Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 1 of 49 PagelD #: 3

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF DELAWARE

RIVERBED TECHNOLOGY, INC,,)
)
Plaintiff,)
)
Vs.) Civil Action No.

)
QUANTUM CORPORATION, a Delaware)
Corporation, A.C.N. 120 786 012 PTY. LTD.,)

an Australian Company, and ROCKSOFT) TRIAL BY JURY DEMANDED
LTD., an Australian Company,)
)
Defendants.)

COMPLAINT

Plaintiff Riverbed Technology, Inc. ("Riverbed") by and through its undersigned counsel,
hereby complains against Quantum Corporation ("Quantum”), A.C.N. 120 786 012 Pty. Ltd.
("A.C.N. 120", and Rocksoft Limited ("Rocksoft”) (collectively "Defendants") as follows:

PARTIES

1. Riverbed is a corporation organized and existing under the laws of the State of
Delaware, having a principal place of business at 199 Fremont Street, San Francisco, California,
94105. Riverbed is the technology and market leader in wide area data services (WDS).
Riverbed designs, builds, and sells devices that facilitate the efficient sharing of computer data
over extended, or wide-area, computer networks. Riverbed's technology is used to, among other
things, improve the performance of everyday computer applications, such as e-mail, file sharing,
and document management, by a broad range of companies. Riverbed has developed and
patented pioneering technologies applicable to wide area data services applications as well as

other applications, such as data storage applications.

RLF1-3241395-1

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 2 of 49 PagelD #: 4

2. Quantum is a corporation organized and existing under the laws of the State of
Delaware, having a principal place of business at 1650 Technology Drive, Suite 700, San Jose,
CA 95110.

3. Upon information and belief, A.C.N. 120 is an Australian company organized and
existing under the laws of Australia, with a place of business at 175 Fullarton Road, Level 1,
Dulwich, SA 5065, Australia.

4, Upon information and belief, Rocksoft is an Australian company organized and
existing under the laws of Australia, with a place of business at 175 Fullarton Road, Level 1,
Dulwich, SA 5065, Australia.

3. Upon information and belief, Quantum is the parent company to defendants
A.CN. 120 and Rocksoft. Upon information and belief, Rocksoft is a subsidiary of A.C.N. 120.

JURISDICTION AND VENUE

6. This Cowrt has subject matter jurisdiction over this complaint pursuant to 28
U.S.C. §§ 1331 and 1338 because this action includes claims of infringement under the patent
laws of the United States, 35 U.S.C. § 1 et seq., and pursuant to 28 U.S.C. §§ 2201 and 2202
because this action includes declaratory judgment claims. Specifically, this action includes
declaratory judgment claims of non-infringement and invalidity of U.S. Patent No. 5,990,810
("the ‘810 patent"} (Exhibit A).

7. Personal jurisdiction over Defendants comports with the United States
Constitution, Delaware's long-arm statute and the Federal Rules of Civil Procedure. Quantum,
A.C.N. 120, and Rocksoft are subject to the jurisdiction of this Court for at least the following
reasons. Quantum is subject to the jurisdiction of this Court because Quantum does business in
and is incorporated under the laws of Delaware. A.CN. 120 and Rocksoft are subject to the

jurisdiction of this Court because (1) both are current or past assignees of the ‘810 patent that

2
RLF1-3241395-1

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 3 of 49 PagelD #: 5

have directly or indirectly alleged through Quantum, a Delaware corporation, that Riverbed
infringes the ‘810 patent in the United States, which includes the District of Delaware, and (2)
A CN. 120 and Rocksoft have authorized Quantum to assert patent infringement claims under
the ‘810 patent apgainst Riverbed in the United States, which includes the District of Delaware.
A.CN. 120 is also subject to the jurisdiction of this Court because (1) upon information and
belief, it is a patent holding subsidiary of it parent Quantum, which is a Delaware corporation,
that has alleged infringement Riverbed, also a Delaware corporation, and (2) it is subject to
Federal Rule of Civil Procedure 4(k)(2). Rocksoft is also subject to the jurisdiction of this Court
because, upon information and belief, Rocksoft does business in Delaware and has sold and/or
offered to sell Rocksoft products that incorporate the purported inventions of the ‘810 patent
through its website which is accessible thought United States, including the District of Delaware.

8. Venue in this District is proper under 28 U.S.C. §§ 1391(b) and (c), and 1400(b),
because Defendants are subject to personal jurisdiction in the District of Delaware.

EXISTENCE OF AN ACTUAL CONTROVERSY

9. There is an actual controversy within the jurisdiction of this Court under 28
U.S.C. §§ 2201 and 2202.

10. Quantum filed a patent infringement complaint against Riverbed in the Northern
District of California in August 2007 alleging that Riverbed has manufactured, sold, offered to
sell and/or imported Riverbed Steelhead products that infringe the ‘810 patent. Quantum also
alleged in its complaint that the ‘810 patent is valid and meets all the requirements of 35 U S.C.
§ 1 et seq.

I During the Northern District of California action, Riverbed became aware that, as
of the filing of its complaint, Quantum had not obtained any rights in the ‘810 patent, either by

exclusive license or assignment, and thus lacked standing to assert the ‘810 patent against

3

RLF1-3241395-]

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 4 of 49 PagelD #: 6

Riverbed. Upon information and belief, Riverbed now believes that Rockseft and/or A CN. 120
are assignees of the ‘810 patent and Quantum is an exclusive licensee of the ‘810 patent due to
actions taken after the filing of its complaint. Riverbed intends to immediately file a motion to
dismiss Quantum's patent infringement claims under the ‘810 patent in the Northern District of
California because Quantum did not have standing at the time that lawsuit was filed and
therefore that court does not have subject matter jurisdiction over Quantum's claims and
Quantum cannot cure its standing defect.

12. Based on Quantum's conduct in filing of a patent infringement lawsuit in August
2007 and subsequent discovery that it did not have standing to sue, Quantum and its subsidiaries
A.CN. 120 and Rocksoft have created in Riverbed a reasonable apprehension that Quantum,
A.CN. 120 and Rocksoft will initiate yet another patent infringement suit against Riverbed,
alleging that Riverbed infringes the ‘810 patent.

13, Consequently, an actual and justiciable controversy exists between Riverbed and
Quantum, A.C.N. 120 and Rocksoft as to whether the patents-in-suit are invalid and/or infringed.
Absent a declaration of invalidity and/or noninfringement, Quantum, A.C.N. 120 and Rocksoft

will continue to wrongfully assert the ‘810 patent against Riverbed.

FIRST CAUSE OF ACTION
(Declaratory Judgment of Non-Infringement)

14. Riverbed incorporates the allegations in paragraphs 1 through 13 of this complaint
as if fully set forth herein,
15. Riverbed's products do not infringe, either directly or indirectly, any claim of the

‘810 patent.

RLF§-3241395-)

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 5 of 49 PagelD #: 7

16. An actual controversy, within the meaning of 28 U.S.C. §§ 2201 and 2202, exists
between Riverbed and Quantum, A.C.N. 120 and Rocksoft. Riverbed seeks a judgment that it

does not infringe the ‘810 patent.

SECOND CAUSE OF ACTION
(Declaratory Judgment of Invalidity)

17. Riverbed incorporates the allegations in paragraphs 1 through 16 of the complaint
as if fully set forth herein.

18. The ‘810 patent is invalid for failure to satisfy one or more of the conditions of
patentability set forth in Part I of Title 35 of the United States Code, including, but not limited
to, 35 U.S.C. §§ 101, 102, 103 and 112,

19. An actual controversy, within the meaning of 28 U.S.C. §§ 2201 and 2202, exists
between Riverbed and Quantum, A.C.N. 120 and Rocksoft. Riverbed seeks a judgment that the
‘810 patent is invalid.

EXCEPTIONAL CASE

20. This is an exceptional case entitling Riverbed to an award of its attorneys' fees
incurred in connection with defending and prosecuting this action pursuant to 35 U.S.C. § 285,
as a result of, infer alia, Quantum's attempted assertion of the ‘810 patent against Riverbed with

the knowledge that the ‘810 patent is not-infringed and/or invalid.

REQUEST FOR RELIEF

WHEREFORE, Riverbed respectfully requests the following relief:
a. A judgment declaring that Riverbed has not infringed and is not infringing
any claim of the ‘810 patent, and that Riverbed has not contributed to or induced and is not

contributing to or inducing infringement of any claim of the ‘810 patent;

RLF{-3241395-1

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 6 of 49 PagelD #: 8

b. A judgment declaring that each claim of the ‘810 patent is invalid;

C. A judgment declaring this to be an exceptional case under 35 U.S.C. § 285
and awarding Riverbed its costs, expenses, and reasonable attorneys' fees;

d. That the Court award Riverbed such other and further relief as the Court

deems just and proper.

DEMAND FOR JURY TRIAL

Pursuant to Fed. R. Civ. P. 38(b), Riverbed demands a trial by jury on all issues so

triable.
' C g5 1)
QDH Jeffrey L. Moyer (#3309)
Moyer@rlf.com
OF COUNSEL: Richards, Layton & Finger, P.A.
920 N. King Street
Claude M. Stern Wilmington, DE 19901
Todd M. Briggs (302) 651-7700
Quinn Emanuel Urquhart Oliver & Hedges Attorneys for Plaintiff
555 Twin Dolphin Drive, Suite 560 Riverbed Techrnology, Inc.
Redwood Shores, CA 94065-2139
(650) 801-5000
Dated: January 9, 2008
6

RL¥1-3241395-1

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 7 of 49 PagelD #: 9

EXHIBIT A

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 8 of 49 PagelD #: 10

IVREARR AR 0 A

United States Patent 9

Williams

5,990,810
Nov. 23, 1999

Patent Number:
Date of Patent:

[11]
(45]

[54] METHOD FOR PARTITIONING A BLOCK
OF DATA INTO SUBBLOCKS AND FOR
STORING AND COMMUNCATING SUCH
SUBBLOCKS

[76] Ieventor: Ress Nell Willinms, 3/305 N Terrace,

Adelaide SAS000, Ausiralia

[21] Appl No: 08/894,091

[22] PCT Filed: Feh. 15, 1996

[86}] PCT Na: PCT/AUYG/0008]

§371 Date: Aug. 15, 1997
§ 102(c) Date: Aug. 15, 1997

[87] PCT Pub. No: WO96/25801
PCT Pub Date: Aug. 22, 1996

[30] Foreign Application Priority Dala

Feb 17, 1995 {AU] Awstrulia oo PN1232
Apr 12,1995 [AU] Auvstralia PN2392

[51] Int. CL° HO3M 7/60

f52] US. CL . 341/51; 341/67

[58] Field of Search . 341751, 50, 67,

375/241; T04/203

[56] References Cited

US PATENT DOCUMENTS
4,698,628 10/1987 Ilerkert et of. . . 340/82502
5,235,623 B/1993 Sugiyama ctal 341/67
5A479,654 12/1995 Squibbd .. .-« 395/600

OTHER PUBLICATIONS

Williams, Ross, “An algorithm for matching tex! {possibly
origina})", Newsgroup posting, comp compression, Jan 27,
1992

Williams, Ross, *Parailef data compiession”, Newsproup
posting, comp.conmpression.research, Jun. 30, 1992

Knuth, Donald E , “The Art of Computer Programiming, vol
3: Sorting and Scarching”, pp 508-513, Addison-Wesley
Publishing Company, 1973

Williams, Ross N, “An Intreduction lo Digest Algorithms’
Proceedings of the Dipital Equipment Computer Users Soci-
cty, pp 9-18, Aug. 1994

Witlinms, Ross N, “An Extremely Fast ZIV-Lempel Datla
Compression Algorithm”, Proceedings of Data Compression
Conlerence, pp- 362-371, Apr 1991,

Knuth, Donald I, The Art of Camputer Programming, vol
1: Fundamental Algorithms, pp 435-451, Addison Wesley
Publishing Company, 1973

Primary Fxaminer—Brizn Young
Artorney, Agent, or Firm—Greenberg Traurig; Robert P
Belt

(57 ABSTRACT

This invention provides a method and apparatus for detect-
ing common spans within one or more data blocks by
partitioning the blocks (FIG 4) into subblocks and searching
the group of subblocks (FIG. 12) (or their corresponding
hashes (FIG 13)} for duplicates. Blocks can be partitioned
into subblocks using a variety of methods, including meth-
ods that place subbiock boundarics at fixed positions (FIG
3), methods that place subbiock boundaries at dafa-
gependent positions (FIG. 3), and methods that yield mul-
tiple overlapping subblocks (FIG. 6). By comparing the
hashes of subblocks, common spans of one or more blocks
can be identified without ever having 1o compare the blocks
or subblocks themselves (FIG. 13) This leads to several
applications including an incremental backup system that
backs up changes rather than chaoged files (FIG. 25), a
wiility that determines the similaritics apd dilferences
between two files (FIG. 13), a file system that stores each
unique subblock at most once (FIG 26), and a communi-
cations system that eliminates the need to lransmi subblocks
already possessed by the receiver (FIG 19).

30 Claims, 26 Drawing Sheels

Flog.ast - DgDyet- Dy)

B
e

L -

K
[Tif1TT]
.

Hash ol subbblock
Tho subbbinck itself
Hagh of subbblock

Painter 10 subbblosk

[g____

A Projection Of h

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 9 of 49 PagelD #: 11

U.S. Patent Nov. 23,1999 Sheet 1 of 26 5,990,810

MADD 0003
Sheet 1 of 26

lDemonstr ates con| tent mislalignmen t. |
XDemonst|rates co | ntent mi| salignme | nt.

Figure 1

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 10 of 49 PagelD #: 12

U.S. Patent Nov. 23,1999 Sheet 2 of 26 5,990,810

Fixed an | d variab | le width | partiti | oning.
Fixe | d an|d variable wid | th part | itioning.

Figure 2

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 11 of 49 PagelD #: 13

U.S. Patent Nov. 23, 1999 Sheet 3 of 26 5,990,810

IData-—indep endent partitioning.
XData-inde | pendent pa | rtitioning| . |

Data-dep | edent | partiti | oning. |
XData-dep| endent partiti | oning. |

Figure 3

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 12 of 49 PagelD #: 14

U.S. Patent Nev. 23,1999 Sheet 4 of 26 5,990,810

F(bg.As1--ProDKe1--DeB) F(bj-A+1~‘"bj=bj+1-"bj+B)

Function result space

Figure 4

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 13 of 49 PagelD #: 15

U.S. Patent Nov. 23, 1999 Sheet 5 of 26 5,990,810
A B
- »
bl [[E I T TI T T TTTTTITITT T
e
Increase p

F(bp-A+1--Ppbpy-bpiB) ————

Function result space

Figure 5

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 14 of 49 PagelD #: 16

U.S. Patent Nov. 23,1999 Shect 6 of 26 5,990,810
T T R SO S I
F2: e o e S .
F1; : ! :

Figure 6

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 15 of 49 PagelD #: 17

U.S. Patent Nov. 23, 1999 Sheet 7 of 26 5,990,810
JENEEEEEEEEREREEEEEEREEEEN

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 16 of 49 PagelD #: 18

U.S. Patent Nov. 23,1999 Sheet 8 of 26 5,990,810
< R S S
4 S A R o |
= L ' P R
bl | | | LT | HEER | |

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 17 of 49 PagelD #: 19

U.S. Patent Nov. 23,1999 Sheet 9 of 26 5,990,810
= A S S S S A S S
bl [| [| HERANEEEEREREEEN

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 18 of 49 PagelD #: 20

U.S. Patent Nov. 23, 1999 Sheet 10 of 26 5,990,810

F(bk-A+1--PrbKs1--DKeB)

A B A B A B
- o - > - e »
k k k
JEEEEEEEEEEE NN
H H H H
Hashes of
subblocks

Figure 10

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 19 of 49 PagelD #: 21

U.S. Patent Nov. 23, 1999 Sheet 11 of 26 5,990,810

F(Dk-A+1--PioDks1--DksB)

Hash of subbblock \ \

|
The subbblock itself FT T T 1]

I
Hash of subbblock —

Pointer to subbblock ® >~/

A Projection Of b

Figure 11

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 20 of 49 PagelD #: 22

U.S. Patent Nov. 23,1999 Sheet 12 of 26 5,990,810

F(Pk-A+1--DiDKk41--DKsB)

A B A B A B
<= » - > D »
k k k
ot LI L IV PP Pl
Compare
p2l [[P LTI LI PP TP E T T T Il
-<~~k~ ----- » 4-}(— ————— >
A B A B

F(bk-A41-Diobky1--byiB)

Figure 12

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 21 of 49 PagelD #: 23

U.S. Patent Nov. 23,1999 Sheet 13 of 26 5,990,810

F(bk-A+1--Prbka1--PkeB)

A B A B A B
o mp »> - e » <€ - g »
k k Kk
f [T T T] T T T Il Priiidlty)
\\
H H H H
S pu
\\
Compare
H H H
b2l TT [T 1P LI T T iy PPl ifl]
""'E""é”" *'E"“é“"

F(Dk-A+1--PkPks1--PKaB)

Figure 13

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 22 of 49 PagelD #: 24

U.S. Patent Nov. 23, 1999 Sheet 14 of 26 5,990,810
aardvark.txt > [»)
: .

]
Walrus.xt w3~
-
e
/./
M
.
]
N
sloth.dat gl 7
il
< i
.-“"""M’—'
. /
Entry lists Subblock storage

Figure 14

5,990,810

GT am31g

X 10
uonejussaida. - WA LA >

papiwsuel |
-

/.m

Sheet 15 of 26

Nov. 23, 1999

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 23 of 49 PagelD #: 25

U.S. Patent

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 24 of 49 PagelD #: 26

U.S. Patent Nov. 23,1999 Sheet 16 of 26 5,990,810

X: X1.Xn

/\f
NN

Y:Y1..Ym

Figure 16

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 25 of 49 PagelD #: 27

U.S. Patent Nov. 23,1999 Sheet 17 of 26 5,990,810

X: X1.X

Projection of Y

Figure 17

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 26 of 49 PagelD #: 28

U.S. Patent Nov. 23, 1999 Sheet 18 of 26 5,990,810

Figure 18

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 27 of 49 PagelD #: 29

5,990,810

Sheet 19 of 26

Nov. 23, 1999

U.S. Patent

6T 9131y

A eul awl] |

b

S300|qqns
paisenbay

]
&
AN

¢

=

UX"LX

10 saljuepi

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 28 of 49 PagelD #: 30

U.S. Patent Nov. 23, 1999 Sheet 20 of 26 5,990,810

a ,

1] 0

\\ >

© &
E P =
 / & ;bsb
N\ / = i

[y [

7

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 29 of 49 PagelD #: 31

U.S. Patent Nov. 23, 1999 Sheet 21 of 26 5,990,810

Y:Y1.Ym
E2

| T
™
55 3
N P)
O o> =
= O o1 9)
T o i
o D>
S0
| Y-

: X1.Xn
E1

X

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 30 of 49 PagelD #: 32

U.S. Patent Nov. 23,1999 Sheet 22 of 26 5,990,810
< >
St At
o o
2 o Py .
= = o
G o
- L C
@ D -
o T
o) @
L -
= —
L
o Q S
22 = ¥
= 8 D
"5 E &
ge) = i3
-
-
> -
- ~—
¢ i
X

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 31 of 49 PagelD #: 33

U.S. Patent Nov. 23, 1999 Sheet 23 of 26 5,990,810
0
LL) P
S ol | 2 S
g v Y
N = e i
C o 4V) =
© 3 Q oD
03| |2 &
= > <

Set of
partitions
134/678)

(e.g. 34/78/ €

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 32 of 49 PagelD #: 34

U.S. Patent Nov. 23, 1999 Sheet 24 of 26 5,990,810

F(by-A+1-PkPK41--DK1B)

A B A B A B

4~k— ————— > -<-*k— ------ » - ~-p-—- »
NN EEEEEEEE NN

H H H H
Y, Y e

\

‘

Table of hashes

Figure 24

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 33 of 49 PagelD #: 35

5,990,810

Sheet 25 of 26

Nov. 23, 1999

U.S. Patent

=

"(UOISIBA
dn payoeq
Ajsnoinsid)
WA LA >

' pue A Eot

PB1oONJISU0o8.
aq ued X

Gz 9131

(@ pue) A
Ul S)00|qans 0}
S@ouslajal pue
X Ul syo0jqans
JO S1SISU0D
dnyoeq
leluswialou] g

=

"((A) uoisian dn
paxoeq Aisnoinaid ui
SY00J|qans JO S8yseH)

(WAH(LAH

“(dn peyorq
8(q 0}) UOISIoA

JuaLNng cx LX X

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 34 of 49 PagelD #: 36

U.S. Patent Nov. 23, 1999 Sheet 26 of 26 5,990,810

Filename Blocks

aardvark.ixt 421

walrus.ixt 013 (])
sloth.dat 544 / -
' File Table ! / - _—
Hash Refs Ptr / ;
0| 830.. 1 ¢ | T
11 9F8.. 2 :;7
21 AABG.. 1
30 092.. 1 s R R —
4L 3EB. | 3 e s BN —
B =
Hash Table \ %

Subblock storage system
(Note: Subblocks are all
different).

Figure 26

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 35 of 49 PagelD #: 37

5,990,810

1

METHOD FOR PARTITIONING A BLOCK
OF DATA INTO SUBBLOCKS AND FOR
STORING AND COMMUNCATING SUCH
SUBBLOCKS

INTRODUCTION

The present invention provides a method and apparatus
for partitioning one or more blocks of data into subblocks for
the purpose of communicating and storing such subblocks in
an ¢fficient manner.

BACKGROUND

Much of the voluminous amount of information stered,
commugicated, and manipulated by modern computer sys-
tems is duplicated within the same or a related computer
system. It is commonplace, for ¢xample, for computers lo
stere maay slightly differing versions of the same document.
It is also commonplace for data transmilted during a backup
operation to be almest identical to the data transmitted
during the previous backup operation. Computer networks
also must repeatedly carry the same or similar data in
aceardance the requirements of their users

Despite the obvious benefits that would flow from a
reduction in the redundancy of communicated and stored
data, few computer systems perform any such optimization
Some instances can be found at the application level, one
example being the class of incremental backup utilities that
save only those files that bave changed since the most recent
backup. However, even these utiliies do nof allemp! 1o
exploil the significant similarities between old and new
versions of files, and between fles sharing other close
semantic ties This kind of redundancy can be approached
anly by analysing the contents of the files

Fhe present invention addresses the potemial {or reducing
redundancy by providing an efficient method for identifying
identica] portions of data within a group of blocks of data,
and for using this identification fo increase the efficiency of
systems that store and communicate data

SUMMARY OF THE INVENTION

Te identify identical portions of data within & group of
blocks of data, the blocks must be analysed. One simple
approach is to divide the blocks into fixed-length (e g
512-byte) subblocks and compase these with each other so
as to identify all identical subblocks. This knowledge can the
be used to manage the blocks in more cificicnl ways

Unfortunately, the partitioning of blocks into fixed-length
subblocks docs not always provide a suitable framework for
the recognition of duplicated portions of data, as identicul

a group of blocks of data FIG 1 shows how division into
fixed-size subblocks of two blocks (whose only difference is
the insertion of a single byte (X)) {ails to generate identical
subblocks. A comparison of the two groups of subblocks
would reveal mo identical paiss of subblocks even thought
the twe original blocks differ by just one character.

A better approach is o partition each block using the data
in the block itself to determine the position of the partitions.

In an aspect of the invention, the blocks are partitioned at
boundaries determined by the content of the data itself Tor
example, a block could be partitioned at each point at which
the preceding three byles has to a particular constant value,
FI(3 2 shows how such a data dependent partilioning could
turn o1, and contrasts it with a fixed-length partitioning. In
FIG 3 data independent partitioning gencrates seven distinet

(¥}

10

15

25

30

35

A4

45

50

60

2

sibblecks whereas the data-dependent partitioning gener-
ales just four, allowing much of the similarily between the
two blocks 1o be detected

The fact that a partitioning is data dependent does not
imply that it msust incorporate any knowledge of the syntax
or semantics of the data So long as the boundaries are
positioned in a manaer dependent on the local data content,
identical subblocks are likely to be {formed from identical
portions of data, even if the twe portions are aol identically
aligned relative 1o the start of their enclosing blocks (FIG.
3)

Once the group ol blocks has blocks has been partitioned
imo subblocks, the resulting group of subblocks can be
manipulated in a manner that exploits the occurrence of
duplicate subblocks This leads to a variety of applications,
some af which are described below However, the applica-
tion of a further aspect of the invention leads to even greater
beaefits

In a further aspect of the invention, the hash of one or
more subblocks is calewlaied The hash function car be an
ordinery Bash lunction or one providing cryptogruphic
strength. The hash function maps cach subblock into a small
tractable value (¢ g. 128 bits) that provides an identity of the
subblock. These hashes can wsually be manipulated more
efficiently than their corresponding subblocks

Some applications of aspects of this invention are;

Fine-graied incremental backups: Conventional incre-
mental backup lechrology uses the file a5 the unit of backup
However, in practice many large files change only slightly,
resulting in a wasteful re-transmission of changed files. By
storing the hashes of subblocks of the previous versions of
files, the transmission of unchanpged subblocks can be elimi-
nated

Communications: By providing a framework for commu-
nicating the hashes of subblocks, the invention can climinate
the transmission of subblocks already possessed by the
receiver.

Bifferences: The invention could be used us the basis of
a program that determines the arcas of similarity and dif.
ference between two blocks

Low-redundancy file system: Data stored in a file system
can be partitioned info subblocks whose hasbes can be
compared so as to eliminate the redundant storage of iden-
tical subblocks

Virtzal memory: Virtual memory could be orpanized by
subblock using a table of hashes to determine if a subblock
is somewhere in memory.

Clarification of Terms

The term block aed subblock both refer, withowt
limitation, to finite blocks or infinite blocks (sometimes
called streams} of were or more bits or byics of digital data
Although the two different terms (*blocks™ and “subblock™)
essentinlly describe the same substance (digital data), the
twa different terms have been employed in this specification
to indicate the role that a particular piece of data is playing
The term “block” is usually used {o refer to raw data 1o be
maripulated by aspects of the invention. The term “sub-
block” is usually used to refer to a part of a block. “Blocks”
are “partitioned” into “'subblocks”

The term pastition has its usual meaning of exhaustively
dividing an entity into mutually exclusive parts. However,
within this specification, the term also includes cases where:

Not all of the block is subdivided

Multipic overlapping subblocks are formed

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 36 of 49 PagelD #: 38

5,990,810

3

A natural number is 2 non-regative integer (0, 1, 2, 3, 4,
5,

Where the phrase zero or more is used, this phrase is
intended to encompass the degenerate case where the objects
being enumerated are pot constdered at ali, as well as the
case where zero or more objects are used

BRIEF DESCRIPTION

‘The following aspects of this inveotion are numbered for
reference purposes. The terms “block™ and “subblock” refer
to blocks and subblocks of digital data.

1. In 2n aspect of the invention, the invention provides a
method for organizing a block b of digital data for the
purpose of storage, communication, or comparison, by par-
titioning said block into subblocks at one or more posilions
Kik+1 within said block for which blk-A+1 . . k+13]
satisfies a predetermine constrainl, where A and B are
natural numbers
Nete: The specification of this aspect encompasses the
degencrale case in which either A or B is zero The speci-
fication also includes the case where the coastraint does not
pay aflention to some parts of bik-A+1 . k+B3]. For
example, a constraint that pays attention only to (say) b[k-3]
and b[k+2]} would fall under the classes of constraint cor-
responding to AZ4 and B22

2 In a further aspect of the iaveation, the invention
provides a method according 1o aspect 1 in which the
constraint comprises the hash of some or ali of b[k-A+1
k+1]

3 o a further aspect of the invention, the iovention
provides a method according to aspect I, for locating the
nearest subblock boundary on a side of a position pip+1
within a said block, comprising the step of

a2 Evaluating whether said predetermined consteaint is
satisfied at cach position klk+1, for increasing (or
decreasing) k, where k starts with the value p.

4 In a further aspect of the imvention, the invention
provides a method according fo aspect 1, wherein one or
more bounds are imposed on the size of onc or more
subblocks

5. ln a further aspect of the invention, the invention
pravides a method according to aspect 1, wherein additional
subblocks are formed {rom one or more groups of subblocks .

G¢ In a further aspect of the invention, the invention
provides & method according to aspect 1, wherein an addi-
livnal hirarchy of subblocks is formed from one or more
groups ol contipuous subblocks.

7 In a furher aspect of the invention, the ioveniion
provides a method according to one of aspects 1 to 6,
comprising the further step of:

1 Calculating the hash of each of one or more of said
subblocks
Note: The resulting collection of hashes is particularly
useful if J is a strong onc-way hash function

8 In a further aspect of the invention, the iavention
provides o method according 10 one of aspects 1 o 6,
comprising the further step ol

b Torming a projection of said block, being an ordered or
unosdered colicction of clements, wherein cach cloment
consisis of a subblock, an identity of a subblock, or a
reference of o subblock
Note: The specification of this aspect is intended to admit
coliections that contain a mixture of various kinds of iden-
tities and references
Note: In most applications, the output of this aspect will be
an ordered list of hashes of the subblocks of the block.

9 s a further aspect of the invention, the iavention
provides a method for comparing one or more blocks,
comprising the steps of:

wn

15

25

30

35

A0

45

30

55

60

65

4

a. Partitioning one or more of said blocks into one or more
subblocks in accordance with onc of aspects 1 10 §

b Forming a projection of each said block, being an
ordered or unordered collection of clements, wherein each
element consisis of a subblock, an identity of a subblock, or
a reference of a subblock

¢ Comparirg the clements of sald projections of said
blocks,

10 In a ferther aspect of the invention, the invention
provides u method f{or representing one or more blocks,
comprising:

(i) A collection of subblocks;

(ii) Block representatives (e.p filenames) which ame
mapped to lists of entries that jdentify subblocks;
whereby the modification of one of said blocks involves the
following steps:

a. Partitioning some or all of said modified block into
subblecks in accordance with one of aspects 1 to 6,

b, Adding to said collection of subblocks zero or more
subblocks thal are ot already in said collection, and updat-
ing said subblock list associated with szid modified block.

11 In a further aspect of the invention, the invention
provides a method according to aspect 10, in which step b
is replaced by:

b. Removing from said collection of subblocks zero or
more subblocks, and updating suid subblock st associated
with said modificd block

12 1n a ferther aspect of the invention, the invention
provides a method according (o aspeet 10, in which step b
is replaced by:

b. Adding to said collection of subblocks zero or more
subblocks that arc not already in the collection, removing
from said collection of subblocks zere or more subblocks,
and updating said subblock list associated with said modi-
fied block.

13 In a further aspect of the iavention, the invention
provides a method for an entity £1 1o communicate a block
X to E1 where EI possesses the knowledge that E2 pos.
sesses a group Y of subblocks Y, Y,.» comprising the
following steps:

a. Partitioning X into subblocks X,
with one of aspects 1 10 6;

b Transmitting from E1 to E2 the contents of zero or more
subblocks in X, and the remaining subblocks as references
lo subblocks in Y, . . Y, asd to subblocks already
transmitied.

Note: In most implementations of this aspect, the subbiocks
whose contents are transmitted will be those in X that are not
in Y, and for which no identical subblock has previously
been trapsmitted

Note: To posses knowledge that E2 possesses Y, .Y, 1
need not aclually posses Y, Y, itself El need only
posses the identities of ¥, .y, {e g the hashes of cach
subblocleY, . Y,,) This specification is intended to admit
any other representation in which E1 may have the knowl-
edge that E2 possesses {or has access o) Y, .. Y, In
particular, the knowledge may take the form of a projection
of Y

Note: It is implicit i 1his aspect the EL wili be able 1o use
comparison (or other methods) (o use its knowledge of E27'5
possession of Y to determine the set of subblocks that arc
common 1o both X and Y. For example, if ET possessed the
hashies of the subblocks of Y, it could compare them 1o the
haskes of the subblocks of X to determinc the subblocks
common io beth X and Y Subblocks that are not common
can be transmilted explicitly. Subblocks that are common to
both X and Y can be transmiticd by trapsmitting a reference
to the subblock

.. X, in accordance

Case 1:08-cv-00016-SLR Document1 Filed 01/09/08 Page 37 of 49 PagelD #: 39

5,990,810

5

14. In a further aspect of the invention, the invention
provides @ method for an entity E1 1o communicate one or
more subblocks of a proup X of subblocks X; . X, to E2
where E1 possesses the knowledpe that 2 possesses the
blocks Y, comprising the following steps:

a Partitioning Y into subblocks Y, Y
with onie or aspects 1 o 6;

b Transmitting from EI to E2 the contents of Zero or more
subblocks in X, and the remaining subblocks as references
to subblocks in Y and to subblocks already jransmitied

15 In o further aspect of the invention, the imvestion
provides a method for an entity E1 to communicate a block
X to B2 where E1 possesses the knowledge that E2 pos-
sesses block Y, comprising the lollowing steps:

a Partitioning in accordance with one of aspeets 110 6, X
into subblocks X, . X, and Y into subblocks Y, .. Y ;

b. Transmitting from E1 1o E2 the contents of subblocks
in X, and the remaining subblocks us references o subblocks
in Y and to subblocks alteady transmzitied.

16. In a further aspect of the inventien, the invention
provides a method for constructing a block D from a block
X and a group Y of subblocks Y, . Y, such that X can be
constructed from Y and D, comprising the following steps:

a Partitioning X inlo subblecks X, X, in accordance
with one of aspects 1 1o 6;

b Constructing I from one or more of the {ollowing: the
cortents of zero or more subblocks in X, references to zero
or more subblocks in Y, and references 1o zero or more
subblocks in D
Note: Step b above is intended to encompass the case where
a mixiure of the elements it describes s used.

17 1n a further aspect of the imvention, the invention
provides @ method {or constructing a block 1) [rom a group
X of subblocks X, . X, and a biock Y such that X can be
constructed from Y and D, comprising the following steps:

a Partitioning Y into subblocks Y, .. .Y, in accordance
with one of aspects 1 (o 6;

b, Constructing D from one or more of the following: the
conteats of zero or more subblocks in X, references o zero
or more subblocks in Y, and references to zero of more
subblocks in I

18 In a further aspect of the invention, the invention
provides a method for constructing & Mock D from a block
X and a block Y such that X can be constructed from Y and
[, compristag the following steps:

a Partitioning in accordance with one of aspects 1106, X
into subblocks X, . . X, and Y into subblocks Y, . Y,:

. Constructing T} from one or more of the foliowing: the
contents of zero or more subblocks in X, refcrences to zero
or more subblocks in Y, and references o zero or more
subblocks in D

19 lno o further aspect of the invention, the invention
provides n method for constructing a block D {rom a block
X and & projection of Y, said projection comprising an
ardered or wnordered collection of elements wherein cach
ciement consists of a subblock in Y, an ideniity of a subblock
in Y, or a reference of a subblock in Y, such that X can be
consiructed from Y and D, comprising the following steps:

a. Partitioning X into subblocks X, . X, in accordunce
with one of aspects 1 to 6;

b Constructing I from one or mose of the following: the
contents of zero or more subblocks in X, references to zero
or more subblocks in Y, and references to zero or more
subblocks in D

20. Io a further aspect of the invention, the iuvention
provides a method for constructing a block X from & block
Y and a block I3, comprising the following steps:

in accordance

m

18

15

23

30

35

40

45

i

55

G0

]

6

a. Partitioning Y into subblocks Y, .
with one or aspecis 1 to 6;

b. Constricting X from D and Y by constructing the
subblocks of X based on one or more of:

(i) subblocks contained within I);

(ili) references in D to subblocks in Y,

(i) refercnces in D to subblocks in I

21, In a further aspect of the invention, the invention
provides a method for constructing a proup X of subblocks
X; . X, from a block Y and a block D, comprising the
{ollowing steps:

a. Partitioning Y inlo subblocks Y, .
with ore of aspects 1 10 §;

b Constructing X, - X, from ID and Y based on one or
more of!

(1) subblocks contained within I

(iii) references in D to subblocks in Y;

(iii} references in 1D to subblocks in 1

22 In a further aspect of the invention, the invention
provides a method for communicating a data block X from
one entily EI to another entily E2 comprising the following
steps:

a. Partitioning X iato subblecks X, . . X,, in accordance
with one of aspects 1 to 6;

b. Transmitting from EI to E2 an identity of one or more
subblocks;

¢, Transmitting from E2 to E1 information communicat-
ing the presence or absence of subblocks at £2;

d. Transmitting from Bl to E2 at least the subblocks
identified in step (c) as not being present at E2
Note: The information communicated in step {c) could take
the Torm of a bitmap {or a compressed bitmap) correspond-
ing to the subblocks referred to in step (a) 1t could also take
magy other forms
Note: If a group of subblocks are 1o be transmitted, the above
steps could be performed completely for each subblock
before moving onto the oext subblock. The steps could be
applied to any subgroup of subblocks

23 In a further aspect of the invention, the invention
provides a method for communicaling a bloek X from one
entity E1 1o another entity B2, comprising the foliowing
sieps:

a. Partitioning X into subblocks X,
with one of aspects 1 10 6;

b Transmitting from E2 1o El information communicat-
ing the presence or absence a1 E2 of members of o proup Y
or subblocks Y, Yo

c. Transmitting from E1 to E2 the conteats of zero or more
subblocks in X, and the remaining subblocks as references
to subblocks in ¥, . Y, and o subblocks transmitted.

24 ln a further aspect of the invention, the investion
provides a method for an catity E2 to communicate 1o an
cotity E1 the fact that E2 possesses a block Y, comprising the
following steps:

. Partitioning Y into subblocks Y, .
with one or aspects 1 10 6;

b. Transmitting from E2 to E1 references of the subblocks
Y, Y.

25 In a further aspeet of the invention, the invention
provides a method for an entity £1 1o commuaicate a
subblock X, to an entity E2, comprising the foliowing steps:

a. Partitioning X inlo subblocks X, . . X,, ia accordance
with one of aspects I to 6;

b. Transmitting from E2 to EI an identity of X;

¢ Transmilting X, from E1 10 E2.

Note: This aspect applies (among other applications) to the
case of a network server E1 that serves subblocks to clients
such as E2, given the identities (¢ g hashes) of the requested
subblocks

Y, in accordance

Y,, in accordance

.. X, in accordasice

.Y, in accordance

Case 1:08-cv-00016-SLR Document1 Filed 01/09/08 Page 38 of 49 PagelD #: 40

5,890,810

7

26 In a further aspeet of the invention, the invention
provides 2 methed according to one of aspects 1 to 6,
wherein said subblocks are compared by comparing the
hashes of said subblocks

27 In a further aspect of the invention, the invention
provides a method according to one of aspects 1 to 6,
wherein subsets ol identical subblocks witkin a group of one
or more subblocks are found, by inserting each subblock, an
identity of each subblock, a reference of each subblock, or
a hash of each subblock, into a data structure,

28 In further aspect of the invention, the invention
provides an apparatus for organizing a block b of digital data
for the purpose of storage, commaunication, or comparison,
by partitioning said block into subblocks at one or more
positions kjk+1 within said block for which bk~A+1
k+B] satisfics a predetermined constraint, where Aand B are
natura} numbers
Note: The specHication of this aspec! encompasses the
degenerate case in which either A or B is zero. The speci-
fication alse includes the case where the constraint does not
pay aention lo some parts of b[k-Asi k+B]. Tor
example, a constraint that pays attention oniy to (say) hk-3]
and blik+2] would fall under the classes of constraint cor-
responding to AZ4 and B22.

29 1In a further aspect of the imvention, the invention
provides an apparatus sccording to aspect 28 in which the
constraint comprises the hash of some or all of blk-A+1
k+B]

30. In & further aspect of the invention, the invention
provides an apparatus according to aspect 28, for locating
the nearest subblock boundiry on & side of a position plp+1
withir a said block, comprising the step of:

a Evaluating whether said predetermioed constraint is
satisfied at cach position klk+1, [os increasing (or
decreasing) k, where k starts with the value p

BRIEF DESCRIPTION OF FIGURES

F1G. 1 shows how data can become “misaligned” relative
lo iis containing blocks when daa is inserted

FIG 2 shows how data can be divided into fixed-width
subblocks or variable-width subblocks

FIG. 3 shows bow duta-dependent partition move with the
data when the data is shifted (e g. by an insertion) H

FIG. 4 depicts the data-dependent partitioning of a block
b of data into subblocks using a coastraint F

IF1G. § depicts the search within # block b for a subblock
boundary using a constraint F

FIG. 6 shows how a block may be subdivided in different
wiys using different partitioning constraings

FIG. 7 shows how “higher order” subblocks can be
constructed from one or more initial subblocks

F13. B shows how differcnt partitioning functions can
produce subblocks of differing average sizes

F1G 9 shows how subblocks can be organized into a
hierarchy Such a hierarchy can be constructed by progres-
sively restricting a constraim F

FIG. 10 depicts a method {and apparatus) for the parti-
tioning of s block b into subbiocks using a constraint F, and
the calculation of the hashes of the subblocks using hash
function H

FIG. H depicts the partitioning of a block b into sub-
blocks using a constraint F, and the projection of those
subblocks into a structure consisting of subblock hashes,
subblock data, and subblock references.

F1G. 12 depicts a meshod (and apparatus) for partitioning
two blocks bl and b2 into subblocks, using a constraint F,
and then comparing the subblocks.

5

H

15

25

30

35

40

45

50

35

68

65

8

I1G. 13 depicts a method (and apparatus) for the parti-
tioniog using u comstraint F, of 1wo blocks bl and b2 into
subblocks, the calculation of the hashes of the subblocks
using H, and the comparison of those hashes with each other
to determine {among other things) subblocks common to
both bl and b2

FiG 14 depicls a method (and apparatus) for a file system
that employs an aspect of the invention to climinate the
multiple storage of subblocks comman te more than one file
{or to different parts of the same file)

FIG 15 depicts a methed (2nd apparatus) for the com-
munication of a block X from E1 to E2 where both E1 and
E2 possess Y

FIG. 16 depicts a method (and apparatus) for the con-
struction of a block D from which X may be later
reconstructed, given Y

FIG. 17 depicts a methed {and apparatus) for the con-
struction of a block D from which X may be later
recoastructed, given Y. In this case, the entity constructing
D does pot have access to 'Y, only to a projection of Y {being
perhaps the hashes of the subblocks of Y)

FIG 18 depicts a method (and apparalus) {or the recon-
struction of X {rom the blocks Y and D

FIG. 19 depices & method (and apparatus (E1 and E2 at
¢ach tme)) for the communication of a block X {rom entity
E2 where E2 already possesses Y

FIG 20 depicts a method {and apparatus (E1 and E2 al
cach time)) for the communication of a block X from entity
EI o entity E2 where E2 already possesses Y and where B2
first discloses to El information about Y.

FIG 21 depicts a method {and apparatus) for the
communication, from entity E2 to eatity E1, information
about & block {or group of subblocks) Y at E2.

FIG. 22 depicts a method (and apparatus (E1 and E2 at
each time)) for the communication from entity E1 to eatity
22 of subblock X, following a sequest by entity E2 for the
subblock X;

FIG 23 depicis un apparatus [or partitioning a block b
{the input) using a constraint F. The ouviput is a sey of
subblock boundary positions.

FIG 24 depicts a method (and apparatss) for the parti-
tioning of a block b imto subblocks using constraint F, and
the projection of those subblocks into a table of subblock
hashes.

FIG. 25 depicts a method (and apparatus) for the trans-
mission from entity Bl 10 E2 of a block X where E2
possesses Y and L1 possesses a table of the hashes of the
subblocks of Y (a projection of Y)

[1G. 26 depicts & method (and apparatus) for a file system
that employs an aspect of the invention to eliminate the
multiple slorage of data common to more than file (or to
different parts of the same file)

DETAILED DESCRIFTION OF PREFERRED
EMBODIMENTS

This section contains » detailed discussion of mechanisms
that could be used to implement aspects of (he invention 1t
also contrins examples of implementations of selected
aspects of the invention However, nothing in this section
should be interpreted as a limitation on the scope of this
patent.

Units of Information

Aspects of this invention can be applied at vadous levels
of pranularity of data Tor example, if the data was treated

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 39 of 49 PagelD #: 41

5,990,810

9

as a stream of bits, boundaries could be placed between any
two bils However, If the data was treated as a stream of
bytes, boundaries would usually be positioned only between
bytes The invention could be applied with any usit of data,
and in this document references lo bits and byles should
usually be interpreted as admilting any granularily.

The Concept of Entity

At various places, this patent specification uses the term
“entity” to describe an agent. This term is purposefully
vapgue and is intended to cover ail forms of agent including,
but not limited to:

Computer systems

Networks of computer systems

Processes in computer systems

file systems.

Components of software

Dedicated computer systems

Communications syslems

The Concepts of Identity and Reference

3t

This patent specification frequently refers to “identities
of subblocks and “references™ to subblocks. These terms aze
not inteaded 0 be defined precisely

The identity of a subblock means any piece of information
that coudd be used in place of the subblock for the purpose
of comparison for identicality Ideatities include, but are not
limited to:

The subblock itsel

A hush of the subblock

The subblock acls as its own identily because subblocks
themselves can be compared with cach other Hashes of
subblocks also act as identitics of subblocks beeause heshes
of subblocks ean be compared with each other to determine
il their corresponding subblocks are identical

Acreference to a subblock means any picce of information
that could be used in practice by one entily to identify lo
another cntity {or itsclf) a particularly valued subblock,
where the two entitics may already share some knowledge
For exampic, the two entities might each possess the knowl-
cdge that the other entity already possesses ten subblocks of
known values havisg particular index values numbered one
to ten

Once two entities have a basis of shared knowledge, it is
possible for them to identify a subblock ia ways more
concise than the (ransmission of an identity. A reference to
a particularly valued subblock can take (without limitation)
the following forms:

An identity.

An identifying number of a subblocks possessed by the
receiver.

An idenifying number of & subblock previously trans-
mitled between the two communicants

The location of the subblock in some shared data space

As relative subblocks number

Ranges of the above.

The concept of knowledge of a subblock is related to the
concepis of identity and reference An entity may have
knowledge of a subblock {or knowledge that another emtity
possesses a subblock) without actually possessing the sub-
block itself. For example, it might possess an identity of the
subblock or a reference to the subblock

10

15

25

30

35

Ly

55

60

G5

10
The Use of Ranges

In any situation where a group of values that have
contiguous values {e g. 6, 7, 8, 9} is to be communicated or
stored, such a proup can be represented using a range (e.g
6-9) which may take up Iess communication time or storage
space Ranges can be applied to all kinds of things, such as
index values and subblock numbers In particular, if an
enlity notices that the references (to subblocks) that it is
abou! io transmit are contignous, it can replace the refer-
cnces with a ranpe

Ranges can be represented in any way that identifies the
first and last element of the range Three common represea-
fations are:

The first and last clement of the range

The first element and the length of the range

The last element and the Jength of the range.

The concepl of range can be generalized to include the
compression of any group of valucs that exhibit compress-
ible structure

The Use of Backward Relerences

References can be used pot only to refer to data shared by
two communicants at the start of a transmission, but can also
be used to refer lo data communicated at some previous time
during the transmission

Tor example, if an entity A notices that the subblock it is
about to transmil to apother entity B was not possessed by
B at the start of the transmission, but has sirce been
transtaitied from A to B, then A could code the second
instance of the subblock as a reference o0 the previous
instance of the subblock. The range mechanism can be used
here oo

No Requirement for Subblock Framing Information

It is possible that an entity E1 could transmit a group X
ol subblocks X; . X, as a group to an entity E2 simply by
sending {he coreatenation of the subblocks. There may be no
need for any framing information (c.g information al the
start of cach subblock giving the lengih of the subblock aor
“eseape” codes to jadicale subblock boundaries), as B2 is
capible of partitioning X into X, . . X, itself

No Requirement for Ordering Subblocks

If two entities E1 and E2 both possess the same unordered
group Y of subblocks {or knowledge of such a group of
subblocks) then even though E1 and E2 may not posscess the
subblocks in the same order, the subblocks can still be
referred (o using s subblock index or serial aumber, This is
achieved by having E1 and EZ cach sort their subblocks in
accordance with some mutually agreed (or universally
defined) ordering method and then number the subblocks in
the resultant ordered group of subblocks These number (or
rapges of such numbers) can then be used to refer to the
subblocks.

An Overview of Hash Functions

Althouph the use of a hash function is not essential in afl
aspects of this invention, bash functions provide such advan-
lages in the implemertation of this invention that an over-
view of them is warranted

A hash function accepts a variable-length input block of
bils and generales an output block of bits that is based on the
input block Most hash functions guarantee that the output

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 40 of 49 PagelD #: 42

5,990,810

11

block will be of a particular length {e g 16 bits) and aspire
lo provide a random, but deterministic, mapping between the
infinite set of input blocks and the finite set of output blocks.
The property of randomness enables these outputs, cailed
“hashes”, to act a5 casily manipulated representatives of the
original block.

Hash functions come in at least four classes of strength

Narrow hash functions: Nurrow hash functions are the
weakest class of hash functions and generale output values
that arc so narrow (¢ g 16 bits} that the entire space of output
values can be searched in a reasonable amount of time For
example, an 8-bit hash function would map any data block
to a bash in the range 0 10 155. A 16-bit has function would
map {0 a hash in the range 0 to 65535 Given a particular
hash value, # would be possible to find a corresponding
block simply by generating randem blocks and feeding them
into the marrow hash function until the scarched-for value
appeared Narrow hash functions are usually used lo arbi-
trarily (but deterministically) classify a set of data values
inlo a small number of groups As such, they are useful for
construcliog hash table data structures, and {or detecting
crrors in data transmitted over noisy communication chan-
nels Examples of this class: CRC-16, CRC-32 Fletcher
cheeksum, the JP checksum

Wide hash functions: Wide hash functions are similar to
narrow hash functions except that theie oulput values are
significantly wider At n certain point this quantitative dif-
ference implies a qualitative difference. In o wide hash
function, the owtput value is so wide (e p. 128 bits) that the
probabilily of any two randomly chosen blocks having the
same hashed value is negligible (¢ g. about one in 10*%) This
property erabies these wide hashes to be used as “identities”
of the blocks of data from which they are calculated. For
example, if vatity E1 has a block of data and sends the wide
hash of the block to an entity E2, then if entity E2 has a block
that haes the samae hash, then the a-priori probability of the
blocks actuaily being different is neglipible The only calch
is that wide hash functions are not designed io be noa-
invertible. Thus, while the space of (say)2'* values is oo
large to search in the manner described for narrow hash
functions, it may be easy lo analyse the hash function and
calculple a block corresponding lo a particular hash
Accordingly, ET could fool E2 into thinkieg E1 had one
block when it really had a differemt block Examples of this
class: any 128-bit CRC algorithm

Weak onc-way hash functions: Weak ene-way hash func-
tions are nol oaly wide enough (o provide “identity”, but
they also provide cryptographic assurance that it will be
extremely difficult, given a particular hash value, to find a
block corresponding to that hash value Examples of this
class: a §4-bit DES hash

Strong one-way has functions: Strong onc-way hash func-
tinns are the sume as weak one-way hash functions except
that they have the sdditional property of providiag cryplo-
praphic assurance that it is diffcult to find any two different
blocks that have the same hash value, where the hash value
is unspecified. Examples of this classt MD4, MD5, and
SHA-1

These four classes of hash provide & range of hashing
sirengths from which to choose. As might be expected, the
speed of a hash function decreases with strengih, providing
a tradeofl, snd different strengths are sppropriate in different
applications. However, the difference is smali enough to
admit the use of sirorg one-way hash functions in all but the
mosl time-critical applications

The term cryptograpic hash is often used to refer to hashes
that provide cryplographic sirength, encompassing both the

25

ki

35

Rig

45

50

55

60

65

12

class of weak one-way hash functions and the class of strong
one-way hash [uactions. However, as strong one-way hash
functions are almost preferable 1o weak one-way hash
functions, the term “cryptographic hask” is used mainly lo
refer to the class of strong one-way hash functions

The present invention can employ hash functions in a
least two roles:

1. To determine subblock boundarics

2 To generale subblock identities.

Depending on the application, hask functions from any of
the four classes above could be employed in either role
However, as the determination of subblock boundaries does
not require identity or cryplographic strength, it would be
incfficient to use hash functions from any but the weakest
class. Similarly, the need for identity, the ever-present threat
of subversion, and the minor performance penalty for strong
one-way hash funclions {compared to weak ones) suggests
that nothing less than strong onc-way hash fenctions should
be used to caleulate subblock identitivs.

The sceurity dangers inherent in cmploying anything less
thar & strong one-way hash function to generate identitics
can be illustrated by considering a communications system
or file system that incosporates the invention using any such
weaker hash furction In such a system, an intruder could
modify a subbloek (1o be manipulated by a fargel sysiem) in
such o way that the modified subblock has the same a hash
a5 another subblock known by the intruder to be already
preseat in the target system This could result in the tasget
systemn relaining its exisling subblock rather than replacing
it by a ncw onc Such a weakness could be used (for
example) to prevent a target system from properly applying
securlly patch retrieved over w setwork

Thus, while wide hes functions could be safely used to
caleulate subblocks in sysiems not exposed to hostile
humans, cven weak one-way hash funciions are likely to be
insecure in those systems that are

We now jurn 1o the ways in which hashes of blocks of
subblocks can actually be used

The Use of Cryptographic Hashes

The theoretical propertics of cryptographic hashes (and
here {s meant strong one-way hash functions) yield particu-
larly interesting practical propeitics. Because such hashes
are significantly wide, the probability of two randomly-
chosen subblocks having the same hash is praciically zero
(for » 128-bit hash, it is about onc in 10°%), and because it
is computationaliy infeasible to find 1we subblocks having
the same hash, it is practically guaranieed that no inlelligent
agent will be able to do so The implication of these
properlics is that from a practical perspective, the finite sct
of hash values for a particular cryptographic hash algorithm
is one-fo-one with the infinite set of finite variable length
subblocks This theoretically impossilsle propesty manifests
itsell in practice because of the practical infeasibility of
finding two subblacks that bash to the same value

This propesty means that, for the purposes of comparison
(for identicelly), cryplographic hushes may safely be used in
place of the subblocks from which they were caleulated As
most cryplographic hashes are only aboul 128 bils long,
hashes provide an extremely cficient way lo compare sub-
blocks withoul requiring the direct comparison of the con-
tent of the subblocks themselves Such comparisons can be
used 1o climinate many {ransmissions of information For
example, a subblock X; on & computer C1 in Sydaey could
be compared with a subblock Y, on a computer C2 in Bosten

Case 1:08-cv-00016-SLR Document1 Filed 01/09/08 Page 41 of 49 PagelD #: 43

5,990,810

13
by & computer C3 in Paris, with the total theoretical network
traflic being just 256 bits (C1 and C2 cach send the 128-bit
hash of their respective subblocks to C3 for comparison, and
C3 compares ihe two hashes)

Some of the ways in which cryptographic hashes could be
used in aspects of this invention are:

Cryptographic hashes can be used to compare two sub-
blocks without having to compare, or requiring access to, the
content of the subblocks

H it is nccessary to be able lo determine whether a
subblock T is identical to one of a group of subblocks, the
subblocks themselves need not be stored, just a collection of
their hasties The hash of any candidate subblock can then be
compared with the bashes in the collection to establish
whether the subblock is in the group of subblocks from
which the colleetion of hashes was pencrated

Cryptographic hashes can be used to ensure that the
partitioning of a block inte subblocks and the subsequent
reassembly of the subblocks into a reconstructed block is
error-free. This can be done by comparing the hash of the
ariginal block with the hash of the reconstructed block

B an entity EI cateulates the hash of @ subblock X; and
trapsmits it to B2, then If B2 possesses X, or even just the
hash of X,, then B2 can delermine without any practical
doubt that £1 posscsses X1

I an entity E1 passes a key (consisting of a block of bits)
chosen al random lo an entity E2, E2 may then prove to E1
that it possesses a subblock by sending E1 the hash of the
concelenation of the key and the subbiock This mechanism
could be used as an additional check in seourity apphications

If a group of subblocks must be compared 50 as to find all
subsets of identical subblocks, the corresponding set of
hashes of the subblocks may be calewlated and compared
insiead.

Many of the uses of cryplographics hashes for subblocks
can also be applicd to blocks. For example, cryptographic
hashes can be used to determine whether a block has
changed at all since it was last backed up. Such o check
could eliminate the need for further analysis.

Use of Hashes as a Safety Net

A potential disadvantage ol deploying aspects of this
invention is that it will add extra complexity fo the sysiems
into which it is incorporated. This increased complexity
carrics the potential 1o increase the chance of undetected
[aileres

The main mechanism of complexity intreduced by many
aspects of the invention is the partitioning of blocks (e g.
files) into subblocks, and the subscquent re-assembly of
such subblocks. By partitioning a block iato subblocks, a
system creates the potential for subblocks lo be eroncously
added, deleied, rearranged, subslituted, duplicated, or in
some other way exposed to a greater risk of accidential error

This risk can be reduced or climinated by calculating the
hash {preferably & eryptographic bash of the block before it
is partitioned into subblocks, storing the hash with an entity
associated with the block as a whele, and then later com-
paring the stored hash with a compound kash of the recon-
strucied block. Such a check would provide a very sirong
safety net that would virtvally climinate the risk of unde-
tected errors arising from the use of this invention.

Choosing a Partitioning Constraint Function

Although the requirements for the block partitioning
constraint (e g in the form of a constraint function T7) are not

10

5

kN

35

40

55

&0

65

14

stringent, care should be taken to select a function that suits
the application to which it is to be applicd

In situation where the data is highly structured aad
knowledge of the data is available, a choice of an F that
tends to place subblock boundarics at positions in the data
that correspond to obvious boundaries in the data could be
advantageous However, in general, F should be chosen
from the class of narrow kash functions. Use of a narrow
hash function for I provides both cfficiency and a
{deterministic) randomeess that will enable the implemen-
tation to operate cffectively over 4 wide-range of dala

One of the most important properties of I is the prob-
ability that F will place a boundary at any particular point
when applied {o completely random data For example, a
function with a probability of onc would prodace a boundary
between each bit {or byle), wherens a function with a
probability of zero would never produce any boundaries at
#ll In a real application, a more moderate probability would
be chosen {e.g 1/1024) so as to yield useful subblock sizes
The prabability can be tuned to suit the application

We end this section with an example of a narrow hash
function that has been implemented and tested and seems to
perform well on 2 variety of dats types The hash function
caleulates a hash value from three byles.

Hiby. by, bym{(50543{(l<<8) B (hacet) B b)) | p

w“

The following notation has been used. “x” {s multiplica-
tion “=<<" is lcft bit shift “>»” is right bit shift "®" is
exclusive or, “[" is medulo The constamt p is the inverse of
the probability of placisg a boundury at an arbitrary positicn
in a randomly generated biock of data, and can be set 1o any
integer value in [0,65535] However, in practice it seems 1o
be advantageous 1o choose values that are prime (Mersenne
primes scem lo work well). The value 40543 was chosen
carefully in accordance with the hash function design guide-
lincs provided in pages 508-613 of the book:

Knuth D E, “The Art of Computer Programming: Vol-
ume 3: Sorting and Searching”, Addision Wesley, 1973

The function penerates a valoe in the range [0, p~1] and

<an be used in practice by placing a boundary at cach point
where the preceding three bytes hash jo a predetermined
constant value V. This would imply that its arpuments b, .
. by correspond to the argumenl A in aspect one above. To
avoid patholopgical behaviour in the commonly occurring
case of rups of zeros, it is wise 1o choose a non-zero value
for V.

In a real implementation, p was set to 311 and V was sot
lo one

Placing an Upper and Lower Bound on the
Subblock Size

The use of data-dependent subblock boundaries provides
a way to deterministically pantision similar portions of data
in u context-indepesdent way. However, if artifical bounds
are not placed on the subblock size, particular kinds of data
will yieid subblocks that are oo large or too small to be
effective For example, if a file contains a block of @ million
identical byles, any deterministic constraint (that operates at
the byle level) must cither purtition the block into ono
subblock or a milkion subblocks. Both alternatives are unde-
sirable

A solution to this problem is arlificially 10 fmpose an
upper bound U and a Jower bound L on the subblock size
There seem to be a limitiess aumber of ways of doing this
Here are seme examples:

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 42 of 49 PagelD #: 44

5,990,810

15

Upper bound: Subdivide subblocks that are longer than U
bytes at the points, U, 2U, 3U, and so on, where U is the
chosen upperbound on subblock size

Upper bound: Subdivide subblocks that are longer than U
bytes at points delermined by a secoadsry hash function

Lower bound: Of the set of boundaries that bound sub-
biocks less than b bytes long, remove those boundaries that
are closer to their neighbouring boundaries than their neigh-
bouring bousndaries are 10 their neighbouring boundaries.

Lower bound:; If the block is being scanned sequentially,
do not place a boundary unless at least L. bytes have been
scanned since the previous boundary.

Lower bound: Of the set of boundaries that bound sub-
blacks less thar L bytes long, rermove thoss boundaries that
satisfy some secondary hash function

Lower bound: Of the set of boundaries that bound sub-
blacks less than L bytes long, remove randomly chosen
bourdaries umil all the resulting subblocks are at least L
bytes long

Many other such schemes could be devised

The Use of Multiple Partitionings

Iz most applications the use of just one partitioning into
subblacks will be sufficiecnt Howeves, in some applications
there may be a need for more than one subblock partitioring
For example, in apphlications where channel space is
expensive, it may be appropriate to partition cach block of
data in W different ways, using W dilferemt constraint
functions F; . . F,p where cach function provides a different
average subblock size. For example, four different partitions
could be performed using functions that provide subblocks
of average length 256 byies, 1K, 10X, and 100K By
providing a range of different sizes of subblocks 1o choose
fram, such as organization could simultapecusly indicate
large blocks extremely efficiently, while still retaining fine-
grained subblocks so that miror changes to the data do not
result in vojuminous updates (FIG. 8)

The efficicacy of such a scheme could be improved by
performing the partitioning all in coe operalion using
increasing constraints on a single F For examplc, one could
use the example hash funclion described cariier, but use
diflerent values of the comstant p 1o determing the diferent
levels of subdivision By choosing appropriately related
values of p, the set of boundaries that could be produced by
the different F could be arranged 10 be subseis of cach other,
resulting in a tree struciure of subblocks For example,
values of p of 32, 64, and 128, and 256 could be used FIG.
9 shows how {be subblocks of lour levels of the tree could
relate 1o each other:

A further method could define the hash ol o larger block
to be the hash of the hashes of its component blocks.

Multiple partitionings could also be uscful simply to
provide a wider pool of subblocks to compare. For example,
it may be appropriate {o partition each bleck of data in W
different ways using W different functions F;, . . F, where
cach function yiclds roughly the same subblock sizes, but at
different positions within the block

Another lechnique would be 1o ercete sn additional set of
boundarics based on the boundaries provided by a hash
function. For example, a {ractal alporithm could be used (o
partition & block based upon some other partitioning pro-
vided by a function F

Comparing Subblocks

In most applications of this invention, there will be a need
at some stage to identify identical subblocks This can be
done in a variety of ways:

—_

0

a5

30

35

40

45

30

55

60

65

16

Compare the subblocks themselves
Compare the hashes of the subblocks
Compare ideatifies of the subblocks

Compare references to the subblocks

In most cascs, the problem reduces to that of taking a
group of subblocks of data and finding all subses of
identical subblocks This is a well-solved problem and
discussion of various solutions can be found in the following
books:

Knutk D. E,, “The Ant of Computer Programming: Vol-
ume 1@ Fondamental Alporithms”. Addison Wesley,
1973

Knuth D E., “The Art ol Computer Progeamming: Vol-
ume 3: Sorting and Searching”, Addison Wesley, 1973

In most cases, the problem is best solved by creating a
data structure that maintaing the subblocks, or references to
the subblocks, in serted order, and then inserts cach sub-
block one at a time in1o the data stcucture. Not only docs this
idemtify all currently identical subblocks, but it also estab-
lishes o structure that can be used to delermine quickly
whether incoming subblocks are identical to any of those
niready held, Fhe {ollowing data structures are described in
the books referenced above and provide just & sample of the
structures thai could be used:

Hash tables

Sorted trees (binary, N-ary, AVL).

Soried linked lists

Sorted arrays.

Of the muliitude of solutions to the problem of matching
blocks of data, one solution is worthy of special atiention:
the hash table . Hash tables consist of a (usually) finite array
of slois into which values may e inserted. To add a value
to a hash 1able, the value is hashed {using a hash function
that is usually selected from the class of narrow hash
{unclioes) into a slot number, and the value is ioserled into
that slot. Laler, the value can be retrieved in the same
manner. Provisions must be made for the case where two
data values, to be stored in the same table, hash (o the same
slot number

Hash tables are likely to be of particular value in the
implementation of this invention beciuse:

They provide very last {(essentially constant Lime) access

Many applications will need to caleulate a strong one-way
hash of each subblock, and & portion of this value can
be used to index the hash able

Particularly effective would be a hash table indexed by a
pottion of a strong one-way hesh of the subblocks it stores,
with each table entry containing (2) the strong one-way hash
of the subblock, and (b) a pointer 1o the subblock stored
eisewhere in memory

The Use of Compression, Encryption, and Integrity
Techaiques

Aspects ol the invention could be enhanced by the use of
data compression, data encryption, and date integrity tech-
niques The applications of these technigues include, but are
not limited 10, the following applications:

Any subblock that is transmitted or represented in its raw
form could alterpatively be transmitted or represented
in a compressed or ercrypled form.

Subblocks could be compressed and encrypted before
further processing by aspects of this invention

Blocks could be compressed and encrypted before further
processing by aspects of this invention.

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 43 of 49 PagelD #: 45

5,990,810

17

Communications or representations could be compressed
or encrypled

Any component could carry additiona] checking informa-
tion such as checksums or digests of the data in the
component

Ad-hoc data compression techiigues could be used to
further compress references and identities or consecu-
tive rups of references and identities

Storage of Variable-Length Subblocks on Isk

The division of data inio subblocks of varying length
presents some storage organization problems (iff the sub-
blocks are Lo be stored independently of cach othier), as most
hardware disk systems are organized to store an array of
fixed-length blocks (e.g . onc million 512-byte blocks) rather
than variable-length ones Here are some lechniques that
could be used to tackle this problem:

Each subblock could be stored in an integral mimber of
disk blocks, with some part of the last disk block being
wisted For randomly sized subbloclks, this scheme wilt
waste on average hall a disk block per subblock.

Create a small subset of different bucket sizes (e.g. powers
of two) and create arrays on the disk that pack collee-
tions of these buckets efficiently into the disk blocks
For example, if disk blocks were 512 bytes long, one
could fairly eficiently pack five 200-byte buckets into
ap array of two disk blocks Each subblock would be
stored in the smallest bucket size that would hold the
subblock, with the unused part of the bucket being
wasled.

Treat the disk blocks as a vast array of byles, and use
well-cstablished heap management techniques to man-
age the array. A sample of such techaiques appears in
pages 435-451 of the book:

Knuth D E, “The Ast of Computer Programeming:
Volume 1: Fundamental Algorithms”, Addison
Wesley, 1973

The Use of Concurrency

Two processes are said to be concureent if their execution
takes place in some sense at the same time:

In interleaving concurreney, some or all of the operations

performed by the two processes are interleaved in time,

bu! the two processes are never both exccuting o

exactly the same instant

In genuine concurrency, some or all of the operations
performed by the two processes ure genuinely exceuied
at the same instant kmplemesntations of the present
invention could incorporate either form of concurrency
to various degrees In meost of the aspects of the
invention, some subset of the steps of each aspect could
be performed concurrently In particular {without
limitation}:

Ablock could be splil into parts and the parts partitioned
concurrently

The processing of subblocks defined during a sequential
partitioning of a block need not be deferred until the
entire block has been partitioned. In particular, the
hashes of already-defined subbiocks could be eaicu-
lated and compared while {urther subblocks nre being
defined

Communicating entities that decompose and compose
blocks could execute concurrently.

Where more than one block must be partitioned for
processing, such partitioning could be performed con-
currently

10

30

335

40

50

55

60

65

18

Many more forms of concurrency within aspects of this
invention could be identified

Example: Partitioning a Block

We now present a simple cxampic of how a block might
be partitioned im practice Consider the following block of
bytes:

bl b?. b3 b“l h5 bb b? bH b9

In this example, an example hash function H will be used
to partition the block Boundarics will be represented by
pairs such as Bty We will assume that H returns a boolean
value based on ils argument and that a boundary is to be
placed at each bfb+1 for which H(b-2, b~1, b)) evaluales
lo true.

As the hash function accepts 3 byte arpumeats, we start at
b,b, and evaluate Hb,, by, ba} This tums cul to be false
(for the purposes of cxample), so we move to bylbs and
evaluate H(b,, by, by This turps out to be true, so a
boundary is placed at b,jbs Next, we move to bglb, and
evaluate Hib;, by, bg). This turas out to be false so we move
on H(b,, b, by) is tnee so we place a boundary at bglb., This
process continues until the end of the block is reached

by by by by | bs b | by by by

Some variations cn this approach arc:

Imposition of a lower bound L on subblock size by
skipping ahcad L bytes after placing a boundary.

Impositien of an upper bound U on block size by artifi-
cially placing 2 boundary il U bytes have been pro-
cessed since the last boundary was placed.

Improving the cMcicncy of the hash caleulations by using
some part of the calculation of the has of the bytes at
ope position o calculate the hash at the aext position
For example, it may be more cfficient to calcuiate
H{x.y,z) if H(*.x,y) has alrcady been calculated For
example, the Internet IP checksum is organized so that
a stagle running checksum value cuen be maintained,
with hytes entering the window being added to the
checksum, and bytes exiting the windew being sub-
iracted from the checksum

Applying this algorithm in reverse, starting from the end
of the block and working backwards.

Finding the subblock thal eacloses a particular point
{chosen from anywhere within the block) by exploring
in both directions from the point, looking for the
nearcst boundary in each direction

Finding all subblock boundarics in one step of evaluating
[for sll position concurrently

Example: Forming a Table of Hashes

Once a block has been partitioned, the hash of cach
subblock can be caleulated to form a table of hashes (FIG
24).

This table of hashes can be used to determine if a new
subblock is identical to any of the subblocks whose hashes
are in the table To do this, the acw subblock’s hash is
cudeulated and a check made to see i the hush is in the able

In F1G. 24, the table of bashes looks like am array of
hashes Mowever, the table of hashes could be stored in a
wide variely of data structures (g hesh tables, binary
trees)

Example Application: A File Comparison Utility

As the invention provides a new way of fiading similari-
ties between large volumes of data, it [ollows that it should
find some application in the comparison of data

Case 1:08-cv-00016-SLR Document1 Filed 01/09/08 Page 44 of 49 PagelD #: 46

5,990,810

19

In one aspect, the invention cowld be used 10 determine
the broud similarities between two files being compared by
a file comparison utility The utility would partition cach of
the two files into subblocks, orpanize the hashes of the
subblocks somchow (e g using a hash table) to identify ail
identical subblocks, and then use this information as a
framework for reporting similarities and dilferences
between the two files.

In a similar aspect, the invention could be used {o find
similarities between the conlents of large numbers of files in
a file system. Awiilily incorporating the invention could read
cach file in an entire file system, pastition each into sub-
blocks and then inser! the subblocks (or hashes of the
subblocks) inte ore hupe 1able (¢ ¢ implemented by a hash
table or a binary tree) I cach entry in the table carried the
name of the fiic containing it as well as the position of the
subblock within the file, the lable could later be wsed to
identily those files containing identical portions of dala

I, in addition, a facility was added for recording and
comparing the hashes ol the entire contents of files and
dircctory trees, a utility could be constructed that could
identify all Jargely similar structures within a file system.
Such a wutility would be immensely useful when (say)
apempting 10 merge the data on several similar backup
lapes.

Example Application: A Fine-Grained Incremental
Backup System

In a fine-grained incremental backup system, two enlities
El and B2 (cg two compulers on a network) wish to
repeatedly backup a file X at E1 such thal the old version of
the fle Y at E2 will be updated to become a copy of the new
version of the file X at E1 {withouwt modifying X) The
system could work as follows

Each time E1 performs a backup operation, it partitions X
into subblocks and writes the hashes of the subblocks 1o a
shadow file S It mipgh! also write a hash of the entirc
comients of X to the shadow file. After the backup has been
completed, X will be the same as Y and so the shadow [ile
S will correspond 1o both X and Y. Once X is again modified
(during the normal operation of the computer system), S will
correspond only to Y. S can then be used during the next
backup operation

To perform the backup, E1 compares the hash of Y (stored
in 8) against the hash of X to see il X has changed (it could
also use the modification date file ancibute of the &le) 1f X
hasn’t changed, there is no need 10 perform any further
backup action. H X has chamged, El partitions X into
subblocks, and compares the hashes of these subblocks with
the hashes in the shadow file S, so as to find all identical
hashes. Identical hashes identify identica] subblocks in Y
that can be transmitted by reference El then transmits the
file as a mixture of raw subblocks and references to sub-
blocks whose hashes appear in S and which are therefore
known lo appear as subblocks in Y. EX can also transmit
references to subblocks already fransmitted References can
teke many forms including (without limiation):

A hash of the subbiock

Fhe number of the subblock in the list of subblocks in Y.

The number of a subblock previously transmitted

A range of any of the above.

Throughout this process, E1 can be constricting the new
shadow file corresponding 10 X. FIG 25 illustrates the
backup process

To reconstruct X from Y and D (the incremental backup
information being sent from E1), E2 partitions Y inlo

w

15

a5

40

G0

63

20

subblocks seid caleulmes the bashes of the subblocks (It
could do this in advance during the previous backup) It then
processes the incremental backep information, copyiag sub-
blocks that were transmitted raw and looking up the refer-
ences cither in Y or in the part of X already reconstructed

Because information need only flow from EX to E2 during
the backup operstion, there is no need for E1 and E2 (o
perform the hackup operation concurrently. E1 car perform
its side of the backup operation in isolation, producing an
incremenial backup file that can be later processed by E2.

There is a tradeoff between 1) the approximate ratio
between the size of cach file and that of its shadow, and 2)
the mean subblock size The higher the mean subblock size
{as determined by the partitioning method used), the fewer
subblocks per unit file length, and hence the shorter the
shadow size per unit file length However, increasing means
subblock sizes implies increasing the granularity of backups
which can cause an increase in the size of the incremeatal
backup file There is also a tradeofl between the shadow file
size and the hash width A shadow file that uses 128-bit
hashes will be about twice as long as one that uses 64-bit
hashes All these tradeo(fs must be considered closely when
choosing nn implementation

Bytes Deseription
16 MD3 digest of the file Y corresponding 10 this shadow file
16 MDS digest of the first subblock in Y,
16 MD5 digest of the sccond subblock in Y.
16 MD35 digest of the inst subbiock in Y.
15 MID5 digest of the rest of this shadow file

The first field contains the MDS digest (2 form of eryp-
tographic hash) of the entire contents of Y This is included
50 that it can be copied to the incremental backup file so as
to provide a check later that the incremental backup file is
not being applied lo the wrong version of Y 1t could also be
used to determine if any change has been made to X since
the previous backup Y was taken. The first ficld is followed
by a list of the MD35 digests of the subblocks inY in the order
in which they appear in Y Finally, & digest ol the contents
of the shadow file (less this field) is included at the end so
as to enable the detection of any corruption of the shadow
file

The format of the incremental backup fike is as follows:

Bytes Dwscription
16 MDS dipest of Y.
16 MIDS digest of X,
. Zeto or more ITEMS
16 MD3 digest of the rest of the incremestad backuyp file

The first two felds of the incremental backup file contain
the MD5 digest of the old and new versions of the file. The
hash of the new version X is calcuinfed directly from X The
hash of the cold version is obtained from the first feld of the
shadow file. These two values enable the remote backup
entity E2 to check that:

The backup file Y (to be updated) is identical o the one

from which the shadow file was generated

The recenstructed X is identical to the original X.

The two checking fields are {ollowed by a list of ftems
followed by a checking digest of the rest of the incremental
backup file.

Each ilem in the list of items describes one or more
subblocks in the list of subblocks that can be considered 1o

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 45 of 49 PagelD #: 47

5,990,810

21

constitute X There are three kinds of item, and cach item
comraences with a byte haviag a value one, two, or three fo
indicate the kind of ttem Here is a deseription of the content
of cach of the three kinds of item:

1 The 32-bil index of s subblock in Y DBecause E2
possesses Y, it can partition Y itself to construct the
same partitioning that was used to cresie the shadow
file. Thus E1 doesn’t need to send the hash of any
subblock that is in botk X and Y. Inslead, it need only
send the index of the subbiock in the list of subblocks
constituting Y This list is represenied by the list of
hashes in the shadow file S As 32-bits is wide enouph
for an index in practice, the saving gained by commu-
nicating a 32-bit index instead of a hash is 98 bits for
each such item
A pair of 32-bit numbers being the index of the first and
iast subblock of a range of subblocks ia Y Old and new
versions of files often share large contipuous ranges of
subblocks The use of this kind of item allows such
raepes 1o be represented usiag just 64 bils instead of a
jong ren of instances of the first kind of ilem

3. A 32-bit value containing the number of bytes in the
subblock, followed by the raw content of the subblock.
This kind of item is used il the subblock to be trans-
mitted is not present in Y

In the implementation, all the values are coded in Little-
endian form. Bip-cndian could be used equally as well

The existing implementation could be further optimized
by (without limitation):

Adding an additional kind of item that refers to subblocks

in X already transmitled;

Adding an additional kind of item that refers 1o ranges of
subblocks in X afrcady transmilted;

Employing data compression technigues to compress the
raw blocks in the third kind of item.

Using the first hash in the shadow Ble 10 cheek 1o see if
the entire file has changed at afl before performing the
backup process described above

Replacing hashes in S of subblocks in Y by references jo
other hashes in 8§ (where the hashes (and hence
subblocks) are identical) Repeated runs of hashes
could also be replaced by pointers to ranges of hashes

The scheme described above has been described in terms
ol & singie file However, the lechnique could be applicd
repeatedly to cach of the files in a file sysiem, thus providing
a way to back up an entire file system. The shadow infor-
mation for each file in the file system could be stored inside
a separate shadow file for each file, or in a master shadow
file cantaining the shadows for one or more {or all) files in
the file system.

Aljthough moest redundancy in a file system is likely to be
found within different versions of each file, there may be
great similaritics between versions of dilferent files For
example, if & e is renamed, the “new” file will be identical
to the “old” file. Such redundancy can ¢ catered for by
comparing the bashes of all the files in the old and new
versions of a file system. In addition, similaritics botween
different parts of different files can be exploited by compar-
ing the hashes of subblocks of each file 1o be backed up with
the hashes of the subblocks of the eatire old version of the
file system

I 2 has lots of space, a further improvement could be for
E1 to retein the shadows of all the previous versioas of the
file system, and for E2 to retain copics of all the previous
versions ol the file system. El could then refer to every
block it has ever seen This technique could aiso be applied
on a file-by-file basis

td

25

30

35

50

60

22

In a further variaat, the dependence on the ordering of
subblocks could be abandeoned, and E1 could simply keep a
shadow file containing 2 Hist of the hashes of all the sub-
blocks in the previous version (or versions) of the file or file
system. £2 would then need 1o record oaly a single copy of
cach unique subblock it has ever received from E1.

Aspeets of the backup application described in this see-
tion can be integrated cleanly into existing backup architec-
ture by deploying the new mechanisms within the frame-
work of exisling ones. For example, the traditional methods
for determining if a file has changed since the last backup
{modification date, backup date and so on) can be used to see
if a file needs 1o be backed up at all, before applying the new
mechanisms

Example Application: A Low-Redundancy Tile
System

We now present an example of a low-redundancy file
system that attempts to avoid storing differcnt instances of
the same data more than once lIn this example, the file
syslem is organized as shown in FIG 26

The bottom layer consists of a colicction of unique
subblocks of varying length that are stored somewhere on
the disk. The middle layer consists of a hash table containing
onc eniry for each subblock Each eniry consists of &
cryptographic hash of the subblock, a reference count for the
subblock, and a pointer 1o the subblock on disk The hash
table is indexed by some part of the cryptographic hash (e.g
the bottomn 16 bits) Although u hash table is used in this
example, many other data structures {e.g a binary tree)
could also be used $0 map cryplographic hashes to subblock
entries It would alse be possible to jadex the subblocks
directly withowt the use of cryptographic hashes

The top layer consists of a table of files that binds
filepames to lists of subblocks, cach list being & list of
indexes into the hash table. The reference count of the hash
table records the aumber of references to the subblock that
appear in the entire sel of files in the file table. The issue of
hash table “overflow” can be addressed using a vadety of
well-known overflow techniques such as that of attaching o
linked list to cach hash slot

When a file is read, the Hst of hash tabic indexces is
converled 1o pointers lo subblocks of data using the hash
table. If random access to the file is required, extra infor-
mation about the lenpth of the subblocks could be added to
the file table andfor hash tabie so as to speed access

Writing a file is more complicated Puring 2 sequential
write, the data being written is buflered until a subblock-
boundary is reached {(as determined by whatever boundary
function is being used), The cryptographic hash of the new
stbblock is then caleulated and wsed to look up the hash
table. H the subblock is vnigue {i ¢ thuere is no entey for the
cryptographic hash), it is added to the data blocks on the disk
and an eniry is added (o the hash table. A new subblock
number is added 10 the list of blocks ia the file table. If, on
the other hand, the subblock already exists, the subblock
need not be writien to disk Instead, the reference connd ol
the already-existing subblock is incremented, and the sub-
block's hash table index is added o the st of blocks in the
file's entry in the file table.

Rardom access wriles are more involved, but esseatially
the same principles apply

I a record were kept of subblocks created since the Jast
backup, backing up this file system could be very efficient
indeed

One enhancemen! that could be made is to exploit unused
disk space Instead of automatically ignoring or overwriting

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 46 of 49 PagelD #: 48

5,990,810

23

subblocks whose reference count has dropped 1o zero, the
low-redundancy file system could move them to a pool of
unused subblocks 'These subblocks, while not present in any
file, could still form part of the subblock pool referred to
when checking to see if incoming subblocks are already
present in the file systera. The space consumed by subblocks
in the unused subblock pool would be recycled only when
the disk was full Inthe steady state, the “unused” portion of
the disk would be filled by subblocks in the unused subblock
pool

Although this section has specifically described a low-
redundancy lile system, this aspect of the invention is really
a general purpose storage system that could be applied at
many levels and in many roles in information processing
systems [or example:

The techaigue could be used to implement a low-
redundancy virtual memory system The conients of
miemory could be organized as a collection of sub-
blocks

The techoique could be used to increase the efficiency of
an on-chip cuche

Example Application: A Communication System

A method is now presented for reducing redundant trans-
missions in communications systems Consider two entilies
El and E2, where EI mus? transfor a block of data X 10 E2.
El and E2 nced never have communicated previcusly with
each other

The conventional way to perform the transmission is
simply for E1 to transmit X to E2. However, here E1 first
partitions X into subblocks and calculales the hash of each
subblock using a hash function. It then transmits the hashes
to E2 E2 then looks up the hashes in a table of hashes of alf
the subblocks it already possesses. E2 then transmits to El
information {e g & list of subblock numbers) identifying the
subblocks in X that E2 does not already possess El then
transmits just those subblocks

Another way o perform the trapsaction would be for E2
1o first transmit to E1 the hashes of all the subblocks it
possesses (or perhaps a well chosen sebset of them). El
could then fransmit references 1o subblocks in X already
koown to E2 and the actual contents of subblocks in X not
known to E2. This scheme could be more efficient than the
earlier scheme in cases where E2 possesses less subblocks
than there are in X.

Anrother way lo perform the transaction would be for E1
and L2 to conduct a more complicated conversation to
establish which subblocks E2 possesses For example, E2
could send EI the hashes of just some of the subblocks it
possesses {perhaps the most popular ones) Ei could then
send to E2 the hashes of other subblocks in X E2 could then
reply indicating which of those subblocks it truly does not
possess El could then send to E2 the subblocks in X not
possessed by E2

In 2 more sophisticated system, E1 and E2 could keep
track of the hashes of the subblocks possessed by the other.
If cither entity ever sent (for whatever reason) a reference 1o
a subblock oot possessed by the other entity, the latter entity
could simply send back a request for the subblock to be
trapsmitted explicitly and the former entity could sead the
requesied subblock.

The communication application described above consid-
ers the case of just two communicants However, there is no
reason why the scheme could not be generalized to cover
more than two communicanls communicating with cach

3¢

50

55

40

65

24

other in private and in public {using broadeasts) For
example, to broadeast a block, a computer C, could broad-
cast a list of the hashes of the biock’s subblocks. Compaters
C, . Cy could then cach reply indicating which subblocks
they do not already possess C,; could then broadcast sub-
biocks that many of the other computers do not possess, and
send the subblocks missing {rom only a few computers to
those compuiers privately

All these technigues bave the potential to greatly reduce
the amount of information transmitted belween computers

These techniques would be very efficient if they were
implemented on 1op of the file system described carlier, as
the fle system would already have performed the work of
organizing all the data it possesses into indexed subblocks
The potential savings in communication thal conld be made
many different computes systems shared the same sub-
block panitioning algorithm sugpests thal some form of
universal standasdization on a particular partitioning method
would be 2 worthy poal

Exampic Applcation: A Subblock Server

Aspects of the invention could be used o cslablish a
subbiock server on a network so as to reduce network traffic
A subblock server could be located in a busy part of a
network. H would consist of a computer that breaks cach
black of daia it sees into subblocks, hashes the subblocks,
and then stores them for future reference. Other computers
on the nelwork could send requesis to the server for
subblocks, the requests consisting ol the hashes of subblocks
the server might possess, The server would respend 1o cach
hask, returping cither the subblock corresponding o the
hash, or a message stating that the server does not possess
a subblock corresponding to the hash

Such & subblock server could be uselul for localizing
network traffic on the Internet For example, if a subnetwork
{even a larpe one for (say) an enlire couniry) placed a
subblock server on cach of it major Iaternet conncctions,
then (with the appropriate modification of various protocols)
much of the traffic into the network could be eliminated For
example, il a user requested a file from a remote host on
another network, the user’s compuler might issue the request
and receive, in reply, not the file, but the hashes of the file's
subblocks The user's computer could then send the hashes
to the local subblocl server to see if the subblocks are
present there. It would receive the subblocks that are present
and then forward a request for the remaining subblocks to
the remote host. The subblock server might notice the new
subblocks flowing through it and archive them for future
reference. The entire effect could be fo eliminate nsost
repeaied data transfers between the subaetwork and the rest
of the Internet However, the security implications of
schemes such as these would need to be closely investigated
before there were deployed.

A funther step could be 1o create “virtual” subblock
servers that store the hashes of subblocks and their location
on the Internct rather than the subblocks and their hashes

Felaim:

1 A method for organizing 1 block b of digilal data for
storage, communication, or comparison, comprising the step
of:

partitioning said block b into a plurality of subblocks at at

least one position klk+1 within said block,

for which b[k-A+1 . . k+B] satisfies a predetermined

constraint, and

wherein A ard B are natural numbers.

2 The method of claim 1, wherein 1he constraint com-
prises the hash ol at least a portion of b[k-A+1 . k+B].

Case 1:08-cv-00016-SLR Document1 Filed 01/09/08 Page 47 of 49 PagelD #: 49

5,990,810

25
3 The methed of claim 1, further comprising the step of:

locating the nearest subblock boundary on a side ol a
position pip+1 within said block, said locating step
comprising the step of:

evaluating whether said predetermined consiraint is sat-
isfied at each position kjl+1 [or increasing or decreas-
ing k,

wherein k starts with the value p.

4. The method of claim 1, wherein at least one bound is
imposed on the size ol at least one of said plurality of
subblocks

5. The method of claim 1, wherein additional subblocks
are formed from at least one group of subblocks

& The method of claim 1, wherein an additional hicrarchy
of subblocks is lormed {rom at least one group of contiguous
subblocks.

7 The method of claim 1, further comprising the step of:

celeulating the hash of cach of at least one of said plurality
of subblocks

B The method of claim 1, further comprising the step of:

forming o projection of said block, being an ordered or
unordered collection of elements, wherein cach ele-
menl cousists of a subblock, an identity of & subblock,
or a reference of a subblock.

9 The method of claim 1, wherein said subblocks are

compared by comparing the hashes of said subblocks

14, The method of claim 1, wherein subsets of identical
subblocks within a group of onc or mose subblocks are
found by inseriing cach subblock, an identity of cach
subblock, a reference of cach subblock, or a hash of cach
subblock into a data structure

11. A method for comparing one or more blocks, com-
prising the steps oft

orpanizing a block b of digital data for the purposc of
comparison, compeising the step of:
pariitioning said block b inte a pluraiity of subblocks at

at jeast one position klk+1 within said blodk;

for which blk-A+1 k+B] satisfies a predetermined
constrainly and
wherein A and B are natural numbers,

{orming & projection of each said block, being a collection
of elements, wherein each element comprises a selected
one of a sebblock, an identity of a subblock, and a2
reference of a subblock, aed

compuaring the clements of said projections of said blocks

12. A method for representing one or more blocks com-
prising a collection of subblecks and block representatives
which are mapped to lists of eniries which identify sub-

bloclks; said method comprising the step of modifying one of

sajd blacks including the steps of
partitioning said block into a plurality of subblocks at at
Jeast one position kilerl within said block, for which
blk-A+1 . . k+DB] satisfies a predetermined constraing,
and wherein A and B are natural numbers,
adding to said collection of subblocks zero or mose
subblocks which are not already in said collection, and
updating said subblock lst associated with said modified
block
13. A method for representing one or more blocks com-
prising & collection of subblocks and block representatives
which are mapped to lists of catries which identily sub-
blocks; said method comprising the step of modifying onc of
said blocks including the steps oft
partitioning said block into a plurality of subblocks at at
Ieast one position kfk+1 within said block, lor which

26

b[k-A+l . k+B]satisfics a predetermined constraint,
and wherein A and B are pasural pumbers,
removing from said collection of subblocks zero or more
subblocks, and
updating said subblock list associated with said modified
biock
14 A method for representing one or more blocks com-
prising a collection of subblocks and block representatives
which are mapped 1o lists of entries which idestify sub-
blocks; said method comprising the step of modifying one of
said blocks including the steps of:
partitioning said block inte a plurality of subblocks at at
least one position kik+1 within szid bleck, for which
bik-A+1 .. k+BJsatisfies a predetermined constraint,

th

-
(=]

15 and wherein A and B are natural numbers,
adding to said collection of subblocks zero or more
subblocks that are not aiready in the coliection,
removing [rom said collection of subblocks zero or more
subbiocks, and
20

updating said subblock list associated with said moedified

block.

15 A method for an entity E to communicate a block X
10 E2 where E possesses the knowledge that E2 possesses
a group of Y subblocks Y, = Y,,, comprising the steps of:

partitioning said block X into @ plurality of subblocks

X, - X, a1 at least one position kik+1 within said
black, for which X[k-A+t .. k+B] satisfies a prede-
termmned constraiot, and wherein A spd B are nalura)
numbers, and

trassmitting from E1 to E2 the contents of zero or more

subblocks in X, and the remaining subblocks as refer-
cuces to subblocks in Y, - Y, and to subblocks
transmitied.

16 A method for an entity El to communicate one or
more subblocks of 4 group X of subblocks X, . .. X, to E2
where £1 possesses the knowledge that E2 possesses a block
Y, comprising the steps of:

partitioning said block Y into a plurality of subblocks

Y, .Y, at at least one position Kk+1 within said
block, for which Y[k-A+l k+13] satisfies a prede-
termiged constraint, and wherein A and B are natural
numbers, and

transmitting from E1 to E2 the contents of zero or more

subblocks ir X, and the remaining subblocks as refer-
cnces to subblocks in Y, and to subblocks already
transemitted.

17 A method for an entity E1 to communicate a block X
io 2 where E1 possesses the knowledge that B2 possesses
sy 8 blocl Y, comprising the steps oft
pariitioning said block X into a plurality of subblocks

X, . X, at at [cast onc position klk+1 within said

block, for which X[k~A+1 k+B] satisfies a prede-

termined constraint, and wherein A and B are nadural
numbers,
partitioning said block Y into a plurality of subblocks

Y, Y, 2t al least one pusition klk+1 within said

block, for which Y[k-A+1 k+B3] satisfies a prede-
termined constraint, and whesein A and B are natural
numbers, and

transmitting [rom El to E2 the contents of zero or more

subbiocks in X, and the remaining subblocks as refer-
ences o subblocks in Y, and to subblocks already
transmitted

18 A method for constructing a block D from a block X
and a group Y of subblocks Y; = .Y, such that X can be
constructed from Y and IJ, comprising the steps of:

™
L

30

35

60

65

Case 1:08-cv-00016-SLR Document1 Filed 01/09/08 Page 48 of 49 PagelD #: 50

5,990,810

27

partitiontieg said block X into a plurality of subblocks
X, .. X, at at least one position kfk+1 within said
blﬂck for whzcil X[k-A+1 .. k+B] satisfies a prede-
termined constraint, and wherein A and B arc natural
numbers, and

consiructing D from @ selected at least one of:

the contents of zero or more subblocks in X,
references o 2ere or more subblocks in Y, and
references 1o zero or more subblocks in [

13 A method {or constructing a block D [rom a group X
of subblocks X, X, and a block Y such that X can be
constructed from Y and D, comprising the steps ol

partitioning said block Y into a plurality of subblocks

Y, .. Y, atat least one position kfk+1 within said

block, {or which Y[k-A+} +B] smisfics o prede-
termined constraint, and wherein A and B are natural
numbers, iand

constructing [from a selected at least one of:

the confents of zero or more subblocks in X,
references 1o zero or more subblocks in Y, and
references o zero of more subblocks in D

20. A method for constructing a block T from a block X
and a blockY such that X can be constructed from Y and D3,
comprising the sieps of:

purtitioning said block X into a plurality of subblocks

X, .. X, atat least ope position kfk+! within said
block, for which X[k~A+1 le+B] satisfies a prede-
terrined constraint, and wherein A and B are natural
numbers,
partitioning seid block Y into a plurality of subblocks

Y, Y,. at at least one position Iflc+1 within said

i}[utk {or which Y[k~-A+l k+13] satisfies # prede-

termined constraind, and wherein A and B are natural
numbers, and

constructing D from @ sclected at least one of:
the contents of zero or more in X,
references to zero or more subblecks in Y, and
references 1o zero or more subblocks in I
21 A method for construciing a block D from a block X
and a projection Y said projection comprising 2 collection of
elements wherein said elements comprises 2 subblock in Y,
an identity of a subblock in Y, or a reference of a subblock
in Y, such that X can be constructed from Y and D,
comprising the steps of:
partitioning said block X into a plurality of subblocks
X, . X, alaf least one position klk+l within said
block, for which X[k-A+1 . k+B} satisfics 1 prede-
termired constraing, and wherein A and B are natural
numbers, and
consteucting D from a selected at feast one of:
the contents of zere or moere in X,
references 1o zero or more subblocks in Y, and
references to zero or more subblocks in D
22. A method for copstructing a block X from a biock Y
and a block B, comprising the sieps of:
partitioning said block Y imto o plurality of subblocks
Y, Y, atatleast one position kjk+1 within said
bloc.i{ for which Y[k-A+1 . . . k+B] satisfies a prede-
termined constraint, and whr,rcin A and B are natural
numbers, and

constructing X from D and Y by constructing the sub-
blocks of X based or a selected at least one of:
subblocks contained within D,
references in D 1o subblecks in Y, and
references to D 1o subblecks in D

28
23 A method for constructing a group X of subblocks
X, X, from a block Y and 2 block P, comprising the
steps of:
partitioning said block Y into a plurality of subblocks
5 Y, Y, ai ol leust one position kik+1 within said
bk;ck for which Yik-A+l . k+b] satisfies a prede-
termincd constraint, and wherein A and B are natural
numbers, and

consirucling X, . .

at least onc of:
subblocks comtained within D,

references in I to subblocks in Y, and

references to) to subblecks in D

24 Amethod for communicating a data block X from one
entity E1 to another entity E2, comprising the steps of:

pattitioning said block X inio a plurality of subblocks

X, . . X, st at least one positior kik+1 within said
biot_k, for which X[k-A+1 . . k+B] satisfies a prede-
termined consiraint, and wherein A and B are natural
numbers,

transmitting from EI to E2Z an identity of at least one

subblock,

transmitting from E2 to Bl information commuzicating

the presence or abscnce of subblocks at B2, and
transmilting from ET to B2 at least the subblocks identi-
ficd as nol being present at E2

25 A method for communicating a block X from one
entity E1 to amother entity B2, comprising the steps of;

partitioning said block X into a plurality of subblocks

Xy - .. X, nt at least enc position klk+1 within seid

block, for which X[k-A+1 . k+B] satisfies a prede-
termined constraiot, and wherein A and B are natural
numbers,

transmitling from E2 to El information communicating

the presence or absence at E2 of members of 2 group Y
of subblocks Y, Y, and

transmitting from E1 to E2 the conlents of zero or more

subblocks in X, and the remaining subblocks as refer-
ences 1o subblocks in Y, - Y, und to subblochs
already transmitied.

26 A method for an entily E2 (o communicate to an cality
E1 the Iact that E2 possesses a block Y, comprising the steps
of:

partitioning said block Y inte a plurality of subblocks

Y, . Y, at at least one position kik+1 within said
biock, for which Y[k-A+1 k+13] satisfies a prede-
termined constraint, and wherein A and B are natural
aumbers, and

transmilting from B2 to E1 references of the subblocks

Yl : Ym

27 Amecsthod for an entity Ef to communicate a subblock
X to an entity E2, comprising the steps of:

partitioning said block X into a plurality of subblocks
55 X, X,, ut at least one position klk+1 within said
block, for which X{k-A+1 .. k+B] satisfies a prede-

termined consirainl, apd wherein A and B are nateral
numbers,

transmitting from E2 to E1 an identity of X,

transmitting X; from E1 to B2

28. An apparatus for organizing 2 block b of digital data
for storage, communication, or comparison, comprising

means for partitioning said block b inlo & plurality of

subblocks at at feast one position kik+1 within said
bloclk, for which b[k-A+1 . k+B] satisfies a prede-
termrined constraint, and wherein A and B are natural
numbers

X, from D and Y based on a selected
10

25

34

40

63

65

Case 1:08-cv-00016-SLR Document 1 Filed 01/09/08 Page 49 of 49 PagelD #: 51

5,990,810
29 30
29 The apparatus of claim 28, in which the constraim means for evaluating whether said predetermined con-
comprises the hash ol some or all of b[k-A+1 . k+B} straint is satisfied at coch position klk+1 for increas-
30 The apparates of claim 28, further comprising ing or decreasing k,
means for locating the nearest subblock boundary on a wherein k starls with the value p.

side of a position plp+1 within said block, said means 5
for locating comprisiag: ok W &

