~

N

'"C
l's

•
N

•
0 N

•

0

d
a

ta
 N

,
by

te
 1

I d

at
a

N
,

by
te

 2

I •
 •

• •
 •

• •
 •

• •
 I

 d
a

ta
 N

,
by

te
 L

I

rJ
J =- ('D ('

D

I c
h

e
ck

 1
 , b

yt
e

1
I c

he
ck

 1
 , b

yt
e

2
I •

 • •
 • •

 • •
 • •

 •
I c

he
ck

 1
 , b

yt
e

L
I

....
30

0 1

,0

ch
e

ck
 2

,
by

te
 1

I c

he
ck

 2
,

by
te

 2

I •

 • •
 • •

 • •
 • •

 • I
 ch

ec
k

2,
 b

yt
e

L
I

• •
d

•
r.,;

_ "'""
'

ch
e

ck
 M

,
by

te
 1

 I
ch

ec
k

M
,

by
te

 2
 I

• •
 • •

 • •
 • •

 • •
 I

 ch
e

ck
 M

,
by

te
 L

 I

'"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

35

=

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 292 of 350

30
0 \

31
0

32
0

33
0

34
0

35
0

F
IG

.
2

R
e

d
u

ce
 fu

ll
si

ze
 e

n
co

d
in

g
 m

a
tr

ix
 E

 to
 r

ed
uc

ed
 s

iz
e

 e
n

co
d

in
g

 m
a

tr
ix

 T

b
y

re
m

ov
in

g
th

e
 F

 fa
ile

d
d

a
ta

 d
ri

ve
 r

ow
s

w
h

ile
 k

e
e

p
in

g
 o

n
ly

 F
 s

u
rv

iv
in

g

ch
e

ck
 d

ri
ve

 r
ow

s,
 m

o
vi

n
g

 t
h

e
 F

 fa
ile

d
d

a
ta

 d
ri

ve
 c

o
lu

m
n

s
to

 t
h

e
 r

ig
ht

l
R

e
d

u
ce

 fu
ll

si
ze

 e
n

co
d

e
d

 d
a

ta
 m

a
tr

ix
 C

 t
o

re
du

ce
d

si
ze

 e
n

co
d

in
g

 m
a

tr
ix

 C
'

b
y

re
m

ov
in

g
th

e
 F

 lo
st

 d
a

ta
 r

ow
s

w
h

ile
 k

e
e

p
in

g
 o

n
ly

 F
 s

u
rv

iv
in

g
 c

h
e

ck
 d

a
ta

ro

w
s,

 l
ea

vi
ng

 s
u

rv
iv

in
g

 d
a

ta
 X

 o
n

to
p

 a
nd

 s
u

rv
iv

in
g

 c
h

e
ck

 d
a

ta
 W

 o
n

b
o

tt
o

m

l
S

p
lit

 e
n

co
d

in
g

 m
a

tr
ix

 T
in

to
 f

o
u

r
su

b
-m

a
tr

ic
e

s:

id
e

n
tit

y
m

a
tr

ix
 IK

 (
K

xK
)

in
 u

p
p

e
r

le
ft,

 z
e

ro
 m

a
tr

ix
 O

 (
K

x
F)

 i
n

u
p

p
e

r
rig

ht
,

e
n

co
d

in
g

 m
a

tr
ix

 A

(F
xK

)
in

 l
o

w
e

r
le

ft,
 a

nd
 e

n
co

d
in

g
 m

a
tr

ix
 B

 (
F

xF
)

in
 l

ow
er

 r
ig

ht

l
In

ve
rt

 e
n

co
d

in
g

 m
a

tr
ix

 B
 to

 p
ro

d
u

ce
 s

ol
ut

io
n

m
a

tr
ix

 B
-1

;
lo

st
 d

a
ta

 Y

sa
tis

fie
s

th
e

 r
e

la
tio

n
sh

ip
 W

 =
 A

xX
 +

 B
x

Y,
 s

o
Y

 =
 B

-1
x

(W
 -

A
xX

)

l
R

e
co

n
st

ru
ct

 lo
st

 d
a

ta
 Y

 f
ro

m
 s

u
rv

iv
in

g
 d

a
ta

 X
,

su
rv

iv
in

g
 c

h
e

ck
 d

a
ta

 W
,

e
n

co
d

in
g

 m
a

tr
ix

 A
,

an
d

so
lu

tio
n

m
a

tr
ix

 B
-1

us
in

g
fo

rm
ul

a;
 r

e
g

n
e

ra
te

 a
n

y
lo

st
 c

h
e

ck
 d

a
ta

 fr
om

 s
u

rv
iv

in
g

 d
a

ta
 X

 a
nd

 r
e

co
n

st
ru

ct
e

d
 l

o
st

 d
a

ta
 Y

e • 0
0

• ~

~

~

~
 =

~

~

~

N

'"C
l's

N

0 N

0 rJ
J = ('D ('

D

N

0 1
,0

d r.,;
_ "'""
' '"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 293 of 350

40
0 \

41
0

42
0

43
0

44
0

45
0

F
IG

.
3

In
iti

al
iz

e
(o

ne
 t

im
e)

 -
bu

ild
 t

w
o

lo
ok

up
 ta

bl
es

,
on

e
fo

r
lo

w
-o

rd
er

ni

bb
le

s,
 o

ne
 f

or
 h

ig
h-

or
de

r
ni

bb
le

s,
 e

ac
h

on
e

co
nt

ai
ni

ng
 2

56

en
tr

ie
s

of
 th

e
16

 p
os

si
bl

e
pr

od
uc

ts
 o

f
on

e
ni

bb
le

 a
nd

 o
ne

 f
ac

to
r

l
P

re
pa

re
 (

 on
ce

 p
er

 o
pe

ra
nd

 d
at

a)
 -

lo
ad

 n
ex

t 6
4

by
te

s
of

 o
pe

ra
nd

 d
a

ta
 fr

om

m
em

or
y

in
to

 f
ou

r
op

er
an

d
re

gi
st

er
s;

 t
he

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
w

ill
 l

ea
ve

th

es
e

re
gi

st
er

s
al

on
e

to
 a

vo
id

 r
el

oa
di

ng
 f

ro
m

 m
em

or
y

on
 s

uc
ce

ed
in

g
ca

lls

l
E

xe
cu

te
 (

on
ce

 p
er

 c
al

l)
-

lo
ad

 t
he

 1
6

po
ss

ib
le

 h
ig

h-
or

de
r

ni
bb

le
 p

ro
du

ct
s

fr
om

 m
em

or
y

fo
r

th
e

cu
rr

en
t

fa
ct

or
 in

to
 o

ne
 r

eg
is

te
r;

 r
ep

ea
t f

or
 th

e
lo

w
-

or
de

r
ni

bb
le

 p
ro

du
ct

s
in

to
 a

no
th

er
 r

eg
is

te
r;

 c
le

ar
 f

ou
r

ou
tp

ut
 r

eg
is

te
rs

l
E

xe
cu

te
 (

 on
ce

 p
er

 3
2

by
te

s
of

 d
at

a)
 -

m
ov

e
tw

o
re

gi
st

er
s

of

op
er

an
d

d
a

ta
 (

by
te

s)
 i

nt
o

fo
ur

 r
eg

is
te

rs
 o

f s
cr

at
ch

 d
a

ta
 (

ni
bb

le
s)

l
M

ul
tip

ly
 (

on
ce

 p
er

 3
2

by
te

s
of

 d
at

a)
 -

us
e

P
S

H
U

F
B

 o
n

th
e

ni
bb

le

d
a

ta
 in

 t
he

 s
cr

at
ch

 r
eg

is
te

rs
,

ac
cu

m
ul

at
in

g
th

e
co

rr
es

po
nd

in
g

lo
w

-
or

de
r

ni
bb

le
 a

nd
 h

ig
h-

or
de

r
ni

bb
le

 p
ro

du
ct

s
in

 t
he

 o
ut

pu
t

re
gi

st
er

s

e • 0
0

• ~

~

~

~
 =

~

~

~

N

'"C
l's

N

0 N

0 rJ
J = ('D ('

D

~

0 1
,0

d r.,;
_ "'""
' '"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 294 of 350

50
0 \

51
0

52
0

53
0

54
0

55
0

F
IG

.
4

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 g

en
er

at
e

ch
ec

k
d

a
ta

 fo
r

co
ns

ec
ut

iv
e

gr
ou

ps
 o

f
co

rr
es

po
nd

in
g

64
-b

yt
e

ch
un

ks
 a

cr
os

s
a

st
rip

e
of

 d
a

ta

l
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f
64

-b
yt

e
ch

un
ks

 o
f

op
er

an
d

da
ta

 fr
om

ea

ch
 o

f t
he

 b
lo

ck
s

of
 th

e
st

rip
e;

 l
oa

d
ne

xt
 6

4
by

te
s

of
 o

pe
ra

nd
 d

a
ta

 fo
r

fir
st

 d
at

a
dr

iv
e

fr
om

 m
em

or
y

an
d

in
iti

al
iz

e
pa

rit
y

ch
ec

k
dr

iv
e

ch
ec

k
d

a
ta

l
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 d

a
ta

 d
riv

e:

lo
op

 th
ro

ug
h

ea
ch

 o
f t

he
 n

on
-

pa
rit

y
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 f

irs
t

da
ta

 d
riv

e'
s

64
 b

yt
es

 o
f

op
er

an
d

da
ta

 to
 i

ni
tia

liz
e

no
n-

pa
rit

y
ch

ec
k

dr
iv

e
ch

ec
k

da
ta

l
S

ec
on

d
m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
da

ta
 d

riv
es

:
fo

r
ea

ch
 o

f t
he

 o
th

er

d
a

ta
 d

riv
es

,
lo

ad
 n

ex
t 6

4
by

te
s

of
 o

pe
ra

nd
 d

a
ta

 fr
om

 m
em

or
y

(p
re

se
rv

ed

ac
ro

ss
 in

ne
r

lo
op

),
 a

dd
 t

hi
s

to
 p

ar
ity

 d
riv

e
ch

ec
k

da
ta

,
an

d
ca

ll
in

ne
r

lo
op

l
In

ne
r

lo
op

 -
pr

oc
es

s
ne

xt
 d

a
ta

 d
riv

e:

lo
op

 t
hr

ou
gh

 e
ac

h
of

 th
e

no
n-

pa
rit

y
ch

ec
k

dr
iv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 n

ex
t d

ri
ve

's
 6

4
by

te
s

of
 o

pe
ra

nd
 d

a
ta

 to
 u

pd
at

e
th

e
no

n-
pa

rit
y

ch
e

ck
 d

riv
e

ch
ec

k
da

ta

e • 0
0

• ~

~

~

~
 =

~

~

~

N

'"C
l's

N

0 N

0 rJ
J = ('D ('

D

.i;
...

0 1
,0

d r.,;
_ ""'"
' '"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 295 of 350

60
0 \

61
0

62
0

63
0

64
0

F
IG

.
5

In
vo

ca
tio

n
-

pr
ep

ar
e

to
 r

ec
on

st
ru

ct
 lo

st
 o

rig
in

al
 d

a
ta

 a
nd

 r
eg

en
er

at
e

lo
st

 c
h

e
ck

 d
at

a
fo

r
m

ul
tip

le
 6

4-
by

te
 c

hu
nk

s
ac

ro
ss

 a
 s

tr
ip

e
of

 d
a

ta

!
O

u
te

r
lo

op
 -

pr
oc

es
s

ne
xt

 g
ro

up
 o

f
64

-b
yt

e
ch

un
ks

 o
f

op
er

an
d

da
ta

;
lo

ad

ne
xt

 6
4

by
te

s
of

 o
pe

ra
nd

 d
at

a
fo

r
fir

st
 s

ur
vi

vi
ng

 d
a

ta
 d

ri
ve

 fr
om

 m
em

or
y

!
F

irs
t

m
id

dl
e

lo
op

 -
pr

oc
es

s
fir

st
 s

ur
vi

vi
ng

 d
at

a
dr

iv
e:

lo

op
 th

ro
ug

h
ea

ch
 o

f
th

e
su

rv
iv

in
g

ch
ec

k
dr

iv
es

,
ca

lli
ng

 p
ar

al
le

l
lo

ok
up

 m
ul

tip
lie

r
on

 f
irs

t
su

rv
iv

in
g

da
ta

 d
ri

ve
's

 6
4

by
te

s
of

 o
pe

ra
nd

 d
a

ta
 to

 i
ni

tia
liz

e
pa

rt
ia

l c
h

e
ck

 d
at

a
A

xX

!
S

ec
on

d
m

id
dl

e
lo

op
 -

in
iti

al
iz

e
fa

ile
d

ch
ec

k
dr

iv
e

da
ta

:
fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
e

ck
 d

riv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 i
ni

tia
liz

e
th

ei
r

ch
ec

k
d

a
ta

 b
as

ed
 o

n
th

e
fir

st
 s

ur
vi

vi
ng

 d
a

ta
 d

ri
ve

's
 6

4
by

te
s

of
 o

pe
ra

nd
 d

a
ta

e • 0
0

• ~

~

~

~
 =

~

~

~

N

'"C
l's

N

0 N

0 rJ
J = ('D ('

D

U
l

0 1
,0

d r.,;
_ "'""
' '"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 296 of 350

60
0 \

65
0

66
0

67
0

68
0

F
IG

.
6

T
hi

rd
 m

id
dl

e
lo

op
 -

pr
oc

es
s

ot
he

r
su

rv
iv

in
g

da
ta

 d
ri

ve
s:

fo

r
ea

ch
 o

f t
he

 o
th

er
 s

ur
vi

vi
ng

 d
a

ta
 d

riv
es

,
lo

ad
 n

ex
t

64
 b

yt
es

 o
f

op
er

an
d

d
a

ta
 fr

om
 m

e
m

o
ry

 (
pr

es
er

ve
d

ac
ro

ss
 in

ne
r

lo
op

s)

!
F

irs
t

in
ne

r
lo

op
 -

pr
oc

es
s

ne
xt

 s
ur

vi
vi

ng
 d

a
ta

 d
ri

ve
:

lo
op

 th
ro

ug
h

ea
ch

 o
f

th
e

su
rv

iv
in

g
ch

e
ck

 d
riv

es
,

ca
lli

ng
 p

ar
al

le
l

lo
ok

up
 m

ul
tip

lie
r

on
 n

ex
t s

ur
vi

vi
ng

d

a
ta

 d
ri

ve
's

 6
4

by
te

s
of

 o
pe

ra
nd

 d
a

ta
 to

 u
pd

at
e

pa
rt

ia
l c

h
e

ck
 d

a
ta

 A
xX

l
S

ec
on

d
in

ne
r

lo
op

 -
up

da
te

 fa
ile

d
ch

e
ck

 d
ri

ve
 d

at
a:

fo

r
ea

ch
 o

f t
he

fa

ile
d

ch
e

ck
 d

riv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

e
ck

d

a
ta

 b
as

ed
 o

n
th

e
ne

xt
 s

ur
vi

vi
ng

 d
a

ta
 d

ri
ve

's
 6

4
by

te
s

of
 o

pe
ra

nd
 d

a
ta

!
F

ou
rt

h
m

id
dl

e
lo

op
 -

ad
d

su
rv

iv
in

g
ch

e
ck

 d
a

ta
 to

 p
ro

du
ce

 W
 -

A
xX

:
lo

op
 th

ro
ug

h
ea

ch
 o

f t
he

 s
ur

vi
vi

ng
 c

h
e

ck
 d

riv
es

,
ca

lli
ng

 p
ar

al
le

l
ad

de
r

to
 a

dd
 t

he
ir

 6
4

by
te

s
of

 d
at

a
to

 p
ar

tia
l c

h
e

ck
 d

a
ta

 A
xX

e • 0
0

• ~

~

~

~
 =

~

~

~

N

'"C
l's

N

0 N

0 rJ
J = ('D ('

D

Cl
's

0 1
,0

d r.,;
_ "'""
' '"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 297 of 350

60
0 \

69
0

70
0

71
0

72
0

F
IG

.
7

F
ift

h
m

id
dl

e
lo

op
 -

lo
st

 o
rig

in
al

 d
a

ta
 Y

:
in

 c
om

bi
na

tio
n

w
ith

 t
hi

rd
 i

nn
er

lo

op
,

ca
lc

ul
at

e
8

-1
x

(W
 -

A
xX

);
 s

ta
rt

 b
y

in
iti

al
iz

in
g

ne
xt

 r
ow

 o
f Y

 t
o

fir
st

co

m
bi

na
tio

n
o

f s
ol

ut
io

n
m

at
ri

x
8

-1
an

d
lo

st
 p

ar
tia

l c
h

e
ck

 d
a

ta
 W

 -
A

x
X

l
T

hi
rd

 i
nn

er
 lo

op
 -

co
m

pl
et

e
ne

xt
 r

ow
 o

f Y
 b

y
ad

di
ng

 in
 p

ro
du

ct
 o

f
ne

xt

fa
ct

or
 o

f
8

-1
an

d
W

 -
A

xX
 (

us
in

g
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r)
;

th
is

re

co
ns

tr
uc

ts
 n

ex
t f

ai
le

d
dr

iv
e'

s
lo

st
 d

at
a,

 w
hi

ch
 c

an
 b

e
st

or
ed

 (
if

de
si

re
d)

I +

F
ou

rt
h

in
ne

r
lo

op
 -

up
da

te
 f

ai
le

d
ch

e
ck

 d
ri

ve
 d

at
a:

fo

r
ea

ch
 o

f t
he

 f
ai

le
d

ch
e

ck
 d

riv
es

,
ca

ll
pa

ra
lle

l
lo

ok
up

 m
ul

tip
lie

r
to

 u
pd

at
e

th
ei

r
ch

e
ck

 d
a

ta

ba
se

d
on

 t
he

 n
ex

t f
ai

le
d

d
a

ta
 d

ri
ve

's
 6

4
by

te
s

o
f

re
co

ns
tr

uc
te

d
lo

st
 d

a
ta

l
S

ix
th

 m
id

dl
e

lo
op

 -
fo

r
ea

ch
 f

ai
le

d
ch

e
ck

 d
riv

e,

st
or

e
ne

w
ly

 g
en

er
at

ed
 c

h
e

ck
 d

a
ta

 (
if

de
si

re
d)

e • 0
0

• ~

~

~

~
 =

~

~

~

N

'"C
l's

N

0 N

0 rJ
J = ('D ('

D

-...
.J

0 1
,0

d r.,;
_ "'""
' '"=

0-
-,

0-

-,

0-
-,

'N

\0

0-
-,

 =

N

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 298 of 350

U.S. Patent May 26, 2020

co

LL

::::> 'r-

a.. ..J
() +

+-+

::::> 'r- +-+ a.. ..J
() +

0 ,... ~---,...

I ~
0
0 ,...

/
0
C\J ,...

"'

::::> 'r-

a.. ..J
V () + +-+

+-+

I"-
::::> 'r-

a.. ..J
() +

Sheet 8 of 9 US 10,666,296 B2

'r-

(])
::::> 'r-

0 a.. ..J
() +

+-+

C\J
o..J

0 CV) +-+ ::::> 'r- LO ,... a.. ..J ,...
j

() +

•

~ ,._
0 0 E -

~ -_
(]) -
~

j •

::::> 'r-

a.. ..J
+-+ () +

C\J
o..J
CV) +-+ ,... ::::> 'r-

0 a.. ..J

(]) () +
·-0

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 299 of 350

U.S. Patent

0)
.

C,
u.

I
0
0
C\J

0
C")
C\J

0
,--
C\J

May 26, 2020

0
C")
C\J

Sheet 9 of 9

0
,--
C\J

0
C")
C\J

0
C\J
C\J

US 10,666,296 B2

0
,--
C\J

0
C")
C\J

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 300 of 350

US 10,666,296 B2
1

ACCELERATED ERASURE CODING
SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 15/976,175 filed May 10, 2018, which is a
continuation of U.S. patent application Ser. No. 15/201,196,
filed on Jul. 1, 2016, now U.S. Pat. No. 10,003,358, issued
on Jun. 19, 2018, which is a continuation of U.S. patent
application Ser. No. 14/852,438, filed on Sep. 11, 2015, now
U.S. Pat. No. 9,385,759, issued on Jul. 5, 2016, which is a
continuation of U.S. patent application Ser. No. 14/223,740,
filed on Mar. 24, 2014, now U.S. Pat. No. 9,160,374, issued
on Oct. 13, 2015, which is a continuation of U.S. patent
application Ser. No. 13/341,833, filed on Dec. 30, 2011, now
U.S. Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire
contents of each of which are expressly incorporated herein
by reference.

BACKGROUND

Field

Aspects of embodiments of the present invention are
directed toward an accelerated erasure coding system and
method.

Description of Related Art

An erasure code is a type of error-correcting code (ECC)
useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken

2
Erasure codes for select values of N and M can be imple
mented on RAID systems employing N+M (disk) drives by
spreading the original data among N "data" drives, and using
the remaining M drives as "check" drives. Then, when any

5 N of the N+M drives are correctly functioning, the original
data can be reconstructed, and the check data can be
regenerated.

Erasure codes (or more specifically, erasure coding sys
tems) are generally regarded as impractical for values of M

10 larger than 1 (e.g., RAIDS systems, such as parity drive
systems) or 2 (RAID6 systems), that is, for more than one or
two check drives. For example, see H. Peter Anvin, "The
mathematics of RAID-6," the entire content of which is
incorporated herein by reference, p. 7, "Thus, in 2-disk-

15 degraded mode, performance will be very slow. However, it
is expected that that will be a rare occurrence, and that
performance will not matter significantly in that case." See
also Robert Maddock et al., "Surviving Two Disk Failures,"
p. 6, "The main difficulty with this technique is that calcu-

20 lating the check codes, and reconstructing data after failures,
is quite complex. It involves polynomials and thus multi
plication, and requires special hardware, or at least a signal
processor, to do it at sufficient speed." In addition, see also
James S. Plank, "All About Erasure Codes:-Reed-Solomon

25 Coding-LDPC Coding," slide 15 (describing computa
tional complexity of Reed-Solomon decoding), "Bottom
line: When n & m grow, it is brutally expensive." Accord
ingly, there appears to be a general consensus among experts
in the field that erasure coding systems are impractical for

30 RAID systems for all but small values of M (that is, small
numbers of check drives), such as 1 or 2.

Modem disk drives, on the other hand, are much less
reliable than those envisioned when RAID was proposed.
This is due to their capacity growing out of proportion to

35 their reliability. Accordingly, systems with only a single
check disk have, for the most part, been discontinued in
favor of systems with two check disks. up into N equal-sized blocks, or data blocks, for some

positive integer N. The data for each stripe is thus recon
structable by putting the N data blocks together. However, to
handle situations where one or more of the original N data 40

blocks gets lost, erasure codes also encode an additional M
equal-sized blocks (called check blocks or check data) from
the original N data blocks, for some positive integer M.

In terms of reliability, a higher check disk count is clearly
more desirable than a lower check disk count. If the count
of error events on different drives is larger than the check
disk count, data may be lost and that cannot be reconstructed
from the correctly functioning drives. Error events extend
well beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is The N data blocks and the M check blocks are all the same

size. Accordingly, there are a total of N+M equal-sized
blocks after encoding. The N+M blocks may, for example,
be transmitted to a receiver as N+M separate packets, or
written to N+M corresponding disk drives. For ease of
description, all N+M blocks after encoding will be referred
to as encoded blocks, though some (for example, N of them)
may contain unencoded portions of the original data. That is,
the encoded data refers to the original data together with the
check data.

45 a service event on a RAID system where the operator
mistakenly replaces the wrong drive or, worse yet, replaces
a good drive with a broken drive. In the absence of any
generally accepted methodology to train, certify, and mea
sure the effectiveness of service technicians, these types of

50 events occur at an unknown rate, but certainly occur. The
foolproof solution for protecting data in the face of multiple
error events is to increase the check disk count.

The M check blocks build redundancy into the system, in
a very efficient marmer, in that the original data (as well as 55

any lost check data) can be reconstructed if any N of the
N+M encoded blocks are received by the receiver, or if any
N of the N+M disk drives are functioning correctly. Note
that such an erasure code is also referred to as "optimal." For
ease of description, only optimal erasure codes will be 60

discussed in this application. In such a code, up to M of the
encoded blocks can be lost, (e.g., up to M of the disk drives
can fail) so that if any N of the N+M encoded blocks are
received successfully by the receiver, the original data (as
well as the check data) can be reconstructed. N/(N+M) is 65

thus the code rate of the erasure code encoding (i.e., how
much space the original data takes up in the encoded data).

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding
system that, for byte-level RAID processing (where each
byte is made up of 8 bits), performs well even for values of
N+M as large as 256 drives (for example, N=127 data drives
and M=129 check drives). Further aspects provide for a
single precomputed encoding matrix (or master encoding
matrix) s of size MmaxxNmax' or CNmax+Mmax)xNmax or
(Mmax-l)xNmax, elements (e.g., bytes), which can be used,
for example, for any combination ofN sN max data drives and
MsMmax check drives such that Nmax+Mmaxs256 (e.g.,
Nmax=l27 andMmax=l29, orNm==63 andMm==193). This

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 301 of 350

US 10,666,296 B2
3

is an improvement over prior art solutions that rebuild such
matrices from scratch every time Nor M changes (such as
adding another check drive). Still higher values ofN and M
are possible with larger processing increments, such as 2
bytes, which affords up to N+M=65,536 drives (such as 5

N=32,767 data drives and M=32,769 check drives).
Higher check disk count can offer increased reliability and

decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to 10

create larger groups of data drives. For example, systems
with two checks disks are typically limited to group sizes of
10 or fewer drives for reliability reasons. With a higher
check disk count, larger groups are available, which can lead
to fewer overall components for the same unit of storage and 15

hence, lower cost.
Additional aspects of embodiments of the present inven

tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up 20

to 127 data drives and up to 128 (non-parity) check drives,
for a total ofup to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance 25

comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ
ing additional (non-parity) check drives.

Further aspects are directed to a system and method for 30

implementing a fast solution matrix algorithm for Reed
Solomon codes. While known solution matrix algorithms
compute an NxN solution matrix (see, for example, J. S.
Plank, "A tutorial on Reed-Solomon coding for fault-toler
ance in RAID-like systems," Software-Practice & Expe- 35

rience, 27(9):995-1012, September 1997, and J. S. Plank and
Y. Ding, "Note: Correction to the 1997 tutorial on Reed
Solomon coding," Technical Report CS-03-504, University
of Tennessee, April 2003), requiring O(N3

) operations,
regardless of the number of failed data drives, aspects of 40

embodiments of the present invention compute only an FxF
solution matrix, where F is the number of failed data drives.
The overhead for computing this FxF solution matrix is
approximately F3/3 multiplication operations and the same
number of addition operations. Not only is FsN, in almost 45

any practical application, the number of failed data drives F

4
main memory; and a non-volatile storage medium (for
example, a disk drive, or flash memory) for storing the
computer instructions. The processing core, the storage
medium, and the computer instructions are configured to
implement an erasure coding system. The erasure coding
system includes a data matrix for holding original data in the
main memory, a check matrix for holding check data in the
main memory, an encoding matrix for holding first factors in
the main memory, and a thread for executing on the pro
cessing core. The first factors are for encoding the original
data into the check data. The thread includes a parallel
multiplier for concurrently multiplying multiple data entries
of a matrix by a single factor; and a first sequencer for
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier to generate the check
data.

The first sequencer may be configured to access each
entry of the data matrix from the main memory at most once
while generating the check data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data by dividing the data matrix into a
plurality of data matrices, dividing the check matrix into a
plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows
and the first number of colunms.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to
add rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data and including a
third number of rows. The erasure coding system may
further include a solution matrix for holding second factors
in the main memory. The second factors are for decoding the
check data into the lost original data using the surviving
original data and the first factors.

is considerably smaller than the number of data drives N.
Accordingly, the fast solution matrix algorithm is consider
ably faster than any known approach for practical values of
F and N.

The solution matrix may include the third number of rows
50 and the third number of colunms.

Still further aspects are directed toward fast implementa
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are
directed toward fetching the surviving (original and check)
data a minimum number of times (that is, at most once) to 55

carry out the data reconstruction. Some of these aspects are
directed toward efficient implementations that can maximize
or significantly leverage the available parallel processing
power of multiple cores working concurrently on the check
data generation and the lost data reconstruction. Existing 60

implementations do not attempt to accelerate these aspects
of the data generation and thus fail to achieve a comparable
level of performance.

In an exemplary embodiment of the present invention, a
system for accelerated error-correcting code (ECC) process- 65

ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a

The solution matrix may further include an inverted said
third number by said third number sub-matrix of the encod
ing matrix.

The erasure coding system may further include a first list
of rows of the data matrix corresponding to the surviving
data matrix, and a second list of rows of the data matrix
corresponding to the lost data matrix.

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost
original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for
decoding the check data into the lost original data using the
surviving original data and the first factors. The thread may
further include a second sequencer for ordering operations
through the surviving data matrix, the encoding matrix, the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 302 of 350

US 10,666,296 B2
5

check matrix, and the solution matrix using the parallel
multiplier to reconstruct the lost original data.

6
The processing core may include 16 data registers. Each

of the data registers may include 16 bytes. The parallel
multiplier may be configured to process the data in units of
at least 64 bytes spread over at least four of the data registers

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main
memory at most once while reconstructing the lost original
data.

5 at a time.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original 10

data by dividing the data matrix into a plurality of data
matrices; dividing the surviving data matrix into a plurality
of surviving data matrices; dividing the lost data matrix into
a plurality of lost data matrices; dividing the check matrix
into a plurality of check matrices; assigning corresponding 15

ones of the data matrices, the surviving data matrices, the
lost data matrices, and the check matrices to the threads; and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices and 20

to concurrently reconstruct portions of the lost original data
corresponding to the lost data matrices from respective ones
of the surviving data matrices and the check matrices.

The check matrix may be configured to be divided into a
surviving check matrix for holding surviving check data of 25

the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be
configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost 30

check data.
The second sequencer may be further configured to recon

struct the lost original data concurrently with regenerating
the lost check data.

Consecutive instructions to process each of the units of
the data may access separate ones of the data registers to
permit concurrent execution of the consecutive instructions
by the processing core.

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16
byte-sized entries using the PSHUFB (Packed Shuffle Bytes)
instruction.

The parallel multiplier may be further configured to
receive an input operand in four of the data registers, and
return with the input operand intact in the four of the data
registers.

According to another exemplary embodiment of the pres
ent invention, a method of accelerated error-correcting code
(ECC) processing on a computing system is provided. The
computing system includes a non-volatile storage medium
(such as a disk drive or flash memory), a processing core for
accessing instructions and data from a main memory, and a
computer program including a plurality of computer instruc
tions for implementing an erasure coding system. The
method includes: storing the computer program on the
storage medium; executing the computer instructions on the
processing core; arranging original data as a data matrix in
the main memory; arranging first factors as an encoding
matrix in the main memory, the first factors being for
encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and
generating the check data using a parallel multiplier for
concurrently multiplying multiple data entries of a matrix by

The second sequencer may be further configured to access
each entry of the surviving data matrix from the main
memory at most once while reconstructing the lost original
data and regenerating the lost check data.

35 a single factor. The generating of the check data includes
ordering operations through the data matrix and the encod
ing matrix using the parallel multiplier.

The second sequencer may be further configured to regen
erate the lost check data without accessing the reconstructed 40

lost original data from the main memory.
The processing core may include a plurality of processing

cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data, reconstructing the lost original 45

data, and regenerating the lost check data by: dividing the
data matrix into a plurality of data matrices; dividing the
surviving data matrix into a plurality of surviving data
matrices; dividing the lost data matrix into a plurality oflost
data matrices; dividing the check matrix into a plurality of 50

check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check
matrix into a plurality of lost check matrices; assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the 55

surviving check matrices, and the lost check matrices to the
threads; and assigning the threads to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost 60

original data corresponding to the lost data matrices from
respective ones of the surviving data matrices and the
surviving check matrices, and to concurrently regenerate
portions of the lost check data corresponding to the lost
check matrices from respective ones of the surviving data 65

matrices and respective portions of the reconstructed lost
original data.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into
a plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec
tive ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix correspond
ing to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost
original data using the surviving original data and the first
factors; and reconstructing the lost original data by ordering
operations through the surviving data matrix, the encoding
matrix, the check matrix, and the solution matrix using the
parallel multiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 303 of 350

US 10,666,296 B2
7

include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data and the reconstructing of the
lost original data by: dividing the data matrix into a plurality
of data matrices; dividing the surviving data matrix into a 5

plurality of surviving data matrices; dividing the lost data
matrix into a plurality of lost data matrices; dividing the
check matrix into a plurality of check matrices; and assign
ing corresponding ones of the data matrices, the surviving
data matrices, the lost data matrices, and the check matrices 10

to the processing cores to concurrently generate portions of
the check data corresponding to the check matrices from
respective ones of the data matrices and to concurrently
reconstruct portions of the lost original data corresponding
to the lost data matrices from respective ones of the surviv- 15

ing data matrices and the check matrices.
The method may further include: dividing the check

matrix into a surviving check matrix for holding surviving
check data of the check data, and a lost check matrix
corresponding to lost check data of the check data; and 20

regenerating the lost check data by ordering operations
through the surviving data matrix, the reconstructed lost
original data, and the encoding matrix using the parallel
multiplier.

The reconstructing of the lost original data may take place 25

concurrently with the regenerating of the lost check data.

8
includes a processing core for accessing instructions and
data from a main memory. The computer instructions are
configured to implement an erasure coding system when
executed on the computing system by performing the steps
of: arranging original data as a data matrix in the main
memory; arranging first factors as an encoding matrix in the
main memory, the first factors being for encoding the
original data into check data, the check data being arranged
as a check matrix in the main memory; and generating the
check data using a parallel multiplier for concurrently mul
tiplying multiple data entries of a matrix by a single factor.
The generating of the check data includes ordering opera
tions through the data matrix and the encoding matrix using
the parallel multiplier.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured
to perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data
matrices and the check matrices to the processing cores to
concurrently generate portions of the check data correspond
ing to the check matrices from respective ones of the data
matrices.

The computer instructions may be further configured to
perform the steps of: dividing the data matrix into a surviv-

The reconstructing of the lost original data and the
regenerating of the lost check data may include accessing
each entry of the surviving data matrix from the main
memory at most once.

The regenerating of the lost check data may take place
without accessing the reconstructed lost original data from
the main memory.

30 ing data matrix for holding surviving original data of the
original data, and a lost data matrix corresponding to lost
original data of the original data; arranging second factors as
a solution matrix in the main memory, the second factors

The processing core may include a plurality of processing
cores. The executing of the computer instructions may 35

include executing the computer instructions on the process
ing cores. The method may further include scheduling the
generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices; 40

dividing the surviving data matrix into a plurality of sur
viving data matrices; dividing the lost data matrix into a
plurality oflost data matrices; dividing the check matrix into
a plurality of check matrices; dividing the surviving check
matrix into a plurality of surviving check matrices; dividing 45

the lost check matrix into a plurality oflost check matrices;
and assigning corresponding ones of the data matrices, the
surviving data matrices, the lost data matrices, the check
matrices, the surviving check matrices, and the lost check
matrices to the processing cores to concurrently generate 50

portions of the check data corresponding to the check
matrices from respective ones of the data matrices, to
concurrently reconstruct portions of the lost original data
corresponding to the lost data matrices from respective ones
of the surviving data matrices and the surviving check 55

matrices, and to concurrently regenerate portions of the lost
check data corresponding to the lost check matrices from
respective ones of the surviving data matrices and respective
portions of the reconstructed lost original data.

According to yet another exemplary embodiment of the 60

present invention, a non-transitory computer-readable stor
age medium (such as a disk drive, a compact disk (CD), a
digital video disk (DVD), flash memory, a universal serial
bus (USB) drive, etc.) containing a computer program
including a plurality of computer instructions for performing 65

accelerated error-correcting code (ECC) processing on a
computing system is provided. The computing system

being for decoding the check data into the lost original data
using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel
multiplier.

The computer instructions may be further configured to
perform the steps of: dividing the check matrix into a
surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check
data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data and the
regenerating of the lost check data may include accessing
each entry of the surviving data matrix from the main
memory at most once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured
to perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the
regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviv
ing data matrix into a plurality of surviving data matrices;
dividing the lost data matrix into a plurality of lost data
matrices; dividing the check matrix into a plurality of check
matrices; dividing the surviving check matrix into a plurality
of surviving check matrices; dividing the lost check matrix
into a plurality of lost check matrices; and assigning corre
sponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the
surviving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 304 of 350

US 10,666,296 B2
9

check data corresponding to the check matrices from respec
tive ones of the data matrices, to concurrently reconstruct
portions of the lost original data corresponding to the lost
data matrices from respective ones of the surviving data
matrices and the surviving check matrices, and to concur
rently regenerate portions of the lost check data correspond
ing to the lost check matrices from respective ones of the
surviving data matrices and respective portions of the recon
structed lost original data.

10
size elements, such as 16 bits (2 bytes). For simplification,
unless otherwise indicated, elements will be assumed to be
one byte in size throughout the description that follows, and
the term "element(s)" and "byte(s)" will be used synony-

5 mously.

By providing practical and efficient systems and methods 10

for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical 15

can be implemented with accelerated performance signifi
cantly better than any prior art solution.

Conceptually, different stripes can distribute their data
blocks across different combinations of drives, or have
different block sizes or numbers of blocks, etc., but for
simplification and ease of description and implementation,
the described embodiments in the present application
assume a consistent block size (L bytes) and distribution of
blocks among the data drives between stripes. Further, all
variables, such as the number of data drives N, will be
assumed to be positive integers unless otherwise specified.
In addition, since the N=l case reduces to simple data
mirroring (that is, copying the same data drive multiple
times), it will also be assumed for simplicity that N;;,;2
throughout. BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifi
cation, illustrate exemplary embodiments of the present
invention and, together with the description, serve to explain
aspects and principles of the present invention.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

FIG. 3 shows an exemplary method for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera
tion according to an embodiment of the present invention.

FIGS. 5-7 show an exemplary method for sequencing the
parallel lookup multiplier to perform the lost data recon
struction according to an embodiment of the present inven
tion.

20
The N data blocks from each stripe are combined using

arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data
(check blocks), and the M check blocks written across M

25 drives (the check drives) separate from the N data drives,
one block per check drive. These combinations can take
place, for example, when new (or changed) data is written to
(or back to) disk. Accordingly, each of the N+M drives (data
drives and check drives) stores a similar amount of data,

30 namely one block for each stripe. As the processing of
multiple stripes is conceptually similar to the processing of
one stripe (only processing multiple blocks per drive instead
of one), it will be further assumed for simplification that the
data being stored or retrieved is only one stripe in size unless

35 otherwise indicated. It will also be assumed that the block
size L is sufficiently large that the data can be consistently
divided across each block to produce subsets of the data that
include respective portions of the blocks (for efficient con-

FIG. 8 illustrates a multi-core architecture system accord- 40

ing to an embodiment of the present invention.

current processing by different processing units).

FIG. 1 shows an exemplary stripe 10 of original and check
data according to an embodiment of the present invention. FIG. 9 shows an exemplary disk drive configuration

according to an embodiment of the present invention.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompa
nying drawings. In the drawings, like reference numerals
refer to like elements throughout.

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding
systems for the storage and retrieval of digital data distrib
uted across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes,
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate
drives (the data drives), one block per data drive.

In addition, for ease of description, blocks will be
assumed to be composed ofL elements, each element having

Referring to FIG. 1, the stripe 10 can be thought of not
only as the original N data blocks 20 that make up the

45 original data, but also the corresponding M check blocks 30
generated from the original data (that is, the stripe 10
represents encoded data). Each of the N data blocks 20 is
composed of L bytes 25 (labeled byte 1, byte 2, ... , byte
L), and each of the M check blocks 30 is composed of L

50
bytes 35 (labeled similarly). In addition, check drive 1, byte
1, is a linear combination of data drive 1, byte 1; data drive
2, byte 1; ... ; data drive N, byte 1. Likewise, check drive
1, byte 2, is generated from the same linear combination

55 formula as check drive 1, byte 1, only using data drive 1,
byte 2; data drive 2, byte 2; ... ; data drive N, byte 2. In
contrast, check drive 2, byte 1, uses a different linear
combination formula than check drive 1, byte 1, but applies
it to the same data, namely data drive 1, byte 1; data drive

60 2, byte 1; ... ; data drive N, byte 1. In this fashion, each of
the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular
check drive 30.

a fixed size, say 8 bits or one byte. An element, such as a 65

byte, forms the fundamental unit of operation for the RAID
processing, but the invention is just as applicable to other

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. Chas two sub-matrices, namely original
data D on top and check data Jon bottom. That is,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 305 of 350

US 10,666,296 B2
11

Du D12

D21 D22

D1L

D2L

12
The remaining M-1 linear combinations include more

involved calculations that include the nontrivial GF multi
plication operations (e.g., performing a GF multiplication of
the first byte in each block by a corresponding factor for the

C= [~] = DN! DN2

lu 112

h1 h2

JM! lM2

DNL

l1L

hL

]ML

5 respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre
sented by an (N+M)xN matrix (encoding matrix or infor
mation dispersal matrix (IDM)) E of the different factors,
one factor for each combination of (data or check) drive and

10 data drive, with one row for each of the N+M data and check
drives and one colunm for each of the N data drives. The

where D,rbyte j from data drive i and J,rbyte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the colunms represent corresponding bytes of each of 15
the drives.

Further, in case of a disk drive failure of one or more
disks, the arithmetic operations are designed in such a
fashion that for any stripe, the original data (and by exten
sion, the check data) can be reconstructed from any com- 20

bination ofN data and check blocks from the corresponding
N+M data and check blocks that comprise the stripe. Thus,
RAID provides both parallel processing (reading and writing
the data in stripes across multiple drives concurrently) and
fault tolerance (regeneration of the original data even if as 25

many as M of the drives fail), at the computational cost of
generating the check data any time new data is written to
disk, or changed data is written back to disk, as well as the
computational cost of reconstructing any lost original data

30
and regenerating any lost check data after a disk failure.

For example, for M=l check drive, a single parity drive
can function as the check drive (i.e., a RAID4 system). Here,
the arithmetic operation is bitwise exclusive OR of each of
the N corresponding data bytes in each data block of the 35
stripe. In addition, as mentioned earlier, the assignment of
parity blocks from different stripes to the same drive (i.e.,
RAID4) or different drives (i.e., RAIDS) is arbitrary, but it
does simplify the description and implementation to use a
consistent assignment between stripes, so that will be 40

assumed throughout. Since M=l reduces to the case of a
single parity drive, it will further be assumed for simplicity
that M;;,;2 throughout.

For such larger values ofM, Galois field arithmetic is used
to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2
(such as 2i numbers of elements, includes two fundamental
operations: (1) addition (which is just bitwise exclusive OR,
as with the parity drive-only operations for M=l), and (2)
multiplication. While Galois field (GF) addition is trivial on
standard processors, GF multiplication is not. Accordingly,
a significant component of RAID performance for M;;,;2 is
speeding up the performance ofGF multiplication, as will be
discussed later. For purposes of description, GF addition will
be represented by the symbol+throughout while GF multi
plication will be represented by the symbolxthroughout.

Briefly, in exemplary embodiments of the present inven
tion, each of the M check drives holds linear combinations

45

50

55

(over GF arithmetic) of the N data drives of original data,
one linear combination (i.e., a GF sum of N terms, where 60

each term represents a byte of original data times a corre
sponding factor (using GF multiplication) for the respective
data drive) for each check drive, as applied to respective
bytes in each block. One such linear combination can be a
simple parity, i.e., entirely GF addition (all factors equal 1), 65

such as a GF sum of the first byte in each block of original
data as described above.

IDM E can also be represented as

where IN represents the NxN identity matrix (i.e., the origi
nal (unencoded) data) and H represents the MxN matrix of
factors for the check drives (where each of the M rows
corresponds to one of the M check drives and each of the N
colunms corresponds to one of the N data drives).

Thus,

0 0

0 0

£=[;]= 0 0

Hu H12 H1N

H21 H22 H2N

HM! HM2 HMN

where H,rfactor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the colunms
represent corresponding bytes of each of the drives. In
addition, check factors H, original data D, and check data J
are related by the formula J=HxD (that is, matrix multipli
cation), or

lu 112 l1L Hu H12 H1N

h1 h2 hL H21 H22 H2N
X

JM! JM2]ML HM! HM2 HMN

Du D12 D1L

D21 D22 D2L

DNI DN2 DNL

where J11=(H11 xD11)+(H12xD21)+ ... +(H1NxDN1), J12=
(H11XD12)+(H12XD22)+ ... +(H1NXDN2), l21=CH21XD11)+
(H22xD21)+ ... +(H2NxDN1), and in general, JiJ=(Hil xDv)+
(Hi2xD2)+ ... +(H,NxDNf) for lsisM and lsjsL.

Such an encoding matrix E is also referred to as an
information dispersal matrix (IDM). It should be noted that
matrices such as check drive encoding matrix H and identity
matrix IN also represent encoding matrices, in that they
represent matrices of factors to produce linear combinations
over GF arithmetic of the original data. In practice, the
identity matrix IN is trivial and may not need to be con-

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 306 of 350

US 10,666,296 B2
13

structed as part of the IDM E. Only the encoding matrix E,
however, will be referred to as the IDM. Methods of building
an encoding matrix such as IDM E or check drive encoding
matrix Hare discussed below. In further embodiments of the
present invention (as discussed further in Appendix A), such 5

(N+M)xN (or MxN) matrices can be trivially constructed
(or simply indexed) from a master encoding matrix S, which
is composed of (Nmax+Mmax)xNmax (or MmaxxNmax) bytes
or elements, where Nmax+Mmax=256 (or some other power
of two) and NsNmax and MsMmax· For example, one such lO

master encoding matrix S can include a 127x127 element
identity matrix on top (for up to Nmax=l27 data drives), a
row of l's (for a parity drive), and a 128x127 element
encoding matrix on bottom (for up to Mmax=l29 check

15
drives, including the parity drive), for a total of Nmax+
Mmax =256 drives.

The original data, in turn, can be represented by an NxL
matrix D of bytes, each of the N rows representing the L
bytes of a block of the corresponding one of the N data 20

drives. If C represents the corresponding (N+M)xL matrix
of encoded bytes (where each of the N+M rows corresponds
to one of the N+M data and check drives), then C can be

14

thus represents a permuted original data matrix D' (that is,
the original data matrix D, only with the surviving original
data X on top and the lost original data Y on bottom. It
should be noted that once the lost original data Y is recon-
structed, it can be combined with the surviving original data
X to restore the original data D, from which the check data
for any of the failed check drives can be regenerated.

It should also be noted that M-G check drives survive. In
order to reconstruct the lost original data Y, enough (that is,
at least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it
follows that (N-F)+(M-G);;,;N must be true to reconstruct
the lost original data Y. This is equivalent to F+GsM (i.e.,
no more than F+G drives fail), or FsM-G (that is, the
number of failed data drives does not exceed the number of
surviving check drives). It will therefore be assumed for
simplicity that FsM-G.

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and
check drives (that is, four separate lists). This allows pro-represented as

[/N] [/NxD] [D]
ExD = H xD = HxD = J ,

25 cessing of the different sets of surviving and failed drives to
be done more efficiently than existing solutions, which use,
for example, bit vectors that have to be examined one bit at
a time and often include large numbers of consecutive zeros
(or ones) when ones (or zeros) are the bit values of interest.

30
FIG. 2 shows an exemplary method 300 for reconstruct-

ing lost data after a failure of one or more drives according
to an embodiment of the present invention.

where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L check bytes of the corre
sponding one of the M check drives. It should be noted that
in the relationships such as C=ExD or J=HxD, x represents
matrix multiplication over the Galois field (i.e., GF multi
plication and GF addition being used to generate each of the
entries in, for example, C or

While the recovery process is described in more detail
later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the

35 surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

In exemplary embodiments of the present invention, the
first row of the check drive encoding matrix H (or the
(N+l)'h row of the IDM E) can be all l's, representing the 40

parity drive. For linear combinations involving this row, the
GF multiplication can be bypassed and replaced with a GF
sum of the corresponding bytes since the products are all
trivial products involving the identity element 1. Accord
ingly, in parity drive implementations, the check drive 45

encoding matrix H can also be thought of as an (M-l)xN
matrix of non-trivial factors (that is, factors intended to be
used in GF multiplication and not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back 50

to) disk. The other significant event for RAID processing is
when one or more of the drives fail (data or check drives),
or for whatever reason become unavailable. Assume that in
such a failure scenario, F data drives fail and G check drives
fail, where F and G are nonnegative integers. If F=0, then 55

only check drives failed and all of the original data D
survived. In this case, the lost check data can be regenerated
from the original data D.

Accordingly, assume at least one data drive fails, that is,
F;;,;l, and let K=N-F represent the number of data drives that 60

survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost
original data. That is, Xis a KxL matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, while Y is an FxL matrix composed of 65

the F rows of the original data matrix D corresponding to the
F failed data drives.

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an N xN reduced encoding matrix T (also referred to as
the transformed IDM) including the K surviving data
drive rows and any F of the M-G surviving check drive
rows (for instance, the first F surviving check drive
rows, as these will include the parity drive if it sur
vived; recall that FsM-G was assumed). In addition,
the colunms of the reduced encoding matrix T are
rearranged so that the K colunms corresponding to the
K surviving data drives are on the left side of the matrix
and the F colunms corresponding to the F failed drives
are on the right side of the matrix. (Step 320) These F
surviving check drives selected to rebuild the lost
original data Y will henceforth be referred to as "the F
surviving check drives," and their check data W will be
referred to as "the surviving check data," even though
M-G check drives survived. It should be noted that W
is an FxL matrix composed of the F rows of the check
data J corresponding to the F surviving check drives.
Further, the surviving encoded data can be represented
as a sub-matrix C' of the encoded data C. The surviving
encoded data C' is an N xL matrix composed of the
surviving original data X on top and the surviving
check data Won bottom, that is,

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 307 of 350

US 10,666,296 B2
15

2. (Step 330) Splitting the reduced encoding matrix Tinto
four sub-matrices (that are also encoding matrices): (i)

16

a KxK identity matrix IK (corresponding to the K
surviving data drives) in the upper left, (ii) a KxF
matrix O of zeros in the upper right, (iii) an FxK 5

encoding matrix A in the lower left corresponding to
the F surviving check drive rows and the K surviving
data drive colunms, and (iv) an FxF encoding matrix B

detail later. Nonetheless, this is a significant improvement
over existing solutions, which require O(N3

) operations,
since the number of failed data drives F is usually signifi-
cantly less than the number of data drives N in any practical
situation.

(Step 350 in FIG. 2) Once the encoding matrix A and the
solution matrix B-1 are known, reconstructing the lost data
from the surviving data (that is, the surviving original data
X and the surviving check data W) can be accomplished in
four steps using the following algorithm (Algorithm 2):

in the lower right corresponding to the F surviving
check drive rows and the F failed data drive colunms. 10

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data
(i.e., AxX), only limited to the K surviving data drives.

Thus, the reduced encoding matrix T can be repre
sented as

15

Call this limited check data the surviving partial check
data.

3. (Step 340) Calculating the inverse B-1 of the FxF
encoding matrix B. As is shown in more detail in 20

Appendix A, C'=TxD', or

2. Subtract this surviving partial check data from the
surviving check data W (using matrix subtraction, i.e.,
W-AxX, which is just entry-by-entry GF subtraction,
which is the same as GF addition for this Galois field).
This generates the surviving check data, only this time
limited to the F failed data drives. Call this limited
check data the lost partial check data.

25

3. Use the solution matrix B-1 and the lost partial check
data (using matrix multiplication, i.e., B-1x(W-AxX)
to reconstruct the lost original data Y. Call this the
recovered original data Y.

4. Use the corresponding rows of the IDM E (or master
which is mathematically equivalent to W=AxX+BxY. B-1 is
the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B-1 thus allows the lost 30

original data Y to be reconstructed from the encoding
matrices A and B along with the surviving original data X
and the surviving check data W.

encoding matrix 5) for each of the G failed check drives
along with the original data D, as reconstructed from
the surviving and recovered original data X and Y, to
regenerate the lost check data (using matrix multipli-
cation).

As will be shown in more detail later, steps 1-3 together
require O(F) operations times the amount of original data D The FxK encoding matrix A represents the original encod

ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of
A represents a different one of the F surviving check drives,
while each of the K colunms of A represents a different one
of the K surviving data drives. Thus, A provides the encod
ing factors needed to encode the original data for the
surviving check drives, but only applied to the surviving
data drives (that is, the surviving partial check data). Since
the surviving original data X is available, A can be used to
generate this surviving partial check data.

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F
surviving check drives and the F failed data drives. That is,
the F rows of B correspond to the same F rows of A, while
each of the F colunms of B represents a different one of the
F failed data drives. Thus, B provides the encoding factors
needed to encode the original data for the surviving check
drives, but only applied to the failed data drives (that is, the
lost partial check data). Since the lost original data Y is not
available, B cannot be used to generate any of the lost partial
check data. However, this lost partial check data can be
determined from A and the surviving check data W. Since
this lost partial check data represents the result of applying
B to the lost original data Y, B-1 thus represents the neces
sary factors to reconstruct the lost original data Y from the
lost partial check data.

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced
encoding matrix T, for that matter) do not have to actually

35 to reconstruct the lost original data Y for the F failed data
drives (i.e., roughly 1 operation per failed data drive per byte
of original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed
to generate the check data J for the M check drives (i.e.,

40 roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G
failed check drives (i.e., roughly 1 operation per failed check

45 drive per byte of original data D). In summary, the number
of operations needed to reconstruct the lost data is O(F +G)
times the amount of original data D (i.e., roughly 1 operation
per failed drive (data or check) per byte of original data D).
Since F+GsM, this means that the computational complex-

50 ity of Algorithm 2 (reconstructing the lost data from the
surviving data) is no more than that of generating the check
data J from the original data D.

As mentioned above, for exemplary purposes and ease of
description, data is assumed to be organized in 8-bit bytes,

55 each byte capable of taking on 28=256 possible values. Such
data can be manipulated in byte-size elements using GF
arithmetic for a Galois field of size 28=256 elements. It
should also be noted that the same mathematical principles
apply to any power-of-two 2P number of elements, not just

60 256, as Galois fields can be constructed for any integral
power of a prime number. Since Galois fields are finite, and
since GF operations never overflow, all results are the same
size as the inputs, for example, 8 bits.

be constructed. Appropriate indexing of the ID M E (or the
master encoding matrix S) can be used to obtain any of their 65

entries. Step 3, however, is a matrix inversion over GF
arithmetic and takes O(F3

) operations, as discussed in more

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 308 of 350

US 10,666,296 B2
17

can also be performed on multiple bytes concurrently. Since
the addition and subtraction operations take place, for
example, on a byte-level basis, they can be done in parallel
by using, for instance, x86 architecture Streaming SIMD
Extensions (SSE) instructions (SIMD stands for single 5

instruction, multiple data, and refers to performing the same
instruction on different pieces of data, possibly concur
rently), such as PXOR (Packed (bitwise) Exclusive OR).

SSE instructions can process, for example, 16-byte reg
isters (XMM registers), and are able to process such regis- 10

ters as though they contain 16 separate one-byte operands
(or 8 separate two-byte operands, or four separate four-byte
operands, etc.) Accordingly, SSE instructions can do byte
level processing 16 times faster than when compared to
processing a byte at a time. Further, there are 16 XMM 15

registers, so dedicating four such registers for operand
storage allows the data to be processed in 64-byte incre
ments, using the other 12 registers for temporary storage.
That is, individual operations can be performed as four
consecutive SSE operations on the four respective registers 20

(64 bytes), which can often allow such instructions to be
efficiently pipelined and/or concurrently executed by the
processor. In addition, the SSE instructions allows the same
processing to be performed on different such 64-byte incre
ments of data in parallel using different cores. Thus, using 25

four separate cores can potentially speed up this processing
by an additional factor of 4 over using a single core.

For example, a parallel adder (Parallel Adder) can be built
using the 16-byte XMM registers and four consecutive
PXOR instructions. Such parallel processing (that is, 64 30

bytes at a time with only a few machine-level instructions)
for GF arithmetic is a significant improvement over doing
the addition one byte at a time. Since the data is organized
in blocks of any fixed number of bytes, such as 4096 bytes
(4 kilobytes, or 4 KB) or 32,768 bytes (32 KB), a block can 35

be composed of numerous such 64-byte chunks (e.g., 64
separate 64-byte chunks in 4 KB, or 512 chunks in 32 KB).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR's (i.e.,
"additions") that are very fast operations, the numbers 40

"wrap" in peculiar ways when they are shifted outside of
their normal bounds (because the field has only a finite set
of elements), which can slow down the calculations. This
"wrapping" in the GF multiplication can be addressed in
many ways. For example, the multiplication can be imple- 45

mented serially (Serial Multiplier) as a loop iterating over
the bits of one operand while performing the shifts, adds,
and wraps on the other operand. Such processing, however,
takes several machine instructions per bit for 8 separate bits.
In other words, this technique requires dozens of machine 50

instructions per byte being multiplied. This is inefficient
compared to, for example, the performance of the Parallel
Adder described above.

18
multiplied with 64 consecutive data block bytes at a time.
This is similar to the Parallel Adder described above, only
there are several more operations needed to perform the
operation. While this can be implemented as a loop on each
bit of the factor, as described above, only performing the
shifts, adds, and wraps on 64 bytes at a time, it can be more
efficient to process the 256 possible factors as a (C language)
switch statement, with inline code for each of 256 different
combinations of two primitive GF operations: Multiply-by-2
and Add. For example, GF multiplication by the factor 3 can
be effected by first doing a Multiply-by-2 followed by an
Add. Likewise, GF multiplication by 4 is just a Multiply
by-2 followed by a Multiply-by-2 while multiplication by 6
is a Multiply-by-2 followed by an Add and then by another
Multiply-by-2.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu
tive PADDB (Packed Add) instructions, 4 consecutive
PAND (Bitwise AND) instructions, and 4 consecutive
PXOR instructions. Though this takes 20 machine instruc
tions, the instructions are very fast and results in 64 con-
secutive bytes of data at a time being multiplied by 2.

For 64 bytes of data, assuming a random factor between
0 and 255, the total overhead for the Parallel Multiplier is
about 6 calls to multiply-by-2 and about 3.5 calls to add, or
about 6x20+3.5x4=134 machine instructions, or a little over
2 machine instructions per byte of data. While this compares
favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi-
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are
built once: one lookup table for the low-order nibbles in each
byte, and one lookup table for the high-order nibbles in each
byte. Each lookup table contains 256 sets (one for each
possible factor) of the 16 possible GF products of that factor
and the 16 possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multipli
cation table. In addition, PSHUFB does 16 separate table
lookups at once, each for one nibble, so 8 PSHUFB instruc
tions can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is
initialized for the next set of 64 bytes of operand data (such For another approach (Serial Lookup Multiplier), multi

plication tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of 256x256=65,536 bytes can
hold all the possible products of the two different one-byte
operands). However, such tables can force serialized access
on what are only byte-level operations, and not take advan
tage of wide (concurrent) data paths available on modern
processors, such as those used to implement the Parallel
Adder above.

55 as original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the
Parallel Lookup Multiplier dedicates four registers for this
data, which are left intact upon exit of the Parallel Lookup
Multiplier. This allows the same data to be called with

In still another approach (Parallel Multiplier), the GF
multiplication can be done on multiple bytes at a time, since
the same factor in the encoding matrix is multiplied with
every element in a data block. Thus, the same factor can be

60 different factors (such as processing the same data for
another check drive).

Next in step 430, to process these 64 bytes of operand
data, the Parallel Lookup Multiplier can be implemented
with 2 MOVDQA (Move Double Quadword Aligned)

65 instructions (from memory) to do the two table lookups and
4 MOVDQA instructions (register to register) to initialize
registers (such as the output registers). These are followed in

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 309 of 350

US 10,666,296 B2
19

steps 440 and 450 by two nearly identical sets of 17
register-to-register instructions to carry out the multiplica
tion 32 bytes at a time. Each such set starts (in step 440) with
5 more MOVDQA instructions for further initialization,
followed by 2 PSRLW (Packed Shift Right Logical Word) 5

instructions to realign the high-order nibbles for PSHUFB,
and 4 PAND instructions to clear the high-order nibbles for
PSHUFB. That is, two registers of byte operands are con
verted into four registers of nibble operands. Then, in step
450, 4 PSHUFB instructions are used to do the parallel table 10

lookups, and 2 PXOR instructions to add the results of the
multiplication on the two nibbles to the output registers.

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64

15
separate bytes, which is considerably better than the average
134 instructions for the Parallel Multiplier above, and only
10 times as many instructions as needed for the Parallel
Adder. While some of the Parallel Lookup Multiplier's
instructions are more complex than those of the Parallel 20

Adder, much of this complexity can be concealed through
the pipelined and/or concurrent execution of numerous such
contiguous instructions (accessing different registers) on
modern pipelined processors. For example, in exemplary
implementations, the Parallel Lookup Multiplier has been 25

timed at about 15 CPU clock cycles per 64 bytes processed
per CPU core (about 0.36 clock cycles per instruction). In
addition, the code footprint is practically nonexistent for the
Parallel Lookup Multiplier (40 instructions) compared to
that of the Parallel Multiplier (about 34,300 instructions), 30

even when factoring the 8 KB needed for the two lookup
tables in the Parallel Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi
plier can be passed 64 bytes of operand data (such as the next

35
64 bytes of surviving original data X to be processed) in four
consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same

20
and adding the products to the =ing total in memory
(using the Parallel Adder) before moving onto the next
row (data drive); and

2) "row-by-row," i.e., 64 bytes for one data drive, fol
lowed by the corresponding 64 bytes for the next data
drive, etc., and keeping a running total using the
Parallel Adder, then moving onto the next set of 64-byte
chunks.

Colunm-by-colunm can be thought of as "constant factor,
varying data," in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as "constant data, varying factor," in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives.
Two possible ways are:

a) one at a time, i.e., generate all the check data for one
check drive before moving onto the next check drive;
and

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data
for each of the N data drives and M-1 non-parity check
drives, or 5N(M-1)/8 instructions per byte for the Parallel
Lookup Multiplier), empirical results show that combination
(2)(b), that is, row-by-row data access on all of the check
drives between data accesses performs best with the Parallel
Lookup Multiplier. One reason may be that such an
approach appears to minimize the number of memory
accesses (namely, one) to each chunk of the original data D
to generate the check data J. This embodiment of Sequencer
1 is described in more detail with reference to FIG. 4.

FIG. 4 shows an exemplary method 500 for sequencing
the Parallel Lookup Multiplier to perform the check data
generation according to an embodiment of the present
invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each of the blocks across a stripe of data. For
instance, Sequencer 1 could be called to process 512 bytes
from each block. If, for example, the block size L is 4096

40 machine instructions) such that the Parallel Lookup
Multiplier can be invoked again on the same 64 bytes of data 40

without having to access main memory to reload the data.
Through such a protocol, memory accesses can be mini
mized (or significantly reduced) for accessing the original
data D during check data generation or the surviving original
data X during lost data reconstruction.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup 50

Multiplier should be appropriately sequenced to provide
efficient processing. One such sequencer (Sequencer 1), for
example, can generate the check data J from the original data

45 bytes, then it would take eight such calls to Sequencer 1 to
process the entire stripe. The other such seven calls to
Sequencer 1 could be to different processing cores, for
instance, to carry out the check data generation in parallel.

D, and is described further with respect to FIG. 4.

The number of 64-byte chunks to process at a time could
depend on factors such as cache dimensions, input/output
data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte

The parity drive does not need GF multiplication. The 55

check data for the parity drive can be obtained, for example,

chunk of data for each of the drives. In order to minimize the
number of accesses of each data drive's 64-byte chunk of
data from memory, the data is loaded only once and pre
served across calls to the Parallel Lookup Multiplier. The

by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder
can do this using 4 instructions for every 64 bytes of data for
each of the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel
Lookup Multiplier on each 64-byte chunk, using the appro
priate factor for the particular combination of data drive and
check drive. One consideration is how to handle the data
access. Two possible ways are:

1) "colunm-by-colunm," i.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc.,

first data drive is handled specially since the check data has
to be initialized for each check drive. Using the first data
drive to initialize the check data saves doing the initializa-

60 tion as a separate step followed by updating it with the first
data drive' s data. In addition to the first data drive, the first
check drive is also handled specially since it is a parity drive,
so its check data can be initialized to the first data drive's

65

data directly without needing the Parallel Lookup Multiplier.
In step 530, the first middle loop is called, in which the

remainder of the check drives (that is, the non-parity check
drives) have their check data initialized by the first data

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 310 of 350

US 10,666,296 B2
21

drive's data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied
with each of the first data drive's data bytes. This is handled
by calling the Parallel Lookup Multiplier for each non-parity
check drive.

In step 540, the second middle loop is called, which
processes the other data drives' corresponding 64-byte
chunks of data. As with the first data drive, each of the other
data drives is processed separately, loading the respective 64
bytes of data into four registers (preserved across calls to the
Parallel Lookup Multiplier). In addition, since the first check
drive is the parity drive, its check data can be updated by
directly adding these 64 bytes to it (using the Parallel Adder)
before handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding
factor for the particular data drive. The factor is multiplied
with each of the next data drive's data bytes using the
Parallel Lookup Multiplier, and the results added to the
check drive's check data.

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using
Algorithm 2). While the same column-by-colunm and row
by-row data access approaches are possible, as well as the
same choices for handling the check drives, Algorithm 2
adds another dimension of complexity because of the four
separate steps and whether to: (i) do the steps completely
serially or (ii) do some of the steps concurrently on the same
data. For example, step 1 (surviving check data generation)
and step 4 (lost check data regeneration) can be done
concurrently on the same data to reduce or minimize the
number of surviving original data accesses from memory.

22
is the partial check data encoding matrix (for the surviving
check drives and the surviving data drives), and X is the
surviving original data.

In step 620, the outer loop processes the next 64-byte
5 chunk of data for each of the drives. Like Sequencer 1, the

first surviving data drive is again handled specially since the
partial check data AxX has to be initialized for each sur
viving check drive.

In step 630, the first middle loop is called, in which the
10 partial check data AxX is initialized for each surviving

check drive based on the first surviving data drive's 64 bytes
of data. In this case, the Parallel Lookup Multiplier is called
for each surviving check drive with the corresponding factor

15
(from A) for the first surviving data drive.

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive.
Using the same 64 bytes of the first surviving data drive
(preserved across the calls to Parallel Lookup Multiplier in

20 step 630), the Parallel Lookup Multiplier is again called, this
time to initialize each of the failed check drive's check data
to the corresponding component from the first surviving data
drive. This completes the computations involving the first
surviving data drive's 64 bytes of data, which were fetched

25 with one access from main memory and preserved in the
same four registers across steps 630 and 640.

Continuing with FIG. 6, in step 650, the third middle loop
is called, which processes the other surviving data drives'
corresponding 64-byte chunks of data. As with the first

30 surviving data drive, each of the other surviving data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier).

In step 660, the first inner loop is called, in which the
35 partial check data AxX is updated for each surviving check

drive based on the next surviving data drive's 64 bytes of
data. In this case, the Parallel Lookup Multiplier is called for
each surviving check drive with the corresponding factor

Empirical results show that method (2)(b)(ii), that is,
row-by-row data access on all of the check drives and for
both surviving check data generation and lost check data
regeneration between data accesses performs best with the
Parallel Lookup Multiplier when reconstructing lost data
using Algorithm 2. Again, this may be due to the apparent 40

minimization of the number of memory accesses (namely,
one) of each chunk of surviving original data X to recon
struct the lost data and the absence of memory accesses of
reconstructed lost original data Y when regenerating the lost
check data. This embodiment of Sequencer 1 is described in
more detail with reference to FIGS. 5-7.

(from A) for the next surviving data drive.
In step 670, the second inner loop is called, in which the

lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660),
the Parallel Lookup Multiplier is again called, this time to

45 update each of the failed check drive's check data by the
corresponding component from the next surviving data
drive. This completes the computations involving the next
surviving data drive's 64 bytes of data, which were fetched
with one access from main memory and preserved in the

FIGS. 5-7 show an exemplary method 600 for sequencing
the Parallel Lookup Multiplier to perform the lost data
reconstruction according to an embodiment of the present
invention. 50 same four registers across steps 660 and 670.

Referring to FIG. 5, in step 610, the Sequencer 2 is called. Next, in step 680, the computation of the partial check
data AxX is complete, so the surviving check data W is
added to this result (recall that W-AxX is equivalent to
W+AxX in binary Galois Field arithmetic). This is done by

Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to

55 the fourth middle loop, which for each surviving check drive
adds the corresponding 64-byte component of surviving
check data W to the (surviving) partial check data AxX
(using the Parallel Adder) to produce the (lost) partial check
data W-AxX.

be reconstructed. In addition, lost check data needs to be
regenerated. Like Sequencer 1, Sequencer 2 does these
operations in such a way as to minimize memory accesses of
the data drive data (by loading the data once and calling the 60

Parallel Lookup Multiplier multiple times). Assume for ease
of description that there is at least one surviving data drive;
the case of no surviving data drives is handled a little
differently, but not significantly different. In addition, recall
from above that the driving formula behind data reconstruc- 65

tion is Y=B- 1x(W-Axx), where Y is the lost original data,
B- 1 is the solution matrix, Wis the surviving check data, A

Continuing with FIG. 7, in step 690, the fifth middle loop
is called, which performs the two dimensional matrix mul
tiplication B- 1 x(W-AxX) to produce the lost original data
Y. The calculation is performed one row at a time, for a total
of F rows, initializing the row to the first term of the
corresponding linear combination of the solution matrix B- 1

and the lost partial check data W-AxX (using the Parallel
Lookup Multiplier).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 311 of 350

US 10,666,296 B2
23 24

These states may include: (1) Command Processing, to
validate and schedule a host request (for example, to load or
store data from disk storage); (2) Command Translation and
Submission, to translate the host request into multiple disk

In step 700, the third inner loop is called, which completes
the remaining F-1 terms of the corresponding linear com
bination (using the Parallel Lookup Multiplier on each term)
from the fifth middle loop in step 690 and updates the
running calculation (using the Parallel Adder) of the next
row of B- 1 x(W-AxX). This completes the next row (and
reconstructs the corresponding failed data drive's lost data)
of lost original data Y, which can then be stored at an
appropriate location.

5 requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to
requestor buffers. Note that the final state, Request Comple-

In step 710, the fourth inner loop is called, in which the
lost check data is updated for each failed check drive by the
newly reconstructed lost data for the next failed data drive.
Using the same 64 bytes of the next reconstructed lost data
(preserved across calls to the Parallel Lookup Multiplier),
the Parallel Lookup Multiplier is called to update each of the
failed check drives' check data by the corresponding com
ponent from the next failed data drive. This completes the
computations involving the next failed data drive's 64 bytes

10 tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example,
some of the cores 120 can be "command cores," that is,

15 assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140
and the disk drives via the I/O interface 150. Others of the
cores 120 can be "data cores," and assigned to the GF

of reconstructed data, which were performed as soon as the
data was reconstructed and without being stored and 20

retrieved from main memory.

operations, that is, generating the check data from the
original data, reconstructing the lost data from the surviving
data, etc., including the Parallel Lookup Multiplier and the
sequencers described above. For example, in exemplary
embodiments, a scheduler can be used to divide the original
data D into corresponding portions of each block, which can

Finally, in step 720, the sixth middle loop is called. The
lost check data has been regenerated, so in this step, the
newly regenerated check data is stored at an appropriate
location (if desired). 25 then be processed independently by different cores 120 for

applications such as check data generation and lost data Aspects of the present invention can be also realized in
other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 216=65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily 30

apparent to one of ordinary skill in the art, so their details
will be omitted for brevity of description.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID
error correcting codes are described in Appendix A, which 35

contains a paper "Information Dispersal Matrices for RAID
Error Correcting Codes" prepared for the present applica
tion.
Multi-Core Considerations

reconstruction.
One of the benefits of this data core/command core

subdivision of processing is ensuring that different code will
be executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated Ll cache in each core 120,
and avoids the "pollution" of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on
each die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations.
This helps localize the Parallel Lookup Multiplier code and

What follows is an exemplary embodiment for optimizing 40 associated data to a single core 120 and not compete with
other cores 120, while allowing the other cores 120 to keep
the data moving between memory 140 and the disk drives
via the I/O interface 150.

or improving the performance of multi-core architecture
systems when implementing the described erasure coding
system routines. In multi-core architecture systems, each
processor die is divided into multiple CPU cores, each with
their own local caches, together with a memory (bus) 45

interface and possible on-die cache to interface with a shared
memory with other processor dies.

FIG. 8 illustrates a multi-core architecture system 100
having two processor dies 110 (namely, Die O and Die 1).

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to
achieve the result. This combination can be achieved by
utilizing the mathematical techniques and code optimiza-
tions described elsewhere in this application with careful
placement of the resulting code on specific processing cores.
Embodiments can also be implemented on fewer resources,
such as single-core dies and/or single-die systems, with
decreased parallelism and performance optimization.

The process of subdividing and assigning individual cores
120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into "threads," and
threads may be assigned to specific CPUs and memory
systems via the kthread_bind function when the thread is
created. Creating separate threads to process the GF arith-
metic allows parallel computations to take place, which
multiplies the performance of the system.

Referring to FIG. 8, each die 110 includes four central 50

processing units (CPUs or cores) 120 each having a local
level 1 (Ll) cache. Each core 120 may have separate
functional units, for example, an x86 execution unit (for
traditional instructions) and a SSE execution unit (for soft
ware designed for the newer SSE instruction set). An 55

example application of these function units is that the x86
execution unit can be used for the RAID control logic
software while the SSE execution unit can be used for the
GF operation software. Each die 110 also has a level 2 (L2)
cache/memory bus interface 130 shared between the four 60

cores 120. Main memory 140, in tum, is shared between the
two dies 110, and is connected to the input/output (I/O)
controllers 150 that access external devices such as disk
drives or other non-volatile storage devices via interfaces
such as Peripheral Component Interconnect (PCI).

Further, creating multiple threads for command process-
65 ing allows for fully overlapped execution of the command

processing states. One way to accomplish this is to number
each command, then use the arithmetic MOD function(% in

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 312 of 350

US 10,666,296 B2
25

C language) to choose a separate thread for each command.
Another technique is to subdivide the data processing por
tion of each command into multiple components, and assign
each component to a separate thread.

FIG. 9 shows an exemplary disk drive configuration 200 5

according to an embodiment of the present invention.
Referring to FIG. 9, eight disks are shown, though this

number can vary in other embodiments. The disks are
divided into three types: data drives 210, parity drive 220,
and check drives 230. The eight disks break down as three 10

data drives 210, one parity drive 220, and four check drives
230 in the embodiment of FIG. 9.

26
named as ECCinitialize, ECCSolve, ECCGenerate, and
ECCRegenerate. The main functions that perform work are
ECCGenerate and ECCRegenerate. ECCGenerate generates
check codes for data that are used to recover data when a
drive suffers an outage (that is, ECCGenerate generates the
check data J from the original data D using Sequencer 1).
ECCRegenerate uses these check codes and the remaining
data to recover data after such an outage (that is, ECCRe
generate uses the surviving check data W, the surviving
original data X, and Sequencer 2 to reconstruct the lost
original data Y while also regenerating any of the lost check
data). Prior to calling either of these functions, ECCSolve is
called to compute the constants used for a particular con
figuration of data drives, check drives, and failed drives (for

Each of the data drives 210 is used to hold a portion of
data. The data is distributed uniformly across the data drives
210 in stripes, such as 192 KB stripes. For example, the data
for an application can be broken up into stripes of 192 KB,
and each of the stripes in turn broken up into three 64 KB
blocks, each of the three blocks being written to a different
one of the three data drives 210.

15 example, ECCSolve builds the solution matrix B-1 together
with the lists of surviving and failed data and check drives).
Prior to calling ECCSolve, ECCinitialize is called to gen
erate constant tables used by all of the other functions (for
example, ECCinitialize builds the IDM E and the two

20 lookup tables for the Parallel Lookup Multiplier). The parity drive 220 is a special type of check drive in that
the encoding of its data is a simple summation (recall that
this is exclusive OR in binary GF arithmetic) of the corre
sponding bytes of each of the three data drives 210. That is,
check data generation (Sequencer 1) or regeneration (Se
quencer 2) can be performed for the parity drive 220 using 25

the Parallel Adder (and not the Parallel Lookup Multiplier).
Accordingly, the check data for the parity drive 220 is
relatively straightforward to build. Likewise, when one of
the data drives 210 no longer functions correctly, the parity
drive 220 can be used to reconstruct the lost data by adding 30

(same as subtracting in binary GF arithmetic) the corre
sponding bytes from each of the two remaining data drives
210. Thus, a single drive failure of one of the data drives 210
is very straightforward to handle when the parity drive 220
is available (no Parallel Lookup Multiplier). Accordingly, 35

the parity drive 220 can replace much of the GF multipli
cation operations with GF addition for both check data
generation and lost data reconstruction.

Each of the check drives 230 contains a linear combina
tion of the corresponding bytes of each of the data drives 40

210. The linear combination is different for each check drive
230, but in general is represented by a summation of
different multiples of each of the corresponding bytes of the
data drives 210 (again, all arithmetic being GF arithmetic).
For example, for the first check drive 230, each of the bytes 45

of the first data drive 210 could be multiplied by 4, each of
the bytes of the second data drive 210 by 3, and each of the
bytes of the third data drive 210 by 6, then the corresponding
products for each of the corresponding bytes could be added
to produce the first check drive data. Similar linear combi- 50

nations could be used to produce the check drive data for the
other check drives 230. The specifics of which multiples for
which check drive are explained in Appendix A.

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG. 55

9. Accordingly, each 192 KB of original data is stored as 512
KB (i.e., eight blocks of 64 KB) of (original plus check)
data. Such a system 200, however, is capable of recovering

ECCinitialize
The function ECCinitialize creates constant tables that are

used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values
up front, these constant tables can be used to replace more
time-consuming operations with simple table look-ups (such
as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct-an array of constants used to perform GF
multiplication with the PSHUFB instruction that operates on
SSE registers (that is, the Parallel Lookup Multiplier).

2. mast----contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as the
check drive encoding matrix H

3. mul_tab----contains the results of all possible GF mul
tiplication operations of any two operands (for example,
256x256=65,536 bytes for all of the possible products of
two different one-byte quantities)

4. div_tab----contains the results of all possible GF divi
sion operations of any two operands (can be similar in size
to mul_tab)

ECC Solve
The function ECCSolve creates constant tables that are

used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior
to using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B-1 (i.e., the solution
matrix).

ECCGenerate
The function ECCGenerate is used to generate check

codes (that is, the check data matrix J) for a particular
configuration of data drives and check drives, using
Sequencer 1 and the Parallel Lookup Multiplier as described all of the original data provided any three of these eight

drives survive.
That is, the system 200 can withstand a concurrent failure

of up to any five drives and still preserve all of the original
data.

60 above. Prior to calling ECCGenerate, ECCSolve is called to
compute the appropriate constants for the particular con
figuration of data drives and check drives, as well as the
solution matrix B-1

.

Exemplary Routines to Implement an Embodiment
The error correcting code (ECC) portion of an exemplary 65

embodiment of the present invention may be written in
software as, for example, four functions, which could be

ECCRegenerate
The function ECCRegenerate is used to regenerate data

vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 313 of 350

US 10,666,296 B2
27

original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the
lost check data from the restored original data), this time
using Sequencer 2 and the Parallel Lookup Multiplier as
described above. Prior to calling ECCRegenerate,
ECCSolve is called to compute the appropriate constants for
the particular configuration of data drives, check drives, and
failed drives, as well as the solution matrix B-1

.

Exemplary Implementation Details

As discussed in Appendix A, there are two significant
sources of computational overhead in erasure code process
ing (such as an erasure coding system used in RAID
processing): the computation of the solution matrix B-1 for
a given failure scenario, and the byte-level processing of
encoding the check data J and reconstructing the lost data
after a lost packet (e.g., data drive failure). By reducing the
solution matrix B-1 to a matrix inversion of a FxF matrix,
where F is the number of lost packets (e.g., failed drives),
that portion of the computational overhead is for all intents
and purposes negligible compared to the megabytes (MB),
gigabytes (GB), and possibly terabytes (TB) of data that
needs to be encoded into check data or reconstructed from
the surviving original and check data. Accordingly, the
remainder of this section will be devoted to the byte-level
encoding and regenerating processing.

As already mentioned, certain practical simplifications
can be assumed for most implementations. By using a Galois
field of 256 entries, byte-level processing can be used for all
of the GF arithmetic. Using the master encoding matrix S
described in Appendix A, any combination of up to 127 data
drives, 1 parity drive, and 128 check drives can be supported
with such a Galois field. While, in general, any combination
of data drives and check drives that adds up to 256 total
drives is possible, not all combinations provide a parity drive
when computed directly. Using the master encoding matrix
S, on the other hand, allows all such combinations (includ
ing a parity drive) to be built (or simply indexed) from the
same such matrix. That is, the appropriate sub-matrix (in
cluding the parity drive) can be used for configurations of
less than the maximum number of drives.

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other
proposed solutions, which recompute E for every change of
Nor M). Rather, additional indexing of rows and/or colunms
of the master encoding matrix S will suffice. As discussed
above, the use of the parity drive can eliminate or signifi
cantly reduce the somewhat complex GF multiplication
operations associated with the other check drives and
replaces them with simple GF addition (bitwise exclusive
OR in binary Galois fields) operations. It should be noted
that master encoding matrices with the above properties are
possible for any power-of-two number of drives 2P =Nmax+

Mmax where the maximum number of data drives N max is one
less than a power of two (e.g., Nm==127 or 63) and the
maximum number of check drives Mmax (including the
parity drive) is 2P -Nmax·

28
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain
ing 16 one-byte operands), 64 bytes of data can be operated
at a time using four consecutive SSE instructions (e.g.,

5 fetching from memory, storing into memory, zeroing, add
ing, multiplying), the remaining registers being used for
intermediate results and temporary storage. With such an
architecture, several routines are useful for optimizing the
byte-level performance, including the Parallel Lookup Mul-

10 tiplier, Sequencer 1, and Sequencer 2 discussed above.
While the above description contains many specific

embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the

15 scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.

20 Glossary of Some Variables

A encoding matrix (F x K), sub-matrix of T
B encoding matrix (F x F) , sub-matrix of T
B-1 solution matrix (F x F)

25 C
encoded data matrix ((N + M) XL) = [~]

C'
surviving encoded data matrix (N XL) = [~]

30

D original data matrix (N x L)

D'
permuted original data matrix (N x L) = [~]

35
E

information dispersal matrix (IDM)((N +M) xN) = [~]

F number of failed data drives

40
G number of failed check drives
H check drive encoding matrix (M x N)

identity matrix (IK = K x K identity matrix, IN= N x N identity
matrix)
encoded check data matrix (M x L)

K nwnber of surviving data drives = N - F
L data block size (elements or bytes)

45 M nwnber of check drives
Mmax maximum value of M
N number of data drives
Nmax maximum value of N
0 zero matrix (K x F), sub-matrix of T
s master encoding matrix ((Mmax + Nmaxl X Nmaxl

50
T

[IK ~] transformed IDM (NxN) = A

w surviving check data matrix (F x L)
X surviving original data matrix (K x L)

55 y lost original data matrix (F x L)

What is claimed is:
As discussed earlier, in an exemplary embodiment of the 60

present invention, a modern x86 architecture is used (being
readily available and inexpensive). In particular, this archi
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these 65

XMM registers holds 16 bytes (8-bit), so four such registers
can be used to store 64 bytes of data. Thus, by using SSE

1. An accelerated error-correcting code (ECC) system
operating across multiple drives, comprising:

at least one processing circuit comprising a plurality of
central processing unit (CPU) cores that executes CPU
instructions and loads original data from a main
memory and stores check data to the main memory,
each of the CPU cores comprising at least 16 registers,
and each of the registers storing at least 8 bytes;

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 314 of 350

US 10,666,296 B2
29

at least one system drive comprising at least one non
volatile storage medium that stores the CPU instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one 5

block of the original data;
at least four check drives each comprising at least one

non-volatile storage medium that stores at least one
block of the check data corresponding to the at least one
block of the original data; and

at least one input/output (I/O) controller that receives the
at least one block of the original data from a transmitter
and that stores the at least one block of the original data
to a main memory;

10

wherein the processing circuit, the CPU instructions, the 15

main memory, the plurality of data drives, the at least
four check drives, and the at least one I/O controller are
configured to implement a multi-core erasure encoding
system comprising:
original data in the main memory comprised of the at 20

least one block of original data from the plurality of
data drives;

check data in the main memory comprised of the at
least one block of check data;

an encoding matrix for holding first factors in the main 25

memory, the first factors being for encoding the
original data in the main memory into the check data
in the main memory; and

a scheduler for generating ECC data in parallel across
a plurality of threads by:
dividing the original data in the main memory into a

plurality of data matrices;
dividing the check data in the main memory into a

plurality of check matrices;

30

assigning corresponding ones of the data matrices 35

and the check matrices in the main memory to the
plurality of threads, wherein each thread com
prises an encoder, the encoder comprising at least
a portion of the encoding matrix, a Galois Field
(GF) multiplier, a Galois Field (GF) adder, and a 40

sequencer for ordering operations through at least
one of the data matrices, corresponding ones of
the check matrices, and the at least a portion of the
encoding matrix in the main memory using the GF
multiplier and the GF adder to generate the check 45

data in the main memory; and assigning the plu
rality of threads to the plurality of CPU cores of
the processing circuit to concurrently generate the
check matrices in the main memory from corre
sponding ones of the data matrices in the main 50

memory.
2. The system of claim 1, wherein the scheduler divides

the original data in the main memory and the check data in
the main memory into a plurality of stripes, each of the
plurality of stripes comprising at least:

one block of the original data; and
one corresponding block of the check data.
3. The system of claim 2, wherein the scheduler assigns

the stripes to the plurality of threads such that, for each stripe

55

of the plurality of stripes, the check data of the stripe is 60

computed by no more than one of the plurality of threads.

30
at least one processing circuit comprising a plurality of

central processing unit (CPU) cores that executes CPU
instructions and loads original data and check data from
a main memory and stores decoded check data corre
sponding to lost original data to the main memory, each
of the CPU cores comprising at least 16 registers, and
each of the registers storing at least 8 bytes;

at least one system drive comprising at least one non
volatile storage medium that stores the CPU instruc
tions;

a plurality of data drives each comprising at least one
non-volatile storage medium that stores at least one
block of the original data;

at least four check drives each comprising at least one
non-volatile storage medium that stores at least one
block of the check data corresponding to the at least one
block of the original data; and

at least one input/output (I/O) controller that receives the
at least one block of the original data from a transmitter
and that stores the at least one block of the original data
to a main memory;

wherein the processing circuit, the CPU instructions, the
main memory, the plurality of data drives, the at least
four check drives, and the at least one I/O controller are
configured to implement a multi-core erasure decoding
system comprising:
original data in the main memory comprised of the at

least one block of original data from the plurality of
data drives;

check data in the main memory comprised of the at
least one block of check data from the at least four
check drives;

a solution matrix, the solution matrix comprising fac
tors for decoding the check data in the main memory
to reproduce lost original data in the main memory;
and

a scheduler for decoding ECC data in parallel across a
plurality of threads by:
dividing the original data in the main memory into a

plurality of data matrices;
dividing the check data in the main memory into a

plurality of check matrices;
assigning corresponding ones of the data matrices

and the check matrices in the main memory to the
plurality of threads, wherein each thread com
prises a decoder, the decoder comprising at least a
portion of the solution matrix, a Galois Field (GF)
multiplier, a Galois Field (GF) adder, and a
sequencer for ordering operations through at least
one of the data matrices, corresponding ones of
the check matrices, and the at least a portion of the
solution matrix in the main memory using the GF
multiplier and the GF adder to decode the check
data in the main memory into lost original data in
the main memory; and

assigning the plurality of threads to the plurality of CPU
cores of the processing circuit to concurrently regen
erate portions of the data matrices corresponding to lost
original data in the main memory from corresponding
ones of the check matrices in the main memory.

4. The system of claim 3, wherein each of the plurality of
threads corresponding to at least one of the plurality of
stripes is assigned to a respective one of the plurality of CPU
cores of the processing circuit.

6. The system of claim 5, wherein the scheduler divides
the original data in the main memory and the check data in
the main memory into a plurality of stripes, each of the

65 plurality of stripes comprising at least:
5. An accelerated error-correcting code (ECC) decoding

system operating across multiple drives, comprising:
one block of the original data; and
one corresponding block of the check data.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 315 of 350

US 10,666,296 B2
31

7. The system of claim 6, wherein the scheduler assigns
the stripes to the plurality of threads such that, for each stripe
of the plurality of stripes, the decoding of the check data of
the stripe corresponding to the lost original data is computed
by no more than one of the plurality of threads.

8. The system of claim 7, wherein each of the plurality of
threads corresponding to at least one of the plurality of
stripes is assigned to a respective one of the plurality of CPU
cores of the processing circuit.

* * * * *
10

32

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 316 of 350

EXHIBIT I

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 317 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 318 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 319 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 320 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 321 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 322 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 323 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 324 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 325 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 326 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 327 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 328 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 329 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 330 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 331 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 332 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 333 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 334 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 335 of 350

EXHIBIT J

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 336 of 350

Jul 10th,
2013

Home / SwiftStack Blog /
Save Space: the final frontier Erasure Codes with OpenStack Swift

Save Space: The Final Frontier -
Erasure Codes With OpenStack
Swift

Today we’re really excited to announce an initiative to introduce
erasure codes in OpenStack Swift. Swift currently uses replicas, but a
question has come up – could we save space by using erasure codes?

This initiative enables deployers to store data with erasure coding
instead of or in addition to Swift’s 3replica model. Though using 3
replicas provides for excellent performance and availability, it’s
incurred in both the acquisition and operating cost of storage

SwiftStack
Blog

Page 1 of 5Save Space: the final frontier - Erasure Codes with OpenStack Swift - SwiftStack

6/21/2014https://swiftstack.com/blog/2013/07/10/erasure-codes-with-openstack-swift/

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 337 of 350

hardware. Swift has already enabled many companies to radically lower
their storage costs with commodity hardware and the introduction of
erasure coding within Swift will enable costs to drop even further.

The development of this feature will proceed with the same open
mindset that has guided the OpenStack project from its inception. Just
like all projects within OpenStack, Swift has many contributors. The
companies who are heavily involved with Swift include SwiftStack,
Rackspace, Red Hat, IBM and HP.

For erasure coding, multiple companies — Intel, SwiftStack, Box and
EVault are committing effort for this specific project –

“Intel is excited to support the development of an erasure code
solution for OpenStack Swift with the Swift development community.
Helping our customers reduce the size of data on disk by up to half
versus regular triple replication, helps decrease their costs by more
than 50%. Erasure code solutions reduce both hardware requirement
costs as well as the power and cooling required to run that hardware, ”
says Bev Crair, Intel Storage Division GM. “Erasure code is a technology
that is long overdue and Intel is pleased to be supporting efforts to
promote and use it in cloud environments like OpenStack Swift.”

“EVault is excited to work with Swiftstack and the broader OpenStack
Object Storage community to add erasure codes.” says George Hoenig,
Vice President, Products & Services at EVault. “Erasure codes,
particularly for write intensive workloads, will enable users to deploy
systems using less storage and bandwidth than replicated systems of
similar durability.”

Starting from a production-
grade system
By using Swift as a starting point, we stand on the shoulders of the
existing, battlehardened mechanisms that Swift already has.

We are also enlisting some of the thought leaders in information theory
and erasure coding who are contributing code and guidance for this
project.

The design goal is to be able to have erasurecoded storage plus
replicas coexisting in a single Swift cluster. This will allow a choice in
how to store data and will allow applications to make the right
tradeoffs based on their use case.

There are already proposals and code on the table for this effort. And
we will be collaborating over these designs over the coming months to
build a solution to best meet the needs of the Swift deployers.

Page 2 of 5Save Space: the final frontier - Erasure Codes with OpenStack Swift - SwiftStack

6/21/2014https://swiftstack.com/blog/2013/07/10/erasure-codes-with-openstack-swift/

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 338 of 350

Global Clusters and more:
Swift 1.9.0

Erasure Codes with
OpenStack Swift –

Digging Deeper

Development as a community
We have a big project ahead of us. But we have rallied as a community
before and have pulled off some big efforts. For example, region
support is now included in the latest version of Swift which allows a
cluster to span distant data centers.

This effort continues to demonstrate the focus of the Swift project – to
grow an already great object storage system into the new areas where
haven’t gone before. With continued efforts such as this, Swift is well
on its way ensure your data can “live long and prosper”.

Joe Arnold
CEO, SwiftStack

@joearnold
joe@swiftstack.com

Categories
OpenStack, OpenStack Swift, PlanetOpenstack, SwiftStack

Favorite Posts

Kinetic Motion with Seagate and OpenStack Swift

A Closer Look at SoftwareDefined Storage

Gartner on OpenStack Swift

The Top 3 New Swift Features in OpenStack Folsom

A Globally Distributed OpenStack Swift Cluster

Video: How OpenStack Swift Handles Hardware Failures

SwiftStack welcomes John Dickinson

Swift Capacity Management

Page 3 of 5Save Space: the final frontier - Erasure Codes with OpenStack Swift - SwiftStack

6/21/2014https://swiftstack.com/blog/2013/07/10/erasure-codes-with-openstack-swift/

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 339 of 350

Recent Posts

Archived Posts

Follow @SwiftStack

Google+

Tweet 25 7

Comments

8

12 people like this. Be the first of your friends.Like Share

CloudStack going Apache 2

In 10 Years, all Storage Will Be Object Storage! There, I said it.

Join us at the Cloud Computing Expo in New York

Everything is Object Storage Roundup: Gartner’s IaaS Magic
Quadrant, IBM Says Goodbye to NetApp, and More Proof Object
Storage Is In

OpenStack Swift June Hackathon in Denver

Q&A with Joe Arnold on the new O’Reilly published book, "Object
Storage with Swift"

Blog Archives

6 Comments

Page 4 of 5Save Space: the final frontier - Erasure Codes with OpenStack Swift - SwiftStack

6/21/2014https://swiftstack.com/blog/2013/07/10/erasure-codes-with-openstack-swift/

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 340 of 350

© 2014 SwiftStack Inc. San Francisco, CA contact@swiftstack.com

LATEST
BLOG
POSTS

Jun 17
In 10 Years, all
Storage Will
Be Object
Storage!
There, I said
it.

Jun 11
Join us at the
Cloud
Computing
Expo in New
York
Jun 09
Everything is
Object
Storage
Roundup:
Gartner’s IaaS
Magic
Quadrant,
IBM Says
Goodbye to
NetApp, and
More Proof
Object
Storage Is In

SwiftStack Architecture

Page 5 of 5Save Space: the final frontier - Erasure Codes with OpenStack Swift - SwiftStack

6/21/2014https://swiftstack.com/blog/2013/07/10/erasure-codes-with-openstack-swift/

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 341 of 350

EXHIBIT K

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 342 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 343 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 344 of 350

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 345 of 350

EXHIBIT L

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 346 of 350

StreamScale
O'Shea, Michael A. moshea at hunton.com
Wed Apr 29 15:15:09 UTC 2015

• Previous message: MRE - neutron-*aas
• Messages sorted by: [date] [thread] [subject] [author]

To: technical-board at lists.ubuntu.com<mailto:technical-board at lists.ubuntu.com>

I am writing to you today regarding Ubuntu's recent republication and redistribution of the libraries JErasure 2.0 and GF_Complete,
authored by Dr. James Plank.

These libraries were the subject of confidential trade secret litigation between my client, StreamScale Inc., and the author, Dr. James
Plank (JAMS case #1220047807). Subsequent to that litigation, Dr. Plank removed JErasure 2.0 and GF_Complete from publication, leaving
only an archived copy for non-commercial use, and publicly announced that he would no longer support either library
(http://web.eecs.utk.edu/~plank/plank/www/software.html<https://urldefense.proofpoint.com/v2/url?u=http-
3A__web.eecs.utk.edu_-7Eplank_plank_www_software.html&d=AwMFAg&c=jxhwBfk-
KSV6FFIot0PGng&r=OsbfxgvwkC1XeDQMkz1i9dGxH4gYoBogKZbCGO22AwM&m=nwTBnMf0mln1kQVj42tenme0z2BKWCLL0XbbEdhy3Zc&s=aclLu9_Bo7RA0XpRp7M_xyVV3894VL3

We believe that even a cursory review of the facts surrounding these libraries will make it clear to you that they do not constitute "Free
Software" by any reasonable definition. StreamScale developed an extensive litigation database related to the libraries JErasure 2.0 and
GF_Complete, including patent claim charts, trade secret listings, copyright infringement analysis, damage estimates and citations of
relevant case law. We could make these materials available to you under a suitable NDA at your request to provide any reasonable
clarification you might need.

We respectfully ask that you voluntarily remove and not republish the libraries JErasure 2.0 and GF_Complete, as well as any other
packages or releases that incorporate them or depend on them. We believe these packages and releases include: libjerasure-dev,
libjerasure2, libgf-complete-dev, libgf-complete1, liberasurecode-dev, liberasurecode1, Pyeclib, CEPH (see ceph/src/erasure-code/jerasure)
and Swift 2.3.0.

Thank you for your consideration in this matter, and please feel free to contact me regarding any questions you might have.

Best,

Michael O'Shea

 Bio<http://webdownload.hunton.com/esignature/bio.aspx?U=12011> vCard<http://webdownload.hunton.com/esignature/vcard.aspx?U=12011>

[Hunton and Williams]

Michael O'Shea
Partner
moshea at hunton.com<mailto:moshea at hunton.com>

Hunton & Williams LLP
2200 Pennsylvania Avenue, NW
Washington, DC 20037
Direct: 202.419.2183
Fax: 202.778.7434
www.hunton.com<http://www.hunton.com/>

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.ubuntu.com/archives/technical-board/attachments/20150429/1940b14d/attachment-0001.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: image001.jpg
Type: image/jpeg
Size: 5414 bytes
Desc: image001.jpg
URL: <https://lists.ubuntu.com/archives/technical-board/attachments/20150429/1940b14d/attachment-0001.jpg>

• Previous message: MRE - neutron-*aas
• Messages sorted by: [date] [thread] [subject] [author]

More information about the technical-board mailing list

StreamScale

https://lists.ubuntu.com/archives/technical-board/2015-April/002100.html

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 347 of 350

EXHIBIT M

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 348 of 350

StreamScale, Inc.

July 7, 2021

Via E-mail

Benjamin R. Ostapuk

Intel Corporation

2200 Mission College Blvd.

Santa Clara, CA 95054-1537

benjamin.r.ostapuk@intel.com

Re: Notice of Infr ingement of StreamScale Patents

Dear Mr. Ostapuk:

I write on behalf of StreamScale, Inc. (“StreamScale”) to notify Intel Corporation (“Intel”) that it is inducing, for

example, Cloudera, Inc., ADP, Inc., Experian plc, and Wargaming (Austin), Inc. (collectively, “the Direct Infringers”) to

infringe certain StreamScale United States Patents.

Intel is inducing infringement of: (1) U.S. Patent No. 8,683,296; (2) U.S. Patent No. 9,160,374; (3) U.S. Patent

No. 9,385,759; (4) U.S. Patent No. 10,003,358; (5) U.S. Patent No. 10,291,259; and (6) U.S. Patent No. 10,666,296

(collectively, “the StreamScale Patents”). The StreamScale Patents are continuations of one another and each of the

StreamScale Patents relates to the field of accelerated erasure coding.

Intel actively markets and instructs the Direct Infringers to create erasure coding systems using Intel’s Intelligent Storage

Acceleration Library (“ISA-L”). For example, Intel (i) maintains a website to promote ISA-L, including to the Direct

Infringers,1 (ii) produces videos regarding ISA-L and its use that are available to the Direct Infringers on the Intel website,2

(iii) describes case studies on big data optimization using ISA-L that are available to the Direct Infringers on the Intel

website, (iv) hosts articles, blog posts, and webinars regarding the use of ISA-L that are available to the Direct Infringers on

the Intel website, and (v) publishes and makes available an API Reference Manual for ISA-L3 that is available to the Direct

Infringers, which it updates regularly.4 Intel further offers the Direct Infringers technical support for ISA-L.

Intel designed ISA-L to be used with other components that, when combined with hardware, practice one or more

claims of each of the StreamScale Patents. ISA-L is a collection of functions used in storage applications, including functions

pertaining to erasure codes that implement a general Reed-Solomon type encoding for blocks of data to protect against

erasure of whole blocks.5 The claims of the StreamScale Patents require, variously, data and check matrices to hold original

and check data in memory, respectively. These matrices correspond with parameters described in ISA-L documentation

associated with, for example, the function ec_encode_data.6 The “data” parameter corresponds to the data matrix in the

claims of the StreamScale Patents. The “coding” parameter corresponds to the check matrix in the claims of the

1 E.g., Intel, Intel® Intelligent Storage Acceleration Library, available at https://software.intel.com/content/www/us/en/develop/tools/isa-
l.html (last visited May 24, 2021).
2 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, available at 2 See, e.g., Intel, Erasure Code and Intel® Intelligent Storage Acceleration Library (Intel® ISA-L, available at
https://www.intel.com/content/www/us/en/products/docs/storage/erasure-code-isa-lsolution-video.html (last visited May 24, 2021).
3 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source Version, API Reference Manual (ver. 2.8,
Sept. 27, 2013), available at https://01.org/sites/default/files/documentation/isa-l_open_src_2.8_0.pdf (last visited May 24, 2021).
4 See, e.g., Intel, Intel® Intelligent Storage Acceleration Library (Intel® ISA-L), API Reference Manual (ver. 2.23.0, June 29, 2018),
available at https://01.org/sites/default/files/documentation/isa-l_api_2.23.0.pdf (last visited May 24, 2021).
5 E.g., Intel Corporation, Intel® Intelligent Storage Acceleration Library (Intel® ISA L) Open Source Version, API Reference Manual
§§ 1.2–1.3 (Version 2.14, July 16, 2015).
6 E.g., id. § 5.1.2.1.

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 349 of 350

2

StreamScale Patents. And the “gftbls” parameter corresponds to the encoding matrix referenced in the claims of the

StreamScale Patents. Similarly, the claims of the StreamScale Patents variously require a parallel multiplier, which ISA-L

provides in various permutations of vect_dot_prod functions.7

Given Intel’s enormous size, sophistication, and resources, StreamScale is confident Intel can deeply appreciate how

ISA-L indirectly infringes the claims of the StreamScale Patents. StreamScale requests that Intel cease its above-identified

infringing activities relating to the StreamScale Patents. In the alternative, StreamScale is willing to discuss an appropriate

license to StreamScale’s inventions and how StreamScale and Intel can work together to move the industry forward with new

technology and innovations.

Best regards,

Bryan D. Richardson

Chief Intellectual Property Officer

cc: Sonal Mehta, Esq. (sonal.mehta@wilmerhale.com)

7 E.g., Intel, ISA-L, ec_highlevel_func.c, available at https://github.com/intel/isa-l/blob/master/erasure_code/ec_highlevel_func.c (last
visited Nov. 23, 2020) (lines 33–68).

Case 6:21-cv-00198-ADA Document 67 Filed 07/26/21 Page 350 of 350

