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UNITED STATES DISTRICT COURT 
WESTERN DISTRICT OF TEXAS 

WACO DIVISION 
 
The CALIFORNIA INSTITUTE OF 
TECHNOLOGY,  
 

Plaintiff, 
 
v. 
 
DELL TECHNOLOGIES INC. and DELL 
INC.,  

Defendants. 

§ 
§ 
§ 
§ 
§ 
§ 
§ 
§ 
§ 

Civil Action No.:  6:20-cv-1042 
 
JURY TRIAL DEMANDED 

 
SECOND AMENDED COMPLAINT FOR PATENT INFRINGEMENT 

Plaintiff the California Institute of Technology (“Caltech” or “Plaintiff”), by and through 

its undersigned counsel, complains and alleges against Dell Technologies Inc. and Dell Inc. 

(collectively “Dell” or “Defendants”) as follows: 

NATURE OF THE ACTION 

1. This is a civil action for infringement of U.S. Patent No. 7,116,710 (the “’710 

patent”), U.S. Patent No. 7,421,032 (the “’032 patent”), U.S. Patent No. 7,916,781 (the “’781 

patent”), and U.S. Patent No. 8,284,833 (the “’833 patent”) (collectively, “the Asserted Patents”) 

arising under the patent laws of the United States, 35 U.S.C. §§ 1 et seq.   

2.  In January of 2020, a jury found that Apple Inc.’s (“Apple’s”) and Broadcom 

Limited’s (“Broadcom’s”) Wi-Fi products infringed the ’710, ’032, and ’781 patents and awarded 

Caltech over $1.1 billion in damages.  Caltech v. Broadcom Limited, et al., No. 16-cv-3714-GW, 

Dkt. No. 2114 (C.D. Cal. Jan. 29, 2020).  The Court of Appeals for the Federal Circuit affirmed the 

findings of the lower court that the Asserted Patents are valid, and that Apple and Broadcom 

infringed those patents.  Caltech v. Broadcom Limited, et al., 25 F.4th 976 (Fed. Cir. 2022).  It also 

remanded the case for a further jury trial to determine damages arising from this infringement.  Id.  

As in the case against Apple and Broadcom, Caltech seeks a reasonable royalty from Dell as 
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compensation for its infringement of the ’710, ’032, and ’781 patents.  Caltech also seeks a 

reasonable royalty from Dell as compensation for its infringement of the ’833 patent. 

THE PARTIES 

3. Caltech is a non-profit private university organized under the laws of the State of 

California, with its principal place of business at 1200 East California Boulevard, Pasadena, 

California 91125. 

4. Caltech is a world-renowned science and engineering research and education 

institution, where extraordinary faculty and students seek answers to complex questions, discover 

new knowledge, lead innovation, and transform our future.  To date, 40 Caltech alumni and faculty 

have won a total of 41 Nobel Prizes.  The mission of Caltech is to expand human knowledge and 

benefit society through research integrated with education.  Caltech investigates the most 

challenging, fundamental problems in science and technology in a singularly collegial, 

interdisciplinary atmosphere, while educating outstanding students to become creative members of 

society.  Caltech’s investment in research has led Caltech to have more inventions disclosed and 

patents granted per faculty member than any other university in the nation, and to be consistently 

ranked as having one of the top university patent portfolios in strength and number of patents issued. 

5. On information and belief, Dell Technologies Inc. is a Delaware corporation with 

its principal place of business at One Dell Way, Round Rock, Texas 78682.   

6. On information and belief, Dell Inc. is a Delaware corporation with its principal 

place of business at One Dell Way, Round Rock, Texas 78682.  Dell. Inc. has additional offices at 

1404 Park Center Dr., Austin, Texas, 701 E. Parmer Lane, Bldg. PS2, Austin, Texas, 12500 Tech 

Ridge Road, Austin, Texas, 9715 Burnet Road, Austin, Texas, and 4309 Emma Browning Avenue, 

Austin, Texas.   

JURISDICTION AND VENUE 

7. This Court has jurisdiction over the subject matter of this action under 28 U.S.C. 

§§ 1331 and 1338(a). 

8. This Court has personal jurisdiction over Dell pursuant to due process and/or the 

Texas Long Arm Statute because Dell has committed and continues to commit acts of patent 
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infringement, including acts giving rise to this action, within the State of Texas and this District, 

and because Dell recruits Texas residents, directly or through an intermediary located in this state, 

for employment inside or outside this state.  The Court’s exercise of jurisdiction over Dell would 

not offend traditional notions of fair play and substantial justice because Dell has established 

minimum contacts with the forum.   

9. Venue is proper in this judicial district pursuant to 28 U.S.C. §§ 1391 and 1400 

because a substantial part of the events or omissions giving rise to the claims occurred in this 

District, and Dell has committed acts of infringement and has a regular and established place of 

business in this District.   

10. Dell has committed acts of infringement in this District, directly and/or through 

intermediaries, by, among other things, making, using, offering to sell, selling, and/or importing 

products and/or services that infringe the Asserted Patents, as alleged herein. 

11. Dell has a regular and established places of business in this District including a 

shared corporate office at One Dell Way, Round Rock, Texas 78682.  Dell is also registered to do 

business in Texas.  

CALTECH’S ASSERTED PATENTS 

12. On October 3, 2006, the United States Patent Office issued U.S. Patent No. 

7,116,710, titled “Serial Concatenation of Interleaved Convolutional Codes Forming Turbo-Like 

Codes.”  A true and correct copy of the ’710 patent is attached hereto as Exhibit A.   

13. On September 2, 2008, the United States Patent Office issued U.S. Patent No. 

7,421,032, titled “Serial Concatenation of Interleaved Convolutional Codes Forming Turbo-Like 

Codes.”  A true and correct copy of the ’032 patent is attached hereto as Exhibit B.  The ’032 patent 

is a continuation of the application that led to the ’710 patent. 

14. On March 29, 2011, the United States Patent Office issued U.S. Patent No. 

7,916,781, titled “Serial Concatenation of Interleaved Convolutional Codes Forming Turbo-Like 

Codes.”  A true and correct copy of the ’781 patent is attached hereto as Exhibit C.  The ’781 patent 

is a continuation of the application that led to the ’032 patent, which is a continuation of the 

application that led to the ’710 patent. 

Case 6:20-cv-01042-ADA   Document 77   Filed 01/22/24   Page 3 of 117



SECOND AMENDED COMPLAINT  Page | 4
 

15. On October 9, 2012, the United States Patent Office issued U.S. Patent No. 

8,284,833, titled “Serial Concatenation of Interleaved Convolutional Codes Forming Turbo-Like 

Codes.”  A true and correct copy of the ’833 patent is attached hereto as Exhibit D.  The ’833 patent 

is a continuation of the application that led to the ’781 patent, which is a continuation of the 

application that led to the ’032 patent, which is a continuation of the application that led to the ’710 

patent. 

16. The ’710, ’032, ’781, and ’833 patents identify Hui Jin, Aamod Khandekar, and 

Robert J. McEliece as the inventors.  

17. Caltech is the owner of all right, title, and interest in and to each of the Asserted 

Patents with full and exclusive right to bring suit to enforce the Asserted Patents, including the right 

to recover for past damages and/or royalties prior to the expiration of the ’710, ’032, ’781, and ’833 

patents. 

18. The Asserted Patents are valid and enforceable. 

BACKGROUND 

Caltech’s IRA Codes Patents  

19. The ’710, ’032, ’781, and ’833 patents (“IRA Patents”) disclose seminal 

improvements to coding systems and methods.  The IRA Patents introduce a new class of error 

correction codes called “irregular repeat and accumulate codes” (or “IRA codes”).  The claimed 

methods and apparatuses in the IRA Patents are directed to encoders and decoders.  For example, 

the claimed encoders in the IRA Patents generate an IRA “codeword” from message or information 

bits by reordering irregularly repeated instances of those bits in a randomized but known way and 

performing other logical operations such as summing and accumulating bits.  The claimed decoders 

in the IRA Patents facilitate recovery of the message or information bits from the codewords even 

when the codewords have been corrupted by noise such as the noise that is experienced when 

transmitting a codeword over a wireless communications channel.  These IRA codes are at least as 

effective at correcting errors in transmissions as prior coding techniques such as turbo codes, but 

use simpler encoding and decoding circuitry and provide other technical and practical advantages, 
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allowing for improved transmission rates and performance.  Indeed, the IRA codes disclosed in the 

IRA Patents enable a transmission rate close to the theoretical limit.   

20. The IRA Patents implement these novel IRA codes using novel encoders and 

decoders.  The claims in the IRA Patents enable a person of ordinary skill in the art to implement 

IRA codes using simple circuitry, providing improved performance over prior art encoders and 

decoders. 

21. In September 2000, the inventors of the IRA Patents published a paper regarding 

their invention, titled “Irregular Repeat-Accumulate Codes” for the Second International 

Conference on Turbo Codes (attached hereto as Exhibit E).  This paper has been widely cited by 

experts in the field.   

22. The IRA Patents and publications describing IRA codes have been widely 

recognized and cited by academics and experts in the field of digital communications for their 

improvements over prior art error correction codes.  For example, a paper by Aline Roumy, Souad 

Guemghar, Giuseppe Caire, and Sergio Verdú praising these IRA codes was published in August 

2004 in the IEEE Transactions on Information Theory.  This paper, titled “Design Methods for 

Irregular Repeat-Accumulate Codes,” and attached hereto as Exhibit F, states: 

IRA codes are, in fact, special subclasses of both irregular LDPCs and 
irregular turbo codes. . . . IRA codes are an appealing choice because the 
encoder is extremely simple, their performance is quite competitive with 
that of turbo codes and LDPCs, and they can be decoded with a very-low-
complexity iterative decoding scheme.    

This paper also notes that, four years after publication of the September 2000 paper, the inventors 

of the IRA Patents were the only ones to propose a method to design IRA codes.   

IEEE 802.11 Wi-Fi Standard 

23. The Institute of Electrical and Electronics Engineers (“IEEE”) has developed 

standards for wireless communications over local area networks (also referred to as “Wi-Fi”).  Wi-

Fi usage is widespread in modern electronic products, including smartphones, laptops, routers, 

televisions, cameras, cars, and other devices that have wireless connections. 
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24. The IEEE standard upon which Wi-Fi is based is IEEE 802.11.  The 802.11 

standardization process began in the 1990s and the first version of 802.11 was referred to as IEEE 

802.11-1997.  In the following years, subsequent versions of the 802.11 standard were adopted.    

25. One of the key improvements to the 802.11n version of the standard involved a 

“High Throughput (HT)” mode that is implemented using specific LDPC (Low-Density Parity 

Check) error correction codes.  The same LDPC error correction codes introduced in the 802.11n 

version of the standard are also implemented in the subsequent 802.11ac version (finalized by IEEE 

in 2013 and providing the basis for Wi-Fi 5) and 802.11ax version (nearing finalization and 

providing the basis for Wi-Fi 6) of the standard.  The LDPC codes specified by the 802.11n, 

802.11ac, and 802.11ax standards may be implemented using Caltech’s patented IRA/LDPC 

encoder and decoder technology.  

Caltech’s Case Against Apple and Broadcom 

26. In May 2016, Caltech filed a patent infringement action against Apple and 

Broadcom in the Central District of California involving the ’710, ’032, ’781, and ’833 patents.  On 

January 29, 2020, a jury rendered a verdict finding that Apple’s and Broadcom’s Wi-Fi products 

infringed the ’710, ’032, and ’781 Patents and awarded Caltech over $1.1 billion in damages.  

Caltech v. Broadcom et al., No. 16-cv-3714-GW, Dkt. No. 2114 (C.D. Cal. Jan. 29, 2020).   

27. The trial followed over three years of litigation during which the court dismissed the 

vast majority of Apple’s and Broadcom’s defenses and counter-claims.  For example, the court 

denied Apple’s and Broadcom’s motion for summary judgment seeking to invalidate Caltech’s ’781 

Patent under 35 U.S.C. § 101, and granted Caltech’s motion for summary judgment of validity of 

Caltech’s ’710 and ’032 Patents under 35 U.S.C. § 101.  The court also denied Apple and 

Broadcom’s motions for summary judgment of non-infringement.     

28. In addition, Apple filed ten inter partes review (“IPRs”) petitions with the United 

States Patent and Trademark Office’s Patent Trial and Appeal Board (“PTAB”) seeking to 

invalidate the ’710, ’032, ’781, and ’833 patents, and the PTAB either denied institution or upheld 

the patentability of claims in all ten petitions.    
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Dell 

29. Dell manufactures, uses, imports, offers for sale, and/or sells Wi-Fi products that 

incorporate encoders and/or decoders claimed in the Asserted Patents (“Accused Products”).  The 

Accused Products include, but are not limited to, laptops (e.g., Latitude, Vostro, Inspiron, XPS, G-

Series, Rugged, Chromebook Enterprise, Education, and Alienware), desktops and all-in-ones (e.g., 

OptiPlex, Precision, Vostro, Inspiron, and XPS), tablets and 2-in-1s (e.g., XPS, Latitude, Inspiron, 

Rugged, Chromebook Enterprise, and Education), workstations (e.g., Precision), and thin clients.  

Upon information and belief, the Accused Products are compliant with the 802.11n, 802.11ac, 

and/or 802.11ax standards and the LDPC codes defined in those standards. 

COUNT I 

Infringement of the ’710 Patent  

30. Caltech re-alleges and incorporates by reference the allegations of the preceding 

paragraphs of this Complaint as if fully set forth herein. 

31. In violation of 35 U.S.C. § 271(a), Dell has infringed the ’710 patent by making, 

using, selling, offering for sale, and/or importing into the United States, without authority, the 

Accused Products which practice each and every limitation of at least claim 20 of the ’710 patent.  

Dell has infringed literally and/or under the doctrine of equivalents.   

32. Upon information and belief, the Accused Products comply with the 802.11n, 

802.11ac, and/or 802.11ax standards and the 12 LDPC error correction codes defined in those 

standards.  In addition, upon information and belief, the Accused Products are implemented in a 

manner that not only complies with the 802.11n, 802.11ac, and/or 802.11ax standards, but also 

infringes the ’710 patent.  This is because implementations of the 802.11n, 802.11ac, and/or 

802.11ax standards that infringe the ’710 patent perform substantially fewer computations, have 

substantially more efficient circuitry, use less memory, consume less semiconductor die area, 

consume less power, and are otherwise more efficient and cost effective than implementations that 

do not infringe the ’710 patent.  
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33. The 12 LDPC codes were originally defined in the 802.11n version of the standard 

and include three 1/2 rate, three 2/3 rate, three 3/4 rate, and three 5/6 rate LDPC codes as shown in 

Table 20-14 of the standard below.1 

 
 

34. On information and belief, the Accused Products encode information or message 

bits using an LDPC encoder that supports the 12 LDPC codes defined in the standards.  The LDPC 

encoder encodes the information or message bits to generate a codeword as described in Section 

20.3.11.6.3 of the 802.11n standard shown below:2     

 
1   See IEEE 802.11n-2009 at § 20.3.11.6.2 (emphasis added); see also 802.11-2012 at § 
20.3.11.7.2. 
2   See IEEE 802.11n-2009 at § 20.3.11.6.3(emphasis added); see also IEEE 802.11-2012 at § 
20.3.11.7.3. 
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35. On information and belief, the LDPC encoders in the Accused Products encode 

information or message bits in accordance with the 12 parity-check matrices defined in the 802.11n 

standard.  A parity-check matrix H for each of the 12 block sizes and code rates is defined in Tables 

R.1 to R.3 of the 802.11n.  The parity-check matrix for one of the 12 LDPC codes is shown below.3   

 
*  *  * 

 
 

36. Each parity-check matrix includes a left-hand side that corresponds to information 

or message bits, and a right-hand side that corresponds to parity bits.  In the parity-check matrix 

shown above, the left-hand side that corresponds to information or message bits includes columns 

1-18, and the right-hand side that corresponds to the parity bits includes columns 19-24.  The left-

hand side is structured in a way that corresponds to the use of irregular repetition, scrambling and 

summing in the encoding process, while the right-hand side is structured in a way that corresponds 

to using accumulation in the encoding process.  Further, the left-hand side is structured in a way 

 
3   See IEEE 802.11n-2009 at Annex R, Table R.1; see also IEEE 802.11-2012 at Annex F, Table 
F-1. 
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that corresponds to the use of a low-density generator matrix for performing operations of irregular 

repetition, scrambling and summing.      

37. On information and belief, the LDPC encoders in the Accused Products are 

implemented in a manner that meets each and every limitation of claim 20 of the ’710 patent.  This 

is because implementations of the 802.11n, 802.11ac, and/or 802.11ax standards that infringe claim 

20 of the ’710 patent perform substantially fewer computations, have substantially more efficient 

circuitry, use less memory, consume less semiconductor die area, consume less power and are 

otherwise more efficient and cost effective than implementations that do not infringe this claim.  

The LDPC encoders in the Accused Products are coders.  The LDPC encoders in the Accused 

Products include first coders which are low-density generator matrix coders and correspond to the 

left-hand sides of the parity-check matrices.  The first coders have an input configured to receive a 

stream of bits (e.g., information or message bits).  The first coders repeat the stream of bits 

irregularly and scramble the repeated bits.  The irregular repetition and scrambling that occurs in 

the LDPC encoders in the Accused Products corresponds to the irregular repetition and scrambling 

depicted in the left-hand sides of the parity-check matrices.       

38. On information and belief, the LDPC encoders in the Accused Products include 

second coders which correspond to the right-hand sides of the parity-check matrices.  The second 

coders encode bits output from the first coder at a rate within 10% of one.  The encoding of output 

bits at a rate within 10% of one that occurs in the LDPC encoders in the Accused Products 

corresponds to the accumulation depicted in the right-hand sides of the parity-check matrices.     

39. Dell is not licensed or otherwise authorized to practice the claims of the ’710 patent.  

40. By reason of Dell’s infringement, Caltech has suffered substantial damages.   

41. Caltech is entitled to recover the damages sustained as a result of Dell’s wrongful 

acts in an amount subject to proof at trial. 

42. Caltech has complied with the requirements of 35 U.S.C. § 287(a) at least because 

neither Caltech nor any party that has held a license to the ’710 patent have made, offered for sale, 

or sold any products in the United States subject to the marking requirements of 35 U.S.C. § 287(a). 
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43. Dell’s infringement of the ’710 patent is exceptional and entitles Caltech to 

attorneys’ fees and costs incurred in prosecuting this action under 35 U.S.C. § 285. 

COUNT II 

Infringement of the ’032 Patent  

44. Caltech re-alleges and incorporates by reference the allegations of the preceding 

paragraphs of this Complaint as if fully set forth herein. 

45. In violation of 35 U.S.C. § 271(a), Dell has infringed the ’032 patent by making, 

using, selling, offering for sale, and/or importing into the United States, without authority, the 

Accused Products which practice each and every limitation of at least claim 11 of the ’032 patent.  

Dell has infringed literally and/or under the doctrine of equivalents.   

46. Upon information and belief, the Accused Products comply with the 802.11n, 

802.11ac, and/or 802.11ax standards and the 12 LDPC error correction codes defined in those 

standards.  In addition, upon information and belief, the Accused Products are implemented in a 

manner that not only complies with the 802.11n, 802.11ac, and/or 802.11ax standards, but also 

infringes the ’032 Patent.  This is because implementations of the 802.11n, 802.11ac, and/or 

802.11ax standards that infringe the ’032 patent perform substantially fewer computations, have 

substantially more efficient circuitry, use less memory, consume less semiconductor die area, 

consume less power, and are otherwise more efficient and cost effective than implementations that 

do not infringe the ’032 patent.  

47. The 12 LDPC codes were originally defined in the 802.11n version of the standard 

and include three 1/2 rate, three 2/3 rate, three 3/4 rate, and three 5/6 rate LDPC codes as shown in 

Table 20-14 of the standard below.4 

 
4   See IEEE 802.11n-2009 at § 20.3.11.6.2 (emphasis added); see also 802.11-2012 at § 
20.3.11.7.2. 
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48. On information and belief, the Accused Products encode information or message 

bits using an LDPC encoder that supports the 12 LDPC codes defined in the standards.  The LDPC 

encoder encodes the information or message bits to generate a codeword as described in Section 

20.3.11.6.3 of the 802.11n standard shown below:5     

 
 

 
5   See IEEE 802.11n-2009 at § 20.3.11.6.3(emphasis added); see also IEEE 802.11-2012 at § 
20.3.11.7.3. 
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49. On information and belief, the LDPC encoders in the Accused Products encode 

information or message bits in accordance with the 12 parity-check matrices defined in the 802.11n 

standard.  A parity-check matrix H for each of the 12 block sizes and code rates is defined in Tables 

R.1 to R.3 of the 802.11n.  The parity-check matrix for one of the 12 LDPC codes is shown below.6   

 
*  *  * 

 
 

50. Each parity-check matrix includes a left-hand side that corresponds to information 

or message bits, and a right-hand side that corresponds to parity bits.  In the parity-check matrix 

shown above, the left-hand side that corresponds to information or message bits includes columns 

1-18, and the right-hand side that corresponds to the parity bits includes columns 19-24.  The left-

hand side is structured in a way that corresponds to the use of irregular repetition, scrambling and 

summing in the encoding process, while the right-hand side is structured in a way that corresponds 

to using accumulation in the encoding process.  Further, the left-hand side is structured in a way 

that corresponds to the use of a low-density generator matrix for performing operations of irregular 

repetition, scrambling, and summing.      

51. A Tanner graph can be constructed from any parity-check matrix.  A unique and 

valuable characteristic of IRA codes is apparent in the Tanner graphs for IRA codes.  For example, 

when constructing a Tanner graph from the 12 LDPC parity-check matrices in the 802.11 standard, 

message bits are repeated, different subsets of the information bits are repeated different numbers 

 
6   See IEEE 802.11n-2009 at Annex R, Table R.1; see also IEEE 802.11-2012 at Annex F, Table 
F-1. 
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of times, check nodes are connected to information bits in a random but known pattern, and parity 

bits are connected to check nodes which enforce a constraint that facilitates the determination of 

parity bits.  While this is not true for a generic LDPC code, it is true for the 12 LDPC codes in the 

802.11 standard.     

52. On information and belief, the LDPC encoders in the Accused Products are 

implemented in a manner that meets each and every limitation of claim 11 of the ’032 patent.  This 

is because implementations of the 802.11n, 802.11ac, and/or 802.11ax standards that infringe claim 

11 of the ’032 patent perform substantially fewer computations, have substantially more efficient 

circuitry, use less memory, consume less semiconductor die area, consume less power, and are 

otherwise more efficient and cost effective than implementations that do not infringe this claim.  

The Accused Products are devices that include LDPC encoders.  The LDPC encoders receive a 

collection of message bits and encode the message bits to generate a collection of parity bits.  The 

LDPC encoders in the Accused Products encode the collection of message bits in accordance with 

the Tanner graph depicted in claim 11.  The Tanner graph depicted in claim 11 is a graph 

representing an IRA code as a set of parity-checks where every message bit is repeated, at least two 

different subsets of message bits are repeated a different number of times, and check nodes, 

randomly connected to the repeated message bits, enforce constraints that determine the parity bits.       

53. Dell is not licensed or otherwise authorized to practice the claims of the ’032 patent.  

54. By reason of Dell’s infringement, Caltech has suffered substantial damages.   

55. Caltech is entitled to recover the damages sustained as a result of Dell’s wrongful 

acts in an amount subject to proof at trial. 

56. Caltech has complied with the requirements of 35 U.S.C. § 287(a) at least because 

neither Caltech nor any party that has held a license to the ’032 patent have made, offered for sale, 

or sold any products in the United States subject to the marking requirements of 35 U.S.C. § 287(a). 

57. Dell’s infringement of the ’032 patent is exceptional and entitles Caltech to 

attorneys’ fees and costs incurred in prosecuting this action under 35 U.S.C. § 285. 
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COUNT III 

Infringement of the ’781 Patent 

58. Caltech re-alleges and incorporates by reference the allegations of the preceding 

paragraphs of this Complaint as if fully set forth herein. 

59. In violation of 35 U.S.C. § 271(a), Dell has infringed the ’781 patent through its use 

and testing of the Dell Accused Products.  Through its use and testing of the Dell Accused Products, 

Dell performs each and every limitation of at least claim 13 of the ’781 patent.  Dell has infringed 

literally and/or under the doctrine of equivalents.   

60. Upon information and belief, the Accused Products comply with the 802.11n, 

802.11ac, and/or 802.11ax standards and the 12 LDPC error correction codes defined in those 

standards.  In addition, upon information and belief, the Accused Products are implemented in a 

manner that not only complies with the 802.11n, 802.11ac, and/or 802.11ax standards, but also 

infringes the ’781 Patent.  This is because implementations of the 802.11n, 802.11ac, and/or 

802.11ax standards that infringe the ’781 patent perform substantially fewer computations, have 

substantially more efficient circuitry, use less memory, consume less semiconductor die area, 

consume less power, and are otherwise more efficient and cost effective than implementations that 

do not infringe the ’781 patent.  

61. The 12 LDPC codes were originally defined in the 802.11n version of the standard 

and include three 1/2 rate, three 2/3 rate, three 3/4 rate, and three 5/6 rate LDPC codes as shown in 

Table 20-14 of the standard below.7 

 
7   See IEEE 802.11n-2009 at § 20.3.11.6.2 (emphasis added); see also 802.11-2012 at § 
20.3.11.7.2. 
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62. On information and belief, the Accused Products encode information or message 

bits using an LDPC encoder that supports the 12 LDPC codes defined in the standards.  The LDPC 

encoder encodes the information or message bits to generate a codeword as described in Section 

20.3.11.6.3 of the 802.11n standard shown below:8     

 
 

63. On information and belief, the LDPC encoders in the Accused Products encode 

information or message bits in accordance with the 12 parity-check matrices defined in the 802.11n 

 
8   See IEEE 802.11n-2009 at § 20.3.11.6.3(emphasis added); see also IEEE 802.11-2012 at § 
20.3.11.7.3. 
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standard.  A parity-check matrix H for each of the 12 block sizes and code rates is defined in Tables 

R.1 to R.3 of the 802.11n.  The parity-check matrix for one of the 12 LDPC codes is shown below.9   

 
*  *  * 

 
 

64. Each parity-check matrix includes a left-hand side that corresponds to information 

or message bits, and a right-hand side that corresponds to parity bits.  In the parity-check matrix 

shown above, the left-hand side that corresponds to information or message bits includes columns 

1-18, and the right-hand side that corresponds to the parity bits includes columns 19-24.  The left-

hand side is structured in a way that corresponds to the use of irregular repetition, scrambling and 

summing in the encoding process, while the right-hand side is structured in a way that corresponds 

to using accumulation in the encoding process.  Further, the left-hand side is structured in a way 

that corresponds to the use of a low-density generator matrix for performing operations of irregular 

repetition, scrambling and summing.      

65. On information and belief, the LDPC encoders in the Accused Products are 

implemented in a manner that meets each and every limitation of claim 13 of the ’781 patent.  This 

is because implementations of the 802.11n, 802.11ac, and/or 802.11ax standards that infringe claim 

13 of the ’781 patent perform substantially fewer computations, have substantially more efficient 

circuitry, use less memory, consume less semiconductor die area, consume less power, and are 

otherwise more efficient and cost effective than implementations that do not infringe this claim.  

 
9   See IEEE 802.11n-2009 at Annex R, Table R.1; see also IEEE 802.11-2012 at Annex F, Table 
F-1. 
 

Case 6:20-cv-01042-ADA   Document 77   Filed 01/22/24   Page 17 of 117



SECOND AMENDED COMPLAINT  Page | 18
 

The LDPC encoders perform a method of encoding a signal.  The LDPC encoders receive a block 

of data in the signal to be encoded.  The block of data includes information bits.  The LDPC 

encoders perform an encoding operation using the information bits as an input.  The encoding 

operation includes an accumulation of mod-2 or exclusive-OR sums of bits in subsets of the 

information bits.  The non-null values in each row in the left-hand side of the parity-check matrices 

correspond to the subsets of information bits that are summed.10  The accumulation of the sums of 

bits in subsets of the information bits corresponds to the accumulation operations depicted in the 

left-hand side of the parity-check matrices. 

66. Dell is not licensed or otherwise authorized to practice the claims of the ’781 patent.  

67. By reason of Dell’s infringement, Caltech has suffered substantial damages.   

68. Caltech is entitled to recover the damages sustained as a result of Dell’s wrongful 

acts in an amount subject to proof at trial. 

69. Caltech has complied with the requirements of 35 U.S.C. § 287(a) at least because 

neither Caltech nor any party that has held a license to the ’781 patent have made, offered for sale, 

or sold any products in the United States subject to the marking requirements of 35 U.S.C. § 287(a). 

70. Dell’s infringement of the ’781 patent is exceptional and entitles Caltech to 

attorneys’ fees and costs incurred in prosecuting this action under 35 U.S.C. § 285. 

COUNT IV 

Infringement of the ’833 Patent  

71. Caltech re-alleges and incorporates by reference the allegations of the preceding 

paragraphs of this Complaint as if fully set forth herein. 

72. In violation of 35 U.S.C. § 271(a), Dell has infringed the ’833 patent by making, 

using, selling, offering for sale, and/or importing into the United States, without authority, the 

Accused Products which practice each and every limitation of at least claim 1 of the ’833 patent.  

Dell has infringed literally and/or under the doctrine of equivalents.   

 
10   The null values are represented by “-” in the parity-check matrices.  The non-null values are 
represented by numbers. 
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73. Upon information and belief, the Accused Products comply with the 802.11n, 

802.11ac, and/or 802.11ax standards and the 12 LDPC error correction codes defined in those 

standards.  In addition, upon information and belief, the Accused Products are implemented in a 

manner that not only complies with the 802.11n, 802.11ac, and/or 802.11ax standards, but also 

infringes the ’833 patent.  This is because implementations of the 802.11n, 802.11ac, and/or 

802.11ax standards that infringe the ’833 patent perform substantially fewer computations, have 

substantially more efficient circuitry, use less memory, consume less semiconductor die area, 

consume less power, and are otherwise more efficient and cost effective than implementations that 

do not infringe the ’833 patent.  

74. The 12 LDPC codes were originally defined in the 802.11n version of the standard 

and include three 1/2 rate, three 2/3 rate, three 3/4 rate, and three 5/6 rate LDPC codes as shown in 

Table 20-14 of the standard below.11 

 

 
11   See IEEE 802.11n-2009 at § 20.3.11.6.2 (emphasis added); see also 802.11-2012 at § 
20.3.11.7.2. 
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75. On information and belief, the Accused Products encode information or message 

bits using an LDPC encoder that supports the 12 LDPC codes defined in the standards.  The LDPC 

encoder encodes the information or message bits to generate a codeword as described in Section 

20.3.11.6.3 of the 802.11n standard shown below:12     

 
 

76. On information and belief, the LDPC encoders in the Accused Products encode 

information or message bits in accordance with the 12 parity-check matrices defined in the 802.11n 

standard.  A parity-check matrix H for each of the 12 block sizes and code rates is defined in Tables 

R.1 to R.3 of the 802.11n.  The parity-check matrix for one of the 12 LDPC codes is shown below.13   

 
*  *  * 

 
 

77. Each parity-check matrix includes a left-hand side that corresponds to information 

or message bits, and a right-hand side that corresponds to parity bits.  In the parity-check matrix 

shown above, the left-hand side that corresponds to information or message bits includes columns 

 
12   See IEEE 802.11n-2009 at § 20.3.11.6.3(emphasis added); see also IEEE 802.11-2012 at § 
20.3.11.7.3. 
13   See IEEE 802.11n-2009 at Annex R, Table R.1; see also IEEE 802.11-2012 at Annex F, 
Table F-1. 
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1-18, and the right-hand side that corresponds to the parity bits includes columns 19-24.  The left-

hand side is structured in a way that corresponds to the use of irregular repetition, scrambling and 

summing in the encoding process, while the right-hand side is structured in a way that corresponds 

to using accumulation in the encoding process.  Further, the left-hand side is structured in a way 

that corresponds to the use of a low-density generator matrix for performing operations of irregular 

repetition, scrambling and summing.      

78. On information and belief, the LDPC encoders in the Accused Products are 

implemented in a manner that meets each and every limitation of claim 1 of the ’833 patent.  This 

is because implementations of the 802.11n, 802.11ac, and/or 802.11ax standards that infringe claim 

1 of the ’833 patent perform substantially fewer computations, have substantially more efficient 

circuitry, use less memory, consume less semiconductor die area, consume less power, and are 

otherwise more efficient and cost effective than implementations that do not infringe this claim.  

The LDPC encoders in the Accused Products are an apparatus for performing encoding operations.  

The LDPC encoders in the Accused Products include a first a first set of memory locations to store 

information bits where two or more memory locations of the first set of memory locations are read 

by the permutation module different times from one another.  The LDPC encoders in the Accused 

Products also include a second set of memory locations to store parity bits.  The LDPC encoders in 

the Accused Products further include a permutation module to read a bit from the first set of memory 

locations and combine the read bit to a bit in the second set of memory locations based on a 

corresponding index of the first set of memory locations and a corresponding index of the second 

set of memory locations.  The LDPC encoders in the Accused Products include an accumulator to 

perform accumulation operations on the bits stored in the second set of memory locations.   

79. Dell is not licensed or otherwise authorized to practice the claims of the ’833 patent.  

80. By reason of Dell’s infringement, Caltech has suffered substantial damages.   

81. Caltech is entitled to recover the damages sustained as a result of Dell’s wrongful 

acts in an amount subject to proof at trial. 
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82. Caltech has complied with the requirements of 35 U.S.C. § 287(a) at least because 

neither Caltech nor any party that has held a license to the ’833 patent have made, offered for sale, 

or sold any products in the United States subject to the marking requirements of 35 U.S.C. § 287(a). 

83. Dell’s infringement of the ’833 patent is exceptional and entitles Caltech to 

attorneys’ fees and costs incurred in prosecuting this action under 35 U.S.C. § 285. 

DEMAND FOR JURY TRIAL 

Pursuant to Rule 38 of the Federal Rules of Civil Procedure, Plaintiff hereby demands a 

trial by jury as to all issues so triable. 

PRAYER FOR RELIEF 

WHEREFORE, Plaintiff respectfully prays for the following relief: 

(a) A judgment that Defendants have infringed each and every one of the Asserted 

Patents; 

(b) Damages adequate to compensate Caltech for Defendants’ infringement of the 

Asserted Patents pursuant to 35 U.S.C. § 284; 

(c) Pre-judgment interest;  

(d) Post-judgment interest; 

(e) A declaration that this action is exceptional pursuant to 35 U.S.C. § 285, and an 

award to Caltech of its attorneys’ fees, costs, and expenses incurred in connection with this action; 

and 

(f) Such other relief as the Court deems just and equitable.  
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Irregular Repeat–Accumulate Codes 1

Hui Jin, Aamod Khandekar, and Robert McEliece

Department of Electrical Engineering, California Institute of Technology
Pasadena, CA 91125 USA

E-mail: {hui, aamod, rjm}@systems.caltech.edu

Abstract: In this paper we will introduce an
ensemble of codes called irregular repeat-accumulate
(IRA) codes. IRA codes are a generalization of the
repeat-accumluate codes introduced in [1], and as such
have a natural linear-time encoding algorithm. We
shall prove that on the binary erasure channel, IRA
codes can be decoded reliably in linear time, using
iterative sum-product decoding, at rates arbitrarily
close to channel capacity. A similar result appears
to be true on the AWGN channel, although we have
no proof of this. We illustrate our results with nu-
merical and experimental examples.

Keywords: repeat-accumulate codes, turbo-codes,
low-density parity-check codes, iterative decoding.

1. INTRODUCTION

With the hindsight provided by the past seven
years of research in turbo-codes and low-density parity-
check codes, one is tempted to propose the follow-
ing problem as the final problem for channel coding
researchers: For a given channel, find an ensemble
of codes with (1) a linear-time encoding algorithm,
and (2) which can be decoded reliably in linear time
at rates arbitrarily close to channel capacity. For
turbo-codes, both parallel and serial, (1) holds, but
according to the recent work by Divsalar, Dolinar,
and Pollara [7], on the AWGN channel there ap-
pears to be a gap, albeit usually not a large one,
between channel capacity and the iterative decod-
ing thresholds for any turbo ensemble. For LDPC
codes, the natural encoding algorithm is quadratic
in the block length, and from the work of Richard-
son and Urbanke [2] we know that for regular LDPC
codes, on the binary symmetric and AWGN channels
there is a gap between capacity and the iterative de-
coding thresholds. On the positive side, however,
Luby, Shokrollahi et at. [3], [4], [8], have established
the remarkable fact that on the binary erasure chan-
nel irregular LDPC codes satisfy (2). Recent work
by Richardson, Shokrollahi and Urbanke [5] shows

1This paper is to be presented at the Second International
Conference on Turbo Codes, Brest, France, September 2000.
This research was supported by NSF grant no. CCR-9804793,
and grants from Sony, Qualcomm, and Caltech’s Lee Center
for Advanced Networking.

that on the AWGN channel, irregular LDPC codes
are markedly better than regular ones, but whether
or not they can reach capacity is not yet known. In
summary, as yet there is no known noisy channel for
which the final problem has been solved, although re-
searchers are very close on the AWGN channel and
extremely close on the binary erasure channel.

In this paper, we will introduce a promising class
of codes called irregular repeat-accumulate codes, which
generalizes the repeat-accumulate codes of [1]. After
defining the codes in Section 2, and observing that
they have a simple linear-time encoding algorithm,
in Section 3, using the powerful Richarson-Urbanke
method [2], we will prove rigorously that IRA codes
solve the final problem for the binary erasure chan-
nel. In Section 4, we will discuss, less rigorously,
the performance of IRA codes on the AWGN chan-
nel, and show that their performance is remarkably
good.

2. DEFINTION OF IRA CODES

Figure 1 shows a Tanner graph of an IRA code
with parameters (f1, . . . , fJ ; a), where fi ≥ 0,

∑
i fi =

1 and a is a positive integer. The Tanner graph is
a bipartite graph with two kinds of nodes: variable
nodes (open circles) and check nodes (filled circles).
There are k variable nodes on the left, called informa-
tion nodes; there are r = (k

∑
i ifi)/a check nodes;

and there are r variable nodes on the right, called
parity nodes. Each information node is connected to
a number of check nodes: the fraction of informa-
tion nodes connected to exactly i check nodes is fi.
Each check node is conected to exactly a information
nodes. These connections can made in many ways,
as indicated in Figure 1 by the “arbitrary permuta-
tion” of the ra edges joining information nodes and
check nodes. The check nodes are connected to the
parity nodes in the simple zigzag pattern shown in
the figure.

If the “arbitrary permutation” in Figure 1 is fixed,
the Tanner graph represents a binary linear code
with k information bits (u1, . . . , uk) and r parity bits
(x1, . . . , xr), as follows. Each of the information bits
is associated with one of the information nodes; and
each of the parity bits is associated with one of the
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Figure 1: Tanner graph for IRA code with parame-
ters (f1, . . . , fJ ; a).

parity nodes. The value of a parity bit is determined
uniquely by the condition that the mod-2 sum of the
values of the variable nodes connected to each of the
check nodes is zero. To see this, let us convention-
ally set x0 = 0. Then if the values of the bits on
the ra edges coming out of the permutation box are
(v1, . . . , vra), we have the recursive formula

xj = xj−1 +
a∑

i=1

v(j−1)a+i, (1)

for j = 1, 2, . . . , r. This is in effect the encoding algo-
rithm, and so if a is fixed and n → ∞, the encoding
complexity is O(n).

There are two versions of the IRA code in Fig-
ure 1: the nonsystematic and the systematic verisons.
The nonsystematic version is an (r, k) code, in which
the codeword corresponding to the information bits
(u1, . . . , uk) is (x1, . . . , xr). The systematic version
is a (k + r, k) code, in which the codeword is

(u1, . . . , uk;x1, . . . , xr).

The rate of the nonsystematic code is easily seen to
be

Rnsys =
a∑
i ifi

, (2)

whereas for the systematic code the rate is

Rsys =
a

a +
∑

i ifi
(3)

For example, the original RA codes are nonsys-
tematic IRA codes with a = 1 and exactly one fi

equal to 1, say fq = 1, and the rest zero, in which
case (2) simplifies to R = 1/q. (However, in this
paper we will be concerned almost exclusively with
systematic IRA codes.)

In an iterative sum-product message-passing de-
coding algorithm, all messages are assumed to be log-
likelihood ratios, i.e., of the form m = log(p(0)/p(1)).
The outgoing message from a variable node u to a
check node v represents information about u, and a
message from a check node u to a variable node v
represents information about u. Intially, messages
are sent from variable nodes which represent trans-
mitted symbols.

The outgoing message from a node u to a node v
depends on the incoming messages from all neighbors
w of u except v. If u is a variable message node, this
outgoing message is

m(u → v) =
∑
w �=v

m(w → u) + m0(u), (4)

where m0(u) is the log-likelihood message associated
with u. (If u is not a codeword node, this term is ab-
sent.) If u is a check node the corresponding formula
is [10]

tanh
m(u → v)

2
=

∏
w �=v

tanh
m(w → u)

2
. (5)

3. IRA CODES ON THE BINARY
ERASURE CHANNEL

The sum-product algorithm defined in equations (4)
and (5) simplifies considerably on the binary erasure
channel (BEC). The BEC is a binary input channel
with three output symbols, a 0, a 1 and “erasure.”
The input symbol is received as an erasure with prob-
ability p and is received correctly with probability
1− p. It is important to note that no errors are ever
made on this channel.

It is not difficult to see that the messages defined
in (4) and (5) can assume only three values on the
BEC, viz. +∞, −∞ or 0, corresponding to a vari-
able value 0, 1, or “unknown.” No errors can occur
during the running of the algorithm; if a message is
±∞, the corresponding variable is guaranteed to be
0 or 1, respectively. The operations at the nodes in
the graph given by eqns (4) and (5) can be stated
much more simply and intutively in this case. At a
variable node, the outgoing message is equal to any
non-erasure incoming message, or an erasure if all
incoming messages are erasures. At a check node,
the outgoing message is an erasure if any incoming
message is an erasure, and otherwise is the binary
sum of all incoming messages.
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3.1. Notation

In this section and the next, it will be convenient
to use a slightly different representation for an IRA
code than the one used in Section 2. Firstly, we will
begin with the assumption that the degrees of both
the information nodes and the check nodes are non-
constant, though we will soon restrict attention to
the “right-regular” case, in which the check nodes
have constant degree.

Secondly, let λi be the fraction of edges between
the information and the check nodes that are adja-
cent to an information node of degree i, and let ρi

be the fraction of such edges that are adjacent to
a check node of degree i + 2 (i.e. one which is ad-
jacent to i information nodes). We will use these
edge fractions λi and ρi to represent the IRA code
rather than the corresponding node fractions. We
define λ(x) =

∑
i λix

i−1 and ρ(x) =
∑

i ρix
i−1 to be

the generating functions of these sequences. The pair
(λ, ρ) is called a degree distribution. It is quite easy to
convert between the two representations. We demon-
strate the conversion with the information node de-
grees. Let the fi’s be as defined in Section 2 and let
L(x) =

∑
i fix

i. Then we have

fi =
λi/i∑
j λj/j

, (6)

L(x) =
∫ x

0

λ(t)dt/

∫ 1

0

λ(t)dt. (7)

The rate of the systematic IRA code (we shall be
dealing only with these) given by this degree distri-
bution is given by

Rate =

(
1 +

∑
j ρj/j∑
j λj/j

)−1

(8)

(This is an easy exercise. For a proof, see [8].)

3.2. Fixed point analysis of iterative
decoding

In [2], it was shown that if for a code ensemble,
the probability of the depth-l neighborhood of an edge
(in the Tanner graph) being cycle-free goes to 1 as
the length of the code goes to infinity (we will call
this condition the cycle-free condition), then density
evolution gives an accurate estimate of the bit error
rate after l iterations, again as the length of the codes
goes to infinity. In density evolution, we evolve the
probability density of the messages being passed ac-
cording to the operations being performed on them,
assuming that all incoming messages are indepen-
dent (which is true if the depth-l neighbourhood is
tree-like). The cycle-free condition does indeed hold

for IRA codes. The proof of this fact is almost ex-
actly the same as in the irregular LDPC codes case,
which was done in [2].

Now, in the case of the erasure channel, we have
seen that the messages are only of three types, so in
effect we have a discrete density function, and the
probability of error is merely the probability of era-
sure. With this in mind, we will now study the evolu-
tion of the erasure probability, and derive conditions
which guarantee that it goes to zero as the number
of iterations goes to infinity. Under these conditions
iterative decoding will be successful in the sense of
[2], i.e., it will achieve arbitrarily small BERs, given
enough iterations and long enough codes.

Let p be the channel probability of erasure. We
will iterate the probability of erasure along the edges
of the graph during the course of the algorithm. Let
x0 be the probability of erasure on an edge from an
information node to a check node, x1 the probability
of erasure on an edge from a check node to a parity
node, x2 the probability of erasure on an edge from
a parity node to a check node, and x3 the probabil-
ity of erasure on an edge from a check node to an
information node. The initial probability of erasure
on the message bits is p.

We now assume that we are at a fixed point of
the decoding algorithm and solve for x0. We get the
following equations:

x1 = 1 − (1 − x2)R(1 − x0), (9)
x2 = px1, (10)
x3 = 1 − (1 − x2)2ρ(1 − x0), (11)
x0 = pλ(x3). (12)

where R(x) is the polynomial in which the coefficient
of xi denotes the fraction of check nodes of degree i.
R(x) is given by (cf. eq. (7))

R(x) =

∫ x

0
ρ(t)dt∫ 1

0
ρ(t)dt

(13)

We eliminate x1 from the first two of these equations
to get x2 in terms of x0 and then keep substituting
forwards to get an equation purely in x0, henceforth
denoted by x. We thereby obtain the following equa-
tion for a fixed point of iterative decoding:

pλ

(
1 −

[
1 − p

1 − pR(1 − x)

]2

ρ(1 − x)

)
= x. (14)

If this equation has no solution in the interval (0, 1],
then iterative decoding must converge to probability
of erasure zero. Therefore, if we have
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pλ

(
1 −

[
1 − p

1 − pR(1 − x)

]2

ρ(1 − x)

)
< x, ∀x �= 0.

(15)
then in the sense of [2], iterative decoding is success-
ful.

3.3. Capacity-achieving sequences of
degree distributions

We will now derive sequences of degree distribu-
tions that can be shown to achieve channel capacity.
First, we restrict attention to the case ρ(x) = xa−1

for some a ≥ 1, since it turns out that we can achieve
capacity even with this restriction. In this case,
R(x) = xa, and the condition for convergence to zero
BER now becomes

pλ

(
1 −

[
1 − p

1 − p(1 − x)a

]2

(1 − x)a−1

)
< x, ∀x �= 0

(16)
We now make the following new definitions

fp(x)
�
= 1 −

[
1 − p

1 − p(1 − x)a

]2

(1 − x)a−1(17)

hp(x)
�
= 1 −

[
1 − p

1 − p(1 − x)a

]2

(1 − x)a (18)

gp(x)
�
= h−1

p (x) (19)

Notice that fp(x), hp(x) and gp(x) are all mono-
tonic functions in [0, 1] and attain the values 0 at 0
and 1 at 1. In addition, hp(x) can be inverted by
hand (by making the substitution (1− x)a = y) and
it can be shown that gp(x) has a power series ex-
pansion around 0 with non-negative coefficients. Let
this expansion be gp(x) =

∑
i gp,ix

i.
Now, the condition (16) can now be rewritten as

pλ(fp(x)) < x, ∀x �= 0 (20)

which can be rewritten as

λ(x) <
f−1

p (x)
p

(21)

We make the following choice of λ(x):

λ(x) =
1
p

(
N−1∑
i=1

gp,ix
i + εxN

)
(22)

where 0 < ε < gp,N and
∑N−1

i=1 gp,i + ε = p. Such a
choice of N and ε exists and is unique since the gp,i’s
are non-negative and

∑∞
i=1 gp,i = gp(1) = 1. For this

choice of λ(x), we have

pλ(x) < gp(x) = h−1
p (x) < f−1

p (x) ∀x �= 0 (23)

where the last inequality follows because fp(x) <
hp(x) ∀x �= 0.

Thus, the condition (21) for BER going to zero
is satisfied and the degree distributions we have thus
defined yield codes with thresholds that are greater
than or equal to p. We now wish to compute the
rate of these codes in the limit as a → ∞ to show
that they achieve channel capacity. The rate of the
code is given by eq. (8) which simplifies to (1 +
(a

∑
i λi/i)−1)−1 in the right-regular case. Now,

lim
a→∞ a

∑
i

λi

i
= lim

a→∞ a

(
N−1∑
i=1

gp,i

i
+

ε

N

)
(24)

We also have

lim
a→∞ a

∞∑
i=N

gp,i

i
≤ lim

a→∞
a

N

∞∑
i=N

gp,i ≤ lim
a→∞

a

N
= 0

(25)
where the last equality is a property of the function
gp(x) and is also proved by manual inversion of hp(x).
We therefore have

lim
a→∞ a

∑
i

λi

i
= lim

a→∞ a

∞∑
i=1

gp,i

i

= lim
a→∞ a

∫ 1

0

gp(x)dx

= a

(
1 −

∫ 1

0

hp(x)dx

)

= a

∫ 1

0

(
1 − p

1 − pxa

)2

xadx.

The integrand on the right can be expanded in a
power series with non-negative coefficients, with the
first non-zero coefficient being that of xa. Keeping
in mind that we are integrating this power series, it
is easy to see that

a

a + 1

∫ 1

0

(
1 − p

1 − pxa

)2

xa−1dx

< 1 −
∫ 1

0

hp(x)dx (26)

<

∫ 1

0

(
1 − p

1 − pxa

)2

xa−1dx.

Both bounds in the above equation can be computed
easily and both tend to (1−p)/p in the limit of large
a. Plugging this result into the formula for the rate,
we finally get that the rate tends to 1−p in the limit
of large a, which is indeed the capacity of the BEC.

Thus the sequence of degree distributions given
in eq. (22) does indeed achieve channel capacity.
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3.4. Some numerical results

We have seen that the condition for BER go-
ing to zero at a channel erasure probability of p is
pλ(x) < f−1

p (x) ∀x �= 0. We later enforced a stronger
condition, namely pλ(x) < h−1

p (x) = gp(x) ∀x �= 0
and derived capacity-chieving degree sequences sat-
isfying this condition. The reason we needed to en-
force the stronger condition was that h−1

p (x) = gp(x)
has non-negative power-series coefficients, while the
same cannot be said for f−1

p (x). However, from (26)
we see that enforcing this stronger condition costs us
a factor of 1−a/(a+1) = 1/(a+1) in the rate which
is very large for values of a that are of interest, and
therefore the resulting codes are not very good.

If, however, f−1
p (x) were to have non-negative

power series coefficients, then we could use it to de-
fine a degree distribution and we would no longer lose
this factor of 1/(a + 1). We have found through di-
rect numerical computation in all cases that we tried,
that enough terms in the beginning of this power se-
ries are non-negative to enable us to define λ(x) by
an equation analogous to eq. (22), replacing gp(x)
by f−1

p (x). Of course, the resulting code is not the-
oretically guaranteed to have a threshold ≥ p, but
numerical computation shows that the threshold is
either equal to or very marginally less than p.

This design turns out to yield very powerful codes,
in particular codes whose performance is in every
way comparable to the irregular LDPC codes listed
in [8] as far as decoding performance is concerned.
The performance of some of these distributions is
listed in Table 1. The threshold values p are the
same as those in [8] for corresponding values of a
(IRA codes with right degree a + 2 should be com-
pared to irregular LDPC codes with right degree a,
so that the decoding complexity is about the same),
so as to make comparison easy. The codes listed in
[8] were shown to have certain optimality properties
with respect to the tradeoff between 1 − δ/(1 − R)
(distance from capacity) and a (decoding complex-
ity), so it is very heartening to note that the codes
we have designed are comparable to these.

We end this section with a brief discussion of the
case a = 1. In this case, it turns out that f−1

p (x)
does indeed have non-negative power-series coeffi-
cients. The resulting degree sequences yield codes
that are better than conventional RA codes at small
rates. An entirely similar exercise can be carried out
for the case of non-systematic RA codes with a = 1
and the codes resulting in this case are significantly
better than conventional RA codes for most rates.
However, non-systematic RA codes turn out to be
useless for higher values of a, as can be seen by man-
ually following the decoding algorithm for one iter-
ation, which shows that decoding does not proceed
at all. For this reason all the preceding analysis was

Table 1: Performance of some codes designed using
the procedure described in Section 3.4. at rates close
to 2/3 and 1/2. δ is the code threshold (maximum
allowable value of p), N the number of terms in λ(x),
and R the rate of the code.

a δ N 1 − R δ/(1 − R)
4 0.20000 1 0.333333 0.6000
5 0.23611 3 0.317101 0.7448
6 0.28994 6 0.329412 0.8802
7 0.31551 11 0.336876 0.9366
8 0.32024 16 0.333850 0.9592
9 0.32558 26 0.334074 0.9744
4 0.48090 13 0.502141 0.9577
5 0.49287 28 0.502225 0.9814

performed for systematic RA codes.

4. IRA CODES ON THE AWGN
CHANNEL

In this section, we will consider the behavior of
IRA codes on the AWGN channel. Here there are
only two possible inputs, 0 and 1, but the output
alphabet is the set of real numbers: if the x is the
input, then the output is y = (−1)x + z, where z
is a mean zero, variance σ2 Gaussian random vari-
able. For a given noise variance σ2, our objective
will be to find a left degree sequence λ(x) such that
the ensemble message error probability approaches
zero, while the rate is as large as possible. Unlike
the BEC, where we deal only with probabilities, in
the case of the AWGN we must deal with probability
densities. This complicates the analysis, and forces
us to resort to approximate design methods.

4.1. Gaussian Approximation

Wiberg [9] has shown that the messages passed in
iterative decoding on the AWGN channel can be well
approximated by Gaussian random variables, pro-
vided the messages are in log-likelihood ratio form.
In [6], this approximation was used to design good
LDPC codes for the AWGN channel.

In this subsection, we use this Gaussian approx-
imation to design good IRA codes for the AWGN
channel. Specifically, we approximate the messages
from check nodes to variable nodes (both informa-
tion and parity) as Gaussian at every iteration. For a
variable node, if all the incoming messages are Gaus-
sian, then all the outgoing messages are also Gaus-
sian because of (4). A Gaussian distribution f(x) is
called consistent [5] if f(x) = f(−x)ex for ∀x ≤ 0.
The consistency condition implies that the mean and
variance satisfy σ2 = 2μ. For the sum-product algo-
rithm, it has been shown [2] that consistency is pre-
served at message updates of both the variable and
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check nodes. Thus if we assume Gaussian messages,
and require consistency, we only need to keep track
of the means. To this end, we define a consistent
Gaussian density with mean μ to be

Gμ(z) =
1√
4πμ

e−(z−μ)2/4μ. (27)

The expected value of tanh z
2 for a consistent Gaus-

sian distributed random variable z with mean μ is
then

E[tanh
z

2
] =

∫ +∞

−∞
Gμ(z) tanh

z

2
dz

�
= φ(μ). (28)

It is easy to see that φ(u) is a monotonic increas-
ing function of u; we denote its inverse function by
φ(−1)(y). Let μ

(l)
L and μ

(l)
R be the means of the mes-

sage from check nodes to variable nodes on the left
(i.e., information nodes) and on the right (i.e., par-
ity nodes) at the lth iteration. We want to obtain
expressions for μ

(l+1)
L and μ

(l+1)
R in terms of μ

(l)
L and

μ
(l)
R . A message from a degree-i information node to

a check node at the lth iteration, is Gaussian with
mean (i − 1)μ(l)

L + μo, where μo is the mean of mes-
sage mo in (4). Hence if vL denotes the message on
a randomly selected edge from an information node
to a check node, the density of vL is

J∑
i=1

λiG(i−1)μ
(l)
L +μo

(z). (29)

From (29) and (28) we obtain:

E[tanh
vL

2
] =

J∑
i=1

λiφ((i − 1)μ(l)
L + μo). (30)

Similarly, if vR denotes the message on a ran-
domly selected edge from a parity node to a check
node,

E[tanh
vR

2
] = φ(μ(l)

R + μo). (31)

Because of (5) we have

E[tanh
m(u → v)

2
] =

∏
w �=v

E[tanh
m(w → u)

2
]. (32)

Denote a message from a check node to an informa-
tion node, resp. parity node, by uL, resp, uR. Re-
placing E[tanh m(w→u)

2 ] with the right side of (30)
or (31) depending upon whether the message comes
from the left or right, (32) implies:

E[tanh
uL

2
] = E[tanh

vL

2
]a−1E[tanh

vR

2
]2

= (
J∑

i=1

λiφ((i − 1)μ(l)
L + μo))a−1(φ(μ(l)

R + μo))2,

E[tanh
uR

2
] = E[tanh

vL

2
]aE[tanh

vR

2
]

= (
J∑

i=1

λiφ((i − 1)μ(l)
L + μo))aφ(μ(l)

R + μo).

Using the definition of φ(μ) in (28), we thus have the
following recursion for μ

(l)
L and μ

(l)
R :

φ(μ(l+1)
L ) = (

J∑
i=1

λiφ((i − 1)μ(l)
L + μo))a−1 ×

(φ(μ(l)
R + μo))2, (33)

φ(μ(l+1)
R ) = (

J∑
i=1

λiφ((i − 1)μ(l)
L + μo))a ×

φ(μ(l)
R + μo). (34)

In order to have arbitrary small bit error probabil-
ity, the means μ

(l)
L and μ

(l)
R should approach infinity

as l approaches infinity. In the next subsection, we
derive a sufficient condition for this.

4.2. Fixed point analysis

We now assume that iterative dedoding has reached
a fixed point of (33) and (34), i.e., μ

(l+1)
L = μ

(l)
L = μL

and μ
(l+1)
R = μ

(l)
R = μR. Denote

∑J
i=1 λiφ((i−1)μL+

μo) by x. From (30) we can see that 0 < x < 1 and
x → 1 if and only if μL → ∞. From (34) it’s easy
to show that μR is a function of x, denoted by f ,
i.e., μR = f(x). Then, dividing (33) by the square
of (34) gives us:

φ(μL) = φ2(μR)/xa+1 = φ2(f(x))/xa+1. (35)

Now replacing μL with φ(−1)(φ2(f(x))/xa+1) into
the definition of x, we obtain the following equation
for the fixed point x:

x =
J∑

i=1

λiφ(μo + (i − 1)φ(−1)(
φ2(f(x))

xa+1
)). (36)

If this equation doesn’t have a solution in the in-
terval [0, 1], then the decoding bit error probability
converges to zero. Therefore, if we have

F (x)
�
=

J∑
i=1

λiφ(μo + (i − 1)φ(−1)(
φ2(f(x))

xa+1
)) > x,

(37)
for any x ∈ [x0, 1), where x0 is the value of x at the
first iteration, then (the Gaussian approximation to)
iterative decoding is successful.

Since the rate of the code is given by (cf. (8)):∑
i λi/i

1/a +
∑

i λi/i
, (38)
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to maximize the rate, we should maximize
∑

i λi/i.
Thus, under the Gaussian approximation, the prob-
lem of finding a good degree sequence for IRA codes
is converted to the following linear programming prob-
lem:
Linear Programming Problem. Maximize

J∑
i=1

λi/i, (39)

under the condition

F (x) > x, ∀x ∈ [x0, 1]. (40)

We have designed some degree sequences for IRA
codes using this linear programming methodology.
The results are presented in Tables 2 (code rate ≈
1/3) and 3 (code rate ≈ 1/2). After using the heuris-
tic Gaussian approximation method to design the de-
gree sequences, we used exact density evolution to
determine the actual noise threshold. (In every case,
the true iterative decoding threshold was better than
the one predicted by the Gaussian approximation.)

a 2 3 4
λ2 0.139025 0.078194 0.054485
λ3 0.222155 0.128085 0.104315
λ5 0.160813
λ6 0.638820 0.036178 0.126755
λ10 0.229816
λ11 0.016484
λ12 0.108828
λ13 0.487902
λ14

λ16

λ27 0.450302
λ28 0.017842
rate 0.333364 0.333223 0.333218
σGA 1.1840 1.2415 1.2615
σ∗ 1.1981 1.2607 1.2780

( Eb

N0
)∗(dB) 0.190 -0.250 -0.371

S.L. (dB) -0.4953 -0.4958 -0.4958

Table 2: Good degree sequences yielding codes of
rate approximately 1/3 for the AWGN channel and
with a = 2, 3, 4. For each sequence the Gaussian ap-
proximation noise threshold, the actual sum-product
decoding threshold, and the corresponding ( Eb

N0
)∗ in

dB are given. Also listed is the Shannon limit (S.L.)

For example, consider the “a = 3” column in Table 2.
We adjust Gaussian approximation noise threshold

σGA to be 1.2415 to have the returned optimal se-
quence having rate 0.333223. Then applying the
exact density evolution program on this code, we
obtain the actual sum-product decoding threshold
σ∗ = 1.2607, which corresponds to Eb/N0 = −0.250
dB. This should be compared to the Shannon limit
for the ensemble of all linear codes of the same rate,
which is −0.4958 dB. As we increase the parame-
ter a, the ensemble improves. For a = 4, the best
code we have found has iterative decoding threshold
Eb/N0 = −0.371 dB, which is only 0.12 dB above
the Shannon limit.

The above analysis is for bit error probability. In
order to have zero word error probability, it is nec-
essary to have λ2 = 0. (This can be proved by the
following argument: if λ2 > 0, then in the ensemble,
as n → ∞, the average number of weight 2 codewords
is bounded away from zero. Hence even a maximum-
likelihood decoder would have non-zero decoding er-
ror probability.) In Table 3, we compare the noise
thresholds of codes with and without λ2 = 0.

a 8 8
λ2 0.0577128
λ3 0.252744 0.117057
λ7 0.2189922
λ8 0.0333844
λ11 0.081476
λ12 0.327162
λ18 0.2147221
λ20 0.0752259
λ46 0.184589
λ48 0.154029
λ55 0.0808676
λ58 0.202038
rate 0.50227 0.497946
σ∗ 0.9589 0.972

( Eb

N0
)∗(dB) 0.344 0.266

Shannon limit 0.197 0.178

Table 3: Two degree sequences yielding codes of
rate ≈ 1/2 with a = 8. For each sequence, the ac-
tual sum-product decoding threshold, and the corre-
sponding ( Eb

N0
)∗ in dB are given. Also listed is the

Shannon limit.

We chose rate one-half because we wanted to com-
pare our results with the best irregular LDPC codes
obtained in [5]. Our best IRA code has threshold
0.266 dB, while the best rate one-half irregular LDPC
code found in [5] has threshold 0.25 dB. These two
codes have roughly the same decoding complexity,
but unlike LDPC codes, IRA codes have a simple
linear encoding algorithm.
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4.3. Simulation Results

We simulated the rate one-half code with λ2 =
0 in Table 3. Figure 2 shows the performance of
that particular code, with information block lengths
103, 104, and 105. For comparison, we also show the
performance of the best known rate 1/2 turbo code
for the same block length.

0 0.5 1 1.5 2 2.5
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10
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10
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SNR (dB)

B
E

R

n=1000

n=10000

n=100000

IRA code
Turbo code

Asymptotic Threshold 
        0.344 dB

Figure 2: Comparison between turbo codes (dashed
curves) and IRA codes (solid curves) of lengths n =
103, 104, 105. All codes are of rate one-half.

5. CONCLUSIONS

We have introduced a class of codes, the IRA
codes, that combines many of the favorable attributes
of turbo codes and LDPC codes. Like turbo codes
(and unlike LDPC codes), they can be encoded in
linear time. Like LDPC codes (and unlike turbo
codes), they are amenable to an exact Richardson-
Urbanke style analysis. In simulated performance
they appear to be slightly superior to turbo codes of
comparable complexity, and just as good as the best
known irregular LDPC codes. In our opinion, the im-
portant open problem is to prove (or disprove) that
IRA codes can be decoded reliably in linear time at
rates arbitrarily close to channel capacity. We know
this to be true for the binary erasure channel, but for
no other channel model. If this should turn out ot
be true, we would argue that IRA codes definitively
solve the problem posed implicitly by Shannon in
1948. If it is not true, then researchers should search
for an even better class of code ensembles.
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Design Methods for Irregular Repeat–Accumulate
Codes

Aline Roumy, Member, IEEE, Souad Guemghar, Student Member, IEEE, Giuseppe Caire, Senior Member, IEEE,
and Sergio Verdú, Fellow, IEEE

Abstract—We optimize the random-like ensemble of irregular
repeat–accumulate (IRA) codes for binary-input symmetric
channels in the large block-length limit. Our optimization tech-
nique is based on approximating the evolution of the densities
(DE) of the messages exchanged by the belief-propagation (BP)
message-passing decoder by a one-dimensional dynamical system.
In this way, the code ensemble optimization can be solved by
linear programming. We propose four such DE approximation
methods, and compare the performance of the obtained code
ensembles over the binary-symmetric channel (BSC) and the
binary-antipodal input additive white Gaussian noise channel
(BIAWGNC). Our results clearly identify the best among the
proposed methods and show that the IRA codes obtained by these
methods are competitive with respect to the best known irregular
low-density parity-check (LDPC) codes. In view of this and the
very simple encoding structure of IRA codes, they emerge as
attractive design choices.

Index Terms—Belief propagation (BP), channel capacity, den-
sity evolution, low-density parity-check (LDPC) codes, stability,
threshold, turbo codes.

I. INTRODUCTION

S INCE the discovery of turbo codes [1], there have been sev-
eral notable inventions in the field of random-like codes.

In particular, the rediscovery of the low-density parity-check
(LDPC) codes, originally proposed in [2], the introduction of
irregular LDPCs [3], [4], and the introduction of the repeat-ac-
cumulate (RA) codes [5].

In [3], [4], irregular LDPCs were shown to asymptotically
achieve the capacity of the binary erasure channel (BEC) under
iterative message-passing decoding. Although the BEC is the
only channel for which such a result currently exists, irreg-
ular LDPC codes have been designed for other binary-input
channels (e.g., the binary-symmetric channel (BSC), the
binary-antipodal input additive white Gaussian noise channel
(BIAWGNC) [6], and the binary-input intersymbol interference
(ISI) channel [7]–[9]) and have shown to achieve very good
performance.

First attempts to optimize irregular LDPC codes ([10] for the
BEC and other channels [11]) with the density evolution (DE)
technique computes the expected performance for a random-like
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code ensemble in the limit of infinite code block length. In order
to reduce the computational burden of ensemble optimization
based on the DE, faster techniques have been proposed, based
on the approximation of the DE by a one-dimensional dynam-
ical system (recursion). These techniques are exact only for the
BEC (for which DE is one-dimensional). The most popular tech-
niques proposed so far are based on the Gaussian approximation
(GA) of messages exchanged in the message-passing decoder.
GA in addition to the symmetry condition of message densi-
ties implies that the Gaussian density of messages is expressed
by a single parameter. Techniques differ in the parameter to be
tracked and in the mapping functions defining the dynamical
system [12]–[18].

The introduction of irregular LDPCs motivated other
schemes such as irregular RA (IRA) [19], for which similar
results exist (achievability of the BEC capacity) and irregular
turbo codes [20]. IRA codes are, in fact, special subclasses
of both irregular LDPCs and irregular turbo codes. In IRA
codes, a fraction of information bits is repeated times, for

. The distribution

is referred to as the repetition profile, and it is kept as a degree
of freedom in the optimization of the IRA ensemble. After the
repetition stage, the resulting sequence is interleaved and input
to a recursive finite-state machine (called accumulator) which
outputs one bit for every input symbols, where is referred to
as grouping factor and is also a design parameter.

IRA codes are an appealing choice because the encoder is
extremely simple, their performance is quite competitive with
that of turbo codes and LDPCs, and they can be decoded with a
very-low-complexity iterative decoding scheme.

The only other work that has proposed a method to design
IRA codes is [19], [21] where the design focuses on the
choice of the grouping factor and the repetition profile. The
recursive finite-state machine is the simplest one which gives
full freedom to choose any rational number between and

as the coding rate. We will also restrict our study to IRAs
that use the same simple recursion of [19], although it might
be expected that better codes can be obtained by including
the finite-state machine as a degree of freedom in the overall
ensemble optimization. The method used in [19] to choose
the repetition profile was based on the infinite-block-length
GA of message-passing decoding proposed in [14]. In this
work, we propose and compare four low-complexity ensemble

0018-9448/04$20.00 © 2004 IEEE
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Fig. 1. IRA encoder.

optimization methods. Our approach to design IRAs is based
on several tools that have been noticed recently: the EXtrinsic
mutual Information Transfer (EXIT) function and its analyt-
ical properties [12], [22], [23], reciprocal channel (duality)
approximation [22], [24], and the nonstrict convexity of mutual
information.

The rest of the paper is organized as follows. Section II
presents the systematic IRA encoder and its related decoder: the
belief-propagation (BP) message-passing algorithm. Existing
results on the analysis of the decoder (i.e., DE technique) are
summarized and applied to the IRA code ensemble. This leads
to a two-dimensional dynamical system whose state is defined
on the space of symmetric distributions, for which we derive a
local stability condition. In Section III, we propose a general
framework in order to approximate the DE (defined on the
space of distributions) by a standard dynamical system defined
on the reals. We propose four low-complexity ensemble opti-
mization methods as special cases of our general framework.
These methods differ by the way the message densities and the
BP transformations are approximated:

1) GA, with reciprocal channel (duality) approximation;
2) BEC approximation, with reciprocal channel approxima-

tion;
3) GA, with EXIT function of the inner decoder;
4) BEC approximation, with EXIT function of the inner de-

coder.

All four methods lead to optimization problems solvable by
linear programming. In Section IV, we show that the first pro-
posed method yields a one-dimensional DE approximation with
the same stability condition as the exact DE, whereas the exact
stability condition must be added to the ensemble optimization
as an explicit additional constraint for the second method. Then,
we show that, in general, the GA methods are optimistic, in the
sense that there is no guarantee that the optimized rate is below
capacity. On the contrary, we show that for the BEC approxima-
tion methods rates below capacity are guaranteed. In Section V,
we compare our code optimization methods by evaluating their
iterative decoding threshold (evaluated by the exact DE) over
the BIAWGNC and the BSC.

II. ENCODING, DECODING, AND DENSITY EVOLUTION

Fig. 1 shows the block diagram of a systematic IRA encoder.
A block of information bits is encoded
by an (irregular) repetition code of rate . Each bit is re-
peated times, where is a sequence of integers
such that and ( is the maximum
repetition factor). The block of repeated symbols is interleaved,

Fig. 2. Tanner graph of an IRA code.

and the resulting block is encoded
by an accumulator, defined by the recursion

(1)

with initial condition , where
is the accumulator output block corresponding to the input

, is a given integer (referred to as grouping factor),
and we assume that is an integer. Finally, the code-
word corresponding to the information block is given by

.
The transmission channel is memoryless, binary-input, and

symmetric-output, i.e., its transition probability sat-
isfies

(2)

where indicates a reflection of the output alphabet.1

IRA codes are best represented by their Tanner graph [25]
(see Fig. 2). In general, the Tanner graph of a linear code is a
bipartite graph whose node set is partitioned into two subsets:
the bitnodes, corresponding to the coded symbols, and the chec-
knodes, corresponding to the parity-check equations that code-
words must satisfy. The graph has an edge between bitnode
and checknode if the symbol corresponding to participates
in the parity-check equation corresponding to .

Since the IRA encoder is systematic (see Fig. 1), it is useful to
further classify the bitnodes into two subclasses: the information
bitnodes, corresponding to information bits, and the parity bitn-
odes, corresponding to the symbols output by the accumulator.
Those information bits that are repeated times are represented
by bitnodes with degree , as they participate in parity-check
equations. Each checknode is connected to information bit
nodes and to two parity bitnodes and represents one of the equa-
tions (for a particular ) (1). The connections between checkn-
odes and information bitnodes are determined by the interleaver
and are highly randomized. On the contrary, the connections be-
tween checknodes and parity bitnodes are arranged in a regular

1If the output alphabet is the real line, then�� coincides with ordinary reflec-
tion with respect to the origin. Generalizations to other alphabets are immediate.
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zig-zag pattern since, according to (1), every pair of consecutive
parity bits are involved in one parity-check equation.

A random IRA code ensemble with parameters and
(information) block length is formed by all graphs of the form
of Fig. 2 with information bitnodes, grouping factor , and

edges connected to information bitnodes of degree , for
. The sequence of nonnegative coefficients

such that is referred to as the degree distribu-
tion of the ensemble. The probability distribution over the code
ensemble is induced by the uniform probability over all inter-
leavers (permutations) of elements.

The information bitnodes average degree is given by
. The number of edges connecting information

bitnodes to checknodes is . The number of
parity bitnodes is . Finally, the code rate
is given by

(3)

Under the constraints and , we get
. Therefore, the highest rate with parameter set to is

. This motivates the use of in order to get higher rates.

A. Belief Propagation Decoding of IRA Codes

In this work, we consider BP message-passing decoding
[26]–[28]. In message-passing decoding algorithms, the graph
nodes receive messages from their neighbors, compute new
messages, and forward them to their neighbors. The algorithm
is defined by the code Tanner graph, by the set on which
messages take on values, by the node computation rules, and
by the node activation scheduling.

In BP decoding, messages take on values in the extended real
line . The BP decoder is initialized by setting all
messages output by the checknodes equal to zero. Each bitnode

is associated with the channel observation message (log-like-
lihood ratio)

(4)

where is the channel output corresponding to the transmis-
sion of the code symbol .

The BP node computation rules are given as follows. For a
given node, we identify an adjacent edge as outgoing and all
other adjacent edges as incoming. Consider a bitnode of de-
gree and let denote the messages received from
the incoming edges and the associated channel obser-
vation message. The message passed along the outgoing
edge is given by

(5)

Consider a checknode of degree and let de-
note the messages received from the incoming edges. The
message passed along the outgoing edge is given by

(6)

where the mapping is defined by [11]

(7)

and where the sign function is defined as [11]

if
with probability if
with probability if
if .

Since the code Tanner graph has cycles, different schedulings
yield in general nonequivalent BP algorithms. In this work, we
shall consider the following “classical” schedulings.

• LDPC-like scheduling [19]. In this case, all bitnodes and
all checknodes are activated alternately and in parallel.
Every time a node is activated, it sends outgoing messages
to all its neighbors. A decoding iteration (or “round” [31])
consists of the activation of all bitnodes and all checkn-
odes.

• Turbo-like scheduling. Following [29], a good de-
coding scheduling consists of isolating large trellis-like
subgraphs (or, more generally, normal realizations in
Forney’s terminology) and applying locally the forward–
backward Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm
[30] (that implements efficiently the BP algorithm on
normal cycle-free graphs), as done for turbo codes [1].
A decoding iteration consists of activating all the in-
formation bitnodes in parallel (according to (5)) and of
running the BCJR algorithm over the entire accumulator
trellis. In particular, the checknodes do not send messages
to the information bitnodes until the BCJR iteration is
completed.

Notice that for both of the above schedulings one decoder itera-
tion corresponds to the activation of all information bitnodes in
the graph exactly once.

B. Density Evolution and Stability

The bit-error rate (BER) performance of BP decoding aver-
aged over the IRA code ensemble and over the noise observa-
tions can be analyzed, for any finite number of iterations and
in the limit of , by the DE technique [11]. The usefulness
of the DE method stems from the Concentration Theorem [31],
[10] which guarantees that, with high probability, the BER after

iterations of the BP decoder applied to a randomly selected
code in the ensemble and to a randomly generated channel noise
sequence is close to the BER computed by DE, for sufficiently
large block length.

Next, we formulate the DE for IRA codes and we study
the stability condition of the fixed-point corresponding to
zero BER. As in [11, Sec. III-B], we introduce the space of
distributions whose elements are nonnegative nondecreasing
right-continuous functions with range in and domain the
extended real line.
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It can be shown that, for a binary-input symmetric-output
channel, the distributions of messages at any iteration of the DE
satisfy the symmetry condition

(8)

for any function for which the integral exists. If has density
, (8) is equivalent to

(9)

With some abuse of terminology, distributions satisfying (8) are
said to be symmetric. The space of symmetric distributions will
be denoted by .

The BER operator is defined by

where is the left-continuous version of . We intro-
duce the “delta at zero” distribution, denoted by , for which

, and the “delta at infinity” distribution, denoted
by , for which .

The symmetry property (8) implies that a sequence of sym-
metric distributions converges to if and only if

, where convergence of distributions is in
the sense given in [11, Sec. III-F].

The DE for IRA code ensembles is given by the following
proposition whose derivation is omitted as it is completely anal-
ogous to the derivation of DE in [11] for irregular LDPC codes.

Proposition 1: Let (respectively, ) denote the average
distribution of messages passed from an information bitnode
(respectively, parity bitnode) to a checknode, at iteration . Let

(respectively, ) denote the average distribution of mes-
sages passed from a checknode to an information bitnode (re-
spectively, parity bitnode), at iteration .

Under the cycle-free condition, satisfy the fol-
lowing recursion:

(10)

(11)

(12)

(13)

for , with initial condition , where
denotes the distribution of the channel observation messages

(4), denotes convolution of distributions, defined by

(14)

where denotes -fold convolution,

is the distribution of (defined on ),
when , and denotes the inverse mapping of , i.e.,

is the distribution of when .

The DE recursion (10)–(13) is a two-dimensional nonlinear
dynamical system with state space (i.e., the state trajecto-

ries of (10)–(13) are sequences of pairs of symmetric distribu-
tions ). For this system, the BER at iteration is given
by .

It is easy to see that is a fixed point of (10)–(13).
The local stability of this fixed point is given by the following
result.

Theorem 1: The fixed point for the DE is locally
stable if and only if

(15)

where .
Proof: See Appendix I.

Here necessity and sufficiency are used in the sense of [11].
By following steps analogous to [11], it can be shown that if
(15) holds, then there exists such that if for some

then converges to zero as tends to in-
finity. On the contrary, if is strictly larger than the right-hand
side (RHS) of (15), then there exists such that for all

III. IRA ENSEMBLE OPTIMIZATION

In this section, we tackle the problem of optimizing the IRA
code ensemble parameters for a broad class of binary-input sym-
metric-output channels.

A property of DE given in Proposition 1 is that for
is a nonincreasing nonnegative sequence. Hence,

the limit exists. Consider a family of channels

where the channel parameter is, for example, an indicator of
the noise level in the channel. Following [31], we say that
is monotone with respect to the IRA code ensemble
under BP decoding if, for any finite

where and are the message distributions at iteration of
DE applied to channels and , respectively.

Let BER , where is the trajectory
of DE applied to the channel . The threshold of the
ensemble over the monotone family is the worst
case channel parameter for which the limiting BER is zero, i.e.,

BER (16)

Thus, for every value of , the optimal IRA ensemble parame-
ters and maximize subject to vanishing BER ,
i.e., are solution of the optimization problem

maximize
subject to ,
and to BER

(17)
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the solution of which can be found by some numerical tech-
niques, as in [11]. However, the constraint BER is given
directly in terms of the fixed point of the DE recursion, and
makes optimization very computationally intensive.

A variety of methods have been developed in order to simplify
the code ensemble optimization [19], [24], [14], [32]. They con-
sist of replacing the DE with a dynamical system defined over
the reals (rather than over the space of distributions), whose tra-
jectories and fixed points are related in some way to the trajec-
tories and the fixed point of the DE. Essentially, all proposed
approximated DE methods can be formalized as follows. Let

and be mappings of the set of sym-
metric distributions to the real numbers and vice versa. Then,
a dynamical system with state space can be derived from
(10)–(13) as

(18)

(19)

(20)

(21)

for , with initial condition , and
where are the system state variables.

By eliminating the intermediate distributions and , we
can put (18)–(21) in the form

(22)

For all DE approximations considered in this work, the map-
pings and and the functions and satisfy the following
desirable properties.

1) , .
2) , .
3) and are defined on and have range in

.
4) and .
5) , i.e., is a fixed point of the

recursion (22). Moreover, this fixed point corresponds to
the zero-BER fixed point of the exact DE.

6) If , the function is strictly decreasing
in for all . Therefore, the equation

has a unique solution in for all . This
solution will be denoted by .

It follows that all fixed points of (22) must satisfy

(23)

and that in order to avoid fixed points other than , (23)
must not have solutions in the interval , i.e., it must satisfy

(24)

Fig. 3. EXIT model.

Notice that, in general, (24) is neither a necessary nor a sufficient
condition for the uniqueness of the zero-BER fixed point of the
exact DE. However, if the quality of the DE approximation is
good, this provides a heuristic for the code ensemble optimiza-
tion.

By replacing the constraint BER by (24) in (17), we
obtain the approximated IRA ensemble optimization method as

maximize
subject to ,
and to .

(25)

Approximations of the DE recursion differ essentially in the
choice of and , and in the way the intermediate distribu-
tions and and the channel message distribution are
approximated. Next, we illustrate the approximation methods
considered in this work.

A. EXIT Functions

Several recent works show that DE can be accurately de-
scribed in terms of the evolution of the mutual information be-
tween the variables associated with the bitnodes and their mes-
sages (see [12], [33]–[35], [13], [23], [18]).

The key idea in order to approximate DE by mutual infor-
mation evolution is to describe each computation node in BP
decoding by a mutual information transfer function. For histor-
ical reasons, this function is usually referred to as the EXtrinsic
mutual Information Transfer (EXIT) function.

EXIT functions are generally defined as follows. Consider the
model of Fig. 3, where the box represents a generalized compu-
tation node of the BP algorithm (i.e., it might contain a sub-
graph formed by several nodes and edges, and might depend
on some other random variables such as channel observations,
not shown in Fig. 3). Let denote the input mes-
sages, assumed independent and identically distributed (i.i.d.)

, and let denote the output message. Let
denote the binary code symbol associated with message , for

, and let denote the binary code symbol asso-
ciated with message . Since , we can think
of and as the outputs of binary-input symmetric-output
channels with inputs and and transition probabilities

(26)

(27)

respectively.
The channel (26) models the a priori information that the

node receives about the symbols ’s, and the channel (27)
models the extrinsic information [1] that the node generates
about the symbol .
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We define the binary-input symmetric-output capacity func-
tional , such that

(28)

Namely, maps any symmetric distribution into the capacity2

of the binary-input symmetric-output channel with transition
probability .

Then, we let

denote the capacities of the channels (26) and (27), respectively.
The EXIT function of the node of Fig. 3 is the set of pairs

, for all and for some (arbitrary) choice of
the input distribution such that . Notice that
the EXIT function of a node is not uniquely defined, since it de-
pends on the choice of . In general, different choices yield
different transfer functions.

The approximations of the DE considered in this work are
based on EXIT functions, and track the evolution of the mutual
information between the messages output by the bitnodes and
the associated code symbols.

Remark. Two properties of binary-input symmetric-output
channels: Before concluding this section, we take a brief
detour in order to point out two properties of binary-input
symmetric-output channels. Consider a binary-input sym-
metric-output channel with , where is not
necessarily symmetric (in the sense of (8)). Its capacity can be
written as

(29)

By concatenating the transformation
to the channel output, we obtain a new binary-input symmetric-
output channel with such that .
Moreover, since is a sufficient statistic for , the original
channel has the same capacity as the new channel, given by

. Therefore, by defining appropriately the channel output,
the capacity of any binary-input symmetric-output channel can
always be put in the form (28).

Another interesting property is the following.

Proposition 2: The mutual information functional is not
strictly convex on the set of binary-input symmetric-output
channels with transition probability .

Proof: See Appendix II.

B. Method 1

The first approximation of the DE considered in this work
assumes that the distributions at any iteration are Gaussian. A
Gaussian distribution satisfies the symmetry condition (9) if and
only if its variance is equal to twice the absolute value of its
mean. We introduce the shorthand notation to denote
the symmetric Gaussian distribution (or density, depending on
the context) with mean , i.e., .

2Recall that the capacity of a binary-input symmetric-output memoryless
channel is achieved by uniform i.i.d. inputs.

Fig. 4. Reciprocal channel approximation.

For a distribution , we let the mapping be equal
to defined in (28), and for all we define the mapping

(30)

where

(31)

Namely, maps into the symmetric Gaussian distri-
bution such that the BIAWGNC with transition prob-
ability has capacity .

The first key approximation in Method 1 is

(32)

for some .
In order to compute and , we make use of the recip-

rocal channel approximation [24] also called approximate du-
ality property of EXIT functions in [22]. This states that the
EXIT function of a checknode is accurately approximated by
the EXIT function of a bitnode with the same degree after the
change of variables and (see
Fig. 4). Using approximate duality, we replace the checknode
by a bitnode and change into .
Since for a bitnode the output message is the sum of the input
messages (see (5)), and since the input distributions
and are Gaussian, also the output distribution is
Gaussian, with mean

for messages sent to information bitnodes and

for messages sent to parity bitnodes. Finally, and are given
by

(33)

The second key approximation in Method 1 is to replace with
a discrete (symmetric) distribution such that

(34)

for some integer , , and such that
.

With this assumption, from the definition (28) of the operator
and since [11]: a) the convolution of symmetric distributions

is symmetric, and b) the convex combination of symmetric dis-
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tributions is symmetric; it is immediate to write (18) and (19)
as (35) at the bottom of the page. The desired DE approxima-
tion in the form (22) is obtained (implicitly) by combining (33)
and (35). Notice that (35) is linear in the repetition profile and
the optimization problem (25) can be solved as linear program-
ming.

Example 1. Discrete-output channels: In general, when the
channel output is discrete then the approximation (34) holds ex-
actly. For example, for the BSC with transition probability we
have

Example 2: The BIAWGNC defined by , where
, is a channel such that

(36)

In this case, since convolving symmetric Gaussian distributions
yields a symmetric Gaussian distribution whose mean is the sum
of the means, the discretization approximation (34) is not nec-
essary and we have

(37)

By applying the operator and using (31) we obtain the DE
approximation for the BIAWGNC as (38) at the bottom of the
page.

C. Method 2

The second approximation of the DE considered in this work
assumes that the distributions of messages at any iteration
consist of two mass points, one at zero and the other at .
For such distributions, we introduce the shorthand notation

.
We let the mapping be equal to defined in (28) and the

mapping be

(39)

for all .

With these mappings, (20) and (21) can be put in the form

(40)

where we used the fact that, as it can be easily seen from the
definitions of and in (46)–(48)

Notice that, while in Method 1 we assumed and to be
symmetric Gaussian (see (32)), here (40) holds exactly.

As a consequence of these mappings, the communication
channel of the parity bits, with distribution , is replaced by a
BEC with erasure probability .

Furthermore, for any we have

From this result, it is immediate to obtain the approximated DE
recursion as

(41)

Notice that (41) is the standard (exact) DE for the IRA ensemble
over a BEC (see [19]) with the same capacity of the

actual binary-input symmetric-output channel, given by .
We point out here that this method, consisting of replacing the
actual channel with a BEC with equal capacity and optimizing
the code ensemble for the BEC, was proposed in [24] for the
optimization of LDPC ensembles. Interestingly, this method fol-
lows as a special case of our general approach for DE approxi-
mation, for a particular choice of the mappings and .

In this case, the fixed-point equation corresponding to (23) is
obtained in closed form as

(42)

(for details, see [19]).

(35)

(38)
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Fig. 5. Turbo-like IRA decoder.

D. Methods 3 and 4

Methods 1 and 2 yield (almost) closed-form DE approxima-
tions at the price of some approximations of the message dis-
tributions and, above all, of the checknodes output distributions

and .
In much of the current literature on random-like code

ensemble optimization, the EXIT function of a decoding block
is obtained by Monte Carlo simulation, by generating i.i.d.
input messages, estimating the distribution of the output mes-
sages, and computing a one-dimensional quantity [12]–[18].
Following this approach, we shall consider the IRA decoder
with turbo-like scheduling (see Fig. 5) and obtain the EXIT
functions of the inner and outer decoders.

The inner (accumulator) and outer (repetition) decoders are
characterized by an EXIT function as defined in Section III-A,
for some guess of the (symmetric) distribution . In general,
the EXIT function of the decoders can be obtained as follows.

1) Let the channel observation messages be i.i.d., .
2) Assume the decoder input messages are i.i.d., .
3) Obtain either in closed form or by Monte Carlo simula-

tion the corresponding marginal distribution of the
decoder output messages.

4) Let , be a point on the EXIT
function curve.

Our Methods 3 and 4 consist of applying the above ap-
proach under the assumptions and

, respectively.
Let the resulting EXIT functions of the inner and outer de-

coders be denoted by and by , re-
spectively, and let denote the mutual information between the
messages at the output of the outer decoder (repetition code) and
the corresponding symbols (information bitnodes).

The resulting approximated DE is given by

(43)

The corresponding fixed-point equation is given by ,
and the condition for the uniqueness of the fixed point at ,
corresponding to (24), is for all . The
resulting IRA optimization methods are obtained by using this
condition in (25).

While for the inner decoder (accumulator) we are forced to
resort to Monte Carlo simulation, it is interesting to notice that,
due to the simplicity of the repetition code, for both Methods 3
and 4 the EXIT function of the outer decoder can
be obtained in closed form.

For Method 3, by discretizing the channel observation distri-
bution as in (34), we have3

(44)

For Method 4 we have

(45)

IV. PROPERTIES OF THE APPROXIMATED DE

In this section, we show some properties of the approximated
DE derived in Section III.

A. Stability Condition

Consider the DE approximation of Method 1. As indicated
in Section III-B, is a fixed-point of the system
(33)–(35). We have the following result.

Theorem 2: The fixed point at of the system (33)–(35)
is stable if and only if the fixed point of the exact
DE (10)–(13) is stable.

Proof: See Appendix III.

For other DE approximations, stability does not generally
imply stability of the corresponding exact DE. Consider the DE
approximation of Method 2. is a fixed point of the system
(41). We have the following result.

Proposition 3: The local stability condition of the approxi-
mated DE with Method 2 is less stringent than that of the exact
DE.

Proof: See Appendix IV.

If an approximated DE has a less stringent stability condition,
then the exact stability condition must be added to the ensemble
optimization as an explicit additional constraint. It should be
noticed that the DE approximations used in [24], [14], [19] re-
quire the additional stability constraint. For example, the codes
presented in [19] for the BIAWGNC and for which are
not stable. Therefore, the BER for an arbitrary large number of
iterations is not vanishing.

B. Fixed-Points, Coding Rate, and Channel Capacity

An interesting property of optimization Methods 2 and 4 is
that the optimized ensemble for a given channel with channel
observation distribution and capacity has coding
rate not larger than . In fact, as a corollary of a general result
of [23] (see Appendix V), we have the following.

Theorem 3: The DE approximations of Methods 2 and 4 have
unique fixed point only if the IRA ensemble coding rate

satisfies .
Proof: See Appendix V

3Just prior to the submission of the final revised version of this work we be-
came aware of [36] which proposes essentially the same method as Method 3.
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Fig. 6. Mutual information EXIT functions for BIAWGNC and Method 1.

TABLE I
OPTIMIZATION FOR THE BIAWGNC

We show in Section V-A through some examples that this
property does not hold in general for other code ensemble opti-
mization methods, for which the ensemble rate might result to
be larger than the (nominal) capacity . This means that the
threshold , evaluated by exact DE, is worse than the channel
parameter used for the ensemble design.

V. NUMERICAL RESULTS

A. Design Example for Rate- Codes

In this subsection we present the result of optimization for
codes of rate and give examples for the BSC with crossover

probability and the BIAWGNC with signal-to-noise ratio
(SNR)

SNR

In Fig. 6, the curve is the fixed-point equation used for the
optimization in Method 1, i.e., the function . The
fixed-point equation curves for the other three methods are very
similar.

In Fig. 6, the curve (solid line) shows as a function
of for Method 1. The solutions of the fixed point (23)
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TABLE II
OPTIMIZATION FOR THE BSC

correspond to the intersection of this curve with the main diag-
onal (dotted line). Tables I and II give the degree sequences, the
grouping factors, and the information bitnode average degrees
for the four methods, for codes of rate over the BIAWGNC
and the BSC, respectively. We compute the true iterative de-
coding thresholds (by using the exact DE) for all the ensembles
(denoted by the SNR (DE) or (DE) in the tables) and report
also the gap of these thresholds with respect to the Shannon limit
(denoted by SNR (DE) or (DE) in the tables). Then, we
compare it to the threshold of the approximated DE (SNR
(approximately) and (approximately)). We observe that the
codes designed by using Methods 2 or 4 have rate below ca-
pacity, which is consistent with Theorem 3. On the other hand,
the codes designed by using Methods 1 or 3 have rate possibly
larger than the capacity corresponding to the channel parameter
used for design. It can easily be checked that all the designed
codes are stable.

B. Thresholds of IRA Ensembles

In this subsection, we present results for codes designed ac-
cording to the four methods, for rates from to , and we
compare the methods on the basis of the true thresholds obtained
by DE. We present the code rate, the grouping factor, the average
repetition factor, and the gap to Shannon limit, for both BSC and
BIAWGNC.

Tables III and IV show the performance of IRA codes on
the BIAWGNC. Tables V and VI show the performance of IRA
codes on the BSC.

For all rates, and for both channels, IRA codes designed as-
suming GA (Methods 1 and 3) perform much better than those
designed assuming BEC a priori (Methods 2 and 4). Neverthe-
less, Method 4 yields better codes than Method 2, especially at
low rates. This is due to the fact that, in Method 2, the commu-
nication channel is replaced with a BEC with the same capacity,
while this is not the case in Method 4. This difference in perfor-
mance decreases as the rate increases.

Fig. 7 compares the performance of IRA ensembles with the
best known LDPC ensembles [6] on the BIAWGNC. As ex-

TABLE III
IRA CODES, DESIGNED WITH METHODS 1 AND 3, EVALUATED

WITH DE, FOR BIAWGNC

TABLE IV
IRA CODES, DESIGNED WITH METHODS 2 AND 4, EVALUATED

WITH DE, FOR BIAWGNC

pected, the performance of IRA ensembles is inferior to that of
LDPC ensembles. However, in view of the simplicity of their
encoding and decoding, IRA codes, optimized using Methods 1
or 3, emerge as a very attractive design alternative.

Fig. 8 compares the performance of IRA ensembles obtained
via the proposed methods for the BSC. The best codes are those
designed with Method 3.

VI. CONCLUSION

This paper has tackled the optimization of IRA codes in the
limit for large code block length. This assumption allows to con-
sider a cycle-free graph and enables to evaluate the threshold
of the code by iteratively calculating message densities (DE).
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Fig. 7. Gap to Shannon limit (obtained by DE) versus rate for BIAWGNC.

TABLE V
IRA CODES, DESIGNED WITH METHODS 1 AND 3, EVALUATED WITH

DE, FOR BSC

For the sake of tractable analysis, we proposed four methods
to approximate those densities as a one-dimensional parameter.
These approximations were motivated by recent results in the
field of code design (EXIT functions, reciprocal channel ap-
proximation, and the nonstrict convexity of mutual informa-
tion), and have led to four optimization methods that can all be
solved as a linear program.

We found a general stability condition for IRA codes under
exact DE. We showed formally that one of the proposed methods
(GA, with reciprocal channel approximation) yields a one-di-
mensional DE approximation with the same stability condition,
whereas the exact stability condition must be added to the en-
semble optimization as an explicit additional constraint for an-
other method (BEC a priori, with reciprocal channel approxi-
mation). We derived also results related to the rates of the codes:

TABLE VI
IRA CODES, DESIGNED WITH METHODS 2 AND 4, EVALUATED WITH

DE, FOR BSC

in general, the Gaussian a priori methods are optimistic, in the
sense that there is no guarantee that the optimized rate is below
capacity. On the contrary, the BEC a priori methods have al-
ways rates below capacity.

Our numerical results show that, for the BIAWGNC and BSC,
the Gaussian a priori approximation is more attractive since the
codes designed under this assumption have the smallest gap to
Shannon limit. Depending on the desired rate, the EXIT func-
tion of the inner decoder has to be computed either with Monte
Carlo simulation (Method 3) or with the reciprocal channel ap-
proximation (Method 1). At least in the BIAWGNC there is
some evidence that the best LDPC codes [6] designed with DE
slightly outperform our designed codes. In view of this and the
very simple encoding structure of IRA codes, they emerge as
attractive design choices.
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Fig. 8. Gap to Shannon limit (obtained by DE) versus rate for BSC.

APPENDIX I
PROOF OF THEOREM 1

We follow in the footsteps of [11] and analyze the local sta-
bility of the zero-BER fixed point by using a small perturbation
approach. In order to do this, we need more details on the map-
ping and its inverse.

Given a random variable with distribution , the dis-
tribution of is given by

(46)

where

and where denotes the indicator function of the event .
In particular, the mapping applied to and yields

(47)

Given

applying yields

(48)

For the sake of brevity, we introduce the shorthand notation

The -fold convolution of by itself is given by

(49)

where stands for the integer part.
In order to study the local stability of the fixed point

, we initialize the DE recursion at the point

for some small , and we apply one iteration of the DE
recursion (10)–(13). The step-by-step derivation is as follows.
From (47) we have

By applying (49) we obtain
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By applying we get

and

Hence, by noticing (50) at the bottom of the page we have

Finally, by using the fact that and that
, the message distributions after one DE iter-

ation are given by

where

(51)

After iterations we obtain

(52)

From the large deviation theory we get that [11]

(53)

where the last equality follows from the fact that .
Then, by applying to in (52) we obtain that

(implying that ) if the
eigenvalues of the matrix are inside the unit circle.

The stability condition is obtained by computing explicitly
the largest (in magnitude) eigenvalue. We obtain

(54)

Since the left-hand side (LHS) of (54) is increasing, condition
(54) is indeed an upperbound on , given explicitly by (15).

APPENDIX II
PROOF OF PROPOSITION 2

Proposition 2 is a particular case of a more general result that
we state in the following.

Proposition 4: Let be binary with and
. Let be independent of and take

(finite) values with . Conditioned on , is a
continuous random variable with conditional density function

Then

Proof of Proposition 4: First, notice that

Hence, we have (55) at the top of the following page.

Proof of Proposition 2: The assertion of Proposition 2
follows from Proposition 4 since for a collection of binary-input
symmetric-output channels with symmetric transition proba-
bility we have that ,

APPENDIX III
PROOF OF THEOREM 2

The local stability condition for the system ((33) and (35)) is
given by the eigenvalues of the Jacobian matrix for the functions

in the fixed point . The partial derivatives
of and are

where

(56)

for
for

(50)
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(55)

Note that . Since both limits tend to , we derive
an asymptotic expansion for and .

The derivative of is given by

Since is symmetric, the sum over can be rewritten as

Let us define

(57)

Following [38], (57) can be rewritten as (58) at the bottom of
the page. The second equality in (58) is obtained by the change

of variable . The fourth equality is due to the
fact that the first and second integrands in the third line of (58)
are odd and even functions of , respectively. Then we use the
changes of variable and .

Lebesgue’s dominated convergence theorem completes the
proof. Since the sequence of measurable functions verifies

and since these functions are bounded by an integrable function
independent of

Thus, Lebesgue’s dominated convergence theorem [37] applies
and

(58)
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Therefore, for large

Similarly, we get

And thus, for

if
if

and
if
if .

The partial derivatives of and are

(59)

where is defined in (53). Similarly

(60)

(61)

(62)

We get the Jacobian matrix as

In order to be stable, the eigenvalues of should be inside
the unit circle. Therefore, the stability condition reduces to

(63)
Notice from (54) and (63) that the stability conditions under

DE and approximated DE are the same.

APPENDIX IV
PROOF OF PROPOSITION 3

The Jacobian matrix of the approximated DE (41) about the
fixed point , for a given input channel distribution

, is

where was already defined in (51). The stability of the exact
DE is given by the eigenvalues of (where is defined in
(53)) while it is given by those of for the approx-
imated DE (where is given in (28)).

Under the assumption that is symmetric, we get

It follows that

and that

From the inequality

(64)
we get

and the conclusion follows.

In the following, we show inequality (64). Letting ,
(64) becomes equivalent to

where

(65)

It can be shown that has a single minimum in the open
interval . Hence, by noticing that

and

we get inequality (64).

APPENDIX V
PROOF OF THEOREM 3

Theorem 3 follows as a corollary of a result of [23] that we
state here for the sake of completeness as Lemma 1. In order
to introduce this result, we consider the model of Fig. 9, where
, , and are binary sequences and where Channel 1 is the

communication channel with output and Channel 2 is a BEC
channel with output . Let the decoder be a maximum a poste-
riori (MAP) symbol-by-symbol decoder, producing for all

, output messages of the form

(66)

where . Following [23], we
generalize the definition of and given in Section III-A to
the case of sequences as
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Fig. 9. General decoding model.

(67)

where follows from the fact that the decoder is MAP. Again,
the decoder EXIT function is the set of points for all

.
For the setup of Fig. 9 with the above assumptions, the fol-

lowing result applies.

Lemma 1: [23] Let be uniformly distributed and i.i.d. If
Encoder 2 is linear with generator matrix having no all-zero
columns, then the area under the EXIT characteristic satisfies

(68)

We start by proving Theorem 3 for the approximated DE of
Method 4. Consider the IRA encoder of Fig. 1 and the turbo-like
decoder of Fig. 5.

The inner MAP decoder receives channel observations for
the parity bits and input messages for the symbols of , and
produces output messages for the symbols of . The general
decoding model of Fig. 9, applied to the inner decoder, yields
the model of Fig. 10(a).

The outer MAP decoder receives channel observations for
the information bits and input messages for the symbols of ,
and produces output messages for the symbols of . The gen-
eral decoding model of Fig. 9, applied to the outer decoder,
yields the model of Fig. 10(b).

The upper channel is the communication channel with ca-
pacity . Since we consider approximation Method 4, we
let lower channel to be a BEC in both Fig. 10(a) and (b). Let

, , and denote the number of information bits (length of
and of ), the number of repeated information bits (length of

), and the number of parity bits (length of and of ), re-
spectively. The inner and outer coding rates are and

, and the overall IRA coding rate (3) is given by

By applying Lemma 1 to the inner code model (Fig. 10(a)), we
obtain

(69)

Fig. 10. Model of inner (a) and outer (b) decoders Method 4.

where follows from the fact that, by the model assumption,
is an i.i.d. uniformly distributed binary sequence, and

follows from the fact that the accumulator (inner code) generates
with uniform probability (and uniform marginals) if driven

by the i.i.d. uniform input sequence .
By applying Lemma 1 to the outer code model (Fig. 10(b)),

we obtain

(70)

where both and follow from the fact that the repetition
code is an invertible mapping, so the entropy is equal to
the entropy of the information sequence (equal to bits) and

.
As seen in Section III-D, the approximated DE has no fixed

points other than if and only if for all
, where and denote the inner and outer

decoder EXIT functions. This implies that

By using (69) and (70), we obtain

(71)

For Method 2, the above derivation still holds, since the com-
munication channel in Fig. 9 is replaced by a BEC with erasure
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probablity . In fact, the inner and outer decoder
EXIT functions can be rewritten as

and the area under these functions are again

Therefore, the final result (71) holds also for Method 2.
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