~N N R WwWN

10

/
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 1 of 35 PagelD #: 1

- -

MATTHEW D. POWERS (Bar No. 104795)
matthew.powers@weil.com

STEVEN S. CHERENSKY (Bar No. 168275)
steven.cherensky@weil.com

WEIL, GOTSHAL & MANGES LLP -
Silicon Valley Office F'
201 Redwood Shores Parkway /j\ / L E D

Redwood Shores, CA 94065
Telephone: (650) 802-3000
Facsimile: (650) 802-3100

. Ricy
TIMOTHY DEMASI - Fii 1oy Clery ARD y,
tim.demasi@weil.com E FE ey D/gﬁg//s o ‘
STEVEN KALOGERAS (T OF o AT

steven.kalogeras@weil.com (&\\

JULIAN MOORE
julian.moore@weil.com

WEIL, GOTSHAL & MANGES LLP
New York Office

- 767 5th Avenue

New York, NY 10153
Telephone: (212) 310-8000
Facsimile: (212) 310-8007

Attorneys for Plaintiffs
SAMSUNG ELECTRONICS CO., LTD.
SAMSUNG ELECTRONICS AMERICA, INC.

UNITED STATES DISTRICT COURT
NORTHER&:IPIVS’% 1 X'OF CALIFORNIA

#
4
i

) =
i ¥ P
I m
% ole (:
L

SAMSUNG ELECTRONICS CO., LTD. and Case No.
SAMSUNG ELECTRONICS AMERICA, INC,,

Plaintiffs,
COMPLAINT FOR DECLARATORY
V. JUDGMENT

VERTICAL COMPUTER SYSTEMS, INC,,
DEMAND FOR JURY TRIAL
Defendant.

Plaintiffs Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc.
(collectively “Samsung”), by and through their attorneys, bring this action against Vertical

Computer Systems, Inc. (“Vertical”) and allege as follows:

COMPLAINT FOR DECLARATORY JUDGMENT

W

O o0 a3 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 2 of 35 PagelD #: 2

INTRODUCTION ;
1. Samsung secks a declaratory judgment that (i) Samsung has not infringed

any claim of United States Patent Nos. 6,826,744 (“the *744 patent”) or 7,716,629 (“the ’629
patent); é.nd (ii) each and every claim of the 744 and ’629 patents is invalid and/or
unenforceable. The 744 and ’629 patents are attached as Exhibit A and Exhibit B, respectively.

2. The Northern District of California is already presiding over a related
declaratory judgment action brought by Interwoven, Inc. (“Interwoven”) against Vertical, Civil
Case No. 10-CV-4645 (“the California action”), which similarly seeks a judgment of invalidity,
unenforceability and non-infringement of the *744 and ’629 patents. The California Action was
filed on October 14, 2010.

3. Over one month later, on November 15, 2010, Vertical filed suit in the
Eastern District of Texas, Civil Case No. 2:10-CV-490 (the “Texas action”), accusing
Interwoven, Samsung, and two LG Electronics entities of infringing the same ’744 and 629
patents.

4. Vertical’s initiation of the Texas action has resulted in a duplicative and
wasteful litigation in a new forum of the same issues being litigated in the California action.
Samsung has given notice to this Court that the present declaratory judgment action is related to
the first-filed California action so that the two actions may be consolidated and that the parties
may proceed in a manner that promotes judicial economy, avoids the potential for conflicting
rulings, and leads to an efficient resolution of these overlapping disputes.

PARTIES

5. Samsung Electronics Co., Ltd. is a corporation organized under the laws of
Korea, with a principal place of business at Samsung Electronics Building, 1320-10, Seocho-2-
dong, Seochu-gu, Seoul 137-857, Korea.

6. Samsung Electronics America, Inc. is a corporation organized under the
laws of New York, with a principal place of business at 105 Challenger Road, Ridgefield Park,
New Jersey 07660. Samsung Electronics America, Inc. is a wholly owners subsidiary of

Samsung Electronics Co., Ltd.

COMPLAINT FOR DECLARATORY JUDGMENT

O 0 N O w»n &~ W N =

NOONONON N NN e e e e e e e e
O%BO\UIAU)N'—‘O\OOO\IO\UIAU)NP—‘O

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 3 of 35 PagelD #: 3

- u

7. On information and belief, Vertical is a company organized under the laws
of Delaware, with a principal place of business at 101 W. Renner Road, Suite 300, Richardson,

Texas 75082,

EXISTENCE OF AN ACTUAL CONTROVERSY

8. There is an actual controversy within the jurisdiction of this Court under 28
U.S.C. §§ 2201 and 2202. R

9. Vertical purports to be the owner of the *744 and ’629 patents (collectively,
“the Patents-in-Suit”).

10. On November 15, 2010, Vertical filed the Texas action, alleging that
Samsung infringes the Patents-in-Suit. Specifically, Vertical alleges that Samsung infringes
claims 1, 3-5, 9, 17, 21, 23 and 25 of the *744 patent and claims 1, 4, 8, 10, 12, 21, 24, 28, 30, and
32 of the 629 patent, both directly and indirectly, through the commercialization of the Samsung
Galaxy Tab™ Android tablet and Samsung’s Captivate™, Fascinate™, Epic™ and Mesmerize™
1500 Android cell phones.

11. Samsung denies that it infringes any of the Patents-in-Suit, and disputes
their validity. Samsung further denies that it needs a license to any of the Patents-in-Suit in order
to continue its activities. Thus, an actual and justiciable controversy exists between Vertical and
Samsung as to whether the Patents-in-Suit are infringed and/or invalid.

JURISDICTION AND VENUE

12. This Court has subject matter jurisdiction over Samsung’s Declaratory
Judgment claims pursuant to 28 U.S.C. §§ 2201 and 2202.

13. This Court also has original subject matter jurisdiction over the claims
asserted herein pursuant to 28 U.S.C. §§ 1331 and 1338(a).

14. On information and belief, Vertical is subject to personal jurisdiction in
this district arising out of its contacts with this district as well as Vertical’s acquiescence to this
district’s jurisdiction in the California action. In particular, Vertical has filed a motion to dismiss
and/or transfer in the California action without raising the defense of lack of personal jurisdiction,

thereby waiving any objection to the propriety of personal jurisdiction in this district.

COMPLAINT FOR DECLARATORY JUDGMENT

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 4 of 35 PagelD #: 4
15. Venue is proper in this district pursuant to 28 U.S.C. § 1391 because, for

the reasons set forth above, Vertical is subject to personal jurisdiction within this judicial district.

FIRST CLAIM —THE °744 PATENT

16. Samsung hereby restates and realleges the allegations -set forth in
paragraphs 1 through 15 above and incorporates them by reference.

17. No claim of the *744 patent has been or is infringed, either directly or
indirectly, or either literally or under the doctrine of equivalents, by Samsung.

18. The claims of the *744 patent are invalid for failure to comply with the
requirements of the Patent Laws of the United States, including but not limited to the provisions
of 35 U.S.C. §§ 101, 102, 103, and/or 112.

19. The claims of the *744 patent are unenforceable as a result of inequitable
conduct before the United States Patent and Trademark Office (“PTO”). One or more of the
people substantively involved in the prosecution of the application leading to the ’744 patent,
including inventor Aubrey McAuley, were aware of information material to the patentability of
the *744 patent, but withheld that information from the PTO with the intent to deceive, and made
false and misleading statements to the PTO during the prosecution of the *744 patent, as set forth
herein.

20. Aubrey McAuley, the named inventor of the ‘744 patent, was a founder
and president of Adhesive Media, Inc. (“Adhesive”).

21. On information and belief, Adhesive offered for sale and sold software
products and/or services based on its “WebOS” technology more than one year before October 1,
1999, the filing date of the application leading to the *744 patent. Those software products and/or
services included Adhesive’s “NewsFlash” product, as well as a number of websites that
Adhesive designed for particular customers, purportedly using Adhesive’s WebOS technology.

22. On information and belief, Adhesive also published information relating to
its software products and/or services based on its “WebOS” technology more than one year
before October 1, 1999. For example, more than one year before October 1, 1999, Adhesive

posted on the Internet a diagram of the Web Object Management Facility of its WebOS

COMPLAINT FOR DECLARATORY JUDGMENT

B~ W

N AN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 5 of 35 PagelD #: 5

o -’

technology, which is attached hereto as Exhibit C.

23. Exhibit C is nearly identical to Figure 5 of the *744 patent.

24. The specification of the ‘744 patent describes Figure 5 as an alleged
embodiment of “the present invention.” See ‘744 patent at 5:3-17.

25. Therefore, Adhesive’s commercial offer for sale and sale of products and
services based on its WebOS technology, and Adhesive’s publication of information relating to
its WebOS technology, all of which occurred more than one year before October 1, 1999,
constitute material prior art.

26. Upon information and belief, prior to issuance of the ’744 patent, Mr.
McAuley had knowledge of Adhesive’s offer for sale and sale of its WebOS technoldgy and
Adhesive’s publication of information relating to its WebOS technology.

27. None of the persons involved in the prosecution of the ’744 patent,
including but not limited to Mr. McAuley, disclosed to the PTO Adhesive’s offer for sale or sale
of it WebOS technology or the publication of information relating to its WebOS technology.

28. Information regarding Adhesive’s offer for sale and sale of WebOS
technology, and publications relating thereto, was withheld from the PTO with intent to deceive.

29. This withholding of information material to patentability with intent to
deceive the PTO constitutes inequitable conduct, which renders the *744 patent unenforceable.

SECOND CLAIM - THE 629 PATENT

30. Samsung hereby restates and realleges the allegations set forth in
paragraphs 1 through 29 above and incorporates them by reference.

31. No claim of the 629 patent has been or is infringed, either directly or
indirectly, or either literally or under the doctrine of equivalents, by Samsung,.

32. The claims of the ’629 patent are invalid for failure to comply with the
requirements of the Patent Laws of the United States, including but not limited to the provisions
of 35 U.S.C. §§ 101, 102, 103, and/or 112.

33. The claims of the 629 patent are unenforceable as a result of inequitable

conduct before the PTO. On information and belief, one or more of the people substantively

COMPLAINT FOR DECLARATORY JUDGMENT

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 6 of 35 PagelD #: 6

involved in the prosecution of the application leading to the 629 patent, including inventor
Aubrey McAuley and patent agent Jack D. Stone Jr., were aware of information material to the
patentability of the ’629 patent, but withheld that information from the PTO with the intent to
deceive, and made false and misleading statements to the PTO during the prosecution of the *629
patent, as set forth herein.

34. During the prosecution of the 629 patent, Vertical initiated a patent
infringement suit against Microsoft Corporation in the Eastern District of Texas, Civil Action No.
2:07-CV-144 (“the Microsoft litigation”), alleging infringement of the *744 patent.

35. During the course of the Microsoft litigation, material information
regarding the patentability of the ’744 patent was disclosed by Microsoft to Vertical and
Vertical’s attorneys. For example, Microsoft raised inequitable conduct allegations regarding the
744 patent in its Answer to Vertical’s complaint, Microsoft served invalidity contentions
explaining how numerous prior art references anticipated and/or rendered obvious the claims of
the *744 patent, Microsoft produced copies of the underlying prior art references, and Microsoft
filed a claim construction brief arguing that numerous claims of the ’744 patent were invalid
under 35 U.S.C. § 112. However, this material information was not properly disclosed to the
PTO during the prosecution of the *629 patent.

36. Because the application leading to the *629 patent is a continuation of the
>744 patent, and because the claims and specifications of the 629 and ’744 patents are
substantially similar, Microsoft’s inequitable conduct allegations, invalidity contentions and
arguments, and the invalidating prior art references it produced in the Microsoft litigation are also
material to the patentability of the *629 patent.

A. Microsoft’s Inequitable Conduct Allegations

37. On July 13, 2007, Microsoft filed its Answer, Affirmative Defenses, and
Counterclaims (“Microsoft’s Answer”) in the Microsoft litigation. Microsoft alleged that the
744 patent was unenforceable due to the inequitable conduct of Mr. McAuley in failing to
disclose material information to the PTO. In particular, Microsoft alleged that Mr. McAuley,

with intent to deceive, failed to disclose Adhesive’s offer for sale and sale of products and

COMPLAINT FOR DECLARATORY JUDGMENT

(Y T "N VS)

e B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ﬂase 2:11-cv-00298-DF Document 1l Filed 01/12/11 Page 7 of 35 PagelD #: 7

"~ -

services based on Adhesive’s WebOS technology, and publications relating thereto, more than
one year prior to October 1, 1999.

38. Microsoft’s inequitable conduct allegations disclose critical information
expressly challenging the validity and enforceability of the related *744 patent, and thus constitute
material prior art.

39. None of the persons involved in the prosecution of the ’629 patent,
including Mr. McAuley and Mr. Stone, disclosed to the PTO either Microsoft’s Answer or the
existence or substance of Microsoft’s inequitable conduct allegations.

40. Further, during prosecution of the ’629 patent, the applicants disclosed
certain prior art documents relating to Adhesive’s prior art WebOS technology relied on by
Microsoft during the Microsoft litigation, but failed to disclose the critical facts that Mr. McAuley
was the founder and president of Adhesive and other information indicating that the WebOS
technology qualified as prior art under 35 U.S.C. § 102(b).

41. The knowledge that Mr. McAuley is both a named inventor of the ’629
patent and the founder and president of Adhesive, as well as the date of the WebOS materials, is
essential for the PTO to fully understand the relevance and applicability of Adhesive’s prior art
WebOS technology.

42. During prosecution of the *629 patent, the applicants selectively disclosed
to the PTO only certain information and prior art materials from the Microsoft litigation.

43. The selective disclosure to the PTO of information arising out of the
Microsoft litigation demonstrates that Mr. McAuley and Mr. Stone were aware of the Microsoft
litigation and the existence of material regarding the patentability of the *629 patent information
arising out of that litigation.

44. This selective disclosure to the PTO also demonstrates that Mr. McAuley
and Mr. Stone made a deliberate decision to withhold material information from the PTO, and
thus demonstrates an intent to deceive.

45. The withholding of information material to patentability with intent to

deceive constitutes inequitable conduct, which renders the *629 patent unenforceable.

COMPLAINT FOR DECLARATORY JUDGMENT

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ase 2:11-cv-00298-DF Document1 Filed 01/12/11 Page 8 of 35 PagelD #: 8
B. Microsoft’s Invalidity Contentions and Claim Construction Brief

46. On January 18, 2008, Microsoft served its Invalidity Contentions in the
Microsoft litigation.

47. Microsoft’s Invalidity Contentions identified 58 prior art references that
anticipated and/or rendered obvious claims 1-5, 9, 11, 17-19, 21, 23, 25-29, 33, 39-41, 43, 45, and
47-48 of the *744 patent and provided over 50 pages of narrative analysis of how the identified
prior art anticipated and/or rendered obvious the asserted claims. The Invalidity Contentions also
included over 250 pages of claim charts mapping the prior art references to each limitation of the
asserted claims. Further, the Invalidity Contentions include an analysis of the 744 patent’s
invalidity based on lack of enablement, lack of written description, and indefiniteness.

48. On July 18, 2008, Microsoft served its First Amended Invalidity
Contentions in the Microsoft litigation.

49. Microsoft’s First Amended Invalidity Contentions added three prior art
references to Microsoft’s prior Invalidity Contentions, identifying a total of 61 prior art references
that anticipated and/or rendered obvious claims 1-5, 9, 11, 17-19, 21, 23, 25-29, 33, 39-41, 43, 45,
47-48, and 53 of the 744 patent. As with the initial Invalidity Contentions, Microsoft First
Amended Invalidity Contentions provided over 50 pages of narrative analysis of how the
identified prior art anticipated and/or rendered obvious the asserted claims and included over 250
pages of claim charts mapping the prior art references to each limitations of the asserted claims.
Further, the First Amended Invalidity Contentions include an analysis of the ’744 patent’s
invalidity based on lack of enablement, lack of written description, and indefiniteness.

50. On June 6, 2008, Microsoft filed its Claim Construction Brief in the
Microsoft litigation.

51. Microsoft argued in its Claim Construction Brief that the term “arbitrary
object framework™ is fatally indefinite.

52. The term “arbitrary object framework™ is found in all independent claims
of both the 744 and ’629 patents, making Microsoft’s indefiniteness argument material to the
patentability of the *629 patent.

COMPLAINT FOR DECLARATORY JUDGMENT

w

N N e A |

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

(Ease 2:11-cv-00298-DF Document 1l Filed 01/12/11 Page 9 of 35 PagelD #: 9

53. Microsoft’s Invalidity Contentions, First Amended Invalidity Contentions,
and Claim Construction Brief disclose critical information expressly challenging the validity of
the related 744 patent, and thus constitute material prior art.

54. None of the persons involved in the prosecution of the ’629 patent,
including Mr. McAuley and Mr. Stone, disclosed to the PTO Microsoft’s Invalidity Contentions,
First Amended Invalidity Contentions, or Claim Construction Brief. Further, none of the persons
involved in the prosecution of the 629 patent, including Mr. McAuley and Mr. Stone, disclosed
to the PTO the existence of Microsoft’s Invalidity Contentions, First Amended Invalidity
Contentions, or Claim Construction Brief or the substance of the invalidity arguments set forth
therein.

55. Only some prior art references relied on during the Microsoft litigation
were selectively disclosed to the PTO during prosecution of the *629 patent.

56. The selective disclosure to the PTO of information arising out of the
Microsoft litigation demonstrates that Mr. McAuley and Mr. Stone were aware of the Microsoft
litigation and the existence of material information regarding the patentability of the 629 patent
arising out of that litigation.

57. This selective disclosure to the PTO also demonstrates that Mr. McAuley
and Mr. Stone made a deliberate decision to withhold material information from the PTO, and
thus demonstrates an intent to deceive.

58. The withholding of information material to patentability with intent to
deceive constitutes inequitable conduct, which renders the *629 patent unenforceable. |

C. Prior Art References Produced by Microsoft

59. In an Information Disclosure Statement, the ’629 patent applicants
disclosed to the PTO 24 of the 61 prior art references (or excerpts thereof) that were identified by
Microsoft in its Invalidity Contentions and First Amended Invalidity Contentions as anticipating
and/or rendering obvious certain claims of the *744 patent.

60. On information and belief, none of the persons involved in the prosecution

of the ‘629 patent, including Mr. McAuley and Mr. Stone, disclosed to the PTO any references

COMPLAINT FOR DECLARATORY JUDGMENT

HWN

(9]

o 0 9 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 10 of 35 PagelD #: 10

- -

identified in Microsoft’s Invalidity Contentions or First Amended Invalidity Contentions that
pertain to the prior art Borland Delphi technology. Specifically, none of the persons involved in
the prosecution of the 629 patent disclosed to the PTO: (i) Borland Delphi 3 for Windows 95 &
Windows NI, User’s Guide, Borland International, Inc. (1997); (ii) Borland’s Official No-
Nonsense Guide to Delphi 2, Sams Publishing (1996); (iii) Osier et al., Teach Yourself Delphi 3
in 14 Days, Sams Publishing (1997); (iv) Reisdorph, Sams Teach Yourself Borland Delphi 4 in 21
Days, Sams Publishing (1998); (v) Swan, Delphi 4 Bible, IDG Books Worldwide, Inc., Tom
Swan (1998); (vi) Teixeira et al., Borland Delphi 4 Developer’s Guide, Sams Publishing (1998).

61. On information and belief, none of the persons involved in the prosecution
of the ’629 patent, including Mr. McAuley and Mr. Stone, disclosed to the PTO any references
identified in Microsoft’s Invalidity Contentions or First Amended Invalidity Contentions that
pertain to the prior art Microsoft Visual J++ technology. Specifically, none of the persons
involved in the prosecution of the ’629 patent disclosed to the PTO: (i) Doss, DCOM Networking
with Visual J++ 6.0, Wordware Publishing, Inc. (1999); (ii)) Morgan et al., Visual J++
Unleashed, Sams.net Publishing (1997); (iii) Mulloy, Using Visual J++ 6, Que Corporation
(1998); (iv) Wood, Visual J++ 6 Secrets, IDG Books Worldwide, Inc. (1998).

62. On information and belief, none of the persons involved in the prosecution
of the ’629 patent, including Mr. McAuley and Mr. Stone, disclosed to the PTO any references
identified in Microsoft’s Invalidity Contentions or First Amended Invalidity Contentions that
pertain to the prior art ASP technology. Specifically, none of the persons involved in the
prosecution of the 629 patent disclosed to the PTO: (i) Fedorchek et al., ASP: Active Server
Pages, IDG Books Worldwide, Inc. (1997); (ii) Fedorov et al., ASP 2.0 Programmer’s Reference,
Wrox Press (1998).

63. On information and belief, none of the persons involved in the prosecution
of the ’629 patent, including Mr. McAuley and Mr. Stone, disclosed to the PTO any references
identified in Microsoft’s Invalidity Contentions or First Amended Invalidity Contentions that
pertain to the prior art Lotus Notes and Domino 4.5 technology. Specifically, none of the persons

involved in the prosecution of the 629 patent disclosed to the PTO: (i) Forlini et al., Lotus Notes

COMPLAINT FOR DECLARATORY JUDGMENT 0
1

A WD

O 00 3 O W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 11 of 35 PagelD #: 11

and Domino 4.5 Professional Reference, New Riders Publishing (1997); (ii) Krantz, Building
Intranets with Lotus Notes & Domino, Maximum Press (1997).

64. On information and belief, none of the persons involved in the prosecution
of the 629 patent, including Mr. McAuley and Mr. Stone, disclosed to the PTO any references
identified in Microsoft’s Invalidity Contentions or First Amended Invalidity Contentions that
pertain to the prior art Paradox 7 technology. Specifically, none of the persons involved in the
prosecution of the ’629 patent disclosed to the PTO: (i) Karim et al., Paradox 7 Projects for
Windows 95, The Benjamin/Cummings Publishing Company, Inc. (1997); (ii)) Weingarten et al.,
Paradox 7 for Windows 95 Illustrated Brief Edition, CT1(1997).

65. Just as was the case with the 24 prior art references from the Microsoft
litigation that the applicants did disclose to the PTO, the narrative and claim charts submitted
with Microsoft’s Invalidity Contentions and First Amended Invalidity contentions demonstrate
how the undisclosed Borland Delphi, Microsoft Visual J++, ASP, Lotus Notes and Domino 4.5,
and Paradox 7 prior art references listed in Paragraphs 60-64 above anticipate and/or render
obvious the asserted claims in the Microsoft litigation. Therefore, the undisclosed Borland
Delphi, Microsoft Visual J++, ASP, Lotus Notes and Domino 4.5, and Paradox 7 prior art
references listed in Paragraphs 60-64 above constitute material prior art.

66. The selective disclosure to the PTO of prior art references identified by
Microsoft during the Microsoft litigation demonstrates that Mr. McAuley and Mr. Stone were
aware of the Microsoft litigation and the existence of material information regarding the
patentability of the 629 patent arising out of that litigation. |

67. This selective disclosure to the PTO also demonstrates that Mr. McAuley
and Mr. Stone made a deliberate decision to withhold material information from the PTO, and
thus demonstrates an intent to deceive.

68. The withholding of information material to patentability with intent to

deceive constitutes inequitable conduct, which renders the *629 patent unenforceable.

COMPLAINT FOR DECLARATORY JUDGMENT
11

C

H W

~N N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ase 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 12 of 35 PagelD #: 12

(- -’

PRAYER FOR RELIEF

WHEREFORE, Samsung prays for the following relief:

A. A declaration that Samsung has not infringed and is not infringing, either
directly or indirectly, or either literally or under the doctrine of equivalents, any claim of the *744
or ’629 patent;

B. A declaration that each claim of the 744 and 629 patents is invalid;

C. A declaration that each claim of the 744 and *629 patents is unenforceable.

D. An order that Defendant and each of its officers, employees, agents, alter
egos, attorneys, and any persons in active concert or participation with them are restrained and
enjoined from further prosecuting or instituting any action against Samsung claiming that either
the *744 or ’629 patent is valid, enforceable, or infringed, or from representing that Samsung’s
products or services infringe the *744 patent or the *629 patent;

E. A declaration that this case is exceptional under 35 U.S.C. § 285 and
awarding Samsung its attorneys’ fees and costs in connection with this case;

F. Such other and further relief as the Court deems just and proper.

DEMAND FOR JURY TRIAL

Samsung demands a trial by jury on all issues so triable.

Dated: January 12, 2011 WEIL, GOTSHAL & MANGES LLP

B, OHAM S

MATTHEW D. POWERS (Bar No. 104795)
matthew.powers@weil.com

STEVEN S. CHERENSKY (Bar No.168275)
steven.cherensky@weil.com

WEIL, GOTSHAL & MANGES LLP
Silicon Valley Office

201 Redwood Shores Parkway

Redwood Shores, CA 94065

Telephone: (650) 802-3000

Facsimile: (650) 802-3100

COMPLAINT FOR DECLARATORY JUDGMENT
12

0 N O wn kA WN

\O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

b;

COMPLAINT FOR DECLARATORY JUDGMENT

13

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 13 of 35 PagelD #: 13

o/

TIMOTHY DEMASI
tim.demasi@weil.com
STEVEN KALOGERAS
steven.kalogeras@weil.com
JULIAN MOORE
julian.moore@weil.com

WEIL, GOTSHAL & MANGES LLP
New York Office

767 5th Avenue

New York, NY 10153

Telephone: (212) 310-8000
Facsimile: (212) 310-8007

Attorneys for Plaintiffs

SAMSUNG ELECTRONICS CO., LTD.
SAMSUNG ELECTRONICS AMERICA,
INC.

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 14 of 35 PagelD #: 14

EXHIBIT A

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 15 of 35 PagelD #: 15

(-
US006826744B1
a2 United States Patent (10) Patent No.: US 6,826,744 B1
McAuley (45) Date of Patent: Nov. 30, 2004
(54) SYSTEM AND METHOD FOR GENERATING 6,026,433 A * 2/2000 D’Arlach et al. 707/10
WEB SITES IN AN ARBITRARY OBJECT 6,028998 A * 2/2000 Gloudeman et al. 717/108
FRAMEWORK 6,052,670 A * 4/2000 Johnsoncceeeevernnnne 705/27
6,199,082 B1 * 3/2001 Ferrel et al. oo T15/522
. . 6,219,680 B1 * 4/2001 Bernardo et al. 707/501.1
(75) Inventor: Aubrey McAuley, Austin, TX (US) 6226648 BL * 5/2001 Appleman et al. 707/102
. . 6,247,032 B1 * 6/2001 B do et al. 345/733
(73) Assignee: Vertical Computer Systems, Inc., 6,253,282 Bl * 6/2001 Gith e worr 709/203
Austin, TX (US) 6,308,188 B1 * 10/2001 Bernardo et al. 707/501.1
*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
y
i d justed 3
%atscnct lfsi)ége)nb;% (é;;;ijuse under 35 Lewandowski, Framework for Component—Based Client/
o ’ Server Computing, Mar. 1998, ACM, pp. 3-27.*
(21) Appl. No.: 09/410,334 * cited by examiner
(22) Filed: Oct. 1, 1999 Primary Examiner—John Chavis
. (74) Anorney, Agent, or Firm—Brown Raysman Millstein
gg glts ((I!] .. G(]gf;?{;; Felder & Steiner LLP
(58) Tield of Searchcccoo... 717/108; 707103 R; (7 ABSTRACT
715522 A system and method for generating computer applications
. in an arbitrary object framework. The method separates
(6) References Cited content, form, and function of the computer application so
U.S. PATENT DOCUMENTS that each may be accessed or modified separately. The
. method includes creating arbitrary objects, managing the
g’ggg’ggg 2 . gﬁggg gegllgf:t al """""""""" gig;‘;g; arbitrary objects throughout their life cycle in an object

5.804.554 A 471999 Lowery et al. 707/104.1 library, and deploytmg the arbitrary objects‘m.a design
5003894 A * 5/1999 Reneris 707/100 iramework for use in complex computer applications.
5,930,512 A * 7/1999 Boden et al.oeennee 717/102 '

5,956,736 A * 9/1999 Hanson et al. 345/760 53 Claims, 2 Drawing Sheets

CoNTENT |10

|

FUNCTIONALITY —= PRODUCT |+=— FORM

/ N N
14 16 12

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 16 of 35 PagelD #: 16

U.S. Patent

Nov. 30, 2004 Sheet 1 of 2
CONTENT |10
FIG. 1 FORM 12
(PRIOR ART)
FUNCTIONALITY K_+
PRODUCT~_16
FIG. 2 CONTENT |10
FUNCTIONALITY f—={ PRODUCT |« FORM
/ N N
14 16 12

20~

GENERATE ARBITRARY
OBJECTS

4

22~

MANAGE ARBITRARY
OBJECTS IN AN
OBJECT LIBRARY

Y

247

DEPLOY ARBITRARY
OBJECTS IN A
DESIGN FRAMEWORK

'

SOFTWARE
APPLICATION

FIG. 3

US 6,826,744 B1

GENERATE ARBITRARY
_0OBJECTS

30

\ 4

MANAGE ARBITRARY
OBJECTS [N AN
OBJECT LIBRARY

|_~32

y

DEPLOY ARBITRARY
OBJECTS IN A
CONTAINER PAGE

34

'

WEB SITE

FIG. 4

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 17 of 35 PagelD #: 17

US 6,826,744 B1

Sheet 2 of 2

Nov. 30, 2004

U.S. Patent

89~

3Svavivag
NOLLYWHONI SOE3M

S o1d
SIYIGNIL B3
gioLiotiotiol . 1
99~{|[TMH JIWNAL | fory 100110001000 | | 00 St NI 4 04 N33O0
<lwiy>
. —
Z9~] S33n0 09 ~ SWW4I0ud SLdINOS 86 S123rg80 qG
ISvaLVG 193 T3HS INFHNO00
>~ AN / ~ 7

S~ N\

0L

3SvBvIva QUOMSSYd
GNY J11408d d3SNn

™-0f

0a—_ STEYA WE0 [~ A— -

BL—1 STIBVINVA G3N1130-435N | SN0 G |7 NV

NLH JIRVNACQ
3L~ s3TvivA 03N1430-39vd | <> e
YL s31gviyvh 311108d-¥3sn |
¥3OVNVI L3380 SOB3M
om_
i
SUIC00 634 Ha I3NVHINI 30 AISHOUE
9 , LINGIINI 830
<> 3\% 147 WO X MMM/ /-y

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page

&

4

18 of 35 PagelD #: 18

US 6,826,744 B1

1
SYSTEM AND METHOD FOR GENERATING
WEB SITES IN AN ARBITRARY OBJECT
FRAMEWORK

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to systems and methods
for generating software applications in an arbitrary object
framework, and more specifically to systems and methods
for generating web sites in an arbitrary object framework.

BACKGROUND OF THE INVENTION

Three processes used to create complex software appli-
cations such as web sites are form, function, and content.
Form includes graphic designs, user interfaces, and graphi-
cal representations created by a designer or a group of
designers. Function includes logical functionality, which can
be software code created by a programmer or group of
programmers. Form includes informative content. Informa-
tive content can include written, recorded, or illustrated
documentation, such as photographs, illustrations, product
marketing material, and news articles. Content can be cre-
ated by writers, photographers, artists, reporters, or editors.

Currently, typical workflows dictate a serial approach to
integrating the form, function, and content to create complex
software applications such as a web site. The serial approach
is illustrated in FIG. 1. In FIG. 1, content 10 for a complex
software application can be chosen or created. Form 12 for
the presentation of content 10 can then be created. Func-
tionality 14 can then be generated using code to create the
complex software application (product 16) with the desired
information (content 10) and style (form 12). Using the
method illustrated in FIG. 1, every final component of the
complex software application must be manipulated by a
programmer before it is ready to be used. The exact work-
flow may vary from industry to industry or business to
business, but the basic restrictions are generally the same.

A traditional approach such as that illustrated in FIG. 1,
may create unwanted bottlenecks in the production process.
Each upstream revision, such as a change of content 10 or
design 12, forces a repetition of the entire process. As an
example, consider a web site for a large newspaper. The web
site may have a function that can include a file into the web
site. The marketing department may decide to change the
appearance of the header on the web site depending on the
browser of a user. In this case, a programmer may need to
invoke an external script or embed some specific logic
within the web site. Unfortunately, if there is a large web site
with thousands of pages of information stored on a server,
the programmer may have to change every one of the
thousands of pages. Therefore, a small change by the mar-
keting department can cause a large burden on the program-
ming department.

Prior art solutions have succeeded in partially separating
some of these functions. Notably, content management
databases and digital repositories provide a means of sepa-
rating content from form and function. Likewise, sophisti-
cated software development teams frequently employ inter-
nal code structuring techniques that can help to minimize
dependencies between interface designs and the functions
they access. However, content management tools typically
fail to address form/function issues. Therefore, there can still
be production slow-downs due to changes in form that
require a subsequent change in functionality.

SUMMARY OF THE INVENTION

Therefore a need exists for a method of generating
complex software applications that reduces or eliminates

10

15

20

40

45

50

65

2

production delays and the workload for programmers due to
changes in content and/or form. This method should separate
form, content and function so that each area can be inde-
pendently changed.

The present invention provides a system and method for
generating software applications that substantially elimi-
nates or reduces disadvantages and problems associated with
previously developed systems and methods used for gen-
eration of software applications. More specifically, the
present invention provides a method for generating software
applications in an arbitrary object framework. The method
of the present invention separates content, form, and func-
tion of the computer application so that each may be
accessed or modified independently. The method of this
invention includes creating arbitrary objects, managing the
arbitrary objects throughout their life cycle, and deploying
the arbitrary objects in a design framework for use in
complex computer applications.

The present invention provides an important technical
advantage in that content, form, and function are separated
from cach other in the generation of the software applica-
tion. Therefore, changes in design or content do not require
the intervention of a programmer. This advantage decreases
the time needed to change various aspects of the software
application. Consequently, cost is reduced and versatility is
increased.

The present invention provides another technical advan-
tage in that users are not required to use a proprietary
language to encode. These arbitrary objects may include
encapsulated legacy data, legacy systems and custom pro-
gramming logic from essentially any source in which they
may reside. Any language supported by the host system, or
any language that can be interfaced to by the host system,
can be used to generate an object within the application.

The present invention provides yet another technical
advantage in that it can provide a single point of adminis-
trative authority that can reduce security risks. For instance,
a large team of programmers can work on developing a large
group of arbitrary objects within the object library. If one
object has a security hole, an administrator can enter the
object library and disable that arbitrary object.

Still another technical advantage of the present invention
is that it enables syndication of the software application. As
noted above, functionality is separate from form and con-
tent. Consequently, a user can easily introduce a new look
for the application or syndicate the content and functionality
of the application to another group without having to recode
all of the objects needed to access content.

Another technical advantage of the present invention is
that it allows for personalization and profiling. With
personalization, the web presentation is tailored to the
specific needs of the web user based on the user’s past
history. Profiling also enables tailoring a web site or pre-
sentation. Profiling is dependent on environmental variables
such as browser type or IP address.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
and the advantages thereof may be acquired by referring to
the following description, taken in conjunction with the
accompanying drawings in which like reference numbers
indicate like features and wherein:

FIG. 1 illustrates a prior art workflow diagram for gen-
erating a software product;

FIG. 2 is a hierarchical workflow diagram for one
embodiment of the present invention;

Case 2:11-cv-00298-D_
|

F Documentl Filed 01/12/11 Pa

ge 19 of 35 PagelD #: 19

US 6,826,744 B1

3

FIG. 3 is a flow diagram for one embodiment of the
present invention;

FIG. 4 is a flow diagram for the embodiment illustrated in
FIG. 4.

FIG. 5 is a diagram illustrating the components of one
embodiment of the present invention used to generate web
sites; and

DETAILED DESCRIPTION OF THE
INVENTION

Preferred embodiments of the present invention are illus-
trated in the FIGURES, like numerals being used to refer to
like and corresponding parts of various drawings.

The present invention provides a system and method for
using a hierarchical, arbitrary object framework for gener-
ating software applications. The method separates content,
form, and function of the software application so that each
can be accessed or modified independently. The method of
this invention includes creating arbitrary objects, managing
the arbitrary objects in an object library, and deploying the
arbitrary objects in a design framework for use in computer
applications.

FIG. 2 is a hierarchical workflow diagram for the present
invention. Product 6 includes three contributing groups:
content 10, form 12, and functionality 14. Content 10 can
include written, recorded, or illustrated collateral such as
documentation, photographic illustrations, product market-
ing material, and articles. Form 12 can include graphic
designs such as user interfaces and graphical presentations.
Function 14 can include the logical functionality of software
code and scripts. The hierarchical framework separates
content 10, form 12, and functionality 14 to generate product
16. Product 16 may be a computer software application such
as a web site. Since content 10, design 12, and functionality
14 are scparate entities independent of each other, modifi-
cation in one group does not require corresponding modi-
fications in another group. Each group can contribute to
product 16 directly.

FIG. 3 is a flow diagram of one embodiment of the present
invention. At step 20, arbitrary objects can be generated.
Arbitrary objects may include any combination of applica-
tion logic and data desired by a developer. Arbitrary objects
can include text file pointers, binary file pointers, compiled
executables, scripts, data base queries, shell commands,
remote procedure calls, global variables, and local variables.
The arbitrary object framework allows arbitrary objects to
be referenced in a consistent manner regardless of the type.
Also, the arbitrary object framework allows local arbitrary
objects to either override global parent arbitrary objects or
inherit capabilities and data from the global parent, regard-
less of the type of the local arbitrary object.

At step 22, these arbitrary objects can be managed in an
object library. The life cycle of these objects may be
managed in a consistent manner using revision tracking, roll
back, and sign off. At step 24, objects can be deployed from
the object library into a design framework to create the
software application. Because the object pointers are not tied
in any way to the functionality of the object, an object of one
type can be easily replaced with another object of another
type. This eliminates a common problem in content man-
agement systems of the inability to preview content within
its appropriate location on the site or within the system.
Normally, a special system made for the purpose of pre-
viewing a piece of content would have to be hard-coded to
view the current approved live content for all other pieces
except the piece in question. This multiplies the design

10

20

25

30

35

40

45

65

4

problem, because changes in the design in the main site
change all previous templates. In the method of the present
invention, since all that exists within the framework is an
arbitrary object, the arbitrary object can be swapped for
another object that pulls the current piece content in ques-
tion.

Using one embodiment of this invention, for example, the
Features or Editorials page of a newspaper can be dynami-
cally replaced. The present invention can execute all the
normal objects that can be placed on the page to show the
content as it would appear, and then take the one piece in
question and replace it with a second object to be examined.
Objects may be deployed globally across an entire system or
locally within a specific area or sub-areas of a system.

FIG. 4 represents a flow diagram of another embodiment
of the present invention. At step 30, arbitrary objects can be
generated. At step 32, the arbitrary objects can be managed
in an object library. Arbitrary objects can be deployed in a
container page at step 34 to generate a web site,

Arbitrary objects may include any combination of appli-
cation logic and data desired by a developer. Arbitrary
objects can include text file pointers, binary file pointers,
compiled executable scripts, database queries, shell
commands, remote call procedures, global variables and
local variables. Arbitrary objects may also include cached
data queries and executables. The arbitrary object frame-
work allows arbitrary objects to be referenced in a consistent
manner regardless of the type of object. Also, the arbitrary
object framework allows local arbitrary objects to either
override global parent arbitrary objects or inherit capabilities
and data from the global parent arbitrary object.

Arbitrary objects can execute any function that can be run
or understood by the host computer system so that any
underlying functionality of the operating system used by the
host system can be defined as an object within the arbitrary
framework. Legacy data, document objects, CPI programs,
and database queries can all be encapsulated as objects
within the arbitrary framework. The arbitrary object can be
accessed by an arbitrary object name. Arbitrary objects are
not tied to their functionality. One arbitrary object can be
easily replaced with another arbitrary object of another type.

Arbitrary objects can be managed in an object library. The
life cycle of the arbitrary objects may be managed in a
consistent manner using revision tracking, roll-back, and
sign-off. The object library can include separate specialized
object libraries that can be administered separately by dif-
ferent developers in each area. For instance, for a web site
used to generate a newspaper, there may be an advertising
object library that is physically distinguished from other
object libraries, such as an object library for sports or an
object library for news. Therefore, queries for advertising
can be created without impacting any other area of the web
site.

Arbitrary objects can be deployed from the object library
into a container page to generate the web site, The container
page is a truly dynamic page. Unlike prior art methods,
where a static copy of information is often pushed over a
firewall to a live web site, the present invention incorporates
object caching. An arbitrary object can be cached, rather
than caching an entire page. When the arbitrary object is
cached, certain elements of the arbitrary object can be
specified as dynamic elements while others can be specified
as static elements. Therefore, a web site can contain multiple
dynamic web pages wherein objects used to construct the
form, function, and content of the web page can contain
dynamic elements and static elements. This provides flex-

Case 2:11-cv-00298-D
o

F Documentl Filed 01/12/11 Pa

ge 20 of 35 PagelD #: 20

US 6,826,744 B1

5

ibility for what needs to be computed or processed at the
time that someone, such as a web user, accesses the web
page.

FIG. 5 shows the components of one embodiment of the
present invention used to generate web sites. A user with
web browser 40 can connect to web server 44 through
internet or intranet 42. Web server 44 can access static
HTML web documents 46 as well as dynamic HTML
documents 52. Dynamic HTML web documents 52 can be
created using Web OS Object Manager 50. Dynamic HTML
Web document 52 can include document objects 56, shell
scripts 58, CGI programs 60, and database queries 62.
Document objects 56, shell scripts 58, CGI programs 60, and
database queries 62 can be stored in WebOS object library
54. Database queries 62 can result from extracting informa-
tion from WebOS Information Database 68 and inputting the
information into Dynamic HTML Web Template 66.

User Profile and Password Database 70 can provide web
sites or systems with a means to take advantage of customer
profiles to look at customer preferences or history, and
dynamically replace a website object with another object
that contains content information matching the user profile
or preferences. Thus, the web site or system can dynamically
allocate the correct content for a customer. This is important
in commerce applications. A customer’s buying history can
be examined for trend items and the customer presented
products that match his or her profile. Present personaliza-
tion systems are written purely in custom code and require
an inordinately large amount of time to construct the custom
applications necessary to interpret the preferences of an
individual user.

The method of present invention can perform object
caching. This means that an object can be cached instead of
caching an entire page. Object caching permits specifying
elements of an object to be dynamic and elements of the
object to be static. A system user can thus have the flexibility
of specifying what needs to be computed or processed at the
time a user accesses the system versus trying to anticipate
and calculate in advance and cache and post the object over
to a server.

Many functions are stored within an object library on an
arbitrary object framework such that those functions can be
accessed by name arbitrarily. This is in contrast to a tradi-
tional model where the function must be explicitly invoked
with all its parameters included. Objects may execute any
function that can be run or understood by the host computer
system so that any underlying functionality of the host’s
operating system can be defined as an object within the
framework of the method of the present invention. The
object library can contain legacy data, document objects,
CTI programs, and/or database queries, that can all be
encapsulated as objects within a framework and accessed
from within a design. All that is needed is the name of the
function in order to access the function.

Objects can be controlled to perform functions based on
a profile of an individual and environmental variables, such
as the type of browser, the country of the individual or the
individual’s TP address. A specific competitor may be
blocked from seeing certain objects on a web page created
using the method of the present invention.

A critical distinction between the present invention and
previous object oriented development systems is the need to
know how a function can be called and what to expect it to
return, rather than just knowing the function’s name. This
means that typically the systemn administrator calls the name
of an object and passes parameters to the object. Any and all

40

55

6

variable information or environmental information can be
available to every object. The environment space can be
available to all objects executed and an object can arbitrarily
take advantage of any of the.environmental information,
depending on the design of the object.

Different areas of a web site can be administered sepa-
rately by different developers in each of these areas. An
advertising object library can be physically distinguished
from other object libraries, such as those for sports and
news. An advertising programmer can create new queries for
the advertising section of a site without having to worry
about affecting other areas of the site.

The present invention allows different object types to be
interchangeable. The object name is essentially just another
variable in the environment. Also different variables can also
be interchangeable. The object framework can be designed
such that objects and variables can be kept in the same name
space, every object can have access to all the environmental
settings, and every object pointer can potentially be another
name in the name space.

Object caching, rather than page caching can be imple-
mented with the present invention. These objects can be
stored in an object library. An object in the object library can
be a file, a global variable, an executable script, a database
query, a cached executable or a cached database query. This
means that the results of a query can be stored in a static file
using the object name as long as the static file has not
expired. This is important if thc query is a lengthy query.

A technical advantage of the present invention is that it
allows for syndication. Syndication enables the content and
function of a particular web site to be syndicated to another
web site or web presentation. For instance, if a company
would like to roll out a new look or syndicate its content and
functionality to another business, this can be easily accom-
plished using the present invention. Since there is no appli-
cation code resident in a web page itself, the same data can
be repackaged in a number of different ways across multiple
sites. There is no need to recode the design elements or
design pages on the web site or recode any functions that are
needed to access the content of the website. The present
invention enables electronic store fronts to sell from a single
source with a unique interface design. Also, newspaper
chains can distribute international and national content from
a single source and add local content themselves.

Another technical advantage of the present invention is
that it allows for a single point of control when developing
a web site. Therefore, if a large team of developers are
working on a site, and multiple persons are contributing
arbitrary objects to the overall arbitrary framework, then if
one of the arbitrary objects has a security hole in it, the
arbitrary object can be easily accessed in the object library
and disabled. This security feature can immediately shut
down that function across the entire web site and patch the
security hole.

The present invention provides still another technical
advantage in that it allows for personalization. Personaliza-
tion enables companies that want to take advantage of a
customer profile to look at the customer’s preferences or
histories and deploy information to the web site specific to
the customer.

Another technical advantage of the present invention
allows for profiling. Profiling enables control over the arbi-
trary objects presented in a web site based on a profile of the
individual accessing the web site, Profiling entails determin-
ing different environmental variables such as the type of
browser hitting the site, the country of the individual access-

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Pag

-

e 21 of 35 PagelD #: 21

US 6,826,744 B1

7

ing the site, and/or the individual’s IP address. This can
enable a company to present specific information to the
individual based on the individual’s environmental vari-
ables.

Although the present invention has been described in
detail herein with reference to the illustrative embodiments,
it should be understood that the description is by way of
example only and is not to be construed in a limiting sense.
It is to be further understood, therefore, that numerous
changes in the details of the embodiments of this invention
and additional embodiments of this invention will be appar-
ent to, and may be made by, persons of ordinary skill in the
art having reference to this description. It is contemplated
that all such changes and additional embodiments are within
the spirit and true scope of this invention as claimed below.

What is claimed is:

1. A method for generating a computer application on a
host system in an arbitrary object framework that separates
a content of said computer application, a form of said
computer application and a functionality of said computer
application, said method comprising:

creating arbitrary objects with corresponding arbitrary

names of various object types for generating said
content of said computer application, said form of said
computer application, and said functionality of said
computer application;

managing said arbitrary objects in an object library; and

deploying said arbitrary objects from said object library

into a design framework to create said computer appli-
cation.

2. The method of claim 1, wherein said computer appli-
cation is a web site.

3. The method of claim 1, wherein said various object
types comprise text file pointers.

4. The method of claim 1, wherein said various object
types comprise binary file pointers.

5. The method of claim 1, wherein said various object
types comprise compiled executables.

6. The method of claim 1, wherein said various object
types comprise shell commands.

7. The method of claim 1, wherein said various object
types comprise remote procedure calls.

8. The method of claim 1, wherein said various object
types comprise global variables.

9. The method of claim 1, wherein said various object
types comprise cached executables.

10. The method of claim 1, wherein said various object
types comprise cached database queries.

11. The method of claim 1, wherein said various object
types comprise local variables.

12. The method of claim 1, wherein said various object
types comprise local objects and global parent objects.

13. The method of claim 12, wherein said local objects
can override said global parent objects.

14. The method of claim 12, wherein said local objects
inherit data from said global parent objects.

15. The method of claim 12, wherein said local objects
inherit capabilities from said global parent objects.

16. The method of claim 1, further comprising deploying
arbitrary objects globally.

17. The method of claim 1, further comprising deploying
arbitrary objects locally.

18. The method of claim 1, wherein the step of managing
said arbitrary objects further comprises using revision track-
ing.
19. The method of claim 1, wherein the step of managing
said arbitrary objects further comprises using rollback.

10

15

20

25

30

40

50

60

65

8

20. The method of claim 1, wherein the step managing
further comprises using signoff.

21. The method of claim 1, wherein said arbitrary objects
can be accessed and deployed into said design framework
using said corresponding arbitrary names.

22. The method of claim 1, further comprising swapping
an arbitrary object of one type with an arbitrary object of
another type.

23. The method of claim 1, further comprising caching
objects.

24. The method of claim 23, wherein the step of caching
objects further comprises specifying some elements of an
arbitrary object to be dynamic elements and specifying some
elements of said arbitrary object to be static elements.

25. The method of claim 1, further comprising generating
arbitrary objects in a programming language that is com-
patible or supported by said host system.

26. A method for generating a web site on a host system
in an arbitrary object framework that separates a content of
said web site, a form of said web site, and a functionality of
said web site, said method comprising:

creating arbitrary objects with corresponding arbitrary

names of various object types for generating said
content of said web site, said form of said web site, and
said functionality of said web site; managing said
arbitrary objects in an object library; and

deploying said arbitrary objects from said object library to

a container page to create said web site.

27. The method of claim 26, wherein said various object
types comprise text file pointers.

28. The method of claim 26, wherein said various object
types comprise binary file pointers.

29. The method of claim 26, wherein said various object
types comprise compiled executables.

30. The method of claim 26, wherein said various object
types comprise shell commands.

31. The method of claim 26, wherein said various object
types comprise remote procedure calls.

32. The method of claim 26, wherein said various object
types comprise global variables.

33. The method of claim 26, wherein said various object
types comprise local variables.

34. The method of claim 26, wherein said various object
types comprise local objects and global parent objects.

35. The method of claim 34, wherein said local objects
can override said global parent objects.

36. The method of claim 34, wherein said local objects
inherit data from said global parent objects.

37. The method of claim 34, wherein said local objects
inherit capabilities from said global parent objects.

38. The method of claim 26, further comprising deploying
arbitrary objects globally.

39. The method of claim 26, further comprising deploying
arbitrary objects locally.

40. The method of claim 26, wherein the step of managing
said arbitrary objects further comprises using revision track-
ing.

41. The method of claim 26, wherein the step of managing
said arbitrary objects further comprises using rollback.

42. The method of claim 26, wherein the step managing
said arbitrary objects further comprises using signoff,.

43. The method of claim 26, wherein said arbitrary objects
can be accessed and deployed into said container page using
said corresponding arbitrary names.

44, The method of claim 26, further comprising swapping
an arbitrary object of one type with an arbitrary object of
another type.

.

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 22 of 35 PagelD #: 22

US 6,826,744 B1

9

45. The method of claim 26, further comprising caching
objects.

46. The method of claim 45, wherein the step of caching
objects further comprises specifying some elements of an
arbitrary object to be dynamic elements and specifying some
elements of said arbitrary object to be static elements.

47. The method of claim 26, further comprising generat-
ing arbitrary objects in a programming language that is
compatible or supported by said host system.

48. The method of claim 26, wherein said various object
types comprise cached executable.

49. The method of claim 25, wherein said various object
types comprise cached database queries.

5

10

10

50. The method of claim 26, further comprising profiling
of a user accessing said web site.

51. The method of claim 26, further comprising person-
alization of said web site for a user accessing said web site.

52. The method of claim 26, wherein said container page
comprises arbitrary objects with both dynamic and static
clements.

53. The method of claim 26, wherein said content of said
web site and said function of said web site can be syndicated.

* ok * ok *

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 23 of 35 PagelD #: 23

EXHIBIT B

Case 2:11-cv-00298- DF Document 1 Filed 01/12/11 Page 24 of 35 PagelD #:. 24

(3
a2z United States Patent (10) Patent No.: US 7,716,629 B2
McAuley @s) Date of Patent: *May 11, 2010
(54) SYSTEM AND METHOD FOR GENERATING 6026433 A * 22000 D'Arlachetal. ... 709/217
WEB SITES IN AN ARBITRARY OBJECT 6028998 A * 2/2000 Gloudemanetal. 717/108
FRAMEWORK 6,052,670 A * 4/2000 e 705127
4 6,199,082 BI* 3/2001 Ferrel efal. ...ccoconnn. 715/522
(75) Inventor: Aubrey McAuley, Austin, TX (US) 6,219,680 B1* 4/2001 Bernardoetal. 715/501.1
. . 6,226,648 B1* 5/2001 Applemanetal. 707/102
(73) Assignee: Vertical Computer Systems, Inc., Fort 6,247,032 BL* 6/2001 Bernardo etal. «........... 715/530

Worth, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (Continued)
U.8.C. 154(b) by 613 days. FOREIGN PATENT DOCUMENTS
Thi.s patent is subject to a terminal dis- CA 2110970 6/1995
claimer.
(21) Appl. No.: 10/999,911
OTHER PUBLICATIONS
iled: A 00
(22) Filed Nov. 29,2004 Adhesive Media, Inc., Dynamic Web Management Tools, WebOS/
. . NewsFlash/SiteFlash, Assorted Documents, pp. MSVERT002
(65) Prior Publication Data through MSVERT126.
US 2005/0154486 Al Jul. 14,2005

(Continued)

Related U.S. Application Data Primary Examiner—John Chavis

(63) Continuation of application No. 09/410,334, filed on
Oct. 1, 1999, now Pat. No. 6,826,744.

(74) Attorney, Agent, or Firm—Scheef & Stone, L.L.P,; Jack
D. Stone, Ir.

(51) Int.CL (57 ABSTRACT

GOGF 9/45 (2006.01)
52) US.Cl eoooeeseseesseesssrsressn 7171100 . o
Essg Fleld of Classification Search 7171106, A method and system for generating a computer application

717/100, 149
See application file for complete search history.

is disclosed. The computer application is generated on a host
system in an arbitrary object framework that separates a con-
tent of said computer application, a form of said computer

(56) References Cited application and a functionality of said computer application.
Arbitrary objects are created with corresponding arbitrary
U.S. PATENT DOCUMENTS names of various object types for generating said content of
5544302 A * /1996 NEUYEN covovevvverssseris 715/837 Said computer application, said form of said computer appli-
5555365 A * 9/1996 Selbyetal. 715/765 cation, and said functionality of said computer application.
5,894,554 A * 4/1999 Loweryetal. 709/203 ~ The arbitrary objects are managed in an object library. The
5895476 A 4/1999 Orr et al. arbitrary objects are deployed from said object library into a
5903,804 A * 5/1999 Renerisoooooomsrri. 7077100 design framework to create said computer application.
5,930,512 A * 7/1999 Bodenetal. 7177102
5,956,736 A * 9/1999 Hansonetal. 715/513 32 Claims, 2 Drawing Sheets
GENERATE ARBITRARY | ~30
OBJECTS
MANAGE ARBITRARY 32
OBJECTS N AN o
OBJECT LIBRARY
DEPLOY ARBITRARY
OBJECTS IN A ~-34
CONTAINER PAGE

WEB SITE

Case 2:11-cv-00298-DF

- Document 1 Filed 01/12/11 Pag

e 25 of 35 PagelD #: 25

US 7,716,629 B2
Page 2

U.S. PATENT DOCUMENTS

6,253,282 B1* 6/2001 Gish ...ccoovvvneerirvrnnerenen 711/113
6,308,188 B1* 10/2001 Bernardo et al. 715/530
6,553,563 B2 4/2003 Ambrose et al.

6,574,635 B2 6/2003 Stauber et al.

7,284,193 Bl 10/2007 Lindhorst

2002/0147805 Al* 10/2002 Leshemetal. 709/223
2002/0161734 Al 10/2002 Stauber et al.

OTHER PUBLICATIONS

Apple Computer, Inc., Inc., “The WebObjects Dynamic Elements
Reference,” hitp://developer.apple.com/ Documentation/
WebObjects/Reference/DynamicElements/DynamicElements.pdf,
Jan. 10, 2006, WebObjects and the Enterprise Objects Framework,
Chapt. 16.

Banick, et al.., “Using Microsoft FrontPage 98,” Que Corporation
(1998), Microsoft FrontPage, Chapt. 3.

Burke, “Web Databases with Cold Fusion 3,” The McGraw-Hill
Companies, Inc. (1998), Chapts. 1, 6,9, and 15.

Buyens, “Running Microsoft FrontPage 98,” Microsoft Press, Jim
Buyens (1997), Microsoft FrontPage 98, Chapt. 4.

Darmell, et al., Using Macromedia Dreamweaver 1.2, Que (1998),
Macromedia Dreamweaver, Chapts. 8 and 12.

Forta, “The ColdFusion 4.0 Web Application Construction Kit,” Que
(1998), ColdFusion 4.0, Chapts. 10 through 14.

Gray, “Web Publishing with Adobe PageMill 2,” Ventana Commu-
nications Group, Inc., (1997), Adobe PageMilll, Chapts. 1 and 3.
Howell, “The Complete Idiot’s Guide to Microsoft Visual InterDev,”
Que Corporation (1997), Microsoft Visual InterDev, Chapt. 4.
Jones, et al.,, “Cascading Style Sheets: A Primer,” MIS: Press, Big
Tent Media Labs, LLC (1998), Dynamic HTML and Cascading Style
Sheets, Chapt. 4.

Martin, et al., “Object-Oriented Methods: A Foundation,” P T R
Prentice Hall, (1995), Object-Oriented Programming Art, Chapts. 1
through 3.

Meyer, “Object-Oriented Software Construction,” 2nd Ed., Prentice
Hall PTR, (1997), Object-Oriented Programming Art, Chapt. 2.
Pollizi, “Separating Form from Function: The StarView Experience,”
Astronomical Data Analysis Software and Systems 111, ASP Confer-
ence Series, vol. 61, pp. 88-91 (1994).

Prague, etal., “Access 97 Bible,” IDG Books Worldwide, Inc. (1997),
Microsoft Access 97, Chapts. 1 through 9, (Part 1).

Prague, etal., “Access 97 Bible,” IDG Books Worldwide, Inc. (1997),
Microsoft Access 97, Chapts. 10 through18, (Part 2).

Prague, etal., “Access 97 Bible,” IDG Books Worldwide, Inc. (1997),
Microsoft Access 97, Chapts. 19 through 26, (Part 3).

Prague, etal., “Access 97 Bible,” IDG Books Worldwide, Inc. (1997),
Microsoft Access 97, Chapts. 27 through 33, and Appendices (Part4).
Webster, “NetObjects Fusion Handbook,” Hayden Books (1996),
Webster, NetObjects Fusion, Chapts. 9 through 13.

* cited by examiner

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 26 of 35 PagelD #: 26

~ -

U.S. Patent May 11, 2010 Sheet 1 of 2 US 7,716,629 B2

CONTENT 10

4

FIG. 1 FORM 12
(PRIOR ART)

4

FUNCTIONALITY _14

PRODUCT ~_ 16

FIG. 2 CONTENT |10

FUNCTIONALITY PRODUCT | FORM
’ N\ N
14 16 12
20~ GENERATE ARBITRARY GENERATE ARBITRARY |- 30
OBJECTS OBJECTS
29 MANAGE ARBITRARY MANAGE ARBITRARY 32
™ OBIJECTS IN AN OBECTS INAN }
OBJECT LIBRARY ORJECT LIBRARY
DEPLOY ARBITRARY DEPLOY ARBITRARY
24 OBJECTS IN A OBJECTS IN A ~ 34
DESIGN FRAMEWORK CONTAINER PAGE
i v St
N
FIG. 4

FIG. 8

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 27 of 35 PagelD #: 27

US 7,716,629 B2

Sheet 2 of 2

May 11, 2010

U.S. Patent

ISVRVIYO
g9~ NOIVWNONI Sogam
)\I .
G OId
SIAVIgNIL B3N
0101101101101 : T4
Q> —
29~J s3I0 | g~ smvuooud SIS |-gg SIIB0 | -95
™ wvvva ~ s [wawngoa [~
¥S
N\ /7 ewan oweo somm
08| STEVIvA V8019 7~ -
STIGVIYVA QINLS30-¥3SN SININNJ00 BIM
8L T e "
¥~ s1avigva QNLI30-39vd <twi> 4350
YL~ sgvigvn 31130ud-¥39N
, IOV 103180 SOEIM
I
—_—
SININND00 E3M . xw%m LINVHINI 30
<> pp A\ PO 14

—

—T

0L

JSVEVIYO QUOMSSVd
ONY 311304d Y30

™-0F

woox"mmh/ /.0y

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 28 of 35 PagelD #: 28

\

US 7,716,629 B2

1

SYSTEM AND METHOD FOR GENERATING
WEB SITES IN AN ARBITRARY OBJECT
FRAMEWORK

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 09/410,334, filed Oct. 1, 1999, now U.S. Pat. No. 6,826,
744.

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to systems and methods for
generating software applications in an arbitrary object frame-
work, and more specifically to systems and methods for gen-
erating web sites in an arbitrary object framework.

BACKGROUND OF THE INVENTION

Three processes used to create complex software applica-
tions such as web sites are form, function, and content. Form
includes graphic designs, user interfaces, and graphical rep-
resentations created by a designer or a group of designers.
Function includes logical functionality, which can be soft-
ware code created by a programmer or group of program-
mers. Form includes informative content. Informative con-
tent can include written, recorded, or illustrated
documentation, such as photographs, illustrations, product
marketing material, and news articles. Content can be created
by writers, photographers, artists, reporters, or editors.

Currently, typical workflows dictate a serial approach to
integrating the form, function, and content to create complex
software applications such as a web site. The serial approach
is illustrated in FIG. 1. In FIG. 1, content 10 for a complex
software application can be chosen or created. Form 12 for the
presentation of content 10 can then be created. Functionality
14 can then be generated using code to create the complex
software application (product 16) with the desired informa-
tion (content 10) and style (form 12). Using the method
illustrated in FIG. 1, every final component of the complex
software application must be manipulated by a programmer
before it is ready to be used. The exact workflow may vary
from industry to industry or business to business, but the basic
restrictions are generally the same.

A traditional approach such as that illustrated in FIG. 1,
may create unwanted bottlenecks in the production process.
Each upstream revision, such as a change of content 10 or
design 12, forces a repetition of the entire process. As an
example, consider a web site for a large newspaper. The web
site may have a function that can include a file into the web
site. The marketing department may decide to change the
appearance of the header on the web site depending on the
browser of a user. In this case, a programmer may need to
invoke an external script or embed some specific logic within
the web site. Unfortunately, if there is a large web site with
thousands of pages of information stored on a server, the
programmer may have to change every one of the thousands
of pages. Therefore, a small change by the marketing depart-
ment can cause a large burden on the programming depart-
ment.

Prior art solutions have succeeded in partially separating
some of these functions. Notably, content management data-
bases and digital repositories provide a means of separating
content from form and function. Likewise, sophisticated soft-
ware development teams frequently employ internal code
structuring techniques that can help to minimize dependen-
cies between interface designs and the functions they access.

20

25

30

35

40

45

50

55

60

65

2

However, content management tools typically fail to address
form/function issues. Therefore, there can still be production
slow-downs due to changes in form that require a subsequent
change in functionality.

SUMMARY OF THE INVENTION

Therefore a need exists for a method of generating complex
software applications that reduces or eliminates production
delays and the workload for programmers due to changes in
content and/or form. This method should separate form, con-
tent and function so that each area can be independently
changed.

The present invention provides a system and method for
generating software applications that substantially eliminates
or reduces disadvantages and problems associated with pre-
viously developed systems and methods used for generation
of software applications. More specifically, the present inven-
tion provides a method for generating software applications
in an arbitrary object framework. The method of the present
invention separates content, form, and function of the com-
puter application so that each may be accessed or modified
independently. The method of this invention includes creating
arbitrary objects, managing the arbitrary objects throughout
their life cycle, and deploying the arbitrary objects in a design
framework for use in complex computer applications.

The present invention provides an important technical
advantage in that content, form, and function are separated
from each other in the generation of the software application.
Therefore, changes in design or content do not require the
intervention of a programmer. This advantage decreases the
time needed to change various aspects of the software appli-
cation. Consequently, cost is reduced and versatility is
increased,

The present invention provides another technical advan-
tage in that users are not required to use a proprietary lan-
guage to encode. These arbitrary objects may include encap-
sulated legacy data, legacy systems and custom programming
logic from essentially any source in which they may reside.
Any language supported by the host system, or any language
that can be interfaced to by the host system, can be used to
generate an object within the application.

The present invention provides yet another technical
advantage in that it can provide a single point of administra-
tive authority that can reduce security risks. For instance, a
large team of programmers can work on developing a large
group of arbitrary objects within the object library. If one
object has a security hole, an administrator can enter the
object library and disable that arbitrary object.

Still another technical advantage of the present invention is
that it enables syndication of the software application. As
noted above, functionality is separate from form and content.
Consequently, a user can easily introduce a new look for the
application or syndicate the content and functionality of the
application to another group without having to recode all of
the objects needed to access content.

Anothertechnical advantage of the present invention is that
it allows for personalization and profiling. With personaliza-
tion, the web presentation is tailored to the specific needs of
the web user based on the user’s past history. Profiling also
enables tailoring a web site or presentation. Profiling is
dependent on environmental variables such as browser type
or IP address.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
and the advantages thereof may be acquired by referring to

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Pag

w

e 29 of 35 PagelD #: 29
-/

US 7,716,629 B2

3

the following description, taken in conjunction with the
accompanying drawings in which like reference numbers
indicate like features and wherein:

FIG. 1 illustrates a prior art workflow diagram for gener-
ating a software product;

FIG. 2 is a hierarchical workflow diagram for one embodi-
ment of the present invention;

FIG. 3 is a flow diagram for one embodiment of the present
invention;

FIG. 4 is a flow diagram for another embodiment of the
present invention; and

FIG. 5 is a diagram illustrating the components of one
environment of the present invention used to generate web
sites.

DETAILED DESCRIPTION OF THE INVENTION

Preferred embodiments of the present invention are illus-
trated in the FIGURES, like numerals being used to refer to
like and corresponding parts of various drawings.

The present invention provides a system and method for
using a hierarchical, arbitrary object framework for generat-
ing software applications. The method separates content,
form, and function of the software application so that each
can be accessed or modified independently. The method of
this invention includes creating arbitrary objects, managing
the arbitrary objects in an object library, and deploying the
arbitrary objects in a design framework for use in computer
applications.

FIG. 2 is a hierarchical workflow diagram for the present
invention. Product 16 includes three contributing groups:
content 10, form 12, and functionality 14. Content 10 can
include written, recorded, or illustrated collateral such as
documentation, photographic illustrations, product market-
ing material, and articles. Form 12 can include graphic
designs such as user interfaces and graphical presentations.
Function 14 can include the logical functionality of software
code and scripts. The hierarchical framework separates con-
tent 10, form 12, and functionality 14 to generate product 16.
Product 16 may be a computer software application such as a
web site. Since content 10, design 12, and functionality 14 are
separate entities independent of each other, modification in
one group does not require corresponding modifications in
another group. Each group can contribute to product 16
directly.

FIG. 3 is a flow diagram of one embodiment of the present
invention. At step 20, arbitrary objects can be generated.
Arbitrary objects may include any combination of application
logic and data desired by a developer. Arbitrary objects can
include text file pointers, binary file pointers, compiled
executables, scripts, data base queries, shell commands,
remote procedure calls, global variables, and local variables.
The arbitrary object framework allows arbitrary objects to be
referenced in a consistent manner regardless of the type. Also,
the arbitrary object framework allows local arbitrary objects
to either override global parent arbitrary objects or inherit
capabilities and data from the global parent, regardless of the
type of the local arbitrary object.

At step 22, these arbitrary objects can be managed in an
object library. The life cycle of these objects may be managed
in a consistent manner using revision tracking, roll back, and
sign off. At step 24, objects can be deployed from the object
library into a design framework to create the sofiware appli-
cation. Because the object pointers are not tied in any way to
the functionality of the object, an object of one type can be
easily replaced with another object of another type. This
eliminates a common problem in content management sys-

—_

0

20

40

45

65

4

tems of the inability to preview content within its appropriate
location on the site or within the system. Normally, a special
system made for the purpose of previewing a piece of content
would have to be hard-coded to view the current approved live
content for all other pieces except the piece in question. This
multiplies the design problem, because changes in the design
in the main site change all previous templates. In the method
of'the present invention, since all that exists within the frame-
work is an arbitrary object, the arbitrary object can be
swapped for another object that pulls the current piece content
in question.

Using one embodiment of this invention, for example, the
Features or Editorials page of a newspaper can be dynami-
cally replaced. The present invention can execute all the nor-
ma] objects that can be placed on the page to show the content
as it would appear, and then take the one piece in question and
replace it with a second object to be examined. Objects may
be deployed globally across an entire system or locally within
a specific area or sub-areas of a system.

FIG. 4 represents a flow diagram of another embodiment of
the present invention. At step 30, arbitrary objects can be
generated. At step 32, the arbitrary objects can be managed in
an object library. Arbitrary objects can be deployed in a con-
tainer page at step 34 to generate a web site.

Arbitrary objects may include any combination of appli-
cation logic and data desired by a developer. Arbitrary objects
can include text file pointers, binary file pointers, compiled
executable scripts, database queries, shell commands, remote
call procedures, global variables and local variables. Arbi-
trary objects may also include cached data queries and
executables. The arbitrary object framework allows arbitrary
objects to be referenced in a consistent manner regardless of
the type of object. Also, the arbitrary object framework allows
local arbitrary objects to either override global parent arbi-
trary objects or inherit capabilities and data from the global
parent arbitrary object.

Arbitrary objects can execute any function that can be run
orunderstood by the host computer system so that any under-
lying functionality of the operating system used by the host
system can be defined as an object within the arbitrary frame-
work, Legacy data, document objects, CGI programs, and
database queries can all be encapsulated as objects within the
arbitrary framework. The arbitrary object can be accessed by
anarbitrary object name. Arbitrary objects are not tied to their
functionality. One arbitrary object can be easily replaced with
another arbitrary object of another type.

Arbitrary objects can be managed in an object library. The
life cycle of the arbitrary objects may be managed in a con-
sistent manner using revision tracking, roll-back, and sign-
off. The object library can include separate specialized object
libraries that can be administered separately by different
developers in each area. For instance, for a web site used to
generate a newspaper, there may be an advertising object
library that is physically distinguished from other object
libraries, such as an object library for sports or an object
library for news. Therefore, queries for advertising can be
created without impacting any other area of the web site.

Arbitrary objects can be deployed from the object library
into a container page to generate the web site. The container
page is a truly dynamic page. Unlike prior art methods, where
a static copy of information is often pushed over a firewall to
a live web site, the present invention incorporates object
caching. An arbitrary object can be cached, rather than cach-
ing an entire page. When the arbitrary object is cached, cer-
tain elements of the arbitrary object can be specified as
dynamic elements while others can be specified as static
elements. Therefore, a web site can contain multiple dynamic

Case 2:11-cv-00298-DF Document1 Filed 01/12/11 Page 30 of 35 PagelD #: 30

-/

US 7,716,629 B2

5

web pages wherein objects used to construct the form, func-
tion, and content of the web page can contain dynamic ele-
ments and static elements. This provides flexibility for what
needs to be computed or processed at the time that someone,
such as a web user, accesses the web page.

FIG. 5 shows the components of one environment of the
present invention used to generate web sites. A user with web
browser 40 can connect to web server 44 through internet or
intranet 42. Web server 44 can access static HTML web
documents 46 as well as dynamic HTML documents 52.
Dynamic HTML web documents 52 can be created using
WebOS Object Manager 50. Dynamic HTMIL. Web document
52 can include document objects 56, shell scripts 58, CGI
programs 60, and database queries 62. Document objects 56,
shell scripts 58, CGI programs 60, and database queries 62
can be stored in WebOS object library 54. Database queries
62 can result from extracting information from WebOS Infor-
mation Database 68 and inputting the information into
Dynamic HTML Web Template 66.

User Profile and Password Database 70 can provide web
sites or systems with a means to take advantage of customer
profiles to look at customer preferences or history, and
dynamically replace a website object with another object that
contains content information matching the user profile or
preferences. Thus, the web site or system can dynamically
allocate the correct content for a customer. This is important
in commerce applications. A customer’s buying history can
be examined for trend items and the customer presented prod-
ucts that match his or her profile. Present personalization
systems are written purely in custom code and require an
inordinately large amount of time to construct the custom
applications necessary to interpret the preferences of an indi-
vidual user.

The method of present invention can perform object cach-
ing. This means that an object can be cached instead of cach-
ing an entire page. Object caching permits specifying ele-
ments of an object to be dynamic and elements of the object
to be static. A system user can thus have the flexibility of
specifying what needs to be computed or processed at the
time a user accesses the system versus trying to anticipate and
calculate in advance and cache and post the object overto a
server.

Many functions are stored within an object library on an
arbitrary object framework such that those functions can be
accessed by name arbitrarily. This is in contrast to a tradi-
tional model where the function must be explicitly invoked
with all its parameters included. Objects may execute any
function that can be run or understood by the host computer
system so that any underlying functionality of the host’s
operating system can be defined as an object within the frame-
work of the method of the present invention. The object
library can contain legacy data, document objects, CGI pro-
grams, and/or database queries, that can all be encapsulated
as objects within a framework and accessed from within a
design. All that is needed is the name of the function in order
to access the function.

Objects can be controlled to perform functions based on a
profile of an individual and environmental variables, such as
the type of browser, the country of the individual or the
individual’s IP address. A specific competitor may be blocked
from seeing certain objects on a web page created using the
method of the present invention.

A critical distinction between the present invention and
previous object oriented development systems is the need to
know how a function can be called and what to expect it to
return, rather than just knowing the function’s name. This
means that typically the system administrator calls the name

20

25

30

3s

40

45

50

65

6

of an object and passes parameters to the object. Any and all
variable information or environmental information can be
available to every object. The environment space can be avail-
able to all objects executed and an object can arbitrarily take
advantage of any of the environmental information, depend-
ing on the design of the object.

Different areas of a web site can beadministered separately
by different developers in each of these areas. An advertising
object library can be physically distinguished from other
object libraries, such as those for sports and news. An adver-
tising programmer can create new queries for the advertising
section of a site without having to worry about affecting other
areas of the site.

The present invention allows different object types to be
interchangeable. The object name is essentially just another
variable in the environment. Also different variables can also
be interchangeable. The object framework can be designed
such that objects and variables can be kept in the same name
space, every object can have access to all the environmental
settings, and every object pointer can potentially be another
name in the name space.

Object caching, rather than page caching can be imple-
mented with the present invention. These objects can be
stored in an object library. An object in the object library can
be a file, a global variable, an executable script, a database
query, a cached executable or a cached database query. This
means that the results of a query can be stored in a static file
using the object name as long as the static file has not expired.
This is important if the query is a lengthy query.

A technical advantage of the present invention is that it
allows for syndication. Syndication enables the content and
function of a particular web site to be syndicated to another
web site or web presentation. For instance, if a company
would like to roll out a new look or syndicate its content and
functionality to another business, this can be easily accom-
plished using the present invention. Since there is no appli-
cation code resident in a web page itself, the same data can be
repackaged in a number of different ways across multiple
sites. There is no need to recode the design elements ordesign
pages on the web site or recode any functions that are needed
to access the content of the website. The present invention
enables electronic store fronts to sell from a single source
with a unique interface design. Also, newspaper chains can
distribute international and national content from a single
source and add local content themselves.

Another technical advantage of the present invention is that
it allows for a single point of control when developing a web
site. Therefore, if a large team of developers are working on a
site, and multiple persons are contributing arbitrary objects to
the overall arbitrary framework, then if one of the arbitrary
objects has a security hole in it, the arbitrary ohject can be
easily accessed in the object library and disabled. This secu-
rity feature can immediately shut down that function across
the entire web site and patch the security hole.

The present invention provides still another technical
advantage in that it allows for personalization. Personaliza-
tion enables companies that want to take advantage of a
customer profile to look at the customer’s preferences or
histories and deploy information to the web site specificto the
customer.

Another technical advantage of the present invention
allows for profiling, Profiling enables control over the arbi-
trary objects presented in a web site based on a profile of the
individual accessing the web site. Profiling entails determin-
ing different environmental variables such as the type of
browser hitting the site, the country of the individual access-
ing the site, and/or the individual’s IP address. This can

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Pag

b

e 31 of 35 PagelD #: 31

US 7,716,629 B2

7

enable a company to present specific information to the indi-
vidual based on the individual’s environmental variables.

Although the present invention has been described in detail
herein with reference to the illustrative embodiments, it
should be understood that the description is by way of
example only and is not to be construed in a limiting sense. It
is to be further understood, therefore, that numerous changes
in the details of the embodiments of this invention and addi-
tional embodiments of this invention will be apparent to, and
may be made by, persons of ordinary skill in the art having
reference to this description. It is contemplated that all such
changes and additional embodiments are within the spirit and
true scope of this invention as claimed below.

The invention claimed is:

1. A system for generating a computer application on a host
system in an arbitrary object framework that separates a con-
tent of said computer application, a form of said computer
application, and a functionality of said computer application,
said system including a computer comprising a processor and
a memory operably coupled to said processor, said memory
being configured for storing a computer program executable
by said processor, said computer program comprising:

a first set of executable instructions for creating arbitrary
objects with corresponding arbitrary names of content
objects used in generating said content of said computer
application, form objects used in defining said form of
said computer application, and function objects used in
executing said functionality of said computer applica-
tion each arbitrary object being separate from each other
arbitrary object;

a second set of executable instructions for managing said
arbitrary objects in an arbitrary object library; and

a third set of executable instructions for deploying said
arbitrary objects from said arbitrary object library into a
design framework to create said computer application.

2. The system of claim 1, wherein said computer applica-
tion is a web site.

3. The system of claim 1, wherein each of said various
object types include a type selected from the group consisting
of: text file pointers; binary file pointers;

compiled executables; shell commands; remote procedure
calls; global variables; cached executables; cached data-
base queries; local variables; and local objects and glo-
bal parent objects, wherein said local objects are capable
of overriding said global parent objects, and wherein
said local objects are capableofinheriting data from said
global parent objects.

4. The system of claim 1, wherein the third set of execut-

able instructions are for deploying arbitrary objects locally.

5. The system of claim 1, wherein the second set of execut-
able instructions for managing said arbitrary objects further
comprises executable instructions for revision tracking.

6. The system of claim 1, wherein the second set of execut-
able instructions for managing said arbitrary objects further
comprises executable instructions for using rollback.

7. The system of claim 1, wherein the second set of execut-
able instructions for managing said arbitrary objects further
comprises executable instructions for using signoff.

8. The system of claim 1, wherein the third set of exectable
instructions include instructions to access and deploy arbi-
trary objects into said design framework using said corre-
sponding arbitrary names.

9. The system of claim 1, further comprising executable
instructions for swapping an arbitrary object of one type with
an arbitrary object of another type.

10. The system of claim 1, further comprising executable
instructions for caching objects.

S

20

25

30

35

40

45

60

65

8

11. The system of claim 10, wherein the executable instruc-
tions for caching objects further comprises exectable instruc-
tions for specifying some elements of an arbitrary object to be
dynamic elements and specifying some elements of said arbi-
trary object to be static elements.

12. The system of claim 1, further comprising executable
instructions for generating arbitrary objects in a program-
ming language that is compatible and supported by said host
system.

13. A system for generating a web site on a host system in
an arbitrary object framework that separates a content of said
web site, a form of said web site, and a functionality of said
web site, said system including a computer comprising a
processor and a memory operably coupled to said processor,
said memory being configured for storing a computer pro-
gram executable by said processor, said computer program
comprising:

a first set of executable instructions for creating arbitrary
objects with corresponding arbitrary names of content
objects used in generating said content of said web site,
form objects used in defining said form of said web site,
and function objects used in executing said functionality
of said web site, each arbitrary object being separate
from each other arbitrary object;

a second set of executable instructions for managing said
arbitrary objects in an arbitrary object library; and

a third set of executable instructions for deploying said
arbitrary objects from said arbitrary object library to a
container page to create said web site.

14. The system of claim 13, wherein each of said various
object types include a type selected from the group consisting
of: text file pointers; binary file pointers; compiled
executables; shell commands; remote procedure calls; global
variables; cached executables; cached database queries; local
variables; and local objects and global parent objects,
wherein said local objects are capable of overriding said
global parent objects, and wherein said local objects are
capable of inheriting data from said global parent objects.

15. The system of claim 13, wherein the third set of execut-
able instructions are for deploying arbitrary objects locally.

16. The system of claim 13, wherein the second set of
executable instructions for managing said arbitrary objects
further comprises executable instructions for revision track-
ing.

17. The system of claim 13, wherein the second set of
executable instructions for managing said arbitrary objects
further comprises executable instructions for using rollback.

18. The system of claim 13, wherein the second set of
executable instructions for managing said arbitrary objects
further comprises executable instructions for using signoff,

19. The system of claim 13, wherein the third set of execut-
able instructions include instructions to access and deploy
arbitrary objects into said design framework using said cor-
responding arbitrary names.

20. The system of claim 19, wherein the third set of execut-
able instructions is capable of accessing and deploying the
arbitrary objects into said container page using said corre-
sponding arbitrary names.

21. A system for generating a computer application on a
host system in an arbitrary object framework that separates a
content of said computer application, a form of said computer
application, and a functionality of said computer application,
said system including a computer comprising a processor and
a memory operably coupled to said processor, said memory
being configured for storing a computer program executable
by said processor, said computer program comprising:

Case 2:11-cv-00298-DF

Document 1 Filed 01/12/11 Page 32 of 35 PagelD #: 32

-/

US 7,716,629 B2

9

a first set of executable instructions for creating arbitrary
objects with corresponding arbitrary names of content
objects used in generating said content of said computer
application, form objects used in defining said form of
said computer application, and function objects used in
executing said functionality of said computer applica-
tion, each arbitrary object being callable by name only,
each arbitrary object being independently modifiable
without corresponding modifications being made to any
other arbitrary object, and each arbitrary object further
being interchangable with other arbitrary objects;

a second set of executable instructions for managing said
arbitrary objects in an arbitrary object library; and

a third set of executable instructions for deploying said
arbitrary objects from said arbitrary object library into a
design framework to create said computer application.

22. The system of claim 21, wherein said computer appli-
cation is a web site.

23. The system of claim 21, wherein each of said various
object types include a type selected from the group consisting
of: text file pointers; binary file pointers; compiled
executables; shell commands; remote procedure calls; global
variables; cached executables; cached database queries; local
variables; and local objects and global parent objects,
wherein said local objects are capable of overriding said
global parent objects, and wherein said local objects are
capable of inheriting data from said global parent objects.

24. The system of claim 21, wherein the third set of execut-
able instructions are for deploying arbitrary objects locally.

—_

0

10

25. The system of claim 21, wherein the second set of
executable instructions for managing said arbitrary objects
further comprises executable instructions for revision track-
ing.

26. The system of claim 21, wherein the second set of
executable instructions for managing said arbitrary objects
further comprises executable instructions for using rollback.

27. The system of claim 21, wherein the second set of
executable instructions for managing said arbitrary objects
further comprises executable instructions for using signoff.

28. The system of claim 21, wherein the third set of exect-
able instructions include instructions to access and deploy
arbitrary objects into said design framework using said cor-
responding arbitrary names.

29. The system of claim 21, further comprising executable
instructions for swapping an arbitrary object of one type with
an arbitrary object of another type.

30. The system of claim 21, further comprising executable
instructions for caching objects.

31.The system of claim 30, wherein the executable instruc-
tions for caching objects further comprises exectable instruc-
tions for specifying some elements of an arbitrary object to be
dynamic elements and specifying some elements of said arbi-
trary object to be static elements.

32. The system of claim 21, further comprising executable
instructions for generating arbitrary objects in a program-
ming language that is compatible and supported by said host
system.

£

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 33 of 35 PagelD #: 33

EXHIBIT C

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 34 of 35 PagelD #: 34

Frudusss ddrylrses laupielre
#Mﬂ‘ﬁﬁ“i ? WM&

Internet
or § ik o st
Intranct — - Statle TN
s Web Server Web Notumends

for Fin “lide 101 1101 101D

Thocunvent
Fibes

Case 2:11-cv-00298-DF Document 1 Filed 01/12/11 Page 35 of 35 PagelD #: 35

[Products] [Services] [Support] [Portfolio] [Demos]
[Inquire] [Success Stories] [Adhesive Media]

Copyright 1996 by Adhesive Media, Inc.
Last modified: October 15, 1996

