Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 1 of 22

UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS

WACO DIVISION
TELEPUTERS, LLC,
Plaintiff Case No. 6:23-cv-00756
V. JURY TRIAL DEMANDED
ADVANCED MICRO DEVICES, INC. RELATED CASES
Defendant

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff Teleputers, LLC (“Plaintiff” or “Teleputers”) hereby asserts the
following claims for patent infringement against Advanced Micro Devices, Inc.

(“Defendant” or “AMD”), and alleges, on information and belief, as follows:

RELATED CASES

This case is related to the following cases:

o Teleputers, LLC v. Renesas Electronics America, Inc., et al, Case No. 6:20-
cv-00599-ADA;

o Teleputers, LLC v. Marvell Semiconductor, Inc., et al, Case No. 6:20-cv-
00512-ADA;

e Teleputers, LLC v. Oracle Corporation, et al, Case No. 6:20-cv-00600-ADA;

o Teleputers, LLC v. Fujitsu America, Inc., et al, Case No. 6:20-cv-00640-
ADA;

o Teleputers, LLC v. Qualcomm Inc.., et al, Case No. 6:23-cv-00404-ADA; and

o Teleputers, LLC v. Analog Devices, Inc., Case No. 6:23-cv-00755.

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 2 of 22

THE PARTIES

1. Teleputers, LLC is a limited liability company organized and existing under the
laws of the State of New Jersey with a principal place of business in Princeton, New
Jersey.

2. On information and belief, Advanced Micro Devices, Inc. is a corporation organized
and existing under the laws of Delaware, having a place of business in this Judicial
District at 7171 Southwest Pkwy, Austin, Texas 78735.

JURISDICTION AND VENUE

3. This Court has original jurisdiction over the subject matter of this action pursuant
to 28 U.S.C. §§ 1391 and 1400.

4. Upon information and belief, Defendant is subject to personal jurisdiction of this
Court based upon it having regularly conducted business, including the acts complained
of herein, within the State of Texas and this judicial district and/or deriving substantial
revenue from goods and services provided to individuals in Texas and in this District.

5. Venue is proper in this District under 28 U.S.C. § 1400 because Defendant has
committed acts of infringement and has regular and established places of business in this

judicial district at 7171 Southwest Pkwy, Austin, Texas 78735.

NOTICE OF TELEPUTERS’ PATENTS

6. Teleputers is owner by assignment of U.S. Patent No. 6,922,472 (“the 472 Patent”)
entitled “Method and system for performing permutations using permutation
instructions based on Dbutterfly networks.” A copy may be obtained at:

https://patents.google.com/patent/US6922472B2/en.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 2

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 3 of 22

7. Teleputers is owner by assignment of U.S. Patent No. 6,952,478B2 (“the 478
Patent”) entitled “Method and system for performing permutations using permutation
instructions based on modified omega and flip stages.” A copy may be obtained at:

https://patents.google.com/patent/US6952478B2/en.

8. Teleputers is owner by assignment of U.S. Patent No. 7,092,526B2 (“the 526
Patent”) entitled “Method and system for performing subword permutation
instructions for use in two- dimensional multimedia processing.” A copy may be obtained

at: https://patents.google.com/patent/US7092526B2/en.

9. Teleputers is owner by assignment of U.S. Patent No. 7,174,014B2 (“the '014
Patent” and “the Patents-in-Suit”) entitled “Method and system for performing
permutations with bit permutation instructions.” A copy may be obtained at:

https://patents.google.com/patent/US7174014B2/en.

10. Teleputers is owner by assignment of U.S. Patent No. 7,519,795B2 (“the ’795
Patent”) entitled “Method and system for performing permutations with bit permutation
instructions.” A copy may be obtained at:

https://patents.google.com/patent/US7519795B2/en.

11. The foregoing Patents, namely the 014 Patent, the 526 Patent, the ’478 Patent,
the 472 Patent, and the 795 Patent are collectively referred to as “the Teleputers
Patents.”

12. The Teleputers Patents are valid, enforceable, and were duly issued in full
compliance with Title 35 of the United States Code.

13. Defendants, at least by the date of this Original Complaint, are on notice of the

Teleputers Patents.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 3

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 4 of 22

THE PATENT-IN SUIT

14. Teleputers is the lawful owner of all right, title, and interest in United States
Patent No. 6,952,478 (the “478 Patent”), entitled “Method and system for performing
permutations using permutation instructions based on modified omega and flip stages,”
including the right to sue and to recover for infringement thereof. The 478 Patent was
duly and legally issued on October 4, 2005.

15. Teleputers is the lawful owner of all right, title, and interest in United States
Patent No. 7,092,526 (the “526 Patent”), entitled “Method and system for performing
subword permutation instructions for use in two-dimensional multimedia processing,”
including the right to sue and to recover for infringement thereof. The ’526 Patent was
duly and legally issued on August 15, 2006.

ACCUSED INSTRUMENTALITIES

16. On information and belief, Defendants make, use, import, sell, and/or offer for
sale a multitude of products and services as systems on chips (“SoC”) that employ
technology supporting the infringing instructions including, but not limited to: AMD
Opteron A1100 SoC (individually and collectively, the “Accused Instrumentalities”).
On information and belief, the Accused Instrumentalities are made, used, sold,
offered for sale, and/or imported in the United States by Defendants.

COUNT I - INFRINGEMENT OF U.S. PATENT NO. 6,952,478

17. Teleputers repeats and realleges the allegations of each of the above paragraphs
as if fully set forth herein.

18. Claim 1 of the ’478 Patent recites:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 4

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 5 of 22

1. A method of performing an arbitrary permutation of a source sequence of bits
in a programmable processor comprising the steps of:
a. defining an intermediate sequence of bits that said source sequence of
bits is transformed into;
b. determining a permutation instruction for transforming said source
sequence of bits into said intermediate sequence of bits; and
c. repeating steps a. and b. using said determined intermediate sequence of
bits from step b. as said source sequence of bits in step a. until a desired
sequence of bits is obtained,
wherein the determined permutation instructions form a permutation

Instruction sequence.

19. On information and belief, Defendant, without license or authorization, has
directly infringed and continue to infringe the ’478 Patent by making, using,
importing, selling, and/or, offering for sale the Accused Instrumentalities in the United

States.

20. On information and belief, Defendant, with knowledge of the 478 Patent,
indirectly infringes the 478 Patent by inducing others to infringe the 478 Patent. In
particular, Defendant intends to induce customers to infringe the ’478 Patent by
encouraging customers to use the Accused Instrumentalities in a manner that results
in infringement.

21. On information and belief, Defendants also induces others, including its
customers, to infringe the 478 Patent by providing technical support for the use of the

Accused Instrumentalities.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 5

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 6 of 22

22. On information and belief, Defendant’s actions satisfy each and every element of

claim 1:

1. A method of performing an arbitrary permutation of a source sequence of bits in a

programmable processor comprising the steps of:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 6

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 7 of 22

PRODUCT OVERVIEW ~ Opteron A1100 Series = leverage AMD'’s industry-leading expertise
in designing enterpnse~class server products and buud on the rapidly developing ARM software and
development ecosystem to establish a new category of high performance, energy efficient
processors for cloud computing, storage and networking infrastructure. Enabling datacenter and
network operators to leverage highly integrated 1/O, energy efficiency and superior compute density,
AMD Opteron A1100 series SOCs provide unprecedented agility, choice, and system level integration
helping lower TCO.

Key features
. Proven ARM-based Archltecture Based on the 64 bn ARM platform, AMD Opte ’
e Cortex-A57 co e.,wnthdMBsharedLanche

and 8MB L3 cache W|th full cache coherency

O CoATEX
e : i
—

DEBUL 1G¢ (M)

Source: https://www.amd.com/system/files/documents/hierofalcon-product-brief.pdf

AMD unvells ns ﬁrst ARM processor the Opteron A1100
A ei rtex-A57 cores clocked at 2+ GHz.

Cortex®-A57 MPCore
ARM CoreSight™ Multicore Debug and Trace

| NEON™
Cortex:AS? Core S™0 e »oh

32% D-Cache (S0
WECC 123 4

ACP SCU L2 Cache wiECC (5128 ~ 2M8)
128-bie AMBA® 4 ACE or AMBA® S CHIl

Source: http:/blog.gsmarena.com/amd-unveils-its-first-arm-processor-the-opteron-a1100/

Arm Neon technology is an advanced Single Instruction Multiple Data (SIMD) architecture
extension for the A-profile and R-profile processors.

Neon technology is a packed SIMD architecture. Neon registers are considered as vectors of
elements of the same data type, with Neon instructions operating on multiple elements simultaneously.
Multiple data types are supported by the technology, including floating-point and integer operations.

Source: https://developer.arm.com/Architectures/Neon

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 7

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 8 of 22

There are a range of NEON permutation instructions from simple reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle
to issue, whereas the more complex operations are multiple cycle, and might require additional
registers to be set up. As always, check your processor's Technical Reference Manual for performance
details.

Source: https://documentation-service.arm.com/static/63299276e68c6809a6b4 13082token=

Permutation - rearranging vectors

When writing programs for SIMD architectures like Neon, performance is often directly related to
data ordering. The ordering of data in memory might be inappropriate or suboptimal for the operation
that you want to perform.

One solution to these issues might be to rearrange the entire data set in memory before data processing
begins. However, this approach is likely to have a high cost to performance. This solution might not even
be possible, if your input is a continuous stream of data.

A better solution might be to reorder data values as they are processed. Reordering operations is
called permutation. Neon provides a range of permute instructions that typically do the following:

* Take input data from one or more source registers
* Rearrange the data
* Write the result of the permutation to a destination register

Source: hitps://developer.arm.com/documentation/102159/0400/Permutation---rearranging-vectors |

a. defining an intermediate sequence of bits that said source sequence of bits is

transformed into,

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 8

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 9 of 22

Permutation - rearranging vectors

When writing programs for SIMD architectures like Neon, performance is often directly related to
data ordering. The ordering of data in memory might be inappropriate or suboptimal for the operation
that you want to perform.

One solution to these issues might be to rearrange the entire data set in memory before data processing
begins. However, this approach is likely to have a high cost to performance. This solution might not even
be possible, if your input is a continuous stream of data.

A better solution might be to reorder data values as they are processed. Reordering operations is
called permutation. Neon provides a range of permute instructions that typically do the following:
e Take input data from one or more source registers
« Rearrange the data
* Write the result of the permutation to a destination register

Source: https://developer.arm.com/documentation/102159/0400/Permutation---rearranging-vectors

This quide covers getting started with Neon, using it efficiently, and hints and tips for more experienced
coders. Specifically, this guide deals with the following subject areas:

- Memory operations, and how to use the flexible load and store instructions.

- Using the permutation instructions to deal with load and store leftovers.

« Using Neon to perform an example data processing task, matrix multiplication.

- Shifting operations, using the example of converting image data formats.

Source: https:/documentation-service.arm.com/static/62d7 che4b334256d9easfbce

Each iteration of this code does the following:

- Loads from memory 16 red bytes into VO, 16 green bytes into V1, and 16 blue bytes into V2.

- Increments the source pointer in X0 by 48 bytes ready for the next iteration. The increment of 48 bytes
is the total number of bytes that we read into all three registers, so 3 x 16 bytes in total.

- Swaps the vector of red values in V0 with the vector of blue values in V2, using V3 as an
intermediary.

- Stores the data in VO, V1, and V2 to memory, starting at the address that is specified by the destination
pointer in X1, and increments the pointer.

Source: https://documentation-service. arm.com/static/62d7 cbe4b334256d9easfbce l

b. determining a permutation instruction for transforming said source sequence of bits

into said intermediate sequence of bits; and

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 9

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 10 of 22

Permutation - Neon instructions

Neon provides several different kinds of permute instruction to perform different operations:
* Move instructions

Reverse instructions

Extraction instructions

Transpose instructions

Interleave instructions

Lookup table instructions

Source: https://developer.arm.com/documentation/102159/0400/Permutation---Neon-
instructions?lang=en

This quide covers getting started with Neon, using it efficiently, and hints and tips for more experienced
coders. Specifically, this quide deals with the following subject areas:

- Memory operations, and how to use the flexible load and store instructions.

- Using the permutation instructions to deal with load and store leftovers.

« Using Neon to perform an example data processing task, matrix multiplication.

- Shifting operations, using the example of converting image data formats.

Each iteration of this code does the following:

- Loads from memory 16 red bytes into VO, 16 green bytes into V1, and 16 blue bytes into V2.

« Increments the source pointer in X0 by 48 bytes ready for the next iteration. The increment of 48 bytes
is the total number of bytes that we read into all three registers, so 3 x 16 bytes in total.

» Swaps the vector of red values in VO with the vector of blue values in V2, using V3 as an
intermediary.

- Stores the data in VO, V1, and V2 to memory, starting at the address that is specified by the destination
pointer in X1, and increments the pointer.

Source: https://documentation-service.arm.convstatic/62d7cbe4b334256d9easfbce

Instructions

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 10

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 11 of 22

Permutation
Instruction
e
d
Permutation
Source VTRN.16 d2. d3 Instruction
sequence
of bits ermediate seque

-

VTRN.32 q0, ql

Permutation
Instruction

Transposing a 4x4 matrix

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
bl s/coding-for-neon---part-5-rearranging-vectors

c. repeating steps a. and b. using said determined intermediate sequence of bits from step

b. as said source sequence of bits in step a. until a desired sequence of bits is obtained,

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 11

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 12 of 22

Instructions

. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https:/community.arm.com/arm-community-blogs/b/architectures-and-processors-

blog/posts/coding-for-neon---part-5-rearranging-vectors

S < B e |

TVIRN.16 d0, d1 T

intermediate sequence of bits from step b. as
said source sequence of bits in step a.

VTRN.16 d2, d3

Desired sequence of bits

(h]d]fb|a
G~] =

Transposing a 4x4 matrix

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

wherein the determined permutation instructions form a permutation instruction

sequence.

COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 12

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 13 of 22

Neon provides a range of from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use mulitiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix

Use muiltiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

Permutation
Instruction sequence 2

VTRN.16 d2, d3

Permutation
Instruction
sequence 3

- VTRN.32 q0, ql

Transposing a 4x4 matrix

Source: https://community. arm.convarm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

COUNTII - INFRINGEMENT OF U.S. PATENT NO. 7,092,526

23. Teleputers repeats and realleges the allegations of each of the above paragraphs
as if fully set forth herein.
24. Claim 1 of the ’526 Patent recites:

1. A method for permuting two dimensional (2-D) data in a programmable

processor comprising the steps of:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 13

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 14 of 22

decomposing said two dimensional data into at least one atomic element
said two dimensional data being located in at least one source register said
at least one atomic element of said two dimensional data is a 2X2 matrix
and said two dimensional data is decomposed into data elements in said
matrix;

determining at least one permutation instruction for rearrangement of said
data in said atomic element;

said data elements being rearranged by said at least one permutation
instruction, each of said data elements representing a subword having one
or more bits; and

applying said permutation instructions to said subwords and placing said

permutated subwords into a destination register.

25. On information and belief, Defendant, without license or authorization, has
directly infringed and continue to infringe the ’526 Patent by making, using,
importing, selling, and/or, offering for sale the Accused Instrumentalities in the United

States.

26. On information and belief, Defendant, with knowledge of the 526 Patent,
indirectly infringes the 526 Patent by inducing others to infringe the 526 Patent. In
particular, Defendant intends to induce customers to infringe the ’526 Patent by
encouraging customers to use the Accused Instrumentalities in a manner that results

in infringement.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 14

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 15 of 22

27. On information and belief, Defendants also induces others, including its
customers, to infringe the ’526 Patent by providing technical support for the use of the
Accused Instrumentalities.

28. On information and belief, Defendant’s actions satisfy each and every element of
claim 1:

1. A method for permuting two dimensional (2-D) data in a programmable processor

comprising the steps of:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 15

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 16 of 22

PRODUCT OVERVIEW A0 Opte A1100 Series = leverage AMD’s industry-leading expertise
in designing enterprise-class server products and bunld on the rapidly developing ARM software and
development ecosystem to establish a new category of high performance, energy efficient
processors for cloud computing, storage and networking infrastructure. Enabling datacenter and
network operators to leverage highly integrated I/O, energy efficiency and superior compute density,

AMD Opteron A1100 series SOCs provide unprecedented agility, choice, and system level integration
helping lower TCO.

Key features
. Proven ARM-based Archltecture Based on the 64 blt ARM platforrn AMD C

ce Cortex-A57 cores, with 4MB shared L2 cache

and BMB L3 cache Wlth fUll cache coherency

(CORTEX (DRTEX CORTEX (DRTEX
LAY LAY AS? A
.

SRS

Source: https:/www.amd.com/system/files/documents/hierofalcon-product-brief.

AMD unvells rts f rst ARM processor the Opteron A1 100
Opteron A S eig tex-A57 cores clocked at 2+ GHz.

Cortex®-A57 MPCore

ARM CoreSight™ Multicore Debug and Trace

Core
112 34

ACP SCU L2 Cache wiECC (518 ~ 2M8)
128-bit AMBA" 4 ACE or AMBA" S CHI

Source: http://blog.gsmarena.com/amd-unveils-its-first-arm-processor-the-opteron-a 1100/

Arm Neon technology is an advanced Single Instruction Multiple Data (SIMD) architecture
extension for the A-profile and R-profile processors.

Neon technology is a packed SIMD architecture. Neon registers are considered as vectors of
elements of the same data type, with Neon instructions operating on multiple elements simultaneously.
Multiple data types are supported by the technology, including floating-point and integer operations.

Source: https://developer.arm.com/Architectures/Neon

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 16

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 17 of 22

There are a range of NEON permutation instructions from simple reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle
to issue, whereas the more complex operations are multiple cycle, and might require additional
registers to be set up. As always, check your processor's Technical Reference Manual for performance
details.

Source: https://documentation-service.arm.com/static/63299276e68c6809a6b4 13082token=

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors
as 2x2 matrices, and transposes each matrix.

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

o

ol < B+ | ©
KN B

@ P [o[n]m]e

a o
[

[d]e]b]e
(b s f]s]
i e [im o

VTRN.16 d2, d3

o
Qa o
=]

—

< VTRN.32 q0, ql

N

a a Q. o
=

3 d3

Transposing a 4x4 matrix

Source: https://community. arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

decomposing said two dimensional data into at least one atomic element said two
dimensional data being located in at least one source register said at least one atomic
element of said two dimensional data is a 2X2 matrix and said two dimensional data is

decomposed into data elements in said matrix;

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 17

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 18 of 22

When writing code for Neon, you may find that sometimes, '/ - are not
quite in the correct format for your algorithm. You may need to rearrange the elements in your
vectors so that subsequent arithmetic can add the correct parts together, or perhaps the data
passed to your function is in a strange format, and must be reordered before your speedy SIMD
code can handle it.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix.

ANERN

VTRN.16 dO, d1

do

dl

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https://community. arm.com/arm-community-blogs/b/architectures-and-processors-
bloa/posts/codina-for-neon---part-5-rearranaing-vectors

d|c|b|a|do
AGE
,,,,,,,,,,,,,,,,,, _>

d2 " VIRN.16 do, d1

plo|n|m]|d3

Decomposition of two

dimensional data RN.16 d2. d3

two dimensional
data is decomposed

into data elements
in said matrix

Transposing a 4x4 matrix

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 18

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 19 of 22

determining at least one permutation instruction for rearrangement of said data in said

atomic element;

VTRN
Vector Transpose treats the elements of its operand vectors as elements of 2 x 2 matrices, and
transposes the matrices.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data
types.

Figure 8.7 shows the operation of doubleword VTRN. Quadword VTRN performs the same operation as
doubleword VTRN twice, once on the upper halves of the quadword vectors, and once on the lower
halves.

Figure 8.7. VTRN doubleword operation

Source: https://developer.arm.com/documentation/ddi0406/cb/Application-Level-Architecture/Instruction-
Details/Alphabetical-list-of-instructions/VTRN

said data elements being rearranged by said at least one permutation instruction, each of

said data elements representing a subword having one or more bits; and

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 19

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 20 of 22

3.11. Instructions to permute vectors: Permutations, or changing the order of the elements in a
vector, are sometimes required in vector processing when the available arithmetic instructions
do not match the format of the data in registers. They select individual elements, from either one
register, or across multiple registers, to form a new vector that better matches the NEON
instructions that the processor provides.

Permutation instructions are similar to move instructions, in that they are used to prepare or rearrange
data, rather than modify the data values. Good algorithm design might remove the need to rearrange
data. Hence consider whether the permutation instructions are necessary in your code.

Reducing the need for move and permute instructions is often a good way to optimize code.

Source: https:/developer.arm.com/documentation/den0018/a/NEON-Instruction-Set-
Architecture/Instructions-to-permute-vectors?lang=en

3.11.2. Instructions

There are a range of NEON permutation instructions from simple reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle
to issue, whereas the more complex operations are multiple cycle, and might require additional
registers to be set up. As always, check your processor's Technical Reference Manual for
performance details.

VTRN: Transpose

VTRN . It treats the elements
of the vectors as 2x2 matrices, and transposes each matrix.

Use multiple VTRN instructions . For example,
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https //developer.arm.com/documentation/den0018/a/NEON-Instruction-Set-
Architecture/Instructions-to-permute-vectors/Instructions 2lang=en

applying said permutation instructions to said subwords and placing said permutated

subwords into a destination register.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 20

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 21 of 22

When writing code for Neon, you may find that sometimes, the data in your registers are not quite in
the correct format for your algorithm. You may need to rearrange the elements in your vectors so
that subsequent arithmetic can add the correct parts together, or perhaps the data passed to
your function is in a strange format, and must be reordered before your speedy SIMD code can
handle it.

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix.

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix consisting of 16-
bit elements can be transposed using three VTRN instructions.

VTRN.16 do, d1

VTRN.16 d2, d3
Permutated Destination
Subwords Registers

a
—

o
o

VTRN.32 q0, q1

Qa o
w N

Transposing a 4x4 matrix

Source: https://community.arm.com/am-community-blogs/b/architectures-and-processors-
bloa/posts/coding-for-neon---part-5-rearranging-vectors

29. Teleputers is entitled to recover from Defendant the damages as a result of
Defendant's infringement of the ’526 patent in an amount subject to proof at trial, which,
by law, cannot be less than a reasonable royalty, together with interest and costs as fixed
by this Court under 35 U.S.C. § 284.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff respectfully requests the Court enter judgment against

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 21

Case 6:23-cv-00756 Document 1 Filed 11/09/23 Page 22 of 22

Defendant:

WHEREFORE, Teleputers requests that this Court enter judgment against
Defendant as follows:

A. An adjudication that Defendant has infringed the 478 and ’526 patents;

B. An award of damages to be paid by Defendant adequate to compensate
Teleputers for Defendant's past infringement of the '478 and ’526 patents and any
continuing or future infringement through the date such judgment is entered, including
interest, costs, expenses and an accounting of all infringing acts including, but not limited
to, those acts not presented at trial;

C. A declaration that this case is exceptional under 35 U.S.C. § 285, and an
award of Teleputer’s reasonable attorneys' fees; and

D. An award to Teleputers of such further relief at law or in equity as the

Court deems just and proper.

JURY DEMAND

Plaintiff demands trial by jury, Under Fed. R. Civ. P. 38.

Dated: November 9, 2023 Respectfully Submitted

/s/ Raymond W. Mort, IIT
Raymond W. Mort, III

Texas State Bar No. 00791308
raymort@austinlaw.com

THE MORT LAW FirM, PLLC
501 Congress Ave, Suite 150
Austin, Texas 78701

Tel/Fax: (512) 865-7950

ATTORNEYS FOR PLAINTIFF

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 22

