	Case 2:22-cv-00300-SAB ECF No. 1 file	ed 11/29/22 PageID.1 Page 1 of 75						
1 2 3								
4		DISTRICT COURT						
5	FOR THE EASTERN DIST	RICT OF WASHINGTON						
6	SWIRLATE IP LLC,							
7	Plaintiff,	Case No. 22-cv-0300						
8	v.	COMPLAINT FOR PATENT INFRINGEMENT						
9 10	SCHWEITZER ENGINEERING LABORATORIES, INC.,	DEMAND FOR JURY TRIAL						
11	Defendant.							
12	Plaintiff Swirlate IP LLC files the	his Complaint for Patent Infringement against						
13	Schweitzer Engineering Laboratories, Inc., and would respectfully show the Court as follows:							
14	I. <u>NATURE OF THE LAWSUIT</u>							
15	1. This is an action for patent infringement under the Patent Laws of the United							
16 17	States, Title 35 United States Code ("U.S.	C.") resulting from Schweitzer Engineering						
18	Laboratories, Inc. infringing, in an illegal and unauthorized manner and without authorization							
19	and/or consent from Swirlate IP LLC, United States Patent Nos. 7,154,961 and 7,567,662							
20	pursuant to 35 U.S.C. §271, and to recover damages, attorney's fees, and costs.							
21	II. <u>THE PARTIES</u>							
22	2. Plaintiff Swirlate IP LLC ("Swir	clate" or "Plaintiff") is a Texas limited liability						
23 24	company having an address at 6009 W Parker Ro	d, Ste 149 – 1090, Plano, TX 75093-8121.						
24	3. On information and belief, Defen	dant Schweitzer Engineering Laboratories, Inc.						
26	("Defendant") is a corporation organized and ex	xisting under the laws of Washington, with its						
27	principal place of business at 2350 NE Hopkins	s Court, Pullman, WA 99163. Defendant has a						
28	22-cv-0300 COMPLAINT - 1	MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110 TELEPHONE: 206.436-0900						

registered agent at Corporation Service Company, 300 Deschutes Way SW, STE208 MC-CSC1, Tumwater, WA 98501.

1

2

3

4

5

6

7

9

11

14

III. JURISDICTION AND VENUE

4. This action arises under the patent laws of the United States, Title 35 of the United States Code. This Court has subject matter jurisdiction of such action under 28 U.S.C. §§ 1331 and 1338(a).

8 5. On information and belief, Defendant is subject to this Court's specific and general personal jurisdiction, pursuant to due process and the Washington Long-Arm Statute, 10 due at least to its business in this forum, including at least a portion of the infringements alleged herein. Furthermore, Defendant is subject to this Court's specific and general personal 12 jurisdiction because Defendant maintains its principal place of business in Washington and is a 13 Washington corporation.

6. Without limitation, on information and belief, within this State and this District, 15 16 Defendant has used the patented inventions thereby committing, and continuing to commit, acts 17 of patent infringement alleged herein. In addition, on information and belief, Defendant has 18 derived revenues from its infringing acts occurring within Washington and the Eastern District 19 of Washington. Further, on information and belief, Defendant is subject to the Court's general 20 jurisdiction, including from regularly doing or soliciting business, engaging in other persistent 21 courses of conduct, and deriving substantial revenue from goods and services provided to persons 22 23 or entities in Washington and the Eastern District of Washington. Further, on information and 24 belief, Defendant is subject to the Court's personal jurisdiction at least due to its sale of products 25 and/or services within Washington and the Eastern District of Washington. Defendant has 26 committed such purposeful acts and/or transactions in Washington and the Eastern District of 27

22-cv-0300 28 COMPLAINT - 2

MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

Washington such that it reasonably should know and expect that it could be haled into this Court as a consequence of such activity.

- 3 7. Venue is proper in this district under 28 U.S.C. § 1400(b). On information and 4 belief, Defendant is a Washington corporation and maintains its principal place of business within 5 this District. On information and belief, from and within this District Defendant has committed 6 at least a portion of the infringements at issue in this case. 7
- 8 8. For these reasons, personal jurisdiction exists and venue is proper in this Court under 28 U.S.C. § 1400(b).

IV. COUNT I (PATENT INFRINGEMENT OF UNITED STATES PATENT NO. 7,154,961)

10

9

1

2

- 11
- 12

16

9.

Plaintiff incorporates the above paragraphs herein by reference.

13 10. On December 26, 2006, United States Patent No. 7,154,961 ("the '961 Patent") 14 was duly and legally issued by the United States Patent and Trademark Office. The application 15 leading to the '961 Patent was filed on December 6, 2004 (Ex. A at cover).

- 11. The '961 Patent is titled "Constellation Rearrangement for ARQ Transmit 17 Diversity Schemes." A true and correct copy of the '961 Patent is attached hereto as Exhibit A 18 and incorporated herein by reference. 19
- 20 12. Plaintiff is the assignee of all right, title, and interest in the '961 patent, including 21 all rights to enforce and prosecute actions for infringement and to collect damages for all relevant 22 times against infringers of the '961 Patent. Accordingly, Plaintiff possesses the exclusive right 23 and standing to prosecute the present action for infringement of the '961 Patent by Defendant. 24
- 13. The invention in the '961 Patent relates to the field of Automatic Repeat reQuest 25 ("ARQ") transmission techniques in wireless communication systems. (Ex. A at col. 1:6-8). In 26 27 particular, it relates to a method for transmitting data using transmit diversity schemes in which 22-cv-0300 28 COMPLAINT - 3

data packets are transmitted using a first and second transmission based on a repeat request and the bit-to-symbol mapping is performed differently for different transmitted diversity branches. (*Id.* at col. 1:8-12). The inventors recognized a problem in prior art of the use of ARQ transmission techniques in wireless communication systems with unreliable and time-varying channel conditions and the invention results in an improved performance avoiding transmission errors. (*Id.* at col. 1:12-15).

8 14. In telecommunications, in order to improve the reliability of data transmissions, 9 the prior art had several transmit diversity techniques in which redundant versions of identical 10 data are transmitted in at least two diversity branches by default without explicitly requesting 11 further diversity branches. (Id. at col. 1:19-24). Such transmit diversity techniques included (i) 12 site diversity (transmitted signal originates from different sites), (ii) antenna diversity 13 (transmitted signal originates from different antennas), (iii) polarization diversity (transmitted 14 signal is mapped onto different polarization), (iv) frequency diversity (transmitted signal is 15 16 mapped on different carrier frequencies or frequency hopping sequences), (v) time diversity 17 (transmitted signal is mapped on different interleaving sequences), and (vi) multicode diversity 18 (transmitted signal is mapped on different codes). (Id. at col. 1:24-42). The diversity branches 19 would then be combined in order to improve the reliability of the received data. These diversity 20 combining techniques included (a) selection combining (selecting the diversity branch with the 21 highest Signal-to-Noise Ratio ("SNR") for decoding and ignoring the remaining ones), (b) equal 22 23 gain combining (combining received diversity branches with ignoring the differences in received 24 SNR), and (c) maximum ratio combining (combining received diversity branches taking the 25 received SNR of each diversity branch into account).

26

1

2

3

4

5

6

7

- 20
- 27

The prior art also had techniques for error detection/correction with respect to the

28 22-cv-0300 COMPLAINT - 4

15.

MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900 transmission of data. For example, the prior art would use ARO schemes together with Forward Error Correction (FEC),¹ which is called hybrid ARQ ("HARQ"). If an error is detected within a packet by the Cyclic Redundancy Check ("CRC"), the receiver requests that the transmitter send additional information (e.g., retransmission) to improve the probability to correctly decode the erroneous packet. (Id. at col. 1: 59-63).

16. The '961 discussed a particular prior art reference that had the shortcomings of 7 8 the prior art. WO-02/067491 A1 disclosed a method for HARQ transmission that averages the 9 bit reliability over successively requested retransmissions by means of signal constellation 10 rearrangement. (Id. at col. 1: 64-67). The reference showed that when more than 2 bits of data 11 were mapped onto one modulation symbol, the bits have different reliability depending on the 12 chosen mapping. (Id. at col. 2: 1-5). For most FEC schemes, this leads to a degraded decoder 13 performance compared to an input of more equally distributed bit reliabilities. (Id. at col. 2:5-7). 14 As a result, in conventional communications systems the modulation dependent variations in bit 15 16 reliabilities are not considered and, therefore, usually the variations remain after combining the 17 diversity branches at the receiver. (Id. at col. 2:8-11).

18 17. The inventors therefore developed a method that improved performance with 19 regard to transmission errors. (Id. at col. 2:15-18). The idea of the invention is to improve 20 performance at the receiver by applying different signal constellation mappings to the available 21 distinguishable transmit diversity branches and ARQ retransmissions. (Id. at col. 2:20-23). The 22 23 invention is applicable to modulation formats in which more than 2 bits are mapped onto one

24

1

2

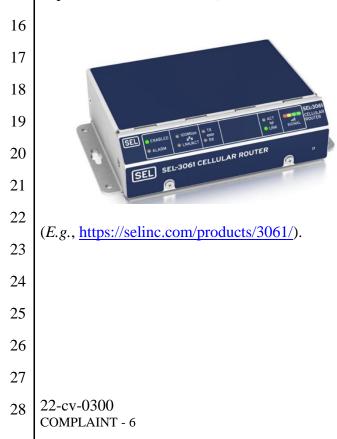
3

4

5

6

COMPLAINT - 5


²⁵ FEC is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The general idea of FED is that a sender encodes the message 26 in a redundant way, most often using an error correction code. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and to 27 potentially correct these errors without re-transmission.

²²⁻cv-0300 28

modulation symbol, since this implies a variation in reliabilities for the bits mapped onto the signal constellation. (*Id.* at col. 2:23-29).

18. **Direct Infringement.** Upon information and belief, Defendant has been directly infringing at least claim 1 of the '961 patent in Washington, and elsewhere in the United States, by performing actions comprising at least performing the claimed ARQ re-transmission method by performing the steps of the claimed invention using the Schweitzer Engineering Laboratories SEL-3061 ("Accused Instrumentality") (*e.g.*, https://selinc.com/products/3061/).

19. The Accused Instrumentality practices an ARQ re-transmission (*e.g.*, HARQ method) method in a wireless communication system (*e.g.*, LTE network) wherein data packets are transmitted from a transmitter (*e.g.*, the Accused Instrumentality) to a receiver (*e.g.*, LTE base station) using a first transmission (*e.g.*, HARQ transmission) and at least a second transmission (*e.g.*, HARQ retransmission) based on a repeat request (*e.g.*, HARQ retransmission request in the form of NAK).

1

2

3

4

5

6

7

8

9

10

11

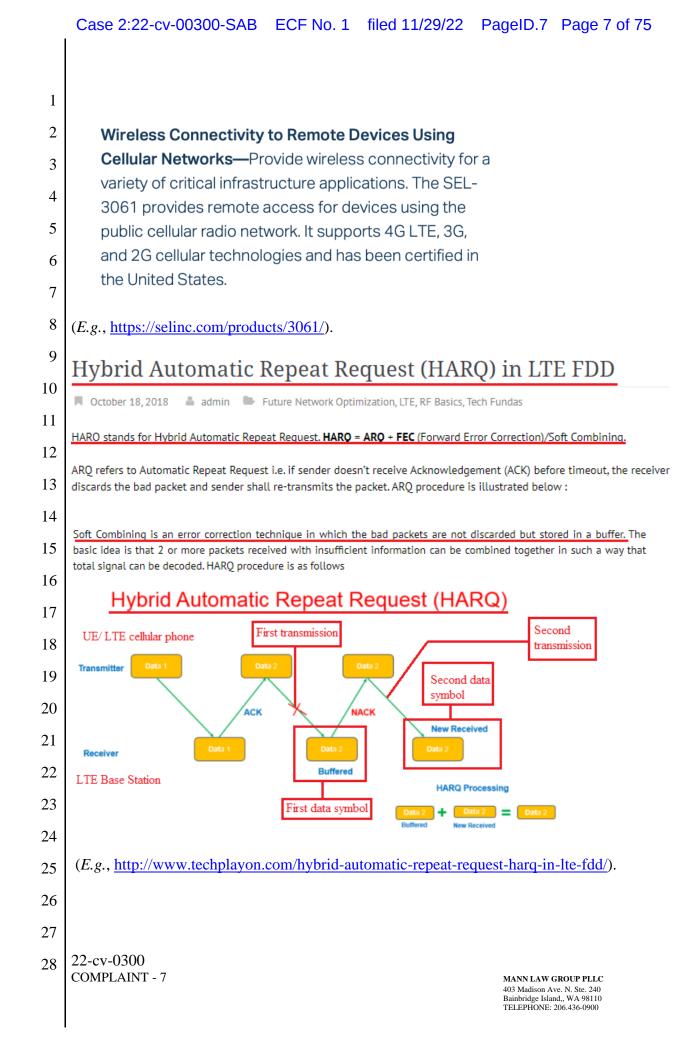
12

13

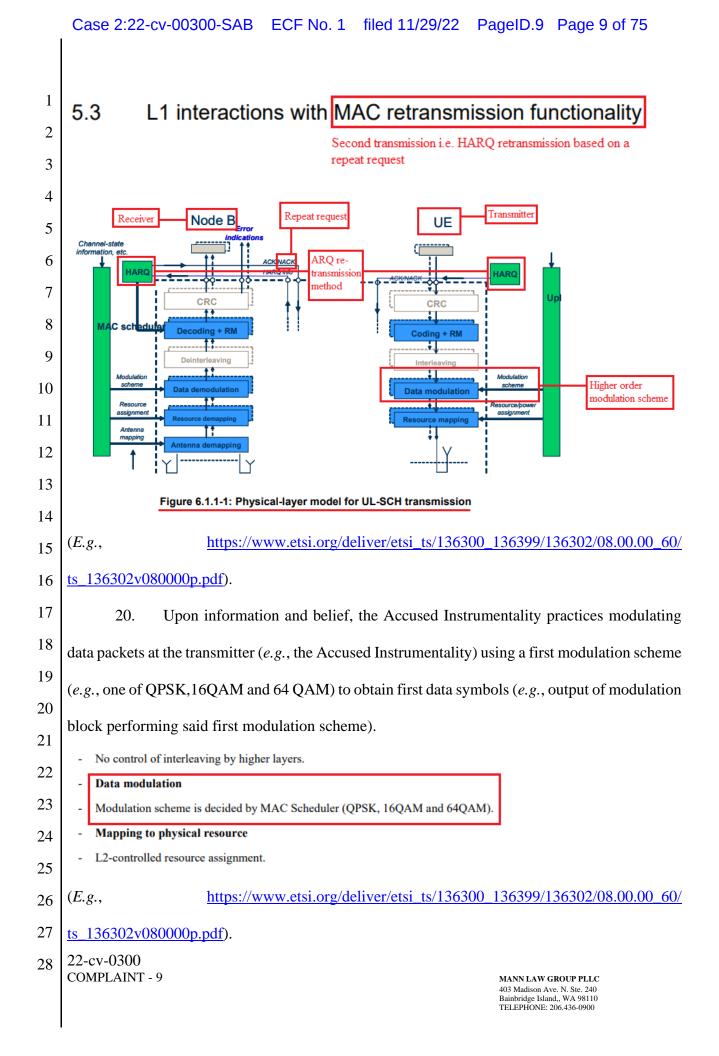
14

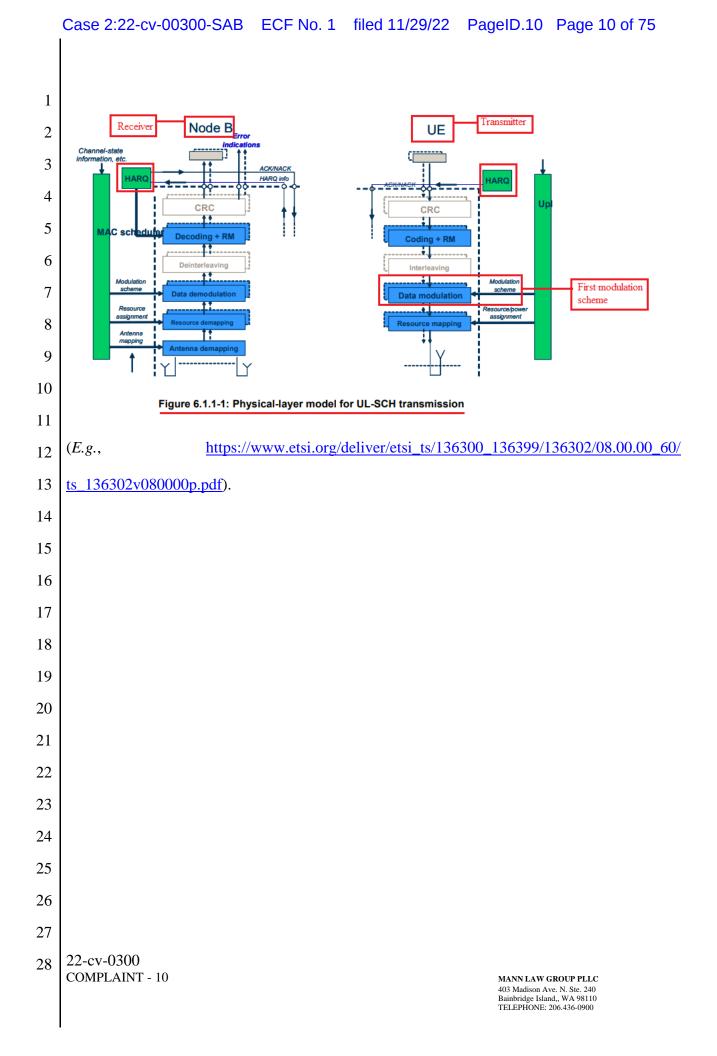
15

SEL-3061


Cellular Router

The SEL-3061 Cellular Router is a secure wireless communications solution designed for critical applications. For electric utilities, the router provides connectivity to devices like recloser controls, motor-operated switches, capacitor banks, voltage regulators, substations, and much more. The combination of serial and Ethernet ports provides application flexibility, and using public networks with secure tunneling makes installation easy without sacrificing security.


STARTING AT


¢202

MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

1	6.1 Uplink model Data packets transmitted from a transmitter i.e. UE/ LTE cellular phone
2	6.1.1 Uplink Shared Channel
3	The physical-layer model for Uplink Shared Channel transmission is described based on the corresponding physical-
4	layer-processing chain, see Figure 6.1.1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue. It should be noted that, in case PUSCH, the scheduling decision is partly made at the network side, if there is no blind decoding it is fully done at the network side.
5	The uplink transmission control in the UE then configures the uplink physical-layer processing, based on uplink transport-format and resource-assignment information received on the downlink.
6	- Higher-layer data passed to/from the physical layer
7	 One transport block of dynamic size delivered to the physical layer once every TTI.
8	- CRC and transport-block-error indication
	- Transport-block-error indication delivered to higher layers.
9	- FEC and rate matching
10	 Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
11	ARQ re-transmission method Physical layer model support of HARQ: in case of Incremental Redundancy, the corresponding Layer 2 Hybrid-
12	ARQ process controls what redundancy version is to be used for the physical layer transmission for each TTI.
	- Interleaving
13	- No control of interleaving by higher layers.
14	- Data modulation
15	- Modulation scheme is decided by MAC Scheduler (QPSK, 16QAM and 64QAM).
16	- Mapping to physical resource
17	- L2-controlled resource assignment.
17	- Multi-antenna processing
18	- MAC Scheduler partly configures mapping from assigned resource blocks to the available number of antenna ports.
19	- Support of L1 control signalling Second transmission i.e. re- transmission based on a repeat
20	- Transmission of ACK/NAK and CQI feedback related to DL data transmission request i.e. NAK
	The model of Figure 6.1.1 also captures
21	- Transport via physical layer of Hybrid-ARQ related information (exact info is FFS) associated with the PUSCH, to the peer HARQ process at the receiver side;
22	- Transport via physical layer of corresponding HARQ acknowledgements to PUSCH transmitter side.
23	
24	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/</u>
25	<u>ts_136302v080000p.pdf</u>).
26	
27	
28	22-cv-0300
20	COMPLAINT - 8 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240

7.1.3 16QAM

1

2

In case of 16QAM modulation, quadruplets of bits, b(i), b(i+1), b(i+2), b(i+3), are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1.

	modulation symbols $x - I + jQ$ acc	cording to Table 7.1.3-1.		
3		Table 7.1.3-1: 16QAM m	odulation	mapping
4		b(i), b(i+1), b(i+2), b(i+3)	1	Q
		0000	1/√10	1/√10
5		0001	1/√10	3/√10
6		0010		ı/√10
		0011		3/√10
7		0100		-1/√10
8		0101		-3/10
9		0110		-1/√10
9		0111		-3/√10
10		1000	-1/√10	
11		1001	-1/√10	
11		1010	-3/√10 -3/√10	
12		1011	-3/√10 -1/√10	
13		1100		-1/√10 -3/√10
		1110	$-1/\sqrt{10}$ $-3/\sqrt{10}$	
14		1110	$-3/\sqrt{10}$ $-3/\sqrt{10}$	
15			-9410	
	(<i>E.g.</i> ,	https://www.etsi.or	ro/deliv	er/etci
16	(£.g.,	$\frac{111125.77}{100} \text{ www.cts1.01}$		01/0131
17	ts_136211v080700p	<u>.pdf</u>).		
10				
18				
19				
20				
20				
21				
22				
23				
24				
25				
26				
27				
28	22-cv-0300			
	COMPLAINT - 11			
	1			

7.1.4 64QAM

1

2

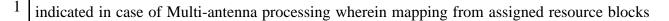
In case of 64QAM modulation, hextuplets of bits, b(i),b(i+1),b(i+2),b(i+3),b(i+4),b(i+5), are mapped to complexvalued modulation symbols x-I+jQ according to Table 7.1.4-1.

3	Table 7.1.4-1: 64QAM modulation mapping					
	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q
4	000000	3/√42	3/-42	100000	-3/-42	3/√42
-	000001	3/√42	1/√42	100001	-3/-42	1/-142
_	000010	1/√42	3/√42	100010	-1/√42	3/√42
5	000011	1/ √42	1/√42	100011	-1/-/42	1/-/42
	000100	3/√42	5/√42	100100	-3/-42	5/√42
6	000101	3/√42	7/√42	100101	-3/-42	7/-42
	000110	1/√42	5/√42	100110	-1/-12	5/√42
7	000111	1/√42	7/√42	100111	-1/-1/42	7/-42
'	001000	5/√42	3/-42	101000	-5/42	3/√42
0	001001	5/√42	1/√42	101001	-5/-42	1/-42
8	001010	7/-42	3/-142	101010	-7/-42	3/√42
	001011	7/-/42	1/√42	101011	-7/-42	1/-42
9	001100	5/√42	5/√42	101100	-5/-42	5/√42
	001101	5/√42	7/√42	101101	-5/-42	7/42
10	001110	7/-42	5/√42	101110	-7/-42	5/√42
10	001111	7/-42	7/√42	101111	-7/-42	7/12
11	010000	3/√42	-3/-/42	110000	-3/-42	-3/-42
11	010001	3/√42	-1/√42	110001	-3/-42	-1/√42
	010010	1/√42	-3/-/42	110010	<u>-1√√42</u>	-3/√42
12	010011	1/√42	-1/√42	110011	-1/-1/	-1/√42
	010100	3/√42	-5/-/42	110100	-3/-42	- 5/ 12
13	010101	3/√42	-7/-42	110101	-3/-42	
15	010110	1/√42	-5/√42	110110	<u>-1√√42</u>	-5/12
14	010111	1/√42	-7/√42	110111	-1/√42	
14	011000	5/√42	-3/-/42	111000	-5/-42	
	011001	5/√42	-1/√42	111001	-5/-42	-1/√42
15	011010	7/-42	-3/-/42	111010	-7/-42	-3/142
	011011	7/-42	-1/√42	111011	-7/-42	-1/√42
16	011100	5/√42	-5/√42	111100	-5/-42	
10	011101	5/√42	-7/42	111101	-5/-42	
17	011110	7/-42	-5/√42	111110	-7/-42	-5/√42
1/	011111	7/-42	-7/√42	111111	-7/-42	-7/12

- 10
- 18 19

20

27

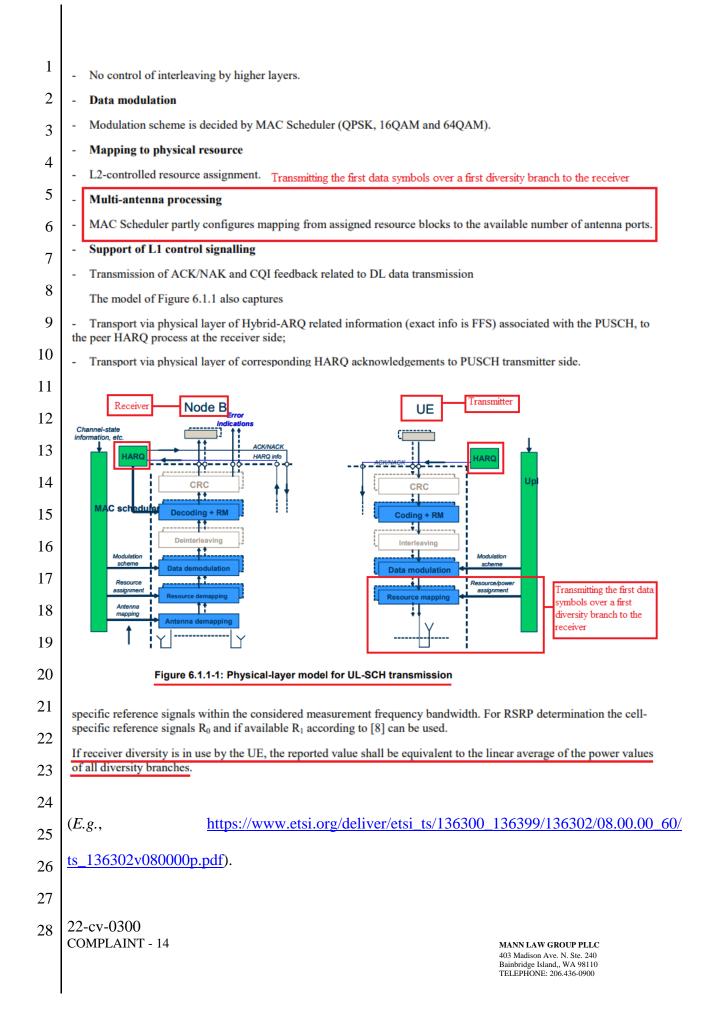

(E.g.,

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/

ts_136211v080700p.pdf).

21 Upon information and belief, the Accused Instrumentality practices performing 22 the first transmission (*e.g.*, HARQ transmission) by transmitting the first data symbols (*e.g.*, 23 output of modulation block performing said first modulation scheme) over a first diversity branch 24 to the receiver (*e.g.*, mapping from assigned resource blocks to the first available number of 25 antenna ports). The Accused Instrumentality discloses a first diversity branch wherein the output 26 of modulation block *i.e.*, first data symbols is transmitted over a first diversity branch which is

28 22-cv-0300 COMPLAINT - 12

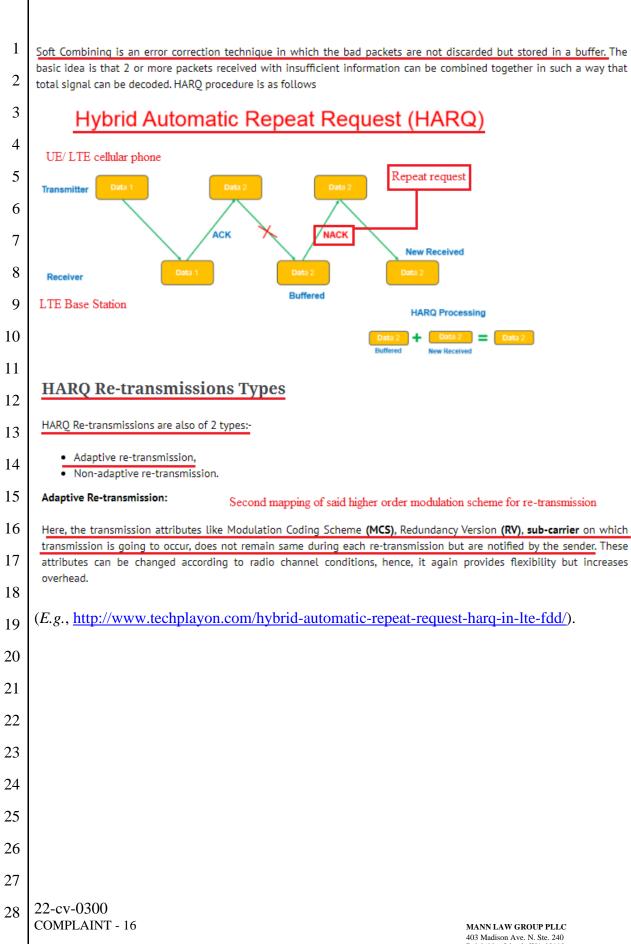


to the first available number of antenna ports.

2

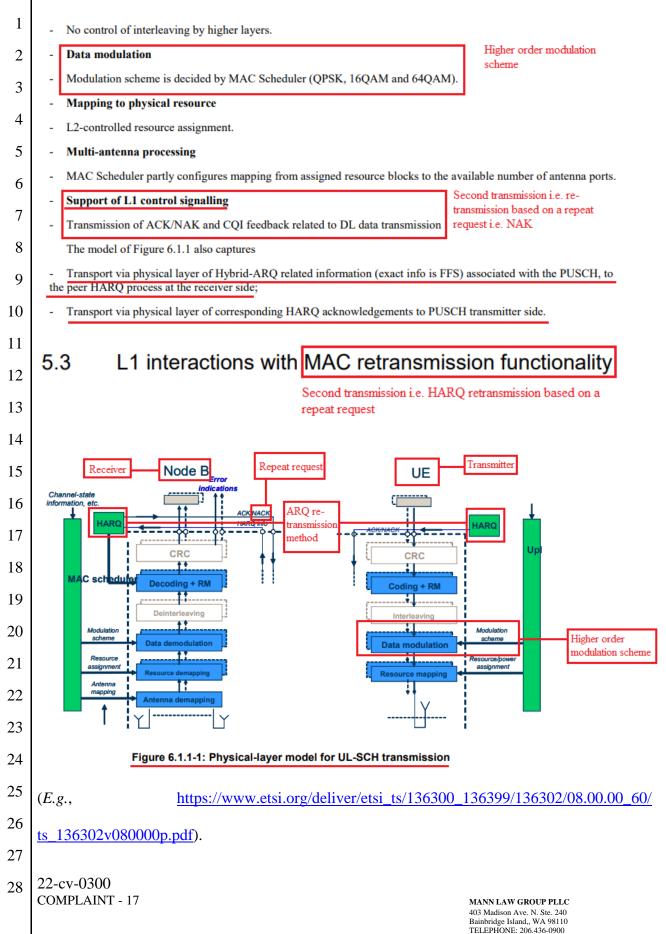
3 Hybrid Automatic Repeat Request (HARQ) in LTE FDD 4 October 18, 2018 👗 admin 🛛 🖿 Future Network Optimization, LTE, RF Basics, Tech Fundas 5 HARO stands for Hybrid Automatic Repeat Request. HARO = ARO + FEC (Forward Error Correction)/Soft Combining. 6 ARQ refers to Automatic Repeat Request i.e. if sender doesn't receive Acknowledgement (ACK) before timeout, the receiver 7 discards the bad packet and sender shall re-transmits the packet. ARO procedure is illustrated below : 8 Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The 9 basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows 10 Hybrid Automatic Repeat Request (HARQ) 11 Second First transmission 12 UE/ LTE cellular phone transmission 13 Transmitter Second data symbol 14 ACK NACK New Received 15 Receiver 16 Buffered LTE Base Station HARQ Processing 17 First data symbol New Received 18 19 (*E.g.*, http://www.techplayon.com/hybrid-automatic-repeat-request-harg-in-lte-fdd/). 20 21 22 23 24 25 26 27 22-cv-0300 28 COMPLAINT - 13 MANN LAW GROUP PLLC

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.14 Page 14 of 75



5.2 Overview of L1 functions

1


2 The physical layer offers data transport services to higher layers. The access to these services is through the use of a transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to 3 provide the data transport service: - Error detection on the transport channel and indication to higher layers 4 FEC encoding/decoding of the transport channel 5 Hybrid ARQ soft-combining 6 Rate matching of the coded transport channel to physical channels 7 Mapping of the coded transport channel onto physical channels Power weighting of physical channels 8 Modulation and demodulation of physical channels 9 Frequency and time synchronisation 10 Radio characteristics measurements and indication to higher layers 11 Multiple Input Multiple Output (MIMO) antenna processing Transmit Diversity (TX diversity) 12 Beamforming 13 RF processing. (Note: RF processing aspects are specified in the TS 36.100) 14 L1 functions are modelled for each transport channel in subclauses 6.1 and 6.2. 15 https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/ (E.g., 16 ts_136302v080000p.pdf). 17 22. Upon information and belief, the Accused Instrumentality practices modulating 18 said data packets at the transmitter (e.g., the Accused Instrumentality) using a second modulation 19 20 scheme (e.g., one of QPSK, 16QAM and 64 QAM)—which is distinct from the first modulation 21 scheme) to obtain second data symbols (e.g., output of modulation block using a second 22 modulation scheme). As shown below, the Accused Instrumentality on repeat request *i.e.*, 23 receiving the retransmission request in the form of NAK, enables a second mapping of said higher 24 order modulation scheme (i.e., an Adaptive Re-transmission having a different Modulation 25 Coding Scheme (MCS) than the one used for HARQ transmission *i.e.*, first higher order 26 27 modulation scheme). 22-cv-0300 28 COMPLAINT - 15 MANN LAW GROUP PLLC

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.16 Page 16 of 75

403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.17 Page 17 of 75

	Case 2:22-cv-00300-SAB	ECF No. 1	filed 11/29/22	PageID.18	Page 18 of 75
1	OAM bits now over	a h a l			
2	QAM bits per syn	IOUI	Higher order modula	tion scheme	
-3	The advantage of using QAM is				
	more bits of information per syn increased.	mbol. By selecting	g a higher order form	iat of QAM, the o	ata rate of a link can t
4					
5		QAM FORMATS	& BIT RATES COMPA	RISON	
6	MODULATION	BI	S PER SYMBOL		SYMBOL RATE
7	BPSK		1		1 x bit rate
8	QPSK		2		1/2 bit rate
	8PSK		3		1/3 bit rate
9	16QAM		4		1/4 bit rate
0	32QAM		5		1/5 bit rate
1	64QAM		6		1/6 bit rate
12	Respresenting more than tw	o data bits are m	apped onto one data	a symbol	
14 15	modulation-types-8qam-16q	<u>am-32qam-640</u>	<u>1am-128qam-2560</u>	<u>lam.pnp</u>).	
16 17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28	22-cv-0300 COMPLAINT - 18			MANN LAW (403 Madison A Bainbridge Isla TELEPHONE:	ve. N. Ste. 240 nd,, WA 98110

7.1.3 16QAM

1

2

In case of 16QAM modulation, quadruplets of bits, b(i), b(i+1), b(i+2), b(i+3), are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1.

3		Table 7.1.3-1: 16QAM m	odulation	mapping
4		b(i), b(i+1), b(i+2), b(i+3)	1	Q
		0000	1/√10	1/√10
5		0001	1/√10	3/√10
6		0010	3/√10	1/√10
		0011		3∕√10
7		0100		-1/√10
8		0101		-3/√10
		0110	-	-1/√10
9		0111		-3/√10
10		1000	-1/√10	
		1001	-1/√10	
11		1010	-3/√10	
12		1011	-3/√10	
10		1100	-1/√10	
13		1101		-3/√10
14		1110	$-3/\sqrt{10}$ $-3/\sqrt{10}$	
15		1111	-3/√10	-3/√10
15		•		
16	(<i>E.g.</i> ,	https://www.etsi.or	rg/deliv	er/ets1_
17	ts_136211v080700p.	.pdf).		
		<u></u>		
18				
19				
20				
21				
22				
22				
23				
24				
24				
25				
26				
20				
27				
28	22-cv-0300			
20	COMPLAINT - 19			

7.1.4 64QAM

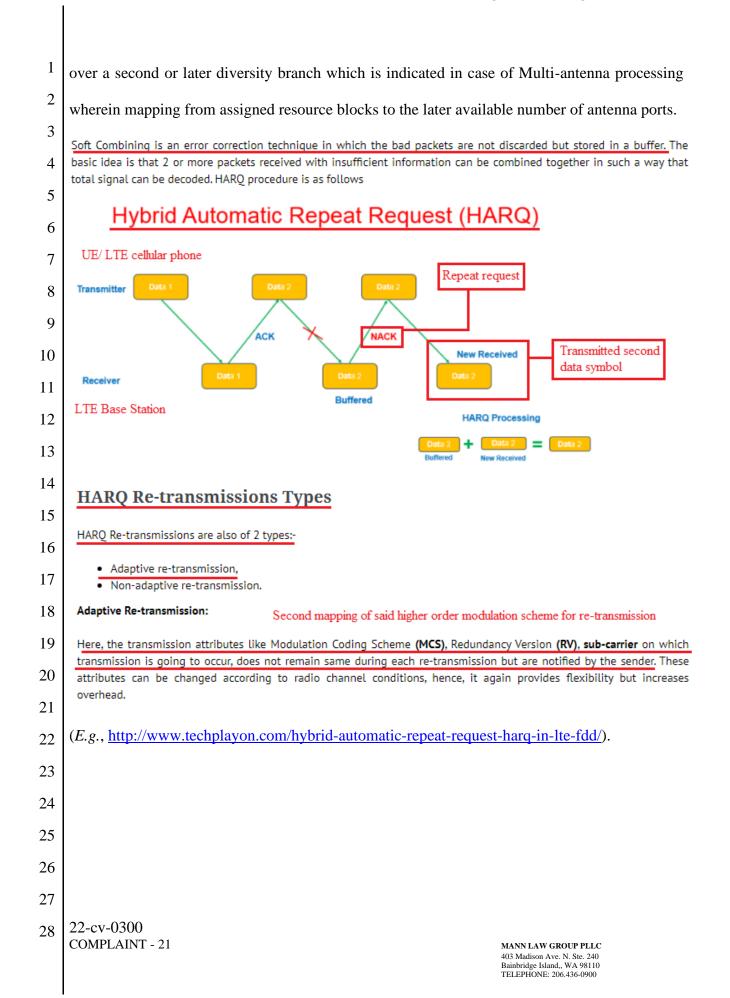
1

2

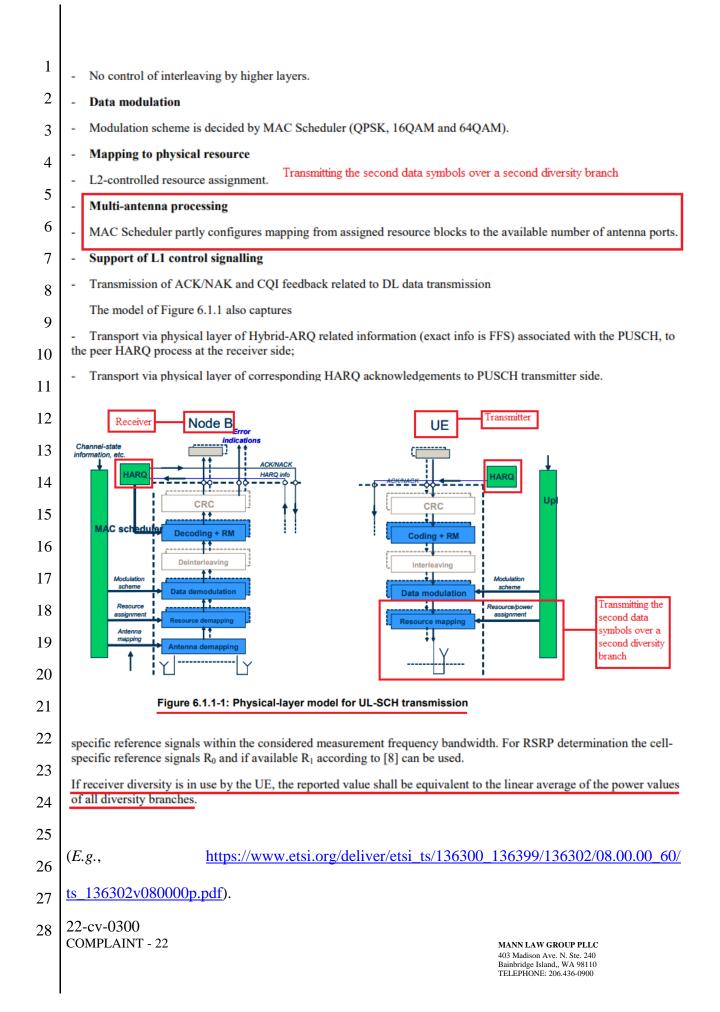
In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complexvalued modulation symbols x=I+jQ according to Table 7.1.4-1.

3	Table 7.1.4-1: 64QAM modulation mapping					
	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q
4	000000	3/√42	3/-42	100000	-3/-42	3/√42
т	000001	3/√42	1/-1/42	100001	-3/-42	1/-/42
~	000010	1/√42	3/-42	100010	-1/-1/	3/√42
5	000011	1/√42	1/-√42	100011	-1/-√42	1/-√42
	000100	3/√42	5/-42	100100	-3/-/42	5/√42
6	000101	3/√42	7/√42	100101	-3/-/42	7/√42
	000110	1/√42	5/-142	100110	-1/-1/	5/√42
7	000111	1/ √42	7/√42	100111	-1/-√42	7/√42
'	001000	5/√42	3/-42	101000	-5/-42	3/-√42
8	001001	5/√42	1/√42	101001	-5/-42	1/-42
0	001010	7/√42	3/-42	101010	-7/-42	3/√42
-	001011	7/-42	1/-√42	101011	-7/-42	1/-42
9	001100	5/√42	5/-42	101100	-5/-42	5/√42
	001101	5/√42	7/√42	101101	-5/-42	7/ 42
10	001110	7/-42	5/-42	101110	-7/-/42	5/√42
10	001111	7/-42	7/√42	101111	-7/-/42	7/√42
11	010000	3/√42	-3/-42	110000	-3/-42	-3/√42
11	010001	3/√42	-1/√42	110001	-3/-42	-1/√42
10	010010	1/√42	-3/-42	110010	-1/-1/	-3/√42
12	010011	1/√42	<u>-1√√42</u>	110011	-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-	-1/42
	010100	3/√42	-5/√42	110100	-3/-42	-5/√42
13	010101	3/√42	-7/-42	110101	-3/-42	-7/√42
	010110	1/√42	-5/√42	110110	-1/-1/	-5/√42
14	010111	1/√42	-7/142	110111	-1/-1/	-7/√42
14	011000	5/√42	-3/-/42	111000	-5/-42	-3/
1 ~	011001	5/12	-1/-1/2	111001	-5/42	-1/
15	011010	7/-42	-3/-42	111010	-7/-42	-3/√42
	011011	7/-42	-1/√42	111011	-7/-42	-1/√42
16	011100	5/√42	-5/√42	111100	-5/-42	-5/√42
	011101	5/√42	-7/-42	111101	-5/42	-7/√42
17	011110	7/-42	-5/√42	111110	-7/-42	-5/√42
1/	011111	7/-42	-7/12	111111	-7/-42	-7/√42
18	(<i>E.g.</i> ,		<u>https</u>	s://www.etsi.org	g/deli	ver/etsi

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/

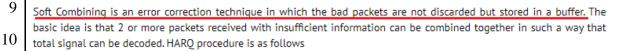

ts_136211v080700p.pdf).

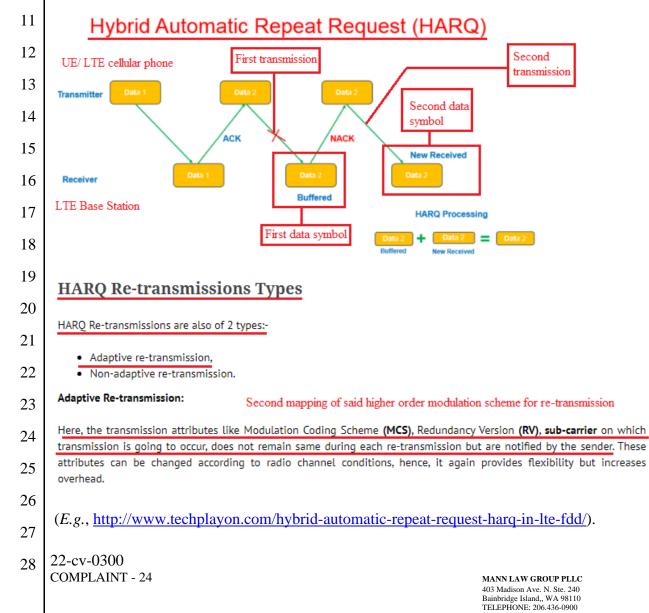
19

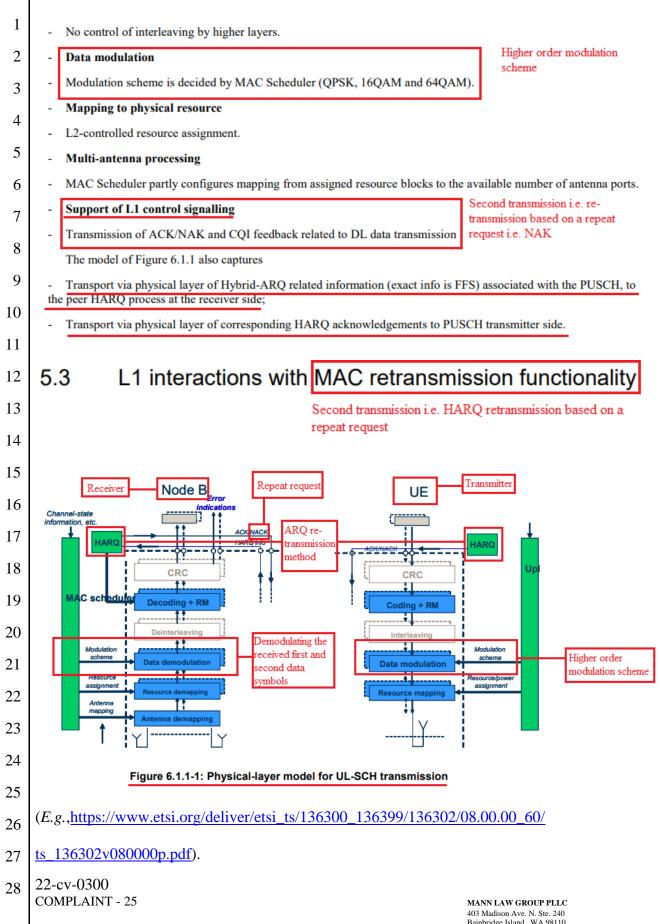

20

21 Upon information and belief, the Accused Instrumentality practices performing 22 the second transmission (*e.g.*, HARQ retransmission) by transmitting the second data symbols 23 (*e.g.*, output of modulation block using a second modulation scheme) over a second diversity 24 branch (*e.g.*, mapping from assigned resource blocks to the later available number of antenna 25 ports) to the receiver (*e.g.*, LTE base station). The Accused Instrumentality discloses a second 26 diversity branch wherein the output of modulation block *i.e.*, second data symbols is transmitted 27

28 22-cv-0300 COMPLAINT - 20




Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.22 Page 22 of 75


1	5.3 L1 interactions with MAC retransmission functionality						
2	Second transmission i.e. HARQ retransmission based on a						
3	repeat request						
4	5.2 Overview of L1 functions						
5	The physical layer offers data transport services to higher layers. The access to these services is through the use of a						
6	transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to provide the data transport service:						
7	- Error detection on the transport channel and indication to higher layers						
8	- FEC encoding/decoding of the transport channel						
9	- Hybrid ARQ soft-combining						
10	- Rate matching of the coded transport channel to physical channels						
	- Mapping of the coded transport channel onto physical channels						
11	- Power weighting of physical channels						
12	- Modulation and demodulation of physical channels						
13	- Frequency and time synchronisation						
14	- Radio characteristics measurements and indication to higher layers						
15	- Multiple Input Multiple Output (MIMO) antenna processing						
	- Transmit Diversity (TX diversity)						
16	- Beamforming						
17	 RF processing. (Note: RF processing aspects are specified in the TS 36.100) 						
18	L1 functions are modelled for each transport channel in subclauses 6.1 and 6.2.						
19	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/</u>						
20	<u>ts_136302v080000p.pdf</u>).						
21	24. Upon information and belief, the Accused Instrumentality, at least in its internal						
22	testing and usage, utilizes a base station which practices demodulating the received first (<i>e.g.</i> ,						
23							
24	output of modulation block performing said first modulation scheme) and second data symbols						
25	(e.g., output of modulation block using a second modulation scheme) at the receiver (e.g., LTE						
26	Base Station) using the first and second modulation schemes (e.g., the mappings corresponding						
27	to transmission and retransmission Modulation Coding Scheme) respectively. As shown below,						
28	22-cv-0300 COMPLAINT - 23 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island, WA 98110 TELEPHONE: 206.436.0900						

the Accused Instrumentality, at least in its internal testing and usage, utilizes a base station which practices demodulation of first (*e.g.*, output of modulation block performing said first modulation scheme) and second data symbols (*e.g.*, output of modulation block using a second modulation scheme) at the LTE Base Station using the first and second modulation scheme *i.e.*, Modulation Coding Scheme which are distinct for transmission and Adaptive Re-transmission (*i.e.*, an Adaptive Re-transmission having a different Modulation Coding Scheme (MCS) than the one used for transmission *i.e.*, first higher order modulation scheme).

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.25 Page 25 of 75

Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

¹ QAM bits p	er symbol	
	ng QAM is that it is a higher order form of modulat	
increased.	ion per symbol. By selecting a higher order format o	of QAM, the data rate of a link can b
4 5	QAM FORMATS & BIT RATES COMPARISO	2N
6 MODULIATION		
MODULATION	BITS PER SYMBOL	SYMBOL RATE
7 BPSK	1	1 x bit rate
8 QPSK	2	1/2 bit rate
8PSK 9 160AM	3	1/3 bit rate
	4	1/4 bit rate
0	5	1/5 bit rate
64QAM	6	1/6 bit rate
2	re than two data bits are mapped onto one data sy	mbol
3 modulation turned	www.electronics-notes.com/articles/radio/mc	
4 modulation-types-a	-1	<u></u> /-
5		
6		
7		
8		
9		
0		
1		
2		
3		
4		
5		
6		
7		
8 22-cv-0300		
COMPLAINT - 26		MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island, WA 98110 TELEPHONE: 206.436-0900

7.1.3 <u>16QAM</u>

1

2

In case of 16QAM modulation, quadruplets of bits, b(i), b(i+1), b(i+2), b(i+3), are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1.

3	Table 7.1.3-1: 10	QAM modulation	napping	
4	b(i), b(i+1), b(i+2)),b(i+3) I	Q	
	0000	1/√10	ı/√10	
5	0001	1/√10	3/√10	
6	0010	3/√10		
7	0011	3/√10		
/	0100		$-1/\sqrt{10}$ $-3/\sqrt{10}$	
8	0101		-3/√10 -1/√10	
9	0111	3/√10 3/√10		
	1000	-1/√10		
10	1001	-1/10		
11	1010	-3/√10	1/√10	
12	1011	-3/√10		
12	1100	-1/√10		
13	1101	-1/√10		
14	1110	-3/√10		
15	1111	-3/√10	-3/√10	
15			• .	126200 126200/126211/00 07 00 60
16	(E.g., <u>https://www.</u>	etsi.org/delive	r/etsi_t	ts/136200_136299/136211/08.07.00_60/
17	ts_136211v080700p.pdf).			
10				
18				
19				
20				
21				
22				
23				
23				
24				
25				
26				
27				
28	22-cv-0300			
20	COMPLAINT - 27			MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110

7.1.4 64QAM

1

2

In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complexvalued modulation symbols x=l+jQ according to Table 7.1.4-1.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$7 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7 000111 1/√42 7/√42 100111 -1/√42 7/√42	
8 001001 5/√42 1/√42 101001 -5/√42 1/√42	
001010 7/√42 3/√42 101010 -7/√42 3/√42	
9 001011 7/42 1/42 101011 -7/42 1/42	
001100 5/42 5/42 101100 -5/42 5/42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
010001 3/√42 -1/√42 110001 -3/√42 -1/√42	
12 010010 1/√42 -3/√42 110010 -1/√42 -3/√42	
010011 1/1/42 -1/10011 -1/1/42	
13 010100 3/42 -5/42 110100 -3/42 -5/42	
010101 3/√42 -7/√42 110101 -3/√42 -7/√42	
14 010110 1/√42 -5/√42 110110 -1/√42 -5/√42	
010111 1/√42 -7/√42 110111 -1/√42 -7/√42	
1 5 011000 5/42 -3/42 111000 -5/42 -3/42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
011010 7/42 -3/42 111010 -7/42 -3/42	
16 011011 7/42 -1/42 111011 -7/42 -1/42	
011100 5/42 -5/42 111100 -5/42	
17 011101 5/42 -7/42 111101 -5/42 -7/42	
011110 7/42 -5/42 111110 -7/42 -5/42	
18 011111 7/42 -7/42 111111 -7/42 -7/42	
¹⁹ (<i>E.g.</i> , https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_6	60/
20 ts_136211v080700p.pdf).	
21 25. Upon information and belief, the Accused Instrumentality, at least in its intern	ernal

d Instrumentality, at least in its internal 22 testing and usage, utilizes a base station which practices diversity combining (e.g., Hybrid ARQ 23 soft-combining) the demodulated data received over the first (e.g., mapping from assigned 24 resource blocks to the first available number of antenna ports) and second diversity branches 25 26 (e.g., mapping from assigned resource blocks to the later available number of antenna ports). The 27 Accused Instrumentality, at least in its internal testing and usage, utilizes a base station which 22-cv-0300 28 **COMPLAINT - 28** MANN LAW GROUP PLLC

MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

1	performs a diversity combining <i>i.e.</i> , Hybrid ARQ soft-combining of data from multiple received					
2	antenna ports.					
3 4	- No control of interleaving by higher layers.					
5	 Data modulation Modulation scheme is decided by MAC Scheduler (QPSK, 16QAM and 64QAM). 					
6	- Mapping to physical resource					
	- L2-controlled resource assignment.					
7	- Multi-antenna processing					
8	- MAC Scheduler partly configures mapping from assigned resource blocks to the available number of antenna ports.					
9	- Support of L1 control signalling					
10	- Transmission of ACK/NAK and CQI feedback related to DL data transmission					
11	The model of Figure 6.1.1 also captures					
12	- Transport via physical layer of Hybrid-ARQ related information (exact info is FFS) associated with the PUSCH, to the peer HARQ process at the receiver side;					
13	- Transport via physical layer of corresponding HARQ acknowledgements to PUSCH transmitter side.					
14	Receiver Node B Channel-state Indications information, etc. Image: Acknack					
15						
16						
17	MAC scheduler Decoding + RM					
18	Deinterleaving					
19	Modulation scheme Data demodulation Control of the scheme Resource					
20	assignment Resource demapping Received over the Resource mapping assignment and second symbols over					
21	Antenna demapping first and second diversity branches diversity branches					
22	Figure 6.1.1-1: Physical-layer model for UL-SCH transmission					
23						
24	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/</u>					
25	<u>ts_136302v080000p.pdf</u>).					
26						
27						
28	22-cv-0300 COMPLAINT - 29 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110 TELEPHONE: 206.436-0900					

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.30 Page 30 of 75

1 2 3 4 5 6 7	specific reference signals within the considered measurement frequency bandwidth. For RSRP determination the cell-specific reference signals R ₀ and if available R ₁ according to [8] can be used. If receiver diversity is in use by the UE, the reported value shall be equivalent to the linear average of the power values of all diversity branches. 5.3 L1 interactions with MAC retransmission functionality. Second transmission i.e. HARQ retransmission based on a repeat request
8	5.2 Overview of L1 functions
9	The physical layer offers data transport services to higher layers. The access to these services is through the use of a transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to provide the data transport service:
10	- Error detection on the transport channel and indication to higher layers
11	- FEC encoding/decoding of the transport channel
12	- Hybrid ARQ soft-combining Diversity combining
13	- Rate matching of the coded transport channel to physical channels
14	- Mapping of the coded transport channel onto physical channels
15	- Power weighting of physical channels
16	- Modulation and demodulation of physical channels
17	 Frequency and time synchronisation Radio characteristics measurements and indication to higher layers
	 Multiple Input Multiple Output (MIMO) antenna processing
18	- Transmit Diversity (TX diversity)
19	- Beamforming
20	- RF processing. (Note: RF processing aspects are specified in the TS 36.100)
21	L1 functions are modelled for each transport channel in subclauses 6.1 and 6.2.
22	(<i>E.g.</i> , https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/
23	
24	<u>ts_136302v080000p.pdf</u>).
25	
26	
27	
28	22-cv-0300 COMPLAINT - 30 MANN LAW GROUP PLLC
	403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.31 Page 31 of 75

1

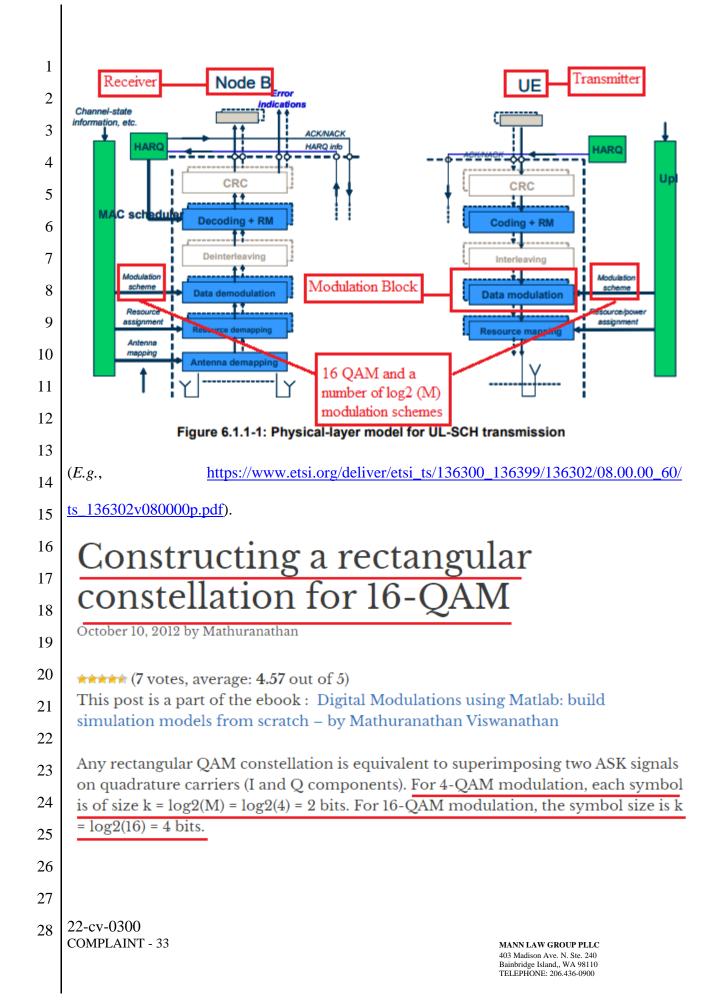
2

Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows

3 Hybrid Automatic Repeat Request (HARQ) 4 5 Transmitter 6 7 NACK ACK Diversity combining New Received the demodulated 8 data Receiver 9 Buffered HARQ Processing 10 11 (*E.g.*, http://www.techplayon.com/hybrid-automatic-repeat-request-harq-in-lte-fdd/). 12 13 26. Upon information and belief, the Accused Instrumentality utilizes the modulation 14 schemes wherein 16 QAM and a number of log2 (M) modulation schemes are used. The Accused 15 Instrumentality performs a data modulation such as QPSK, 16 QAM and 64 QAM wherein the 16 M-ary Quadrature Amplitude Modulation is basically a log2 (M) modulation schemes, for 17 example,16QAM stands for log2 (16) modulation schemes and 64 QAM stands for log2 (64) 18 modulation schemes. 19 20 Hybrid Automatic Repeat Request (HARQ) in LTE FDD 21 October 18, 2018 着 admin 🛛 🖿 Future Network Optimization, LTE, RF Basics, Tech Fundas 22 HARO stands for Hybrid Automatic Repeat Request. HARO = ARO + FEC (Forward Error Correction)/Soft Combining. 23 ARQ refers to Automatic Repeat Request i.e. if sender doesn't receive Acknowledgement (ACK) before timeout, the receiver 24 discards the bad packet and sender shall re-transmits the packet. ARQ procedure is illustrated below : 25 (E.g., http://www.techplayon.com/hybrid-automatic-repeat-request-harq-in-lte-fdd/). 26 27 22-cv-0300 28 COMPLAINT - 31 MANN LAW GROUP PLLC

MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.32 Page 32 of 75


1

2

Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows

1	(<i>E.g.</i> , <u>https://www.gaussianwaves.com/2012/10/constructing-a-rectangular-constellation-for-</u>									
2	<u>16-qam/).</u>									
3	<u>xo dam</u> ,									
4	QAM bits per symbol Higher order modulation scheme									
5	The advantage of using QAM is that it is a higher order form of modulation and as a result it is able to carry more bits of information per symbol. By selecting a higher order format of QAM, the data rate of a link can be									
6	increased.									
7	(<i>E.g.</i> , <u>https://www.electronics-notes.com/articles/radio/modulation/quadrature-amplitude-</u>									
8	modulation-types-8qam-16qam-32qam-64qam-128qam-256qam.php).									
9	7.1.3 <u>16QAM</u>									
10										
11	modulation symbols $x=I+jQ$ according to Table 7.1.3-1.									
	Table 7.1.3-1: 16QAM modulation mapping									
12										
13										
14	0001 1/√10 3/√10 4 0010 3/√10 1/√10									
15	0100 1/√10 -1/√10									
16										
17	0110 3/√10 -1/√10									
1/	0111 3/√10 −3/√10									
18	1000 −1/√10 1/√10									
19	1001 $-1/\sqrt{10}$ $3/\sqrt{10}$									
	1010 $-3/\sqrt{10}$ $1/\sqrt{10}$									
20										
21	1100 $-1/\sqrt{10}$ $-1/\sqrt{10}$									
22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
22	$\frac{-3}{\sqrt{10}} - \frac{-1}{\sqrt{10}} \frac{-1}{\sqrt{10}}$									
23	3									
24	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00</u>	<u> 60/</u>								
25	5 ts_136211v080700p.pdf).									
26										
27	7									
28	3 22-cv-0300 COMPLAINT - 34 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110									

TELEPHONE: 206.436-0900

7.1.4 64QAM

1

2

In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complex-valued modulation symbols x-I+jQ according to Table 7.1.4-1.

3		Table 7.1.4	4-1: 64QAI	I modulation mapping				
	b(i), b(i + 1), b(i + 2), b(i + 3), b(i + 4), 000000	.h(i+5) I 3∕√42	Q 3/442	b(i), b(i + 1), b(i + 2), b(i + 3), b(i + 4), b(i + 5) 100000	-3/-42	Q 3√√42		
4	000001	3/√42	1/√42	100001	-3/-/42	1/ /42		
5	000010	1∕√42	3/√42	100010	-1/√42	3/√42		
5	000011	1/√42	1/√42	100011	-1/-1/42	1/-42		
C	000100	3/√42 3/√42	5/√42 7/√42	100100	-3/42 -3/42	5/√42 7/√42		
6	000110	√√42	5/142	100110	-1/12	5/ √42		
7	000111	1/ √42	7/√42	100111	-1/-/42	7/ 42		
7	001000	5/√42	3/-42	101000	-5/42	3/√42		
0	001001	5/√42	1/√42	101001	-5/42	1/-42		
8	001010	7/~42 7/~42	3/-42	101010	-7/•42 -7/•42	3/√42 1/√42		
0	001100	5/-42	1/√42 5/√42	101011	-5/42	1/ 1/42 5/ 1/42		
9	001101	5/ 12	7/√42	101101	-5/ 42	7/ 12		
10	001110	7/-/42	5/142	101110	-7/-/42	5/ √42		
10	001111	7/-√42	7/√42	101111	-7/-/42	7/√42		
1.1	010000	3/√42	-3/-42	110000	-3/-42	-3/√42		
11	010001	3/√42	-1/√42	110001	-3/-42	-1/√42		
	010010 010011	1/√42 √/√42	-3/-42	110010	-1/√42 -1/√42	-3/√42 -1/√42		
12	010100	1/√42 3/√42	-1/√42 -5/√42	110100	-1/42 -3/42	-1/ 142 -5/ 142		
	010101	3/√42	-7/-42	110101	-3/-42	-7/√42		
13	010110	1/√42	-5/\[42]	110110	-1/-1/	- 5/ \[42		
	010111	1∕√42	-7/√42	110111	-1/√42	-7/√42		
14	011000	5/√42	-3/-/42	111000	-5/ 42	-3/√42		
	011001	5/√42	-1/√42	111001	-5/-42	-1/√42		
15	011010	7/-42	-3/-42	111010	-7/-42	-3/√42		
	011011 011100	7/√42 5/√42	-1/√42 -5/√42	111011	-7/ 1 42 -5/ 1 42	-1/√42 -5/√42		
16	011101	5/ √42	-7/-42	111101		-7/√42		
	011110	7/ 42	-5/ \[42	111110		- 5/ \[42		
17	011111	7/142	-7/√42	111111	-7/-42	-7/√42		
18	(<i>E.g.</i> ,		http	s://www.etsi.o	rg/del	iver/	etsi_ts/136200_136299/136211/08.07.00_60/	
	x · 0· /				-			
19	ts_136211v08	20700-	ndf					
	ts_136211v08	<u>su/oup</u> .	<u>pur</u>).					
20								
					V. <u>C</u>	OUN	<u>NT II</u>	
21	(PATE	NT IN	FRI	NGEMENT O	F UN	ITE	<u>D STATES PATENT NO. 7,567,622)</u>	
22	27.	Plaint	iff in	corporates the	above	e para	agraphs herein by reference.	
				1		I		
23	28.	On In	1. 2	8 2000 Unita	d Stat	De D	atent No. 7,567,622 ("the '622 Patent") was	
	20.	On Ju	iiy 20	s, 2009, Onite	u Stat		atent $NO. 7,507,022$ (the 022 Fatent) was	
24						_		
	duly and lega	ally iss	ued	by the United	States	s Pat	ent and Trademark Office. The application	
25								
-	leading to the	• '622 P	atent	was filed on I	Decem	ber 5	5, 2006 (Ex. B at cover)	
26	leading to the '622 Patent was filed on December 5, 2006 (Ex. B at cover)							
_0								
27								
- '								
28	22-cv-0300							
_0	COMPLAINT -	35					MANN LAW GROUP PLLC	
							403 Madison Ave. N. Ste. 240 Bainbridge Island WA 98110	

29. The '961 Patent is titled "Constellation Rearrangement for ARQ Transmit Diversity Schemes." The '622 Patent issued from an application that is a continuation of the application leading to the '961 Patent. A true and correct copy of the '622 Patent is attached hereto as Exhibit B and incorporated herein by reference.

30. Plaintiff is the assignee of all right, title, and interest in the '622 patent, including all rights to enforce and prosecute actions for infringement and to collect damages for all relevant times against infringers of the '622 Patent. Accordingly, Plaintiff possesses the exclusive right and standing to prosecute the present action for infringement of the '622 Patent by Defendant.

31. The '622 patent shares the same specification as the '961 patent and therefore the
background information regarding the '961 patent in paragraphs 11 through 15 are incorporated
by reference.

32. During the prosecution history, applicant explained the benefits of the claimed 14 invention. The claim "defines an ARQ retransmission method in which more than two data bits 15 16 are mapped onto one data symbol in each of the initial transmission and a retransmission. The 17 symbols of the initial transmission and the retransmission represent the same bit information, but 18 are different symbols due to different bit mappings. Since different bits of a modulation symbol 19 have different communications reliabilities, the claimed subject matter supports averaging the 20 communication reliabilities for each bit mapped onto a transmission symbol and a retransmission 21 symbol so as to improve the likelihood of receiving the bit." (Ex. C at 16). 22

23 24 25

26

27

1

2

3

4

5

6

7

8

9

33. An advantage of the claimed subject matter "lies in reducing the overall data traffic, since the claimed retransmission is only needed in situations where any initial transmission cannot be successfully received by a receiver. The claimed subject matter employs retransmission and diversity combining only when the initial transmission is not received

28 22-cv-0300 COMPLAINT - 36 properly, whereas [the prior art] communications scheme always transmits identical data over three parallel paths for diversity combining by a receiver and does not retransmit data in accordance with a repeat request by a receiver." (Ex. C at 17).

34. <u>**Direct Infringement.**</u> Upon information and belief, Defendant has been directly infringing at least claim 1 of the '622 patent in Washington, and elsewhere in the United States, by performing actions comprising at least performing the claimed ARQ re-transmission method by performing the steps of the claimed invention using the Schweitzer Engineering Laboratories SEL-3061 ("Accused Instrumentality") (*e.g.*, <u>https://selinc.com/products/3061/</u>).

10 35. In at least testing and usage, the Accused Instrumentality practices an ARQ re-11 transmission method (e.g., HARQ method) in a wireless communication system (e.g., LTE 12 network) wherein data packets are transmitted from a transmitter (e.g., the Accused 13 Instrumentality) to a receiver (e.g., LTE base station) using a higher order modulation scheme 14 (e.g., one of QPSK,16QAM and 64 QAM) wherein more than two data bits are mapped onto one 15 16 data symbol to perform a first transmission and at least a second transmission (e.g., HARQ 17 retransmission) based on a repeat request (e.g., HARQ retransmission request in the form of 18 NAK). The Accused Instrumentality performs a higher order data modulation such as 16QAM 19 and 64 QAM wherein has more than two data bits are mapped onto one data symbol (*i.e.*, in case 20 of 16QAM it transmits 4 bits per symbol whereas in the case of 64QAM it transmits 6 bits per 21 symbol. 22 23

28 22-cv-0300 COMPLAINT - 37

1

2

3

4

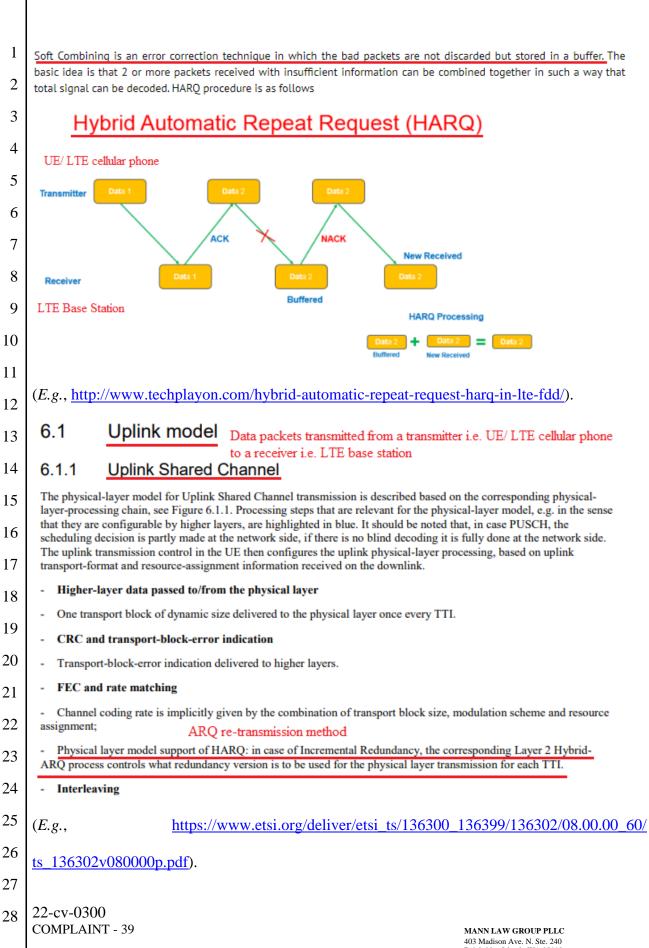
5

6

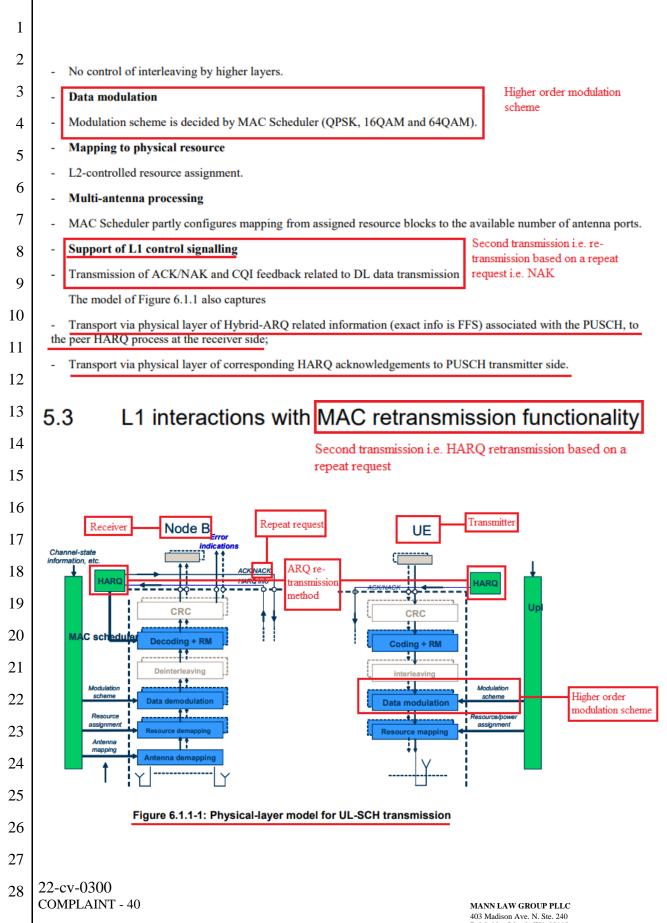
7

8

9


24

25


26

1	
2	SEL-3061
3	Cellular Router
4	The SEL-3061 Cellular Router is a secure wireless communications solution designed for critical applications. For electric utilities, the router provides connectivity to devices like recloser controls, motor-operated switches, capacitor banks, voltage regulators, substations, and much more. The
5	Image: SEL-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER Image: Sel-3061 CELLULAR ROUTER
6	
7	\$202
8	Wireless Connectivity to Romate Devices Heing
9	Wireless Connectivity to Remote Devices Using Cellular Networks—Provide wireless connectivity for a
10	variety of critical infrastructure applications. The SEL-
11	3061 provides remote access for devices using the
	public cellular radio network. It supports 4G LTE, 3G,
12	and 2G cellular technologies and has been certified in
13	the United States.
14	(<i>E.g.</i> , <u>https://selinc.com/products/3061/</u>).
15	
16	Hybrid Automatic Repeat Request (HARQ) in LTE FDD
17	📕 October 18, 2018 🕈 admin 🗭 Future Network Optimization, LTE, RF Basics, Tech Fundas
18	HARO stands for Hybrid Automatic Repeat Request. HARO = ARO + FEC (Forward Error Correction)/Soft Combining.
19	ARQ refers to Automatic Repeat Request i.e. if sender doesn't receive Acknowledgement (ACK) before timeout, the receiver discards the bad packet and sender shall re-transmits the packet. ARQ procedure is illustrated below :
20	uistarus die bad packet and sender shatt re dansmits die packet. Ako procedure is huisdated betow .
21	(E.g., <u>http://www.techplayon.com/hybrid-automatic-repeat-request-harq-in-lte-fdd/</u>).
22	
23	
24	
25	
26	
27	
28	22-cv-0300
20	COMPLAINT - 38 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110 TELEPHONE: 206.436-0900

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.39 Page 39 of 75

403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

	Case 2:22-cv-00300-SAB	ECF No. 1	filed 11/29/22	PageID.41	Page 41 of 75		
1	(<i>E.g.</i> , <u>https://</u>	www.etsi.org/	deliver/etsi_ts/136	300_136399/1	36302/08.00.00_60/		
2	ts_136302v080000p.pdf).						
3							
4	QAM bits per syn	npol	Higher order modulat	tion scheme			
5	The advantage of using QAM is more bits of information per syn	-					
6	increased.	by selecting		ac or qrim, are e			
7	(E.g., <u>https://www.elec</u>	etronics-notes.	com/articles/radio/	modulation/q	uadrature-amplitude-		
8	nu deletien (ener Quere 16)	22	128 256-	-	-		
9	modulation-types-8qam-16q	am-32qam-64c	<u>am-128qam-256q</u>	<u>am.pnp</u>).			
9 10		QAM FORMATS	& BIT RATES COMPA	RISON			
11	MODULATION	BIT	S PER SYMBOL		SYMBOL RATE		
	BPSK		1		1 x bit rate		
12	QPSK		2		1/2 bit rate		
13	8PSK		3	3			
14	16QAM		4		1/4 bit rate		
15	32QAM		5		1/5 bit rate		
15	64QAM		6		1/6 bit rate		
16	Respresenting more than two	o data bits are m	apped onto one data	a symbol			
17			· · · · · / · · · · · · · · · · · · · ·	(
18	(E.g., <u>https://www.elec</u>	ctronics-notes.	com/articles/radio/	modulation/q	<u>adrature-amplitude-</u>		
19	modulation-types-8qam-16q	am-32qam-64c	<u>am-128qam-256q</u>	<u>am.php</u>).			
20							
21							
22							
23							
24							
25							
26							
27							
28	22-cv-0300						
20	COMPLAINT - 41			MANN LAW 403 Madison A Bainbridge Isla TELEPHONE:	ve. N. Ste. 240 nd,, WA 98110		

7.1.3 16QAM

1

2

In case of 16QAM modulation, quadruplets of bits, b(i), b(i+1), b(i+2), b(i+3), are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1.

3		Table 7.1.3-1: 16QAM m	odulation	mapping
4		b(i), b(i+1), b(i+2), b(i+3)	1	Q
		0000	1/√10	ı/√10
5		0001	1/√10	3/√10
6		0010		ı/√ <u>10</u>
		0011		3/√10
7		0100		<u>-1/√10</u>
8		0101		-3/√10
0		0110		-1/√10
9		0111		-3/√10
10		1000	-1/√ <u>10</u>	
11		1001	-1/√10	
11		1010	-3/√10	
12		1011	-3/√10	-
12		1100	-1/√10	-1/√10 -3/√10
13		1101	$-1/\sqrt{10}$ $-3/\sqrt{10}$	
14		1110	$-3/\sqrt{10}$ $-3/\sqrt{10}$	
15			-3/410	-3/410
13		1.44		
16	(<i>E.g.</i> ,	https://www.etsi.or	rg/aenv	er/etsi_
17	ts_136211v080700p.	.pdf).		
18				
19				
20				
20				
21				
22				
22				
23				
24				
24				
25				
26				
27				
28	22-cv-0300			
-0	COMPLAINT - 42			

7.1.4 64QAM

1

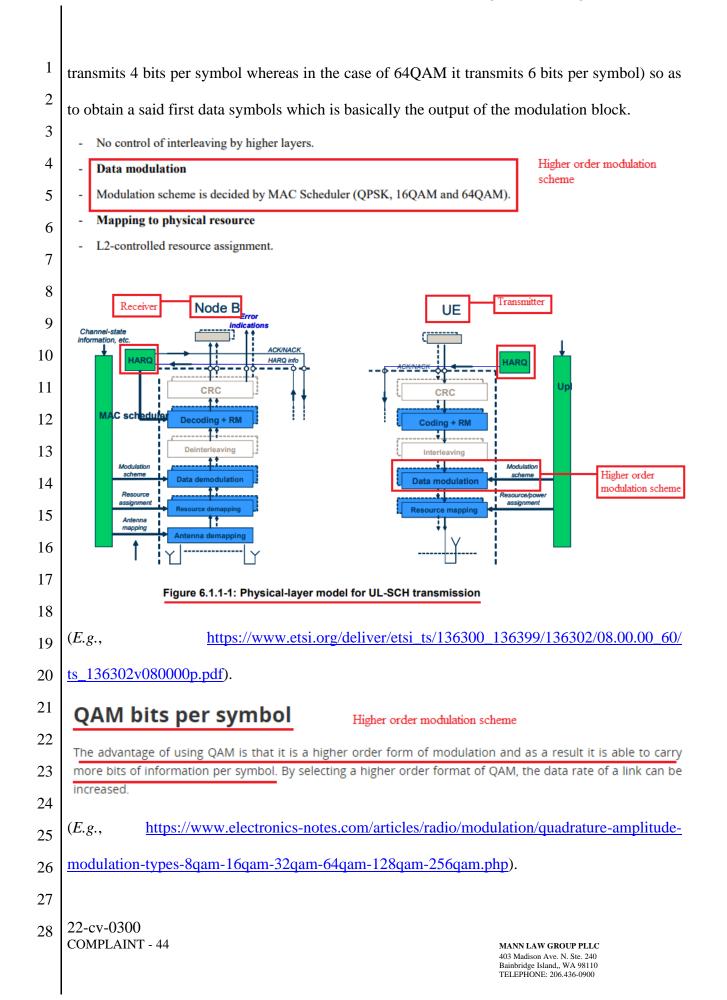
2

In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complexvalued modulation symbols x-I+jQ according to Table 7.1.4-1.

3	Table 7.1.4-1: 64QAM modulation mapping						
	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	
4	000000	3/√42	3/-42	100000	-3/-42	3/√42	
+	000001	3/√42	1/√42	100001	-3/-42	1/-/42	
5	000010	1∕√42	3/-42	100010	-1/√42	3/√42	
5	000011	1/√42	1/√42	100011	-1/-1/	1/-√42	
	000100	3/√42	5/-42	100100	-3/-42	5/√42	
6	000101	3/√42	7/√42	100101	-3/-42	7/-42	
	000110	1/√42	5/-42	100110	-1/√42	5/√42	
7	000111	1/√42	7/√42	100111	-1/-√42	7/√42	
	001000	5/√42	3/-42	101000	-5/42	3/-√42	
8	001001	5/√42	1/-1/42	101001	-5/42	1/-42	
0	001010	7/-42	3/-42	101010	-7/-42	3/√42	
	001011	7/-42	1/√42	101011	-7/-42	1/-142	
9	001100	5/√42	5/-42	101100	-5/42	5/√42	
	001101	5/√42	7/√42	101101	-5/42	7/-42	
10	001110	7/-42	<u>s</u> /√42	101110	-7/-42	5/√42	
10	001111	7/-√42	7/√42	101111	-7/-42	7/√42	
11	010000	3/√42	-3/-/42	110000	-3/42	-3/-42	
11	010001	3/√42	-1/-1/	110001	-3/-42	-1/√42	
10	010010	1/√42	-3/√42	110010	-1/-1/	-3/√42	
12	010011	1∕√42	-1/√42	110011	-1/√42	-1/√42	
	010100	3/√42	-5/ 42	110100	-3/-42	-5/√42	
13	010101	3/√42	-7/42	110101	-3/-42	-7/-42	
	010110	1/√42	-5/√42	110110	-1/-1/	-5/√42	
14	010111	1∕√42	-7/√42	110111	-1/√42	-7/√42	
1-1	011000	5/√42	-3/ 42	111000	-5/-42	-3/-42	
15	011001	5/√42	-1/√42	111001	-5/-42	-1/√42	
15	011010	7/-42	-3/-42	111010	-7/-42	-3/142	
	011011	7/-42	<u>-1√√42</u>	111011	-7/-42	-1/√42	
16	011100	5/√42	-5/√42	111100	-5/-42		
	011101	5/√42	-7/42	111101	-5/-42		
17	011110	7/42	-5/42	111110	-7/-42	-5/√42	
11	011111	7/42	-7/ 42	111111	-7/-42	-7/12	
18			1		/1.1:		

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/

ts_136211v080700p.pdf).


(E.g.,

19

20

36. Upon information and belief, the Accused Instrumentality practices modulating
data packets at the transmitter (*e.g.*, the Accused Instrumentality) using a first mapping of said
higher order modulation scheme (*e.g.*, one of QPSK, 16QAM and 64 QAM) to obtain first data
symbols (*e.g.*, output of modulation block performing said first modulation scheme). The
Accused Instrumentality performs a higher order data modulation such as 16QAM and 64 QAM
which have more than two data bits are mapped onto one data symbol (*i.e.*, in case of 16QAM it

28 22-cv-0300 COMPLAINT - 43

	QAM FORMA	TS & BIT	RATES COMP	ARISON	
MODULATION		BITS PER	SYMBOL		SYMBOL RATE
BPSK			1		1 x bit rate
QPSK			2		1/2 bit rate
8PSK			3		1/3 bit rate
16QAM			4		1/4 bit rate
32QAM			5		1/5 bit rate
64QAM			6		1/6 bit rate
Respresenting mo	ore than two data bits are	mappe	d onto one da	ata symbol	
(E.g., https://	/www.electronics-note	es com/	articles/radi	io/modulation/a	uadrature_amplitu
$(L.g., \underline{\mathrm{Intps.//}})$	www.electromes-note	5.0011/			
modulation-types-	<u>8qam-16qam-32qam-6</u>	<u>4qam-</u>	128qam-250	<u>6qam.php</u>).	
7.1.3 <u>16QAM</u>					
	on, quadruplets of bits, $b(i), b(i+1), b(i+1$	b(i+2), b(i	+3), are mapped	to complex-valued	
modulation symbols x=I+jQ	Table 7.1.3-1: 16QAM mo	dulation	manning		
	b(i),b(i+1),b(i+2),b(i+3)	/	Q		
	0000	ı/√10	1/√10		
	0001	1/√10	3/√10		
	0010	3/√10	1/√10		
	0011	3/√10	3/√10		
	0100	1/√10			
	0101	1/√10	-3/√10		
	0110	3/√10 3/√10			
	1000	-1/√10			
	1001	-1/√10	-		
	1010	-3/√ <u>10</u>	1/√10		
	1011	-3/√10	3/√10		
	1100		-1/√10		
	1101	-	-3/ \ 10		
	1110	-	-1/√10 -3/√10		
		-3/410	- 3/ 410		
22 av 0200					
22-cv-0300 COMPLAINT - 45				MANN LAW (GROUP PLLC

2

3

4

5

(E.g.,

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/

ts_136211v080700p.pdf).

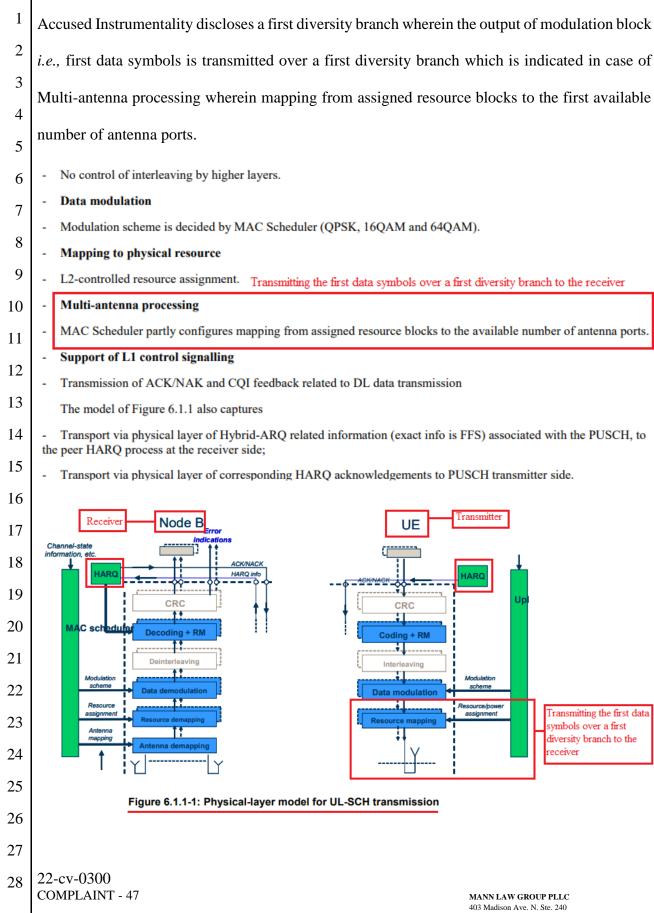
7.1.4 64QAM

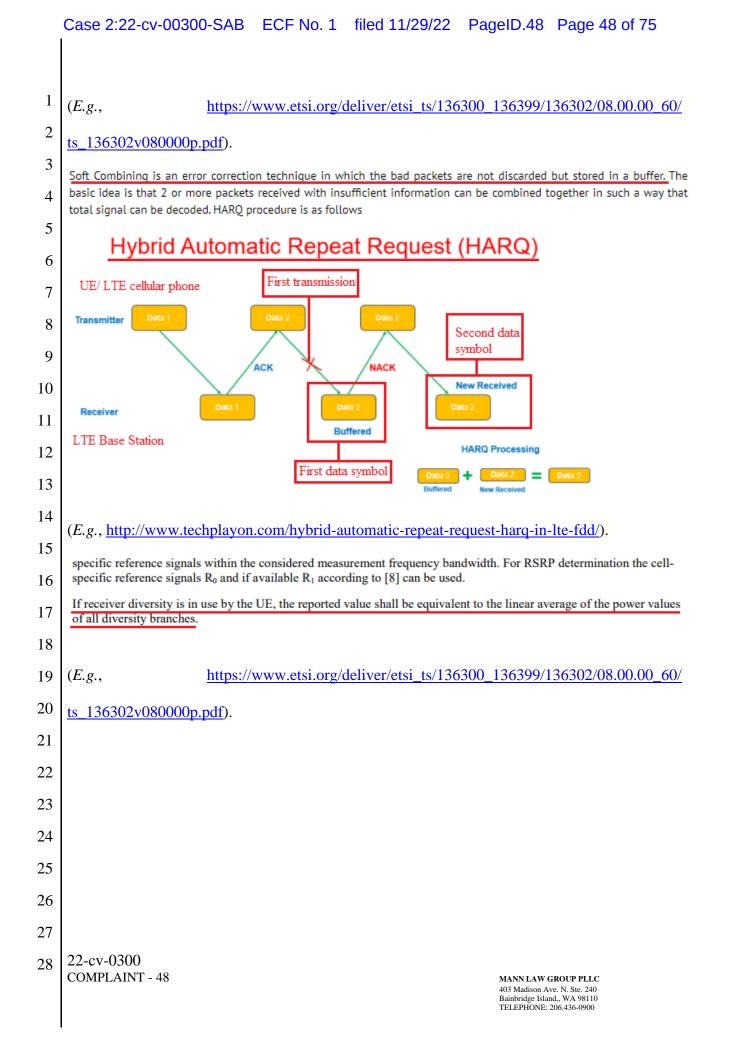
In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complexvalued modulation symbols x-I+jQ according to Table 7.1.4-1.

Э	Table 7.1.4-1: 64QAM modulation mapping								
6	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q			
0	000000	3/√42	3/-42	100000	-3/-42	3/√42			
-	000001	3/√42	1/√42	100001	-3/-42	1/-1/42			
7	000010	1∕√42	3/-42	100010	-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-	3∕√42			
	000011	I ∕√42	1/-√42	100011	-1/-/42	1/-/42			
8	000100	3/√42	5/-42	100100	-3/-42	5/√42			
	000101	3/√42	7/√42	100101	-3/-/42	7/√42			
9	000110	1∕√42	5/√42	100110	-1/√42	5∕√42			
-	000111	1/√42	7/√42	100111	-1/-1/42	7/√42			
10	001000	5/√42	3/-42	101000	-5/-42	3/√42			
10	001001	5/142	1/√42	101001	-5/-42	1/-/42			
11	001010	7/-42	3/-42	101010	-7/-42	3/√42			
11	001011	7/-√42	1/√42	101011	-7/-/42	1/-√42			
	001100	5/√42	5/-42	101100	-5/-42	5/√42			
12	001101	5/√42	7/√42	101101	-5/-42	7/√42			
	001110	7/-42	5/ 42	101110	-7/-42	5/√42			
13	001111	7/-√42	7/√42	101111	-7/-42	7/-12			
	010000	3/√42	-3/-/42	110000	-3/-42	-3/-√42			
14	010001	3/√42	-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-	110001	-3/-42	-1/√42			
• •	010010	1/√42	-3/-42	110010	-1/-12	-3/√42			
15	010011	1∕√42	-1/-1/	110011	-1/-12	-1/√42			
15	010100	3/√42	-5/-42	110100	-3/-42	-5/√42			
10	010101	3/√42	-7/-42	110101	-3/-42	-7/-42			
16	010110	1/√42	-5/√42	110110		-5/√42			
	010111	1√√42	-7/-42	110111	-1/-1/-1/42	-7/12			
17	011000	5/√42	-3/-√42	111000	-5/-42	-3/-42			
	011001	5/√42	-1/-1/-1/42	111001	-5/-42	-1/√42			
18	011010	7/-42	-3/-42	111010	-7/-42	-3/√42			
	011011	7/-√42	-1/-1/	111011	-7/-42	-1/√42			
19	011100	5/√42	-5/√42	111100	-5/-42	-5/√42			
17	011101	5/√42	-7/-42	111101	-5/-42	-7/-12			
20	011110	7/-42	-5/√42	111110	-7/-42	-5/√42			
20	011111	7/ 42	-7/42	111111	-7/-42	-7/12			

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/

Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900


22


(E.g.,

23

ts_136211v080700p.pdf).

37. Upon information and belief, the Accused Instrumentality practices performing
 the first transmission by transmitting the first data symbols (*e.g.*, output of modulation block
 performing said first modulation scheme) over a first diversity branch to the receiver (*e.g.*,
 mapping from assigned resource blocks to the first available number of antenna ports). The
 22-cv-0300
 COMPLAINT - 46

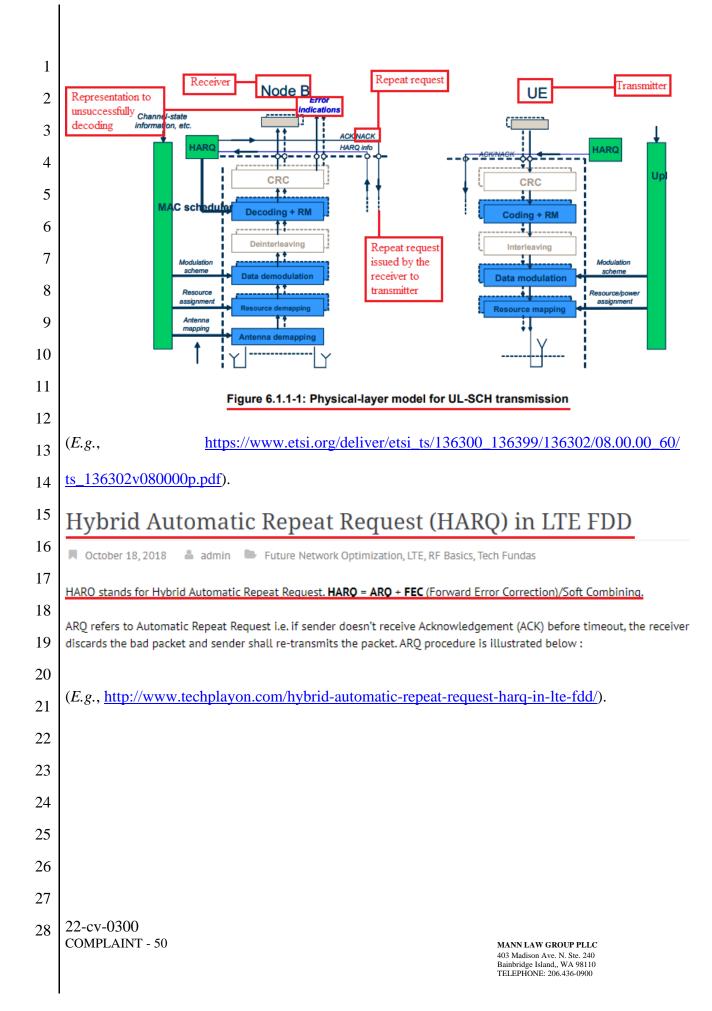
26

27

28

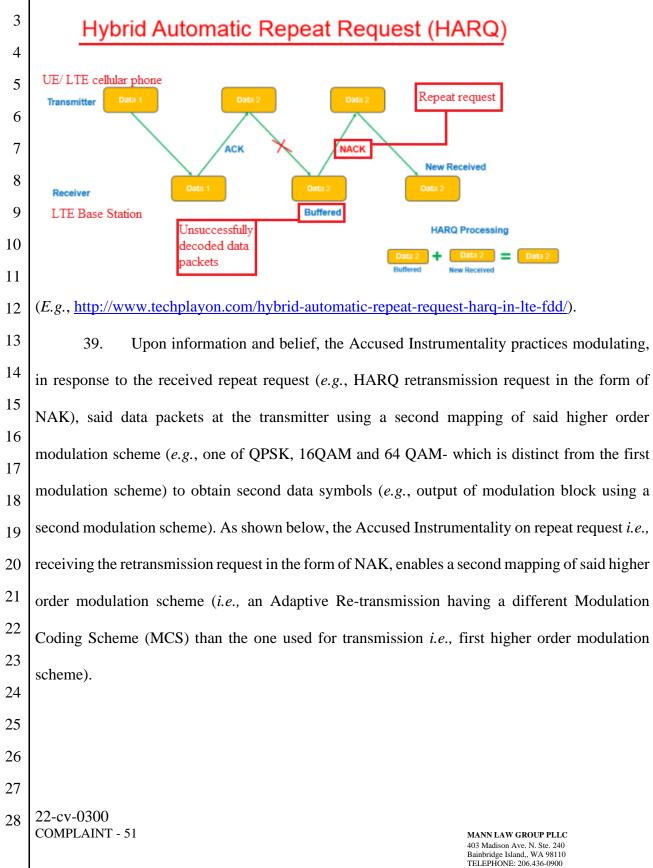
22-cv-0300

COMPLAINT - 49

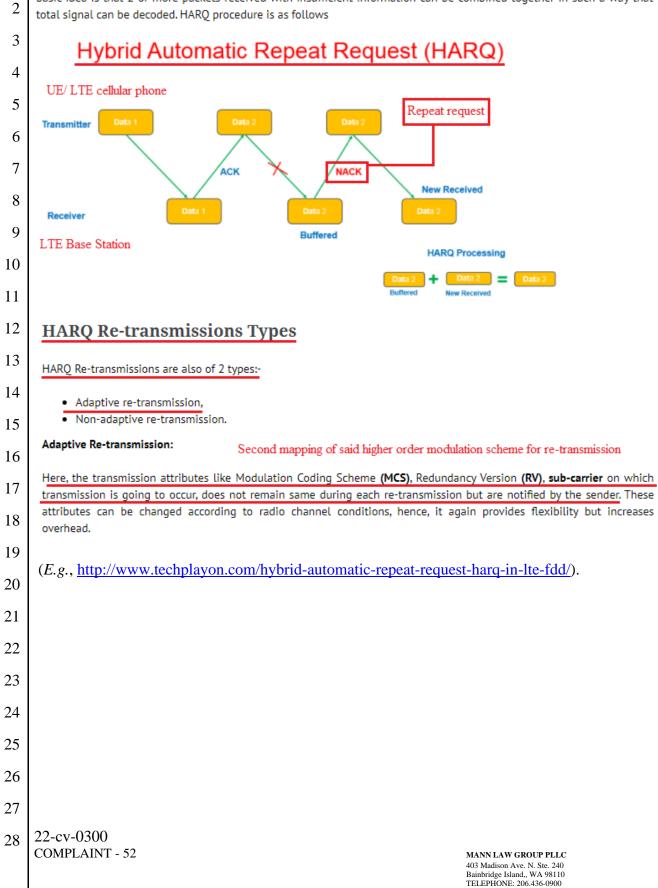

5.2

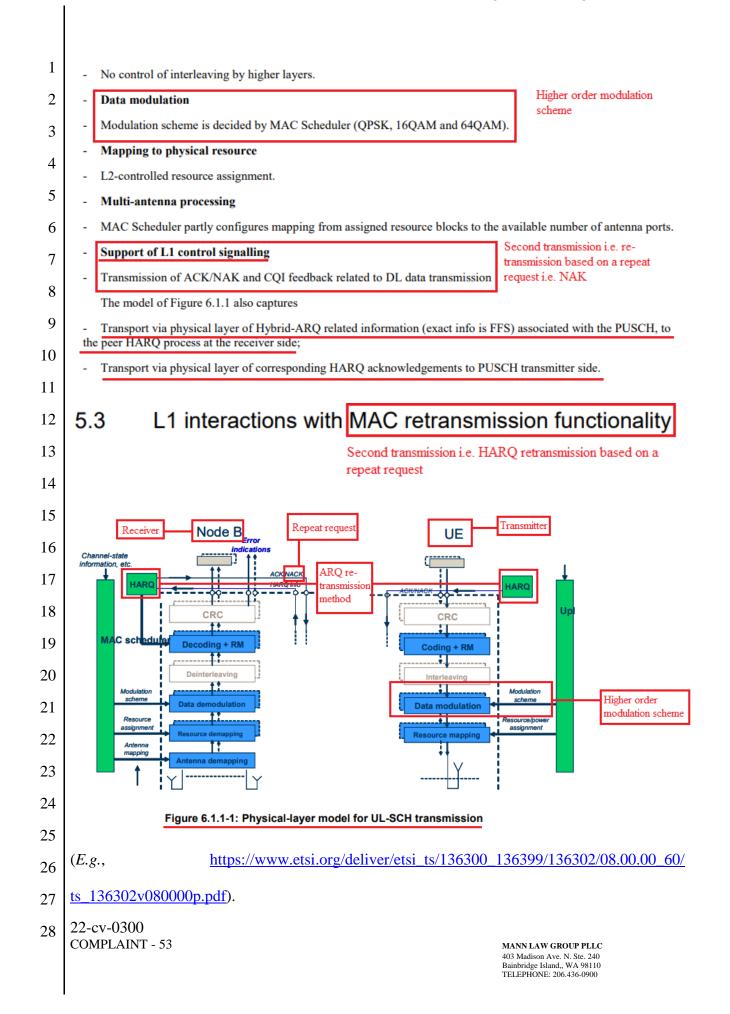
Overview of L1 functions

The physical layer offers data transport services to higher layers. The access to these services is through the use of a transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to provide the data transport service:


4	- Error detection on the transport channel and indication to higher layers
5	- FEC encoding/decoding of the transport channel
6	- Hybrid ARQ soft-combining
7	- Rate matching of the coded transport channel to physical channels
	 Mapping of the coded transport channel onto physical channels
8	- Power weighting of physical channels
9	- Modulation and demodulation of physical channels
10	- Frequency and time synchronisation
11	- Radio characteristics measurements and indication to higher layers
	- Multiple Input Multiple Output (MIMO) antenna processing
12	- Transmit Diversity (TX diversity)
13	- Beamforming
14	- RF processing. (Note: RF processing aspects are specified in the TS 36.100)
15	L1 functions are modelled for each transport channel in subclauses 6.1 and 6.2.
16	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/</u>
17	<u>ts_136302v080000p.pdf</u>).
18	38. Upon information and belief, the Accused Instrumentality practices performing
19	
20	receiving at the transmitter (e.g., the Accused Instrumentality) the repeat request (e.g., HARQ
21	retransmission request in the form of NAK) issued by the receiver (e.g., LTE base station) to
22	retransmit the data packets in case the data packets of the first transmission have not been
23	successfully decoded (<i>e.g.</i> , Error indication in the data received).
24	
25	

2


Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows


Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.52 Page 52 of 75

1

Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.53 Page 53 of 75

	Case 2:22-cv-00300-SAB	ECF No. 1	filed 11/29/22	PageID.54	Page 54 of 75
1	QAM bits per sym	nbol	Higher order modula	tion scheme	
2	The advantage of using QAM is	that it is a higher	order form of mod	ulation and as a	result it is able to carry
3	more bits of information per syn	nbol. By selecting	a higher order form	at of QAM, the c	lata rate of a link can be
4	increased.				
5		QAM FORMATS	& BIT RATES COMPA	RISON	
6	MODULATION	BIT	S PER SYMBOL		SYMBOL RATE
7	BPSK		1		1 x bit rate
8	QPSK		2		1/2 bit rate
	8PSK		3		1/3 bit rate
9	16QAM		4		1/4 bit rate
10	32QAM		5		1/5 bit rate
11	64QAM	4.1.4.5	6		1/6 bit rate
12	Respresenting more than two	o data bits are m	apped onto one data	a symbol	
	(<i>E.g.</i> , <u>https://www.elec</u>	ctronics-notes.c	com/articles/radio/	/modulation/q	uadrature-amplitude-
13					-
14	modulation-types-8qam-16qa	am-32qam-64q	<u>am-128qam-256q</u>	<u>lam.php</u>).	
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28	22-cv-0300 COMPLAINT - 54			MANN LAW 403 Madison A	

7.1.3 16QAM

1

2

In case of 16QAM modulation, quadruplets of bits, b(i), b(i+1), b(i+2), b(i+3), are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1.

	modulation symbols $x=I+jQ$ ac	cording to Table 7.1.3-1.		
3		Table 7.1.3-1: 16QAM m	odulation	mapping
4		b(i), b(i+1), b(i+2), b(i+3)	1	Q
		0000	1/√10	ı/√ <u>10</u>
5		0001		3/√10
6		0010		1/√10
7		0011		3/√10
7		0100		-1/√10
8		0101		-3/√10
9		0110		-1/√10
フ		0111	3/√10 -1/√10	-3/√10
10		1000	-1/√10 -1/√10	
11		1010	$-1/\sqrt{10}$ $-3/\sqrt{10}$	
		1010	$-3/\sqrt{10}$ $-3/\sqrt{10}$	
12		1100	-	-1/√10
13		1101		-3/√10
14		1110	-3/10	
14		1111	-3/√10	-3/√ <u>10</u>
15				
16	(<i>E.g.</i> ,	https://www.etsi.or	rg/deliv	er/etsi_
	12(211,000700	10		
17	ts_136211v080700p	<u>.pdf</u>).		
18				
10				
19				
20				
21				
21				
22				
23				
24				
25				
26				
26				
27				
28	22-cv-0300			
20	COMPLAINT - 55			

7.1.4 64QAM

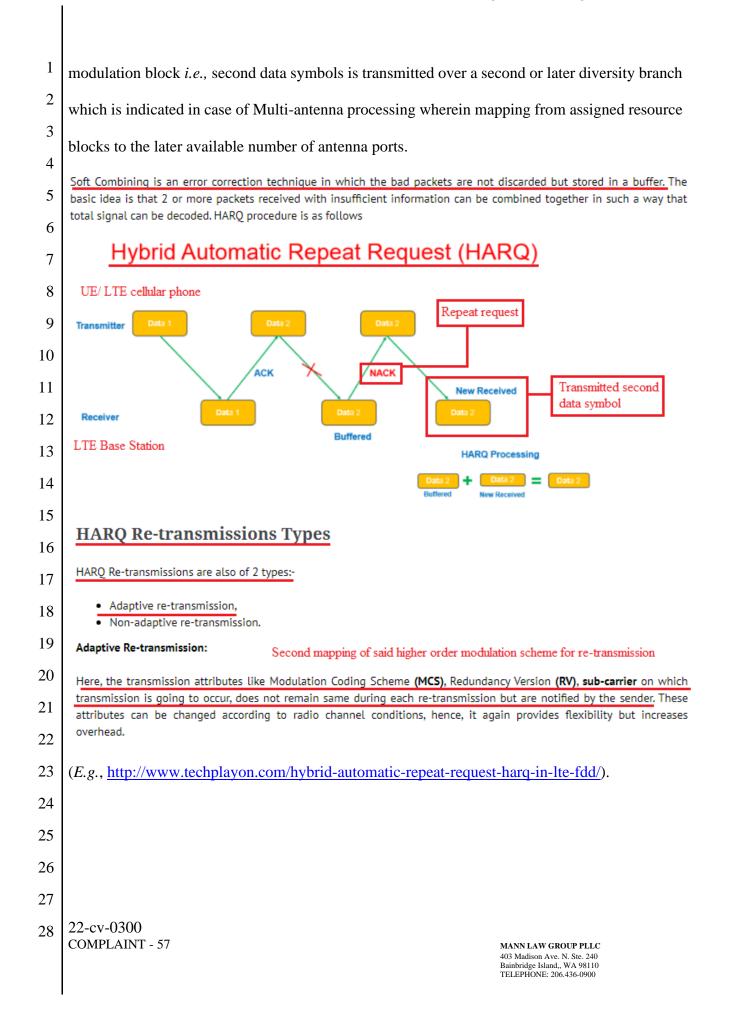
1

2

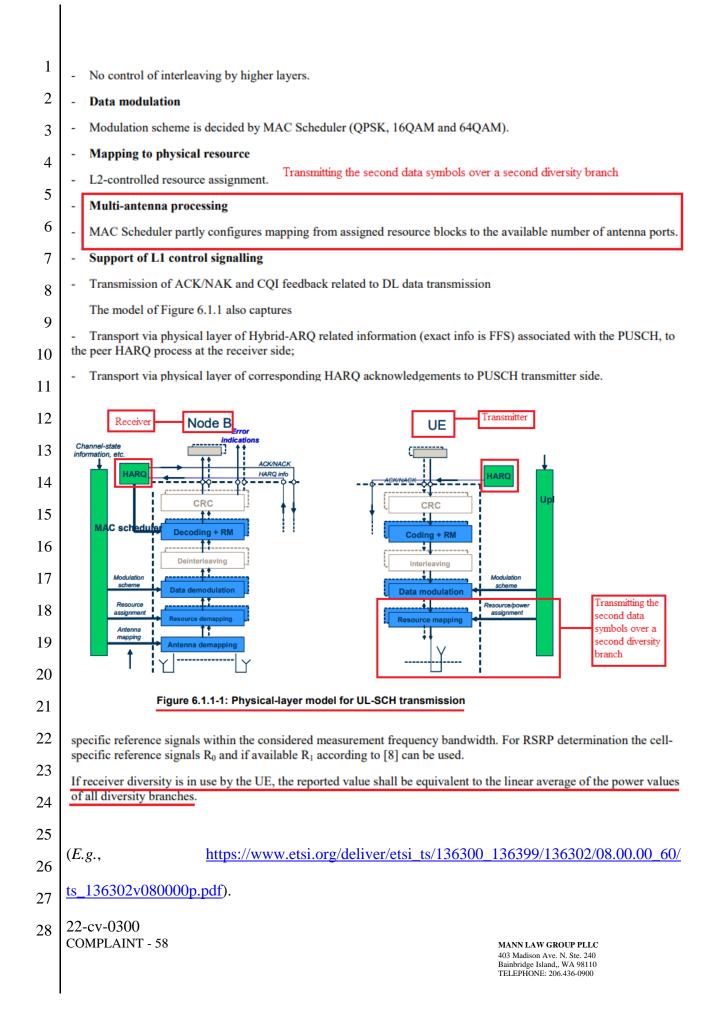
In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complexvalued modulation symbols x=1+jQ according to Table 7.1.4-1.

3	Table 7.1.4-1: 64QAM modulation mapping						
	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q	
4	000000	3/142	3/-42	100000	-3/-42	3/√42	
т	000001	3/√42	1/√42	100001	-3/-42	1/-42	
~	000010	1/√42	3/-42	100010	-1/-12	3/√42	
5	000011	1/-√42	1/√42	100011	-1/-1/	1/-/42	
	000100	3/-√42	5/-42	100100	-3/-42	5/√42	
6	000101	3/√42	7/√42	100101	-3/-42	7/ 42	
	000110	1/√42	5/-42	100110	-1/-12	5/√42	
7	000111	1/-√42	7/√42	100111	-1/-√42	7/√42	
-	001000	5/-142	3/-42	101000	-5/42	3/√42	
8	001001	5/ 42	1/-√42	101001	-5/42	1/-42	
0	001010	7/-42	3/-42	101010	-7/-42	3/√42	
0	001011	7/-42	1/-√42	101011	-7/42	1/-42	
9	001100	5/-142	5/-42	101100	-5/42	5/√42	
	001101	5/ 12	7/√42	101101	-5/42	7/42	
10	001110	7/-42	<u>s</u> /√42	101110	-7/-42	5/√42	
	001111	7/-42	7/√42	101111	-7/-42	7/12	
11	010000	3/ 42	-3/√42	110000	-3/-42	-3/-√42	
11	010001	3/ √42	-1/-1/	110001	-3/-42	-1/	
10	010010	1/√42	-3/-42	110010	-1/√42	-3/√42	
12	010011	1/√42	-1/√42	110011	-1/-12	-1/√42	
	010100	3/ 142	-5/√42	110100	-3/-42	-5/ 142	
13	010101	3/-142	-7/-42	110101	-3/-42	-7/√42	
	010110	1/√42	-5/√42	110110	-1 /√ 42	-5/√42	
14	010111	1/√42	-7/√42	110111	-1/-1/	-7/√42	
1.	011000	5/-142	-3/√42	111000	-5/-42	-3/-√42	
15	011001	5/-142	-1/-1/-1/42	111001	-5/-42	-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-1/-	
13	011010	7/-42	-3/-42	111010	-7/-42	-3/√42	
	011011	7/-42	-1/√42	111011	-7/-42	-1/√42	
16	011100	5/-√42	-5/√42	111100	-5/-42	-5/√42	
	011101	5/-142	-7/-42	111101	-5/-42	-7/√42	
17	011110	7/-42	-5/√42	111110	-7/-42	-5/√42	
-	011111	7/-42	-7/42	111111	-7/-42	-7/√42	
18							
10	$(F \alpha)$		http:	s://www.etsi.org		vorlata	
	(<i>E.g.</i> ,		mups	$\frac{1}{2}$			

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/


ts_<u>136211v080700p.pdf</u>).

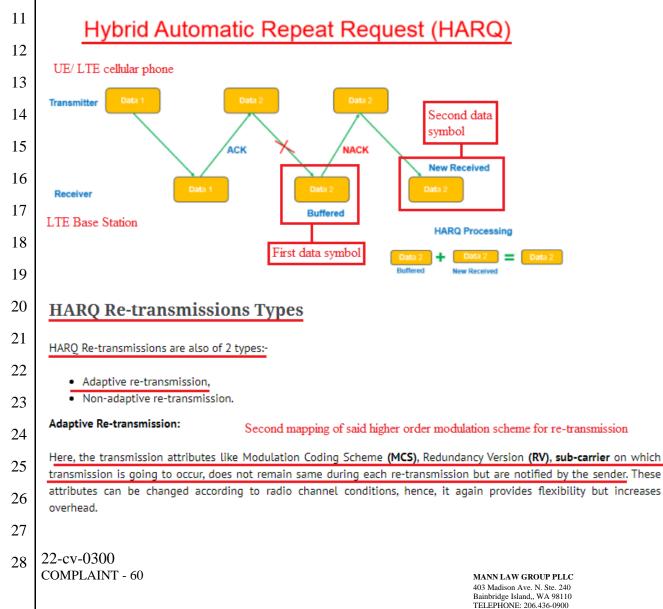
19


20

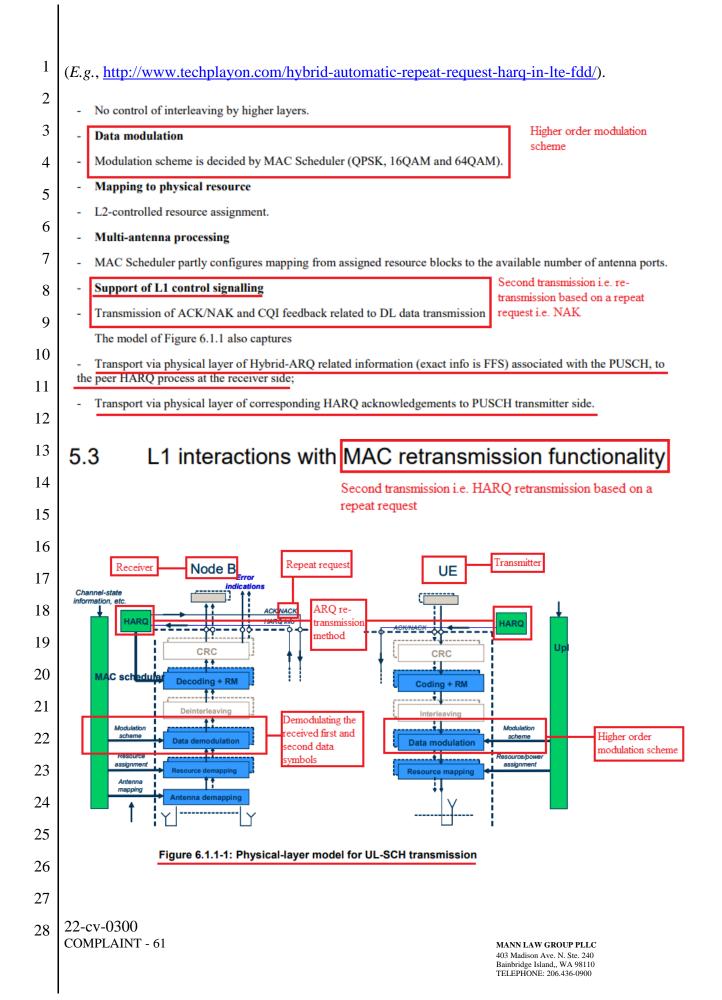
40. Upon information and belief, the Accused Instrumentality practices performing, in response to the received repeat request (*e.g.*, retransmission request in the form of NAK), the second transmission (*e.g.*, retransmission) by transmitting the second data symbols (*e.g.*, output of modulation block using a second modulation scheme) over a second diversity branch to the receiver (*e.g.*, mapping from assigned resource blocks to the later available number of antenna ports). The Accused Instrumentality discloses a second diversity branch wherein the output of

28 22-cv-0300 COMPLAINT - 56

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.58 Page 58 of 75



1	5.3 L1 interactions with MAC retransmission functionality						
2 3	Second transmission i.e. HARQ retransmission based on a repeat request						
4 5	5.2 Overview of L1 functions The physical layer offers data transport services to higher layers. The access to these services is through the use of a transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to						
6 7	 Provide the data transport service: Error detection on the transport channel and indication to higher layers 						
8	- FEC encoding/decoding of the transport channel						
9	- Hybrid ARQ soft-combining						
10	- Rate matching of the coded transport channel to physical channels						
11	 Mapping of the coded transport channel onto physical channels 						
	- Power weighting of physical channels						
12	- Modulation and demodulation of physical channels Frequency and time symphronisation						
13	 Frequency and time synchronisation Radio characteristics measurements and indication to higher layers 						
14	 Multiple Input Multiple Output (MIMO) antenna processing 						
15	- Transmit Diversity (TX diversity)						
16	- Beamforming						
17	- RF processing. (Note: RF processing aspects are specified in the TS 36.100)						
18	L1 functions are modelled for each transport channel in subclauses 6.1 and 6.2.						
19	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/</u>						
20	<u>ts_136302v080000p.pdf</u>).						
21 22	41. Upon information and belief, the Accused Instrumentality, at least in its internal						
23	testing and usage, utilizes a base station which practices demodulating the received first (e.g.,						
24	output of modulation block performing said first modulation scheme) and second data symbols						
25	(e.g., output of modulation block using a second modulation scheme) at the receiver (e.g., LTE						
26	Base Station) using the first and second mappings (e.g., the mappings corresponding to						
27 28	transmission and retransmission Modulation Coding Scheme). As shown below, the Accused 22-cv-0300						
	COMPLAINT - 59 403 Matison Ave, N. Ste, 240 Bainbridge Island, WA 98110 TELEPHONE: 206.436-6900						


Instrumentality, at least in its internal testing and usage, utilizes a base station which practices demodulation of first (*e.g.*, output of modulation block performing said first modulation scheme) and second data symbols (*e.g.*, output of modulation block using a second modulation scheme) at the LTE Base Station using the first and second mappings *i.e.*, Modulation Coding Scheme which are distinct for transmission and Adaptive Re-transmission (*i.e.*, an Adaptive Re-transmission having a different Modulation Coding Scheme (MCS) than the one used for transmission *i.e.*, first higher order modulation scheme).

Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows

9

	Case 2:22-cv-00300-SAB	ECF No. 1	filed 11/29/22	PageID.62	Page 62 of 75
1	(<i>E.g.</i> , <u>https://</u>	/www.etsi.org/de	eliver/etsi_ts/136	<u>300_136399/1</u>	36302/08.00.00_60/
2	<u>ts_136302v080000p.pdf</u>).				
3	OAM bits new own	ahal			
4	QAM bits per syn	IOUI	Higher order modulat	ion scheme	
5	The advantage of using QAM is more bits of information per syn	~			
6	increased.	mbol. By selecting a	i nigher order form	at of QAIVI, the o	ata fate of a liftk call be
7					
8		QAM FORMATS &	BIT RATES COMPAR	RISON	
	MODULATION	BITS	PER SYMBOL		SYMBOL RATE
9	BPSK		1		1 x bit rate
10	QPSK		2		1/2 bit rate
11	8PSK		3		1/3 bit rate
12	16QAM 32QAM		4 5		1/4 bit rate
	64QAM		6		1/6 bit rate
13	Respresenting more than tw	o data bits are mar		ı symbol	
14					
15	(<i>E.g.</i> , <u>https://www.ele</u>	ctronics-notes.co	m/articles/radio/	modulation/qu	adrature-amplitude-
16	modulation-types-8qam-16q	am-32qam-64qa	<u>m-128qam-256q</u>	<u>am.php</u>).	
17					
18					
19					
20					
20					
22					
23					
24					
25					
26					
27					
28	22-cv-0300 COMPLAINT - 62			MANN LAW (403 Madison A Bainbridge Islar TELEPHONE: :	ve. N. Ste. 240 d., WA 98110

7.1.3 16QAM

1

2

In case of 16QAM modulation, quadruplets of bits, b(i), b(i+1), b(i+2), b(i+3), are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1.

3		Table 7.1.3-1: 16QAM m	odulation	mapping
4		b(i), b(i+1), b(i+2), b(i+3)	1	Q
		0000	1/√10	ı/√10
5		0001	1/√10	3/√10
6		0010		1/√10
		0011		3/√10
7		0100		-1/√10
8		0101		-3/10
0		0110		-1/√10
9		0111		-3/√10
10		1000	-1/√10	
11		1001	-1/√10	
11		1010	$-3/\sqrt{10}$ $-3/\sqrt{10}$	
12			-3/√10 -1/√10	-
13		1100	-1/√10 -1/√10	
15		1110	-1/√10 -3/√10	
14		1111	$-3/\sqrt{10}$ $-3/\sqrt{10}$	
15			-3/410	- 5/ 410
	(F a	https://www.etsi.or	ra/daliv	orlatai
16	(E.g.,	https://www.etsi.or	lg/uenv	
17	ts_136211v080700p.	<u>pdf</u>).		
18				
19				
20				
20				
21				
22				
23				
24				
25				
26				
27				
28	22-cv-0300			
-	COMPLAINT - 63			

7.1.4 64QAM

1

2

In case of 64QAM modulation, hextuplets of bits, b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5), are mapped to complex-valued modulation symbols x-I+jQ according to Table 7.1.4-1.

3		Table 7.1.4-1:	1: 64QAM m	rodulation mapping			
	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)	1	Q M	$(i)_{i}b(i+1)_{i}b(i+2)_{i}b(i+3)_{i}b(i+4)_{i}b(i+5)$	1	Q	
4	000000	3/√42 3	3/ 42	100000	-3/-42	3∕√42	
	000001	3/√42 1	1/√42	100001	-3/-/42	1/-/42	
5	000010	1/√42 3	3/-√42	100010	-1/√42	3∕√42	
	000011	1/√42 1	1/√42	100011	-1/-1/	1/-42	
6	000100	3/√42 5	5/√42	100100	-3/-42	5/√42	
U	000101	3/√42 7	7/√42	100101	-3/-42	7/√42	
7	000110	1/√42 5	5/√42	100110	-1/√42	\$∕√42	
/	000111	1/√ 42 7	7/√42	100111	-1/-1/	7/√42	
0	001000	5/√42 3	3/-42	101000	-5/-42	3/-√42	
8	001001	5/√42 1	1/√42	101001	-5/-42	1/-42	
	001010	7/-42 3	3/142	101010	-7/-42	3∕√42	
9	001011	7/-42 1	1/√42	101011	-7/-42	1/-42	
	001100	5/-√42 5	5/-√42	101100	-5/-42	5/-√42	
10	001101	5/12 7	7/√42	101101	-5/-42	7/42	
	001110	7/-42 5	5/√42	101110	-7/-/42	5/√42	
11	001111	7/-42 7	7/√42	101111	-7/-42	7/√42	
	010000	3/√42 -	-3/-/42	110000	-3/-/42	-3/√42	
12	010001	3/√42 -	-1/√42	110001	-3/-42	-1/\42	
12	010010	1/√ 42 -	-3/√42	110010	- 1/√ 42	-3/√42	
12	010011	ı /√ 42 –	-1/√42	110011	-1/√42	-1/√42	
13	010100	3/√42 -	-5/-√42	110100	-3/-42	-5/√42	
1.4	010101	3/√42 -	-7/-/42	110101	-3/42	-7/√42	
14	010110	1/ √42 -	-5/-√42	110110	-1/-12	-5/√42	
	010111	1/ √42 -	7/-√42	110111	-1/√42	-7/√42	
15	011000	5/-√42 -	-3/-√42	111000	-5/-42	-3/√42	
	011001	5/√42 -	-1/√42	111001	-5/-42	-1/√42	
16	011010	7/-42 -	-3/-/42	111010	-7/-/42	-3/√42	
	011011	7/-42 -	-1/√42	111011	-7/-42	-1/\[]	
17	011100	5/√42 -	-5/-√42	111100	-5/-42	-5/√42	
1,	011101	5/√42 -	-7/-/42	111101	-5/-42	-7/√42	
18	011110	7/-42 -	-5/-√42	111110	-7/-42		
10	011111	7/-42 -	-7/-42	111111	-7/-42	-7/√42	
10							
19	(\mathbf{F})	1.4			.1:	lata:	to/126200_126200/126211/08_07_00_60/
•	(<i>E.g.</i> ,	<u>nu</u>	<u></u>	www.etsi.org/d	enver	etsi_	ts/136200_136299/136211/08.07.00_60/
20							
	ts_136211v08070)0p.pdf	f).				
21		- <u>-</u>	_/				
	40 II.		c	('	41 A		- 1 To start and all the set in the intermed
22	42. Up	on ini	forma	tion and belief,	the P	Accus	ed Instrumentality, at least in its internal
23	testing and usage.	utilize	es a b	ase station whi	ch pra	ictice	s diversity combining (<i>e.g.</i> , Hybrid ARQ
23		,			r		
24	a of the second testing of the	1 I		1.4.4. d-4			the first (
24	soft-combining)	the def	modu	lated data rece	erved	over	the first (e.g., mapping from assigned
~~							
25	resource blocks t	o the f	first a	vailable numbe	er of	anten	na ports) and second diversity branches
	• • • • • • • • • • • • •						1 ,

(*e.g.*, mapping from assigned resource blocks to the later available number of antenna ports). The

28 22-cv-0300 COMPLAINT - 64

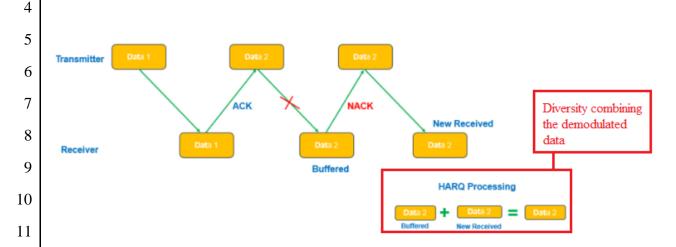
26

1	Accused Instrumentality, at least in its internal testing and usage, utilizes a base station which								
2	performs a diversity combining <i>i.e.</i> , Hybrid ARQ soft-combining of data from multiple received								
3 4	antenna ports.								
5	- No control of interleaving by higher layers.								
	- Data modulation								
6	- Modulation scheme is decided by MAC Scheduler (QPSK, 16QAM and 64QAM).								
7	- Mapping to physical resource								
8	- L2-controlled resource assignment.								
9	- Multi-antenna processing								
10	- MAC Scheduler partly configures mapping from assigned resource blocks to the available number of antenna ports.								
	- Support of L1 control signalling								
11	- Transmission of ACK/NAK and CQI feedback related to DL data transmission								
12	The model of Figure 6.1.1 also captures								
13	3 - Transport via physical layer of Hybrid-ARQ related information (exact info is FFS) associated with the PUSCH, to the peer HARQ process at the receiver side;								
14	 Transport via physical layer of corresponding HARQ acknowledgements to PUSCH transmitter side. 								
15									
16	Receiver Node B								
17	Channel-state								
18									
19	Coding + RM								
20	Deinterleaving Interleaving Modulation Modulation								
21	Resource Resource/power Transmitting first								
22	Antenna mapping Received over the Received over the								
23	Antenna demapping first and second diversity branches diversity branches								
24									
25	Figure 6.1.1-1: Physical-layer model for UL-SCH transmission								
26	(<i>E.g.</i> , <u>https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/</u>								
27	<u>ts_136302v080000p.pdf</u>).								
28	22-cv-0300								
	COMPLAINT - 65 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110								

Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.66 Page 66 of 75

1	specific reference signals within the considered measurement frequency bandwidth. For RSRP determination the cell-
2	specific reference signals R ₀ and if available R ₁ according to [8] can be used. If receiver diversity is in use by the UE, the reported value shall be equivalent to the linear average of the power values
3	of all diversity branches.
4	
5	5.3 L1 interactions with MAC retransmission functionality
6	Second transmission i.e. HARQ retransmission based on a repeat request
7	repear request
8	5.2 Overview of L1 functions
9	The physical layer offers data transport services to higher layers. The access to these services is through the use of a transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to provide the data transport service:
10	 Error detection on the transport channel and indication to higher layers
11	- FEC encoding/decoding of the transport channel
12	- Hybrid ARQ soft-combining Diversity combining
13	- Rate matching of the coded transport channel to physical channels
14	- Mapping of the coded transport channel onto physical channels
15	- Power weighting of physical channels
	- Modulation and demodulation of physical channels
16	- Frequency and time synchronisation
17	- Radio characteristics measurements and indication to higher layers
18	- Multiple Input Multiple Output (MIMO) antenna processing
19	- Transmit Diversity (TX diversity)
20	- Beamforming
	 RF processing. (Note: RF processing aspects are specified in the TS 36.100)
21	L1 functions are modelled for each transport channel in subclauses 6.1 and 6.2.
22	(<i>E.g.</i> , https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/
23	
24	<u>ts_136302v080000p.pdf</u>).
25	
26	
27	
28	22-cv-0300 COMPLAINT - 66 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island., WA 98110

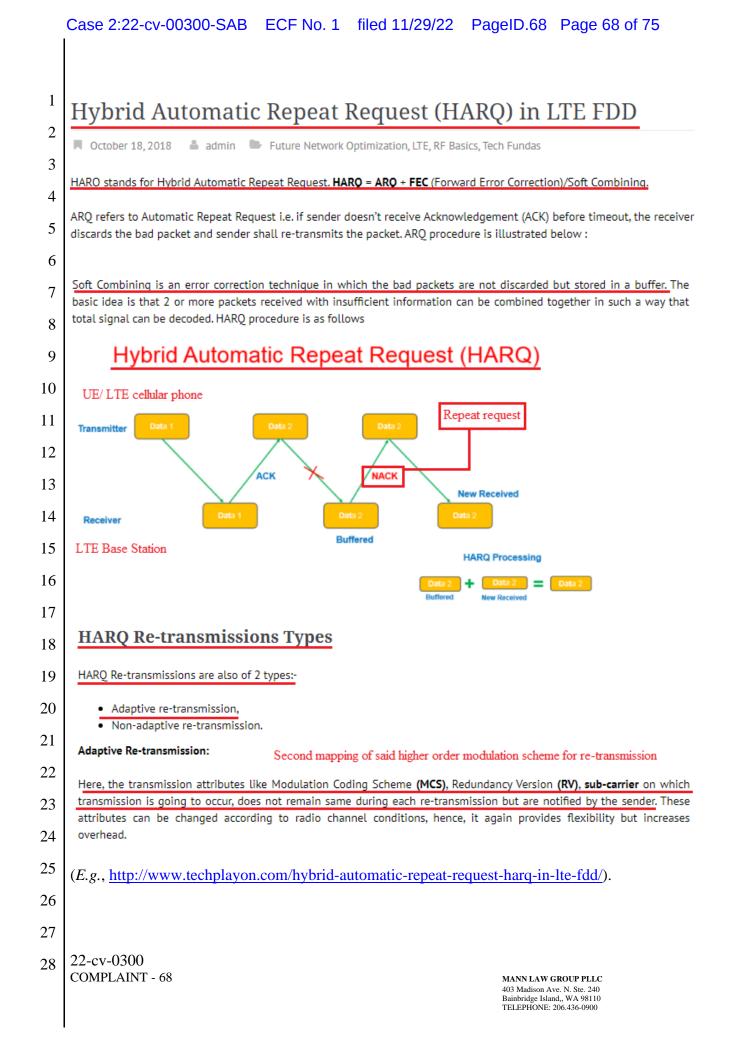
Case 2:22-cv-00300-SAB ECF No. 1 filed 11/29/22 PageID.67 Page 67 of 75


1

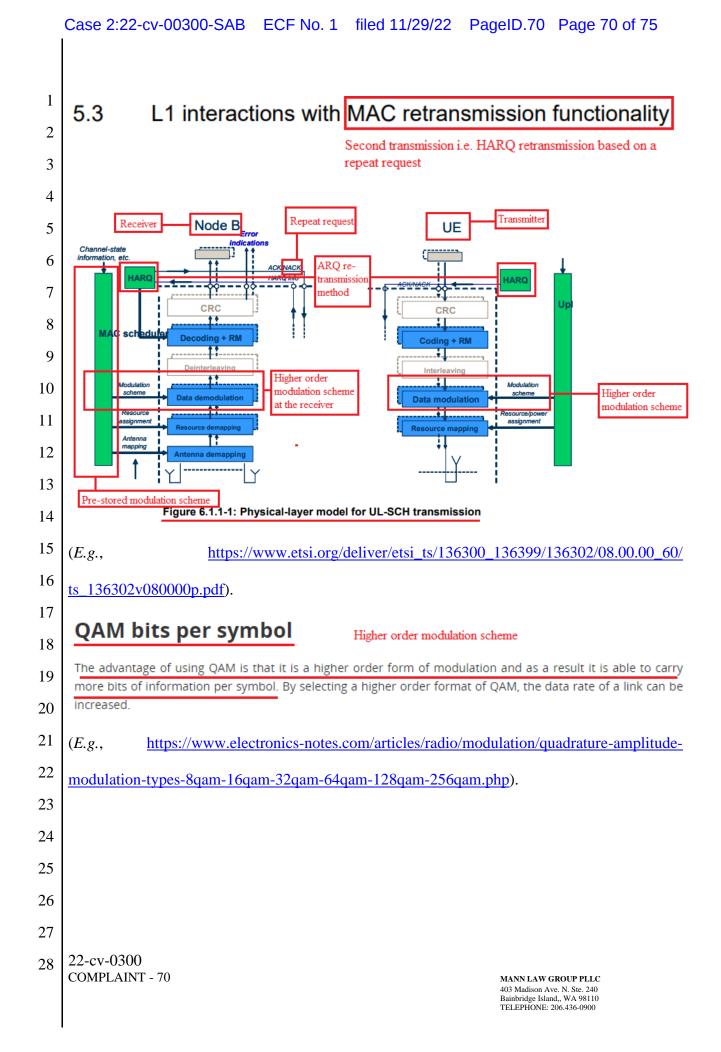
2

3

Soft Combining is an error correction technique in which the bad packets are not discarded but stored in a buffer. The basic idea is that 2 or more packets received with insufficient information can be combined together in such a way that total signal can be decoded. HARQ procedure is as follows


Hybrid Automatic Repeat Request (HARQ)

12 (E.g., <u>http://www.techplayon.com/hybrid-automatic-repeat-request-harq-in-lte-fdd/</u>).


13 43. The Accused Instrumentality, at least in its internal testing and usage, utilizes a 14 base station receiver wherein the first and second mapping of said higher order modulation 15 schemes are pre-stored in a memory table (e.g., modulation schemes are decided by MAC 16 Scheduler). The Accused Instrumentality performs a first higher order data modulation such as 17 16QAM and 64 QAM wherein has more than two data bits are mapped onto one data symbol 18 (*i.e.*, in case of 16QAM it transmits 4 bits per symbol whereas in the case of 64QAM it transmits 19 20 6 bits per symbol). The Accused Instrumentality on repeat request *i.e.*, receiving the 21 retransmission request in the form of NAK, enables a second mapping of said higher order 22 modulation scheme (*i.e.*, an Adaptive Re-transmission having a different Modulation Coding 23 Scheme (MCS) than the one used for transmission *i.e.*, first higher order modulation scheme). 24 25

27
28 22-cv-0300 COMPLAINT - 67

1	6.1 Uplink model Data packets transmitted from a transmitter i.e. UE/LTE cellular phone
2	6.1.1 Uplink Shared Channel
3	The physical-layer model for Uplink Shared Channel transmission is described based on the corresponding physical-
4	layer-processing chain, see Figure 6.1.1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue. It should be noted that, in case PUSCH, the
5	scheduling decision is partly made at the network side, if there is no blind decoding it is fully done at the network side. The uplink transmission control in the UE then configures the uplink physical-layer processing, based on uplink transport-format and resource-assignment information received on the downlink.
6	- Higher-layer data passed to/from the physical layer
7	- One transport block of dynamic size delivered to the physical layer once every TTI.
8	- CRC and transport-block-error indication
9	- Transport-block-error indication delivered to higher layers.
10	- FEC and rate matching
10	- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource
11	assignment; ARQ re-transmission method
12	 Physical layer model support of HARQ: in case of Incremental Redundancy, the corresponding Layer 2 Hybrid- ARQ process controls what redundancy version is to be used for the physical layer transmission for each TTI.
13	- Interleaving
14	- No control of interleaving by higher layers. Pre-stored in a memory table
15	- Data modulation Higher order modulation scheme
16	- Modulation scheme is decided by MAC Scheduler (QPSK, 16QAM and 64QAM).
	- Mapping to physical resource
17	- L2-controlled resource assignment.
18	- Multi-antenna processing
19	- MAC Scheduler partly configures mapping from assigned resource blocks to the available number of antenna ports.
20	- Support of L1 control signalling Second transmission i.e. re- transmission based on a repeat
20	- Transmission of ACK/NAK and CQI feedback related to DL data transmission request i.e. NAK
21	The model of Figure 6.1.1 also captures
22	- Transport via physical layer of Hybrid-ARQ related information (exact info is FFS) associated with the PUSCH, to the peer HARQ process at the receiver side;
23	- Transport via physical layer of corresponding HARQ acknowledgements to PUSCH transmitter side.
24	
25	(<i>E.g.</i> , https://www.etsi.org/deliver/etsi_ts/136300_136399/136302/08.00.00_60/
26	<u>ts_136302v080000p.pdf</u>).
27	
28	22-cv-0300
20	COMPLAINT - 69 MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240

Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

	QAM FORMA	TS & BIT	RATES COMP	PARISON	
MODULATION		BITS PER	SYMBOL		SYMBOL RATE
BPSK			1		1 x bit rate
QPSK			2		1/2 bit rate
8PSK			3		1/3 bit rate
16QAM			4		1/4 bit rate
32QAM			5		1/5 bit rate
64QAM			6		1/6 bit rate
Respresenting mor	re than two data bits are	e mappeo	d onto one d	ata symbol	
(<i>E.g.</i> , <u>https://v</u>	www.electronics-note	es.com/a	articles/radi	io/modulatio	n/quadrature-amplit
modulation trace 9	qam-16qam-32qam-6	Maam	12800m 25	farm nhr)	
modulation-types-8	<u>qam-roqam-52qam-6</u>	<u>)4qam-</u>	128qani-23	<u>oqam.pnp</u>).	
7.1.2 100414					
7.1.3 <u>16QAM</u>					
	a, quadruplets of bits, $b(i), b(i+1)$,b(i+2),b(i	+3), are mapped	to complex-valued	
incontaction symbols $x - I + jQ$ as	ccording to Table 7.1.3-1.			to complex-valued	
invariation symbols $x - i + jQ$ a	ccording to Table 7.1.3-1. Table 7.1.3-1: 16QAM m			to comprex-varued	
incontation symbols $x - i + jQ$ as	-			o compex-valued	
nkAunation symbols x=1+jQ a	Table 7.1.3-1: 16QAM m	odulation	mapping	o comprex-valued	
nkAunation symbols x−i⊤jQ ä	Table 7.1.3-1: 16QAM m	odulation / 1/√10 1/√10	mapping Q 1/√10 3/√10	o comprex-valued	
ukkunation symbols x−i⊤jQ ä	Table 7.1.3-1: 16QAM m <i>b(i),b(i+1),b(i+2),b(i+3)</i> 0000	odulation / 1/√10 1/√10 3/√10	Q 1/√10 3/√10 1/√10	o comprex-valued	
ukAunanon symbols x−17jQ ä	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0001 0010 0011	odulation 1 1/√10 1/√10 3/√10 3/√10	mapping Q 1/√10 3/√10 1/√10 3/√10	o comprex-valued	
ukkunanon symbols x−i⊤jQ ä	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0001 0010 0011 0100	0dulation 1 1/√10 1/√10 3/√10 3/√10 1/√10	Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$	o comprex-valued	
ukkunanon symbols x−i⊤jQ ä	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0001 0010 0010 0011 0100 0101	odulation / 1/√10 1/√10 3/√10 3/√10 1/√10 1/√10	Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$	o compil x valued	
ικκαυκαιτοπ Symbols <i>x</i> =στ _j Q a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0001 0010 0011 0100	0dulation / 1/√10 1/√10 3/√10 3/√10 1/√10 1/√10 3/√10	$ \begin{array}{c} Q \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ -1/\sqrt{10} \\ -3/\sqrt{10} \\ -1/\sqrt{10} \\ -1/\sqrt{10} \end{array} $	o compil x-valued	
πεκαυπαιτοπ symbols <i>x</i> = <i>μ</i> τ _μ <i>Q</i> a	Table 7.1.3-1: 16QAM m <i>b(i),b(i</i> +1), <i>b(i</i> +2), <i>b(i</i> +3) 0000 0001 0010 0011 0100 0101 0110	0dulation / 1/√10 1/√10 3/√10 3/√10 1/√10 1/√10 3/√10	$Q \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ -1/\sqrt{10} \\ -3/\sqrt{10} \\ -3/\sqrt{10} \\ -1/\sqrt{10} \\ -3/\sqrt{10} \\ -3/\sqrt{10} \\ -3/\sqrt{10}$	o comprex-valued	
ακλαμιατιστι Symbols <i>x</i> = <i>μ</i> τ _μ Ω a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0001 0010 0011 0100 0101 0101 01	odulation / 1/√10 1/√10 3/√10 1/√10 1/√10 3/√10 3/√10 3/√10	$ \begin{array}{r} \mathbf{mapping} \\ \mathbf{Q} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ -1/\sqrt{10} \\ -3/\sqrt{10} \\ -1/\sqrt{10} \\ -3/\sqrt{10} \\ 1/\sqrt{10} \\ 1/\sqrt{10} \end{array} $	io compicx-valued	
ακλαματιστι Symbols X-77JQ 3	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0011 0010 0011 0100 0111 0100 0111 0100 0111 0100	odulation $I = \frac{1}{\sqrt{10}}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$	mapping Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$	io compicx-valued	
ακλαμιατική symbols <i>x</i> = <i>μ</i> τ _μ <i>Q</i> a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0011 0010 0011 0100 0111 0100 0111 0110 0111 0100 0111 0100 0111 0100 0111 0100 0111	odulation $1/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-3/\sqrt{10}$	Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$	io compicx-valued	
usAunanion symbols x-στjQ a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0011 0010 0011 0100 0101 0100 0101 0101 0101 0110 0111 1000 1001 1011 1010 1011 1100	I 1/ $\sqrt{10}$ 1/ $\sqrt{10}$ 1/ $\sqrt{10}$ 3/ $\sqrt{10}$ 3/ $\sqrt{10}$ 1/ $\sqrt{10}$ 3/ $\sqrt{10}$ 3/ $\sqrt{10}$ -1/ $\sqrt{10}$ -3/ $\sqrt{10}$ -3/ $\sqrt{10}$ -3/ $\sqrt{10}$ -3/ $\sqrt{10}$	$\begin{array}{c} \mathbf{mapping} \\ \mathbf{Q} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ -1/\sqrt{10} \\ -3/\sqrt{10} \\ -3/\sqrt{10} \\ 1/\sqrt{10} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ 1/\sqrt{10} \\ 3/\sqrt{10} \\ -1/\sqrt{10} \\ 3/\sqrt{10} \\ -1/\sqrt{10} \end{array}$	io compica - vandea	
ακλαματική symbols <i>x</i> = <i>μ</i> τ _μ <i>Q</i> a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 001 0010 0011 0100 0111 0100 0111 0100 0111 1000 1011 1010 1011 1100 1101	odulation $1/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$	mapping Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$		
πελιματική symbols <i>x</i> = <i>i</i> +j <i>Q</i> a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 0011 0010 0011 0100 0111 0100 0111 0100 0111 1000 1011 1010 1011 1100 1101 1101 1110	odulation I $1/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ -3/1	mapping Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$		
πελιματική symbols <i>x</i> = <i>i</i> +j <i>Q</i> a	Table 7.1.3-1: 16QAM m b(i),b(i+1),b(i+2),b(i+3) 0000 001 0010 0011 0100 0111 0100 0111 0100 0111 1000 1011 1010 1011 1100 1101	odulation I $1/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ -3/1	mapping Q $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $1/\sqrt{10}$ $3/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$ $-1/\sqrt{10}$ $-3/\sqrt{10}$		

(E.g.,

https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/

2

3

4

5

ts_136211v080700p.pdf).

64QAM 7.1.4

In case of 64QAM modulation, hextuplets of bits, b(i),b(i+1),b(i+2),b(i+3),b(i+4),b(i+5), are mapped to complexvalued modulation symbols x=I+jQ according to Table 7.1.4-1.

5		Table 7.1.4	I-1: 64QAM	I modulation mapping			
6	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+4)		Q	b(i), b(i+1), b(i+2), b(i+3), b(i+4), b(i+5)		9	
0	000000	3/√42	3/ 42	100000	-3/42	3/√42	
7	000001	3/√42	1/√42	100001	-3/-42	1/-√42	
/	000010	ı∕√42 1/√42	3/√42 1/√42	100010	-1/√42 -1/√42	3/√42 1/√42	
0	000100	3/√42	5/42	100100	-3/42	5/-12	
8	000101	3/√42	7/ 142	100101	-3/-42	7/-12	
0	000110	1/√42	5/ 142	100110	-1/12	5/142	
9	000111	1/√42	7/√42	100111	-1/√42	7/-42	
	001000	5/√42	3/-42	101000	-5/-42	3/√42	
10	001001	5/√42	1/√42	101001	-5/-42	1/-√42	
	001010	7/-42	3/142	101010	-7/-42	3/√42	
11	001011	7/-42	1/√42	101011	-7/-42	1/-√42	
	001100	5/√42	s/√42	101100	-5/42	5/√42	
12	001110	5/√42 7/√42	7/√42 5/√42	101101	-5/42 -7/42	7/√42 5/√42	
	001111	7/-142	-7/√42	101111	-7/-42	7/√42	
13	010000	3/-142	-3/-42	110000	-3/-42	-3/	
15	010001	3/√42	-1/√42	110001	-3/-42	-1/√42	
14	010010	1/√42	-3/-42	110010	-1/√42	-3/	
17	010011	1/√42	-1/√42	110011	-1/√42	-1/√42	
15	010100	3/√42	-5/√42	110100	-3/-42	-5/√42	
15	010101	3/√42	-7/42	110101		-7/-42	
10	010110	1/√42	-5/-42	110110	-	-5/√42	
16	010111	1/√42	-7/-42	110111	-	-7/	
. –	011000	5/√42	-3/-42	111000	-5/42	-3/-42	
17	011001	5/√42 7/√42	-1/√42 -3/√42	111001	-5/42 -7/42	-1/√42 -3/√42	
	011011	7/-42	-3/42 -1/42	111010		-3/√42 -1/√42	
18	011100	5/-42	-5/-42	111100		-5/-42	
	011101	5/-42	-7/-42	111101		-7/-12	
19	011110	7/-142	-5/\42	111110	-7/-42		
	011111	7/-42	-7/12	111111	-7/-42	-7/	
20							
_0			1		/1.1.		: (126200 126200/126211/00 07 00 60/
21	(<i>E.g.</i> ,		http	s://www.ets1.or	g/deli	ver/ets	si_ts/136200_136299/136211/08.07.00_60/
<i>2</i> 1							
22	ts_136211v080	700p.	pdf).				
			/				
22	4.4	Diatat			~	~ ~ ~	we will af Defendent's infinition and wat
23	44.	Plaint	III n	as been dama	ged a	is a r	result of Defendant's infringing conduct.
24	Defendant is the	hus lia	able	to Plaintiff for	[·] dama	ages in	n an amount that adequately compensates
						U	
25	Plaintiff for suc	h Dof	endo	nt's infringeme	nt of	the '04	61 Patent and '622 Patent, <i>i.e.</i> , in an amount
			unua	in s inningenie		inc 90	j_1 i atom and 022 i atom, <i>i.e.</i> , in all allound
26		-		.	-		
	that by law can	not be	e less	than would co	nstitu	te a rea	asonable royalty for the use of the patented
27							

22-cv-0300 28 COMPLAINT - 72 technology, together with interest and costs as fixed by this Court under 35 U.S.C. § 284.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

18

19

20

21

22

23

24

25

1

45. On information and belief, Defendant has had at least constructive notice of the '961 Patent and '622 Patent by operation of law and marking requirements have been complied with. Swirlate is only asserting method claims in this complaint and as such the marking requirements of 35 U.S.C. 287(a) do not apply and have thus been complied with. Crown Packaging Technology, Inc. v. Rexam, Beverage Can Co., 559 F.3d 1308, 1316-1317 (Fed. Cir. 2009) ("Because Rexam asserted only the method claims of the '839 patent, the marking requirement of 35 U.S.C. 287(a) does not apply."); Hanson v. Alpine Valley Ski Area, Inc., 718 F.2d 1075, 1083 (Fed.Cir. 1983) ("It is 'settled in the case law that the notice requirement of this statute does not apply where the patent is directed to a process or method." (Quoting Bandag, Inc. v. Gerrard Tire Co., 704 F.2d 1578, 1581, 217 USPQ 977, 979 (Fed. Cir. 1983)); Intellectual Ventures I LLC v. Symantec Corp., 2015 U.S. Dist. LEXIS 6399 *3 (D.Del. Jan. 21, 2015).

VI. PRAYER FOR RELIEF

16 WHEREFORE, Plaintiff respectfully requests that the Court find in its favor and against 17 Defendant, and that the Court grant Plaintiff the following relief:

- Judgment that one or more claims of United States Patent Nos. 7,154,961 and a. 7,567,622 have been infringed, either literally and/or under the doctrine of equivalents, by Defendant;
- b. Judgment that Defendant account for and pay to Plaintiff all damages to and costs incurred by Plaintiff because of Defendant's infringing activities and other conduct complained of herein;
- 26 27 22-cv-0300 28 COMPLAINT - 73

MANN LAW GROUP PLLC 403 Madison Ave. N. Ste. 240 Bainbridge Island,, WA 98110 TELEPHONE: 206.436-0900

	Case 2:22-cv	-00300-SAB EC	CF No. 1	filed 11/2	29/22	PageID.74	Page 74 of 75
1 2	с.	-	-		-		erest on the damages
2		caused by Defend	dant's infr	ringing act	ivities	and other con	duct complained of
3 4		herein;					
4 5	d.	That Plaintiff be g	ranted suc	h other and	l furthe	er relief as the	Court may deem just
6		and proper under t	the circum	stances.			
7							
8	November 29	9, 2022		By	Philip		BA No: 28860
9						IN LAW GRO ⁄Iadison Ave. I	
10						le, Washington 436-0900	n 98110
11						mannlawgrou	ip.com
12						d R. Bennett	
13						lication for Ad filed)	mission Pro Hac Vice
14						tion IP Law Box 14184	
15					Chica	ago, IL 60614- 291-1667	0184
16						nett@direction	ip.com
17							
18					Attor	neys for Plaint	iff Swirlate IP LLC
19							
20							
21							
22							
23							
24							
25							
26							
27							
28	22-cv-0300 COMPLAINT -	74				MANN LAW (403 Madison A Bainbridge Islan TELEPHONE:	ve. N. Ste. 240 nd,, WA 98110

I	Case 2:22-cv-00300-SAB	ECF No. 1	filed 11/29	/22	PageID.75	Page 75 of 75				
1	JURY DEMAND									
2	Plaintiff, under Rule 38 of the Federal Rules of Civil Procedure, requests a trial by jury									
3			ai Rules of V		i ioceduie, ied	quests a that by Jury				
4	of any issues so triable by right	ht.								
5										
6	November 29, 2022		By		<u>hillips P. Man</u>					
7				MA	NN LAW GR					
8					Madison Ave	. N. Ste. 240 , Washington 98110				
9				(206	5) 436-0900 @mannlawgro					
10					id R. Bennett	•				
11				(Ap	plication for A	dmission Pro Hac				
12					to be filed) ection IP Law					
13					Box 14184 2 Box 1L 60614	1-0184				
14				(312	2) 291-1667					
15				dbei	nett@directio	onip.com				
16				Atte	rnevs for Plai	ntiff Swirlate IP				
17				LLC	•					
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28	22-cv-0300 COMPLAINT - 75				MANN LAW 0 403 Madison AN					