1 UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF NEW YORK 2 Jean-Marc Zimmerman (JZ 7743) IN CLERK'S OFFICE U.S. DISTRICT COURT E.D.N.Y 3 Zimmerman, Levi & Korsinsky, LLP 226 St. Paul Street ★ MAR 0 2 2009 Westfield, NJ 07090 4 Tel: (908) 654-8000 5 Fax: (908) 654-7207 **BROOKLYN OFFICE** 6 Attorneys for Plaintiff Eon-Net, L.P. 7 EON-NET, L.P. TALIANO, J. 8 Plaintiff, 9 ٧. COMPLAINT FOR PATENT 10 UNITED AIRLINES, INC., INFRINGEMENT DRELSKY, M.J. 11 Defendant. DEMAND FOR JURY TRIAL 12 13 14 Plaintiff, Eon-Net, L.P., a limited partnership (hereinafter referred to as "Eon-Net"), 15 demands a jury trial and complains against the defendant as follows: 16 THE PARTIES 17 Eon-Net is a limited partnership organized and existing under the laws of the British 1. 18 Virgin Islands, with its principal place of business at P.O. Box 116, Road Town, Tortola, British 19 Virgin Islands. 20 Upon information and belief, United Airlines, Inc. (hereinafter referred to as 2. 21 "Defendant" or "United") is a business organized and existing under the laws of the State of Illinois, 22 23 having a place of business at John F. Kennedy International Airport, Terminal 7, Jamaica, New 24 York 11430. 25 26 27 28

JURISDICTION AND VENUE

- 3. This action arises under the patent laws of the United States of America, Title 35 of the United States Code. This Court has jurisdiction of this action under 28 U.S.C. §§ 1331 and 1338(a).
- 4. Upon information and belief, Defendant is doing business and committing infringements in this judicial district and is subject to personal jurisdiction in this judicial district.
 - 5. Venue is proper in this judicial district pursuant to 28 U.S.C. §§ 1391 and 1400(b).

CLAIM FOR PATENT INFRINGEMENT

- 6. Plaintiff, Eon-Net, repeats and incorporates herein the entirety of the allegations contained in paragraphs 1 through 5 above.
- 7. On January 27, 2004, U.S. Patent No. 6,683,697 (hereinafter referred to as "the '697 patent") was duly and legally issued to Millennium, L.P. ("Millennium") for an invention entitled "Information Processing Methodology." On October 14, 2004, Millennium assigned the '697 patent to Eon-Net. A Certificate of Correction to the '697 patent issued on July 26, 2005. A copy of the '697 patent and the Certificate of Correction are attached to this Complaint as Exhibit 1.
 - 8. Eon-Net is the owner of all right, title and interest in and to the '697 patent.
- 9. On July 11, 2006, U.S. Patent No. 7,075,673 (hereinafter referred to as "the '673 patent") was duly and legally issued to Eon-Net for an invention entitled "Information Processing Methodology." A copy of the '673 patent is attached to this Complaint as Exhibit 2.
 - 10. Eon-Net is the owner of all right, title and interest in and to the '673 patent.
- 11. On February 27, 2007, U.S. Patent No. 7,184,162 (hereinafter referred to as "the '162 patent") was duly and legally issued to Eon-Net for an invention entitled "Information Processing Methodology." A copy of the '162 patent is attached to this Complaint as Exhibit 3.
 - 12. Eon-Net is the owner of all right, title and interest in and to the '162 patent.

COUNT ONE

- 13. Plaintiff, Eon-Net, repeats and incorporates herein the entirety of the allegations contained in paragraphs 1 through 12 above.
- 14. United has for a long time past and still is infringing, actively inducing the infringement of and/or contributorily infringing in this judicial district, the '697 patent by, among other things, operating a website at www.united.com ("the United Website") pursuant to a claim of the '697 patent, without permission from Eon-Net, in which information entered by a United customer into a web page displayed on the browser of the customer's computer is extracted according to content instructions and transmitted to an application program operating on Defendant's web server according to customizable transmission format instructions in a manner defined by the claims of the '697 patent. For example, a United customer seeking to book a flight can enter information including the city, date and time of the departing flight, and the city, date and time of the return flight into HTML form elements displayed on the web page found at http://www.united.com/ of the United Website. The foregoing information entered into the HTML document is extracted by the browser and transmitted to an application program running on the United web server for processing the customer's order in a POST format and using an https protocol required by the application program.
- 15. Plaintiff, Eon-Net, has been damaged by such infringing activities by the Defendant of the '697 patent and will be irreparably harmed unless such infringing activities are enjoined by this Court.

COUNT TWO

- 16. Plaintiff, Eon-Net, repeats and incorporates herein the entirety of the allegations contained in paragraphs 1 through 15 above.
- 17. United has for a long time past and still is infringing, actively inducing the infringement of and/or contributorily infringing in this judicial district, the '673 patent by, among

other things, operating the United Website pursuant to a claim of the '673 patent, without permission from Eon-Net, in which information entered by a customer of Defendant into an electronic document template displayed on the browser of the customer's computer is extracted according to content instructions and transmitted to an application program operating on Defendant's web server according to customizable transmission format instructions in a manner defined by the claims of the '673 patent. For example, a United customer seeking to book a flight can enter information including the city, date and time of the departing flight, and the city, date and time of the return flight into HTML form elements displayed on the web page found at http://www.united.com/ of the United Website. The foregoing information entered into the HTML document is extracted by the browser and transmitted to an application program running on the United web server for processing the customer's order in a POST format and using an https protocol required by the application program.

18. Plaintiff, Eon-Net, has been damaged by such infringing activities by the Defendant of the '673 patent and will be irreparably harmed unless such infringing activities are enjoined by this Court.

COUNT THREE

- 19. Plaintiff, Eon-Net, repeats and incorporates herein the entirety of the allegations contained in paragraphs 1 through 18 above.
- 20. United has for a long time past and still is infringing, actively inducing the infringement of and/or contributorily infringing in this judicial district, the '162 patent by, among other things, operating the United Website pursuant to a claim of the '162 patent, without permission from Eon-Net, in which information entered by a customer of Defendant into an electronic document template displayed on the browser of the customer's computer is extracted according to content instructions and transmitted to an application program operating on Defendant's web server according to customizable transmission format instructions in a manner

12

14

13

15 16

17

18

19

21

20

23

22

24 25

26

27 28

defined by the claims of the '162 patent. For example, a United customer seeking to book a flight can enter information including the city, date and time of the departing flight, and the city, date and time of the return flight into HTML form elements displayed on the web page found at http://www.united.com of the United Website. The foregoing information entered into the HTML document is extracted by the browser and transmitted to an application program running on the United web server for processing the customer's order in a POST format and using an https protocol required by the application program.

21. Plaintiff, Eon-Net, has been damaged by such infringing activities by the Defendant of the '162 patent and will be irreparably harmed unless such infringing activities are enjoined by this Court.

PRAYER FOR RELIEF

WHEREFORE, THE Plaintiff, Eon-Net prays for judgment against the Defendant United on all the counts and for the following relief:

- Declaration that the Plaintiff is the owner of the '697 patent, and that the Plaintiff has A. the right to sue and to recover for infringement thereof;
- B. Declaration that the '697 patent is valid and enforceable;
- C. Declaration that the Defendant has infringed, actively induced infringement of and/or contributorily infringed the '697 patent;
- D. A preliminary and permanent injunction against the Defendant, each of its officers, agents, servants, employees, and attorneys, all parent and subsidiary corporations, their assigns and successors in interest, and those persons acting in active concert or participation with them, enjoining them from continuing acts of infringement, active inducement of infringement, and contributory infringement of Eon-Net's '697 patent;
- E. An accounting for damages under 35 U.S.C. §284 for infringement of Eon-Net's '697 patent by the Defendant and the award of damages so ascertained to the Plaintiff, Eon-Net, together with interest as provided by law:

- F. Declaration that the Plaintiff is the owner of the '673 patent, and that the Plaintiff has the right to sue and to recover for infringement thereof;
- G. Declaration that the '673 patent is valid and enforceable;
- H. Declaration that the Defendant has infringed, actively induced infringement of, and/or contributorily infringed the '673 patent;
- I. A preliminary and permanent injunction against the Defendant, each of its officers, agents, servants, employees, and attorneys, all parent and subsidiary corporations, their assigns and successors in interest, and those persons acting in active concert or participation with them, enjoining them from continuing acts of infringement, active inducement of infringement, and contributory infringement of Eon-Net's '673 patent;
- J. An accounting for damages under 35 U.S.C. §284 for infringement of Eon-Net's '673 patent by the Defendant and the award of damages so ascertained to the Plaintiff, Eon-Net, together with interest as provided by law;
- K. Declaration that the Plaintiff is the owner of the '162 patent, and that the Plaintiff has the right to sue and to recover for infringement thereof;
- L. Declaration that the '162 patent is valid and enforceable;
- M. Declaration that the Defendant has infringed, actively induced infringement of, and/or contributorily infringed the '162 patent;
- N. A preliminary and permanent injunction against the Defendant, each of its officers, agents, servants, employees, and attorneys, all parent and subsidiary corporations, their assigns and successors in interest, and those persons acting in active concert or participation with them, enjoining them from continuing acts of infringement, active inducement of infringement, and contributory infringement of Eon-Net's '162 patent;
- O. An accounting for damages under 35 U.S.C. §284 for infringement of Eon-Net's '162 patent by the Defendant and the award of damages so ascertained to the Plaintiff, Eon-Net, together with interest as provided by law;

	Case 1:09-cv-00871-ENV-VVP Document 1 Filed 03/02/09 Page 7 of 93
1	P. Award of Eon-Net's costs and expenses; and
2	Q. Such other and further relief as this Court may deem proper, just and equitable.
3	<u>DEMAND FOR JURY TRIAL</u>
4	The Plaintiff, Eon-Net, demands a trial by jury of all issues properly triable by jury in the
5	action.
6 7	By: Jean-Marc Zimmerman (JZ 7743)
8	Zimmerman, Levi & Korsinsky, LLP 226 St. Paul Street Westfield, NJ 07090
9	Tel: (908) 654-8000 Fax: (908) 654-7207
10	Attorneys for Plaintiff Eon-Net, L.P.
11	Dated: February 20, 2009
12	Westfield, NJ
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27 28	
20	7

(12) United States Patent Lech et al.

(10) Patent No.:

US 6,683,697 B1

(45) Date of Patent:

Jan. 27, 2004

(54) INFORMATION PROCESSING METHODOLOGY

(75) Inventors: Robert Lech, Jackson, NJ (US);

Mitchell A. Medina, Essex Fells, NJ (US); Catherine B. Elias, Plainsboro,

NJ (US)

(73) Assignee: Millenlum L.P., George Town (KY)

(*) Notice: Subject to any disclaimer, the term of

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/458,162

(22) Filed: Dec. 9, 1999

Related U.S. Application Data

(63) Continuation of application No. 09/044,159, filed on Mar. 19, 1998, now Pat. No. 6,094,505, which is a continuation of application No. 08/487,150, filed on Jun. 7, 1995, now Pat. No. 5,768,416, which is a division of application No. 08/348,224, filed on Nov. 28, 1994, now Pat. No. 5,625,465, which is a continuation of application No. 08/143,135, filed on Oct. 29, 1993, now Pat. No. 5,369,508, which is a continuation of application No. 07/672,865, filed on Mar. 20, 1991, now Pat. No. 5,258,855.

(56) References Cited

U.S. PATENT DOCUMENTS

zt al.
e <u>n</u>
en
Ir. et al
t al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP	0 107 083 B1	7/1988
JP	64-38883	2/1989
JP	3-161886	7/1991

OTHER PUBLICATIONS

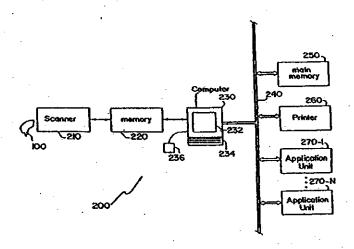
Que's Computer User's Dictionary, 2nd Bd., Bryan Pfaffenberger (author); 1991; p. 144.

"Kurzweil 5200 Intelligent Scanning System", Xerox Imaging Systems, Inc., 1990.

PC Magazine, vol. 5, No. 16, Sep. 30, 1986.

TopScan Professional User's Guide, Calera Recognition Systems, p. v-vii, xi-xii, and 1-6, 1989.

Edward O. Welles, *Decisions, Decisions*, Inc., Aug. 1990, pp. 80-90.


(List continued on next page.)

Primary Examiner—Thomas D. Lee Assistant Examiner—Stephen Brinich (74) Attorney, Agent, or Firm—Foley & Lardner

(57) ABSTRACT

An information processing methodology gives rise to an application program interface which includes an automated digitizing unit, such as a scanner, which inputs information from a diversity of hard copy documents and stores information from the hard copy documents into a memory as stored document information. Portions of the stored document information are selected in accordance with content instructions which designate portions of the stored document information required by a particular application program. The selected stored document information is then placed into the transmission format required by a particular application program in accordance with transmission format instructions. After the information has been transmission formatted, the information is transmitted to the application program. In one operational mode, the interface interactively prompts the user to identify, on a display, portions of the hard copy documents containing information used in application programs or for storage.

101 Claims, 15 Drawing Sheets

US 6,683,697 B1

Page 2

4	A	6/1971	Shepard et al.	
ĸ	Α	12/1021	Smarker	

U.S. PATENT DOCUMENTS

3,584,144 A	6/1971	Shepard et al.
3,631,396 A	12/1971	Spertus
3,832,682 A	8/1974	Brok et al.
3,848,228 A	11/1974	MacNeill
3,903,517 A	9/1975	Hafner
RE29,104 E	1/1977	Shepard
4,021,777 A	5/1977	Shepard
4,034,343 A	7/1977	Wilmer 340/146.3 MA
4,041,454 A	8/1977	Shepard et al.
4,047,154 A	9/1977	Vitols et al.
4,132,978 A	1/1979	Mercier
4,387,964 A 4,564,752 A	6/1983	Arrazola et al.
4,572,962 A	1/1986 2/1986	Lepic et al.
4,593,367 A	6/1986	Shepard
4,659,940 A	4/1987	Slack et al. Shepard
4,667,248 A	5/1987	Kanno 358/280
4,672,678 A	6/1987	Koezuka et al.
4,760,246 A	7/1988	Shepard
4,760,606 A	7/1988	
4,782,509 A 4,802,104 A	11/1988	Shepard
4,802,104 A	1/1989	Ogiso 364/518
4.802.231 A	1/1989	Davis
4,803,734 A	2/1989	Onishi et al.
4,931,957 A	6/1990	Takagi et al 364/521
4,933,979 A	6/1990	Suzuki et al 381/61
4,974,260 A	11/1990	Rudak
5,017,763 A	5/1991	Shepard
5,031,121 A	7/1991	Iwai et al 364/523
5,034,990 A	7/1991	Klees 382/22
5,052,038 A	9/1991	Shepard
5,095,445 A 5,140,139 A	3/1992	Sekiguchi 364/514
5,140,650 A	8/1992	Shepard
5,153,927 A	8/1992	Casey et al 382/61
5,159,667 A	10/1992 10/1992	Yamanari
5,191,525 A	3/1993	Borrey et al.
5,218,539 A		LeBrun et al.
5,228,100 A	7/1993	Elphick et al 707/513 Takeda et al 382/61
5,245,166 A		Shepard
5,251,268 A	10/1993	Colley et al.
5,257,328 A	10/1993	Shimizu
5,258,855 A	11/1993	Lech et al 358/462
5,282,267 A	1/1994	Woo, Jr. et al.
5,367,619 A	11/1994	Dipaolo 395/149
5,404,294 A	4/1995	Karnik 364/419.1
5,416,849 A	. 5/1995	Huang 382/173
5,444,840 A	8/1995	Froessi .
5,448,738 A	9/1995	Good et al 395/700
5,452,379 A	9/1995	Poor 382/317
5,455,875 A	10/1995	Chevion et al.
5,506,697 A 5,511,135 A	4/1996	Li et al 358/448
5 526 443 A	4/1996	Rhyne et al.
5,526,447 A 5,550,930 A	6/1996	Shepard
5,555,325 A	8/1996 9/1996	Berman et al.
5,696,854 A	12/1997	Burger
5,734,761 A	3/1998	Shepard Bagley
5,852,685 A	12/1998	Shepard
5,923,792 A	7/1999	Shyu et al.
5,933,531 A	8/1999	Lorie
6,094,505 A	7/2000	Lech et al.

OTHER PUBLICATIONS

Palantir PagePro User's Guide, Rev. A, Dec. 1986, sections 1 and 4 and Appendix C.

PageRead Library Developer's Guide, Rev. B, Aug. 1989, pp. PRL1-3, SHC25-26, TUT9-10.

With AutoClass there is no more to Indexing than OCR. Remittance and Document Processing Today.

Daniel Borrey, Machine Recognition and Classification of Documents, Remittance and Document Processing.

The Very Best in Optical Character Recognition, Imaging, Mar. 1992, pp. 43-47.

Why Insurance Companies Take the Risk on Document Imaging, Imaging, Mar. 1992, pp. 48-54.

"OCR for Forms" (advertisement), Imagingi, Apr. 1992.

David Black, The Right and The Wrong Ways to Index, lmaging, May 1992, pp. 47-50.

Greg Bartels, How to Successfully Convert Your Backfiles. Imaging, May 1992, pp. 55-56.

But, Is It a Boy or Girl? Imaging, Oct. 1992, p. 10.

Gerry Frieser, Suddenly, OCR is a "Must Buy", Imaging, Dec. 1992, pp. 22-25.

Gerry Friseser, Suddenly, OCR is a "Must Buy", Imaging, Dec. 1992, pp. 22-25.

How Form Processing Works, Plus Pros and Cons, Imaging, Dec. 1992, p. 36.

Forms Processing Products Meet the Challenge of OCRing Forms, Imaging, Dec. 1992, p. 38-40.

Herbert F. Schantz, Forms Automation and Integrated Imaging (OCR) Systems, Remittance and Document Processing Today, Mar.-Apr. 1991, pp. 9-11.

Don Merz, OCR: A Health Insurance Applications, Remittance and Document Processing Today, Jul.-Aug. 1989, p. 18-20.

Industry News, Remittance and Document Processing Today, Jul-Aug. 1989, p. 22.

Industry News and New Products, Remittance and Document Processing Today, Oct. 1984, pp. 17-18.

R. C. Gonzalez, Designing Balance into An OCR System. Remittance and Document Processing Today, Mar. 1988, pp. 7, 10-11.

Ambrose R. Rightler, OCR Quality Control Procedures for Remittance Processing: Can You Afford to be Without Is? Remittance and Document Processing Today, Mar. 1988, pp. 12-15.

Product Watch, MacWeek, Oct. 3, 1989, pp. 32, 34, 38, 40,

Industry News, Remittance and Document Processing Today, Jan. 1989, p. 9.

Scott Beamer, Mac OCR Takes a Big Step Forward, MacWeek, Jun. 13, 1989.

Matthew Lake, Strength of Character (Recognition), Publish, Jan. 1991, pp. 62-67.

R. David Nelson and Karen A. Hamill, Optical Scanning at Chemical Abstracts Service for Building Computer Files From Printed Index Data, Recognition Technologies Today, Feb. 1985, pp. 1-6, 15.

Gerald Farmer, HNC IDEPT and Recognition Enhanced Data Entry: The Cost-Cutting Approach to Automated Data Entry, Remittance and Document Processing Today, Jan.-Feb. 1991, pp. 24-26.

David Gertler, Automated Data Entry, Seybold Report on Desktop Publishing, Jan. 15, 1990, pp. 3-17.

Eric Aas and Peter Davidoff, Teaching Your Scanner to Read, Personal Publishing, May 1990, pp. 28, 31, 33.

Phillip Robinson et al., Character Witness, MacUser, Jul. 1990, pp. 120-136.

Brita Meng, Text Without Typing, MacWorld, Oct. 1990, pp. 177-183.

US 6,683,697 B1

Page 3

Jim Heid, Getting Started with Optical Character Recognition, MacWorld, Oct. 1990, pp. 297-201

tion, MacWorld, Oct. 1990, pp. 297-301. Stanford Diehl and Howard Eglowstein, Tame the Paper Tiger, Byte, Apr. 1991, pp. 220-238.

Alan Joch and Rich Graham, Voices of Experience, Byte,

Apr. 1991, pp. 239-241. Gregory Boleslavsky and Roman Tutunikov, The New Gen-

eration of OCR, Inform, Jan. 1990, pp. 34-37. Calera Recognition Systems, Inc., TopScan Professional

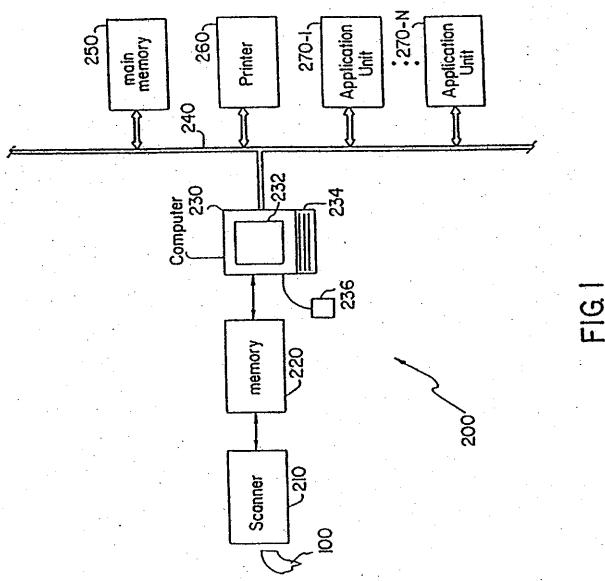
User's Guide: Complete Document Recognition for PCs and Compatibles (1989).

Calera Recognition Systems, Inc., TopScan Professional Installation Notes for Scanners, Fax Cards, and System Configuration (1989).

Calera Recognition Systems, Inc., TopScan Professional Troubleshooting Guide (1998).

Xerox Imaging Systems, Inc., Datacopy AccuText User's Guide (1989).

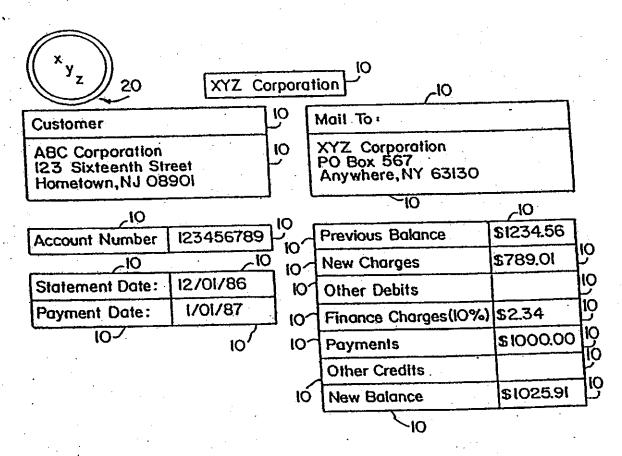
Invoice from Corporate Intelligence Corporation to Workman, Nydegger & Seeley, dated Sep. 21, 1999.


Examiner Interview Summary Record, Jan. 25, 1996, and related Amendment, for Application Ser. No. 08/097,131.

Jane B. Newman, Formstar Ad; "Stack the Facts, Not the Forms"—May 24, 1987; "Stack and Send Just the Facts—and Improve the Efficiency of your Forms Application".

TeleImage Systems Document and Image Database Systems User's Manual -Ramat Gan, Israel; Table of Contents and pp. 2-1 through 5-20.

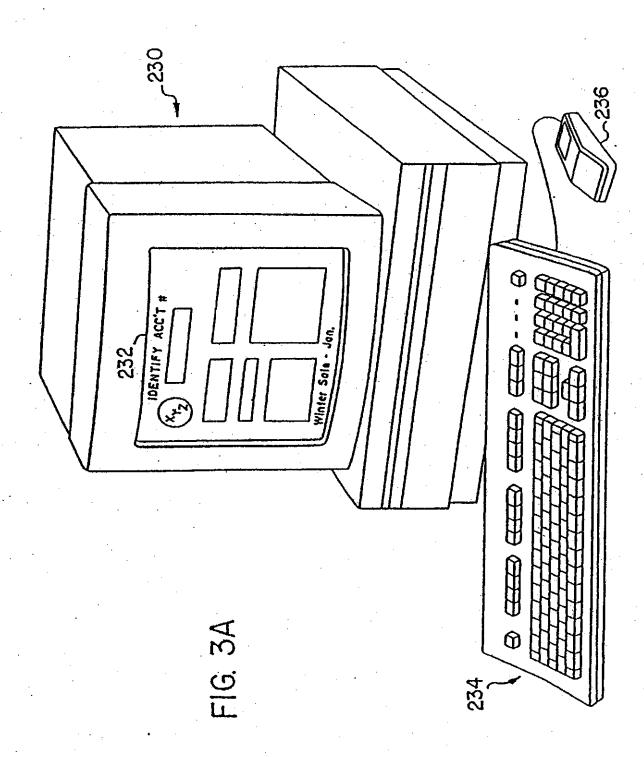
Form Out! Programmer's Manual; Telelmage Systems, Ramat Gan Israel; published Feb. 1991 pp. I, II, III, IV, V, VI, VII; 1.1-6.29 and A.1-G.11.


^{*} cited by examiner

Jan. 27, 2004

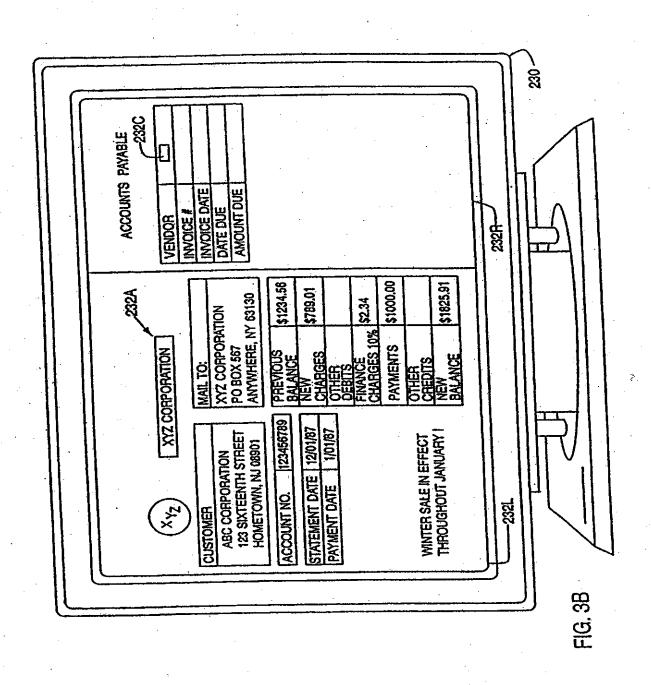
Sheet 2 of 15

US 6,683,697 B1



Winter Sale In Effect Throughout January!

FIG. 2


Jan. 27, 2004

Sheet 3 of 15

Jan. 27, 2004

Sheet 4 of 15

Jan. 27, 2004

Sheet 5 of 15

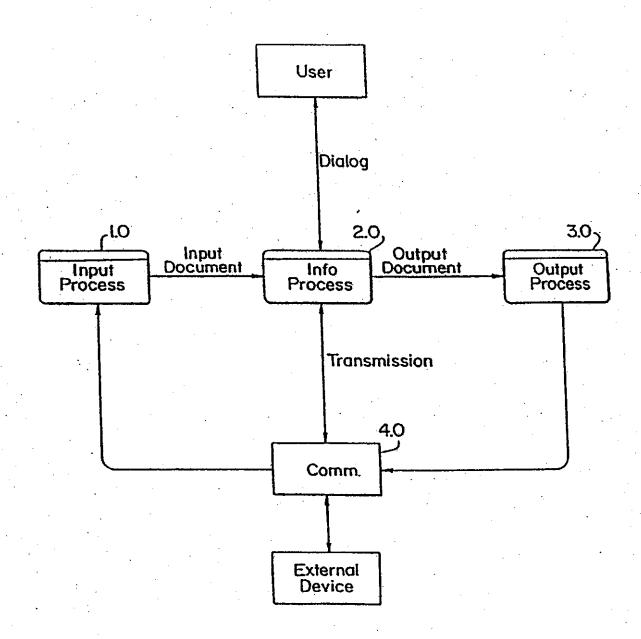
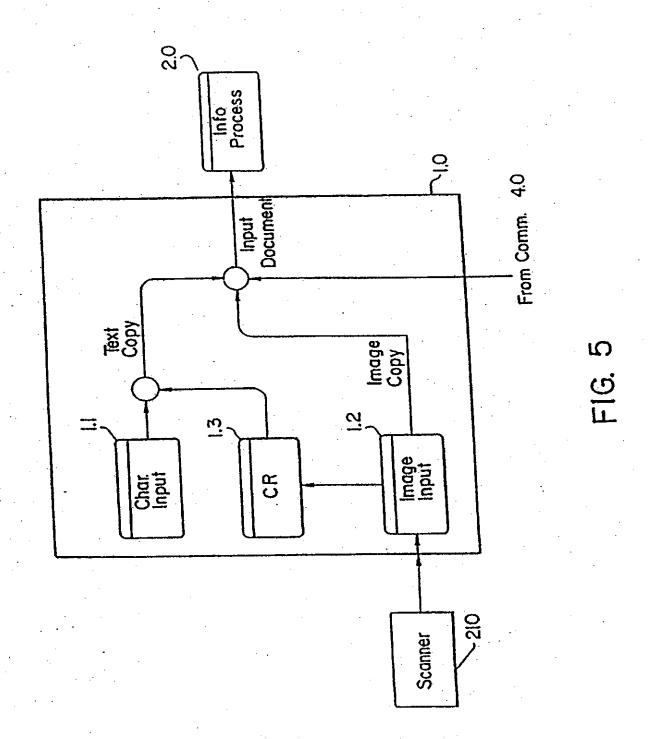
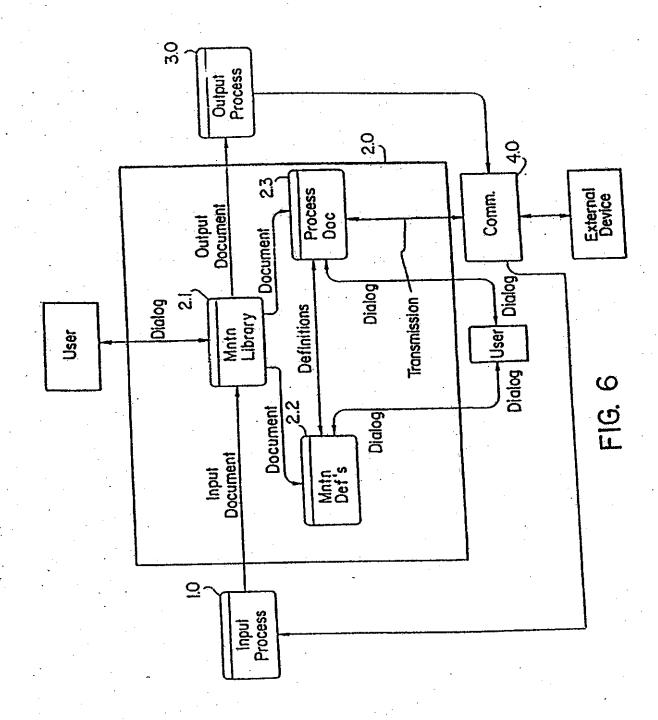
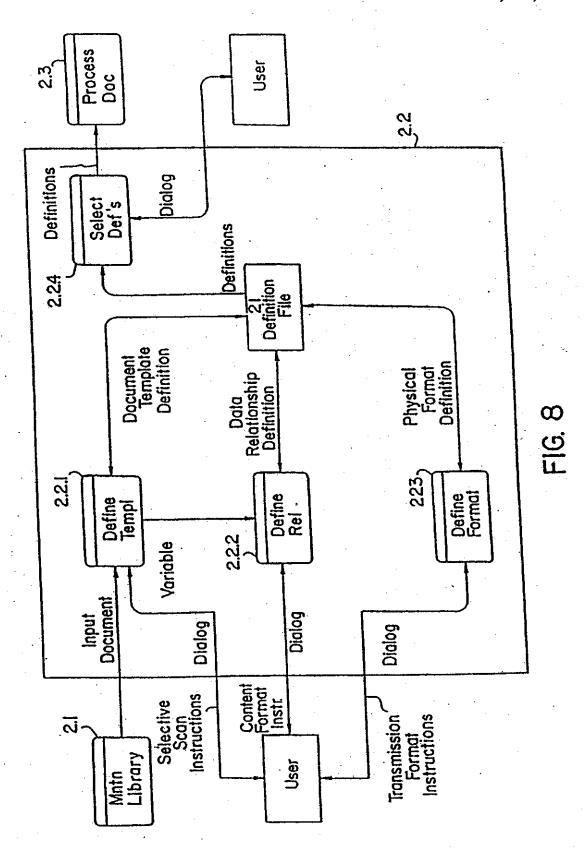



FIG. 4

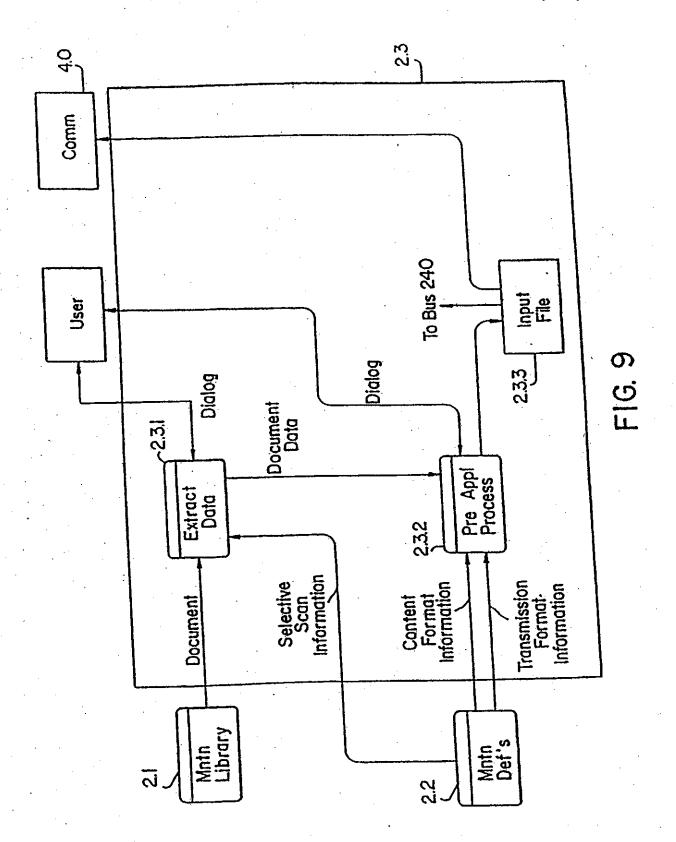

Jan. 27, 2004

Sheet 6 of 15

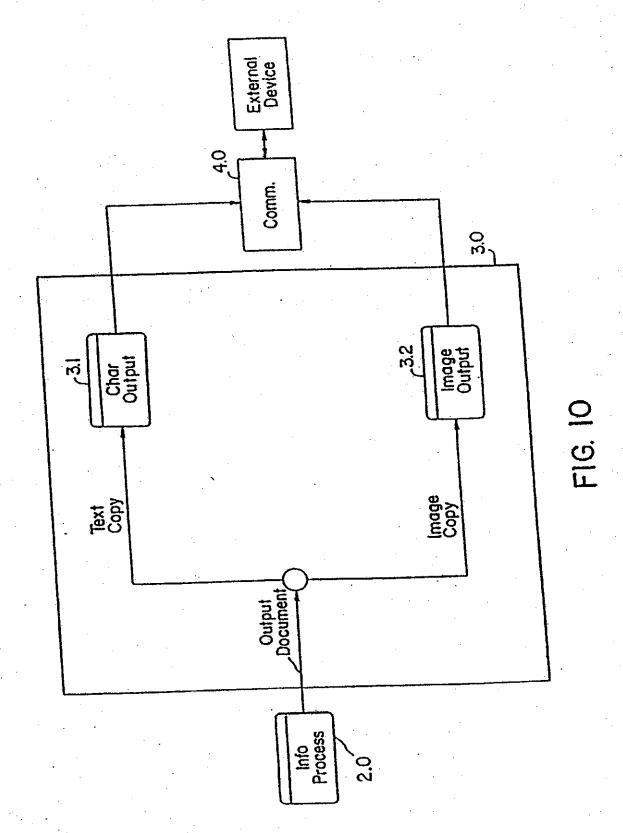
Jan. 27, 2004


Sheet 7 of 15

U.S. Patent Jan. 27, 2004 Sheet 8 of 15 US 6,683,697 B1 30 Output Process Process Doc Output Document Document Document Minth Def's Retr Doc 2.1.4 Dialog Document File Corrections User 21:1 Document Dialog Dialog Correct Errors Store Doc Errors F1G. 7 Input Document Input Process


Jan. 27, 2004

Sheet 9 of 15


Jan. 27, 2004

Sheet 10 of 15

U.S. Patent Jan. 27, 2004

Sheet 11 of 15

U.S. Patent Jan. 27, 2004

Sheet 12 of 15

US 6,683,697 B1

FIG. 11

Variable Name	<u>Value</u>
Vendor Heading 2 Mail To	XYZ Corporation 2 XYZ Corporation PO Box 567
Account Number Statement Date Payment Date Previous Balance	Anywhere, NY 63130 123456789 12/01/86 1/01/87 \$1234.56
New Charges Debits Finance Charges Payments	\$789.01 \$2.34 \$1000.00
Other Credits New Balance	\$1025.91

Jan. 27, 2004

Sheet 13 of 15

US 6,683,697 B1

FIG. 12A

<u>Value</u> Variable Name XYZ Corporation Vendor 123456789 **Account Number** 12/01/86 Statement Date 1/01/87 Payment Date \$1234.56 Previous Balance \$789.01 **New Charges Debits** \$2.34 Finance Charges \$1000.00 **Payments** \$1025.91 **New Balance**

FIG. 12B

Variable NameValueMail ToXYZ Corporation
PO Box 567
Anywhere, NY 63130Previous Balance\$1234.56

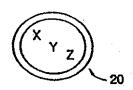
FIG. 12C

Variable Name	<u>Value</u>
Mail To	XYZ Corporation PO Box 567
Previous Balance	Anywhere, NY 63130 \$1234.56

Jan. 27, 2004

Sheet 14 of 15

```
FIG.13B \begin{cases} > 1 > 1 > 1 > $1234.56 > \\ > 2 > 2 > 1 > "XYZ Corporation" \\ > 3 > 3 > 1 > "PO Box 567" \\ > 4 > 4 > 1 > "Anywhere, NY 63130" \end{cases}
```


```
FIG.13C \[ \begin{align*} \langle 1/1/1/$1234.56// \\ \langle 2/2/1/*XYZ Corporation* \\ \langle 3/3/1/*PO Box 567* \\ \langle 4/4/1/*Anywhere, NY 63130* \]
```

Jan. 27, 2004

Sheet 15 of 15

US 6,683,697 B1

FIG. 14

XYZ Corporation

Customer

ABC Corporation 123 Sixteenth Street Hometown, NJ 88981 Mail To:

△ XYZ Corporation PO Box 567 Anywhere, NY 63130 △

Account Number

123456789

Previous Balance

\$1234.56

\$789.01

Statement Date:

Payment Date:

0 12/01/86 0

1/01/87

New Charges
Other Debits

Ų.

Finance Charges (10%)

\$2.34

Payments

\$1000.00

WINTER SALE IN EFFECT THROUGHOUT JANUARY:

Other Credits

New Balance

\$1025.91

30

INFORMATION PROCESSING METHODOLOGY

This application is a continuation of application Ser. No. 09/044,159, filed Mar. 19, 1998 (now U.S. Pat. No. 6,094, 505), which is a continuation of application Ser. No. 08/487, 150, filed Jun. 7, 1995 (now U.S. Pat. No. 5,768,416), which is a divisional of Ser. No. 08/348,224, filed Nov. 28, 1994 (now U.S. Pat. No. 5,625,465), which is a continuation of Ser. No. 08/143,135, filed Oct. 29, 1993 (now U.S. Pat. No. 10 5,369,508), which is a continuation of Ser. No. 07/672,865, filed Mar. 20, 1991 (now U. S. Pat. No. 5,258,855).

BACKGROUND OF THE INVENTION

The invention is directed to a system for efficiently 15 invoice each month. processing information originating from hard copy documents. More specifically, the invention is directed to a hard copy document to application program interface which minimizes the need to manually process hard copy docu-

In the past, information contained on hard copy documents was manually entered into a computer via the input controller of a particular computer. The original document was then filed away for future reference. Automatic input of data was limited to the input of Magnetic Ink Character 25 Recognition (MICR) data and to Optical Character Recognition (OCR) data. This fixed-position data was forwarded directly to a dedicated computer application specifically designed to accommodate the input format. In more recent years, typewritten text has been mechanically inputted into a computer via a text file. Examples of this latter type of system are word processors and photo-typesetters.

These conventional systems have limitations which decrease the efficiency of processing information from a hard copy document. For example, the systems discussed above are limited in their application to MICR, OCR, or typewritten data. Parsing and processing data is limited to the particular requirements of the particular computer application which requires the input data. In addition, in these conventional systems, the actual hard copy document must be retained for future reference at great expense.

In a sophisticated computer network, different users may require different portions of the information contained on a hard copy document. For example, if the hard copy docu- 45 ment is an invoice returned with payment of a bill, the accounting department may need all of the monetary information contained on the bill while the mailroom may need only customer address information, to update a customer's address. Therefore, there is a need for a system in which 50 specific information from a hard copy document can be selectively distributed to various users.

Another problem with conventional systems is that users, even within the same company, may require that the information extracted from a hard copy document be transmitted 55 to a particular application program in a specific transmission format. For example, one department in a company may use a particular application program which must receive information using a particular character as a delimiter and other departments may require the information in a different 60 format using different delimiters.

Another problem, particularly for small businesses, is that current systems can not efficiently accommodate the inputting of information from a diversity of hard copy documents. A large business which receives many forms in the same 65 from hard copy documents and stores this information in format can afford a system which inputs a high volume of information in that format into memory. For example, it is

cost-effective for a bank which processes hundreds of thousands of checks a month to buy a dedicated machine which can read information off of checks having a rigidly defined, or fixed, format. However, as the diversity of forms received by a business increases relative to the number of forms that must be processed, it becomes less cost-effective to design a dedicated machine for processing each type of form format. This problem is particularly significant in small businesses which may, for example, receive fifty invoices a month, all in different, non-fixed, formats. It is frequently not cost-effective for a small business to design dedicated systems for inputting information in each of these various formats. This leaves a small business with no other practical alternative than to manually input the information off of each

SUMMARY OF THE INVENTION

It is an object of the invention, therefore, to provide an application program interface which allows a user to select specific portions of information extracted from a diversity of hard copy documents and allows the user to direct portions of this information to several different users in accordance with the needs of the particular user.

It is also an object of the invention to provide a costeffective system for inputting hard copy documents which can accommodate hard copy documents in a diversity of formats.

It is another object of the invention to provide an appli-30 cation program interface which allows a user to put information, which is to be transmitted, into a particular transmission format, based upon the needs of the receiver of the information.

It is a further object of the invention to provide an application program interface which will allow the extraction, selection, formatting, routing, and storage of information from a hard copy document in a comprehensive manner such that the hard copy document itself need not be

It is another object of the invention to provide a system which reduces the amount of manual labor required to process information originating from a hard copy document.

A further object of the invention is to reduce the time required to process information originating from a hard copy document so that a higher volume of transactions involving hard copy documents can be processed.

The invention provides an application program interface which inputs a diversity of hard copy documents using an automated digitizing unit and which stores information from the hard copy documents in a memory as stored document information. Portions of the stored document information are selected in accordance with content instructions which define portions of the stored document information required by a particular application unit. Selected stored document information is then formatted into the transmission format used by the particular application program based on transmission format instructions. The transmission formatted selected stored document information is then transmitted to the particular application program. The hard copy documents may contain textual information or image information

The interface operates in three different modes.

In a first mode, the interface extracts all of the information memory. Parsing of various portions of the extracted information is performed in accordance with content instructions.

In a second mode, the user operates interactively with the interface by use of a display and an input device, such as a mouse. In this second mode, a hard copy document is inputted and displayed on the display. The interface then prompts the user to identify the location of various information. For example, the interface can ask the user to identify the location of address information on the hard copy document. In response, the user positions the mouse to identify address information using a cursor. The identified information is then stored as address information in memory.

Subsequently, the interface again prompts the user to identify other pieces of information, which are then stored in the appropriate locations in memory. This process proceeds until all of the information which is desired to be extracted off of the hard copy document is stored in memory.

In a third mode of operation, selected portions of information are extracted off of hard copy documents in accordance with predetermined location information which has been specified by the user. For example, the user can define a template which specifies the location of information on 20 hard copy documents. Templates can be formed in conjunction with second mode operation. Alternatively, the user can instruct the interface to search hard copy documents for a particular character or symbol, located on the hard copy documents. The information desired to be extracted off of 25 the hard copy documents is specified relative to the location of this character or symbol.

The interface can also prompt or receive from an applications program or another information processing system, required information, content instructions, and format instructions.

Other objects, features, and advantages of the invention will be apparent from the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in further detail below with reference to the accompanying drawings, in which:

FIG. 1 illustrates hardware for implementing a preferred 40 embodiment of the instant invention;

FIG. 2 illustrates an example of a hard copy document containing information to be processed by the instant invention;

FIGS. 3A and 3B are enlarged views of the computer of 4s FIG. 1 used to explain how the invention interactively prompts a user to identify information;

FIG. 4 is an overall data flow diagram for the FIG. 1 preferred embodiment;

FIG. 5 is a detailed input data flow diagram for the FIG. 50 1 preferred embodiment;

FIG. 6 is a detailed information processing data flow diagram for the FIG. 1 preferred embodiment;

FIG. 7 is a more detailed information processing data flow diagram for the maintain library module of FIG. 6;

FIG. 8 is a more detailed information processing data flow diagram for the maintain definitions module of FIG. 6;

PIG. 9 is a more detailed information processing data flow diagram for the process document module of PIG. 6;

FIG. 10 is a detailed output data flow diagram for the FIG. 1 preferred embodiment;

FIG. 11 lists data corresponding to the hard copy document of FIG. 2;

FIGS. 12A, 12B, and 12C illustrate examples of data 65 which can be selected from the extracted data of FIG. 11 in accordance with content instructions;

4

FIGS. 13A, 13B, and 13C illustrate examples of the data of FIGS. 12A, 12B, and 12C formatted in accordance with various transmission format instructions to form input files; and

FIG. 14 illustrates another example of a hard copy document containing information to be processed by the instant invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hardware

The invention provides an interface between information originating from a hard copy document and a computer application unit which uses the information. The computer application unit can be a particular computer application program or a device which is controlled in accordance with instructions or information from the hard copy document. The invention also allows storing a copy of the hard copy document in a memory and retrieving the copy of the hard copy document. By providing a comprehensive and integrated system which can accommodate almost all of the possible uses of information contained on a hard copy document, the instant invention allows for a paperless office.

The invention includes hardware and software necessary to extract, retrieve, and process information from the hard copy document. A copy of the actual image of the hard copy document is stored in memory. Textual information extracted from the hard copy document is also stored in memory. Textual information is information, such as alphanumeric characters, which is recognized on the hard copy document and which is stored in a form which corresponds to the particular recognized character. For example, the extracted characters can be stored in the ASCII format in an electronic memory.

The user can have all of the information extracted from the hard copy document and stored in memory. Alternatively, the interface can interactively prompt the user to identify specific pieces of information for storage. The interface can also extract specific pieces of information using a predefined template. The interface can also prompt or receive from another information processing system or an applications program desired information, content instructions, and format instructions.

The instant invention also provides for parsing information extracted from the hard copy document and for directing this parsed information to specific users or application programs as an input file.

The invention also permits the user to define the transmission format of the input file for a particular computer application unit.

FIG. 1 illustrates hardware for implementing a preferred embodiment of a hard copy document to application program interface according to the instant invention. The interface 200 processes information extracted off of hard copy document 100 and provides information to application units 270 in a form required by each particular application unit. The interface extracts information off of a hard copy document 100 utilizing a scanner 210. The scanner 210 can be any type of scanner which extracts information off of hard copy documents, for example, an Optical Reader.

The scanned information is stored in a scanner memory 220 or in main memory 250, as will be described in greater detail below. If main memory 250 or another memory is available to store the scanned information, then scanner memory 220 can be omitted.

The information from scanner memory 220 or main memory 250 is transmitted to computer 230. In the preferred embodiment, computer 230 includes a display 232, a keyboard 234, and a mouse 236. The display 232 displays an image of the hard copy document itself and/or information 5 necessary to process the information extracted off of the hard copy document.

The computer 230 is used to select portions of the stored document information contained in memory in accordance with content instructions which define portions of the stored document information required by an application unit. These content instructions may be provided by the application program. Alternatively, the content instructions can be inputted via an input device such as a keyboard, a touch screen, a mouse, a notepad, a voice recognition device, or the like. 15

The computer 230 is also used to format selected stored document information into the transmission format used by an application unit based on transmission format instructions. The transmission format instructions may be provided by the application program. Alternatively, the transmission format instructions can be inputted via a keyboard, a touch screen, a mouse, a notepad, a voice recognition device, or the like.

Thus, the computer 230 is used to generate an input file for a particular application unit. The computer 230 is connected to scanner memory 220, main, or permanent, memory 250, a printer 260, and application units 270, via a bus 240. Although FIG. 1 illustrates use of a bus to connect components together, it is understood that any routing or connecting link, implemented in hardware or software or both, can be employed instead of, or in addition to, a bus. Instructions to or in the computer 230 control the main memory 250, the printer 260, the application units 270, and the bus 240. Instructions to or in computer 230 can also control exchanges of information with scanner memory 220.

When the computer 230 generates an input file for a particular document, the computer 230 can send this input file directly to an application unit or can store this input file in the main memory 250 until required by an application 40 unit. The main memory 250 may also optionally store a copy of the image information for the hard copy document and the textual information for the hard copy document. Thus, the image information and textual information from the hard copy document can be retrieved and printed out on printer 260. In addition, image and textual information stored in scanner memory 220 or in main memory 250 can be used to form additional input files at the time of input or at a later time, based on content instructions and transmission format instructions. Thus, the invention can, at the discretion of the user, eliminate the need to retain copies of bard copy documents, permitting a paperless office.

The application units 270 include particular application programs and devices which are controlled in accordance with information contained on hard copy document 100.

FIG. 2 illustrates an example of a hard copy document 100 which contains information to be processed by the instant invention. The document illustrated in FIG. 2 is a bill from XYZ Corporation to customer ABC Corporation. FIG. 2 is only an example of a type of document that can be 60 processed by the instant invention.

In a first operational mode, the scanner 210 stores all of the information extracted of f of hard copy document 100 in the scanner memory 220 or, alternatively, in main memory 250. The extracted information is stored in two forms. The actual image of the hard copy document 100 is stored as image information in the scanner memory 220. In addition,

the scanner memory 220 stores textual information recognized on the hard copy document 100 by, for example, employing standard character recognition software. In the preferred embodiment, the textual information is stored in ASCII format. The scanner memory 220 can be, for

example, an electronic, magnetic, or optical memory. FIG. 3A illustrates an enlarged view of the computer 230 of FIG. 1. This view will be used to describe a second mode of operation. In this second mode of operation, the hard copy document 100 is scanned and a copy of the document 100 is displayed on display 232 of computer 230, based on the contents of information temporarily stored in scanner memory 220. After the document is displayed on display 232, the computer 230 interactively prompts the user to identify the location of specific pieces of information on the hard copy document. In the FIG. 3A illustration, this prompt message is indicated as the message beginning with the arrow.

For example, the prompt message can ask the user to identify the location of account number information on the hard copy document. The user then uses an input device, such as keyboard 234 or mouse 236 or a touch screen, notepad, voice recognition device, or other input device to position a cursor on the display to identify the location of the information requested by the prompt message. For example, the cursor could be used to define a block (which could be highlighted) containing the requested information, followed by a mouse "enter" click. In this example, the user would move the mouse to identify the location of the account number information contained on the hard copy document 100. The computer 230 then stores the information which has been identified by the user as account number information in the appropriate address or subfile or as the appropriate variable or parameter, or data filed, in memory. The computer then prompts the user to identify the location of other information on the hard copy document, such as, statement date information. The process proceeds until all of the desired information has been stored into the appropriate locations in memory.

FIG. 3B illustrates a variation of the second mode for interactively prompting the user for information. In FIG. 3B, the display is split into two portions. A left-hand portion 232L displays the image of the hard copy document and a right-hand portion 232R displays the required application program information. For example, in FIG. 3B, portion 232R displays a spreadsheet used by an application program. While observing the split display, the user can input instructions to associate specific pieces of information on the hard copy document (for example, the vendor name indicated by the mouse arrow 232A) with particular subfiles in memory (for example, the vendor field next to which the cursor 232C appears), using a mouse or other input device(s) or both. The split display also allows the user to generate content format instructions while observing the information required for a particular application program on the right-55 hand portion.

These second modes of operation are efficient for small businesses which receive a small number of a wide variety of invoices, since the user does not necessarily have to store all of the information that appears on the hard copy document. A further advantage is that data input is quicker, easier, and more accurate than with previous keyboard methodology. In addition, by specifying the location on the hard copy document of information, the user may optionally create a template, to be described in further detail below, for each different type of invoice. This template is stored for future use when another hard copy document in the same format is received.

6

More specifically, instructions from computer 230 can direct the scanner 210 and scanner memory 220, and/or main memory 250, to scan and/or store only specific portions of hard copy document 100. After the interactive prompts required to obtain information for a desired application program, the unused information stored in scanner memory 220 or 250 can be erased. Further, scanning of a second identical document can be limited to only those portions of the document which contain needed information.

More specifically, in FIG. 2, the lines 10 drawn around certain portions of the document represent the areas which the user has previously identified as the portions of a document to be extracted by the scanner 210 and stored in scanner memory 220 and/or main memory 250. Since the logo 20 and the message 30 have not been identified as an area to be scanned and stored, these areas are not scanned and stored in subsequent documents. Since the user has previously associated each of the areas 10 with a specific subfile of information, e.g., the account number, the scanned information is stored in memory locations corresponding to that subfile.

Data Processing

FIGS. 4-10 illustrate the flow of data in the FIG. 1 preferred embodiment. FIG. 4 illustrates the overall data flow for the FIG. 1 preferred embodiment. The preferred embodiment includes an input process module 1.0, an information processing module 2.0, and an output processing module 3.0. The information processing module 2.0 is equipped to receive instructions from and transmit information to a user. The information processing module 2.0 can 30 also transmit to and receive information from a remote external device through communication interface 4.0. Input process module 1.0 and output processing module 3.0 can also access communication interface 4.0. A module is implemented in hardware, software, or a combination of hardware and software. The specific implementation for a particular business application depends upon a variety of factors, for example, the relative costs of hardware and software implemented systems, the frequency with which a user will want to expand or modify the system, and the like.

FIG. 5 is a more detailed diagram of the input process module 1.0 of FIG. 4. The input process module 1.0 includes a character input module 1.1, an image input module 1.2, and, in the preferred embodiment, a character recognition device 1.3. The character input module inputs textual 45 information, such as alphanumeric characters, from an input device such as keyboard 234. The image input module 1.2 inputs image information, for example, a digitized image of the actual appearance of hard copy document 100. Textual information can include textual input from an input device 50 such as keyboard 234 and textual information extracted from the document by character recognition device 1.3. Both types of information comprise an input document which is transmitted to information processing module 2.0. In the FIG. 1 preferred embodiment, the processing performed by input process module 1.0 occurs in scanner memory 220, computer 230, and main memory 250.

FIG. 6 illustrates information processing data flow for the FIG. 1 preferred embodiment, that is, FIG. 6 illustrates data flow in the information processing module 2.0.

The information processing module 2.0 includes a maintain library module 2.1, to be described in further detail below in conjunction with FIG. 7, a maintain definitions module 2.2, to be described in further detail below in conjunction with FIG. 8, and a process document module 2.3 65 to be described in further detail below in conjunction with FIG. 9.

The information processing module 2.0 is the module which coordinates and drives the entire system. In the preferred embodiment, the information processing module 2.0 is implemented primarily by computer 230.

FIG. 7 illustrates information processing data flow in the maintain library module 2.1. The maintain library module 2.1 maintains a library of image information, for example, a digitized image representing the actual appearance of the hard copy document, and textual information of the hard copy documents for reference during processing. This library can be incorporated within scanner memory 220, main memory 250, or another independent memory, for example, a RAM disk. The maintain library module 2.1 includes a store document module 2.1.1, a correct errors module 2.1.2, a retrieve document module 2.1.3, and a document file 2.1.4. These modules operate collectively to store, retrieve, and correct document information.

The store document module 2.1.1, prior to routing the document to the document file 2.1.4, may provide information on recognition errors which may have occurred while inputting the document. For example, the store document module 2.1.1 identifies that a character contained on hard copy document 100 was not recognized. The store document module 2.1.1 also optionally causes a copy of the document and its parsing to be displayed on the display 232 for confirmation by the user. The user may utilize this opportunity to identify any errors in the displayed document and, in conjunction with the correct errors module 2.1.2, to revise the document's parsing, if necessary, prior to storage of the document in memory. The module 2.1.1 also provides a facility for the user to name a particular hard copy document for cataloging, storage, and retrieval purposes. After the document is named, the store document module 2.1.1 stores copies of the document in the document file 2.1.4.

The correct errors module 2.1.2 processes instructions from the user to correct errors identified by the store document module 2.1.1 and errors that have been spotted by the user during the confirmation process.

The retrieve document module 2.1.3 permits the user to retrieve a copy of a document previously stored in the document file 2.1.4. As described above, long-term storage is provided by main memory 250, if necessary.

FIG. 8 illustrates a more detailed information processing data flow diagram for the maintain definitions module 2.2 of PIG. 6. The maintain definitions module 2,2 allows the user to define system and document parameters and maintains the definitions of these system and document parameters. The maintain definitions module 2.2 includes a define template module 2.2.1 which allows the user to specify the location of information on the document. This information provided by the user defines a template which is used to extract information off the document and to associate the extracted information with a particular variable or subfile. These templates are illustrated by boxes 10 in the FIG. 2 example of a hard copy document. The maintain definitions module 2.2 can also access templates previously defined by the user and stored in main memory 250. Templates can also be provided as part of software packages developed by program developers.

The maintain definitions module 2.2 also includes a define relationships module 2.2.2. The define relationships module 2.2.2 allows the user to define data relationships, or logical relationships, between pieces of information extracted from the hard copy document. These pieces of information are then used to generate an input file for a selected computer application unit. The user defines these relationships by

8

content instructions. Alternatively, content instructions to define relationships can be provided by application software. If the user provides these content instructions, the content instructions are inputted via keyboard 234 or via another input device such as a notepad, a voice recognition device, or the like. Examples of content instructions, data, and logical relationships will be described in further detail in conjunction with FIGS. 11 and 12A, 12B, and 12C.

The maintain definitions module 2.2 also includes a define format module 2.2.3. The define format module 2.2.3 allows the user to define transmission formats for an input file which is then transmitted to a selected computer application unit. Selection of the transmission format of the input file is accomplished by the user through use of transmission format instructions. Alternatively, the applications software itself 15 can generate its own transmission format instructions. When the user must specify transmission format instructions, the transmission format instructions are inputted via keyboard 234 or via another input device such as a notepad, a voice recognition device, or the like. A further description of 20 various transmission formats will be provided below in conjunction with FIGS. 12A, 12B, 12C, 13A, 13B, and 13C.

A select definitions module 2.2.4 is also included in the ule 2.2.4 allows the user to store and select a set of specify the stores to be user to definitions to be user to store and select a set of definitions to be used for processing the document. The definitions identify pieces of information on the document by, for example, absolute location, variable location, or relative location, or by proximity to key words and/or symbols. These definitions are described in further detail 30 below by way of an illustrative example.

FIG. 9 illustrates a more detailed information processing data flow diagram for the process document module 2.3. The process document module 2.3 processes the document after 35 the document has been stored in the system. The process document module 2.3 gathers the appropriate information which has been stored, and creates input file(s) 2.3.3 for the selected application unit. The process document module 2.3 then transmits the input file(s) via bus 240 and/or commu- 40 nication interface 4.0 to an application unit 270, an output device such as printer 260, or to main memory 250.

The process document module 2.3 includes an extract data module 2.3.1. This module extracts data off of the document in accordance with the user's instructions, for 45 number of ways other than by use of a template. For example, the user-defined template, or through the interactive mode.

The process document module 2.3 also includes a preapplication process module 2.3.2 which gathers and associates content instructions. This module prompts the user for any additional information required to satisfy the relationships defined by the content instructions. The preapplication process module 2.3.2 also places the selected information into the Transmission format defined by the transmission format 55 instructions.

The preapplication process module 2.3.2 also generates the input file 2.3.3 for the selected application in accordance with the appropriate instructions. The input file 2.3.3 is then 60 transmitted to bus 240 and/or communication interface 4.0 for transmission to a particular application unit 270.

FIG. 10 illustrates a detailed output data flow diagram for output module 3.0. Output module 3.0 outputs a textual and/or image copy of the document. In the FIG. 1 preferred 65 embodiment, output module 3.0 is implemented by printer 260, associated software, and associated interface circuitry.

10 Operation

Examples of operation of a preferred embodiment will now be described.

The user enters the system by providing instructions to the information processing module 2.0. The user then instructs the information processing module 2.0 to conduct maintain library processing, maintain definitions processing, or process document processing.

If the user selects maintain library processing, the user 10 then provides instructions to maintain or modify the document library through the maintain library module 2.1. For example, the user can direct the inputting and storage of a hard copy document 100 or can retrieve and output a document. The user requests inputting of a document through the store document module 2.1.1. The system then prompts the user to specify a storage location for the inputted document. The document is then read-in by the input process module 1.0. A textual copy and/or an image copy are stored into the document file 2.1.4. Errors which have occurred during inputting are identified and corrected by the correct errors module 2.1.2 and the user. The corrections are reflected in the document information stored in document file 2.1.4.

The retrieve document module 2.13 is used to retrieve specify the storage location of a document and the type of document copy, for example, a textual or an image copy, to be outputted. The document is then outputted by the output process module 3.0.

If the user initially selected maintain definitions processing, the user would instruct the system to maintain and/or modify parameter definitions through the maintain definitions module 2.2. For example, the user can define and maintain a document template for extracting selected portions of information of f of the hard copy document. The user can use the template to extract selected portions of information off of the hard copy document when the document is originally inputted, or alternatively, the user can use the template to identify selected portions of information for extraction off of an image copy of the document. In creating the template, the user identifies pieces of information on the document to be extracted and assigns a variable name, orsubfile, to each piece of data.

The location of data to be extracted can be defined in a example, the user can designate the absolute location of information on the document with respect to a grid overlaid on the document, e.g., always on line 3, starting, in column 1. The user can also identify information by specifying the process information extracted from the document in accordance with two lines below the piece of data named "salutation", starting in column 3. The user can also specify the location of information to be extracted by variable location specification. For example, if the hard copy document is a letter, the module would conduct a key word search for the term "Dear Sir:". Wherever this term "Dear Sir:" is located, this piece of data would be associated with the variable specified by the user, for example, the variable "salutation." In addition, a defined set of conventional symbols can be used to signify certain recurring data items for the convenience of users of the instant invention. For example, a "@" symbol can be used to delineate the vendor name as follows: "@XYZ Corporation@". Other examples of the use of symbols to delineate information will be described with reference to FIG. 14.

The maintain definition module 2.2 is also used to maintain data relationships in accordance with content instruc-

tions and to maintain input file formats in accordance with transmission format instructions. Relationships are defined and maintained between pieces of data, specified by, for example, the names of variables, through the define relationships module 2.2.2. The names of pieces of data on the document are retrieved by, for example, the define template module 2.2.1, and are passed to the define relationships nodule 2.2.2. The user may then provide any additional pieces of data needed to generate an input file for a particular application program or unit, such as an input file line number. The user, the applications software, and/or instructions previously stored in memory then establishes the contents of the input file by defining relationships between pieces of data using content instructions. Specific examples of content instructions will be discussed below in conjunction with FIGS. 11, 12A, 12B, 12C, 13A, 13B, and 13C.

The user and/or the applications software defines and maintains the transmission format of the input file to be used by a particular application program or unit through the define format module 2.2.3 in accordance with transmission format instructions. This is accomplished by defining the parameters to be used by the preapplication process module 2.3.2 in generating an input file. Parameters which would typically be required to generate an input file would include the character type, e.g., text or pixel; delimiters used between pieces of data, e.g., a slash or a semicolon; end of line characters, e.g., a carriage return or a line feed; and end of file characters. Examples of transmission formats will be described in further detail below in conjunction with FIGS. 11, 12A, 12B, 12C, 13A, 13B, and 13C.

If the user initially selected process document processing, the interface will then proceed to process the document through use of the process document module 2.3. For example, the user can extract specific portions of data from an image copy of a document, can generate an input file for transmission to an application program, or can directly process information interactively with an application program.

If the user desires to extract specific portions of data from an image copy of a hard copy document which has already been stored in memory, the user uses the extract data module 2.3.1 to identify a document to be processed. The document is then retrieved by the retrieve document module 2.1.3 and passed to the extract data module 2.3.1. The user can also select parameter definitions through the select definitions module 2.2.4.

The selected document template or parameter definition is passed to the extract data module 2.3.1. The extract data module 2.3.1 extracts pieces of data from the image copy of the document, as defined by the document template definition or the parameter definitions or both. This document data is then passed to preapplication process module 2.3.2.

The interface generates input file(s) 2.3.3 by use of the preapplication process module 2.3.2. The selected data relationship definition, as defined by the content instructions, and the selected record format definitions, as defined by the transmission format instructions, are passed to the preapplication process module 2.3.2. The preapplication process module 2.3.2 assembles the input file in accordance with the content instructions. The preapplication process module 2.3.2 also prompts the user for any additional pieces of data which need to be provided by the user. The input file is converted to the desired transmission format in accordance with the transmission format instructions. This physically formatted data is then stored in the input file 2.3.3.

The user can also use an application program to process information by loading the particular application program 12

into the computer 230 rather than by sending the input file to a remote application unit 270.

An illustrative example of the processing described above will now be described.

The user inputs instructions via keyboard 234 or another input device which indicate that the user desires to input and store a document. The computer 230 then prompts the user for the name of the document. In this example, the user desires to input the document of FIG. 2 and therefore names the document "XYZ Corp. Bill Dec. 1, 1986." The computer then prompts the user to feed the hard copy document 100 into the scanner 210. The image of the hard copy document is displayed on display 232. The computer then prompts the user to identify the account number on the document. By use of the mouse 236 or other input device to position a cursor on the display, the user indicates the location of the account number. The account number is then read-in to a subfile named "Account Number." This process proceeds until all of the desired information has been read-in and stored.

In this particular example, no errors were encountered while inputting the document. The user then directs that the document be stored for future reference in a document file.

Some time later, the user desires to retrieve and output the document and to generate input files based on information from the document. The computer 230 prompts the user for the name of the document and the type of output. The user responds with "XYZ Corp. Bill Dec. 1, 1986" for a printed textual copy. The document is then retrieved from the document file and passed to the printer 260 for printing.

In order to generate an input file for a specific application program, the user selects the option to define a document template for use when each month's XYZ Corporation bill arrives. Accordingly, the user instructs the system to display a copy of an XYZ Corporation bill on the display 232. The user then identifies pieces of data by absolute locations. That is, the user assigns specific names to information located at specific portions of the document. In this example, the user would input the following information:

Vendor-text, line 1, one line, column 1, 80 characters; Account number-numeric, line 6, one line, column 25, 9 characters;

Statement date-date, line 9, one line, column 25, 8 characters;

Payment date-date, line 11, one line, column 25, 8 characters:

Previous balance-currency, line 7, one line, column 75, 9 characters;

New charges-currency, line 8, one line, column 75, 9 characters:

Other debits-currency, line 10, one line, column 75, 9 characters;

Finance charges-currency, line 12, one line, column 75, 9

characters;
Payments-currency, line 13, one line, column 75, 9 char-

acters;
Other credits-currency, line 14, one line, column 75, 9

characters; New balance-currency, line 15, one line, column 75, 9 characters.

The user also identifies data with variable locations. In this particular example, a variable location is specified as follows:

Heading 2-line, value ="Mail To:"

The identification of Heading 2 as line information means that the system will search for occurrences of the character

string "Mail To:" and assign the line number which contains this character string to Heading 2.

The user also identifies data by relative locations. In this example, the user identifies the following relative location:

Mail To-text, Heading 2+1, 3 lines, column 60, 25 characters per line.

The instructions above instruct the system to assign the textual information beginning on one line after Heading 2 and continuing for 3 lines, in column 60, to the Mail To subfile.

As an alternative to inputting the actual line, column, and character numbers, the user can identify desired portions of the document by blocking, or highlighting, the desired portions using the mouse or other input device. In this case, the computer converts the highlighted portions into corresponding line, column, and character numbers.

FIG. 11 lists data corresponding to the hard copy document of FIG. 2 and the associated variable or subfile names.

Next, the user desires to define data relationships in accordance with content instructions. Examples of the type of contents which can be specified by a user are illustrated 20 in FIGS. 12A, 12B, and 12C.

In this particular example, three separate departments of ABC Corporation require information from the XYZ Corporation bill. The first department requires vendor, account number, statement date, payment date, previous balance, new charges, debits, finance charges, payments, and new balance information. The second and third departments require mail to information and previous balance information. Each of these departments have their own application

program which utilizes this information. The user employs content instructions to designate how pieces of information, which have been extracted off of hard copy document 100, are directed to particular departments, that is, particular application programs. FIG. 12A illustrates the contents of the information to be transmitted to the first 35 department. FIG. 12B illustrates the information to be transmitted to the second department. FIG. 12C illustrates the information to be transmitted to the third department. The content instructions, therefore, parse the information shown in FIG. 11 to various application programs, as shown by FIGS. 12A, 12B, and 12C. Content instructions can also be used to identify additional pieces of data which are required for the input files of the particular application programs. In this particular example, the specific application programs from the three departments all require numeric record number information, numeric horizontal position information, numeric vertical position information, and date received information. The horizontal and vertical position information is used by the application program to specify the location of the received information on a spreadsheet application program, in this example. The user may know in advance the content format required by each application program, that is, in this example, the location and type of information specified on the spreadsheet. The user may also employ the split display mode described with reference to FIG. 3B to generate content format instructions.

Using the content instructions, the user establishes the following contents for the input file corresponding to FIG. 12A:

Record number, horizontal position, vertical position, 60 vendor;

Record number, horizontal position, vertical position, account number;

Record number, horizontal position, vertical position, statement date;

Record number, horizontal position, vertical position, date received:

14

Record number, horizontal position, vertical position, payment date;

Record number, horizontal position, vertical position, previous balance;

Record number, horizontal position, vertical position, new charges;

Record number, horizontal position, vertical position, finance charges;

Record number, horizontal position, vertical position, payments;

Record number, horizontal position, vertical position, new balance.

Next, transmission format instructions are employed to define the transmission format of the input file for a specific application program or unit. FIG. 13A illustrates the transmission input file corresponding to FIG. 12A. FIG. 13B illustrates the transmission input file corresponding to FIG. 12B. FIG. 13C illustrates the transmission input file corresponding to FIG. 12C. A comparison of FIGS. 12B and 12C reveals that FIGS. 12B and 12C have the same contents. However, the information illustrated in FIG. 12B is being sent to a different application program than the information in FIG. 12C. These application programs require different transmission input formats as illustrated in FIGS. 13B and 13C. More specifically, the application program that receives the input file illustrated in FIG. 13B uses the greater than sign as a delimiter whereas the application program which receives the transmission input file shown in FIG. 30 13C uses a back-slash as the delimiter.

After the contents and the transmission format for the input file have been defined, and any additional information has been inputted, the input file is assembled and transmitted

to the particular application program.

FIG. 14 illustrates another example of a hard copy document containing information to be processed by the instant invention. The hard copy document illustrated in FIG. 14 is first scanned and information from the hard copy document is stored into a memory. The interface 200 then identifies portions of the hard copy document corresponding to various variables by recognizing a defined set of symbols. In the FIG. 14 example, triangles delineate the mailing address, circles delineate the statement date, and squares delineate the new charges. Information from these portions of the hard copy document is stored in the corresponding memory locations or subfiles for each variable. The same set of symbols can be used to identify the same information from one document to the next. Thus, even if the physical formats of documents are not fixed from one document to the next, a diversity of hard copy documents can be processed without manually inputting data by recognition of the defined symbols.

Examples of readily available application programs are Quicken and Lotus 1,2,3 both of which are widely utilized in the business community. Quicken, for example is an easy-to-utilize program for writing checks and preparing business records. Payee, amount and address information may readily be transmitted from scanner memory 220 and/or main memory 250 to the Quicken application program for check writing functions and ledger keeping purposes. Lotus is a well known spreadsheet program which may process data input into specified cells once this data is placed in conventional Lotus format.

Thus, the instant invention provides an integrated and comprehensive system for handling information from a hard copy document, thus permitting a paperless office. In addition, the invention permits data, extracted of f of a hard

16 said content instructions in said system as a template for use in said extraction mode.

copy document, to be easily manipulated into various logical and transmission formats required by a particular application unit. The invention also provides a low cost system for inputting information from a wide variety of hard copy documents into a memory.

The foregoing description has been set forth merely to illustrate preferred embodiments of the invention and is not intended to be limiting. Modifications are possible without

departing from the scope of the invention.

For example, letters, checks, forms, pictures, reports, 10 music scores, film, and other types of hard copy documents can be processed by the invention for accounts payable/ receivable accounting, inventory control, record keeping, budgeting, data base management, music transcription, forms processing, computerized art, survey and question- 15 naire processing, statistical data analysis, correspondence processing and other applications.

Other automated digitizing units can be used in addition to or as an alternative to use of the scanner 210 as an input unit. Any electrical, magnetic, or optical device which 20 extracts information off of a hard copy document, thereby eliminating the need to manually input significant amounts of information from the hard copy document is suitable for use as an automated digitizing unit. In addition, information generated from various devices, and from computer files from other computer systems. Suitable hardware for inputting data includes a keyboard, a light pen, a mouse, a touch screen, a laser scanner, a microphone, a tablet, a disk drive, a magnetic tape drive, and a modem.

The interface 200 can also output information in forms other than a hard copy of textual or image information. For example, the interface 200 can output system responses, computer files, and digital and analog signals for transmission to other computer systems or to control systems. 35 in claim 5 in which said document or file is on a first Suitable hardware for outputting information includes a disk drive, a magnetic tape drive, a cathode ray tube, a plasma screen, a printer, a plotter, a film developer, an amplifier, and a modem.

Since modifications of the described embodiments incor- 40 porating the spirit and substance of the invention may occur to persons skilled in the art, the scope of the invention should be limited solely with respect to the appended claims and equivalents.

What is claimed is:

- 1. A multimode information processing system for inputting information from a document or file on a computer into at least one application program according to transmission format instructions, and to operate in at least one of:
 - a. a definition mode wherein content instructions, at least 50 one of which is not a location of said information derived from a pre-scanned image of a blank form, are used to define input information from within said document or file required by said at least one application program; and
- . b. an extraction mode to parse at least a portion of said document or file to automatically extract at least one field of information required by said at least one application program and to transfer said at least one field of information to said at least one application 60 . program.
- 2. A multimode information processing system as recited in claim 1, wherein said definition mode is operative to store said content instructions in said system in association with said extraction mode.
- 3. A multimode information processing system as recited in claim 1, wherein said definition mode is operative to store

4. A multimode information processing system as recited in claim 1, wherein said extraction mode is operative to match at least a portion of said document or file with a

template created with or available to said system. 5. A multimode information processing system as recited in claim 2, wherein said extraction mode is operative to

match at least a portion of said document or file with a template created with or available to said system.

6. A multimode information processing system as recited in claim 1 in which said document or file is on a first computer, and said application program is on a second

7. A multimode information processing system as recited in claim 3 in which said document or file is on a first computer, and said application program is on a second computer.

8. A multimode information processing system as recited in claim 7 in which said template is stored in said first

computer.

9. A multimode information processing system as recited in claim 7 in which said template is stored in said second

10. A multimode information processing system as recited can be input by user responses and digital and analog signals 25 in claim 4 in which said document or file is on a first computer, and said application program is on a second computer.

> 11. A multimode information processing system as recited in claim 10 in which said template is stored in said first

12. A multimode information processing system as recited in claim 10 in which said template is stored in said second

13. A multimode information processing system as recited computer, and said application program is on a second

14. A multimode information processing system as recited in claim 13 in which said template is stored in said first

15. A multimode information processing system as recited in claim 13 in which said template is stored in said second

16. A multimode information system as recited in claim 3, 4, or 5 in which said document or file, said at least one application program and/or said template is/are distributed among more than one computer.

17. A multimode information processing system for inputting information from a document or file on a computer into at least one application program according to transmission

format instructions, and to operate in:

- a. a definition mode wherein content instructions, at least one of which is not a location of said information derived from a pre-scanned image of a blank form, are used to define input information from within said document or file required by said at least one application program; and
- b. an extraction mode to parse at least a portion of said document or file to automatically extract at least one field of information required by said at least one application program and to transfer said at least one field of information to said at least one application

18. A multimode information processing system as recited 65 in claim 17, wherein said definition mode is operative to store said content instructions in said system in association

with said extraction mode.

18 35. An application program interface as recited in claim

19. A multimode information processing system as recited in claim 17, wherein said definition mode is operative to store said content instructions in said system as a template for use in said extraction mode.

20. A multimode information processing system as recited 5 in claim 17 wherein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

21. A multimode information processing system as recited in claim 18, wherein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

22. A multimode information processing system as recited in claim 17 in which said document or file is on a first computer, and said application program is on a second computer.

23. A multimode information processing system as recited in claim 19 in which said document or file is on a first computer, and said application program is on a second computer.

24. A multimode information processing system as recited 20 in claim 23 in which said template is stored in said first

25. A multimode information processing system as recited in claim 23 in which said template is stored in said second

computer.

26. A multimode information processing system as recited in claim 20 in which said document or file is on a first computer, and said application program is on a second computer.

27. A multimode information processing system as recited 30 in claim 26 in which said template is stored in said first

28. A multimode information processing system as recited in claim 26 in which said template is stored in said second computer.

29. A multimode information processing system as recited in claim 21 in which said document or file is on a first computer, and said application program is on a second

 $3\hat{0}$. A multimode information processing system as recited $_{40}$ in claim 29 in which said template is stored in said first

computer.

31. A multimode information processing system as recited in claim 29 in which said template is stored in said second

computer.

32. A multimode information system as recited in claim 19, 20, or 21 in which said document or file, said at least one application program and/or said template is/are distributed among more than one computer.

33. An application program interface comprising:

- a. utilities for enabling selection of portions of a stored document or file in accordance with content instructions, at least one of which is not a location of said information derived from a pre-scanned image of a blank form, as selected stored document information, 55 said content instructions designating portions of said stored document or file required by an application unit;
- b. utilities for enabling formatting of said selected stored document information into a transmission format used by said application unit based on transmission format 60 instructions; and
- c. utilities for automatically enabling transmission of formatted selected stored document information to said application unit in an extraction mode.
- 34. An application program interface as recited in claim 65 33 further comprising utilities for enabling storage of said content instructions.

33 or 34 further comprising: utilities for enabling definition of a template which asso-

ciates portions of said document or file with specific

variables.

36. An application program interface as recited in claim 33 or 34 which operates in a distributed computing envi-

37. An application program interface as recited in claim 35 which operates in a distributed computing environment.

38. An method of doing business comprising the steps of: inputting information from a document of file on a computer into at least one application program according to transmission format instructions;

processing the information in at least one of:

a. a definition mode wherein content instructions, at least one of which is not a location of said information derived from a pre-scanned image of a blank form, are used to define input information from within said document or file required by said at least one application program; and

b. an extraction mode to parse at least a portion of said document or file to automatically extract at least one field of information required by said at least one application program and to transfer said at least one field of information to said at least one application

39. A multimode information processing system as recited in claim 30 wherein said definition mode is operative to store said content instructions in said system in association with said extraction mode.

40. A multimode information processing system as recited in claim 38, wherein said definition mode is operative to store said content instructions in said system as a template 35 for use in said extraction mode.

41. A multimode information processing system as recited in claim 38, wherein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

42. A multimode information processing system as recited in claim 39, therein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

43. A multimode information processing system as recited 45 in claim 38 in which said document or file is on a first computer, and said application program is on a second computer.

44. A multimode information processing system as recited in claim 40 in which said document or file is on a first 50 computer, and said application program is on a second computer.

45. A multimode information processing system as recited in claim 44 in which said template is stored in said first

computer.

46. A multimode information processing system as recited in claim 44 in which said template is stored in said second

47. A multimode information processing system as recited in claim 41 in which said document or file is on a first computer, and said application program is on a second computer.

48. A multimode information processing system as recited in claim 47 in which said template is stored in said first

49. A multimode information processing system as recited in claim 47 in which said template is stored in said second computer.

50. A multimode information processing system as recited in claim 42 in which said document or file is on a first computer, and said application program is on a second computer.

51. A multimode information processing system as recited 5 in claim 50 in which said template is stored in said first

52. A multimode information processing system as recited in claim 50 in which said template is stored in said second

computer.

53. A multimode information system as recited in claim 40, 41, or 42 in which said document or file, said at least one application program and/or said template is/are distributed among more than one computer.

54. An method of doing business comprising the steps of: inputting information from a document of file on a 15 computer into at least one application program accord-

ing to transmission format instructions; processing the information in:

a. a definition mode wherein content instructions, at least one of which is not a location of said informa- 20 tion derived from a pre-scanned image of a blank form are used to define input information from within said document or file required by said at least

one application program; and

b. an extraction mode to parse at least a portion of said 25 document or file to automatically extract at least one field of information required by said at least one application program and to transfer said at least one field of information to said at least one application

55. A multimode information processing system as recited in claim 54, wherein said definition mode is operative to store said content instructions in said system in association

with said extraction mode.

56. multimode information processing system as recited 35 in claim 54, wherein said definition mode is operative to store said content instructions in said system as a template for use in said extraction mode.

57. A multimode information processing system as recited in claim 54, wherein said extraction mode is operative to 40 match at least a portion of said document or file with a template created with or available to said system.

58. A multimode information processing system as recited in claim 55, wherein said extraction mode is operative to match at least a portion of said document or file with a 45 template created with or available to said system.

59. A multimode information processing system as recited in claim 54 in which said document or file is on a first computer, and said application program is on a second

60. A multimode information processing system as recited in claim 56 in which said document or file is on a first computer, and said application program is on a second computer.

in claim 60 in which said template is stored in said first

62. A multimode information processing system as recited in claim 60 in which said template is stored in said second

computer.

63. A multimode information processing system as recited in claim 57 in which said document or file is on a first computer, and said application program is on a second

in claim 63 in which said template is stored in said first computer.

65. A multimode information processing system as recited in claim 63 in which said template is stored in said second computer.

66. A multimode information processing system as recited

in claim 58 in which said document or file is on a first computer, and said application program is on a second

67. A multimode information processing system as recited in claim 66 in which said template is stored in said first

computer.

68. A multimode information processing system as recited in claim 66 in which said template is stored in said second

computer.

69. A multimode information system as recited in claim 56, 57, or 58 in which said document or file, said at least one application program and/or said template is/are distributed among more than one computer.

70. A method of processing information comprising the

steps of:

inputting information from a document of file on a computer into at least one application program according to transmission format instructions;

processing the information in at least one of:

a. a definition mode wherein content instructions, at least one of which is not a location of said information derived from a pre-scanned image of a blank form, are used to define input information from within said document or file required by said at least one application program; and

b. an extraction mode to parse at least a portion of said document or file to automatically extract at least one field of information required by said at least one application program and to transfer said at least one field of information to said at least one application

program.

71. A multimode information processing system as recited in claim 70, wherein said definition mode is operative to store said content instructions in said system in association with said extraction mode.

72. A multimode information processing system as recited in claim 70, wherein said definition mode is operative to store said content instructions in said system as a template

for use in said extraction mode.

73. A multimode information processing system as recited in claim 70, wherein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

74. A multimode information processing system as recited in claim 71, wherein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

75. A multimode information processing system as recited in claim 70 in which said document or file is on a first computer, and said application program is on a second

computer.

76. A multimode information processing system as recited 61. A multimode information processing system as recited 55 in claim 72 in which said document or file is on a first computer, and said application program is on a second computer.

77. A multimode information processing system as recited in claim 76 in which said template is stored in said first

computer.

78. A multimode information processing system as recited in claim 76 in which said template is stored in said second

79. A multimode information processing system as recited 64. A multimode information processing system as recited 65 in claim 73 in which said document or file is on a first computer, and said application program is on a second computer.

80. A multimode information processing system as recited in claim 79 in which said template is stored in said first computer

81. A multimode information processing system as recited in claim 79 in which said template is stored in said second 5

computer.

82. A multimode information processing system as recited in claim 74 in which said document or file is on a first computer, and said application program is on a second computer.

83. A multimode information processing system as recited in claim 82 in which said template is stored in said first

computer.

84. A multimode information processing system as recited in claim 82 in which said template is stored in said second 15 computer.

85. A multimode information system as recited in claim 72, 73, or 74 in which said document or file, said at least one application program and/or said template is/are distributed among more than one computer.

86. A method of processing information comprising the

steps of:

inputting information from a document of file on a computer into at least one application program according to transmission format instructions;

processing the information in:

a. a definition mode wherein content instructions, at least one of which is not a location of said information derived from a pre-scanned image of a blank form, are used to define input information from within said document or file required by said at least one application program; and

b. an extraction mode to parse at least a portion of said document or file to extract at least one field of information required by said at least one application program and to automatically transfer said at least one field of information to said at least one applica-

tion program.

87. A multimode information processing system as recited in claim 86, wherein said definition mode is operative to store said content instructions in said system in association with said extraction mode.

88. A multimode information processing system as recited in claim 86, wherein said definition mode is operative to store said content instructions in said system as a template for use in said extraction mode.

89. A multimode information processing system as recited in claim 86, wherein said extraction mode is operative to

match at least a portion of said document or file with a template created with or available to said system.

90. A multimode information processing system as recited in claim 87 wherein said extraction mode is operative to match at least a portion of said document or file with a template created with or available to said system.

91. A multimode information processing system as recited in claim 86 in which said document or file is on a first computer, and said application program is on a second

computer.

92. A multimode information processing system as recited in claim 88 in which said document or file is on a first computer, and said application program is on a second computer.

93. A multimode information processing system as recited in claim 92 in which said template is stored in said first

compute:

94. A multimode information processing system as recited 20 in claim 76 in which said template is stored in said second computer.

95. A multimode information processing system as recited in claim 89 in which said document or file is on a first computer, and said application program is on a second computer.

96. A multimode information processing system as recited in claim 95 in which said template is stored in said first

computer.

97. A multimode information processing system as recited in claim 95 in which said template is stored in said second computer.

98. A multimode information processing system as recited in claim 90 in which said document or file is on a first computer, and said application program is on a second computer.

99. A multimode information processing system as recited in claim 98 in which said template is stored in said first

computer.

100. A multimode information processing system as recited in claim 98 in which said template is stored in said second computer.

101. A multimode information system as recited in claim 88, 89, or 90 in which said document or file, said at least one application program and/or said template is/are distributed among more than one computer.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

: 6,683,697 B1

Page 1 of 2

DATED

: January 27, 2004

INVENTOR(S): Robert Lech, Mitchell A. Medina and Catherine B. Elias

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 15,

Line 48, after "to" insert -- customizable --.

Line 50, after "instructions" delete -- , at least one of which is not a location of said information derived from a pre-scanned image of a blank form, --. Line 61, after, "program" insert -- according to said customizable transmission format instructions --

Column 16,

Line 51, after "to" insert -- customizable --.

Column 15,

Line 53, after "instructions" delete -- , at least one of which is not a location of said information derived from a pre-scanned image of a blank form, --. Line 64, after "program" insert -- according to said customizable transmission format instructions --.

Column 17.

Line 54, after "instructions" delete --, at least one of which is not a location of said information derived from a pre-scanned image of a blank form, --.

Line 61, after "on" insert -- customizable --.

Line 65, after "mode" insert -- according to said customizable transmission format instructions --.

Column 18,

Line 14, after "to" insert -- customizable --.

Line 16, after "instructions" delete -- , at least one of which is not a location of said information derived from a pre-scanned image of a blank form -. Line 27, after "program" insert -- according to said customizable transmission format instructions --.

Column 19.

Line 18, after "to" insert -- customizable --.

Line 20, after "instructions" delete -- , at least one of which is not a location of said information derived from a pre-scanned image of a blank form, -. Line 31, after "program" insert -- according to said customizable transmission format instructions --.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,683,697 B1

Page 2 of 2

DATED

: January 27, 2004

INVENTOR(S) : Robert Lech, Mitchell A. Medina and Catherine B. Elias

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 20,

Line 22, after "to" insert -- customizable --.

Line 24, after "instructions" delete -- , at least one of which is not a location of said information derived from a pre-scanned image of a blank form --. Line 34, after "program" insert - according to said customizable transmission format instructions. --

Column 21,

Line 25, after "to" insert -- customizable --.

Line 27, after "instructions" delete -- , at least one of which is not a location of said information derived from a pre-scanned image of a blank form, -. Line 38, after "program" insert -- according to said customizable transmission format instructions. --

Signed and Sealed this

Twenty-sixth Day of July, 2005

JON W. DUDAS Director of the United States Patent and Trademark Office

US007075673B2

(12) United States Patent

Lech et al.

(10) Patent No.:

US 7,075,673 B2

(45) Date of Patent:

Jul. 11, 2006

(54) INFORMATION PROCESSING METHODOLOGY

(75) Inventors: Robert Lech, Jackson, NJ (US);

Mitchell A. Medina, New York, NY (US); Catherine B. Elias, Plainsboro,

NJ (US)

(73) Assignee: EON-Net L.P., Tortola (VG)

(*) Notice: Subject to any disclaimer, the

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 34 days.

(21) Appl. No.: 10/704,484

(22) Filed: Nov. 6, 2003

(65) Prior Publication Data

US 2004/0070793 A1 Apr. 15, 2004

Related U.S. Application Data

- (60) Continuation of application No. 09/458,162, filed on Dec. 9, 1999, now Pat. No. 6,683,697, which is a continuation of application No. 09/044,159, filed on Mar. 19, 1998, now Pat. No. 6,094,505, which is a continuation of application No. 08/487,150, filed on Jun. 7, 1995, now Pat. No. 5,768,416, which is a division of application No. 08/348,224, filed on Nov. 28, 1994, now Pat. No. 5,625,465, which is a continuation of application No. 08/143,135, filed on Oct. 29, 1993, now Pat. No. 5,369,508, which is a continuation of application No. 07/672,865, filed on Mar. 20, 1991, now Pat. No. 5,258,855.
- (51) Int. Cl. H04N 1/40 (2006.01)

(56) References Cited

3,013,718 A 3,200,372 A 8/1965 Hamburgen 3,303,463 A 2/1967 Hamburgen 3,434,110 A 3,492,653 A 1/1970 Fosdick et al. 3,582,883 A 6/1971 Shepard (Continued)

FOREIGN PATENT DOCUMENTS

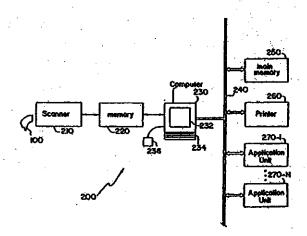
U.S. PATENT DOCUMENTS

EP 0 107 083 B1 7/1988

(Continued)

OTHER PUBLICATIONS

PC Magazine, vol. 5, No. 16, Sep. 30, 1986.


(Continued)

Primary Examiner—Thomas D. Lee Assistant Examiner—Stephen Brinich (74) Attorney, Agent, or Firm—Foley & Lardner LLP

(57) ABSTRACT

An information processing methodology gives rise to an application program interface which includes an automated digitizing unit, such as a scanner, which inputs information from a diversity of hard copy documents and stores information from the hard copy documents into a memory as stored document information. Portions of the stored document information are selected in accordance with content instructions which designate portions of the stored document information required by a particular application program. The selected stored document information is then placed into the transmission format required by a particular application program in accordance with transmission format instructions. After the information has been transmission formatted, the information is transmitted to the application program. In one operational mode, the interface interactively prompts the user to identify, on a display, portions of the hard copy documents containing information used in application programs or for storage.

57 Claims, 15 Drawing Sheets

US 7,075,673 B2 Page 2

U.S. PATENT DOCUMENTS	OTHER PUBLICATIONS
3,584,144 A 6/1971 Shepard et al.	TopScan Professional User's Guide, Calera Recognition
3,631,396 A 12/1971 Spertus	Systems, pp. v-vii, xi-xiii, and 1-6, 1989.
3,832,682 A 8/1974 Brok et al.	Que's Computer user's Dictionary, 2nd Ed., Bryan
3,848,228 A 11/1974 MacNeill 3,903,517 A 9/1975 Hafner	Pfaffenberger (author); 1991; p. 144.
RE29,104 E 1/1977 Shepard	"Kurzwell 5200 Intelligent Scanning System", Xerox Imag-
4,021,777 A 5/1977 Shepard	ing Systems, Inc., 1990.
4,034,343 A 7/1977 Wilmer	Edward O. Welles, Decisions, Decisions, Inc., Aug. 1990
4,041,454 A 8/1977 Shepard et al.	pp. 80-90.
4,047,154 A 9/1977 Vitols et al.	Palantir PagePro User's Guide, Rev. A, Dec. 1986, sections
4,132,978 A 1/1979 Mercier	1 and 4 and Appendix C.
4,387,964 A 6/1983 Arrazola et al. 4,553,261 A 11/1985 Froessi	PageRead Library Developer's Guide, Rev. B, Aug. 1989,
4,564,752 A 1/1986 Lepic et al.	pp. PRL1-3, SHC25-26, TUT9-10.
4,572,962 A 2/1986 Shepard	With AutoClass there is no more to Indexing than OCR,
4,593,367 A 6/1986 Slack et al.	Remittance and Document Processing Today, NovDec.
4,659,940 A 4/1987 Shepard	1990, p. 46.
4,667,248 A 5/1987 Kanno	Daniel Borrey, Machine Recognition and Classification of
4,672,678 A 6/1987 Koezuka et al. 4,760,246 A 7/1988 Shepard	Documents, Remittance and Document Processing Today,
4,760,606 A 7/1988 Lesnick et al.	NovDec. 1990, pp. 20-23.
4,776,016 A * 10/1988 Hansen	The Very Best in Optical Character Recognition, IMAG-ING, Mar. 1992, pp. 43-47.
4,782,509 A 11/1988 Shepard	Why Insurance Companies Take the Risk on Document
4,802,104 A 1/1989 Ogiso	Imaging, IMAGING, Mar. 1992, pp. 48-54.
4,802,231 A 1/1989 Davis 4,803,734 A 2/1989 Onishi et al.	"OCR for Forms" (advertisement), IMAGING, Apr. 1992.
4,931,957 A 6/1990 Takagi et ai.	David Black, The Right and The Wrong Ways to Index,
4.933,979 A 6/1990 Suzuki et al.	IMAGING, May 1992, pp. 47-50.
4,974,260 A 11/1990 Rudak	Greg Bartels, How to Successfully Convert Your Backfiles,
5,017,763 A 5/1991 Shepard 5,031,121 A 7/1991 Iwai et al.	IMAGING, May 1992, pp. 55-56.
5,034,990 A 7/1991 Klees	But, Is It a Boy or Girl? IMAGING, Oct. 1992, p. 10.
5,052,038 A 9/1991 Shepard	Gerry Frieser, Suddenly, OCR is a "Must Buy", IMAGING,
5,095,445 A 3/1992 Sekiguchi	Dec. 1992, pp. 22-25.
5,140,139 A 8/1992 Shepard	14 of the Hottest OCR Software Packages and Systems,
5,140,650 A 8/1992 Casey et al. 5,153,927 A 10/1992 Yamanari	IMAGING, Dec. 1992, pp. 26-31, 33, 35. How Form Processing Works, Plus Pros and Cons, IMAG-
5,159,667 A 10/1992 Borrey et al.	ING, Dec. 1992, p. 36.
5,191,525 A 3/1993 LeBrun et al.	Forms Processing Products Meet the Challenge of OCRing
5,218,539 A 6/1993 Elphick et al.	Forms, IMAGING, Dec. 1992, p. 38-40.
5,228,100 A 7/1993 Takeda et al. 5,245,166 A 9/1993 Shepard	Herbert F. Schantz, Forms Automation and Integrated Imag-
5,251,268 A 10/1993 Colley et al.	ing (OCR) Systems, Remmittance and Document Processing
5,257,328 A 10/1993 Shimizu	Today, MarApr. 1991, pp. 9-11.
5,258,855 A 11/1993 Lech et al.	Don Merz, OCR: A Health Insurance Application, Remit-
5,282,267 A 1/1994 Woo, Jr. et al. 5,307,424 A 4/1994 Kuchi	tance and Document Processing Today, JulAug. 1989, pp.
5,367,619 A 11/1994 Dipaolo	18-20. Industry News, Remittance and Document Processing
5,404,294 A 4/1995 Kamik	Today, JulAug. 1989, p. 22.
5,416,849 A 5/1995 Huang	Industry News and New Products, Remittance and Docu-
5,444,840 A 8/1995 Froessi	ment Processing Today, Oct. 1984, pp. 17-18.
5,448,738 A 9/1995 Good et al. 5,452,379 A 9/1995 Poor	R. C. Gonzalez, Designing Balance Into An OCR System,
5,455,875 A 10/1995 Chevion et al.	Remittance and Document Processing Today, Mar. 1988, pp.
5,506,697 A 4/1996 Li et al.	7, 10-11.
5,5H,135 A 4/1996 Rhyne et al.	Ambrose R. Rightler, OCR Quality Control Procedures for
5,526,447 A 6/1996 Shepard 5,550,930 A 8/1996 Borman et al.	Remittance Processing: Can You Afford to be Without It?
5,555,325 A 9/1996 Burger	Remittance and Document Processing Today, Mar. 1988, pp. 12-15.
5,696,854 A 12/1997 Shepard	Product Watch, MACWEEK, Oct. 3, 1989, pp. 32, 34, 38,
5,734,761 A 3/1998 Bagley	40, 42.
5,852,685 A 12/1998 Shepard 5,923,792 A 7/1999 Shyu et al.	Industry News, Remittance and Document Processing
5,933,531 A 8/1999 Lorie	Today, Jan. 1989, p. 9.
6,067,517 A * 5/2000 Bahl et al 704/256	Scott Beamer, Mac OCR Takes a Big Step Forward,
6,094,505 A 7/2000 Lech et ai.	MACWEEK, Jun. 13, 1989.
FOREIGN PATENT DOCUMENTS	Matthew Lake, Strength of Character (Recognition), PUB-
64-38883 2/1989	LISH, Jan. 1991, pp. 62-67. R. David Nelson and Karen A. Hamill, Optical Scanning at
3-161886 7/1991	Chemical Abstracts Service for Building Computer Files

JP JP

US 7,075,673 B2

Page 3

From Printed Index Data, Recognition Technologies Today, Feb. 1985, pp. 1-6, 15.

Gerald Farmer, HNC IDEPT9 and Recognition Enhanced Data Entry: The Cost-Cutting Approach to Automated Data Entry, Remittance and Document Processing Today, Jan.-Feb. 1991, pp. 24-26.

David Gertler, Automated Data Entry, Seybold Report on Desktop Publishing, Jan. 15, 1990, pp. 3-17.

Eric Aas and Peter Davidoff, Teaching Your Scanner to Read, Personal Publishing, May 1990, pp. 28, 31, 33.

Phillip Robinson et al., Character Witnesses, MACUSER, Jul. 1990, pp. 120-136.

Brita Meng, Text Without Typing, MACWORLD, Oct. 1990, pp. 177-183.

Jim Heid, Getting Started with Optical Character Recognition, MACWORKD, Oct. 1990, pp. 297-301.

Stanford Diehl and Howard Eglowstein, Tame the Paper Tiger, BYTE, Apr. 1991, pp. 220-238.

Alan Joch and Rich Graham, Voices of Experience, BYTE, Apr. 1991, pp. 239-241.

Gregory Boleslavsky and Roman Tutunikov, The New Generation of OCR, INFORM, Jan. 1990, pp. 34-37.

Calera Recognition Systems, Inc., TopScan Professional User's Guide: Complete Document Recognition for PCs and Compatibles (1989).

Calera Recognition Systems, Inc., TopScan Professional Installation Notes for Scanners, Fax Cards, and System Configuration (1989).

Calera Recognition Systems, Inc., TopScan Professional Troubleshooting Guide (1989).

Xerox Imaging Systmes, Inc., Datacopy AccuText User's Guide (1989).

Invoice from Corporate Intelligence Corporation to Workman, Nydegger & Seeley, dated Sep. 21, 1999.

Examiner Interview Summary Record, Jan. 25, 1996, and related Amendment, for U.S. Appl. No. 08/097,131.

Jane B. Newman, Formstar Ad; "Stack the Facts, Not the Forms"—May 24, 1987; "Stack and Send Just the Facts—and Improve the Efficiency of your Forms Application".

TeleImage Systems Document and Image Database Systems User's Manual-Ramat Gan, Israel; Table of Contents and pp. 2-1 through 5-20.

Form Out! Programmer's Manual; TeleImage Systems, Ramat Gan Israel; published Feb. 1991 pp. I, II, III, IV, V, VI, VII; 1.1-6.29 and A.1-G.11.

IPLEXUS, "The Extended Data Processing Concept", Plexus Computers, Ltd., 1988.

Laserfiche United, Capabilities and Functional Specifications, 2002 Compulink Management Center, Inc.

The LaserFicheTM System, LF00007-LF00010, Copyright 1998 Compulink Management Center.

LaserFicheTM, Integrated Document Imaging and Text Processing Systems, Compulink Management Center, Inc.

Compulink Management Center, Copyright 1989, LF-00006.

PC Week, Document-Archival System Combines DOS with CD ROM, LF00011-LF-00032.

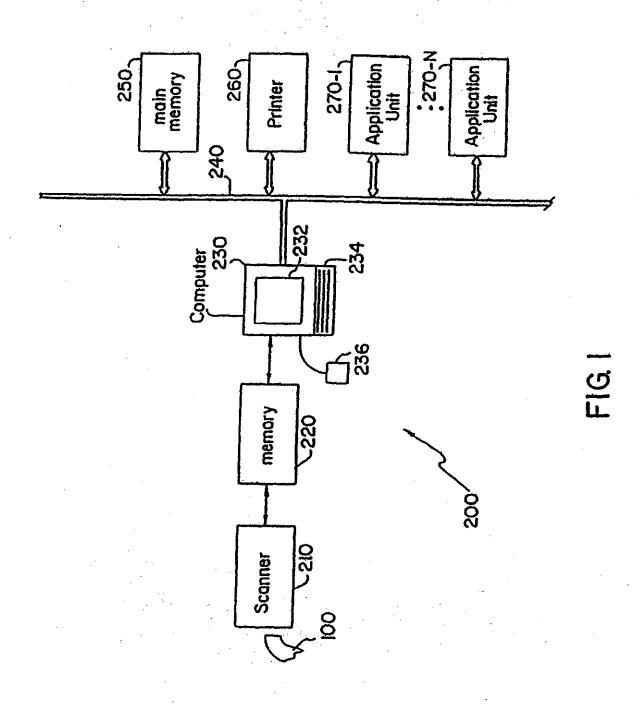
LASERFICHB, Zone OR Plug-in, 2002 Compulink Management Center, Inc.

LASERFICHE, Efficient Integration, http://www.laserfiche.com/products/techadmin/integration.html, Jul. 2, 2004.

LASERFICHE, Inteator's Toolkit, Compulink Management Center, Inc. 2003.

LASERFICHE, LaserFiche Integration Express-GISTM, http://www.laserfiche.com/products/integrationexpress-gis.html, Jul. 2, 2004.

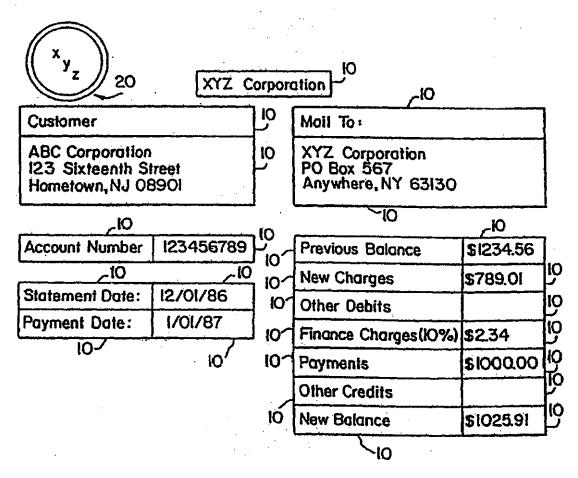
OCR Texiris, Texiris User's Guide, Version 2.1, Image Recognition Integrated systems S.A.


Texinis User's Guide, 13. Interfacing Data Base Management Systems.

Texiris User's Guide, 5. Correction Tools.

* cited by examiner

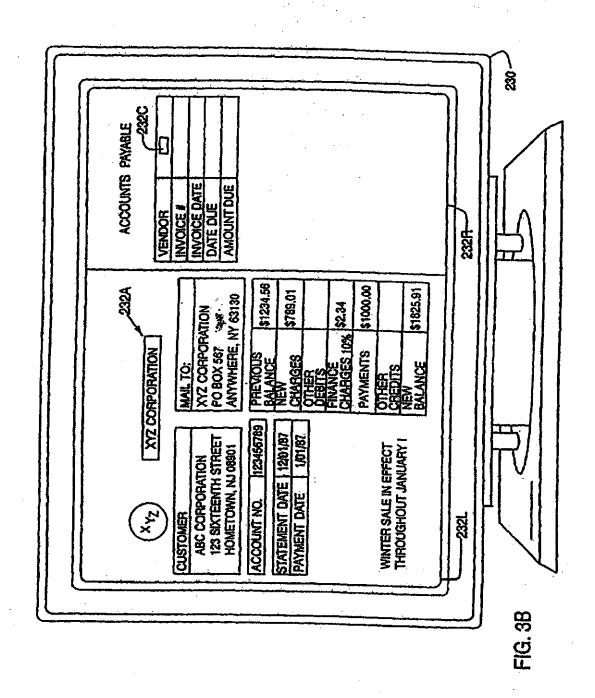
Jul. 11, 2006


Sheet 1 of 15

Jul. 11, 2006

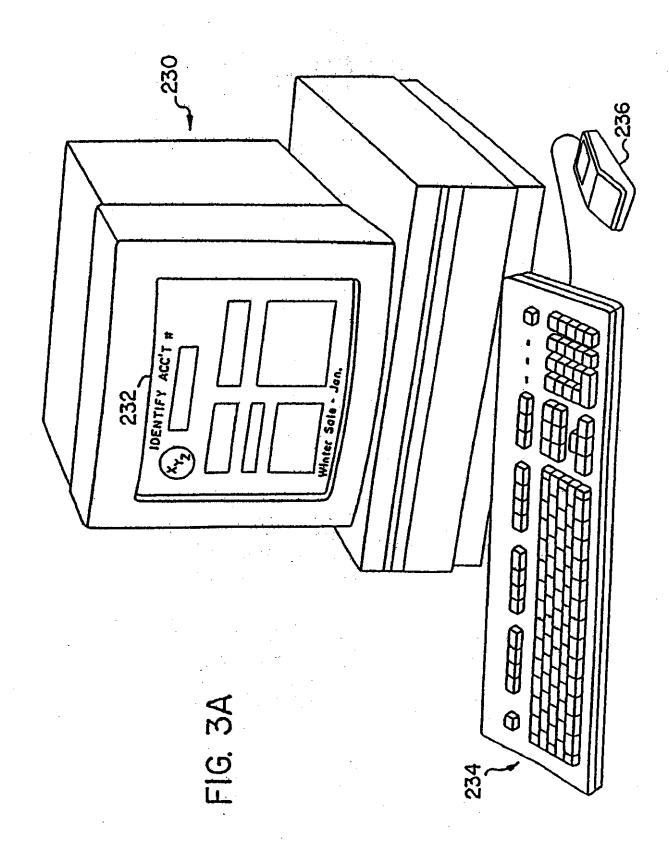
Sheet 2 of 15

US 7,075,673 B2


Winter Sale in Effect Throughout January!

30

FIG. 2


Jul. 11, 2006

Sheet 4 of 15

Jul. 11, 2006

Sheet 3 of 15

Jul. 11, 2006

Sheet 5 of 15

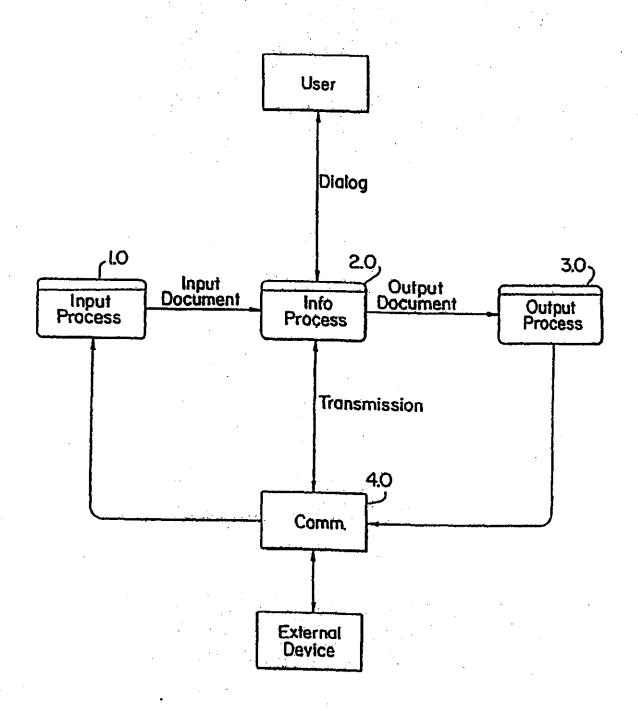
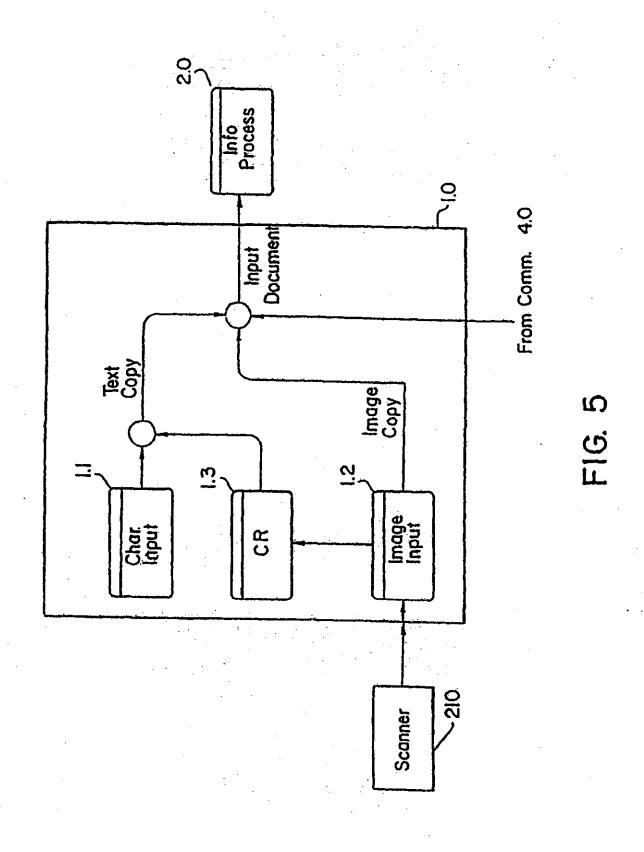
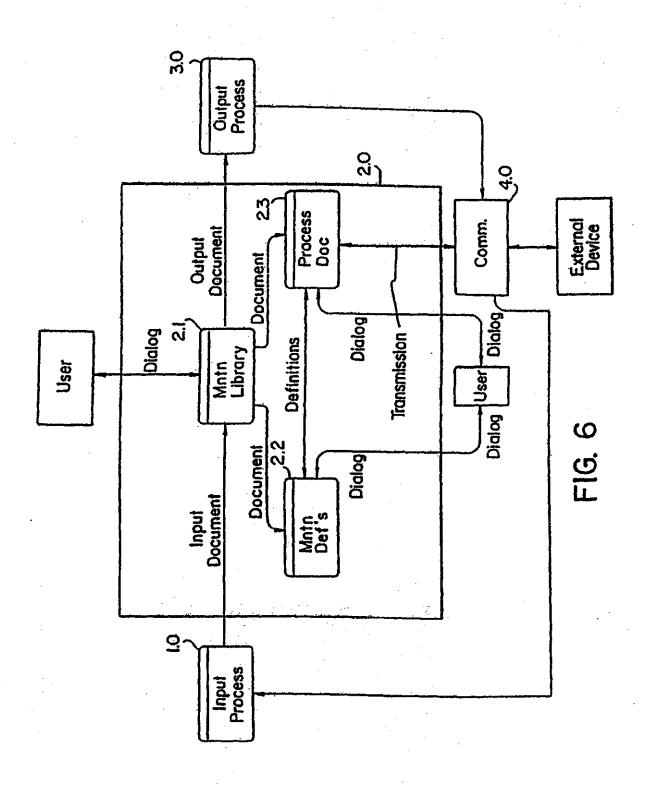
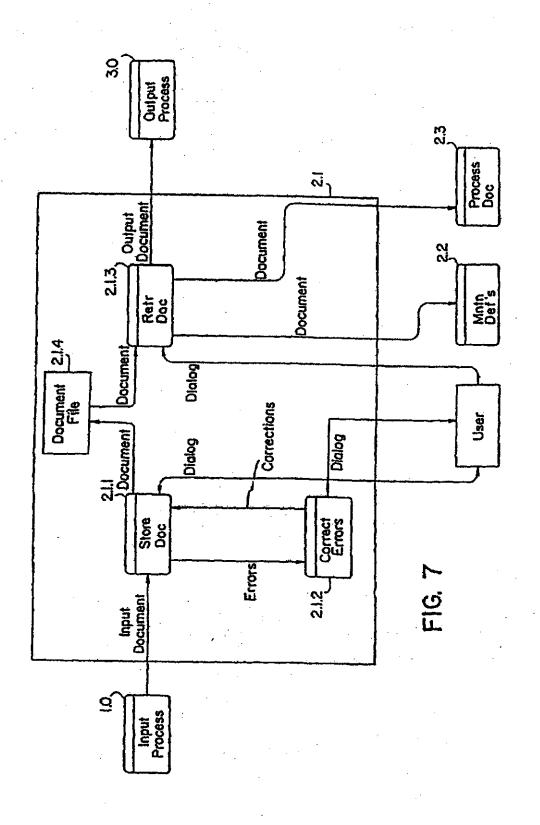



FIG. 4


Jul. 11, 2006

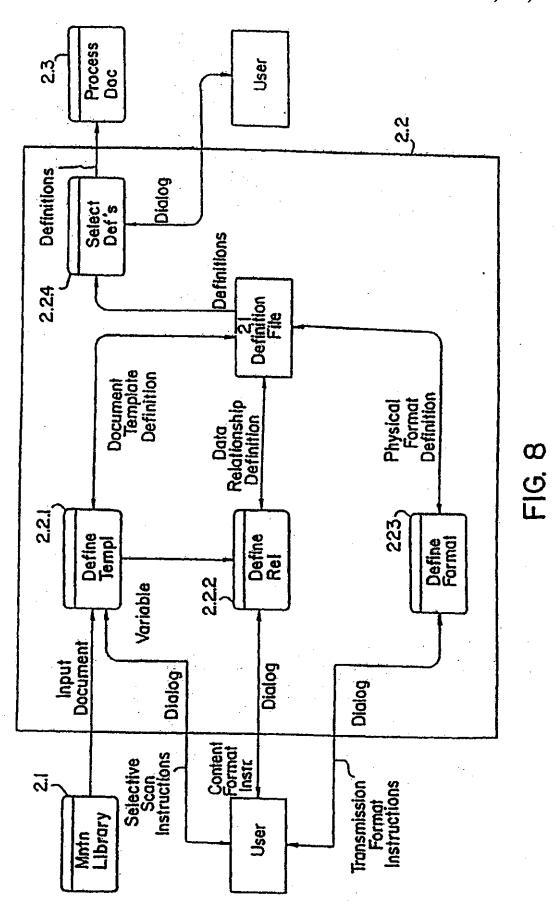
Sheet 6 of 15


Jul. 11, 2006

Sheet 7 of 15

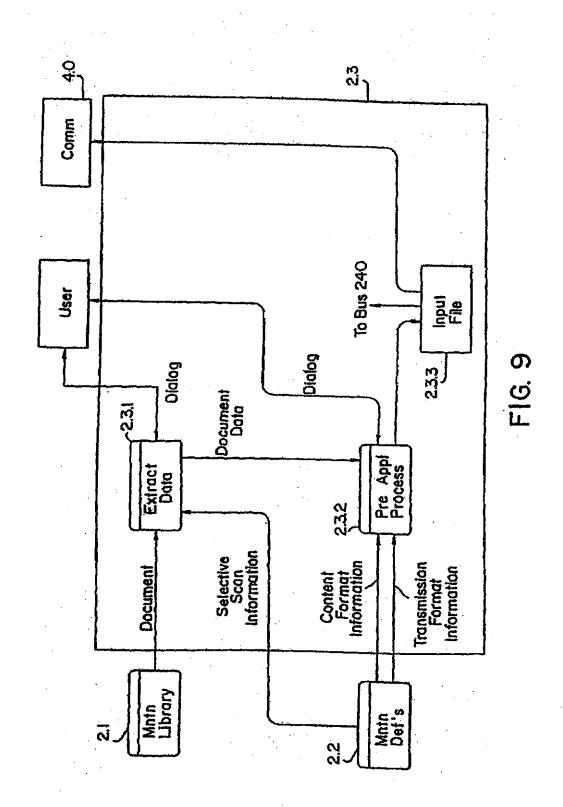
Jul. 11, 2006

Sheet 8 of 15

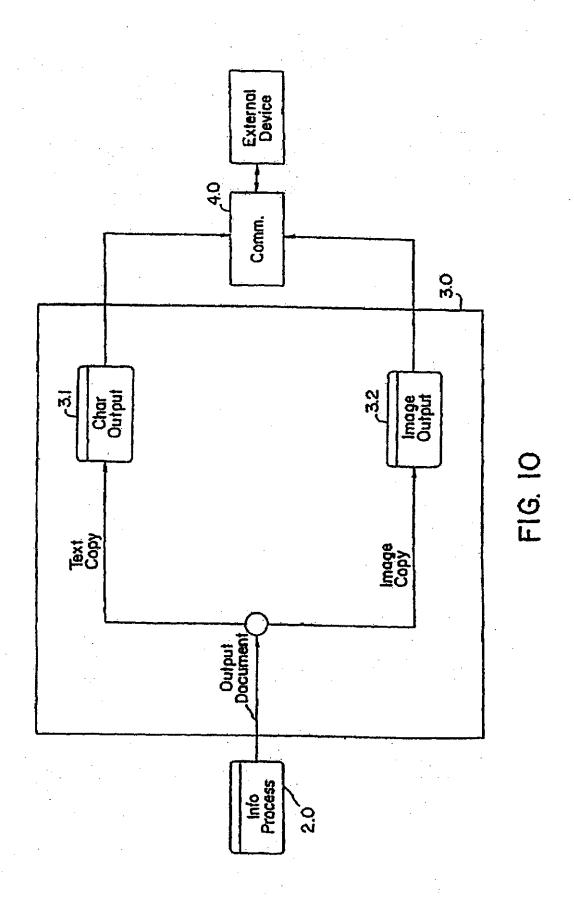


U.S. Patent

Jul. 11, 2006


Sheet 9 of 15

US 7,075,673 B2


Jul. 11, 2006

Sheet 10 of 15

Jul. 11, 2006

Sheet 11 of 15

Jul. 11, 2006

Sheet 12 of 15

US 7,075,673 B2

FIG. 11

<u>Variable Name</u>	<u>Value</u>
Vendor Heading 2 Mail To	XYZ Corporation 2 XYZ Corporation PO Box 567
Account Number Statement Date Payment Date Previous Balance New Charges Debits	Anywhere, NY 63130 123456789 12/01/86 1/01/87 \$1234.56 \$789.01
Finance Charges Payments Other Credits New Balance	\$2.34 \$1000.00 \$1025.91
	φ1020.31

Jul. 11, 2006

Sheet 13 of 15

US 7,075,673 B2

FIG. 12A

Variable Name <u>Value</u> Vendor **XYZ Corporation Account Number** 123456789 Statement Date 12/01/86 **Payment Date** 1/01/87 **Previous Balance** \$1234.56 **New Charges** \$789.01 **Debits Finance Charges** \$2.34 Payments New Balance \$1000.00 \$1025.91

FIG. 12B

Variable Name	<u>Value</u>			
Mail To	XYZ Corporation PO Box 567			
Previous Balance	Anywhere, NY 63130 \$1234.56			

FIG. 12C

Variable Name	<u>Value</u>			
Mail To	XYZ Corporation PO Box 567			
Previous Balance	Anywhere, NY 63130 \$1234.56			

Jul. 11, 2006

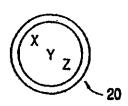
Sheet 14 of 15

```
FIG. 13A

| > 1 > 1 > 1 > "XYZ Corporation" |
| > 2 > 2 > 25 > + 123456789 > |
| > 3 > 2 > 1 > D12 / 01 / 86 > |
| > 4 > 2 > 11 > D12 / 15 / 86 > |
| > 5 > 2 > 21 > D01 / 01 / 87 > |
| > 6 > 10 > 25 > $1234.56 > |
| > 7 > 11 > 25 > $789.01 > |
| > 8 > 13 > 25 > $2.34 > |
| > 9 > 14 > 25 > $1000.00 > |
| > 10 > 16 > 25 > $1025.91 > |
|
```

```
FIG.13B 

> 1 > 1 > 1 > 1 > $1234.56 > 2 > 2 > 1 > "XYZ Corporation" > 3 > 3 > 1 > "PO Box 567" > 4 > 4 > 1 > "Anywhere, NY 63130"
```


```
FIG.13C \[ \frac{11/1/1/$1234.56//
/2/2/1/*XYZ Corporation*
/3/3/1/*PO Box 567*
/4/4/1/*Anywhere, NY 63130*
```

Jul. 11, 2006

Sheet 15 of 15

US 7,075,673 B2

FIG. 14

XYZ Corporation

Customer

ABC Corporation 123 Sixteenth Street Hometown, NJ 88981 Mail To:

△ XYZ Corporation PO Box 567 Anywhere, NY 63130 △

Account Number

123456789

Previous Balance

\$1234.56

Statement Date:

0 12/01/86 0

New Charges

5789.01

Payment Date:

1/01/87

Other Debits

Finance Charges (10%)

\$2.34

Payments

\$1000.00

WINTER SALE IN EFFECT THROUGHOUT JANUARY:

Other Credits

30

New Balance

\$1025.91

US 7,075,673 B2

INFORMATION PROCESSING METHODOLOGY

This application is a continuation of application Ser. No. 09/458,162, filed Dec. 9, 1999 now U.S. Pat. No. 6,683,697 5 which is a continuation of application Ser. No. 09/044,159, filed Mar. 19, 1998 (now U.S. Pat. No. 6,094,505), which is a continuation of application Ser. No. 08/487,150, filed Jun. 7, 1995 (now U.S. Pat. No. 5,768,416), which is a divisional of Ser. No. 08/348,224, filed Nov. 28, 1994 (now U.S. Pat. 10 No. 5,625,465), which is a continuation of Ser. No. 08/143, 135, filed Oct. 29, 1993 (now U.S. Pat. No. 5,369,508), which is a continuation of Ser. No. 07/672,865, filed Mar. 20, 1991 (now U.S. Pat. No. 5,258,855).

BACKGROUND OF THE INVENTION

The invention is directed to a system for efficiently processing information originating from hard copy documents. More specifically, the invention is directed to a hard 20 copy document to application program interface which minimizes the need to manually process hard copy docu-

In the past, information contained on hard copy documents was manually entered into a computer via the input 25 controller of a particular computer. The original document was then filed away for future reference. Automatic input of data was limited to the input of Magnetic Ink Character Recognition (MICR) data and to Optical Character Recognition (OCR) data. This fixed-position data was forwarded 30 formats. directly to a dedicated computer application specifically designed to accommodate the input format. In more recent years typewritten text has been mechanically inputted into a computer via a text file. Examples of this latter type of system are word processors and photo-typesetters.

These conventional systems have limitations which decrease the efficiency of processing information from a hard copy document. For example, the systems discussed above are limited in their application to MICR, OCR, or typewritten data. Parsing and processing data is limited to 40 the particular requirements of the particular computer application which requires the input data. In addition, in these conventional systems, the actual hard copy document must be retained for future reference at great expense.

In a sophisticated computer network, different users may 45 require different portions of the information contained on a hard copy document. For example, if the hard copy document is an invoice returned with payment of a bill, the accounting department may need all of the monetary information contained on the bill while the mailroom may need 50 only customer address information, to update a customer's address. Therefore, there is a need for a system in which specific information from a hard copy document can be selectively distributed to various users.

Another problem with conventional systems is that users, 55 even within the same company, may require that the information extracted from a hard copy document be transmitted to a particular application program in a specific transmission format. For example, one department in a company may use a particular application program which must receive infor- 60 the particular application program. The hard copy documation using a particular character as a delimiter and other departments may require the information in a different format using different delimiters.

Another problem, particularly for small businesses, is that current systems can not efficiently accommodate the inputting of information from a diversity of hard copy documents. A large business which receives many forms in the same

format can afford a system which inputs a high volume of information in that format into memory. For example, it is cost-effective for a bank which processes hundreds of thousands of checks a month to buy a dedicated machine which can read information off of checks having a rigidly defined, or fixed, format. However, as the diversity of forms received by a business increases relative to the number of forms that must be processed, it becomes less cost-effective to design a dedicated machine for processing each type of form format. This problem is particularly significant in small businesses which may, for example, receive fifty invoices a month, all in different, non-fixed, formats. It is frequently not cost-effective for a small business to design dedicated systems for inputting information in each of these various 15 formats. This leaves a small business with no other practical alternative than to manually input the information off of each invoice each month.

SUMMARY OF THE INVENTION

It is an object of the invention, therefore, to provide an application program interface which allows a user to select specific portions of information extracted from a diversity of hard copy documents and allows the user to direct portions of this information to several different users in accordance with the needs of the particular user.

It is also an object of the invention to provide a costeffective system for inputting hard copy documents which can accommodate hard copy documents in a diversity of

It is another object of the invention to provide an application program interface which allows a user to put information, which is to be transmitted, into a particular transmission format, based upon the needs of the receiver of the

It is a further object of the invention to provide an application program interface which will allow the extraction, selection, formatting, routing, and storage of information from a hard copy document in a comprehensive manner such that the hard copy document itself need not be retained.

It is another object of the invention to provide a system which reduces the amount of manual labor required to process information originating from a hard copy document.

A further object of the invention is to reduce the time required to process information originating from a hard copy document so that a higher volume of transactions involving hard copy documents can be processed.

The invention provides an application program interface which inputs a diversity of hard copy documents using an automated digitizing unit and which stores information from the hard copy documents in a memory as stored document information. Portions of the stored document information are selected in accordance with content instructions which define portions of the stored document information required by a particular application unit. Selected stored document information is then formatted into the transmission format used by the particular application program based on transmission format instructions. The transmission formatted selected stored document information is then transmitted to ments may contain textual information or image information or both.

The interface operates in three different modes.

In a first mode, the interface extracts all of the information 65 from hard copy documents and stores this information in memory. Parsing of various portions of the extracted information is performed in accordance with content instructions.

In a second mode, the user operates interactively with the interface by use of a display and an input device, such as a mouse. In this second mode, a hard copy document is inputted and displayed on the display. The interface then prompts the user to identify the location of various information. For example, the interface can ask the user to identify the location or address information on the hard copy document. In response, the user positions the mouse to identify address information using a cursor. The identified information is then stored as address information in memory. 10 Subsequently, the interface again prompts the user to identify other pieces of information, which are then stored in the appropriate locations in memory. This process proceeds until all of the information which is desired to be extracted off of the hard copy document is stored in memory.

In a third mode of operation, selected portions of information are extracted off of hard copy documents in accordance with predetermined location information which has been specified by the user. For example, the user can define a template which specifies the location of information on 20 hard copy documents. Templates can be formed in conjunction with second mode operation. Alternatively, the user can instruct the interface to search hard copy documents for a particular character or symbol, located on the hard copy documents. The information desired to be extracted off of 25 the hard copy documents is specified relative to the location of this character or symbol.

The interface can also prompt or receive from an applications program or another information processing system, required information, content instructions, and format 30 instructions.

Other objects, features, and advantages of the invention will be apparent from the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in further detail below with reference to the accompanying drawings, in which:

FIG. 1 illustrates hardware for implementing a preferred ⁴⁰ embodiment of the instant invention;

FIG. 2 illustrates an example of a hard copy document containing information to be processed by the instant invention:

FIGS. 3A and 3B are enlarged views of the computer of ⁴⁵ FIG. 1 used to explain how the invention interactively prompts a user to identify information;

FIG. 4 is an overall data flow diagram for the FIG. 1 preferred embodiment;

FIG. 5 is a detailed input data flow diagram for the FIG. 50 1 preferred embodiment;

FIG. 6 is a detailed information processing data flow diagram for the FIG. 1 preferred embodiment;

FIG. 7 is a more detailed information processing data flow diagram for the maintain library module of FIG. 6;

FIG. 8 is a more detailed information processing data flow diagram for the maintain definitions module of FIG. 6;

FIG. 9 is a more detailed information processing data flow diagram for the process document module of FIG. 6;

FIG. 10 is a detailed output data flow diagram for the FIG. 1 preferred embodiment;

FIG. 11 lists data corresponding to the hard copy document of FIG. 2;

FIGS. 12A, 12B, and 12C illustrate examples of data 65 which can be selected from the extracted data of FIG. 11 in accordance with content instructions;

4

FIGS. 13A, 13B, and 13C illustrate examples of the data of FIGS. 12A, 12B, and 12C formatted in accordance with various transmission format instructions to form input files; and

FIG. 14 illustrates another example of a hard copy document containing information to be processed by the instant invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hardware

The invention provides an interface between information originating from a hard copy document and a computer application unit which uses the information. The computer application unit can be a particular computer application program or a device which is controlled in accordance with instructions or information from the hard copy document. The invention also allows storing a copy of the hard copy document in a memory and retrieving the copy of the hard copy document. By providing a comprehensive and integrated system which can accommodate almost all of the possible uses of information contained on a hard copy document, the instant invention allows for a paperless office.

The invention includes hardware and software necessary to extract, retrieve, and process information from the hard copy document. A copy of the actual image of the hard copy document is stored in memory. Textual information sextracted from the hard copy document is also stored in memory. Textual information is information, such as alphanumeric characters, which is recognized on the hard copy document and which is stored in a form which corresponds to the particular recognized character. For example, the extracted characters can be stored in the ASCII format in an electronic memory.

The user can have all of the information extracted from the hard copy document and stored in memory. Alternatively, the interface can interactively prompt the user to identify specific pieces of information for storage. The interface can also extract specific pieces of information using a predefined template. The interface can also prompt or receive from another information processing system or an applications program desired information, content instructions, and format instructions.

The instant invention also provides for parsing information extracted from the hard copy document and for directing this parsed information to specific users or application programs as an input file.

The invention also permits the user to define the transmission format of the input file for a particular computer application unit.

FIG. 1 illustrates hardware for implementing a preferred embodiment of a hard copy document to application program interface according to the instant invention. The interface 200 processes information extracted off of hard copy document 100 and provides information to application units 270 in a form required by each particular application unit. The interface extracts information off of a hard copy document 100 utilizing a scanner 210. The scanner 210 can be any type of scanner which extracts information off of hard copy documents, for example, an Optical Reader.

The scanned information is stored in a scanner memory 220 or in main memory 250, as will be described in greater detail below. If main memory 250 or another memory is, available to store the scanned information, then scanner memory 220 can be omitted.

The information from scanner memory 220 or main memory 250 is transmitted to computer 230. In the preferred embodiment, computer 230 includes a display 232, a keyboard 234, and a mouse 236. The display 232 displays an image of the hard copy document itself and/or information 5 necessary to process the information extracted off of the hard copy document.

The computer 230 is used to select portions of the stored document information contained in memory in accordance with content instructions which define portions of the stored 10 document information required by an application unit. These content instructions may be provided by the application program. Alternatively, the content instructions can be inputted via an input device such as a keyboard, a touch screen, a mouse, a notepad, a voice recognition device, or the like. 15

The computer 230 is also used to format selected stored document information into the transmission format used by an application unit based on transmission format instructions. The transmission format instructions may be provided by the application program. Alternatively, the transmission 20 format instructions can be inputted via a keyboard, a touch screen, a mouse, a notepad, a voice recognition device, or the like.

Thus, the computer 230 is used to generate an input file for a particular application unit. The computer 230 is con- 25 nected to scanner memory 220, main, or permanent, memory 250, a printer 260, and application units 270, via a bus 240. Although FIG. 1 illustrates use of a bus to connect components together, it is understood that any routing or both, can be employed instead of, or in addition to, a bus. Instructions to or in the computer 230 control the main memory 250, the printer 260, the application units 270, and the bus 240. Instructions to or in computer 230 can also control exchanges of information with scanner memory 220. 35

When the computer 230 generates an input file for a particular document, the computer 230 can send this input file directly to an application unit or can store this input file in the main memory 250 until required by an application unit. The main memory 250 may also optionally store a copy 40 of the image information for the hard copy document and the textual information for the hard copy document. Thus, the image information and textual information from the hard copy document can be retrieved and printed out on printer 260. In addition, image and textual information stored in 45 scanner memory 220 or in main memory 250 can be used to form additional input files at the time of input or at a later time, based on content instructions and transmission format instructions. Thus, the invention can, at the discretion of the user, eliminate the need to retain copies of hard copy 50 documents, permitting a paperless office.

The application units 270 include particular application programs and devices which are controlled in accordance with information contained on hard copy document 100.

FIG. 2 illustrates an example of a hard copy document 55 100 which contains information to be processed by the instant invention. The document illustrated in FIG. 2 is a bill from XYZ Corporation to customer ABC Corporation, FIG. 2 is only an example of a type of document that can be processed by the instant invention.

In a first operational mode, the scanner 210 stores all of the information extracted off of hard copy document 100 in the scanner memory 220 or, alternatively, in main memory 250. The extracted information is stored in two forms. The actual image of the hard copy document 100 is stored as 65 image information in the scanner memory 220. In addition, the scanner memory 220 stores textual information recog-

nized on the hard copy document 100 by, for example, employing standard character recognition software. In the preferred embodiment, the textual information is stored in ASCII format. The scanner memory 220 can be, for example, an electronic, magnetic, or optical memory.

6

FIG. 3A illustrates an enlarged view of the computer 230 of FIG. 1. This view will be used to describe a second mode of operation. In this second mode of operation, the hard copy document 100 is scanned and a copy of the document 100 is displayed on display 232 of computer 230, based on the contents of information temporarily stored in scanner memory 220. After the document is displayed on display 232, the computer 230 interactively prompts the user to identify the location of specific pieces of information on the hard copy document. In the FIG. 3A illustration, this prompt message is indicated as the message beginning with the arrow.

For example, the prompt message can ask the user to identify the location of account number information on the hard copy document. The user then uses an input device. such as keyboard 234 or mouse 236 or a touch screen, notepad, voice recognition device, or other input device to position a cursor on the display to identify the location of the information requested by the prompt message. For example, the cursor could be used to define a block (which could be highlighted) containing the requested information, followed by a mouse "enter" click. In this example, the user would move the mouse to identify the location of the account number information contained on the hard copy document connecting link, implemented in hardware or software or 30 100. The computer 230 then stores the information which has been identified by the user as account number information in the appropriate address or subfile or as the appropriate variable or parameter in memory. The computer then prompts the user to identify the location of other information on the hard copy document, such as, statement date information. The process proceeds until all of the desired information has been stored into the appropriate locations in memory.

FIG. 3B illustrates a variation of the second mode for interactively prompting the user for information. In FIG. 3B, the display is split into two portions. A left-hand portion 232L displays the image of the hard copy document and a right-hand portion 232R displays the required application program information. For example, in FIG. 3B, portion 232R displays a spreadsheet used by an application program. While observing the split display, the user can input instructions to associate specific pieces of information on the hard copy document (for example, the vendor name indicated by the mouse arrow 232A) with particular subfiles in memory (for example, the vendor field next to which the cursor 232C appears), using a mouse or other input device(s) or both. The split display also allows the user to generate content format instructions while observing the information required for a particular application program on the righthand portion.

These second modes of operation are efficient for small businesses which receive a small number of a wide variety of invoices, since the user does not necessarily have to store all of the information that appears on the hard copy document. A further advantage is that data input is quicker, easier, and more accurate than with previous keyboard methodology. In addition, by specifying the location on the hard copy document of information, the user may optionally create a template, to be described in further detail below, for each different type of invoice. This template is stored for future use when another hard copy document in the same format is received.

More specifically, instructions from computer 230 can direct the scanner 210 and scanner memory 220, and/or main memory 250, to scan and/or store only specific portions of hard copy document 100. After the interactive prompts required to obtain information for a desired application 5 program, the unused information stored in scanner memory 220 or 250 can be erased. Further, scanning of a second identical document can be limited to only those portions of the document which contain needed information.

More specifically, in FIG. 2, the lines 10 drawn around 10 certain portions of the document represent the areas which the user has previously identified as the portions of a document to be extracted by the scanner 210 and stored in scanner memory 220 and/or main memory 250. Since the logo 20 and the message 30 have not been identified as an 15 area to be scanned and stored, these areas are not scanned and stored in subsequent documents. Since the user has previously associated each of the areas 10 with a specific subfile of information, e.g., the account number, the scanned information is stored in memory locations corresponding to 20 that subfile.

Data Processing

FIGS. 4-10 illustrate the flow of data in the FIG. 1 preferred embodiment. FIG. 4 illustrates the overall data flow for the FIG. 1 preferred embodiment. The preferred embodiment includes an input process module 1.0, an information processing module 2.0, and an output processing module 3.0. The information processing module 2.0 is equipped to receive instructions from and transmit information to a user. The information processing module 2.0 can also transmit to and receive information from a remote external device through communication interface 4.0. Input process module 1.0 and output processing module 3.0 can also access communication interface 4.0. A module is implemented in hardware, software, or a combination of hardware and software. The specific implementation for a particular business application depends upon a variety of factors, for example, the relative costs of hardware and software implemented systems, the frequency with which a user will want to expand or modify the system, and the like.

FIG. 5 is a more detailed diagram of the input process module 1.0 of FIG. 4. The input process module 1.0 includes a character input module 1.1, an image input module 1.2, and, in the preferred embodiment, a character recognition device 1.3. The character input module inputs textual information, such as alphanumeric characters, from an input device such as keyboard 234. The image input module 1.2 inputs image information, for example, a digitized image of the actual appearance of hard copy document 100. Textual information can include textual input from an input device such as keyboard 234 and textual information extracted from the document by character recognition device 1.3. Both types of information comprise an input document which is transmitted to information processing module 2.0. In the FIG. 1 preferred embodiment, the processing performed by input process module 1.0 occurs in scanner memory 220, computer 230, and main memory 250.

FIG. 6 illustrates information processing data flow for the FIG. 1 preferred embodiment, that is, FIG. 6 illustrates data flow in the information processing module 2.0.

The information processing module 2.0 includes a maintain library module 2.1, to be described in further detail 65 below in conjunction with FIG. 7, a maintain definitions module 2.2, to be described in further detail below in

conjunction with FIG. 8, and a process document module 2.3 to be described in further detail below in conjunction with

The information processing module 2.0 is the module which coordinates and drives the entire system. In the preferred embodiment, the information processing module 2.0 is implemented primarily by computer 230.

FIG. 7 illustrates information processing data flow in the maintain library module 2.1. The maintain library module 2.1 maintains a library of image information, for example, a digitized image representing the actual appearance of the hard copy document, and textual information of the hard copy documents for reference during processing. This library can be incorporated within scanner memory 220, main memory 250, or another independent memory, for example, a RAM disk. The maintain library module 2.1 includes a store document module 2.1.1, a correct errors module 2.1.2., a retrieve document module 2.1.3, and a document file 2.1.4. These modules operate collectively to store, retrieve, and correct document information.

The store document module 2.1.1, prior to routing the document to the document file 2.1.4, may provide information on recognition errors which may have occurred while inputting the document. For example, the store document module 2.1.1 identifies that a character contained oh hard copy document 100 was not recognized. The store document module 2.1.1 also optionally causes a copy of the document and its parsing to be displayed on the display 232 for confirmation by the user. The user may utilize this opportunity to identify any errors in the displayed document and, in conjunction with the correct errors module 2.1.2, to revise the document's parsing, if necessary, prior to storage of the document in memory. The module 2.1.1 also provides a facility for the user to name a particular hard copy document 35 for cataloging, storage, and retrieval purposes. After the document is named, the store document module 2.1.1 stores copies of the document in the document file 2.1.4.

The correct errors module 2.1.2 processes instructions from the user to correct errors identified by thee store document module 2.1.1 and errors that have been spotted by the user during the confirmation process.

The retrieve document module 2.1.3 permits the user to retrieve a copy of a document previously stored in the document file 2.1.4. As described above, long-term storage is provided by main memory 250, if necessary.

FIG. 8 illustrates a more detailed information processing data flow diagram for the maintain definitions module 2.2 of FIG. 6. The maintain definitions module 2.2 allows the user to define system and document parameters and maintains the definitions of these system and document parameters. The maintain definitions module 2.2 includes a define template module 2.2.1 which allows the user to specify the location of information on the document. This information provided by the user defines a template which is used to extract information off the document and to associate the extracted information with a particular variable or subfile. These templates are illustrated by boxes 10 in the FIG. 2 example of a hard copy document. The maintain definitions module 2.2 can also access templates previously defined by the user 60 and stored in main memory 250. Templates can also be provided as part of software packages developed by program developers.

The maintain definitions module 2.2 also includes a define relationships module 2.2.2. The define relationships module 2.2.2 allows the user to define data relationships, or logical relationships, between pieces of information extracted from the hard copy documents. These pieces of information are

then used to generate an input file for a selected computer application unit. The user defines these relationships by content instructions. Alternatively, content instructions to define relationships can be provided by application software. If the user provides these content instructions, the content instructions are inputted via keyboard 234 or via another input device such as a notepad, a voice recognition device, or the like. Examples of content instructions, data, and logical relationships will be described in further detail in conjunction with FIGS. 11 and 12A, 12B, and 12C.

The maintain definitions module 2.2 also includes a define format module 2.2.3. The define format module 2.2.3 allows the user to define transmission formats for an input file which is then transmitted to a selected computer application unit. Selection of the transmission format of the input file is accomplished by the user through use of transmission format instructions. Alternatively, the applications software itself can generate its own transmission format instructions. When the user must specify transmission format instructions, the transmission format instructions are inputted via keyboard 20 234 or via another input device such as a notepad, a voice recognition device, or the like. A further description of various transmission formats will be provided below in conjunction with FIGS. 12A, 12B, 12C, 13A, 13B, and 13C.

A select definitions module 2.2.4 is also included in the 25 maintain definitions module 2.2. The select definitions module 2.2.4 allows the user to store and select a set of definitions to be used for processing the document. The definitions identify pieces of information on the document by, for example, absolute location, variable location, or 30 relative location. or by proximity to key words and/or symbols. These definitions are described in further detail below by way of an illustrative example.

FIG. 9 illustrates a more detailed information processing data flow diagram for the process document module 2.3. The 35 process document module 2.3 processes the document after the document has been stored in the system. The process document module 2.3 gathers the appropriate information which has been stored, and creates input file(s) 2.3.3 for the selected application unit. The process document module 2.3 40 then transmits the input file(s) via bus 240 and/or communication interface 4.0 to an application unit 270, an output device such as printer 260, or to main memory 250.

The process document module 2.3 includes an extract data module 2.3.1. This module extracts data off of the 45 document in accordance with the user's instructions, for example, the user-defined template, or through the interactive mode.

The process document module 2.3 also includes a preapplication process module 2.3.2 which gathers and associates 30 information extracted from the document in accordance with content instructions. This module prompts the user for any additional information required to satisfy the relationships defined by the content instructions. The preapplication process module 2.3.2 also places the selected information into 55 the transmission format defined by the transmission format instructions.

The preapplication process module 2.3.2 also generates the input file 2.3.3 for the selected application in accordance with the appropriate instructions. The input file 2.3.3 is then 60 transmitted to bus 240 and/or communication interface 4.0 for transmission to a particular application unit 270.

FIG. 10 illustrates a detailed output data flow diagram for output module 3.0. Output module 3.0 outputs a textual and/or image copy of the document. In the FIG. 1 preferred 65 embodiment, output module 3.0 is implemented by printer 260, associated software, and associated interface circuitry.

10 Operation

Examples of operation of a preferred embodiment will now be described.

The user enters the system by providing instructions to the information processing module 2.0. The user then instructs the information processing module 2.0 to conduct maintain library processing, maintain definitions processing, or process document processing.

If the user selects maintain library processing, the user then provides instructions to maintain or modify the document library through the maintain library module 2.1. For example, the user can direct the inputting and storage of a hard copy document 100 or can retrieve and output a document. The user requests inputting of a document through the store document module 2.1.1. The system then prompts the user to specify a storage location for the inputted document. The document is then read-in by the input process module 1.0. A textual copy and/or an image copy are stored into the document file 2.1.4. Errors which have occurred during inputting are identified and corrected by the correct errors module 2.1.2 and the user. The corrections are reflected in the document information stored in document file 2.1.4.

The retrieve document module 2.1.3 is used to retrieve and output a document. The system prompts the user to specify the storage location of a document and the type of document copy, for example, a textual or an image copy, to be outputted. The document is then outputted by the output process module 3.0.

If the user initially selected maintain definitions processing, the user would instruct the system to maintain and/or modify parameter definitions through the maintain definitions module 2.2. For example, the user can define and maintain a document template for extracting selected portions of information off of the hard copy document. The user can use the template to extract selected portions of information off of the hard copy document when the document is originally inputted, or alternatively, the user can use the template to identify selected portions of information for extraction off of an image copy of the document. In creating the template, the user identifies pieces of information on the document to be extracted and assigns a variable name, or subfile, to each piece of data.

The location of data to be extracted can be defined in a number of ways other than by use of a template. For example, the user can designate the absolute location of information on the document with respect to a grid overlaid on the document, e.g., always on line 3, starting in column 1. The user can also identify information by specifying the relative location of information to be extracted, e.g., always two lines below the piece of data named "salutation", starting in column 3. The user can also specify the location of information to be extracted by variable location specification. For example, if the hard copy document is a letter, the module would conduct a key word search for the term "Dear Sir.". Wherever this term "Dear Sir." is located, this piece of data would be associated with the variable specified by the user, for example, the variable "salutation." In addition, a defined set of conventional symbols can be used to signify certain recurring data items for the convenience of users of the instant invention. For example, a "@" symbol can be used to delineate the vendor name as follows: "@XYZ Corporation@". Other examples of the use of symbols to delineate information will be described with reference to FIG. 14.

The maintains definition module 2.2 is also used to maintain data relationships in accordance with content instructions and to maintain input file formats in accordance with transmission format instructions. Relationships are defined and maintained between pieces of data, specified by, 5 for example, the names of variables, through the define relationships module 2.2.2. The names of pieces of data on the document are retrieved by, for example, the define template module 2.2.1, and are passed to the define relationships module 2.2.2. The user may then provide any additional pieces of data needed to generate an input file for a particular application program or unit, such as an input file line number. The user, the applications software, and/or instructions previously stored in memory then establishes the contents of the input file by defining relationships 15 between pieces of data using content instructions. Specific examples of content instructions will be discussed below in conjunction with FIGS. 11, 12A, 12B, 12C, 13A, 13B, and 13C.

The user and/or the applications software defines and 20 maintains the transmission format of the input file to be used by a particular application program or unit through the define format module 2.2.3 in accordance with transmission format instructions. This is accomplished by defining the parameters to be used by the preapplication process module 25 2.3.2 in generating an input file. Parameters which would typically be required to generate an input file would include the character type, e.g., text or pixel; delimiters used between pieces of data, e.g., a slash or a semicolon; end of line characters, e.g., a carriage return or a line feed; and end 30 of file characters. Examples of transmission formats will be described in further detail below in conjunction with FIGS. 11, 12A, 12B, 12C, 13A, 13B, and 13C.

If the user initially selected process document processing, the interface will then proceed to process the document through use of the process document module 2.3. For example, the user can extract specific portions of data from an image copy of a document, can generate an input file for transmission to an application program, or can directly process information interactively with an application program.

If the user desires to extract specific portions of data from an image copy of a hard copy document which has already been stored in memory, is the user uses the extract data module 2.3.1 to identify a document to be processed. The document is then retrieved by the retrieve document module 2.1.3 and passed to the extract data module 2.3.1. The user can also select parameter definitions through the select definitions module 2.2.4.

The selected document template or parameter definition is passed to the extract data module 2.3.1. The extract data module 2.3.1 extracts pieces of data from the image copy of the document, as defined by the document template definition or the parameter definitions or both. This document data is then passed to preapplication process module 2.3.2.

The interface generates input file(s) 2.3.3 by use of the preapplication process module 2.3.2. The selected data relationship definition, as defined by the content instructions, and the selected record format definitions, as defined by the transmission format instructions, are passed to the preapplication process module 2.3.2. The preapplication process module 2.3.2 assembles the input file in accordance with the content instructions. The preapplication process module 2.3.2 also prompts the user for any additional pieces of data this part of the desired transmission format in accordance follows:

12

with the transmission format instructions. This physically formatted data is then stored in the input file 2.3.3.

The user can also use an application program to process information by loading the particular application program into the computer 230 rather than by sending the input file to a remote application unit 270.

An illustrative example of the processing described above will now be described.

The user inputs instructions via keyboard 234 or another input device which indicate that the user desires to input and store a document. The computer 230 then prompts the user for the name of the document. In this example, the user desires to input the document of FIG. 2 and therefore names the document "XYZ Corp. Bill 12/01/86." The computer then prompts the user to feed the hard copy document 100 into the scanner 210. The image of the hard copy document is displayed on display 232. The computer then prompts the user to identify the account number on the document. By use of the mouse 236 or other input device to position a cursor on the display, the user indicates the location of the account number. The account number is then read-in to a subfile named "Account Number." This process proceeds until all of the desired information has been read-in and stored.

In this particular example, no errors were encountered while inputting the document. The user then directs that the document be stored for future reference in a document file.

Some time later, the user desires to retrieve and output the document and to generate input files based on information from the document. The computer 230 prompts the user for the name of the document and the type of output. The user responds with "XYZ Corp. Bill 12/01/86" for a printed textual copy. The document is then retrieved from the document file and passed to the printer 260 for printing.

In order to generate an input file for a specific application program, the user selects the option to define a document template for use when each month's XYZ Corporation bill arrives. Accordingly, the user instructs the system to display a copy of an XYZ Corporation bill on the display 232. The user then identifies pieces of data by absolute locations. That is, the user assigns specific names to information located at specific portions of the document. In this example, the user would input the following information:

Vendor-text, line 1, one line, column 1, 80 characters; Account number-numeric, line 6, one line, column 25, 9 characters;

Statement date-date, line 9, one line, column 25, 8 characters;

Payment date-date, line 11, one line, column 25, 8 characters;

Previous balance-currency, line 7, one line, column 75, 9 characters;

New charges-currency, line 8, one line, column 75, 9 characters;

Other debits-currency, line 10, one line, column 75, 9 characters;

Finance charges-currency, line 12, one line, column 75, 9 characters;

Payments-currency, line 13, one line, column 75, 9 characters;

Other credits-currency, line 14, one line, column 75, 9 characters;

New balance-curreny, line 15, one line, column 75, 9 characters.

The user also identifies data with variable locations. In this particular example, a variable location is specified as follows:

Heading 2-line, value="Mail To:"

The identification of Heading 2 as line information means that the system will search for occurrences of the character string "Mail To:" and assign the line number which contains this character string to Heading 2.

The user also identifies data by relative locations. In this example, the user identifies the following relative location: Mail To-text, Heading 2+1, 3 lines, column 60, 25 characters per line.

The instructions above instruct the system to assign the 10 textual information beginning on one line after Heading 2 and continuing for 3 lines, in column 60, to the Mail To subfile.

As an alternative to inputting the actual line, column, and character numbers, the user can identify desired portions of 15 the document by blocking, or highlighting, the desired portions using the mouse or other input device. In this case, the computer converts the highlighted portions into corresponding line, column, and character numbers.

FIG. 11 lists data corresponding to the hard copy document of FIG. 2 and the associated variable or subfile names.

Next, the user desires to define data relationships in accordance with content instructions. Examples of the type of contents which can be specified by a user are illustrated in FIGS. 12A, 12B, and 12C.

In this particular example, three separate departments of ABC Corporation require information from the XYZ Corporation bill. The first department requires vendor, account number, statement date, payment date, previous balance, new charges, debits, finance charges, payments, and new 30 balance information. The second and third departments require mail to information and previous balance information. Each of these departments have their own application program which utilizes this information.

The user employs content instructions to designate how 35 pieces of information, which have been extracted off of hard copy document 100, are directed to particular departments. that is, particular application programs. FIG. 12A illustrates the contents of the information to be transmitted to the first department. FIG. 12B illustrates the information to be 40 transmitted to the second department. FIG. 12C illustrates the information to be transmitted to the third department. The content instructions, therefore, parse the information shown in FIG. 11 to various application programs, as shown by FIGS. 12A, 12B, and 12C. Content instructions can also 45 be used to identify additional pieces of data which are required for the input files of the particular application programs. In this particular example, the specific application programs from the three departments all require numeric record number information, numeric horizontal position 50 information, numeric vertical position information, and date received information. The horizontal and vertical position information is used by the application program to specify the location of the received information on a spreadsheet application program, in this example. The user may know in 35 advance the content format required by each application program, that is, in this example, the location and type of information specified on the spreadsheet. The user may also employ the split display mode described with reference to FIG. 3B to generate content format instructions.

Using the content instructions, the user establishes the following contents for the input file corresponding to FIG.

Record number, horizontal position, vertical position, vendor;

Record number, horizontal position, vertical position, account number;

14

Record number, horizontal position, vertical position, statement date;

Record number, horizontal position, vertical position, date received;

Record number, horizontal position, vertical position, payment date;

Record number, horizontal position, vertical position, previous balance;

Record number, horizontal position, vertical position, new charges;

Record number, horizontal position, vertical position, finance charges;

Record number, horizontal position, vertical position, payments;

Record number, horizontal position, vertical position, new balance.

Next, transmission format instructions are employed to define the transmission format of the input file for a specific application program or unit. FIG. 13A illustrates the transmission input file corresponding to FIG. 12A. FIG. 13B illustrates the transmission input file corresponding to FIG. 12B. FIG. 13C illustrates the transmission input file corresponding to FIG. 12C. A comparison of FIGS. 12B and 12C reveals that FIGS. 12B and 12C have the same contents. However, the information illustrated in FIG. 12B is being sent to a different application program than the information in FIG. 12C. These application programs require different transmission input formats, as illustrated in FIGS. 13B and 13C. More specifically, the application program that receives the input file illustrated in FIG. 13B uses the greater than sign as a delimiter whereas the application program which receives the transmission input file shown in FIG. 13C uses a back-slash as the delimiter.

After the contents and the transmission format for the input file have been defined, and any additional information has been inputted, the input file is assembled and transmitted to the particular application program.

FIG. 14 illustrates another example of a hard copy document containing information to be processed by the instant invention. The hard copy document illustrated in FIG. 14 is first scanned and information from the hard copy document is stored into a memory. The interface 200 then identifies portions of the hard copy document corresponding to various variables by recognizing a defined set of symbols. In the FIG. 14 example, triangles delineate the mailing address, circles delineate the statement date, and squares delineate the new charges. Information from these portions of the hard copy document is stored in the corresponding memory locations or subfiles for each variable. The same set of symbols can be used to identify the same information from one document to the next. Thus, even if the physical formats of documents are not fixed from one document to the next, a diversity of hard copy documents can be processed without manually inputting data by recognition of the defined sym-

Examples of readily available application programs are Quicken and Lotus 1,2,3 both of which are widely utilized in the business community. Quicken, for example is an easy-to-utilize program for writing checks and preparing business records. Payee, amount and address information may readily be transmitted from scanner memory 220 and/or main memory 250 to the Quicken application program for check writing functions and ledger keeping purposes. Lotus is a well known spreadsheet program which may process data input into specified cells once this data is placed in conventional Lotus format.

Thus, the instant invention provides an integrated and comprehensive system for handling information from a hard copy document, thus permitting a paperless office. In addition, the invention permits data, extracted off of a hard copy document, to be easily manipulated into various logical and 5 transmission formats required by a particular application unit. The invention also provides a low cost system for inputting information from a wide variety of hard copy documents into a memory.

The foregoing description has been set forth merely to 10 illustrate preferred embodiments of the invention and is not intended to be limiting. Modifications are possible without departing from the scope of the invention.

For example, letters, checks, forms, pictures, reports, music scores, film, and other types of hard copy documents 15 data comprises personal information. can be processed by the invention for accounts payable/ receivable accounting, inventory control, record keeping, budgeting, data base management, music transcription. forms processing, computerized art, survey and questionnaire processing, statistical data analysis, correspondence 20 processing and other applications.

Other automated digitizing units can be used in addition to or as an alternative to use of the scanner 210 as an input unit. Any electrical, magnetic, or optical device which extracts information off of a hard copy document, thereby 25 eliminating the need to manually input significant amounts of information from the hard copy document is suitable for use as an automated digitizing unit. In addition, information can be input by user responses and digital and analog signals generated from various devices, and from computer files 30 from other computer systems. Suitable hardware for inputting data includes a keyboard, a light pen, a mouse, a touch screen, a laser scanner, a microphone, a tablet, a disk drive, a magnetic tape drive, and a modem.

The interface 200 can also output information in forms other than a hard copy of textual or image information. For example, the interface 200 can output system responses, computer files, and digital and analog signals for transmission to other computer systems or to control systems. Suitable hardware for outputting information includes a disk drive, a magnetic tape drive, a cathode ray tube, a plasma screen, a printer, a plotter, a film developer, an amplifier, and a modem.

Since modifications of the described embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the scope of the invention should be limited solely with respect to the appended claims and equivalents.

What is claimed is:

- 1. A system configurable to input information from an electronic document template displayed on a display of a first computer into a plurality of application programs operable on another computer in which said template automati- 55 cally generates content instructions to extract data and to transmit said data to at least one field in at least one of said plurality of application programs according to customizable transmission format instructions which are dependent upon and compatible with said at least one application program, 60 operating on said other computer, that is receiving said transmitted data.
- 2. The system as recited in claim 1 in which said system is a distributed computing system.
- 3. The system as recited in claim 1 wherein said content 65 instructions automatically parse said data to said at least one field in said application program.

16

- 4. The system as recited in claim 1 wherein said content instructions are automatically generated using a mouse
- 5. The system as recited in claim 1 wherein said content instructions are automatically generated using speech rec-
- 6. The system as recited in claim 1 wherein said content instructions are automatically generated interactively with
- 7. The system as recited in claim 1 wherein said extracted data comprises billing information.
- 8. The system as recited in claim 1 wherein said extracted data comprises financial information.
- 9. The system as recited in claim 1 wherein said extracted
- 10. The system as recited in claim 1 wherein said extracted data comprises customer information.
- 11. A method of doing business utilizing a computer system configurable to input information from an electronic document template displayed on a display of a first computer into a plurality of application programs operable on another computer comprising the steps of:
 - displaying an image of the electronic document on the first computer;
 - utilizing the image of the electronic document of said first computer as said template;
 - utilizing said template to automatically generate content instructions:
 - extracting data corresponding to said information from the image of the electronic document utilizing said content instructions;
 - transmitting said extracted data to at least one field in said at least one of said plurality of application programs on said other computer;
 - said transmitting being done in accordance with customizable transmission format instructions which are transmission format instructions customizable to be dependent upon and compatible with said at least one of said plurality of application programs operating on said other computer that is receiving said transmitted data.
- 12. The method as recited in claim 11 further comprising the step of executing the application program on said other computer.
- 13. The method as recited in claim 11 wherein said extracted data comprises billing information.
- 14. The method as recited in claim 11 wherein said extracted data comprises financial information.
- 15. The method as recited in claim 11 wherein said 50 extracted data comprises personal information.
 - 16. The method as recited in claim 11 wherein said extracted data comprises customer information.
 - 17. An interface of a computer system configurable to input information from an electronic document template displayed on a display of a first computer into a plurality of application programs operable on another computer, said interface for inputting and transmitting information comprising:
 - means for displaying an image of the electronic document on the first computer;
 - means for utilizing the image of the electronic document of said first computer as said template;
 - means, utilizing said template, to automatically generate content instructions;
 - means for extracting data corresponding to said information from the image of the electronic document utilizing said content instructions;

means for transmitting said extracted data to at least one field in said at least one of said plurality of application programs on an other computer, different from said first computer and in accordance with customizable transmission format instructions which are transmission of format instructions customizable to be compatible with said at least one of said plurality of application programs, operating on said other computer, that is receiving said transmitted data.

- 18. The interface as recited in claim 17 wherein said 10 content instructions are automatically generated interactively with said user.
- 19. The interface as recited in claim 17 wherein said content instructions are automatically generated using speech recognition.
- 20. The interface as recited in claim 17 wherein said content instructions are automatically generated using a mouse function.
- 21. The interface as recited in claim 17 wherein said extracted data comprises billing information.
- 22. The interface as recited in claim 17 wherein said extracted data comprises financial information.
- 23. The interface as recited in claim 17 wherein said extracted data comprises personal information.
- 24. The interface as recited in claim 17 wherein said extracted data comprises customer information.
- 25. A method utilizing a computer system configurable to input information from an electronic document template displayed on a display of a first computer into a plurality of application programs operable on another computer, said method comprising the steps of:

displaying an image of the electronic document on the first computer;

utilizing the image of the electronic document of said first computer as the template;

utilizing said, template to automatically generate content instructions;

extracting data corresponding to said information from the image of the electronic document utilizing said content instructions;

transmitting said extracted data to at least one field in said at least one of said plurality of application programs operable on said other computer;

- said transmitting being done in accordance with customizable transmission format instructions which are transmission format instructions customizable to be dependent upon and compatible with said at least one of said plurality of application programs, operating on said other computer that is receiving said transmitted data. 50
- 26. The method as recited in claim 25 further comprising the step of executing the application program on said other computer.
- 27. The method as recited in claim 25 wherein said extracted data comprises billing information.
- 28. The method as recited in claim 25 wherein said extracted data comprises financial information.
- 29. The method as recited in claim 25 wherein said extracted data comprises personal information.
- 30. The method as recited in claim 25 wherein said 60 extracted data comprises customer information.
- 31. An application program interface for use in data processing in a computer system configurable to input information from an electronic document template displayed on a display of a first computer into a plurality of application 65 programs operable on another computer, said interface comprising:

18

utilities for enabling automatic generation of content instructions using the electronic document template, said content instructions designating data portions of said electronic document template required by at least one of said plurality of application programs;

utilities for enabling formatting of said data portions used by said at least one of said plurality of application programs based on customizable transmission format instructions which are transmission format instructions customizable to be dependent upon and compatible with said at least one of said plurality of application programs; and

utilities for automatically enabling transmission of formatted selected data portions to said at least one of said plurality of application programs, operating on said other computer that is receiving said transmitted data.

- 32. The application program interface as recited in claim 31, wherein said content instructions automatically parse said data to said at least one field in said application program.
- 33. The application program interface as recited in claim 31, wherein said content instructions are automatically generated using a mouse function.
- 34. The application program interface as recited in claim 31, wherein said content instructions are automatically generated using speech recognition.
- 35. The application program interface as recited in claim 31, wherein said content instructions are automatically generated interactively with said user.
- 36. The application program interface as recited in claim 31, further comprising utilities for enabling storage of said content instructions.
- 37. The application program interface as recited in claim 31, wherein said interface operates in a distributed computing system.
- 38. The application program interface as recited in claim 31, further comprising utilities for enabling definition of said electronic document template for associating portions of said electronic document template with specific variables.
- 39. The application program as recited in claim 31 wherein said designated data comprises billing information.
- 40. The application program as recited in claim 31 wherein said designated data comprises financial information.
- 41. The application program as recited in claim 31 wherein said designated data comprises personal information.
- 42. The application program as recited in claim 31 wherein said designated data comprises customer information.
- 43. A method of processing information utilizing a computer system configurable to input information from an electronic document template displayed on a display of a first computer into a plurality of application programs operable on another computer, said method comprising the steps of:
 - displaying an image of an electronic document on the first computer for inputting information into at least one of said plurality of application programs stored on an other computer according to transmission format instructions;

processing the information by automatically generating content instructions to parse at least a portion of the image to at least one field of information required by said at least one of said plurality of application programs; and

transferring said at least one field of information to said at least one of said plurality of application programs utilizing customizable transmission format instructions which are transmission format instructions customizable to be dependent upon and compatible with said at 5 least one of said application programs, operating on said other computer that is receiving said transmitted

- 44. The method as recited in claim 43 wherein said information comprises billing information.
- 45. The method as recited in claim 43 wherein said information comprises financial information.
- 46. The method as recited in claim 43 wherein said information comprises personal information.

47. The method as recited in claim 43 wherein said 15 information comprises customer information.

48. An information processing system configurable to input information from a first computer into a plurality of application programs operable on another computer in which a template document transmitted by said first computer to said other computer includes content instructions to automatically extract data and to transmit said data to at least one field in at least one of said plurality of application programs according to customizable transmission format instructions which are transmission format instructions 25 dependent upon and customizable to be compatible with said at least one of said plurality of applications programs, operating on said other computer that is receiving said transmitted data.

20

- 49. The information processing system as recited in claim 48 in which said system is a distributed computing system.
- 50. The information processing system as recited in claim 48 wherein said content instructions automatically parse said data to said at least one field in said application program.
- 51. The information processing system as recited in claim 48 wherein said content instructions are automatically generated using a mouse function.
- 52. The information processing system as recited in claim 48 wherein said content instructions are automatically generated using speech recognition.
 - 53. The information processing system as recited in claim 48 wherein said content instructions are automatically generated interactively with said user.
 - 54. The method as recited in claim 48 wherein said extracted data comprises billing information.
 - 55. The information processing system as recited in claim 48 wherein said extracted data comprises financial information.
 - 56. The information processing system as recited in claim 48 wherein said extracted data comprises personal information.
 - 57. The information processing system as recited in claim 48 wherein said extracted data comprises customer information

. . . .

a secusoff (42 (62) Mitchell A. Medina, Nairobi (KE); KAMPINE BENN - Philipbon Document 1 Case 1:09-

(73) Assignee: Eon-Net L.P., Tortola (VG)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 52 days.

(21) Appl. No.: 11/108,508

(22)Filed: Apr. 15, 2005

(65)Prior Publication Data US 2005/0185218 A1 Aug. 25, 2005

Related U.S. Application Data

Continuation of application No. 10/704,484, filed on Nov. 6, 2003, now Pat. No. 7,075,673, which is a continuation of application No. 09/458,162, filed on Dec. 9, 1999, now Pat. No. 6,683,697, which is a continuation of application No. 09/044,159, filed on Mar. 19, 1998, now Pat. No. 6,094,505, which is a continuation of application No. 08/487,150, filed on Jun. 7, 1995, now Pat. No. 5,768,416, which is a division of application No. 08/348,224, filed on Nov. 28, 1994, now Pat. No. 5,625,465, which is a continuation of application No. 08/143,135, filed on Oct. 29, 1993, now Pat. No. 5,369,508, which is a continuation of application No. 07/672,865, filed on Mar. 20, 1991, now Pat. No. 5,258,855.

(51) Int. Cl. H04N 1/40 (2006.01)

Field of Classification Search 358/1.15; (58) 382/175, 177, 180, 282, 287, 306, 317 See application file for complete search history.

3,013,718 A 12/1961 Shepard et al. Filed 03/02/09 67 of 93

FOREIGN PATENT DOCUMENTS

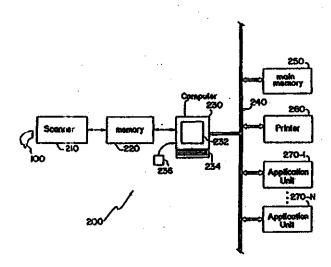
0 107 083 B1 7/1988

(Continued)

OTHER PUBLICATIONS

Ron Pernick, A Timeline of the First Ten Years of The Well, Well Historical timeline—the good, great place, 1995, http://www.well. com/conf/welltales/timeline.html.

(Continued)


Primary Examiner—Thomas D. Lee Assistant Examiner—Stephen Brinich (74) Attorney, Agent, or Firm-Foley & Lardner LLP

(57)**ABSTRACT**

EΡ

An information processing methodology gives rise to an application program interface which includes an automated digitizing unit, such as a scanner, which inputs information from a diversity of hard copy documents and stores information from the hard copy documents into a memory as stored document information. Portions of the stored document information are selected in accordance with content instructions which designate portions of the stored document information required by a particular application program. The selected stored document information is then placed into the transmission format required by a particular application program in accordance with transmission format instructions. After the information has been transmission formatted, the information is transmitted to the application program. In one operational mode, the interface interactively prompts the user to identify, on a display, portions of the hard copy documents containing information used in application programs or for storage.

56 Claims, 15 Drawing Sheets

US 7,184,162 B2 Page 2

11	0 040000						
	S. PATENT	I DOCUMENTS		6,094,505 A	7/2000	Lech et al.	
3,200,372 A 3,303,463 A		Hamburgen		FORI	eign pati	ENT DOCUME	ENTS
3,434,110 A	3/1969	Hamburgen Bucklin, Jr. et al.			4-38883	2/1989	
3,492,653 A		Fosdick et al.		ЛР 3	-161886	7/1991	
3,582,883 A 3,582,884 A		Shepard Shepard		• (OTHER PU	JBLICATIONS	
3,584,144 A	6/1971	Shepard et al.		The Emerging			
3,631,396 A 3,832,682 A		Spertus Brok et al.		Economy—Chapte Co, http://web.			
3,848,228 A	11/1974	MacNeill		merce.gov/danc1.h		7 WELL 199903080	41230 W W W.5COILI-
3,903,517 A RE29,104 E		Hafner Shepard		A Brief History of			
4,021,777 A		Shepard		Information Science http://www.nsf.gov	news/news_	_summ.isp?cntn_	vs, Aug. 15, 2005, _ids=103050
4,034, 343 A 4,041, 454 A		Wilmer Shepard et al.		&org=CISE&from	news.		
4,047,154 A		Vitols et al.		Origins of the Into ogy447/modules/in			.uwaterioo.ca/bioj-
4,132,978 A		Mercier		OCR Textris, Textri	is User's Gui		mage Recognition
4,387,964 A 4,553,261 A		Arrazola et al. Froessi		Integrated systems Texiris User's Guid		acino Data Rase	Management Sys-
4,564,752 A		Lepic et al.		tems.		•	
4,572,9 62 A 4,5 93,367 A		Shepard Slack et al.		Textris User's Guid			
4,659,940 A		Shepard		PC Magazine, vol. TopScan Profession			ognition Systems,
4,6 67,248 A 4,6 72,678 A	5/1987	Kanno Koezuka et al.		pp. v-vii, xi-xiii, az	id 1-6, 1989.	•	
4,760,246 A		Shepard		Que's Computer us (author); 1991; p. 1		ary, 2" Ed., Br	yan Planenoerger
4,760,606 A		Lesnick et al.		"Kurzwell 5200 In	ntelligent Sc	canning System"	Xerox Imaging
4,776,016 A 4,782,509 A		Hansen	704/275	Systems, inc., 1990 Edward O. Welles, I		ecisions Inc. Au	~ 1000 m 80.00
4,802,104 A	1/1989	.=		Palantir PagePro U			
4,802, 231 A 4,803, 734 A	1/1989	Davis Onishi et al.		4 and Appendix C.	5 . 1. 1.	0:4 p = p	1000
4,931,957 A		Takagi et al.		PageRead Library PRL1-3, SHC25-26	-	Guide, Kev. B	' Yng. 1393' bb.
4,933,979 A		Şuzuki et al.		With AutoClass ther	e is no more		
4,974,2 60 A 5,0 17,763 A	1 1 /1 9 90 5 /1 9 91	Kudak Shepard		and Document Proc Daniel Borrey, Mac			
5,031,121 A	7/1991	lwai et al.		ments, Remittance	and Docum	ent Processing	Today, NovDec.
5,034,990 A 5,052,038 A	7/1991 9/1991			1990, pp. 20-23.			_
5,095,445 A		Sekiguchi	•	The Very Best in C. 1992, pp. 43-47.	pucai Char	acier kecognino	n, magng, war.
5,140,139 A	8/1992			Why Insurance Con		e the Risk on Do	cument Imaging,
5,140,650 A 5,153,927 A	10/1992	Casey et al. Yamanari		Imaging, Mar. 1992, "OCR for Forms" (a		nt). Imaging, App	. 1992.
5,159,667 A	10/1992	Borrey et al:		David Black, The R	ight and Th	e Wrong Ways to	Index, Imaging,
5,191,5 25 A 5,218,5 39 A		LeBrun et al. Elphick et al.		May 1992, pp. 47-50		. Course Voc D	salflas Imenica
5,228,100 A		Fakeda et al.		Greg Bartels, How to May 1992, pp. 55-5		y Convert tour b	acynes, magng,
5,245,166 A	9/1993 3			But, Is It a Boy or (<i>irl?</i> Imagin		
5,251,268 A 5,257.328 A	10/1993	Colley et al. Shimizu		Gerry Frieser, Sudden pp. 22-25.	nly, OCR is a	z " <i>Must Buy"</i> , Im	aging, Dec. 1992,
5,258,8 55 A	11/1993 - 1	.ech et al.		14 of the Hottest O	CR Software	Packages and S	ystems, Imaging,
5,282,267 A 5,307,424 A	1/1994 \ 4/1994 I	Woo, Jr. et al. Cuebl		Dec. 1992, pp. 26-3 How Form Processis	1, 33, 35.	he Prot and Co	er Imagina Dec
5,367.619 A		Dipaolo et al.		1992, p. 36.	ng works, r	ius Pros ana Cor	is, magnig, Dec.
5,404,294 A	4/1995 E			Forms Processing Pr		the Challenge o	f OCRing Forms,
5,416,849 A 5,444,840 A	5/1995 F 8/1995 F			Imaging, Dec. 1992, Herbert F. Schantz,	. p. 38-40. Forms Aut	omation and In	tegrated Imaging
5,448,738 A		rood et al.		(OCR) Systems, Rem	ittance and I		
5,452,379 A 5,455,875 A	9/1995 P 10/1995 C	oor Thevion et al.		Apr. 1991, pp. 9-11. Don Merz, OCR: A		once Application	Remittance and
5,506,697 A	4/1996 L			Document Processin			
5,511,135 A 5,526,447 A	4/1996 R 6/1996 S	thyne et al. henned		Industry News, Rem	ittance and l	Document Proces	ssing Today, Jul
5,550,930 A	* · · · · · · · · · · · · · · · · · · ·	erman et al.		Aug. 1989, p. 22. Industry News and N	iew Product	s, Remittance an	d Document Pro-
5,555,325 A 5,606,854 A	9/1996 B			cessing Today, Oct.	1984, pp. 17	7-18.	
5,696,854 A 5,734,761 A	12/1997 S 3/1998 B			R. C. Gonzalez, Des tance and Document	igning Bala Procession	<i>nce Into An OCI</i> Todav. Mar. 198	8. pp. 7. 10-11.
5,852,685 A	12/1998 S	hepard		Ambrose R. Rightler	, OCR Qual	Ity Control Proc	edures for Remit-
5,923, 7 9 2 A 5,933, 531 A	7/1999 S.	· .		tance Processing: Co	ın You Afford	l to be Without It	? Remittance and
6,067,517 A *	8/1999 L/ 5/2000 B	one ahi et al 704	1/256.4	Document Processing Product Watch, Mac			
						, <u></u>	•

Industry News, Remittance and Document Processing Today, Jan. 1989, p. 9.

Scott Beamer, Mac OCR Takes a Big Step Forward, MacWeek, Jun. 13, 1989.

Matthew Lake, Strength of Character (Recognition), Publish, Jan. 1991, pp. 62-67.

R. David Nelson and Karen A. Hamill, Optical Scanning at Chemical Abstracts Service for Bullding Computer Files From Printed Index Data, Recognition Technologies Today, Feb. 1985, pp. 1-6, 15.

Gerald Farmer, HNC IDEPT 9 and Recognition Enhanced Data Entry: The Cost-Cutting Approach to Automasted Data Entry, Remittance and Document Processing Today, Jan.-Feb. 1991, pp. 24-26.

David Gentler, Automated Data Entry, Seybold Report on Desktop Publishing, Jan. 15, 1990, pp. 3-17.

Eric Aas and Peter Davidoff, Teaching Your Scanner to Read, Personal Publishing, May 1990, pp. 28, 31, 33.

Phillip Robinson et al., Character Witnesses, MacUser, Jul. 1990, pp. 120-136.

Brita Meag, Text Without Typing, MacWorld, Oct. 1990, pp. 177-183.

Jim Heid, Getting Started with Optical Character Recognition, MacWorld, Oct. 1990, pp. 297-301.

Stanford Diehl and Howard Eglowstein, Tame the Paper Ilger, Byte, Apr. 1991, pp. 220-238.

Alan Joch and Rich Graham, Voices of Experience, Byte, Apr. 1991, pp. 239-241.

Gregory Boleslavsky and Roman Tutunikov, The New Generation of OCR, Inform, Jan. 1990, pp. 34-37.

Calera Recognition Systems, Inc., TopScan Professional User's Guide: Complete Document Recognition for PCs and Compatibles (1989).

Calera Recognition Systems, Inc., TopScan Professional Installation Notes for Scanners, Fax Cards, and System Configuration (1989). Calera Recognition Systems, Inc., TopScan Professional Troubleshooting Guide (1989).

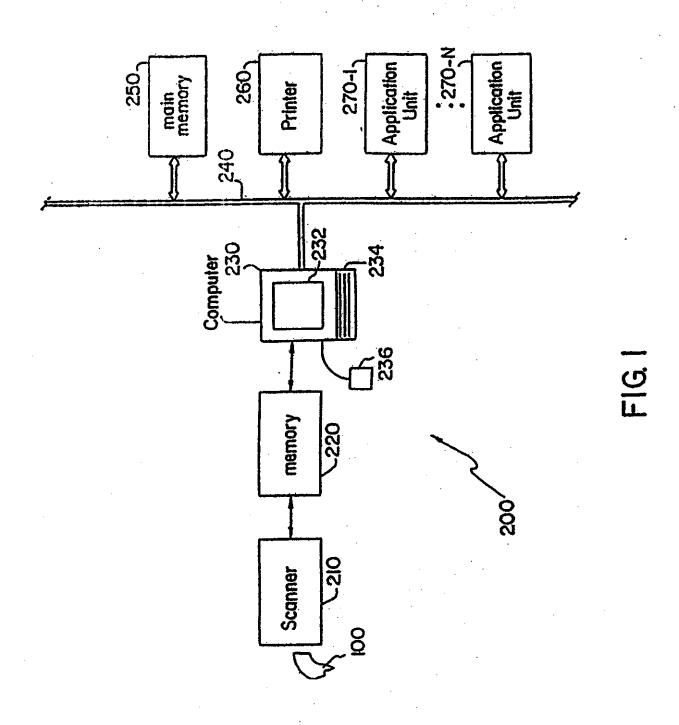
Xerox Imaging Systems, Inc., Datacopy AccuTent User's Guide (1989).

Invoice from Corporate Intelligence Corporation to Workman, Nydegger & Seeley, dated Sep. 21, 1999.

Examiner Interview Summary Record, Jan. 25, 1996, and related Amendment, for Application U.S. Appl. No. 08/097,131.

Jane B. Newman, Formstar Ad; "Stack the Facts, Not the Forms"—May 24, 1987; "Stack and Send Just the Facts—and Improve the Efficiency of your Forms Application".

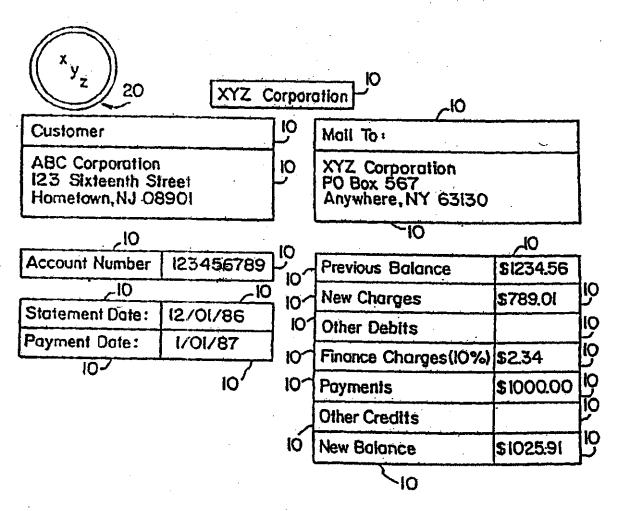
TeleImage Systems Document and Image Database Systems User's Manual-Ramat Gan, Israel; Table of Contents and pp. 2-1 through 5-20.


Form Out! Programmer's Manual; TeleImage Systems, Ramat Gan Israel; published Feb. 1991 pp. I, II, III, IV, V, VI, VII; 1.1-6.29 and A.1-G.11.

^{*} cited by examiner

Feb. 27, 2007

Sheet 1 of 15


US 7,184,162 B2

Feb. 27, 2007

Sheet 2 of 15

US 7,184,162 B2

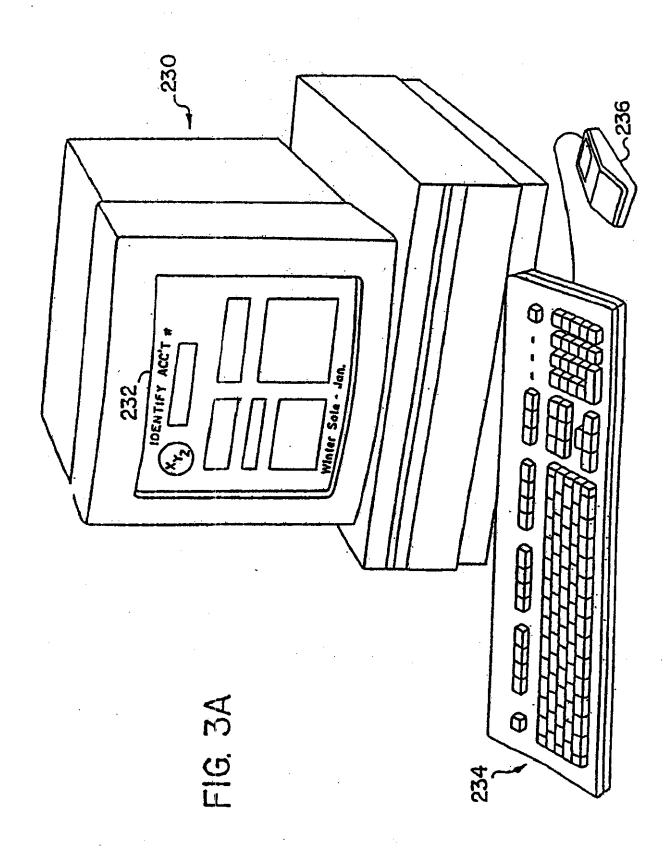
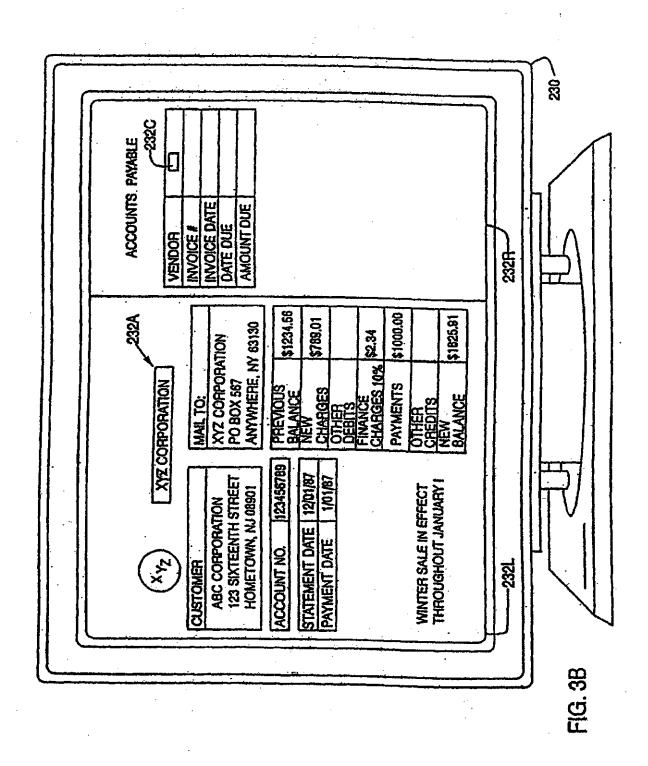

Winter Sale in Effect Throughout January!

FIG. 2


Feb. 27, 2007

Sheet 3 of 15

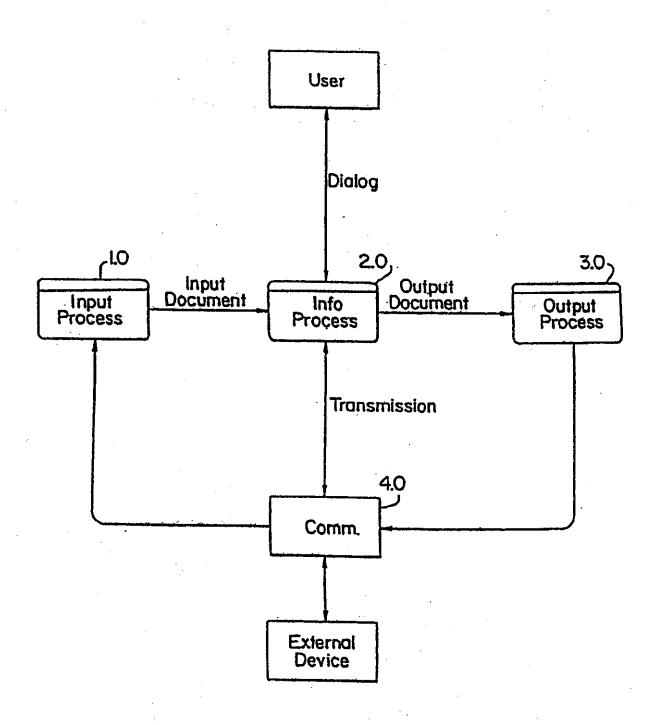
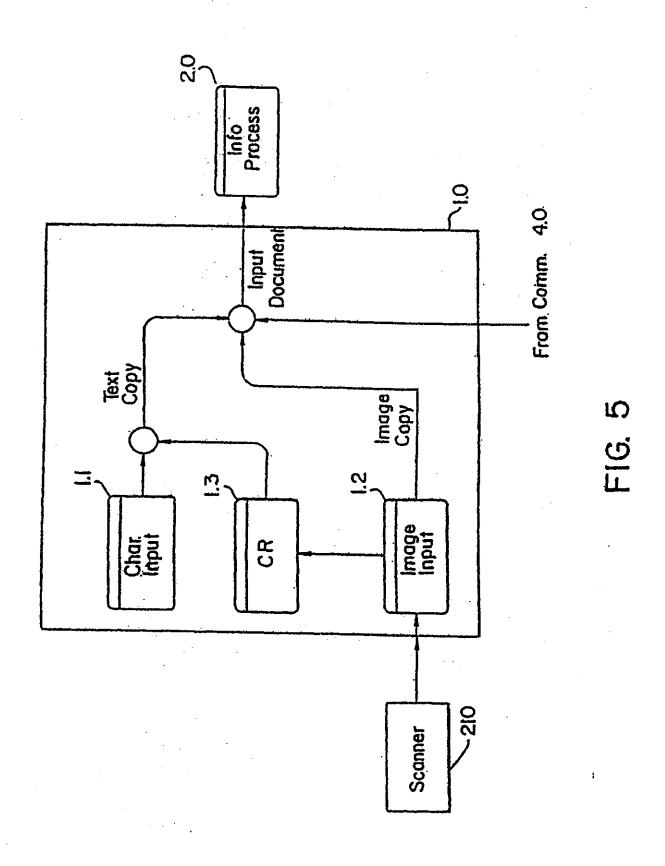
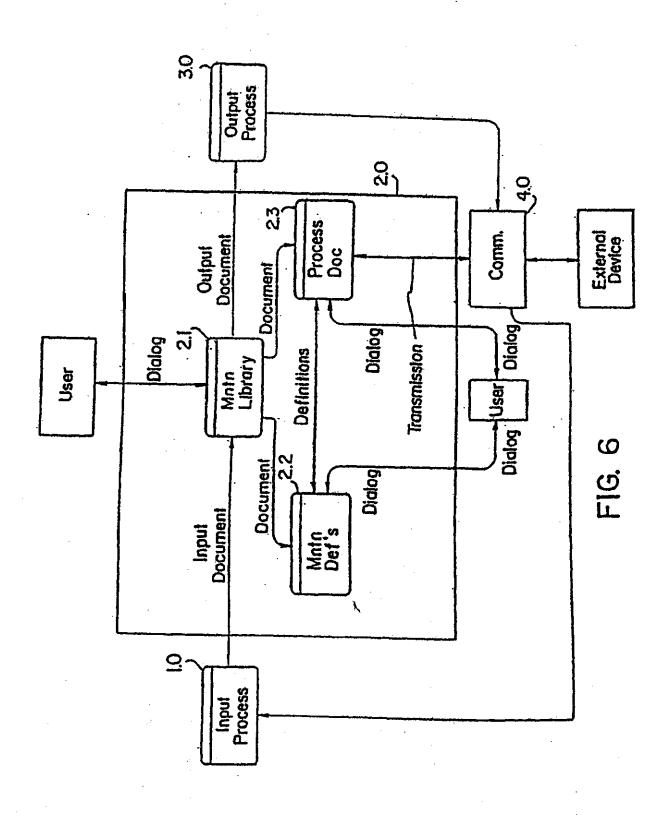
US 7,184,162 B2

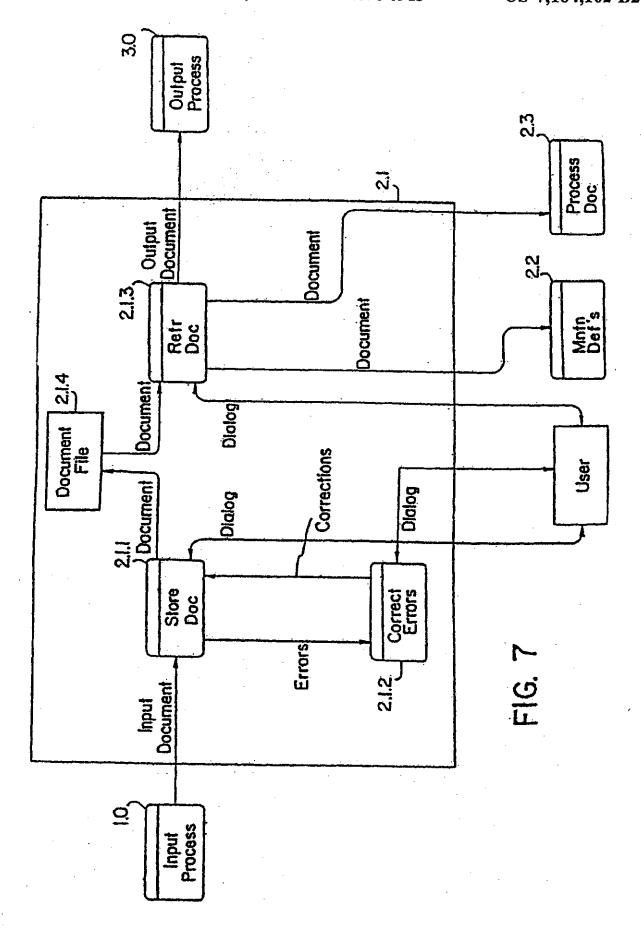
Sheet 4 of 15

U.S. Patent

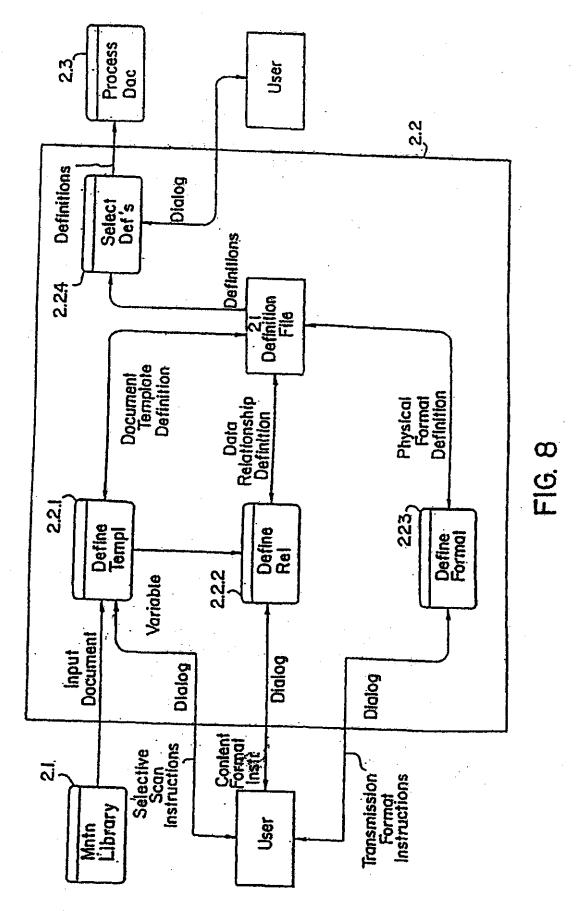
Feb. 27, 2007

Sheet 5 of 15

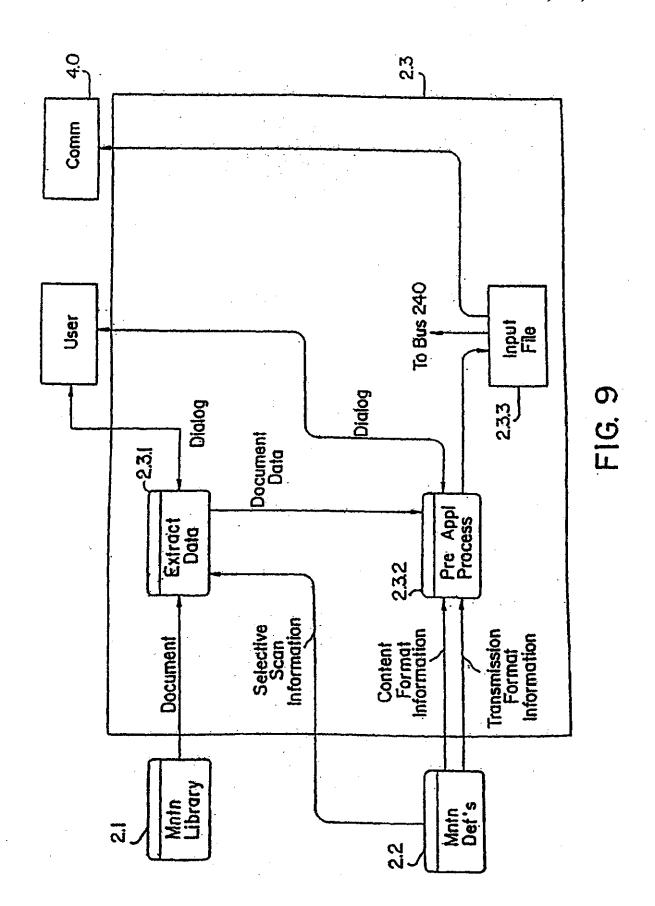




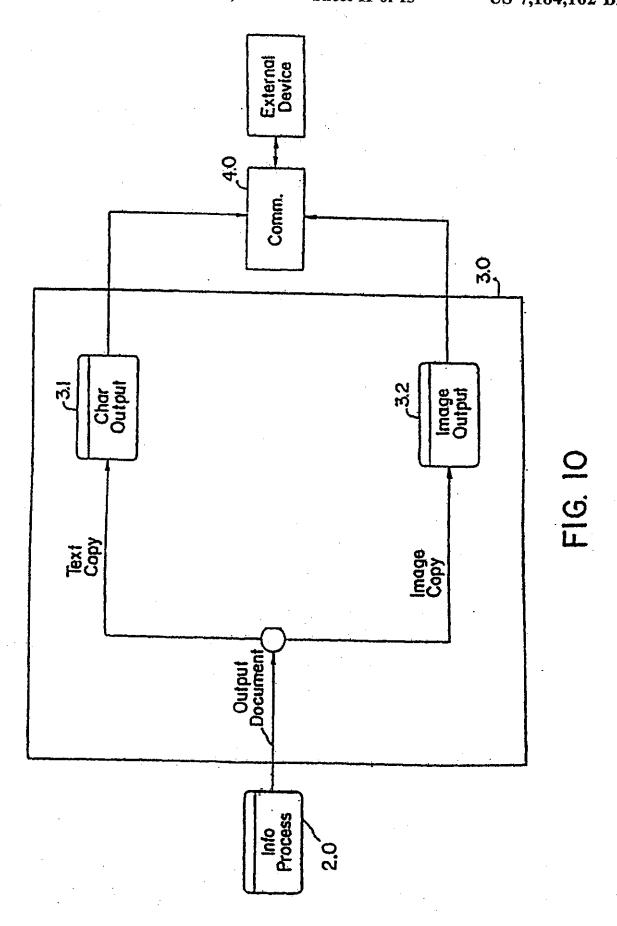

FIG. 4

Sheet 6 of 15



Sheet 7 of 15





Sheet 9 of 15

Sheet 10 of 15

FIG. 11

Variable Name	<u>Value</u>
Vendor Heading 2 Mail To	XYZ Corporation 2 XYZ Corporation PO Box 567 Anywhere, NY 63130
Account Number Statement Date Payment Date Previous Balance New Charges Debits	Anywhere, NY 63130 123456789 12/01/86 1/01/87 \$1234.56 \$789.01
Finance Charges Payments Other Credits	\$2.34 \$1000.00
New Balance	\$1025.91

FIG. 12A

	人 、
Variable Name	Value
Vendor Account Number Statement Date Payment Date Previous Balance New Charges Debits Finance Charges Payments New Balance	XYZ Corporation 123456789 12/01/86 1/01/87 \$1234.56 \$789.01 \$2.34 \$1000.00 \$1025.91

FIG. 12B

Variable Name	<u>Value</u>
Mail To	XYZ Corporation P.O. Box 567
Previous Balance	Anywhere, NY 63130 \$1234.56

FIG. 12C

<u>Variable Name</u>	<u>Value</u>
Mail To	XYZ Corporation PO Box 567
Previous Balance	Anywhere, NY 63130 \$1234.56

U.S. Patent

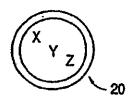
Feb. 27, 2007

Sheet 14 of 15

```
FIG. 13A

| > 1 > 1 > 1 > "XYZ Corporation" |
| > 2 > 2 > 25 > + 123456789 > |
| > 3 > 2 > 1 > D12 / 01 / 86 > |
| > 4 > 2 > 11 > D12 / 15 / 86 > |
| > 5 > 2 > 21 > D01 / 01 / 87 > |
| > 6 > 10 > 25 > $1234.56 > |
| > 7 > 11 > 25 > $789.01 > |
| > 8 > 13 > 25 > $2.34 > |
| > 9 > 14 > 25 > $1000.00 > |
| > 10 > 16 > 25 > $1025.91 > |
|
```

```
FIG. 13B 
> 1 > 1 > 1 > $1234.56 >
> 2 > 2 > 1 > "XYZ Corporation"
> 3 > 3 > 1 > "PO Box 567"
> 4 > 4 > 1 > "Anywhere, NY 63130"
```


U.S. Patent

Feb. 27, 2007

Sheet 15 of 15

US 7,184,162 B2

FIG. 14

XYZ Corporation

Customer

ABC Corporation 123 Sixteenth Street Hometown, NJ 88981 Mail To:

△ XYZ Corporation PO Box 567 Anywhere, NY 63130 △

Account Number

123456789

Previous Balance

\$1234.56

Statement Date:

O 12/01/86 O

New Charges

\$789.01

Payment Date:

1/01/87

Other Debits

Finance Charges (10%)

\$2.34

Payments

\$1000.00

WINTER SALE IN EFFECT THROUGHOUT JANUARY:

Other Credits

30 ~

New Balance

\$1025.91

US 7,184,162 B2

INFORMATION PROCESSING METHODOLOGY

This application is a continuation of application Ser. No. 10/704,484, filed Nov. 6, 2003, which is a continuation of application Ser. No. 09/458,162, filed Dec. 9, 1999, which is a continuation of application Ser. No. 09/044,159, filed Mar. 19, 1998 (now U.S. Pat. No. 6,094,505), which is a continuation of application Ser. No. 08/487,150, filed Jun. 7, 1995 (now U.S. Pat. No. 5,768,416), which is a divisional of 10 Ser. No. 08/348,224, filed Nov. 28, 1994 (now U.S. Pat. No. 5,625,465), which is a continuation of Ser. No. 08/143,135, filed Oct. 29, 1993 (now U.S. Pat. No. 5,369,508), which is a continuation of Ser. No. 07/672,865, filed Mar. 20, 1991 (now U.S. Pat. No. 5,258,855).

BACKGROUND OF THE INVENTION

The invention is directed to a system for efficiently processing information originating from hard copy documents. More specifically, the invention is directed to a hard copy document to application program interface which minimizes the need to manually process hard copy documents.

In the past, information contained on hard copy documents was manually entered into a computer via the input controller of a particular computer. The original document was then filed away for future reference. Automatic input of data was limited to the input of Magnetic Ink Character Recognition (MICR) data and to Optical Character Recognition (OCR) data. This fixed-position data was forwarded directly to a dedicated computer application specifically designed to accommodate the input format. In more recent years, typewritten text has been mechanically inputted into a computer via a text file. Examples of this latter type of 35 system are word processors and photo-typesetters.

These conventional systems have limitations which decrease the efficiency of processing information from a hard copy document. For example, the systems discussed above are limited in their application to MICR, OCR, or typewritten data. Parsing and processing data is limited to the particular requirements of the particular computer application which requires the input data. In addition, in these conventional systems, the actual hard copy document must be retained for future reference at great expense.

In a sophisticated computer network, different users may require different portions of the information contained on a hard copy document. For example, if the hard copy document is an invoice returned with payment of a bill, the accounting department may need all of the monetary information contained on the bill while the mailroom may need only customer address information, to update a customer's address. Therefore, there is a need for a system in which specific information from a hard copy document can be selectively distributed to various users.

Another problem with conventional systems is that users, even within the same company, may require that the information extracted from a hard copy document be transmitted to a particular application program in a specific transmission format. For example, one department in a company may use 60 a particular application program which must receive information using a particular character as a delimiter and other departments may require the information in a different format using different delimiters.

Another problem, particularly for small businesses, is that 65 current systems can not efficiently accommodate the inputting of information from a diversity of hard copy documents.

2

A large business which receives many forms in the same format can afford a system which inputs a high volume of information in that format into memory. For example, it is cost-effective for a bank which processes hundreds of thousands of checks a month to buy a dedicated machine which can read information off of checks having a rigidly defined, or fixed, format. However, as the diversity of forms received by a business increases relative to the number of forms that must be processed, it becomes less cost-effective to design a dedicated machine for processing each type of form format. This problem is particularly significant in small businesses which may, for example, receive fifty invoices a month, all in different, non-fixed, formats. It is frequently not cost-effective for a small business to design dedicated 15 systems for inputting information in each of these various formats. This leaves a small business with no other practical alternative than to manually input the information off of each invoice each month.

SUMMARY OF THE INVENTION

It is an object of the invention, therefore, to provide an application program interface which allows a user to select specific portions of information extracted from a diversity of hard copy documents and allows the user to direct portions of this information to several different users in accordance with the needs of the particular user.

It is also an object of the invention to provide a costeffective system for inputting hard copy documents which can accommodate hard copy documents in a diversity of formats.

It is another object of the invention to provide an application program interface which allows a user to put information, which is to be transmitted, into a particular transmission format, based upon the needs of the receiver of the information.

It is a further object of the invention to provide an application program interface which will allow the extraction, selection, formatting, routing, and storage of information from a hard copy document in a comprehensive manner such that the hard copy document itself need not be retained.

It is another object of the invention to provide a system which reduces the amount of manual labor required to process information originating from a hard copy document.

A further object of the invention is to reduce the time required to process information originating from a hard copy document so that a higher volume of transactions involving hard copy documents can be processed.

The invention provides an application program interface which inputs a diversity of hard copy documents using an automated digitizing unit and which stores information from the hard copy documents in a memory as stored document information. Portions of the stored document information are selected in accordance with content instructions which define portions of the stored document information required by a particular application unit. Selected stored document information is then formatted into the transmission format used by the particular application program based on transmission format instructions. The transmission formatted selected stored document information is then transmitted to the particular application program. The hard copy documents may contain textual information or image information or both.

The interface operates in three different modes.

In a first mode, the interface extracts all of the information from hard copy documents and stores this information in

memory. Parsing of various portions of the extracted information is performed in accordance with content instructions.

In a second mode, the user operates interactively with the interface by use of a display and an input device, such as a mouse. In this second mode, a hard copy document is inputted and displayed on the display. The interface then prompts the user to identify the location of various information. For example, the interface can ask the user to identify the location of address information on the hard copy document. In response, the user positions the mouse to 10 invention. identify address information using a cursor. The identified information is then stored as address information in memory. Subsequently, the interface again prompts the user to identify other pieces of information, which are then stored in the appropriate locations in memory. This process proceeds until 15 all of the information which is desired to be extracted off of the hard copy document is stored in memory.

In a third mode of operation, selected portions of information are extracted off of hard copy documents in accordance with predetermined location information which has 20 been specified by the user. For example, the user can define a template which specifies the location of information on hard copy documents. Templates can be formed in conjunction with second mode operation. Alternatively, the user can instruct the interface to search hard copy documents for a 25 particular character or symbol, located on the hard copy documents. The information desired to be extracted off of the hard copy documents is specified relative to the location of this character or symbol.

The interface can also prompt or receive from an applications program or another information processing system, required information, content instructions, and format

Other objects, features, and advantages of the invention will be apparent from the following detailed description of 35 the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in further detail below with reference to the accompanying drawings, in which:

FIG. 1 illustrates hardware for implementing a preferred embodiment of the instant invention;

containing information to be processed by the instant inven-

FIGS. 3A and 3B are enlarged views of the computer of FIG. 1 used to explain how the invention interactively prompts a user to identify information;

FIG. 4 is an overall data flow diagram for the FIG. 1 preferred embodiment;

FIG. 5 is a detailed input data flow diagram for the FIG. 1 preferred embodiment;

FIG. 6 is a detailed information processing data flow 55 application unit. diagram for the FIG. 1 preferred embodiment;

FIG. 7 is a more detailed information processing data flow diagram for the maintain library module of FIG. 6;

FIG. 8 is a more detailed information processing data flow diagram for the maintain definitions module of FIG. 6;

FIG. 9 is a more detailed information processing data flow diagram for the process document module of FIG. 6;

FIG. 10 is a detailed output data flow diagram for the FIG. 1 preferred embodiment;

FIG. 11 lists data corresponding to the hard copy document of FIG. 2;

FIGS. 12A, 12B, and 12C illustrate examples of data which can be selected from the extracted data of FIG. 11 in accordance with content instructions;

FIGS. 13A, 13B, and 13C illustrate examples of the data of FIGS. 12A, 12B, and 12C formatted in accordance with various transmission format instructions to form input files;

FIG. 14 illustrates another example of a hard copy document containing information to be processed by the instant

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hardware

The invention provides an interface between information originating from a hard copy document and a computer application unit which uses the information. The computer application unit can be a particular computer application program or a device which is controlled in accordance with instructions or information from the hard copy document. The invention also allows storing a copy of the hard copy document in a memory and retrieving the copy of the hard copy document. By providing a comprehensive and integrated system which can accommodate almost all of the possible uses of information contained on a hard copy document, the instant invention allows for a paperless office.

The invention includes hardware and software necessary to extract, retrieve, and process information from the hard copy document. A copy of the actual image of the hard copy document is stored in memory. Textual information extracted from the hard copy document is also stored in memory. Textual information is information, such as alphanumeric characters, which is recognized on the hard copy document and which is stored in a form which corresponds to the particular recognized character. For example, the extracted characters can be stored in the ASCII format in an electronic memory.

The user can have all of the information extracted from the hard copy document and stored in memory. Alternatively, the interface can interactively prompt the user to identify specific pieces of information for storage. The interface can also extract specific pieces of information FIG. 2 illustrates an example of a hard copy document 45 using a predefined template. The interface can also prompt or receive from another information processing system or an applications program desired information, content instructions, and format instructions.

> The instant invention also provides for parsing informa-50 tion extracted from the hard copy document and for directing this parsed information to specific users or application programs as an input file.

The invention also permits the user to define the transmission format of the input file for a particular computer

FIG. 1 illustrates hardware for implementing a preferred embodiment of a hard copy document to application program interface according to the instant invention. The interface 200 processes information extracted off of hard copy document 100 and provides information to application units 270 in a form required by each particular application unit. The interface extracts information off of a hard copy document 100 utilizing a scanner 210. The scanner 210 can be any type of scanner which extracts information off of hard copy documents, for example, an Optical Reader.

The scanned information is stored in a scanner memory 220 or in main memory 250, as will be described in greater

detail below. If main memory 250 or another memory is available to store the scanned information, then scanner memory 220 can be omitted.

The information from scanner memory 220 or main memory 250 is transmitted to computer 230. In the preferred 5 embodiment, computer 230 includes a display 232, a keyboard 234, and a mouse 236. The display 232 displays an image of the hard copy document itself and/or information necessary to process the information extracted off of the hard copy document.

The computer 230 is used to select portions of the stored document information contained in memory in accordance with content instructions which define portions of the stored document information required by an application unit. These content instructions may be provided by the application 15 program. Alternatively, the content instructions can be inputted via an input device such as a keyboard, a touch screen. a mouse, a notepad, a voice recognition device, or the like.

The computer 230 is also used to format selected stored document information into the transmission format used by 20 an application unit based on transmission format instructions. The transmission format instructions may be provided by the application program. Alternatively, the transmission format instructions can be inputted via a keyboard, a touch screen, a mouse, a notepad, a voice recognition device, or 25 the like.

Thus, the computer 230 is used to generate an input file for a particular application unit. The computer 230 is connected to scanner memory 220, main, or permanent, memory 250, a printer 260, and application units 270, via 30 bus 240. Although FIG. 1 illustrates use of a bus to connect components together, it is understood that any routing or connecting link, implemented in hardware or software or both, can be employed instead of, or in addition to, a bus. Instructions to or in the computer 230 control the main 35 memory 250, the printer 260, the application units 270, and the bus 240. Instructions to or in computer 230 can also control exchanges of information with scanner memory 220.

When the computer 230 generates an input file for a particular document, the computer 230 can send this input 40 file directly to an application unit or can store this input file in the main memory 250 until required by an application unit. The main memory 250 may also optionally store a copy of the image information for the hard copy document and the image information and textual information from the hard copy document can be retrieved and printed out on printer 260. In addition, image and textual information stored in scanner memory 220 or in main memory 250 can be used to form additional input files at the time of input or at a later 50 time, based on content instructions and transmission format instructions. Thus, the invention can, at the discretion of the user, eliminate the need to retain copies of hard copy documents, permitting a paperless office.

The application units 270 include particular application 55 programs and devices which are controlled in accordance with information contained on hard copy document 100.

FIG. 2 illustrates an example of a hard copy document 100 which contains information to be processed by the instant invention. The document illustrated in FIG. 2 is a bill 60 businesses which receive a small number of a wide variety from XYZ Corporation to customer ABC Corporation. FIG. 2 is only an example of a type of document that can be processed by the instant invention.

In a first operational mode, the scanner 210 stores all of the information extracted off of hard copy document 100 in 65 the scanner memory 220 or, alternatively, in main memory 250. The extracted information is stored in two forms. The

6

actual image of the hard copy document 100 is stored as image information in the scanner memory 220. In addition, the scanner memory 220 stores textual information recognized on the hard copy document 100 by, for example, employing standard character recognition software. In the preferred embodiment, the textual information is stored in ASCII format. The scanner memory 220 can be, for example, an electronic, magnetic, or optical memory.

FIG. 3A illustrates an enlarged view of the computer 230 10 of FIG. 1. This view will be used to describe a second mode of operation. In this second mode of operation, the hard copy document 100 is scanned and a copy of the document 100 is displayed on display 232 of computer 230, based on the contents of information temporarily stored in scanner memory 220. After the document is displayed on display 232, the computer 230 interactively prompts the user to identify the location of specific pieces of information on the hard copy document. In the FIG. 3A illustration, this prompt message is indicated as the message beginning with the

For example, the prompt message can ask the user to identify the location of account number information on the hard copy document. The user then uses an input device, such as keyboard 234 or mouse 236 or a touch screen, notepad, voice recognition device, or other input device to position a cursor on the display to identify the location of the information requested by the prompt message. For example, the cursor could be used to define a block (which could be highlighted) containing the requested information, followed by a mouse "enter" click. In this example, the user would move the mouse to identify the location of the account number information contained on the hard copy document 100. The computer 230 then stores the information which has been identified by the user as account number information in the appropriate address or subfile or as the appropriate variable or parameter in memory. The computer then prompts the user to identify the location of other information on the hard copy document, such as, statement date information. The process proceeds until all of the desired information has been stored into the appropriate locations in

FIG. 3B illustrates a variation of the second mode for interactively prompting the user for information. In FIG. 3B, the display is split into two portions. A left-hand portion textual information for the hard copy document. Thus, the 45 232L displays the image of the hard copy document and a right-hand portion 232R displays the required application program information. For example, in FIG. 3B, portion 232R displays a spreadsheet used by an application program. While observing the split display, the user can input instructions to associate specific pieces of information on the hard copy document (for example, the vendor name indicated by the mouse arrow 232A) with particular subfiles in memory (for example, the vendor field next to which the cursor 232C appears), using a mouse or other input device(s) or both. The split display also allows the user to generate content format instructions while observing the information required for a particular application program on the righthand portion.

These second modes of operation are efficient for small of invoices, since the user does not necessarily have to store all of the information that appears on the hard copy document. A further advantage is that data input is quicker, easier, and more accurate than with previous keyboard methodology. In addition, by specifying the location on the hard copy document of information, the user may optionally create a template, to be described in further detail below, for each

different type of invoice. This template is stored for future use when another hard copy document in the same format is

More specifically, instructions from computer 230 can direct the scanner 210 and scanner memory 220, and/or main 5 memory 250, to scan and/or store only specific portions of hard copy document 100. After the interactive prompts required to obtain information for a desired application program, the unused information stored in scanner memory 220 or 250 can be erased. Further, scanning of a second 10 identical document can be limited to only those portions of the document which contain needed information.

More specifically, in FIG. 2, the lines 10 drawn around certain portions of the document represent the areas which the user has previously identified as the portions of a 15 document to be extracted by the scanner 210 and stored in scanner memory 220 and/or main memory 250. Since the logo 20 and the message 30 have not been identified as an area to be scanned and stored, these areas are not scanned previously associated each of the areas 10 with a specific subfile of information, e.g., the account number, the scanned information is stored in memory locations corresponding to that subfile.

Data Processing

FIGS. 4-10 illustrate the flow of data in the FIG. 1 preferred embodiment. FIG. 4 illustrates the overall data flow for the FIG. 1 preferred embodiment. The preferred 30 embodiment includes an input process module 1.0, an information processing module 2.0, and an output processing module 3.0. The information processing module 2.0 is equipped to receive instructions from and transmit information to a user. The information processing module 2.0 can 35 also transmit to and receive information from a remote external device through communication interface 4.0. Input process module 1.0 and output processing module 3.0 can also access communication interface 4.0. A module is implemented in hardware, software, or a combination of hardware 40 and software. The specific implementation for a particular business application depends upon a variety of factors, for example, the relative costs of hardware and software implemented systems, the frequency with which a user will want to expand or modify the system, and the like.

FIG. 5 is a more detailed diagram of the input process module 1.0 of FIG. 4. The input process module 1.0 includes a character input module 1.1, an image input module 1.2, and, in the preferred embodiment, a character recognition device 1.3. The character input module inputs textual information, such as alphanumeric characters, from an input device such as keyboard 234. The image input module 1.2 inputs image information, for example, a digitized image of the actual appearance of hard copy document 100. Textual information can include textual input from an input device 55 such as keyboard 234 and textual information extracted from the document by character recognition device 1.3. Both types of information comprise an input document which is transmitted to information processing module 2.0. In the FIG. 1 preferred embodiment, the processing performed by 60 input process module 1.0 occurs in scanner memory 220, computer 230, and main memory 250.

FIG. 6 illustrates information processing data flow for the FIG. 1 preferred embodiment, that is, FIG. 6 illustrates data flow in the information processing module 2.0.

The information processing module 2.0 includes a maintain library module 2.1, to be described in further detail below in conjunction with FIG. 7, a maintain definitions module 2.2, to be described in further detail below in conjunction with FIG. 8, and a process document module 2.3 to be described in further detail below in conjunction with FIG. 9.

8

The information processing module 2.0 is the module which coordinates and drives the entire system. In the preferred embodiment, the information processing module 2.0 is implemented primarily by computer 230.

FIG. 7 illustrates information processing data flow in the maintain library module 2.1. The maintain library module 2.1 maintains a library of image information, for example, a digitized image representing the actual appearance of the hard copy document, and textual information of the hard copy documents for reference during processing. This library can be incorporated within scanner memory 220, main memory 250, or another independent memory, for example, a RAM disk. The maintain library module 2.1 includes a store document module 2.1.1, a correct errors and stored in subsequent documents. Since the user has 20 module 2.1.2, a retrieve document module 2.1.3, and a document file 2.1.4. These modules operate collectively to store, retrieve, and correct document information.

> The store document module 2.1.1, prior to routing the document to the document file 2.1.4, may provide informa-25 tion on recognition errors which may have occurred while inputting the document. For example, the store document module 2.1.1 identifies that a character contained on hard copy document 100 was not recognized. The store document module 2.1.1 also optionally causes a copy of the document and its parsing to be displayed on the display 232 for confirmation by the user. The user may utilize this opportunity to identify any errors in the displayed document and, in conjunction with the correct errors module 2.1.2, to revise the document's parsing, if necessary, prior to storage of the document in memory. The module 2.1.1 also provides a facility for the user to name a particular hard copy document for cataloging, storage, and retrieval purposes. After the document is named, the store document module 2.1.1 stores copies of the document in the document file 2.1.4.

The correct errors module 2.1.2 processes instructions from the user to correct errors identified by the store document module 2.1.1 and errors that have been spotted by the user during the confirmation process.

The retrieve document module 2.1.3 permits the user to 45 retrieve a copy of a document previously stored in the document file 2.1.4. As described above, long-term storage is provided by main memory 250, if necessary.

FIG. 8 illustrates a more detailed information processing data flow diagram for the maintain definitions module 2.2 of FIG. 6. The maintain definitions module 2.2 allows the user to define system and document parameters and maintains the definitions of these system and document parameters. The maintain definitions module 2.2 includes a define template module 2.2.1 which allows the user to specify the location of information on the document. This information provided by the user defines a template which is used to extract information off the document and to associate the extracted information with a particular variable or subfile. These templates are illustrated by boxes 10 in the FIG. 2 example of a hard copy document. The maintain definitions module 2.2 can also access templates previously defined by the user and stored in main memory 250. Templates can also be provided as part of software packages developed by program developers.

The maintain definitions module 2.2 also includes a define relationships module 2.2.2. The define relationships module 2.2.2 allows the user to define data relationships, or logical

Q

relationships, between pieces of information extracted from the hard copy document. These pieces of information are then used to generate an input file for a selected computer application unit. The user defines these relationships by content instructions. Alternatively, content instructions to 5 define relationships can be provided by application software. If the user provides these content instructions, the content instructions are inputted via keyboard 234 or via another input device such as a notepad, a voice recognition device, or the like. Examples of content instructions, data, and 10 logical relationships will be described in further detail in conjunction with FIGS. 11 and 12A, 12B, and 12C.

The maintain definitions module 2.2 also includes a define format module 2.2.3. The define format module 2.2.3 allows the user to define transmission formats for an input file 15 which is then transmitted to a selected computer application unit. Selection of the transmission format of the input file is accomplished by the user through use of transmission format instructions. Alternatively, the applications software itself can generate its own transmission format instructions. When 20 the user must specify transmission format instructions, the transmission format instructions are inputted via keyboard 234 or via another input device such as a notepad, a voice recognition device, or the like. A further description of various transmission formats will be provided below in 25 conjunction with FIGS. 12A, 12B, 12C, 13A, 13B, and 13C.

A select definitions module 2.2.4 is also included in the maintain definitions module 2.2. The select definitions module 2.2.4 allows the user to store and select a set of definitions to be used for processing the document. The 30 definitions identify pieces of information on the document by, for example, absolute location, variable location, or relative location, or by proximity to key words and/or symbols. These definitions are described in further detail below by way of an illustrative example.

FIG. 9 illustrates a more detailed information processing data flow diagram for the process document module 2.3. The process document module 2.3 processes the document after the document has been stored in the system. The process document module 2.3 gathers the appropriate information 40 which has been stored, and creates input file(s) 2.3.3 for the selected application unit. The process document module 2.3 then transmits the input file(s) via bus 240 and/or communication interface 4.0 to an application unit 270, an output device such as printer 260, or to main memory 250.

The process document module 2.3 includes an extract data module 2.3.1. This module extracts data off of the document in accordance with the user's instructions, for example, the user-defined template, or through the interactive mode.

The process document module 2.3 also includes a preapplication process module 2.3.2 which gathers and associates information extracted from the document in accordance with content instructions. This module prompts the user for any additional information required to satisfy the relationships 55 defined by the content instructions. The preapplication process module 2.3.2 also places the selected information into the transmission format defined by the transmission format instructions.

The preapplication process module 2.3.2 also generates 60 the input file 2.3.3 for the selected application in accordance with the appropriate instructions. The input file 2.3.3 is then transmitted to bus 240 and/or communication interface 4.0 for transmission to a particular application unit 270.

FIG. 10 illustrates a detailed output data flow diagram for 65 output module 3.0. Output module 3.0 outputs a textual and/or image copy of the document. In the FIG. 1 preferred

10

embodiment, output module 3.0 is implemented by printer 260, associated software, and associated interface circuitry.

Operation

Examples of operation of a preferred embodiment will now be described.

The user enters the system by providing instructions to the information processing module 2.0. The user then instructs the information processing module 2.0 to conduct maintain library processing, maintain definitions processing, or process document processing.

If the user selects maintain library processing, the user then provides instructions to maintain or modify the document library through the maintain library module 2.1. For example, the user can direct the inputting and storage of a hard copy document 100 or can retrieve and output a document. The user requests inputting of a document through the store document module 2.1.1. The system then prompts the user to specify a storage location for the inputted document. The document is then read-in by the input process module 1.0. A textual copy and/or an image copy are stored into the document file 2.1.4. Errors which have occurred during inputting are identified and corrected by the correct errors module 2.1.2 and the user. The corrections are reflected in the document information stored in document file 2.1.4.

The retrieve document module 2.1.3 is used to retrieve and output a document. The system prompts the user to specify the storage location of a document and the type of document copy, for example, a textual or an image copy, to be outputted. The document is then outputted by the output process module 3.0.

If the user initially selected maintain definitions processing, the user would instruct the system to maintain and/or modify parameter definitions through the maintain definitions module 2.2. For example, the user can define and maintain a document template for extracting selected portions of information off of the hard copy document. The user can use the template to extract selected portions of information off of the hard copy document when the document is originally inputted, or alternatively, the user can use the template to identify selected portions of information for extraction off of an image copy of the document. In creating the template, the user identifies pieces of information on the document to be extracted and assigns a variable name, or subfile, to each piece of data.

The location of data to be extracted can be defined in a 50 number of ways other than by use of a template. For example, the user can designate the absolute location of information on the document with respect to a grid overlaid on the document, e.g., always on line 3, starting in column 1. The user can also identify information by specifying the relative location of information to be extracted, e.g., always two lines below the piece of data named "salutation", starting in column 3. The user can also specify the location of information to be extracted by variable location specification. For example, if the hard copy document is a letter, the module would conduct a key word search for the term "Dear Sir:". Wherever this term "Dear Sir:" is located, this piece of data would be associated with the variable specified by the user, for example, the variable "salutation." In addition, a defined set of conventional symbols can be used to signify certain recurring data items for the convenience of users of the instant invention. For example, a "@" symbol can be used to delineate the vendor name as follows:

"@XYZ Corporation@". Other examples of the use of symbols to delineate information will be described with reference to FIG. 14.

The maintains definition module 2.2 is also used to maintain data relationships in accordance with content 5 instructions and to maintain input file formats in accordance with transmission format instructions. Relationships are defined and maintained between pieces of data, specified by, for example, the names of variables, through the define relationships module 2.2.2. The names of pieces of data on 10 will now be described. the document are retrieved by, for example, the define template module 2.2.1, and are passed to the define relationships module 2.2.2. The user may then provide any additional pieces of data needed to generate an input file for a particular application program or unit, such as an input file 15 line number. The user, the applications software, and/or instructions previously stored in memory then establishes the contents of the input file by defining relationships between pieces of data using content instructions. Specific examples of content instructions will be discussed below in 20 conjunction with FIGS. 11, 12A, 12B, 12C, 13A, 13B, and

The user and/or the applications software defines and maintains the transmission format of the input file to be used by a particular application program or unit through the 25 define format module 2.2.3 in accordance with transmission format instructions. This is accomplished by defining the parameters to be used by the preapplication process module 2.3.2 in generating an input file. Parameters which would typically be required to generate an input file would include 30 the character type, e.g., text or pixel; delimiters used between pieces of data, e.g., a slash or a semicolon; end of line characters, e.g., a carriage return or a line feed; and end of file characters. Examples of transmission formats will be described in further detail below in conjunction with FIGS. 35 11, 12A, 12B, 12C, 13A, 13B and 13C.

If the user initially selected process document processing, the interface will then proceed to process the document through use of the process document module 2.3. For example, the user can extract specific portions of data from 40 an image copy of a document, can generate an input file for transmission to an application program, or can directly process information interactively with an application program.

If the user desires to extract specific portions of data from an image copy of a hard copy document which has already been stored in memory, the user uses the extract data module 2.3.1 to identify a document to be processed. The document characters; is then retrieved by the retrieve document module 2.1.3 and passed to the extract data module 2.3.1. The user can also select parameter definitions through the select definitions module 2.2.4.

The selected document template or parameter definition is passed to the extract data module 2.3.1. The extract data module 2.3.1 extracts pieces of data from the image copy of 55 the document, as defined by the document template definition or the parameter definitions or both. This document data is then passed to preapplication process module 2.3.2.

The interface generates input file(s) 2.3.3 by use of the preapplication process module 2.3.2. The selected data relationship definition, as defined by the content instructions, and the selected record format definitions, as defined by the transmission format instructions, are passed to the preapplication process module 2.3.2. The preapplication process module 2.3.2 assembles the input file in accordance with the content instructions. The preapplication process module 2.3.2 also prompts the user for any additional pieces of data

which need to be provided by the user. The input file is converted to the desired transmission format in accordance with the transmission format instructions. This physically

12

formatted data is then stored in the input file 2.3.3.

The user can also use an application program to process information by loading the particular application program into the computer 230 rather than by sending the input file to a remote application unit 270.

An illustrative example of the processing described above

The user inputs instructions via keyboard 234 or another input device which indicate that the user desires to input and store a document. The computer 230 then prompts the user for the name of the document. In this example, the user desires to input the document of FIG. 2 and therefore names the document "XYZ Corp. Bill Dec. 1, 1986." The computer then prompts the user to feed the hard copy document 100 into the scanner 210. The image of the hard copy document is displayed on display 232. The computer then prompts the user to identify the account number on the document. By use of the mouse 236 or other input device to position a cursor on the display, the user indicates the location of the account number. The account number is then read-in to a subfile named "Account Number." This process proceeds until all of the desired information has been read-in and stored.

In this particular example, no errors were encountered while inputting the document. The user then directs that the document be stored for future reference in a document file.

Some time later, the user desires to retrieve and output the document and to generate input files based on information from the document. The computer 230 prompts the user for the name of the document and the type of output. The user responds with "XYZ Corp. Bill Dec. 01, 1986" for a printed textual copy. The document is then retrieved from the document file and passed to the printer 260 for printing.

In order to generate an input file for a specific application program, the user selects the option to define a document template for use when each month's XYZ Corporation bill arrives. Accordingly, the user instructs the system to display a copy of an XYZ Corporation bill on the display 232. The user then identifies pieces of data by absolute locations. That is, the user assigns specific names to information located at specific portions of the document. In this example, the user would input the following information:

Vendor-text, line 1, one line, column 1, 80 characters; Account number-numeric, line 6, one line, column 25, 9 characters;

Statement date-date, line 9, one line, column 25, 8, characters;

Payment date-date, line 11, one line, column 25, 8 characters;

Previous balance-currency, line 7, one line, column 75, 9 characters;

New charges-currency, line 8, one line, column 75, 9 characters:

Other debits-currency, line 10, one line, column 75, 9 characters;

Finance charges-currency, line 12, one line, column 75, 9 characters;

Payments-currency, line 13, one line, column 75, 9 characters;

Other credits-currency, line 14, one line, column 75, 9 characters:

New balance-currency, line 15, one line, column 75, 9 characters.

The user also identifies data with variable locations. In this particular example, a variable location is specified as follows:

Heading 2-line, value="Mail To:"

The identification of Heading 2 as line information means that the system will search for occurrences of the character string "Mail To:" and assign the line number which contains this character string to Heading 2.

The user also identifies data by relative locations. In this 10 example, the user identifies the following relative location:

Mail To-text, Heading 2+1, 3 lines, column 60, 25 characters per line.

The instructions above instruct the system to assign the textual information beginning on one line after Heading 2 and continuing for 3 lines, in column 60, to the Mail To subfile.

As an alternative to inputting the actual line, column, and character numbers, the user can identify desired portions of 20 the document by blocking, or highlighting, the desired portions using the mouse or other input device. In this case, the computer converts the highlighted portions into corresponding line, column, and character numbers.

FIG. 11 lists data corresponding to the hard copy document of FIG. 2 and the associated variable or subfile names.

Next, the user desires to define data relationships in accordance with content instructions. Examples of the type of contents which can be specified by a user are illustrated 30 in FIGS. 12A, 12B, and 12C.

In this particular example, three separate departments of ABC Corporation require information from the XYZ Corporation bill. The first department requires vendor, account number, statement date, payment date, previous balance, new charges, debits, finance charges, payments, and new balance information. The second and third departments require mail to information and previous balance information. Each of these departments have their own application program which utilizes this information.

The user employs content instructions to designate how pieces of information, which have been extracted off of hard copy document 100, are directed to particular departments, that is, particular application programs. FIG. 12A illustrates 45 the contents of the information to be transmitted to the first department. FIG. 12B illustrates the information to be transmitted to the second department. FIG. 12C illustrates the information to be transmitted to the third department. The content instructions, therefore, parse the information 50 shown in FIG. 11 to various application programs, as shown by FIGS. 12A, 12B, and 12C. Content instructions can also be used to identify additional pieces of data which are required for the input files of the particular application programs. In this particular example, the specific application 55 programs from the three departments all require numeric record number information, numeric horizontal position information, numeric vertical position information, and date received information. The horizontal and vertical position information is used by the application program to specify the 60 location of the received information on a spreadsheet application program, in this example. The user may know in advance the content format required by each application program, that is, in this example, the location and type of information specified on the spreadsheet. The user may also 65 employ the split display mode described with reference to FIG. 3B to generate content format instructions.

14

Using the content instructions, the user establishes the following contents for the input file corresponding to FIG. 12A:

Record number, horizontal position, vertical position, vendor;

Record number, horizontal position, vertical position, account number;

Record number, horizontal position, vertical position, statement date;

Record number, horizontal position, vertical position, date received:

Record number, horizontal position, vertical position, payment date;

Record number, horizontal position, vertical position, previous balance;

Record number, horizontal position, vertical position, new charges;

Record number, horizontal position, vertical position, finance charges;

Record number, horizontal position, vertical position, payments;

Record number, horizontal position, vertical position, new balance.

Next, transmission format instructions are employed to 25 define the transmission format of the input file for a specific application program or unit. FIG. 13A illustrates the transmission input file corresponding to FIG. 12A. FIG. 13B illustrates the transmission input file corresponding to FIG. 12B. FIG. 13C illustrates the transmission input file corresponding to FIG. 12C. A comparison of FIGS. 12B and 12C reveals that FIGS. 12B and 12C have the same contents. However, the information illustrated in FIG. 12B is being sent to a different application program than the information in FIG. 12C. These application programs require different transmission input formats, as illustrated in FIG. 13B and 13C. More specifically, the application program that receives the input file illustrated in FIG. 13B uses the greater than sign as a delimiter whereas the application program which receives the transmission input file shown in FIG. 13C uses a back-slash as the delimiter.

After the contents and the transmission format for the input file have been, defined, and any additional information has been inputted, the input file is assembled and transmitted to the particular application program.

FIG. 14 illustrates another example of a hard copy document containing information to be processed by the instant invention. The hard copy document illustrated in FIG. 14 is first scanned and information from the hard copy document is stored into a memory. The interface 200 then identifies portions of the hard copy document corresponding to various variables by recognizing a defined set of symbols. In the FIG. 14 example, triangles delineate the mailing address, circles delineate the statement date, and squares delineate the new charges. Information from these portions of the hard copy document is stored in the corresponding memory locations or subfiles for each variable. The same set of symbols can be used to identify the same information from one document to the next. Thus, even if the physical formats of documents are not fixed from one document to the next, a diversity of hard copy documents can be processed without manually inputting data by recognition of the defined sym-

Examples of readily available application programs are Quicken and Lotus 1,2,3 both of which are widely utilized in the business community. Quicken, for example is an easy-to-utilize program for writing checks and preparing business records. Payee, amount and address information

may readily be transmitted from scanner memory 220 and/or main memory 250 to the Quicken application program for check writing functions and ledger keeping purposes. Lotus is a well known spreadsheet program which may process data input into specified cells once this data is placed in 5 conventional Lotus format.

Thus, the instant invention provides an integrated and comprehensive system for handling information from a hard copy document, thus permitting a paperless office. In addition, the invention permits data, extracted off of a hard copy document, to be easily manipulated into various logical and transmission formats required by a particular application unit. The invention also provides a low cost system for inputting information from a wide variety of hard copy documents into a memory.

The foregoing description has been set forth merely to illustrate preferred embodiments of the invention and is not intended to be limiting. Modifications are possible without departing from the scope of the invention.

For example, letters, checks, forms, pictures, reports, 20 music scores, film, and other types of hard copy documents can be processed by the invention for accounts payable/receivable accounting, inventory control, record keeping, budgeting, data base management, music transcription, forms processing, computerized art, survey and question-25 naire processing, statistical data analysis, correspondence processing and other applications.

Other automated digitizing units can be used in addition to or as an alternative to use of the scanner 210 as an input unit. Any electrical, magnetic, or optical device which 30 extracts information off of a hard copy document, thereby eliminating the need to manually input significant amounts of information from the hard copy document is suitable for use as an automated digitizing unit. In addition, information can be input by user responses and digital and analog signals 35 generated from various devices, and from computer files from other computer systems. Suitable hardware for inputting data includes a keyboard, a light pen, a mouse, a touch screen, a laser scanner, a microphone, a tablet, a disk drive, a magnetic tape drive, and a modem.

The interface 200 can also output information in forms other than a hard copy of textual or image information. For example, the interface 200 can output system responses, computer files, and digital and analog signals for transmission to other computer systems or to control systems. 45 Suitable hardware for outputting information includes a disk drive, a magnetic tape drive, a cathode ray tube, a plasma screen, a printer, a plotter, a film developer, an amplifier, and a modern.

Since modifications of the described embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the scope of the invention should be limited solely with respect to the appended claims and equivalents.

What is claimed is:

- 1. A method of doing business utilizing a computer system configurable to automatically extract information according to content instructions from an electronic document template file displayed on a first computer to a plurality of application programs running on at least one other computer and transmit said information according to customizable transmission format instructions to at least one field requiring said transmitted information in at least one application program running on said at least one other computer to enable a commercial transaction between a buyer and a seller.
- The method as recited in claim 1 wherein the transaction involves a physical good.

- 3. The method as recited in claim 1 wherein the transaction involves a service.
- The method as recited in claim 1 wherein the transaction involves copyrighted material.
- 5. The method as recited in claim 1 in which said first computer and at least on other computer are part of a distributed computing system.
- 6. The method as recited in claim 1 wherein said automatic extracting step automatically parses said information to said at least one field in said application program.
- 7. The method as recited in claim 1 wherein content instructions are automatically generated during said automatically extracting step.
- The method as recited in claim 7 wherein said content
 instructions are automatically generated using a mouse function.
 - 9. The method as recited in claim 7, wherein said content instructions are automatically generated using speech recognition.
 - 10. The method as recited in claim 7 wherein said content instructions are automatically generated based on interaction by the user with at least one of said first and at least one other computer.
 - 11. The method as recited in claim 1 wherein said extracted information comprises billing information.
 - 12. The method as recited in claim 1 wherein said extracted information comprises financial information.
 - 13. The method as recited in claim 1 wherein said extracted information comprises personal information.
 - 14. The method as recited in claim 1 wherein said extracted information comprises customer information.
- 15. A method of doing business utilizing a computer system configurable to automatically extract information according to content instructions from an electronic document template file displayed on a first computer to a plurality of application programs running on at least one other computer and to transmit said information according to format instructions to at least one field requiring said trasmitted information in at least one application program running on at least one other computer to enable a commercial transaction between a buyer and a seller.
- 16. The method as recited in claim 15 wherein the transaction involves a physical good.
- 17. The method as recited in claim 15 wherein the transaction involves a service.
- 18. The method as recited in claim 15 wherein the transaction involves copyrighted material.
- 19. The method as recited in claim 15 in which said first computer and at least one other computer are part of a distributed computing system.
- 20. The method as recited in claim 15 wherein said automatic extracting step automatically parses said information to said at least one field in said application program.
- 21. The method as recited in claim 15 wherein content instructions are automatically generated during said automatically extracting step.
- 22. The method as recited in claim 21 wherein said content instructions are automatically generated using a mouse function.
- 23. The method as recited in claim 21, wherein said content instructions are automatically generated using speech recognition.
- 24. The method as recited in claim 21 wherein said content instructions are automatically generated based on interaction by the user with at least one of said first and at least one other computer.

- 25. The method as recited in claim 15 wherein said extracted information comprises billing information.
- 26. The method as recited in claim 15 wherein said extracted information comprises financial information.
- 27. The method as recited in claim 15 wherein said 5 extracted information comprises personal information.
- 28. The method as recited in claim 15 wherein said extracted information comprises customer information.
- 29. A method of doing business by automatically extracting information from an electronic document template file 10 displayed on a first computer and transmitting said information to at least one of a plurality of application programs running on at least one other second computer according to customizable transmission format instructions, said at least one other application program requiring said transmitted 15 information to enable a commercial transaction between a buyer and a seller.
- 30. The method as recited in claim 29 wherein the transaction involves a physical good.
- 31. The method as recited in claim 29 wherein the 20 distributed computing system.
- 32. The method as recited in claim 29 wherein the transaction involves copyrighted material.
- 33. The method as recited in claim 29 in which said first computer and at least one other computer are part of a 25 distributed computing system.
- 34. The method as recited in claim 29 wherein said automatic extracting step automatically parses said information to said at least one field in said application program.
- 35. The method as recited in claim 29 wherein content 30 instructions are automatically generated during said automatically extracting step.
- 36. The method as recited in claim 35 wherein said content instructions are automatically generated using a mouse function.
- 37. The method as recited in claim 35, wherein said content instructions are automatically generated using speech recognition.
- 38. The method as recited in claim 35 wherein said content instructions are automatically generated based on 40 interaction by the user with at least one of said first and at least one other computer.
- 39. The method as recited in claim 29 wherein said extracted information comprises billing information.
- 40. The method as recited in claim 29 wherein said 45 extracted information comprises financial information.
- 41. The method as recited in claim 29 wherein said extracted information comprises personal information.

- 18
 42. The method as recited in claim 29 wherein said extracted information comprises customer information.
- 43. A method of doing business by extracting information from a file displayed on a first computer, said file configurable to transmit information to a plurality of application programs running on at least one other computer and transmitting said information according to format instructions to at least one application program on said at least one other computer to enable a commercial transaction between a buyer and a seller.
- 44. The method as recited in claim 43 wherein the transaction involves a physical good.
- 45. The method as recited in claim 43 wherein the transaction involves a service.
- 46. The method as recited in claim 43 wherein the transaction involves copyrighted material.
- 47. The method as recited in claim 43 in which said first computer and at least one other computer are part of a distributed computing system.
- 48. The method as recited in claim 43 wherein said automatic extracting step automatically parses said information to said at least one field in said application program.
- 49. The method as recited in claim 43 wherein content instructions are automatically generated during said automatically extracting step.
- 50. The method as recited in claim 49 wherein said content instructions are automatically generated using a mouse function.
- 51. The method as recited in claim 49, wherein said content instructions are automatically generated using speech recognition.
- 52. The method as recited in claim 49 wherein said 35 content instructions are automatically generated based on interaction by the user with at least one of said first and at least one other computer.
 - 53. The method as recited in claim 43 wherein said extracted information comprises billing information.
 - 54. The method as recited in claim 43 wherein said extracted information comprises financial information.
 - 55. The method as recited in claim 43 wherein said extracted information comprises personal information.
 - The method as recited in claim 43 wherein said extracted information comprises customer information.

* * * * *