Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 1 of 32

- AL IN THE UNITED STATES DISTRICT COQURT Jut 2 a0
\\\U N FOR THE NORTHERN DISTRICT QOF GEORGIA
ATLANTA DIVISION LT %?
Py
S.P.I. DYNAMICS INCORPORATED
Plaintiff,
Civil Action No.
V.

SANCTUM INC.,
and
SANCTUM LTD.,

|
;
)
)
| § 04-CV 1523
i
)
)

Defendants.

COMPLAINT FOR DECLARATORY JUDGMENT

COMES NOW Plaintiff S.P.I. Dynamics Incorporated, LILC
(“S.P.1.”), and for its Complaint against the Defendants Sanctum
Incorporated (“Sanctum USA”) and Sanctum Ltd. (“Sanctum Israel”)
alleges and avers as follows:

PARTIES

1. Plaintiff S.P.I. is a corporation organized and
existing under the laws of the State of Georgia with its
principal place of business at 115 Perimeter Center Place, Suite
270, Atlanta, GA 30346.

2. Defendant Sanctum USA is a corporation organized and
existing under the laws of the State of Delaware with its
principal place of business at 2901 Tasman Drive, Suite 205,

Santa Clara, CA 950534, Moy o

(-.1 Lot G

ta

ap

121090502v2 779903

RWS

"------—.._

": v k8 'ul_u_,ﬂi ﬁ

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 2 of 32

3. Defendant Sanctum Israel 1is a corporaticn organized
and existing under the laws of the State of Israel with 1its
principal place of business at 1 Sapir Street, Herzelia 46733,

Israel.

JURISDICTION AND VENUE

4. This is an action for Declaratory Judgment under 28
U.5.C. §§ 2201 and 2202 adjudging U.S. Patent No. 6,564,569
(“the ‘569 Patent”) invalid and not infringed by S.P.T.

3. This Court has subject matter Jjurisdiction over this
civil action pursuant to 28 U.S.C. §§% 1331 and 1338 in that this
action arises under the patent laws of the United States and an
actual controversy exists between the parties.

G. Sanctum USA manufactures, distributes, sells,
licenses, and/or offers for license or sale computer software
and computer services for analyzing potential security flaws in
an Internet web site, and otherwise transacts business within
the State of Georgia, including the Northern District of
Georgia, within the meaning of 0©.C.G.A. § 9-10-91, and has
continuous and systematic contacts with this District such that
it is subject to personal jurisdiction in this District.

7. Sanctum Israel transacts business within the State of
Gecorgia, including the Northern District of Georgia, within the
meaning of ©.C.G.A. § 9-10-91, through its agent and wholly-

owned subsidiary Sanctum USA, and has continuous and systematic

1210905022 779903

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 3 of 32

contacts with this District such that it is subject to personal
jurisdiction in this District.

8. Venue is proper 1n this judicial district and division
pursuant to 28 U.S.C. § 1391 (b) and (c).

FACTS COMMON TO ALL COUNTS

9. S.P.I. repeats and realleges the averments contalned
in Paragravhs 1 through 8 hereof as if fully set forth herein.

10, On June 24, 2003, the '569 Patent issued to Reshef et
al on an alleged invention entitled "“System for Determining Web
Application Vulnerabilities.” A true and correct copy of the
patent is attached as Exhibit A.

11. Upon information and belief, the current owner of
record of the '569 Patent 1in the United States Patent and
Trademark Office is Sanctum Israel.

12. Upon information and belief, Sanctum USA is the
wholly-owned subsidiary of Sanctum Israel and is the exclusive
licensee of the '56% Patent with the right to sue and the right
to license.

13. An actual <controversy exists between the parties
hereto regarding infringement of the '569 Patent.

14. S.P.I. has at all times relevant heretoc made and/or
offered for sale within the past four years, and since the
issuance c¢f the ‘569 Patent, the “Weblnspect” scoftware for

analyzing potential security flaws in an Internet web site.

12109350242 779902

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 4 of 32

15. Sanctum USA, through its attorneys, has charged S.P.T.
with infringement of the ‘569 Patent in a letter dated September
2, 2003. A true and correct copy of such letter is attached as
Exhibit B.

16. Sanctum USA, through 1its attorneys, again charged
S.P.I. with infringement c¢f the ‘569 Patent in a letter dated
Octcber 7, 2003. A true and c¢orrect copy of such letter is
attached as Exhibit C.

17. Such letters have created on the part of S.P.I. a
reasconable apprehension that it will face an infringement suit
if it does not cease 1ts manufacture and sale of its WeblInspect
software.

18. While wunder such threat ¢f litigation, S.P.I. has
attempted to negotiate terms for a possible license with Sanctum
USA, but such negotiations have failed.

19. S.P.I. is the owner of U.S. Patent Applicaticn Serial
No. 09/722,65b, filed November 28, 2000 entitled “Internet
Security Analysis System and Process” (the “‘'655> Application”).
During the prosecution of the ‘655 Application, the ‘569 Patent
was cited by the patent examiner as prior art against the ‘655
Application.

20. In response, S.P.I. has requested that an interference
between its ‘655 Applicaticn and the ‘569 Patent be declared in

the Patent and Trademark C©Cffice. This request for an

12109050242 779603

Case 1:04-cv-01823-RWS Document1 Filed 06/23/04 Page 5 of 32

interference has increased G5.P.I's apprehension that it will
face an infringement suit by Defendants.
COUNT I

DECLARATORY JUDGMENT OF NON-INFRINGEMENT CF ‘569 PATENT

21. S.P.I. realleges and incorporates the allegations of
paragraphs 1 through 20 as 1f fully set forth herein.

22. There is an actual and justiciable ccntroversy between
the parties concerning the validity and infringement of the ‘569
Fatent arising under the Patent Act, 35 U.5.C. § 1, et seq.

23. S.P.I. has not in the past infringed, and does not
currently infringe, directly by inducement or by contribution,
any claim of the '56% Patent within the meaning of 35 U.S.C. §
271.

24. S.P.I. is entitled to a declaraticon that it has not in
the past infringed, and does not currently infringe, any claim
cf the '569 patent.

COUNT 1II

DECLARATORY JUDGMENT OF INVALIDITY OF THE 569 PATENT

25. 8.P.I. realleges and incorporates the allegations of
paragraphs 1 through 24 as if fully set forth herein.
26. The invention claimed in the ‘569 Patent 1is invalid

pursuant to, inter alia, 35 U.S.C. §§ 102, 103, and 11Z.

N

121090502+ 2 779903

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 6 of 32

27, S.P.I. is entitled to a declaration and order that the

claims of the ‘569 Patent are invalid as issued.

WHEREFCRE, Plaintiff S.P.I. respectfully reguests that this
Court enter judgment in its favor and against Defendant Sanctum

USA as follows:

1. That the Court declare the c¢laims of the ‘569 Patent
invalid;
2, That the Court declare that S.P.I. has not in the past

infringed and does not «currently directly infringe,
induce infringement or contribute to the infringement of
any claim of the ‘569 Patent;

3. That the Court find this case to be an exceptiocnal case
pursuant to Section 285 of the Patent Act and award
S.P.I1. its reasonable attorney fees;

4, That all costs be taxed against Sanctum USA and Sanctum
Israel; and

5. For such cother and further relief as the Court deems just

and equitable.

121090502+2 779903

Case 1:04-cv-01823-RWS Document1 Filed 06/23/04 Page 7 of 32

This

Suite 3100,
1230 Peachtree Street,
Atlanta, Georgia
(404} 815-3500

day of June,

Promenade I1I

N.E.

30309-3592

2004.

Respectfully submitted,

SMITH,

-~

Dily Ziwedod

GAMERELL & RUSSELL,

LLP

Dale Liser

Georgia Bar No. 452027
Elizabeth G. Borland
Georgia Bar No. 460313
Coby 5. Nixon

Georgia Bar No. 545005

12109050222 779901

Case 1:04-cv-01823-RWS Documep

, - , o Usu06584569B2
a2 United States Patent (0) Patent No.: US 6,584,569 B2
Reshef et al. 45) Date of Patent: Jun, 24, 2003
(54) SYSTEM FOR DETERMINING WEB WO WO 01/31415 5/2001

APPLICATION YULNERABILITIES OTHER PUBLICATIONS

(75) Invenmors: Eran Reshef, Tel-Aviv (IL); Yuval Intrusion, Evasion, and denial of Service: Eluding Network
El-Hanany, Tel-Aviv (IL); Gil Raanan, Intrusion Dectection, Thomas H. Ptack, et al., Secure Net-
Zorao (11}, Tom Tsarfati, Tel- Aviv (IL) work INC., Jan. 1998.*

A simple Active Altack Agamst TCP, Laurent Joncheay,

Merit Network INC, Apr. 1995.*

Protecting Routing Infrastructures from Denial of Service

Using Cooperative Lntrusion Detection, Steve Cheung et al.,

Universit of California, Davis, CA, New Security Para-

digms, workshop Cumbria UK, Sep. 1997.*

(73) Assignee: Sanctum Ltd., Herzelia (IL)

(*) Notice: Subject 10 any disclaimer, the term of this
patent is exteaded or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/800,090 SAINT: A securily Analysis Inlegration Tool, published in
’ the proceedings of the 1996 SANS Conference, Washington,
(22) Filed: Mar. 5, 2001 D.C., May 1996.*
65 Prior Publication Data “Design and Implementation of a Security Management
(65) or teation Da System”, W. Song el al., [EEE 1995, especially p. 262,
US 20020010855 A1 Jan. 24, 2002 seclion entitled “Simulator™.
, “Intrusion Detlection Alert”, K.L. Ida Peterson, 1EEE 1992,
Related U.S. Application Dala pp. 306-311.

(60) Provisional application No. 60/186,892, filed on Mar. 3, * Abstraction—Based Misuse Detection: High Level Specifi-
’ calion and Adaptable Strategies”, J. Lin et al., IEE 1998,

(51) InL CL7 i GO6F 12/19; GO6F 11/30; Abstract, Figures 1 and 2, entire document.

GOG6F 17/30 , _
(52) US.Cl oo 713/201; 713/202; 709/9; (List continued on next page.)

709/203; 709/219; 709/225; 714/37; 714/38;

714739, 714747 Primary Examiner—(Gail Hayes

Assistant Examiner—Taght T. Arani

(58) Fi.eld ol' Scarch 714[37, 38. 39, (74) Aﬂ‘orney, Agem, or F.I-HH*-BI'OWH, Raysman,
714/47; 709/9, 203, 219, 225; 713/2_’001_; Millstein, Felder & Steiner LLP
(57) ABSTRACT
(56) References Cited

A method for detecting security vulnerabilities in a web
U.S. PATENT DOCUMENTS application includes analyzing the clienl requests and server
5166977 A 11/1992 Ross responses resulting therefrom in order to discover pre-
5237693 A 8/1993 Kiyohara e al. defined elements of the application’s interface with external
5,257,369 A 10/1993 Skeen el al. clients and the attributes of these elements. The client

. . requests are then mutated based on 2 pre-defined sel of

(List continued on aext page.) mufation rules to thereby generale exploits unique to the
FOREIGN PATENT DOCUMENTS application. The web application is attacked using the
exploits and the results of the atlack are evaluated for

EP 959586 11/1999 e ot

WO WO 99/46882 9/1999 ananalous application activity.

wo WO 00/16206 372000

WO WO 01/02963 172001 72 Claims, 9 Drawing Sheets
»

k1]
| e ———— e |
[Licanse 24
GUI Web [
| Manager 12+ — fpivi (10
Gontrol arsing | _-18
| Engine i
| 2% 13\ Crawl Analyza 20
. Engine Engina r |
[™ Anack Enghie]
' i
| |

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 9 of 32

_—
US 6,584,569 B2
Page 2
U.S. PATENT DOCUMENTS 5917912 A 6/1999 Ginter et al.
5,933,498 A 81999 Schneck et al.

5347578 A 9/1994 Duxbury 5941947 A 8/1999 Brown et al.
5392390 A 2/1995 Crozier 5944794 A 81999 Okamoto el al.
5,485,409 A 1/1996 Gupla et al. 5949876 A 9/19%9 Ginter et al.
5557798 A 9/1996 Skeen et al. 5982891 A 11/1999 Ginter et al.
5,559,800 A 9/1996 Mousseau ¢t al. 5983,270 A 11/1999 Abraham et al,
5566326 A 10/1996 Hirsch et al. 6083804 A * 772000 Hill etal. .eoven ., 7137201
5611048 A 3/1997 Jacobs et al. 6.185,689 Bl * 220001 Todd, Sr.etal. ... 7132Mm
5623601 A 41997 Vu 6,205,552 Bt 372001 Fudge
5,659,547 A 8/1997 Scarr et al. 6,219,803 Bl * 4/2001 Casellactal. 71438
5613321 A 91997 Pepe et al. 6,249 88 B1 = 672001 Kalkunte_... . Thd?
5699518 A 121997 Held et al. 6,298,445 Bl * 10722001 Shostack el al. 7137202
5,700,451 A 121997 Rogers el al. 6.301,668 Bl * 1072001 Gleichauf et al. . 7137201
5,715,453 A 21998 Stewarl 6,311,278 Bl * 1022001 Raanan et al. 7137201
5,724,355 A 3/1998 Bruno et al. 6,408,391 Bl + 6/2002 Huffetal. 7137201
5714695 A 6/1998 Autrey et al. 6,415321 Bl * 772002 Gleichauf et al. o T097223
5,778,189 A 7/1998 Kimura et al. 2002/0026591 Al * 22002 Hadley el al. ... e 7137201
5,793966 A 8/1998 Amslein el al.,
5805823 A 0/1998 Seitz OTHER PUBLICATIONS
g:gg:ggg : 13,'::332 "l:,::% et al. “Role Based Access Control: A Multi-Dimensional View",
5850388 A 12/1998 Anderson el al. R.S. Sandhu et al,, lEEE. 1994, Abstract, pp. 54-60.
5870544 A 2/1990 Curis “An Audil Model for Object Oriented Dalabases”, B. Kogan
5,870,559 A 21999 Leshem et al. et al., [EEE 1991, pp. 40-96.
5,881,232 A 3/1999 Cheng et al. “Developing Secure Systems: Issues and Solutions™, J.
5.892.900 A 4/1999 Ginter et al. Freeman el al., IEEE 1998, pp. 183~189.
5,892,903 A * 41999 Khis ... 395/187.01 “Formal Techniques for an ITSEC-E4 Secure Gateway”,
5,908,469 A 6/1999 Boiz et al. Picrre Bieber, IEEE 1996, pp. 236-244.
5910987 A 6/1999 Ginter et al.
5915019 A 6/1999 Ginter et al. * cited by examiner

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 10 of 32

Detection rules

Mutation rules

212

300

302

Application List of the site's Mutated Requests List of security
Craw! Stage interface Detection Inerabilit Mutation J (potential “hacks” | Attack Stage J problems in the
structure vuinerabiliies into the application) application
100 \ 202 \ 2‘::;’: 400
102 206
A list of A report
suggestions for describing audit

Long-shot rules fixing the process and
security hole results

R 404

Analysis Stage 200 402

Fig. 1

JuAeg 'S'N

€007 ‘p7 "unf

6 30 T 194§

79 6957859 SN

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 11 of 32

U.S. Patent

30

30

Browser

Browser

Jun. 24, 2003

Client

Client

Sheet 2 of 9

US 6,584,569 B2

24
GUI web
Server

User
Interface

-
o

F—————— = = — = — —
l License .
l enager 12 \ Sl Parsing 16
l f Control Engine 4
| 25 13\ Crawl Analyze (’20
22 Engine Engine
| ™ :
Attack Engine
I
| Database
- e
Fig. 2A
Site's Web
Server
r—-—————— - — - — — ——_——— ——— — — —
| License r
Manager | ‘Engine
l 12\ Parsin
Control arsing - 16
| 3 Engine
| BN Craw Analyze }—20
Engine Engine
| 22\ _
Attack Engine
I
| Database
o e e

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 12 of 32

U.S. Patent

r |
| License |, N - 24 l
l Manager 12 Engine Gé)el! Web 10
Contro! Parsing e 16 e (
| /7] Engine I
| 25 3\ Crawl Analyze |—20
22\ Engine Engine |
l Attack Engine |
| ‘ 8 ,
| Database
L |

Jun, 24, 2003

Client Browser

Browser

30 Client
Browser

plug;’ry‘

Sheet 3 of 9

US 6,584,569 B2

Browser
plug-in

40

Site's Web
Server

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 13 of 32

U.S. Patent

Jun. 24, 2003

to WorkQueue and
to LinkDB

Is WorkQueue

Sheet 4 of 9

US 6,584,569 B2

Insert start URL's /’ 110

112

empty ?

No

4—Yes

Yas ‘;@

114
Get nextLink from /

WorkQueue
116
120A
o 4
Input fictitous
118 Yas values
Required
o 208
g I Display nextLink
Yes— | to Operatorfor (— — — M
manual interaction
No

Send request for page at
nextLink and receive server
response

/-'122

l

Parse server response for
application interface elements

and stora new hnks in
WorkQueue and LinkDB

/"124

Fig. 3A

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 14 of 32

U.S. Patent

200

Fig. 3B

250

N

|15 DetectedList
empty 7

Jun. 24, 2003

Sheet 5 of 9

Get server information

Match request and
response into transaction
pairs

222

All transaction

No

4

Get all mutation rules
associated with
detected link

Activate mutation rules
and add resutts to
AttackList

>

252

h

to AttackList

information

Add Long-shots

based on server

-

260

checked ?

L

Get next
transaclion

All Detection
Rules checked ?

No

!

Aclivate next
detection rule on
transachon

232

Cetected?

228

Yas

]

No DetectedList

Add to

US 6,584,569 B2

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 15 of 32

U.S. Patent Jun. 24,2003 Sheet 6 of 9 US 6,584,569 B2

300
310
Is Attacklist
empty ? Yes
Yes No
312
No
4
4 o
314 ‘)
Send next attack (

to server
- 316 Add all attack with |~ 470

Get reply score above threshold

to report
Check reply with (320
the original attack 412
rule and give score Let the user add/delete /
attacks to/from report at
will

Fig. 3C Fig. 3D

Case 1:04-cv-01823-RWS Document1 Filed 06/23/04

U.S. Patent Jun, 24, 2003

Sheet 7 of 9

Chck cn the Fmega o purthaza for onky §149 92

Suarch o site e your Breorte orodids *- 0

o g

Page 16 of 32

US 6,584,569 B2

281\ Mm‘-_?-- o coa w93 u:...._..u 284
Orginal URL Muated LRL

hitpswww shapshop comiaddCart.egid=48& res 14 -

hip:waw .ahup:hul-'n comucklCan caitid=H& e

You hitve purchased one hand-ak) PC
Your crodi-annd will be biked lor $149.59.

290

Original URL:
http:/iwww.acme-hackme.comdugin.pl

Fill the form below to login

Name:==— Password:~—
e

{or a guest login. use Nome= guest and panaword-guest}

You have purchased one hand-reid PC
Your cradit-oard will be bekad bar 81.0G

Thank you K buylng In o o Ine slone.

Mutated URL B
hup:fwww acme-hackme.comogin.pl.bak

e L WP e T e
P
b

B el

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 17 of 32

U.S. Patent Jun. 24, 2003 Sheet 8 of 9 US 6,584,569 B2

294

Transaction iD / 294A r)

294B
Original HTTP request /

Criginal response

294D
Mutated request /
294E
Mutated response
™\
Element type
Element name/ID
Original value
294F
Changed value
Changed value :
_J
294G
Fired rules /
294H
Attack results (

Case 1:04-cv-01823-RWS Document 1

/. 450

Filed 06/23/04 Page 18 of 32

Manual

Result Link Name Report | Tomper | Filter | Marked
Evident /scripts/test.pl.bak time script files —
Success |View Attack Result Reattack %EMSJM . @ pa a E
(Advice mode) (Seventy: Medium)
/scripts/test.pt
Original parameter: price1=1 Change Price (to 1)
Evident Mutated parameter: (Severity: High) @ E E
Success | price1=1 2
View Attack Result Reattack
(Advice mode)
fscriptsftest.pl -
X P P Forceful Browsing
Evident |view Attack Result Reattack (any directory) @ ﬁ' a E
Success T——T -
(Advice mode) (Severity: High) o

Fig. 7

jued ‘SN

€007 ‘pT "unf

6 J0 6 YS

79 6951859 SN

31,279

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 19 of 32

US 6,584,569 B2

1

SYSTEM FOR DETERMINING WEB
APPLICATION VULNERABILITIES

RELATED APPLICATIONS

This application claims priority from U.S. Provisional
Application No. 60/186,892 filed on Mar. 3, 2000 which is
hereby incorporated by reference into this application,

This application is related 10 pending U S. application Ser.
No. 09/345,920, entitled Methed and System for Ex{racting
Application Protocol Characteristics, filed Jul. 1, 1999,
which application is hereby incorporaled herein by refer-
ence.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains malerial which is subject to copyrighl protection.
The copynight owner has no objection lo the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent aod Trademark Office
patent files or records, but otherwise reserves all copyrght
rights whatsoever.

1. Field of lnvention

The invention generally relaies 1o the art of delecting
security Baws with a web site, and in particular, 1o delecling
vulnerabilities at the application level, as opposed to the
network level,

2. Background of Invention

It is often quile important 1o ensure Lthal a web sile or web
application is secure from attack or perversion by hackers.
In order to assist in this endeavor, network scanning tools
exist which provide security management capabilities for
network bosl computers or servers. One example of such a
scanner is the Internet Scanner™ markeled by Internet
Security Systems, Inc. of Atlanta, Ga., which product
appears lo be described in U.S. Pat. No. 5,892,903 to Klaus.

The shoricoming with network securily products such as
the Internet Scanner™ is thal they only scan for vulnerabili-
ties at the network level. The goal is to limit access to a web
sile 1o only designated protocols and services. To analogize,
network-level security products can be thought of as a fence
that forces access lo lhe sile only through a main gate, and
network-level scanners seek to find the holes in the fence.

However, there also exisls a need to ensure Lhat a web site
or web applicalion is secure at the application level. Many
web applications assume or depend that the application user
is in fact executing a mobile agent of the application on the
user's browser. However, a malicious user can overcome or
modify (he limitations or logic embedded in the mobile
agent and send destructive or forped dala o the web server.
For example, one common type of web application is an
online storefront wherein goods and services can be bought
or sold over the Internet. A hacker should not be able to
change the sale price of a product by manipulating the HTTP
requests sent to the application program executing on a web
server. A peed therefore exists for an application-level
scanoer 1o identify application-level vulnerabilities. In other
words, carrying on with the previous analogy, once the user
is inside the gate it is important 1o idenlify ways in which the
user may misbchave while on the premises.

Application level vuloerabililies have Iraditionally been
discovered in a manner similar 1o looking for bugs in
software—through a quality assurance or auditing process.
Conventionally, this has been a completely manua} process
that can devour a significant amount of time. Not only does
somcone have 1o review the application line-by-line and

0

35

40

45

50

55

60

65

2

understand the code intimately, they also have o try lo
imagine or anlicipate poleniial security loopholes in the
code. This is problematic in and of itsclf because many web
developers lack the expertise and requisite knowledge to
properly evaluale and correct application-level sccurity
flaws. This, coupled with the ever prevalent speed to market
concern of getting new web applications on-linc as fast as
possible, makes human error in web development unavoid-
able. Worse yel, web applicalions are constanily changing
and being upgraded while third party vendors are continu-
ally issuing patches Lhat need to be implemented. In short,
manual! auditing processes 1o find application-level vulner-
abilities are nol very practical.

SUMMARY OF INVENTION

The invention seeks 10 provide a scanner for automati-
cally detecting potential application-level vulnerabilities or
security flaws in a web application. In the web enviroament,
generally speaking, the application scanner apalyzes lhe
messages that flow (or would ordinarily flow) between a
client browser and a server hosting the web application in
order 1o discover lhe slructure or elements of the applica-
tion's interface with external clients. Then, based on a
pre-defined set of hacking rules or techniques, the scanner
mutates client requests in various ways, thereby generating
exploits that will be unique for each web application. These
exploits may then be used to atlack (he web application. The
antack is monitored and the results evaluated and reported to
lhe user.

According to one aspect of the invention a method is
provided for detecling securily vulnerabilities wilk an appli-
calion implemented through a client-server architecture. The
method comprises actuating the application in order to
discover one or more application-level elements of the
application’s client-server interface; attacking the applica-
tion by sending one or more client requests lo the server in
which the discovered elements bave been mutated in accor-
dance with pre-defined mulalion rules; receiving scrver
responses lo lhe mulated requests and evalvating the
responses in order to idenlify anomalous application acliv-
iy.

According to another aspect of the invention a method is
provided for detecting securily vulnerabilities in a HTML-
based web application installed -on a web server or web .
application server. The method includes: wraversing the
application in order to discover and actuate links therein;
analyzing messages that fow or would flow between an
authorized client and Lthe web server in order to discover
elements of the application’s interface with exlernal clienls
and attribules of these elements; gencrating unauthorized
client requests in which these elements are mutated; sending
the mulated client requests o the server; receiving server
responses lo the unauthorized client requests and evaluating
the results thereof.

According 10 another aspect of the invention, a scanner is
provided for detecting security vulnerabilities in a HTML-
based web application installed on a web server or web
application server. The scanner includes a crawling engine,
an analysis engine, and an attack engine. The crawling
engine traverses through the application in an automatic,
manual, or interactive way in order lo discover application
links. The attack engine analyzes the messages that flow or
would Aow between an authorized client and the web server.
The analysis is carried out in order 1o discover elements of
the application’s interface with external clieats and
atlributes of these elements. Based on this information

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 20 of 32

US 6,584,569 B2

3

unauthorized client requests are peneraled in which 1he
application interface elements are mutated. The altack
engine sends the mutated client requests to the server;
receives server responses 1o the unauthorized client requests
and evaluates the results thereof.

BRIEF DESCRIPTION OF DRAWINGS

The foregoing and other aspects of the invention will
become more apparent from the following description of
ilusirative embodiments thereof and the accompanying
drawings which illusirate, by way of example, the principles
of the invention. In the drawings:

FIG. 1 is a process fow chart illustrating four major
stages ol operation provided by a web-application scanncr
according 10 one embodiment of the invention;

FIGS. 2A, 2B and 2C are system block diagrams showing
the major software components of the web-application scan-
ner illustrated in FIG. 1 in accordance with first, second and
third methods of implementation, respectively

FIGS. 3A, 3B, 3C, and 3D are fowcharts showing the
major processing sleps execuled by the web-applicalion
scanner of FIG. 1 in each of the four stages of operation,
respectively;

FIG. 4 exemplifies a security vulnerability that may arise
in a web application due 1o a data parameler inherent in the
application's external interface;,

FIG. 5 exemplifies a securily vulnerability that may arise
in a web application duc to a path parameter inherent in the
application’s external interface;

FIG. 6 is a schemalic diagram of a data structure for
sloring Lhe particulars of client-server transactions; and

FIG. 7 is a schemalic diagram of an exploitation report.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS
1. Overview

Referring to FIG. 1, the application scanner 10 of ihe
illustrated embodiment employs four stages of operation: a
crawl stage 100, an analysis stage 200, an attack slage 300,
and a reporting stage 400. Duc 1o the typically expected
processing times each stage is preferably initiated manually,
but the stages could be automatically actuated if desired.

In the crawl stage 100, the scanner 10 dynamically
traverses through an entire web "application or site and
examines the application-leve]l messages that flow (or would
ordinarily flow) between a web server hosting a web-based
application and a client browser operating in an intended or
authorized way. This enables the scanner lo discover the
structure or elements of the application's interface with
exiernal clients, particularly the path and dala paramelers
employed in the interface. Attributes of the path and data
parameters, such as file names and data types are also
extracted. Collectively, this provides a descrption of the
application interface (the “application interface structure™)
102. If desired, the operator of the scanner may also initiate
cuslomizable filters to reduce the crawl path and eliminate
scanming any unnecessary or undesired levels, layers or
links.

The analysis stage 204 comprises a detection phase 202
followed by a mutation phase 208. In the detection phase
202, the scanner 10 secarches through the application inter-
face structure 102 and, using a set of detection rules 204,
identifies application-level messages 1hat may be potentially
vulnerable 1o various forms of “hacking”. For example, the
HTML <form> tag in a web server message may be asso-
ciated with a numeric input field. In normal operation, the

a5

30

as

40

45

50

55

60

65

4

client browser would only accept a numeric input value.
However, a hacker may potentially alter this o a non-
oumeric value when an HTTP request is peneraled lo
commuaicale the value of the field 1o the server. This minor
change has the potential to freeze the application. By iter-
aling through other such detection rules the scanner can thus
produce a list of vulnerabilitics 206 specific to the web
application or web site.

In the mulation phase 208 the scanner 10 uses a set of
mutation rules 210 1o create mutated HTTP requests 212
such as just described above that will be used to test the web
application or web site. The foregoing represents polential
“hacks” into the web application or sile arising specifically
out of the design and struciure of the web applicalion or silc.
In addition, the scanncr 10 also preferably includes pre-
defined “long shol” rules 214 which are used to create HTTP
requests based on published securily flaws or vulnerabililies
with hardware and/or software plalforms that may be
employed by the web application or site.

In the attack stage 300 the scanner 10 sends the mutated
requests 212 lo the site, receives the responses, and ranks the
attack results by severity and success ratings. A security
problem List 302 is thus generated. If desired, the operator
may define the types of attacks to execute and perform them
automnatically or manually. In the reporting stage 400 the
scanner 10 generales a report 404 describing the foregoing
auditing process. The scanner 10 preferably also provides a
report 402 recommending fixcs or other pertinent advice
concerning each detecled vulnerability. The scanner 10 can
thus provide an organizalion wilth a repeatable and polen-
tially cost-effective process for conducling application secu-
rity audits.

2. Sysiem Architecture

FIG. 2A shows the system architecture of the scanner 10
in accordance with one implementation method. The major
sofiware components comprise:

A control module 12 which controls all other components

and communicates with each component.

A crawling engine 13 for crawling over or traversing
some or all of the links in the target web site 40. The
crawl engine can operale in one of lhree modes: (i)
automatic; {ii) manual; or (iii) interactive. [o the auto-
matic mode the engine 13 traverses all links (including,
if desired, links embedded in code such as Javascript)
which are not removed from consideration by a filter. In
the event an HTML form is encountered the engine 13
fills in the form according to pre-defined, configurable
values. The engine 13 may zlso enumerate over mul-
tiple values for the same field in a form. For example,
in a multiple-choice field the engine 13 will select cach
of the possible oplions, and send a separate request in
respect of cach oplion 10 the web site 40, In the manual
mode the operator (raverses through the web site using
a browser and the engine 13 monitors the communica-
tion. In the interactive mode, the engine 13 crawls over
the links in the same manner as the aulomatic mode.
However, in the event HTML forms or other construcls
are encounlered which require user interaction, the
engine 13 requests lhe operator to supply the field
values.

A proxy 14 that is responsible for communicating mes-
sages Howing between a web server 40 hosting the
larget web application or site and the scanner 10. Note
that the scanner 10 may also operate in conjunction
with a clienl browser 30, for instance, 1o inform the
scanner as to which links of the web application should
be followed, as described above. In this case, the proxy

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 21 of 32

US 6,584,569 B2

5

14 is configured, as known in the art per se, 10 intercept
messages fowing between the client browser 30 and
web server 40 and forward them to the scanner for
analysis, After analysis, the scanner 10 forwards the
intercepted messages to the intended recipient device.
The proxy 14 caables the monitoring of multiple client
browsers, as shown in FIG. 2A.

Aparsing engine 16, employed in the crawling stage 100,
for parsing HTTP messages and the HTML language
cncapsulated therein in order 1o discover the applica-
tion interface stucture 102,

A database R for storing, amaong othec things, the appli-
cation interface structure 102 and the sile 's vulnerabili-
lies 206, the various expert rules 204, 210, 214, the
mutated requests 212 and the security problem list 302.

An analysis engine 20, employed in the analysis stage
200, for analyzing the application interface structure
102 as stored in the database 18, applyiog the detection
and muiation rules 204 and 210, and generaling the
mutated HTTP requests 212.

An attack engine 22, employed in the atlack stage 300, for
altacking the web applicalion by sending the mutated
requests 212 generated in the analysis stage 200 and
scoring the result.

A graphic usec interface server (GUI) 24 that, in Lhe
Illustrated embodiment, is a web-based GUI.

A license manager 25 for validaling any request going
from the scanner 10 1o the web sile 40 in order o ensure
that only licensed web siles will be evaluated.

It should be noted that the proxy 14 is just a means Lo
access the web server 40 and could be eliminated so that the
scanner 10 communicaies directly with the web server 40.
This alternative methed of implementation is shown in FIG.
2B. In this case the scanner functions as a proprictary client
or browser and includes a user interface in place of the GUIL
server 24.

1n another alternative method of implementation shown in
FIG. 2C, the proxy 14 could be replaced with a browser
plug-in as known in lhe art per se. In this case muliiple
plug-ins would be required for monitoring communicalions
from multiple browsers.

3. Crawl Stage

The crawl stage 100 may be executed in an automated
mode or manual mode. In the automated mode, the crawling
cngine 13 aulomatically scans the whole web application or
sitc and discovers all the links or URL’s associated there-
with. In the process, the scanner identifies the application
interface elemenlts associated with each link and stores this
information in the database 18.

The processing steps carried oul by the crawling engine
13 are shown in the flow chart of FIG. 3A. The flowchart
references 1wo data structures, WorkQueue and LinkDB,
which are stored in the database 18. LinkDB is a log which
stores the links that were traversed, as well as the applicalion
interface elements associated with cach link and the
attributes thereof. WorkQueue is temporary data structure
for bolding all links extracted from a particular web page or
server message until such time as the link is processed and
logged in LinkDB.

Initial step 110 requests the operator lo provide the
slarting or root URL to the scanner 10. This is stored in
WorkQueue and LinkDB.

Step 112 sets up a conditional loop for testing whether or
not the WorkQueue is empty. LI so, the craw! stage 100 bas
terminaled and the operator may initiate the analysis stage
200.

i}

ta
A

35

40

45

50

55

60

65

6

Step 114 retrieves a link from WorkQueue. The link uoder
consideration is lesled at siep 116 10 see if it matches a
pre-defined filler. The filter may De based on the site’s
domain name so as to prevent the scanner 10 from leaving
the web application or site. Other types of filters may be also
be employed, such as URL object type matches. For
example, a filler based on a ‘jpeg’ extension may be
established 10 prevent the scanper from following image
links. The 1ypes of fillers may vary and will be application
dependent. In the event the link under consideration matches
an applicable filter, it is igoored and control passes to step
112

Siep 118 tests whether a web page or portion thereof
under consideration (arsing from a retricved link) requires
user input. This may occur, for example, when the retrieved
web page includes a form. In this event, in order lo continue
traversing the web application or site, the crawling engine 13
provides ficlitious values as input, siep 1204, based on the
field or data type. In the alternative (as indicated by the
dashed How control line), the engine 13 can operate in the
interactive mode wherzin the web page is displayed to the
operalor for manual input, step 120B. (Note that in the first
pass of the loop set up by step 112 no web page has been
loaded by the scanner, but in subsequent passes a web page
or portion thereof is under consideration.)

Al step 122, the link under consideration ("nextLink” in
FIG. 3A) is actuated and an HT'TP request is gencrated for
lransmission to the web server. For this purpose the crawling
engine 13 functions as an authorized or “correct” client
browser as known in the art per se in order 10 send an
authorized or “correct” HTTP request. The web server
replies with an HTTP and HTML response thal is received
by ihe scanner and loaded into memory. The server respomse
represents a web page or portion thereol pointed 1o by the
actuated link.

The HTTP request is logped in LinkDB. Aliernatively, the
salient atiributes of the HTTP request are stored so that il can
be reconstrucied a1 a laler uime. In panicuiar, any HTTP
method, e.g., GET or POST, the requesied liok or URL,, and
the methed’s data paramelers are noled.

The HTTP and HTML response is preferably alse logged.
Using the parsing engine 16, the response is parsed as
known in the art per se to cxiract any path parameters or
links encapsulated therein. Provided the exiracted links have
not already ‘been processed, i.e., not already stored in
LinkDB, they are stored in WorkQueue and LinkDB. The
response is also parsed to identify other application interface
elemenis (in addition 10 the encapsulaled links) such as data
parameters. Attributes of the path and data parameters are
also extracted and logged in LinkDB. For example, the
parser identifies any input or hidden fields such as those
associaled with HTML forms. The identity and nature of the
field, including its name, type and fiecld leogth is extracted
and logged in LiokDB. Using a similar procedure, the
scanner also check for forms, fields, fixed ficlds, hidden
fields, menu options, DOM componeants, eic. The nature and
attributes of these ¢lements are wrilten into LinkDB. The
parser also idenifies any other actions available in the web
document/response. These inciude, for example, a “submit”
command on an HTML form, a “search” command, or other
application-leve! protocols. These additional actions encap-
sulated within the response are also extracied and siored in
LinkDRB. In a similar maaner the parsing engine 20 ideatifics
any other request-generaling tags or the attribules (hereof.
By lraversing through the links within the applicalion the
end result is a description of the application’s interface with
external clients.

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 22 of 32

US 6,584,569 B2

7

In the manual mode, the operator can “walk through” the
web application or site using the client browser 3. This
allows 1he operator to manually specify the application links
that he or she wishes to traverse. The requests from the
browser are directed to the proxy 14 which forwards them
oato the scanner 10 for apalysis and logging. Once this
process is accomplished the scanner forwards the request 1o
the web server via the proxy. The web server receives the
request, aclivates the needed application componeats, and
returns the respouse 10 the proxy. The proxy passes the
response 10 the scanner for analysis and stores any discov-
ered interface elements and the aitribules thereof inlo the
database 18. In this way the scanner can discover the
structure of the portion of 1he application interface that was
encountered during the operalor’s session with the scanner.
The scanner can then attack and test the application based on
this information.

4. Analysis Stage
4.1. Deteclion Phase

The scanner 10 enables the detection and assessment of
security vuinerabifities within the web site. As described
previously, there are two major categories of web sile
vulnerabilities. The first major category is unkpown or
application specific vulnerabilities—security holes within
the site's own specific application. These arise from the
application-level interface with external clients and include,
but are not limiled 1o, path vulnerabilities and parameter
vulperabilities. These are identified in the delection phase
202 by rules 204 (FIG. 1). The secaond major calegory is
known wvulnerabilities—security flaws within 3rd party
applications such as web servers, operaling syslems and
packaged or off-the shelf software platforms. Since these
vulperabilities are not applicalion-specific they are not iden-
tified in the detection phase 202. Instead, the long-shot rules
214 (FIG. 1) handie these types of vulnerabilities.

4.1.1. Parameler Vulnerabilities

Web applications interface with exlernal clients using a
multitude of parameters. These parameters are used to call,
initiate or trigger various functions, actions or logic of the
application. Each such parameter may have a number of
attributes such as data type, length, visibility, and value. The
web application may be developed in any one of a vast
option of languages (such as Perl, PHP, Java and many
others) and may use one or more integration methods (CGls,
servlets, server APIs, etc.). Irrespeclive of implementation,
the application may expect to receive the “correct™ param-
eler coplaining the “correct” type and value ranges. Any
deviation from the expected parameters might potenlially
lead tv erroneous application activily and 2 wide variety of
polential hazards.

To demonstrate parameter vulnerabilities, an example of
online theft is shown in FIG. 4. Ia this ¢xample a form 280
for purchasing a product contains the product price io a
hidden parameter 282. The left part of 1he figure shows the
“appropriate” URL including price parameler that the
browser creates from the form 280 leading to the comect
acquisition of the product for the sum of $149.99. The link
including URL-encoded price parameter would ordinarily
be sent in an HTTP request 281 to the server as the path and
data parameters of the GET method. The scanner 10 is
capable of identifying such a vulnerable HTTP request and
changing the value of the vulperable parameter 282 to create
a mutated HTTP request 284 in which the value of the price
parameter is changed 10 1.99. The securily flaw is exposed
s a result of sendiag the mutated request to the web server,
resulting in the ability to buy the producl at any given price
(in this case $1.99).

10

35

45

50

50

55

8

While a bidden field is one kind of parameter, other
examples of parameters include, but are not limited to:

lInput fields associated with HTML forms

Query paramecters thai are being passed in the URL (and

pot in an HTML form)

HTTP headers

Cookie values
It is specifically within the scope of the present application
to vary lhe particular parameters detected by the scanoer,
especially in view of Lhe rapid introduction of new Inlernet
communicalion slandards.

4.1.2. Path Vulnerabilities

The file sysiem shown by the web scrver 1o the clients is
vulnerable (0 unauthorized access. Basically, any place in
the file system thalt is lefi unguarded may serve as an illegal
eniry point into the system. The possibilily of accessing
unatiended files and directories enables reading old and
backup files, listing of directory content and access to hidden
applications. These types of vulnerabilitics are referred to as
path vulnerabilities,

Access 10 a hidden part of the file system and a severe
breach of security arising from it can be seen in the follow-
ing example shown in FIG. §. [n this example an old version
of a CGI script was left in the file systerm for backup
purposes but ils access attributes were nol changed to block
access. The figure shows an unlampered URL 290 ihat
allows normal access to the application via a login.pl CGI
script. However, this URL can be identified as a €Gl link
and a “.bak” suffix may be added 10 il 10 create a tampered
URL 292. Sending the tampered URL to the web server in
a mutaled HHTP request exposes the source of the backup
file that was lefi in that direclory. The ability 10 view the
source of the script can be 2 significant security flaw since
it may lead to full exposure of the site's vulnerabilities.
4.1.3. Long-shot Vulnerabilities

Long-shot vulnerabilities are secunty Aaws that generally
exust within web servers, application servers and other
applicalions interacting with client browsers. The vulner-
abilities are published by a large number of organizations
(c.g. BugTraq by SecurcPoint.COM, Securily Focus) and
can be accessed by anybody wath Internet access. Afier the
hacker checks ihe vulnerabilities, he or she can scan through
a web site trying 1o find places where the vulnerability has
not been blocked or a patch has not been applied. The
scanner 10 preferably maintains an updated list of known
vulnerabilities in the long shot rules 214. During the muta-
tion phase the scanner enumerates the relevant vulnerabili-
ties according to the type of web server, application server
and other third parly applications idenlified by the operator,
thus verifying that the known holes in the system are
blocked.

4.1.4. Processing Sleps

The processing steps carried out by the analysis engine 20
during the detection phase 202 are shown in the flowchart of
FIG. 3B.

Al injtial step 220 the analysis engine 20 collects pertinent
information about the web server hardware and software
platforms from the aperaior. Alternatively, this dala can be
exiracted automalically based on fingerprinis in a server
response.

At step 222, the apalysis engine 20 scans the LinkDB log
in order 1o match cach client request with a server response
from which the request was gencrated. (Recall thal each
client request is generated from a prior server message.) The
server response provides information aboul the altribules of
the data parameters and path parameters used to interface
with the web application. This information is used to mutate

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 23 of 32

US 6,584,569 B2

9

the previously stored request as described in greater detail
below. A matched request and response pair is referred to
herein as a “trapsaction” and stored in a transaction file.

A simplified example of a transaction file is shown in FIG.
6. Each record 294 in the file, which may be construcied as
an indexed linked list, comprises:

a transaction [D 294A;

the original authorized or correct HTTP request 294B (or
reference 10 it in the LinkDBY;

the original HTTP+HTMI. response 2948 {or reference to
it in the LinkDBY;

mutated HTTP request 294D,

HTTP+HTML response resulting from the mutated
request (“mutated responsc”) 294E;

a list 294F of changed application interface elements,
including eclement type (i.e., path or parameier), ele-
menl name/ID, original value, and mutated value,

fired rules 294G (as described in grealer detail below);
and

attack results 294H (as described in greater detail below).

A conditional Joop is eslablished at step 224 for iterating
through all the transactions identified in the previous step.
When all transactions have been processed the deteclion
phase 202 has lerminated and the analysis engine 20 may
begin execuling the processing sleps 242-260 associated
with the mutation phase 208.

At step 226 one Iransaction is read or retreved from the
wransaction file. The analysis engine then iterates through alt
the detection rules 204 (o see if any of (them apply to, or are
“fired” by, the transaction under consideration. Step 228
establishes a nested conditional loop for this purpose. In the
nested loop, sleps 230 and 232 apply or test one of the
detection rules 204 against the transaction under consider-
alion. Representative detection rules include, but are not
limited to, identification of transactions that incorporate: (a}
a hidden field; (b) a numeric field; (¢} a text field; (d) a
command; (e) uscr-seleclable input options; (f) a “/scripts”
directory m the URL; (g) 2 “/scripl{command names].cgi”
in URL, where [command names] are various pre-defined
guesses. Rules (a){(e) are examples of parameter vulner-
ability detection rules and rules (£)}-(g) are examples of path
vulnerability detection rules, If the rule is true or “fired”,
e.g., the transaction involves a hidden field, the analysis
engine updates field 294G in the comesponding transaclion
file record 280 with the 1D of the fired rule. Al the end of the
deleclion phase, the iransaction file will include a list of
detected rules (the “detected list™).

In practice, because the detection rules for each type of
parameter tend to bave a similar structure, they can be
organized in an SQL database. This makes it convenienl 1o
search for multiple rules in a single SQL query in steps 230
and 232
4.2. Mutation Phase

In the mulation phase 208, the potential security vulner-
abilities itemized in the detection list are evaluated and one
or more mutalions is generated for each detected vulner-
ability based on the mutation rules. These represent exploils
that are unique to the application. The types of mutations
correspond to the types of detection rules. Ap example of
this is set out in Table 1.

a5

45

50

55

60

65

10

TABLE 1

Detection Rule Fired By: Mutation Rule

Change parameter value to % 00 (NULL)
[ocrease string length beyond maxlength
attribute

[ncrement parameler value

Decrement parameter value

Multiply parameter value by -1

Change parameler value lo % 00 (NULL})
Chanoge parameter value to 1ext type
Change value to “show’

Change value tc “search’

Change value to ‘delete’

Change valuc 1o ‘edit’

Change value to “/boot.ini®

Change value 1o /eic/passwd”

Append “~' 1o path

Append “.sav’ to path

Append ‘.bak’ to path

Append ‘.0ld’ to path

Break path into sub-paths (e.g., a/b/c.biml
will generate: /c.html; and /ajc.btml)

Text field parameter

Numeric field parameter

SQL query parameler

Paramcter name = “file’

Path parameter

The foregoing are just represenlative deteclion and muta-
tion rules and it is specifically within the scope of the
invention 1o implement a wide variety of rules.

The processing sieps carried out by the analysis engine 20
during the mutation phase 208 are shown in the Aowchart of
F1G. 3B. Step 242 eslablishes a conditional loop for iterating
through the Iransaction file and the list of detected vulner-
abilitics embedded therein. For each transaction, step 250
retrieves Lhe mutation rules 210 associated with each detec-
tion rule that was fired relative 1o that transaction. Based on
lhese mutation rules, step 252 creates one or more mutated
HTTP requests 212 for the transaction. The mutated requests
arc stored a separate data structure termed AttackLisl and
referenced in field 294D of the transaction file.

Step 260 adds additional unauthonized HTTP requests to
AttackList based on the non-application specific long shot
rules 214.

5. Atlack Siape

The result of the prior siages is a list of mutated requests
or exploits (stored in AttackList) that cae poteatially cause
security errors within the application. The mutated requests
may be iniliated automatically or manually during the attack
stage 300 to evaluale the real threat that the polential
vulnerabililies pose. Since the attack list can be quite large,
the attack engine 22 preferably grants the operator the ability
to select the general types of vulnerabilities to execute, or
specific attacks to filter oul.

FIG. 3C shows the processing steps carried out by the
attack engine 22 in the automaled mode. Step 310 sels up a
conditional loop for iterating through the AltackList. Step
312 determines whether a particular mutated request has
been filtered out. At step 314 a mutated request on Lhe atack
list is sent to the application and the server reply is received
at step 316 and slored or referenced in field 294E of the
transaction file. At step 320, the attack engine 20 analyzes
the response received from the application and a success
rating and severily are assigoed io the poteatial vulnerability.
This is stored ino field 294H.

The success rating is preferably based on the recognition
of certain keywords in the response. For example, the status
line of the HTTP response may include a 4xx result that
indicates some kind of error. Allernatively, the application
may send a web page back in which the keyword “emor”,
“sorry” or “pot found” appears. Tn these cases the applica-
tion appears to have withstood the allack since an error was
trapped in the mutaled clieot request. However, if these

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 24 of 32

US 6,584,569 B2

11

pre-defined keywords are not present, then an assumplion is
made that the attack was successful. In this maauner, any
anomalous activity of the application ot the lack thereof can
be used io evaluate the success or fsiluce of ag attack.

The attack soore is preferably based on an a priovi success
probability assigned to each mutation rule. The lower the
prabability of the vulnerability, the higher the score given to
the attack resuits, unless the aitack appears (o be unsucoess-
ful in which case it has no score or a zero score.

I the manual atiack mode, the scanner preferably enables
the aperator to browse through the different exploits via their
associated links or URLSs and select particular ones to aftack
the application with. In this case the suceess o failure of the
altack can be manually ascertained.

la addition to analyzing the atlack responses, the scanner
preferably also avtomatically locates and marks any poten-
tially harmiul information in the server responses that may
potentially be used 1o hack info server-side systems. This
information, which is based on the recogrition of certain
tags and/or keywords, is displayed in 2 “contenl review”
page aod may include hidden web page clements such as
suspicicus lext comments, JavaScript code and CGl param-
eters. Hackers can use these elements to hack into a siic by
viewing the source code, which may yield important pieces
of information about the site that may assist in their hackig
altempts,

4. Reporting Stage

FIG. 3D shows the processing sieps in the reporiing stage

400, At step 4180 attack results having scores above a

specified threshold are reporied 1o the operator. Al step 4123 2

the opesator is preferably given the option of adding or
deleting attacks 1o or from the report. An exampie report 458
provided throughs the web-based GUY 24 is shown ia FIG. 7.
In the report the original link 10 which a client request is
shown aod the mutation o the URL, if readily apparent, is
shown in bold (or red). The results of the attack, stored ig the
transaction file, are preferably viewable by engaging the
“View Alack Result” hyperlink. The “Name” catuma
descebes the attack according to predefined categories.”

The scanper preferably includes an expent koowledge
base for providieg advice upon ways of correctiog the
security flaws exposed by the mutated requests. The sug-
gestions made by knowledge base comprise changes to the
site’s seftware or available patches to the problem in cases
of third-party platfarras. Pressing the “repon” icon in FIG.
T preferably triggers this,

7. Varizats

In the llustrated embodiment there are two distinct preo-
cesses for discovering the struciure of the web application’s
imerface with external clients, 1e., the craw! stage, and
wentifying the elements of the application imerface which
are susceplible of mulation, i.¢., the detection phase of the
analysis stage. This 5 conveniem because the crawl slage is
usefu] for determining the application’s security policy as
described in greater detail iv communly assigoed application
Ser. No. 09/345,920. However, those skilled in the ant will
readily appreciate that it is possible o collapse the two
processes (ogether ip order to identify mutable application
interface clements in 2 single pass.

Furthermore, in the illustrated embodiment each stage of
operation is execuied prior 1o the pext siage being initiased.
In alternative embodiments, the slages of operation may be
compacted together and executed sequenlially per transac-
tion. For example, a loop may be set up in which, as sbon
as the crawlipg engine reirieves a new link, the mutated
client request is geoerated, the web sile is altacked and the
result evaluated. In still furtber variant, the scanoer can he

20

25

Kh]

Al

50

o
th

60

65

12

constructed as a multi-threaded application ta which each of
the stages of operation are execuled in paraliel. Numenus
other modifications and vartations may also be made 1o the
vmbodiments deseribed berein without departing from the
spirit or scope of the invention.

We claim:

1. A method for desecting security vulnerabilitics i a web
application executing on a web server or web application
server, the methad cormprising:

actualing the application n order 1o discover pre-defined

elemems of the application's tatecface with extemal
chents;

genecating client cequests haviag unauthanzed values for

said elements in order 1o geaerate exploits vaique a the
application;

attacking the application using the exploits; and

evaluating the results of the attack.

2, The method according to claim 1, whergin an applica-
tion interface element is a path parameler.

3. The method according 1o claim 1, wherein an apphica-
tion interface element 15 a dafa parameter.

4. The method according to elaim I, wherein the actuation
of the application nciudes:

sending an authorized clicnt request in order to receive 2

SETVEl TESponse;

parsiag, the response in order o discover links encapsu-

tated therein; and

actyading discovered links in accordance with authorized

client functionality in order to generate additional
authodized clieat requests.

5. The method according to claim 4, including comparing
discavered links to a filter and aot generating authorized
client requests for links matching the filier.

&. The methad zccarding o claim 4, including Jogging the
client requests,

7. The methad according to claim 4, wherein said appli-
cation interface clements are discovered by parsiog af least
ane of the awthorized client requests and server responses
resulting therefrom.

8. The methad accarding to claim 7, including analyzing
the server responses in order to extract attributes of said
application interface elements.

9. The method according to claim B, whereia the disoov-
cry of said application interface clements is based on a
pre-defined set of detection rules.

18. The method according to claim 9, wherein the gen-
cration of the unauthorized clicnt requests is based on a
pre~defined sel of mutation rules.

1}. The meihod according ta claim 1@, wherein the
evaluation of the attack resulls is based on fecognition of a
keyword in the resulis of the aitack indicating an emor in the
application aciivily.

12. The method according w0 claim 11, iocluding assign-
ing ¢ach rowiation mile a probabilty of success and scoring
the results of said aitack based on the probability of the
coriesponding mulation rle.

13. A method for detecting security vulnerabilities (a a
byperiext-based web application insiailed on a web server or
web applicalion server, 1he metbod comprising:

waversiog the application in order lo discaver and aciuate

links therein;

analyzing messages that Bow or would flow between an

authorized client and the web server in order to dis-
cover clements of the application’s interface with exier-
nal clients and attributes of said elements;

gencrating upauthorized cliend requesis in which said

elements are mutated;

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 25 of 32

US 6,584,569 B2

13

sending the mutated clieot requests o the server; and

receiving server responses to the unpauthorized client

requests and evaluating the results thereof.

14. The method according, to claim 13, wherein an apph-
cation interface element is a path parameter.

15. The method according to claim 13, wherein an appli-
cation interface element is a data parameter.

16. The method according 1o claim 13, wherein an appli-
calion interface element is a cookie.

17. The method according te claim 13, wherein the
traversal over the application includes the sleps:

sending an authorized client request in order to receive a

SeTVEr Tesponse;

parsing he response in order 1o discover links encapsu-

lated therein; and

actuating discovered links in accordance with authorized

client functionality in order 10 receive authorized server
respooses from which additional authorized client
requests can be peperated.

18. The method according to claim 17, iscluding com-
paring discovered links to a filter and not generating, autho-
rized client requests for links malching the filter.

19. The method according te claim 17, wherein, in the
event the authorized client request requires user-inleractive
parameters, supplying pre-configured values therefor.

20. The method according 1o claim 17, wherein, in the
event the authorized client request requires user-ineraclive
selection of an option within a set of oplions, enumerating
over all the options 1n order 10 generale a separate client
request in respect of each option.

21. The method according 1o claim 17, including logging
the authorized client requests.

22. The method according to claim 21, including loggiong
the anthorized sever responses.

23, The method according 1o claim 17, wherein said
application interface elements are discovered by parsing at
leasl one of the authorzed clienl requests and server
responses resulting therefrom.

24. The method according to claim 23, including analyz-
ing the server responses in order to extract attributes of said
application iolerface ¢lements.

25. The method according lo claim 24, wherein lhe
discovery of said application interface elements is based on
a pre-defined set of delection rules.

26. The method according to claim 25, wherein the
generation of the mutated client requests is based oo a
pre<defined set of mutation rules.

27. The method according to claim 26, wherein the
evaluation of the server response in reply lo the mulated
requests is based on recognition of a keyword in the results
of the attack indicating an error in the application activity.

28. The metbod according to claim 27, including assign-
ing each mutation rule a probability of success and scoring
the results of the server response based oa the probability of
the corresponding mutation rule.

29. The method according to claim 13, including parsing
the messages senl by the scrver for any suspicious code
based on the recognition of pre-defined keywords and
reporting the suspicious code.

30. A scapoer system, provided on a computer, for detect-
ing security vuloerabilities in a HTML-based web applica-
tion installed on a web server or web application server, the
scanner system comprising:

a crawling engine for traversing Lhe application in order to

discover and actuate links therein;

an analysis engine for analyzing messages that flow or

would flow between an authorized clieot and he web

14

server in order to discover elemenlts of the application’s
interface with external clients and attributes of said
elements and for generating unawmhorized client
requesls in which said ¢lernents are mutated; and
% ananack engine for sending the mutated client requests to
the server,

receiving server Tesponscs 10 the unauthorized client

requests and evaluating the results thereof.

31. The scanner system according o claim 30, wherein
the crawling engine:

sends an authorized client request in order to receive a

servel response;
invokes the parsing engine 10 parse the response in order
1o discover [inks encapsulated therein; and

actuates discovered links in accordance with authorized
client funclionality in order to receive authorized server
responses from which additional authorized clicot
requests can be generated.

32. The scanner system accordiog to claim 34, wherein
the crawling engine compares discovered links 10 a filter and
does no! generate authorized cliemt requests for filtered
links.

33. The scanner system according 1o claim 31, wherein, in
the event the authorized client request requires user-
interaclive paramelers, the crawling engine supplies pre-
configured values therefor,

34 The scanner system according 1o claim 31, wherein, in
the event the authorized client request cequires user-
interactive selection of an option wilhin a set of oplions, the
crawling engine enumerales over all the options in order 1o
generale a separate client request io respect of each option.

35. The scanoer system according to claim 31, wherein
the crawling cngine logs authorized client requests and
authorized sever responses.

36. The scanoer system according to claim 30, wherein
the discovery of said application interface elements is based
on a pre-defined set of detection rules.

37. The scanner system according to claim 36, wherein
the generation of the mutated clienl requests is based on a
pre-defined set of mutation rules.

38 The scanner sysiem accerding to claim 3, wherein
Ihe evaiuation of the server respoanse io reply to the mutated
requests is based on recognition of a keyword in the results
. of the attack indicating an eror in the application activity.

39. The scanner system according 0 claim 38, wherein
cach mutation rule is assigned a probability of success and
the atlack ¢ngine scores the results of the server response
based on the probability of the corresponding mutation rule.

40. The scanner system according 1o claim 30, wherein
lhe altack engine parses the messages sent by Lhe server for
any suspicious code based on the recognition of pre-defined
keywords and reports the suspicious code.

41. A crawling engine, provided oo a computer, provided
on a computer, for automatically traversing a hypertext-
based web sile, comprising:

means for sending a client request in order 1o receive a

server response,

means for parsing the response io order to discover links

encapsuialed therein;
means for actualing one or more discovered links in
accordance with authorized clieot functionality in order
Lo receive one or mare server respoases from which ope
or more additional client requests are geaerated;, and

means for awlomatically supplying values to user-
interactive parameters in the additional client requests,
if required.

(=

H

a5

KA

40

50

60

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 26 of 32

US 6,584,569 B2

15

42. The cogine according to claim 41, including means for
comparing discovered links 1o a filler and oot geoerating
client requests for filiered links.

43. The engioe according to claim 41, including means for
generating a separate client reguest in respect of cach option
in a construct in the server response thal requires uses-
interactive selection of an oplion within 2 set of oplions,

#4. A computer program product commptising a compuler
readable medium having compuier readable code embodied
therein, the computer readable cade, when execuled, causing
a compuier 1o implement a method for detecting security
vulnerabditics s a3 web application execuling on a web
server or web application server, the method comprising:

suinating the application in order to discover pre-defined

elements of the application’s interface with extermal !

clients;
gencrating client requests having unauthorized vatues for
said elements in order 10 penerale exploiis umaque 1o the
application;
attacking the application using the exploits; and
evaluating the results of the attack.
45 The computer program proguct according 1o claim 44,
wherein an application interface clement is 4 path parameter.
46. The computes program product according io claim 44,
wheeein s application interface element is a dala parameter.
47. The computer prograim product according to claim 44,
wherein, in the implemented method, the actuation of the
apphication includes:

sending an authorized dicni request in order o receive 2

SELVED [L5ROTSE;
parsing the response in order 1o discover aks encapse-
lated therein; and

actuating discovered links in accordance with avthorized

client functionality in ocder ta genecate additianst
aulhorized chient requests.

48. The computer program product acearding ta claim 47,
wherein the implemented method includes companing dis-
covered links w & fiher and nol generating awthorized client
requests for links msiching the filter

49. The computer program product 2ccording 10 claim 47,
wherein the implemented method includes logging the client
reguesis.

80. The campuier program product according to claim 47,
wherein, in the sinplemented method, said application iater-
face eloments are discovered Dy parsing at least onc of the
authorized client requesis and server responses resulting
thersfrom.

51, The compuier program product aceording to claim 50,
wherein the implemented method includes apalyzing the
server responses in order 10 extract atiribuies of said appli-
cation interface elements,

%2. The computer progran product according w claim 51,
wherein, In the immplemented methad, the discovery of said
application interface elements is based on a pre-defined set
of detcction rules.

53, The computer program product aceording 1o claim 52,
wherein, in the implemented methad, the generstion of the
upanthorized client requests is based on a pre-defined sct of
mutation tules.

53. The computer program product according to claim 53,
whergin, in the implemented method, the evaluation of the
attack resulis is based on recognition of a keyword in the
results of the atiack indicaling an error in the application
sctivity.

35, The compuler program product according to claim 54,
wherein the implemented method includes assigning tach

Q

w

a8

a0

9%

£9

&5

16

mutation rule 2 probability of success and scoring the resulis
of said aitack based on the probability of the corresponding
mulation rule,

56. A computer program product comprisiag 3 computer
readable medium having computes readable code embodied
therein, the computer readable code, whea cxecuted, crusing
a computer to implement & method for detecling seourity
vulnerabilities io a byperiext-based web application
installed on a web server or web application server, the
method comprising:

teaversing the application in order to discaver and actuate

links therein;

analyzing messages 1hat flow or would flow belween an

autharized client and the web server in order to dis-
cover glemenis of the application’s interface with exter-
nai clients and attributes of said elements;

geaerating upauthorized client requests o which said

elements are mutated; sending the mutated clieos
requesis lo tbe server; and

receiving server responses o the unauthotized cliet

requests and evaluating the resulis thereof.

57. The computer program product aceording 1o claim 56,
wherein an application intesface element 55 a path parametes,

58, The compules program product according o claim 56,
wherein an application inlecface element is a dala parameter.

59. The computer program product according 1o claim 56,
wherein au application integface element is 2 cookie.

8. The computer prograsm produet according 1o claim 56,
whezein, i the implemented method, the waversal over the
application includes:

sending an authorized client request in order 1o receive a

SeIvEl Iesponst, parsing the response in order to dis-
cover links encapsulated therein; and

actusing discovered links in accordanee with authotized

client functivnality in arder to receive authorized server
responses from which additional authorized chient
requests can be geaecated.

61. The computer program preduct aceerding io claim 66,
wherein the implemented method includes camparing dis-
covered links to 2 filter and not generating authorized client
requests for links matching the filiee.

$2. The computers program product acoonding to olaim 66,
wherein, in the implemented method, in the gvent the
aatnarized clienl request requires user-interaclive
parameters, supplying pre-configurd values therefor.

63. The camputer progeam product according 10 claim 60,
wherein, in the implemenied method, in the event the
awthorized clicot request requires user-interactive selection
of ap option wiihin a se1 of options, enumeratiog over all the
aptions ia order lo geoerale a separale clical request in
respect of cach option.

64. The computer program produgt according to claim 60,
wherein the implemented method includes logging the
authotized client requests,

65. The computer progran produc) accotding 1o claim 64,
wherein the implemented method iocludes logging the
authorized sever responses.

&6, The computer pragram product zecording to claim 64,
wherein, in the ioplemented method, said application inier-
face clemenms are discovered by parsiog at least one of the
authorized client sequesis and server responses resulting
therefrom.

§7. The compitter prograim product according to claim 66,
whezein the implemenied metbod iocludes aoalyzing the
sepver responses in order to extract attribites of said appli-
cation interface elements,

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 27 of 32

US 6,584,569 B2

17

68. The computer program product according to claim 67,
wherein, in the implemented method, the discovery of said
application interface elements is based on a pre-defined set
of detection rules.

69. The computer program product according to claim 68,
wherein, in the implemented method, the generation of the
mutated clicot requests is based on a pre-defined set of
mutation rules.

70. The computer program product accordiog 1o claim 69,
wherein, in the implemented method, the evaluation of the
server response in reply o the muiated requests is based on
recognition of a keyword in the results of the attack indi-
cating an error in the apphcation activity.

18

71. The computer program product according to claim 70,
wherein the implemented method includes assigning each
mutation ruie a probability of success and scoring the results
of the server response based on the probability of the
corresponding mutation rule.

72. The computer program product according to claim 56,
wherein the implemented method includes parsing the mes-
sages sent by the server for any suspicious code based on the
recognition of pre-defined keywords and reporting the sus-
picious code.

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 28 of 32

e
f Q”_ . 2003_‘ 2:07PM S Dynamics VRN RILANTS AN VTTICW No.5032 P. 2/2:.‘&0!21
WEeIL, GOTSHAL & MANGES LLP
SIUGON VYALLEY OFFICE AULTIN
201 REQOWOOD SHORES PARKWAY BOSTON
REOWOOD SHORES, CALIFORNIA Y4045 BRUESELS
RUDASEST
{450) R02.300C OALAT
FAMI [450) 022100 FRANKFURT
HOUSTON
LONDON
MIAMI
NEW YORK
PARIS
PRAGUE
IASON D, KIENGS September 22003 SINGAPDOAE
DMECT LINE {(650) §02-J044 r WARIAYY
B-tA L1 jutan kigrin @ wed oo WASHINGTON, D.C.
BY FACSIMILE AND MAIL
M. Brian Cohen
President and CEQ
SPI Dynamies, Inc.
115 Perimmeter Center Place, N.E.
Suite 270

Atlants, GA 30346
Dear Mr. Cohen:

We represeat Sanctum, Inc. in inteflectual property matters. We are pleased to
inform you of the recent issuance to Sanctum of U.S. Patent No. 6,584,569, entiticd “System for
Determining Web Application Vulnerahilities,” (attached) which covers certain methads for
antomatically discovering security vulnerabilities in software applications.

It has oome 1o our attention that SPI Dynamics is currently infringing the *569
patent through the menufacture and sale of Weblnspect. We assume that SPI Dynamics respects
the imtellectual property rights of others and that once you review the “S69 patent you will
understand how it relates to Weblngpect. After you have had a chance to review the ‘569 patent,
please contact me at your carliest convenience to discuss how SPI Dynamics can become 2
licensee.

Very truly yours,

Tason Kipnis

JDE/mac
cc: Peggy Weigle, President and CEQ, Sanctum, Inc.

Enclosure

SVIAITIZ HIVISPNECILOOCATIRE1 0003

[T

A at

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 29 of 32

—
.) ——7
S

SANCTUM

QOctober 7, 2003

Mr. Brian Cohen

President and CEO

SPI Dynamics

115 Perimeter Center Place, N.E.
Suite 270

Atlanta, GA 30346

Dear Brian:

| have considered your letter agreement dated September 15, 2003, but the terms are
overly restrictive given the intent of simply reviewing the prior art. And, while you and |
discussed in principle granting SP1 Dynamics a license that was fully paid-up, 1 didn’t
agree fo a fully transferable license, certainly not at the proposed license fee you quoted.
Obviously, granting such a license would not be in Sanctum’s best interests, because the
cost of the license would be based on our reasonable projections of the sales of SPI
Dynamics products, not the products of a potential recipient of a transferred license. As |
recall, we discussed the possibility of granting a fully paid-up, nontransferable license.
Alternatively, Sanctum would also be willing to grant a transferable license, but such a
license would have to be royalty-bearing. As | also mentioned in our last conversation,
we are far apart on the cost of a license based on the figures you suggested, so to come to
any agreement, we’d need to re-engage on that front.

Second, your letter agreement states that Sanctum would be prohibited from using the
purported prior art for any reason other than internal review. Sanctum cannot agree to
this, because Sanctum is currently prosecuting a continuation to the ‘569 patent, and the
patent law (specifically, 37 CFR §1.56) obligates Sanctum to disclose to the patent office
all information known to Sanctum to be material to the patentability of the pending
claims. Obviously, if your prior art is as relevant as you claim, then it likely would be
material, and Sanctum would be under a duty to disclose it. Moreover, Sanctum’s
intentional failure to disclose material prior art from the patent office could render the
continuation patent unenforceable.

It follows that Sanctum will not be able to agree to any restrictions on the use of prior art,
but js interested in reviewing any such art you may have. I believe that disclosing such
art to Sanctum can only serve to bring the parties closer to an amicable settlement,
because 1t would help Sanctum understand your basis for believing that the ‘569 patent is
invalid.

SV 1A175708\01 ARKS0L! DOCVTI8EE.0003

Case 1:04-cv-01823-RWS Document 1 Filed 06/23/04 Page 30 of 32

[also understand that SPT Dynamics is considering whether to proceed with a
reexamination request. You should be aware though, that during prosecution of the ‘569
patent, the patent office reviewed a large number of U.S. and foreign patents and articles,
and deemed the claims allowable over the prior art. Sanctum is confident that the claims
of the ‘569 patent would again be deemed patentable over whatever prior art you believe
you have.

In the meantime, bear in mind that the *569 patent is presumed valid until proven
otherwise, and that SPI Dynamics continues to infringe by its manufacture and sale of
Weblnspect. You explain in your email of September 25 that you prefer to obtain a
license, as that helps both companies in the long run. 1share your sentiment, and hope
that we can continue to make progress with settlement discussions. Accordingly, please
let me know whether you would prefer to discuss a nontransferable fully paid-up license,
or instead a transferable royalty-bearing license. In addition, please let me know if you
will agree to share your prior art references with Sanctum, in the interests of furthering
our settlement discussions.

Regards,

Peggy

Peggy Weigle
President and CEO
Sanctum

SV 757080 1\ GRKS01L.DOCAT 1 888.0003 2

Northerm

Case 1:04-cv-01823-RWS {fﬁi‘ﬁfﬂ g e 06/23/04 Page 31 of 32

Unitens States Bistrict Jourt

DISTRICT OF

————mmeen

Atlanta Division

S.P.I. Dynamics Incorporated,

SUMMONS IN A CIVIL ACTION

Plaintiff,

Sapctum Inc.
and
Sanctum LTD.,

CASE NUMBER

Defendants.

To: Marng and Adcrers of Detendant;
Sanctum, Inc.
c¢/o CT Corporation System
Registered Agent
818 West Seventh Street
Los Angeles, CA 90017

1 Ga-LV 1323

YOU ARE HEREBY SUMMONED and required to file with the Clerk of this Court and serve upon

PLAINTIFF'S ATTORNEY jname and address)

Dale Lischer
Elizabeth Borland
Coby S. Nixon

Smith, Gambrell & Russell, LLP

1230 Peachtree St., NE
Promenade 1I, Suite 3100
Atlanta, GA 30309

an answer to the complaint which Is herewith sarved upon you, within

this summons upon you, exciuslv.: of the day of service. If you fail to do so, judgrnent by detault wil be taken
against you for the rellef demanded in the complaint.

LUTHER D. THOMAR

20

days after service of

JUN < & 2004

CLERK

)

DATE

CLERK

Hniten States Bis trict Qourt

Northern

ag

Georgia

DISTRICT OF -
Atlanta Division

S.P.I. Dynamics Incorporated,

SUMMONS IN A CIVIL ACTION

Plaintiff,
V. CASE NUMBER:
San Inc. :)
Sanctum Tac 1 04-CV 1823
Sanctum LTD.,
Defendants.

TO: ptame sna dsocers of Detendant
Sanctum Ltd.
1 Sapir Street
Herzellia 46733
ISRAEL

YOU ARE HEREBY SUMMONED and required to file with the Clerk of this Court and serve upon

PLAINTIFF'S ATTORNEY jaane and ssdresst

Dale Lischer
Elizabeth Borland
Coby 5. Nixon

Smith, Gambrell & Russell, LLP

1230 Peachtree St., NE
Promenade II, Suite 3100
Atlanta, GA 30309

an answer to the complaint which is herewith served upon you, within 20

this summons upon you, exciusiv.: of the day of service. If you fail to do so, judgrment by d
' efault
against you ior the reiiet demanded in the compiaint. judd ’ will be taken

TUTHER D THOKAS

days after service of

Qpnkiﬁzmn

CLERK

DATE

