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HASTRICT ¢
IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS 0L 0CT 19 PH I
MARSHALL DIVISION Tt cren:
ALAST Lﬁé“é-s‘bl:"SF‘QLL
OPTi Inc. )
) BY.
. . W
Plaintiff, )
v. ) Civil ActionNo2 =04 C V=87 %

) T
nVidia Corporation )
)
Defendant. )

COMPLAINT

Plaintiff OPTi Inc. (“OPTi”), by and through its undersigned counsel, for its
complaint herein against nVidia Corporation (“nVidia™), avers as follows:
PARTIES
1. Plaintiff OPTi 1s a corporation organized and existing under the laws of the State
of California with its principal place of business at 880 Maude Avenue, Mountain View,

California 94043.

2. Upon information and belief, Defendant nVidia is a corporation organized and
existing under the laws of the State of Delaware with its principal place of business at 2701 San
Tomas Expressway, Santa Clara, California 95050. nVidia is registered to do business in the
state of Texas.

3. On January 20, 1998, the United States Patent and Trademark Office (“USPTO”)
duly and legally issued United States Patent No. 5,710,906 entitled “Predictive Snooping of
Cache Memory for Master-Initiated Accesses” (the “‘906 patent”). The ‘906 patent was
assigned to OPTi and OPTi holds all right, title and interest in and to the ‘906 patent. A copy of

the ‘906 patent is attached hereto as Exhibit 1.
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4. On September 22, 1998, the USPTO duly and legally issued United States Patent
No. 5,813,036 entitled “Predictive Snooping of Cache Memory for Master-Initiated Accesses”
(the ““036 patent”). The ‘036 patent was assigned to OPTi and OPTi holds all right, title and

interest in and to the ‘036 patent. A copy of the ‘036 patent is attached hereto as Exhibit 2.

5. On August 31, 1999, the USPTO duly and legally issued United States Patent No.
5,944,807 entitled “Compact ISA-bus Interface” (the “‘807 patent”). The ‘807 patent was
assigned to OPTi and OPTi holds all right, title and interest in and to the ‘807 patent. A copy of

the ‘807 patent is attached hereto as Exhibit 3.

6. On August 1, 2000, the USPTO duly and legally issued United States Patent No.
6,098,141 entitled “Compact ISA-bus Interface” (the “‘141 patent”). The ‘141 patent was
assigned to OPTi and OPTi holds all right, title and interest in and to the ‘141 patent. A copy of

the ‘141 patent is attached hereto as Exhibit 4.

7. On June 11, 2002, the USPTO duly and legally issued United States Patent No.
6,405,291 entitled “Predictive Snooping of Cache Memory for Master-Initiated Accesses™ (the
“29] patent”). The ‘291 patent was assigned to OPTi and OPTi holds all right, title and interest

in and to the ‘291 patent. A copy of the ‘291 patent is attached hereto as Exhibit 5.

JURISDICTION AND VENUE
8. This is an action for patent infringement under the Patent Laws of the United
States, 35 U.S.C. § 271.
9. This Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and

1338(a).
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10.  Venue is proper in this judicial district under 28 U.S.C. §§ 1391(b) and 1400(b).

COUNT I FOR PATENT INFRINGEMENT OF PRE-SNOOP PATENTS

11.  Plaintiff realleges paragraph 1 through 10 above as if fully set forth herein.

12.  nVidia, in violation of 35 U.S.C. § 27l(a), directly infringed and is directly
infringing the ‘906, ‘036, and 291 patents by making, causing to be made, using, selling and/or
offering to sell chipsets, including without limitation one or more of its series of nForce media

and communications processors, within the United States, including in this judicial district.

13.  nVidia, in violation of 35 U.8.C. § 271(b), has actively and knowingly induced
and is actively and knowingly inducing the direct infringement of the “906, ‘036, and ‘291
patents by intentionally aiding and abetting third parties’ use and/or sale of chipsets utilizing the

invention of the ‘906, ‘036, and ‘291 patents in this judicial district.

14.  nVidia, in violation of 35 U.S.C. § 27i(c), contributorily infringes the ‘906, ‘036,
and 291 patents by selling and/or offering to sell chipsets that constitute a material part of the
invention of the ‘906, 036, and ‘291 patents in this judicial district.

15.  Upon information and belief, nVidia had and has actual notice of the ‘906, ‘036,
and ‘291 patents, and nVidia has infringed and is infringing the ‘906, ‘036, and ‘291 patents with
knowledge of Plaintiff’s patent rights, without a reasonable basis for believing that Defendant’s
conduct is lawful. Defendant’s acts of infringement has been and are willful and deliberate.

COUNT I1 FOR PATENT INFRINGEMENT OF LOW PIN COUNT PATENTS

16.  Plaintiff realleges paragraph 1 through 10 above as if fully set forth herein.

17. nVidia, in violation of 35 U.S.C. § 27l(a), directly infringed and is directly
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infringing the ‘807 and ‘141 patents by making, causing to be made, using, selling and/or
offering to sell chipsets, including without limitation one or more of its series of nForce media

and communications processors, within the United States, including in this judicial district.

18.  nVidia, in violation of 35 U.S.C. § 271(b), has actively and knowingly induced
and is actively and knowingly inducing the direct infringement of the ‘807 and ‘141 patents by
intentionally aiding and abetting third partics’ use and/or sale of chipsets utilizing the invention

of the ‘807 and 141 patents in this judicial district.

19.  nVidia, in violation of 35 U.S.C. § 27I(c), contributorily infringes the ‘807 and
141 patents by selling and/or offering to sell chipsets that. constitute a material part of the
invention of the ‘807 and ‘141 patents in this judicial district.

20, Upon information and belief, nVidia had and has actual notice of the ‘807 and
‘141 patents, and nVidia has infringed and is infringing the ‘807 and ‘141 patents with
knowledge of Plaintiff’s patent rights, without a reasonable basis for believing that Defendant’s
conduct is lawful. Defendant’s acts of infringement has been and are willful and deliberate.

PRAYER FOR RELIEF

WHEREFORE, OPTi demands a trial by jury and prays for judgment against
nVidia as follows:

A. Adjudging that the ‘906, ‘036, ‘807, ‘141 and ‘291 patents are valid and
enforceable;

B. Adjudging that nVidia has infringed and is infringing the ‘906, ‘036, ‘807,
‘141 and 291 patents;

C. Adjudging that nVidia has actively and knowingly and is actively and

knowingly inducing others to infringe the ‘906, ‘036, ‘807, ‘141 and ‘291 patents;
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D. Adjudging that nVidia has and is contributorily infringing the ‘906, ‘036,
‘807, ‘141 and 291 patents;

E. Adjudging that nVidia has willfully infringed and is willfully infringing
the ‘906, ‘036, ‘807, ‘141 and ‘291 patents;

F. Awarding OPTi damages or other monetary relief, including prejudgment
interest, for nVidia’s infringement.

G. Trebling the damages awarded to OPTi, as provided by 35 U.S.C. § 284,
against nVidia.

H. Declaring this an exception case and awarding OPTi attorneys’ fees, as
provided by 35 U.S.C. § 285; and

L. Awarding OPTi such other and further relief as this Court may deem just

and proper.



Case 2:04-cv-00377-TJW Document 1 Filed 10/19/04 Page 6 of 66

Respectfully submitted,

Dated: October 19, 2004 By: A}/MM /v’\eﬂé

Sam Ba)fcter

Samuel F. Baxter
MCKOOL SMITH, PC
505 East Travis Street
Suite 105

Marshall, Texas 75670
Phone: (903) 927-2111
Fax: (903) 927-2622

Kevin Burgess
MCKOOL SMITH, PC
300 West 6th Street
Austin, Texas 78701
(512) 692-8704

Fax (512)692-8744

Michael L. Brody

Taras A. Gracey

WINSTON & STRAWN, LLP
35 West Wacker Drive
Chicago, Illinois 60601
Phone: (312) 558-5600

Fax: (312) 558-5700

Attorneys for Plaintiff
OPTi Inc.

Of counsel:

Steven M. Bauer

David J. Cerveny

PROSKAUER ROSE LLP

One International Place 14th Floor
Boston, Massachusetts 02110-2600
Tel: 617-526-9700

Fax: 617-526-9899

CHI:1442152.4
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EXHIBIT 1
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United States Patent
Ghosh et al.

[19]

Patent Number:
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{11]

5,710,906

[45] Jan. 20, 1998

[54] PREDICTIVE SNOOPING OF CACHE
MEMORY FOR MASTER-INITIATED

ACCESSES
{751 Inventors: Subir Ghosh; Hsu-Tien Tong. both of
San Jose, Calif.
[73] Assignee: OPTi Inc., Milpitas, Calif.
[21] Appl. No.: 499,610
[22] Filed: Jul. 7, 1995
[511 Int CL® . GO6F 13/28; GOGF 12/08
[521 US.ClL 395/473; 305/468
[58] TField of Search ... 395/473, 451,
395/290. 470, 468
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Assistant Examiner—Kevin L. Eilis
Atterney, Agent, or Firm—Fliesler, Dubb, Meyer & Lovejoy

{57 ABSTRACT.

‘When a PCI-bus controlier receives a request from a PCI-
bus master to transfer data with an address in secondary
memory, the controiler performs an initial inquire cycle and
withholds TRDY#¥ to the PCI-bus master until any write-
back cycle completes. The controller then allows the burst
access 1o take place between secondary memory and the
PCI-bus masier, and simultaneously and predictively, per-
forms an inguire cycle of the L1 cache for the next cache
line. In this manner, if the PCI burst continues past the cache
line boundary, the new inguire cycle will already have taken
place, or will already be in progress, thereby allowing the
burst to proceed with, at most, a short delay. Predictive
snoop cycles are not performed if the first transfer of a
PCI-bus master access would be the last transfer before a
cache line boundary is reached.

358 Claims, 11 Drawing Sheets
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1
PREDICTIVE SNOOPING OF CACHE
MEMORY FOR MASTER-INITIATED
ACCESSES

BACKGROUND

1. Field of the Invention

The invention relates to computer systems inp which a host
processor and a bus master can access the same address
space, and more particularly, to techniques for facilitating
burst accesses by such a master.

Z. Description of Related Arl

in a typical IBM PC/AT-compatible computer system. a
host processing unit is coupled 1o a host bus and most O
peripheral devices are coupled to a separate IO bus. The
host processing unit typicalty comprises an Intel 1336, i486
or Pentinm™ microprocessor, and the YO bus typically
conforms to a standard known as ISA (Industry Standard
Architecture). TO interface circuitry, which usuvally com-
prises one or moxe chips in a “core logic chipset”, provides
an interface between the two buses. A typical system also
includes a memory subsystem, which usnally comprises a
large amray of DRAM and perhaps a cache memory.

General information on the various forms of IBM PC
AT-compatible compauters can be found in IBM. “Technical
Reference. Personal Computer AT” (1985). in Sanchez,
“IBM Microcomputers: A Programmer’s Handbook”
(McGraw-Hill: 1990), in MicroDesign Resources. *PC Chip
Sets™ (1992), and in Solari, “AT Bus Design” (San Diego:
Annabooks, 1990). See also the various data books and data
sheets published by Intel Corperation conceraing the struc-
ture and use of the $0x86 family of microprocessors, includ-
ing Intel Corp., “Pentium™ Processor”, Preliminary Data
Sheet (1993); Intel Corp.. “Pentium™ Processor User’s
Manual” (1994); “i486 Microprocessor Hardware Reference
Manual”, published by Intel Corporation. copyright date
1990. 386 SX Microprocessor”. data sheet, published by
Intel Corporation (1990), and “336 DX Microprocessor”,
data sheet, published by Intel Corporation (1990). In
addition, a typical core logic chipset includes the OFTi
$2C802G and either the 82C601 or 82C602, a1l incorporated
herein by reference. The 82C802G is described in OFTI,
Inc., “OPTi PC/AT Single Chip 82C802G Data Book™,
Version 1.2a (Dec. 1. 1993), and the §2C601 and 82C6(02 are
described in OPTi, Inc., “PC/AT Data Buffer Chips,
Preliminary, $2C601/82C602 Data Book”, Version 1.0e
{OcL 13. 1993). All the above references are incorporated
herein by reference.

Many IBM PC AT-compatible computers today include
one, and usually two, levels of cache memory. A cache
memory is a high-speed memory that is positioned between
a microprocessor and main memory in a computer sysiem in
order to improve system performance. Cache memories (or
caches) store copies of portions of main memory data that
are actively being used by the central processing unit (CPU)
while a program is rupning. Since the access time of a cache
can be faster than that of main memory, the overall access
time can be reduced. Descriptions of various uses of and
methods of employing caches appear in the following
articles: Kaplan, “Cache-based Computer Systems.”
Computer, 3/73 at 30-36; Rhodes. “Caches Keep Main
Memories From Slowing Down Fast CPUs,” Electronic
Design. Jan. 21. 1982, at 179; Strecker. “Cache Memories
for PDP-11 Family Computers,” in Bell, “Computer Engi-
neering” (Digital Press). at 263—67, all incorporated herein
by reference. See also the description at pp. 6-1 through 6-11
of the “i486 Processor Hardware Reference Manual” incor-
porated above,

10
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2

Many microprocessor-based systems implement a “direct
mapped” cache memory. In general, a direct mapped cache
memory comprises a high speed data Random Access
Memory (RAM) and a parallel high speed iag RAM. The
RAM address of each line in the data cache is the same as
the low-order portion of the majn memory line address to
which the entry corresponds, the high-order portion of the
main memory address being stored in the tag RAM. Thus, if
main memory is thought of as 2 blocks of 2" “lines™ of one
or mmore bytes each. the i’th line in the cache data RAM will
be a copy of the i’th line of one of the 27 blocks in main
memory. The identity of the main memory block that the line
came from is stored in the i°th location in the tag RAM.

When a CPU requests data from memory, the low-order
portion of the line address is supplied as an address to both
the cache data and cache tag RAMs. The tag for the selected
cache entry is cornpared with the high-order portion of the
CPU’s address and, if it matches, then a “cache hit” is
indicated and the data from the cache data RAM is enabled
onio a data bus of the system. If the tag does not match the
high-order portion of the CPU"s address, or the tag data is
invalid, then a “cache miss” is indicated and the data is
fetched from main memory. It is also placed in the cache for

. potential future use, overwriting the previous entry.
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Typicaily. an entire line is read from main memory and
placed in the cache on a cache miss, even if only a byte is
requested. On a data write from the CPU, cither the cache
RAM or main memory or both may be updated, it being
understiood that flags may be necessary to indicate to one
that a write has occurred in the other.

Accordingly, in a direct mapped cache, each “line” of
secondary memory can be mapped to one and only one line
in the cache. In a “fully associative” cache, a particular line
of secondary memory may be mapped to any of the lines in
the cache; in this case, in a cacheable access, all of the tags
must be compared to the address in order to determine
whether a cache hit or miss has occurred. “k-way set
associative” cache architectures also exist which represent a
compromise between direct mapped caches and fully asso-
ciative caches. In a k-way set associative cache architecture.
each line of secondary memory may be mapped to any of k
lines in the cache. In this case, k tags must be compared to
the address during a cacheable secondary memory access in
order to determine whether a cache hit or miss has occurred.
Caches may also be “sector buffered” or “sub-block” type
caches. in which several cache data lines, each with its own
valid bit, correspond to a single cache tag RAM entry.

When the CPU executes instuctions that modify the
contents of the cache, these modifications must also be made
in the main memory or the data in main memory will
become “stale.” There are two conventional techniques for
keeping the contents of the main memory comsistent with
that of the cache—(1) the write-throngh method and (2) the
write-back or copy-back method. In the write-through
method, on a cache write hit, data is written to the main
memory immediately after or while data is written into the
cache. This enables the contepts of the main memory always
to be valid and consistent with that of the cache. In the
write-back method, on a cache write hit, the system writes
data into the cache and sets a “dirty bit” which indicates that
a data word has been written into the cache but ol into the
main memory. A cache controller checks for a dirty bit
before overwriting any line of data in the cache. and if set,
writes the line of data out to main memory before loading
the cache with new data.

A computer systern can have more than one level of cache
memory for a given address space. For example, in a
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two-level cache system, the “level one” (L1) cache is
logically adjacent to the host processor. The second level
(1.2) cache is logically behind the first level cache. and
DRAM memory (which in this case can be refersed to as
tertiary memory) is Iocated logically behind the second level
cache. When the host processor performs an access to an
address in the memory address space, the first level cache
responds if possible. If the first level cache cannot respond
(for example. becanse of an L1 cache miss), then the second
level cache responds if possible. If the second level cache
also cannot respond, then the access is made to DRAM
itself. The host processor does not need to know how many
levels of caching are present in the system or indeed that any
caching exists at all. Similarly, the first level cache does not
need to know whether a second level of caching exists prior
to the DRAM. Thus. to the host processing unit. the com-
bination of both caches and DRAM is considered merely as
a single main memory structure. Similarly, to the L1 cache,
the combination of the L2 cache and DRAM is considered
simply as a single main memory structure, In fact, a third
level of caching could be included between the L2 cache and
the actual DRAM, and the L2 cache would still consider the
combination of L3 and DRAM as a single main memory
structure.

As the x86 family of microprocessors has advanced.
additional functions have been included op the micropro-
cessor chip itself. For example, while i386-compatible
microprocessors did not include any cache memory on-chip,
the i486-compatible microprocessors did. Specifically, these
microprocessors included a level one, “write-through™ cache
memory.

Pentium-compatible microprocessors alse include a level
one cache on-chip. This cache is divided into a dala cache
and a separate code cache. Unlike the cache included on the
i486-compatible microprocessor chips, the data cache on a
Pentium chip follows a write-back policy. The cache is
actually programmable on a line-by-line basis to follow a
write-through or a write-back policy, but special precautions
must be taken externally to the chip as long as even one line
is to follow a write-back policy as further explained below.
Thus, as used herein, a “write-back cache” is a cache
memory. any part of which can hold data which is incon-
sistent with that in the external mernory subsystem while an
access takes place to the same memory address space by
another bus master.

The data cache on a Pentinm chip implements a
“modified/exclusive/shared/invalid” {MESI) write-back
cache consistency protocol, whereas the code cache only
supports the “shared” and “invalid” states of the MES]
protocol. The MESI protocol is described in “Intel, “Pen-
tiumn Processor User’s Manual, Vol. 1: Pentium Processor
Databook” (1993), incorporated herein by reference, espe-
cially at pp. 3-20 through 3-21. In the MESI protocol, each
cache data line is accompanied by a pair of bits which
indicate the stams of the line. Specifically. if a line is in state
M. then it is “modified” (different from main memory). In
multiprocessor systems in which more than one of the
processors has a cache, state M also indicates that the line is
available in only one cache. An M-state line can be accessed
(read or written) by the host processor nmit without sending
a cycle out on an external bus 1o higher levels of the memory
subsystem.

If a cache line is in state E (“exclusive™), then it is not
“modified” (i.e. it contains the same data as subseguent
levels of the memory subsystem). In shared cache sysiems.
state E also indicates that the cache line is available in only
one of the caches. The host processor unit can access (read
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or write) an E-state line without generating a bus cycle to
higher levels of the memory subsystem, but when the host
processor performs a write access to an E-state line, the line
then becomes “modified” (state M).

A lipe in state 8 {“shared””) may exist in more than one
cache. A read access by the host processor to an S-state Line
will not generate bus activity, but a write access to an S-state
line will cause a write-through cycle to higher levels of the
memory subsystem in order to permit the sharing cache to
potentially invalidate its own corresponding line. The write
will also update the data in the data cache line.

A line in state I is invalid. It is not available in the cache.
Aread access by the host processor unit to an I-state line will
generate a *cache miss” and may cause the cache to execute
a line fill (fetch the entire line into the cache from higher
levels of the memory subsystem). A write access by the host
processor unit to an I-state line will cause the cache to
execnte a write-through cycle tohigher levels of the memory
subsystem.

Computer system cache memories typically cache tnain
memory data for the CPU. X the cache uses a write-back
protocol, then frequentdy the cache memory will contain
more current data than the carresponding lines in main
moemory. This poses a problem for other bus masters (and for
other CPUs in a multiprocessor system) desiring lo access a
Line of main memory, because it is not known whether the
main memory version is the most current version of the data.
Write-back cache controllers, therefore, typically support
inquire cycles (also known as snoop cycles), in which a bus
master asks the cache memory to indicate whether it has a
more current copy of the data.

In Pentium-based systems, a bus master initiates an
inquire cycle by driving the inquire address onto the CPU
address leads and asserting EADS#. The processor responds
by asserting its HIT# cuatput if the specified data line is
present in the L1 cache. The processor also asserts an
HITM# outpul if the specified L1 cache line is in the M
(modified) state. Thus, HITM#, when asserted, indicates that
the L1 cache contains a more current copy of the data than
is in main memory. The processor then automatically con-
ducts a write-back cycle while the external bus master waits.
By this process, therefore, the external bus master will be
able to access the desired line in main memory without any
funther concern that the processor’s L1 cache contains a
more current copy of the data.

One of the bonitenecks that has limited the performance of
personal computers in the past has been the rmaximim
specified speed of the ISA bus. The original IBM PC AT
computers manufactured by IBM Corp., the ¥O bus oper-
ated with a data rate of 8 MHz (BCLK=8 MHz). This was
an appropriate data rate at thal time since it was approxi-
mately equivalent to the highest data rates which the CPUs
of that era could operate with on the host bus. CPU data rates
are many times faster today, however, so the slow speed of
the 1O bus severely limits the throughput of systems today.
One solution for this problem has been the development of
a local bus standard, by which certain devices which were
traditionally located on the IO bus can now be located on
the host bus. This standard, referred 10 herein as the VESA
(Video Electronics Standards Association) or VL-Bus
standard, is defined in VESA, “VESA VL-Bus Local Bus
Standard”. Revision 1.0 (1992). and in VESA. “VESA
VL-Bus Proposal, Version 2.0p, Revision 0.8p (May 17,
1993). both incorporated herein by reference.

Another solution to the problem has been the develop-
ment of another standard, referred to herein as the PCI
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standard, defined in PCI Special Interest Group, “PCI Local
Bus Specification Revision 2.0” {Apr. 30, 1993). incorpo-
rated herein by reference. As used herein, the term “PCI bus”
refers to a bus which adheres to this specHication, whether
or not it also adheres to subsequent revisions of the speci-
fication. The PCI bus achieves very high performance, in
part because its basic data transfer mode is by burst. That is,
data is always transferred 1o or from a PCI device in a known
sequence of data units defined by a known sequence of data
unit addresses in an address space. In the “cache line” burst
maode, exactly four transfers take place. In the “linear” burst
mode, any mumber of transfers (including 1) can take place
toffrom tinearly sequential addresses until either the initiator
or the target terminates the transaction. In either mode. the
initiator need only specify the starting address because both
parties know the sequence of addresses which follow.

Because of the burst mode of PCI masters. the problem of
performing ingoire cycles is somewhat more difficult when
the bus master is a PCI-bus master than when it is a CPU bus
master or ISA-bus master. According to the Pentium
databooks, every data tansfer to or from the memory
address space which is cached by the L1 cache should be
preceded by an inquire cycle. This would severely hamper
the performance of PCI masters performing burst cycles to
or from secondary memory. Many PCI-bus controller
chipsets speed up these transfers by performing an inguire
cycie onty once per cache line instead of on each data
transfer. These controllers simply assume that no change
will be made to the cache line contents during the remainder
of the PCI-bus master burst transfer with the corresponding
line of secondary memeory. The Intel 82433LX local bus
accelerator, for example, maintains a PCI-to-memory read
prefetch buffer equal in depth to the length of one cache line,
50 that if the Pentium processor performs a write-back cycle
in response to the inguire cycle. the local bus aceelerator
chip can capture the remaining words of the cache line for
easy completion of further PCI-bus master read accesses
within the burst. The 824331.X is described in Intel, “82340
PClIset Cache/Memory Subsystem™ (Apr. 1994), incorpo-
rated herein by reference.

Even with inquire cycles limited 10 one per cache line, a
problem still exists if the desired burst length proceeds past
a cache line boundary. Conventional chipsets determine
when a new access in the burst is in a new cache line, and
they withhold the PCI-bus TRDY# signal while they per-
form the pecessary inguire cycle for the new cache line. If
the Pentium processor asserts HITM#, then the chipset stops
the PCI-bus trapsaction (using a target disconnecl
termination), allows the L1 cache to perform a write-back
operation, and resnmes with a new inquire when the PCI
master Testarts the transaction where it left off. Scme
chipsets do not stop the PCl-bus transaction, but ratber
merely withhold TRDY# until the write-back cycie and new
inquire cycle are complete. but this violates the PCI-bus
specification which calls for a maximum delay of eight
PClI-bus clock cycles before a target asseris a TRDY# within
a burst. If the inquire cycle for the new line of cache does
not produce HITM#, then there is no need to stop the PCI
ransaction. Insiead. copventional chipsets mereky withhold
TRDY# for the time reguired 1o perform the inguire cycle.
and then assert TRDY# when the inguire cycle has com-
picted without HITM#.

The tirne reguired to perform the inguire cycle, however.
is significant. On the PCI-bus. a delay of eight PC1-bus clock
cycles may be incurred each time that a lincar burst trans-
action crosses a cache line boundary. A definite npeed.
therefore, exists for a mechapism which allows PCl-bus
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bursts 10 proceed past a cache line boundary whepever
possible. Soch a mechanism can help PCI-bus masters
achieve the full promise of high-speed data transfers
afforded by the PCI-bus burst transfer protocol.

SUMMARY OF THE INVENTION

According to the invention, roughly described. when a
PCI-bos controller receives a request from a PCI-bus master
to transfer data with an address in secondary memory, the
coniroller performs an initial inquire cycle and withholds
TRDY# to the PCI-bus master until any write-back cycle
completes. The controller then allows the burst access 10
take place between secondary memory and the PCI-bus
master, and sinnitaneously and predictively, performs an
inquire cycle of the L1 cache for the next cache line. In this
manner, if the PCI burst does in fact continue past the cache
line boundary, the new inquire cycle will abeady have taken
place (or will already be in progress), thereby allowing the
burst to proceed with at most a short delay absent a hit-
modified condition. This avoids the need to incur the penalty
of stopping the transfer on the PCI bus and restarting it anew
at a later time, every time a linear burst fransaction Crosses
a cache line boundary. .

1n one embodiment, predictive smoop cycles are not
performed if the first transfer of a PCI-bus master access
would be the last transfer before a cache line boundary is
reached, since no advantage would be obtained. In another
embediment, predictive snoop cycles are performed if the
first transfer of a PCI-bus master access would be the
second-to-last transfer before a cache line boundary is
reached, even though some delay will be experienced before
ihe transfer of the first data unit of the next cache line due
1o the predictive snoop cycle and synchronization delays.

Although the invention is described herein with respect {o
a PCI-bus Pentium system. its usefulness is not limited to
such systers. The invention is useful whenever an L1 cache
is present which can use a write back protocol, and which
supports inquire cycles, and whenever an /O bus is present
which has a linear-incrementing capability of mode which
can continoe beyond an L1 cache line boundary.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to particular
embodiments thereof, and reference will be made to the
drawings, in which:

FIG. 1 is an over-all block diagram illustrating pertinent
features of a computer system incorporating the invention;

FIG. 2 is a block diagram of parts of the host processing
subsystem of FIG. 1;

FIG. 3 illustrates a region in the secondary memory
address space in the system of FIG. L;

FIGS. 4-7 are timing diagrams illustrating the operation
of the system of FIG. I; and

FIGS. 8-12 are schematic diagrams of circuitry in the
system controller of FIG. 1.

DETAILED DESCRIFTION

I HARDWARE OVERVIEW

FIG. 1 is an overall block diagram illustrating pertinent
features of a computer system incorporating the invention.
The system incledes a host processing subsystem 110 con-
nected to a host bus 112. The host bus 112 includes address
jines {including HA(31:3) and BE#(7:0)), data lines
HIX63:0) and various control lines designated generally as
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114. A core logic chipset in the system includes a system
controller (SYSC) and an integrated peripherals controller
(APC). indicated generally as 116. The SYSC/IPC 116 is
connected to the host bus 112, and is also conpected to a
PCI-bus 118. The PCI-bus 118 includes command and
address lines C/BE#(3:0) and AD(31:0), respectively, as
well as PCI-bus control lines 120, The SYSC/IPC 116 is also
connected 1o an ISA bus 122, which includes address lines
SA and LA, data lines SD and XD, and varions ISA control
{ines 124. The SYSC/IPC is also connected to a secondary
memory sobsystem 126, which is also connected to the
address and data leads of the host bos 112. The secondary
memory subsystem 126 includes DRAM 128, the address
inputs of which are connected via ines MA{11:9) to outputs
of the SYSC/APC 116, and the data port MD{63:0) of which
is coupled to the data lines of host bus 112 via a
bi-directional buffer 142. The high order 32 bits of the data
port, MID{63:32), are also connected back to the SYSCAPC
116. The secondary memory subsystem 126 also includes a
second-level cache 139, the data port of which is connected
to the host bus 112 data lines. The high-order bits of the
address port for the cache 130 are connected 1o the output of
an address Jatch 132, the input port of which is connected to
receive address lines HA(31:5) from the host bas 112. The
next two lower order bits A(4:3) for the address port of L2
cache 130 are driven by signals CHA{4:3) from the SYSC/
IPC 116. The secondary memory subsystem 126 communi-
cates via control lines 134 with the SYSC/IPC 116. Various
additional buffers and latches are included in the systern as
well, but they are omitted from FIG. 1 for simplicity of
illustration.

The host processing subsystem 114 is. in a preferred
emmbodiment, a Pentium™ chip manufactazed by Intel
Corporation, Santa Clara, Calif. The Pentium processor is
described in the following documents, all incorporated
herein by referemce: Intel Corporaticn, “Pentium™
Processor”, Preliminary Data Sheet (1993): Intel
Corporation, “Pentium™ Processor at iCOMP™ Index
73590 MBz” (Mar. 1994); and Intel Corporation. ‘Pen-
Hum™ Processor User’s Manoal™ (1994).

FIG. 2 is a block diagram of pertinent parts of the host
processing subsystem 110. It comprises a CPU 210 which
communicates with a first-level (IL1) cache 212. The L1
cache 212 contains separate code and data caches, each of
which communicates with the CPU 210 via separate com-
munication paths. The L1 cache 212 also communicates
with the address and data lines of host bus 112, as well as
several of the control lines 114. Two of the control lines 114
are shown specifically in FIG. 2. namely. EADS# and
HITM#. The 1.1 cache 212 caches addresses in a main
memory address space for the CPU 2140. Although the L1
cache 212 and the CPU 210 are both fabricated together on
a single chip in the Pentium processor. in a different embodi-
ment they may occupy two or more chips.

The code cache and data cache each have a 32-byte line
size and are two-way set associative. These caches also have
dedicated translation look-aside buffers (TLBs). The data
cache is configurable to be write-back or write-through on a
line-line basis. and follows the MESI protocol described
above. The tag RAMs of the data cache and code cache are
each triple-ported as viewed from the CPU 210. and the code
cache is inherently write-protecied. The caches can be
enabled or disabled, page by page. by software or hardware.

Because at least one line of L1 cache 212 supports a
write-back protocol. the host processing subsyster 110 also
supports inguire cycles, initiated by the external system 10
determiine whether a line of secondary memory is curreatly
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being cached in the L1 cache 212 and whether it has been
madified in that cache. An external bus master (external to
the host processing subsystem 110) (SYSC/IPC 116 in the
system of FIG. 1) drives inquire cycies to the host process-
ing subsystem 110 prior to an access (read or write) to the
secondary memory subsystem 126, in order to ensure that
the secondary memory subsystern 126 contains the latest
copy of the data. If the host processing subsystem 110 has
the latest copy of the data (i.e., the data is cached modified
in the L1 cache 212), then, as soon as permitted by the SYSC
116 and at least for the Pentinm processor, the Pentium
performs a write-back of the specified data line before the
access by the external master is allowed to take place.

An inquire eycle is initiated by the external device by first
asserting HOLD or AHOLD to the Pentium processor in
order to force the Pentium to float its address bus.
Alternatively, the Pentium processor may be forced off the
bus due to BOFF#. The external device then drives an
inquire address onto the Pentium address leads, drives an
TNV signal and asserts EADS#. Because the entire 32-byte
cache line is affected by an ingnire cycle, the inquire address
need only include address bits 31:5. These bits are sufficient
to identify a “line address™. As used herein, a line address is
the portion of an address mecessary to uniguely identify a
data unit of the size of one cache line (32 bytes for the
Pentium). Similarly. a “byte address” includes all address
bits since they are all needed to uniquely identify a desired
byte, and, in general, a “data unit address” includes whatever
address hits are required to uniguely specify an item having
the number of bytes in the data unit.

The INV signal indicates to the FPentinm processor
whether the L1 cache line should be invalidated (INV=1) or
mark the cache line as shared (INV=0) in the event of an
inguire hit. In the embodiment described herein, INV=1 is
sufficient for all cases.

The EADS# signal is the signal which initiates the inguire
cycle. The Peatium processor recognizes EADS# two clock
cycles after an assertion of AHOLD or BOFF#, or one clock
cycle after asseriion of HIDA. The Pentium processor
ignores EADS# in the clock cycle afier EADS# was origi-
nally asserted. and also if none of HLDA. AHOLD and
BOFEF# are active. and also during external snoop write-
back cycles as described below.

Two clock cycles afier the Pentium samples EADS#
asserted. it returns HIT# and HITM# output signals. Jt
returns HIT# asserted if the inquire address hit a line in
either the code or data cache in L1 cache 212. It returms
HIT# deasserted (high. negated) at the same time if the
inquire cycle missed both internal caches. The HIT# cutput
signal is not important 10 an understanding of the invention.

Also, two host clock cycles after the processor samples
EADS# asseried, the Pentium processor retarns an HITM#
outpat. It retarns HITM# asserted only if the inguire cycle
hit a2 modified line in the data cache of L1 cache 212. This
indicates to the exiernal device that the L1 cache 212
contains the most current copy of the data and the external
device should await a write-back of the data to secondary
memory 126 before reading or writing to any byte within
that line. 1f HITM# is returned asserted, then it remains
asserted vntil two clocks after the last BRDY# of the
write-back cycle is asserted.

If the processor returns HITM# asserted. then the external
device should release the host bus 112 to allow the Pentium
processor 1o perform a write-back cycle. ADS# for the
write-back cvcle will eccnr no earlier than two host bus
clock cycles after assertion of HITM#. The 32-byte cache
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line is then written back from 1.1 cache 212 into secondary
memory 126 using the 486 -type burst protocol. Note that
in certain situations, the Pentium processor may not perform
a write-back. Whether or not a write-back is performed. the
processor negates HITM#when the L1 cache 212 is consis-
tent with the secondary memory subsystem 126 and the
external device can proceed to access the desired memory
location in secondary memory 126. Note that if the external
device asserted HOLD to the processor to perform the
inquire cycle, the processar waits until HOLD is negated
before performing the write-back cycle.

Note that different embodiments can have a wide variety
of different kinds of host processing subsystems. For
example, they can include a “level 07 cache between the
CPU and the L1 cache; they can include cne or multiple
processors; they can inclode bridges between the host bas
112 and a bus protocol expected by a CFPIJ in the host
processing subsystem, and so on. As a group, however, all
the components of the host processing subsystem use an 11
cache to cache at feast some lines of the secondary memery
address space.

As used herein, a line of data in secondary ynemory is
“cached” if data identified to that line in secondary memory
is temporarily stored in a cache memory. The data stored in
the cache memory can eitherbe the same as or different from
the data stored in the comesponding line of secondary
memory. I the processing unit for which the cache is
caching the line of data has modified the version of the data
stored in-the cache, then the data is referred to as “cached
modified”.

Rewrning te FIG. 1, the SYSC/APC 116 comprises the
following integrated circnit chips available from OPTI. Inc.,
Santa Clara, Calif.: 82C557 (S§YSC) and 82C558 (IFC).
These chips are described in OPTi, Inc., “Viper-M
82(C556M/82C557M/82C558M. Data Book, Version 1.07
(April 1995), incorporated by reference herein. The chipset
also includes an OFTL, Inc. 82C556 data buffer controller
(DBC). also described in the above-incorporated data book.
which includes some buffers not shown in FIG. 1.

Briefly, the SYSC provides the control functions for
interfacing with host processing subsystem 118, the 64-bit-
wide 1.2 cache 130, the 64-bit DRAM 128 data bus. an
interface 10 VL-bus aspects of the host bus 112, and an
interface to the PCI-bus 118. The SYSC also controls the
data fiow berween the host bus 112, the DRAM bus, the local
boses. and the 8/16-bit ISA bus. The SYSC interprets and
translates cycles from the CPU, PCI-bus masters. ISA-bus
masters. and DMA to the secondary memory subsystem 126,
local bus slaves, PCI-bus slaves, or ISA-bus devices.

The IPC contains an ISA-bus controlier and includes the
equivalent of an industry standard 822046, a real time clock
interface. a DMA controller, and a power management unit.

The SYSC/IPC 116 is described in more detail below.

The secondary memory subsystern 126, as previounsky
mentioned. includes a level-two (L2) cache. However, no
level-two cache is required to implement the invention
because the secondary memory subsystern 126 is basically
ap opague subsystem as viewed from the circuitry in SYSC/
IPC 1316 which is concerned with the methods of the present
invention. Xf a second-level cache 130 is included in sec-
ondary memory subsystem 126. the latch 132 is advanta-
geously included as well for reasons which will become
apparent. The latch is enabled by an HACALE signal (not
shown in FIG. 1) from SYSC/PC 116 1o the secondary
merpory subsystemn 126.

Because the secondary memory subsystem 126 is essen-
tially opaque for the purposes of the present embodiment.
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other memory siructures may be included as well. For
example, a third-level cache may be included in the second-
ary memory subsystem 126. Also, as is well known, while
the secondary memory address space is continnous in the
system of FIG. 1, acmal memory location storage need not
be present in the secondary memery subsystem 126 for all
of the memory locations in that address space. AcCcesses
made to memory addresses which do mot have storage
locations the secondary memory subsystem 126 are recog-
nized by the SYSCAPC 116 and handled in a known manner.

Referring again to FIG. 1, the PCI-bus 118 conforms to
the PCI local bus specification as described in PCI Special
Interest Group, “PCI Local Bus Speciiication, Product
Version, Revision 2.0" (Apr. 30, 1993), incorporated herein
by reference. The address and data lines of the PCI bus are
multiptexed. Specifically, AD(31:0) carry daia during the
data phases of a PCI-bus transaction, and carry an address
during an address phase of the PCE-bus ransaction. C/BE#
{3:0) carry a command during the address phase and carry
byle enables during the data phases. The PCl-bus follows a
burst transfer protoccl. A “transaction” on the PCI-bus
comprises an address phase and one or more data phases. Al
signals on the PCI-bus which are pertinent to the present
discussion are sampled ob the rising edge of a PCT-bus clock
signal (part of PCI-bus control lines 126).

All PCI data transfers are controlled using the following
three PCI-bus signals: FRAME#, IRDY# and TRDY#. The
PCI-bus master asserts FRAME# to indicate the beginning
of a transaction, and negates it to indicate the end of a
trapsaction. The master asserts IRDY# to enable an indi-
vidual data transfer, and negates it to force a wait state. The
target of a tramsaction asserts TRDY# to enable a data
transfer and negates it to force a wail state. These data
transfers may be either read or write data transfers; the
master is the initiator, and the target is the responding
device, whether the access is for read or write.

When both FRAME# and IRDY# are negated, the inter-
face is considered idle. To start a transaction, after arbitra-
tion if appropriate. the initiator of the transaction drives a
starting Dwaord (4-byte) address onto the AD lines and
asserts FRAME#, The target of the transaction, which in the
case of the present invention witl typically be the SYSC/IPC
116. recognizes FRAME# on the first PCI-clock rising edge
while FRAME# is asserted. The next rising edge of the
PCl-clock begins the first of one or more data phases. Data
will be transferred between initiator and target in response to
each rising edge of the PCI-clock for which both IRDY# and
TRDY# are asserted. Either party to the transaction may
insert a waiji cycdle by temporarily negating IRDY# or
TRDY#, respectively. According io the PCI-bus
specification, the target can withhold its first assertion of
TRIY# for any pumber of PCI-bus clock cycles, but after
the first data transfer, it can negate TRDY# only for a
predefined maximuom nurnber of PCI-bus clock cycles {e.g..
seven}-

As mentioned, during the address phase of a PCl-bus
transaction, the AD(31:0) lines need only specify a dward
address. Thus. AD(1:0) arc available for other purposes. For
memory commands. if AD{1}=0. then AD(D) indicates
which of two types of bursting is desired for the upcoming
fransaction. AD(0)=0 indicates linear incrementing bursting,
and AD(0)=1 indicates cache Iinc toggle bursting mode
(which is similar to the dword ordering used for 1486 cache
line fills). Ip the linear incrementing burst mode, the address
for data transfers is assumed by both parties to the trapsac-
tion 10 incrernent by one dword (4 bytes) afler each data
phase until the transaction is terminated Note that since the
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data transfer width is only one dword {(two Dwords if the
PCI-bus 64-bit cxtension is used). apd since the linear
incrementing mode places no resfrictions on a trapsaction
relative to the size or amangement of data lines in any caches
which may be present in the system, it will frequently be the
case that a PCI-bus mansaction begins in ope cache line and
ends in another cache line, crossing one or more cache line
boundaries in the process.

In the linear incrementing burst mode, a transaction
continues uniil it is terminated. Either the initiator of the
transaction or the target can initiate a termination, although
completion of the termination is always handled by the
master by negating FRAME# and IRDY#.

The master terminates the trapsaction by indicating that
the last data phase is in progress. It does so by negating
FRAME# during its final assertion of IRDY#. The target can
delay TRDY# as usual, so the final data transfer will not
occur until the target finally does assert TRDY#. After the
final transfer takes place, the master negates IRDY#, placing
the PCI-bus in idle condition. Other master-initiated termi-
nations are possible as well, but they are not important for
an vnderstanding of the invention.

The target can initiate a termination of the wansaction by
asserting the PCI-bus STOP# signal. STOP# requests the
master to terminate the iransaction. A final data transfer may
or may not take place while STOP# is asserted. depending
on the state of TRDY# at the time STOP¥ is asserted. When
the master samples STOP# asserted, it negates FRAME# on
the first PCI-bus clock cycle thereafter in which IRDY# is
asserted. The target then negates STOP# in the clock cycle
immediately following negation of FRAME#. Again. other
fortns of target-initiated termination are possible on the
PCI-bus. but these are not important for an understanding of
the invention.

Referring again to FIG. 1. ISA-bus 122 preferably is
included in the system, although it is not pecessary to an
embodiment of the invention. The signal lines and data
transfer protocols on ISA-bus 122 are described in the
following documents, all incorporated herein by reference:
IBM. “Technical Reference. Personal Computer AT™ (1985);
Sanchez, “IBM Microcomputers: A Programmer’s Hand-
book” (McGraw-Hiil: 1690); MicroDesign Resources. “PC
Chip Sets” (1992); Solari, AT Bus Desige” (San Diego:
Annabooks, 1990).

Also shown in FIG. 1 for completeness are an ISA-bus
device 136 connected to the ISA-bus 122, a PCI-bus device
138 connected to the PCI-bus 118, and a V1.-bus device 140
connected to the host bus 112, The ISA- and PCI-bus devices
122 and 118 each conform to the specifications for their
respective buses, and each can act as either a master or a
slave on their respective buses. The VL-bus device 140
conforms 1o the VL-bus standard. defined in Video Elec-
tronics Standard Association, “VESA VL-Bus Local Bus
Standard”, Revision 1.0 (1992), although it can act only as
a slave.

In order to define certajn terms used herein, FIG. 3
illastrates a region in the secondary memory address space
in the system of FIG. 1. It comprises a sequence of byics at
sequential addresses O through 20 (hexadecimal). A sequen-
tial memory access will proceed from byles at lower
addresses to bytes at higher addresses in F1G. 3. In another
embodiment. or in another description of the present
embodiment, the numerical designations of byie addresses
can be reversed, so that a sequential read access proceeds
from higher pumbered addresses 1o lower numbered
addresses: but this is merely nomenclature and does not
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affect the structure or operation of the system. As used
herein, sequential read and write accesses proceed from
“lower” data units in the sccondary memory address space
1o “higher” data units in the secondary memory address
space.

FIG. 3 also illustrates a memory “location” 310 which. for
the present embodiment, is four bytes long. The entire set of
memory locations illustrated in FIG. 3 is designated 308.
FIG. 3 also illustrates a 32-byte “boundary” 312, between a
32-byte biock spanning addresses 0-1F and the “next
higher” 32-byte block beginning at address 20. Moreover,
since the L1 cache in a Pentium system has a 32-byte line
size. each line of the cache being aligned at 32-byte bound-
aries in the secondary memory address space, the boundary
312 also represents a “cache line boundary” betwecn the line
whose highest data unit includes sccondary memory address
1F, and the cache line whose lowest, or first. data unit
includes the byte at address 20.

II. SYSTEM OPERATION

A, Starting Quad Word 99, No HITM#

FIG. 4 is a timing diagram illustrating the operation of the
system of FIG. 1 in a situation where a PCI master has
requested a burst read access 10 an address at the beginning
of a cache line-sized block in the secondary memory address
space (i.e., the low-order five bits of the address are O,
referred to herein by the shorthand that the address ends in
*00%). In the iliustration of FIG. 40 it is assumned that neither
the first cache line to be accessed (with cache line address
ending in 00). nor the second cache line to be accessed {with
cache line address ending in 20) is cached modified in either.
the L1 or L2 caches. Either or both lines may be present in
the L1 cache, but not in a modified state. It is assumed that
neither line is present in the L2 cache 130.

Waveform 410 fllustrates the host clock signal (HCLEK),
and waveform 412 illustrates the PCI clock signal
(PCICLK). In the present embodiment, the PCICLK oper-
ates at half the frequency of the HCLK signal, although the
SYSC 116 is programmable to operate the PCICLE at
different speeds relative to HCLK. The HCLK clock periods
are enumerated across the top of FIG. 4, beginning with
HCLK clock period 0. Since the PCICLK signal operates at
half the frequency of the HCLK signal, an event which
occurs during a PCICLK period that spans HCLK periods 18 -
and 19, for example, will be referred to herein as taking
place during the PCICLK pericd 18/19. All clock periods
begin on a rising edge of the respective clock signal in the
present embodiment. bat it will be understood that in another
embodiment, clock periods may be considersd to begin on
a falling edge of the clock signal.

Prior to the events illustrated in FIG. 4. it is assumed that
a PCl-bus master has already arbitrated for, and been
granted, control of the PCI-bus 118 (FIG. 1). In HCLK
period 0, the system controller 116 asserts HOLD to the host
processing subsystem 110, as illustrated in waveform 424
(FIG. 4). The system controller 116 maintains HOLD
asserted for the entire burst ransfer.

On the HCLXK rising edge which begins HCLK period 1.
the host processing subsystern 110 recognizes HOLD
asserted. and asserts HLDA in response, as illustrated in
waveformn 426. HLDA remains asserted for the entire burst
transfer. The processor is now off the host bus 112, and
ingquiry and data transfer cycles can proceed.

In PCI clock cycle /3. the PCI master device 138 places
the dword address of the first desired transfer onto the AD
lites of the PCl-bus 118. It also at this time places a
command on the C/BE# lines of PCI-bus 118, and asserts
FRAMTE# to the systemn controller 116. (See waveforms 414
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and 416.) As mentioned, this address ends in “00°. and
designates the first guad word in a cache-line-sized block of
the secondary memory address space. The system controller
116 translates this address onto the host bus address lines
HA(31:3) as illustrated in waveform 436.

As illustrated in waveform 418, the PCL device 138
asserts IRDY# during PCI clock cycle 4/5 to indicate that the
address is now valid. The PCI device 138 is assumed for the
purposes of FIG. 4 to be a fast device, which does not require
apy wait states. As shown in waveform 418, therefore, PCI
device 138 maintains JRDY# asserted for the entire burst
transfer.

At the beginning of PCI clock eycle &/7, the system
controller 116 samples FRAME# and IRDY# both asserted,
and in response thereto, negates TRDY# (waveform 426)
and STOP# (waveform 422) (they were previously ficating).
Tt also asserts EADS# to the host processing subsystem 110
in order 1o begin am inquiry cycle (waveform 428). The
pegation of TRDY# prevents any data transfers from taking
place before the system has confirmed that secondary
memory contains the latest copy of the data. The system
controller 116 negates EADS# in the second HCLK cycle
after assertion, i.e., in HCLK period 8.

Since the desired address is assumed mot to be cached
modified in the L1 cache 212 (FIG. 2), the host processing
subsystem 110 negates its HITM# output within two HCLK
clock cycles after EADS# was asseried. Thus, by the begin-
ning of HCLK period 9, HITM# has been negated. (See
waveform 430.) The system controller 116 is programmable
ta sample HITM# on either the second or the third HCLK
rising edge after asserting EADS#, but it is assumed herein
that the system controller 116 has been programmed to
sample HITM# on the second HCLK rising edge after
asserting EADS#. Thus, by the bepinning of HCLK period
9, the system comrolier 116 knows that DRAM 128 (F1G. 1)
contains the latest copy of all of the data in the 1.1 cache-
line-sized-block that contains the address of the first transfer
desired by the PCI device 138. As illustrated in waveform
438, the quad word address for the first transfer is provided
by the system controller 116 to the DRAM 128 via
MA(11:0) in about HCLK cycle 16. The DRAM 128 is page
mode accessed, but it is assumed for simplicity that no new
page needs to be established pricr to the transfer.

Note that some of the signals described in this specifica-
tion are asserted high, whereas others are assericd Jow. As
used herein, signals which are asserted low are given a ‘#°
or ‘B’ suffix in their names, whereas those asserted high (or
for which ap assertion polarity has no meaning) lack a “#’ ar
‘B’ suffix. Also. two signal names mentioned herein that are
jdentical except that one includes the “#” or ‘B’ suffix while
the other omits it. are intended to represent Jogical compli-
ments of the same signal. It wilt be understood that one can
be generated by inverting the other, or both can be generated
vy separate logic in response to common predecessor sig-
nals.

The dala port of DRAM 128, MD(63:0), is eight bytes
wide (one quad word), whereas the data path on the PCI-bus
118, AD(31:0). is only four bytes wide {one double word
(DwordY). Thus, as iliustrated in waveforms 414 and 438 in
FIG. 4. two Dwords are transferred over the PCl-bus 118 for
each new address asserted 1o the address port of DRAM 128,
The low-order Dword for the first quad word of the ransfer
appears on AD{31:0) in PCICLK cycie 21/22. On the rising
edge that begins PCICLK CYCLE 24/25, the system con-
troller 116 latches the high-order Dword of the data access
and ipcrements the DRAM memory address to the next quad
word (1o an address ending in 08). The system controller 116
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also asserts TRDY# at this time. The new quad word address
08 appears on MA(11:0) in HCLK cycle 25, and the first data
transfer on the PCI-bus. of Dword 00, takes place on the
rising edge of the PCICLK which begins PCICLK cycle
26/27. Althongh not necessary for the present illustration, in
which 12 has a cache miss, the system cortroller 116 also
negates HACALE 1o the latch 132 (FIG. 1) at the beginning
of HCLK cycle 26 for reasons which will become apparent
hereinafter.

Note that TRDY# is negated al the beginning of PCICLE
cycle 26/27 in order to insert a wait state in the PCI-bus
transfer. In another esnbodiment of the present invention, a
wait state may not be necessary.

The system coniroller 116 drives the previously latched
high-order Dword from guad word 00 onto the PCI-bus 118
AD(31:0 lines in PCICLK cycle 26/27, and asserts TRDY#
in PCICLK cycle 28/29. In PCICLK cycle 30/31, the system
controller 116 drives the low-order Dword of quad word 08
onto AD(31:0), and negates TRDY#, In PCICLK cycle
32733, system controller 116 asserts TRIYY#, latches inter-
nally the high-order Dword of quad word 08 from the
DRAM 128, and increments the guad word address on
MA(I1:0) 1o the DRAM 128. On the rising edge which
begins PCICLK cycle 34/35, this data is rapsferred to the
PCT device 138 over the PCI-bus 113. System controller 116
negates TRDY#, and so on for the remainder of the burst.

The last Dword in the cache line-sized block of DRAM
28, Dword 1C, is transferred to the PCI device 138 on the
rising edge of PCICLK which begins PCICLK cycle S4/55.
Note, however, that no delay is incurred before the transfer
of Dwerd 20, which is the first Dword of the next cache line
address. In fact, in the situation illustrated in FIG. 4, all of
the data transfers in the burst take place at a consiant rate,
specifically one Dword in every two PCICLK cycles, even
as the burst contines beyond the cache line boundary. This
is a consequence of the features of the present embodiment
of the invention.

In order Lo minimize or eliminate delays at cache line
boundaries, as previously described, the system controller
116 performs a predictive snoop (“pre-snoop”) of the second
cache line address of the burst. prior to completion of the last
PCl-bus data transfer from the initial cache line address of
the burst. In fact, because the system controller 116 controls
the DRAM address on MA(11:0) independently from
addresses which the system controller 116 places on the host
bus 112 HA(31:5) lines, the pre-snoop takes place simulta-
neously with at least one data transfer taking place on the
PCI-bus 118. The predictive snoop is “predictive” because it
is performed even though the system controller 116 does not
yet know whether the PCI device 138 desires to continue the
burst beyond the cache line boundary.

In order to accomplish pre-snoop, the system controler
116 detects the first PCI-bus data transfer by sampling
TRDY# and TRDY# asserted ai the beginning of PCICLK
cycle 26/27. 1t then increments the cache line address on
HLA(31:5) at the beginning of PCICLK cycle 28/29, io refer
to the nexi sequential cache line address (line address 20).
System controller 116 then, in HCLE cycle 32. asserts
EADS# to initiate an inguire cycle of the 1.1 cache 212 in the
host processing subsystem 110. Two HCLK cycles later. at
the begirning of HCLK cycle 35, the system controller 116
samples HIFTM# pegated. Thus, the inquiry c¢ycle for the
sccond cache line has been completed before the last data
transfer takes place in the first cache line. Assuming the first
transfer does in fact proceed beyond the cache line
boundary, the first data transfer (Dword 20) of the second
line of data can take place without stopping the burst and
without inserting any additiopal PCI-bus wait states {see
arrow 442).
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In anticipation of the burst continuing beyond yet another
cache line boundary, the system coniroller 116 then performs
a predictive snoop for the third eache line of the burst, again,
while data js still being transferred from secondary memory
addresses in the second cache line. Specifically, at the
beginning of PCICLK cycle 58-59. the system controller
116 samples both IRDY# and TRDY# asserted. It incre-
ments the line address to the host processing subsystem 110
in HCLK cycle 60, and asserts EADS# in HCLK cycle 64.
HITM# is again sampled negated at the beginning of HCLK
cycle 66, and once again the L1 cache inquiry cycle has been
completed before the PCI-bus data transfers have reached
the cache line boundary. The process continues until the PCI
device 138 terminates the buxst, or the inguiry cycle resulls
in HITM# asserted. The latter situation is described below
with respect to FIG. 6.

B. Starting Quad Word 00 HITM# On Initial Cache Snoop

FIG. 5 illustrates the operation of the sysiem of FIG. 1 for
a PCI-bus master-initiated burst read transfer beginning at a
cache line boundary, as in FIG. 4, but where the first inquiry
cycle discovers that the desired line of secondary memory
address space is cached modified in the L1 cache 212 in the
host processing subsystem 110. Referming to FIG. 5, the
PCI-bus master 138 asserts a command and address on the
PCI-bus 118 in PCICLK cycle 2/3, and asserts FRAME#. In
PCICLK cycle &/5, it asserts IRD'Y#. The line address of a
desired data is tramslated on o the host address bus
HA(31:5) and, when the system controller 116 samples
FRAME# and IRDY# both asserted at the beginning of
PCICLK cycle 6/7, it asserts EADS# to begin an inquiry
cycle of the host processing subsystem 1%10.

On the tising edge that begins HCLK cycle 9, the system
conwoller 136 samples HITM# asserted, indicating a cached
maodified condition. The system controller 116 does not
terminate the PCI-bus transfer, but rather, withholds TRDY#
and. in HCLK cycle 10, negates HOLD to the host process-
ing subsystem 110. The host processing subsystem 110 then
negates HLDA in HCLEK cycle 11 and prepares 1o perform
a write-back cycle. The host processing subsystem 114
asserts HADS# in HCLK cycle 12. for one HCLK cycle. and
performs a burst write of the 1.1 cache data to secondary
memory 126. BRDY# is asserted four times during the
write-back cycle, thereby allowing the full 32-byte line to be
written 10 secondary memory.

In HCLK cycle 14, the cycle after the host processing
subsystem 110 negates HADS#. the system controller 116
reasserts HOLI} in order to retrieve the host bus 112 after the
write back cycle. The host processing subsystem 110 rec-
ognizes this on the fourth BRDY#, i.c., the beginning of
HCLX cycle 20. The host processing subsysiem thereafier
releases the host bus 112 and asserts HLDA. The host
processing subsystemn 110 also negates HITM# at the begin-
njng of HCLK eycie 22. indicating that the line in secondary
memory 126 and the line in L1 cache 212 are now consis-
tent. The system controller 116 then provides the first quad
word address to DRAM 128 via MA(11:0). The data in the
low order Dword output by the DRAM 128 (Dword 00) soon
reaches the ATX31:0) lines of the PCI-bus 118, and after a
synchronizaticn delay indicated by amow 510. the system
controller 116 asserts TRDY# in PCICLK cycle 36/37 to
allow the first data transfer on the PCl-bus 118 (o take place.
The remainder of the process is the same as that shown in
FIG. 4. beginning at BCLK cycle 24 of FIG. 4.

C. During Burst Transfer, Snoop of Next Cache Line
Produces HITM# Asseried.

FIG. 6 is a timing diagram illustrating the operation of the
system of FIG. 1. during a bursi transfer from the secondary
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memory 126 to the PCI device 138, in which the predictive
snoop produces HETM# asserted. In HCLK cycle ¢ in FIG.
6, MA(11:0) still carries the quad word address for the first
guad word in the curmrent line of secondary memory address
space being transferred. The line address of the current line
is still present in HA(31:5), and the first Dwod (D(0®) is
presently being translated by the system controller 116 onto
AD(31:0). FRAME# and IRDY# are being driven asserted
by the PCI device 138, and STOP# is being driven negated
by the syster: controller 116. In additios, system controller
116 is asserting HOLD to the host processing subsystem
1190, which is returning HLDA asserted to the system con-
troller 116. EADS#. HITM#, HADS# and BRDY# are all
negated. ’

In PCICLEK cycle 0/1, the system controller 116 asserts
TRDY#, MA(11:0) shortly thereafter changes to the second
quad word address of the current line of secondary memory
{QWA(08)). On the Tising edge which begins PCICLK cycle
2/3. D(0O) is transfetred to the PCI device 138 and D(04) is
driven onto the PCI-bus 118 AD lines. The full eight Dwords
of the carrent secondary mernory line are transferred in the
manner previously described with respect to FIG. 4
(assuming the PCI device 138 does not negate FRAME# 1o
terminate the burst eariy).

In about PCICLK cycle 4/5, the system controiler 116
begins driving the second line address, predictively, ofito the
host bus 112 HA(31:5) address lines. In HCLK cycle 8, the
system controller 116 asserts EADS# for two HCLK cycles.
It is now assumed that the new line of data is cached
modified in the L1 cache 212 in the host processing sub-
system 110, so in HCLK cycle 10, the host processing
subsystem 110 asserts HITM#. The system controller 116
detects HITM# asserted as early as the beginning of HCLK
cycle 11 or 12, bul it does not stop the PCI burst cycle at this
time in order to allow a write back to take place. If the burst
were to be stopped at this time, then two new inquiry cycles
would be performed when the PCI master restarts the burst:
once for the current line of secondary memory (line (00)),
and again for the second line of secondary memory {(lin¢
(20)). By waiting until the entire first cache line has been
transferred before stopping the burst, the system controller
116 avoids any need for the first of these two inquiry cycles
when the PCl master resiarts after write back. Note that in
another embodiment, if the predictive snoop finds the next
line cached modified. the system controlter can allow the
write-back to proceed at the same time that data continues to
be transferred to the PCY device 138 from the carrent line of
secondary memory. This might be accomplished, for
example, by reading the entire line into a buffer and trans-
ferring it to the PCI master at the same time that the
write-back is proceeding to memory.

Accordingly, in response to HITM# sarpled asseried in
PCICLK cycle 11/12. the system controller 116 asseris
STOP# 1o the PCl device 138 during the last PCi-bus
transfer of a Dword in the first line of secondary memeory.
Thus. the PCI device 138 samples STOP# asserted at the
beginning of PCICLK cycle 30/31, the same time that it
samples TRDY# asserted for such final Dword transfer. In
response, the PCT device 138 negates FRAME# in PCICLK
cycie 30/31. and negates IRDY# in PCICLK cycle 32/33.
The PCI-bus 118 burst tansfer is effectively terminated at
this point, and if the PCI device 138 requires further data
transfer, it will subsequently arbitrate for the PCI-bus 118
again, assert FRAME# and IRDY#, and s0 on to essentially
restan the burst at the beginning of the next cache line.

Also in response to HITM# asserted, the systemn controdler
116 negates HOLD in HCLK cycle 31 in order to allow the
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write-back cycle to take place. At the beginning of HCLK
cycle 32, the host processing subsystem 110 samples HOLD
negated and negates HE. DA in vesponse thereto. In HCLK
cycle 33, the host processing subsystem 119 asserts HADS#,
and the write-back cycle consisting of four BRDY# s takes
place. The system controller 116 samples HADS¥ asserted at
the beginning of HCLK cycle 3, and if the PCI device or
another device desires control of the host bus 112, the
system controller 116 can reassert HOLD as early as HCLK
cycle 35 in order to reclaim the host bus 112 as soon as the
write back is complete. Thus the write back cycle has taken
place, the system controller 116 is masier on the host bus
112, and the PCI-bus master device 138 can restart its burst
transfer at the beginning of the next secondary memory line.

D. Burst Transfer To Begin With Last Data Unit Of A Line

As can be seen from the timing diagram of FIG. 4, an
inquiry cycle at the beginning of a burst transfer imposes a
significant delay even if the specified secondary memory
line is either not in the L1 cache or is not modified in such
cache. In FIG. 4, for example. this delay is represented by
the time between FRAME# and IRDY# sampled asserted at
the begining of PCICLK cycle /7, and asseriion of TRDY#
in PCICLK cycle 24/25. Because of this delay, the system
controller 116 does not perform a predictive snoop if the
starting address of the burst transfer is the last data unit in
a line of secondary memory. That is, if the low-order five bits
of the PCY master’s starting byte address are 1C, then the
predictive snoop is omitted, Instead, after an inguiry cycie is
performed op the line address for the first Dword of the
burst, resulting either in HITM# negated or in a write-back
cycle followed by HITM# negated, the system controller
116 allows only one data transfer to take place before
stopping the transaction. It stops the transaction by asserting
STOP# to the PCI device 138 in conjunction with the first
data transfer. The PCI master 138 will nepate FRAMEH, and
subsequently IRDY#. After re-arbitration, it can then start a
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new burst transfer using the waveforms illustrated in FIG. 4 -

(if the next line address is mot cached modified in the 1.1
cache 212) or FIG. 5§ (if the next line address is cached
modified in the L1 cache 212).

E. Starting Address 18, Neither Line Cached Modified

If the starting address of the burst is the second-to-iast
data unit of a line of secondary memory (18 in low-order five
bits of byte address), then the system coniroller 116 does
predictively snoop the next line because some advantage can
be obtained. even though the advantage is not as great as in
sitnations where the starting byte address ends in 14 or less.

FIG. 7 illustrates the operation of the system of FIG. ¥ in
this situation.

Referring to FIG. 7. in PCICLE cycle 2/3, the PCI device
138 drives the quad word address QWA(18) of the first
desired transfer of the burst, onto the PCI-bus 118 AD Lines.
It asserts FRAME# in PCICLK cycle 2/3 and asserts IRDY#
in PCICLK cycle 4/5. The system controller 116 translates
the line address portion of the starting guad word address,
specifically line address (00), onto the host bus 112 addzess
lines HA(31:5) in HCLK c¢vcle 4. In response to FRAME#
and IRDY# asserted at the beginning of HCLK cycle 6,
system controller 116 asseris EADS# in HCLK cycle 6 10
initjate an inquiry cycle. The system controller 1116 samples
HITM# negated at the beginning of HCLK cyele 9. and in
response thereto, after synchronization, asserts TRDY# to
the PCI device 138 in PCICLK cycle 24/25. By this time, the
first Dword of the transfer, ID{18), is present on the PCl-bus
118 AD(31:0) lines. D(18) is ransferred on the rising edge
which begins PCICLK cycle 26/27. The wransfer of dword
D(1C) is delayed somewhat. however. because a determi-
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nation must first be made as to whether to simultaneously
assert STOPE. (If STOP# is to be asseried, it must be
asserted simultaneously with the final TRIDY#.)

In response to IRDY# and TRI'Y# both sampled asserted
at the beginning of PCICLK cycle 26/27, the system con-
troller 116 drives the next line address, line address 20, onto
HBA(31:5). Also in PCICLK cycle 26/27, HACALE is
asserted. Further, in HCLK cycle 29, the system controller
116 asserts EADS# 1o the host processing subsystem 119 in
order to initiate the next line L1 cache inquiry. As in the
{llustration of FIG. 6, should HITM# be returned asserted,
the system controller 116 would stop the burst on the
PCI-bus 118 at this time and allow a write-back to take
place. In the illustration of FIG. 7. however, HITM# is
sampled negated at the beginning of HCLK cyde 32. In
response thereto, the system controller 116 asseris TRDY#
in PCICLK cycle 34/35 and the last data unit D(1C) is
transferred without a simultaneous assertion of STOP#.
TRIDY# is again asserted in PCICLK cycle 38/39. and the
first data unit (I{20)) of the next secondary memory line
(line address (20)) is transferred on the PCICLK rising edge
which begins cycle 40/41. Data units then continue to be
transferred in the manner described above with respect to
FIGS. 4 and 6, until the burst is terminated either by the PCI
device 138 on its own initiative, or by the system controller
116 in response to HITM# samnpled asserted. It can be seen
that although some delay is incumed at the secondary
memory line boundary {note the delay in FIG. 7 between the
second and third assertions of TRDY#), this delay is sig-
nificantly shorter than the delay which is incured by the
conventional technique of antomatically stopping the burst
at the cache line boundary, forcing the PCT device to
re-arbitrate for the PCI-bus 118, perform a new PCI-bus
address phase, and wait for a new snoop cycle 10 take place
for the new line address.

F. L2 Cache Hit Conditions

In all of the above illustrations. it was assumed that none
of the data being transferred was present in the L2 cache 130
(FIG. 1). Because of this, all data in the PCI bursts were
transferred with the DRAM 128. However, a problem occurs
if there is an L.2 cache hit condition for one of the transfers.
The problem occurs because the L2 cache 130 receives the
line address from the host bus 112 address lines HA(31:5).
and the predictive snoop features of the present embodiment
change HA(31:5) beginning in aboul the second Dword
transfer from each secondary memory line. The second
Dword transfer is usually part of only the first quad word
accessed in the L2 cache 130, and up to three more guad
words may follow. With the changed HA(31:5). however,
such subsequent quad words would be read from the wrong
location in the L2 cache 130.

The system of FIG. 1 solves this problem through the use
of a latch 132 coupled between HA(31:5) and the A (31:5)
lines of the address port of the L2 cache 130. The latch 132
is enabled by HACALE. driven by the system controlier 116
(latch 132 is tansparent when HACALE=1, and is latched
when HACALE=0). As can be seen in each of FIGS. 4, 5,
6 and 7. the system controller 116 negates HACALE before
it changes the Lpe address on HA(31:5) and reasserts
HACALE after the last quad word of the current L2 cache
line has been transmitted to the system controller 116.
HACALE opens latch 132 while the system controller 116
js still drivieg the next line address onle HA(31:5). and
again closes the latch before it begins driving the third line
address onto HA¢31:5) for the next predictive snoop cycle.

Table 1 below surmarizes the cycles that 1ake place with
respect to the L1 cache, L2 cache and DRAM for all
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combinations of hit, miss and hit-modified on PCI master
read accesses. Table I sumruarizes the same for all PCI
master write accesses. As used in the tables, “hitM” indi-
cates a cached modified condition in the L1 cache.

TABLE I

20

cache does support inguire cycles, the system controlier 116
can perform the L1 and L2 inquire cycles concurrendly. If
either of the caches indicate a cached modified condition, the
system controller 116 can delay or stop the burst as previ-

DMA/Master Read Cyvcle Summary

DMAMaster
Read Cycle
L1 L2 Data  Type of Cyele Type of Cycle Type of Cycle
Cache  Cache Source for L1 Cacbe  for 1.2 Cache for DRAM
Hit Hit L2 Cache No Change Read the Bytes No Change
Reguested
hith Hit L1 Cache Castout Write CPU Data, Read Mo Change
Back the Byles
Requested
Hit Miss DRAM Mo Change Ne Change Read the Byies
Requested
it Miss 1.1 Cache Castout Mo Change Wote CPU Data,
Read Back the
Bytes Requested
Miss Hit 12 Cache No Change Read the Bytes Mo Change
Requested
Miss Miss DRAM No Change No Change Read
TABLE It
DMA/Master Write Cycle Summary
DMA/Master
‘Write Cycle
L1 12 Data Type of Cycle Type of Cycle Type of Cycle
Cache Cache Destinalion for L] Cache  for L2 Cache for DRAM
Hit Hit DRAM, Invalidate Write Master Data  Write Master
L2 Cache Data
hitvi Hit DRAM, Castout, Write CPU Data, Write CPU
1.2 Cache Invalidate Write Master Data  Data,
Write Master
Data
Hit Miss DRAM  Invalidate Mo Change Write Masier
Data
hitM Miss DRAM  Casiout, Mo Change Write CPU
Invalidate Data, Write
Master Data
Miss Hit DRAM, No Change Write Master Idata  Write Master
L2 Cache Data
iss Miss DRAM  No Change No Change Write Master
Data

G. Synchronous SRAM 1.2 Cache
In all of the above illustrations. the 1.2 Cache 130 uses
asynchronous SRAMs. The system controller 116 also per-

mits synchronous SRAMS to be used in the 1.2 cache 130, 55

and the host processing subsysiem 1106 programs a register
in the system controlier 116 during boot-up 1o indicate
which type of SRAM is present.

Synchronous SRAMs differ from asynchronous SRAM:
in the 1.2 cache 130 in that the guad words which are read
or wiitten to a yine of L2 cache memory are not guaranteed
to lie at linearly incrementing quad word addresses npless
the first quad word accessed is the first quad word of the
cache line. However, in a given embodiment, predictive
snoops can still be performed.

H. Inguire Cycles for L2 Cache

In the system of F1G. 1. the 1.2 cache 130 does not support
inguire cycles. In another embodiment, in which the 1.2

63

ously described, and allow a write-back to take place from
the appropriate cache.
M. IMPLEMENTATION

TIGS. 8-12 are schematic diagrams of pertinent portions
of the system controlter 116 which control various signals
used for irplementing the invention. While all the descrip-
tions above are sufficient to enable implementation of the
ipvention. descriptions at the schematic level for some

&0 aspects are provided for those interested in more details

about an example implementation. It will be understood that
many other implementations are possible, all within the
ordinary skill of a designer.

A. Circuitry to Generate EADS#

F1G. 8 is a schematic diagram of pertinent circuitry which
produces the BEADS# signal output 10 the host processing
subsystem 110 (FIG. 1). As shown in FIG. 8. the PCI-bus
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FRAME# signal reaches the circuitry of FIG. 8 as FRAMEL
In the nomenclamre of FIGS. 812, signals named with a
designation ending in *“T” or “0™ indicate input and output
signals, and are asseried with the same polarity as the
comesponding external signals (i.e., low if the corresponding
external signal names end in “#" or B and high if they do
not). FRAMEI passes through some logic circuitty 802
where it is qualified by certain other signals, the purpose of
which is not pertinent to an understanding of the invention.
Essentially, in all cases pertinent to the ipvention, the outpit
of logic circuitry 802, MFRAM, is asserted high whenever
FRAME# is asserted low on the PCl-bus 118.

MFRAM is provided to the D input of a D flip-fiop 8604,
which is clocked by an LCLKI signal (equivaient to the
PCL-bus PCICLK sigral). The QN output of flip-fiop 804,
MFRAMDB, is connected to one input of a three-input
NAND gate 806, a second input of which is connected to
receive MFRAM. The third input of NAND gate 806
teceives a PCIWND signal which, for purposes of the
present description, can be assumed to remain at a high logic
level. Accordingly, it can be seen that the ouiput of NAND
gate 806, designated LADS_TGB (“local ADS trigger™)
will carry a low-going, one PCICLK-clock-width pulse, in
response 1o the PCI device’s assertion of FRAME#.

LADS__TGB is provided to one inpat of a three-input
NAND gate 808, Another input of the NAND pate 808 is
coneected to the ouiput of three-input NAND gate 810.
NAND gate 810 has one input which receives an SYS-
MEMD signal, indicating whether the address provided by
the PCI master is within the address space of secondary
memory 126. If not, then SYSMEMD remains low and the
output of NAND gate 810 remains high. A second input of
NAND gatc 810 receives an LT2 (“local T2” signal),
described below. The third input of NAND gate 810 is
connected to the output of another NAND gate 812, which
can be assumed to remain high at all times pertinent to the
invention. Similarly, the third input of NAND gatc 808
receives a PA__ADSB signal, which can also be assumed to
remain high at all times pertinent to the invention.

The ouiput of NAND gate 808 is connected to the D input
of a D flip-flop 814, which is clocked by the PCICLK signal
LCLKE. The QN output of flip-flop 814 is NORed with an
invested version of the @ cutput of flip-fiop 814, in NOR
gate 816, 10 produce the LT2 signal which is provided to an
input of NAND gate 810 as described above. Accordingly.
it can be seen that as long as the address provided by the PCI
master 138 is within the secondary memory 126 address
space, LT2 will carry a one-PCICLK-cycle-wide high-going
pulse in the second PCICLK cycle following the cycle in
which FRAME# was asserted by the PCl master 138 (e.g..
PCICLK cycle 4/5 in F1G. 4).

1T2 is eonnected to one input of a three-input NAND gate
818. The second input of NAND gate 818 receives
DISLT2B, which can be assumed 10 remain high. and an
LSTARTIB signal, which is high as long as the system
comtroller 116 is hot yet certain that the data in secondary
memory 126 at the secondary memory line address specified
by the PCI master 138 is the latest copy of the data. That is,
LSTARTIB goes low after the host processing subsystem
110 brings HITM# high, either immediately after EADS# or
following an 1.1 cache write-back cycle.

The output of NAND gate 818 is connected to one input
of a two-input NAND gate 826, the other input of which is
connected 1o the output of a two-input NAND gate 822. One
input of NAND gate 822 is connected 10 receive a PSNEN
signal, which epables the pre-snoop feature and can be
assumed to be high throughout. and the other input is
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connected 1o receive a PSNSTR1 signal. The latter signal is
used during predictive snoop operations, which take place
later in the burst (see PCICLK cycle 32/33 in FIG. 4, e.g.).
At the initial assertion of FRAME# PSNSTR1 remains low.
As described below, PSNSTR1 will carry a high-going pulse
when it is desired 1o assert EADS# for predictive snoop
cycle later in the burst. Accordingly, as can be seen, the
ontput of NAND gate 820, designated SLT2TG
(“synchronous local T2 trigger™) camrjes a high-going. one
PCICLK-cycle-wide pulse, in the PCICLK cycle following
that in which FRAME# was asserted. SLT2TG will also
carry a one PCICLK-cycle-wide high-going pulse at the
time a predictive snoop cycle is to take place.

The SLT2TG signal is connected to the D input of a D
flip-flop 822, which is clocked by a clock signal CLK
{(equivalent to HCLK in FIGS. 4-7). The QN output of
flip-flop 822 is NORed with an inverted version of the Q
output of flip-flop 822 and the resuit applied to the D input
of another D flip-fiop 824, also clocked by CLE. It can be
seen that the flip-fiops 822 and 824 act as a synchronizer for
synchronizing the pulse on SLT2TG with the host bus clock
signal HCLK. Thus the QN output of flip-flop 824, labeled
SLT2B, carries a low-going pulse whenever an inquiry cycle
is desired. The low-going pulse begins and ends synchro-
nously with HCLX, but depending on several factors includ-
ing the relationship between the PCICLK and HCLK, may
be one or more HCLK cycles wide.

SLT2B is connected to one input of a NAND gate 826, the
other input of which is connected to the output of a three-
input NAND gate 828. One input of NAND gate 828
receives the T2 signal ontput of NOR gate 816. A second
input of NAND pate 828 receives a PCICYCB signal, which
can be assumed 10 remain high at all times pertinent to the
invention. The output of NAND gate 826 is connected to the
D input of a flip-flop 830, which is clocked by CLK. The Q
output of flip-fiop 830, designated SLT2D, is fed back to the
third input of NAND gate 828, It can be seen that SIT2D
will carry a high-going pulse that begins in the HCLK cycle
following that in which the low-going pulse on SLT2B
began. and the SLT2D pulse will last for at least as many
HCLE cycles as SLT2B lasted. Additionally, if needed. the
NAND gates 828 and 826 will streich the SLT2D pulse until
after the end of the L'T2 pulse. That is. NAND gates 828 and
$26 ensure that the STT2D pulse will extend beyond the end
of PCICLE cycle 4/3 (FIG. 4).

SILT2B and SLT2D are NORed in NOR gate 832, pro-
ducing a high-going pulse during the overlap between the
SLT2B pulse and the SLT2D pulse. The outpui of NOR gate
832 is connected to one input of a four-input NAND gate
834. A second input of NAND gate 834 is connected to an
LIDLE signal, which prevents EADS# from recurring at
inappropriate times. LTDLE is high at this time. A third input
of NAND gate 834 is connected 1o the ontput of a NOR gate
§36, which cap be assumed 1o remain high at all times
pertinent to the invention. The fourth input of NAND gate
834 is connected to the output of a NOR gate 838. one input
of which receives SYSMEMBI. The other input of NOR
gate 838 is connected to the output of an AND gate 840,
which can be asswmed to be low at all times pertinent to the
invention. SYSMEMB1 is low if the secondary memory
address provided by the PCI master 138 is within the
secondary memory 126 address space, and is high if not.
Thus, as long as the PCI device 138 addresses an address
within the secondary memory address space. the output of
MNOR gate 838 will be high.

The output of NAND gate 834 is connected 1o one input
of a three-inpul NAND gate 842, a second input of which is
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connected to receive a BWP2ZB signal, which can be
assumed to remain high, The third ipput of NAND gate 842
is connected to the output of another three-input NANID gate
844. One input of NAND gatc 844 is connected to the output
of NOR gate 838, previously described. and the other two
inputs of NAND gate 844 receive an EADSIB signal and a
CEK_ EADS signal. respectively, both described below.

The outpul of NAND gate 842 is connected to the D input
of a D flip-fiop 846, clocked by the CLK signal to produce
a Q output designated CK__EADS. CK__EADS is connected
10 the D input of another flip-flop 848, clocked by CLK. to
produce on its QN output the EADSTB signal. CK__ EADS
and EADS1B are fed back to the two inputs of NAND gate
844 as previously stated. It can be seen that because of this
feedback, the output of NAND gate 842 will carry a high-
going pulse which is the width of rwo HCLK cycles.

The output of NAND gate 842 is connected 1o the D input
of another I flip-flop $50, which is clocked by an ECLK
signal. ECLK (“early clock™)is equivalent to HCLK. except
that il operates a few nanoseconds earlier. The Q output of
flip-flop 850 is connected to the *0° inpul of an inverting
multiplexer 852. the output of which carries an EADSO
signal for the EADS# ontput of system controller 116. The
*1’ input of multiplexer 852 receives a CPU_WT signal. and
the select input receives an AHOLDOB signal. AHOL.DOB
is low at all pertinent times, so EADS# carries the output of
flip-flop 850.

Accordingly, it can be seen that the circuitry of FIG. 8
produces a low-going, two HCLK-cycle-wide pulse. in
about the fourth HCLK cycle following assertion of
FRAME# by the PCI device 138.

FIG. 9 is a schematic diagram of circuitry in the system
controller 116 which produces the PSNSTR] signat used in
FIG. 8. As previously mentioned, PSNSTR1 carries a high-
going pulse when it is desired to initiate a predictive snoop
cycle during a PCI master burst transfer.

Referring to FIG. 9, a three-input NAND gate 902
receives a QPCIFST signal. which is high during the first
transfer of a PCI burst or the beginning of a new cache line
wansfer,

Another input of NAND gate 902 receives a CYCTX
signal, which is asserted when both IRDY# and TRDY# are
sampled active (a transfer is occuming). NAND gate 902
also receives an LNBREAKB signal, which is low only if
the data unit then being transferred is the highest data unil
in a cache line. Accordingly, the output of NAND gate 902
will go low during the transfer of the first data unit to be
transferred from a line of secondary cache. but not if the
transfer is beginning with the highest data unit i the line of
secondary memory. This is consistent with the discussion
above with respect to FIG. 6 in which predictive snoop is
omitted in this situation.

The output of NAND gate 902 is connected 10 one input
of a two-input NAND gate 904. the output of which is
copnected to the D input of a fiip-fiop 906. The QN output
of flip-flop 906 is connected back (o the second input of
NAND gale 904_ The flip-fiop 906 has an inverting clear
input which is connected to the output of an AND gate 908,
one input of which receives PSNEN. which remains high at
all times pertinent hercin. and the other input of which
receives an EADSIB signal. EADS1B goes low after
EADS#, thereby clearing flip-flop 906. Accordingly, flip-
flop 906 latches the output of NAND gate 902 until after
EADS# has beep asserted.

The Q output of flip-flop 906 is ipverted and gualified. in
three-input NAND gate 910. by IRDY and MFRAME.
IRDY is the inverse of the PCI-bus 118 IRDY#signal. and as
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previcusly explained, MFRAME esseniially follows the
inverse of the PCI-bus FRAME# signal. Thus, NAND gate
910 blocks the output of fip-flop 906 if the PCI device 138
has already indicated that the present transfer is 1o be the last
transfer of the burst. Otherwise, the output of NAND gate
910 (called FTRDTGB (“first TRDY# trigger™)) carries a
one PCICLE-wide low-going pulse, beginning with the
PCICLK rising edpe that ends the first PCI transfer of the
current line of secondary memory.

The output of NAND gate 910, FTRDTGBR, is connected
tc the D input of a flip-fiop 912, which is clocked on LCLKI.
Flip-flop 912 thus delays FTRDTGB by onc PCICLK to
enable other circuitry (not shown) in the system controller
116 to increment the secondary memory line address on
HA(31:5) (FIG. 1).

The QN output of flip-flop 912, designated PCIFTRD, is
connected to one input of a two-input NAND gate 914, the
other inpant of which receives PSNEN. The output of NAND
gate 914 is connected to one input of a two-input NOR gate
916, the other input of which receives the output of another
NAND gate 918. One input of NAND gate 918 receives a
CSNENDB signal, which is high until EADS# is asserted,
and the other input of NAND gate 918 receives the PSN-
STR1 signal. The output of NAND gate 916 is connected 1o
the D inpm of & flip-flop 920 which is clocked by CLK
(equivalent to the host bus clock signal HCLK). The QN
output is NORed with an inverted version of the Q output of
Aip-flop 920 to produce the PSNSTR1 signal, which is fed
back to NAND gate 918. PSNSTRI therefor camries a
high-going pulse which is synchronized with the host bus
clock signal RCLEK#, and which remains high until EADS#
is asserted

As previously described, PSNSTRI1 is provided to an
input of NAND gate 822 in FIG. 8 and, like LT2, initiates an
L1 cache inguiry cycle.

B. Circuitry to Generate STOP#

FIG. 190 is a schematic diagram of circuitry in the system
controller 16 which produces the STOP# PCl-bus 118
signal. As previously explained, the circuitry should assert
STOP# in response to HITM# asseried while a PCI buorst
transaction is taking place.

Referring to FIG. 10. a three-input NAND gate 1002
receives an EADS3 signal, a PSNCYC sigpal, and an
HITMIB signal. EADS3 is asserted in the third HCLK cycle
after EADS# is asserted, and PSNCYC is asseried only
when a pre-snoop cycle is taking place. HITMIB is the
inverse of the HITM# signal from the host processing
subsysiem 110. Thus. the output of NAND gate 1002 will go
low only if HTTM# has been asserted by the third HCLK
cycle afier EADS# was asserted (e.g., in advance of the
HCLX rising edge which begins HCLK cycle 11, in FIG. 6).
Simnilarly. NAND gate 1804 receives PSNCYC., HITMIB,
an EADS? signal and HITMS signal. HITMS is the pro-
grammable Tegister bit which indicates that HITM# can be
sampled as early as the second HCLK cycle afier assertion
of EADSH (e.g.. on the HCLK rising edge which begins
HCLE cycle 19, in FIG. 6). EADS2 goes high in this same
HCLK cycle. Thus, if HITMS is asserted, the output of
NAND gate 1004 will go iow if HITM# has been asserted
in advance of the second HCLK cycle after EADS# was
asserted to the host processing subsystem 110.

The outputs of NAND gates 1002 and 1004 arc provided
to two inputs of a three-ipput NAND gate 1006, the thurd
input of which is connected to the vutput of another NAND
gatc. 1008 described below. The output of NAND gate 1006
is conmected to the D input of a fiip-flop 1010, the { output
of which. designated HITMSTP (“HITM# stop™). is con-
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nected back 1o one input of the NAND gate 1008. The other
input of NAND gate 1008 receives a NOFRAMEB signal,
which is initially high and carries a one PCICLK-cycle-wide
low-going palse when STOP# has been triggered. Flip-flop
1010 is clocked on the host bus clock signal CLK.
Accordingly, it can be seen that HITMSTP will go high onty
if HTTM# has been asserted during a pre-snoop cycle, within
two or three HCLX cycies of the assertion of EADS#, and
will remain high until STOP# has been triggered in the
manner set forth below.

HITMSTP is connected to the D input of a flip-flop 1912.
which is clocked by an inverted version of the PCICLK
signal, designated LCLKIB. The QN cutput of fiip-flop 1012
is NORed with an inverted version of the Q output of
flip-flop 1012 to produce a STOPTGL signal, which is
connecied to one input of a three-input NAND gate 1014,
The other two inputs of NAND gate 1014 receive
LNBREAK, which is asserted only if the current transfer is
the last transfer in a line of secondary cache, and TRDY__
TG, which carries a one PCIHCLK-cycle-wide high-going
pulse in the PCICLK cycle immediately preceding that in
which TRDY# will be asserted for such last transfer of the
cache line. NAND gate 1014, therefore, carries a low-goiag
version of STOPTG1. with the low-going transition delayed
until one PCICLK cycle prior to the last TRDY# in the
transfer of a line of secondary mermmory.

STOPTG1 is also connected to one input of a four-input
NAND gate 1016, the other inputs of which are connected
to Teceive FRAMEI (equivalent to the PCI-bus FRAME#
signal), LNBREAKB (the inverse of LNBREAK), and
TRDY (cquivalent to the PCI-bus TRDY# signal).
Essentially. therefore. MAND gate 1016 will carry an
inverted version of STOPTGL. delayed to coincide with the
assertion of TRDY# for the last transfer in the burst (master
terminated). in the situation where the Jast data unit trans-
ferred is not the last data umit in the line of secondary
memory.

‘The outputs of NAND gates 1014 and 1016 are NANDed
together by a NAND gate 1018, the output of which,
STOPTGP, poes high if HITM# was asserted during a
predictive snoop, delayed either until the PCICLK cycle
preceding the last TRDY# of a secondary memory line, or
until the TRIDYY# of the last transfer of the burst. whichever
occurs earlier. STOPTGP is high-going pulse having a width
equal to one PCICLK cycle.

STOPTGP is connected to ope imput of a four-imput
NAND gate 1020, the other inputs of which are connected
to FRAMEIL IRDY (equivalent to the inverse of the PCl-bus
IRDY# signaly and PCICYC. Thus, NAND gate 1020 quali-
fies STOPTGPF to ensure that a PCI cycle is carrently 1aking
place, and IRDY# and FRAME# are stll asseried. The
output of NAND gate 1020 is connecied to one inpuit of a
three-input NAND gate 1922, A second input of NAND gate
1022 is connected 10 the output of a NAND gate 1024, which
receives STOPTGE (previously described) and STOP
{equivalent 10 the inverse of STOP#). The third input of
NAND gate 1022 is connected to the cutput of a NAND pate
1026. which receives NOFRAME and a signal
NOFRDN1B, described below. The output of NAND gate
1022 is connected to the D input of an LCLKI-clocked
fiip-flop 1028. the Q output of which is the NOFRAME
signal connected back 1o an input of NAND gate 3026. It can
be seen that NOFRAME will be asserted by a flip-flop 1028
in the PCICLK cycle following that in which STOPTGP was
asserted, asswming the master has not yet terminated the
burst, and will remain asserted until either STOP# is asserted
or the NOFRDNI1B signal is negated.
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The QN output of flip-flop 1028 js the NOFRAMEB
signal which is connected back to the NAND gate 1008.

NOFRAME is also connected to one input of ¢ach of two
NAND gates 1030 and 1032. which delay the transition as
necessary to accommodate different speed clocks. These
NANT gates are connected 1o respective inputs of a three-
input NAND gate 1034, the third input of which is con-
nected to the output of a NAND gate 1036. The NAND gate
1036 has three ipputs, one of which receives AHOLDS,
which can be assumed to remain high throughout the present
description. The second input of NAND gate 1036 is con-
nected to the output of NAND gate 1034, and the third input
of NANI gate 1036 is connected as described below.

The output of NAND gate 1034 is connected to one input
of a D flip-flop 1038, the QN ontput of which is NORed with
an inverted version of the Q output of flip-flop 1038 to
produce an NOFRDN1 signal. Flip-flop 1038 is clocked on
LCLEKIB. NOFRDN1 is inverted by an inverter 1040 to
produce the NOFRDNIB signal provided to NAND gate
1026. NOFRDN1 is also comnected to the D input of a
flip-flop 1042, which is clocked on LCLEKI, the QN output
of which is connected back to the third input of NAND gate
1036. The effect of flip-flops 1628, 1038 and 1042, and their
associated logic gates. is to make NOFRAME have a width
of at least one PCICLK cycle and to ensure that the CPU has
sufficient time to generate HITM#.

STOPTGP is also connected to one input of a three-input
NAND gate 1044, which qualifies the signal once again to
ensure that the current cycle is a PCI cycle and that the
master has not vet negated FRAME# (because STOP# can
be asseried only when FRAME# js active). The circuitry
also includes two other NAND gates 1046 and 1048, each of
which go low to tigger STOP# in situations not pertinent to
the present invention. A fourth NAND gate 1050 recefves
FRAME and STOP as inputs. The outputs of NAND gates
1044, 1046, 1048 and 1050 are conmected to Tespective
inputs of a four-input NAND gate 1052, the output of which,
designated STOP_TG, is connected to the D input of an
LCLKI-clocked fiip-flop 1054, The @ output of flip-flop
1054 is the STOP signal connected back to NAND gates
1050 and 1024, and the QN output of fip-flop 1054 is the
output signal which drives STOP# on the PCI-bus 118. 1t can
be seen, therefore, that STOP# will have a width of one
PCICLK cycle in response to STOP# produced by NAND
gate 1018,

C. Circuitry to Produce HOLD

FIG. 11 illustrates circuitry in the system controller 116
which is used to produce the HOLD signal for the host
processing subsystern 110. As previously described, HOLD
is high in order for the sysiem controller 116 to act as a
masier on the host bus 112. but goes low in order to allow
the host processing subsystem 110 to perform a write-back
cydle (see FIGS. 5 and 6). If the initial inquiry cycle at the
beginning of & burst produces HITM# asserted. then the
systemn controller 116 negates HOLD as soon as possible to
pertait the write-back to take place (FIG. 5). In a predictive
snoop cycle, on the other hand, the circuilry delays negating
HOLD until the last data unit transfer in the current cache
line is taking place. AHOLD remains asserted during the
entire tme.

Referring to FIG. 11, a two-input NAND gate 1102
receives EADS2Z and HITMS. The output of NAND gate
1102 is connected to ope iopit of a three-input NAND gate
1104, a second input of which receives EADS3B which is
the inverse of EADS3. The third input of NAND gate 1104
is comnected to the output of a two-input NAND gate 1106,
which receives 1BRDYR (which goes low on the lasi
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BRDY# in a write-back cycle), and the other input of which
receives a DISBOFD signal described below. The output
BOF_TGR of NAND gate 1184 is connected to the D input
of a flip-flop 1108, clocked by the host clock signal CLE.
The Q output of flip-flop 1108 is NANDed with an HITMIB
sigpal to produce a DISBOFDB signal. and the QN cutput
of flip-fiop 1198 is NORed with a HITMID signal 10 produce
DISBOFD, fed back to NAND gate 1106. HITMIB is
equivalent to the inverse of HITM#. and ITMID is equiva-
lent to HITM#, It can be seen DISBOFD and DISBOFDB
will be asserted (with their respective polarities) only if
HITM# was asserted within the appropriate window (as
determined by HITMS) after EADS# was asserted.
DISBOFIYDISBOFDB will remain asserted until the last
BRDY# of a2 write-back cycle.

DISBOFDB is connected 1o one input of a NAND gate
1110, the other inpat of which receives an HROQI signal
which is high whenever the sysiem controller 116 owns the
host bus 112. DISBOFD is connected to one input of a
three-input NAND gate 1112, a seccnd input of which
receives HRQL and a third input of which receives a signal
TIB. TIB is low when the CP1 in host processing subsystem
110 is idie. The outputs of NAND gates 111¢ and 1112 are
NANDed together by a NAND gates 1114, the ocutput of
which is connected to the I input of a CLK-clocked flip-flop
1116. Thus, in the normal situation, when DISBOFDB is
high, the Q output of flip-fiep 1116 will be high indicating
that HOLD should be asserted. In a HITM# situation,
DISBOFD will be high and the Q output of flip-flop 1116
will go low when the CPU reaches anp idle state.

The QN output of flip-flop 1116, designated HOLDSB, is
qualified in NOR gate 1118 by HRQIB (the inverse of
HRQI). a NOHOLD]1 signal, and another signal not perti-
nent to the present invention. NOHOLD]1 is connected to the
output of a NOR gate 1120. one input of which receives the
QN output of a flip-fiop 1122 and the other input of which
receives an inverted version of the Q output of flip-fiop
1122. Flip-flop 1122 is clocked on ECLK. and its D input is
connected to the output of an AND gate 1124. one input of
which receives NOFRAME (FIG. 10) and the other input of
which receives TL NOHQID1 therefore has the effect of
delaying a negative wransition in the output of NOR gate
1118 until after STOP# has been triggered on the PCl-bus
118.

The output of NOR gate 1118 is connected to the D input
of an ECLK-clocked flip-flop 1126, the Q output of which
carries HOLDO and drives the host bus HOLD signal.

D. Circuitry to Generate TRDY# (I.START1)

The system controller 116 includes a state machine which
controls the PCI-bus 118. The state machine itself forms no
part of the invention. excepi that it is qualified by an
LSTART1 signal which is pertinent to the imvention.
LSTART1 is initially low, permitting assertion of EADS# at
the beginning of a PCI master burst transaction. LSTART1
goes high only in response to HITM# sampled high
(negated) at the appropriate time, or if HITM# was sampled
asserted (low), on the last LBRDY# of the L1 cache write-
back cycle. When LSTARI1 goes high, it allows the PCI
state machine to generate TRDY# in the normal course.

FIG. 12 is a schematic diagram of circuitry in the system
controller 116 which generates the LSTART1 signal. Refer-
ring to FIG. 12, the circuitry comprises a four-input NOR
gate 1202. one input of which is connected to the output of
a NAND gate 1204 and a second input of whick 13 connected
to the output of NAND gate 1206. NAND gates 1204 and
1206 will ontput a logic zero in the second or third HCLK
cycle after assertion of EADS#, respectively. depending on
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HITMS, only if the host processing subsystem 110 has not
asseried HITM# by that time. There are additional qualifi-
cations to the titning for the HITM# test in NAND gate
1206, but these are unimportant for an understanding of the
invention. A third input of NAND gate 1202 is connected to
the output of another two-input NAND gate 1208, the two
inputs of which are connected to receive the DISBOFD
signal (FIG. 11) and an LBRDY__1 signal. DISBOFD is, it
will be recalled, a precursor to negating HOLD to the host
processing subsystem 110 after sampling HITM# asserted,
and remains asserted until the fourth BRDY# of the write-
back cycle. LBRDY__1 is another signal which goes high at
a time which is related to the fourth BRDY# of the write-
back cycle. Thus if the carrent L1 cache inquiry cycle
yielded HITM# asserted, then neither NAND gates 1204 or
1206 go low, but NAND gate 1208 goes low at the end of
the write-back cycle.

The output of NAND gate 1202 is connected to the D
inpnt of a flip-flop 12160, the QN output of which is con-
nected back to the fourth input of NAND paic 1202.
Flip-flop 1210 is clocked on CLK. Accordingly. once the Q
output of flipflop 1210 goes hiph, either as a result of
HITM## negated after an 1.1 cache inquiry cycle or as aresult
of completion of an L1 cache write-back cycle becanse the
desired line of data was cached modified in the L1 cache, the
Q output of fiip-fiop 1219 will remain high until cleared. The
inverting clear input of flip-flop 1210 is connected to the
output of an AND gate 1212, which can clear fiip-flop 1210
in response to a number of different conditions. The only
condition pertinent to the present invention, however. is
assertion of LSTART1B {complement of LSTART1). Thus,
once the process to assert LSTART1 begins, flip-flop 1210
remains latched uniil LSTART1 has actually been asserted.

The Q output of fiip-flop 1210 is connected to one input
of a four-input NAND gate 1214, the output of which is
designated LSTRT_TB. NAND gate 1214 qualifies
LSTRT_TB with a PIRID) signal and with the output of &
NOR gate 1216. On a read access, PIRD forees LSTRT_TB
to await assertion of IRDY# on a PCI master read access.
The NOR gate 1216 forces LSTRT_TB to wait for the CPU
to relinguish the host bus (HLDA).

LSTRT_TB is connected to one input of a NOR gate
1218, the other input of which receives a signal which can
be assumed herein to remain low at all tirpes pertinent to the
invention. The output of NOR gate 1218 is connected to the
D input of another fiip-flop 1220, which is clocked on
LCLXJ. The inveriing clear input of flip-flop 1220 is con-
nected to the same output of AND gate 1212 which clears
flip-flop 1210. The QN output of flip-flop 122# is NORed
with an inverted version of a Q output of flip-flop 1220 10
produce an LSTRT1 sipnal. LSTRT1 is inverted by an
inverter 1222 and fed back as LSTRT1B to a fourth input af
NAND gate 1214. Thus, after qualifications, LSTRT1 goes
high, synchronously with PCICLK, after HITM#=1 or after
HITM#=0 and the write-back cycle is complete.

1L.STRT1 is optionally delayed by one further PCICLK
cycle by flip-flop 1224 and multiplexer 1226. depending on
a programmable register bit DLLSTART, and the result
(designated LSTRT) is conpected 1o one input of a NAND
gate 1228. The other input of NAND gate 1228 receives an
LST_TGR signal, described below. The ouipul of NAND
gate 1228 is connected to one input of a three-input NAND
gate 1230, the other two inputs of which are connected to the
outputs of two other respective NAND gates 1232 and 1234
The output of NAND gate 1230 is connected to the D input
of another LCLKJ-clocked flip-flop 1236. the QN output of
which. designated LSTARTMB. is fed back to inputs of the



Case 2:04-cv-00377-TJW Document 1 Filed 10/19/04 Page 34 of 66

5,710,906

29
NAND gates 1232 and 1234. The other inputs of NAND
gates 1232 and 1234 are unimportant for an understanding
of the invention, and therefore are not described herein.

The Q output of fip-flop 1236, LSTARTM, is connected
to one input of a NOR gate 1238, the output of which is the
LST_TGR signal fed back to NAND gate 1228. The other
input of NOR gate 1238 receives the LSTART] signal as
described hereinafter. LSTARTM is also conneeted to one
input of another NAND gate 1240, the other input of which
receives SYSMEMD (high when the specified address is
within the DRAM 128 address space). SYSMEMD is also
connected to one input of a three-input NAND gate 1242, a
second input of which receives LSTART1. The outputs of
NAND gates 1240 and 1242 are connected to respective
inputs of another NAND gate 1244, the output of which is
connected to the D input of an LCLKI-clocked flip-fiop
1246. The Q output of flip-flop 1246 forms the LSTART1
signal, connected as previously described to one input of
NOR gate 1238 and to one input of NAND gate 1242. The
QN output of flip-flop 12446 is the LSTART1B signal which
is fed back to AND gate 1212 as previously described. It can
be seen that after LSTRT causes LSTARTM to go high,
LST_TGR will go low, causing LSTARTM to go low again
in the next PCICLK cycle. LST_TGR will not go high at
this time, however, because when LSTARTM went high, it
cansed LSTARTL to also go high in the next PCICLK cycle,
thereby miaintaining LST__TGR low.

LSTART1 is fed back intc NAND gate 3242, thereby
iatching LSTART1 in a high state until the third input of
NAND pate 1242 goes low. This input of NAND gate 1242
is connected to the output of a NAND gate 1248, one input
of which can be assumed to remain high. and the other input
of which is conpected to the output of a NAND gate 1250,
One input of NAND gate 1250 is connected to the output of
an OR gate 1252, which receives TRDYSB (equivalent to
TRDY#) and IRDYI (equivaient to IRDY#). The other input
of NAND gate 1250 is connected to the output of an OR gate
12584, one input of which receives MFRAM (equivalent to
the inverse of FRAME#) and the other input of which
receives IRDY (equivalent to the inverse of IRDY#). Thus
the third input of NAND gate 1242 will go low when the first
PCI transfer takes place (TRDY# and IRDY#. both
asserted), or when the PCI master 138 terminates the burst
(FRAME# and IRDY#, both negated)., whichever occurs
first. In either of these situations, LSTART1 will go low.
Flip-flops 1210 and 1220 will also be cleared at this time dae
to the feedback of LSTART1B through AND gate 1212 to
the inverting clear inputs of these flip-fiops.

Note that LSTART1 is further delayed from allowing the
PCI state machine to proceed, by other circuitry in the
system controller 116, unti) any predictive snoop then taking
place has had a chance to finish. This can be the case when
the first data unit that was accessed as part of burst transfer
was the second-to-last data unit in a line of secondary
memory, as described above with respect 1o FIG. 7. it can
also be the case if the first data vnit was the third-to-last data
unit in a line of secondary memory, where the system
controller 116 has been programmed to sampie HITM# on
the second rising edge of HCLK after BADS# was asserted.

The foregoing description of preferred embodiments of
the present invention has been provided for the purposes of
illustration and description. It is not iniended to be exhaus-
tive or to limit the invention to the precise forms disclosed.
Obviously, many modifications and variations will be appar-
ent to practitioners skilled in this art. The embodiments were
chosen and described in order 10 best explain the principles
of the invention and its practical application. thereby
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enabling others skilled in the art to understand the invention
for various embodiments and with various modifications as
are suited 1o the particular use coniemplated. It is intended
that the scope of the invention be defined by the following
claims and their equivalents.

We claim:

1. A methad for transferring a plurality of data units
between a bus master and 2 respective plurality of memory
locations at sequential memory location addresses in an
address space of a secondary memory, for use with a host
processing unit and a first cache memory which caches
memory locations of said secondary mermory for said host
processing unit, said first cache memory having a line size
of 1 bytes, comprising the steps of:

sequentially transferring data umits between said bus

master and said secondary memory beginning at a
starting memory location address in said secondary
memory address space and continuing beyond an 1-byte
boundary of said secondary memary address space,
said sequentially transferred data units including a last
data unit before said 1-byte boundary and a first data
unit beyond said 1-byte boundary; and

initiating a next-line inguiry, prior to completion of the

transfer of the last data vnit before said 1-byte boundary,
to determine whether an N+1°th 1-byte line of said
secondary memory is cached in a modified state in said
first cache memory, said N+1’th I-byie line being a line
of said secondary memory which includes said first
data unit beyond said 1-byte boundary.

2. A method according to claim 3, further comprising, if
said next-line inquiry determines that said N-+1'th 1-byte line
of secondary memory is cached in a modified state in said
first cache memory. the steps of:

stopping said step of sequentially transfexring data units at

said 1-byte boundary; and

coptinuing said step of sequentially transferring data units

bevord said l-byte boundary after a write-back of said
N+1°th I-byte line from said first cache memory to said
secondary memory.

3. A method according to claim 1, wherein said secondary
memory includes a tertiary memory and further inclodes a
second cache mermory which caches memory locations of
said tertiary memory for said host processing unit and said
first cache memory in combination.

4. A method according to ¢laim 1, further comprising.
prior 10 said step of sequentially transferring, the steps of:

receiving an indication of said starting memory location

address from said bus master; and

initiating a first inquiry of whether an N°th J-byte line of

said secondary memory is cached in a modified state in
said first cache memory. said N'th l-byte line being a
line of said secondary memory which includes the data
ubit of said starting memory location address, said first
inguiry returning negatively if the N’th 1-byte line is not
cached in the modified state and issuing a write-back
cycie if the N'th l-byte line is cached in a modified
state.

wherein said next-line inquiry is initiated at a time respon-

sive to the tispe that said first inquiry returns negatively
or that said write-back cycle completes. whichever
occurs in response to said first inguiry.

and wherein said tme that said nexi-line inquiry is

initiated is not responsive te the time of said trapsfer of
said Iast data unit before said I-byte boundary.

5. A method according to claim 1, wherein said starting
mmemory location address is not the address of the Jast data
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unit before said l-byte boundary, further for transferring a
second plurality of data units between said bus master and
a second respective plurality of memory locations at sequen-
tial memory location addresses in said secondary memory
address space, beginning with a second starting memory
location address which is the address of the highest data unit
in an M’th l-byte line of said secondary memory, further
comprising the steps of:

transferring said highest data unit between said bus master

and said secondary memory;

initiating a second inguiry to determine whether the

M-+1'th I-byte line of said secondary memory is cached
in a modified state in said first cache memory, said
second inquiry returning negatively if the M+1°th
lI-byte line is not cached in the modified state and
issning a write-back cycle if the M+1"th I-byte line is
cached in a modified state; and

sequentially transferzing data units between said bus

master and said secondary memory beginning at the
first memory location address in said M+1"th I-byte line
only after said second inquiry returns negatively or said
write-back cycle completes, whichever occurs in
response 1o said second inguiry.

6. A method according to claim 5. wherein said step of
transferring said highest data unit occurs after said step of
initiating a second inquiry.

7. Amethod according to ¢laim 1. whezein said bus master
is a PCI bus master, wherein said first cache memory
includes an instruction cache and a data cache, and wherein
said host processing unit and said first cache memory are
fabricated on a single CPU chip.

8. A method according to claim 1, wherein said next-line
inquiry takes place concurrently with at least one of the data
unit ransfers in said step of sequentially transferring.

9. A method for transferring data between a bus master
and a plurality of memory locations at respective addresses
in an address space of a secondary memory, for use with a
host processing unit and a first cache memory which caches
memory locations of said secondary memory for said host
processing umit, said first cache memory having a line size
of 1 bytes, comprising the steps of:

sequentially transferring at least three data units between

said bus master and said secondary memory begmnmg
at a first starting memory location address in said
secondary memory address space and continuing
sequentiaily beyond an 1-byte boundary of said second-
ary memory address space; and

prior 10 completion of the transfer of the first data unit

beyond said 1-byte boundary. determining whether an
N-+1°th I-byte line of said secondary memory is cached
in a modified state in said first cache memory, said
N+1°th l-byte line being the line of said secondary
mermory which includes said first data unit beyond said
1-byte boundary,

all of said transfers of data units in said step of sequen-

tially transferring. occurring at a constant rate.

10. A method for use with a host processing subsysiem. a
bus master and memory locations addressable in a secondary
memory address space,

wherein said host processing subsystem includes a CPU

and a first cache memory which caches memory loca-
tions of said secondary memory address space for said
CPU, said first cache memory having a line size of 1
bytes, said host processing subsysiem operating to
return, in response {0 a secondary memory line address
specified to said host processing subsystem and the
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assertion of an inquiry signal to said hosl processing
subsystem, a hit modified indication of whether the
specified secondary memory linc is cached in a modi-
fied state in said first cache memory.

and wherein said bus master transfers data with said

memory locations according io a transaction protocol in
which said bus master specifies a starting data unit
address for said transaction,

comprising, in Tesponse to initiation of a first transaction

and specification by said bus master of a first starting

address being the data unit address in the secondary

memory address space of a fixrst starting data umnit, the

steps of:

specifying to said host processing subsystem, the line
address of an MN°th l-byte line of said secondary
memory address space and asserting said inquiry
signal a first time, said N’th l-byte line being the line
of said secondary memory address space which
includes said first starting data onit,

after receiving said hit modified indication from said
host processing subsystem im respomse to said
inquiry signal. indicating that said N’th i-byte line of
said secondary memory address space is cached in a
modified state, transferring data units between said
bus master and memory locations in said secondary
memory address space according to said first trans-
action; and

after receiving said hit modified indication, but not in
response to completion of any transfer of said first
wansaction, specifying to said host processing sub-
system the line address of the N+1’th I-byte line of
said secondary memory address space and asserting
said inquiry signal a second time.

11. A method according to claim 10, wherein in said
transaction protocol, data units are transferred sequentially
after said bus master specifies a starting data unit, until said
transaction is terminated. no further address specification by
said bus master being necessary during said trapsaction.

12. A method according to claim 19, wherein said bus
master is a2 PCT bus master, and wherein said initiation of a
first transaction comprises assertion by said bus master of
the PCI-bus FRAME# and IRDY# signals.

13. A method according to claim 190, further comprising,
if said hit modified indication from said host processing
subsystem is asserted in response 1o said first assertion of
said inquiry signal, the step of awaiting completion of a
write-back cycle by said host processing subsystem prior to
said step of transferring data units.

14. A method accordmg to claim 10, wherein said hit
modified indication is considered received on an n’th rising
edge transition of a clock signal which occurs after said first
assertion of said inquiry signal, n being a predefined integes
greater than Q.

15. A method according to claim 10, wherein said first
starting data unit is not the highest data unit in said N°th
I-byte line of said secondary memory address space.

16. A method according to claim 10. wherein in said
transaction protocol. date units are transferred sequentially
after said bus master specifies a starting data unit, untii said
transaction is terminated, and wherein said first transaction
is not terminated prior to the transfer of the first data unit in
said N+1"th 1-byte line of said secondary memory address
space.

17. A method according to claim 19. wherein in said
transaction protocol. data units are transferred sequentially
after said bus master specifies a starting data unit. until said
transaction is terminated. and wherein. if said host process-
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ing subsystem returns said hit modified indication anas-
serted in response to said second assertion of the inquiry
signal, said first transaction is not terminated prior 10 the
transfer of the first data unit in said N+1"th 1-byte Jine of said
secondary memory address space.

18. A methed according 1o claim 17, further comprising,
if said first transaction is not terminated pricr to the transfer
of the first data unit in said N+1'th l-byte line of said
secondary memeory address space, the step of, after transfer
of the last data unit in said Nth 1-byte line of said secondary
memory address space, and before transfer of the last data
nnit in said N+1'th I-byte line of said secondary memory
address space, specifying to said host processing subsystem
the line address of the N+2"th I-byte line of said secondary
mermory address space and asserting said inquiry signal a
third time.

19. A method according to claim 18, wherein, if said host
processing subsystem returns said hit modified indication
unasserted in response to said third assertion of said inquiry
signal, said first transaction is pot terminated prior to the
transfer of the first data unit in said N+2’th 1-byte line of said
secondary memory address space.

20. A method for use with a first processing subsystern, a
second processing subsystem and mernory locations addres-
sable in a memory address space,

wherein said firsi processing subsystem inclrdes a first

address-providing unit and a first cache memory which
caches memory locations of said memory address space
for said first address-providing unit. said first cache
memory having a line size of 1 bytes, said first pro-
cessing subsysiem operating to return, in response to a
memory line address specified to said first processing
subsystem and the assertion of an inguiry signal
(EADS#) 1o said first processing swbsystem, a hit
modified indication of whether the specified memory
line is cached in a2 modified state in said first cache
memory,

and wherein said second processing subsystern ansfers

data with said memory locations according to a trans-
action protocol in which said second processing sub-
systeqn specifies a starting data unit address for said
transaction,

comprising. in response 1o specification by said second

processing subsystem of a first starting address being

the data unit address in the memory address space of a

first starting data unil, and initiation of a first

transaction. the steps of:

specifying to said first processing subsystem, the line
address of an N'th l-byte line of said memory
address space and asserting said inquiry signal a first
time, said N’th 1-byte line being the line of said
memory address space which includes said first
starting data umit;

after receiving said hit modified indication from said
first processing subsystermn in response to said inquiry
signal, transferring data units between said second
processing subsystem and memory Jocations in said
memory address space according to said first trans-
action; and

after receiving said hit modified indication. but pot in
response to completion of any transfer of said first
transaction. specifyving to said first processing sub-
system the line address of the N+1°th 1-byte line of
said memory address space and asserting said
inquiry signal a second time.

21. Apparatus for transferring a plurality of data units
between a bus master and a respective plurality of memory
locations at sequential memory location addresses im an
address space of a secondary memory. for use with a host
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processing unit and a first cache memory which caches
memoary locations of said secondary memory for said host
processing unit. said first cache memory having a line size
of 1 bytes, corprising:

means for sequentially transferring data units between

sald bus master and said secondary memory beginning
at a starling memory location address in said secondary
memory address space and continuing beyond an 1-byte
boundary of said secondary memory address space.
said sequentially transferred data units incloding a last
data unit before said l-byte boundary and a first data
unit beyond said 1-byte boandary; and

means for injtiating a next-line inquiry, prior to comple-

tiop of the transfer of the last data unit before said
1-byte boundary, to determine whether an N+1°th 1-byte
line of said secondary memory is cached in a2 medified
state in said first cache memory, said N+1°th I-byte line
being a line of said secondary memory which includes
said first data unit beyond said 1-byte boundary.

22. Apparatas according to claim 21, further comprising
means for, if said pext-line inquiry determines that said
N+1'th 1byte line of secondary memery is cached in a
modified state in said first cache memory:

stopping said step of sequentially transferring data units at

said 1-byte boundary; and

continuing said step of sequentially transferring data vnits

beyond said 1-byie boundary after a write-back of said
N+1'th 1-byte line from said first cache memory to said
secondary memory.

23, Apparains according to claim 21, wherein said sec-
ondary memory includes a tertary memory and further
includes a second cache memory which caches memory
locations of said tertiary memory for said host processing
unit and said first cache memory in combination.

24. Apparatus according to claim 21, wherein said starting
memory location address is not the address of the last data
unit before said l-byte boundary, further for transferring a
second plurality of data units between sajd bus master and
a second Tespective plurality of memory locatjons at sequen-
tial memory location addresses in said secondary memory
address space, beginning with a second starting memory
location address which is the address of the highest data nnit
in an M’'th I-byte line of said secondary memory, further
comprising:

means for transferring said highest data unit between said

bus master and said secondary memory;

means for initiating a second inquiry to determine weather

the M+1°th l-byte line of said secondary memory is
cached in a modified state in saijd first cache memory,
said second inquiry returning negatively if the M+1'th
1-byte line is mot cached in the modified state in and
issuing a write-back cycle if the M+1°th }-byte line is
cached in a modified state; and

means for sequentially transferxing data units between

said bus master and said secondary memory beginning
at the first memory location address in said M+1°th
1-byte line only after said second inquiry returos nega-
tively or said write-back cycle completes, whichever
occurs in response 1o said second inguiry.

25. Apparatus according to claim 21. wherein said bus
master is a PCI bus master, wherein said first cache memory
includes an instruction cache and a data cache, and wherein
said host processing unit and said first cache memory are
fabricated on a single CPU chip.

26. Apparatus for transferzing data between a bus master
and a plurality of memory locations at respective addresses
in an address space of a secondary memory, for use with a
host processing unit and a first cache memory which caches
memory locations of said secondary memory for said host
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processing unit, said first cache memory having a line size
of 1 bytes, comprising:

means for sequentially transferving at least three data onits

between said bus master and said secondary memory
beginning at a first starting memeory location address in
said secondary memory address space and continuing
sequentially beyond an 1-byte boundary of said second-
ary memory address space; and

means for, prior to completion of the transfer of the first

data unit beyond said l-byle boundary, determining
whether an N+1°th I-byte line of said secondary
raemory is cached in a modified state in said first cache
memory, said N+1'th I-byte line being the line of said
secondary memory which includes said first data unit
beyond said 1-byte boundary,

said means for sequentially transferring. transferring alt of

said data umits at a constant rate.

27. Apparatus comprising a host processing subsystem, a
bus master and memory locations addressable in a secondary
memory address space,

wherein said host processing subsystem includes a CPU

and a first cache memory which caches memory loca-
tions of said secondary memory address space for said
CPU, said first cache memory having a line size of 1
bytes, said host processing subsystemn operating to
return, in Tesponse to a secondary memory line address
specified to said host processing subsysiem and the
assertion of an inquiry signal to said host processing
subsystem. a hit modified indication of whether the
specified secondary memory line is cached in a modi-
fied state in said first cache memaory,

and wherein said bus master transfers data with said

mermnory locations according to a iransaction prorocol in
which said bus master specifies a starting data unit
address for said ransacticn,

said apparatus further comprising:

means for specifying to said host processing
subsystemn. the line address of an N'th 1-byte line of
said secondary memory address space and asserting
said inquiry signal a first time, said N’th l-byte line
being the line of said secondary memory address
space which includes a first starting data unit speci-
fied by said bus master in initiating a first transaction,

means for, after receiving said hit modified indication
from said host processing subsystem in response (o
said inquiry signal. indicating that said N+1°th I-byie
line of said secondary memory address space is
cached in a modified state, transferring data units
between said bus master and memory locations in
said secondary memory address space according to
said first transaction; and

means for. after receiving said hit modified indication,
but pot in response to completion of any transfer of
said first transaction, specifying to said host process-
ing subsystemn the line address of the N+1'th I-byte
line of said secondary memory address space and
asserting said imquiry signal a second time.

28. Apparatus according to claim 27. wherein in said
transaction protocol. data units are transferred sequentially
after said bus master specifies a starting data unit, until said
transaction is terminated. no further address specification by
said bus master being necessary during said transaction.

29. Apparatus according no claim 27. wherein said bus
master is a PCI bus master, and wherein said initiation of a
first rapsaction comprises assertion by said bus master of
PCl-bus FRAME# and IRDY# signals.

30. Apparatus according to claim 27, wherein. if said hit
modified indication from said host processing subsystem is
asserted in response to said first asseriion of said inquiry
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signal, said means for ttansferring data units awaits comple-
tion of a wrile-back cycle by said host processing subsystem
prior to transferring data units according to said first {rans-
action.

31, Apparatus according to claim 27, wherein said hit
modified indication is considered received on an n’th rising
edge transition of a clock signal which occurs after said first
assertion of said inquiry signal, n being a predefined integer
greater than 0.

32. Apparatus according to claim 27, wherein said first
starting data unit is not the highest data unit in said N'th
1-byte line of said secondary memory address space.

33. Apparatus according 1o claim 27, wherein in said
transaction protocol, data units are transferred sequentially
after said bus master specifies a starting data unit, until said
transaction is terminated, and wherein said first transaction
is not terminated prior to the transfer of the first data unit in
said N+1’th I-byte line of said secondary memory address
space.

34, Apparatus according to claim 27, wherein in said
tansaction protocol, data units are iransferred sequentiaily
after said bus master specifies a starting data anit, until said
transaction is terminated, and wherein, if said host process-
ing subsystem remurns said hit modified indication unas-
serted in response to said second assertion of the inquiry
signal, said first transaction is not terminated prior to the
transfer of the first data unit in said N+-1"th 1-byte line of said
secondary memory address space,

35. Appararus for use with a first processing subsystem, a
second processing snbsystem and memory locations addres-
sable in a memory address space,

wherein said first processing subsystem includes a first

address-providing unit and a first cache memory which
caches memory locations of said memory address space
for said first address-providing wnit. said first cache
memory having a line size of 1 bytes, said first pro-
cessing subsystem operating to retarn, in response to a
memory line address specified to said first processing
subsystemn and the assertion of an inquiry signal to said
first processing subsystem, a hit modified indication of
whether the specified memory line is cached in a
modified state in said first cache memory,

and wherein said second processing subsystem transfers

data with said memory locations according to a trans-
action protocol in which said second processing sub-
system specifies a starting data unit address for said
trapsaction,

comprising:

means for specifying to said first processing subsystem,
the line address of ap N'th I-byte line of said memory
address space and asserting said inquiry signal a first
time, said N'th l-byie line being the line of said
memory address space which includes a first starting
data unit specified by said second processing sub-
system in initiating a first transaction;

means Tor. after receiving said hit modified indication
from said first processing subsystem in response to
said ingquiry signal. trapsferring data units between
said second processing subsystem and memory loca-
tons in said memory address space according to said
first transaction; and

1means for. after receiving said hit modified indication. but
not in response to completion of any transfer of said
first transacton, specifying 1o said first processing
subsystem the line address of the N++1'th 1-byte line of
said memory address space and asserting said inquiry
signal a second time.

& Ed * * E3
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PREDICTIVE SNOOPING OF CACHE
MEMORY FOR MASTER-INITIATED
ACCLESSLES

TFhis application 1s a continuation of U.S. patent appli-
catlon Ser. No. 08/499.610, filed Jul. 7, 1995, now U.S. Pat.
No. 5,710,906.

BACKGROUND

1. Field of the Invention

The invention relales 10 compuier systems in which a host
processor and a bus master can access the same address
space, and more particularly, to techniques for facilitating
bursl accesses by such a masler.

2. Description of Related Art

In a typical IBM PC/AT-compatible computer sysiem, a
hosl processing unil is coupled to a host bus and most 1/O
peripheral devices are coupled to a separate 1/O bus. The
host processing unit typicallv comprises an Intel 1386, i486
or Pentium™ microprocessor, and the /O bus typically
conforms 10 a standard known as 1SA (Indusiry Siandard
Architecture). 1/0 interface circuitry, which usually com-
prises one or more chips in a “core logic chipsel”, provides
an imerface between the two buses. A typical system also
includes a memory subsysterm, which usually comprises a
large array of DRAM and perhaps a cache memory.

General information on the vuricus forms ol 1BM PC
AT-compalible computers can be found in 1BM, ~Technical
Reference, Perscnal Computer AT (1985), in Sanchez,
“IBM Microcomputers: A Programmer’s Handbook”
{McGraw-Hill: 1990), in MicroDesign Resources, *PC Chip
Sets” (1992), and in Solari, “AT Bus Design™ (San Diego:
Annabooks, 1990). See also the various data books and data
sheets published by Iatel Corporalion concerning the strue-
ture and usc of the 80x86 family of microprocessors, includ-
ing Intel Corp., “Pentium™ Processor”, Preliminary Data
Sheel {1993); Inte]l Corp., “Pentjum™ Processor User’s
Manual” (1994); *i486 Micropracessor Hardware Reference
Manual”, published by Intel Corporation, copyright dae
1590, “386 SX Microprocessor™, dala sheet, published by
Intel Corporation {1990), and 386 DX Microprocessor™,
data sheet, published by Intel Corporation (1990). In
addition, a 1ypical core logic chipset includes the OPTi
82C802G and either the 82C601 or 82C602, all incotporated
herein by reference. The 82C802G is described in OPTj,
Inc, “OPTi PC/AT Single Chip 82C802G Data Book™,
Vession 1.2a {Dec. 1, 1993), and the 82C601 and 82C602 are
described in OPTi, Inc., “PC/AT Data Buffer Chips,
Preliminary, 82C601/82C602 Dala Boek™. Version 1.0¢
(Oct. 13, 1993). All the above references are incoerporated
herein by reference.

Many 1BM PC AT-compatible compulers today include
one, and usvally two, levels of cache memory. A cache
memory s a high-speed memory 1hal is positioncd between
a icroprocessor and main Mermory in a Compuler syslem in
order 1o improve system performance. Cache memories (or
caches) store copies of portioms of main memory data that
are actively being used by 1he central processing unit (CPU)
while a program is running. Since the access ime of a cache
<an be faster than that of maimn memory, the overall access
lime can be reduced. Descriptions of various uses ot and
methods of emploving caches appear in the following
articles: Kaplan. “Cache-bascd Computer Sysiems.”
Computer, 3773 a1 30-36; Rhodes, Cuaches Keep Main
Memornes From Slowing Down Fast CPUs” Electronic
Design, Jan. 21, 1982, a1 179; Sirecker, " Cache Memorics
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for PDP-11 Family Computers,” in Bell, “Computer Engi-
neering” (Digital Press), at 263—67, all incorporated herein
by reference. See also the descriplion at pp. 6-1 through
6—11 of the 1486 Processor Hardware Reference Manuval”
incorporated above.

Many microprocessor-based systems implement a “direct
mapped” cache memory. In general, a direcl mapped cache
memory comprises a high speed data Random Access
Memory (RAM) and a parallel high speed 1ag RAM. The
RAM address of each line in the data cache is the same as
the low-order portion of the main memory line address 10
which the entry comresponds, the high-order portion of the
main memory address being stored in the 1ag RAM. Thus, if
main memoty is thought of as 2™ blocks of 27 “lines™ of one
or more byies ¢ach, the i’th line in the cache data RAM will
be a copy of the i'th line of one of the 2™ blocks ip main
memory. The identity of the main memory block that the line
came from is stored in the 1"th location in the tag RAM,

When a CPU requesis data from memory, the low-order
portion of the line address is supplied as an address 10 both
the cache data and cache tag RAMSs. The 1ag for the selected
cache entry is compared with the high-order portion of the
CPU’s address and, if il mailches, then a “cache hit” is
indicated and the dala from the cache dala RAM is enabled
onio a dala bus of the systemn. If the tag does not match the
high-order portion of the CPU’s address, or the tag data is
invalid, then a “cache miss” is indicated and the data is
fetched from main memory. 1t is also placed in the cache for
potential fulure use, overwriting the previous entry.
Typically, an entire line is read from main memory and
placed in 1he cache on a cache miss, even if only a byle is
requested. On a data write from the CPU, either the cache
RAM or main memory or both may be updated, it being
undersiood that flags may be necessary 1o indicale 1o one
that a write has occurred in the other.

Accordingly, in a direct mapped cache, each “line™ of
sccondary memory can be mapped 1o one and only one line
in the cache. In a “fully associative™ cache, a particuiar line
of secondary memory may be mapped 1o any of the lines in
the cache; in 1his case, in a cacheable access, all of the tags
must be compared 10 the address in order 1o determine
whether a c¢ache hit or miss has occurred. “k-way set
associalive” cache architectures alse exist which represent a
compromise between direct mapped caches and fully asso-
ciative caches. In a k-way sel associalive cache architecture,
gach line of secondary memory may be mapped 1o any of k
lincs in 1he cache. In this case, K tags must be compared to
the address during a cacheable secondary memory access in
order (o determine whether a cache hit or miss has occurred.
Caches may also he “sector buffered” or “sub-block™ type
caches, in which several cache data lines, each with iis own
valid bil, correspond 1o a single cache tag RAM cntry.

When the CPU execules instructions that meodify the
contents of the cache, these medifications must also be made
in the main memory or the data in main memory will
become “siale.” There are 1wo conventional techniques for
keeping the contenis of the main memory consisient with
that of the cache—(1) the write-through method and (2) the
write-back or copy-back methed. In the write-through
method, on a cache wrile hit, dala is wrillen io the main
memory immediately aller or while data Is written into the
cache. This enables the contents of the main memory always
1o be valid and consistent with that of the cache. In the
write-back method, on a cache write hil. the sysiem wrilcs
data into the cache and sets a “dirtv bit” which indicates that
a cdata word has been writlen 1nio the cache but not mnte the
main memory. A cache controller checks for a dirty bit
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before overwriting any line of data in the cache, and if set,
writes the line of data out to main memory before loading,
the cache with new data.

A computer system can have more than one level of cache
memory for a given address space. For example, in a
two-level cache system, the “level one” (L1} cache is
logically adjacent 10 the host processor. The second level
(12) cache is logically behind the first level cache, and
DRAM memory (which in 1his case <an be referred 10 as
tertiary memory) is located logically behind the second level
cache. When the host processor performs an access 10 an
address in the memory address space, the first level cache
responds if possible. If the first level cache cannot respond
(for example, because of an L1 cache miss), then the second
level cache responds if possible. If the secand level cache
also cannot respond, then the access is made to DRAM
itself. The host processor does not need 10 know how many
levels of caching are present in the system or indeed that any
caching exisls at all. Similarly, the first level cache does not
need 1o know whether a second level of caching exists prior
to the DRAM. Thus, to the host processing umnit, the com-
bination of both caches and DRAM is censidercd merely as
a single main memory structure. Similarly, to the L1 cache,
the combination of the L2 cache and DRAM is considered
simply as a single main memory structure. In fact, a third
level of caching could be included between the 12 cache and
the actual DRAM, and the L2 cache wouid still consider the
combination of 1.3 and DRAM as a single main memory
structure.

As the x86 family of microprocessors has advanced,
additional funclions have been included on the micropro-
cessor chip itself. For example, while i386-compatible
microprocessors did not include any cache memory on-chip,
the i486-compatible microprocessors did. Specifically, these
microprocessors included z level one, “write-through” cache
Memory.

Pentivm-compatible microprocessors also include a level
one cache on-chip. This cache is divided into a data cache
and a separate code cache. Unlike the cache included on the
i486-compatible microprocessor chips, the data cache on a
Pentium chip follows a wrile-back policy. The cache is
actually programmable on a line-by-line basis to foliow a
wrile-through or a write-back policy, bul special precautions
must be taken e¢xternally 10 the chip as long as even one ling
is to follow a write-hack policy as further explained helow.
Thus, as used herein, a “write-back cache™ i1s a cache
memory, any parl of which can hold data which is incon-
sistent with that in the exiernal memory subsysiem while an
access lakes place to the same memory address space by
another bus masler.

The data cache on a Pentium chip implemenis a
“modified/exclusivessharedsinvalid”™ (MESI) write-back
cache consistency prolocol, whereas the code cache only
supports the “shared” and “invalid” siates of the MLSI]
protocol. The MESI protocol is described in “Inicl, *Pen-
tum Processor User's Manpual, Vol 1: Pemtium Processor
Datahoak™ (1993), incorporated herein by reference, espe-
cially a1 pp. 3-20 1through 3-21. In the MESI protocol, each
cache data line is accompanied by a pair of bits which
indicate the status ol the line. Specifically, if a line 1s in state
M. then it is “modified™ (different [rom main memory). In
multiprocessor systems in which more than one of the
processors has a cache, state M also indicates that the line is
available in only one cache. An M-state line can be accessed
(read or wrillen) by the host processor unit withoul sending
a cvcle oul on an external bus to higher levels of the memory
subsvyslem.
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If a cache line is in state E (“exclusive™), then it is not
“modified”™ (i.e. it coniains the same data as subsequemnl
levels of the memory subsyslem). 1n shared cache sysiems,
stale E also indicates that the cache line is available in only
one of the caches. The hosi processor unit can access {read
or write) an E-state line withowt generaling a bus cycle 1o
higher levels of the memory subsysiem, but when the host
processor performs a wrile access 10 an E-stale line, the line
then becomes “modified” (s1ate M). :

A line in state S (“shared”™) mayv ¢xist in more than one
cache. A read access by 1he host processor 10 an S-slate line
will not generate bus activity, but a write access 1o an S-slale
iine will cause a write-through cycle 1o higher levels of the
memory subsystem in order o permil the sharing cache 1o
potentialiy invalidate its own corresponding line. The write
will also update the dala in the dala cache line.

A line in stale 1 is invalid. It is pot available in the cache.
Aread access by the host processor umi! to an I-staie line will
generale @ “cache miss™ and may cause lhe cache Lo execute
a line fill (fetch the entire line into the cache from higher
Ievels of the memory subsystem). A wrile access by the host
processor unit 1o an I-state line will cause the cache to
execule a write-through cycle 10 higher levels of the memory
subsvsiem.

Computer syslem cache memories typically cache main
memory data for the CPU. If the cache uses a write-back
proiocol, then frequentiy the cache memory will contain
more current data than the corrcsponding lines in main
memory. This poses a problem for other bus masters (and for
other CPUs in a multiprocessor system) desiring 10 access a
line of main memory, because it is not known whether the
main memory version is the most current version of the data.
Write-back cache conirollers, therefore, typically support
inquire cvcles (also known as snoop cycles), in which a bus
master asks the cache memory 10 indicate whether it has a
more current copy of the data.

In Pentium-based svslems, a bus masier initiates an
inguirc cyele by driving the inquire address onto the CPU
address leads and asserting EADS#. The processor responds
by asserting its HIT# ouiput if the specified data Iine is
present in the L1 cache. The processor also asserts an
HITM# output if the specified 1.1 cache line is in the M
{modified) state. Thus, HITM#, when asscricd, indicates that
the L1 cache conlains a more current copy of the data than
is in main memory. The processor then aulomatically con-
ducts a write-back cvcle while the external bus master waits.
By this process, therefore, the exiernal bus master will be
able 10 access the desired line in main memory without any
further concern that the processor’s 11 cache conlains a
more current copy of the data.

One of the bottlenecks that has limited 1he performance of
personal computers in the past has been the maximum
specified speed of 1he 1SA bus. The original IBM PC AT
computers manufaciured by 1BM Corp., the 1:0 bus oper-
ated with & data raie of 8 MHz (BCLK=8 MHz). This was
an appropriate data rate al thal time since 11 wa$ approxi-
mately equivalent to the highest data rates which the CPUs
of that era could operate with on the host bus. CPU data rates
are many limes faster today, however, so the slow speed of
the 10O bus severely limits the throughput of systems 1oday.
One solution for this problem has been the development of
a local bus standard, by which certain devices which were
tradiionally located on the O bus can now be located on
the host bus. This standard, relerred 1o herein as the VESA
(Video FElectronics Standards Associaton) or V01-Bus
standard. is defined in VESA, “VESA VI.-Bus Tocal Bus
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Standard”, Revision 1.0 {1992), and in VLESA, “VLESA
VL-Bus Preposal, Version 2.0p, Revision 0.8p (May 17,
1993), both incorporated herein by reference.

Anocther solution 10 the problem has been the develop-
menl of another standard, referred 1o herein as the PCI
standard, defined in PCI Special Interesi Group, "PCI Local
Bus Specification Revision 2.07 (Apr. 30, 1993}, incorpo-
raled herein by reference. As vsed herein, the term “PCl bus™
refers 1o & bus which adheres 10 this specification, whether
or not it also adheres 10 subsequent revisions of the speci-
fication. The PCl bus achieves very high performance, in
part because ils basic data transfer mode is by burst. Thal is,
data is always transferred 10 or from a PCT device in a known
sequence of dala units defined by a known sequence of data
unit addresses in an address space. In the “cache line” burst
mode, exactly four wransfers 1ake place. In the “linear” bursi
mode, any number of transfers (including 1) can lake place
to/from linearly sequential addresses until either the initiator
or the target lerminates the transaction. In either mode. the
initiator need only specily the starting address becavse both
parties knew 1he sequence of addresses which follow.

Because of the burst mode of PCI masters, the problem of
performing inquire cyeles is somewhat more difficult when
1the bus master is a PCIl-bus masiter than when it is a CPU bus
master or ISA-bus master. According 1o the Pentium
databooks, every data transfer to or from the memory
address space which is cached by the L1 cache should be
preceded by an inquire cycle. This would severely hamper
the performance of PCl masters performing burst cvcles 10
or from secondary memory. Many PCI-bus controller
chipsets speed up these 1ransters by performing an inguire
cycle only once per cache line insicad of on cach data
transter. These controllers simply assume that no change
will be made 1a the cache line contents during the remainder
of the PCI-bus masier burst transfer with the corresponding
line of secondary memory. The Iniel 82433LX local bus
aceclerator, for example. maintains a PCl-to-mcemory read
prefeich bufter equal in depth 10 the length of one cache line,
so that if the Pentium processor performs a write-back cycle
in response o 1he nguire cvele, the local bus accelerator
chip can caplure he remaining words of the cache line for
casy completion of further PCl-bus masier rcad accesses
within the burst. The 82433L.X is described in Imel, »82340
PClset Cache/Memory Subsystem™ (April 1994), incorpo-
raled herein by reference.

Even with inquire evcles limited te one per cache line, a
problem still exists if the desired burst lengih proceeds pasi
a cache line boundarv. Conventional chipsets determine
when a new access 1n the burst 1s 1n a new cache line, and
they withhold the PCl-bus TRDY# signal while they per-
form the necessary nguire cvcle for the new cache line. 11
the Pentium processor asserts HITM#, then the chipset stops
the PCI-bus transaction (using a largel disconpect
lermination), allows the 1.1 cache 1o perform a wrile-back
operation, and resumes with a new inquire when the PCI
masler reslaris the (ransaction where 1t lefl off. Some
chipsets da nat stop the PCl-bus transaction, but rather
merelv withhold TRDY# until the write-back cycle and new
inguire cvcle are complele, but this violates the PCl-bus
specification which calls for 2 maximum delav of eight
PCl-bus clock cveles belore a 1argel asserts a TRDY# within
a burst. If the inquire cvele for the new line of cache does
nol produce 11IITM#, then there is no need to stop the PO
transaction. Insicad. conventional chipscis mercly withhold
TRDY# for the nme required 10 perlorm the inguire cycle.
and then assert TRDY# when the inguire cvcle has com-
pleted without 11TM#.
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The time required 1o perform the inquire cycle, however,
is significant. On the PCI-bus, a delay of eight PCl-bus clock
cycles may be incurred each lime that a linear burst trans-
aciion crosses a cache line boundary. A definite need,
therefore, exists for a mechanism which aliows PCI-bus
bursts to proceed past a cache line boundary whenever
possible. Such a mechanism can help PCl-bus masters
achieve the full promise of high-speed data translers
afforded by the PCl-bus burst transfer prolocod.

SUMMARY OF THE INVENTION

According 10 the inventon, roughly described, when a
PCl-bus controller receives a request from a PCI-bus master
to transfer dala with an address in secondary memory, the
controller performs an initial inquire cycle and withholds
TRDY# 10 the PCl-bus masler uniil any write-back cycle
completes. The controller then allows the burst access lo
lake place belween secondary memory and the PCl-bus
master, and simultaneously and predictively, performs an
inguire cycle of the L1 cache for the next cache line. In this
manner, if the PC] burst does in fact continue past the cache
line boundary, the new inquire cycle will already have taken
place (or will already be in progress), thereby allowing the
burst 1o proceed with at most a short delay absent a hii-
modificd condition. This avoids the need to incur the penalty
of stopping 1he transfer on the PC1 bus and restariing it anew
al a later lime, every ime a linear burst transaction crosses
a cache hine houndary.

In one embodimeni, predictive snoop cycles are not
performed if the first transfer of a PCI-bus masier access
would be the last transfer before a cache line boundary is
reached, since no advantage would be obtained. In another
embodiment, predictive snoop eveles are performed if the
first transfer of a PCl-bus master access would be the
second-1o-last transfer before a cache line boundary is
reached, cven though seme delay will be experienced before
the transfer of the first dala vnit of the next cache line due
10 the predictive snoop cycle and synchronization delays.

Although the invention is described herein with respect 1o
a PCl-bus Pentium sysiem, its usefulness is not limited 1o
such systems. The invention is useful whencver an L1 cache
is present which can use a write-back protocol, and which
supporis inguire cycles, and whenever an 170 bus is present
which has a lingar-incrementing capability or mode which
can continue beyond an L1 cache line boundary.

BRIET DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to particular
embodiments thereof, and reference will be made to the
drawings, in which:

FI1G. 1 is an over-all block diagram illustraling perinem
features of a compuler syslem incorporaling the invention;

I1G. 2 is a block diagram of parts of the host processing
subsystem of FIG. 1

F1G. 3 [Mlustrates & region in the secondary memory
address space in the system of FIG. 1;

FI1GS. 4-7 are timing diagrams illustrating the operation
of the svsiecm of FIG. 1: and FIGS. 8-12 arc schemance
diagrams of circuitry in the svstem controller of F1G. 1.

DLTAILLD DLSCRIPTION
1. MARDWARE OVERVIEW
FI1G. 1 is an overall block diagram illustrating pertinent
features of a computer system incarperating the invention.
The svstem includes & host processing suhsysiem 110 con-
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nected 10 a host bus 112, The host bus 112 includes address
lines (including HA(31:3) and BE#{7:0)), dala lines
HD{(63:0) and various controf lines designated generally as
114. A core logic chipset in the system includes a system
controller (SYSC) and an integrated peripherais controller
(IPC), indicated generally as 116. The SYSCIPC 116 is
connected to the host bus 112, and is also connected 1o a
PCI-bus 118. The PCl-bus 118 includes command and
address lines C/BE#(3:0) and AID(31:0), respectively, as
well as PCl-bus control lines 120. The SYSC/APC 116 is also
connected to an 1SA bus 122, which includes address lines
SA and LA, data lines 8D and XD, and varcons ISA coatrol
lines 124. The SYSC/IPC is also connecled 1o a secondary
memory subsystern 126, which is also connecled 1o the
address and data leads of the host bus 112. The secondary
memory subsysiem 126 includes DRAM 128, the address
inputs of which are connected via lines MA(11:0) 10 oulpuis
of the SYSC/IPC 116, and the data port MD(63:0) of which
is coupled 1o the data lines of host bus 112 via a
bi-directional buffer 142. The kigh order 32 bits of the dala
port, MD{63:32), are also connected back to the SYSC/PC
116. The secondary memory subsysiem 126 also includes a
second-level cache 130, the data port of which is connected
to the host bus 112 daia lines. The high-arder bits of the
address port for the cache 136 are connected 1o the output of
an address latch 132, 1he lnput pornt of which is connecied 1o
receive address lines HA(31:5) from the host bus 112. The
next iwo lower order bits A(4:3) for the address port of L2
cache 130 are driven by signals CHA{4:3) from the SYSC/
IPC 116. The secondary memory subsystem 126 communi-
cales via conlrol lines 134 with the SYSCAPC 116. Various
additional buffers and latches are included in the svsiem as
well, but they are omitted from FIG. 1 for simplicity of
illustration.

The host processing subsyslemn 110 is, in a preferred
embodiment, & Pentium™ chip manufaciured by Intel
Corporation, Santa Clara, Calif. The Pentium processor is
described in the following documents, all incorporated
herein by reference: Intel Corporation, “Pentium™
Processor”, Preliminary Data Sheet (1993); lntel
Corporation, “Pentium™ Processor a1 iCOMP™  Index
73590 MHz” (March 1994); and lntel Corporation, “Pen-
linm™ Processor User’s Manual” (1994).

FIG. 2 is a black diagram of pertinent parts of the host
processing subsystem 110 It comprises a CPU 210 which
communicates with a first-level (E1) cache 212. The L1
cache 212 conlains separate code and data caches, each of
which communicates with the CPU 230 via separale com-
munication paths. The 1.1 cache 212 also communicates
with the address and data lines of host bus 112, as well as
several of the control lines 114. Two of the control lines 114
are shown specifically in FI1G. 2, namely, EADS# and
HITM#. The 1.1 cache 212 caches addresses in a main
memory address space for the CPU 210. Although the 1.1
cache 212 and the CPU 210 are both fabricated 1ogether on
a singlc chip in the Pentium processor, in a different embodi-
ment they may occupy 1wo or more chips,

The code cache and dala cache each have a 32-byie line
size and are two-way set associative, These caches also have
dedicated translation look-aside buffers (T1D3s). The dala
cache Is configurable to be write-back or writc-1hrough on a
Line-line basis, and follows the MESI proiocol described
above. The lag RAMSs of the data cache and cade cache are
¢ach triple-ported as viewed from the CPU 210, and the code
cache is inherently write-protected. The caches can be
enabled or disabled, page by page, by software or hardware.

Because a1 Jeast one line of 11 cache 212 supports a
write-back protacol, the host processing subsvsiem 110 also
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supports inquire cycles, initiated by the exiernal system 10
determiine whether a line of secondary memory is currently
being cached in the L1 cache 212 and whelher it has been
modified in that cache. An external bus masier (external 1o
the hest processing subsysiem 110) (SYSC/PC 116 in the
system of F1G. 1) drives inquire ¢ycles 1o the host process-
ing subsysiem 110 prior 1o an access (read or write) to the
secondary memory subsystem 126, in order {o ensure that
the secondary memory subsystem 126 conlains the ialest
copy of the data. If 1he host processing subsysiem 110 has
the latest copy of the data (i.e., the data is cached modified
in the L1 cache 212), then, as soon as permitied by the SYSC
116 and at least [or the Pentium processor, the Penlium
performs a write-back of the specified data line before the
access by the external master is allowed to take place.

An inquire cycle is injtiated by the external device by first
asserting HOLD or AHOLD 1o the Pentium processor in
order 1o florce the Pentium to foat its address bus.
Alternatively, the Pentium processor may be forced off the
bus due 10 BOFF#. The external device then drives an
inquire address onto the Pemium address leads, drives an
INV signal and asserts EADS#. Because 1he entire 32-byle
cache line is affected by an inquire cycle, the inquire address
need only include address bits 31:5. These bits are sufficienmt
to identify a “line address”. As used herein, a line address is
the portion of an address necessary to uniquely identify a
dala unit ol the size of ope cache line: (32 bytes for the
Pentium). Similarly, a “hyle address” includes ail address
bits since they are all needed 10 vniquely identify a desired
byle, and, in gencral, a “dala unit address” includes whatever
address bits are required to uniquely specify an item having
the pumber of byles in the data unil.

The INV signal indicates 1o the Pentium processor
whether the L1 cache line should be invalidated (INV=1) or
mark the cache line as shared (INV=0) in thc cvent of an
inquire hit. In the embodiment described herein, INV=1 is
sufficient lor all cases.

The EAIS# signal is the signal which initiates the inquire
cycle. The Pentium processor recognizes EADS# two clock
eycles afier an assertion of AHOLD or BOFF#, or one clock
evcle afier assertion of HLDA. The Pentium processor
ignores EADS# in 1he clock cycle after EADSH was origi-
nally asserted. and also if none of HLLDA, AHOLD and
BOFF# are active, and also during external snoop wrile-
back cvcles as deseribed below.

Two clock cveles afier the Pentivm samples LADS#
asserted, it returns HIT# apd HITM# oumiput signals. It
returns HIT# asserted if the inquire address hit a line in
either the code or data cache in L1 cache 212. It relurns
HIT# dcasscricd (high, negated) at the same time if the
inquire cvele missed both internal caches. The HIT# output
signal s not importan? o an understanding of the invention.

Alsc, two host clock cvcles afier the processor samples
LADS# asscried, the Penuum processor returns an 1ITM#
output. It returns HITM# asserted only it the inquire cycie
hit a modified line in the data cache of L1 cache 212, This
indicates to Ihe exlernal device that the 1.1 cache 212
contains the most current copy of the data and the exiernal
device should await a write-back of the data to secondary
memory 126 belore reading or writing to any byvie within
that Line. I HITM# is returned asseried, then 11 rermains
asserted until two clocks after the last BRDY# ol 1he
wrile-back cvcle 18 asseried.

11 1he processor returns HITM# asscricd. then the exicrnal
device should release the host bus 112 10 aliow the Pentium
processar n perform a write-back cvele. ADS# for the
write-hack cvele will occur no earlier than two host bus
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clock cycles after assertion of HITM#. The 32-bvie cache
line is then writlen back from 1.1 cache 212 into secondary
memorty 126 using the i486-type burst protocol, Note that in
certain situations, the Pentium processor may not perform a
write-back. Whether or not a wrile-back is performed, the
processor negates HITM# when the L1 cache 212 is con-
sisient with the secondary memory subsysiem 126 and the
external device can proceed 1o access the desired memory
location in secondary memory 126. Note that if the external
device asserted HOLD 10 the processor to perform the
inquire cycle, the processor wails until HOLD is negated
belore performing the write-back cyde.

Note that different embodiments can have a wide variety
of different kinds of host processing subsystems. For
example, they can include a “level 07 cache beiween the
CPU and the L1 cache; they can include one or multiple
processors; they can include bridges between the host bus
112 and a bus protoco] expecied by a CPU in the hos
processing subsystem, and so on. As a group, however, all
the components ol the host processing subsysiemn use an L1
cache to cache at least some lines of 1the secondary memory
address space.

As used herein, a line of dala in secondary memory is
“cached” if dala identified to that line in secondary memory
is temporarily stored in a cache memory. The data stored in
the cache memory can either be the same as or different from
the data stored in the corresponding line of secondary
memory. I the processing unit for which the cache is
caching the line of data has modified the version of the data
stored in the cache, then the data is referred to as “cached
modified”.

Returning 1o FIG. 1, the SYSC/IPC 116 comprises tbhe
following imtegrated circuil chips available from OPT1, Inc.,
Santa Clara, Calif: 82C557 (SYSC) and 820558 (IPC).

These chips are described in OPTi, Inc., “Viper-M

82C5356M/82C557M/82C558M. Data Book, Version 1.07
(April 1995), incorporated by reference herein. The chipse!
also includes an OP1, Inc. 820556 data buller controller
(IPBC), also described in 1the above-incorporated data book,
which includes some buffers not shown in FI1G. 1.

Bricfly, the SYSC provides the control functions for
intertacing with host processing subsystem 110, the 64-bit-
wide L2 cache 130, the 64-bit DRAM 128 data bus, an
interface 10 VI.-bus aspects of the host hus 112, and an
interface 1o the PCl-bus 118. The SYSC also controls the
daia fiow between the host bus 112, the DRAM bus, the local
buses, and the %e-bil ISA bus. The SYSC imerprets and
ranslates cvcles from the CPU, PCl-bus masters, ISA-bus
masters, and DM A to the secondary memory subsystem 126,
local bus slaves, PCl-bus slaves, or 1SA-bus devices.

The 1PC comains an 1SA-bus controller and includes the
equivalent of an industry standard 82206, a real-time clock
imerface, a DMA controller, and a power management umil.

The SYSCAPC 116 is described in more detail below.

The sccondary memory subsvsiem 126, as previously
mentioned, includes a level-two (L2) cache. However, no
level-two cache is required 10 implement the inveniion
Because the secondary memory subsystem 126 is basically
an opaque subsystem as viewed from the circuitry in SYSC:
1PC 116 which is concerned with 1he methods of the present
invention. If a second-level cache 130 15 included in sec-
ondary memory subsysiem 126, (he laich 132 3s advanta-
eenusly included as well for reasons which will become
apparent. The lalch is enabled by an 1IACAILL signal (no1
shown in F1G. 1) from SYSCIPC 116 16 1the sccondary
memory subsvsiem 126,

Because the secondary muemary subsvstem 126 is essen-
tiallv opaque Tor the purposes of the present embodiment,
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other memory siruciures may be included as well. For
example, a third-level cache may be included in the second-
ary memory subsystern 126. Also, as is well known, while
the secondary memory address space is continuous in the
sysiem of FIG. 1, actual memeory location slorage nced not
be present in the secondary memory subsystem 126 for all
of the memory locations in that address space. Accesses
made (0o memory addresses which do not have storage
Iocations the secondary memory subsysiem 126 are recog-
nized by the SYSC/1PC 116 and handled in a known manner.

Referring again to F1G. 1, the PCl-bus 118 conforms to
the PCI local bus specification as described in PCl Special
Interest Group, “PCl Locul Bus Specification, Product
Version, Revision 2.07 (Apr. 30, 1993), incorporated herein
by reference. The address and data lines of the PCI bus are
muliiplexed. Specifically, AD(31:0) carry data during the
data phases of a PCl-bus transaction, and carry an address
during an address phase of the PCI-bus transaction. C/BE#
(3:0) carry a command during the address phase and carry
byie enables during the dala phases. The PCl-bus follows a
burst transler protocol. A “wransaction” on the PCl-bus
comprises an address phase and one or more data phases. All
signals on the PCl-bus which are pertinent to the present
discussion are sampled on the rising edge of a PCl-bus clock
signal (part of PCI-bus control lines 120).

All PCI daia transfers are conurolled using the following
three PCl-bus signals: FRAME#S, IRDY# and TRDY#. The
PCl-bus masier asseris FRAME# to indicate the beginning
of a tramsaclion, and negates it to indicate the end of a
iransaction. The master asserts IRDY# to enable an indi-
vidual dala transfer, and negates it to force a wait state. The
latgel of a wansaction asserls TRDY# lo enable a data
rransfer and negates it to force a wail siate. These data
ransfers may be either read or write data transfers; the
master is the iniuator, and 1he target is the responding
device, whether 1he access is for read or write.

When both FRAME# and IRDY# are negaled, the inter-
face is considered idle. To start a transaction, afler arbitra-
tion if appropriate, the initiator of the transaction drives a
starting Dword (4-byte) address onto the AD lines and
asserts FRAME#. The target of the transaction, which in the
case of the present invention will typically be the SYSC/IPC
116, recognizes FRAME# on the first PCl-clock rising edge
while FRAME# is asserted. The nexi rising edge of the
PClI-clock begins the first of one or more daia phascs. Data
will be transferred between initiator and 1argel 3n response 10
cach rising edge of the PCI-clock for which both IRDY# and
TRIDY# are asserted. Either partyv 1o the transaction may
insert a wail ¢ycle by temporarily negating IRDY# or
TRDY#. respectively. According to the PCl-bus
specification, the 1argel can withhold iis first assertion of
TROYY# for any number of PCl-bus clock cveles, But after
the first data transfer, il can negale TRDY# only for a
predefined maximum number of PCl-bus clock cyeles (e.g..
sevend.

As mentioned, during the address phase of a PCl-bus
transaction, the AT31:0) lines need only specify a dword
address. Thus. AIX(1:0) are available for other purposes. For
memory ¢ommands, if AD(1)=0, then AD{0}) indicates
which of two 1vpes of bursting is desired for 1the upcoming
transaction. AID(=0 indicates linear incrementing bursiing,
and AD(D)=1 indicates cache line 1oggle bursting mode
(which is similar 1o the dword ordering usecd tor 1486 cache
linc {ilis). In the lipcar incrementing burst mode, the address
for dala transters is assumed by both parties 10 the fransac-
ton 1o marement by one dword (4 bytes) after each daia
phase until the transaction is terminated. Note that since the
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data transfer width is only one dword (1wo Dwords if the
PCl-bus 64-bit exiension is used), and since the lingar
incrementing mode places no reswriclions on a lransaclion
relative 1o the size or arrangement of data lines in any caches
which may be present in the system, it will frequently be the
case thal a PCl-bus transaction begins in one¢ cache line and
ends in another cache line, crossing one or more cache line
boundaries in the process.

In the Hnear incrementing burst mode, a transachion
continues until it is terminated. Either the initiator of the
transaction or the largel can initiate a fermination, although
completion of the termination is always handled by the
masier by negating FRAME# and IRDY#.

The master lerminales the transaction by indicating that
the last data phase is in progress. It does so by negaling
FRAME# during its final assertion of IRDY#. The 1argei can
delay TRIDXY# as usual, so the final data transfer will not
oceur until the target finally does asserl TRDY#. After the
final transfer takes place, the master negates IRDY#, placing
the PCl-bus in idle condition. Other master-initiated termi-
nations are possible as well, but they are not imporiant for
an understanding of the invention.

The target can initiate a termination of the transaction by
asserting the PCl-bus STOP# signal. STOP# requests the
master to terminate the rapsaction. A final data transfer may
or may not take place while STOP# is asseried, depending
on the state of TRDY# at the time STOP# 1s asserted. When
the master samples STOP# asserted, i1 negates FRAME# on
the first PCl-bus clock cycie thereafier in which IRDY# is
asscrted. The target then nogaics STOP# in the clock cycle
immediately following negation of FRAME#. Again, other
forms of larget-iniliated fermination are possible on the
PCi-bus, but these are not important for an understanding of
the invention.

Referring again 1o F1G. 1, I1SA-bus 122 preferably is
included in the system, although it is not necessary to an
embodiment of the invention. The signal lines and dala
transfer protocols on 1SA-bus 122 are described in the
following documents, all incorporated herein by reference:
IBM, “Technical Reference, Personal Coroputer AT (1985)
; Sanchez, “1BM Microcomputers: A Programmer’s Hand-
book” (McGraw-Hill: 1990); MicroDesign Resources, “PC
Chip Seis™ (1992); Solari, "AT Bus Design™ (San Diego:
Annabooks, 1990).

Also shown in FIG. 1 for completencss are an ISA-bus
device 136 connecied to the 1SA-bus 122, a PCl-bus device
138 connected (o the PCl-bus 118, and a VL-bus device 140
connected to the host bus 112 The ISA- and PCI-bus devices
122 and 118 each conform to the specifications for their
respective buses, and cach can act as cither a masicr or a
slave on their respective buses. The VIL-bus device 140
conforms 10 the VIi-bus standard, defined in Video Elec-
tronics Stlandard Association, “VESA VL-Bus Local Bus
Standard”, Revision 1.0 (1992), although it can act only as
4 slave.

In order 1o deline certain terms uwsed herein, F1G. 3
illustrates a region 1 the secondary memaory address space
in the system of FI1G. 1. It comprises a sequence of bvies at
sequential addresses O through 20 (hexadecimal). A sequen-
tial memory access will proceed from bvies at lower
addresses 10 bvies at higher addresses in FIG. 3. In another
embodiment, or in another description of the present
e¢mbodiment, the numerical designations of byle addresses
can be reversed, so thar a sequential read access proceeds
from higher numbered addresses to lower numbered
addresses; bur this s merely nomenclature and does not
affect the structure or operation of the svstem. As used
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herein, sequential read and wrile accesses proceed from
“lower™ data units in the secondary memory address space
1o “higher” data vpits in the secondary memory address
space.

FIG. 3 also illustrates a memory ~location™ 310 which, for
the present embodiment, is four byies long. The entire set of
memory locations illustrated in F1G. 3 is designated 308.
FIG. 3 also illustrales a 32-byte “boundary”™ 312, between a
32-byle block spanning addresses 0-1F and 1he “next
higher™ 32-byte bleck beginning at address 20. Moreover,
since the L1 cache in 2 Pentium system has a 32-byte line
size, each line of the cache being aligned ai 32-byte bound-
aries in the secondary memory address space, the boundary
312 also represents a “cache line boundary” between the line
whose highest data vnit includes secondary memory address
1F, and the cache line whose lowesl, or first, data unit
includes the byte at address 2(h
II. SYSTEM OPERATION

A. Starting Quad Word 00. No HITM#

F1G. 4 is a timing diagram illusirating the operation of the
system of FIG. 1 in a sitvaton where a PCI master has
requested a bursl read access 10 an address at the beginning
of a cache line-sized block in the secondary memory address
space (ie., the low-order five bits of the address are 0,
referred to herein by the shorthand that the address ends in
007, In the illustration of FIG. 4, it is assumed ihat neither
1he first cache line 1o be accessed (with cache line address
ending in OO, nor the second cache line to be accessed (with
cache line address ending in 20) is cached modified in either
the L1 or L2 eaches. Either or both lincs may be present in
the 1.1 cache, but not in a modified state. It is assumed that
neither line is present in the 1.2 cache 130

Waveform 410 illustrates the hosi clock signal (HCIK),
and waveform 412 illustrates the PCI clock signal
(PCICLK). In the present embodiment, the PCICLK oper-
ates at half the frequency of the HCLK signal, although the
SYSC 116 is programmable 1o operate the PCICLK at
different speeds relative 10 HC1L.K. The HCLX ¢lock periods
are enumerated across the top of FIG. 4, begianing with
HCLXK clock period . Since the PCICLK signal operates at
half the frequency of the HCLK signal, an event which
occurs during a PCICLK period that spans HCLX periods 18
and 19, for example, will he referred to herein as taking
place during the PCICLK period 18/19. All clock periods
begin on a rising edge of the respective clock signal in the
present embodiment, but it will be understood that in another
embodiment, clock periods may be cansidered to begin on
a falling edge of the clock signal.

Prior 10 the events illusirated in T1G. 4, it 1s assumed 1hat
a PCl-bus master has alrcady arbitrated for, and been
aranted, control of the PCl-bus 118 (FI1G. 1}. In HCLK
period 0, 1he svstem controller 116 asserts HOLD 10 the host
processing subsystem 110, as illustrated in waveform 424
(F1G. 4). The sysiem controller 116 maintains HOLD
asserted Jor the entire burst transier.

On the HCLK rising edge which begins HCLK period 1,
the host processing subsvsiem 110 recognizes HOLD
asserted, and asserts HLDA in response, as illusirated in
wavelorm 426, 11LDA remains asseried for the entire burst

» transier. The processor is now off’ the host bus 112, and

inguiry and data transler eveles can proceed. 1n PCI clock
cvele 273, the PCT master device 138 places the dward
address of the first desired transfer onier the AD lines of the
PCI-bus 118. 11 also at this ume places a command on the
CBE# lines of PCI-bus 118, and asserts FRAME# 10 1he
svstem controller 116, (See waveforms 414 and 416.) As
menticoned, this address ends in 007, and designates the first
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quad word in a cache-line-sized block of the secondary
memory address space. The sysiem controller 116 ranslates
this address onto the host bus address lines HA(31:3) as
illustrated in waveform 436.

As illusirated in waveform 418, the PCl device 138
asserts IRDY# during PCI clock cyele 4/5 10 indicate that the
address is now valid. The PCI device 138 is assumed for the
purposes of F1G. 4 1o be a fasi device, which does not require
any wait slates. As shown in waveform 418, therefore, PCI
device 138 maintains IRDY# asserted for the entire burst
transfer.

At the beginning of PCI clock cycle 6/7, the syslem
controller 116 samples FRAME# and IRDY# both asserted,
and in response thereto, negales TRDY# (waveform 420)
and STOP# (waveform 422) (they were previously floating).
11 also asserts EADS# 1o the host processing subsysicm 110
in order 10 begin an inguiry cycle {waveform 428). The
negation of TRDY# prevents any data translers [rom laking,
place before 1he system has confirmed that secondary
memory contains the latest copy of the data. The system
controlicr 116 negates EADS# in the second HCLK cycle
afler assertion, i.¢., in HCLK period 8.

Since the desired address is assumed nol 10 be cached
modified in the L1 cache 212 (FIG. 2), the host processing
subsystem 110 negates its HITM# output within two HICLK
clock eveles after EADS# was asserted. Thus, by the begin-
ning of HCLK period 9, HITM# has been negated. {See
waveform 430.) The sysiem controller 116 is programmable
to sample HITM# on either the second or the third HCLK
rising edge aficr asserting EADS#, but it is assumed herein
that the sysiem controller 116 has been programmed to
sample HITM# on the second HCLK rising edge afler
asserting EADS#. Thus, by the beginning of HCLK period
9, the sysiem coniroller 116 knows that DRAM 128 (FI1G. 1)
conlains the latest copy of all of the data in the L1 cache-
line-sized-block that contains the address of the first transfer
desired by the PCI device 138, As illustrated in wavelorm
438, 1he guad word address for the first transfer is provided
by the syslem controller 116 to the DRAM 128 via
MA(11:0) in about HCLK eycle 16. The DRAM 128 is page
mode accessed, but it is assumed for simplicity thal no new
page needs to be established prior 10 the transfer.

Note that some of the signals described in this specifica-
iion are asserted high, whereas others are asseried low. As
used herein, signals which are asserted low are given a “#’
or ‘B’ suffix in their names, wherecas those asseried high (or
for which an assertion polarity has no meaning) lack a *# or
‘B suffix. Also, two signal names mentioned herein that are
identical except that one includes the *#” or "B suffix while
the other omits il, are intended 1o represent logical compli-
ments of the same signal. It will be undersicod thal one can
be generated by inverting the other, or both can be generated
by separate logic in response 10 common predecessor sig-
nais.

The data port of DRAM 128, MD(63:0). is cight byics
wide (one guad word), whereas the data path on the PCl-bus
118, AD(31:0), is only four byies wide {one double word
{Dword)). Thus, as illustrated in wavelorms 414 and 438 in
I'1G. 4. two Dwords are transterred over the PCI-bus 118 for
each new address asserted 10 the address pori of DRAM 128,
The Jow-arder Dword lor the first quad word of 1he ransfer
appears on ATX31:0) in PCICLK cvele 21722, On the rising
edge that beging PCICLK CYCLLE 2425, the sysiem <on-
troller 116 Jatches the high-order Dword of the data access
and increments the DRAM memory address (o the next guad
word (10 an address endmg in 08). The svsiem controller 116
also asserts TRIDY# at this time. The new guad waord address
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08 appears on MA(11:0)in I1CLX cycle 25, and the firsi data
transfer on the PCl-bus, of Dward 00, rakes place on the
rising edge of the PCICLK which begins PCICLK cycle
26/27. Although not necessary for the present illustration, in
which L2 has a cache miss, the system conircller 116 also
negates HACALE to the latch 132 (FI1G. 1) a1 the beginning
of HCLK cycle 26 for reascns which will become apparent
hereinafter.

Noite that TRDY# is negated at the beginning of PCICLK
cycle 26/27 in order to nsert a wait state in the PCI-bus
transfer. In another embediment of the present invention, a
wall stale may not be necessary.

The system controller 116 drives the previously latched
high-order Dword from guad word 00 onto the PCl-bus 118
AD(31:0) lines in PCICLK cycle 26/27, and asseris TRDY#
in PCICLK cycle 28/29. In PCICLK cycle 30431, the system
contreller 116 drives the low-order Dword of quad word 08
onio AD(31:0), and negates TRDY#. In PCICLK cvcle
32/33, system controller 116 asserts TRDY#, latches inter-
nally the high-order Dword of gquad word 08 from the
DRAM 128, and increments the quad word address on
MA(11:) 10 the DRAM 128. On the rising edge which
begins PCICLK cvcle 34/35, this data is transferred to the
PCI device 138 over the PC1-bus 113. System controller 116
negates TRDY#, and sc on for the remainder of the bursi.

The last Dword in the cache line-sized block of DRAM
128, Dword 1C, is ransferred to the PCI device 138 on the
rising edge of PCICLK which begins PCICLK cycle 54/55.
Note, however, that no delay is incurred before the transfer
of Dword 20, which is the first Dword of the next cache line
address. In fact, in the situation illustrated in F1G. 4, all of
the data transiers in the burst take place atl a consian? rate,
specifically one Dword in every two PCICLK cycles, even
as the burst continues bevond the cache line boundary. This
is a consequence of the features of the present embodiment
of the invention.

In order to minimize or elimivate delays a1 cache line
boundaries, as previously described, the sysiem controller
116 performs a predictive snoop (*pre-snoop™) of the second
cache line address of 1the burst, prior to completion of the last
PCl-bus data transfer from the initial cache line address of
the burst. In fact, because the sysiem conitroller 116 controls
the DRAM address on MA(11:0) independently from
addresses which the sysiem controller 116 places on the haost
bus 112 HA(31:5) lines, the pre-snoop takes place simulia-
necusly with at least one data transfer taking place on ihe
PCl-bus 118. Fhe predictive snoop is “predictive” because i
is performed even though the system controller 116 does not
yel know whether the PC1 device 138 desires 1o conlinue the
burst bevond the cache line boundary.

In order 10 accomplish pre-snoop, the svstem contreiler
116 delects the first PCl-bus data transfer by sampling
IRDY# and TRIYY# asscrted al the beginning of PCICLK
cvele 26/27. It then increments the cache line address on
11A(31:5) at the beginning of PCICLK cycle 28/29. 10 refer
10 the next scquential cache line address (line address 20).
System controller 116 then, in HCLK cvele 32, asserls
EATIS# 1o miliale an inguire cycle of the 1.1 cache 212 in the
host processing subsystem 110, Two HCLK cycles later, al
the beginning of 1ICLK cvele 35, the system controller 116
samples HITM# negated. Thus, the inquiry cvcle for the
second cache line has been compleled before the last data
transfer 1akes place in the first cache line. Assuming 1he first
transfer does 1n fact proceed bevond the cache line
boundary, the first data transfer (Dword 20) of 1the second
line of data can take place without stopping the burst and
without ynserting any additional PCl-bus wail siates (see
arrow 442).
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In anticipation of the burst continuing beyond vet another
cache line boundary, the svstem controller 116 then performs
a predictive snoop for the third cache line of the burst, again.
while data is still being transferred from secondary memory
addresses in the second cache line. Specifically, al the
beginning of PCICLK cycle 58-59, 1he system controller
116 samples both IRDY# and TRDY# asserted. It incre-
ments the line address to the hosl processing subsystem 110
in HICLK cycle 60, and asseris EADS# in HCLK cvcle 64.
HITMY# is again sampled negated at the beginning of HCLK
cvcle 66, and once again the L1 cache inquiry cycle bas been
completed before the PCl-bus data iransfers have reached
the cache line boundary. The process continues until the PCl
device 138 terminales the burst, or 1he inguiry cvele resulis
in HITM# asserted. The latier situation 1s described below
with respect to FIG. 6.

B. Starting Quad Word 00, HITM# On Initial Cache
Snoop

FIG. § illustrates the operation of the system of FI1G. 1 for
a PCl-bus master-initiated burst read 1ransfer beginning at a
cache line boundary, as in FIG. 4, but where the first inguiry
cycie discovers thal the desired line of sccondary memory
address space is cached modified in the LT cache 212 in the
host processing subsystern 110, Referring 10 F1G. 5, the
PCl-bus master 138 asserts a command and address on the
PCl-bus 118 in PCICLK cycle 2/3, and asseris FTRAME#. In
PCICLK cycle 4/5, it asseris IRDY#. The line address of a
desired data is trapslaled on to the host address bus
HA(31:5) and, when the system controller 116 samples
FRAME# and IRDY# both asserted at the beginning of
PCICLK cycle 6/7, it asscris EADS# 10 begin an inguiry
cycle of the host processing subsystem 110.

On the rising edge that begins HCILLK cycle 9, the system
controller 116 samples HITM# asserted, indjcating a cached
modified condition. The system controller 116 does not
icrminate 1the PCI-bus transfer, but rather, withholds TRDY#
and, in HCLK cycle 19, negales HOLD 10 the hest process-
ing subsvstem 110. The host processing subsysiem 110 then
negates HI.DA in HCEK cycle 11 and prepares 10 perform
a write-back cvcle., The host processing subsysierm 110
asseris HADS#in HCLK cycele 12, for one HCLK cyele, and
performs a burst write of the L1 cache data to secondary
memory 126. BRDY# is ussened four times during the
write-back cycle, thereby allowing the full 32-byte line to be
wrilten 1o secondary memory.

In HCLK cycle 14, the cvele afier the host processing
subsvstern 1190 negates HADS#, the sysiem controller 116
reasserts HOLD in order 1o retrieve the host bus 112 after the
write back cvcle. The host processing subsystem 110 rec-
opnizes this on the fourth BRDY#, ie., the beginning of

HCLK cyele 20. The host processing subsysiem thercafler s

releases the bost bus 112 and asserts HLDA. The host
processing subsystem 114 also negates HITM# al the begin-
ning of HCLK cycle 22, indicating thal 1he line in secondary
memory 126 and the line in L1 cache 212 are now consis-

tent. The sysiem controller 116 then provides the first quad  s:

word address 10 DRAM 128 via MA(11:0). The data in the
low order Dword outpul by the DRAM 128 (Dword 00) soon
reaches the AD{31:0) lines of the PCl-bus 118, and afler a
svnchronization delay indicated by arrow 534, the sysiem
controlier 116 asserts TRDY# in PCICLK cycle 36:37 10
allow the [irst data transier on the PCY-bus 118 10 1ake place.
The remainder of the process is the same as that shown in
T1G. 4, beginning at HCLK cycle 24 of 111G, 4.

C. During Burst Transfer. Snoop of Next Cache Linc
Produces HITM# Asserted.

F1G. 6 is a timing diagram illustrating the eperation of the
svstem of FIG. 1, during a burst transfer from the secondary
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memory 126 10 the PCl device 138, in which the predictive
snoop produces HITM# asserted. In HCLK cycle 0 in FIG.
6. MA(11:0) s1ill carries the quad word address for the first
quad word in the current line of secondary memory address
space being transferred. The line address of the current line
is still present in 11A(31:5), and the first Dword (D(00)) is
presentiy being translaied by the system controller 116 onio
AD(31:0). FRAME# and IRDY# are being driven asserted
by the PC1 device 138, and STOP# is being driven negaled
by the sysiem controlier 116. In addition, system controller
116 is asserting 1TIOLD 10 the host processing subsystem
110, which is rewurning HLDA asserted 1o the system con-
iroller 116. EADS#, HITM#, HADS# and BRDY# are all
negated.

In PCICLK cycle 0/1, the system coniroller 116 asserts
TRIDY#. MA(11:0) shortly thercafter changes to the second
quad word address of the curremt line of secondary memory
{QWA(08)). On Lhe rising edge which begins PCICLK cycle
2/3, D(OO) is transferred 10 the PCI device 138 and D(04) is
driven ontc the PCI-bus 118 AD lines. The fuli eight Dwords
of 1the current secondary memory line are transferred in the
manner previously described with respect to FIG. 4
(assuming the PCI device 138 does not negate FRAME# to
terminate the burst early).

In about PCICLK cycle 4/5, the system controller 116
begins driving the second line address, predictively, onto the
host bus 112 HA(31:5) address lines. In HCLK cycle 8, the
system conireller 116 asserts EADS# for two HCLK cycles.
It is now assumed that the new line of data is cached
modified in the L1 cache 212 in the host processing sub-
sysiem 118, so in HCLK cycle 10, the host processing
subsystem 110 asserts HITM#. The sysiem controller 116
detects HITM# asserled as early as the beginning of HCLK
cycle 11 or 12, but it does not stop the PCI burst cycle at this
time in order 1o allow a write back 1o 1ake place. If the burst
were 10 be stopped at this time, then two new inquiry cycles
would be performed when the PC] master reslaris the bursl:
once for the current line of secondary memory (line (00)),
and again for the second line of secondary memory (line
(20)). By waiting until the entirc first cache linc has been
transierred before stopping the burst, the sysiem controller
116 avoids any need for the first of these twoe inguiry cycles
when the PCI master restaris after wrile back. Note that in
anolker embodiment, if the predictive snoop finds the next
linc cached modified, the sysiem controller can allow the
write-back 10 proceed al 1he same time that data continues 1o
be transferred o the PCT device 138 from the current line of
secondary memory. This might be accomplished, for
example, by reading the entire line into 2 buffer and irans-
ferring 11 1o the PCl masier at the same time that the
write-back is proceeding 1o memaory.

Accordingly, in response 1o HITM# sampled asserted in
PCICLK cvcie 11/12, the system controller 116 asserts
STOP# 10 the PCl device 138 during the last PCl-bus
ranstfer of a Dword in the first line of sccondary memory.
Thus. the PCI device 138 samples STOP# asserted at the
beginning of PCICLK cycle 3131, the same lime that il
samples TRDY# asserted for such final Dword transfer. In
responsc. the PCl device 138 negates FRAME# in PCICLK
cvele 30031, and negates IRDY# in PCICLEK cycle 32/33.
The PCl-bus 118 burst transier is eflectively terminated at
this point, and if the PCI device 138 requires further data
transfer, it will subsequently arbitrate for the PCl-bus 118
again. assert FRAME# and IRDY#, and so on 10 essentially
resiatt the burst at the beginning of the next cache line.

Also in response 10 HITM# asserted, the svstemn controller
116 negates HO1I3 in HCLK cyele 31 in order 10 allow the
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write-back cycle to take place. Al the beginning of HCLK
cvcle 32, the host processing subsysiem 110 samples HOLD
negated and negales HLDA in response thereto. In HCLK
cycle 33, the host processing subsystem 110 asserts HADSH,
and the write-back cycle consisting of four BRDY#'s takes
place. The system controller 116 samples ITADS# asserted at
the beginning of HCLK cvcle 34, and if the PCl device or
anolher device desires conirol of the hest bus 112, the
systern controller 116 can reassert HOLD as early as HCLK
cycle 35 in order to reclaim the host bus 112 as soon as the
write back is complete. Thus the write back cycle has 1aken
place, the svsiem controller 116 is masier on the host bus
112, and the PCI-bus master device 138 can restart i1s burst
transfer at the beginning of the next secondary memory line.

D. Burst Transfer To Begin With Last Data Unit Of ALine

As c¢an be scen from the timing diagram of FIG. 4, an
inquiry cycle at the beginning of a burst transfer imposes a
significant delay even if the specified secondary memory
line is either not in the L.1 cache or is not modified in such
cache. In FIG. 4, for example, this delay is represented by
the time between FRAME# and IRDY# sampled asserted al
the begining of PCICLK cycle 6/7, ang assertion of TRDY#
in PCICLK cycle 24/25. Because of this delay, the system
controller 116 does not perform a predictive snoop if the
starting address of the burst transfer is the last dala unit in
a line of secondary memory. That is, il 1he low-order five bits
of the PCI master’s slarting byile address are 1C, then the
predictive snoop is omilted. lnstead, after an inquiry cycle is
performed on the line address for the first Dword of the
bursl, resulting cither in HITM# negated or in a write-back
cycle followed by HITM# negated, the system controlier
116 allows only one data transfer o fake place before
stopping the transaction. 11 stops the transaciion by asserting
STOP# to the PCI device 138 in conjunciion with the first
data transfer. The PCI master 138 will ncgate FRAME#, and
subsequently IRDY#. Atter re-arbitration, it can then start a
new burst transfer using the wavelorms illustrated in FI1G. 4
(if the next line address is nol cached modified in the 1.1
cache 212) or FIG. 5 {(if the next line address is cached
modified in the L1 cache 212).

E. Starting Address 18, Neither Line Cached Modified

If the starting address of the burst is the second-to-last
data unit of a line of secondary memory (18 in low-order five
bits of byte address), then the system controller 116 does
predictively snoop the next line because some advantage can
be obtained, even though the advantage is not as great as in
situations where the starting byte address ends in 14 or Jess.

FIG. 7 illusirates the operation of the system of FIG. 1 in
this situation.

Referring 10 FIG. 7, in PCICLK cvycle 273, the PCI device
138 drives the quad word address QWA(18) of the firsi
desired transfer of the burst, onto the PCl-bus 118 AD lines.
11 asserts FRAME# in PCICLK cycle 2/3 and asserts IRDY#
in PCICLK cvcle 4/5. The svsiem controller 116 ranslales

ihe line address portion of the starting guad word address,

specifically line address (00). onio the host bus 312 address
lines HA(31:5) in HCLK cvcle 4. In response 10 FRAME#
and IRDY# asserted at the beginning of HCLK cvcie 6.
svalem controller 116 asseris EADS# in 11CLK cycle 6 10
Initiale an inquiry cycle. The sysiem controller 116 samples
HITM# negated al the beginning of HCLK cvcle 9. and in
response thereto, after svachronization, asserts TRDY# 0
the PCI device 138 in PCICLXK cycle 2425 By 1his time, the
firsl Dword of the transter, D(18), is present on the PCl-bus
118 AD{31:0) lines. 1X{18) is iransferred on the rnising edge
which hegins PCICLR evele 2627, The trunsfer of dword
D1C) 38 delaved somewhal. however, because a determi-
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nation must first be made as 10 whether to simultaneously
assert STOP#. (1f STOP# is 10 be asseried, it must be
asserted simuhaneously with the final TRDY#.) In response
10 JRDY# and TRDY# both sampled asserted at the begin-
ning of PCICLK cvcle 26/27, the sysiem controller 116
drives the next line address, line address 20, onte HA(31:5).
Also in PCICLK cycle 26/27, HACALLE is asserted. Further,
in HCLK cycle 29, the svsiem controller 116 asseris EADS#
1o the host pracessing subsystem 110 in order to initiate the
next line L1 cache inquiry. As in the illustration of FIG. 6,
should HITM# be returned asserted, the svstem controller
116 would stop the burst on the PCl-bus 118 at this time and
allow a write-back 10 1ake place. In the illustration of FIG.
7, however, HIFM# is samipled negated at the beginning of
HCLXK cycle 32. 1n response thereto, the sysiem coniroller
116 asserts TRDY# in PCICLK cycle 34/35 and the Jast data
unit D(1C) is ransferred withoui a simulianeous assertjon of
STOP#. TRDY# is again asserted in PCICLK cycle 38/39,
and the first data unit (D(20)) of the nex1 secondary memory
line (Jine address (20)) is 1ransferred on the PCICLXK rising
edge which begins cvcle 40/41. Data unils then continue Lo
be transferred in the manner described above with respect to
FIGS. 4 and 6, until the burst is terminated either by the PCI
device 138 on i1s own ipitiative, or by the sysiem controller
116 in responsc to HITM# sampled asserted. It can be seen
thal although some delav is incurred al the secondary
memory line boundary {note the delay in FIG. 7 beiween the
second and third assertions of TRIDY#), this delay 1s sig-
nificantly shorter than the delay which is incurred by the
conventional technique of aulomatically stopping the burst
at the cache line boundary, forcing the PCl device 10
re-arbitrate for the PCI-bus 118, perlorm a new PCIl-bus
address phase, and wail for a new snoop cy<le 10 1ake place
for the new line address.

F. 12 Cache Hit Cenditions .

In all of the above illustrations, it was assumed that none
ol the data being translerred was present in the L2 cache 130
(FIG. 1). Because of 1his, all data in the PCT bursis were
transferred with the DRAM 128. However, a problem occurs
if there is an 1.2 cache kil condition tor onc of the transters.
The problem occurs because the L2 cache 1340 receives the
line address from the host bus 112 address lines HA(31:5),
and the predictive snoop features of the present embodiment
change HA(31:5) beginning in about the second Dword
transfer from cach sccondary memory linc. The second
Dword transier 1s usuvally part of only the first quad word
accessed in the L2 cache 136, and up to three more quad -
words may follow. With the changed HA(31:5), however,
such subsequent quad words would be read from the wrong
location in the L2 cache 1340,

‘The sysiem of FIG. 1 solves this problem through the use
of a lateh 132 coupled between HA(31:5) and 1he A (31:5)
lines of the address port of the 1.2 cache 130. The latch 132
is enabled by NACALL.. driven by the system coniroller
116 (laich 132 is transparent when HACALE=], and is
latched when HACALE=0). Ax can be seen in cach of FIGS.
4, 5, 6 and 7, the system controller 116 negates HACALE
before it changes the line address on HA(31:5) and reasseris
1IACALEL after the last quad word of the curremt L2 cache
line bhas been iransmitted 1o the svstem contreller 1316.
HACAILE opens laich 132 while the system controller 116
is stjll driving the next line address onto HA(31:5), and
apain closes the latch before it begins driving the third line
address onle HA{31:5) for 1the nexi predictive snoop cvele.

Table 1 below summarizes the cveles that take place with
respect o 1he L1 cache, L2 cache and TXRAM for all
combmations of hit, miss and hit-madified on PCI master
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read accesses. Table I1 summarizes the same for all PCl
master write accesses. As used in the 1ables, “hitM™ indi-
cales a cached modified condition in the 11 cache.

TABLLE 1

DMA Masier Read Cvele Summary

DMA/Master
Read Cyele Type of Type of
L1 12 Dalta Cvele for  Type of Cyele  Cycle
Cache  Cache  Source 11 Cache for L2 Cache for DRAM
Hil Hit 12 Cache Neo Read Lhe Bvles Ne Change
Change Requested
hitM Hil L1 Cache Castout Wrile CPU No Change
Data, Read
Back the Byics
Requesied
Hit Miss DRAM No No Change Read the
Change Byles
Requesied
hitM Miss L1 Cache Castowt MNe Change Write CPLY
Data. Read
Back the
Byvies
Requesied
Miss Hit L2 Cache Ne Read the Bytes No Change
Change Reguested
Miss Miss DRAM No Neo Change Read
Change
TABLE 11
DMa/Master Write Cvele Summary
DMA/Masler
Write Cvele  Data Type of Type of Type of
Ll 12 Desling- Cycle for  Cycle Cyele
Cache  Cache tien L1 Cache for L2 Cache for DRAM
Hit 11t DRAM, Iavalidate  Write Master Write Master
1.2 Cache Data Data
hit™ it DRAM. Castoul. Write (CPL Write CPU
L2 Cache Invalidate Data, Write  Data.
Master Data  Write Master
Data
&1l Miss DRAM Invalidate ™o Change  Write Master
Data
hitM Miss DRAM Castoul, No Change  Write CPU
Invalidate Data. Write
Masier Date
Miss 110t DRAM, Ne Write Master Write Masiey
LI Cache Change Dala Data
Miss Miss DRAM Ne No Change Write Masie)
Change Datz

G. Synchronous SRAM 12 Cache

In all of the above illustraiions, the §.2 Cache 134 uses
asvnchronous SRAMSs. The system contreller 116 alse per-
mits syachronous SRAMs 10 be used in the L2 cache 130,
and the host processing subsystem 110 programs a regisler
in the svsiem controller 116 during boot-up 10 indicale
which type of SRAM is present.

Synchronous SRAMs differ trom asynchronous SRAMs
in the 1.2 cache 130 in thatl the quad words which are read
or written 10 & line of L2 cache memory are not guaranteed
to Be al linearly incrementing guad word addresses unless
the first quad word accessed is the first quad word of 1he
cache line. Ilowever. in a given embodiment, prediclive
snoops can s1ill be performed.

H. Inquire Cvcles for 1.2 Cache

In the system of FIG. 1, the L2 cache 3130 does not supporl
inquire cveles. In another embodiment, in which the 1.2
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cache does support inquire cvcles, the system controller 116
can perform the 1.1 and 1.2 inquire cycles concurrently. If
either of the caches indicale a cached modified condition, the
system controller 116 can delay or stop the burst as previ-
ously described, and allow a write-back to take place from
the appropriate cache.

111 IMPLEMENTATION

FI1GS. 8-12 are schematic diagrams of perlinent portions
of the system controlier 116 which control vanous signals
used for implementing the invention. while all the deserip-
tions above are sufficient to enable implementation of 1he
invention, descriptions al the schematic level for some
aspects are provided for those interested in more details
aboul an example implementation. It will be undersiood that
many other implemenlations are possible, all within the
ordinary skill of a designer.

A. Circuitry 10 Generate EADS#

F1G. 8 is a schematic diagram of pertinemt circuilry which
produces the EADS# signal output 1o the host processing
subsystem 110 {F1G. 1). As shown in FIG. 8, the PCI-bus
FRAME# signal rcaches the circuilry of FIG. 8 as FRAMEI
In the nomenclature of FIGS. 8-12, signals named with a
designation ending in “1” or “(0” indicaie input and outpui
signals, and are asserted with the same polarity: as the
corresponding external signals (i.e., low if the corresponding
external signal names end in *#” or B and high if they do
nol). FRAME] passes through some logic circuitry 802
where it is qualified by certain other signals, the purpose of
which is not pertinent 10 an understanding of the invention.
Essentially, in all cases periinent to the invention, the ocutput
of logic circuitry 802, MFRAM, is asserted high whenever
FRAME# is asserted low on the PCl-bus 118. :

MFRAM is provided to the T input of a D flip-flop 804,
which is clocked by an LCLKI signal (equivalent to the
PCl-bus PCICLK signal). The QN ouwtpu of flip-flop 804,
MFRAMDB, is connected to one inpul of a three-inpui
NAND gate 806, a second input of which is connecied to
receive MFRAM. The third input of NAND gate 806
receives a PCIWND signal which, for purposes of the
present description, can be assumed 10 remain at a high logic
ievel. Accordingly, it can be seen that the output of NAND
gale 806, designated LADS TGB (“local ADS trigger”™)
will carry a low-going, one PCICLK-clock-widih pulse, in
response 1o the PCI device’s assertion of FRAME#.

LADS TGB is provided to one input of a three-input
NAND gate 808, Ancther input of the NAND gate 808 is
connecied 10 the ovtputl of three-input NAND gate 810,
NANTI} gate 810 has one input which receives an SYS-
MEMD signal. indicaling whether the address provided by
the PCI master is within the address space of secondary
memory 126. If not, then SYSMEMD remains low and the
outpui of NAND gate 810 remains high. A second inpui of
NAND gate 810 receives an LT2 (*local T2 signal),
described below. The third input of NAND gaie 810 is
conneeted 1o the output of another NAND gaic 812, which
van be assumed 1o remain high at all times periinent 10 the
invention. Similarly, the third input of NAND gate 808
receives a PA_ADSB signal, which can also be assumed to
remain high at all times periinent 1o the invention.

The outpul of NAND pate 808 is connected 1o the D input
ol a D Tip-Nop 814, which 1s clocked by the PCICLK signal
1.CLKIL The QN ouipin of flip-fiop 814 is NORed with an
inverted version of the Q oulput of flip-fiop 814, in NOR
oaic 816. 10 produce the L'T2 signal which is provided to an
input of NAND gate 810 as described above. Accordingly.
it can be seen that as long as 1the address provided by the PC
masler 138 is within the secondary memory 126 address
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space, [.T2 will carry a one-PCICLK-cycle-wide high-going
pulse in the second PCICLK cycle following the cyele in
which FRAME# was asserled by the PC1 master 138 {e.g.,
PCICLK cycle 4/5 in FIG. 4).

LT2 is connecied 1o one input of a three-input NAND gate
818. The second input of NAND gaic 818 receives
DISLT28, which can be assumed 10 remain-high, and an
LSTARTIB signal, which is high as long as the system
controller 116 is not yet certain that the data in secondary
memory 126 at the secondary memory line address specified
by the PCI master 138 is the latest copy of the data. That is,
LSTARTIB goes low after the host processing subsyslem
110 brings HITM# high, either immedialely aller EADS# or
following an L1 cache write-back cycle.

The output of NAND gate 818 is connecied 1o one inpul
of a two-input NAND gate 820, the other input of which is
connected to the output of a two-input NAND gate 822. One
input of NAND gate 822 is connecied 10 receive a PSNEN
signal, which enables the pre-snocp feature and can be
assumed to be high throughout, and the other input is
connected 10 receive a PSNSTRI signal. The latter signal is
used during predictive sncop operations, which take place
Jater in the burst (see PCICLK cvcle 32/33 in F1G. 4, e.2.).
At the initial assertion of FRAME#, PSNSTR1 remains low,
As described below, PSNSTR1 will carry a high-going pulse
when it is desired 10 assert EADS# for prediclive snoop
cycle later in the burst. Accordingly, as can be scen, the
cutput of NAND gate 820, designated SL.T2TG
(“synchronous local T2 trigger™) carries a high-going, one
PCICLK ~cvcle-wide puise, in the PCICLK cycle following
that in which FRAME# was :asserted. SLT2TG will also
carry a one PCICLK-cvcle-wide high-going pulse at the
time a predictive snoop cycle is 1o 1ake place.

The SET2TG signal is connected to the D input of a D
flip-flop 822, which is clocked by a clock signal CLK
{equivalent 10 HCLK in FIGS. 4-7). The QN ocutput of
flip-flop 822 is NORed with an inverted version of the Q
outpu of flip-flop 822 and the result applied 1o the T3 input
of another D flip-flop 824, also clocked by CLK. Tt can be
seen that the flip-flops 822 and 824 act as a synchronizer for
synchronizing the pulse on SLL12TG with the host bus clock
signal HCLE. Thus the QN ountpul of flip-flop 824, Jabeled
S1.T2B, carries a low-going pulse whenever an inquiry cycle
is desired. The low-going pulse begins and ends synchro-
nously with HCLK, but depending on several factors includ-
ing the relationship between the PCICLK and HCLK, may
be one or more HCLK cveles wide.

SLT2B is cannected 1o one input of a NANT gate 826, the
other inpul of which is connecled 10 the output of & three-
inpul NAND gaic 828. Onc input of NAND gaic 828
receives the 1712 signal outpui of NOR gaie 816. A second
input of NAND gate 828 receives a PCICY OB signal, which
cap be assumed 1o remain high a1 all times pertinent 1o the
invention. The outpul of NAND gate 826 is connected to the
D inpui of a flip-Hop 830, which is clocked by CLK. The Q
output of ip-fop 830, designated SLTZD, is fed back 1o the
third inpul of NAND gate 828. It cun be seen that S1.T2D
will carry a high-going pulse that begins in the HCLK cvcle
following that in which the low-going pulse on SLT2D
began. and the SLT2D pulse will last for at Jeast as many
HCLK cycies as SLT2B lasted. Addinonally, il needed, the
NANTD gales 828 and 826 will stretch the S1.T217 pulse uniil
after 1the end of the LT2 pulse. That is, NAND gales 828 and
826 c¢nsurc thal the S1.T2D pulse will extend bevond the end
of PCICLK cvcle 4/5 (FIG. 4},

SLT2B and SLT2D are NORed in NOR gate 832, pro-
ducing a high-going pulse during the overlap hbetween the
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SLT2B pulse and the SLT2D pulse. The output of NOR gate
832 is connected to one inpul of a four-inpul NAND gate
834. A second inpui of NAND gate 834 is connecled 10 an
LIDLE signal, whicli prevents EADS# from recurring at
inappropriate times. LIDLE is high at this time. A third input
of NAND gale 834 is connected to the output of a NOR gate
836, which can be assumed 1o remain high at all times
pertinent 1o 1he invention, The Fourth input of NAND gate
834 is connected to the output of a NOR gate 838, one input
of which receives SYSMEMB1. The other input of NOR
gate 838 is comnected 1o the output of an AND gaie 840,
which can be assumed to be low at all times pertinent 1o the
invention. SYSMEMB1 is low if the secondary memory
address provided by the PCl master 138 is within the

- secondary memory 126 address space, and is high if pot.

Thus, as long as the PCI device 138 addresscs an address
within the secondary memory address space, the output of
NOR gale 838 will be high.

The output of NAND gate 834 is connected 10 one iaput
of a three-input NAND gate 842, a second input of which is
connected 1o receive a BWDP2B signal, which can be
assumed 1o remain high. The third input of NAND gate 842
is connected 1o the output of another three-input NAND gate
844. Ope input of NAND gaie 844 is connecled 1o 1the onipul
of NOR gatc 838, previously described, and the other two
inputs of NAND gate 844 receive an EADS1B signal and a
CK__EADS signal, respectively, both described below.

The output of NANT) gate 842 is connected to the I input
of a D flip-Bop 846, clocked by the CLK signal 10 produce
a Q outpul designated CK__EADS. CK__EADS is connected
to the D input of another flip-flop 848, clocked by CLK, 1o
produce on its QN output the EADS1B signal. CK__EADS
and EADSIB are fed back 1o the two inputs of NANID gate
844 as previously staled. It can be seen 1hat becavse of this
feedback, the ouiput of NAND gate 842 will carry a high-
going puise which is the width of two HCLK cycles.

The output of NAND pate 842 is connected 1o the D input
of another D flip-fiop 850, which id clacked by an ECLK
signal. ECLK (“carly clock™) is equivalent 1o HCLK, except
that it opcrates & few nanoscconds carlier. The Q output of
Hlip-flop 850 is connected (o the ‘07 input of an inverling
multiplexer 852, the ouipm of which carries an EADSO
signal for the EADS# ouipu of system controller 116. The
17 input of multiplexer 852 receives a CPU__WT signal, and
the scleet input reecives an AHOLDOB signal. AHOLDOB
is low al all periinent times, so EADS# carries the oviput of
flip-flop 850.

Accordingly, 11 can be seen that the circuitry of FIG. 8
produces a low-poing, 1two HCLK-cycle-wide pulse, in
about the fourth HCLK cycle following asscriion of
FRAME# by the PCI device 138.

FIG. 9 is a schematic diagram of circuitry in the system
controller 116 which produces the PSNSTRI1 signal vsed in
FIG. 8. As previously mentioned, PSNSTR1 carries a high-
going pulsc when it is desired 1o initiale a predictive snoop
cvele during a PCl masier burst ransfer.

Referring 1o FIG. 9, a three-input NAND gate 902
receives a QPCIFST signal. which is high during the first
transfer of a PCI burst or the beginning of a new cache line
rransler.

Another inpul of NAND gate 902 receives o CYCOTX
signal, which is asserted when both IRDY# and TRIDY# ure
sampled active (a Iransler is occurring). NAND gate 902
also receives an LINBREAKB signal. which is low only if
the data unit then being translerred is the highest data uni
in a cache line. Accordingly, the outpul of NAND gate 902
will go low during the transfer of the first data umit 0 he
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transferred from a line of secondary cache, but not it the
transfer is beginning with the highest data unit in the line of
secondary memory. This i1s consisient with the discussion
above with respect 1o FIG. 6 in which predictive snoop is
omitted in this situation.

The output of NAND gate 902 is connecied 10 one input
of a two-input NAND gate 904, the outpu of which is
connecied o the D input of a Mhp-Aop 966. The ON output
of flip-flop 906 is connected back 10 the second input of
NAND gate 904. The flip-flop 906 has an inverting clear
input which is connecied to the ouiput of an AND gate 968,
one inpul of which receives PSNEN, which remains high at
zll limes perlinenl herein, and the other input of which
receives an EADSIB signal. EADSIB goes low after
EADS#, thereby clearing flip-flop 906. Accordingly, flip-
flop 986 latches the output of NAND gate 962 until after
EADS# has been asserted.

The Q outpul of Aip-flop 906 is inveried and qualified, in
three-input NAND gate 910, by IRDY and MFRAME.
IRDY is the inverse of the PCl-bus 118 IRDY# signal, and
as previously cxplained, MFRAME esscentially follows the
inverse of the PCl-bus FRAMLE# signal. Thus, NAND gate
910 blocks the output of flip-flop 906 if the PCI device 138
has already indicated that the present transfer is to be the last
transfer of the burst. Otherwise, the ouipwl of NAND pate
910 (called FFTROTGB (“first TRDY# irigger™)) carries a
one PCICLK-wide low-going pulse, beginning with the
PCICT K rising edge that ends the first PCI transfer of the
current Jine of secondary memory.

The output of NAND gawc 910, FTRDTGBE, 1s conneccted
1o the D input of a flip-flop 912, which is clocked on LCLKI.
Flip-flep 912 thus delays FIRDTGEB by one PCICLX 10
enable other circuitry (noi shown) in 1he system controller
136 to increment the secondary memory line address on
HA(31:5) (FIG. 1).

The QN output of flip-flop Y12, designaled PCIFTRD, is
connected 10 one input of a two-input NAND gaie 914, the
other input of which receives PSNEN. The output of NAND
gale 914 is connected to one inpul of a two-input NOR gaite
916, the other input of which reecives the output of another
NAND gate 918. One input of NAND pate 918 receives a
CSNENDB signal, which is high until EADS# is asserted.
and the other input of NAND gale 918 receives the PSN-
$TR1 signal. The output of NAND gate 916 is connected 1o
the D input of a flip-flop 920 which is clocked by CLK
(eqguivalent 1o the host bus clock signal HCLK). The QN
oy is NORed with an inveried version of the Q output of
flip-flop 920 to praduce the PSNSTR1 signal, which is fed
back 10 NAND gate 918. PSNSTRI1 iheretfor carries a
high-going pulsc which is svnchronized with the host bus
clock signal HCLK#, and which remains high vmil EADS#
15 asseried.

As previously described, PSNSTRI is provided to an
input of NAND gate 822 in I'1G. 8 and. like 112, initiales an
1.1 cache inquiry cycle.

B. Circuliry 1o Generate STOP#

FI1G. 10 is a schematic diagram of circuitry in the system
controller 16 which produces the STOP# PCl-bus 118
signal. As previously explamed. the circuitry should asseri
STOP# in response 1o HITM# asseried while a PCI burst
transaction is laking place.

Referring 1o FIG. 1), a three-input NAND gate 1002
receives an LAIDS3 signal, a PSNCYC signal, and an
HITMIB signal. EAIDSS is asserted in the third HOLK cvele
after EADS# is asseried, and PSNCYC is asseried only
when & pre-snocp cvele s taking place. HITMIB is the
inverse of the HITM# signal {rom the host processing
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subsysiem 110. Thus, the output of NAND gate 1002 will go
Jlow only if HITM# has been asserted by the third HCLK
cvele afler EADS# was asserled (e.g., in advance of the
HCLK rising edge which begins HCLXK cycle 11, in FIG. 6).
Similatly, NAND gate 1004 receives PSNCYC, HITMIB,
an EADS2 signal and 1IITMS signal. HITMS is the pro-
grammable regisier bil which indicates that HITM# can be
sampled as early as the second HCLK cycle afier assertion
of EADS# (e.g.. on the HCLXK rising edge which begins
HCIX cvcle 10, in FIG. 6). EADS2 goes high in this same
HCLK cvcle. Thus, if HITMS is asserted, the cuiput of
NAND gate 1004 will go low if HITM# has been asserted
in advance of the second HCLK cycle after EADS# was
asserted 1o the host processing subsystem 110,

The outputs of NAND gates 1002 and 1604 arc provided
to two inpuls of a three-input NAND pate 1086, the third
input of which is connected to the output of another NAND
gate 1008 described below. The outpul of NAND gate 1006
is connected 1o the D input of a flip-flop 1010, the Q output
of which, designaled HITMSTP (“HITM# stop”), is con-
necied back 10 onc input of the NAND gate 1008. The other
input of NAND gate 1008 receives a NOFRAMEDB signal,
which is initially high and carries a one PCICTLK-cycle-wide
low-going pulse when STOP# has been triggered. Flip-flop
1010 is clocked on the host bus clock signal CLK.
Accordingly, it can be seen that HITMSTP will go high only
if HI'FM# has been asserted during a pre-snoop cycle, within
twa or three HCT K cycles of the assertion of EADS#, and
will remain high umil STOP# has been triggered in the
manncr sct forth below.

HITMSTP is connected to the D input of a flip-flop 1012,
which is clocked by an inverted version of the PCICLK
signal, designated 1.CI.KIB. The QN output of flip-flop 1012
is NORed with an inverted version of the Q output of
flip-flop 1012 10 produce a STOPTGI1 signal, which is
connected o one inpul of a three-input NAND gate 1014.
The olher two inputs of NAND gate 1014 receive
LLNBREAK, which is asserted only if the current transfer is
the lasl transfer in a line of secondary cache, and TRDY __
TG, which carries a one PCICLK-cycle-wide high-going
pulse in the PCICLK cycle immediately preceding that in
which TRDY# will be asserted for such last transfer of the
cache line. NANT gate 1014, 1herefore, carries a low-going
version of STOPTG1, with the low-going transition delayed
umtil one PCICLK cyele prior to the last TRDY# in the

‘ransfer of a line of secondary memory.

STOPTG1 is also connected 10 one inpul of a four-input
NANTY gate 1016, the other inpuis of which are connected
10 receive FRAMEI (equivalent 1o the PCl-bus FRAMI#
signal), LNBREAKB (the inverse of LNBREAK), and
TRIDY (equivalent to the PCl-bus TRDY# signal).
Essentially, therefore, NAND gate 1016 Will carry an
inverted versicn of STOPTG1, delayved 1o coincide with the
assertion of TRDY# for the last transfer in 1the burst (master
terminated). in the situation where the last data unil trans-
ferred is not the Jass data unil in the line of secendary
MeEMoQry.

The auiputs of NAND gates 1014 and 1016 are NANDed
together by a NAND gate 1018, 1he output of which,
STOPTGP, goes high if HITM# was asseried during a
predictive snoop, delayed either uniil 1the PCICLK cvele
preceding the last TRTYY# of a secondary memory line, or
until the TRDY# of the last transfer of the bursi, whichever
occurs carlicr. STOPTGP is high-going pulse having a width
cgual 1o one PCICLK cvcle.

STOPTGP is connected 1o one inpul of a four-inpn
NAND gate 1020, the aother 1nputs of which are connected
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10 FRAMELI, IRDY {equivalent 1o 1the inverse of the PCl-bus
IRDY# signal) and PCICYC. Thus, NAND gate 1028 quali-
fies STOPTGP 10 ¢nsure that a PCI cycle is currenily taking
place, and IRDY# and FRAME# are stll asseried. The
outpul of NAND gate 1020 is connecied to one input of a
three-input NAND gate 1022. A second input of NAND gale
1022 is connecied e the output of a NAND gale 1024, which
receives STOPTG1 (previously described) and STOP
{equivaleni 10 the inverse of STOP#). The third input of
NAND gate 1022 is connected 1o the output of a NAND gate
1026, which rteceives NOFRAME and a signal
NOFRDNLB, described below. The ouiput of NAND gate
1022 is connected to the D input of an 1.C1LKl-clocked
flip-flop 1028, the Q ouipul of which is the NOFRAME
signal connected back 1o an input of NAND gate 1026. I can
be seen that NOFRAMLE will be asserted by a flip-fiop 1028
in the PCICLK cvcle following that in which STOPTGP was
asserted, assuming the master has not vet terminated the
burst, and will remain asserted until either STOP# is asserted
or the NOFRDNI1B signal is negated.

The QN output of flip-flop 1028 is the NOFRAMEB
signal which is connected back 10 the NAND gate 1008.

NOFRAME is also connecied 10 one input of each of two
NAND gates 1030 and 1032, which delay the transition as
necessary 1o accommodate different speed clocks. These
NAND gales are connecled to respective inpuls of a three-
input NAND gatc 1034, the third input of which is con-
nected w0 the output of a NAND gate 1036. The NAND gate
1036 has three inputs, one of which receives AHOLDS,
which can be assumed 10 remain high throughout the present
description. The second input of NAND gate 1036 js con-
necied 10 the output of NAND gate 1034, and 1he third input
of NAND gate 1036 is connected as described below.

The outpul of NAND gate 1034 s, connecied 1o one inpul
of a D flip-tlop 1038, the ON output of which is NORed with
an inverted version of the Q output of flip-fiop 1038 10
produce an NOFRDNTI signal. Flip-flop 1038 is clocked on
LCLKIB. NOFRDN1 is inverted by an inverter 1044 10
produce the NOFRDN1B signal provided 10 NAND gate
1026. NOFRDN1 is also comnecied 10 the D input of a
flip-flop 1042, which is clocked on LCLKI, the QN ouput
of which is connected back to the third input of NAND gate
1036. The eficet of fip-flops 1028, 1038 and 1042, and their
associated logic gates, 1s 10 make NOFRAME have a width
of at least one PCICLXK cycle and to ensure that the CPU has
sufficient time 10 generale 111 TM#.

STOPTGP is also connected to one input of a three-input
NAND gate 1044, which gualifies the signal once again 1o
ensure that the current cvele is a PCl cycle and that the
master has not ver pegated FRAME# (because STOP¥ can
be asscried only when FRAME# is active). The circullry
also inchudes 1w other NAND gales 1046 and 1048, cach of
which go low 1o Irigger STOP# in situalions nol pertinent (o
the present invention. A fourth NAND gate 1056 receives
FRAME and STOP ax inpuis. The outputs of NAND gates
1044, 1046, 1048 and 1050 are connecled o respeciive
inpuls of a [our-inpui NAND gale 1052, the output of which,
designated STOP_ TG, is connecied tw the D input of an
LCLKI-clocked Hip-flop 1054, The Q ouipul of flip-flop
1054 is the STOP signal connected back 0 NAND gates
1050 and 1024, and 1the QN output of flip-Oop 1034 is 1he
oulput signal which drives STOP# on the PCI-bus 118. T can
be seen, therefore, that STOP# will have a widih of one
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PCICLK cycle in response to STOPTGF produced by
NAND gate 1018.

C. Circuitry to Produce HOLD

F1G. 11 iHusirates circuitry in the system controller 116
which is used 10 produvce the HOLD signal for the host
processing subsvsiem 110. As previously described, HOLD
is high in order for the system controiler 116 to act as a
masler on the host bus 112, but goes low in order 1o allow
the hosl processing subsystem 110 to perform a write-back
cvcie (see FIGS. 5 and 6). If the initial inguiry cycle at the
beginning of a burst produces HITM# asserted, then the
syslem controller 116 negates HOLD as soon as possible to
permil the wrile-back 10 1ake place (F1G. 5). In a predictive
snoop cycle, on the other hand, the circuitry delays negating
HOLD until the las1 data unit transfer in the current cache
line is laking place. AHOLD remains asserted during the
entire time.

Referring to FIG. 11, a two-input NAND gate 1102
receives EADS2 and HITMS. The output of NAND gate
1102 is connected 10 one input of a three-input NAND gate
1104, a second inpul of which receives EADS3B which is
ihe inverse of EADS3. The third input of NAND gate 1104
is connecled to the ocutpul of a two-input NAND gate 1106,
which receives LBRDYB (which goes low on the lasi
BRDY# in a writc-back cycle), and the other input of which
receives a DISBOFD signal described below. The output
BOF_TGR of NAND gate 1104 is connected to the ID input
of a flip-flop 1108, clocked by 1ke host clock signal CLK.
The Q output of flip-flop 1108 is NANDed with an HITMIB
signal 10 produce a DISBOFDB signal, and the QN output
of flip-fiop 1108 is NORed with a HITMID signal (o produce
DISBOFD, fed back to NAND gate 1106. HITMIB is
cquivalent 1o the inverse of HITM#, and ITMID is cquiva-
lent 10 HITM#. 11 can be seen DISBOFD and DISBOFDRB
will be asserted (with their respective polarities) oniy if
HITM# was asseried within the appropriate window (as
determined by HITMS) after EADS# was asseried.
DISBOFD/DISBOFDEB will remain asserted until the last
BRDY# of a write-back cycle.

DISBOFDB is connecied to ooe input of a NAND gate
1110, the other input of which receives an HRQI signal
which 1s high whenever the system coniraller 116 owns the
host bus 112. DISBOFD is connected 1o one inpul of a
three-input NAND gate 1112, a second input of which
receives HRQI, and a third input of which receives a signal
TIB. TIB is low when the CPU in host processing subsysiem
110 is idle. The ouiputs of NAND gates 1110 and 1112 are
NANDed together by a NAND gates 1114, the ouiput of
which is connected 10 the D input of a CLK-clocked fip-flop
1116. Thus, in the normal situation, when DISBOFDDB is
high, the Q output of flip-flop 1116 will be high indicating
that HOLD should be asscricd. In a HITM# situation,
DISBOFD will be high and the Q output of fip-flop 1116
will go Tow when the CPU reaches an idle state.

The QN ouiput of flip-flop 1116, designated HOLDSRH, 3s
qualified in NOR gale 1118 by HRQIB (the inverse of
HRQ1), a NOHOL D1 signal, and another signal not perti-
nent to the present invention. NOHOLDI is copnecied 1o the
oulput of a NOR gate 1120, one input of whick receives the
ON output of a flip-flop 1122 and 1he other input of which
receives an inverted version of the Q ouiput of fip-fiop
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1122. Flip-flop 1122 is clocked on ECLK, and its D input is
connected to the output of an AND gate 1124, ene inpw of
which receives NOFRAME (FI1G. 10} and the other input of
which receives T1. NOHOLD] therefore has the effect of
delaying a negative transition in the oulpul of NOR gate
1118 until after STOP# has been triggered on the PCl-bus
118.

The output of NOR gate 1118 is connected 1o the 1 input
of an ECLK-clocked flip-flop 1126, the Q output of which
carries HOLDO and drives the host bus HOLD signal.

D. Circuitry 10 Generate TRDY# (LSTART1)

The system controller 116 includes a state machine which
controls the PCI-bus 118. The state machine itself forms no
part of the invention, except thal it is qualified by an
LSTART1 signal which is pertinem 1c the invention.
LSTART1.1s initialiy low, permitting assertion of EADS# at
the beginning of a PC] masier burst transaction. LSTART1
goes high only in response 1o HITM# sampled high
(negated) a1 the appropriate time, or il HITM# was sampled
asserted (low), on the last LBRDY# of the L1 cache wrile-
back cycle. When LSTART1 goes high, it allows the PCI
state machine 10 generate TRDY# in the normal course.

FIG. 12 is a schematic diagram of circuitry in the svsiem
controller 116 which generates the LSTART1 signal. Refer-
ring 1o F1G. 12, the circuitry comprises a four-input NOR
gate 1202, one input of which is connected 1o the oulput of
a NAND gate 1204 and a second input of which is connected
to the output of NAND gate 1206. NAND gates 1204 and
1206 will output a logic zero in the second or third HCLX
cycie after assertion of EADS#, respectively, depending on
HITMS, only il the host processing subsystem 110 has not
asserted HITM# by that 1ime. There are additional gualifi-
cations to the 1iming for the HITM# 1est in NAND gate
1206, bul these are unimportant for an understanding of the
invention. A third input of NANID gate 1202 is connecled to
the output of another 1wo-inpul NAND gate 1208, the two
inputs of which are connected 10 receive the DISBOFD
signal (F1G. 11) and an LBRDY__1 signal. DISBOFD 1s, it
will be recalled, a precursor 10 negating HOLD 1o the host
processing subsystem 110 after sampling HI'I'M3# asserted,
and remains asserted until the fourth BRDY# of 1he write-
hack cvcle. T.BRDY__1 is another signal which goes high a1
a time which is related 10 the fourth BRDY# of the write-
back cyele. Thus if the current L1 cache inguiry cyele
yielded HITM# asserted, then neither NANID gates 1204 or
1206 go low, bul NAND gate 1208 goes low al the end of
the write-back cvcle.

The ouipul of NAND gate 1202 is connected 10 the D
input of a flip-flop 1210, the QN output of which is con-
necled back 1o the fourth inpul of NAND gae 1202.
Flip-flop 1210 is clocked on CLK. Accordingly, once the Q
output of flip-flap 1210 goes high, either as a resull of
JITM# negated afier an L1 cache inquiry cvele or as a result
of complction of an 1.1 cache write-back cyvcle because the
desired line ol data was cached moedified in the 11 cache, the
Q output of flip-flop 1230 will remain high until cleared. The
inverting clear input of fip-flop 1210 is connected 1o the
output of an AND gate 1212, which can clear flip-flop 1210
in response lo a number of different conditions. The only
condition pertinent 10 the present invention, however, is
assertion of 1.STARTIB (complement of IT.STARTI). Thus,
once the process 10 assert LSTARTY begins, flip-flop 1210
remains latched until LSTARTI has actually been asserted.

The Q output of #lip-Hop 1210 is connected 10 one inpul
of a four-inpu NAND gate 12314, 1he ourpu of which is
designated 1.STRT_TB. NAND pate 1214 qualifies
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LSTRT_TB with a PIRD signal and with the output of a
NOR gate 1216. On a read access, PIRD forces LSTRYT _TB
10 awalt asseriion of IRDY# on a PCl master read access.
The NOR gate 1216 forces LSTRT_TB to wait for the CPU
1o relinquish the host bus (HLDA).

LSTRT_TB is connected to one input of a NOR gate
1218, the other input of which receives a signal which can
be assumed herein 10 remain low at all times pertinent o the
invention. The output of NOR gate 1218 is connecled to the
D input of another flip-flop 1220, which is clocked on
LCLKI. The inverting clear input of flip-flop 1220 is con-
nected 10 the same outpul of AND gate 1212 which clears
flip-flop 1210. The QN output of flip-flop 1220 is NORed
with an inverned version of a Q output of flip-flop 1220 10
produce an LSTRTI1 signal. LSTRT1 is inverted by an
inverier 1222 and fed back as LSTRTI1B 1o a fourth input of
NAND gate 1214, Thus, afier qualifications, LS TR11 goes
high, synchronously with PCICLK, after HITM#=1 or alter
HITM#=0 and the write-back cvcle is complete.

LSTRT1 is optionally delayed by one further PCICLK
cycle by thip-flop 1224 and multiplexer 1226, depending on
a programmable register bit DLLSTART, and the result
(designated 1.STRT) is connected to one inpul of a NAND
gate 1228. The other input of NAND gate 1228 receives an
LST_TGR signal, described below. The output of NAND
gate 1228 is connecied to one input of a three-input NAND
gale 1230, the other two inputs of which are connecled to (he
ouiputs of two other respective NAND gates 1232 and 1234.
The output of NAND gate 1230 is connected 10 the D input
of another LCL Kl-clocked flip-flop 1236, the QN output of
which, designated LSTARTMB, is fed back to inputs of the
NAND gates 1232 and 1234. The other inpuls of NAND
gates 1232 and 1234 are unimportant for an understanding
of the invention, and therefore are not described herein.

The Q output of flip-flop 1236, LSTARTM, 1s connected
o one input of a NOR gate 1238, 1the outpul of which is the
LST_TGR signal fed back to NAND gate 1228, The other
input of NOR gate 1238 receives the LSTART] signal as
described hereinafter. LSTARIM is also connecied to one
input of another NAND gate 1248, the other input of which
receives SYSMMD (high when the specified address is
within the DRAM 128 address space). SYSMEMD is alsc
connecled 1o one input of a three-input NAND gate 1242, a
second input of which receives LSTARTL. The outpuis of
NAND gates 1240 and 1242 arc connccled 1o tespeclive
inputs of another NAN]Y gate 1244, the output of which is
connected 10 the D input of an LCLKIl-clocked flip-fiop
1246. The Q outpul of flip-flop 1246 forms the L.STARTI]
signal, comnected as previously described 1o one input of
NOR gatc 1238 and 10 onc input of NAND gatc 1242. The
QN outpul of flip-flop 1246 is 1the LSTARTI B signal which
is fed hback 10 ANT gate 1212 as previously described. It can
be seen that afier LSTRT causes LSTARTM 10 go high,
LST_TGR will go low. causing LSTARTM 10 2o low apain
in the next PCICLK cvele. L8T__TGR will not go high at
this 1ime, however, because when LSTARTM weni high, 11
caused L.STARTI 10 also go high in the next PCICLK cycle,
thereby maintaining 1.8T__TGR low.

LSTARTI is fed back inmo NAND gaie 1242, thereby
latching LSTARTI in 2 high staie until the third input of
NAND gate 1242 poes low. This inpul of NAND pae 1242
is connected 10 the outpul of a NANT gate 1248, one inpul
of which can be assumed 10 remain high, and 1he other inpul
of which is connceted 10 the output of a NAND gaic 1250,
One input of NAND gate 1250 is connected 1o the output of
an OR gate 1232, which receives TRDYB (equivalent 10
TRDY#)and IRDY] (egquivalent 10 TRDY#). The ather input
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of NAND gate 1256 is connecied to the outpul of ap OR gale
1254, one iput of which receives MYRAM (equivalent 1o
the inverse of FRAME#) and the other input of which
receives IRDY (eguivaient 1o the inverse of IRDY#). Thus
the third input of NAND gate 1242 will go low when the firsi
PCl 1ransfer takes place {TRDY# and IRDY#, both
asserted), or when the PCI master 138 1erminates the bursi
(FRAME# and IRDY#, both negated), whichever occurs
first. In either of these situations. T.START1 will go low.
Flip-flops 12140 and 1220 will also be cleared at this time due
1o the feedback of LSTARTI1B through AND gate 1212 10
the inverting clear inpuls ol these tlip-fiops.

Note that LSTART] is further delayved from allowing the
PCI siate machine 1o proceed. by other circuitry in the
svstem controller 116, until any predictive snoop then taking
place has had a chance 10 finish. This can be the case when
the first data unit that was accessed as part of burst transfer
was 1the second-io-last data unit 1o s line of secondary
memory, as described above with respect 10 FIG. 7. It cap
also be the case if the first dala unit was the third-1c-last data
unit in a linc of sccondary memory, where the system
controller 116 has been programmed 1o sample HITM# on
the second rising edge of HCLK after EATIS# was asserted.

The foregoing description of preferred embodiments of
the presenl invention has been provided for the purposes of
illustration and description. It is not intended 1o be exhaus-
live or to limit the invention 1o the precise forms disclosed.
Obviously, many modifications and variations will be appar-
ent to practitioners skilled in this art. The embodiments were
chosen and deseribed in order 1o best explain the principles
of the invention and its pracitical application, ihereby
enabling others skilled in the art 10 understand the 1pvention
for various embodiments and with various modifications as
are suited 10 the particular use contemplated. It is intended
that the scope of the invention be defined by the following
claims and their eguivalents.

We claim:

1. A methaod for reading data in a burst from a memory Lo
a PCI masler in response 10 a burst read access by said PCI
master, said burst read access 1denttving a slariing address
in a line Ln of said memory, in a systern which includes a
CPU having a first level cache, comprising the sieps of:

reading data from said memory according to said bursi

read access; and

simultancously performing an inguiry cvcle of line Ln+1

in said first level cache.

2. A method accerding 10 claim 1, further comprising the
step, ol performing an mquiry cvele of line Ln in said first
level cache prior 10 said step of reading dala according 1o
said burst read access.

3. A method for transferring data in a burst between a PCH
master and a memory in response 1o an access of said
memory by said PCI master, in a svsiem which ncludes a
CPLU having a first level cache, said access identitving a
starting address, said first level cache having a first cache
Jinec 10 which a first linc of said memory containing said
starting address can be mapped, said first level cache further
having a next sequential line 10 which a next sequential line
of said memory sequentaliv bevond the first line of said
memory can be mapped, comprising the steps of:

snooping said first level cache Tor said first cache line:

transferring data according 1o said access; and

aftcr completing the snecop of said first cache line, auto-

matically snooping said first level cache for said next
sequential cache line without waiting for said transfer
10 reach the end of said first line.
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4. A method according to claim 3, wherein said CPU has
a host address bus and an EADS# signal input and performs
a snoop of said first level cache in response io assertion of
said EADS¥ signal,

wherein said step of snooping said first level cache for

said first cache line comprises a step of driving said
starting address [rom said PCl masier onto said host
address bus and asserting said EADS# signal.

5. A method according 1o claim 3, wherein said access 1s
a wriie access and wherein said snoop of said first level
cache for said first cache line generates a cache hit to a
modified line of said first cache, further comprising the steps
ofl:

wriling back data from said first cache line 10 said

memory prior 1o said step of transferring data according
10 sald access: and

invalidating said first cache line in said first level cache.

6. A method according to claim 3, wherein said access is
a2 wnle access and wherein said snoop of said first level
cache for said first cache line generates a cache hit 10 an
unmodified line of said first cache, further comprising the
step of invalidating said first cache line in said first level
cache.

7. A method according to claim 3, wherein said access is
aread access and wherein said snoop of said first level cache
[or said firs1 cache line generates a cache hit 10 a modified
line of said first cache, further comprising the step of wriling
back data from said first cache line 1o said memory prior 1o
said step of transferring data according to said access.

8. A method according 1o claim 7, wherein said system
further includes a second level cache.

9. Controller apparatus for a computler sysiern which
includes a memory, 2 PCI master and a processor having a
firs1 level cache, said controller apparatus comprising ¢ir-
cuilry which, in response to a burst read access initiated by
said PCI master which identifies a starting address in a line
Ln of said memory, reads data from said memory according
1o said burst read access and simultaneously performs an
inquiry cvele of line Lo+l in said first Jevel cache.

16. Apparatus according 10 claim 9, wherein said circuitry
further performs an inquiry cyvcle of line Lo in said first level
cache in response to said burst read access and prior 1o
rcading data from said memory according to said burst rcad
access.

11. Apparatus
said memory.

12. Apparatus
said PC1 master.

13. Apparatus
said processor.

14. Apparatus according 10 claim 9, wheremn said memory
comprises a cache memory.

15, Apparatus according to claim 9, wherein said memory
comprises secondary memory.

16. Apparatus zccording to claim 15, wherein said
memory further comprises a cache memory.

17. A computer svsiem comprising:

a memory subsysiem;

a PCT master:

a processor having a first level cache: and

comroller apparatus including crcullry which, in

response 10 a burst read access itiated by said PCI
masler which idemifies a starung address in a line Ln
of suid memory subsvsiem, reads data from said
memory subsystem according to said burst read access
and simuelliancously performs an inquiry cvele of line
1.n+1 in said first level cache.

according 10 claim 9, further comprising
according to claim 9, further comprising

according to claim Y, further comprising
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18. Controller apparatus for a computer system which
includes a memory, a PCl master and a processor having a
first level cache, said controller apparatus comprising cir-
cuitry which, in response 10 a burst read access initiated by
said PCl master which identifies a starting address in a
starting line Lo of said memory, sncops said first level cache
for said starting line; transfers dala with said memory
according 1o said burst read access; and after completing the
snoop of said first level cache for said starting line, auto-
matically snoops said first leve! cache for a next sequential
line after said starting line without waiting for said transfer
o reach the end of said starting line.

19. Apparatus according to claim 18, further comprising
said memory.

20. Apparatus according to claim 18, further comprising
satd PCI masier.

21. Apparatus according to claim 18, further comprising
said processor.

22. Apparatus according to claim
memory comprises a cache memory.

23. Apparatus according to claim
memory comprises secondary memory.

24, Apparatus according to claim 23, wherein said
memory further comprises a cache memory.

25. Apparatus according ¢ claim 18, wherein said pro-
cessor has a host address bus and an EADS# signal input and

18, wherein said

18, wherein said
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performs a snoop of said first level cache in response to
assertion of said EADS# signal,

and wherein said controller apparatus snoops said first
level cache for said siarting line by driving said siarting
address from said PC1 master onto said host address
bus and asserling said EADS# signal.

26. A computer syslem comprising:

a memory subsvsiem;

a PCI master:

a processor having a first level cache; and

controller apparatus including circuilry which, in
response 10 a burst rcad access initiated by said PCI
master which identifies a starting address in a starting
line Ln of said memory, snoops said first Jevel cache for
said siarting line; iransfers data with said memory
according 1o said bursl read access; and after compiet-
ing 1he snoop of said first level cache for said starting
line, automatically snoops said first level cache for a
next sequential line alter said starniing line without
waiting for said transter 1o reach the end of said stariing
hine.



