] Document Number Case Number
Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Pag Ur?ited of 66— Cou?f-c-%ll-c
estern District of Wisconsin
[Theresa M. Owens

Filed/Received
11/30/2006 04:11:49 PM CST

IN THE UNITED STATES DISTRICT COURT

FOR THE WESTERN DISTRICT OF WISCONSIN

__ X
SILICON GRAPHICS, INC.)

Civ. Action No. 06-C-0611-C

Plaintiff,
V.) AMENDED COMPLAINT FOR

: PATENT INFRINGEMENT
ATI TECHNOLOGIES INC. :
Defendant. :
__ X

Plaintiff Silicon Graphics, Inc., for its amended complaint against defendant ATI
Technologies Inc., states as follows:

PARTIES

1. Plaintiff Silicon Graphics, Inc. (“SGI”) is a Delaware corporation with its
corporate offices in Mountain View, California and research and manufacturing facilities in
Chippewa Falls, Wisconsin.

2. Defendant ATI Technologies Inc. (“ATI”) is a Canadian corporation formed
under the Business Corporations Act (Ontario) with its principal and head office at Markham,
Ontario, Canada.

JURISDICTION AND VENUE

3. This is an action for patent infringement over which this Court has subject matter
jurisdiction pursuant to 28 U.S.C. 88 1331 and 1338(a).

4. This Court has personal jurisdiction over ATI. ATI has transacted business
within this District and specifically performed acts of patent infringement in or directed to this

District.

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 2 of 66

5. Venue properly lies within this District under 28 U.S.C. 8 1391 and §1400(b).
Defendant ATI has committed acts of patent infringement within this District, by promoting,
selling and causing to be sold the accused products in this District.

COUNT I - PATENT INFRINGEMENT OF U.S. PATENT NO. 6,650,327

6. On November 18, 2003, United States Patent No. 6,650,327 (“the ‘327 patent™)
entitled “Display System Having Floating Point Rasterization and Floating Point
Framebuffering” was duly and legally issued to inventors John M. Airey, Mark S. Peercy, Robert
A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal and Danny D. Loh. SGlI is
the owner by assignment of the ‘327 patent. Attached as Appendix A is a true and correct copy
of the “327 patent.

7. Defendant ATI has infringed and continues to infringe the ‘327 patent by making,
using, selling and offering to sell infringing ATl Radeon® products for use in desktop, laptop
and server/workstation computing. ATI’s infringing conduct has caused SGI substantial
damages, and, unless enjoined, will cause irreparable injury to SGI, its operations, reputation and
good will.

8. SGI has provided legal notice to ATI of its infringing conduct. Notwithstanding
this notice, ATI continues to infringe the ‘327 patent. ATI’s infringement is deliberate, willful
and wanton, and will continue unless enjoined by this Court.

COUNT 11 - PATENT INFRINGEMENT OF U.S. PATENT NO. 6,292,200

9. On September 18, 2001, United States Patent No. 6,292,200 (“the “200 patent”)
entitled “Apparatus And Method For Utilizing Multiple Rendering Pipes For A Single 3-D

Display” was duly and legally issued to inventors Andrew Bowen, Dawn Maxon and Gregory

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 3 of 66

Buchner. SGI is the owner by assignment of the ‘200 patent. Attached as Appendix B is a true
and correct copy of the “200 patent.

10. Defendant ATI has infringed and continues to infringe the ‘200 patent by making,
using, selling and offering to sell infringing ATI CrossFire Systems and Radeon® products
compatible for use in CrossFire systems. ATI’s infringing conduct has caused SGI substantial
damages, and, unless enjoined, will cause irreparable injury to SGI, its operations, reputation and
good will.

11. ATI has knowledge of the “200 patent and the infringement thereof.
Notwithstanding such knowledge, ATI continues to infringe the ‘200 patent. Said infringement
is deliberate, willful and wanton, and will continue unless enjoined by this Court.

COUNT 111 = PATENT INFRINGEMENT OF U.S. PATENT NO. 6,885,376

12. On April 26, 2005, United State Patent No. 6,885,376 (“the *376 patent”) entitled
“System, Method, And Computer Program Product For Near-Real Time Load Balancing Across
Multiple Rendering Pipelines” was duly and legally issued to inventors Svend Tang-Petersen and
Yair Kurzion. SGI is the owner by assignment of the *376 patent. Attached as Appendix C is a
true and correct copy of the ‘376 patent.

13. Defendant ATI has infringed and continues to infringe the ‘376 patent by making,
using, selling and offering to sell infringing ATI CrossFire Systems and Radeon® products
compatible for use in CrossFire systems. ATI’s infringing conduct has caused SGI substantial
damages, and, unless enjoined, will cause irreparable injury to SGI, its operations, reputation and

good will.

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 4 of 66

14.

ATI has knowledge of the ‘376 patent and the infringement thereof.

Notwithstanding such knowledge, ATI continues to infringe the ‘376 patent. Said infringement

is deliberate, willful and wanton, and will continue unless enjoined by this Court.

RELIEF REQUESTED

WHEREFORE, Plaintiff SGI requests that the Court enter a judgment in SGI’s favor and

against Defendant ATI, and provide SGI the following relief:

A.

Order, adjudge and decree that ATI has infringed the ‘327, 200 and *376 patents

in violation of 35 U.S.C. § 271;

Issue permanent injunctive relief prohibiting ATI and its respective parents,
subsidiaries, principals, officers, directors, agents, attorneys, employees and all
others in privity with it from infringing the *327, ‘200 and ‘376 patents, pursuant

to 35 U.S.C. § 283;

Award SGI its damages for patent infringement, and prejudgment interest and

costs against ATI pursuant to 35 U.S.C. § 284;

Order, adjudge and decree that ATI’s infringement of the ‘327, ‘200 and ‘376

patents has been deliberate, willful and wanton;

Order, adjudge and decree that ATI’s infringement of the ‘327, ‘200 and ‘376

patents has been exceptional under 35 U.S.C. § 285;

Trebling said damage award under 35 U.S.C. § 284;

Award SGI its reasonable attorneys’ fees under 35 U.S.C. § 285; and

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 5 of 66

H. Award such other and further relief as the Court may deem just and proper.

JURY DEMAND

Plaintiff SGI requests a trial by jury.

Dated: November 30, 2006 Respectfully submitted,

/s/ Edward J. Pardon

Jeffrey S. Ward

Edward J. Pardon

MICHAEL BEST & FRIEDRICH LLP
One South Pinckney Street, Suite 700
Madison, Wl 53703-4257

(608) 257-3501

(608) 283-2275 (Fax)

Of counsel:

James M. Bollinger

Philip L. Hirschhorn

Steven Underwood

MORGAN, LEWIS & BOCKIUS LLP
101 Park Avenue

New York, New York 10178

(212) 309-6000

(212) 309-6001 (Fax)

Attorneys for Plaintiff Silicon Graphics, Inc.

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 6 of 66

CERTIFICATE OF SERVICE

I, Susan Bunge, hereby certify that on the 30" day of November, 2006, a true and correct
copy of the Amended Complaint for Patent Infringement was served via e-mail and U.S. Malil
addressed to the following counsel of record:

Daniel W. Hildebrand

Joseph A. Ranney

DeWitt, Ross & Stevens S.C.

2 East Mifflin Street, Suite 600
Madison, W1 53703
dwh@dewittross.net
jar@dewittross.net

William H. Manning

Cole M. Fauver

William A. Webb

Brian A. Mayer

Robins, Kaplan, Miller & Ciresi, L.L.P.
800 LaSalle Avenue, Suite 2800
Minneapolis, MN 55402-2015
whmanning@rkmc.com
cmfauver@rkmc.com
wawebb@rkmc.com
bamayer@rkmc.com

/s/ Susan Bunge

Susan Bunge

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 7 of 66

Appendix A

case wObevomermoe Bocemer AHRMVARRRIRETAC O

a2 United States Patent
Airey et al.

US006650327B1

US 6,650,327 Bl
Nov. 18, 2003

(10) Patent No.:
5) Date of Patent:

(54) DISPLAY SYSTEM HAVING FLOATING
POINT RASTERIZATION AND FLOATING
POINT FRAMEBUFFERING

(75) Inventors: John M. Airey, Moutain View, CA
(US); Mark S. Peercy, Sunnyvale, CA
(US); Robert A. Drebin, Palo Alto, CA
(US); John Montrym, Los Altos, CA
(US); David L. Dignam, Belmont, CA
(US); Christopher J. Migdal,
Mountain View, CA (US); Danny D.
Loh, Fremont, CA (US)

(73) Assignee: Silicon Graphics, Inc., Mountain View,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/098,041

(22) Filed: Jun. 16, 1998
(Under 37 CFR 1.47)
(51) Int. CL7 oo GO6T 5/391
(52) US.ClL ... 345/431; 345/422; 365/189.05
(58) Field of Searchc.cccoceuvveiine. 345/431, 520,
345/523, 422, 503, 153, 502, 426, 430,
196, 950; 708/606, 512; 365/189.05, 230.08;
326/62; 375/372; 348/419
(56) References Cited
U.S. PATENT DOCUMENTS
5,745,125 A * 4/1998 Deering et al. 345/503
5,844,571 A * 12/1998 Narayanaswami 345/422
5,926,406 A * 7/1999 Tucker et al. 708/606
5,995,121 A * 11/1999 Alcorn et al. 345/520
5,995,122 A * 11/1999 Hsich etal. 345/523

OTHER PUBLICATIONS

Larson, G.W. et al., “A Visibility Matching Tone Reproduc-
tion Operator for High Dynamic Range Scenes,” IEEE
Transactions On Visualization and Computer Graphics, vol.
3, No. 4, IEEE, pp. 291-306 (Oct.—Dec. 1997).

Larson, G.W., “Logluv Encoding for Full-Gamut, High—
Dynamic Range Images,” Journal of Graphic Tools, vol. 3,
No. 1, AK Peters, pp. 15-31 (Submitted to Journal on Aug.
26, 1998).

Larson, G.W. and Shakespheare, R., Rendering with Radi-
ance: The Art and Science of Lighting Visualization, Morgan
Kaufmann Publishers, Entire book submitted (1997).

Lastra, A. et al., “Real-Time Programmable Shading,” Pro-
ceedings of the 1995 Symposium of Interactive 3D Graphics,
ACM, pp. 59-66 (1995).

Olano, M. and Lastra, A., “A Shading Language on Graphics
Hardware: The PixelFlow Shading System,” Proceedings of
SIGGRAPH 98, pp. 1-10 (Conference Dates: Jul 19-24,
1998).

Rushmeier, H. et al., “Comparing Real and Synthetic
Images: Some Ideas About Metrics,” Sixth Furographics
Workshop on Rendering, Springer—Verlag, pp. 82-91 (Jun.
1995).

(List continued on next page.)

Primary Examiner—Mark R. Powell
Assistant Examiner—Thu-Thao Havan

(7) ABSTRACT

A floating point rasterization and frame buffer in a computer
system graphics program. The rasterization, fog, lighting,
texturing, blending, and antialiasing processes operate on
floating point values. In one embodiment, a 16-bit floating
point format consisting of one sign bit, ten mantissa bits, and
five exponent bits (s10e5), is used to optimize the range and
precision afforded by the 16 available bits of information. In
other embodiments, the floating point format can be defined
in the manner preferred in order to achieve a desired range
and precision of the data stored in the frame buffer. The final
floating point values corresponding to pixel attributes are
stored in a frame buffer and eventually read and drawn for
display. The graphics program can operate directly on the
data in the frame buffer without losing any of the desired
range and precision of the data.

31 Claims, 7 Drawing Sheets

! 1
135A :
I \ PER-VORTEX |
| VERTEX OPERATIONS ;
' DATA EVALUATORS | AND PER. !
. L 1 [| PRIMTIVE I "Ledy erepizamion| ol FRAGUENT FRAMEBUFFER |
! DISPLAY | ASSEMBLY 138] OPERATIONS .
132 LIST 1358 — 139 !
S 133 TEXTURE i
| PIXEL |_» ¥ PIEL =) ASSEMBLYW—J !
| DATA™ »| OPERATIONS 13 !
" « 136 |

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 9 of 66

US 6,650,327 Bl
Page 2

OTHER PUBLICATIONS

Rushmeier, H.E. and Ward, G.J., “Energy Preserving Non—
Linear Filters,” Computer Graphics Proceedings, Annual
Conference Series, ACM, pp. 131-138 (Conference Dates:
Jul. 24-29, 1994).

Ward, G., “A Contrast—-Based Scalefactor for Luminance
Display,” Graphics Gems IV, Academic Press, Inc., pp.
415-421 (1994).

Ward, G.J. and Rubinstein, FM., “A New Technique for
Computer Simulation of Illuminated Spaces,” Journal of the
Hluminating Fngineering Society, vol. 17, No. 1, The Illu-
minating Engineering Society, pp. 80-91 (Winter 1988).
Ward, G.J. et al.,, “A Ray Tracing Solution for Diffuse
Interreflection,” Computer Graphics, vol. 22, No. 4, ACM,
pp. 85-92 (Aug. 1988).

Ward, GJ. “Adaptive Shadow Testing for Ray Tracing,”
Proceedings of the 1991 Eurographics Rendering Workshop,
Springer—Verlag, pp. 11-20 (1991).

Ward, G.J. and Heckbert, P.S., “Irradiance Gradients,” Third
Annual Eurographics Workship on Rendering, Spring-
er—Verlag, pp. 85-98 (May 1992).

Ward, GJ., “Making global illumination user—friendly,”
Sixth Eurographics Workshop on Rendering, Springer—Ver-
lag, pp. 104-114 (Jun. 1995).

Ward, G.J. “Measuring and Modeling Anistrophic Reflec-
tion,” Computer Graphics, vol. 26, No. 2, ACM, pp.
265-272 (Jul.1992).

Ward, GJ. “The RADIANCE Lighting Simulation and
Rendering System,” Computer Graphics Proceedings,
Annual Conference Series, pp. 459—-472 (Conference Dates:
Jul. 24-29, 1994).

Ward, G.J., “Visualization,” LD+A (Lighting Design +
Application), pp. 45 & 14-20 (Jun. 1990).

Peercy, M.S. and Hesselink, L., “Dichromatic Color Repre-
sentations for Complex Display Systems,” Proceedings
Visualization '93, 1EEE Computer Society Press, pp.
212-219 and CP-21 (Oct. 25-29, 1993).

Peercy, M. et al., “Efficient Bump Mapping Hardware,”
Computer Graphics Proceedings SIGGRAPH 97, ACM, 4
pages (1997).

Peercy, M. S. et al., “Interactive Full Spectral Rendering,”
Proceedings 1995 Symposium on Interactive 3D Graphics,
ACM, pp. 67, 68 and 207 (1995).

Peercy, M.S. et al., “Linear Color Representations for Effi-
cient Image Synthesis,” COLOR research and application,
vol. 21, No. 2, Wiley-Interscience, pp. 129-137 (Apr. 1996).

Peercy, M.S., “Linear Color Representation for Full Spectral
Rendering,” Proceedings of SIGGRAPH 20th Annual Inter-
national Conference on Computer Graphics and Interactive
Techniques, ACM, pp. 191-198 (1993).

Peercy, M.S. and Hesselink, L., “Wavelength selection for
color holography,” Practical Holography VIII, vol. 2176,
SPIE, pp. 108-118 (Feb. 7-9, 1994).

Peercy, M.S. and Hesselink, L., “Wavelength selection for
true—color holography,” Applied Optics, vol. 33, No. 29,
Optical Society of America, pp. 6811-6817.

* cited by examiner

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 10 of 66

U.S. Patent Nov. 18, 2003 Sheet 1 of 7 US 6,650,327 B1
100 \
PROCESSOR MAIN GRAPHICS DATA
MEMORY SUBSYSTEM STORAGE
DEVICE
102 104 m 107
101
SIGNAL
FRAME ALPHA- CURSOR INPUT/
BUFFER NUMERIC CONTROL OUTPUT
10 INPUTﬁ 5 COMM 108
DISPLAY
DEVICE
121

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 11 of 66

US 6,650,327 Bl

Sheet 2 of 7

Nov. 18, 2003

U.S. Patent

78
EEEIEEN AR

-+

o3} .
— SNOILYY3dO
£ 1anassy g Mm_w
v JuNLX3L = X
Bl — acel 1SN
sNolLYMado | G e
ININOVYS [{NOILYZIILSYY M>m_ﬂ,__w,__wmmu — — -
¢3d any [sMolvnva3 x%mm>
SNOILYY3dO >
X3LHOA-H3Ad [N Il

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 12 of 66

U.S. Patent Nov. 18, 2003 Sheet 3 of 7 US 6,650,327 B1
VALUE CONDITIONS**
(-1)sx2%e-16)x1.m 00000<e<11111
(-1)Asx2M5x1.m e==11111m!=1111111111
(-1)Asx2A-16x1.m e==00000,m'=0000000000
zer0 e==00000,5==0,m==0000000000
NaN* ==00000,s==1,m==0000000000
positive infinity e==11111,5==0m==1111111111
negative infinity e==11111,s==1,m==1111111111

*NaN: “Not a number,” which is generated as the result of an invalid operation
and also represents the concept of “negative zero”

** Extrapolation to s11e5 is readily achievable

FIG. 3

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 13 of 66

US 6,650,327 Bl

Sheet 4 of 7

Nov. 18, 2003

U.S. Patent

€ S1IN3IWOVYHS

4%

TOHLINOD d344N8 JNVHS

3

4344N9 FNVHS

L

SNOILYH3d0

INIWNOVH4-d3d

< SIALINI
—
— S1IXd =
Oy 0% NolLoT73s
ONISYITVILNY | _L 9
aNy ‘004 | 807 MOvEa33S
'ONIMNLX3L —
NOILY s_mo_zo:&,\ MOdMAN =
ZI431SVY Ny 7
IAILOIASHId 'ONIddITD
TOMLNOD
XI4LYW
or or
ONILHOIT S3NTVA
INIHNND
— B
8V NOILYY3INTD NOISYIANOD
3LYNIQY00D JdNLX3L LNdNI
107
SAVHYY XILYIA
3
SYOLYNTVAZ

<4 S30ILH3IA

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 14 of 66

U.S. Patent Nov. 18, 2003 Sheet 5 of 7 US 6,650,327 Bl

ENABLE/DISABLE
(ANTIALLASING/STIPPLE)

POLYGON OFFSET j

POLYGON
— RASTERIZATION
501
ENABLE/DISABLE
(ANTIALLASING)
LINE STIPPLE
LINE WIDTH ’
LINE
> SEGMENT [
>| RASTERIZATION TEX PARAMETER
ENABLE/DISABLE i
(ANTIALLASING)
POINT SIZE 3 |
» POINT > TEXEL
»| RASTERIZATION [~ GENERATION "@
03 | —
’ 506
A

9 > BITMAP
p| RASTERIZATION [~

54
PIXEL ZOOMT

——P> PIXEL

p{ RASTERIZATION
505

TEXTURE
MEMORY

507

FIG.5A

US 6,650,327 Bl

Sheet 6 of 7

d GOld

40100 ¥v310
X3ANI ¥v310
H1ld3a yv310

TON3LS ¥v3 10

SANTVA
dvano

TOYINOD |
Y310 dvat

Nov. 18, 2003

1590 | |, AS3L g | NOWvomdv | 1T | Nolvortddy A|®

Lo

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 15 of 66

U.S. Patent

dIHSHINMO (ONISYTIVILNY
Y 3
0SSIoS ENCE 39VYIA0D anxal
_ +| H0SSIOS ‘ _ ». 904 _ ».>2m X3L
319vsIa 318vsIa 37gvsIa 379vsIa
/379YN3 /3719VYN3 /379YN3 /319YN3

US 6,650,327 Bl

DGOl [=
AV1dSIQ
(. : N (N8 M MSYI H010D
% ' i
125 0cG
TOYLNOD
¥344NG INVES [¥344ng Jwvyd [ONIMSYA
. i
_ J

Sheet 7 of 7

MSYW TUONFLS
‘ ﬁxmﬁz H1d3d

8IS
ONIASYIA

Nov. 18, 2003

4001907 e onmaHLIQ le—{ (AINO YEOH) Lgd ¥ddng |e- 131 | (AINO v89Y)

_ k _ v H v 2 I@
19 215 <! | 9IS SIS |s3L i €18

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 16 of 66

U.S. Patent

ONION3d Hld3q 1ION3LS 1531 VHJTY
ONNA INN4
_ »;% 01901 ﬁ _ an3g _ ﬁwﬂ_%mﬁ&o _ IONILS _ qumm_m/_\mzaé
31avsia J1avsia 318vsIa 40 TONILS
/3719YN3 /3718VYN3 /379YN3 /378VYN3 Tavsia /379VN3
/A19YN3

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 17 of 66

US 6,650,327 B1

1

DISPLAY SYSTEM HAVING FLOATING
POINT RASTERIZATION AND FLOATING
POINT FRAMEBUFFERING

TECHNICAL FIELD

This invention relates to the field of computer graphics.
Specifically, the present invention pertains to an apparatus
and process relating to floating point rasterization and
framebuffering in a graphics display system.

BACKGROUND ART

Graphics software programs are well known in the art. A
graphics program consists of commands used to specify the
operations needed to produce interactive three-dimensional
images. It can be envisioned as a pipeline through which
data pass, where the data are used to define the image to be
produced and displayed. The user issues a command through
the central processing unit of a computer system, and the
command is implemented by the graphics program. At
various points along the pipeline, various operations speci-
fied by the user’s commands are carried out, and the data are
modified accordingly. In the initial stages of the pipeline, the
desired image is framed using geometric shapes such as
lines and polygons (usually triangles), referred to in the art
as “primitives.” The vertices of these primitives define a
crude shell of the objects in the scene to be rendered. The
derivation and manipulation of the multitudes of vertices in
a given scene, entail performing many geometric calcula-
tions.

In the next stages, a scan conversion process is performed
to specify which picture elements or “pixels” of the display
screen, belong to which of the primitives. Many times,
portions or “fragments” of a pixel fall into two or more
different primitives. Hence, the more sophisticated computer
systems process pixels on a per fragment basis. These
fragments are assigned attributes such as color, perspective
(ie., depth), and texture. In order to provide even better
quality images, effects such as lighting, fog, and shading are
added. Furthermore, anti-aliasing and blending functions are
used to give the picture a smoother and more realistic
appearance. The processes pertaining to scan converting,
assigning colors, depth buffering, texturing, lighting, and
anti-aliasing are collectively known as rasterization. Today’s
computer systems often contain specially designed raster-
ization hardware to accelerate 3-D graphics.

In the final stage, the pixel attributes are stored in a frame
buffer memory. Eventually, these pixel values are read from
the frame buffer and used to draw the three-dimensional
images on the computer screen. One prior art example of a
computer architecture which has been successfully used to
build 3-D computer imaging systems is the Open GL archi-
tecture invented by Silicon Graphics, Inc. of Mountain View,
Calif.

Currently, many of the less expensive computer systems
use its microprocessor to perform the geometric calcula-
tions. The microprocessor contains a unit which performs
simple arithmetic functions, such as add and multiply. These
arithmetic functions are typically performed in a floating
point notation. Basically, in a floating point format, data is
represented by the product of a fraction, or mantissa, and a
number raised to an exponent; in base 10, for example, the
number “n” can be presented by n=mx10°, where “m” is the
mantissa and “e” is the exponent. Hence, the decimal point
is allowed to “float.” Hence, the unit within the micropro-
cessor for performing arithmetic functions is commonly

10

15

20

25

30

35

40

45

50

55

60

65

2

referred to as the “floating point unit.” This same floating
point unit can be used in executing normal microprocessor
instructions as well as in performing geometric calculations
in support of the rendering process. In order to increase the
speed and increase graphics generation capability, some
computer systems utilize a specialized geometry engine,
which is dedicated to performing nothing but geometric
calculations. These geometry engines have taken to handling
its calculations on a floating point basis.

Likewise, special hardware have evolved to accelerate the
rasterization process. However, the rasterization has been
done in a fixed point format rather than a floating point
format. In a fixed point format, the location of the decimal
point within the data field for a fixed point format is
specified and fixed; there is no exponent. The main reason
why rasterization is performed on a fixed point format is
because it is much easier to implement fixed point opera-
tions in hardware. For a given set of operations, a fixed point
format requires less logic and circuits to implement in
comparison to that of a floating point format. In short, the
floating point format permits greater flexibility and accuracy
when operating on the data in the pipeline, but requires
greater computational resources. Furthermore, fixed point
calculations can be executed much faster than an equivalent
floating point calculation. As such, the extra computational
expenses and time associated with having a floating point
rasterization process has been prohibitive when weighed
against the advantages conferred.

In an effort to gain the advantages conferred by operating
on a floating point basis, some prior art systems have
attempted to perform floating point through software
emulation, but on a fixed point hardware platform. However,
this approach is extremely slow, due to the fact that the
software emulation relies upon the use of a general purpose
CPU. Furthermore, the prior art software emulation
approach lacked a floating point frame buffer and could not
be scanned out. Hence, the final result must be converted
back to a fixed point format before being drawn for display.
Some examples of floating point software emulation on a
fixed point hardware platform include Pixar’s RenderMan
software and software described in the following publica-
tions: Olano, Marc and Anselmo Lastra, “A Shading Lan-
guage on Graphics Hardware: The PixelFlow Shading
System,” Proceedings of SIGGRAPH 98, Computer
Graphics, Annual Conference Series, ACM SIGGRAPH,
1998; and Anselmo Lastra, Steve Molnar, Marc Olano, and
Yulan Wang, “Real-Time Programmable Shading,” Proceed-
ings of the 1995 Symposium of Interactive 3D Graphics
(Monterey, Calif., Apr. 9-12, 1995), ACM SIGGRAPH,
New York, 1995.

But as advances in semiconductor and computer technol-
ogy enable greater processing power and faster speeds; as
prices drop; and as graphical applications grow in sophisti-
cation and precision, it has been discovered by the present
inventors that it is now practical to implement some portions
or even the entire rasterization process by hardware in a
floating point format.

In addition, in the prior art, data is stored in the frame
buffer in a fixed point format. This practice was considered
acceptable because the accuracy provided by the fixed point
format was considered satisfactory for storage purposes.
Other considerations in the prior art were the cost of
hardware (e.g., memory chips) and the amount of actual
physical space available in a computer system, both of
which limited the number of chips that could be used and
thus, limited the memory available. Thus, in the prior art, it
was not cost beneficial to expand the memory needed for the

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 18 of 66

US 6,650,327 B1

3

frame buffer because it was not necessary to increase the
accuracy of the data stored therein.

Yet, as memory chips become less expensive, the capa-
bility of a computer system to store greater amounts of data
increases while remaining cost beneficial. Thus, as memory
capacity increases and becomes less expensive, software
applications can grow in complexity; and as the complexity
of the software increases, hardware and software designs are
improved to increase the speed at which the software
programs can be run. Hence, due to the improvements in
processor speed and other improvements that make it prac-
tical to operate on large amounts of data, it is now possible
and cost beneficial to utilize the valuable information that
can be provided by the frame buffer.

Also, it is preferable to operate directly on the data stored
in the frame buffer. Operating directly on the frame buffer
data is preferable because it allows changes to be made to
the frame buffer data without having to unnecessarily repeat
some of the preceding steps in the graphics pipeline. The
information stored in the frame buffer is a rich source of data
that can be used in subsequent graphics calculations.
However, in the prior art, some steps typically need to be
repeated to restore the accuracy of the data and allow it to
be operated on before it is read back into the frame buffer.
In other words, data would need to be read from the frame
buffer and input into the graphics program at or near the
beginning of the program, so that the data could be recal-
culated in the floating point format to restore the required
precision and range. Thus, a disadvantage to the prior art is
that additional steps are necessary to allow direct operation
on the frame buffer data, thus increasing the processing time.
This in turn can limit other applications of the graphics
program; for example, in an image processing application,
an image operated on by the graphics program and stored in
the frame buffer could be subsequently enhanced through
direct operation on the frame buffer data. However, in the
prior art, the accuracy necessary to portray the desired detail
of the image is lost, or else the accuracy would have to be
regenerated by repeated passes through the graphics pipe-
line.

Another drawback to the prior art is the limited ability to
take advantage of hardware design improvements that could
be otherwise employed, if direct operation on the frame
buffer without the disadvantages identified above was pos-
sible. For example, a computer system could be designed
with processors dedicated to operating on the frame buffer,
resulting in additional improvements in the speed at which
graphics calculations are performed.

Consequently, the use of fixed point formatting in the
frame buffer is a drawback in the prior art because of the
limitations imposed on the range and precision of the data
stored in the frame buffer. The range of data in the prior art
is limited to O to 1, and calculation results that are outside
this range must be set equal to either O or 1, referred to in
the art as “clamping.” Also, the prior art does not permit
small enough values to be stored, resulting in a loss of
precision because smaller values must be rounded off to the
smallest value that can be stored. Thus, the accuracy of the
data calculated in the graphics pipeline is lost when it is
stored in the frame buffer. Moreover, in the prior art, the
results that are calculated by operating directly on the data
in the frame buffer are not as accurate as they can and need
to be. Therefore, a drawback to the prior art is that the user
cannot exercise sufficient control over the quality of the
frame buffer data in subsequent operations.

Thus, there is a need for a graphical display system which
predominately uses floating point throughout the entire

10

15

20

25

30

35

40

45

50

55

60

65

4

geometry, rasterization, and frame buffering processes. The
present invention provides one such display system.
Furthermore, the display system of the present invention is
designed to be compatible to a practical extent with existing
computer systems and graphics subsystems.

SUMMARY OF THE INVENTION

The present invention provides a display system and
process whereby the geometry, rasterization, and frame
buffer predominately operate on a floating point format.
Vertex information associated with geometric calculations
are specified in a floating point format. Attributes associated
with pixels and fragments are defined in a floating point
format. In particular, all color values exist as floating point
format. Furthermore, certain rasterization processes are per-
formed according to a floating point format. Specifically, the
scan conversion process is now handled entirely on a
floating point basis. Texturing, fog, and antialiasing all
operate on floating point numbers. The texture map stores
floating point texel values. The resulting data are read from,
operated on, written to and stored in the frame buffer using
floating point formats, thereby enabling subsequent graphics
operations to be performed directly on the frame buffer data
without any loss of accuracy.

Many different types of floating point formats exist and
can be used to practice the present invention. However, it has
been discovered that one floating point format, known as
“s10e5,” has been found to be particularly optimal when
applied to various aspects of graphical computations. As
such, it is used extensively throughout the geometric, ras-
terization and frame buffer processes of the present inven-
tion. To optimize the range and precision of the data in the
geometry, rasterization, and frame buffer processes, this
particular s10e5 floating point format imposes a 16-bit
format which provides one sign bit, ten mantissa bits, and
five exponent bits. In another embodiment, a 17-bit floating
point format designated as “s11e5” is specified to maintain
consistency and ease of use with applications that uses 12
bits of mantissa. Other formats may be used in accordance
with the present invention depending on the application and
the desired range and precision.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a computer graphics system upon which the
present invention may be practiced.

FIG. 2 is a flow chart illustrating the stages for processing
data in a graphics program in accordance with the present
invention.

FIG. 3 is a tabulation of the representative values for all
possible bit combinations used in the preferred embodiment
of the present invention.

FIG. 4 shows a block diagram of the currently preferred
embodiment of the display system.

FIG. § shows a more detailed layout of a display system
for implementing the floating point present invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

Reference will now be made in detail to the preferred
embodiments of the invention, examples of which are illus-
trated in the accompanying drawings. While the invention
will be described in conjunction with the preferred
embodiments, it will be understood that they are not
intended to limit the invention to these embodiments. On the
contrary, the invention is intended to cover alternatives,

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 19 of 66

US 6,650,327 B1

5

modifications and equivalents, which may be included
within the spirit and scope of the invention as defined by the
appended claims. Furthermore, in the following detailed
description of the present invention, numerous specific
details are set forth in order to provide a thorough under-
standing of the present invention. However, it will be
obvious to one of ordinary skill in the art that the present
invention may be practiced without these specific details. In
other instances, well known methods, procedures,
components, and circuits have not been described in detail
as not to unnecessarily obscure aspects of the present
invention.

Some portions of the detailed descriptions which follow
are presented in terms of procedures, logic blocks,
processing, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled in
the data processing arts to most effectively convey the
substance of their work to others skilled in the art. In the
present application, a procedure, logic block, process, or the
like, is conceived to be a self-consistent sequence of steps or
instructions leading to a desired result. The steps are those
requiring physical manipulations of physical quantities.
Usually, although not necessarily, these quantities take the
form of electrical, or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise
manipulated in a computer system. It has proven convenient
at times, principally for reasons of common usage, to refer
to these signals as bits, values, elements, symbols,
characters, fragments, pixels, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms such as “processing,” “operating,” “calculating,”
“determining,” “displaying,” or the like, refer to actions and
processes of a computer system or similar electronic com-
puting device. The computer system or similar electronic
computing device manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system memories, registers or other such information
storage, transmission or display devices. The present inven-
tion is well suited to the use of other computer systems, such
as, for example, optical and mechanical computers.

Referring to FIG. 1, a computer graphics system upon
which the present invention may be practiced is shown as
100. System 100 can include any computer-controlled
graphics systems for generating complex or three-
dimensional images. Computer system 100 comprises a bus
or other communication means 101 for communicating
information, and a processing means 102 coupled with bus
101 for processing information. System 100 further com-
prises a random access memory (RAM) or other dynamic
storage device 104 (referred to as main memory), coupled to
bus 101 for storing information and instructions to be
executed by processor 102. Main memory 104 also may be
used for storing temporary variables or other intermediate
information during execution of instructions by processor
102. Data storage device 107 is coupled to bus 101 for
storing information and instructions. Furthermore, an input/
output (I/0) device 108 is used to couple the computer
system 100 onto a network.

Computer system 100 can also be coupled via bus 101 to
an alphanumeric input device 122, including alphanumeric
and other keys, that is typically coupled to bus 101 for

10

15

20

25

30

35

40

45

50

55

60

65

6

communicating information and command selections to
processor 102. Another type of user input device is cursor
control 123, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 102 and for controlling cursor
movement on, display 121. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), which allows the device to specify
positions in a plane.

Also coupled to bus 101 is a graphics subsystem 111.
Processor 102 provides the graphics subsystem 111 with
graphics data such as drawing commands, coordinate vertex
data, and other data related to an object’s geometric position,
color, and surface parameters. The object data are processed
by graphics subsystem 111 in the following four pipelined
stages: geometry subsystem, scan conversion subsystem,
raster subsystem, and a display subsystem. The geometry
subsystem converts the graphical data from processor 102
into a screen coordinate system. The scan conversion sub-
system then generates pixel data based on the primitives
(e.g., points, lines, polygons, and meshes) from the geom-
etry subsystem. The pixel data are sent to the raster
subsystem, whereupon z-buffering, blending, texturing, and
anti-aliasing functions are performed. The resulting pixel
values are stored in a frame buffer 140. The frame buffer is
element 140, as shown in FIG. 2 of the present application.
The display subsystem reads the frame buffer and displays
the image on display monitor 121.

With reference now to FIG. 2, a series of steps for
processing and operating on data in the graphics subsystem
111 of FIG. 1 are shown. The graphics program 130, also
referred to in the art as a state machine or a rendering
pipeline, provides a software interface that enables the user
to produce interactive three-dimensional applications on
different computer systems and processors. The graphics
program 130 is exemplified by a system such as OpenGL by
Silicon Graphics; however, it is appreciated that the graphics
program 130 is exemplary only, and that the present inven-
tion can operate within a number of different graphics
systems or state machines other than OpenGL.

With reference still to FIG. 2, graphics program 130
operates on both vertex (or geometric) data 131 and pixel (or
image) data 132. The process steps within the graphics
program 130 consist of the display list 133, evaluators 134,
per-vertex operations and primitive assembly 135, pixel
operations 136, texture assembly 137, rasterization 138,
per-fragment operations 139, and the frame buffer 140.

Vertex data 131 and pixel data 132 are loaded from the
memory of central processor 102 and saved in a display list
133. When the display list 133 is executed, the evaluators
134 derive the coordinates, or vertices, that are used to
describe points, lines, polygons, and the like, referred to in
the art as “primitives.” From this point in the process, vertex
data and pixel data follow a different route through the
graphics program as shown in FIG. 2.

In the per-vertex operations 135A, vertex data 131 are
converted into primitives that are assembled to represent the
surfaces to be graphically displayed. Depending on the
programming, advanced features such as lighting calcula-
tions may also be performed at the per-vertex operations
stage. The primitive assembly 135B then eliminates unnec-
essary portions of the primitives and adds characteristics
such as perspective, texture, color and depth.

In pixel operations 136, pixel data may be read from the
processor 102 or the frame buffer 140. A pixel map pro-
cesses the data from the processor to add scaling, for

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 20 of 66

US 6,650,327 B1

7

example, and the results are then either written into texture
assembly 137 or sent to the rasterization step 138. Pixel data
read from the frame buffer 140 are similarly processed
within pixel operations 136. There are special pixel opera-
tions to copy data in the frame buffer to other parts of the
frame buffer or to texture memory. A single pass is made
through the pixel operations before the data are written to the
texture memory or back to the frame buffer. Additional
single passes may be subsequently made as needed to
operate on the data until the desired graphics display is
realized.

Texture assembly 137 applies texture images—for
example, wood grain to a table top—onto the surfaces that
are to be graphically displayed. Texture image data are
specified from frame buffer memory as well as from pro-
cessor 102 memory.

Rasterization 138 is the conversion of vertex and pixel
data into “fragments.” Each fragment corresponds to a single
pixel and typically includes data defining color, depth, and
texture. Thus, for a single fragment, there are typically
multiple pieces of data defining that fragment.

Per-fragment operations 139 consist of additional opera-
tions that may be enabled to enhance the detail of the
fragments. After completion of these operations, the pro-
cessing of the fragment is complete and it is written as a
pixel to the frame buffer 140. Thus, there are typically
multiple pieces of data defining each pixel.

With reference still to FIG. 2, the present invention uses
floating point formats in the process steps 131 through 139
of graphics program 130. In other words, the vertex data is
given in floating point. Likewise, the pixel data is also given
in floating point. The display list 133 and evaluators 134
both operate on floating point values. All pixel operations in
block 136 are performed according to a floating point
format. Similarly, per-vertex operations and primitive
assembly 135A are performed on a floating point format.
The rasterization 138 is performed according to a floating
point format. In addition, texturing 137 is done on floating
point basis, and the texture values are stored in the texture
memory as floating point. All per-fragment operations are
performed on a floating point basis. Lastly, the resulting
floating point values are stored in the frame buffer 140.
Thereby, the user can operate directly on the frame buffer
data.

For example, the maximum value that can be used in the
8-bit fixed point format is 127 (i.e., 28-1), which is written
as 01111111 in binary, where the first digit represents the
sign (positive or negative) and the remaining seven digits
represent the number 127 in binary. In the prior art, this
value is clamped and stored as 1.0 in the frame buffer. In an
8-bit floating point format, a value “n” is represented by the
format n=s__eece_ mmmmm, where “s” represents the sign,
“e” represents the exponent, and “m” represents the mantissa
in the binary formula n=mx2°. Thus, in a floating point
format, the largest number that can be written is 31x27, also
written in binary as 01111111. In the present invention, the
value is written to and stored in the frame buffer without
being clamped or otherwise changed. Thus, use of the
floating point format in the frame buffer permits greater
flexibility in how a number can be represented, and allows
for a larger range of values to be represented by virtue of the
use a portion of the data field to specify an exponent.

The present invention uses floating point formats in the
frame buffer to increase the range of the data. “Range” is
used herein to mean the distance between the most negative
valule and the most positive value of the data that can be

10

15

20

25

30

35

40

45

50

55

60

65

8

stored. The present invention permits absolute values much
greater than 1.0 to be stored in the frame buffer, thereby
enabling the user to generate a greater variety of graphics
images. Increased range is particularly advantageous when
the user performs operations such as addition,
multiplication, or other operations well known and practiced
in the art, directly on the data in the frame buffer. Such
operations can result in values greater than 1.0, and in the
present invention these values can be written to and stored
in the frame buffer without clamping. Thus, the present
invention results in a substantial increase in the range of data
that can be stored in the frame buffer, and preserves the
range of data that was determined in steps 131 through 139
of the graphics program illustrated in FIG. 2.

With reference still to FIG. 2, the present invention
utilizes floating point formats in the frame buffer 140 to
maintain the precision of the data calculated in the preceding
steps 131 through 139 of the graphics program 130. “Pre-
cision” is used herein to mean the increment between any
two consecutive stored values of data. Precision is estab-
lished by the smallest increment that can be written in the
format being used. Increased precision is an important
characteristic that permits the present invention to store a
greater number of gradations of data relative to the prior art,
thereby providing the user with a greater degree of control
over the graphics images to be displayed. This characteristic
is particularly advantageous when the user performs an
operation such as addition, multiplication, or other opera-
tions well known and practiced in the art, on the data in the
frame buffer. Such operations can result in values that lie
close to each other, i.e., data that are approximately but not
equal to each other. In the present invention; data typically
can be stored without having to be rounded to a value
permitted by the precision of the frame buffer. If rounding is
needed, the present invention permits the data to be rounded
to a value very close to the calculated values. Thus, the
present invention results in a substantial increase in the
precision of the data that can be stored in the frame buffer
relative to the prior art, and preserves the precision of the
data that was determined in steps 131 through 139 of the
graphics program illustrated in FIG. 2.

In one embodiment of the present invention, a 16-bit
floating point format is utilized in the frame buffer. The 16
bits available are applied so as to optimize the balance
between range and precision. The 16-bit floating point
format utilized in one embodiment of the present invention
is designated using the nomenclature “s10e5”, where “s”
specifies one (1) sign bit, “10” specifies ten (10) mantissa
bits, and “e5” specifies five (5) exponent bits, with an
exponent bias of 16. FIG. 3 defines the represented values
for all possible bit combinations for the s10e5 format. In this
embodiment, the smallest representable number (i.e.,
precision) is 1.0000_0000_00*27'° and the range is plus/
minus 1.1111__1111_10*2*5. (In base 10, the range corre-
sponds to approximately plus/minus 65,000.) In this
embodiment, the range and precision provided by this speci-
fication are sufficient for operating directly on the frame
buffer. The 16-bit format in this embodiment thus represents
a cost-effective alternative to the single precision 32-bit
IEEE floating point standard.

However, it is appreciated that different sizes other than
16-bit, such as 12-bit, 17-bit or 32-bit, can be used in
accordance with the present invention. In addition, other
floating point formats may be used in accordance with the
present invention by varying the number of bits assigned to
the mantissa and to the exponent (a sign bit is typically but
not always needed). Thus a floating point format can

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 21 of 66

US 6,650,327 B1

9

be-specified in accordance with the present invention that
results in the desired range and precision. For example, if the
format specified is “s9e6” (nine mantissa bits and six
exponent bits), then relative to the s10e5 format a greater
range of data is defined but the precision is reduced. Also, a
17-bit format designated as “s11e5” may be used in accor-
dance with the present invention to preserve 12 bits of
information, for consistency and ease of application with
programs and users that work with a 12-bit format.

In the present invention,:.the user can apply the same
operation to all of the data in the frame buffer, referred to in
the art as Single Instruction at Multiple Data (SIMD). For
example, with reference back to FIG. 2, the user may wish
to add an image that is coming down the rendering pipeline
130 to an image already stored in the frame buffer 140. The
image coming down the pipeline is in floating point format,
and thus in the present invention is directly added to the data
already stored in the frame buffer that is also in floating point
format. The present invention permits the results determined
by this operation to be stored in the frame buffer without a
loss of precision. Also, in the present invention the permis-
sible range is greater than 1.0, thereby permitting the results
from the operation to be stored without being clamped.

With continued reference to FIG. 2, in the present inven-
tion the data in the frame buffer 140 are directly operated on
within the graphics program without having to pass back
through the entire graphics program to establish the required
range and precision. For example, it is often necessary to
copy the data from the texture memory 137 to the frame
buffer 140, then back to the texture memory and back to the
frame buffer, and so on until the desired image is reached. In
the present invention, such an operation is completed with-
out losing data range and precision, and without the need to
pass the data through the entire graphics program 130.

For example, a graphics program in accordance with the
present invention can use multipass graphics algorithms
such as those that implement lighting or shading programs
to modify the frame buffer data that define the appearance of
each pixel. The algorithm approximates the degree of light-
ing or shading, and the component of the data that specifies
each of these characteristics is adjusted accordingly. Mul-
tiple passes through the shading/lighting program may be
needed before the desired effect is achieved. In the present
invention, the results of each pass are accumulated in the
present invention frame buffer, and then used for the basis
for subsequent passes, without a loss of precision or range.
Such an operation requires the use of floating point formats
in the frame buffer to increase the speed and accuracy of the
calculations.

Also, in the present invention the user of the graphics
program is able to enhance a portion of data contained
within the frame buffer. For example, such an application
will arise when the data loaded into the frame buffer
represent an image obtained by a device capable of record-
ing images that will not be visible to the human eye when
displayed, such as an image recorded by a video camera in
very low light, or an infrared image. The present invention
is capable of storing such data in the frame buffer because
of the range and precision permitted by the floating point
format. The user specifies a lower threshold for that com-
ponent of the data representing how bright the pixel will be
displayed to the viewer. Data falling below the specified
threshold are then operated on to enhance them; that is, for
each piece of data below the threshold, the component of the
data representing brightness is increased by addition, until
the brightness is increased sufficiently so that the displayed
image can be seen by the human eye. Such an operation is

10

15

20

25

30

35

40

45

50

55

60

65

10

possible because of the precision of the data stored in the
frame buffer in the present invention. Other operations
involving the manipulation of the data in the frame buffer are
also possible using the present invention.

Therefore, in the present invention the data are read from
the frame buffer, operated on, then written back into the
frame buffer. The use of a floating point frame buffer permits
operation on the data stored in the frame buffer without a
loss of range and precision. The floating point format is
specified to optimize the range and precision required for the
desired application. The present invention also allows the
data stored in the frame buffer to be operated on and changed
without the effort and time needed to process the data
through the graphics program 130 of FIG. 2. As such, the
present invention will increase the speed at which operations
can be performed, because it is not necessary to perform all
the steps of a graphics program to adequately modify the
data in the frame buffer. In addition, processing speed is
further improved by applying hardware such as processor
chips and computer hard drives to work directly on the frame
buffer. Thus, application of the present invention provides
the foundation upon which related hardware design
improvements can be based, which could not be otherwise
utilized.

Referring now to FIG. 4, a block diagram of the currently
preferred embodiment of the display system 400 is shown.
Display system 400 operates on vertices, primitives, and
fragments. It includes an evaluator 401, which is used to
provide a way to specify points on a curve or surface (or part
of a surface) using only the control points. The curve or
surface can then be rendered at any precision. In addition,
normal vectors can be calculated for surfaces automatically.
The points generated by an evaluator can be used to draw
dots where the surface would be, to draw a wireframe
version of the surface, or to draw a fully lighted, shaded, and
even textured version. The values and vectors associated
with evaluator and vertex arrays 401 are specified in a
floating point format. The vertex array contains a block of
vertex data which are stored in an array and then used to
specify multiple geometric primitives through the execution
of a single command. The vertex data, such as vertex
coordinates, texture coordinates, surface normals, RGBA
colors, and color indices are processed and stored in the
vertex arrays in a floating point format. These values are
then converted and current values are provided by block
402. The texture coordinates are generated in block 403. The
lighting process which computes the color of a vertex based
on current lights, material properties, and lighting-model
modes is performed in block 404. In the currently preferred
embodiment, the lighting is done on a per pixel basis, and
the result is a floating point color value. The various matrices
are controlled by matrix control block 405.

Block 406 contains the clipping, perspective, and view-
port application. Clipping refers to the elimination of the
portion of a geometric primitive that is outside the half-
space defined by a clipping plane. The clipping algorithm
operates on floating point values. Perspective projection is
used to perform foreshortening so that he farther an object
is from the viewport, the smaller it appears in the final
image. This occurs because the viewing volume for a
perspective projection is a frustum of a pyramid. The matrix
for a perspective-view frustum is defined by floating point
parameters. Selection and feedback modes are provided in
block 407. Selection is a mode of operation that automati-
cally informs the user which objects are drawn inside a
specified region of a window. This mechanism is used to
determine which object within the region a user is specifying

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 22 of 66

US 6,650,327 B1

11

or picking with the cursor. In feedback mode, the graphics
hardware is used to perform the usual rendering calculations.
Instead of using the calculated results to draw an image on
the screen, however, this drawing information is returned.
Both feedback and selection modes support the floating
point format.

The actual rasterization is performed in block 408. Ras-
terization refers to converting a projected point, line, or
polygon, or the pixels of a bitmap or image, to fragments,
each corresponding to a pixel in the frame buffer 412. Note
that all primitives are rasterized. This rasterization process is
performed exclusively in a floating point format. Pixel
information is stored in block 409. A single pixel (x,y) refers
to the bits at location (x,y) of all the bitplanes in the frame
buffer 412. The pixels are all in floating point format. A
single block 410 is used to accomplish texturing, fog, and
anti-aliasing. Texturing refers to the process of applying an
image (i.e., the texture) to a primitive. Texture mapping,
texels, texture values, texture matrix, and texture transfor-
mation are all specified and performed in floating point. The
rendering technique known as fog, which is used to simulate
atmospheric effects (e.g., haze, fog, and smog), is performed
by fading object colors in floating point to a background
floating point color value(s) based on the distance from the
viewer. Antialiasing is a rendering technique that assigns
floating point pixel colors based on the fraction of the pixel’s
area that is covered by the primitive being rendered. Anti-
aliased rendering reduces or eliminates the jaggies that result
from aliased rendering. In the currently preferred
embodiment, blending is used to reduce two floating point
color components to one floating point color component.
This is accomplished by performing a linear interpolation
between the two floating point color components. The
resulting floating point values are stored in frame buffer 412.
But before the floating point values are actually stored into
the frame buffer 412, a series of operations are performed by
per-fragment operations block 411 that may alter or even
throw out fragments. All these operations can be enabled or
disabled. It should be noted that although many of these
blocks are described above in terms of floating point, one or
several of these blocks can be performed in fixed point
without departing from the scope of the present invention.
The blocks of particular interest with respect to floating
point include the rasterization 408; pixels 409; texturing fog,
and antialiasing 410, per-fragment operations 411; and
frame buffer and frame buffer control 412 blocks.

FIG. 5 shows a more detailed layout of a display system
for implementing the floating point present invention. In the
layout, the process flows from left to right. Graphics
commands, vertex information, and pixel data generated by
previous circuits are input to the polygon rasterization 501,
line segment rasterization 502, point rasterization 503, bit-
map rasterization 504, and pixel rasterization 505. Floating
point format can be applied to any and/or all of these five
rasterization functions. In particular, the polygons are ras-
terized according to floating point values. The outputs from
these five blocks 501-505 are all fed into the texel genera-
tion block 506. In addition, texture data stored in texture
memory 507 is also input to texel generation block 506. The
texture data is stored in the texture memory 507 in a floating
point format. Texel values are specified in a floating point
format. The texel data is then applied to the texture appli-
cation block 508. Thereupon, fog effects are produced by fog
block 509. Fog is achieved by fading floating point object
colors to a floating point background color. A coverage
application 510 is used to provide antialiasing. The anti-
aliasing algorithm operates on floating point pixels colors.

10

20

25

30

35

40

45

50

55

60

65

12

Next, several tests are executed. The pixel ownership test
511 decides whether or not a pixel’s stencil, depth, index,
and color values are to be cleared. The scissor test 512
determines whether a fragment lies within a specified rect-
angular portion of a window. The alpha test 513 allows a
fragment to be accepted or rejected based on its alpha value.
The stencil test 514 compares a reference value with the
value stored at a pixel in the stencil buffer. Depending on the
result of the test, the value in the stencil buffer is modified.
A depth buffer test 515 is used to determine whether an
incoming depth value is in front of a pre-existing depth
value. If the depth test passes, the incoming depth value
replaces the depth value already in the depth buffer.
Optionally, masking operations 519 and 520 can be applied
to data before it is written into the enabled color, depth, or
stencil buffers. A bitwise logical AND function is performed
with each mask and the corresponding data to be written.

Blending 516 is performed on floating point RGBA
values. Color resolution can be improved at the expense of
spatial resolution by dithering 517 the color in the image.
The final operation on a fragment is the logical operation
518, such as an OR, XOR, or INVERT, which is applied to
the incoming fragment values and/or those currently in the
color buffer. The resulting floating point values are stored in
the frame buffer 522 under control of 521. Eventually, these
floating point values are read out and drawn for display on
monitor 523. Again, it should be noted that one or more of
the above blocks can be implemented in a fixed point format
without departing from the scope of the present invention.
However, the blocks of particular importance for implemen-
tation in a floating point format include the polygon raster-
ization 501, texel generation 506, texture memory 507, fog
509, blending 516, and frame buffer 522.

In the currently preferred embodiment, the processor for
performing geometric calculations, the rasterization circuit,
and the frame buffer all reside on a single semiconductor
chip. The processor for performing geometric calculations,
the rasterization circuit, and the frame buffer can all have the
same substrate on that chip. Furthermore, there may be other
units and/or circuits which can be incorporated onto this
single chip. For instance, portions or the entirety of the
functional blocks shown in FIGS. 4 and 5 can be fabricated
onto a single semiconductor chip. This reduces pin count,
increases bandwidth, consolidates the circuit board area,
reduces power consumption, minimizes wiring
requirements, and eases timing constraints. In general, the
design goal is to combine more components onto a single
chip.

The preferred embodiment of the present invention, a
floating point frame buffer, is thus described. While the
present invention has been described in particular
embodiments, it should be appreciated that the present
invention should not be construed as limited by such
embodiments, but rather construed according to the follow-
ing claims.

What is claimed is:

1. A computer system, comprising:

a processor for performing geometric calculations on a

plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values; and

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer;

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 23 of 66

US 6,650,327 B1

13

wherein the rasterization circuit performs scan conversion
on vertices having floating point color values.

2. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values;

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer;

a texture circuit coupled to the rasterization circuit that
applies a texture to the primitive, wherein the texture is
specified by floating point values; and

a texture memory coupled to the texture circuit that stores
a plurality of textures in floating point values.

3. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values; and

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer;

wherein the floating point format is comprised of sixteen
bits in a s10e5 format.

4. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values;

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer; and

a fog circuit coupled to the rasterization circuit for per-
forming a fog function, wherein the fog function oper-
ates on floating point color values.

5. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values;

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer; and

a blender coupled to the rasterization circuit which blends
floating point color values.

6. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

10

15

20

25

30

35

40

45

50

55

60

65

14

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values;

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer; and

logic coupled to the rasterization circuit which performs
per-fragment operations on floating point color values.

7. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on a floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of color values; and

a display screen coupled to the frame buffer for displaying
an image according to the color values stored in the
frame buffer;

wherein the processor, the rasterization circuit, and the
frame buffer are on a single semiconductor chip.

8. The computer system of claim 7, wherein the processor,
the rasterization circuit, and the frame buffer reside on a
same substrate of the single semiconductor chip.

9. In a computer system, a method for rendering a
three-dimensional image for display, comprising the steps
of:

performing geometric calculations on a plurality of ver-
tices of a plurality of polygons;

scan converting a plurality of pixels according to the
vertices, wherein scan conversion is performed on
floating point color values;

applying a texture to the image by reading floating point
texture values stored in a texture memory;

simulating fog effects, wherein fog is simulated by modi-
fying floating point color values;

drawing the image for display on a display screen coupled
to the computer system.

10. The method of claim 9, wherein the floating point

values are comprised of sixteen bits.

11. The method of claim 10, wherein the floating point
values are specified by a s10e5 format.

12. The method of claim 10 further comprising the step of
storing the floating point color values in a frame buffer.

13. The method of claim 10 further comprising the step of
blending at least two floating point color values.

14. The method of claim 10 further comprising the step of
performing antialiasing on floating point color values.

15. The method of claim 10 further comprising the steps
of:

reading data from the frame buffer;

modifying the data;

writing modified data back to the frame buffer.

16. The method of claim 10 further comprising the step of
modifying color values for lighting, wherein lighting calcu-
lations operate on floating point color values.

17. In a computer system, a method for operating on data
stored in a frame buffer, comprised of:

storing the data in the frame buffer in a floating point
format;

reading the data from the frame buffer in the floating point
format;

operating directly on the data in the floating point format;
and

writing the data to the frame buffer in the floating point
format;

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 24 of 66

US 6,650,327 B1

15

wherein the steps of writing, storing, and reading the data
in the frame buffer in the floating point format are
further comprised of a specification of the floating point
format, wherein the specification corresponds to a level
of range and precision.

18. The method of claim 17 wherein the specification is
comprised of 16 bits of data and the data are comprised of
one sign bit, ten mantissa bits, and five exponent bits.

19. The method of claim 17 wherein the specification is
comprised of 17 bits of data and the data are comprised of
one sign bit, 11 mantissa bits, and five exponent bits.

20. The method of claim 17 wherein the specification is
comprised of 16 bits of data and the data are comprised of
ten mantissa bits, and six exponent bits.

21. The method of claim 17 wherein the specification is
comprised of 32 bits of data and the data are comprised of
one sign bit, 23 mantissa bits, and eight exponent bits.

22. A computer system having a floating point frame
buffer for storing a plurality of floating point color values;

wherein the floating point color values are written to, read
from, and stored in the frame buffer using a specifica-
tion of the floating point color values that corresponds
to a level of range and precision.

23. The computer system of claim 22, wherein the floating
point color values are comprised of 16 bits of data and the
data are comprised of one sign bit, ten mantissa bits, and five
exponent bits.

24. The computer system of claim 22, wherein the floating
point color values are comprised of 17 bits of data and the
data are comprised of one sign bit, 11 mantissa bits, and five
exponent bits.

25. A computer system, comprising:

a processor for performing geometric calculations on a
plurality of vertices of a primitive;

10

20

25

30

16

a rasterization circuit coupled to the processor that ras-
terizes the primitive according to a rasterization process
which operates on an s10e5 floating point format;

a frame buffer coupled to the rasterization circuit for
storing a plurality of s10e5 floating point color values;

a display screen coupled to the frame buffer for displaying
an image according to the s10e5 color values stored in
the frame buffer.

26. The computer system of claim 25 further comprising:

a texture circuit coupled to the rasterization circuit that
applies a texture to the primitive, wherein the texture is
specified by s10e5 floating point values.

27. The computer system of claim 25 further comprising

a lighting circuit coupled to the rasterization circuit for
performing a lighting function, wherein the lighting function
executes on s10e5 floating point color values.

28. The computer system of claim 25 further comprising
a fog circuit coupled to the rasterization circuit for perform-
ing a fog function, wherein the fog function operates on
s10e5 floating point color values.

29. The computer system of claim 25 further comprising
an antialiasing circuit coupled to the rasterization circuit
which performs an antialiasing algorithm on s10e5 floating
point color values.

30. The computer system of claim 25 further comprising
a blender coupled to the rasterization circuit which blends
s10e5 floating point color values.

31. The computer system of claim 25 further comprising
logic coupled to the rasterization circuit which performs
per-fragment operations on s10e5 floating point color val-
ues.

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 25 of 66

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,650,327 B1 Page 1 of 1
DATED : November 18, 2003
INVENTOR(S) : Airey et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 14,
Line 36, please replace “values;” with -- values; and --.
Line 52, please replace “data;” with -- data; and --.

Column 16,
Line 5, please replace “values;” with -- values; and --.

Signed and Sealed this

Twentieth Day of April, 2004

o WDk

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 26 of 66

Appendix B

e e R NN A AL K

US006292200B1
a» United States Patent (o) Patent No.: US 6,292,200 B1
Bowen et al. 45) Date of Patent: Sep. 18, 2001
’
(54) APPARATUS AND METHOD FOR OTHER PUBLICATIONS
UTILIZING MULTIPLE RENDERING PIPES
FOR A SINGLE 3-D DISPLAY “PixelFlow: The Realization”, Eyles et al, 1997 SIG-
GRAPH/Eurographics Workshop, ACM digital Library, pp.
(75) Inventors: Andrew Bowen, San Jose; Dawn 57-68, Aug. 3-4, 1997.*
Maxon, Belmont; Gregory Buchner,
Los Altos, all of CA (US) * cited by examiner
(73) Assignee: Silicon Graphics, Inc., Mountain View,
CA (US) Primary Examiner—Kee M. Tung
(74) Attorney, Agent, or Firm—Wagner, Murabito & Hao
(*) Notice: Subject to any disclaimer, the term of this LLP
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. G7) ABSTRACT
A computer graphics system having a hyperpipe architec-
(21) Appl. No.: 09/177,911 ture. Multiple rendering pipes are coupled together through
(22) Filed: Oct. 23. 1998 a hyperpipe network scheme. Each of the rendering pipes are
’ B capable of rendering primitives for an entire frame or
51) INte CL7 oo sseais e GO6T 1/20 ortions thereof. This enables multiple rendering pipes to
p p g pip
(32) US.Cl e, 345/506; 345/520; 709/251 process graphics data at the same time. A controller coor-
(58) Field of Searchcccccoocccr... 345/501-506, dinates the multiple rendering pipes by sending requests to
345/520, 507-509, 419, 530, 545, 541, the appropriate rendering pipes to retrieve the pixel data
544; 709/251, 238 generated by that particular pipe. It then merges the pixel
data received from the various rendering pipes. A single
(56) References Cited driver then draws the three-dimensional image out for
display.
U.S. PATENT DOCUMENTS Py
5,841,444 * 11/1998 Mun et al. .c.coeeeervccrvecrecinnen 345/506 18 Claims, 6 Drawing Sheets

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 28 of 66

U.S. Patent Sep. 18, 2001 Sheet 1 of 6 US 6,292,200 B1

Node 103

Node 104

Node 101

CRT
Display Uo7

oo

Figure 1

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 29 of 66

U.S. Patent Sep. 18, 2001 Sheet 2 of 6 US 6,292,200 B1

\. 203~/

Hyperpipe F~—201 .
Router

]

Local E~_-202

Buffer ——

! Router
! * T :"‘\,101
'- Display

_ Processor o

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 30 of 66

U.S. Patent Sep. 18, 2001 Sheet 3 of 6 US 6,292,200 B1

301

Host
(

H)
b
302
Geometry
(G)

P

. 303 o 305
Rasterizer Framebuffer

(R) [T (F)

—»=T0 Hyperpipe

(D) -«—— From Hyperpipe

Display
Device

Figure 3

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 31 of 66

U.S. Patent Sep. 18, 2001 Sheet 4 of 6 US 6,292,200 B1

G |‘m4o7 “_-103

408~ R = F

4105 D

106

FIGURE 4

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 32 of 66

U.S. Patent Sep. 18, 2001 Sheet 5 of 6 US 6,292,200 B1
Table p——>501
EE——N @
State
50 VSize ; Machine
503 X-Size
504~ Pipe g =] I507 509
oca Line Buffer
505 Pipe 1 Router ,],
Video
y 508 processing
yperpipe
| _ router V ,
Hyperpipe Hyperpipe 511
In out DAC
Py
Py
Display Fo
512 Py

Figure 5

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 33 of 66

U.S. Patent Sep. 18, 2001 Sheet 6 of 6 US 6,292,200 B1
< P12 P13
Ps Po
P, P
605 606
P,
Fo Pio
P14
607 \
608 - 604
P 6
P, 2 N 603
& 602

Figure 6

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 34 of 66

US 6,292,200 B1

1

APPARATUS AND METHOD FOR
UTILIZING MULTIPLE RENDERING PIPES
FOR A SINGLE 3-D DISPLAY

FIELD OF THIE INVENTION

The present invention relates the field of computer graph-
ics. More particularly, the present invention pertains to an
apparatus and method for utilizing multiple rendering pipes
for the generation of a single 3-D display.

BACKGROUND OF THE INVENTION

Today, computer graphics is used in a wide variety of
applications, such as in business, science, animation,
simulation, computer-aided design, process control, elec-
tronic publication, etc. In an effort to portray a more realistic
real-world representation, three dimensional objects are
transformed into models having the illusion of depth for
display onto a two-dimensional computer screen. This is
accomplished by using a number of polygons to represent a
three-dimensional object. Complex three-dimensional
objects may require upwards of hundreds of polygons in
order to form an accurate model. Hence, a three-dimensional
object can be readily manipulated (e.g., displayed in a
different location, rotated, scaled, etc.) by processing the
individual respective polygons corresponding to that object.
Next, a scan conversion process is used to determine which
pixels of a computer display fall within each of the specified
polygons. Thereupon, texture is applied to only those pixels
residing within specified polygons. In addition, hidden or
obscured surfaces, which are normally not visible, are
eliminated from view. Hence, displaying a three dimensional
object on a computer system is a rather complicated task and
can require a tremendous amount of processing power.

This is especially true for those cases involving dynamic
computer graphics for displaying three-dimensional objects
that are in motion. In order to simulate smooth motion, the
computer system should have a frame rate of at least 30
hertz. In other words, new images should be updated,
redrawn and displayed at least thirty times a second. This
imposes a heavy processing and computational burden on
the computer system. Indeed, even more processing power
is required for interactive computer graphics, where dis-
played images change in response to a user input and where
there are multiple objects in a richly detailed scene.

However, each extra object that is added into a scene
needs to be modeled, scan converted, textured, Z-buffered
for depth, etc., all of which, adds to the amount of processing
resources that is required. In addition, it would be highly
preferable if 1ghting, shadowing, shading, and fog could be
included as part of the 3-D scene. Generating these special
effects, again, consumes valuable processing resources.
Hence, a major problem associated with producing realistic
three-dimensional scenes is that it requires such a tremen-
dous amount of processing power. The “richer” and more
realistic a scene becomes, the more processing power that is
required to render that scene. Moreover, speed becomes a
major limiting factor as the computer must render millions
of pixels in order to produce these amazingly complex
scenes in less than one thirtieth (Y50) of a second.

Even though the processing power of computer systems
continues to improve, there exists whole markets which
demand even greater and greater processing power. Certain
purchasers (e.g., drug companies, oil exploration, medical
imaging, film studios, etc.) will pay a premium to obtain
even faster and more powerful computer for rendering 3-D
images.

10

25

30

35

40

45

50

55

60

65

2

In the past, there have been attempts to utilize several
rendering engines in a single computer system in order to
perform parallel processing. Each of these rendering engines
is used to render one particular frame of image. While one
rendering engine is in the process of generating one frame’s
worth of image data, another separate rendering engine is
simultaneously generating the next frame’s worth of image
data. Meanwhile, other rendering engines can simulta-
neously be processing subsequent frames, etc. The digital-
to-analog (DAC) outputs of each of these rendering engines
are wired together to drive the cathode ray tube (CRT)
display screen. By rendering multiple frames’s worth of data
at the same time with multiple rendering engines, the
computer’s overall processing speed is increased.

Unfortunately, however, there are some drawbacks to this
way of ganging together multiple rendering engines. First,
since there are multiple DACs driving the same CRT screen,
there tends to be some scintillation between frames as DACs
are switched from frame to frame. Furthermore, there are
serious synchronization problems in order to properly coor-
dinate the activities amongst all the rendering engines and
their respective DACs.

Thus, there exists a need for some apparatus or method
which increases the rendering power and speed of a 3-D
computer system without sacrificing picture quality or
increasing programming complexity in an unacceptable
way. The present invention provides a novel solution by
having one output controller which requests and receives
data from multiple rendering engines. This effectively
resolves virtually all problems associated with using mul-
tiple rendering engines. Furthermore, with the present
invention, multiple rendering engines can now contribute to
the generation of one single frame. The end result is that
processing power and speed is dramatically improved with
minimal or no discernible degradation to the displayed
images.

SUMMARY OF THE INVENTION

The present invention pertains to a computer graphics
system having a hyperpipe architecture. The hyperpipe
architecture includes multiple rendering pipes. Each of the
rendering pipes is capable of rendering pixels for an entire
frame or portions thereof. This enables multiple rendering
pipes to process graphics data at the same time. The pixel
data generated by a rendering pipe is stored in its local
memory. The multiple rendering pipes are coupled together
through a hyperpipe network scheme. A controller coordi-
nates the multiple rendering pipes by sending requests to the
appropriate rendering pipes to retrieve the pixel data gen-
erated by that particular pipe. It then merges the pixel data
received from the various rendering pipes into a frame’s
worth of data. A single driver is then used to draw that frame
out for display. Thereby, rather than having just one render-
ing circuit working on a frame, multiple rendering circuits
can operate in parallel on generating a frame’s worth of pixel
data. In the meantime, other rendering pipes can optionally
be used to generate subsequent frames. This increases the
system’s overall rendering power and speed. By simply
adding additional rendering pipes onto the hyperpipe
network, the computer system’s rendering capabilities can
be readily scaled up to meet cost and graphics demands.

In the currently preferred embodiment of the present
invention, a uni-directional, point-to-point ring topology is
used. The hyperpipe network consists of a broad band
packetized protocol with error correction. This scheme is
preferred because of its relatively fixed and predictable

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 35 of 66

US 6,292,200 B1

3

latency. A fixed latency is desired as it allows the controller
to send out requests ahead of when the pixel data will
actually be used.

In one embodiment of the present invention, each of the
rendering pipes includes a host processor, a geometry
engine, a rasterizer, a frame buffer, and a display unit. A
graphics application runs on the host processor and issues
high-level commands and graphics data. The geometry
engine performs arithmetic operations involving geometric
calculations on the vertices of primitives used to render the
threedimensional images. The rasterizer then fills the primi-
tives and stores the resulting pixel data in its local frame
buffer memory. A display unit can either request and receive
video data packets from it’s local pipe, or make similar
requests over the hyperpipe. Other display units on the
remote pipes can receive these requests and route the
responses back on to the hyperpipe network. The master, or
consumer, pipe then performs all the video backend pro-
cessing on the data, e.g., color mapping, resizing, color
space conversion, and gamma correction, and sends it to the
output display device as a coherent video stream. A single
controller designated as the controller issues the requests the
rendering pipes and merges the received pixel data. A single
driver then takes the merged data and drives a display
monitor.

BRIEF DESCRIPTON OF THE DRAWINGS

The operation of this invention can be best visualized by
reference to the drawings.

FIG. 1 shows a high-level diagram of a computer archi-
tecture upon which the present invention may be practiced.

FIG. 2 shows a diagram depicting the flow of packets on
the hyperpipe bus/network into, through, and out from an
exemplary node/rendering pipe.

FIG. 3 shows a block diagram of the currently preferred
embodiment of a node or rendering pipe.

FIG. 4 shows a hyperpipe computer system having two
nodes.

FIG. 5 shows a block diagram of a display controller for
a consumer node.

FIG. 6 is a diagram showing how multiple frames of
images are rendered by multiple rendering pipes in a hyper-
pipe architecture.

DETAILED DESCRIPTION

An apparatus and method for utilizing multiple rendering
pipes for the generation of a single 3-D display is described.
In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be
obvious, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known structures and devices are
shown in block diagram form in order to avoid obscuring the
present invention.

Referring now to FIG. 1, a high-level diagram of a
computer architecture upon which the present invention may
be practiced is shown. The computer system 100 includes
multiple processing nodes. Although four such nodes
101-104 are shown, any number of such nodes can be
implemented. In general, adding more nodes proportionally
increases the speed and processing power of the computer
system 100. Each processing node is capable of performing
rendering operations independently of the other nodes. The
term “pipe” has been coined to refer to a rendering node. In

10

15

20

25

30

35

40

45

50

55

60

65

4

the currently preferred embodiment of the present invention,
each of these rendering nodes or pipes 101-104 is the same
as any other node or pipe. The only difference is that a single
one of the pipes is designated as being the “consumer.”
Since all rendering pipes are the same, it does not matter
which particular pipe becomes the consumer. For example,
node 101 can be selected as being the consumer.

It is the function of the consumer to gather the requisite
data from all the appropriate pipes in order to draw the
image for display on CRT display screen 107. The consumer
101 gets the requisite data by generating requests and
sending the requests onto a bus network interconnect 106.
Bus/network 106 can be any high-bandwidth bus or network
for transmission of digital data (e.g., ethernet, ATM,
SONET, FDD], etc.). In the currently preferred embodiment,
bus/network 106 consists of a high-speed, high-bandwidth,
unidirectional ring topology having a packet-based protocol.
This bus/network establishes a point-to-point connection.
The term “hyperpipe” has been coined to represent the
digital backbone connecting all the rendering pipes. The
requests are sent sequentially through bus/network 106 to
each of the nodes. When a node receives a request, it
examines that request to determine whether it is the one
which has been designated to service that request In other
words, the request contains information specifying which of
the nodes contains the desired data. For example, if the
desired data were generated by and stored in node 103, then
consumer 101 would generate a request. This request is then
sent over bus 106 in the format of a packet. Assuming a
unidirectional clockwise transmission over bus 106, node
102 would be the first node to receive the request packet.
Node 102 quickly checks the packet to determine whether
the associated request was designated for it. A designation
(e.g., an address) specifying the appropriate node can be
contained in the header of the request packet. Since node
102 is not the intended recipient of that request, node 102
simply ignores the packet. Thereupon, the packet proceeds
back through the bus 106 to the next downstream node 103.
Node 103 examines the packet and determines that the
request is destined for it. Thereupon, node 103 retrieves the
requested data from its local memory (e.g., frame buffer) and
sends the data in the form of packets over bus 106 destined
to consumer 101. The request packet is then sent to node
104, which checks the request packet and ignores it. Con-
sumer 101 continuously generates requests for data. As the
data for a frame is received, consumer 101 draws the image
out display (CRT) screen 107.

It should be noted that there are latencies associated with
transmitting packets over various segments of bus 106. The
latencies between nodes may also vary. Further latencies are
incurred locally by nodes checking received requests, pro-
cessing requests, and sending data over bus 106 to the
consumer. It is known that high latencies do not pose a major
problem because the penalty associated with the high
latency is paid once at the beginning. Thereupon, no addi-
tional delays will be incurred. All processing is essentially
shifted time-wise by the latency. However, if the latency is
not constant, then one must add FIFO (first-in-first-out)
buffers to temporarily hold the data because, due to the
variable latencies, it is not known exactly when the data
might be received. Larger FIFO buffers must be used to
account for greater variances in the latencies. In order to
minimize the overhead and costs associated with having
large FIFO’s, it is a design criteria to keep the latencies as
constant as possible. The present invention accomplishes
this by using a unidirectional ring topology. This ensures
that all requests/data response packets incur approximately

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 36 of 66

US 6,292,200 B1

5

the same fixed latency. In other words, each request/data
response packet will incur the fixed latency associated with
a full loop around bus 106 plus the local node latency for
processing the request. For example, a request from con-
sumer node 101 designated for node 102 will incur a latency
associated with traversing span 108 of bus 106 to node 102.
Alocal latency associated with node 102 for processing the
request is then incurred. Additional latencies are incurred by
the data packets traversing through spans 109-111 of bus
106 back to consumer node 101. Likewise, if the request
were intended for node 104, the same approximate latency
would be incurred. In this case, the request would incur
latencies for traversing through spans 108 and 109, local
latency associated with node 104, and latency for the data
traversing through span 111. A request for data which
happens to reside with the consumer node, nonetheless is
required to be routed all the way through the entire bus loop
to ensure that it too incurs relatively the same latency.
Hence, all request/data packets, regardless of node
designations, experience the same bus loop (e.g., spans
10-111) latency plus local latency.

Furthermore, by implementing a unidirectional loop
topology, all the latencies are known. This allows the system
to issue requests in advance of when the data is actually
needed. For example, suppose that the latency has been
measured or quantitatively determined to be X number of
clock cycles. Suppose also that consumer node 101 desires
data from node 103 at a particular point in time Y. Consumer
node 101 would issue a request for this data X number of
clock cycles before time Y. Thereby, the data would arrive
just in time. There may be tolerances within the system
which might skew the results several clock cycles in either
direction. A small FIFO is implemented to store data in case
the data comes early. By predicting, anticipating, and gen-
erating requests early, the effects of the latencies are mini-
mized.

The advantages conferred by the present invention are
several fold in that it eliminates the need to switch drivers
(ie., no scintillation’s). Also, since there is just one control-
ler for driving the display, the colors and intensities are well
balanced. Furthermore, multiple nodes/pipes can be merged
together to help in rendering a single frame, thereby allow-
ing parallel processing of complex images. In addition, this
architecture is adapted to be easily scaled up or down
according to cost, speed, and rendering constraints.

FIG. 2 shows a diagram depicting the flow of packets on
the hyperpipe bus/network 106 into, through, and out from
an exemplary node/rendering pipe 101. A packet on hyper-
pipe bus 106 is input to node 101. The packet is examined
by a hyperpipe router 201. Hyperpipe router 201 examines
the address in the packet’s header to determine whether that
packet is intended for node 101. If the packet is not intended
for node 101, it is immediately forwarded back onto the
hyperpipe bus 106 through path 203. However, if the packet
was intended for node 101, it is routed to a local router 202
which directs the packet to the appropriate circuit within
node 101 (e.g., the rasterizer). Packets originating from node
101 (e.g., request packets or data packets), are forwarded
from local router 202 to hyperpipe router 201 for transmis-
sion onto hyperpipe bus 106.

FIG. 3 shows a block diagram of the currently preferred
embodiment of a node or rendering pipe. An application
program running on host processor (H) 301 directs the
rendering process. The application program provides the
high-level instructions and data to be used in the rendering
process. This information is passed on to a geometry engine
(G) 302, which performs the arithmetic operations on ver-

10

15

20

25

30

35

40

45

50

55

60

65

6

tices. The vertices are then filled by a rasterizer block (R)
303. Rasterizer 303 performs color, blending, anti-aliasing,
scan-conversion, depth, texture, lighting, and fog functions.
The final pixel values are stored in framebuffer (F) 305.
When requested, the appropriate pixel values are read from
framebuffer 305 by display block (D) 304 and put out onto
the hyperpipe bus or drawn out for display onto a CRT
screen. It should be noted that nodes and hyperpipes can
have many different types of configurations. Any standard
type of 3-D graphics subsystem can be adapted to be used in
conjunction with the present invention.

FIG. 4 shows a hyperpipe computer system having two
nodes 101 and 103. Node 101 consists of a host 401 coupled
to a geometry engine 402. The geometry engine 402 is
coupled to rasterizer 403. Pixels generated by rasterizer 403
are stored in frame buffer 404. A display block 405 controls
the movement of packets to/from hyperpipe bus 106.
Furthermore, if node 101 is a consumer node, then display
block issues requests and draws images out to a display
screen. Likewise, node 103 is essentially the same,
hardware-wise, as node 101. Node 103 consists of a host 406
coupled to a geometry engine 407. The geometry engine 407
is coupled to rasterizer 408. Pixels generated by rasterizer
408 are stored in frame buffer 409. A display block 410
controls the movement of packets to/from hyperpipe bus
106. When a request packet destined for node 103 is
received, display block 410 reads the requested pixel data
from its local frame buffer 409, packetizes the data, and
sends it onto hyperpipe bus 106 for transmission to node
101. The display block 405 of node 101 takes this packetized
data, processes it, and sends it to display device 410.
Additional nodes, identical to node 103, can be added and
coupled to hyperpipe bus 106 to get attain even greater and
faster rendering capabilities.

FIG. § shows a block diagram of a display controller for
a consumer node. The display controller consists of a table
501, several registers 502-505, and a state machine 506. A
small local memory is used to store table 501 which contains
parameters for video formats which change from field to
field or from frame to frame (e.g., interlace, interlace stereo,
field sequential, stereo field sequential, etc.). A node may be
instructed to contribute in the rendering of a portion of a
frame. The portion of the frame is specified according to an
X, Y coordinate system. Thereby, register 502 contains the
Y-size coordinate, and register 503 contains the X-size
coordinate. Registers 504 and 505 are small buffers for
temporarily storing data from the various rendering pipes
(e.g., pipe 0 and pipe 1). The information contained in table
501 and registers 502—505 are fed into a state machine 506
for processing. State machine 506 generates requests to the
appropriate pipes by sending requests through local rough
507 to hyperpipe route 508. Responses arrive either over the
hyperpipe route 508, or from the local pipe route 507. Data
is merged in line buffer 509, processed in 510 and passed to
an output device 511(e.g. A DAC). Note that the frame can
have separate sections rendered by different nodes/rendering
pipes. For example, for a two node/rendering pipe system,
the display surface 512 is subdivided into four sections. Pipe
0 renders two sections, and pipe 1 renders two sections.

FIG. 6 is a diagram showing how multiple frames of
images are rendered by multiple rendering pipes in a hyper-
pipe architecture. Four frames 601-604 are shown. The
frames are rendered at a standard 60 hertz rate (i.e., each
frame is rendered every Yeoth of a second). A single frame
can have one or more rendering pipes rendering pixels for
that frame. For instance, frame 601 can have four rendering
pipes P0—P3 rendering pixel data in unison. In other words,

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 37 of 66

US 6,292,200 B1

7

pipe PO is rendering section 605 while pipe P1 is rendering
section 606 and while pipes P2 and P3 are rendering sections
607 and 608. The pixels are then merged and displayed at the
same time. Note that a frame need not be subdivided into
equal portions. Instead, it is more efficient to subdivide the
frame so that each rendering pipe shares approximately the
same graphics rendering burden. Each rendering pipe should
approximately render the same number of primitives.
Meanwhile, one or more other rendering pipes can be
rendering subsequent whole frames or subsequent portions
of frames. For example, pipes P4—P7 can be rendering frame
602 while frame 601 is being rendered. It can be seen that
frames can be rendered faster by adding additional rendering
pipes.

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, and obviously many modifications and variations
are possible in light of the above teaching. The embodiments
were chosen and described in order to best explain the
principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
Claims appended hereto and their equivalents.

What is claimed is:

1. A computer system comprising:

a plurality of rendering pipes for rendering pixels of an

image, wherein each of the rendering pipes comprises
a host processor having an application program issuing
graphics commands, a geometry circuit coupled to the
host processor for processing primitives, a rasterizer
coupled to the geometry circuit for generating pixel
data, a frame buffer coupled to the rasterizer which
stores the pixel data, an interface coupled to the ras-
terizer that accepts requests from the transmission
medium and outputs pixel data;

a transmission medium coupling together each of the
plurality of rendering pipes;

a controller coupled to one of the rendering pipes which
coordinates pixel information of the image between
each of the plurality of rendering pipes, wherein each
of the rendering pipes is capable of rendering pixels for
an entire frame or portions thereof;

a memory coupled to the controller for storing the pixel
information;

a display coupled to the memory for displaying the image.

2. The computer system of claim 1, wherein the trans-
mission medium comprises a uni-directional ring topology.

3. The computer system of claim 2, wherein the trans-
mission medium comprises a point-to-point connection.

4. The computer system of claim 1, wherein the rendering
circuit includes a local memory for storing pixel data
generated locally.

5. The computer system of claim 4, wherein the controller
requests the pixel data stored in the local memory.

6. The computer system of claim 5, wherein the controller
merges pixel data received from a plurality of rendering
circuits before drawing the image for display.

7. The computer system of claim 1 wherein the rendering
circuit is further comprised of a router which examines
packets from the transmission medium and routes the pack-
ets according to address information contained in the pack-
ets.

10

15

20

25

30

35

40

50

55

60

8

8. The computer system of claim 1 further comprising a
single display driver which drives the display.

9. The computer system of claim 1, wherein the controller
generates requests a pre-determined amount of clock cycles
ahead of when pixel data is actually needed.

10. The computer system of claim 9, wherein the pre-
determined amount of clock cycles is approximately equal to
a fixed latency.

11. In a computer system, a method of rendering a
three-dimensional image for display comprising the
computer-implemented steps of:

rendering pixels of a three-dimensional image, wherein a

plurality of rendering circuits are used to render por-
tions of a single frame and each of the rendering pipes
is capable of rendering pixels for an entire frame or
portions thereof;

executing an application program on a host processor
which issues graphics commands;

processing vertices by a geometry circuit coupled to the
host processor;

generating pixel data through a rasterizer coupled to the
geometry circuit;

storing the pixel data in a frame buffer coupled to the
rasterizer;

accepting requests from the transmission medium for the
pixel data;

outputting the pixel data onto the transmission medium;

storing pixel data in a plurality of memories, each ren-
dering circuit storing pixel data generated in a local
memory;

transmitting a request through a transmission medium
coupling together each of the plurality of rendering
circuits;

transmitting pixel data from one of the rendering circuits
through the transmission medium to a frame buffer in
response to the request;

merging pixel data received from a plurality of the ren-
dering circuits into a frame;

driving a display coupled to the frame buffer to display the

three-dimensional image.

12. The method of claim 11, wherein the transmission
medium comprises a uni-directional ring topology.

13. The method of claim 12, wherein the transmission
medium comprises a point-to-point connection.

14. The method of claim 11, wherein each of the rendering
circuits performs the executing, processing, generating,
storing, accepting, and outputting steps.

15. The method of claim 11, further comprising the step
of routing packets from the transmission medium according
to address information contained in the packets.

16. The method of claim 11 further comprising the step of
driving the display with a single driver.

17. The method of Claim 11 futher comprising the step of
generating requests at a pre-determined number of clock
cycles ahead of when pixel data is actually needed.

18. The method of claim 17, wherein the pre-determined
number of clock cycles is approximately equal to a fixed
latency corresponding to the computer system.

#* #* #* #* #*

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 38 of 66

Appendix C

a2 United States Patent

Tang-Petersen et al.

[— L]

688537682
@0) Patent No.: US 6,885,376 B2

(54)

(75)

(73)

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR NEAR-REAL
TIME LOAD BALANCING ACROSS
MULTIPLE RENDERING PIPELINES

Inventors: Svend Tang-Petersen, Mountain View,
CA (US); Yair Kurzion, San Jose, CA
(US)

Assignee: Silicon Graphics, Inc., Mountain View,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 80 days.

Appl. No.: 10/330,217
Filed: Dec. 30, 2002
Prior Publication Data

US 2004/0125111 A1 Jul. 1, 2004

Int. CL7 oo sins GO6T 1/20
US.CL ...ccoove 345/506; 345/502; 345/505;
712/28; 712/32

Field of Searchc.c..coco.. 345/501, 502,
345/503, 504, 505, 506, 712/28, 31, 32

References Cited

U.S. PATENT DOCUMENTS

4920487 A * 4/1990 Baffesccccocevenennene 718/105
6,191,800 B1 * 2/2001 Arenburg et al. 345/505

Application 510
Performance
Report
Allocation 7302
Module
710\
730
Performance
Monitor
720\
730n

@5) Date of Patent: Apr. 26, 2005
6,683,614 B2 * 1/2004 Walls et al. 345/506
2003/0005100 Al * 1/2003 Barnard et al. 709/223
2003/0164832 A1 * 9/2003 Alcom 345/505
2003/0169269 Al * 9/2003 Sasaki et al. 345/581

OTHER PUBLICATIONS

Schneider, B., “Parallel Polygon Rendering” [online], [Re-
trieved on Jun. 9, 2003]. Retrieved from the Internet:
<URL:http://www.gris.uni—tuebingen.de/~bartz/tutorials/
vis2000course/s5.pdf> (7 pages).

* cited by examiner

Primary Examiner—Matthew C. Bella

Assistant Examiner—Mackly Monestime

(74) Antorney, Agent, or Firm—Sterne, Kessler, Goldstein
& Fox PLLC

7) ABSTRACT

A system, method, and computer program product for cre-
ating a sequence of computer graphics frames, using a
plurality of rendering pipelines. For each frame, each ren-
dering pipeline receives a subset of the total amount of
graphics data for the particular frame. At the completion of
a frame, each rendering pipeline sends a performance report
to a performance monitor. The performance monitor deter-
mines whether or not there was a significant disparity in the
time required by the respective rendering pipelines to render
their tiles. If a disparity is detected, and if the disparity is
determined to be greater than some threshold, an allocation
module resizes the tiles for the next frame. This serves to
balance the load across rendering pipelines for each frame.

29 Claims, 18 Drawing Sheets

700

Rendering pipsline 520a

Compositor

5200 |

530

Output 535
520n

Display
540

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 40 of 66

U.S. Patent Apr.26,2005 Sheet 1 of 18 US 6,885,376 B2

Q
O"\

~T—120
~T 140

e e e e v — — ———— - — — — — — e —— —

[T e o T W v e v e L e e s e — — e —

FIG. 1

lI”l

ll(|,

"”"lu"‘

|,'h
‘”||]
'ﬂ'“} “V
Y /

110—‘\
1301~

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 41 of 66

U.S. Patent Apr.26,2005 Sheet 2 of 18 US 6,885,376 B2

) "‘"III |
.I

L

FIG. 2

s v e —— e — e R e e - AR WY — — —

U.S. Patent

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 42 of 66

Apr. 26, 2005 Sheet 3 of 18

US 6,885,376 B2

"Iln" fié3

51‘ gl

1t !‘l ! '

I‘ _
'n!”"j"g':"

i!
0

\

FIG. 3

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 43 of 66

U.S. Patent Apr.26,2005 Sheet 4 of 18 US 6,885,376 B2

FIG. 4

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 44 of 66

U.S. Patent

500

~

Apr. 26, 2005

Sheet 5 of 18

Compositor
530

5200 —nu |

Rendering pipeline 520a

[Output 535

Display

540

US 6,885,376 B2

520n

Application

510

FIG. 5

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 45 of 66

US 6,885,376 B2

Sheet 6 of 18

Apr. 26, 2005

U.S. Patent

ndino

\Lges

B0c | oujjedig buliepusy

9 'Old

lajjng aleld

f

nun Buipusig —

+

nun aInmxe] i~

lazusisey

ainxe] |

——

€9

r 1

— 9£9
-

£ ~ Z¥9
oW 8INyXe

N el N oo

ﬂ Y
a|npo SINPOW
uoneladQ xapsp uoneladQ joxid
o, o’ 4
0l8

eleq solydein)

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 46 of 66

US 6,885,376 B2

Sheet 7 of 18

Apr. 26, 2005

U.S. Patent

9] 25}
Aejdsig
uoesL
uges —]
GES INdINO
0£S *
.~
Joysodwoy 40cs

004

L "Old

e0es suyedid Buuspuey

‘0cL

louuop
soueWIOpaY

B0EL
yodey

‘OLL

S|NPOW
uoie20||yy

souBLLIONad

01§ uoneoyddy

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 47 of 66

US 6,885,376 B2

Sheet 8 of 18

Apr. 26, 2005

U.S. Patent

ovs
Aeidsig

GES IndINO

008

8 'OId

uges

0gs

Jjo)isodwon)

\02L

10}UO
eouewiopay

‘0tL

3INPOn
uoyeIo|Y

. uois
q0cTS /
q018
20ZS suedid Buuspusy EQ1L8 Ejeq
solydeisy

01G uoneoyddy

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 48 of 66

U.S. Patent Apr. 26,2005 Sheet 9 of 18 US 6,885,376 B2

Computer System 800

() Processor 904
<:> Main Memory 909

Secondary Memory 910

Hard Disk Drive 812

) Removable
() Hemovableg??rage Drive| | Storage Unit

918

Communication
Infrastructure
906

|

Removable
interface 920 -—~—=~| Storage Unit
922

Communications - — :5: .
Interface 924 7 l

Communications
Path 926

FIG. 9

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 49 of 66

U.S. Patent Apr.26,2005 Sheet 10 of 18

START 1010

Receive perfarmance report for
frame i, per rendering pipeline

1040

Application done?

1050

Imbalance?

izi+1 |-

Yos

1060

US 6,885,376 B2

1000

J

| 1030

1080

1055

Re-size tiles
to rebalance
load

l

Send graphics data to rendering
pipelines, per tile, for frame i

FIG. 10

|~ 1070

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 50 of 66

U.S. Patent

1150

Imbalance

Apr. 26, 2005 Sheet 11 of 18

START — 1110

US 6,885,376 B2

1050

J

Determine the rendering pipeline
with the largest rendering time
for its tile, frame i (maxtime)

|~ 1120

l

Determine the rendering pipeline
with the shortest rendering time
for its tile, frame i (mintime)

1130

Maxtime-mintime >
threshold?

1160

Imbalance

1170

FIG. 11

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 51 of 66

U.S. Patent Apr.26,2005 Sheet 12 of 18 US 6,885,376 B2
1210 1230
A A
+
i
|
|
i
i
|
|
I
|
| 1237
|
|
|
{
|
|
|
|
!
|
|
|
|
!
Y Y ~
1220 1240
FIG. 12A
1280

>. 1260

FIG. 12B

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 52 of 66

U.S. Patent

Apr. 26, 2005

Sheet 13 of 18

US 6,885,376 B2

1310 1320
A N A N
FIG. 13A
1330 1340
i A ~—"
1335 |
-

FIG. 13B

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 53 of 66

U.S. Patent Apr.26,2005 Sheet 14 of 18 US 6,885,376 B2
1410 1420 1430
A AL A
R N
FiG. 14A
1430 1420 1450

FIG. 14B

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 54 of 66

U.S. Patent

Apr. 26, 2005 Sheet 15 of 18

START 1505

| 1510

Receive performance report for
frame i, per rendering pipeline

Application done?

1520 1

US 6,885,376 B2

1500

J

_///“1515

570

Va 1530

Send graphics data
to rendering pipeline,
per tile, for frame i

1

1555

;,#S;Y;fgr, >—YL> Re-size, left/right
1535 1540
Upper/ e ya
lower lsft . Yes I Re-size, upper/
imbalance? lower left
|~ 1560
1545 1550
Upper/ . f
lower right - Yes | Re-size, upper/
imbalance? lower right

i=i+1 |-

FIG. 15

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 55 of 66

U.S. Patent

1660

No left/right
imbalance

START — 1610

Apr. 26, 2005 Sheet 16 of 18 US 6,885,376 B2

1525

J

left_time = upper_left _time + | 1620

lower_left_time

l

right_time = upper_right_time + | _~ 1630

lower_right_time

1640

|Left_time - right_lime| Yes
> threshold?

1650

Left/right
Imbalance

1670

FIG. 16

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 56 of 66

U.S. Patent Apr.26,2005 Sheet 17 of 18 US 6,885,376 B2
1705 1710
A Al
'
uL UR >1712
LL LR >1714
FIG. 17A
1715 1720
A A
N
1722 |
o
uL ! UR 1712
}
|
|
|
LL | LR 1714
|
|
FIG. 17B
1730 uL UR 1740
1735 LR 1745
LL 1714

FIG. 17C

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 57 of 66

U.S. Patent

Apr. 26, 2005 Sheet 18 of 18 US 6,885,376 B2

1800

START - 1810 4)

i-g |7 1820

Render frame i

1830

|

Generate performance report,
per pipeline

1840

|

Send performance reports to
performance monitor

1850

1890

Receive graphics data, frame i,
per tile (possibly re-sized)

| _— 1880

FIG. 18

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 58 of 66

US 6,885,376 B2

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR NEAR-REAL
TIME LOAD BALANCING ACROSS
MULTIPLE RENDERING PIPELINES

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable.

STATEMENT REGARDING FEDERALLY-
SPONSORED RESEARCH AND
DEVELOPMENT

Not applicable.

REFERENCE TO MICROFICHE APPENDIX/
SEQUENCE LISTING/TABLE/COMPUTER PROGRAM
LISTING APPENDIX (submitted on a compact disc and an
incorporation-by-reference of the material on the compact
disc)

Not applicable.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention described herein relates to computer graph-
ics system performance.

2. Background Art

Computer graphics systems sometimes use parallelism in
order to enhance performance. In particular, a graphics
system may use more than one rendering pipeline in order to
create an image. In such an architecture, each pipeline is
responsible for rendering some portion of a frame. When
rendering is completed, the outputs of the respective ren-
dering pipelines are combined by a compositor to produce
the complete frame. Such an arrangement can significantly
increase throughput. If, for example, four equivalent ren-
dering pipelines are used, then the time necessary to render
a particular frame is, on average, one fourth of the time that
would be required if a single rendering pipeline were used.

This is only an average however. Such a performance
enhancement is only possible if the required processing is
distributed evenly across all rendering pipelines for each
frame. This is typically not the case. If, for example, four
rendering pipelines are used, wherein each pipeline is
responsible for rendering a particular quadrant of a frame,
some quadrants may require more rendering than others. If
this is the case, then rendering the frame can only proceed
as quickly as the slowest rendering pipeline. The frame will
only be completed when the slowest pipeline is finished. An
example is shown in FIG. 1. Here, a frame 100 is divided
into four quadrants, 110, 120, 130 and 140. If each quadrant
is assigned to a particular rendering pipeline, it is apparent
that the pipeline associated with quadrant 110 will have
more processing to perform, compared to the other quad-
rants. As a result, rendering of this frame will only be
completed when the rendering pipeline associated with
quadrant 110 has finished. While this example may be an
extreme case, it shows that even given multiple rendering
pipelines, in some situations the performance of a multiple
pipeline computer graphics system may not be much better
than the performance of a single pipeline computer graphics
system.

Hence, there is a need for a system and method by which
parallelism inherent in a computer graphics system having
multiple rendering pipelines is more fully exploited. In

10

15

20

25

35

40

45

50

55

60

65

2

particular, the advantages of having multiple rendering
pipelines need to be realized under all circumstances.

BRIEF SUMMARY OF THE INVENTION

The invention described herein is a system, method, and
computer program product for creating a sequence of com-
puter graphics frames using a plurality of rendering pipe-
lines. For each frame, each rendering pipeline renders a
subset of the total amount of graphics data. The output of
each rendering pipeline represents a portion of the frame. In
an embodiment of the invention, each portion of the frame
is rectangular. Each rectangle is referred to hereinafter as a
tile. Each rendering pipeline is therefore responsible for the
rendering of its own particular tile in a given frame. After
completion of a frame, each rendering pipeline produces a
performance report. The performance report states the
amount of time that was required to render a tile in the
current frame.

At the completion of a frame, each rendering pipeline
sends its performance report to a performance monitor. The
performance monitor determines whether or not there was a
significant disparity between the times required by the
rendering pipelines to render their tiles. If a disparity is
detected, and if the disparity is determined to be significant
(i.e., greater than some threshold), then an allocation module
resizes the tiles for the subsequent frame. If this is the case,
the rendering pipeline bearing the largest processing load
will have its tile reduced in size for purposes of the subse-
quent frame. This reduces the load of this pipeline. The
rendering pipeline having the lowest processing load, as
evidenced by its performance report, will then have its tile
increased in size. The load on this pipeline is therefore
increased. The latter pipeline will therefore have more
processing to perform for purposes of the subsequent frame,
while the former pipeline will have less rendering to per-
form. This serves to balance the load across rendering
pipelines for the subsequent frame. This represents a near
real time load balancing after each frame is rendered,
allowing optimal use of the parallel architecture.

Further embodiments, features, and advantages of the
present inventions, as well as the structure and operation of
the various embodiments of the present invention, are
described in detail below with reference to the accompany-
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS/
FIGURES

FIG. 1 illustrates a frame in which significantly more
rendering is required for one tile, compared to the other tiles.

FIG. 2 illustrates a frame in which rendering is required
for all tiles.

FIG. 3 illustrates a frame in which tiles have been resized
to adjust the processing required in the respective rendering
pipelines.

FIG. 41llustrates a frame in which tiles are further resized,
to further reallocate the processing burden across rendering
pipelines.

FIG. 5 illustrates the overall system according to an
embodiment of the invention.

FIG. 6 is a block diagram illustrating a rendering pipeline
in greater detail, according to an embodiment of the inven-
tion.

FIG. 7 illustrates an embodiment of the invention,
wherein the performance monitor and allocation module are
incorporated in the graphics application.

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 59 of 66

US 6,885,376 B2

3

FIG. 8 illustrates graphics data being distributed to the
rendering pipelines, according to an embodiment of the
invention.

FIG. 9 is an illustration of the computing environment of
an embodiment of the invention.

FIG. 10 is a flowchart illustrating the processing of an
embodiment of the invention when the tiles of a frame are
arranged in a single row or column.

FIG. 11 is a flowchart illustrating in greater detail the
determination of whether or not an imbalance exists across
a set of rendering pipelines, according to an embodiment of
the invention.

FIGS. 12A and 12B illustrate the resizing of tiles, wherein
a given frame is composed of two tiles.

FIGS. 13A and 13B illustrate the resizing of tiles, wherein
the frame consists of a single row of four tiles.

FIGS. 14A and 14B represent the resizing of tiles,
wherein the frame consists of a row of four tiles and wherein
the tile that is increasing in size is not adjacent to the tile that
is decreasing in size.

FIG. 15 is a flowchart illustrating the processing of an
embodiment of the invention, wherein the frame is com-
posed of four tiles, arranged in two columns and two rows.

FIG. 16 is a flowchart illustrating the determination of
whether an imbalance exists with respect to tiles on the left
and tiles on the right in a frame composed of four tiles in a
2x2 arrangement, according to an embodiment of the inven-
tion.

FIGS. 17A through 17C represent the resizing of tiles in
a frame in which tiles are initially configured in a 2x2
arrangement.

FIG. 18 is a flowchart illustrating the processing of an
embodiment of the invention from the perspective of a
rendering pipeline.

DETAILED DESCRIPTION OF THE
INVENTION

L. Overview

The invention described herein is a system, method, and
computer program product for creating a sequence of com-
puter graphics frames using a plurality of rendering pipe-
lines. For each frame, each rendering pipeline renders a
subset of the total amount of graphics data. The output of
each rendering pipeline represents a portion of the frame. In
an embodiment of the invention, each portion of the frame
is rectangular. Each rectangle is referred to hereinafter as a
tile. Each rendering pipeline is therefore responsible for the
rendering of its own particular tile in a given frame. After
completion of a frame, each rendering pipeline then pro-
duces a performance report. The performance report states
the amount of time that was required to render a tile in the
current frame. At the completion of a frame, each rendering
pipeline sends its performance report to a performance
monitor. The performance monitor determines whether or
not there was a significant disparity between the times
required by the rendering pipelines to render their tiles. If a
disparity is detected, and if the disparity is determined to be
significant (ic., greater than some threshold), then an allo-
cation module resizes the tiles for the subsequent frame. If
this is the case, the rendering pipeline bearing the largest
processing load will have its tile reduced in size for purposes
of the subsequent frame. This reduces the load of this
pipeline. The rendering pipeline having the lowest process-
ing load, as evidenced by its performance report, will then
have its tile increased in size. The load on this pipeline is
therefore increased. The latter pipeline will therefore have

5

10

15

20

25

30

35

40

45

50

55

65

4

more processing 1o perform for purposes of the subsequent
frame, while the former pipeline will have less rendering to
perform. This serves to balance the load across rendering
pipelines for the subsequent frame such that relatively little
latency is experienced. This represents a near real time load
balancing after each frame is rendered, allowing optimal use
of the parallel architecture.

FIG. 2 illustrates a frame that has been subdivided into
four tiles. A separate rendering pipeline is responsible for
each tile. Hence, a first rendering pipeline renders the upper
left quadrant of the frame of FIG. 2; a second rendering
pipeline renders the upper right quadrant of the frame; etc.
When each rendering pipeline has completed it processing,
the four resulting tiles are combined to form the frame of
FIG. 2.

After rendering is completed for the current frame, each
rendering pipeline constructs and submits a performance
report to the performance monitor. The performance monitor
determines whether there is a disparity in the processing
burdens of the respective rendering pipelines. If it is
determined, for example, that one or both of the upper tiles
took significantly longer to render than one or both of the
lower tiles, then the processing load is not balanced evenly
among the rendering pipelines. The tiles will be resized to
reallocate the processing burden among the rendering pipe-
lines. One possible result is shown in FIG. 3. Here, the
horizontal boundary separating the upper and lower tiles has
been shifted down. Both upper quadrants are now larger;
both lower quadrants are now smaller. As a result, each of
the two rendering pipelines responsible for the upper tiles
are responsible for rendering more of the frame. Moreover,
the two rendering pipelines responsible for rendering the
two lower tiles are responsible for less of the frame.

FIG. 4 illustrates a case where the horizontal boundary is
lowered and the vertical boundary is moved to the left,
relative to the frame of FIG. 2. Again, this adjusts the
processing workload of each of the four rendering pipelines.
The rendering pipeline associated with the upper right tile
has the greatest increase in rendering workload. The ren-
dering pipeline responsible for the lower left tile of the frame
has the largest decrease in rendering workload.

II. System

The system of the invention is illustrated generally in FIG.
5. Computer graphics system 500 includes a graphics appli-
cation program 510. Application 510 is in communication
with each of rendering pipelines 5204—520n. This allows the
distribution of graphics data from application 510 to each of
the rendering pipelines 520a-520n. At the completion of
rendering, each rendering pipeline sends a performance
report to a performance monitor (not shown). In an embodi-
ment of the invention, the performance monitor is imple-
mented as part of application 510. Each pipeline’s perfor-
mance report indicates the amount of time required by that
pipeline to render its tile of the current frame. Moreover,
each of rendering pipelines 520a—520n sends rendered data
associated with its tile to a compositor 530. Compositor 530
then combines the rendered data, i.e., the tiles, to produce
output 535, which can then be displayed at display 540. In
alternative embodiments of the invention, output 535 can be
sent to a different form of input/output (I/O) device, such as
a printer or a memory medium.

FIG. 6 illustrates a rendering pipeline in greater detail.
Rendering pipeline 600 is illustrative and not intended to
limit the scope of the present invention. Other types of
rendering pipelines can be used as would be apparent to a
person skilled in the art, given this description. Therefore,
while rendering pipelines 520a through 520n can have the

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 60 of 66

US 6,885,376 B2

5

structure shown in FIG. 6, other embodiments of rendering
pipelines can be used. Moreover, rendering pipelines 520q
through 5207 need not be identical.

Rendering pipeline 600 comprises a vertex operation
module 622, a pixel operation module 624, a rasterizer 630,
a texture memory 640, and a frame buffer 650. Rendering
pipeline receives graphics data 610, which is initially routed
to vertex operation module 622 and a pixel operation
module 624. Texture memory 640 can store one or more
textures or images, such as texture 642. Texture memory 640
is connected to a texture unit 634 by a bus (not shown).
Rasterizer 630 comprises texture unit 634 and a blending
unit 636. Texture unit 634 and blending unit 636 can be
implemented separately or together as part of a graphics
processor. The operation of these features of rendering
pipeline 600 would be known to a person skilled in the
relevant art given the description herein.

In embodiments of the present invention, texture unit 634
can obtain either a point sample or a filtered texture sample
from textures and/or images 642 stored in texture memory
640. Blending unit 636 blends texels and/or pixel values
according to weighting values to produce a single texel or
pixel. The output of texture unit 638 and/or blending unit
636 is stored in frame buffer 650. The contents of frame
buffer 650 can then be read out as output 670.

FIG. 7 illustrates the system of the invention in greater
detail during its performance reporting operation. Each of
the rendering pipelines 520a—520n send a performance
report, labeled 730a-730n, respectively, to a performance
monitor 720. In the illustrated embodiment, performance
monitor 720 is incorporated in application 510. Performance
reporting takes place after rendering each frame. Perfor-
mance monitor 720 determines whether the performance
reports indicate any disparity in the workloads of the respec-
tive rendering pipelines 520a through 520x. In an embodi-
ment of the invention, performance monitor 720 identifies
the rendering pipeline that required the greatest amount of
time to render its tile for the current frame, and identifies the
rendering pipeline that required the least amount of time to
render its tile for the current frame. If the difference in the
two times exceeds a threshold value, a conclusion is reached
that a significant disparity exists. Such a conclusion is then
passed to allocation module 710. Note that in an alternative
embodiment of the invention, the workload of a rendering
pipeline, as given in a performance report, is stated in terms
of clock cycles.

In FIG. 8, allocation module 710 sends graphics data to
each of rendering pipelines 5202-520n. Each rendering
pipeline receives a distinct subset of the total graphics data
required for the subsequent frame. Hence, rendering pipeline
520q receives graphics data 810a. Likewise, rendering pipe-
line 5205 receives graphics data 810b, etc. The graphics data
sent to each rendering pipeline reflects any changes that may
have been made to the sizes and shapes of the tiles
associated, respectively, with rendering pipelines
520a-520#. The process of resizing tiles is performed by
allocation module 710 and is described in greater detail
below.

Note that in the embodiment illustrated in FIGS. 7 and 8,
allocation module 710 and performance monitor 720 are
shown as components of graphics application 510. In an
alternative embodiment of the invention, these modules can
reside external to application 510. These modules may be
implemented as software, hardware, or firmware, or as some
combination thereof.

The allocation module 710 and performance monitor 720
of the present invention may be implemented using

10

15

20

25

30

35

40

45

50

55

60

65

6

hardware, software or a combination thereof. In an embodi-
ment of the invention, they are implemented in software as
part of application program 510, which is executed on a
computer system or other processing system. An example of
such a computer system 900 is shown in FIG. 9. The
computer system 900 includes one or more processors, such
as processor 904. The processor 904 is connected to a
communication infrastructure 906, such as a bus or network.
After reading this description, it will become apparent to a
person skilled in the relevant art how to implement the
invention using other computer systems and/or computer
architectures.

Computer system 900 also includes a main memory 908,
preferably random access memory (RAM), and may also
include a secondary memory 910. The secondary memory
910 may include, for example, a hard disk drive 912 and/or
a removable storage drive 914. The removable storage drive
914 reads from and/or writes to a removable storage unit 918
in a well known manner. Removable storage unit 918
represents a floppy disk, magnetic tape, optical disk, or other
storage medium which is read by and written to by remov-
able storage drive 914. The removable storage unit 918
includes a computer usable storage medium having stored
therein computer software and/or data.

In alternative implementations, secondary memory 910
may include other means for allowing computer programs or
other instructions to be loaded into computer system 900.
Such means may include, for example, a removable storage
unit 922 and an interface 920. Examples of such means may
include a removable memory chip (such as an EPROM, or
PROM) and associated socket, and other removable storage
units 922 and interfaces 920 which allow software and data
to be transferred from the removable storage unit 922 to
computer system 900.

Computer system 900 may also include a communica-
tions interface 924. Communications interface 924 allows
software and data to be transferred between computer sys-
tem 900 and external devices. Examples of communications
interface 924 may include a modem, a network interface
(such as an Ethernet card), a communications port, a PCM-
CIA slot and card, etc. Software and data transferred via
communications interface 924 are in the form of signals 928
which may be electronic, electromagnetic, optical or other
signals capable of being received by communications inter-
face 924. These signals 928 are provided to communications
interface 924 via a communications path (i.c., channel) 926.
This channel 926 carries signals 928 and may be imple-
mented using wire or cable, fiber optics, a phone line, a
cellular phone link, an RF link and other communications
channels. In an embodiment of the invention, signals 928
comprise performance reports 730a through 730n, received
for processing by performance monitor 720. Information
representing graphics data 810a through 810z can also be
sent in the form of signals 928 from processor 904 to
rendering pipelines 520z through 520n.

In this document, the terms “computer program medium
* and “computer usable medium ” are used to generally refer
to media such as removable storage units 918 and 922, a
hard disk installed in hard disk drive 912, and signals 928.
These computer program products are means for providing
software to computer system 900.

Computer programs (also called computer control logic)
are stored in main memory 908 and/or secondary memory
910. Computer programs may also be received via commu-
nications interface 924. Such computer programs, when
executed, enable the computer system 900 to implement the
present invention as discussed herein. In particular, the

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 61 of 66

US 6,885,376 B2

7

computer programs, when executed, enable the processor
904 to implement the present invention. Accordingly, such
computer programs represent controllers of the computer
system 900. Where the invention is implemented using
software, the software may be stored in a computer program
product and loaded into computer system 900 using remov-
able storage drive 914, hard drive 912 or communications
interface 924.

1. Method

The method of the invention according to one embodi-
ment is illustrated in FIG. 10. This embodiment addresses
processing when the tiles of a frame are configured in a
single row or a single column (i.e., 1 x n or n x 1). The
process begins at step 1010. In step 1020, an index value 1
is initialized to zero. In step 1030, a performance monitor
receives a performance report for frame i, for each rendering
pipeline. In step 1040, a determination is made as to whether
the application has completed running. If so, the process
concludes in step 1080. If the application is not yet finished,
the process continues at step 1050. Here a determination is
made as to whether an imbalance exists among the rendering
pipelines as to the amount of time that was required to render
their respective tiles in the current frame. This determination
is illustrated in greater detail below.

If an imbalance is detected, then the process continues at
step 1055. Here, the tiles are resized so as to rebalance the
load among rendering pipelines for purposes of rendering
the subsequent frame. For example, if the tiles of a frame are
arrayed as a single row, and the imbalance exists between
two rendering pipelines that correspond to adjacent tiles, the
resizing can be expressed numerically as follows:

pixelshift=0.5* (maxtime-mintime)*(width of maxtile)/maxtime.

This equation describes the amount by which the vertical
boundary between the two adjacent tiles needs to be shifted.
Maxtime refers to the amount of time required by the
rendering pipeline that took the longest to render its tile.
Similarly, mintime refers to the time required by the ren-
dering pipeline that took the shortest time to render its tile.
Width of maxtile is the width of the tile that took the longest
to render.

Note that if the tiles corresponding to maxtime and
mintime are not immediately adjacent, then the intervening
tile or tiles maintain their current width and are repositioned
in the direction of the reduced tile. Also, if the tiles are
arranged in a single column instead of a single row, then the
boundaries between tiles are horizontal, and the shift of
boundaries is vertical. Hence, width of maxtile above is
replaced by the height of maxtile. These variations are
described in greater detail below.

In step 1060, the index i is incremented by one in order
to process the subsequent frame. In step 1070, graphics data
is sent by the allocation module to the rendering pipelines.
Allocation of graphics data is done on a per tile basis. All
graphics data associated with a particular tile is sent to a
particular rendering pipeline. If necessary, the tiles will have
been resized according to the process described with respect
to step 1055 above. Processing returns to step 1030 once
rendering of the subsequent frame is completed.

Step 1050 above, the determination of whether or not an
imbalance exists among rendering pipelines, is illustrated in
greater detail in FIG. 11. The process starts at step 1110. In
step 1120, the maxtime rendering pipeline is determined,
i.e., the pipeline with the longest rendering time for its tile
in the current frame. In step 1130, the mintime rendering
pipeline is determined, i.e., the pipeline with the shortest
rendering time for its tile in the current frame. In step 1140,

10

15

20

25

30

35

40

45

50

55

60

65

8

a determination is made as to whether the difference between
maxtime and mintime exceeds the threshold value. If so,
then an imbalance is detected (condition 1160); if not, then
no imbalance is detected (condition 1150). The process is
concluded at step 1170.

In an embodiment of the invention, the threshold is
defined to be a fixed percentage of maxtime. For example,
the threshold can be defined to be 10% of maxtime. In this
case, if the difference between maxtime and mintime
exceeds 10% of maxtime, then an imbalance is detected.
Depending on the size of the dataset being rendered, a
different percentage may be appropriate. For some datasets,
10% may be appropriate. However, 1 or 2% may be more
appropriate for a larger dataset since, for a large dataset, 1 or
2% of maxtime can be a significant disparity.

The resizing of tiles, described above with respect to step
1055, is illustrated in FIGS. 12A and 12B. The frame of FIG.
12A is composed of two tiles. Their widths in the current
frame are labelled 1210 and 1230. In this example, an
imbalance has been detected in the time required by the
respective rendering pipelines, such that the tile having
width 1230 has taken significantly longer to render than the
tile having width 1210. As a result, the boundary between
the two tiles is shifted by distance 1237. Hence, for the next
frame, the tiles have widths of 1220 and 1240 respectively.
This resizing alters the amount of graphics data that must be
rendered by each rendering pipeline, so that the respective
workloads are more balanced for the next frame.

FIG. 12B shows a frame consisting of two tiles arranged
vertically. In the current frame, the tiles have heights 1250
and 1270. A determination is then made that a significant
imbalance exists in the rendering times for the two tiles. In
particular, the tile having width 1270 has taken significantly
longer to render than the tile having width 1250. As a result,
the boundary between the two tiles is shifted upward by a
distance 1277. In the next frame, therefore, one tile has a
height 1280, while the other has a height 1260. Hence, for
the next frame, one rendering pipeline now has a smaller tile
to render, while the other rendering pipeline has a larger tile
to render compared to the previous frame. The respective
workloads are now more balanced for the next frame.

FIGS. 13A and 13B illustrate a frame composed of four
tiles arranged as a single row. In the current frame, shown in
FIG. 13A, two adjacent frames have widths 1310 and 1320.
A determination is then made that, of the four rendering
pipelines, the rendering pipeline associated with the tile
having width 1310 required the shortest amount of time to
render its tile (mintime), while the rendering pipeline asso-
ciated with the tile having width 1320 took the longest to
render its tile (maxtime). Moreover, it is determined that the
difference in these two rendering times is so significant as to
be an imbalance. Hence, as shown in FIG. 13B, the tile that
required the shortest amount of time to render is increased
in width by a distance 1335. The tile that had taken the
longest amount of time to render is shrunk by a correspond-
ing amount. In the next frame, therefore, these two tiles have
widths 1330 and 1340 respectively, and their associated
rendering pipelines have accordingly altered workloads. The
other two tiles remain unchanged in width.

FIGS. 14A and 14B represent the situation where an
imbalance has been detected, but the tile that required the
longest amount of time to render and the tile requiring the
shortest amount of time to render are separated by one or
more intervening tiles. In FIG. 14A, the tile having width
1410 is determined to have taken the shortest amount of time
to render, while the tile having width 1430 is determined to
have taken the longest amount of time to render. As a result,

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 62 of 66

US 6,885,376 B2

9

the tile boundaries shift as shown in FIG. 14B. In particular,
the right boundary of the frame that took the shortest amount
of time to render is shifted to the right by a distance 1435.
Also, the left boundary of the frame that required the longest
amount of time to render is shifted to the right by the same
distance. Hence, for purposes of the next frame, these two
tiles have widths 1430 and 1450 respectively. Note, that the
intervening tile having width 1420 has been repositioned to
the right, but retains its original width. Hence, this tile has
been repositioned but not resized.

Another embodiment of the process of the invention is
illustrated in FIG. 15. This embodiment addresses the situ-
ation where a frame is divided into four tiles, two rows by
two columns. The process begins with step 1505. In step
1510, an index value is initialized to zero. In step 15185, the
performance monitor receives a performance report for the
current frame from each rendering pipeline. In step 1520, a
determination is made as to whether the application has
finished running. If so, the process concludes at step 1570.
Otherwise, the process continues at step 1525. Here, a
determination is made as to whether an imbalance exists as
to rendering of the two half frames (i.c., the two left tiles,
taken collectively, in comparison to the two right tiles, taken
collectively). This determination is described in greater
detail below.

If such an imbalance exists, then processing continues at
step 1530. Here, the vertical boundary is shifted, either left
or right, thereby resizing all four tiles. The magnitude of this
shift is determined according to the process of step 1055 of
FIG. 10. In this case, the left and right half frames are treated
as single tiles. The time for rendering the left half tile is the
sum of the rendering times for the upper and lower left tiles.
The time for rendering the right half frame is calculated
similarly. The above equation for the pixelshift is then
applied to determine the extent of the boundary shift.

In step 1535, a decision is made as to whether an
imbalance exists between the upper and lower tiles of the left
half. If so, processing continues at step 1540. Here, the upper
left (UL) and lower left (LL) tiles are resized. In step 1545,
a determination is made as to whether an imbalance exists
between rendering of the upper and lower right tiles UR and
LR. If so, then resizing of the upper right and lower right
tiles is performed in step 1550. The resizing operations of
steps 1540 and 1550 are performed according to the above
equation for pixelshift, where the width of maxtile is
replaced by the height of maxtile.

In step 1555, the index value is incremented by one so that
the next frame can be rendered. In step 1560, graphics data
for the next frame is sent to each rendering pipeline. The
graphics data sent to a given rendering pipeline depends on
its potentially re-sized tile. The processing then returns to
step 1515.

Step 1525 above, the step of determining whether an
imbalance exists between the left and right half frames, is
illustrated in greater detail in FIG. 16. The process begins
with step 1610. In step 1620, the total rendering time
required for the left tiles is determined by summing the time
required to render the upper left (UL) tile (upper; sleft, stime)
and the time required to render the lower left(LL) tile
(lower, ;left, stime). For convenience, the total is referred to
as left, ;time.

In step 1630, the analogous operation is performed with
respect to the right tiles, upper right UR and lower right LR,
The total rendering time required for the right tiles is
determined by summing the time required to render the
upper right (UR) tile (upper,,right;stime) and the time
required to render the lower right (LR) tile

10

15

20

25

30

35

40

45

50

55

60

65

10

(lower5right, stime). For convenience, the total is referred
to as right ;time

In step 1640, a determination is made as to whether the
magnitude of the difference between left, time and
right, ;time exceeds a threshold value. If so, an imbalance is
detected between left and right half frames (state 1650). If
not, then no significant imbalance is detected (state 1660).
The process concludes at step 1670.

The results of the processing of FIG. 15 are illustrated in
FIGS. 17A-17C. FIG. 17A illustrates a frame composed of
a 2x2 array of tiles. The width of the left half frame is shown
as width 1705. The width of the right half frame is shown as
width 1710. The height of the upper tiles is shown as height
1712, and the height of the lower tiles is shown as height
1714. In FIG. 17B, a determination has been made that right
time exceeds left time by a significant margin. As a result,
the vertical boundary is shifted to the right by a distance of
1722. As a result, the left half frame now has a width of
1715, while the right half frame has width 1720. At this
point, the heights of the upper and lower tiles are unchanged.
In FIG. 17C, the left and right sides of the frame are
considered independently. With respect to the left side, a
determination is made that tile UL took significantly longer
to render than tile LL in the current frame. Consequently, the
horizontal boundary on the left side is raised, thereby
increasing the height of the tile LL by a distance 1735. As
a result, tile UL now has a height 1730. On the right side, a
determination is made that tile UR took significantly longer
to render than the tile LR in the current frame. As a result,
the horizontal boundary on the right side is raised by a
distance 1745. The height of tile UR, for purposes of the
next frame, is now 1740.

In an alternative embodiment of the method of the
invention, a 2x2 frame can first be processed as upper and
lower half frames. In such an embodiment, a determination
is made as to whether either upper or lower half frame takes
significantly longer to render than the other. For either half
frame, the time required to render the half frame is the sum
of the rendering times for its left and right tiles. If either
upper or lower half frame takes significantly longer to render
than the other, the horizontal boundary is shifted by an
amount determined by the above pixelshift equation for
purposes of the next frame. The left and right tiles of each
of these half frames can then be considered. For each half
frame, a determination is made as to whether the left or right
tile has taken significantly longer to render than the other. If
so, the vertical boundary for that half frame is shifted
according to the above pixelshift equation for purposes of
the next frame.

The above methods can be applied to a tiling scheme other
than the 2x2, 1xn, and nx1 cases described above, provided
that the tiling scheme can be decomposed into such cases.
For example, a tiling scheme having two rows of eight tiles
can be decomposed into two half tiles, each 1x8. The
horizontal boundary can first be shifted if the difference in
rendering times between the two half tiles is significant, as
described above with respect to FIGS. 10, 11, and 12B.
Within each half frame, re-sizing can be performed as
described above with respect to FIGS. 10, 11, and 13B or
14B.

The processing of the invention from the perspective of
the rendering pipelines is illustrated in FIG. 18. The process
begins at step 1810. In step 1820, an index value is initial-
ized to zero. In step 1830, frame i is rendered. In step 1840,
each rendering pipeline generates a performance report
stating the length of time required to render its respective tile
in the current frame. In step 1850, the performance reports

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 63 of 66

US 6,885,376 B2

11

are sent to the performance monitor. In step 1860, the
determination is made as to whether the application has
completed running. If so, the process concludes at step 1890.
Otherwise, the process continues at step 1870 where the
index value is incremented by 1. In step 1880, after any
imbalances have been identified and any tile resizing has
been performed, the rendering pipelines receive graphics
data for the next frame. As in previous frames, each ren-
dering pipeline receives the graphics data associated with a
particular tile. The process then continues at step 1830,
wherein the next frame is rendered.

What is claimed is:

1. A system for generating a sequence of computer
graphics frames, the system comprising:

a plurality of rendering pipelines that cach receive a
distinct subset of graphics data for a respective current
frame in the sequence of frames, render said distinct
subset of graphics data, and produce a performance
report regarding the workload incurred by each respec-
tive rendering pipeline during said rendering;

a performance monitor that receives said performance
report from each rendering pipeline and determines
whether a disparity in the workloads of the respective
rendering pipelines exceeds a threshold to thereby
identify a load imbalance; and

an allocation module that reallocates graphics data for a
next frame to said rendering pipelines, wherein reallo-
cation depends on said load imbalance and seeks to
reduce any subsequent load imbalance associated with
rendering said next frame.

2. The system of claim 1, further comprising a graphics
application, wherein said graphics application comprises
said performance monitor.

3. The system of claim 2, wherein said graphics applica-
tion further comprises said allocation module.

4. The system of claim 1, further comprising a compositor
that receives rendered graphics data from each said render-
ing pipeline and composits said rendered graphics data to
form each of said frames.

5. The system of claim 1, wherein each said distinct subset
of graphics data corresponds 10 one of a plurality of tiles of
said current frame.

6. The system of claim 5, wherein said allocation module
reallocates graphics data to said rendering pipelines for said
next frame by resizing tiles of said next frame relative to said
tiles of said current framer.

7. A method of rendering successive frames using a
plurality of rendering pipelines, the method comprising the
steps of:

(a) rendering a current frame, wherein each rendering

pipeline renders a tile of the current frame;

(b) generating a performance report for each rendering
pipeline, each performance report indicating the work-
load incurred by the respective rendering pipeline dur-
ing said rendering;

(c) sending the performance reports to a performance
monitor; and

(d) at each rendering pipeline, receiving graphics data
associated with a tile of a next frame, wherein a
plurality of the tiles of the next frame have been resized
relative to the corresponding tiles of the current frame
if the difference between the performance reports are
above a threshold.

8. A method of controlling the rendering of successive

frames, wherein the rendering is performed using a plurality
of rendering pipelines, the method comprising the steps of:

10

15

20

60

12

(2) receiving a performance report for each rendering
pipeline, each performance report indicating the work-
load incurred by the respective rendering pipeline dur-
ing rendering of a current frame;

(b) determining whether the performance reports indicate
a significant load imbalance among the rendering
pipelines, wherein said significant load imbalance indi-
cates that the difference between the performance
reports is above a threshold;

(c) if a significant load balance is indicated, resizing at
least one tile of the next frame relative to a correspond-
ing tile of the current frame; and

(d) sending graphics data associated with the next frame
to the rendering pipelines, wherein the graphics data
sent to a given rendering pipeline is associated with a
tile of the next frame.

9. The method of claim 8, wherein said step b) comprises

the steps of:

(i) determining the rendering pipeline with the longest
rendering time for its tile in the current frame;

(if) determining the rendering pipeline with the shortest
rendering time for its tile in the current frame; and

(i11) determining if the difference between the longest and
shortest rendering times exceeds a threshold value,
thereby indicating a significant load imbalance.

10. The method of claim 9, wherein the threshold value is

a percentage of the longest rendering time.

11. The method of claim 9, wherein said step c) comprises
the steps of:

(1) with respect to the next frame, increasing the size of the
tile corresponding to the rendering pipeline with the
shortest rendering time, by an amount proportional to
the difference between the longest and shortest render-
ing times; and

(if) with respect to the next frame, decreasing the size of
the tile corresponding to the rendering pipeline with the
longest rendering time by the same amount.

12. The method of claim 8, wherein a subset of tiles in the
current frame constitutes a first half frame, and the remain-
ing tiles in the current frame constitute a second half frame
wherein said step b) comprises:

(i) summing the rendering times for all tiles in the first

half frame of the current frame;

(ii) summing the rendering times for all tiles in the second
half frame of the current frame;

(iil) determining if the difference between the two sums
exceeds a threshold value, thereby indicating a signifi-
cant load imbalance.

13. The method of claim 12, wherein said step c¢) com-

prises:

(1) with respect to the next frame, increasing the size of at
least one tile of the half frame having the lesser sum;
and

(ii) with respect to the next frame, decreasing the size of
at least one tile of the half frame having the greater
sum,

wherein the size of the half frame having the lesser sum
is increased by an amount proportional to the difference
between the two sums and the size of the frame half
having the greater sum is decreased by the same
amount.

14. The method of claim 13, wherein said step c¢) further

comprises the steps of:

(ii1) determining the rendering pipeline with the longest
rendering time for its tile in the first half frame of the
current frame;

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 64 of 66

US 6,885,376 B2

13

(iv) determining the rendering pipeline with the shortest
rendering time for its tile in the first half frame of the
current frame;

(v) determining the difference between the longest and
shortest rendering times in the first half frame of the
current frame;

(vi) determining if the difference between the longest and
shortest rendering times in the first half frame of the
current frame exceeds the threshold value; and

(vii) if the difference exceeds the threshold value,

with respect to the next frame, increasing the size of the
tile corresponding to the rendering pipeline with the
shortest rendering time in the first half frame of the
current frame, by an amount proportional to the differ-
ence between the longest and shortest rendering times
in the first half frame of the current frame and,

with respect to the next frame, decreasing the size of the
tile corresponding to the rendering pipeline with the
longest rendering time in the first half frame of the
current frame, by the same amount.

15. The method of claim 13, wherein said step) further

comprises the steps of:

(ii) determining the rendering pipeline with the longest
rendering time for its tile in the second half frame of the
current frame;

(iv) determining the rendering pipeline with the shortest
rendering time for its tile in the second half frame of the
current frame;

(v) determining the difference between the longest and
shortest rendering times in the second half frame of the
current frame;

(vi) determining if the difference between the longest and
shortest rendering times in the second half frame of the
current frame exceeds the threshold value; and

(vii) if the difference exceeds the threshold value,

with respect to the next frame, increasing the size of the
tile corresponding to the rendering pipeline with the
shortest rendering time in the second half frame of the
current frame by an amount proportional to the differ-
ence between the longest and shortest rendering times
in the second half frame of the current frame, and

with respect to the next frame, decreasing the size of the
tile corresponding to the rendering pipeline with the
longest rendering time in the second half frame of the
current frame, by the same amount.

16. A computer program product comprising a computer

useable medium having control logic stored therein for
causing a computer to render successive frames using a
plurality of rendering pipelines, the computer control logic

comprising:

a first computer readable program code means for causing
the computer to render a current frame, wherein each
rendering pipeline renders a tile of the current frame;

a second computer readable program code means for
causing the computer to generate a performance report
for each rendering pipeline, each performance report
indicating the workload incurred by the respective
rendering pipeline during said rendering;

a third computer readable program code means for caus-
ing the computer to send the performance reports to a
performance monitor; and

a fourth computer readable program code means for
causing the computer to allow receipt of graphics data
at each rendering pipeline, wherein graphics data

10

15

20

25

30

35

45

50

55

65

14

received at each rendering pipeline is associated with a
tile of a next frame, and wherein a plurality of the tiles
of the next frame have been resized relative to the
corresponding tiles of the current frame if the differ-
ence between the performance reports are above a
threshold.

17. A computer program product comprising a computer
useable medium having control logic stored therein for
causing a computer to control the rendering of successive
frames, wherein the rendering is performed using a plurality
of rendering pipelines, the computer control logic compris-
ing:

a first computer readable program code means for causing
the computer to receive a performance report for each
rendering pipeline, each performance report indicating
the workload incurred by the respective rendering
pipeline during rendering of a current frame;

a second computer readable program code means for
causing the computer to determine whether the perfor-
mance reports indicate a significant load imbalance
among the rendering pipelines, wherein the significant
load imbalance indicates that the difference between
the performance reports is above a threshold;

a third computer readable program code means for caus-
ing the computer to rebalance the workload to be
incurred by the rendering pipelines during rendering of
a next frame, if a significant load balance is indicated,
by resizing at least one tile of the next frame relative to
a corresponding tile of the current frame; and

a fourth computer readable program code means for
causing the computer to send graphics data associated
with the next frame to the rendering pipelines, wherein
the graphics data sent to a given rendering pipeline is
associated with a tile of the next frame.

18. The computer program product of claim 17, wherein
said second computer readable program code means com-
prises:

(i) computer readable program code means for causing the
computer to determine the rendering pipeline with the
longest rendering time for its tile in the current frame;

(i1) computer readable program code means for causing
the computer to determine the rendering pipeline with
the shortest rendering time for its tile in the current
frame; and

(iil) computer readable program code means for causing
the computer to determine if the difference between the
longest and shortest rendering times exceeds a thresh-
old value, thereby indicating a significant load imbal-

ance.
19. The computer program product of claim 17, wherein

the threshold value is a percentage of the longest rendering
time.

20. The computer program product of claim 17, wherein
said third computer readable program code means com-
prises:

(1) computer readable program code means for causing the
computer to increase the size of the tile corresponding
to the rendering pipeline with the shortest rendering
time, by an amount proportional to the difference
between the longest and shortest rendering times, for
purposes of the next frame;

(ii) computer readable program code means for causing
the computer to decrease the size of the tile correspond-
ing to the rendering pipeline with the longest rendering
time by the same amount, for purposes of the next
frame.

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 65 of 66

US 6,885,376 B2

15

21. A method of controlling the rendering of successive
frames, wherein the rendering is performed using a plurality
of rendering pipelines, the method comprising the steps of:

(a) receiving a performance report for each rendering
pipeline, each performance report indicating the work-
load incurred by the respective rendering pipeline dur-
ing rendering of a current frame;

(b) determining whether the performance reports indicate
a significant load imbalance among the rendering
pipelines, wherein said step b) comprises:

(1) determining the rendering pipeline with the longest
rendering time for its tile in the current frame;

(i1) determining the rendering pipeline with the shortest
rendering time for its tile in the current frame; and

(iii) determining if the difference between the longest
and shortest rendering times exceeds a threshold
value, thereby indicating a significant load imbal-
ance;

(c) if a significant load balance is indicated, resizing at
least one tile of the next frame relative to a correspond-
ing tile of the current frame; and

(d) sending graphics data associated with the next frame
to the rendering pipelines, wherein the graphics data
sent to a given rendering pipeline is associated with a
tile of the next frame.

22. The method of claim 21, wherein the threshold value

is a percentage of the longest rendering time.

23. The method of claim 21, wherein said step ¢) com-
prises the steps of:

(i) with respect to the next frame, increasing the size of the
tile corresponding to the rendering pipeline with the
shortest rendering time, by an amount proportional to
the difference between the longest and shortest render-
ing times; and

(i1) with respect to the next frame, decreasing the size of
the tile corresponding to the rendering pipeline with the
longest rendering time by the same amount.

24. A method of controlling the rendering of successive
frames, wherein the rendering is performed using a plurality
of rendering pipelines, the method comprising the steps of:

(a) receiving a performance report for each rendering
pipeline, each performance report indicating the work-
load incurred by the respective rendering pipeline dur-
ing rendering of a current frame;

(b) determining whether the performance reports indicate
a significant load imbalance among the rendering
pipelines, wherein a subset of tiles in the current frame
constitutes a first half frame, and the remaining tiles in
the current frame constitute a second half frame
wherein said step b) comprises:

(i) summing the rendering times for all tiles in the first
half frame of the current frame;

(i) summing the rendering times for all tiles in the
second half frame of the current frame;

(iii) determining if the difference between the two sums
exceeds a threshold value, thereby indicating a sig-
nificant load imbalance;

(c) if a significant load balance is indicated, resizing at
least one tile of the next frame relative to a correspond-
ing tile of the current frame; and

(d) sending graphics data associated with the next frame
to the rendering pipelines, wherein the graphics data
sent to a given rendering pipeline is associated with a
tile of the next frame.

25. The method of claim 24, wherein said step c) com-

prises:

w

15

20

25

30

35

40

50

55

60

16

(1) with respect to the next frame, increasing the size of at
least one tile of the half frame having the lesser sum;
and

(if) with respect to the next frame, decreasing the size of
at least one tile of the half frame having the greater
sum,

wherein the size of the half frame having the lesser sum
is increased by an amount proportional to the difference
between the two sums and the size of the frame half
having the greater sum is decreased by the same
amount.
26. The method of claim 25, wherein said step ¢) further
comprises the steps of:

(iil) determining the rendering pipeline with the longest
rendering time for its tile in the first half frame of the
current frame;

(iv) determining the rendering pipeline with the shortest
rendering time for its tile in the first half frame of the
current frame;

(v) determining the difference between the longest and
shortest rendering times in the first half frame of the
current frame;

(vi) determining if the difference between the longest and
shortest rendering times in the first half frame of the
current frame exceeds the threshold value; and

(vii) if the difference exceeds the threshold value,

with respect to the next frame, increasing the size of the
tile corresponding to the rendering pipeline with the
shortest rendering time in the first half frame of the
current frame, by an amount proportional to the differ-
ence between the longest and shortest rendering times
in the first half frame of the current frame and,

with respect to the next frame, decreasing the size of the
tile corresponding to the rendering pipeline with the
longest rendering time in the first half frame of the
current frame, by the same amount.
27. The method of claim 25, wherein said step c) further
comprises the steps of:

(ii1) determining the rendering pipeline with the longest
rendering time for its tile in the second half frame of the
current frame;

(iv) determining the rendering pipeline with the shortest
rendering time for its tile in the second half frame of the
current frame;

(v) determining the difference between the longest and
shortest rendering times in the second half frame of the
current frame;

(vi) determining if the difference between the longest and
shortest rendering times in the second half frame of the
current frame exceeds the threshold value; and

(vii) if the difference exceeds the threshold value,

with respect to the next frame, increasing the size of the
tile corresponding to the rendering pipeline with the
shortest rendering time in the second half frame of the
current frame by an amount proportional to the differ-
ence between the longest and shortest rendering times
in the second half frame of the current frame, and

with respect to the next frame, decreasing the size of the
tile corresponding to the rendering pipeline with the
longest rendering time in the second half frame of the
current frame, by the same amount.

28. A computer program product comprising a computer

useable medium having control logic stored therein for
causing a computer to control the rendering of successive

Case: 3:06-cv-00611-bbc Document #: 6 Filed: 11/30/06 Page 66 of 66

US 6,885,376 B2

17

frames, wherein the rendering is performed using a plurality
of rendering pipelines, the computer control logic compris-
ing:

a first computer readable program code means for causing
the computer to receive a performance report for each
rendering pipeline, each performance report indicating
the workload incurred by the respective rendering
pipeline during rendering of a current frame;

a second computer readable program code means for
causing the computer to determine whether the perfor-
mance reports indicate a significant load imbalance
among the rendering pipelines, wherein said second
computer readable program code means comprises:
(i) computer readable program code means for causing

the computer to determine the rendering pipeline
with the longest rendering time for its tile in the
current frame;

(if) computer readable program code means for causing
the computer to determine the rendering pipeline
with the shortest rendering time for its tile in the
current frame; and

(iii) computer readable program code means for caus-
ing the computer to determine if the difference
between the longest and shortest rendering times
exceeds a threshold value, thereby indicating a sig-
nificant load imbalance;

a third computer readable program code means for caus-
ing the computer to rebalance the workload to be
incurred by the rendering pipelines during rendering of
a next frame, if a significant load balance is indicated,
by resizing at least one tile of the next frame relative to
a corresponding tile of the current frame; and

a fourth computer readable program code means for
causing the computer to send graphics data associated
with the next frame to the rendering pipelines, wherein
the graphics data sent to a given rendering pipeline is
associated with a tile of the next frame.

29. A computer program product comprising a computer

useable medium having control logic stored therein for

5

25

35

18

causing a computer to control the rendering of successive
frames, wherein the rendering is performed using a plurality
of rendering pipelines, the computer control logic compris-
ing:

a first computer readable program code means for causing
the computer to receive a performance report for each
rendering pipeline, each performance report indicating
the workload incurred by the respective rendering
pipeline during rendering of a current frame;

a second computer readable program code means for
causing the computer to determine whether the perfor-
mance reports indicate a significant load imbalance
among the rendering pipelines;

a third computer readable program code means for caus-
ing the computer to rebalance the workload to be
incurred by the rendering pipelines during rendering of
a next frame, if a significant load balance is indicated,
by resizing at least one tile of the next frame relative to
a corresponding tile of the current frame, wherein said
third computer readable program code means com-
prises:

(1) computer readable program code means for causing
the computer to increase the size of the tile corre-
sponding to the rendering pipeline with the shortest
rendering time, by an amount proportional to the
difference between the longest arid shortest render-
ing times, for purposes of the next frame;

(ii) computer readable program code means for causing
the computer to decrease the size of the tile corre-
sponding to the rendering pipeline with the longest
rendering time by the same amount, for purposes of
the next frame; and

a fourth computer readable program code means for
causing the computer to send graphics data associated
with the next frame to the rendering pipelines, wherein
the graphics data sent to a given rendering pipeline is
associated with a tile of the next frame.

