Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 1 of 25

UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF TEXAS

WACO DIVISION
TELEPUTERS, LLC,
Plaintiff Case No. 6:23-cv-00755
V. JURY TRIAL DEMANDED
ANALOG DEVICES, INC. RELATED CASES
Defendants

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff Teleputers, LLC (“Plaintiff” or “Teleputers”) hereby asserts the
following claims for patent infringement against Analog Devices, Inc. (“Defendant” or

“Analog Devices”), and alleges, on information and belief, as follows:

RELATED CASES

This case is related to the following cases:

o Teleputers, LLC v. Renesas Electronics America, Inc., et al, Case No. 6:20-
cv-00599-ADA;

o Teleputers, LLC v. Marvell Semiconductor, Inc., et al, Case No. 6:20-cv-
00512-ADA;

e Teleputers, LLC v. Oracle Corporation, et al, Case No. 6:20-cv-00600-ADA;

o Teleputers, LLC v. Fujitsu America, Inc., et al, Case No. 6:20-cv-00640-
ADA; and

o Teleputers, LLC v. Qualcomm Inc.., et al, Case No. 6:23-cv-00404-ADA.

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 2 of 25

THE PARTIES

1. Teleputers, LLC is a limited liability company organized and existing under the
laws of the State of New Jersey with a principal place of business in Princeton, New
Jersey.

2. On information and belief, Analog Devices, Inc. is a corporation organized and
existing under the laws of Massachusetts, having a place of business in this Judicial
District at 3900 N Capital of Texas Hwy, Austin, Texas 78746.

JURISDICTION AND VENUE

3. This Court has original jurisdiction over the subject matter of this action pursuant
to 28 U.S.C. §§ 1391 and 1400.

4. Upon information and belief, Defendant is subject to personal jurisdiction of this
Court based upon it having regularly conducted business, including the acts complained
of herein, within the State of Texas and this judicial district and/or deriving substantial
revenue from goods and services provided to individuals in Texas and in this District.

5. Venue is proper in this District under 28 U.S.C. § 1400 because Defendant has
committed acts of infringement and has regular and established places of business in this

judicial district at 3900 N Capital of Texas Hwy, Austin, Texas 78746.

NOTICE OF TELEPUTERS’ PATENTS

6. Teleputers is owner by assignment of U.S. Patent No. 6,922,472 (“the 472 Patent”)
entitled “Method and system for performing permutations using permutation
instructions based on Dbutterfly networks.” A copy may be obtained at:

https://patents.google.com/patent/US6922472B2/en.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 2

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 3 of 25

7. Teleputers is owner by assignment of U.S. Patent No. 6,952,478B2 (“the 478
Patent”) entitled “Method and system for performing permutations using permutation
instructions based on modified omega and flip stages.” A copy may be obtained at:

https://patents.google.com/patent/US6952478B2/en.

8. Teleputers is owner by assignment of U.S. Patent No. 7,092,526B2 (“the 526
Patent”) entitled “Method and system for performing subword permutation
instructions for use in two- dimensional multimedia processing.” A copy may be obtained

at: https://patents.google.com/patent/US7092526B2/en.

9. Teleputers is owner by assignment of U.S. Patent No. 7,174,014B2 (“the '014
Patent” and “the Patents-in-Suit”) entitled “Method and system for performing
permutations with bit permutation instructions.” A copy may be obtained at:

https://patents.google.com/patent/US7174014B2/en.

10. Teleputers is owner by assignment of U.S. Patent No. 7,519,795B2 (“the ’795
Patent”) entitled “Method and system for performing permutations with bit permutation
instructions.” A copy may be obtained at:

https://patents.google.com/patent/US7519795B2/en.

11. The foregoing Patents, namely the 014 Patent, the 526 Patent, the ’478 Patent,
the 472 Patent, and the 795 Patent are collectively referred to as “the Teleputers
Patents.”

12. The Teleputers Patents are valid, enforceable, and were duly issued in full
compliance with Title 35 of the United States Code.

13. Defendants, at least by the date of this Original Complaint, are on notice of the

Teleputers Patents.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 3

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 4 of 25

THE PATENT-IN SUIT

14. Teleputers is the lawful owner of all right, title, and interest in United States
Patent No. 6,952,478 (the “478 Patent”), entitled “Method and system for performing
permutations using permutation instructions based on modified omega and flip stages,”
including the right to sue and to recover for infringement thereof. The 478 Patent was
duly and legally issued on October 4, 2005.

15. Teleputers is the lawful owner of all right, title, and interest in United States
Patent No. 7,092,526 (the “526 Patent”), entitled “Method and system for performing
subword permutation instructions for use in two-dimensional multimedia processing,”
including the right to sue and to recover for infringement thereof. The ’526 Patent was
duly and legally issued on August 15, 2006.

ACCUSED INSTRUMENTALITIES

16. On information and belief, Defendants make, use, import, sell, and/or offer for
sale a multitude of products and services as systems on chips (“SoC”) that employ
technology supporting the infringing instructions including, but not limited to: ADSP-
SC598/SC596/SC595 processors (individually and collectively, the “Accused
Instrumentalities”). On information and belief, the Accused Instrumentalities are
made, used, sold, offered for sale, and/or imported in the United States by
Defendants.

COUNT I - INFRINGEMENT OF U.S. PATENT NO. 6,952,478

17. Teleputers repeats and realleges the allegations of each of the above paragraphs
as if fully set forth herein.

18. Claim 1 of the ’478 Patent recites:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 4

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 5 of 25

1. A method of performing an arbitrary permutation of a source sequence of bits
in a programmable processor comprising the steps of:
a. defining an intermediate sequence of bits that said source sequence of
bits is transformed into;
b. determining a permutation instruction for transforming said source
sequence of bits into said intermediate sequence of bits; and
c. repeating steps a. and b. using said determined intermediate sequence of
bits from step b. as said source sequence of bits in step a. until a desired
sequence of bits is obtained,
wherein the determined permutation instructions form a permutation

Instruction sequence.

19. On information and belief, Defendant, without license or authorization, has
directly infringed and continue to infringe the ’478 Patent by making, using,
importing, selling, and/or, offering for sale the Accused Instrumentalities in the United

States.

20. On information and belief, Defendant, with knowledge of the 478 Patent,
indirectly infringes the 478 Patent by inducing others to infringe the 478 Patent. In
particular, Defendant intends to induce customers to infringe the ’478 Patent by
encouraging customers to use the Accused Instrumentalities in a manner that results
in infringement.

21. On information and belief, Defendants also induces others, including its
customers, to infringe the 478 Patent by providing technical support for the use of the

Accused Instrumentalities.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 5

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 6 of 25

22. On information and belief, Defendant’s actions satisfy each and every element of

claim 1:

1. A method of performing an arbitrary permutation of a source sequence of bits in a

programmable processor comprising the steps of:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 6

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 7 of 25

The ADSP-SC598/SC596/SC595 processors are members of the ADSP-SC59x SHARC® family of
products. Containing the same dual-SHARC+® DSP core architecture as the ADSP-
SC594/SCS592/SC591, these processors upgrade the integrated Arm core to a Cortex-ASS running at up
to 1.2 GHz. The ASS processor, with FPU and leon® DSP extensions, handles additional real-time
processing tasks and manages peripherals used to interface to time-critical data in audio applications.
These interfaces include Gigabit Ethemet, USB High-Speed, CAN FD, and a rich variety of other
connectivity options for a flexible and simplified system design.
¢ Arm Core Infrastructure
¢ 1.2 GHz Arm Cortex-A55 (with leon/FPU)
¢ 32 kByte/32 kByte L1 Instr/Data Cache
e 256 kByte L2 Cache
Source: https://iwww.analog.com/en/products/adsp-sc596_htmEéproduct-overview
SYSTEM FEATURES
Dual-enhanced SHARC+ high performance floating-point
¢ Up to 1000 MHz per SHARC+ core
¢ 5 Mb (640 kB) L1 SRAM memory per core with parity
¢ (optional ability to configure as cache)
e 32-bit, 40-bit, and 64-bit floating-point support
e 32-bit fixed point
¢ Byte, short word, word, long word addressed
¢ Arm Cortex-A55 core
¢ Up to 1200 MHz/3360 DMIPS with advanced SIMD and
¢ floating-point support
e 32kB L1 instruction cache with parity/32 kB L1 data cache
e with ECC
e 256 kB L2 cache with ECC
¢ Powerful DMA system with 8 MemDMAs
¢ On-chip memory protection
Figure 2. Arm Cortex-AS55 Processor Block Diagram
Source: JAWWW. .conVmedia/en/technical-documentation/data-sheets/.
$¢598.pdf

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 7

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 8 of 25

—

1 A Ty

3 w0 -
e

i, WA, vD FOw R

A
i)

[oo

Figure 1. ADSP-SCS98 (Fel-Feotured Model) Processor Block Dagrom

Source: https://www.analog.conVmedia/en/technical-documentation/data-sheets/adsp-scS96-adsp-
$¢598 pdf

Arm Neon is an advanced single instruction multiple data (SIMD) architecture extension for the
Arm Cortex-A and Arm Cortex-R series of processors with capabilities that vastly improve use cases
on mobile devices, such as multimedia encoding/decoding, user interface, 2D/3D graphics and gaming.

X Jhwww arm.comitec ies/neon#:~text=Arm%20Neon%20is%20an%20advanced 2D%
2F3D%20graphics%20and ami

The Cortex-A55 implements the latest Armv8.2 architecture and builds on the success of its
predecessor. It pushes the boundaries on performance while maintaining the same levels of power
consumption as the Cortex-AS3.

New architectural instructions were added to the Cortex-A55 NEON pipeline, allowing it to
perform sixteen 8-bit integer operations per-cycle. These new instructions also allow eight 16-bit float
operations per-cycle, and rounding double MAC instructions, beneficial for colour space conversion.

Source: https://community. arm.com/arm-community-blogs/b/architectures-and-processors-
arm-cortex-aSS-efficient. ce-fr e-to-cloud

There are a range of NEON permutation instructions from simple reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle
to issue, whereas the more complex operations are multiple cycle, and might require additional
registers to be set up. As always, check your processor's Technical Reference Manual for performance
details.

Source: https://documentation-service.arm.convstatic/63299276e68c6809a6b4 1308 7token=

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 8

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 9 of 25

Permutation - rearranging vectors

When writing programs for SIMD architectures like Neon, performance is often directly related to
data ordering. The ordering of data in memory might be inappropriate or suboptimal for the operation
that you want to perform.

One solution to these issues might be to rearrange the entire data set in memory before data processing
begins. However, this approach is likely to have a high cost to performance. This solution might not even
be possible, if your input is a continuous stream of data.

A better solution might be to reorder data values as they are processed. Reordering operations is
called permutation. Neon provides a range of permute instructions that typically do the following:

Take input data from one or more source registers
Rearrange the data
Write the result of the permutation to a destination register

Source: hitps://developer.arm.convdocumentation/102159/0400/Permutation-——rearranging-vectors |

a. defining an intermediate sequence of bits that said source sequence of bits is

transformed into,

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 9

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 10 of 25

Permutation - rearranging vectors

When writing programs for SIMD architectures like Neon, performance is often directly related to
data ordering. The ordering of data in memory might be inappropriate or suboptimal for the operation
that you want to perform.

One solution to these issues might be to rearrange the entire data set in memory before data processing
begins. However, this approach is likely to have a high cost to performance. This solution might not even
be possible, if your input is a continuous stream of data.

A better solution might be to reorder data values as they are processed. Reordering operations is
called permutation. Neon provides a range of permute instructions that typically do the following:

Take input data from one or more source registers
Rearrange the data
Wiite the result of the permutation to a destination register

Source: https://developer.arm.com/documentation/102159/0400/Permutation—rearranging-vectors

This quide covers qetting started with Neon, using it efficiently. and hints and tips for more experienced
coders. Specifically, this guide deals with the following subject areas:

* Memory operations, and how to use the flexible load and store instructions.

* Using the permutation instructions to deal with load and store leftovers.

* Using Neon to perform an example data processing task, matrix multiplication.

* Shifting operations, using the example of converting image data formats.

Each iteration of this code does the following:

* Loads from memory 16 red bytes into VO, 16 green bytes into V1, and 16 blue bytes into V2.

* Increments the source pointer in X0 by 48 bytes ready for the next iteration. The increment of 48 bytes
is the total number of bytes that we read into all three registers, so 3 x 16 bytes in total.

* Swaps the vector of red values in V0 with the vector of blue values in V2, using V3 as an
intermediary.

« Stores the data in VO, V1, and V2 to memory, starting at the address that is specified by the destination
pointer in X1, and increments the pointer.

Source: https://documentation-service.arm.conVstatic/62d7cbe4b334256d9ea8fbce I

b. determining a permutation instruction for transforming said source sequence of bits

into said intermediate sequence of bits; and

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 10

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 11 of 25

Permutation - Neon instructions
Neon provides several different kinds of permute instruction to perform different operations:

Move instructions
Reverse instructions
Extraction instructions
Transpose instructions
Interleave instructions
Lookup table instructions

Source: https://developer.arm.conmVdocumentation/102159/0400/Permutation-—Neon-
instructions?lang=en

This guide covers getting started with Neon, using it efficiently, and hints and tips for more experienced
coders. Specifically, this guide deals with the following subject areas:

* Memory operations, and how to use the flexible load and store instructions.

* Using the permutation instructions to deal with load and store leftovers.

* Using Neon to perform an example data processing task, matrix multiplication.

* Shifting operations, using the example of converting image data formats.

Source: https://documentation-service.arm.convstatic/62d7 cbe4b334256d9easfbce

Each iteration of this code does the following:

* Loads from memory 16 red bytes into VO, 16 green bytes into V1, and 16 blue bytes into V2.

* Increments the source pointer in X0 by 48 bytes ready for the next iteration. The increment of 48 bytes
is the total number of bytes that we read into all three registers, so 3 x 16 bytes in total.

* Swaps the vector of red values in V0 with the vector of blue values in V2, using V3 as an
intermediary.

* Stores the data in VO, V1, and V2 to memory, starting at the address that is specified by the destination
pointer in X1, and increments the pointer.

Source: https://documentation-service arm.conmvstatic/62d7cbed4b334256d9eadfbce

Instructions

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 11

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 12 of 25

Permutation
Instruction

"VTRN.16 do, d1

Source
sequence

of bits - Caldle SEquc

<

VTRN.32 q0, ql
Permutation
Instruction

&

Transposing a 4x4 matrix

Permutation
Instruction

2.d3

[9cfe]a

a o o o

architectures-and-processors-

c. repeating steps a. and b. using said determined intermediate sequence of bits from step

b. as said source sequence of bits in step a. until a desired sequence of bits is obtained,

COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 12

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 13 of 25

Instructions

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

_ -//lcommunity. arm.com/arm-community-bl architectures-a
blog/posts/coding-for-neon—-part-S-rearranging-vectors

intermediate sequence of bits from step b.
as said source sequence of bits in step a.

Desired sequence of bits

* VIRN32 q0, g1

Transposing a 4x4 matrix

Source: https//community arm.com/am-community-blogs/b/architectures-and-processors-
ts/coding-for-neon -S-rearranging-vectors

wherein the determined permutation instructions form a permutation instruction

sequence.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 13

23.

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 14 of 25

Instructions

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https:/community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon-—part-5S-rearranging-vectors

Permutation

Instruction !ﬁﬂ“@ﬂ do
sequencel mn\{ ‘u d1

Permutation
Instruction sequence 2

VIRN.16 d2, d3

4
Permutation nmn do
Instruction sequence mnﬁgu d1
da

Transposing a 4x4 matrix

Source: https://community arm.com/am-community-blogs/b/architectures-and-processors-
-S-rearranging-vectors

;

COUNTII - INFRINGEMENT OF U.S. PATENT NO. 7,092,526

as if fully set forth herein.

24.

Claim 1 of the ’526 Patent recites:

COMPLAINT FOR PATENT INFRINGEMENT

Teleputers repeats and realleges the allegations of each of the above paragraphs

PAGE | 14

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 15 of 25

1. A method for permuting two dimensional (2-D) data in a programmable
processor comprising the steps of:
decomposing said two dimensional data into at least one atomic element
said two dimensional data being located in at least one source register said
at least one atomic element of said two dimensional data is a 2X2 matrix
and said two dimensional data is decomposed into data elements in said
matrix;
determining at least one permutation instruction for rearrangement of said
data in said atomic element;
said data elements being rearranged by said at least one permutation
instruction, each of said data elements representing a subword having one
or more bits; and
applying said permutation instructions to said subwords and placing said

permutated subwords into a destination register.

25. On information and belief, Defendant, without license or authorization, has
directly infringed and continue to infringe the ’526 Patent by making, using,
importing, selling, and/or, offering for sale the Accused Instrumentalities in the United

States.

26. On information and belief, Defendant, with knowledge of the ’526 Patent,
indirectly infringes the 526 Patent by inducing others to infringe the 526 Patent. In
particular, Defendant intends to induce customers to infringe the 526 Patent by
encouraging customers to use the Accused Instrumentalities in a manner that results

in infringement.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 15

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 16 of 25

27. On information and belief, Defendants also induces others, including its
customers, to infringe the ’526 Patent by providing technical support for the use of the
Accused Instrumentalities.

28. On information and belief, Defendant’s actions satisfy each and every element of
claim 1:

1. A method for permuting two dimensional (2-D) data in a programmable processor

comprising the steps of:

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 16

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 17 of 25

C595 proc e r the ADS SHARC® family of
y Contalnlng the same dual SHARC+® DSP core arcmtecture as the ADSP-
SC594/SC592/30591 these processors upgrade the integrated Arm core to a Cortex-A55 running at up
to 1.2 GHz. The A55 processor, with FPU and Neon® DSF extensions, handles additional real-time
processing tasks and manages peripherals used to mterface to time-critical data in audio applications.
These interfaces include Gigabit Ethernet, USB High-Speed, CAN FD, and a rich variety of other
connectivity options for a flexible and simplified system design.

ARM Cortex-A7 dual-core with high-speed memory bus:
32 KB 1/32 KB D, 256 KB L2 cache

3040 DMIPS at 800 MHz for dual-core

VFP v4 FPU and NEON SIMD extension support
TrustZone and virtualisation extensions

CoreSight for debug/trace

Source: https://www analog.com/en/products/adsp-sc596.htmk#product-overview

SYSTEM FEATURES

Dual-enhanced SHARC+ high performance floating-point

Cores

Up to 1000 MHz per SHARC+ core

5 Mb (640 kB) L1 SRAM memory per core with parity
(optional ability to configure as cache)

32-bit, 40-bit, and 64-bit floating-point support

32-bit fixed point

Byte, short word, word, long word addressed

Arm Cortex-A55 core

Up to 1200 MHz/3360 DMIPS with advanced SIMD and
floating-point support

32 kB L1 instruction cache with parity/32 kB L1 data cache
with ECC

256 kB L2 cache with ECC

Powerful DMA system with 8 MemDMAs

DynamiQ CLUSTER
CORED Arm® Corter®-AsSS
L1 MEMORY SYSTEM PROCESSOR
" L1 5]
INSTRUCTION DATA
CACHE CACHE

oPu
n 81 MMy

Figure 2. Arm Cortex-A55 Processor Block Diagram

Source: https://www .analog.com/media/en/technical-documentation/data-sheets/adsp-sc596-ads
$c598.pdf

COMPLAINT FOR PATENT INFRINGEMENT

PAGE | 17

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 18 of 25

0 T

SYETEN CROBSRAR AND DMA SUBSTSTEM

it

Figure 1. ADSP-SC598 (Full-Featured Model) Processor Block Diagram

Source: https://www_.analog.com/media/en/technical-documentation/data-sheets/adsp-sc596-ads
$c598 pdf

Arm Neon is an advanced single instruction muitiple data (SIMD) architecture extension for the
Arm Cortex-A and Arm Cortex-R series of processors with capabilities that vastly improve use cases
on mobile devices, such as multimedia encoding/decoding, user interface, 2D/3D graphics and gaming.

Source:https://www.arm.com/technologies/neon# ~:text=Arm%20Neon%20is%20an%20advanced,2D%
2F3D%20graphics%20and%20gaming

The Cortex-A55 implements the latest Armv8.2 architecture and builds on the success of its
predecessor. It pushes the boundaries on performance while maintaining the same levels of power
consumption as the Cortex-A53.

New architectural instructions were added to the Cortex-A55 NEON pipeline, allowing it to
perform sixteen 8-bit integer operations per-cycle. These new instructions also allow eight 16-bit float
operations per-cycle, and rounding double MAC instructions, beneficial for colour space conversion.

Source: https://community.arm.com/am-community-blogs/b/architectures-and-processors-
blog/posts/arm-cortex-a55-efficient-performance-from-edge-to-cloud

There are a range of NEON permutation instructions from simple reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle
to issue, whereas the more complex operations are multiple cycle, and might require additional
registers to be set up. As always, check your processor's Technical Reference Manual for performance
details.

Source: https://documentation-service.arm.com/static/63299276e68c6809a6b413082token=

VTRN: Transpose

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the vectors
as 2x2 matrices, and transposes each matrix.

Use mulitiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 18

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 19 of 25

-

[p]ofn]m]d

VTRN.16 d2, d3

o

ey

VTRN.32 q0, q1

a a o o
N

3

Transposing a 4x4 matrix

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

decomposing said two dimensional data into at least one atomic element said two
dimensional data being located in at least one source register said at least one atomic
element of said two dimensional data is a 2X2 matrix and said two dimensional data is

decomposed into data elements in said matrix;

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 19

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 20 of 25

When writing code for Neon, you may find that sometimes, are not
quite in the correct format for your algorithm. You may need to rearrange the elements in your
vectors so that subsequent arithmetic can add the correct parts together, or perhaps the data

passed to your function is in a strange format, and must be reordered before your speedy SIMD
code can handle it.

VTRN: Transpose

VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix.

do

dl

VTRN.16 dO, d1

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix
consisting of 16-bit elements can be transposed using three VTRN instructions.

T VIRN.16 d0, d1

Decomposition of
two dimensional

two dimensional
datais
decomposed into

Transposing a 4x4 matrix

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blo sts/coding-for-neon---part-5-rearranging-vectors

determining at least one permutation instruction for rearrangement of said data in said

atomic element;

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 20

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 21 of 25

VTRN
Vector Transpose treats the elements of its operand vectors as elements of 2 x 2 matrices, and

transposes the matrices.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data
types.

Figure 8.7 shows the operation of doubleword VTRN. Quadword VTRN performs the same operation as
doubleword VTRN twice, once on the upper halves of the quadword vectors, and once on the lower
halves

Figure 8.7. VTRN doubleword operation

Source: https://developer.arm.com/documentation/ddi0406/cb/Application-Level-Architecture/Instruction-
Details/Alphabetical-list-of-instructions/VTRN

said data elements being rearranged by said at least one permutation instruction, each of

said data elements representing a subword having one or more bits; and

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 21

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 22 of 25

3.11. Instructions to permute vectors

Permutations, or changing the order of the elements in a vector, are sometimes required in
vector processing when the available arithmetic instructions do not match the format of the data
in registers. They select individual elements, from either one register, or across multiple
registers, to form a new vector that better matches the NEON instructions that the processor
provides.

Permutation instructions are similar to move instructions, in that they are used to prepare or rearrange
data, rather than modify the data values. Good algorithm design might remove the need to rearrange
data. Hence consider whether the permutation instructions are necessary in your code.

Reducing the need for move and permute instructions is often a good way to optimize code.

Source: https://developer.arm.com/documentation/den0018/a/NEON-Instruction-Set-
Architecture/Instructions-to-permute-vectors?lang=en

3.11.2. Instructions

There are a range of NEON permutation instructions from simple reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle
to issue, whereas the more complex operations are multiple cycle, and might require additional
registers to be set up. As always, check your processor's Technical Reference Manual for performance
details.

Source: https://developer.arm.com/documentation/den0018/a/NEON-Instruction-Set-
Architecture/Instructions-to-permute-vectors/Instructions?lang=en

VTRN: Transpose
VTRN . It treats the elements of
the vectors as 2x2 matrices, and transposes each matrix.

Use multiple VTRN instructions . For example,
consisting of 16-bit elements can be transposed using three VTRN instructions.

Source: https://developer.arm.com/documentation/den0018/a/NEON-Instruction-Set-
Architecture/Instructions-to-permute-vectors/Instructions 2lang=en

applying said permutation instructions to said subwords and placing said permutated

subwords into a destination register.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 22

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 23 of 25

When writing code for Neon, you may find that sometimes, the data in your registers are not quite in
the correct format for your algorithm. You may need to rearrange the elements in your vectors so
that subsequent arithmetic can add the correct parts together, or perhaps the data passed to
your function is in a strange format, and must be reordered before your speedy SIMD code can
handle it.

Neon provides a range of permutation instructions, from basic reversals to arbitrary vector
reconstruction. Simple permutations can be achieved using instructions that take a single cycle to
issue, whereas the more complex operations use multiple cycles, and may require additional
registers to be set up. As always, benchmark or profile your code regularly, and check your processor's
Technical Reference Manual (Cortex-A8, Cortex-A9) for performance details.

VTRN: Transpose
VTRN transposes 8, 16 or 32-bit elements between a pair of vectors. It treats the elements of the
vectors as 2x2 matrices, and transposes each matrix.

Use multiple VTRN instructions to transpose larger matrices. For example, a 4x4 matrix consisting of 16-
bit elements can be transposed using three VTRN instructions.

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

VTRN.16 do, d1

VTRN.16 d2, d3
Permutated Destination
Subwords Registers

- VTRN32 q0, q1

Transposing a 4x4 matrix

Source: https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/coding-for-neon---part-5-rearranging-vectors

29. Teleputers is entitled to recover from Defendant the damages as a result of
Defendant's infringement of the ’526 patent in an amount subject to proof at trial, which,
by law, cannot be less than a reasonable royalty, together with interest and costs as fixed

by this Court under 35 U.S.C. § 284.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 23

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 24 of 25

PRAYER FOR RELIEF

WHEREFORE, Plaintiff respectfully requests the Court enter judgment against
Defendant:

WHEREFORE, Teleputers requests that this Court enter judgment against
Defendant as follows:

A. An adjudication that Defendant has infringed the ’478 and ’526 patents;

B. An award of damages to be paid by Defendant adequate to compensate
Teleputers for Defendant's past infringement of the 478 and ’526 patents and any
continuing or future infringement through the date such judgment is entered, including
interest, costs, expenses and an accounting of all infringing acts including, but not limited
to, those acts not presented at trial;

C. A declaration that this case is exceptional under 35 U.S.C. § 285, and an
award of Teleputer’s reasonable attorneys' fees; and

D. An award to Teleputers of such further relief at law or in equity as the

Court deems just and proper.

JURY DEMAND

Plaintiff demands trial by jury, Under Fed. R. Civ. P. 38.

COMPLAINT FOR PATENT INFRINGEMENT PAGE | 24

Case 6:23-cv-00755 Document 1 Filed 11/09/23 Page 25 of 25

Dated: November 9, 2023

COMPLAINT FOR PATENT INFRINGEMENT

Respectfully Submitted

/s/ Raymond W. Mort, 111

Raymond W. Mort, II1
Texas State Bar No. 00791308
raymort@austinlaw.com

THE MORT LAW FIrM, PLLC
501 Congress Ave, Suite 150
Austin, Texas 78701

Tel/Fax: (512) 865-7950

ATTORNEYS FOR PLAINTIFF

PAGE | 25

