Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 1 of 92 Page ID#: 54

EXHIBIT A

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 2 of 92 Page ID#: 55

US006009531A

United States Patent [(117 Patent Number: 6,009,531
Selvidge et al. 451 Date of Patent: *Dec. 28, 1999
[54] T RANSITION ANALYSIS AND CIRCUIT 2 180 382 3/1987 United Kingdom HO3K 19/00
RESYNTHESIS METHOD AND DEVICE FOR
DIGITAL CIRCUIT MODELING OTHER PUBLICATIONS
[75] Inventors: Charles W. Selvidge, Charlestown; Laird, D., et al., “Delay Compensator,” LSI Logic Corp., pp-
Matthew L. Dahl, Cambridge, both of 1-8, (Aug. 1990).
Mass.
. . Primary Examiner—Thomas M. Heckler
[73] Assignee: Ikos Systems, Inc., Cupertino, Calif. Attorney, Agent, or Firm—Hamilton, Brook, Smith &
X Reynolds, P.C.
[*] Notice: This patent is subject to a terminal dis-
claimer. {57] ABSTRACT
. A method of configuring a configurable logic system,
(21] Appl. No.: 08/863,963 including a single or multi-FPGA network, is disclosed in
[22] Filed: May 27, 1997 which an internal clock signal is defined that has a higher
frequency than timing signals the system receives from the
Related U.S. Application Data environment in which it is operating. The frequency can be
at least ten times higher than a frequency of the environ-
631 Continuation of application No. 08/513,605, Aug. 10, 1995, mental timing signals. The logic system is configured to
X o
Pat. No. 5,649,176. have a controller that coordinates operation of its logic
[51] Int. &) [GO6F 1/12 operation in response to the internal clock signal and envi-
[52] US.Cl 713/400 ronmental timing signals. Specifically, the controller is a
. . finite state machine that provides control signals to sequen-
[58] Field of Search ... 7 10/10127127 /11%/4(1)2’ z é0/387’ tial logic elements such as flip-fiops. The logic elements are
> > clocked by the internal clock signal. In the past, emulation
[56] References Cited or simulation devices, for example, operated in response to
timing signals from the environment. A new internal clock
U.S. PATENT DOCUMENTS signal, invisible to the environment, rather than the timin
ignals i d 1 the i 1 i f hg
- signals is used to control the internal operations o the
i’gggég(l) gﬁgg; E;):P - 321}4@;58 devices. Additionally, a specific set of transformations are
5513338 4/199 Alexander et al. . 395/500 disclosed that enable the conversion of a digital circuit
5572710 1171996 ASANO et al. wcovererimvrorr 305500 design with an arbitrary clocking methodology into a single
clock synchronous circuit.
FOREIGN PATENT DOCUMENTS
0453 171 A2 10/1991 European Pat. Off. GO6F 1/04 19 Claims, 14 Drawing Sheets
I— 214a 214b
1 B A
| -] Fsm] Fsm_‘f‘r
l 428 430
I A
1 . .
I Logic Logic
! 420 < 422
E 418 _]
|| el 2144
| Logic Logic
e 424 426
200 |
|
[432\ 434 N\ I
| FSM FSM <
' l
!

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 3 of 92 Page ID#: 56

U.S. Patent Dec. 28, 1999 Sheet 1 of 14 6,009,531

- 6 4
14_] Memory /
gl
Host Workstation Emulation System Target System
FIG. 1
(Prior Art)

Logic Partition Blocks 22
Netlist 20—~ _

o

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 4 of 92 Page ID#: 57

U.S. Patent Dec. 28, 1999 Sheet 2 of 14 6,009,531
Data
1o Clk ' 122 /IOO
o' gD
| e
120
{
L
— FIG. 3
/124
ubn /
Comb. D2 Q21—
1267 Logic
‘ 16
\ia

ver JULUTUUN U Uiy rg iy uid

o

|

|

Clk Signat #1]l
I
I
{
¥
|
I
|
i

\
l
Environmental |
|
|
|

1

I

Environmental | '

Clk Signal #2

l
|
Voo —_ :
|
l

v I

go2
FIG. 4B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 5 0of 92 Page ID#: 58

U.S. Patent Dec. 28, 1999 Sheet 3 of 14 6,009,531
— 4V
b X
J o
2
——————
l
I =
O
|| >
l
l
|
|
|
I
M Y s |
l 5\ 8 %“) L02 l <
I ©) ‘E‘,,N o N -
4V <
I - 5 g - é | Q’
|5 | ©
| & l L
| |
I L |
FaR. |
| X S Y
Pl gE T e
I e - I IR s
< 1.
gy . & |
| N 0 |
| o M |
|

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 6 of 92 Page ID#: 59

U.S. Patent Dec. 28, 1999 Sheet 4 of 14 6,009,531

> © N S
o >
3 —
. S
o) <
EO @
£ AN 0
M Ll
- gl& I s
= >3 Ay >) |—
ME B ANANER .
'(_J\ = 15| |= o
_ S |
L5 3 g SINEEHTN | B
o
5—=° &= 51383
D/ 3 S)
Al —
o b
¥
Al
o (8]
< <
(aV] N

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 7 of 92 Page ID#: 60

U.S. Patent Dec. 28, 1999 Sheet 5 of 14 6,009,531
510
pata __ X X

ek __ [L— [
ek [y uuLT

Vgo | 1
{Loadenable M J1
LE1 217 |

[
Loadenable i I
LE2 215 '
514
FIG. 5B
Digital Circuit
Description

610a

F—= Netlist~" 610b
610~ specificati ——Function Description””
pecitication | 1,0 Timing Relationships ~610¢

—— Relationships between’\6lOd
Various Timing Signals

Y

612 Transition
Analysis

i
614— Value Analysis FlG 6

'

616-~ Sampling Analysis

—

618 - Timing Resynthesis

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 8 of 92 Page ID#: 61

U.S. Patent Dec. 28, 1999 Sheet 6 of 14 6,009,531

|

!

ECLK———!F————> }

|

{ \?IO !

L e i

FIG. 7A
r——————————"—" - - ="]
IN— D Q———}——OUT

: < |
i
I D |
:@ 720 |
|
' |
[enable |
l E ‘ FSM |
| Y Sync Clk-Sync I
ECLK —— |
| Vgo [
L o o o ———— -

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 9 of 92 Page ID#: 62

U.S. Patent Dec. 28,1999 Sheet 7 of 14 6,009,531
T T T —{
INO-—%—————— DI QI l OUTO
810
| o’
ECLKO i D P ||
INT—+ D2 Q2 ,
| q ‘ 8i4 |
|
| D3 Q3 —:—OUﬂ
ECLK1 : D ll
. - _
FIG. 8A
- - - - “'{
INO | D1 Q1 | OuUTO
E1
l 820 |
: _ 822 ‘
IN1 : D2 Q2
' g24 |
| E2 (I
' D3 Q3|——OuT!
| —e3 |
| VClk > |
|
| g |
| Vgoo I
: D CO-Rise CO-fall C1-Rise | |
KO SyncO
BeL : CO-Sync FSM :
D
Syncl Cl-Sync
ECLK1 : | y (y !
. Mo _

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 10 of 92 Page ID#: 63

U.S. Patent Dec. 28, 1999 Sheet 8 of 14 6,009,531
T T T T T T T T T T T T m
INO : DI Qi : OUTO
CLKO—+—D —9|0 |
| |
' Sl2 |
|)
| D2 Q2 -%—-oun
|
CLK] ﬁ: > :
L]
FIG. SA
r—— T ST T T T T T T T -
INO——{DO QO OuUTO
EO

— E1
I
— |
CO-Rise FSMO Il
%

FCLKO I Sync LCO-Sync |
' I
| Vgoo Cl-Rise |
! > |

ECLKI l Sync G C1-Sync FSMI I
| Vgo1 |
L 1

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 11 of 92 Page ID#: 64

U.S. Patent Dec. 28, 1999 Sheet 9 of 14 6,009,531
IN ‘ D2 Q2 ouT
012)y—p 94
goted clock
data
CTL DI Ql
ECLK —L—ob —I010 FIG. 10A
—)
ECLK -
dota Y v~ FIG.10B
gated-
clock -—\ L \)
T T T T T T T T T T T n
CTL DI QI |
E |
1016 L _data lI
l
IN }
D2 Q2ouT

l

I

|

| .
I

I

| 018
!

|

l

[

l

I

|

|

VClk > |

I

L |

CO-Fall CO-Rise |

D Sync | CO-Sync FSM :

ECLK—— | OJ |
' V

L Y " N

FIG. 10C

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 12 of 92 Page ID#: 65

U.S. Patent Dec. 28, 1999 Sheet 10 of 14 6,009,531

LD’ a D2 Q2 ECLK/4
1o Hi2
FeLK p gated-clock p
FIG. 1A
- — o]
o i | l——oz 02——'
DI QI —d 1124 _0} £o
El | | —b 126
S lez | Rising |
———————— | Edge I
— = |
—orR oR pJ |Detector |]
— ER Replical '
b 120 |
L __ 1
verk) [Pre-CLK-Rise CLK-Rise
> FSM
Sync CLK-Sync
ECLK————— t

FIG. 11B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 13 of 92 Page ID#: 66

U.S. Patent Dec. 28, 1999 Sheet 11 of 14 6,009,531
1210 1212
D Q D Q
6 : 9
D Q D Q
agi >
1214
N 1216
——
FIG. 12
MUX
1310 0
_ N 1
< Y b Q 1214
_— G > 1312
\ el /
FIG. 13
. 1414
IN—D QF——o0uT IN D Q}—out
Negative
CLK—dG CLK >
1412

FIG. 14A FIG. 14B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 14 of 92 Page ID#: 67

U.S. Patent Dec. 28, 1999 Sheet 12 of 14 6,009,531
r——— -~ ~~"~"~"~"~"~~>~""~"~"""— -~ 1
IN— D Q L out

| . :
1 1510
| > |
| , |
G ,
I
| 3 Pre-CLK-Rise CLK-Rise :
i 3 FSM :

CLK— Sync Clk- Sync |
. - d

FIG. 15
16071
i i O B
-
FIG. I6A
Q D
¢ VClk

X2 }D;L‘ y2

FIG. 16B

Case 6:06-cv-00341-AA Document 10-2

Filed 05/19/06 Page 15 0f 92 Page ID#: 68

U.S. Patent Dec. 28, 1999 Sheet 13 of 14 6,009,531
1712 1710
ITO 4
S QI
o L
—1IR Ql—
N — _/
FIG. I7A
1710 1712
/ /
. T g .
i__ 1714 _>0—
_ ~ ; _
'l D Q-
————— ~ 1712
i s
[
FIG. I7B
T VT
D aQf
o—o o] FIG. 18A o—1_)
CLK—
S e 1810
— ¢ Asynch
2 '?08 Transition
b Q— | Clk-Rise
— E FSM
vek FIG. 188 FIG. 18C

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 16 of 92 Page ID#: 69

U.S. Patent Dec. 28,1999 Sheet 14 of 14 6,009,531
Digital Circuit
Transition analysis
.) — 1610
Timing resynthesis
Resynthesized
Circuit Netlist
1611
y
Functional
Simulations — 1612
Partitioner |— 1613
y
Dependency
Analyzer 1614
Y
Global Placer [~ 1616
\
Global Router and | -|6|8
Pipeline Scheduler
1
Route Embedder and
Virtual Wires -~ 1620
Synthesizer
y
FGPA-Specific APR |—1622

'

FPGA Configuration
Data, 1624

FIG. 19

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 17 of 92 Page ID#: 70

6,009,531

1

TRANSITION ANALYSIS AND CIRCUIT
RESYNTHESIS METHOD AND DEVICE FOR
DIGITAL CIRCUIT MODELING

RELATED APPLICATION

This application is a continuation of application Ser. No.
08/513,605 filed Aug. 10, 1995, now U.S. Pat. No. 5,649,
176, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Configurable logic devices are a general class of elec-
tronic devices that can be easily configured to perform a
desired logic operation or calculation. One example is Mask
Programmed Gate Arrays (MPGA). These devices offer
density and performance. Poor tun around fime coupled
with only one-time configurability tend to diminish their
ubiquitous use. Reconfigurable logic devices or program-
mable logic devices (such as Field Programmable Gate
Arrays (FPGA)) offer lower levels of integration but are
reconfigurable, i.e., the same device may be programmed
many times to perform different logic operations. Most
importantly, the devices can be programmed to create gate
array prototypes instantaneously, allowing complete
dynamic reconfigurability, something that MPGAs can not
provide.

System designers commonly use reconfigurable logic
devices such as FPGAs to test logic designs prior to manu-
facture or fabrication in an effort to expose design flaws.
Usually, these tests take the form of emulations in which a
reconfigurable logic devices models the logic design, such
as a microprocessot, in order to confirm the proper operation
of the logic design along with possibly its compatibility with
an environment or system in which it is intended to operate.

In the case of testing a proposed microprocessor logic
design, a netlist describing the internal architecture of the
microprocessor is compiled and then loaded into a particular
reconfigurable logic device by some type of configuring
device such as a host workstation. If the reconfigurable logic
device is a single or array of FPGAs, the loading step is as
easy as down-loading a file describing the compiled netlist
to the FPGAs using the host workstation or other computer.
The programmed configurable logic device is then tested in
the environment of a motherboard by confirming that its
response to inpuls agrees with the design criteria.

Alternatively, reconfigurable logic devices also find appli-
cation as hardware accelerators for simulators. Rather than
testing a logic design by programming a reconfigurable
device to “behave” as the logic device in the intended
environment for the logic design, ¢.g., the motherboard, a
simulation involves modeling the logic design on a work-
station. In this environment, the reconfigurable logic device
performs gate evaluations for portions of the model in order
to relieve the workstation of this task and thereby decreases
the time required for the simulation.

Recently, most of the attention in complex logic design
modeling has been directed toward FPGAs. The lower
integration of the FPGAs has been overcome by forming
heterogeneous networks of special purpose FPGA proces-
sors connected to exchange signals via some type of inter-
connect. The network of the FPGAs is heterogeneous not
necessarily in the sense that it is composed of an array of
different devices but that the devices have been individually
configured to cooperatively execute different sections, or
partitions, of the overall logic design. These networks rely
on static routing at compile-time to organize the propagation
of logic signals through the FPGA network. Static refers to

10

15

20

25

30

35

40

45

50

55

60

2

the fact that all data or logic signal movement can be
determined and optimized during compiling.

When a logic design intended for eventual MPGA fabri-
cation is mapped to an FPGA, hold time errors are a problem
that can arise, particularly in these complex configurable
logic device networks. A digital logic design that has been
loaded into the configurable logic devices receives timing
signals, such as clock signals, and data signals from the
environment in which it operates. Typically, these timing
signals coordinate the operation of storage or sequential
logic components such as flip-flops or latches. These storage
devices control the propagation of combinational signals,
which are originally derived from the environmental data
signals, through the logic devices.

Hold time problems commonly arise where a timing
signal is intended to clock a particular storage element to
signal that a value at the element’s input terminal should be
held or stored. As long as the timing signal arrives at the
storage element while the value is valid, correct operation is
preserved. Hold time violations occur when the timing
signal is delayed beyond a time for which the value is valid,
leading to the loss of the value. This effect results in the
destruction of information and generally leads to the
improper operation of the logic design.

Identification and mitigation of hold time problems pre-
sents many challenges. First, while the presence of a hold
time problem can be recognized by the improper operation
of the logic design, identifying the specific location within
the logic design of the hold time problem is a challenge. This
requires sophisticated approximations of the propagation
delays of timing signals and combinational signals through
the logic design. Once a likely location of a hold time
problem has been identified, he typical approach is some-
what ad hoc. Delay is added on he path of the combinational
signals to match the timing signal delays. This added delay,
however, comes at its own cost. First, the operational speed
of the design must now take into account this new delay.
Also, new hold time problems can now arise because of the
changed clock speed. In short, hold time problems are both
difficult to identify and then difficult to rectify.

Other problems arise when a logic design intended for
ultimate MPGA fabrication, for example, is realized in
FPGAs. Latches, for instance, are often implemented in
MPGAs. FPGA, however, do not offer a corresponding
clement.

SUMMARY OF THE INVENTION

The present invention seeks to overcome the hold time
problem by imposing a new timing discipline on a given
digital circuit design through a resynthesis process that
yields a new but equivalent circuit. The resynthesis process
also transforms logic devices and timing structures to those
that are better suited to FPGA implementation. This new
timing discipline is insensitive to unpredictable delays in the
logic devices and eliminates hold time problems. It also
allows efficient implementation of latches, muitiple clocks,
and gated clocks. By means of the resynthesis, the equiva-
lent circuit relies on a new higher frequency internal clock
(or virtual clock) that is distributed with minimal skew. The
internal clock signal controls the clocking of all or substan-
tially all the storage elements, e.g. flip-flops, in the equiva-
lent circuit, in effect discretizing time and space into man-
ageable pieces. The user’s clocks are treated in the same
manner as user data signals.

In contrast with conventional approaches, the present
invention does not allow continuous inter-FPGA signal flow.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 18 of 92 Page ID#: 71

6,009,531

3

Instead, all signal flow is synchronized to the internal clock
so that signals flow between flip-flops through intermediate
FPGAs in discrete hops. The internal clock provides a time
base for the circuit’s operation.

In general, according to one aspect, the invention features
a method of configuring a configurable or programmable
logic system. Generally, such logic systems include single or
multi-FPGA network, although the invention can be applied
to other types of configurable devices. Particular to the
invention, the logic system is provided with an internal clock
signal that typically has a higher frequency, by a factor of at
least four, than timing signals the system receives from the
environment in which it is operating. The logic system is
configured to have a controller that coordinates operation of
the logic in response to the internal clock signal and the
environmental timing signals. In the past, while emulation or
simulation devices, for example, operated in response to
timing signals from the environment, a new internal clock
signal, invisible to the environment, was not used to control
the internal operations of the devices.

In specific embodiments, a synchronizer is incorporated
to essentially generate a synchronized version of the envi-
ronmental timing signal. This synchronized version behaves
much like other data signals from the environment. This
synchronizer feeds the resulting sampled environmental
clock signals to a finite state machine, which gencrates
control signals. The logic operations are then coordinated by
application of these control signals to sequential logic ele-
ments.

In more detail, the logic system is configured to have both
combinational logic, e.g. logic gates, and sequential logic,
e.g. flip-flops, to perform the logic operations. The control
signals function as load enable signals to the sequential
logic. The internal clock signal is received at the clock
terminals of that logic. Just like the original digital circuit
design, each sequential logic element operates in response to
the environmental timing signals. Now, however, these
timing signal control the load enable of the elements, not the
clocking. It is the internal clock signal that now clocks the
elements. As a result, the resynthesized circuit operates
synchronously with a single clock signal regardless of the
clocking scheme of the original digital circuit.

In general, according to another aspect, the invention
features a method for converting a digital circuit design into
a new circuit that is substantially functionally equivalent to
the digital circuit design. First, the internal clock signal is
defined, then sequential logic elements of the digital circuit
design are resynthesized to operate in response to the
internal clock signal in the new circuit rather than simply the
environmental timing signals.

In specific embodiments, flip-flops of the digital circuit
design, which are clocked by the environmental timing
signal, are resynthesized to be clocked by the internal clock
signal and load enabled in response to the environmental
timing signals. Finite state machines are used to actually
generate control signals that load enable each flip-flop. The
load enable signals are sometimes also generated from a
logic combination of finite state machine signals and logic
gates.

In other embodiments, latches in the digital circuit design,
which were gated by the environmental timing signals, are
resynthesized to be flip-flops or latches in future FPGA
designs in the new circuit that are clocked by the new
internal or virtual clock signal. These new flip-flops are load
enabled in response to the environmental timing signals.

In general, according to still another aspect, the invention
features a logic system for generating output signals to an

20

25

30

45

50

55

60

65

4

environment in response to at least one environmental
timing signal and environmental data signals provided from
the environment. This logic system has its own internal
clock and at least one configurable logic device. The internal
architecture of the configurable device includes logic for
generating the output signals in response to the environmen-
tal data signals and a controller, specifically a finite state
machine, for coordinating operation of the logic in response
to the internal clock signal and the environmental timing
signal.

Specifically, the logic includes sequential and combina-
tional logic elements. The sequential logic elements are
clocked by the internal clock signal and load enabled in
response to the environmental timing signals.

The above and other features of the invention including
various novel details of construction and combinations of
parts, and other advantages, will now be more particularly
described with reference to the accompanying drawings and
pointed out in the claims. It will be understood that the
particular method and device embodying the invention is
shown by way of illustration and not as a limitation of the
invention. The principles and features of this invention may
be employed in various and numerous embodiments without
the departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, like reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale and in some cases have
been simplified. Emphasis is instead placed upon illustrating
the principles of the invention. Of the drawings:

FIG. 1 is a schematic diagram showing a prior art emu-
lation system and its interaction with an environment and a
host workstation;

FIG. 2 shows a method for impressing a logic design on
the emulation system;

FIG. 3 is a schematic diagram of a configurable logic
system that comprises four configurable logic devices—a
portion of the internal logic structure of these devices has
been shown to illustrate the origins of hold time violations;

FIG. 4A is a schematic diagram of the logic system of the
present invention showing the internal organization of the
configurable logic devices and the global control of the logic
devices by the internal or virtual clock;

FIG. 4B is a timing diagram showing the timing relation-
ships between the internal or virtual clock signal, environ-
mental timing signals, and control signals generated by the
logic system;

FIG. 5A is a schematic diagram of a logic system of the
present invention that comprises four configurable logic
devices, the internal structure of these devices is the func-
tional equivalent of the structure shown in FIG. 3 except that
the circuit has been resynthesized according to the principles
of the present invention;

FIG. 5B is a diagram showing the timing relationship
between the signals generated in the device of FIG. 5A;

FIG. 6 illustrates a method by which a digital circuit
description having an arbitrary clocking methodology is
resynthesized into a functionally equivalent circuit that is
synchronous with a single internal clock;

FIGS. 7A and 7B illustrate a timing resynthesis circuit
transformation in which an edge-triggered flip-flop is con-
verted into a load-enable type flip-flop;

FIGS. 8A and 8B illustrate a timing resynthesis circuit
transformation in which a plurality of edge triggered flip-

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 19 of 92 Page ID#: 72

6,009,531

5

flops clocked by two phase-locked clock signals are con-
verted into load enable flip-flops that are synchronous with
the internal clock signal;

FIGS. 9A and 9B illustrate a timing resynthesis circuit
transformation in which two edge triggered flip-flops
clocked by two arbitrary clock signals are transformed into
load enabled flip-flops that operate synchronously with the
internal clock signal;

FIGS. 10A, 10B, and 10C illustrate a timing resynthesis
circuit transformation in which two edge-triggered flip-
flops, one of which is clocked by a gated clock, are trans-
formed into two load-enable flip-flops that operate synchro-
nously with the internal clock signal, FIG. 10B is 2 timing
diagram showing the signal values over time in the circuit;

FIGS. 11A and 11B illustrate a timing resynthesis circuit
transformation in which a complex gated clock structure,
with a second flip-flop being clocked by a gated clock, is
converted into a circuit containing three flip-flops and an
edge detector, all of the flip-flops operating off of the internal

" clock signal in the new circuit;

FIG. 12 illustrates circuit transformations in which gated
latches are converted into edge-triggered flip-flops on the
assumption that the latches are never sampled when open,
ie., latch output is not registered into another storage
element when they are open;

FIG. 13 illustrates a timing resynthesis circuit transfor-
mation in which a gated latch is converted into an edge-
triggered flip-flop and a multiplexor;

FIGS. 14A and 14B illustrate a timing resynthesis circuit
transformation in which a latch is converted to an edge-
triggered flip-flop with a negative delay at the clock input
terminal to avoid glitches;

FIG. 15 illustrates a timing resynthesis circuit transfor-
mation of the negative delay flip-flop of FIG. 14B into a
flip-flop that operates synchronously with the internal clock
signal;

FIGS. 16A and 16B illustrate a timing resythesis circuit
transformation in which a flip-flop is inserted in a combi-
national loop to render the circuit synchronous with the
virtual clock;

FIGS. 17A and 17B illustrate a timing resynthesis circuit
transformation in which an RS flip-flop is transformed into
a device that is synchronous with the virtual clock;

FIGS. 18A, 18B, and 18C illustrate a timing resynthesis
circuit transformation for handling asynchronous preset and
clears of state elements; and

FIG. 19 illustrates the steps performed by a compiler that
resynthesizes the digital circuit design and converts it into
FPGA configuration dala that is loaded into the logic system
200.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Turning now to the drawings, FIG. 1 is a schematic
diagram showing an emulation system 5 of the prior art. The
emulation system S operates in an environment such as a
target system 4 from which it receives environmental timing
signals and environmental data signals and responsive to
these signals geperates output data signals to the environ-
ment. A configuring device 2 such as a host workstation is
provided to load configuration data into the emulation
system 5.

The emulation system 5 is usually constructed from
individual configurable logic devices 12, specifically FPGA
chips are common. The configurable logic devices 12 are

15

20

25

30

35

40

45

55

60

65

6

connected to each other via an interconnect 14. Memory
elements 6 are also optionally provided and are accessible
by the configurable logic devices 12 through the intercon-
nect 14.

The host workstation 2 downloads the configuration data
that will dictate the internal configuration of the logic
devices 12. The configuration data is compiled from a digital
circuit description that includes the desired manner in which
the emulation system 5 is intended to interact with the
environment or target system 4. Typically, the target system
4 is a larger electronic system for which some component
such as a microprocessor is being designed. The description
applies to this microprocessor and the emulation system 5
loaded with the configuration data confirms compatibility
between the microprocessor design and the target system 4.
Alternatively, the target system 4 can be a device for which
the logic system satisfies some processing requirements.
Further, the emulation system 5 can be used for simulations
in a software or FPGA based logic simulation.

FIG. 2 illustrates how the logic design is distributed
among the logic devices 12 of the logic system 5. A netlist
20 describing the logic connectivity of the logic design is
separated into logic partition blocks 22. The complexity of
the blocks 22 is manipulated so that each can be realized in
a single FPGA chip 12. The logic signal connections that
must bridge the partition blocks 24, global links, are pro-
vided by the interconnect 14. Obviously, the exemplary
netlist 20 has been substantially simplified for the purposes
of this illustration.

FIG. 3 illustrates the origins of hold time problems in
conventional logic designs. The description is presented in
the specific context of a configurable system 100, such as an
emulation system, comprising four configurable logic
devices 110116, such as FPGAs, which are interconnected
via a crossbar 120 interconnect. A portion of the internal
logic of these devices is shown to illustrate the distribution
of a gated clock and the potential problems from the delay
of the clock.

The second logic device 112 has been programmed with
a partition of the intended logic design that includes an
edge-triggered D-type flip-flop 122. This flip-flop 122
receives a data signal DATA at an input terminal D1 and is
clocked by a clock signal CLK, both of which are from the
environment in which the system 100 is intended to operate.
The output terminal Q1 of the first flip-flop is connected to
a second flip-flop 124 in the fourth logic device 116 through
the crossbar 120. This second flip-flop 124 is also clocked by
the clock signal, albeit a gated version that reaches the
second flip-flop 124 through the crossbar 120, through
combinational logic 126 on a third configurable logic device
114 and through the crossbar 120 a second time before it
reaches the clock input of the second flip-flop 124.

Ideally, the rising edge of the clock signal should arrive at
both the first flip-flop 122 and the second flip-flop 124 at
precisely the same time. As a result of this operation, the
logic value “b” held at the output terminal Q1 of the first
flip-flop 122 and appearing at the input terminal D2 of the
second flip-flop 124 will be latched to the output terminal Q2
of the second flip-flop 124 as the data input is latched by
flip-flop 122. The output terminals Q1 and Q2 of the
flip-flops 122, 124 will now hold the new output values “a”
and “b”. This operation represents correct synchronous
behavior.

The more realistic scenario, especially when gated clocks
are used, is that the clock signal CLK will not reach both of
the flip-flops 122 and 124 at the same instant in time. This

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 20 of 92 Page ID#: 73

6,009,531

7

realistic assumption is especially valid in the illustrated
example in which the clock signal CLK must pass through
the combinational logic 126 on the third configurable logic
device 114 before it reaches the second flip-flop 124 on the
fourth configurable logic device 116. In this example,
assume the clock signal CLK reaches the first flip-flop 122
in the second configurable logic device 112 and clocks the
value at that flip-flop’s input terminal D1 to the output Q1.
At some point, the output Q1 of the first flip-flop is now
holding the new value “a” and this new value begins to
propagate toward the input D2 of the second flip-flop 124.
The rising edge of the clock signal CLK has not propagated
1o the second flip-flop 124 on the fourth configurable logic
device 116, however. Instead, a race of sorts is established
between the rising edge of the clock signal CLK and the new
value “a” to the second flip-flop 124. If the new value “a”
reaches the input terminal D2 of the second flip-flop before
the rising edge of the clock signal CLK, the old value “b”
will be over-written. This is incorrect behavior since the
information contained in “b” is lost. For correct operation of
the circuit, it was required that signal “b” at the input
terminal D2 of the second flip-flop 124 be held valid for a
brief period of time after the arrival of the clock edge to
satisfy a hold time requirement. Unfortunately, unpredict-
able routing and logic delays postpone the clock edge
beyond the validity period for the input signal “b”.

In environments where delays can mnot be predicted
precisely, hold time violations are a serious problem that can
1ot be rectified merely by stretching the length of the clock
period. Often, there is a need for careful delay tuning in
traditional systems, either manually or automatically, in
which analog delays are added to signal paths in the logic.
The delays usually require further decreases in the opera-
tional speed of the target system. This lengthens the periods
of the environmental timing signals and gives the emulation
system more time to perform the logic calculations. These
changes, however, create their own timing problems, and
further erode the overall speed, ease-of-use, and predictabil -
ity of the system.

FIG. 4A is a schematic diagram showing the internal
architecture of the logic system 200 which has been con-
figured according to the principles of the present invention.
This logic system 200 comprises a plurality of configurable
logic devices 214a-2144. This, however, is not a strict
necessity for the invention. Instead, the logic system 200
could also be constructed from a single logic device or
alternatively from more than the four logic devices actually
shown. The logic devices are shown as being connected by
a Maphattan style interconnect 418. Again, the interconnect
is non-critical, modified Manhattan-style, crossbars or hier-
archial interconnects are other possible and equivalent alter-
natives.

The internal logic architecture of each configurable logic
device 214a-214d comprises a finite state machine 428-434
and logic 420-426. An internal or virtual clock VCIk gen-
erates an internal or virtual clock signal that is distributed
through the interconnect 418 to each logic device
214a-214d, and specifically, the logic 420-426 and finite
state machines 428—434. Generally, the logic 420426 per-
forms the logic operations and state transitions associated
with the logic design that was developed from the digital
circuit description. The finite state machines 428-434 con-
trol the sequential operations of the logic in response to the
signal from the virtual clock VCIk.

The logic system 200 operates synchronously with the
single internal clock signal VCIk. Therefore, a first synchro-
nizer SYNC1 and a second synchronizer SYNC2 are pro-

20

35

40

45

50

8

vided to essentially generate synchronous versions of timing
signals from the environment. In the illustrated example,
they receive environmental timing signals EClk1 and ECIk2,
respectively. The synchronizers SYNCI and SYNC2 also
receive the internal clock signal VCIk. Each of the synchro-
nizers SYNC1 and SYNC2 generates a synchronizing con-
trol signal Vo1, Voo In response to an edge of the
respective environmental timing signal EClk1 and EClk2,
upon the next transition of the internal clock VCIk. Thus,
these control signals are synchronmous with the internal
clock.

FIG. 4B shows an exemplary timing diagram of the
virtual clock signal VClk compared with a first environmen-
tal clock signal EClk1 and a second environmental clock
signal ECIk2. As shown, typically, the virtual clock VCIk is
substantially faster than any of the environmental clocks, at
least four times faster but usually faster by a factor of ten to
twenty. As a general rule, the temporal resolution of the
virtual clock, ie., the cycle time or period of the virtual
clock, should be smaller than the time difference between
any pair of environmental timing signal edges.

In the example, the environmental clocks ECIkl1 and
ECIK2 are rising edge-active. The signals Vo, and Vg,
from the first synchronizer SYNC1 and the second synchro-
nizer SYNC2, respectively, are versions of the environmen-
tal clock which are synchronized to the internal clock VCIk
in duration. The transitions occur after the rising edges of the
environmental clocks EClk1 and ECIk2, upon the next or a
later rising edge of the internal clock. For example, the
second synchronizing signal Vs, is active in response to the
receipt of the second environmental clock signal ECIk2
upon the next rising edge of the internal clock VClk.

Returning to FIG. 4A, in typical simulation or emulation
configurable systems and the present invention, logic of the
configurable devices include a number of interconnected
combinational components that perform the boolean func-
tions dictated by the digital circuit design. An example of
such components are logic gates. Other logic is configured
as sequential components. Sequential components have an
output that is a function of the input and state and are
clocked by a timing signal. An example of such sequential
components would be a flip-flop. In the typical configurable
systems, the environmental clock signals are provided to the
logic in each configurable logic device to conirol sequential
components in the logic. This architecture is a product of the
emulated digital circuit design in which similar components
were also clocked by these timing signals. The present
invention, however, is configured so that each one of these
sequential components in the logic sections 420-426 is
clocked by the internal or virtual clock signal VClk. This
control is schematically shown by the distribution of the
internal clock signal VCIk to each of the logic sections
420426 of the configurable devices 410-416. As described
below, the internal clock is the sole clock applied to the
sequential components in the logic sections 420-426 and
this clock is preferably never gated.

Finite state machines 428434 receive both the internal
clock signal VClk and also the synchronizing signals Vo,
V402 from the synchronizers SYNC1 and SYNC2. The finite
state machines 428-434 of each of the configurable logic
devices 410-416 generate control signals to the logic sec-
tions 420-426. These signals control the operation of the
sequential logic components. Usually, the control signals are
received at load enable terminals. As a result, the inherent
functionality of the original digital circuit design is main-
tained. The sequential components of the logic are operated
in response to environmental timing signals by virtue of the

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 21 of 92 Page ID#: 74

6,009,531

9

fact that loading occurs in response to the synchronized
versions of the timing signals, i.¢. Vo, Vo, Synchronous
operation is imposed, however, since the sequential compo-
nents are actually clocked by the single internal clock signal
VClk throughout the logic system 200. In contrast, the
typical simulation or emulation configurable systems would
clock the sequential components with the same environmen-
tal clock signals as in the original digital circuit description.

It should be noted that separate finite state machines are
not required for each configurable logic device.
Alternatively, a single finite state machine having the com-
bined functionality of finite state machines 428-434 could
be implemented. For example, one configurable device
could be entirely dedicated to this combined finite state
machine. Generally, however, at least one finite state
machine on each device chip is preferred. The high cost of
interconnect bandwidth compared to on-chip bandwidth
makes it desirable to distribute only the synchronizing
signals Vo, Voo to each chip, and generate the multiple
control signals on-chip to preserve the interconnect for other
signal transmission.

FIG. 5A shows a portion of a logic circuit that has been
programmed into the logic system 200 according to the
present invention. This logic circuit is a resynthesized ver-
sion of the logic circuit shown in FIG. 3. That is, the logic
circuit of FIG. 5A and of FIG. 3 have many of the same
characteristics. Both comprise flip-flops 122 and 124. The
flip-flop 122 has an output terminal Q1 which connects to
the input terminal D2 of flip-flop 124. Further, the combi-
national logic 126 is found in both circuits.

The logic circuit of FIG. 5A differs from FIG. 3 first in
that each of the flip-flops 122 and 124 are load-enable type
flip-flops and clocked by a single internal clock VCIk. Also,
the environmental clock signal Clk is not distributed per se
to both of the flip-flops 122 and 124 as in the circuit of FIG.
3. Instead, a synchronized version of the clock signal Vg, is
distributed to a finite state machine 430 of the second
configurable logic device 214b and is also distributed to a
finite state machine 434 of the fourth configurable logic
device 214d. The finite state machine 430 then provides a
control signal to a load enable terminal LE1 of flip-flop 122
and finite state machine 434 provides a control signal to the
load enable terminal LE2 of flip-flop 124 through the
combinational logic 126.

FIG. 5B is a timing diagram showing the timing of the
signals in the circuit of FIG. 5A. That is, at time 510, new
data is provided at the input terminal D1 of 8ip-flop 522.
Then, at some later time, 512, the clock signal Clk is
provided to enable the flip-flop 122 to clock in this new data.
The second flip-flop 124 is also intended to respond to the
environmental clock signal Clk by capturing the previous
output of flip-flop 122 before that flip-flop is updated with
the new data. Recall that the problem in the logic circuit of
FIG. 3 was that the clock signal to the second flip-flop 124
was gated by the combinational logic 126 which delayed
that clock signal beyond time at which the output “b” from
the output terminal Q1 of the flip-flop 122 was valid. In the
present invention, the environmental clock signal Clk is
received at the synchronizer SYNC. This synchronizer also
receives the virtual clock signal VCIk. The output of the
synchronizer Vg, is essentially the version of the environ-
mental clock signal that is synchronized to the internal clock
signal. Specifically, the new signal V, has rising and falling
edges that correspond to the rising edges of the internal
clock signal VClk.

The finite state machines 430 and 434 are individually
designed to control the flip-flops in the respective config-

20

25

30

35

40

45

50

65

10

urable logic 214b and 214d to function as required for
correct synchronous operation. Specifically, finite state
machine 434 generates a control signal 215 which propa-
gates through the combinational logic 126 to the load enable
terminal LE2 of the flip-flop 124. This propagation of
control signal 215 from finite state machine, through com-
binational logic 126, to LE2 occurs in a single virtual clock
cycle. The generation of control signal 215 precedes the
generation of control signal 217 by the finite state machine
430 by a time of two periods (for example) of the internal
clock VClk. This two cycle difference, 514, assumes that
flip-flop 124 is enabled before flip-flop 122 is enabled,
thereby latching “b”, and thus providing correct operation.
As a result, both flip-flop 122 and flip-flop 124 are load
enabled in a sequence that guarantees that a new value in
flip-flop 122 does not reach flip-flop 124 before flip-flop 124
is enabled. In fact, if the compiler has scheduled “b” to
arrive at D2 on some cycle, X, later than 217, then the
compiler can cause control signal 215 to be available on that
cycle x, or later. In the above instance, the correct circuit
semantics is preserved even though control signal 213
arrives after control signal 217. The key is that 215 must
enable flip-flop 124 in a virtual cycle in which “b” is at D2.

Further, the precise control of storage elements afforded
by the present invention allows set up and hold times into the
target system to be dictated. In FIG. 5A, output Q2 of
flip-flop 124 is linked to a target system via a third flip-flop
140. The flip-flop 140 is load enabled under the control of
finite state machine 434 and clocked by the virtual clock.
Thus, by properly constructing this finite state machine 434,
the time for which flip-flop 140 holds a value at terminal Q3
is controllable to the temporal resolution of a cycle or period
of the virtual clock signal.

This aspect of the invention enables the user fo test best
case and worst case situations for signal transmission to the
target system and thereby ensure that the target system
properly captures these signals. In a similar vein, this control
also allows the user to control the precise time of sampling
signals from the target system by properly connected storage
devices.

FIG. 6 illustrates a method by which a digital circuit
design with an arbitrary clocking methodology and state
elements is transformed into a new circuit that is synchro-
nous with the internal clock signal but is a functional
equivalent of the original digital circuit. The state clements
of the new circuit are exclusively edge triggered flip-flops.

The first step is specification 610. This is a process by
which the digital circuit design along with all of the inherent
timing methodology information required to precisely define
the circuit functionality is identified. This information is
expressed in four pieces, a first piece of which is the
gate-level circuit netlist §10a. This specifics the components
from which the digital circuit is constructed and the precise
interconnectivity of the components.

The second part 6105 of the specification step 610 is the
generation of a functional description of each component in
the digital circuit at the logic level. For combinatorial
components, this is a specification of each output as a
boolean function of one or more inputs. For example, the
specification of a three input OR gate—inputs A, B, and C
and an output O—is O=A+B+C. For sequential components,
this entails the specification of outputs as a boolean function
of the inputs and state. The specification of the new state as
a boolean function of the inputs and state is also required for
the sequential components along with the specification of
when state transitions occur as a function of either boolean

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 22 of 92 Page ID#: 75

6,009,531

11

inputs or directed input transitions. A directed input transi-
tion is a rising or falling edge of an input signal, usually a
timing signal from the environment in which the logic
system 200 is intended to ultimately function. For example,
the specification of a rising edge-triggered flip-flop—inputs
D, CLK, of output Q, and state S—is Q=S, S=D, and state
transition when CLK rises.

Another part of the specification step is the description of
the timing relationships of the inputs to the logic system step
610c. This includes environment timing signals and envi-
ronmental input signals and the relationship to the output
signals generated by the logic system 200 to the environ-
ment. Input signals to the logic system 200 can be divided
into two classes: timing signals and environmental data
signals. The timing signals are generally environmental
clock signals, but can also be asynchronous resets and any
other form of asynchronmous signal that combinatorially
reach inputs of state elements involved in the functions
triggering state traositions. In contrast, environmental data
signals include environmental output signals and output
signals to the environment that do not combinatorially reach
transition controlling inputs of state elements. The timing
relationship also specify the timing of environmental data
signals relative to a timing signal.

The specification step must also include the specification
of the relative timing relationships for all timing signals step
610d. These relationships can be one of three types:

A basket of timing signals can be phase-locked. Two
signals of equal frequency are phase-locked if there is a
known phase relationship between each edge of one signal
and each edge of the other signal. For example, the first
environmental clock signal and the second environmental
clock signal illustrated in FIG. 4 would be phase-locked
signals. Additionally, two signals of integrally related fre-
quency are phase-locked if there is a kmown phase
relationship, relative to the slower signal, between any edge
of the slower signal and each edge of the faster signal. Two
signals of rationally related frequency are phase-locked if
they each are phase-locked to the same slower signal.

Another type of timing relationship is non-simultaneous.
Two signals are non-simultaneous if a directed transition in
one signal guarantees that no directed transition will occur
in the other within a window around the transition of some
specified finite duration. If two signals are non-simultaneous
and also not phase-locked, this implies that one signal is
turned off while the other is on and vice versa. For example,
two non-simultaneous signals might be two signals that
indicate the mutually exclusive state of some component in
the environment. The first signal would indicate if the
component was in a first condition and the second timing
signal would indicate if the component were in a second
condition and the first and second condition could never
happen at the same time.

Finally, the last type of relationship is asynchronous. Two
signals are asynchronous if the knowledge about a directed
transition of one of the signals imparts no information as to
occurrence of a transition in the other signal.

It should be recognized that phase-locked is a transitive
relationship so that there will be collections of one or more
clocks that are mutually phase-locked with respect to each
other. Such collection of phase-locked clocks is referred to
as a domain. Relationship between domains are either non-
simultaneous or asynchronous. The timing signals must be
decomposed into a collection of phase-locked domains, and
the relationship between pairs of the resulting domains,
either synchronous or non-simultancous, must be specified.

20

25

45

60

65

12

The ordering of the edges of timing signals within each
domain are also specified. For example, first CLK1 rises,
then CLK2 rises, then CLK2 falls and then CLK1 falls.

A trapsition analysis step 612, value analysis step 614,
and sampling analysis step 616 are used to determine when,
relative to the times at which transitions occur on timing
signals, signals within a digital circuit change value, and
where possible, what these values are. Also determined is
when the values of particular signals are sampled by state
elements within the circuit as a separate analysis.

In the transition analysis step 612, a discrete time range is
established for each clock domain including one time point
for each edge of a clock within the domain. All edges within
the domain are ordered and the ordering of time points
corresponds to this ordering of edges.

In the value analysis step 614, the steady state character-
istics of every wire in the digital circuit is determined for
cach discrete time range. Within a discrete time range, any
wire within the digital circuit can either be known to be 0,
known to be 1, known not to rise, known not to fall or known
not to change, or a combination of not falling and not rising.
A conservative estimate of the behavior of an output of a
logic component can be deduced from the behavior of its
inputs. Information about environmental timing signals and
environmental data signals can be used to define their
behavior. Based on the transition and value information of
the inputs to the logic system corresponding information can
be deduced for the outputs of each component. A relaxation
algorithm is used, in which output values of a given com-
ponent are recomputed any time an input changes. If the
outputs in turn change, this information is propagated to all
the places the output connects, since these represent more
inputs which have changed. The process continues until no
further changes occur.

A second relaxation process, similar to that for transition
and value analysis, is used in the sampling step 616. Sam-
pling information reflects the fact that at some point in time,
the value carried on a wire may be sampled by a state
clement, cither within the logic system 200 or by the
environment. Timing information for output data signals to
the environment provides an external boundary condition for
this relaxation process. Additionally, once transition analysis
has occurred, it is possible to characterize when all internal
state elements potentially make transitions and thus when
they may sample internal wires. Just as with transition and
value propagation, the result is a relationship between inputs
and outputs of a component. For sampling analysis, it is
possible to deduce the sampling behavior of inputs of a
component from the sampling information for its outputs.
The relaxation process for computing sampling information
thus propagates in the opposite direction from that of
transition information, but otherwise similarly starts with
boundary information and propagates changes until no fur-
ther changes occur.

At the termination of transition 612 and sampling 616
steps it is possible to characterize precisely which timing
edges can result in transitions and/or sampling for each wire
within the digital circuit. Signals which are combinationally
derived from timing signals with known values often also
carry knowledge about their precise values during some or
all of the discrete time range. They similarly often are known
to only be able to make one form of directed transition,
either rising or falling, at some particular discrete time point.
This information is relevant to understanding the behavior of
edge-triggered state elements.

The final resynthesis step 618 involves the application of
a number of circuit transformations to the original digital

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 23 of 92 Page ID#: 76

6,009,531

13

circuit design which have a number of effects. First, the
internal clock VCIk is introduced into the logic design 200
of the digital circuit. The internal clock signal is the main
clock of the logic system 200. Further, in effect, all of the
original environmental timing signals of the digital circuit
are converted into data signals in the logic system 200.
Finally, all of the state clements in the digital circuit are
converted to use the internal clock signal as their clock,
leaving the internal clock as the only clock signal of the
transformed system. The state elemenls of the original
digital circuit design are converted preferably into edge-
triggered flip-flops and finite state machines, which generate
control signals to the load enable terminals of the flip-flops.
The information developed in the transition analysis step
612, value analysis step 614, and sampling analysis step 616
is used to define the operation of the finite state machines as
it relates to the control of the flip-flops in response to the
internal clock signal and the environmental timing signals.
The finite state machines send load enable signals to the
flip-flops when it is known that data inputs are correct based
upon a routing and scheduling algorithm described in the
U S. patent application Ser. No. 08/344,723 filed Nov. 23,
1994 and entitled “Pipe-Lined Static Router and Scheduler
for Configurable Logic System Performing Simultancous
Communications and Computations”, incorporated herein
by this reference. The scheduling algorithm essentially pro-
duces a load enable signal on a virtual clock cycle that is
given by the maximum of the sum of data, value available
time, and routing delays for each signal that can affect data
input.
Single Flip-Flop Timing Resynthesis

FIG. 7A shows a simple edge-triggered flip-flop 710
which was a state element in the original digital circuit.
Specifically, the edge-triggered flip-flop 710 receives some
input signal at its input terminal D and some timing signal,
such as an environmental clock signal ECLK at its clock
input terminal. In response to a rising edge received into this
clock terminal, the value held at the input terminal D is
placed at the output terminal Q.

The timing resynthesis step converts this simple edge-
triggered flip-flop 710 to the circuit shown in FIG. 7B. The
new flip-flop is a load-enabled flip-flop and is clocked by the
internal clock signal VCIk. The enable signal of the con-
verted flip-flop is generated by a finite state machine FSM.
Specifically, the finite state machine monitors a synchro-
nized version of the clock signal Vi, and asserts the enable
signal to the enable input terminal E of the converted
flip-flop 720 for exactly one cycle of the internal clock VClk
in response to synchronizing signal Vg, transitions from 0
to 1. The finite state machine is programmed so that the
enable signal is asserted on an internal clock signal cycle
when the input IN is valid accounting for delays in the
circuit that arise out of a need to route the signal IN on
several VCIk cycles from the place it is generated to ils
destination at the input of flip-flop 720. In a virtual wire
systems signals are routed among multiple FPGAs on spe-
cific internal clock VCIk cycles. The synchronizing signal
V,, is generated by a synchronizer SYNC in response to
receiving the environmental timing signal EClk on the next
or a following transition of the internal clock signal VCIk.
As a result, the circuit is functionally equivalent to the
original circuit shown in FIG. 7Asince the generation of the
enable signal occurs in response to the environmental clock
signal EClk each time a trapsition occurs. The circuit,
however, is synchronous with the internal clock VCIk.

In a digital circuit comprising combinational logic and a
collection of flip-flops, all of which trigger off the same edge

10

20

25

30

35

40

45

50

60

65

14

of a single clock, the basic timing resynthesis
transformation, shown in FIG. 7B and described above, can
be extended. All flip-flops are converted to load-enabled
flip-flops and have their clock inputs connected to the
internal clock VCIk. The load enable terminal E of each
flip-flop is connected to enable signals generated by a shared
finite state machine in an identical manner as illustrated
above. The FSM can be distinct for each FPGA. The enables
for each flip-flop will be produced to account for routing
delays associated with each signal input to the flip-flops.

Timing Resynthesis for Domains for Multiple
Clocks

FIG. 8A shows a circuit comprising three flip-flops
810-814 that are clocked by two environmental clock sig-
nals ECIk0 and ECIk1. For the purposes of this description,
both environmental clock signals EClk0 and ECIk1 are
assumed to be phase-locked with respect to each other.

The transformed circuit is shown in FIG. 8B. It should be
noted that the basic methodology of the transform is the
same as described in relation to FIGS. 7A and 7B. The finite
state machine FSM and the clock sampling circuitry SYNC1
and SYNC2 have been extended. As before, each flip-flop of
the transformed circuit has been replaced with a load-
enabled positive-edge triggered flip-flop 820-824 in the
transformed circuit. The first environmental clock signal
ECIk0 and the second environmental clock signal ECIk1 are
synchronized to the internal clock by the first synchronizer
SYNCO and the second synchronizer SYNC1. The synchro-
nizing signals Vg, and Vi, are generated by the synchro-
nizers SYNCO and SYNC1 to the finite state machine FSM.
The finite state machine FSM watches for the synchronizing
signals Vo, and Vo, and then produces a distinct load
enable pulse CO-Rise, CO-Fall, C1-Rise for each timing edge
on which the clocks ECIk0 and ECIkl of the flip-flops
820--824 operate. The ordering of these load enable pulses 1s
prespecified within a domain where there is a unique order-
ing of the edges of all phase-locked clocks. This unique
ordering of clocks is specified by the user of the system. As
with the single clock case shown in FIG. 7B, each of the
enable pulses C0-Rise, CO-Fall, and C1-Rise is asserted for
exactly one period of the internal clock VClk upon detection
of the corresponding clock edge in FIG. 8B.

Multiple Clock Domains Resynthesis

FIG. 9A shows a collection of flip-flops 910-912 from the
digital circuit having multiple clock domains. That is, the
first clock signal CLKO and the second clock signal CLK1
do not have a phase-locked relationship to each other, rather
the clocks are asynchronous with respect to each other.

FIG. 9B shows the transformed circuit. A different finite
state machine FSMO0 and FSM1 is assigned to each domain.
specifically, a first finite state machine FSMO is synchro-
nized to the first environmental clock ECIkO to generate the
load enable signal to the load enable terminal EO of the first
flip-flop 920. The second finite state machine FSM1 gener-
ates a load enable signal to E1 of the second flip-flop 922 in
response to the second environmental clock signal ECIKI. It
should be noted, however, that although FSM0 and FSM1
operate independently of each other, each of whose
sequences are initiated by separate signals V o, and Vo,
and that although the first flip-flop 920 and the second
flip-flop 922 work independently of each other, ie., load
enabled by different clock signals ECIkO and ECI1, the
resulting system is a single-clock synchronous system with
the internal clock VCIk.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 24 of 92 Page ID#: 77

6,009,531

15

The relationship between the behavior of the first finite
state machine FSMO and the second finite state machine
FSM1 of the two clock signal domains is related to the
relationship between the domains themselves. When the two
domains are asynchronous, the first finite state machine
FSMO and the second finite state machine FSM1 may
operate simultaneously or non-simultaneously. When the
two domains are non-overlapping, the first finite state
machine FSMO and the second finite state machine FSM1
never operate simultaneously since the edges within the
domains are separated in time.

The simultaneity of operation of finite state machines that
are asynchronous with respect to each other leaves two
circuits which can not readily be transformed by timing
resynthesis. A state element which can undergo transitions as
a result of an edge produced from a combination of signals
in asynchronously related domains can not be resynthesized.
Such condition can rise if two asynchronous clocks are gated
together and fed into the clock input of a flip-flop or if a state
element with multiple clocks and/or asynchronous presets or
clears is used as transition triggering inputs from distinct
asynchronously related clock domains. Due to the non-
simultaneocus events and non-overlapping domains, the situ-
ations above are not problematic in the non-overlapping
situation.

Gated Clock Transformations

Clock gating in the digital circuit provides additional
control over the behavior of state elements by using com-
binational logic to compute the input to clock terminals. The
timing resynthesis process transforms gated clock structures
into functionally equivalent circuitry which has no clock
gating. Generally, gated clock structures can be divided into
two classes: simple gated clocks and complex gated clocks.
The basis for this distinction lies in the behavior of the gated
clocks as deduced from timing analysis. Previously, the
terms timing signal and data signal were defined in the
context of inputs and outputs to the digital circuit. A gated
clock is a combinational function of both timing signals and
data signals. The gated clock transition then controls the
input of a state element. Data signals can either be external
input data signals from the environment or internally gen-
erated data signals.

A simple gated clock has two properties:

1) at any discrete time it is possible for a simple gated
clock to make a transition in at most one direction, stated
differently, there is no discrete time at which the simple
gated clock may sometime rise and sometime fall; and

2) only timing signals change at those discrete times at
which state elements can change state.

A complex gated clock violates one of these two proper-
ties.

Simple Gated Clock Transformation

FIG. 10A shows a circuit that exhibits a simple gated
clock behavior. FIG. 10B is a timing diagram showing
transitions in the data signal and the gated clock signal as a
function of the environmental clock signal ECIk.
Specifically, upon the falling edge of the environmental
clock ECIk, the gating flip-flop 1010 latches the control
signal CTL received at its input D1 at its output terminal Q1.
This is the data signal. The AND gate 1012 receives both the
data signal and the environmental clock EClk. As a result,
only when the environmental clock ECIk goes high, does the
gated-clock signal go high on the assumption that the data

10

20

25

30

35

40

45

50

55

60

65

16

signal is also a logic high. Upon the rising edge of the gated
clock, the second flip-flop 1014 places the input signal IN
received at its D2 terminal to its output terminal Q2.

FIG. 10C shows the transformed circuit. Here, a finite
state machine FSM receives a signal V, from the synchro-
nizer SYNC upon receipt of the environmental clock EClk.
The finite state machine FSM produces two output signals:
C0-Fall which is active upon the falling edge of the envi-
ronmental clock signal, and C0O-Rise which is active upon
the rising of the environmental clock signal EClk.

The transformed circuit functions as follows. On the first
period of the internal clock VCIk after the falling edge of the
environmental clock signal ECIk, the first flip-flop 1016
places the value of the control signal received at its input
terminal D1 to its output terminal Q1 upon the clocking of
the internal clock signal VClk. This output of the first
flip-flop 1016 appearing at terminal Q1 corresponds to the
data signal in the original circuit. This data signal is then
combined in an AND gate 1020 with the signal CO-Rise
from the finite state machine FSM that is indicative of the
rising edge of the environmental clock signal ECIk. The
output of the AND gate goes to the load enable terminal E2
of a second flip-flop 1018 which receives signal IN at its
input terminal D2. Again, upon the receipt of this load
enable and upon the next cycle of the internal clock VClk,
the second flip-flop moves the value at its input terminal D2
to its output terminal Q2.

Complex Gated Clock Transformations

In the case of complex gated clock behavior, the factoring
technique used for simple gated clock transformations is
inadequate. Because data and clocks change simultaneously
and/or the direction of a transition is not guaranteed, both the
value of a gated clock prior to the transition time and the
value of the gated clock after the transition time are needed.
Using these two values, it can be determined whether a
signal transition that should trigger a state change has
occurred. One way to produce the post-transition value of
data signals is to replicate the logic computing the signal and
also replicate any flip-flops containing values from which
the signal is computed and which may change state as a
result of the transition. These replica flip-flops can be
enabled with an early version of the control signal, thus
causing them to take on a mew state prior to the main
transition. By this mechanism, pre- and post-transition val-
ues for signals needed for gated clocks can be produced.

An alternative way to get the two required values for the
gated clock signal is to add a flip-flop to record the pre-
transition state of the gated-clock and delay in time the
update of the state element dependent on the gated clock.
These two techniques have different overhead costs and the
latter is only applicable if the output of the state element
receiving the gated clock is not sampled at the time of the
transition. The former always works but the latter generally
has lower overhead when applicable.

FIG. 11A shows two cascaded edge-triggered flip-flops
1100 and 1112. This configuration is generally known as a
frequency divider. The environmental clock signal ECIk is
received at the clock terminal of the first flip-flop 1110; and
at the output Q2 of the second flip-flop 1112, a new clock
signal is generated that has one-fourth the frequency of
ECIk. The divider of FIG. 11A operates as follows: In an
initial state in which the output terminal Q1 of the first
flip-fliop 1110 is a 0 and the input terminal D1 of the flip-flop
1110 is a 1, receipt of the rising edge of the environmental
timing signal EClk changes Q1 to a 1 and D1 converts to a

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 25 of 92 Page ID#: 78

6,009,531

17

0. The conversion of Q1 from 0 to 1 functions as a gated
clock to the clock input terminal of the second flip-flop 1112.
The second flip-flop 1112 functions similarly, but since it is
only clocked when Q1 of the first flip-flop 1110 changes
from O to 1, but not 1 to 0, it changes with one-fourth the
frequency of ECk.

FIG. 11B shows the transformed circuit of FIG. 11A.
Here, a replica flip-flop 1120 has been added that essentially
mimics the operation of the first flip-flop 1122. The replica
flip-flop 1120, however, receives a pre-Clk-Rise control
signal from the finite state machine FSM. More specifically,
the finite state machine FSM responds to the synchronizing
signal Vg, and the internal clock VClk and produces a
pre-CLKrise signal that is active just prior to the CLK-Rise
signal, CLK-Rise being active in response to the rising edge
of the environmental timing signal EClk. Assume the output
terminal Q1 of the first flip-flop 1122 is initially at a 0 and
the input terminal D1 of first flip-flop 1122 s a 1, the replica
flip-flop 1120 is initially at a 0. Upon receipt of the pre-
CLK-rise signal at the replica flip-flop load enable terminal
ER, the output terminal QR of the replica flip-flop 1120
makes a transition from a 0 to a 1. Since Q1 is low and QR
is high, an AND gate 1124 functioning as an edge detector
generates a high signal. When the CLK-rise control signal
from the finite state machine FSM is active in response to
receipt of the rising edge of the environmental clock signal
ECIk, the output terminal Q1 of the first flip-flop 1122 is
converted from a 0 to a 1. The enable terminal E2 of flip-flop
1126 also is high, causing the flip-flop to change state. On
the next falling transition of Q1, the AND gate 1124 will
produce 0 and flip-flop 1126 will not change state. Since the
replica flip-flop 1120 provides a zero to the rising edge
detector whenever the zero is present at the input terminal of
the first flip-flop, the rising edge detector is enabled only
every other transition of Q1.

Latch Resynthesis

Generally, latches are distinguished from flip-flops in that
flip-flops are edge-triggered. That is, in response to receiv-
ing either a rising or falling edge of a clock signal, the
flip-flop changes state. In contradistinction, a latch has two
states. In an open state, the input signal received at a D
terminal is simply transferred to an output terminal Q. In
short, in an open condition, the output follows the input like
a simple wire. When the latch is closed, the state of the
output terminal Q is maintained or held independent of the
input value at terminal D. A semantic characterization of
such a latch is as follows. For an input D, output Q, a gate
G, and a state S, Q=S. S=D if G=1. The latch is open when
G=1 and closed when G=0.

Beginning with the simplest case, if the output of a latch
is never sampled when the latch is closed, G=0, the latch is
really just a wire. Latches with this characteristic may be
used to provide extra hold time for a signal. For this sample
latch, this would be true, if the set of discrete times at which
the output of the latch is sampled, is equal to or a proper
subset of the set of discrete times at which the gate signal G
is known to have a value of 1. In this situation, the latich can
be removed and replaced with a wire connecting the input
and output signals.

In contrast, if the output of the latch is never sampled
when the latch is open, the latch is equivalent to a flip-flop.
The only value produced by the latch which is ever sampled
is a value of the input D on the gate signal edge when the
latch transitions from open to closed. This condition is true
if the set of discrete times at which the output of the latch is

20

35

40

60

18

sampled, is equal to, or a proper subset of the discrete times
at which the gate signal G is known to have a value of 0. In
this situation, the latch can be removed and replaced with an
edge-triggered flip-flop.

As shown in FIG. 12, latches that are open when their gate
signal G is high 1210 are converted to negative-edge trig-
gered flip-flops 1212. Latches that are open when their gate
signal G is low 1214 are converted to positive edge triggered
flip-flops 1216.

Once the transition from the latch to the edge triggered
flip-flop has been made, these new edge-triggered flip-flops
are then further tesynthesized by the timing resynthesis
techniques described in connection with FIGS. 6-11.
Therefore, after this further processing, both positive and
negative edge-triggered flip-flops will be flip-flops clocked
by the internal clock VCIk. The resynthesized flip-flops will
have an enable signal that is generated by a finite state
machine in response to the particular environmental clock
signal that gated the original latch element.

Referring to FIG. 13, in the condition in which the output
of a given latch 1310 is sampled both when the latch might
be open and might be closed, that latch can be converted to
a flip-flop 1312, plus a multiplexor 1314 as shown in FIG.
13. There, when the gate signal G is low, the multiplexor
1314 selects the input signal to the input terminal D of the
flip-flop 1312. On the rising edge of the gating signal,
however, the input to the D terminal is latched at the output
terminal Q. Also, at this point, the gating signal selects the
second input to the multiplexor 1214. As with the case in
FIG. 12, the result of the transformation in FIG. 13 is
subjected to further resynthesis.

The transform of FIG. 13 may exhibit timing problems if
the multiplexor is implemented in a technology that exhibits
hazards, or output glitches. Output glitches can and could
result in set up and hold time problems of the sampling state
element. This transformation can therefore only be used
when the output is never sampled at discrete times at which
the clock may exhibit an edge. If the output is sampled both
when the latch might be opened and closed and some
sampling occurs on the edge of the gate signal, a final
transformation is employed. A new clock signal is created
which is phase-locked to the original clock signal and
precedes it.

As shown in FIGS. 14A and 14B, the latch 1410 of FIG.
14A is replaced by a flip-flop which receives the phase-
advanced clock indicated by the negative delay 1412 as
shown in FIG. 14B. The state transition of the new flip-flop
1414 precedes a state transition of any circuits sampling the
original output Q of the original latch 1410. If the latch is
also sampled when it is open by signals occurring prior to
the sampling edge, one of the prior techniques can be
employed, either latch to wire or latch to flip-flop and
multiplexor transforms of FIG. 13.

As shown in FIG. 14B, the negative delay 1412 represents
a time-advanced copy of the clock CLK which is used to
clock the flip-flop 1414. While negative-delays are
unphysical, this structure can be processed by the timing
resynthesis process with a distinct control signal generated
by a finite state machine.

FIG. 15 shows a finite state machine FSM generating a
pre-CLK-rise control signal one or more cycles of the
internal clock VCIk prior to the generation of the control
signal, CLK-Rise. The control signal CLK-rise is generated
in response to the rising edge of the environmental timing
signal ECIk. As a result, the input signal appearing at the D
terminal of the flip-flop 1510 is transferred to the output

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 26 of 92 Page ID#: 79

6,009,531

19

terminal prior to the rising edge of the environmental clock
signal EClk as signaled by the Clk-rise control signal.
Subsequent elements can be then load enabled from the
CLK-Rise signal generated by the finite state machine FSM.
Here again, if the latch of the original digital circuit is
sampled both when the latch is opened and closed, a
multiplexor can be placed at the output Q of the flip-flop
1510.

Combinational Loop Transformations

Combinational loops with an even number of logic inver-
sions around the loop are an implicit state element. An
example is shown in FIG. 16A, this implicit state can be
transformed into an explicit state element which is clocked
by the virtual clock VCIk by simply choosing a wire 1601
in the loop and inserting a flip-flop 1602 which is clocked by
the virtual clock VCIk as shown in FIG. 16B.

The addition of the flip-flop 2602 changes the timing
characteristics of the loop. Additional virtual clock cycles
are required for the values in the loop to settle into their final
states.

Assume in FIG. 16B that all input values to the loop are
ready by some virtual cycle V. In the absence of the flip-flop
1602, all outputs will become correct and stable after some
delay period. With the flip-flop 1602, it is necessary to wait
until the loop stabilizes and then wait for an additional
virtual clock period during which the flip-flop value may
change and subsequently change the loop outputs. Thus the
outputs of the loop cannot be sampled until virtual cycle
V+l.

If combinational cycles are nested, each can be broken by
the insertion of a flip-flop as above. Nested loops may
require up to 2~ clock cycles to settle, where N is the depth
of the Joop nesting and thus the number of flip-flops needed
to break all loops.

RS Latch Transformations

RS latches 1710 are asynchronous state elements built
from cross-coupled NOR or NAND gates 1712, as illus-
trated in FIG. 17A.

RS laiches 1710 can be transformed based on the trans-
formation for combinational cycles illustrated in FIGS. 16A
and 16B. An alternative approach illustrated in FIG. 17B
eliminates the combinational cycles associated with RS
latches while also avoiding the extended settling time asso-
ciated with the general combinational cycle transformation
of FIG. 16B.

The circuit is FIG. 17B forces the outputs Q and Q of the
RS latch 1710 combinatorially to their values for all input
patterns except the one in which the latch maintains its state.
For this pattern, the added flip-flop 1714 produces appro-
priate values on the outputs. Logic 1716 is provided to set
the flip-flop 1714 into an appropriate state, based on the
values of the inputs whenever an inpul pattern dictates a
state change. When the latch 1710 is maintaining its state,
the outputs will be stable so no propagation is required. Thus
the outputs of the transformation are available with only a
combinatorial delay.

A symmetrical transformation can be applied to latches
produced from cross-coupled NOR gates.

Asynchronous Presets and Clears

Asynchronous presets and clears of state elements shown
in FIG. 18A can be transformed in one of two ways. Each
transformation relies on the fact that preset and clear signals

10

30

35

40

45

60

20

R are always synchromized to the virtual clock, either
because they are internally generated by circuitry which is
transformed to be synchronous to the virtual clock or
because they are external asynchronous signals which are
explicitly synchronized using synchronizer circuitry.

The first transformation, shown in FIG. 18B, makes use of
an asynchronous preset or clear on flip-flop 1808 in the
FPGA, if such exists. The enable signal E which enables the
resynthesized state element to undergo state changes is used
to suppress/defer transitions on the preset or clear input R to
eliminate race conditions arising from simultaneously clock-
ing and clearing or presenting a state element.

The second transformation shown in FIG. 18C converts
an asynchronous preset or clear Ry, which has already been
synchronized to the clock into a synchronous preset or clear.
The enable signal E to the resynthesized state element must
be modified to be enabled at any time at which a preset or
clear transition might occur by gate 1810.

Returning to FIG. 6, the above described transformations
of the timing resynthesis step 618 in combination of with the
specification step 610, transition analysis 612, value analysis
614 and sampling analysis 616 enable conversion of a digital
circuit description having some arbitrary clocking method-
ology to a single clock synchronous circuit. The result is a
circuit which the state elements are edge-triggered flip-flops.
To generate the logic system 200 having the internal archi-
tecture shown in FIG. 4, this resynthesized circuit must now
be compiled for and loaded into the configurable logic
devices 410-416 by the host workstation 222.

FIG. 19 shows the complete compilation process per-
formed by the host workstation 222 to translate the digital
circuit description into the configuration data received by the
configurable devices 214. More specifically, the input to a
compiler running on the host workstation 222 is the digital
circuit description in step 1610. This description is used to
generate the resynthesized circuit as described above. The
result is a logic netlist of the resynthesized circuit 1611. This
includes the new circuit elements and the new VClk.

In step 1612, functional simulations of the transformed
circuit can be performed. This step ensures that the resyn-
thesized circuit netlist is the functional equivalent of the
original digital circuit. It should be noted that the trans-
formed circuit is also more amenable to computer-based
simulations. All relevant timing information specifying the
behavior of the timing signals including the timing relation-
ship to each other is built into the resynthesized circuit yet
the resynthesized circuit is synchronous with a single clock.
Therefore, the resynthesized circuit could alternatively be
used as the circuit specification for a computer simulation
rather than the hardware based simulation on the config-
urable logic system. The resynthesized circuit is then parti-
tioned 1613 into the logic partition blocks that can fit into the
individual FPGAs of the array, see FIG. 2.

In the preferred embodiment of the present invention,
techniques described in U.S. patent application Ser. No.
08/042,151, filed on Apr. 2, 1993, entitled Virtual Wires for
Reconfigurable Logic System, which is incorporated herein
by this reference, are implemented to better utilize pin
resources by multiplexing global link transmission on the
pins of the FPGAs across the interconnect. Additionally, as
described in incorporated U.S. patent application Ser. No.
08/344,723, filed on Nov. 23, 1994, entitled Pipe-Lined
Static Router and Scheduler for Configurable Logic System
Performing Simultaneous Communication and
Computation, signal routing is scheduled so that logic com-
putation and global link transmission through the intercon-
nect happen simultaneously.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 27 of 92 Page ID#: 80

6,009,531

21

Specifically, because a combinatorial signal may pass
through several FPGA partitions as global links during an
emulated clock cycle, all signals will not be ready to
schedule at the same time. This is best solved by performing
a dependency analysis, step 1614 on global links that leave
a logic partition block. To determine dependencics, the
partition circuit is analyzed by backiracing from partition
outputs, either output global links or output signals to the
target system, to determine on which partition inputs, either
input links or imput signals from the target system, the
outputs depend. In backtracing, it is assumed that all outputs
depend on all inputs for gate library parts, and no outputs
depend on any inputs for latch or register library parts. It
there are no combinatorial loops that cross partition
boundaries, this analysis produces a directed acyclic graph,
used by a global router. If there are combinatorial loops, then
the loops can be hardwired or implemented in a single
FPGA. Loops can also be broken by inserting a flip-flop into
the loop and allowing enough virtual cycles for signal values
to settle to a stable state in the flip-flop.

Individual FPGA partitions must be placed into specific
FPGAs (step 1616). An ideal placement minimizes system
communication, requiring fewer virtual wire cycles to trans-
fer information. A preferred embodiment first makes a
random placement followed by cosi-reduction swaps and
then optimizes with simulated annealing. During global
routing (step 1618), each global link is scheduled to be
transferred across the interconnect during a particular period
of the pipe-line clock. This step is discussed more com-
pletely in the incorporated U.S. patent application Ser. No.
08/344,723, Pipe-Lined Static Router and Scheduler for
Configurable Logic System Performing Simultaneous Com-
munication and Computation.

Once global routing is completed, appropriately-sized
multiplexors or shift loops, pipeline registers, and associated
logic such as the finite state machines that control both the
design circuit elements and the multiplexors and pipeline
registers are added to each partition to complete the internal
configuration of each FPGA chip 22 (steps 1620). See
specifically, incorporated U.S. patent application Ser. No.
08/042,151, Virtual Wires for Reconfigurable Logic System.
At this point, there is one netlist for each configurable logic
device 214 or FPGA chip. These FPGA netlists are then
processed in the vender-specific FPGA place-and-route soft-
ware (step 1622) to produce configuration bit streams (step
1624). Technically, there is no additional hardware support
for the multiplexing logic which time-multiplex the global
links through the interconnect: the array of configurable
logic is itself configured to provide the support. The neces-
sary “hardware” is compiled directly into the configuration
of the FPGA chip 214. Some hardware support in the form
of special logic for synchronizers to synchronize the external
clocks to the internal VCIk is recommended.

While this invention has been particularly shown and
describe with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims. For example, It is not a
strict necessity that the internal clock signal VClk be dis-
tributed directly to the sequential logic elements. Preferably
it reaches each element at substantially the same time. In
some larger networks, therefore, some delay may be pref-
erable to delay tune the circuit for propagation delays.

30

35

55

60

65

22

We claim:

1. A method of configuring a configurable logic system to
operate in an environment, the logic syslem generating
output signals to the environment in response to at least one
environmental timing signal and environmental data signals
provided from the environment, the method comprising:

configuring the logic system to perform logic operations

for generating the output signals in response to the
environmental data signals and an internal clock signal;
and

configuring the logic system to comprise a finite state

machine for generating control signals to control the
logic operations in response to the environmental tim-
ing signal and the internal clock signal.

2. A method of configuring as described in claim 1, further
comprising configuring the logic system to comprise a
synchronizer for sampling the environmental timing signal
in response to the internal clock signal.

3. A method of configuring as described in claim 1,
wherein the logic system comprises at least one field pro-
grammable gate array.

4. A method of configuring as described in claim 1, further
comprising configuring the finite stare machine to dictate
set-up and hold times of signals to the environment.

5. A method of configuring as described in claim 1, further
comprising configuring the finite state machine to dictate
sampling times of the environmental data signals.

6. A method of configuring as described in claim 1, further
comprising configuring the logic system to have combina-
tional logic and sequential logic to perform the logic opera-
tions.

7. A method of configuring as described in claim 6, further
comprising configuring the finite state machine to generate
control signals to the sequential logic in response to the
environmental timing signal and the internal clock signal.

8. A method of configuring as described in claim 7, further
comprising configuring the sequential logic to comprise
flip-flops receiving the internal clock signal at a clock input
and the control signals at a latch enable input.

9. A method of configuring as described in claim 1,
wherein the logic system comprises a plurality of config-
urable logic devices electrically connected via an intercon-
nect for transmitting signals between the chips.

10. A method of configuring as described in claim 9,
wherein the interconnect comprises cross bar chips.

11. A method as configuring as described in claim 9,
wherein the interconnect utilizes a direct-connect topology.

12. A method of configuring as described in claim 11,
wherein the interconnect includes buses.

13. A logic system for generating output signals to an
environment in response to at least ope environmental
timing signal and environmental data signals provided from
the environment, the logic system comprising:

an internal clock for generating an internal clock signal

for the logic system;

at least one configurable logic device including:

logic which generates the output signals in response to
the environmental data signals and the internal clock
signal; and

a finite state machine which coordinates operation of
the logic in response to the internal clock signal and
the environmental timing signal.

14. A logic system as described in claim 13, wherein the
at least one configurable logic device comprises at least one
field programmable gate array.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 28 of 92 Page ID#: 81

6,009,531
23 24

15. A logic system as described in claim 13, further 18. A logic system as described in claim 13, wherein the
comprising an interconnect for transmitting signals between logic comprises combinational logic and sequential logic.
plural configurable logic devices. 19. A logic system as described in claim 18, wherein the

16. A logic system as described in claim 13, further sequential logic comprises flip-flops receiving the internal
comprising a synchronizer for sampling the environmental 5 clock signal at a clock input and the control signals at a latch
timing signal in response to the internal clock signal. enable input.

17. A logic system as described in claim 16, wherein the
synchronizer is constructed from non-programmable logic. *

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 29 of 92 Page ID#: 82

UNITED STATﬁs PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 6,008,531
DATED . December 28, 18989
INVENTOR(S) : Charles W. Selvidge and Matthew L. Dahl

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

In column 2, line 34, replace "he" with --the--.
In column 2, line 35, replace "he" with --the--.
In column 22, line 24, replace "stare” with --state--.

Signed and Sealed this
Twenty-fifth Day of July, 2000

Q. TODD DICKINSON

Attesting Officer Director of Patenrs and Trademarks

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 30 of 92 Page ID#: 83

EXHIBIT B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 31 0of 92 Page ID#: 84

US005649176A
United States Patent 19 (1] Patent Number: 5,649,176
Selvidge et al. 451 Date of Patent: Jul. 15, 1997
[54] TRANSITION ANALYSIS AND CIRCUIT OTHER PUBLICATIONS
RESYNTHESIS METHOD AND DEVICE FOR .] » ,
DIGITAL CIRCUIT MODELING Laird, D., et al., “Delay Compensator,” LSI Logic Corp., pp-
1-8, (Aug. 1990).
[751 Inventors: Charles W. Selvidge, Charlestown; Primary Examiner—Thomas M. Heckler
Matthew L. Dahl, Cambridge, both of Attomney, Agent, or Firm—Hamilton, Brook, Smith &
Mass. Reynolds, PC.
[73] Assignee: Virtnal Machine Works, Inc., (57 ABSTRACT
Cambridge, Mass. A method of configuring a configurable logic system,
including a single or multi-FPGA network, is disclosed in
[21]1 Appl. No.: 513,605 which an internal clock signal is defined that has a higher
. frequency than timing signals the system receives from the
[22] Filed: Aug. 10, 1995 environment in which it is operating, The frequency can be
[51] Int CLS GoO6F 1/12 at Jeast ten times higher than a frequency of the environ-
[521 US.CL 395/551; 364/489 mental timing signals. The logic system is configured to

have a controller that coordinates operation of its logic
operation in response to the internal clock signal and envi-
ronmental timing signals. Specifically, the controller is a
finite state machine that provides control signals to sequen-

[58] Field Of Search weoremerrcersscrcsrrn 395/551, 500;
3647488, 489, 490, 491

[56] References Cited tial logic elements such as flip-flops. The logic elements are
clocked by the internal clock signal. In the past, emulation
U.S. PATENT DOCUMENTS or simulation devices, for example, operated in response to
4450560 5/1984 CONDET oueerrvsesseremmssesrsssssamsecssn 371725 timing signals from the environment. A new internal clock
4,697241 9/1987 Lavi 364/488 signal, invisible to the environment, rather than the timing
5,180,937 1/1993 Laird et'al. 3211276 signals is used to control the internal operations of the
5420544 5/1995 Ishibashi e 33111 devices. Additionally, a specific set of transformations are
5428,626 6/1995 Frisch et al. wecversenscssissreanns 364/488 X disclosed that enable the conversion of a digital circuit
design with an arbitrary clocking methodology into a single
FOREIGN PATENT DOCUMENTS clock synchronous circut.
0453 171 A2 10/1991 European Pat. Off. GO6F 104
2180382 3/1987 United Kingdom HO3K 19/00 50 Claims, 14 Drawing Sheets
r 2140 214b
l | FsM < [FsM <
} | 428 430
i
| . -
| Logic Logic
| 420 422 <
} 418 _ |
2l4c
| \ /2144
| ‘ < <
= Logic Logic
424 426
200 | _—
| [
l FSM < FSM 4
! [
I

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 32 of 92 Page ID#: 85

U.S. Patent Jul. 15, 1997 Sheet 1 of 14 5,649,176

5

. i /

L 4
14_ Memory /
' g
DR b R N
| "
Host Workstation Emulation System Target System
FIG. 1
(Prior Art)
Logic Partition Blocks 22
Netlist 20— N\
///’ \\-‘.’—-*
e ™~
N
/_/ '] \
[e \
! 24 n — ||
\ { 2‘4 //
\\ —'D—— - ___,/\\\ //
/ ~ —— —
\\ Y,
~_ <

FIG. 2

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 33 of 92 Page ID#: 86

U.S. Patent Jul. 15, 1997 Sheet 2 of 14 5,649,176
Data
/IIO (122 /
"0“ ubu
DT QT
> —| |2
120
{
=== |
L
— FIG. 3
/124
nbu /
Comb. D2 Q21—
1267 Logic
' 6
\n4

veik JULL UL UL UL

Environmental
Clk Signal #1

—

Environmental
Clk Signal #2

L |
N ... S

L

Vgot 1

go2

FIG. 4B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 34 of 92 Page ID#: 87

5,649,176

Sheet 3 of 14

Jul. 15, 1997

U.S. Patent

— T -]
_ :
_ il
| > WSA WS4
| L AN ﬁ \zep
|
“ CYA% veb
S 21607 21607
| Noo>l
| 7 ,
Ppig >bl2
23103 .
8l
137103 . : —
| 7 > 2eb > Devb
| 10BA 91607 21607
_
_ | osp 82t
“ HOA WS4 b NS |

@)
o
N

L___.____.._________._(

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 35 0of 92 Page ID#: 88

U.S. Patent Jul. 15, 1997 Sheet 4 of 14 5,649,176

x ~ §
o <
> © Z o
=
3 | < -
Y = "
%)
Yio « Q
£ \d p)
M W
: g e s
2 L3 N >0
NIg < ”'L—Y \%' < L
S I P
— w O iy, o o)
- |8) 0 o JHEeL = <
c]
-u-.____:D I t /"‘83 L‘)
9 (W\] T _ o .
° 3 < O
Y -
o L
¥
N
|« (8]
g o
Y o

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 36 of 92 Page ID#: 89

U.S. Patent Jul. 15, 1997 Sheet 5 of 14 5,649,176
| 510
DATA X A
) Clk | | [

e [N UUULUUTUIIuUd

§

Vgo f I
Loadenabie L TJ1
LE1 217 } _

L oadenable Ens TL
LE2 215 ‘ '|
514
Digital Circuit
Description

610a
-— Netlist-"
Function Description”
610—" ST B .
Specification L » T /0 Timing Relationships ~610¢
—— Relationships between’\GIOd
Various Timing Signals

6I0b

A

612 Transition
Analysis

i
6l4 Value Analysis F|G 6
'

6l6— Sampling Analysis

)

618 — Timing Resynthesis

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 37 of 92 Page ID#: 90

U.S. Patent Jul. 15, 1997 Sheet 6 of 14 5,649,176

|

|

ECLK————{————? I

|

| Vo

Lo i

FIG. 7TA
CTT TS T T T T I —
IN— D Q—-——;——OUT

; E |
: L
|
| @——4 ‘720 |
l |
l . |
‘ enable I
1 [> p FSM |
'l k-5 |
ECLK Sync \ C yne |
l Vgo l
L __l

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 38 of 92 Page ID#: 91

U.S. Patent Jul. 15, 1997 Sheet 7 of 14 5,649,176
e - T -]
INO—-=———— DI QI : ouTO
L _8I0
]
ECLKO i > iz :
INT — D2 Q2 |
' |
} oD - 7 8l4 i
| D3 Q3 —:—oun
ECLKI1 : l
L _1
FIG. 8A
I
mo—t———— D1 Qf i ouTO
E1
l L_820
INT : D2 Q2 ooq |
| E2: (|
! D D3 Q3}+—ouTt
| —Es ||
VClk
| SN , |
| Vgoo |
e CO-Rise CO-fall C1-Rise | |
ECLKO SyncO |
; CO-Sync FSM I
D
Syncl -
ECLK] : ync (Ci-Sync |
|
VM _

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 39 of 92 Page ID#: 92

U.S. Patent Jul. 15, 1997 Sheet 8 of 14 5,649,176
| IF‘ ““““““““““““““““ 7
INO—]————w DI Qf ; OUTO
CLKO—~+—D —910 |
I
|
| 92 |
|)
: D2 Q2}-oum
|
CLK1 ; > :
Lo
FIG. 9A
r— _—_"_—_—“"—""'—}
INO DO QO -OUTO
EO
920

|

|

R |

CO-Rise l

D SMO |
ECLKO—— Sync -EVCO-SV"C |
|

E S goo Cl-Rise |
ECLKI | Sync g C1-Sync FSMI i
' Vgo1 |

. _ 1

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 40 of 92 Page ID#: 93

U.S. Patent Jul. 15, 1997 Sheet 9 of 14 5,649,176
IN , ‘ D2 Q2 ouT
lioi2)}—p 194
gated clock
data
CTL DI. QI
ECLK —L—ab —~oio FIG. I0A
ECLK 1 |
gated-
clock _—\ / \)
e T
CTL—+——DI QI |
‘ El |
| 1016 —data
| :
IN— 1
I
| D2 Q2+O0uT
{ VCIk ‘ > 1018 :
T = :
| CO-Fall CO-Rise I
|
I D Sync CO-Sync FSM :
ECLK —+——o OJ |
! V
. T i

FI1G. 10C

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 41 of 92 Page ID#: 94

U.S. Patent Jul. 15, 1997 Sheet 10 of 14 5,649,176
Dt @ D2 Q2 ECLK/4
110 12
FCLK — gated-clock
FIG. 1A
R et
< ' - | L{p2 02J
D1 Q- :Jv“%\ I
El S e
- H22 | Rising |

——————— — | Edge |

' ! ‘

—{oR R 1) |Detector | |

1 ER Replical

1 I.@.—- |

L |

vcb | Pre-CLK-Rise CLK-Rise
| FSM
Y Sync CLK-Sync
ECLK

FIG. 11B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 42 of 92 Page ID#: 95

U.S. Patent Jul. 15, 1997 Sheet 11 of 14 5,649,176
1210 1212
D Q D Q
G % o>
D Q D Q
aG D>
o 1214 L/|2|6/
—
FIG. 12
MUX
0
1310
4
1
—1° U e b Q 1214
—dqG6 G 1312
- — s
FIG. 13
1410 e
IN—{D Q@ ouT IN D Q}—ouT
Negative
CLK—AG CLK D
1412

FIG. 14A | FIG. 14B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 43 of 92 Page ID#: 96

U.S. Patent Jul. 15, 1997 Sheet 12 of 14 5,649,176
____________________ -
IN L D Q ouT
E
3 —1510

>Pre-CLK—Rise CLK-Rise
D FSM
Clk- Sync
CLK Sync y
1 UL A
FIG. 15

5
FIG. I6A
1602—,
Q D
{4 VClk

FIG. 16B

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 44 of 92 Page ID#: 97

U.S. Patent Jul. 15, 1997 Sheet 13 of 14 5,649,176
1712 I710
azlo . /
S Qp
_ Lzl
—1R o—
N _

r——1
A
d
U
=
j

1712

FIG. 17B
o1)y—o "o
o—o 9] FIG. 18A E
CLK— '
rR—D @ 1810
E Asynch
o 1808 Transition
D Q— Clk-Rise
._...-f'\..._____-—-——E
FSM
D

vek FIG. 18B FIG. 18C

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 45 of 92 Page ID#: 98

U.S. Patent

Resynthesized
Circuit Netlist
lsll

Jul. 15, 1997 Sheet 14 of 14 5,649,176
Digital Circuit
Transition analysis |
Timing resynthesis 1610
Y
Functional
Simulations | 612
Y
Partitioner |— 1613
Y
Dependency
Analyzer [~ 614
i
Global Placer [~ 1616
Global Router and | -|6]8
Pipeline Scheduler
y
Route Embedder and
Virtual Wires ~~1620
Synthesizer
4
FGPA-Specific APR |—1622

!

FPGA Configuration
Data, 1624

FIG. 19

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 46 of 92 Page ID#: 99

5,649,176

1

TRANSITION ANALYSIS AND CIRCUIT
RESYNTHESIS METHOD AND DEVICE FOR
DIGITAL CIRCUIT MODELING

BACKGROUND OF THE INVENTION

Configurable logic devices are a general class of elec-
tronic devices that can be easily configured to perform a
desired logic operation or calculation. One example is Mask
Programmed Gate Arrays (MPGA). These devices offer
density and performance. Poor turn around time coupled
with only one-time configurability tend to diminish their
ubiquitous use. Reconfigurable logic devices or program-
mable logic devices (such as Field Programmable Gate
Armays (FPGA)) offer lower levels of integration but are
reconfigurable, ie., the same device may be programmed
many times to perform different logic operations. Most
importantly, the devices can be programmed to create gate
array prototypes instantaneously, allowing complete
dynamic reconfigurability, something that MPGAs can not
provide.

System designers commonly use reconfigurable logic
devices such as FPGAs to test logic designs prior to manu-

facture or fabrication in an effort to expose design flaws.

Usually, these tests take the form of emulations in which a
reconfigurable logic devices models the logic design, such
as a microprocessor, in order to confirm the proper operation
of the logic design along with possibly its compatibility with
an environment or system in which it is intended to operate.

In the case of testing a proposed microprocessor logic
design, a netlist describing the internal architecture of the
microprocessor is corpiled and then loaded into a particular
reconfigurable logic device by some type of configuring
device such as a host workstation. If the reconfigurable logic
device is a single or array of FPGAs, the loading step is as
easy as down-loading a file describing the compiled netlist
to the FPGAs using the host workstation or other computer.
The programmed configurable logic device is then tested in
the environment of a motherboard by corfirming that its
response to inputs agrees with the design criteria.

Alternatively, reconfigurable logic devices also find appli-
cation as hardware accelerators for simulators. Rather than
testing a logic design by programming a reconfigurable
device to “behave” as the logic device in the intended
environment for the logic design, e.g., the motherboard, a
simulation involves modeling the logic design on a work-
station. In this environment, the reconfigurable logic device
performs gate evaluations for portions of the model in order
to relieve the workstation of this task and thereby decreases
the time required for the simulation.

Recently, most of the attention in complex logic design
modeling has been directed toward FPGAs. The lower
integration of the FPGAs has been overcome by forming
heterogeneous networks of special purpose FPGA proces-
sors connected to exchange signals via some type of inter-
connect. The network of the FPGAs is heterogeneous not
necessarily in the sense that it is composed of an array of
different devices but that the devices have been individually
configured to cooperatively execute different sections, or
partitions, of the overall logic design. These networks rely
on static routing at compile-time to organize the propagation
of logic signals through the FPGA network. Static refers to
the fact that all data or logic signal movement can be
determined and optimized during compiling.

When a logic design intended for eventual MPGA fabri-
cation is mapped to an FPGA, hold time errors are & problem
that can arise, particularly in these complex configurable

5

20

45

55

60

2

logic device networks. A digital logic design that has been
loaded into the configurable logic devices receives timing
signals, such as clock signals, and data signals from the
environment in which it operates. Typically, these timing
signals coordinate the operation of storage or sequential
logic components such as flip-fiops or latches. These storage
devices control the propagation of combinational signals,
which are originally derived from the environmental data
signals, through the logic devices.

Hold time problems commonly arise where a timing
signal is intended to clock a particular storage element to
signal that a value at the element’s input terminal should be
held or stored. As long as the timing signal arrives at the
storage element while the value is valid, correct operation is
preserved. Hold time violations occur when the timing
signal is delayed beyond a time for which the value is valid,
leading to the loss of the value. This effect results in the
destruction of information and generally leads to the
improper operation of the logic design.

Tdentification and mitigation of hold time problems pre-
sents many challenges. First, while the presence of a hold
time problem can be recognized by the improper operation
of the logic design, identifying the specific location within
the logic design of the hold time problem is a challenge. This
requires sophisticated approximations of the propagation
delays of timing signals and combinational signals through
the logic design. Once a likely location of a hold time
problem has been identified, the typical approach is some-
what ad hoc. Delay is added on the path of the combinational
signals to match the timing signal delays. This added delay,
however, comes at its own cost. First, the operational speed
of the design must now take into account this new delay.
Also, new hold time problems can now arise because of the
changed clock speed. In short, hold time problems are both
difficult to identify and then difficult to rectify.

Other problems arise when a logic design intended for
ultimate MPGA. fabrication, for example, is realized in
FPGAs. Latches, for instance, are often implemented in
MPGAs. FPGA, however, do not offer a comesponding
element.

SUMMARY OF THE INVENTION

The present invention seeks to overcome the hold time
problem by imposing a new timing discipline on a given
digital circuit design through a resynthesis process that
yields a new but equivalent circuit. The resynthesis process
also transforms logic devices and timing stractures to those
that are better suited to FPGA implementation. This new
timing discipline is insensitive to unpredictable delays in the
logic devices and eliminates hold time problems. It also
allows efficient implementation of latches, multiple clocks,
and gated clocks. By means of the resynthesis, the equiva-
lent circuit relies on a new higher frequency internal clock
(or virtual clock) that is distributed with minimal skew. The
internal clock signal controls the clocking of all or substan-
tiaily all the storage elements, e.g. flip-flops, in the equiva-
lent circuit, in effect discretizing time and space into man-
ageable pieces. The user’s clocks are treated in the same
manner as user data signals.

In contrast with conventional approaches, the present
invention does not allow continuous inter-FPGA signal flow.
Instead, all signal flow is synchronized to the internal clock
so that signals fliow between flip-flops through intermediate
FPGAs in discrete hops. The internal clock provides a time
base for the circuit’s operation.

In general, according to one aspect, the invention features
a method of configuring a configurable or programmable

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 47 of 92 Page ID#: 100

5,649,176

3

logic system. Generally, such logic systems include single or
multi-FPGA network, although the invention can be applied
to other types of configurable devices. Particular to the
invention, the logic system is provided with an internal clock
signal that typically has a higher frequency, by a factor of at
least four, than timing signals the system receives from the
environment in which it is operating. The logic system is
configured to have a controller that coordinates operation of
the logic in response to the internal clock signal and the
environmental timing signals. In the past, while emulation or
simulation devices, for example, operated in response to
timing signals from the environment, a new internal clock
signal, invisible to the environment, was not used to control
the internal operations of the devices.

In specific embodiments, a synchronizer is incorporated
to essentially generate a synchronized version of the envi-
ronmental timing signal. This synchronized version behaves
much like other data signals from the environment. This
synchronizer feeds the resulting sampled environmental
clock signals to a finite state machine, which generates
control signals. The logic operations are then coordinated by
application of these control signals to sequential logic ele-
ments.

In more detail, the logic system is configured to have both
combinational logic, e.g. logic gates, and sequential logic,
e.g. flip-flops, to perform the logic operations. The control
signals function as load emable signals to the sequential
logic. The internal clock signal is received at the clock
terminals of that logic. Just like the original digital circuit
design, each sequential logic element operates in response to
the environmental timing signals. Now, however, these
timing signal control the load enable of the elements, not the
clocking. It is the internat clock signal that now clocks the
elements. As a result, the resynthesized circuit operates
synchronously with a single clock signal regardless of the
clocking scheme of the original digital circuit.

In general, according to another aspect, the invention
features a method for converting a digital circuit design into
a new circuit that is substantially functionally equivalent to
the digital circuit design. First, the internal clock signal is
defined, then sequential logic elements of the digital circuit
design are resynthesized to operate in respomse to the
internal clock signal in the new circuit rather than simply the
environmental timing signals.

In specific embodiments, flip-flops of the digital circuit
design, which are clocked by the envirommental timing
signal, are resynthesized to be clocked by the internal clock
signal and load enabled in response to the emvironmental
timing signals. Finite state machines are used to actually
generate control signals that load enable each fiip-flop. The
load enable signals are sometimes also generated from a
logic combination of finite state machine signals and logic
gates.

In other embodiments, latches in the digital circuit design,
which were gated by the environmental timing signals, are
resynthesized to be flip-flops or latches in futore FPGA
designs in the new circuit that are clocked by the new
internal or virtual clock signal. These new flip-flops are load
enabled in response to the environmental timing signals.

In general, according to still another aspect, the invention
features a logic system for generating output signals to an
environment in response to at least ome environmental
timing signal and enavironmental data signals provided from
the environment. This logic system has its own internal
clock and at least one configurable logic device. The internal
architecture of the configurable device includes logic for

10

30

45

55

4

generating the output signals in response to the environmen-
tal data signals and a controller, specifically a finite state
machine, for coordinating operation of the logic in response
to the internal clock signal and the environmental timing
signal.

Specifically, the logic includes sequential and combina-
tional logic clements. The sequential logic elements are
clocked by the internal clock signal and load enabled in
response to the environmental timing signals.

The above and other features of the invention including
various novel details of construction and combinations of
parts, and other advantages, will now be more particularly
described with reference to the accompanying drawings and
pointed out in the claims. It will be understood that the
particular method and device embodying the invention. is
shown by way of illustration and not as a limitation of the
invention. The principles and features of this invention may
be employed in various and numerous embodiments without
the departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, like reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale and in some cases have
been simplified. Emphasis is instead placed upon illustrating
the principles of the invention. Of the drawings.

FIG. 1 is a schematic diagram showing a prior art emu-
lation system and its interaction with an environment and a
host workstation;

FIG. 2 shows a method for impressing a logic design on
the emulation system;

FIG. 3 is a schematic diagram of a configurable logic
system that comprises four configurable logic devices—a
portion of the internal logic structure of these devices has
been shown to illustrate the origins of hold time violations;

FIG. 4A is a schematic diagram of the logic system of the
present invention showing the internal organization of the
configurable logic devices and the global control of the logic
devices by the internal or virtual clock;

FIG. 4B is a timing diagram showing the timing relation-
ships between the internal or virtual clock signal, environ-
mental timing signals, and control signals generated by the
logic system;

FIG. 5A is a schematic diagram of a logic system of the
present invention that comprises four configurable logic
devices, the internal stracture of these devices is the func-
tional equivalent of the structure shown in FIG. 3 except that
the circuit has been resynthesized according to the principles
of the present invention;

FIG. 5B is a diagram showing the timing relationship
between the signals generated in the device of FIG. 5A;

FIG. 6 illustrates a method by which a digital circuit
description having an arbittary clocking methodology is
resynthesized into a functionally equivalent circuit that is
synchronous with a single internal clock;

FIGS. 7A and 7B illustrate a timing resynthesis circuit
transformation in which an edge-triggered flip-flop is con-
verted into a load-enable type flip-flop;

FIGS. 8A and 8B illustrate a timing resynthesis circuit
transformation in which a plurality of edge triggered flip-
flops clocked by two phase-locked clock signals are con-
verted into load enable flip-flops that are synchronous with
the internal clock signal;

FIGS. 9A and 9B illustrate a timing resynthesis circuit
transformation in which two edge triggered flip-flops

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 48 of 92 Page ID#: 101

5,649,176

5

clocked by two arbitrary clock signals are transformed into
load enabled flip-flops that operate synchronously with the
internal clock signal;

FIGS. 10A, 10B, and 10C illustrate a timing resynthesis
circuit transformation in which two edge-triggered flip-
flops, one of which is clocked by a gated clock, are trans-
formed into two load-enable flip-flops that operate synchro-
nously with the internal clock signal, FIG. 10B is a timing
diagram showing the signal values over time in the circuit;

FIG. 11A and 11B illustrate a timing resynthesis circuit
transformation in which a complex gated clock structure,
with a second flip-flop being clocked by a gated clock, is
converted into a circuit containing three flip-flops and an
edge detector, ali.of the flip-flops operating off of the internal
clock signal in the new circuit;

FIG. 12 illustrates circuit transformations in which gated
latches are converted into edge-triggered flip-flops on the
assumption that the latches are never sampled when open,
ie., latch output is not registered into another storage
element when they are open;

FIG. 13 illustrates a timing resynthesis circuit transfor-
mation in which a gated latch is converted into an edge-
triggered flip-flop and a multiplexor;

FIGS. 14A and 14B illustrate a timing resynthesis circuit
transformation in which a latch is converted to an edge-
triggered flip-flop with 2 negative delay at the clock input
terminal to avoid glitches;

FIG. 15 illustrates a timing resynthesis circuit transfor-
mation of the negative délay flip-flop of FIG. 14B into a
flip-flop that operates synchronously with the internal clock
signal;

FIGS. 16A and 16B illustrate a timing resythesis circuit
transformation in which a flip-flop is inserted in a combi-
national loop to render the circuit synchronous with the
virtual clock;

FIGS. 17A and 17B illustrate a timing resynthesis circuit
transformation in which an RS flip-flop is transformed into
a device that is synchronous with the virtual clock;

FIG. 18A, 18B, and 18C illustrate a timing resynthesis
circuit transformation for handling asynchronous preset and
clears of state elements; and

FIG. 19 illustrates the steps performed by a compiler that
resynthesizes the digital circnit design and converts it into
FPGA configuration data that is loaded into the logic system
200.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Turning now to the drawings, FIG. 1 is a schematic
diagram showing an emulation system S of the prior art, The
emulation system 5 operates in an environment such as a
target system 4 from which it receives environmental timing
signals and environmental data signals and responsive to
these signals generates output data signals to the environ-
ment. A configuring device 2 such as a host workstation is
provided to load configuration data into the emulation
system 5.

The emulation system S is usually constructed from
individual configurable logic devices 12, specifically FPFGA
chips are common. The configurable logic devices 12 are
connected to each other via an interconnect 14. Memory
elements 6 are also optionally provided and are accessible
by the configurable logic devices 12 through the intercon-
nect 14.

The host workstation 2 downloads the configuration data
that will dictate the internal configuration of the logic

10

15

35

45

50

55

60

65

6

devices 12. The configuration data is compiled from a digital
circuit description that inclndes the desired manner in which
the emulation system 5 is intended to interact with the
environment or target system 4. Typically, the target system
4 is a larger electronic system for which some component
such as a microprocessor is being designed. The description
applies to this microprocessor and the emulation system 5
loaded with the configuration data confirms compatibility
between the microprocessor design and the target system 4.
Alternatively, the target system 4 can be a device for which
the logic system satisfies some processing requirements.
Further, the emulation system 5 can be used for simulations
in a software or FPGA based logic simulation.

FIG. 2 illustrates how the logic design is distributed
among the logic devices 12 of the logic system 5. A netlist
20 describing the logic connectivity of the logic design is
separated into logic partition blocks 22. The complexity of
the blocks 22 is manipulated so that each can be realized in
a single FPGA chip 12. The logic signal connections that
must bridge the partition blocks 24, global links, are pro-
vided by the interconnect 14. Obviously, the exemplary
petlist 20 has been substantially simplified for the purposes
of this illustration.

FIG. 3 illustrates the origins of hold time problems in
conventional logic designs. The description is presented in
the specific context of a configurable system 100, such as an
emulation system, comprising four configurable logic
devices 110116, such as FPGAs, which are interconnected
via a crossbar 120 interconnect. A portion of the internal
logic of these devices is shown to illustrate the distribution
of a gated clock and the potential problems from the delay
of the clock.

The second logic device 112 has been programmed with
a partition of the intended logic design that includes an
edge-triggered D-type flip-flop 122. This flip-flop 122
receives a data signal DATA at an input terminal D1 and is
clocked by a clock signal CLK, both of which are from the
environment in which the system 100 is intended to operate.
The output terminal Q1 of the first flip-flop is connected to
a second flip-flop 124 in the fourth logic device 116 through
the crossbar 120. This second flip-flop 124 is also clocked by
the clock signal, albeit a gated version that reaches the
second flipflop 124 through the crossbar 120, through
combinational logic 126 on a third configurable logic device
114 and through the crossbar 120 a second time before it
reaches the clock input of the second flip-flop 124.

Ideally, the rising edge of the clock signal should arrive at
both the first flip-flop 122 and the second flip-flop 124 at
precisely the same time. As a result of this operation, the
logic value “b” held at the output terminal Q1 of the first
flip-flop 122 and appearing at the input terminal D2 of the
second flip-flop 124 will be latched to the output terminal Q2
of the second flip-flop 124 as the data input is latched by
flipfiop 122. The output terminmals Q1 and Q2 of the
flip-flops 122, 124 will now hold the new output values “a”
and “b”. This operation represents correct synchronous
behavior.

The more realistic scenario, especially when gated clocks
are used, is that the clock signal CLK will not reach both of
the fiip-flops 122 and 124 at the same instant in time. This
realistic assumption is especially valid in the illustrated
example in which the clock signal CLK must pass through
the combinational logic 126 on the third configurable logic
device 114 before it reaches the second flip-flop 124 on the
fourth configurable logic device 116. In this example,
assume the clock signal CLK reaches the first flip-flop 122

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 49 of 92 Page ID#: 102

5,649,176

7

in the second configurable logic device 112 and clocks the
value at that flip-flop’s input terminal D1 to the output Q1.
At some point, the output Q1 of the first flip-flop is now
holding the new value “a” and this new value begins to
propagate toward the input D2 of the second flip-flop 124.
The rising edge of the clock signal CLK has not propagated
to the second flip-flop 124 on the fourth configurable logic
device 116, however. Instead, a race of sorts is established
between the rising edge of the clock signal CLK and the new
value “a” to the second flip-flop 124. If the new value “a”
reaches the input terminal D2 of the second flip-flop before
the rising edge of the clock signal CLK, the old value “b”
will be over-written. This is incorrect behavior since the
information contained in “b” is lost. For correct operation of
the circuit, it was required that signal “b” at the input
terminal D2 of the second flip-flop 124 be held valid for a
brief period of time after the arrival of the clock edge to
satisfy a hold time requirement. Unfortunately, unpredict-
able routing and logic delays postpone the clock edge
beyond the validity period for the input signal “b”.

In environments where delays can not be predicted
precisely, hold time violations are a serious problem that can
not be rectified merely by stretching the length of the clock
period. Often, there is a need for careful delay tuning in
traditional systems, either manually or automatically, in
which analog delays are added to signal paths in the logic.
The delays usually require further decreases in the opera-
tional speed of the target system. This lengthens the periods
of the environmental timing signals and gives the emulation
system more time to perform the logic calculations. These
changes, however, create their own timing problems, and
further erode the overall speed, ease-of-use, and predictabil-
ity of the system.

FIG. 4A is a schematic diagram showing the internal
architecture of the logic system 200 which has been con-
figured according to the principles of the present invention.
This logic system 200 comprises a plurality of configurable
logic devices 214a-214d. This, however, is not a strict
necessity for the invention. Instead, the logic system 200
could also be constructed from a single logic device or
alternatively from more than the four Jogic devices actually
shown. The logic devices are shown as being connected by
a Manhattan style interconnect 418. Again, the interconnect
is non-critical, modified Manhattan-style, crossbars or hier-
archial interconnects are other possible and equivalent alter-
natives.

The internal logic architecture of each configurable logic
device 214a-214d comprises a finite state machine 428-434
and logic 420-426. An interpal or virtual clock VClk gen-
erates an internal or virtual clock signal that is distributed
through the interconnect 418 to each logic device
214a-214d, and specifically, the logic 420-426 and finite
state machines 428-434. Generally, the logic 420-426 per-
forms the logic operations and statc transitions associated
with the logic design that was developed from the digital
cirenit description. The finite state machines 428-434 con-
trol the sequential operations of the logic in response to the
signal from the virtual clock VClk.

The logic system 200 operates synchronously with the
single internal clock signal VCIk. Therefore, a first synchro-
nizer SYNC1 and a second synchronizer SYNC2 are pro-
vided to essentially generate synchronous versions of timing
signals from the environment, In the illustrated example,
they receive environmental timing signals EClk1 and ECIk2,
respectively. The synchronizers SYNC1 and SYNC2 also
receive the internal clock signal VCIk. Each of the synchro-
nizers SYNC1 and SYNC2 generates a synchronizing con-

20

30

35

40

45

50

60

8

trol signal Vgo;, Vo, in Iesponse to an edge of the
respective environmental timing signal EClk1 and EClk2,
upon the pext transition of the internal clock VCIk. Thus,
these control signals are synchronous with the internal
clock.

FIG. 4B shows an exemplary timing diagram of the
virtual clock signal VClk compared with a first environmen-
tal clock signal EClk1 and a second environmental clock
signal ECIk2. As shown, typically, the virtual clock VCIk is
substantially faster than any of the environmental clocks, at
least four times faster but usually faster by a factor of ten to
twenty. As a general rule, the temporal resolution of the
virtual clock, i.c., the cycle time or period of the virtual
clock, should be smaller than the time difference between
any pair of environmental timing signal edges.

In the example, the environmental clocks ECIk1 and
ECIK2 are rising edge-active. The signals Vo, and Voo
from the first synchronizer SYNC1 and the second synchro-
nizer SYNC2, respectively, are versions of the environmen-
tal clock which are synchronized to the internal clock VCik
in duration. The transitions occur after the rising edges of the
environmental clocks ECIk1 and ECIk2, upon the next or a
later rising edge of the internal clock. For example, the
second synchronizing signal V o, is active in response to the
receipt of the second envirommental clock signal ECIk2
upon the next rising edge of the internal clock VClk.

Returning to FIG. 4A, in typical simulation or emulation
configurable systems and the present invention, logic of the
configurable devices include a number of interconnected
combinational components that perform the boolean func-
tions dictated by the digital circuit design. An example of
such components are logic gates. Other logic is configured
as sequential components. Sequential components have an
output that is a function of the input and state and are
clocked by a timing signal. An example of such sequential
components would be a flip-flop. In the typical configurable
systems, the environmental clock signals are provided to the
logic in each configurable logic device to control sequential
components in the logic. This architecture is a product of the
emulated digital circuit design in which similar components

‘were also clocked by these timing signals. The present

invention, however, is configured so that each one of these
sequential components in the logic sections 420-426 is
clocked by the internal or virmal clock signal VCIk. This
control is schematically shown by the distribution of the
internal clock signal VClk to each of the logic sections
420-426 of the configurable devices 410-416. As described
below, the internal clock is the sole clock applied to the
sequential components in the logic sections 420-426 and
this clock is preferably never gated.

Finite state machines 428-434 receive both the internal
clock signal VCIk and also the synchronizing signals Vg,
V s02 from the synchronizers SYNC1 and SYNC2. The finite
state machines 428-434 of each of the configurable logic
devices 410-416 generate control signals to the logic sec-
tions 420-426. These signals control the operation of the
sequential logic components. Usually, the control signals are
received at load enable terminals. As a result, the inherent
functionality of the original digital circuit design is main-
tained. The sequential components of the logic are operated
in response to environmental timing signals by virtue of the
fact that loading occurs in response to the synchronized

_ versions of the timing signals, i.€. V55, Vso,- Synchronous

65

operation is imposed, however, since the sequential compo-
nents are actually clocked by the single internal clock signal
VClk throughout the logic system 200. In contrast, the
typical simulation or emulation configurable systems would

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 50 of 92 Page ID#: 103

5,649,176

9

clock the sequential components with the same environmen-
tal clock signals as in the original digital circuit description.

Tt should be noted that separate finite state machines are
not required for each configurable logic device.
Alternatively, a single finite state machine having the com-
bined functionality of finite state machines 428-434 could
be implemented. For example, one configurable device
could be entirely dedicated to this combined finite state
machine. Generally, however, at least one finite state
machine on each device chip is preferred. The high cost of
interconnect bandwidth compared to on-chip bandwidth
makes it desirable to distribute only the synchronizing
signals Vgo; Voo o cach chip, and generate the muitiple
control signals on-chip to preserve the interconnect for other
signal transmission.

FIG. 5A shows a portion of a logic circuit that has been
programmed into the logic system 200 according fo the
present invention. This logic circuit is a resynthesized ver-
sion of the logic circuit shown in FIG. 3. That is, the logic
circuit of FIG. 5A and of FIG. 3 have many of the same
characteristics. Both comprise flip-flops 122 and 124. The
flip-flop 122 has an output terminal Q1 which connects to
the input terminal D2 of flip-flop 124. Further, the combi-
national logic 126 is found in both circuits.

The logic circuit of FIG. 5A differs from FIG. 3 first in
that each of the flip-flops 122 and 124 are load-enable type
fiip-flops and clocked by a single internal clock VCIk. Also,
the environmental clock signal Clk is not distributed per se
to both of the flip-flops 122 and 124 as in the circuit of FIG.
3. Instead, a synchronized version of the clock signal Vg, is
distributed to a finite state machine 430 of the second
configurable logic device 214b and is also distributed to 2
finite state machine 434 of the fourth configurable logic
device 2144d. The finite state machine 430 then provides a
control signal to a load enable terminal LE1 of fiip-flop 122
and finite state machine 434 provides a control signal to the
load enable terminal LE2 of flip-flop 124 through the
combinational logic 126.

FIG. 5B is a timing diagram showing the timing of the
signals in the circuit of FIG. SA. That is, at time 510, new
data is provided at the input terminal D1 of fiip-flop 522
Then, at some later time, 512, the clock signal Clk is
provided to enable the flip-flop 122 to clock in this new data.
The second flip-flop 124 is also intended to respond to the
environmental clock signal Clk by capturing the previous
output of flip-flop 122 before that flip-fop is updated with
the new data. Recall that the problem in the logic circuit of
FIG. 3 was that the clock signal to the second flip-flop 124
was gated by the combinational logic 126 which delayed
that clock signal beyond time at which the output “b” from
the output terminal Q1 of the flip-flop 122 was valid. In the
present invention, the environmental clock signal Clk is
received at the synchronizer SYNC. This synchronizer also
receives the virtual clock signal VCIk. The output of the
synchronizer Vg is essentially the version of the environ-
mental dlock signal that is synchronized to the internal clock
signal. Specifically, the new signal Vg, has rising and falling
edges that correspond to the rising edges of the internal
clock signal VClk

The finite state machines 430 and 434 are individually
designed to control the flip-flops in the respective config-
urable logic 214k and 214d to function as required for
correct synchronous operation. Specifically, finite state
machine 434 generates a control signal 215 which propa-
gates through the combinational logic 126 to the load enable
terminal 1B2 of the flip-flop 124. This propagation of

15

20

40

45

55

10

control signal 215 from finite state machine, through com-
binational logic 126, to LE2 occurs in a single virtual clock
cycle. The generation of control signal 215 precedes the
generation of control signal 217 by the finite state machine
430 by a time of two periods (for example) of the internal
clock VCIk. This two cycle difference, 514, assumes that
flip-flop 124 is enabled before flip-fiop 122 is enabled,
thereby latching “b”, and thus providing correct operation.
As a result, both flip-flop 122 and flip-flop 124 are load
enabled in a sequence that guarantees that a new value in
flip-flop 122 does not reach flip-flop 124 before flip-flop 124
is enabled. In fact, if the compiler has scheduled “b” to
arrive at D2 on some cycle, x, later than 217, then the
compiler can cause control signal 215 to be available on that
cycle x, or later. In the above instance, the comrect circuit
semantics is preserved even though control signal 215
arrives after control signal 217. The key is that 215 must
enable flip-flop 124 in a virtual cycle in which “b” is at D2.

Further, the precise control of storage elements afforded
by the present invention allows set up and hold times into the
target system to be dictated. In FIG. 5A, output Q2 of
flip-flop 124 is linked to a target system via a third flip-flop
140. The flip-flop 140 is load enabled under the control of
finite state machine 434 and clocked by the virtual clock.
Thus, by properly constructing this finite state machine 434,
the time for which flip-flop 140 holds a value at terminal Q3
is controllable to the temporal resolution of a cycle or period
of the virtual clock signal.

This aspect of the invention enables the user to test best
case and worst case situations for signal transmission to the
target system and thereby ensure that the target system
properly captures these signals. In a similar vein, this control
also allows the user to control the precise time of sampling
signals from the target system by properly connected storage
devices.

FIG. 6 illustrates a method by which a digital circuit
design with an arbitrary clocking methodology and state
clements is transformed into a new circuit that is synchro-
nous with the internal clock signal but is a functional
equivalent of the original digital circuit. The state elements
of the new circuit are exclusively edge triggered flip-flops.

The first step is specification 610. This is a process by
which the digital circuit design along with all of the inherent
timing methodology information required to precisely define
the circuit functionality is identified. This information is
expressed in four pieces, a first piece of which is the
gate-level circuit netlist 6102 This specifies the components
from which the digital circuit is constructed and the precise
interconnectivity of the components.

The second part 6105 of the specification step 619 is the
generation of a functional description of each component in
the digital circuit at the logic level. For combinatorial
components, this is a specification of each output as a
boolean function of one or more inputs. For example, the
specification of a three input OR gate—inputs A, B, and C
and an output O—is O=A+B+C. For sequential components,
this entails the specification of outputs as a boolean function
of the inputs and state. The specification of the new state as
a boolean function of the inputs and state is also required for
the sequential components along with the specification of
when state transitions occur as a function of either boolean
inputs or directed input transitions. A directed input transi-
tion is a rising or falling edge of an input sigpal, usually a
timing signal from the environment in which the logic
system 200 is intended to ultimately function. For example,
the specification of a rising edge-triggered flip-flop—inputs

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 51 of 92 Page ID#: 104

5,649,176

1
D, CLK, of output Q, and state S— is Q=S, S=D, and state
transition when CLK rises.

Another part of the specification step is the description of
the timing relationships of the inputs to the logic system step
610c. This includes environment timing signals and envi-
ronmental input signals and the relationship to the output
signals generated by the logic system 200 to the environ-
ment. Input signals to the logic system 200 can be divided
into two classes: timing signals and environmental data
signals. The timing signals are generally environmental
clock signals, but can also be asynchronous resets and any
other form of asynchronous signal that combinatorially
reach inputs of state clements involved in the functions
triggering state transitions. In contrast, environmental data
signals include environmental output signals and output
signals to the environment that do not combinatorially reach
transition controlling inputs of state elements. The timing
relationship also specify the timing of environmental data
signals relative to a timing signal.

The specification step mnst also include the specification
of the relative timing relationships for all timing signals step
610d. These relationships can be one of three types:

A basket of timing signals can be phase-locked. Two
signals of equal frequency are phase-locked if there is a
known phase relationship between each edge of one signal
and each edge of the other signal. For example, the first
environmental clock signal and the second environmental
clock signal illustrated in FIG. 4 would be phase-locked
signals. Additionally, two signals of integrally related fre-
quency are phase-locked if there is a known phase
relationship, relative to the slower signal, between any edge
of the slower signal and each edge of the faster signal. Two
signals of rationally related frequency are phase-locked if
they each are phase-locked to the same slower signal.

Another type of timing relationship is non-simultaneous.
Two signals are non-simultaneous if a directed transition in
one signal guarantees that no directed transition will occur
in the other within a window around the transition of some
specified finite duration. If two signals are non-simultaneous
and also not phase-locked, this implies that one signal is
turned off while the other is on and vice versa. For example,
two non-simultaneous signals might be two signals that
indicate the mutually exclusive state of some component in
the environment. The first signal would indicate if the
component was in a first condition and the second timing
signal would indicate if the component were in a second
condition and the first and second condition could never
happen at the same time.

Finally, the last type of relationship is asynchronous. Two
signals are asynchronous if the knowledge about a directed
transition of one of the signals imparts no information as to
occurrence of a transition in the other signal.

1t should be recognized that phase-locked is a transitive
relationship so that there will be collections of one or more
clocks that are mutually phase-locked with respect to each
other. Such collection of phase-locked clocks is referred to
as a domain. Relationship between domains are either non-
simultaneous or asynchronous. The timing signals must be
decomposed into a collection of phase-locked domains, and
the relationship between pairs of the resulting domains,
either synchronous or non-simultaneous, must be specified.

The ordering of the edges of timing signals within each
domain are also specified. For example, first CLK1 rises,
then CLK2 rises, then CLK2 falls and then CLK1 falls.

A transition analysis step 612, value analysis step 614,
and sampling analysis step 616 are used to determine when,

10

15

20

35

45

50

55

65

12
relative to the times at which transitions occur on timing
signals, signals within a digital circuit change value, and
where possible, what these values are, Also determined is
when the values of particular signals are sampled by state
elements within the circuit as a separate analysis.

In the transition analysis step 612, a discrete time range is
established for each clock domain including one time point
for each edge of a clock within the domain. All edges within
the domain are ordered and the ordering of time points
corresponds to this ordering of edges.

In the value analysis step 614, the steady state character-
istics of every wire in the digital circuit is determined for
each discrete time range. Within a discrete time range, any
wire within the digital circuit can either be known to be O,
known to be 1, known not to rise, known not to fall or known
not to change, or a combination of not falling and not rising.
A conservative estimate of the behavior of an output of a
logic component can be deduced from the behavior of its
inputs. Information about environmental timing signals and
environmental data signals can be used to define their
behavior. Based on the transition and value information of
the inputs to the logic system corresponding information can
be deduced for the outputs of each component. A relaxation
algorithm is used, in which output values of a given com-
ponent are recomputed any time an input changes. If the
outputs in turn change, this information is propagated to all
the places the output connects, since these represent more
inputs which have changed. The process continues until no
further changes occur.

A second relaxation process, similar to that for transition
and value analysis, is used in the sampling step 616. Sam-
pling information reflects the fact that at some point in time,
the value carried on a wire may be sampled by a state
clement, either within the logic system 200 or by the
environment. Timing information for output data signals to
the environment provides an external boundary condition for
this relaxation process. Additionally, once transition analysis
has occurred, it is possible to characterize when all internal
state elements potentially make transitions and thus when
they may sample internal wires. Just as with transition and
value propagation, the result is a relationship between inputs
and outputs of a component. For sampling analysis, it is
possible to deduce the sampling behavior of inputs of a
component from the sampling information for its outputs.
The relaxation process for computing sampling information
thus propagates in the opposite direction from that of
transition information, but otherwise similarly starts with
boundary information and propagates changes until no fur-
ther changes occur.

At the termination of transition 612 and sampling 616
steps it is possible to characterize precisely which timing
edges can result in transitions and/or sampling for each wire
within the digital circuit. Signals which are combinationally
derived from timing signals with known values often also
carry knowledge about their precise values during some or
all of the discrete time range. They similarly often are known
to only be able to make one form of directed transition,
either rising or falling, at some particular discrete time point.
This information is relevant to understanding the behavior of
edge-triggered state elements.

The final resynthesis step 618 involves the application of
a number of circuit transformations to the original digital
circnit design which have a number of effects. First, the
internal clock VClk is introduced into the logic design 200
of the digital circuit. The internal clock signal is the main
clock of the logic system 200. Further, in effect, all of the

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 52 of 92 Page ID#: 105

5,649,176

13

original environmental timing signals of the digital circuit
are converted into data signals in the logic system 200.
Finally, all of the state elements in the digital circuit are
converted to use the internal clock signal as their clock,
leaving the internal clock as the only clock signal of the
transformed system. The state clements of the original
digital circuit design are converted preferably into edge-
triggered flip-flops and finite state machines, which generate
control signals to the load enable terminals of the flip-flops.
The information developed in the transition amalysis step
612, value analysis step 614, and sampling analysis step 616
is used to define the operation of the finite state machines as
it relates to the control of the flip-flops in response to the
internal clock signal and the environmental timing signals.
The finite state machines send load enable signals to the
flip-filops when it is known that data inputs are correct based
upon a ronting and scheduling algorithm described in the
U.S. patent application Ser. No. 08/344,723 filed Nov. 23,
1994 and entitled “Pipe-Lined Static Router and Scheduler
for Configurable Logic System Performing Simultaneous
Communications and Computations”, incorporated herein
by this reference. The scheduling algorithm essentially pro-
duces a load enable signal on a virtual clock cycle that is
given by the maximum of the sum of data, value available
time, and routing delays for each signal that can affect data
input.

Single Flip-Flop Timing Resynthesis

FIG. 7A shows a simple edge-triggered flip-flop 710
which was a state element in the original digital circuit.
Specifically, the edge-triggered flip-flop 710 receives some
input signal at its input terminal D and some timing signal,
such as an environmental clock signal ECLK at its clock
input terminal. In response to arising edge received into this
clock terminal, the value held at the input terminal D is
placed at the output terminal Q.

The timing resynthesis step converts this simple edge-
triggered flip-flop 710 to the circuit shown in FIG. 7B. The
new flip-flop is a load-enabled flip-flop and is clocked by the
internal clock signal VCIk. The enable signal of the con-
verted flip-flop is generated by a finite state machine FSM.
Specifically, the finite state machine monitors 2 synchro-
nized version of the clock signal Vo, and asserts the enable
signal to the enable input terminal E of the converted
flip-flop 720 for exactly one cycle of the internal clock VCIk
in response to synchronizing signal Vs, transitions from 0
to 1. The finite state machine is programmed so that the
enable signal is asserted on an internal clock signal cycle
when the input IN is valid accounting for delays in the
circuit that arise out of a need to route the signal IN on
several VCIk cycles from the place it is generated to its
destination at the input of flip-fiop 720. In a virtual wire
systems signals are routed among multiple FPGAs on spe-
cific internal clock VClk cycles. The synchronizing signal
Vo is generated by a synchronizer SYNC in response to
receiving the environmental timing signal ECIk on the next
or a following transition of the internal clock signal VClk.
As a result, the circuit is functionally equivalent to the
ariginal circuit shown in FIG. 7A since the generation of the
enable signal occurs in response to the environmental clock
signal ECIk each time a transition occurs. The circuit,
however, is synchronous with the internal clock VClk

In a digital circuit comprising combinational logic and a
collection of flip-flops, all of which trigger off the same edge
of a single clock, the basic timing resynthesis
transformation, shown in FIG. 7B and described above, can
be extended. All fip-flops are converted to load-enabled
flip-flops and have their clock inputs connected to the

30

35

45

50

60

65

14
internal clock VCik. The load enable terminal E of each
flip-flop is connected to enable signals generated by a shared
finite state machine in an identical manner as illustrated
above. The FSM can be distinct for each FPGA. The enables
for each flip-flop will be produced to account for routing
delays associated with each signal input to the fiip-flops.

Timing Resynthesis for Domains for Multiple Clocks

FIG. 8A shows a circuit comprising three flip-flops
810-814 that are clocked by two environmental clock sig-
nals ECIk0 and ECIk1. For the purposes of this description,
both environmental clock signals ECIkO and EClk1 are
assumed to be phase-locked with respect to each other.

The transformed circuit is shown in FIG. 8B. I should be
noted that the basic methodology of the transform is the
same as described in relation to FIGS. 7A and 7B. The finite
state machine FSM and the clock sampling circuitry SYNC1
and SYNC2 have been extended. As before, each flip-flop of
the transformed circuit has been replaced with a load-
enabled positive-edge triggered flip-flop 820-824 in the
transformed circuit. The first environmental clock signal
ECIk0 and the second environmental clock signal ECik1 are
synchronized to the internal clock by the first synchronizer
SYNCO and the second synchronizer SYNC1. The synchro-
nizing signals V g0 and Ve, are generated by the synchro-
nizers SYNCO and SYNCT1 to the finite state machine FSM.
The finite state machine FSM watches for the synchronizing
signals V5, and Vg, and then produces a distinct load
enable pulse C0-Rise, C0-Fall, C1-Rise for each timing edge
on which the clocks EClk0 and ECIkl of the flip-flops
820-824 operate. The ordering of these load enable puises is
prespecified within a domain where there is a unique order-
ing of the edges of all phase-locked clocks. This unique
ordering of clocks is specified by the user of the system. As
with the single clock case shown in FIG. 7B, each of the
enable pulses C0-Rise, C0-Fall, and C1-Rise is asserted for
exactly one period of the internal clock VClk upon detection
of the comresponding clock edge in FIG. 8B.

Multiple Clock Domains Resynthesis

FIG. 9A shows a collection of flip-flops 910-912 from the
digital circuit having multiple clock domains. That is, the
first clock signal CLKO and the second clock signal CLK1
do not have a phase-locked relationship to each other, rather
the clocks are asynchronous with respect to each other.

FIG. 9B shows the transformed circuit. A different finite
state machine FSM0 and FSM1 is assigned to each domain.
Specifically, a first finite state machine FSMO is synchro-
nized to the first environmental clock ECIkO to generate the
load enable signal to the load enable terminal EO of the first
flip-fiop 920. The second finite state machine FSM1 gener-
ates a load enable signal to E1 of the second flip-flop 922 in
response to the second environmental clock signal ECIk1. It
should be noted, however, that although FSM0 and FSM1
operate independently of each other, each of whose
sequences are initiated by separate signals Voo and Vo, -
and that although the first flip-flop 920 and the second
flip-flop 922 work independently of each other, i.c., load
enabled by different clock signals ECIk0 and ECIK1, the
resulting system is a single-clock synchronous system with
the internal clock VCik.

The relationship between the behavior of the first finite
state machine FSMO and the second finite state machine
FSM1 of the two clock signal domains is related to the
relationship between the domains themselves. When the two
domains are asynchronous, the first finite state machine
FSMO0 and the second finite state machine FSM1 may
operate simuitancously or non-simultaneously. When the

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 53 of 92 Page ID#: 106

5,649,176

15

two domains are non-overlapping, the first finite state

machine FSMO and the second finite state machine FSM1

never operate simultaneously since the edges within the
domains are separated in time.

The simultaneity of operation of finite state machines that
are asynchronous with respect to each other leaves two
circuits which can not readily be transformed by timing
resynthesis. A state element which can undergo transitions as
aresult of an edge produced from a combination of signals
in asynchronously related domains can not be resynthesized.
Such condition can rise if two asynchronous clocks are gated
together and fed into the clock input of a flip-fiop or if a state
element with multiple clocks and/or asynchronons presets or
clears is used as transition triggering inputs from distinct
asynchronously related clock domains. Due to the non-
simultaneous events and non-overlapping domains, the situ-
ations above are not problematic in the non-overlapping
situation.

Gated Clock Transformations

Clock gating in the digital circuit provides additional
control over the behavior of state elements by using com-
binational logic to compute the input to clock terminals. The
timing resynthesis process transforms gated clock structures
into functionally equivalent circuitry which has no clock
gating. Generally, gated clock stractures can be divided into
two classes: simple gated clocks and complex gated clocks.
The basis for this distinction lies in the behavior of the gated
clocks as deduced from timing analysis. Previously, the
terms timing signal and data signal were defined in the
context of inputs and outputs to the digital circuit. A gated
clock is a combinational function of both timing signals and
data signals. The gated clock transition then controls the
input of a state element. Data signals can either be external
input data signals from the environment or internally gen-
erated data signals.

A simple gated clock has two properties:

1) at any discrete time it is possible for a simple gated clock
to make a transition in at most onme direction, stated
differently, there is no discrete time at which the simple
gated clock may sometime rise and sometime fall; and

2) only timing signals change at those discrete times at
which state elements can change state.

A complex gated clock violates one of these two proper-
ties.

Simple Gated Clock Transformation

FIG. 10A shows a circuit that exhibits a simple gated
clock behavior. FIG. 10B is a timing diagram showing
transitions in the data signal and the gated clock signal as a
function of the envirommental clock signal ECIk.
Specifically, upon the falling edge of the epvironmental
clock EClk, the gating flip-flop 1010 latches the control
signal CTL received at its input D1 at its output terminal Q1.
This is the data signal. The AND gate 1012 receives both the
data signal and the environmental clock BCIk. As a result,
only when the environmental clock ECIk goes high, does the
gated-clock signal go high on the assumption that the data
signal is also a logic high. Upon the rising edge of the gated
clock, the second flip-flop 1014 places the input signal IN
received at its D2 terminal to its output terminal Q2.

FIG. 10C shows the transformed circuit. Here, a finite
state machine FSM receives a signal V 4, from the synchro-
nizer SYNC upon receipt of the environmental clock EClk.
The finite state machine FSM produces two output signals:
C0-Fall which is active upon the falling edge of the envi-
ronmental clock signal, and C0-Rise which is active upon
the rising of the environmental clock signal EClk.

The transformed circuit functions as follows. On the first
period of the internal clock VClk after the falling edge of the

16
environmental clock signal ECIk, the first flip-flop 1016

- places the value of the control signal received at its input

10

15

20

25

30

3

w

40

45

50

60

terminal D1 to its output terminal Q1 upon the clocking of
the internal clock signal VClk. This output of the first
flip-flop 1016 appearing at terminal Q1 comresponds to the
data signal in the original circuit. This data signal is then
combined in an AND gate 1020 with the signal CO-Rise
from the finite state machine FSM that is indicative of the
rising edge of the environmental clock signal EClk. The
output of the AND gate goes to the load enable terminal E2
of a second flip-flop 1018 which receives signal IN at its
input terminal D2. Again, upon the receipt of this load
enable and upon the next cycle of the internal clock VCIk,
the second flip-flop moves the value at its input terminal D2
to its output terminal Q2.

Complex Gated Clock Transformations

Tn the case of complex gated clock behavior, the factoring
technique used for simple gated clock transformations is
inadequate. Becanse data and clocks change simultaneously
and/or the direction of a transition is not guaranteed, both the
value of a gated clock prior to the transition time and the
value of the gated clock after the transition time are needed.
Using these two values, it can be determined whether a
signal transition that should trigger a state change has
occurred. One way to produce the post-transition value of
data signals is toreplicate the logic computing the signal and
also replicate any flip-flops containing values from which
the signal is computed and which may change state as a
result of the transition. These replica flip-flops can be
enabled with an early version of the control signal, thus
causing them to take on a new state prior to the main
transition. By this mechanism, pre- and post-transition val-
ues for signals needed for gated clocks can be produced.

An alternative way to get the two required values for the
gated clock signal is to add a flip-flop to record the pre-
transition state of the gated-clock and delay in time the
update of the state element dependent on the gated clock.
These two techniques have different overhead costs and the
latter is only applicable if the output of the state element
receiving the gated clock is not sampled at the time of the
transition. The former always works but the latter generally
has lower overhead when applicable.

FIG. 11A shows two cascaded edge-triggered flip-flops
1100 and 1112. This configuration is generally known as a
frequency divider. The environmental clock signal ECIk is
received at the clock terminal of the first flip-flop 1110; and
at the output Q2 of the second flip-flop 1112, a new clock
signal is generated that has one-fourth the frequency of
ECIk. The divider of FIG. 11A operates as follows: In an
initial state in which the output terminal Q1 of the first
flip-flop 1110 is a 0 and the input terminal D1 of the flip-flop
1110 is a 1, receipt of the rising edge of the environmental
timing signal EClk changes Q1 to a 1 and D1 converts to a
0. The conversion of Q1 from 0 to 1 functions as a gated
clock to the clock input terminal of the second flip-flop 1112.
The second flip-flop 1112 functions similarly, but since it is
only clocked when Q1 of the first flip-flop 1110 changes
from 0 to 1, but not 1 to 0, it changes with one-fourth the
frequency of EClk.

FIG. 11B shows the transformed circuit of FIG. 11A.

- Here, a replica flip-flop 1120 has been added that essentially

65

mimics the operation of the first flip-flop 1122. The replica
flip-flop 1120, however, receives a pre-Clk-Rise control
signal from the finite state machine FSM. More specifically,
the finite state machine FSM responds to the synchronizing
signal Vo and the internal clock VCIk and produces a
pre-CLK-rise signal that is active just prior to the CLK-Rise

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 54 of 92 Page ID#: 107

5,649,176

17

signal, CLK-Rise being active in response to the rising edge
of the environmental timing signal EClk. Assume the output
terminal Q1 of the first flip-flop 1122 is initially at a O and
the input terminal D1 of first flip-flop 1122 is a 1, the replica
flip-flop 1120 is initially at a 0. Upon receipt of the pre-
CLK-rise signal at the replica flip-flop load enable terminal
ER, the output terminal QR of the replica flip-flop 1120
makes a transition from a 0 to a 1. Since Q1 is low and QR
is high, an AND gate 1124 functioning as an edge detector
generates a high signal. When the CLK-tise control signal
from the finite state machine FSM is active in response to
receipt of the rising edge of the environmental clock signal
ECIk, the output terminal Q1 of the first flip-flop 1122 is
converted from a 0 to a 1. The enable terminal E2 of flip-fiop
1126 also is high, causing the flip-flop to change state. On
the next falling transition of Q1, the AND gate 1124 will
produce 0 and flip-flop 1126 will not change state. Since the
replica flip-flop 1120 provides a zero to the rising edge
detector whenever the zero is present at the input terminal of
the first flip-flop, the rising edge detector is enabled only
every other transition of Q1.

Latch Resynthesis

Generally, latches are distingnished from flip-flops in that
flip-flops are edge-triggered. That is, in response to receiv-
ing ecither a rising or falling edge of a clock signal, the
flip-flop changes state. In contradistinction, a latch has two
states. In an open state, the input signal received at a D
terminal is simply transferred to an output terminal Q. In
short, in an open condition, the output follows the input like
a simple wire. When the latch is closed, the state of the
output terminal Q is maintained or held independent of the
input value at terminal D. A semantic characterization of
such a latch is as follows. For an input D, output Q, a gate
G, and a state S, Q=S. S=D if G=1. The latch is open when
G=1 and closed when G=0.

Beginning with the simplest case, if the output of a latch
is never sampled when the latch is closed, G=0, the latch is
really just a wire. Latches with this characteristic may be
used to provide extra hold time for a signal. For this sample
latch, this would be true, if the set of discrete times at which
the output of the latch is sampled, is equal to or a proper
subset of the set of discrete times at which the gate signal G
is known to have a value of 1. In this situation, the latch can
be removed and replaced with a wire connecting the input
and output signals.

In contrast, if the output of the latch is never sampled
when the latch is open, the latch is equivalent to a flip-flop.
The only value produced by the latch which is ever sampled
is a value of the input D on the gate signal edge when the
latch transitions from open to closed. This condition is true
if the set of discrete times at which the output of the latch is
sampled, is equal to, or a proper subset of the discrete times
at which the gate signal G is known to have a value of 0. In
this situation, the latch can be removed and replaced with an
edge-triggered flip-flop.

As shown in FIG. 12, latches that are open when their gate
signal G is high 1210 are converted to negative-edge trig-
gered flip-flops 1212. Latches that are open when their gate
signal G is low 1214 are converted to positive edge triggered
flip-flops 1216.

Once the transition from the latch to the edge triggered
flip-flop has been made, these new edge-triggered flip-flops
are then further resynthesized by the timing resynthesis
techniques described in connection with FIGS. 6-11.
Therefore, after this further processing, both positive and
negative edge-triggered flip-flops will be flip-flops clocked
by the internal clock VCIk. The resynthesized fiip-flops will

10

20

25

30

35

40

45

50

55

65

18

have an enable signal that is generated by a finite state
machine in response to the particular environmental clock
signal that gated the original latch element.

Referring to FIG. 13, in the condition in which the output
of a given latch 1310 is sampled both when the latch might
be open and might be closed, that latch can be converted to
a flip-flop 1312, plus a multipiexor 1314 as shown in FIG.
13. There, when the gate signal G is low, the multiplexor
1314 selects the input signal to the input terminal D of the
flip-flop 1312. On the rising edge of the gating signal,
however, the input to the D terminal is latched at the output
terminal Q. Also, at this point, the gating signal selects the
second input to the multiplexor 1214, As with the case in
FIG. 12, the result of the transformation in FIG. 13 is
subjected to further resyathesis.

The transform of FIG. 13 may exhibit timing problems if
the multiplexor is implemented in a technology that exhibits
hazards, or output glitches. Output glitches can and could
result in set up and hold time problems of the sampling state
element. This transformation can therefore only be used
when the output is never sampled at discrete times at which
the clock may exhibit an edge. If the output is sampled both
when the latch might be opened and closed and some
sampling occurs on the edge of the gate signal, a final
transformation is employed. A new clock signal is created
which is phase-locked to the original clock signal and
precedes it.

As shown in FIGS. 14A and 14B, the latch 1410 of FIG.
14A is replaced by a flipflop which receives the phase-
advanced clock indicated by the negative delay 1412 as
shown in FIG. 14B. The state transition of the new flip-flop
1414 precedes a state transition of any circuits sampling the
original output Q of the original latch 1410. If the latch is
also sampled when it is open by signals occurring prior to
the sampling edge, one of the prior techniques can be
employed, either latch to wire or latch to flip-flop and
muitiplexor transforms of FIG. 13.

As shown in FIG. 14B, the negative delay 1412 represents
a time-advanced copy of the clock CLK which is used to
clock the flip-flop 1414. While negative-delays are
unphysical, this structure can be processed by the timing
resynthesis process with a distinct control signal generated
by a finite state machine.

FIG. 15 shows a finite state machine FSM generating a
pre-CLK-rise control signal one or more cycles of the
internal clock VCIk prior to the generation of the control
signal, CLK-Rise. The control signal CLK-rise is generated
in response to the rising edge of the environmental timing
signal ECIk. As a result, the input signal appearing at the D
terminal of the flip-flop 1510 is transferred to the output
terminal prior to the rising edge of the environmental clock
signal ECIk as signaled by the Clkrise control signal.
Subsequent elements can be then load enabled from the
CLK-Rise signal generated by the finite state machine FSM.
Here again, if the latch of the original digital circuit is
sampled both when the latch is opened and closed, a
multiplexor can be placed at the output Q of the flip-flop
1510.

Combinational Loop Transformations

Combinational loops with an even number of logic inver-
sions around the loop are an implicit state element. An
example is shown in FIG. 16A, this implicit state can be
transformed into an explicit state element which is clocked
by the virtual clock VCIk by simply choosing a wire 1601
in the loop and inserting a flip-flop 1602 which is clocked by
the virtual clock VCIk as shown in FIG. 16B.

The addition of the flip-flop 2602 changes the timing
characteristics of the loop. Additional virtual clock cycles
are required for the values in the loop to settle into their final
states.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 55 of 92 Page ID#: 108

5,649,176

19

Assume in FIG. 16B that all input values to the loop are
ready by some virtual cycle V. In the absence of the flip-flop
1602, all outputs will become correct and stable after some
delay period. With the flip-flop 1602, it is necessary to wait
until the loop stabilizes and then wait for an additional
virtual clock period during which the flip-flop value may
change and subsequently change the loop outputs. Thus the
outputs of the Ioop cannot be sampled until virtual cycle
V+1.

If combinational cycles are nested, each can be broken by
the insertion of a flip-flop as above. Nested loops may
require up to 2% clock cycles to settle, where N is the depth
of the loop nesting and thus the number of flip-flops needed
to break all loops.

RS Latch Transformations

RS latches 1710 are asynchronons state elements built
from cross-coupled NOR or NAND gates 1712, as illus-
trated in FIG. 17A.

RS latches 1710 can be transformed based on the trans-
formation for combinational cycles illustrated in FIGS. 16A
and 16B. An alternative approach illustrated in FIG. 17B
eliminates the combinational cycles associated with RS
latches while also avoiding the extended settling time asso-
ciated with the general combinational cycle transformation
of FIG. 16B.

The circuit is FIG. I7B forces the outputs Q and Q of the
RS latch 1710 combinatorially to their values for all input
patterns except the one in which the latch maintains its state.
For this pattern, the added flip-flop 1714 produces appro-
priate values on the outputs. Logic 1716 is provided to set
the flip-flop 1714 into an appropriate state, based on the
values of the inputs whenever an input pattern dictates a
state change. When the latch 1710 is maintaining its state,
the outputs will be stable so no propagation is required. Thus
the outputs of the transformation are available with only a
combinatorial delay.

A symmetrical transformation can be applied to latches
produced from cross-coupled NOR gates.

Asynchronous Presets and Clears

Asynchronous presets and clears of state elements shown
in FIG. 18A can be transformed in one of two ways. Each
transformation relies on the fact that preset and clear signals
R are always synchronized to the virtual clock, either
because they are interpally generated by circuitry which is
transformed to be synchronous to the virtual clock or
because they are external asynchronous signals which are
explicitly synchronized using synchronizer circuitry. .

The first transformation, shown in FIG. 18B, makes use of
an asynchronous preset or clear on flip-flop 1808 in the
FPGA, if such exists. The enable signal E which enables the
resynthesized state element to undergo state changes is used
to suppress/defer transitions on the preset or clear input R to
eliminate race conditions arising from simultancously clock-
ing and clearing or presenting a state element.

The second transformation shown in FIG. 18C converts
an asynchronous preset or clear Ry, which has already been
synchronized to the clock into a synchronous preset or clear.
The enable signal E to the resynthesized state element must
be modified to be enabled at any time at which a preset or
clear transition might occur by gate 1810.

Returning to FIG. 6, the above described transformations
of the timing resynthesis step 618 in combination of with the
specification step 610, transition analysis 612, value analysis
614 and sampling analysis 616 enable conversion of a digital
circuit description having some arbitrary clocking method-
ology to a single clock synchronous circuit. The result is a
circuit which the state elements are edge-triggered flip-fiops.

15

20

30

35

40

45

50

20

To generate the logic system 200 having the internal archi-
tecture shown in FIG. 4, this resynthesized circuit must now
be compiled for and loaded into the configurable logic
devices 410-416 by the host workstation 222.

FIG. 19 shows the complete compilation process per-
formed by the host workstation 222 to translate the digital
circuit description into the configuration data received by the
configurable devices 214. More specifically, the input to a
compiler running on the host workstation 222 is the digital
circnit description in step 1610. This description is used to
generate the resynthesized circuit as described above. The
result is a logic netlist of the resynthesized circuit 1611. This
includes the new circuit elements and the new VClk.

In step 1612, functional simulations of the transformed
circuit can be performed. This step ensures that the resyn-
thesized circuit netlist is the functional equivalent of the
original digital circuit. It should be noted that the trans-
formed circuit is also more amenable to computer-based
simulations. All relevant timing information specifying the
behavior of the timing signals including the timing relation-
ship to each other is built into the resynthesized circuit yet
the resynthesized circuit is synchronous with a single clock.
Therefore, the resynthesized circnit could alternatively be
used as the circuit specification for a computer simulation
rather than the hardware based simulation on the config-
urable logic system. The resynthesized circuit is then parti-
tioned 1613 into the logic partition blocks that can fit into the
individual FPGAs of the array, see FIG. 2.

In the preferred embodiment of the present invention,
techniques described in U.S. patent application Ser. No.
08/042,151, filed on Apr. 2, 1993, entitled Virtual Wires for
Reconfigurable Logic System, which is incorporated berein
by this reference, are implemented to better utilize pin
Tesources by multiplexing global link transmission on the
pins of the FPGAs across the interconnect. Additionally, as
described in incorporated U.S. patent application Ser. No.
08/344,723, filed on Nov. 23, 1994, entitled Pipe-Lined
Static Router and Scheduler for Configurable Logic System
Performing Simultaneous Communication and
Computation, signal routing is scheduled so that logic com-
putation and global link transmission through the intercon-
nect happen simultaneously.

Specifically, because a combinatorial signal may pass
through several FPGA partitions as global links during an
emulated clock cycle, all signals will not be ready to
schedule at the same time. This is best solved by performing
a dependency analysis, step 1614 on global links that leave
a logic partition block. To determine dependencies, the
partition circuit is analyzed by backiracing from partition
outputs, either output global links or output signals to the
target system, to determine on which partition inputs, either
input links or input signals from the target system, the
outputs depend. In backtracing, it is assumed that all outputs
depend on all inputs for gate library parts, and no outputs
depend on any inputs for latch or register library parts. If
there are no combinatorial loops that cross partition
boundaries, this analysis produces a directed acyclic graph,
used by a global router. If there are combinatorial loops, then
the loops can be hardwired or implemented in a single
FPGA. Loops can also be broken by inserting a flip-flop into
the loop and allowing enough virtual cycles for signal values
to settle to a stable state in the flip-flop.

Individual FPGA partitions must be placed into specific
FPGAs (step 1616). An ideal placement minimizes system
communmication, requiring fewer virtnal wire cycles to trans-
fer information. A preferred embodiment first makes a
random placement followed by cost-reduction swaps and
then optimizes with simulated annealing. During global

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 56 of 92 Page ID#: 109

5,649,176

21

routing (step 1618), each global link is scheduled to be
transferred across the interconnect during a particular period
of the pipe-line clock. This step is discussed more com-
pletely in the incorporated U.S. patent application Ser. No.
08/344,723, Pipe-Lined Static Router and Scheduler for
Configurable Logic System Performing Simultaneous Com-
munication and Computation.

Once global routing is completed, appropriately-sized
multiplexors or shift loops, pipeline registers, and associated
Togic such as the finite state machines that control both the
design circuit elements and the multiplexors and pipeline
registers are added to each partition to complete the internal
configuration of each FPGA chip 22 (steps 1620). Sce
specifically, incorporated U.S. patent application Ser. No.
08/042,151, Virtual Wires for Reconfigurable Logic System.
At this point, there is one netlist for each configurable logic
device 214 or FPGA chip. These FPGA netlists are then
processed in the vender-specific FPGA place-and-route soft-
ware (step 1622) to produce configuration bit strearns (step
1624). Technically, there is no additional hardware support
for the multiplexing logic which time-multiplex the global
links through the interconnect: the amray of configurable
logic is itself configured to provide the support. The neces-
sary “hardware” is compiled directly into the configuration
of the FPGA chip 214. Some hardware support in the form
of special logic for synchronizers to synchronize the external
clocks to the internal VClk is recommended.

‘While this invention has been particularly shown and
describe with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims. For example, it is not a
strict necessity that the internal clock signal VClk be dis-
tributed directly to the sequential logjc elements. Preferably
it reaches each element at substantially the same time. In
some larger networks, therefore, some delay may be pref-
erable to delay tune the circuit for propagation delays.

We claim:

1. A method of configuring a configurable logic system to
operate in an environment, the logic' system generating
output signals to the environment in response to at lcast one
environmental timing signal and environmental data signals
provided from the environment, the method comprising:

defining an internal clock signal;

configuring the logic system to perform logic operations

for generating the output signals in response to the
environmental data signals and the internal clock sig-
nal; and

configuring the logic system to have a controller for

coordinating operation of the logic operations in
response to the internal clock signal and the environ-
mental timing signal.

2. A method of configuring as described in claim 1, further
comprising configuring the controller to comprise a syn-
chronizer for sampling the environmental timing signal in
response to the internal clock signal.

3. Amethod of configuring as described in claim 2, further
comprising configuring the controller to further comprise a
finite state machine for generating control signals to control
the logic operations in response to the sampled environmen-
tal timing signal.

4. Amethod of configuring as described in claim 1, further
comprising configuring the logic system to have combina-
tional logic and sequential logic to perform the logic opera-
tions.

5. Amethod of configuring as described in claim 4, further
comprising configuring the controller to comprise a finite

10

20

25

45

50

60

22

state machine for generating control signals to the sequential
logic in response to the environmental timing signal and the
internal clock signal.

6. Amethod of configuring as described in claim 5, further
comprising configuring the sequential logic to comprise
flip-flops receiving the internal clock signal at a clock input
and the control signals at a latch enable input.

7. A method of configuring as described in claim 1,
wherein the logic system comprises at least one field pro-
grammable gate array.

8. A method of configuring as described in claim 1,
wherein the logic system comprises a plurality of config-
urable logic devices electrically connected via an intercon-
nect for transmitting signals between the chips.

9. A method of configuring as described in claim 8,
wherein the interconnect comprises cross bar chips.

10. A method as configuring as described in claim 8,
wherein the interconnect utilizes a direct-connect topology.

11. A method of configuring as described in claim 10,
wherein the interconnect includes buses.

12. A method of configuring as described in claim 1,
further comprising configuring the controller to dictate set-
up and hold times of signals to the environment.

13. A method of configuring as described in claim 1,
further comprising configuring the controller to dictate sam-
pling times of the environmental data signals.

14. A method for converting a digital circnit design into
a new circuit that is substantially functionally equivalent to
the digital circnit design, the digital circuit design and the
new circuit being adapted to operate in an environment in
response to at least one environmental timing signal and
environmental data signals and providing output data signals
to the environment, the method comprising:

defining an internal clock signal; and

resynthesizing sequential logic elements in the digital

circuit design that are clocked by the environmental
timing signal to sequential logic clements in the new
circuit that are clocked by the internal clock signal.

15. A method as claimed in claim 14, wherein the resyn-
thesized sequential logic elements of the new circuit are load
enabled in response to the environmental timing signal.

16. A method as claimed in claim 14, wherein the internal
clock signal has a substantially higher frequency than the
environmental timing signal.

17. A method as claimed in claim 14, wherein a frequency
of the internal clock signal is at least four times higher than
a frequency of the environmental timing signal.

18. A method as claimed in claim 14, further comprising
resynthesizing flip-flops in the digital circuit design that are
clocked by the environmental timing signal to flip-flops in
the new circuit that are clocked by the internal clock signal.

19. A method as claimed in claim 14, further comprising
resynthesizing flip-flops in the digital circuit design that are
clocked by the environmental timing signal to flip-flops in
the new circuit that are clocked by the internal clock signal
and load enabled in response to the environmental timing
signal.

20. A method as claimed in claim 14, further comprising
resynthesizing flip-flops in the digital circuit design that are
clocked by the environmental timing signal to flip-flops in
the new circuit that are clocked by the internal clock signal
and load enabled by control signals generated by finite state
machines operating in response to the environmental timing
signal.

21. A method as claimed in claim 14, further comprising
resynthesizing latches in the digital circuit design that are
gated by the environmental timing signal to flip-flops in the
new circuit that are clocked by the internal clock signal.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 57 of 92 Page ID#: 110

5,649,176

23

22. A method as claimed in claim 14, further comprising
resynthesizing latches in the digital circuit design that are
gated by the environmental timing signal to flip-flops in the
new circuit that are clocked by the internal clock signal and
load enabled in response to the environmental timing signal.

23. A method as claimed in claim 14, further comprising
resynthesizing latches in the digital circuit design that are
gated by the environmental timing signal to flip-flops in the
new circuit that are clocked by the internal clock signal and
lJoad enabled by control signals generated by finite state
machines operating in response to the eavironmental timing

signal.
g2112.1A method as claimed in claim 14, further comprising
performing a simulation of the new circuit.

25. A method as claimed in claim 14, further comprising
resynthesizing latches in the digital circnit design that are
gated by the environmental timing signal to cascade-
connected flip-flops and mmltiplexers, the multiplexers
receiving select signals derived from the environmental
timing signal.

26. A method as claimed in claim 25, wherein the select
signals received by the multiplexers are generated by a finite
state machine controller.

27. A logic system for gemerating output signals to an
environment in response to at least one environmental
timing signal and environmental data signals provided from
the environment, the logic system comprising:

an internal clock for generating an internal clock signal

for the logic system;

logic means for generating the output signals in response

to the environmental data signals; and

controller means for coordinating operation of the logic

means in response to the internal clock signal and the
environmental timing signal.

28. A logic system for generating output signals to an
environment in response to at least one environmental
timing signal and environmental data signals provided from
the environment, the logic system comprising:

an internal clock for generating an internal clock signal

for the logic system;

at least one configurable logic device including:

logic which generates the output signals in response to
the environmental data signals and the internal clock
signal; and

a controller which coordinates operation of the logic in
response to the internal clock signal and the envi-
ronmental timing signal.

29. A logic system as described in claim 28, wherein the
controller comprises a synchronizer for sampling the envi-
ronmental timing signal in response to the internal clock
signal.

30. A logic system as described in claim 29, wherein the
synchronizer is constructed from non-programmable logic.

31. Alogic system as described in claim 29, wherein the
controller further comprises a finite state machine for gen-
erating control signals to the combinational logic in response
to the sampled environmental timing signal.

32. Alogic system as described in claim 28, wherein the
logic comprises combinational logic and sequential logic.

33. A logic system as described in claim 32, wherein the
controller comprises a finite state machine for generating
control signals fo the sequential logic in response fo the
environmental timing signal and the internal clock signal.

34. A logic system as described in claim 33, wherein the
sequential logic comprises flip-flops receiving the internal
clock signal at a clock input and the control signals at a latch
enable input.

35, A logic system as described in claim 28, wherein the
at least one configurable logic device comprises at Ieast one
field programmable gate array.

10

15

30

35

45

50

35

24

36. A logic system as described in claim 28, further
comprising an interconnect for transmitting signals between
plural configurable logic devices.

37. A configurable logic system, comprising:

at least one configurable logic device;

an interconnect providing connections between the logic
device and an environment to convey output data
signals from the configurable logic device and at least
one environmental timing signal and environmental
data signals from the environment; and

a configurer for programming the configurable logic
device to synchronize the environmental timing signal
to an internal clock signal of the logic system.

38. A configurable logic system as described in claim 37,
wherein the configurer converts a digital circuit design into
a new circuit that is substantially functionally equivalent to
the digital circuit design, and programs the at least one
configurable logic device with the new circuit.

39. A configurable logic system as described in claim 38,
wherein the configurer converts the digital circuit design
into the new circuit by resynthesizing sequential logic
elements in the digital circuit design that operate in response
to the environmental timing signal to operate in response to
the internal clock signal in the new circuit.

40. A configurable logic system as described in claim 37,
wherein the configurer programs the configurable logic
device to have logic and a controller for coordinating
operation of the logic in response to the internal clock signal
and the environmental timing signal.

41. A configurable logic system as described in claim 40,
wherein the configurer programs the controller to include a
synchronizer for sampling the environmental timing signal
in response to the internal clock signal.

42. A configurable logic system as described in claim 41,
wherein the configurer programs the controller to include a
finite state machine for generating control signals to the
logic in response to the sampled environmental timing
signal.

43. A configurable logic system as described in claim 41,
wherein the configurer programs the logic to include com-
binational logic and sequential logic.

44. A configurable logic system as described in claim 41,
wherein the configurer programs the controller to include a
finite state machine for generating control signals to the
sequential logic in response to the emvironmental timing
signal and the internal clock signal.

45. A configurable logic system as described in claim 37,
wherein the configurer programs the configurable logic
device to include flip-flops that are clocked by the internal
clock signal and load epabled in response to the environ-
mental timing signal.

46. A configurable logic system as described in claim 37,
wherein the configurer programs the configurable logic
device to include:

flip-fiops that are clocked by the clock signal and load
enabled by control signals; and

finite state machines generating the control signals in
response to the environmental timing signal.

47. A configurable logic system as described in claim 37,
wherein the environment is a cycle simulation.

48. A configurable logic system as described in claim 37,
wherein the environment is a hardware system.

49. A configurable logic system as described in claim 48,
wherein the configurable logic system is a logic emulator.

50. A configurable logic system as described in claim 37,
wherein the logic system is a simulation accelerator.

E I 2 I

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 58 of 92 Page ID#: 111

EXHIBIT C

Case 6:06-cv-00341-AA Document 10-2

Filed 05/19/06 Page 59 of 92 Page ID#: 112

0 O 0

a2 United States Patent

Raynaud et al.

US 6,240,376 B1
May 29, 2001

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
GATE-LEVEL SIMULATION OF
SYNTHESIZED REGISTER TRANSFER
LEVEL DESIGNS WITH SOURCE-LEVEL
DEBUGGING
(75) Inventors: Alain Raynaud, Paris; Luc M.
Burgun, Creteil, both of (FR)

(73) Assignee: Mentor Graphics Corporation,
Wilsonville, OR (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/127,584

(22) TFiled: Jul. 31, 1998

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/122,493, filed on
Jul. 24, 1998.

1) Int.Cl17 GO6F 17/50

67 JRLUE T ! ER——— 703/15; 703/14; 714/741

(58) Field of Search ... 395/500.35, 500.36,

395/500.37, 714/724, 734; 703/14, 15,
16; 716/4, 724, 734, 741
(56) References Cited
U.S. PATENT DOCUMENTS
5,220,512 6/1993 Watkins et al. .o.oooverveneneeeens 364/489
5,253,255 * 10/1993 Carbineccovmmerisrennarines 714/734

(List continued on next page.)
OTHER PUBLICATIONS

Chen et al., “A Source-Level Dynamic Analysis Method-
ology and Tool for High-LevelSynthesis”, Proceedings of
the Tenth International Symposium on System Synthesis,

1997, pp. 134-140, Sep. 1997.*

(List continued on next page.)

Primary Examiner—Xevin J. Teska

Assistant Examiner—Douglas W. Sergent

(74) Attorney, Agent, or Firm—Columbia IP Law Group,
LLC

) ABSTRACT

Methods of instrumenting synthesizable source code to
enable debugging support akin to high-level language pro-
gramming environments for gate-level simulation are pro-
vided. One method of facilitating gate level simulation
includes generating cross-reference instrumentation data
inchiding instrumentation logic indicative of an execution
status of at least one synthesizable register transfer level
(RTL) source code statement. A gate-level netlist is synthe-
sized from the source code. Evaluation of the instrumenta-
tion logic during simulation of the gate-level netlist facili-
tates simulation by indicating the execution status of a
corresponding source code statement. One method results in
a modified gatelevel netlist to generate instrumentation
signals corresponding to synthesizable statements within the
source code. This may be accomplished by modifying the
source code or by generating the modified gate-level netlist
as if the source code was modified during synthesis.
Alternatively, cross-reference instrumentation data includ-
ing instrumentation logic can be generated without modify-
ing the gate-level design. The instrumentation logic indi-
cates the execution status of a corresponding cross-
referenced synthesizable statement. An execution count of a
cross-referenced synthesizable statement can be incre-
mented when the corresponding instrumentation signals
indicates the statement is active to determine source code
coverage. Source code statements can be highlighted when
active for visually tracing execution paths. For breakpoint
simulation, a breakpoint can be set at a selected source code
statement. The corresponding instrumentation logic from the
cross-reference instrumentation data is implemented as a
simulation breakpoint. The simulation is halted at a simu-
lation cycle where the values of the instrurnentation signals
indicate that the source code statement is active.

33 Claims, 22 Drawing Sheets

24
INSTRUMENTATION

SYNTHESIS l'\/?“’

22
SYNTHESIS WITH
INTEGRATED
INSTRUMENTATION

GATELEVEL
SIMULATION

ATL GATE-LEVEL

=]

MIXED MODE SMULATION {

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 60 of 92 Page ID#: 113

US 6,240,376 Bl

Page 2
U.S. PATENT DOCUMENTS 6,009,256 12/1999 Tseng et al. .oveverirecenens 395/500.34

5,325,309 6/1994 Halaviati et al.cccceeennne. 364/488 OTHER PUBLICATIONS
5,423,023 6/1995 Batch et al. ... 395/500
5,461,576 10/1995 Tsay etal. ... 364/490 Kucukcakar et al., “Matisse: An Architectural Design Tool
5,513,123 * 4/1996 Dey et al. ciiiiininsseisennicene 716/4 for Commodity IC’s”, IEEE Design & Test of Computers,
5,519,627 5/1996 Mahamood et al. . 364/488 vol. 15, Issue 2, pp. 22-33, Jun. 1998.*
5,541,849 7/1996 Rostoker et al. ... 364/489 Koch et al. “Debugging of Beharioral VHDL Specifications
5,544,067 8/1996 Rostoker et al. 364/489 by S Level Emulation”, P di f the E
5,553,002 9/1996 Dangelo et al. . 364/489 y Source Level Emulation™, Proceedings ol the European

1953, "
5,555,201 9/1996 Dangelo et al. ... 364/489 Design Automation Conference, pp. 256-261, Sep. 1995.
5,568,396 10/1996 Bamijiet al. ... 364/491 Fang et al, “A Real-Time RTL Engineering-Change
5,598,344 1/1997 Dangelo et al 364/489 Method Supporting On—Line Debugging for Logic-Emula-
5,615,356 3/1997 Kingetal. 395/500 tion Applications”, Proceedings of the 34th Design Auto-
5,623,418 4/1997 Rosloker et al. 364/489 mation Conference, pp. 101-106, Jun. 1997.*
?ggg’gg ’ gﬁggg LA;m el Howe, H., “Pre— and Postsynthesis Mismatches”, TEEE
5,727, mche et al. ! s
5758123 5/1998 Sanoetal. ... International Conf. on Verilog HDL 1997, pp. 24-31, Apr.
5.768,145 6/1998 Roethig 1997 *
5,801,958 9/1998 Dangelo et al Postula et al., “A Comparison of High Level Synthesis and
5,835,380 11/1998 Roethig Register Transfer Design Techniques for Custom Computing
5,841,663 11/1998 Sharma et al. Machines”, Proc. of the 31st Hawaii Inter. Conf. on System
5,8710,§g§ . g/iggg SDtan%"tb et al Sciences, vol. 7, pp. 207-214, Jan. 1998.*
22288:;71 * 3;1999 DZEngZnetl;-l..m. Orai}oglu, A., “Microarcfhitectural Sythesis fc.>r Rapid ‘BIST
5,920,711 7/1999 Seawright et al. covrevrineneene Testing”, IEEE Transactions on Computer-Aided Design of
5,937,190 8/1999 Gregory et al. worinniiienne 395/704 Integrated Circuits and Systems, vol. 16, Issue 6, pp.
5,960,191 9/1999 Sample et al. . 395/500.49 573-586, Jun. 1997.*
5,991,533 11/1999 Sano et al. 395/500.49
6,006,022 12/1999 Rhim et al. wvovicnrrnneees 395/500.02 * cited by examiner

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 61 of 92 Page ID#: 114

U.S. Patent May 29, 2001 Sheet 1 of 22 US 6,240,376 Bl
110
RTL FIG. 1
SOURCE .

CODE (Prior Art)
T TTTTT SYNTHESIS r\—120
| l
| 1
| 1
| I
1 1
I 1
] I
!]
|]

! 1
! 1
I]
[}]
I 1
: Y | :
! 140 !
! SYNTHESIS]
| i
I 1
I 1
I 1
| 1
| 1
| 1
|]
L}]
]]
| 1
| 1
| 1
L 1

150

GATE-LEVEL
160" SIMULATION

I
[
|
i
i
|
i

RTL GATE-LEVEL
MIXED MODE SIMULATION

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 62 of 92 Page ID#: 115

U.S. Patent May 29, 2001 Sheet 2 of 22 US 6,240,376 B1

210 FIG. 2

RTL
SOURCE
CODE

SYNTHESIS WITH
INTEGRATED
INSTRUMENTATION

'

234
INSTRUMENTATION F/

Y

SYNTHESIS I’\/24°

[——— R bl et

238

250

INSTRUMENTATION
DATA

]

1

]

GATE-LEVEL !
260 T SIMULATION !
|

]

]

1

]

1

RTL GATE-LEVEL
MIXED MODE SIMULATION

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 63 of 92 Page ID#: 116

U.S. Patent May 29, 2001 Sheet 3 of 22 US 6,240,376 Bl

FIG. 3

CREATE A UNIQUE LOCAL VARIABLE FOR n.-310
EACH LIST OF SEQUENTIAL STATEMENTS

INITIALIZATION < l

NITIALIZE THE UNIQUE LOCAL VARIABLES [V%20

l

ELOW INSERT ONE UNIQUE LOCAL VARIABLE
INSTRUMENTATION ASSIGNMENT STATEMENT INTO EACH 330
LIST OF SEQUENTIAL STATEMENTS
ASSIGN THE UNIQUE LOCAL 340

GATHERING VARIABLES TO GLOBAL SIGNALS

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 64 of 92 Page ID#: 117

U.S. Patent May 29, 2001 Sheet 4 of 22 US 6,240,376 B1

FIG. 4

400
ENTITY ALOOP IS
PORT(
A:INBIT_VECTOR(0TO1);
RESET : IN BOOLEAN,;
STATUS : OUT BOOLEAN) ;
END ENTITY ALOOP ;
ARCHITECTURE RTL OF ALOOP IS
BEGIN
PROCESS (A, RESET)
VARIABLE ZEROS, ONES : INTEGER ;
BEGIN
410— |IF (RESET) -- STATEMENT # 1
THEN
420 ———» STATUS <=0 -- STATEMENT # 2
ELSE
430 ————» ZEROS = 0; -- STATEMENT # 3
440—— > ONES :=0; -- STATEMENT # 4
450 —» FORIINOTO 1 LOOP -- STATEMENT # 5
460———m—> IFA(l)="0 -- STATEMENT # 6
THEN
470———» ZEROS = ZEROS + 1; -- STATEMENT #7
ELSE
480 ——m—» ONES :=ONES +1; -- STATEMENT # 8
END IF;
END LOOP ;
490 ———»> STATUS <= (ZEROS > ONES) ; - STATEMENT # 9
END IF ;
END PROCESS ;

END ARCHITECTURE ;

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 65 of 92 Page ID#: 118

U.S. Patent May 29, 2001 Sheet 5 of 22 US 6,240,376 B1

STATUS

FIG.5

o

| A(0:1) D_p__>_‘
1>
RESET[__)-

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 66 of 92 Page ID#: 119

U.S. Patent May 29, 2001 Sheet 6 of 22 US 6,240,376 B1
FIG. 6A
6B
600

ENTITY ALOOP IS

PORT(

A-INBIT_VECTOR(OTO 1);

RESET : IN BOOLEAN ;

STATUS : OUT BOOLEAN ;

SIG_ TRACET, SIG_ TRACEZ, SIG_ TRACE3, SIG_ TRACE4, SIG_TRACES,}\I‘ 610
SIG_TRACE6 : OUT BIT

)
END ENTITY ALOOP ;

ARCHITECTURE RTL OF ALOOP IS

BEGIN

PROCESS (A, RESET)

VARIABLE TRACE1, TRACE2, TRACE3, TRACE4, TRACES, TRACES : BIT,}\;\61 >
VARIABLE ZEROS, ONES : INTEGER ;

BEGIN

TRACE1 :='0'; TRACE2 :=0';
TRACES3 :='0'; TRACE4 :='0'; p~u~620
TRACES :='0"'; TRACE6 :='0';

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 67 of 92 Page ID#: 120

U.S. Patent May 29, 2001 Sheet 7 of 22 US 6,240,376 Bl
FIG. 6B 6A
§O—Q
630—»TRACET1 :='1"; - INSTRUMENT STATEMENT #1
IF (RESET) -- STATEMENT #1
THEN
63— TRACEZ2 :="'1"; - INSTRUMENT STATEMENT #2
STATUS <= FALSE ; -- STATEMENT #2
ELSE
634——»TRACE3 :='1"; .- INSTRUMENT STATEMENT #3, #4, #5, #9
ZEROS =0; -- STATEMENT #3
ONES =0; -- STATEMENT #4
FORIINOTO 1 LOOP -- STATEMENT #5
636————» TRACE4 :='1"; -- INSTRUMENT STATEMENT #6
IFA()=0; -- STATEMENT #6
THEN
638——————W TRACES .='1'; - INSTRUMENT STATEMENT #7
ZEROS := ZEROS +1; -- STATEMENT #7
ELSE
640————— P TRACE6 :='1"; - INSTRUMENT STATEMENT #8
ONES := ONES +1; -- STATEMENT #8
END IF;
END LOOP;
42— STATUS <= (ZEROS > ONES) ; -- STATEMENT #9
END IF;

SIG_ TRACE3 <= TRACE3; SIG_ TRACE4 <= TRACE4 ;
SIG_ TRACES <= TRACES5 ; SIG_ TRACES <= TRACES6 ;
END PROCESS ;

SiG_ TRACE 1 <= TRACET ; SIG_ TRACEZ2 <= TRACEZ;
}\I\ 650

END ARCHITECTURE;

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 68 of 92 Page ID#: 121

U.S. Patent May 29, 2001 Sheet 8 of 22 US 6,240,376 B1

SIG_TRACES5

SIG_TRACE3
SIG_TRACE4
SIG_TRACES

STATUS

FIG. 7
- Y
b o)—0O
RN
{ Dc [SIG_TRACE2
T —{_ SIG_TRACET

aon [D"T FD—L
-~

RESET[__)

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 69 of 92 Page ID#: 122

U.S. Patent May 29, 2001 Sheet 9 of 22 US 6,240,376 B1

FIG. 8

800
MODULE SAMPLE (RESET, D, CLK, Q) ;

INPUT RESET ;
INPUT D ;
INPUT CLK ;
REGQ;
OUTPUT Q;

ALWAYS @ (CLK OR RESET OR D)

BEGIN
IF (RESET==1)
Q<=0;
ELSE
IF (CLK==1)
Q<=D;
END

ENDMODULE

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 70 of 92 Page ID#: 123

U.S. Patent May 29, 2001 Sheet 10 of 22 US 6,240,376 B1

FIG. 9

900

MODULE SAMPLE
(RESET, D, CLK, Q, SIG_TRACET, SIG_TRACEZ2, SIG_TRACES3, SIG_ TRACE4) ;

INPUT RESET ;
INPUTD ;
INPUT CLK ;
REG Q;
OUTPUT Q;

REG SIG_TRACET1, SIG_TRACEZ, SIG_TRACES, SIG_TRACE4;
OUTPUT SIG_TRACE1, SIG_TRACE2, SIG_TRACES3, SIG_TRACE4;

INTEGER TRACE1, TRACEZ2, TRACE3, TRACE4;

ALWAYS @ (CLK OR RESET OR D)

BEGIN

TRACE1 =0 ; TRACE2=0; TRACE3=0; TRACE4=0;

TRACE1 =1;

IF (RESET==1)

BEGIN
TRACE2 =1;
Q<=0;

END

ELSE

BEGIN
TRACE3=1;
IF (CLK== 1)
BEGIN

TRACE4=1;
Q<=D;

END

END

SIG_TRACE1 = TRACET ;
SIG_TRACE2 = TRACEZ;
SIG_TRACE3 = TRACE3;
SIG_TRACE4 = TRACE4;

END

ENDMODULE

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 71 of 92 Page ID#: 124

U.S. Patent May 29, 2001 Sheet 11 of 22 US 6,240,376 Bl

!) SIG_TRACE4
Jl) SIG_TRACE3

1

J,) SIG_TRACE2
{) SIG_TRACET1

-
3
o T
- h R G
: > 5 3
O | y
=] = 2] | |
&—
T
- o w
G

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 72 of 92 Page ID#: 125

U.S. Patent May 29, 2001 Sheet 12 of 22 US 6,240,376 B1

FIG. 11

|

PROCESS (CLK, D, RESET)
BEGIN

IF (RESET ='1") THEN
Q<="0";

ELSIF (CLK'EVENT AND CLK ="1 'Yy THEN
Q<=D;

END |F;
END PROCESS

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 73 of 92 Page ID#: 126

U.S. Patent May 29, 2001 Sheet 13 of 22 US 6,240,376 Bl

FIG. 12

1210-—~— SAMPLE EVERY SIGNAL USED AS AN EVENT

\ 4

1220~ GENERATE INSTRUMENTATION EVENT SIGNAL
CORRESPONDING TO THE SAMPLED SIGNAL

1230 DUPLICATE EACH PROCESS
REFERENCING THE SAMPLED SIGNAL

REPLACE EACH STATEMENT LIST WITHIN
1240~ THE DUPLICATED VERSION OF THE SOURCE
CODE WITH A UNIQUE LOCAL VARIABLE
ASSIGNMENT STATEMENT

REPLACE EACH OCCURRENCE OF THE

1950~ SAMPLED SIGNALS IN THE DUPLICATED
CODE WITH THE CORRESPONDING

INSTRUMENTATION EVENT SIGNAL

SYNTHESIZE MODIFIED SOURCE CODE
12607 INTO GATE-LEVEL DESIGN

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 74 of 92 Page ID#: 127

U.S. Patent May 29, 2001 Sheet 14 of 22 US 6,240,376 Bl

FIG. 13

1300

PROCESS (FAST_CLK)
BEGIN
IF (FAST_CLK'EVENT AND FAST_CLK = 1)
THEN
SAMPLED_CLK <= CLK ;
END IF 1310
END PROCESS ;

CLK_EVENT <= SAMPLED_CLK/=CLK;
CLK_STABLE <= SAMPLED_CLK =CLK;
CLK_LASTVALUE <= SAMPLED_CLK;

PROCESS (CLK, D, RESET, CLK _ EVENT)
VARIABLE TRACE1, TRACE2 : BIT;
BEGIN
TRACE1 :='0'; TRACEZ :='0";
IF (RESET ='1)) THEN

TRACE1 :='1"; 1320
ELSIF (CLK_EVENT AND CLK ='1) THEN
TRACE2 :='1';
END IF;
SIG_TRACE1 <= TRACE1; SIG_TRACE2 <= TRACEZ ;
END PROCESS ;

PROCESS (CLK, D, RESET)
BEGIN
IF (RESET ='1") THEN
Q<='0";
ELSIF (CLKEVENT AND CLK ='1") THEN
Q<«=D;
END IF;
END PROCESS

1330

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 75 of 92 Page ID#: 128

U.S. Patent May 29, 2001 Sheet 15 of 22 US 6,240,376 Bl

D——DSIG_TRACEZ
[)SIG_TRACET

Pe

+
<t
P
G
TS —e
.
'-
o]
OI c
5 23
@ 3 o
—]I! X
Z O
Q —o-
(@]
g

CLK [)—e
>
RESET [)

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 76 of 92 Page ID#: 129

U.S. Patent May 29, 2001 Sheet 16 of 22 US 6,240,376 B1

FIG. 15

ALWAYS @ (POSEDGE CLK OR NEGEDGE RESET)
BEGIN

IF (RESET == 0)
Q<=0;
ELSE
Q<=D;
END

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 77 of 92 Page ID#: 130

U.S. Patent May 29, 2001 Sheet 17 of 22 US 6,240,376 B1

FIG. 16

ALWAYS @ (POSEDGE FAST_CLK)
BEGIN
SAMPLED_CLK <= CLK
SAMPLED_RESET <= RESET ;

END

ASSIGN CLK_EDGE = SAMPLED_CLK " CLK;
ASSIGN RESET_ EDGE = SAMPLED_ RESET ~ RESET;

INTEGER TRACE1, TRACEZ;
REG [1:0] SIG_ TRACE ;
ALWAYS @ (CLK_EDGE OR RESET_EDGE OR CLK OR RESET)
BEGIN
TRACE1 =0, TRACE2=0;
IF ((CLK_EDGE == 1) && (CLK == 1)I(RESET_EDGE == 1) && (RESET == 0))
IF (RESET ==0)
TRACET =1;
ELSE
TRACEZ =1,
SIG_TRACE[0] = TRACET ;
SIG_TRACE[1] = TRACEZ;

END

ALWAYS @ (POSEDGE CLK OR NEGEDGE RESET)
BEGIN

IF (RESET == 0)
Q<=0;
ELSE
Q<=D;
END

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 78 of 92 Page ID#: 131

U.S. Patent May 29, 2001 Sheet 18 of 22 US 6,240,376 B1

FIG. 17

IDENTIFY SENSITIVITY LIST OF PROCESS —~—1710

GENERATE LOGIC TO IDENTIFY DIFFERENCES
IN SENSITIVITY LIST SIGNAL VALUES ~—1720
BETWEEN SIMULATION CYCLES

p

1740

2

PROCESS IS ACTlVEI

SIGNAL EVENT OCCUR
FOR ANY SIGNAL IN SENSITIVITY LIST
DURING SIMULATION CYCLE?

YES

PROCESS INACTIVE p~—1750

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 79 of 92 Page ID#: 132

U.S. Patent May 29, 2001 Sheet 19 of 22 US 6,240,376 B1

FIG. 18

P1: PROCESS (A,B,C)

PROCESS (FAST_CLK) \
BEGIN
IF (FAST_ CLK'EEVENT AND FAST_ CLK='1’
THEN
SAMPLED A <=A ; > 1810
SAMPLED_B <=B ;
SAMPLED_C <=C :
END IF |

END PROCESS;

P1_ACTIVE <= (SAMPLED_A/=A)
OR (SAMPLED_B /=B) 1820
OR (SAMPLED_C /=C);

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 80 of 92 Page ID#: 133

U.S. Patent May 29, 2001 Sheet 20 of 22 US 6,240,376 Bl

FIG. 19

CASE OPCODE IS
WHEN "00" => TRACE1 :=1;
1910 _ STATE :=1;
WHEN "01" => TRACE2 = 1,
STATE:=2;
WHEN "10" => TRACE3 :=1;
STATE =2,
WHEN "11" => TRACE4 = 1;
STATE :=1;
END CASE ;

FIG. 20

2010
N

SELECT INSTRUMENTATION SIGNAL fe—

2020 NO

CAN SELECTED

INSTRUMENTATION SIGNAL BE
SIMPLIFIED TO A LOGICAL "AND"
BETWEEN ANOTHER SIGNAL AND A
SIMPLIFIED EXPRESSION?

FINISHED
WITH ALL
INSTRUMENTATION
SIGNALS?

ELIMINATE THE "AND" GATE AND 2040
ADD THE EXTRACTED SIGNAL TO
THE TRIGGER CONDITIONS

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 81 of 92 Page ID#: 134

U.S. Patent May 29, 2001 Sheet 21 of 22 US 6,240,376 B1
2110 FIG. 21 2120
________________________________ o
SYNTHESIS WITH
o SYNTHESIS |,21%0 INTEGRATED
QURC FRONT-END INSTRUMENTATION

INTERMEDIATE

DATABASE

2134

INSTRUMENTATION I

2136

INTERMEDIATE
INSTRUMENTATION
DATABASE

INSTRUMENTATION
DATA

SYNTHESIS |._2140
BACK-END

e il et et

GATE-LEVEL
DESIGN

RTL GATE-LEVEL
MIXED MODE SIMULATION

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 82 of 92 Page ID#: 135

U.S. Patent May 29, 2001 Sheet 22 of 22 US 6,240,376 B1

FIG. 22

USER SETS BREAKPOINT AT SPECIFIED 5210
LINE NUMBER OF THE SOURCE CODE

IDENTIFY LIST ASSOCIATED WITH 2020
SPECIFIED LINE NUMBER

IDENTIFY INSTRUMENTATION OUTPUT
SIGNAL CORRESPONDING TO STATEMENT 4_ 2230
LIST AS BREAKPOINT OUTPUT SIGNAL

HIGHLIGHT ACTIVE LISTS OF SOURCE
CODE IN ACCORDANCE WITH STATUS | 2240
OF ASSOCIATED INSTRUMENTATION
OUTPUT SIGNALS DURING SIMULATION

HALT SIMULATION AT SIMULATION CYCLE
THAT RESULTS IN 0 TO 1 TRANSITION FOR 2250
BREAKPOINT OUTPUT SIGNAL

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 83 of 92 Page ID#: 136

US 6,240,376 Bl

1

METHOD AND APPARATUS FOR GATE-

LEVEL SIMULATION OF SYNTHESIZED

REGISTER TRANSFER LEVEL DESIGNS
WITH SOURCE-LEVEL DEBUGGING

This is a continuation in part of application Ser. No.
09/122,493, filed Jul. 4, 1998.

FIELD OF THE INVENTION

This invention relates to the fields of simulation and
prototyping hen designing integrated circuits. In particular,
this invention is drawn to debugging synthesizable code at
the register transfer level during gate-level simulation.

BACKGROUND OF THE INVENTION

Integrated circuit designers have adopted the use of
high-level hardware description langnages due in part to the
size and complexity of modem integrated circuits. One such
description language is Very High Speed Integrated Circuit
(VHSIC) Description Language, or VHDL. Further infor-
mation regarding VHDL may be found in the IEEE Standard
VHDL Language Reference Manual (IEEE 1076-1987,
IEEE 1076-1993). Another such description language is
Verilog. These high level description languages are typically
generically referred 1o as hardware description languages
(HDLs).

Synthesis is the process of generating a gate-level netlist
from the high level description languages. Presently, syn-
thesis tools recognize 2 subset of the high-level description
language source code referred to as Register Transfer Level
(RTL) source code. Further information regarding RTL
source code may be found in the IEEE 1076.6/D1.10 Draft
Standard for VHDL Register Transfer Level Synthesis
(1997).

The RTL source code can be synthesized into a gate-level
netlist. The gate-level netlist can be verified using gate-level
simulation. The gate-level simulation can be performed
using a software gate-level simulator. alternatively, the gate-
level simulation may be performed by converting the ate-
level netlist into a format suitable for programming an
emulator, a hardware accelerator, or a rapid-prototyping
system so that the digital circuit description can take an
actual operating hardware form.

Debugging environments for high-level hardware
description languages frequently include a number of func-
tionalities for analyzing and verifying the design when
performing simulation. For example, a designer can typi-
cally navigate the design hierarchy, view the RTh source
code, and set breakpoints on a statement of RTL source code
to stop the simulation. Statements are usually identified by
their line number in the RTL source code. In addition, the
debugging environment often supports viewing and tracing
variables and signal values. The RTL simulation environ-
ment typically offers such RTL debugging functionalities.

RTL simulation is typically performed by using software
RTL simulators which provide good flexibility. However, for
complex desigus, a very large number of test vectors may
need to be applied in order to adequately verify the design.
This can take a considerable amount of time using software
RTL. simulation as contrasted with hardware acceleration or
emulation starting from a gate-level netlist representation
(ie., “gate-level hardware acceleration,” or “gate level
emulation”). Furthermore, it may be useful to perform
in-situ verification, which consists of validating the design
under test by connecting the emulator or hardware accel-
crator to the target system environment (wherc the design is
to be inserted after the design is completed).

15

25

30

35

40

45

2

One disadvantage with gate-level simulation, however, is
that most of the high-level information from the RTL source
code is lost. Without the high-level information, many of the
debugging functionalities are unavailable.

For example, the designer typically cannot set a break-
point from the source code during gate-level simulation.
Although signals can be analyzed during gate-level
simulation, mapping signal values to particular source code
lines can be difficult, if not impossible. If the source code is
translated into a combinatorial logic netlist, for example, the
designer cannot “step” through the source code to trace
variable values. Instead, the designer is limited to analyzing
the input vector and resulting output vector values. Although
the signals at the inputs and outputs of the various gates may
be traced or modified, these values are determined concur-
rently in a combinatorial network and thus such analysis is
not readily mappable to the RTL source code.

A typical design flow will include creating a design at the
RTL level, then synthesizing it into a gate-level netlist.
Although simulation of this netlist can be performed at
greater speeds using emulators or hardware accelerators, the
ability to debug the design at the gate level is severely
limited in comparison with software RTL simulation.

SUMMARY OF THE INVENTION

Methods of instrumenting synthesizable register transfer
level (RTL) source code to enable debugging support akin to
high-level language programming environments for gate-
level simulation are provided.

One method of facilitating gate-level simulation includes
the step of generating cross-reference instrumentation data
including instrumentation logic indicative of the execution
status of at least one synthesizable statement within the RTL
source code. A gate-level netlist is synthesized from the RTL
source code. Evaluation of the instrumentation logic during
simulation of the gate-level netlist enables RTL debugging
by indicating the exccution status of the cross-referenced
synthesizable statement in the RTh source code.

In one embodiment, the gate-level netlist is modified to
provide instrumentation signals implementing the instru-
mentation logic and corresponding to synthesizable state-
ments within the RTL source code. In various embodiments,
this may be accomplished by modifying the RTL source
code or by generating the modified gate-level netlist during
synthesis as if the source code had been modified.

Alternatively, the gate-level netlist is not modified but the
instrumentation signals implementing the instrumentation
logic are contained in a cross-reference instrumentation
database. In either case, the instrumentation signals indicate
the execution status of the corresponding cross-referenced
synthesizable statement. The instrumentation signals can be
used to facilitate source code amnalysis, breakpoint
debugging, and visual tracing of the source code execution
path during gate-level simulation.

For example, a breakpoint can be set at a selected state-
ment of the source code. A simulation breakpoint is set so
that the simulation is halted at a simulation cycle where the
value of the instrumentation signals indicate that the state-
ment has become active .

With respect to visually tracing the source code during
execution, the instrumentation logic is evaluated during
gate-level simulation to determine a list of at least one active
statement. The active statement is displayed as a highlighted
statement.

With respect to source code analysis, cross-reference
instrumentation data including the instrumentation signals

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 84 of 92 Page ID#: 137

US 6,240,376 Bl

3

can be used to count the number of times a corresponding
statement is executed in the source code. For example, an
execution count of the cross-referenced synthesizable state-
ment is incremented when evaluation of the corresponding
instrumentation logic indicates that the cross-referenced
synthesizable statement is active.

Other features and advantages of the present invention
will be apparent from the accompanying drawings and from
the detailed description that follows below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements

and i which:

FIG. 1 illustrates the process of synthesizing RTL source
code into a gate-level design.

FIG. 2 illustrates one embodiment of a modified process
for generating a gate-level design.

FIG. 3 illustrates one embodiment of a method for instru-
menting level-sensitive RTL source code.

FIG. 4 illustrates VHDL source code.

FIG. 5 illustrates the gate-level design synthesized from
the RTL source code of FIG. 4.

FIG. 6 illustrates the VHDL source code of FIG. 4
modified in accordance with the method of FIG. 3.

FIG. 7 illustrates one embodiment of the gate-level logic
synthesized from the modified RTL source code.

FIG. 8 illustrates sample Verilog source code before
instrumentation.

FIG. 9 illustrates the Verilog source of FIG. 8 instru-
mented in accordance with the method of FIG. 3.

FIG. 10 illustrates the gate-level logic synthesized from
the instrumented Verilog source code of FIG. 9.

FIG. 11 illustrates VHDL source code for a D flip-flop
with asynchronous reset.

FIG. 12 illustrates one method of instrumenting event-
sensitive RTL source code.

FIG. 13 illustrates the source code of FIG. 11 modified in
accordance with the instrumentation process of FIG. 12.

FIG. 14 illustrates the gate-level logic synthesized for the
instrumented source code of FIG. 13.

FIG. 15 illustrates Verilog source code for a D flip-flop
with asynchronous reset.

FIG. 16 illustrates the Verilog source code of FIG. 15 after
instrumentation in accordance with the method of FIG. 12.

FIG. 17 illustrates a method of instrumenting process
activation.

FIG. 18 illustrates source code modified in accordance
with the method of FIG. 17.

FIG. 19 illustrates an instrumented “case” statement.

FIG. 20 illustrates a process for decreasing the logic
needed to instrument the source code.

FIG. 21 illustrates incorporating instrumentation within
the synthesis process.

FIG. 22 illustrates a method of setting a breakpoint in RTL
source code for use during gate-level simulation.

DETAILED DESCRIPTION

FIG. 1 illustrates a typical RTL source code synthesis
process. HDL code including synthesizable RTL source
code (110) serves as input to a synthesis process 120. In one

10

15

20

25

30

35

40

45

55

60

4

embodiment, the RTL source code 110 is synthesized in step
140 to produce a gate-level design 150. The gatelevel design
can be used for gate-level simulation as illustrated in step
160.

Typically the gate-level design comprises a hierarchical or
flattened gate level netlist representing the circuit to be
simulated. The various signals in a design are referred to as
nets. A hierarchical netlist is made of a list of blocks,
whereas a flattened netlist comprises only one block. A block
contains components and a description of their interconnec-
tion using nets. Components can be reduced to combinato-
rial or sequential logic gates, or they may be hierarchical
blocks of lower level.

For example, the component may be a primitive gate
denoting a single combinatorial logic function (e.g., AND,
NAND, NOR, OR, XOR, NXOR, etc.) or a single storage
element such as a flip-flop or latch for sequential logic. One
example of a set of primitive gates is found in the generic
library GTECH available from Synopsys, Inc. of Mountain
View, Calif.

Alternatively the component may be an application spe-
cific integrated circuit (ASIC) library cell which can be
represented by a set of primitive gates. One example of an
ASIC library is the LCA300K ASIC library developed by
LSI Logic, Inc., Milpitas, Calif.

A component may also be a programmable primitive that
represents a set of logic functions and storage. One example
of a programmable primitive is the configurable logic block
(CLB) as described in The Programmable Gate Array
Handbook, Xilinx Inc., San Jose, 1993.

Another example of a component is a macro block
denoting a complex logic function such as memories,
counters, shifters, adders, multipliers, etc. Each of these can
be further reduced to primitive gates forming combinatorial
or sequential logic.

Three major categories of tools are available to the
designer to simulate and test the design. Software RTL
simulators (such as ModelSim™ from Model Technology,
Inc) typically offer a high-level of abstraction for their
debugging environment, but have limited performance in
terms of speed and no in-situ capacity. Software gate-level
simulators (such as QuickSim™ from Mentor Graphics
Corporation) typically offer limited level of abstraction and
speed as well as no in-situ capacity. Hardware gatelevel
simulators (such as Cobalt™ and System Realizer™ from
Quickturn Inc., Avatar™ from Ikos, and fast-prototyping
systems usually built from FPGAs) typically offer very good
performance in terms of speed and in-situ capacity, but a
limited debugging environment.

When testing the design described by the HDL source
code a designer may choose to simulate and validate the
design at the RTL source code level (i.., RTL simulation).
RTL simulation typically permits the designer to set break-
points in the source code, navigate the design hierarchy,
view variables and signals and trace the value of these
variables and signals.

When testing complex designs, millions or billions of test
vectors may need to be applied in order to adequately test the
design. Hardware accelerators or emulators can be used with
the gate-level design to test the design at a much greater
speed than what is typically possible through sofiware
simulation (i.e. either software RTL sinrulation or software
gate-level simulation). Unfortunately, the gate-level design
generated in step 150 typically includes none of the high-
level information available in the RTL source code 110. As
a result, features available during RTL simulation such as

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 85 of 92 Page ID#: 138

US 6,240,376 Bl

5

setting breakpoints or analyzing the source code coverage
are not available during gate-level simulation.

Instrumentation is the process of preserving high-level
information through the synthesis process. Instrumentation
permits simulation of a gatelevel npetlist at the level of
abstraction of RTL simulation by preserving some of the
information available at the source code level through the
synthesis process.

FIG. 2 illustrates one embodiment of the instrumentation
process in which instrumentation is integrated with the
synthesis process. RTL source code 210 is provided to the
synthesis process 220. The synthesis process 120 of FIG. 1
has been modified to include an instrumentation step 234.
After instrumentation the instrumented code is then synthe-
sized in step 240 as the original RTL source code was in step
140 of FIG. 1.

In one embodiment, instrumentation results in generating
a modified gate-level design to permit reconstitution of the
flow of execution of the original RTL source code during
gate-level simulation. Generally instrumentation logic is
created for a synthesizable statement in the RTL source code
either by modifying the RTL source code or by analyzing the
RTL source code during the synthesis process. The instru-
mentation logic provides an output signal indicative of
whether the corresponding synthesizable statement is active.
A gate-level design including the instrumentation output
signal is then synthesized. Referring to FIG. 2, the resulting
gate-level design 250 contains additional logic to create the
additional instrumentation output signals referenced in
instrumentation data 238.

In an alternative embodiment, the RTL source code is
analyzed to generate a cross-reference database as instru-
mentation data 238 without modifying the gate-level design.
The cross-reference database indicates the combination of
already existing signals in the form of instrumentation logic
that can be evaluated during simulation to determine
whether a particular line of the RTL source code is active.
The cross-reference database contains a cross-reference
between these instrumentation logic output signals and the
position of the corresponding statement in the source code.
The instrumentation data 238 is likely to contain consider-
ably more complex logic to evaluate during simulation when
the approach of not modifying the gate-level design (ie.,
“pure” cross-reference database) is taken.

The two approaches have tradeoffs. The gate-level design
modification technique does not require special knowledge
of the target simulation environment. Moreover, the gate-
level design modification technique significantly reduces or
eliminates the complexity of the logic to be evaluated during
simulation to the extent that emulator or accelerator hard-
ware triggering circuitry can be used to take an action when
the corresponding statement is executed.

For example, the hardware triggering circuitry may be
used to halt the simulation at a particular statement or to
count the number of times a particular statement is executed.
The resulting gate-level design used during simulation,
however, will not be the design actually used for production
thus simulation may not verify accurately the behavior of the
gate-level design used for production. Furthermore, simu-
lation of modified gate-level design may require more
physical resources in hardware than the original design
alone if gates have been added in order to implement the
instrumentation logic.

Alternatively, the pure cross-reference database technique
typically results in greater complexity of instrumentation
logic to evaluate during simulation, but docs not otherwise

10

20

30

35

45

55

6

affect the original gate-level design. The greater complexity,
however, may prevent the use of the hardware triggering
circuitry to halt the simulation or to track source code
coverage. Thus the pure cross-reference database technique
may result in a significantly slower simulation time.
Furthermore, since the evaluation may be performed by
software, direct verification of the gate-level design in the
target system through in-situ verification may not be pos-
sible. The instrumentation data including the logic added for
instrumentation purposes can be eliminated after testing,
however, without disrupting the gate-level design.

In essence the gate-level design modification technique
greatly simplifies the apalysis and the instrumentation logic
required for cross-referencing by modifying the gate-level
design to create unique signals and therefore simpler logic to
evaluate (i.e., a single signal). The resulting instrumentation
logic cross-referenced in the instrumentation data 238 is
easily evaluated during simulation. Various embodiments of
instrumentation may combine the gate-level design modifi-
cation technique or the pure cross-referencing technique in
order to trade off simulation speed, density, and verification
accuracy.

If the gate-level simulator, hardware accelerator, or emu-
lator (e.g., through the use of a logic analyzer which can be
external to the emulator) has the capacity to set breakpoints
whenever certain signals reach a given value, then it is
possible to implement breakpoints corresponding to RTL
simulation breakpoints in the gate-level design. Whenever
the user specifies a breakpoint in the RTL source code, the
condition can be converted to a comparison with key signals
in the gate-level design.

Instrumentation data 238 identifies the RTL source code
statements each instrumentation output signal is associated
with. Instrumentation data 238 is generated during the
instrumentation process of step 234. In one embodiment, the
instrumentation data is implemented as gates that can then
be simulated by the target-level simulator. By examining the
state of each instrumentation output signal during gate-level
simulation, the user can determine which portions of RTL
source code are being simulated. This in turn permits the
designer to determine RTL source code coverage. By track-
ing the instrumentation signal values for each cycle of
execution, the designer can determine how many times each
line of the RTL source code has been activated.

The instrumentation data 238 can be used during simu-
lation to ensure every possible state transition has been
tested. For example, a Finite State Machine analyzer can
determine from the values of the instrumentation output
signals whether every possible state transition has been
tested.

The instrumentation data 238 can also be used to enhance
the source code display. In one embodiment, the source code
is repositioned on the display so as to indicate the execution
paths that are active during a current cycle. In another
embodiment, the active source code in a given cycle is
highlighted to indicate that it is active. This permits the
designer to visually see the process flow without having to
determine the value of each signal. In one embodiment, the
instrumentation data 238 is used to enhance the display of
the original RTL source code rather than the source code
resulting from instrumentation.

An integrated circuit design is typically built by assem-
bling hierarchical blocks. In VHDL, a block corresponds to
an entity and architecture. In Verilog, a block corresponds to
a module. In both HDLs, a block typically includes a
declarative portion and a statement portion. The declarative
portion generally includes the list of the ports or connectors.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 86 of 92 Page ID#: 139

US 6,240,376 Bl

7

The statement portion describes the block’s behavior and
is typically where a designer needs help when debugging a
design. The statement portion includes concurrent signal
assignment statements and sequential statements.

Concurrent signal assignment statements assign a logic
expression to a signal. The signal is typically available for
viewing at all times and thus breakpoints can be set in
accordance with when the signals reach a certain value.

Sequential statements assign values depending upon the
execution flow of the sequence. Sequential statement analy-
sis is typically where the designer needs the greatest aids in
debugging the design.

Sequential statements are typically found in VHDL “pro-
cesses” and in Verilog “always” blocks. Processes or always
blocks can be built of an unlimited combination of sequen-
tial statements including loops, conditional statements, and
alternatives. There are at least two classes of sequential
statements: level-sensitive and event-sensitive. Level-
sensitive sequential statements only depend on the value of
the inputs and can be synthesized to logic networks of
combinatorial gates and latches. Event-sensitive sequential
statements additionally require sequential logic such as
flip-flops.

In one embodiment, level-sensitive RTL source code is
instrumented by creating and associating one output signal
with each list of synthesizable sequential statements. A list
can consist of one or more sequential statements.

In one embodiment, each statement is a list. In an alter-
native embodiment, each list corresponds to a branch of the
RTL source code. A list corresponding to a branch typically
comprises a plurality of adjacent sequential statements, but
may comprise a single sequential staterent. Only one output
signal is needed for each list of synthesizable sequential
statements in a branch rather than for every sequential
statement in the source code. Examples of sequential state-
ments that create branches in the RTL source code are
conditional statements such as IF-THEN statements and
SELECT-CASE statements.

FIG. 3 illustrates one method of modifying RTL source
code for level-sensitive code. Generally, a unique local
variable is created for each list of adjacent sequential state-
ments in step 310. The level sensitive code instrumentation
includes the step of modifying the RTL source code to
initialize each of these unique variables to zero at the
beginning of the process being instrumented in step 320.
One unique variable assignment statement is inserted into
each list of adjacent sequential statements corresponding to
an executable branch in step 330. The assignment statement
sets the unique variable to one. At the end of the process all
the unique local variables are assigned to global signals in
step 340. Steps 310 and 320 are more generically referred to
as initialization. Step 330 is referred to as flow instrumen-
tation. Step 340 is referred to as “gathering.”

FIG. 4 illustrates non-instrumented VHDL source code.
The VHDL source code 400 includes nine sequential state-
ments within the process block. Eight of these nine state-
ments are non-signal assignment sequential statements.
These eight sequential statements form six statement lists or
executable branches of the code. IF-THEN statement 410
comprises one list. Signal assignment statement 420 com-
prises a second list. Statements 430, 440, 450 and 490
comprisc a third list because they would be executed
sequentially within the same execution path. Statements
460, 470, and 480 form individual lists.

FIG. 5 illustrates one embodiment of the logic 500
resulting from the synthesis of the RTL source code of FIG.

20

25

30

40

45

55

60

65

8

4. This figure may be used for comparison with the gate level
design generated from instrumented code described below.
FIG. 6 illustrates the source code of FIG. 4 after instru-
mentation as described in FIG. 3. The added statements are
italicized for emphasis. For example, line 612 has been
added to the source code to create six unique local variables
(TRACE1 through TRACES), one for each of the six
identified lists, in accordance with step 310 of FIG. 3.

In accordance with step 330 of FIG. 3, a trace variable
assignment statement has been added adjacent to each of the
lists. Referring to FIGS. 4 and 6, variable assignment
statement 630 has been added adjacent to the first list
comprising statement 410. Variable assignment statement
632 has been added adjacent to the second list comprising
statement 420. Variable assignment statement 634 has been
added adjacent to the third list comprising statements 430,
440, 450 and 490. Variable assignment statement 636 has
been added adjacent to the fourth list comprising statement
460. Similarly, variable assignment statements 638 and 640
have been added adjacent to the fifth list comprising state-
ment 470 and the sixth list comprising 480, respectively.
Each of variable assignment statements 630 through 640
assigns a unique local variable the value of one.

Code portion 620 is added to initialize the unique local
variables to zero at the beginning of the process in accor-
dance with step 320 of FIG. 3.

Each of the local variables is assigned to a global output
signal in accordance with step 340 of FIG. 3 by code portion
650. If required by the HDL, the global signals are declared
by code portion 610. Similarly, the trace variables are
declared by code portion 612.

In one embodiment, the unique local variables can actu-
ally be a single array where each “unique variable” or trace
variable corresponds to a different position in the array.
Similarly, in one embodiment, the additional global signals
are described by an array where each of the global signals is
represented by a different index of the array.

Coding practices for VHDL generally require variables to
be used within the process and a signal assignment at the end
of the process to propagate the variable values at the end of
the process. In one embodiment, markers such as variable
assignment statements are used to track the execution paths.
Markers such as variable assignment statements are not
typically synthesized into logic indicating the variable
values, thus the variable assignment statements are used in
conjunction with signal assignment statements in order to
produce signals indicating whether various portions of the
synthesized code are being executed.

If permitted by the HDL, however, global signal assign-
ments can be used in lieu of local variable assignment
statements. This would simplify the process of FIG. 3 in that
there would be no need to create or initialize local variables.
In addition the step of assigning the local variables to global
signals could be eliminated because values are assigned
directly. The key is ensuring that there is a unique output
signal created and associated with each list of sequential
statements regardless of the coding practice used to achieve
this goal.

FIG. 7 illustrates one embodiment of the logic 700
generated through instrumentation. In particular, FIG. 7
illustrates the additional gate-level logic added to generate
signals SIG_TRACE1 through SIG__TRACES$ from syn-
thesis of the modified source code.

FIG. 8 illustrates a Verilog “always” block 800. FIG. 9
illustrates the same code after instrumentation in accordance
with the process of FIG. 3. Due to Verilog syntax

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 87 of 92 Page ID#: 140

US 6,240,376 Bl

9

requirements, “BEGIN-END” statements were used to prop-
erly group the instrumentation variable with the other state-
ments in each executable path.

Although the code of FIG. 8 results in a latch, application
of the technique of FIG. 3 to the source code of FIG. §
ensures that the instrumentation output signals are the result
of combinatorial logic only. Thus the logic for determining
which lines of code are active can be purely combinatorial
even when the RTL source code is synthesized into latches.

FIG. 10 illustrates one embodiment of gate-level logic
1100 generated by synthesis of the instrumented “always”
block 900 of FIG. 9. The instrumentation signals SIG__
TRACE1, SIG_TRACE2, SIG_TRACE3, and SIG__
TRACE4 are the result of combinatorial logic only.

Referring to FIG. 2, the instrumentation data 238 can be
stored in a cross-reference file. In one embodiment, the
cross-reference file contains a mapping between original
source code line numbers and instrumentation signals. Each
time an instrumentation variable (and its associated signal)
is added to the source code, all the line numbers of the
statements in the list associated with the instrumentation
variable are added to the file. This cross-reference file (ie.,
instrumentation data 238) can be used by the gate-level
simulation environment to convert the designer’s break-
points into actual conditions on instrumentation signals.

A more sophisticated method than that illustrated in FIG.
3 is required to instrument RTL source code having refer-
ences to signal events. Typically such source code is used to
describe edge-sensitive devices. References to signal events
typically imply flip-flops. A signal event is a signal transi-
tion. Thus any signal computed from a signal transition
references a signal event.

FIG. 11 illustrates sample VHDL code 1100 with refer-
ences 1o a signal event. VHDL code 1100 implements a
D-type flip-flop with asynchronous reset. The event in this
example is a transition on the clock signal (CLK) as refer-
enced by the term “CLK’EVENT.”

In accordance with VHDL specifications signals can have
various attributes associated with them. A function attribute
execules a named function on the associated signal to return
a value. For example, when the simulator executes a state-
ment such as CLK’EVENT, a function call is performed to
check this property of the signal CLK. In particular,
CLK’EVENT returns a Boolean value signifying a change
in value on the signal CLK. Other classes of attributes
include value attributes and range attributes.

In VHDL code 1100, the signal CLK has a function
attribute named “event” associated with it. The predicate
CLK’EVENT is true if an event (i.e., signal transition) has
occurred on the CLK signal. Assigning a value to a signal
(ie., a signal transaction) qualifies as an event only if the
transaction results in a change in value or state for the signal.
Thus the predicate CLK’EVENT is true whenever an event
has occurred on the signal CLK in the most recent simula-
tion cycle. The predicate “IF (CLK’EVENT and CLK~‘1 Yy’
is true on the rising edge of the signal CLK.

Depending upon the specifics of the HDL, another func-
tion such as RISING_ EDGE(CLK) might be used to
accomplish the same result without the use of atiributes. The
function RISING__EDGE(CLK) is still an event even
though the term “event” does not appear in the function.

FIG. 12 illustrates a method of instrumenting source code
having references to signal events. In step 1210, every signal
event is sampled using a fast clock. In other words, every
signal whose state trapsition serves as the basis for the
determination of another signal is sampled. An instrumen-

20

25

35

40

45

50

10

tation signal event corresponding to the original signal event
is generated in step 1220. Any attributes of the original
signal must similarly be reproduced based on the instrumen-
tation signal if the source code uses attributes of the original
signal event.

In step 1230, every process that references a signal event
is duplicated. In step 1240, each list of sequential statements
within the duplicate version of the code is replaced by a
unique local variable assignment statement. In step 1250,
cach time a signal event is referenced in the duplicated
version of the code, it is replaced by the sampled signal
event computed in step 1210. The modified RTL source code
can then be synthesized in step 1260 to generate gate-level
logic including the instrumentation output signals.

FIG. 13 illustrates application of the method of FIG. 12 to
the source code of FIG. 11. In order to detect signal events
properly for instrumentation, the signal events are sampled
using a fast clock provided during gate-level simulation (i.e.,
FAST_CLK). FAST__CLK has a higher frequency than the
CLK signal and thus permits detecting transition edges
before signals depending upon CLK (including CLK itself)
can.

The only signal event referenced in FIG. 11 is a transition
in the signal CLK indicated by the term CLK’EVENT. Thus
an instrumentation version of CLK’EVENT is created by
sampling the signal CLK using FAST_CLK. The signal
FAST__CLK has a higher frequency than the signal CLK.

Code portion 1310 samples the CLK signal on every
rising edge of the signal FAST__CLK to generate a sampled
version of the signal CLK named SAMPLED _CLK. The
instrumentation version of CLK’EVENT is CLK__EVENT
which is generated in code portion 1310 based on
SAMPLED_ CLK. The instrumentation signal CLX__
EVENT (corresponding to CLK’EVENT) is determined by
comparison of signals SAMPLED_CLK and CLK. The
signal CLK_EVENT is true only when the signal
SAMPLED__CLK is not the same as CLX, thus indicating
a transition has occurred in the signal CLK.

Although not required for this example, code portion
1310 also illustrates the generation of instrumentation clock
signal attributes based on SAMPLED__CLK. For example,
the signal CLK’STABLE is the complement of
CLK’EVENT. Thus code portion 1310 indicates the instru-
mentation version of the attribute CLK’STABLE (ie.,
CLK_STABLE) computed on the instrumentation clock
signal (i.e., SAMPLED_CLK). The signal
CLK’LASTVALUE is a function signal attribute that returns
the previous value of the signal CLK. The instrumentation
version (i.e., CLK_LASTVALUE) of the attribute
CLK’LASTVALUE is similarly computed on the instru-
mentation clock signal SAMPLED_ CLK.

Although CLK_LASTVALUE is the same as the
sampled clock signal, SAMPLED_ CLK, code 1310 intro-
duces the intermediate signal SAMPLED__CLK for pur-
poses of illustrating sampling of the CLK signal. The signal
CLK_LASTVALUE can be defined in lieu of SAMPLED _
CLXK in order to eliminate the introduction of an unnecessary
intermediate signal SAMPLED__CLK and the subsequent
step of assigning CLK_LASTVALUE the value of
SAMPLED__CLK.

Neither CLK_LASTVALUE nor CLK_STABLE are
needed in this example for code portion 1320, however, code
portion 1310 serves as an example of how to generate
instrumentation versions of signal attributes typically used
to describe edge-sensitive devices.

Code portion 1320 represents the instrumented duplicate
of original code portion 1330. The process of code portion

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 88 of 92 Page ID#: 141

US 6,240,376 Bl

11

1330 references the event CLK’EVENT in the IF-ELSIF
statement. In code portion 1320, all sequential statements
(except the statement referencing an event) have been
replaced with unique local variable assignment statements.
These statements assign a local variable (ic., TRACEL,
TRACE2) the value “1.” Code portion 1320 also includes
statements to create and initialize these unique local vari-
ables.

In accordance with step 1240, every occurrence of a
signal event is replaced with the sampled version of that
event. Thus, for example, references to CLK’EVENT in
code portion 1330 are replaced with references to CLK_
EVENT in code portion 1320. Moreover, the process param-
eter list is modified to include the generated signal CLK__
EVENT. FIG. 14 illustrates the gate-level logic 1400
resulting from synthesis of the code in FIG. 13.

FIG. 15 illustrates Verilog source code 1500 for a D
flip-flop with asynchronous reset. FIG. 16 illustrates the
code 1600 resulting from modifying source code 1500 in
accordance with the method of FIG. 12.

One advantage of the instrumentation approach of FIG.
12 is that the gates generated by the synthesis tool are the
same ones that would be generated if the source code had not
been instrumented. The gates generated for the instrumen-
tation logic are not intermingled with the gates generated
from the non-instrumented source code. This permits design
verification with gate-level logic that does not need to be
re-verified after instrumentation verification. Thus the
designer can verify the result of synthesis at the gate level
while retaining RTL breakpoint feature. In some cases,
however, the synthesis tool may not recognize that the same
code appears twice. This may incur an additional relatively
expensive phase of resource sharing in order to achieve the
same performance results as the process illustrated in FIG.
3.

One advantage of the instrumentation process of FIG. 3
over that of FIG. 12, however, is that a synthesis tool can
typically analyze the source code to detect obvious resource
sharing.

The instrumentation methods of FIGS. 3 and 12 permit
detecting any path that has been taken while a VHDL
process or a Verilog “always” block is active. Tracking the
activation of each process permits further analysis.

FIG. 17 illustrates a method of instrumenting the activa-
tion of the processes (or “always” blocks) themsclves for
subsequent determination of whether the process is active
during gate-level simulation .

In step 1710, the sensitivity list of a process is identified.
In step 1720, logic is generated to compare the signals in the
sensitivity list between consecutive simulation cycles.
Subsequently, during gate-level simulation in step 1730, a
determination is made as to whether an event has occurred
on any of the sensitivity list signals. Each simulation cycle
that a signal indicates a difference (i-¢., a signal event has
occurred), the process is active as indicated by step 1740.
Otherwise, if no events have occurred on any of the sensi-
tivity list signals, the process is inactive as indicated by step
1750.

FIG. 18 illustrates the code added to determine if process
P1 is active. The added code is italicized. The sensitivity list
of process P1 includes signals a, b, and c. In accordance with
step 1720 of FIG. 17, code section 1810 creates sampled
versions of a, b, and c using FAST_CLK as described
above. The sampled versions of a, b, and ¢ are SAMPLED__
A, SAMPLED_B, and SAMPLED_C, respectively.

Code section 1820 determines if an event has occurred on
each of the sensitivity list signals. The test “(SAMPLED__A

10

15

20

25

30

35

40

45

65

12

/=AY” is true if an event occurs with respect to signal A.
Similarly “(SAMPLED_B /=B)” and “(SAMPLED_C
/=C)” indicate whether an event has occurred with respect to
signals B and C. Process P1 is active if any one of these tests
is true. Thus the variable P1_ACTIVE is generated by
combining each of these signal events using the logical OR
function in code section 1820. Thus signal P1__ACTIVE
indicates whether process P1 is active.

Process instrumentation data can be added to the instru-
mentation data cross-reference file in order to enhance the
source code display. For example, the active process in a
given cycle can be highlighted to indicate it is active. This
permits the designer to visually see the active processes
without having to determine the value of each signal. In one
embodiment, the instrumentation data is used to enhance the
display of the original RTL source code rather than the
source code resulting from instrumentation.

The instrumentation techniques presented result in gate
level designs providing explicit instrumentation signals to
indicate that some specific portion of the source code is
active. The number of instrumentation signals tends to
increase with the complexity of the system being modeled.

Some optimizations may be performed to decrease the
number of instrumentation signals. At least one execution
path will be active any time a process is activated. As a
result, the TRACE1 variable in the examples of FIGS. 6 and
9 tend to provide no additional information and thus SIG__
TRACE1 is somewhat trivial as can be seen from the
synthesized logic of FIGS. 7 and 10. Thus at least one trace
variable (and therefore one output signal trace) can typically
be eliminated.

In some cases the execution status of each branch of the
code can be determined even though every branch is not
explicitly instrumented. To verify the execution status of
every branch, the instrumentation process need only ensure
that each branch is instrumented either explicitly or implic-
itly through the instrumentation of other branches.

In some instances, the capacity of hardware triggers can
be used to eliminate some of the instrumentation by com-
bining several signals into one condition. The number of
gates simulated can be reduced by replacing logical AND
conditions that appear in the equations of instrumentation
signals by simulator-specific triggers.

For example, consider the instrumented CASE statement
code fragment 1910 illustrated in FIG. 19. For purposes of
example, only the trace variable assignment statements are
shown for the four possible cases. A synthesis tool will
generate four comparisons with the vector “opcode.” Each
trace variable is associated with one of the possible values
of opcode. Clearly, however, the additional logic is unnec-
essary because setting a breakpoint on any one of the case
conditions corresponds to setting a trigger on the vector for
the corresponding value of “opcode.”

FIG. 20 illustrates a method for optimizing the instru-
mentation process. In particular, an instrumentation signal is
selected in step 2010. In step 2020, a determination is made
to whether the equation of the current signal can be
expressed as a logical AND between a signal and a simpli-
fied expression. If so, then the AND gate should be elimi-
nated in step 2030 and the extracted signal can be added to
the trigger conditions during simulation in step 2040. If
triggers can be activated on zeroes as well as ones, then step
2020 can also determine whether an equation can be sim-
plified as a logical negation of a subexpression and the
logical negation of the subexpression can be added to the
trigger conditions during simulation in step 2040 where

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 89 of 92 Page ID#: 142

US 6,240,376 Bl

13

appropriate. Step 2020 would then be applied recursively
until the equation cannot be further simplified. This process
is then applied to all of the instrumentation signals.

For example, signal TRACE4 is the result of performing
a logical AND between opcode(0) and opcode(l). Thus
TRACE4 is active only when opcode =“117. In accordance
with FIG. 20, the AND gate can be removed and the
simulator trigger conditions would be changed from
TRACE4=1 to “OPCODE(0)=1 AND OPCODE(1)=1.”
This process would then be applied recursively to all signals
remaining in the trigger condition. Thus if OPCODE(0)
happened to be the result of an AND between two other
signals, the AND gate could again be eliminated from the
synthesized gate-level design and the trigger conditions
could be updated accordingly as long as no other signals
used “OPCODE(0)” as an input. If no other logic uses
“QPCODE(0)” as an input, then the trigger conditions can
be updated to refer to the signals used to generate OPCODE
(0) and the gate-level netlist AND gate can safely be
eliminated. More generally, any optimization that consists of
eliminating gates and other elements by transferring the
implementation of the instrumentation logic to the logic
analyzer of the target simulator can be performed.

Where permitted by the gate-level simulator, the instru-
mentation required for detecting activation of a process may
similarly be reduced. In particular, greater efficiency may be
possible by keeping a list of all the signals in the process
sensitivity list and then testing whether events occurred on
the signals in the sensitivity list. Further optimization may
be made possible by sharing the logic for signals that appear
on the sensitivity list of more than one process. The original
signal can be sampled once Initially. A comparison is made
between the initial value and the current value of the signal
to generate an event signal indicative of whether an event
has occurred on that signal. The event signal can then be
used for instrumentation of processes with events and for
tracking process activation.

FIGS. 3, 12, and 17 illustrate methods of modifying the
original RTL source code for instrumenting processes and
level-sensitive and edge-sensitive source code. Trace vari-
ables (i.e., instrumentation variables) can be used to track
the execution of any path within the source code. Additional
output signals are generated from instrumentation variables
in order to detect the execution paths of the source code. In
the illustrated embodiments, the instrumentation variables
are reset at the beginning of a process and the signals are
assigned at the end of the process in order to ensure that all
the signals are assigned regardless of which exccution path
is taken inside the process.

In an alternative embodiment, the signals might be
directly assigned in the execution path of the process.
Typically, this alternative embodiment would force the syn-
thesis tool to generate complicated structures including
latches due to the nature of HDLs and simulation rules.

The methods of FIGS. 3,12, and 17 can be applied to the
source code before the source code is synthesized. Thus in
one embodiment the steps that modify the RTL source code
can be performed before but entirely independently of the
synthesis process itself.

FIG. 21 illustrates an embodiment in which the instru-
mentation data is generated entirely within the synthests
process. The process of creating output signals associated
with synthesizable statements in the source code and then
synthesizing the source code into a gate-level design includ-
ing the output signal can be incorporated into the synthesis
tool itself so that modification of the RTL source code is not
required.

20

25

40

45

50

14

For example, one of the steps performed by a synthesis
tool for generation of the gate-level design is parsing the
RTL source code. Parsing the RTL source code results in a
parser data structure that is subsequently used to generate
the gate-level design. Instead of modifying the source code,
the synthesis tool can simply set markers inside the parser
data structure.

FIG. 22 illustrates one application of using the instrumen-
tation signals for tracing execution flow using breakpoints.
In step 2210, the user sets a breakpoint at a specified line
number of the source code. The specified line number is then
associated with one of the instrumented lists of statements in
step 2220. In step 2230, the instrumentation signal for the
associated list is identified as the breakpoint output signal.

During the gate-level simulation run, the active lists
(identified by transitions in their corresponding instrumen-
tation signals) may be highlighted and displayed for the user
as indicated in step 2240. For example, the active lists may
be portrayed in a different color than the inactive lists.
Alternatively, the active lists may be displayed using blink-
ing characters, for example. The instrumentation data file
can be used to associate an instrumentation signal with a list
of source code line numbers to be highlighted.

In response to a 0 to 1 transition in the breakpoint output
signal, the simulation can be stopped as indicated in step
2250. Thus through instrumentation the designer has the
ability to effectively set breakpoints in the RTL source code
which can be acted upon during RTL simulation.

The methods of instrumentation may be implemented by
a processor responding to a series of instructions. In various
embodiments, these instructions may be stored in a com-
puter system’s memory such as random access memory or
read only memory.

The instructions may be distributed on a nonvolatile
storage medium for subsequent access and execution by the
processar. Typically the instructions are stored in the storage
medium for distribution to a user. The instructions may exist
in an application program form or as a file stored in the
storage medium. The instructions are transferred from the
nonvolatile storage medium to a computer system for execu-
tion by the processor.

In one embodiment, the program or file is installed from
the storage medium to the computer system such that the
copy of the instructions in the nonvolatile storage medium is
not necessary for performing instrumentation. In apother
embodiment, the program or file is configured such that the
original nonvolatile storage medium is required whenever
the instructions are executed.

Nonvolatile storage mediums based on magnetic, optical,
or semiconductor memory storage principles are readily
available. Nonvolatile magnetic storage mediums include
floppy disks and magnetic tape, for example. Nonvolatile
optical storage mediums include compact discs, digital
video disks, etc. Semiconductor-based nonvolatile memo-
ries include rewritable flash memory.

Instrumentation allows the designer to perform gate-level
simulation of synthesized RTL designs with source-level
debugging. In addition, the instrumentation process allows
the designer to examine source code coverage during simu-
lation.

In the preceding detailed description, the invention is
described with reference to specific exemplary embodiments
thereof. Various modifications and changes may be made
thereto without departing from the broader spirit and scope
of the invention as set forth in the claims. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense.

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 90 of 92 Page ID#: 143

US 6,240,376 Bl

15

What is claimed is:

1. A method comprising the steps of:

a) identifying at least one statement within a register
transfer level (RTL) synthesizable source code; and

b) synthesizing the source code into a gate-level netlist
including at least one instrumentation signal, wherein
the instrumentation signal is indicative of an execution
status of the at least one statement.

2. The method of claim 1 wherein step b) includes the step

of:

i) generating instrumentation logic to provide the instru-
mentation signal as if the source code included a
corresponding signal assignment statement within a
same executable branch of the source code as the
identified statement.

3. The method of claim 1 wherein step b) includes the

steps of:

i) initializing a marker to a first value at the beginning of
a process within the source code; and

ii) setting the marker to a second value within a same
executable branch of the source code as the identified
statement.

4. The method of claim 3 further comprising the step of:

iii) assigning the value of the marker to the instrumenta-
tion signal at the end of the process.

5. A method of generating a gate level design, comprising

the steps of:

a) creating an instrumentation signal associated with at
least one synthesizable statement contained in a register
transfer level (RTL) synthesizable source code; and

b) synthesizing the source code into a gate-level design
having the instrumentation signal.

6. The method of claim 5 wherein step a) further com-

prises the step of:

i) inserting a unique variable assignment statement into
the source code, wherein the variable assignment state-
ment is adjacent to at least one associated sequential
statement; and

i) inserting a unique output signal assignment statement
into the source code, wherein the unique output signal
is assigned a value associated with the unique variable.

7. The method of claim 6 wherein the variable is assigned
a first value in step a)i), the method further comprising the
step of:

iil) modifying the source code to initialize the unique

variable to a second value.

8. The method of claim 5 wherein step a) is repeated to
create a unique instrumented output signal for each list of
sequential statements in the source code, wherein each list
corresponds to a synthesizable executable branch of the
source code.

9. The method of claim 5 further comprising the step of:

c) generating cross-reference instrumentation data map-
ping each statement in a selected list to the instru-
mented output signal associated with that list for every
list in the source code.

10. The method of claim 9 further comprising the steps of:

d) simulating the gate level design using at least one of the
instrumentation signals to establish a simulation break-
point.

11. The method of claim 5 further comprising the steps of:

c) displaying the source code, wherein at least one state-
ment within a selected list is highlighted if the instru-
mentation signal corresponding to the selected lhist
changes to a pre-determined value.

16

12. A method of generating a gate-level netlist, compris-
ing the steps of:
a) receiving register transfer level (RTL) synthesizable
source code including synthesizable statements;

b) inserting a unique local variable assignment statement
into the source code for each branch of code having a
list of at least one sequential statement, wherein the
unique local variable assignment statement is adjacent
to at least one statement within the list;

¢) inserting a corresponding instrumentation signal
assignment statement into the source code for each of
the inserted local variables, wherein the instrumenta-
tion signal is assigned a value of the corresponding
unique local variable; and

d) synthesizing the source code into a gate-level design
including the instrumentation signals.

13. The method of claim 12 wherein step b) further

comprises the steps of:

20 i) assigning each unique local variable a first value; and
ii) initializing each local variable with second value.
14. The method of claim 12 further comprising the step of
¢) mapping every statement within a selected list to the

25 corresponding instrumentation signal for that selected

list as cross-reference instrumentation data.
15. The method of claim 12 further comprising the steps
of:
¢) setting a breakpoint at a selected statement of the
source code;

30
f) identifying the instrumentation signal corresponding to
the list associated with the selected statement as a
breakpoint signal; and
g) simulating the gate-level design, wherein simulation is
35 halted at a simulation cycle that results in the break-

point signal transitioning to a pre-determined value.

16. Amethod of generating a gate level netlist, comprising

the steps of:

a) receiving register transfer level (RTL) synthesizable
source code including synthesizable statements;

b) modifying the source code to generate a corresponding
sampled version of each signal event in a selected
process;

¢) modifying the source code to duplicate the selected
process;

d) replacing each occurrence of a selected signal event
with the corresponding sampled version in the dupli-
cated process;

e) replacing each list of sequential statements within an
executable branch of the duplicated process with a
unique variable assignment statement;

f) modifying the duplicated process to include an instru-
mentation signal assignment for each unique variable;
and

g) synthesizing the modified source code into a gate-level
design.

17. The method of claim 16 wherein step e) further

comprises the steps of:

i) assigning the unique variables a first value; and

40

45

55

ii) initializing the unique variables with second value.
18. The method of claim 16 further comprising the step of
¢) mapping every statement within each selected list to its
corresponding instrumentation signal.
19. The method of claim 16 further comprising the steps
of:

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 91 of 92 Page ID#: 144

US 6,240,376 Bl

17

h) setting a breakpoint at a selected statement of the
source code;

i) identifying the instrumentation signal corresponding to
the list associated with the selected statement as a
breakpoint signal; and

j) simulating the gate-level design, wherein simulation is
halted at a simulation cycle that results in a transition
of the breakpoint signal to a predetermined value.

20. A method of debugging a gate-level design including

the steps of:

a) setting a breakpoint at a selected statement of a register
transfer level (RTL) synthesizable source code;

b) inserting a local variable assignment statement adjacent
to at least one statement in a list of sequential
statements, wherein the list corresponds to an execut-
able branch of the source code including the selected
statement;

<) modifying the source code to include an instrumenta-
tion signal assignment statement for the local variable;
and

d) generating a gate-level design from the modified source

code.
21. The method of claim 20 further comprising the steps

of:
¢) simulating the gate-level design, wherein simulation is
halted at a simulation cycle that results in a transition
of the instrumentation signal to a pre-determined value.
22. The method of claim 20 wherein step b) further
comprises the steps of:
i) assigning the local variable a first value; and
ii) initializing the local variable with second value.
23. The method of claim 20 further comprising the step of
€) mapping every statement within the executable branch
of source code to the instrumentation signal.
24. A method of simulating a gate-level design compris-
ing the steps of:
a) identifying a sensitivity list of a process;
b) generating logic to identify signal events for any signal
in the sensitivity list; and
¢) identifying the process as active during simulation
when a signal event occurs for any signal in the
sensitivity list.
25. The method of claim 24 wherein step c) further
comprises the step of:
i) highlighting a source code description of the process
displayed during simulation.
26. The method of claim 24 wherein step b) further
comprises the step of:
i) sampling each signal in the sensitivity list to generate
corresponding instrumented signals; and
ii) comparing each signal in the sensitivity list with its
corresponding instrumented signal to test each signal in
the sensitivity list for an event.
27. The method of claim 26 wherein step c) further
comprises the step of:
i) generating an active process output signal defined by
logically ORing the resulis of the comparisons.
28. A storage medium having stored therein processor
executable instructions for generating a gate-level design

10

20

25

30

35

45

50

60

18

from a register transfer level (RTL) synthesizable source
code, wherein when executed the instructions enable the
processor to synthesize the source code into a gate-level
netlist including at least one instrumentation signal, wherein
the instrumentation signal is indicative of an execution
status of at least one synthesizable statement of the source
code.

29. The storage medium of claim 28 wherein the proces-
sor performs the steps of:

i) inserting a unique variable assignment stalement into
the source code, wherein the variable assignment state-
ment is adjacent to at least one associated sequential
statement; and

ii) inserting a unique output signal assignment statement
into the source code, wherein the unique output signal
is assigned a value associated with the unique variable.

30. A storage medium having stored therein processor
executable instructions for generating a gate-level design
from a register transfer level (RTL) synthesizable source
code, wherein when executed the instructions epable the
processor to perform the steps of:

a) inserting a unique local variable assignment statement
into the source code for each branch of code having a
list of at least one sequential statement, wherein the
unique local variable assignment statement is adjacent
to at least one statement within the list;

b) inserting a corresponding instrumentation signal
assignment statement into the source code for each of
the inserted local variables, wherein the instrumenta-
tion signal is assigned a value of the corresponding
unique local variable; and

¢) synthesizing the source code into a gate-level design
including the instrumentation signals.

31. The storage medium of claim 30 having stored therein
further instructions to enable the processor to perform the
step of:

d) mapping every statement within each selected list to its

corresponding instrumentation signal.

32. A storage medium having stored therein processor
executable instructions for debugging a gate level design
during simulation, wherein when a breakpoint is set at a
selected statement of a register transfer level (RTL) synthe-
sizable source code the instructions enable the processor to
perform the steps of:

a) inserting a local variable assignment statement adjacent
to at least one statement in a list of sequential state-
ments within the source code, wherein the list corre-
sponds to an executable branch of the source code
including the selected statement;

b) modifying the source code to include an instrumenta-
tion output signal assignment statement for the local
variable; and

c) generating a gate-level design from the modified source
code.

33. The storage medium of claim 32 having stored therein
further instructions to enable the processor to perform the
step of:

d) mapping every statement within each selected list to its

corresponding instrumentation signal.

* #& * % K

Case 6:06-cv-00341-AA Document 10-2 Filed 05/19/06 Page 92 of 92 Page ID#: 145

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,240,376 B1 Pagelof 1
DATED : May 29, 2001
INVENTOR(S) : Alain Rayraud and Luc M. Burgun

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 1,

Line 11, "hen" should read -- when --.

Line 17, "modem" should read -- modern --.

Line 37, "simulator. alternatively," should read -- simulator. Alternatively, --.
Line 38, "converting the ate-" should read -- converting the gate- --.

Line 47, "RTh" should read -- RTL --.

Column 2,
Line 39, "RTh" should read -- RTL --.

Column 10,
Line 33, "signal CLX_" should read -- signal CLK_ --.

Signed and Sealed this

Sixteenth Day of July, 2002

Attest:

JAMES E. ROGAN
Auntesting Officer Director of the United States Patent and Trademark Office

