452321v1

Case 5:01-cv-01974-RRR-DEP Document 43

CFFICE OF UNIVERSITY COUNSEL

James J. Mingle (Bar Roll No. 508993)
Nelson E. Roth (Bar Roll No. 102486)
300 CCC Building, Garden Avenue
Cornell University
Ithaca, New York
Tel: 607-255-5124

14853

SIDLEY AUSTIN BROWN & WOOD LLP
Edward G. Poplawski
David T. Miyamoto
Denise L. McKenzie

555 West Fifth Street,
Los Angeles, California
Tel: 213-896-6000

40" Floor
90013

Attorneys for Plaintiffs and
Counterdefendants
Cornell University and

Cornell Research Foundation, Inc.

Filed 09/06/02 Page 1 of 35 P

7 /

W""‘"“‘
US. DISTRICT COURT - N:D. GF Y.

“FIILED
SEP 062002'!

oo,
e :
2

AT 0'CLOCK
Lawrence K. Baerman, Qerk - Syracuse

IN THE UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT OF NEW YORK

__________________________________ X
CORNELL UNIVERSITY, a non-profit *
New York corporation, and CORNELL
RESEARCH FOUNDATION, INC., a non- *
profit New York corporation,
*
Plaintiffs,
*
V.
*
HEWLETT-PACKARD COMPANY, a
Delaware corporation, *
Defendant. *
__________________________________ X

Plaintiffs,

Case No.01-CV-1974 NAM DEP
FIRST AMENDED COMPLAINT FOR

INFRINGEMENT OF UNITED STATES
PATENT NO. 4,807,115

DEMAND FOR JURY TRIAL

Cornell University and Cornell Research

Foundation, Inc., bring this civil action against Hewlett-

Packard Company and hereby aver and complain as follows:

ORIGINAL

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 2 of 35

Averments Common To All Claims For Relief

I. Jurisdiction And Venue

1. This action is for injunctive relief and damages
and arises under the United States patent laws (35 U.S.C.
§§ 271, et seq.). This Court has subject matter jurisdiction

under 28 U.S.C. §§ 1331 and 1338.

2. Venue is proper in this judicial district under

28 U.S.C.§ 1400 (b).

II. The Parties

A. Plaintiffs Cornell University and the Cornell Research

Foundation, Inc.

3. Plaintiff Cornell University (“Cornell”) is an
educational institution established in 1865 and is incorporated
under the laws of the State of New York, with its main campus
and place of business in Ithaca, Tompkins County, New York.
Cornell’s charter is contained at Article 115 of the New York

Education Law.

4. Plaintiff Cornell Research Foundation, Inc.
(“Cornell Research”) is a New York non-profit corporation,
having its principal place of business at 20 Thornwood Drive,
Suite 105, Ithaca, New York 14850. Cornell Research is a wholly

owned subsidiary of Cornell University whose mission is to

452321vl

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 3 of 35

manage the intellectual property on behalf of Cornell
University, including obtaining patent, trademark or copyright
protection where appropriate and licensing intellectual property

for commercial development and use.

B. Defendant Hewlett-Packard Company

5. On information and belief, Defendant Hewlett-—
Packard Company (“Hewlett-Packard”) is a Delaware corporation,
having its principal place of business at 3000 Hanover Street
Palo Alto, California 94304. Hewlett-Packard regularly conducts
and transacts business in New York, throughout the United States
and within this judicial district, and as set forth in
paragraphs 16-21 below, has committed, and continues to commit,
tortious acts of patent infringement within and outside of
New York and within this judicial district. Hewlett-Packard
further has engaged, and continues to engage, in continuous,
permanent, and substantial activity in New York. Hewlett-
Packard is licensed to do business in New York and has one or

more places of business in this judicial district.

III. The Patent In Suit

6. On February 21, 1989, United States Patent
No. 4,807,115 (“the ‘115 patent”), for an instruction issuing
system and method for processors with multiple functional units,

was duly and legally issued to Cornell Research, as assignee of

—-3-

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 4 of 35

the name inventor, Hwa C. Torng who resides in California. A
true and correct copy of the ‘115 patent is attached hereto as

Exhibit 1 and is incorporated by reference.

7. Since the date of the issuance of the ‘115
patent, Cornell Research has been and still is the owner of all
right, title and interest in and to the ‘115 patent by
assignment, including the right to sue and recover any and all

damages for infringement and obtain injunctive relief.

IV. Infringement by Hewlett-Packard

8. As more fully described below, Hewlett-Packard
has been and still is making, offering for sale, selling, using,
importing into the United States and otherwise making available
products, systems and apparatus that infringe the ‘115 patent
(collectively, “the unauthorized activities”), all without the

authorization of Cornell and Cornell Research or either of them.

9. One such product, system or apparatus that falls
within the unauthorized activities is Hewlett-Packard’s CPU
known as the PA-8000. A true and correct copy of a 1995 IEEE
paper authored by Doug Hunt, entitled “Advanced Performance
Features of the 64-bit PA-8000,” is contained in Exhibit 2 and
is incorporated by reference. According to Hewlett-Packard,
Exhibit 2 contains an accurate and complete description of the

PA-8000. A true and correct copy of a 1996 IEEE technical paper

-4

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 5 of 35

digest authored by Neela Bhakta Gaddis, et al and relating to
the PA-8000 is contained in Exhibit 3 and is incorporated by
reference. According to Hewlett-Packard, Exhibit 3 contains an

accurate and complete description of the PA-8000.

10. In addition to the PA-8000, other products,
systems or apparatus that fall within the unauthorized
activities are Hewlett-Packard CPU’s known as the PA-8200, the
PA-8500, the PA-8600, the PA-8700, the PA-8800, the PA-8900 and

Mako.

11. Other products, systems, or apparatus that fall
within the unauthorized activities are those in which Hewlett
Packard has incorporated its aforementioned CPU’s in its line of
servers and workstations. Sub-products, systems and apparatus
include, but are not limited to, the rp2430 HP Server, the
rp2470 HP Server, the rp5430 HP Server, the rp5470 HP Server,
the rp7400, the rp7410 HP Server, the rp8400 HP Server, the e-
3000 HP Server, the Superdome HP Server, the rp2450 carrier-
grade HP Server, the rp5470 carrier-grade HP Server, the b2600
HP Workstation, the c¢3600 HP Workstation, the ¢3650 HP
Workstation, the ¢3700 HP Workstation, the 35600 HP Workstation,

the 36000 HP Workstation, and the j6700 HP Workstation.

12. Hewlett-Packard has been and still is performing,

implementing and carrying out processes, methods or systems that

—-5-

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 6 of 35

infringe the ‘115 patent, all without the authorization of
Cornell and Cornell Research or either of them. Such
unauthorized conduct of Hewlett-Packard includes, with
limitation, performing, implementing and carrying out
infringement of the ‘115 patent with the CPUs identified in
paragraphs 9-10, above and the products identified in paragraph

11, above.

13. Hewlett-Packard has also offered for sale, sold,
made, used and otherwise made available, and continues to offer
for sale, sell, make, use and otherwise make available,
products, systems and apparatus (including, without limitation,
the CPUs identified in paragraphs 9-10, above and the products
identified in paragraph 11, above), the operation of which
necessarily infringes the ‘115 patent, all without the

authorization of Cornell and Cornell Research or either of them.

14. Hewlett-Packard has been and still is offering
for sale, selling, making, using and otherwise making available
products, systems and apparatus for use in carrying out,
performing or practicing a process or method of the ‘115 patent,
and which constitute a material part of the invention of the
‘115 patent, knowing the same to be especially made or specially
adapted for use in an infringement of the ‘115 patent, and not a

staple article or commodity of commerce suitable for substantial

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 7 of 35

non-infringing use, all without the authorization of Cornell and
Cornell Research or either of them. Such products, systems and
apparatus include, without limitation, the CPUs identified in
paragraphs 9-10, above and the products identified in paragraph

11, above.

15. On information and belief Hewlett-Packard has
been and still is actively inducing one or more third parties to
infringe the ‘115 patent, all without the authorization of

Cornell and Cornell Research or either of them.

16. Hewlett-Packard has both actual and constructive
notice of the ‘115 patent and of its infringement of the ‘115

patent.

17. On information and belief, the acts of Hewlett-—
Packard set forth above have been willful, wanton and

deliberate.

18. The harm to Cornell and Cornell Research
resulting from the above acts of Hewlett-Packard as set forth
above is irreparable, continuing, not fully compensable in money
damages and will continue unless Hewlett-Packard is enjoined by

this Court.

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 8 of 35

First Claim For Relief
(Direct Infringement Of The ‘115 Patent)
19. Cornell and Cornell Research incorporate by
reference in this claim for relief the averments contained in

paragraphs 1-20 above.

20. The acts of Hewlett-Packard as described above
constitute direct infringement of the ‘115 patent in violation

of Section 271 (a) of Title 35, United States Code.

Second Claim For Relief
(Inducing Infringement Of The ‘115 Patent)
21. Cornell and Cornell Research incorporate by
reference in this claim for relief the averments contained in

Paragraphs 1-20 above.

22. The acts of Hewlett-Packard as described above
constitute inducing infringement of the ‘115 patent in violation

of Section 271 (b) of Title 35, United States Code.

Third Claim For Relief
(Contributory Infringement Of The ‘115 Patent)
23. Cornell and Cornell Research incorporates by
reference in this claim for relief the averments contained in

Paragraphs 1-20 above.

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 9 of 35

24. The acts of Hewlett-Packard described above
constitute contributory infringement of the ‘115 Patent in

violation of Section 271(c) of Title 35, United States Code.

Prayer For Relief
WHEREFORE, Cornell and Cornell Research pray for

judgment as follows:

1. A preliminary and permanent injunction against
continued infringements of the ‘115 patent by Hewlett-Packard
and any and all persons acting in privity or concert with it or

otherwise controlled by it.

2. An award to Cornell and Cornell Research of their

damages and injuries caused by Hewlett-Packard’s acts.

3. An adjudication that this is an “exceptional

case” and, accordingly,

i. That the damages awarded Cornell and Cornell
Research against Hewlett-Packard be increased three {3) times

pursuant to 35 U.S.C. § 284, and

ii. That Cornell and Cornell Research be awarded

their reasonable attorneys’ fees pursuant to 35 U.S.C. § 284.

4. An award of prejudgment and postjudgment interest

on any and all damages awarded to Cornell and Cornell Research.

452321vl

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 10 of 35

5. Any other relief that this Court may deem

appropriate or that is otherwise proper.

DATED: September 5, 2002

DATED: September 5, 2002

Respectfully Submitted,

OFFICE OF UNIVERSITY COUNSEL

By:

Dctsorn & Botbe)

James J. Mingle (BRN 508993)
Nelson E. Roth (BRN 102486)

300 CCC Building, Garden Avenue
Cornell University

Ithaca, New York 14853

Tel: 607-255-5124

SIDLEY AUSTIN BROWN & WOOD LLP

By:

ﬁ“(’w{\(7 //ﬁé/’&f//u—;'zz—/{?/ {/, /f/f)

SIDLEY AUSTIN BROW& & WOOD LLP
Edward G. Poplawski

David T. Miyamoto

Denise L. McKenzie

555 West Fifth Street, 40" F1
Los Angeles, California 90013
Tel: 213-896-6000

Fax: 213-896-6600

_.10__

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 11 of 35

JURY TRIAL DEMAND

Plaintiffs, CORNELL UNIVERSITY and CORNELL RESEARCH

FOUNDATION, INC., hereby demand trial by jury.

Respectfully Submitted,

DATED: September 5, 2002 OFFICE OF UNIVERSITY COUNSEL

7 : -7 ;
By: 7Zc /J{L ((%»'—f/u (S‘Jb‘)
James J. Mingle (BRN 508993)
Nelson E. Roth (BRN 102486)
300 CCC Building, Garden Avenue
Cornell University
Ithaca, New York 14853
Tel: 607-255-5124

DATED: September 5, 2002 SIDLEY AUSTIN BROWN & WOOD LLP

By: /)(Z{,C"."'C- 7 VW[’M}/(w-.w"/j; - @f/)

SIDLEY AUSTIN BROW& & WOOD LLP
Edward G. Poplawski

David T. Miyamoto

Denise L. McKenzie

555 West Fifth Street, 40™ F1
Los Angeles, California 90013
Tel: 213-896-6000

Fax: 213-896-6600

-11-

452321v1

452321v1

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 12 of 35

CERTIFICATE OF SERVICE

I hereby certify that on this 5" Day of September,
2002, I caused true and correct copies of the foregoing FIRST
AMENDED COMPLAINT FOR INFRINGEMENT OF UNITED STATES PATENT NO.
4,807,115 to be served by facsimile and Federal Express, postage
prepaid, in a sealed envelope addressed to

Defendant/Counterclaimant’s attorneys, as follows:

John Allcock, Esq.

Gray Cary Ware & Freidenrich
LLP

401 B Street, Suite 2000

San Diego, CA 92101-4240
Facsimile: 619-699-2701

Robert A. Barrer, Esqg.
Lawrence M. Ordway, Jr.
Hiscock & Barclay, LLP
Financial Plaza

P O Box 4878

Syracuse, NY 13221
Facsimile: 315-425-8544

v

[>4

Sarah J. Heidel

(]
7

-12-

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 13 of 35

EXRHIBIT 1"

United States Patent 9
Torng

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 14 of 35

(111 Patent Number:
(¢5] Date of Patent:

4,807,115
Feb. 21, 1989

(54] INSTRUCTION ISSUING MECHANISM FOR
PROCESSORS WITH MULTIPLE
FUNCTIONAL UNITS

Hwa C. Torng, Ithaca, N.Y.
Cornell Research Foundation, Inc.,

(75] Inventor:
(73] Assignee: :

[thica, N.Y.
(21] Appl No. 112,020
[22] Filed: Oct. 14, 1987

Related U.S. Application Data
[63] Continuation of Ser. No. 539,854, Oct. 7, 1983, aban-

doned.
{51] Imt. CL* . . GO6F 13/00
[52] U.S. CL ettt rrsecasseeesesenssssases 364/200
[58] Field of Search ... 364/200 MS File, 900 MS File
(56 References Cited

U.S. PATENT DOCUMENTS

3,297,999 1/1967 Shimabukuro
3,346,851 10/1967 Thorton
3,462,744 8/1969 Tomasulo et al.
3,718,912 2/1973 Hasbrouck et al
3,962,706 6/1976 Dennis

4,050,058 9/1977 Garlic ..
4,128,880 12/1978 Cray
4,179,734 12/1979 O'Leary ...
4,197,589 4/1980 Cornish
4,466,061 8/1984 De Santis

OTHER PUBLICATIONS

R. M. Tomasulo, “An Efficient Algorithm for Exploit-
ing Multiple Arithmetic Units”, IBM Journal, Jan.
1967.

R. M. Keller, “Look-Ahead Processors”, Computing
Surveys, vol. 7, No. 4, Dec. 1975.

J. W. Bowra and H. C. Torng, “The Modeling and

Design of Multiple Function-Unit Processors”, IEEE
'I‘Qr;.zsactions on Computers, vol. C-25, No. 3, Mar.
1976.

Siewiorek, D. P. “Computer Structures: Principles and
Examples”, 1982, pp. 278, 288-292.

H. C. Torng et al,, “An Instruction lssuing Approach to
Enchancing Performance in Multiple Functional Units
Processors”, /EEE Transactions on Computers, vol.
C-35, No. 9, Sep. 86.

J. E. Thornton, “Parallel Operation in the Control
Data”, 4 FIES Proceedings, vol. 26, pt. 2, 1964, pp.
489-496.

G. Beil et al., “The Cray-1 Computer System”, Comm.
of the ACM, vol. 21, No. 1, Jan. 1978.

V. P. Srinii and J. F. Asenjo, “Analysis of Cray-1S
Acrchitecture”, ACM, 1983.

Primary Examiner—Raulfe B. Zache

Assistant Examiner—Florin Munteanu

Attorney, Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak & Seas

{57 ABSTRACT

An instruction issuing mechanism for boosting through-
put of processors with multiple functional units. A Dis-
patch Stack (DS) and a Precedence Count Memory
(PCM) are employed which allow multiple instructions
to be issued per machine cycle. Additionally, instruc-
tions do no have to be issued according to their order in
the instruction stream, so that non-sequential instruction
issuance occurs. In this system, multiple instruction
issuance and non-sequential instruction issuance policies
enhance the throughput of processors with multiple
functional units.

19 Claims, 1 Drawing Sheet

FROM FUNCTIQNAL
FUNCTIONAL UNIT
Ulll‘l‘ srnfus
PRECEDENCE RESERVATION
“CE?‘UO"RTY CIRCUIT
0P 12
[» 4
a DISPATCH
STACK ISSUE

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 15 of 35

U.S. Patent Feb. 21, 1989 4,807,115
— . _PROCESSOR _ _ _
FIG.IA i
PRIOR ART | |
| 1 |
|
MEMORY :) |
f l
; EY |
1
FIG .18 prioR art e _
REGISTER INTERCONNECTION —
BANKS NETWORK |
|
' -
TOP
Top 10, AD, FO, FI, fO
1, %0, F2, 7. 2
2. AD, FO, F2, FO
' F1G.2A FIG.28 13, AD, F4, F5, F4
! DISPATCH DISPATCH 4, AD, FB, F7. F6
| STACK STACK 15, AD, F4, F6, F4
i 16, AD, FO, F4, FO
FROM FUNCTIONAL
INSTRUCTIONS FUNCTIONAL UNIT
u»ln STATUS
PRECEDENCE RESERVATION
e CIRCUIT
oP [2
[» ¢
FIG.3 p DISPATCH
. STACK ISSUE

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 16 of 35

4,807,115

1

INSTRUCTION ISSUING MECHANISM FOR
PROCESSORS WITH MULTIPLE FUNCTIONAL
UNITS

This is a continuation of Ser. No. 539,854, filed on
Oct. 7, 1983, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to computer architecture and
specificaily to an instruction issuing mechanism capable
of detection of concurrencies in an instruction stream
and issuing multiple instructions within a given machine
cycle,

The emergence of VLSI technology has stimulated.

research into the use of execution structures employed
by processors having multiple functional units. Such
high performance processors are generally partitioned
to two sections, an instruction unit (IU) and an execu-
tion unit (EU) such is illustrated in FIG. 1A. The [U
and EU communicate with each other, with the IU
fetching instructions from a memory and formulating
and decoding those instructions. The IU is also em-
ployed to fetch operands if necessary. Additionally, the
IU sends arithmetic/logic commands, that is, the de-
coded instructions together with a requisite operand to
the EU. This invention relates specifically to an instruc-
tion issuing mechanism enhancing the throughput, that
is, the number of instructions executed per unit of time
of the EU.

Within the prior art; processors employing multiple
functional units have been designed and implemented.
Typical are the CRAY-1 and the IBM 360/91. Refer-
ence is made to, R.M. Russell, “The CRAY-1 Com-
puter System” 4.CM. Communications, 21: 1, January,
1978, pp. 63-72, and to Srini et al, “Analysis of the
CRAY-1S Architecture”, 4. C. M., 10th Symposium on
Computer Architecture, June, 1983, pp. 194-206. Refer-
ence is also made to R. M. Tomasulo, “An Efficient
Algorithm for Exploiting Multiple Arithmetic Units”,
IBM Journal, 11: 1, January, 1967, pp. 25-33, for de-
scription of the IBM 360/91 system.

In accordance with such EU structure employing
multiple functional units as shown in FIG. 1B, a bank of
registers is installed in the EU to act as a bridge between
the fast functional units (F.U.) and a slow main memory.
The functional units in the EU perform arithmetic/logic
operations on various data types, it being noted that the
units are not necessarily identical. For example, reserva-
tions stations and a common dats bus can aiso be incor-
porated. (R. M. Tomasulo, supra). Thus, some of the
functional units may be virtual. The registers supply
operands to the fanctional units and receive results from
them while at the same time loading from and writing
into the main memory.

The IU loads sequences of instructioas into an in-
struction stack from which instructions are issued to
and then executed by the functional units. Within prior
art systems employing mulitiple functional units, at most
one instruction is issued from the instruction stack dur-
ing every machine cycle. As a result, the instructions
execution rate of such an EU structure cannot be
greater than the inverse of the machine cycle time (gen-
erally expressed in seconds). Reference is made to R. M.
Keller, “Look-Ahesd Processors”, Computing Surveys,
7: 4, December, 1978, pp. 175-195, and J. W. Bowra, et
al, “The Modeling and Design of Multiple Function
Units Processors”, JEEE Transactions on Computers,

25

35

45

55

60

63

2
CZS: 3, March, 1976, pp. 2102-2210. Specific reference
is also made to Srini et al, supra, which indicates that the
CRTA.leS system while well balanced suffers from a
major drawback The authors specifically note that the
instruction issuing mechanism is a major bottleneck in
the CRAY-1S architecture.

. SUMMARY OF THE INVENTION

Given the deficiencies in prior art computer systems
employing multiple functional units, it is an object of
the present invention to define an instruction issuing
mechanism which is capable of detecting concurrencies
in an instruction stream and issuing multiple instructions
within a given machine cycie and which may be ex-
tended to modify the instruction stream.

It is a further object of the inventon to define an
arithmetic engine implemented in a VLSI environment
that substantiaily enhances the throughput of such a
processor.

Yet another object of this invention is to formulate
and define an instruction issuing mechanism for arith-
metic engines utilizing multiple functional units to
achieve high instruction execution rates.

A further object of this invention is to define a dis-
patch stack component of the instruction issuing mecha-
nism operating in a FIFO mode and detecting instruc-
tions that can be issued at esch machine cycle.

Still another object of this invention is to define a
precedent count memory component of the instruction
issuing mechanism to assign alpha- and beta-values for
cach instruction being loaded into the dispatch stack
and to assign general purpose registers to operands to
enhance possible execution concurrencies.

These and other objects of the present invention are
achieved by an instruction issuing mechanism which
detects concurrencies and issues multiple instructions
within a given machine cycle. This invention will be
described in greater detail by referring the attached
drawings and the description of the preferred embodi-
ment that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is 2 schematic drawing of a black diagram of
a processor partitioned into an instruction unit and an
execution unit.

FIG. 1B is a schematic drawing of a block diagram of
an arithmetic structure utilizring multiple functional
units, illustrating the data flow section;

FIG. 2A is a schematic diagram showing the dispatch
stack;

FIG. 2B is a schematic diagram illustrating the se-
quence of instructions deposited into the dispatch stack:
and

FIG. 3 is a block diagram of an instruction issuing
mechanism in accordance with the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIGS. 1-3, the instruction format uti-
lized by the present invention will be considered first.
As noted herein, the processor is partitioned into two
units, the instruction unit (TU) and the execution unit
(EU). The TU fetches, formulates, decodes and then
forwards arithmetic/logic instructions to the EU. A
known format, employed in the CRAY-! and other
systems is as follows:

OP, 8L, 82D 1)

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 17 of 35

4,807,115

3

where, .

D denotes the register receiving the resuit of the

arithmetic/logic operation;

S1 specifies the register which provides the first of

two operands, or the only operand called for;

S2 specifies the register which yields the second of

the two operands required; and

OP denotes the arithmetic/logic operation to be per-

formed. In this invention, we consider store regis-
ter and load register as arithmetic/logic operations.

As a result of this format,

D«([S1]OP(S2]. @
If the registers D and S1 are identical, the instruction
takes the same form as instructions for the execution
units in the IBM 360/91.

The dispatch stack configuration in accordance with
the present invention is shown in FIG. 2A. The IU
formulates and forwards sequences of 3-register arith-
metic/logic instructions as defined herein to the EU.
That is, the instruction format utilizes registers D, S1
and S2. These sequences are deposited into a dispatch
stack (DS) shown in FIG. 2A. The dispatch stack oper-
ates in a first-in first-out (FIFO) fashion. Each stack cell
is implemented with a register.

In accordance with known FIFO processing, instruc-
tions in the format specified by (1) are sent by the IU to
the bottom cell of the DS. This is indicated by the in-
struction arrow in F1G. 2A. Instructions are then ad-
vanced upward in the stack as instructions in an instruc-
tion stream are loaded in the DS from the bottom. As a
result, when the DS is full in a steady state, the top cell
always contains the instruction in the head of the in-
struction stream. This can be illustrated as follows:

Smag+81+21+83+84+ 04+ 86+aT Q)

The I'U will then fetch operands ag- - -, a7and deposit
them into registers FQ, - - -, F7, respectively. Addition-
ally, the IU will deposit the following sequence of in-
structions into the DS.

8
2

—
—

B
5555555

[N
<

FRFE
ARFFAN3
FR323
3332333

where AD indicates an “ADD"” operation. It is recog-
nized that the instruction sequence set forth in (4) is
merely representative of a number of evaluations for
statement (3). The present invention detects and enables
execution concurrencies which are inherent in a given
statement.

In accordance with the present invention, the [U
deposits the sequence of instructions set forth in (4) into
an initially empty dispatch stack. Such is shown in FIG.
2B. An instruction tag field representing the left hand
most column is added, it being noted that instruction IO
occupies the top cell of the DS with subsequent instruc-
tions following. The second column contains the OP
field, the third column S1, the fourth column S2 and the
extreme right hand most colum D. The DS strives to
issue arithmetic/logic instructions to the functional
units as fast and as many as possible. Such is inherent to

5

20

40

45

50

65

4
take advantage of the presence of multiple functional
units in this arithmetic engine. The issuance of such
instructions is therefore stopped when one or more of
the following three conditions prevail:

(a) the lack of the requisite functional unit;

(b) the lack of the requisite interconnection paths to
transmit operand and/or result; and/or

(¢) data dependencies among instructions.

In known instruction issuing mechanisms, once an
instruction is stopped for any of the three above cited
reasons, the flow of subsequent instructions also stops.
Thus, in existing instruction issuing mechanisms, the
EU examines only the instruction at the head of the
instruction stream. Consequently, at most only one
instruction can be issued for each machine cycle. As
noted, if the top instruction cannot be issued because of
the existence of one of the three conditions as set forth
above, the flow of the instruction stream is entirely
stopped. This deficiency in the prior art tends to de-
grade the engine output as a consequence of under
utilization of available resources, that is, the functional
units and the interconnection paths. This deficiency can
be illustrated by referring again to FIG. 2B. -

With the reservation stations and a common data bus
scheme (CDB) the IBM 360/91 utilizes a floating-point
execution unit which will examine instruction 10 and
dispatch it to one of its three virtual adders. In the next
machine cycle, the floating-point execution unit exam-
ines and dispatches instruction I1 and in the third ma-
chine cycle instruction 12 is examined and dispatched.
In accordance with this system, for three machine cy-
cles the multiplier will not receive any instruction. An-
other cause, due to data dependencies, which produces
under utilization of functional units will be presented
later. This defect is also true with the CRAY-1 system.
This defect results in a wasteful under utilization of the
functional units which are available in a contemporary
EU structure. The situation becomes exacerabated.in
the context of VLSI devices due to the continuing de-
cline of hardware cost. That is, since at most one in-
struction is issued for each machine cycle the instruc-
tion execution rate is locked by much less than the
inverse of the machine cycle time.

The present invention departs significaatly from such
known systems by providing the dispatch stack (DS)
with capabilities to sllow it to examine and issue one or
more instructions for each machine cycle. Thus, in
accordance with the present invention, the dispatch
stack identifies and issues instructions that can be imme-
diately executed with available functional units. The
technique of determining data dependencies will now
be discussed in the context of the present invention.

An instruction in an instruction stream can be imme-
diately issued to an available functional unit, real or
virtual, if it does not have any data dependencies with
those preceding instructions which have not yet been
completed. For example, referring to F1G. 2B, instruc-
tion 12 is data dependent upon instruction 10. This oc-
curs since one of the source registers of 12, FO is the
destination register of 10. Stated differently, 12 utilizes
the result of 10 as an operand and therefore it must wait
for the completion of instruction 10.

Consequently, it can be generalized that an instruc-
tion is data dependent upon a preceding, uncompleted
instruction if one of its source registers is the destination
register of the latter.

L]

Referring again to FIG. 2B, it can be shown that
instruction 12 is data dependent upon instruction 10 in a
second sense. Specifically, the destination register of I2,
FO, is one of the source registers of I0. Thus, if instruc-
tion [2 is issued and completed before 10, 10 may mistak-
enly utilize the result of 12 as one of its operands. Conse-
quently, it may also be generalized that an instruction is
data dependent upon a preceding, uncompleted instruc-
tion if its destination register is a source register of the
latter,

These two generalizatior.s allow enrichment of the
entries in the dispatch stack. The resultant fields are
given below:

Instruction tag, OP, S1, 2(S1), $2, a(S2), D, 8(D), I [€))

where a(Si) represents the number of times that a
particular register Si is used as a destination regis-
ter in preceding, uncompleted instructions;

A(D) represents the number of times that register D is
designated as & source register in preceding, un-
completed instructions; and

I2 represents the issue index field to be delineated
herein.

The sequence of instructions enatered into the dis-

patch stack DS, shown in FIG. 2B, is represented as
follows:

CHART I
{astruction

Tag. OP, S1, «(S1), 82, a($2), D, AD) R
0 AD FO o0 F1 6 F0O o 0
n AD P2 0 F3 ¢ F2 0 0
n AD FO | 2 1 FO 1 3
it] AD F4 0 F$ 0O F4 0 0
4 AD F§ 0 F7 0 Ps 0 0
IS AD F4 1| F6 1 F& | 3
16 AD FO 3 Fé 2 PO 2 s

As shown.in CHART 1, 10 is at the top of the stack.
There is no preceding, uncompleted instruction. Conse-
quently, a(F0)=a(F1)=S(F0)=0. Instruction I1 has
instruction 10 as a preceding, uncompleted instruction
but, neither of the source registers associated with in-
struction I1, that is, registers F2 and F3 are used as the
destination register by 10~a(F2)=a(F3)=0. Addition-
ally, the destination register of instruction II, register
thotemployeduawureereginerby
10— B(F2)=0. One of the source registers of 12 is FO
which is used by 10 as the destination register. Thus, it
can be established that a(FO)s1. The other source
register of 12 is register F2 which is the destination
register of instruction I1. Consequently, a(F2)=1.
Other a- and 8-values can be similarly deiineated from
the sequence of instructions set forth herein above.

An execution structure having reservation stations in
a common data bus, for example, found in the IBM
system 360/91 will issue instruction I0 whose two a-
fields and the g-field are O indicating that there are no
data discrepancies preceding uncompieted instructions.
Instruction I0 can therefore be immediately executed.
The same is also true relative to instruction IL. Instruc.
tion 12 is theq issued but any of the following conditions
will suffice to prevent it from being immediately exe-
cuted; .

(a) a(FO)== | where FO0 is used as a destination register
by a preceding uncompleted instruction, that is an oper-
and and not yet ready;

b

i0

30

38

40

43

63

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 18 of 35

4,807,115

6

(6) a(F2)=1, same as above; and

(c) B(F0)=1, where FO0 is used as a source register by
8 preceding uncompleted instruction—the deposit of
the result of instruction 12 may erase an operand needed
by a preceding instruction.

Instruction 12 is assigned a reservation station corre-
sponding to a virtual functional unit. Thus, this unit is
wasted. To rectify this defect in accordance with the
present invention, the Issue Index (I2) for an instruction
is as follows:

D ma(S1)+a(S2)+ AD))

In order to issue instructions and make the instruction
tesources used more efficiently, the dispatch stack is
scanned from top to bottom. When an instruction with
an I2 value of 0 is encountered the issuing mechanism
reserves an appropriate functional unit if available and
then issues the instruction to it. The implementation of
this search and issue operation is in the form of a resss-
vation circuit as shown functionally in FIG. 3.

Considering again CHART I representing the se-
quence of instructions with a, 8, and I2 fieids when
loaded into the DS. Assume now that there are four
functional units which are capabie of performing the
“ADD” operation.and these units are initially free. The
search and issue mechanism identifles and issues instruc-
tions 10, I1, I3 and I4 concurrently to the four free
functional units. This follows the policy rationale set
forth herein. It is noted that if the common data bus
scheme of the prior art is employed, instructions 10, I1,
12, I3 would have to be issued to the four free functional
units. Instruction 12 due to data dependencies indicated
in the chart occupies a functional unit without actuaily
being computed. Thus, the unit could be advanta-
geously employed to actually compute I4.

At the completion of an issued instruction, its destina-
tion register FF0 is used as & “key” to content address the
(S1) and the (S2) fields of those instructions which fol-
low it in the dispatch stack and to decrement the appro-
priate a-values by 1.

Similarly its source registers are in turn used to con-
tent address the (D) fields of all subsequent instructions
and decrement their values.

Olustrating the dispatch stack update process, is
CHART II which follows showing that at the comple-
tion of the instruction 10 its destination register FO is
used to “content address” the S1 and S2 fields of all the
instructions which follow 10 in the DS. The S1 fields of
12 and I6 match the FO key and their corresponding
a(S1) fields are decremented by 1. At the same time, the
source registers of 10, that are F0 and F1, are used to
content address the D fleids of all instructions which
follow 10 in the DS. The D field of I2 and 16 match the
FO key and their corresponding 3(D) fields are decre-
mented by 1. Moreover, instruction 10 is removed from
the DS and subsequent instructions are advanced, that is
moved up. Those subsequent instructions and the in-
struction stream should be brought into occupy empty
spaces at the bottom of DS thereby operating in a FIFO
mode. Thus, after decrementation and shifting the fol-
lowing chart exists,

CHART II
Instruction)
Tag, OP, S1, aS1), 82, a(S2) D, AMD) I
n AD ™2] F3 [+} R 0 [+]

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 19 of 35

4,807,115

7
scontinued
CHART 11
[nstruction
Tag, QP, S1, a(S1), S2, «S2), D, AMD), 1
12 AD Fo 0 F2 1 Fo 0 1
13 AD F4 0o FS L] F4 Q 0
14 AD Fé [} F7 V] F6 0 [+
18 AD F4 1 Fé 1 F¢ 1 3l
16 AD FO 1 Fe 2 FO 1 4

It will be recognized that similar and in some cases
concurrent completions of 11, I3 and 14 will reduce the
contents of the DS to that shown as follows:

CHART 11
Instructioa
Tag, OP, Si, «S1), 82, a(S2), D, B8D) 1
n AD FO 0 F2 0 Fo 0 0
I8 AD F4 0 F6 0 Fé 0 0
16 AD FO 1 F4 1 FO 1 3

Empty spaces ready for subsequent instructions.

The contents of the DS after decrementations and
shifts initiated by the completion of Instructions I0, I1,
13 and 14 is therefore illustrated by CHART IIL

Instructions 12 and IS can now be issued and their
completion will reduce the I2 value of 16 to 0.

Operating under the assumption that (1) the operands
will be available at their designated registers and (2)
adequate data paths are available to transmit operands
and resuits, the issue and execution schedule of the
sequence of instructions of FIG. 2B will then be:

First-10, 11, I3, I4

Second-12, IS

Third-16
This schedule which produces the shortest computation
time would not be detected and foilowed if a prior art
common data bus scheme is employed.

The identification of data dependencies among in-
structions utilized in the exampie shown relative to
F1G. 2B excludes the following case:

Iei OPe, Sle S2o Ds
OP; 81, 52, D;

Is: OPy S14 S2a Dy

where

Dg=Djpand De5#£81;, D,7#S2; for all i,

The instruction Iq as shown is obviously superfluous
since its result is not utilized or needed in subsequent
instructions. This case should therefore be excluded
from the system compiler software. Should this not be
feasible then erroneous consequences will arise if in-
struction I, is completed before instruction I,. Never-
theless, this can be prevented by defining S(D) as the
number of times that register D is designated as a source
register and/or destination registers in preceding un-
completed instructions.

At the completion of an issued instruction, its destina-
tion register is used as a “key” to content address the S1,
the S2 and the D flelds of those instructions which
follow it in the dispatch stack. The destination register

10

]

20

28

3o

38

40

45

50

55

63

8
i3 also used to decrement the appropriate a- and 3-val-
ues by 1. Similarly, its source registers are used to con-
tent address the D fields of all subsequent instructions
and decrement their S-values. Thus, following this

. methodology instruction I, will not be issued until the

completion of I,.

The precedence count memory (PCM) as shown in
FIG. 3 will now be discussed. It has been set forth
herein that the TU formulates sequences of 3-register
instructions and loads them into the DS. This requires,
for example, the assignment of appropriate registers to
operands and results. It also requires the determination
of a(S1), a(S2), and (D) for each instruction formu-
lated. These two tasks can be facilitated with the intro-
duction of the precedence count memory (PCM) shown
in FIG. 3. The PCM is implemented with a rank of
registers, each register corresponding to a general pur-
pose register in the execution unit. Each register has an
entry in the PCM. The a-fleld indicates the number of
times that a specific register has been used as a destina-
tion register by instructions already in the DS. The
B-field denotes the number of times that a specific regis-
ter has been used as a source register. For example, after
seven instructions are loaded into the dispatch stack as
shown in Chart I, the PCM will have the entries as
depicted below in Chart IV.

2323333§
~“0ONO~OW DE

[VESX WS eaery | Y

Chart [V is therefore a “snapshot” of the PCM imme-
diately after the DS has been loaded in the manner
identified in Chart I,

When an instruction is removed from the DS upon
completion, the a-value of its destination register and
the B-values of its source registers are each decre-
mented by 1.

When & register is assigned to an instruction as a
source register, its a-value in the PCM is used as a(S1)
or a a(S2) and its S-value is incremented by 1. When a
register is appropriated to an instruction as its destina-
tion register, its present S-value is used as the (D) field
and its a-value is incremented by 1.

Thus, in accordance with the present invention a
unique instruction issuing mechanism has been defined
for execution structures with muitiple functional units.
This mechanism is capable of detecting concurrencies
and then issuing muitiple instructions within a given
machine cycle. As a result, throughput of such proces-
sors is substantially enhanced. While the invention has
been defined relative to a preferred embodiment herein,
it is apparent that modifications may be practiced with-
out departing from the essential scope of this invention.

[claim: '

1. An instruction issuing system for a processor in-
cluding an execution unit having maltiple functional
units comprising:)

an instruction issuing unit receiving instructions from

a memory, operating on instructions and forward-
ing instructions to said execution unit, said instruc-

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 20 of 35

4,807,115

9
tion issuing unit including means for detecting the
existence of goncurrencies in said instructions re-
ceived from said memory; and

said instruction issuing unit further including means

for issuing mulitiple instructions and non-sequential
instructions to0 said execution unit within s single
processor cycle when a concurrency is detected by
said means for detecting the existence of concur-
rencies in said instructions.

2. The instruction issuing system of claim 1 wherein
said means for detecting the existence of concurrencies
comprises a dispatch stack receiving instructions from
saaid memory and operating in & first-in first-out man-
ner, said dispatch stack receiving instructions having
instruction fields of OP, S1, S2, D, where:

OP is the arithmetic/logic operation to be performed,

51 specifies a register which provides the first of two

or the only operand called for,

S2 specifies a register yielding the second operand,

and,

s

D specifies a register receiving the result of the arith- .

metic/logic operation.

3. The instruction issuing system of claim 2, wherein
said means for detecting the existence of concurrencies
in said instruction issuing unit further comprises a pre-
cedent count memory, said precedent count memory
providing fields of a first value (a) to instruction fields

S1 and S2 indicative of the number of times & register.
S1(S2) is used as destination register in preceding, un-

completed instructions and, a second value (8) to regis-
ter field D indicative of the number of times that regis-
ter D is designated as a source register in preceding,
uncompleted instructions.

4. The instruction issuing system of claim 2 wherein
said means for detecting the existence of concurrencies
includes a precedent count memory for providing val-
ues to each instruction loaded into said dispatch stack
indicative of the number of times a register for a partic-
ular field is designated as a source register in preceding,
uncompleted instructions.

5. The instruction issuing system of claim 3 wherein
said means for detecting the existence of concurrencies
determines an issue index (I2) for each instruction in said
dispatch stack wherein: [2ma(S1)+a(S2)+3(D) such
that when an instruction having [2 =0 is encountered by
said means for detecting the existence of concurrencies,
said means for issuing multiple instructions reserves an
available functional unit and issues said instruction to it.

6. A method of issuing instructions for a processor
having multiple functional units comprising the steps of:

reading in and storing instructions from an instruction

stream into a dispatch stack, said instructions hav-
ing an instruction formate of OP, S1, S2, D, where:

OP is the arithmetic/logic operation to be performed;

S1 is the register which provides the first of two-or

the only operand called for;

S2 is the register yielding the second operand, and

D is the register receiving the result of the arith-

metic/logic operation;

detecting the existence of coucurrencies in instruc-

tions stored in said dispatch stack and;

issuing multiple instructions and non-sequential in-

structions within & given processor cycle when the
existence of concurrencies is detected.

7. The method of claim 6 wherein said step of detect-
ing further comprises the steps of;

determining the number of times that individual regis-

ters in said processor are used as destination regis-

35

43

LL

63

10

ters in preceding, uncompleted instructions, deter-
mining the number of times the individual registers
in said processor are used as source registers in
preceding uncompleted instructions, and providing
an indication of the determination in said instruc.
tion format for esch instruction in said dispatch
stack.

8. The method of claim 7 wherein said step of issuing
multiple instructions further comprises the step of im-
mediately issuing a first instruction from said dispatch
stack to an available functional unit when said instruc-
tion does aot have any data dependencies with preced-
ing issued imstructions which have not yet been com-
pleted. _

9. The method of claim 8 wherein an instruction is
data dependent upon a preceding, uncompleted instruc-
tion if one of its source registers is the destination regis-
ter of the uncompleted instruction.

10. The method of claim 8 wherein an instruction is
data dependent upon a preceding, uncompleted instruc-
tion if its destination register is a source register of the
uncompleted instruction.

11. The method of claim 7 wherein said step of deter-
mining prises providing first values (a) to register
flelds $1(S2) indicative of the number of times register
S1(S2) is used as destination registers in preceding,
uncompleted instructions and a second value B8) o
register field D indicative of the number of times that
registerthedmteduuomteﬁnerinto preced-
ing, uncompleted instructions.

12. The method of claim 11 further comprising the
steps of content addressing the S1,S2 and D felds fol-
lowing the completion of an issued instruction and,
appropriately decrementing the values of a’s, the values
of 3's and updating the dispatch stack by advancing
subsequent instructions stored therein and adding new
instructions from said instruction stream occupy empty
portions at the bottom of said dispatch stack.

13. The method of ciaim 11 further comprising the
steps of updating the vaiues of a and 8 such that when
areﬁstuhudpedmmimtrwﬁonunmregh—
ter its present a value is used as a(S1) or a(S2) and its
Bvdnchinumudbylmd.when:reﬁswis
nnignedtouins&ucﬁonuiudaﬁmdonreﬁsm, its
present S value is used as the (D) field and its a-value
is incremented by 1 and further when an issued instruc-
tion is completed the 8 values of each of its source
registers is decremented by 1 and the a value of its
destination register is decremented by 1. |

ltmm:mdonimﬁngsystemforaprocmor
including an execution uait having muitiple functional
units comprising:

an instruction issuing unit receiving instructions from

& memory, said instruction issuing unit operating
on instructions and forwarding instructions to said
execution unit, said instruction issuing unit includ-
ing means for detecting the existence of a plurality
of instructions received from said memory which
are concurrently executable; and

said instruction issuing unit further including means

for issuing muitiple instructions and non-sequential
instructions to said execution unit within a single
processor cycle when concurreatly executable
instructions are detected by said means for detect.
ing the existence of concurrently executable in-
structions in said instructions.

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/(22 Page 21 of 35

4,807,115

11
w.Amahodoﬂmingmmmupm
having an execution unit with muitiple functional units
comprising the steps of:

reading in and staring instructions from an instruction
L]

stream. into a dispatch stack;
detecting the existence of plurality of instructions
which are concurreatly executable from those in-
structions stored in said dispatch stacic and
issuing multiple instructions and non-sequential in-
suucﬁomwd:hinngivenpmgmcydgwm;ﬁd
plurality of concurrently executsble instructions
are detected.
16. The method of claim 1S wherein said step of de-
tecting further comprises the steps of;
determining the number of times that individual regis-
ters in said processor are used as destination regis-
ters in preceding, uncompleted instructions, detes-
mining the number of times the individual registers
in said processor are used as source registers in
preceding uncompleted instructions, and providing

10

2

35

43

53

12
an indication of the determination in said instruc-
tion format for each instruction in said dispatch
stack,

17. The method of claim 16 wherein said step of issu-
ing multiple instructions further comprises the step of
i iately issuing a first instruction from said dis-
patch stack to an available fancticnal unit when said
instruction does aot have any data dependencies with
preceding issued instructions which have not yet beea
completed.

18. The method of claim 15 wherein an instruction is
data dependent upon 2 preceding, uncompleted instruc-
tion if one of its source registers is the destination regis-
ter of the uncompleted instruction.

19. The method of claim 1S wherein an instruction is
data dependent upon a preceding, uncompleted instruc-
tion if its destination register is a source register of the
uncompleted instruction.

L

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 22 of 35

EXHIBIT “2°

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 23 of 35

T
]
f
|
|
|

digest of papers @

COMPCON 95

Technologies for the Information Superhighway

March 5 -9, 1995
San Francisco, California

LOS ANGELES PUBLIC LIBRARY
CENTRAL LIBRARY
CEPT. OF SCIENCE, TECHNOLOGY 2 FATENTS
830 WEST Rh ST.
LCS ANGELES, CA. 50071

1945
R S10.7¢ ¢737 v.do
|EEE Computer Society Press
Los Alamitos, California
Washington . Brussels . Tokyo
JUL281398
A

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 24 of 35

Advanced Performance Features of the 64-bit PA-8000

Doug Huat

Hewlett-Packard Company
Engineering Systems Lab
3404 East Harmony Road, MS#55
Fort Collins, Colorado 80525

Abstract: The PA-8000 is Hewlest-Packard’s first CPU to
implemens the new 64-bit PA2.0 architecture. It combines
3 high clock frequency with a number of advanced microar-
chusectural features to deliver industry-leading perfor-
mance on commercial and technical applications while
maintaining full companbility with all previous PA-RISC
binaries. Among these advanced features are a fifty-six
entry instruction reorder buffer to support out-of-order
execurion, a branch rarget address cache, branch history
table, support for mulniple outstanding cache musses and
dual inzeger, load/store, floating poiry multiply/accumu-
late, and divide/square root units which allow execution of

four instrucrions per cycle. Together, these features will en-
able the PA-8000 to sustain superscaiar operation on a
wide variety of workloads.

1. Introduction

Hewlett-Packard's PA-8000 CPU is designed to deliver
industry-leading performance on today’s commercial and
technical applications while providing a growth path to fu-
ture 64-bit applications. Maintamning industry-leading
performance requires improvemeat in both clock frequea-
¢y and the average number of clock cycles per instruction
(CPI). Since RISC processors are already capabie of start-
ing one operation per cycle, reducing CPI further requires
starting more than ome operation per cycle. The
PA-7100{1}, PA-7100LC{2}, and PA-7200{3] have ai-
ready achieved success as two-way superscalar imple-
mentations, but adding still more functional units is not
useful if the rest of the processor is not capsble of supplying
those functional units with a continuous stream of opera-
tions to perform. With the PA-8000, Hewiett-Packard
introduces an entirely new microarchitecture with s care-
fully chosen set of features designed to suszain superscalar
operation on real-world applications. ,

First, the PA-8000 inc} two integer ALUs, two shift/
merge units, two floating point multiply/accumulate units,
two divide/square root units and two load/store uaits.
These functional units are arranged to allow up to four
instructions per cycle to begin execution. To supply these
functional units with enough work to keep them busy, the
PA-8000 incorporates a fifty-six entry [nstruction Reorder
Buffer (IRB) and a dual ported data cache. [n orderto keep
the buffer as full as possible with instructions to choose
{rom, the instruction fetch unit is designed to supply four

1063-6320/95 $4.00 © 1995 [EEE

123

instructions per cycle from a single-level, off-chip cache.
Finally, in order to maximize the usefulness of the instruc-
tion and data caches, a high performance bus interface ca-
pable of su‘mning multiple outstanding cache rmisses is
provided. This set of features will enable the PA-3000 to
deliver >360 SPECint92 and >550 SPEC[p92 at first re-
lease. Figure 1 is a block diagram of the PA~8000 which
shows how these componeants are organized.

1.1. Why out of order?

The fundamental difficulty in achieving sustained su-
perscalar operation is finding enough independent work to
supply the muitiple execution units. One way to bandle this
problem is to give the burden of finding the parailei work to
the compiler by requiring that it order the instructions so
that every instruction fetch includes more than one instruc-
tion which may be executed at the same time. Unfortunate-
ly, there are many situations where the compiler cannot
take advantage of potential parallelism because of the lim-
ited information available at cornpile time. The design of
the PA-8000 therefore leaves the scheduling of instructioas
up to the hardware, which can perform more aggressive re-
ordering than the compiler thereby achieving a higher uti-
lization of the functional units.

The PA-7100, PA-7100LC, and PA-7200 gain substan-
tial benefit from their two-way superscalar operation while
leaving scheduling to the compiler, but it became apparent
during the investigation which led to the development of
the PA-8000 that some problems would require a funda-
mentaily different approach as the move was made from
two-way superscalar to wider implementations. One of
those problems is that legacy code which was compiled
with an earlier compiler would not be optimaily scheduled
and would receive very little benefit from the added super-
scalar hardware. The more sequential instructions the bard-
ware attempts to execute at once, the more likely it is that
the instruction group will contain instructions which de-

nd on one another and cannot be executed simultancous-
y. The PA-8000 addresses this problem by baving the
hardware scan a large portion of the program at one time i -
order to find opportunities for parailel execution, rather
than only considering four instructions at oace. With its
large reorder buffer, the PA-8000 can examine over fifty
instructions at one time to find four which are ready to be
executed.

Case 5:01-cv-01974-RRR-DEP Documint 43 Filed 09/06/02 Page 25 of 35

[psTruchion
Fetch Unut

System
Bus

>g-chip ---.--;f‘f Sort

inst {_4_1

1 L laterface

Cachs Dual .

64-bit

{ateger

L =) T

Dual

Uats P 28 28

Dual FP
Multiply/
Accumulate

Uaits

)

a b: ft/. ALU Memory - Address Off-chip
/— Merg! Suffer Buffer Load/Stors Buffer . Daa

eatries | entries e Adders entries Cachs:

Dual Reorder

Address 8

- L

I m—e———

[Qi r v

Uaits

/-— SQRT . - Retire

Resame

— T

- Rﬂm

Architected
Rename Registers
Registers

Figure 1: PA-8000 Block Diagram

A second problem with leaving scheduling up to the
compiler is that the compiler often can only reorder instruc-
tions within a narrow window because of such unknowns as
flow of control and pointer aliasing. The PA-8000 address-
es this problem by performing speculative execution of
instructions. Speculative execution is nothing more than
guessing what course the program will take and executing
Tnstructions from the appropriate path. If it is later discov-
ered that the guess was incorrect, the speculative work is
discarded.

The PA-8000 actually performs speculative execution
in 2 number of different ways. First, on every branch
fetched, the instruction fetch unit makes aa intelligeat
guess about whether the branch will be taken or not taken
and fetches instructions down the appropriate path. Whea
the branch is actuaily executed, the outcome (eitber takea
or not taken) is compared with the predicted outcome. If
the two outcomes do not agree, the correct address (cither
the branch target address or the inline address) is forwarded
to the instruction fetch unit and fetching resumes from that
point. All instructions in the [RB younger than the mispre-
dicted branch are discarded.

Another way the PA-8000 performs sgzcu.laﬁve execu-
tion is by executing younger instructions before it is known
whether an older instruction will signal an exception (mg).
A common example of this situation is the execution of
younger instruction before an oider load. The younger
instruction must not be allowed to change aay program
state if the load signals a TLB miss or protection vioiation.
In the PA-8000, the younger instruction is allowed to

124

execute early, but its result is discarded if the older instruc-
tion traps.

A third example of speculative execution is the execu-
tion of a load before an older store. In this case, it is possible
that the load and the store reference the same memory loca-
tion. This should be a rare event since the compiler tends to
keep a value in a register if it will be needed again shortly.
However, there are situations where the compiler cannot
know that a load and a store point to the same location in
memory, especially if the load and store are generated by
teferences through pointers. In the PA-8000, a load may
execute before an older store and the hardware checks to
see that the load received valid data before the result is
committed to the ‘ﬁnenl registers. If a load is determined
to bave received the incorrect data, the load and all subse-
quent instructions are flushed from the (RB and refetched.

{n each of these three cases, the hardware is able to gain
the advantage of performing work early in the common
case where the program flow of controi proceeds along ex-
pected lines and only suffers 2 performance penaity in the
Cases where the program flow is not as expected. Acompil-
et often cannot take advantage of the same parallelism de-
cause it would have to add so many runtume checks 10
ensure the reordering was safe that the benefit of reordenng
the code would be lost.

2. Instruction fetch unit

The IRB can only do its job of supplying the execution
units wath plenty of work if the buffer itseif Bas an adequate

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 26 of 35

-

,upply of incoming instructions. The PA-3000 instruction
farch unit letches up to four quadword-aligned instructions
~er cycie from a single-level off-chip instruction cache.
This 1s the same bandwidth as the maximum execution rate
of the functional units. The instruction cache, which is
-onstructed of synchroncus SRAMSs. has a two cycle laten-
cv. Adding the cycle it takes to calculate the targe! address
of a branch means that there is a two cycle penalty for fetch-
.ng the target of a correctly predicted taken branch from this
cache.

To reduce the penalty for taken branches, the PA-8000
;ncorporates a thirty-two entry fully associative Branch
Target Address Cache (BTAC) which associates the ad-
dress by which a branch is fetched with the address of the
target of the branch for branches which are predicted taken.
On every instruction fetch, the address sent to the instruc-
tion cache is also sent to the BTAC. Whenever the BTAC
signals a hit, the address supplied by the BTAC is used as
the next fetch address. This means that correctly predicted
taken branches which hit the BTAC suffer no penalty, since
the ﬁadword containing the target of the branch will arrive
onchip the cycle after the branch itseif arrives. A new entry
is inserted into the BTAC each time a predicted-taken
branch is fetched for which there is not already an entry in
the BTAC. This insert does not cause any additional
instruction fetch penalty. A “round robin” replacement
policy is employed.

2.1. Branch prediction

To achieve sustained superscalar operation, it is impor-
tant that the number of mispredicted branches be mini-
mized. To improve branch prediction accuracy, two
different methods of branch prediction are provided: static
and dynamic. In static prediction mode, the fetch unit fol-
lows the following policy: For most conditional branches,
backward branches are predicted “taken” and forward
branches are predicted “not taken”. For the common
compare and branch instruction, a hint is specifically en-
coded in the instruction to teil the instruction fetch unit
which way to predict the branch. Compilers usi.ngsilhet
heuristic methods or Profile Based Optimization (PBO) caa
rearrange code segments or use the hinted branches to ef-
fectively communicate branch probabilities to the hard-
ware,

[n dynamic prediction mode, a 256~eatry Branch Histo-
ry Table (B is consulted to determine which way each
branch should be predicted. Each eatry in the BHT is a
three-bit shift register which records the last three outcom-
es (laken or not taken) of a given branch. If a majority of the
last three executions were actually taken, the fetch unit pre-
dicts that the branch will be takea again. This table is only
updated as branch instructions are retired. in order to pre-
vent corrupting the history information with speculative
executions of the branch.

The branch prediction mode used (either static or dy-
namic) is controlled on ‘;{;ge-by-page basis b{' an extra
bit in each eatry of the . Thus, it is possible for pro-
grams compiled with PBO to take advantage of the profile
information, while programs which have not beea profiled
use dynamic prediction. [t is also possible for shared li-
braries to be profiled, if appropriate, in which case even

non-profiled applications will gain the benefit of the profil-

ing of the libranies. This aiso has t3e advantage hat the li-
brary code will not displace the Rustory information in the
BHT, improving its effectiveness for the main bedy of the
program. '

Note thatitis possible for the BTAC to signal a mut(indi-
cating a predicted-taken branch) when the BHT signais
that the branch should be predicted not-taken or that an oid-
er branch in the group should have been taken :nstead. 'n
this case, the corresponding entry in the BTAC will be de-
leted to prevent another hit of the BTAC on that branch.

2.2. Why no on-chip instruction cache?

An instruction cache can improve performance in two
main ways: 1t can reduce the latency of instruction fetches
and it can be designed to provide more bandwidth to the
processor than the next level of the memory hierarchy can
provide. HP’s low-cost processor, the PA-7100LC, is the
only HP PA-RISC processor to include an on-chip instruc-
tion cache. Since the design of the PA-7100LC was dnven
by the need to minimize overall system cost, a single com-
bined off-chip cache was provided. This necessitated in-
cluding an on-chip instruction cache to provide sufficient
instruction fetch bandwidth to the execution units without
overly impagggg the data cache performance.

The PA- , on the other hand, is designed to maxi-
mize performance. For many real-world applications, es-
pecially some commercial applications such as transaction
processing, delivering high performance requires a larger
instruction cache than can be included oa~chip. Further-
more, a four-way superscalar design such as the PA-8000
requires a wide connection to this large instruction cache to
avoid substantial fetch penalties. Once the decision has
been made to design a high-bandwidth connection to a
large off-chip cache, an on~chip cache provides no added
benefit from a bandwidth perspective.

As far as latency is concerned, the only time the latency
of an instruction fetch matters is when a branch is iavoived.
This is because the mstruction fetch unit does not aeed to
see the incoming instructions to calculate the next address
to fetch if the program is executing sequentially. As men-
tioned earlier, the BTAC avoids the taken branch penaity
for most of the taken branches which are encountered. This
means that the only time the reduced lateacy provided by an
on-chip cache would come into play is in the case of a mis-
predicted branch. Since the aggressive design of the off-
chip cache path resuited in a two-cycle latency, an on—chup
cache could only save one cycle in the rare event of a mus-
gredicted branch. This being the case, the die area was used

or more effective performance features, particularly the
fifty-six entry instruction reorder buffer, rather than for an
on~-chip cache.

3. Instruction reorder bufTer

The fifty-six eatry Instruction Reorder Buffer (IRB) is
phbysically organized as two separate buffers of twenty-
eight entries cach. One buffer is used to bold instructions
which are destined for either the integer units or the floating
point units and the other buffer holds both integer and float-
ing point load and store instructions. Some insructions are
inserted into both buffers. These instructions are: (1) load-
and-modify instructions, for which the modify is bandled

by aninteger ALU; (2) branches, which go into both buffers
10 3elp in recovery from mispredicted branches; and (3)
certain system control instructions.

Tnsertion of instructions into the two buffers in the [RB1s
controlled by the sort unit. This unit receives the four
‘nsiructions from the instruction fetch unit androutes each
ofthem to one or both of the buffers in the [RB. Each buffer
can accept up to four imstructions per cycle, so an arbitrary
collection of four instructions may be inserted simuita-
neously.

Once an instruction has been inserted into a slot of the
[RB, the hardware watches each of the instructions launch-
ing to the functional units and checks to see whether any of
them supplies any of the operands which the instruction ia
the slot requires. Once the last instruction upon which the
slotis waiting has been launched, the slot begins to arbitrate
for launch to the functional units. Even though the instruc-
tions are segregated into two different buffers, ail of the
launch information is visible to both buffers. No extra pea-
alty is incurred for bypassing information from iastructions
in one buffer to instructions in the other buffer.

Up to two instructions per cycle may be launched from
cachbuffer in the [RB. Arbitration in each buffer is handled
in two groups. All of the even-aumbered slots in the ALU
buffer which are ready to launch arbitrate for launch to alu0
and all of the odd slots arbitrate for launch to ajul, and simu-
larly for the memory buffer. [n each buffer, the even-aum-
bered slot containing the oldest instruction and the
odd-numbered siot containing the oldest instruction win
arbitration and are launched to the execution units or the ad-
dress adders.

3.1, Retirement

Instructions are removed from the [RB in program order
after they have successfully executed or their trap status is
known. Up to four instructions may be retired percycle. At
retire time, the contents of the rename register associated
with a given instruction are committed to the architected
registers, and store data is forwarded to the store queue (dis-
cussed later). f an instruction needs to signal a trap, the
trap parameters are recorded in the architected state and the
appropriate trap vector is forwarded to the instruction fetch
anit which begins fetching from that address. The fact that
instructions are retired in program order and that traps are
signalled when an instruction retires enables the PA~8000
to provide a precise exception signalling model.

4. Loads and stores

A frequent cause of pipeline stalls in pipelined in—order
machines is that instructions must often wait for the resuit
of preceding load operations. Previous implementations of
PA-RISC{4] have implemented stall-on-use and hit-un-
der-miss policies to avoid these penalties in the case of
data cache misses. Unfortunately, these techniques are in-
sufficient to avoid large performance penalities when more
instructions are executed simultaneously. [n fact, load/use
penalties can be a serious performance limiter even whea
loads hit the data cache. As applications demand larger
caches to support bigger working sets and as the operating
frequency of processors increases, the number of clock
cycles required to load data from the data cache increases.
This problem is exacerbated in a wide superscalar machine

128

Case :1-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 27 of 35

because the distance which must separate a load from the
use of its data to avoid a stall is likely to be more than the
compiler can accormmodate (refer to section 1.1).

Qut-of-order execution is obviously a substantial ad-
vantage in being abie to avoid load/use penalties. Given
that the PA-8000 can dynamicaily schedule instructions
over a window of more than fifty instructions, the bardware
can look beyond the instructions dependent on a load and
find other instructions ready to be executed. This is espe-
cially helpful in the case of data cache misses since, :f the
hardware finds another load or store which musses the data
cache, that miss will also be issued on the system bus. Since
the two miss transactions are overiapped, the total perfor-
mance penaity is less than the cost of two sequential data
cache misses. The PA-8000 can support up to ten such out-
standing data cache misses at one time. This is accom-
plished without sacrificing a strongly ordered
programming model.

When a slot containing a load or store operation deter-
mines that the operands required for calculating its effec-
tive address are available, it arbitrates for launch to the
address adders, just as instructions in the ALU buffer
launch to the integer and floating poiat units. Once the ad-
dress is calculated, the address is stored in the addreas reot-
der buffer (ARB). The effective address is also sent to the
TLB, which is dual ported, and the physical page aumber
associated with the effective address is aiso stored in the
ARB. The ARB is twenty—-¢ight slots deep, and each slot of
the ARB is associated with a slot of the memory buffer in
the [RB.

The ARB is the interface to the dual-ported, single-iev-
el off—chip data cache. The two ports of the data cache are
connected to separate banks of synchronous SRAMS, one of
which contains even-numbered doublewords and the otber
odd-numbered doublewords. The data cache may be up to
four Mbytes in size.

Once an address has beea sent to the ARB, if no otber
instruction is arbitrating for access to the 2 late bank
of the data cache, the cache access is immeJme y launched
to the RAMSs. [n this case, load data arrives back on the chip
in time for a dependent instruction to launch on the third
cycle after the load launched to caiculate its effective ad-
dress.

In the event that a load cannot immediately access the
data cache port it needs, it begins to arbitrate for access on
each successive cycle uatil it wins arbitration. Arbitration
is granted based on the age of the originating instruction,
not the length of time a load has been in the address reordes
buffer. Instructions in the IRB are informed of the status of
loads in so that instructions waiting for load data
do not arbitrate for launch until the load has won access (0
the data cache. [n this way, the execution units continue @
work oa other, younget instructions which do bave all thexr
operands available.

Store instructions merely perform a tag lookup at the
time when a load would read the cache. In the eventthatthe
store misses the cache, it proceeds to issue its miss to tbe
system bus. Store data is copied from the register file to the
store queue at retire time.

The store queue is a structure which can bold up to elev-
en doublewords of write data for each bank of the data
cache. The store queue uses idle cycles, orcycles when oth-

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 28 of 35

er stores are performing tag lookups, to perform its writes to
rne data cache. By defernng cache writes to otherwise idle
cycles, loads are less likely to be heid off from accessing the
cache due to contention. Another benefit of the store queue
;s that stores of less than doubleword size may be merged
into a single cache write, thus improving cache utilization.
Loads may bypass data directly {rom the store queue.

Store-to-{oad dependency checking is implemented
through address comra:isons performed in the ARB. When
a store instruction calculates its effective address, all youn-
ger load instructions which have completed their access to
the cache compare their address against the store address.
if the load detects a match, the lcad and all younger instruc-
tions are flushed from the IRB and re-executed. Whea a
load caiculates its effective address, all older stores
compare their address against the load address and, if they
detect a match, the load waits until the store data is avail-
able.

Loads and stores to the 'O address space and sernaphore
instructions do not issue transactions on the system bus un-
ul they are the oldest instructions in the [RB so that they do
aot issue speculatively.

Support for explicit data cache prefetching is imple-
mented in the PA via loading to general register zero.
This operation may cause a data cache miss which will be
issued on the system bus, but the instruction will aot cause a
rrap if the access misses the TLB or if the access fails
protection checks. (In these cases, the instruction executes
as a NOP.) Unlike ordinary loads, a load to general register
zero may retire before a data cache miss it has initiated has
been returned from memory. The return data will suil be
written into the data cache. [f a subsequent ordinary load is
encountered before the data is returned from memory, the
ordinary load is informed that the miss has already beea is-
sued, and a second miss to the same address is suppressed.

41. TLB

The ainety-six entry Translation Lookaside Buffer
(TLB) of the PA-8000 is fuily dual-ported in order to sup-
port two data cache accesses per cycle without requiring
these two accesses to be to the same page. Each entry in the

TLB mag map agy power-of-four sized segment of
memory from 4 Kbytes to 16 Mbytes. In addition to the
main TLB, the instruction fetch unit maintains a buffer of

four translations for its use. Whenever the fetch unit misses
its set of translations it sends a request to the main TLB to
petform a translation on its be This new translation is
then inserted into the fetch unit’s buffer. Translations for
loads and stores take precedeace over translations for
instruction fetches. Abypass pathis ided so that, in the
event a mispredicted branch misses the translation buffer in
the instruction fetch unit, the translation from-the main
TLB is available in time to perform the cache tag compare
for the first fetch at the aew address.

4.2. Multiprocessing support

The PA-8000 supgom a snoopy multiprocessor cache
coherency protocol. No external [ogic is required for up to
cight-way multiprocessing. Support is also provided for
higher-order multiprocessing using a hierarchical bus
structure.

127

[ncorming Cache Coberency Checks (CCCs) take just
one cycle from one bank of the data cache to perform thetr
snoop of the data cache. Thus very low cost for CCCs means
that, even on a fuily sarurated system bus, CCCs consume
no more than 10% of the available data cache bandwidth if
they all miss. Even in a system where the system bus is sat-
urated and every CCC hits dirzy, the CCCs consume no
more than 0% of the victim processor's data cache band-
width. No other penaity is paid by the victim processor.
[nstruction fetching is unaffected, the AL Us are unaffected,
and the other data cache cycles are fully available.
~ CCCs use the same address companson mechanism to
implement strong ordering between processors as 13 used o
detect store-to-load dependencies within a single proces-
sor. [f an incoming CCC matches a load or store :n the
ARB, that load or store is flushed and re-executed.

§. Execution units

The PA-8000 integer units implement the new §4-bit
functionality in PA2.0 while maintaining full compatibility
with existing 32-bit binaries. The new §4-bit operations
may be executed even by a program executing witi 32-bit
addressing, so compilers can take advantage of the wider
datapath to improve performance even om J2-bit code.
Each integer unit includes shift/merge logic so that it can
execute any of the extract or deposit instructions as well as
the normal arithmetic operations. A branch adder is also
associated with each integer unit.

The floating point bardware in the PA-8000 consists of
two multiply-and-accumulate (MAC) units and two di-
vide/square root units. The MAC units perform the very
common operation D = A*B+C. These units have a lateacy
of three cycles and are fully pipelined so they may accepta
new operation every cycleMgivi.n? 3 maximum throughput
of four FLOPs per cycle. Multiply operations and add op-
erations are also handled by the M.Ag:

The divide/square root units have latencies of 17 for
single-precision operations and 31 for double-precision
operations. These units are not pipelined, but other FLOPs
may execute on the MACs while the divide/square root
units are busy. The combination of muitipie execution
units, a2 dual-ported data cache, support for up to ten pend-
ing data cache misses, and explicit data prefetching support
provides exceptional floating point performance, evea on
workloads whose working sets are larger than the data
cache.

6. System interface (Runway)

The PA-8000 interfaces directly to the Runway bus,
which is the same bus used by the PA-7200{3]. This is a
64-bit multipiexed address/data split transaction bus. The
bus supports the full 40-bit physical address space of the
PA-8000, allowing access to as much as 960 gigabytes of
RAM. Arbitration takes place on separate wires, so itdoes
not consume any bus cycles.

The bus interface logic of the PA-8000 allows up to ten
data cache misses, one instruction cache muss, and one
instruction cache prefetch to be pending at the same ume
for the local processor. These transactions may retum in
any order, allowing improved memory system performance

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 29 of 35

in the presence of bank contention. Instruction cache pre-
fetches are initiated by the bus interface itself by ferching
the next sequential line whenever a cache muss is received
from the instruction fetch unit.

The bus interface supports cpu:bus frequency ratios of
1:1, 4:3,3:2, 5:3, 2:1, 715‘,’(5):2. and 3:1. Thatis, the proces-
sor uses a clock which is at least as fast as the system bus
clock and may be up to three times as fast as the system bus.
This flexibility allows the design of a wide range of prod-
ucts combining various processor sreeds and bus frequen-
cies to produce the bighest possible system performance
from the available subsystems.

7. Other performance features

[n addition to those features already outlined, the
PA-8000 implements a number of new features added to
PA-RISC in PA2.0 to improve performance:

* A 22-bit displacement instruction address relative
branch to reduce the cost of procedure calls to distant
procedures

* A short pointer external branch to reduce the overhead
of branching between spaces

* A fast TLB insert mechanism to reduce the cost of
TLB misses

* Longer (16-bit) dispiacement load and store operations

* New variants of the Floating-Point Compare and
Floating-Point Test instructions to allow multiple inde-

pendent conditions to be tested

7.1. Performance monitoring

Perhaps one of the most important performance features
of the PA-8000 is the hardware that has been inciuded for

rformance monitoring and debug support. Hardware has

en included that can match specified patterns of instruc-
tion opcode, addreas, cache hit/miss status, and branch mis-
predictions. These match signals can be combined using an
on-chip state machine to detect specific sequences of
events. Finally, the state machine can cause one of four
event counters to increment. The event counters may also
be programmed to increment based on a number of other
control signals that indicate what the processor is doing at
any given time. This hardware wiil be used by HP’s perfor-

128

mance analysis group to identfy opportunities for compiler
Lmprovements to achieve even higger performance waththe
PA-8000. It will also be used to evaluate additional fes.
tures which could be of benefit in future processor designs

8. Conclusioans

~ Hewlett-Packard's PA-8000 CPU is designed to delive;
industry~-leading performance on both commercial anc
technical applications and provide a growth path for future
64-bit applications. [t achieves its high performance
through a combination of high clock frequency and sustain.
able superscalar operation. Sustainable superscalar opera.
tion is accomplished by matching dual integer, floaung
point muitiply/accumulate, and divide/square root func.
tional units with a very deep instruction reorder buffer, ,
bigh performance instruction fetch unit, dual ported dat,
cache and and support for mulitiple peading cache misses.

Acknowledgements

Many 5ople have been involved in the developmeant ot
the PA and the author would like to thank all of them
for the tremendous effort they bave put in to make this pro-
cessor possible. Special recognition is warranted for those
individuals who worked on the project from its earliestdays
and who set the direction of the design: Gregg LeSartre.
Joa Lotz, Don Kipp, Darius Tanksalvala, and Steve Man-
gelsdorf.

References

{1] E. Delano, et al, “A High Speed Superscalar PA-RISC Pro-
cessor”, Compeon Digest of Papers, February 1992, pp. 116-121.

(2] P. Knebel, et ai, “HP's PA7100LC: A Low-Cost Superscalar
PA-RISC Processor, Compcon Digest of Papers, February 1993
pp. 441-447.

{3] G. Kurpanek, et al, “PAT200: A PA-RISC Processor with
Integrated High Performancs MP Bus Interface”, Compeon Di-
gest of Papers, February 1994, pp. 375-382.

{4] R. B. Lee, “Precision Architecture”, [EEE Computer, Yol. 22
No. 1, January 1989, pp. 78-91.

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 30 of 35

EXHIBIT “3"

Case 5:01-cv-01974-RRR:DEP Document43__ Filed 09/06/0.2 .Izige 31 of 35
1B8CTHE / SESY” ./ MICROPROCESSORS /PAPERFP ¢

FP 13.2: A 56-Entry Instruction Reorder Butfer

Neela Bhaka Gaddis, Josepn R. Butler, Ashok Kumar', William J. Queen
Hewlet-Packard Company, Fort Coling, CO, ‘Cuperino, AC

A speculativeessoution high-end PA-RISC CPU has two 28-entry

out-of-order instruction reorder buffers (IRBa), one for alwfloat-
ing point operations and one for memory operations (1, 2]. The
IRBs are capable of inserting any combination of four instructions
per cycle. Each cycle, the [RBs launch up to four instructions for
execution, two from the ALU IRB and two from the MEM [RB. Up
to four instructions (two from each [RB) retire each cycle. The
insert, launch and retire mechanisms of this out-of-order machine
contain 850k transistors in 52.6mm?.

Dependency clearing and launch arbitration are complications
inherent to an out-of-order machine. This processor manages over
a dozen different types of dependencies for as many as 56
instructions. Techniques used to accomplish dependency clearing
and execution arbitration in a single state are described below.

Operand dependencies exist when the sourcs data of one instruc-
tion is the result of an earlier instruction. Because of their high-
frequency, operand dependencies are tracked using a broadcast
mechanism for maximum performance. A register scoreboard is
used to determine dependencies when an instruction is insertad
into an IRB entry. This dependency setting requires 5b of com-
parison per inserting instruction (4) per operand (3)for each entry
of the [RBs (56) for a total of 3360 comparators. Dependency
clearing at launch requires another 3360 comparators. Clearly,
the chalilenge for operand dependency tracking is the design of a
fast, dense comparator. Figure 1 shows the comparator used for
dependency clearing. The launching instructions drive their tags
on the dual-raii lines inH and inL. A mismatch will drive the wire-
ORed CMP line. In each entry there is one CMP line for each of the
four launch buses. If none of the CMP lines is driven, the
dependency is cleared. The ALU and MEM [RBs utilize 1mm? for
these 3360 comparators.

Carry-borrow (CB) dependencies exist when an instruction de-
pends on the CB bita of the PSW. Due w leas frequent occurreace,
CB dependencies are tracked using a propagate systam. This
approach trades off increased latencies for area savings. CB
dependencies are identified at insert. The most recently inserted
entry indicates to the four inserting entries the presence of a CB
wnting instruction in the I[RB. Any inserting instruction can
change the CB status for the following instructions (Figure 2).
Clearing of CB dependencies starts with the launch of an instruc-
tion writing these bits. The launching entry drives its rename tag
to the instructions immediately following. The tag propagates
through the [RB at a rate of up to two entries per cycle. Once the
tag reaches an entry, its dependency is cleared. If an instruction
writes CB data, it stops the tag propagation, and drives its own
tag upon launching. This system tracks 28 dependencies in
0.7mm?.

In an out-of-order processor, stores and lcads to the same cache
index must recognize each other's presence. This processor large
dual-ported data cache requires that twocache indices be com-
pared to the index of each reference active in the 28-entry address
reorder buffer (ARB), where each comparison is effectively 21b
wide. Area constraints require compactness, while performance
requires speed. The solution is the comparator bit slice circuit in
Figure 3. This circuit has the advantages of low input-capaci-

tance, high-density, few wires and low-latency. This comparator
design scales well both in width and total number of comparatory,
This crcuit selects the appropriate cache-port index bus (IN.
DEX0, INDEX1) and performs a bit compare during the first
phase. On the foliowing phase, the bit COMPpArisons are wired
ORed to indicate a match or mismatch.

Once an instruction entry has cleared all of its dependencies
through the mechanisms discussed above, it requests permission
to launch. Design of the launch priority encoder to evaluate which
four of the fifty-six entries launches utilizes a smail performance
trade-off to gain significant reductions in cycle time and area. Of
the four launching instructions, two come from ALU IRB and two
from MEM IRB. Each [RB is also divided into two halves. The
instructions from the even half execute on the even units, odd, on
odd units. The 28 instruction entries in each IRB are further
divided into 3 banks of eight instructions each (four odd, four
even) and 1 bank of 4 instructions (two odd, two even) (Figure 4).
The first entry ready to launch in the oldest requesting bank wins
the arbitration for launch in each half of the [RB.

To gain speed, intrabank and interbank grants are evaluated
concurrently. Each bank evaluates which entry wins the arbitra-
ton within that bank using dual rail dynamic logic. The circuit in
Figure 5 is essential in converting the single-ended dynamic
request signal to a pair of complementary dynamic signals.
Interbank grant calculations begin with each bank dynamically
indicating to the other banks if it has an instruction requesting to
launch. Each bank then incorporates its reiative age with request
information from the other banks to determine if it will grant a
bank launch. In the last phase of evaluation, the intrabank and
interbank grants are combined to determine which instruction in
each half of each [RB will launch. Figure 6 is a micrograph.

This RISC CPU utilizes different circuit techniques and depen-
dency tracking mechanisms in the instruction reorder buffer to
achieve speed, area, performance and time-to-market goals.

Acknowledgments: Z

The authors acknowledge physical design contributions by:

B. Arnoid, P. Bodenstab, S.Chapin, W. Jaffe, W. Kever, Y. Kim,
K. Koch, T. Lelm, J. Lotz, R. Mason, S. Naffziger, M. Storey, and
T. Xu.

References:

(1] Hunt, D., “Advanced Performance Features of the 64-bit PA-8000"
Digest of Papers, Compcon 1995

(2] Lotz,J., etal, “A Quad-Issus Out-of-Order RISC CPU" ISSCC Digest
of Technical Papers, pp. 212-213, Feb., 1596.

5

212

. 1996|EEEIntem§tionalSoid-SmCiuisCorm

0-7803-3136-2/ 96 / $5.00 / © IEEE

——-————

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 32 of 35

M* ; m’ & N ", POV S W PR Y i ”
"
INSERT PECHANISH TAG PROP STSTEN i
CR_DEP(X] CB_TRGIACX) Ce_TAGLHCX] ‘i' !

o 0 © nempln-1] § i :
; 1
G - . f

: 3 N

my. toghinl : : 3, | i
-1 . |

2 . ‘

>4 - !

remplnl q -) l :

my.taoglinl G ‘ 1 ;

|

Figure 1: Basic operand comparator cell

ot P G Ten - A P ool e

CS_OEPLX+1] CO_TRGIACX+1] CB.TARIBCX~13
oo Figure 2: Bit slice for CB dependencies. B
I
@0 ¥
Even 3!
loco !, Indenin] Odd .
*E' e RTCH Even .
-g Odd it
aven m Ev'n i : |
‘NOEXSCR) Oad 4
' NOEX3 (A Even =
Ty 2nd Ph _Odd_
= n ase: _
wired-OR compare Even]
Ist Phase: blt compare of all Index blt\s Odd :! ‘
> 7 Even i i
Figure 3: Bit slice used in memory dependency compares. .g — Odd !
v
@ Oad ~ t
Even v
Odd
Even
Odd
Even
3 9ad ;
@™ Even ‘
ox Odd
e Even
0ad_
NCX aMd GaND _gi.n
{l Odd
= r Even

430 =
NOX
Figure 4: Organization of ALUMEM IRB.
Figure 5: Dual-rail dynamic converter.
Figure 8: See page 447.

DIGEST OF TECHNICAL PAPERS * PAK]

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 33 of 35

ISSCC98 / Februar, .., 1996 / Sea Ciift / 2:00 PM

[NSERT MEDWMISH TAG PROP SYSTEM
C8_DEPIX) CO.TAGIALX) CO_TAGLIB(X]
o 0 o ncmpln-1] - . ’-J
- i
; :
my_togHlnl e E
tAHIn) ﬁ_ g 2 =
§ ¢
crP
——
nempln) J
mg_ragl_tnl G
tnllnl

W;%

Figure 1: Basic operand comparator cell.

, CB_DEPCX+1) CO_TAQIALX+1) CR_TARINCX 1]
‘ 1. n-
© oo Figure 2: Bit slice for CB dependencies.
]
Even
Odd
b TCH Even
-g Odd
@ |Even
Odd
Even
2nd Phase: 0jd—
wired-OR compars Even
ler Phose: bt compare . of all Index blvs Odd
N > —> Even
Figure 3: Bit slice used in memory dependency compares. g Odd
Even
@ Odd
Even
Odd
Even
Odd
Even
-g Odd
@ Even
ox [%n e Odd
Even
Odd
NCX @0 @0 Even
Odd
ﬁ
IN Even
Figure 4: Organization of ALUMEM IRB.

Figure 5: Dual-rai] dynamic converter.
Figure 6: See page 447,

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 34 of 35

AQ 440 {Rev. 10/93) Summons in a Chvil Action
Hnited Btates Bistrict Court

NORTHERN DISTRICT OF HEW YORK
CORNELL UNIVERSITY, a non-profit
New York corporation, and CORNELL
RESEARCH FOUNDATION, INC. ; 4 non- IVl
profit New York corporation SUMMONSINA C L CASE
V. CASE NUMBER:

HEWLETT-PACKARD COMPANY, a

Delaware corporation m 7 %‘

TO: HEWLETT-PACKARD COMPANY
3000 Hanover Street R
Palo Alto, California 94304

YOU ARE HEREBY SUMMONED and required 10 serve upon PLAINTIFF'S ATTORNEY (name and addrees)

James J. Mingle, Esq. Edward G. Poplawski, Esq.

Nel§on E. Rot;h, qu. Denise L. McKenzie, Esgqg.
Office of University Counsel Sidley Austin Brown & Wood

Cornell University 555 West Fifth Street, 40 Floor
300 CCC Building, Garden Avenue Los Angeles, CA 90013-1010

Ithaca, NY 14853

an answer to the complaint which is herewith served upon you, within___ twenty (20) days after service of this
SUMIMONS Upon you, exclusive of the day of servica. If you fail to do so, judgment by default will be taken against you for the relief
demanded in the compiaint. You must aiso file your answer with the Clerk of this Court within a reasonable period of time after
service.

DEC 2 7 2001

CLERK - ' DATE
//l / _‘}::,_. e

P "“}’ﬁ_v(:r./y‘l,q 7 }1,/] /’/ el
o g;ﬂﬁw«ﬁu’ K/ ‘

Case 5:01-cv-01974-RRR-DEP Document 43 Filed 09/06/02 Page 35 of 35

JURY TRIAL DEMAND

Plaintiffs, CORNELL UNIVERSITY and CORNELL RESEARCH

FOUNDATION, INC., hereby demand trial by jury.

Respectfully Submitted,

DATED: December , 2001 OFFICE OF UNIVERSITY COUNSEL

By:

James J. Mingle (BRN 508993)
Nelson E. Roth (BRN 102486)

300 CCC Building, Garden Avenue
Cornell University

Ithaca, New York 14853

Tel: 607-255-5124

DATED: December 2, 2001 SIDLEY AUSTIN BROWN & WOOD

sy Sl d. A E%giaxnﬁli

SIDLEY AUSTIN BRCOWN & WOOD
Edward G. Poplawski
Denise L. McKenzie
555 West Fifth Street, 40" Fl
Los Angeles, California 90013
Tel: 213-896-6000
- and -
James D. Arden (JA 8779)
John J. Lavelle (JL 1455)
875 Third Avenue
New York, New York
Tel: 212-906-2000

-10-

LAl 355426v4

	c:/pdf/57258-doc43.tif
	image 1 of 35
	image 2 of 35
	image 3 of 35
	image 4 of 35
	image 5 of 35
	image 6 of 35
	image 7 of 35
	image 8 of 35
	image 9 of 35
	image 10 of 35
	image 11 of 35
	image 12 of 35
	image 13 of 35
	image 14 of 35
	image 15 of 35
	image 16 of 35
	image 17 of 35
	image 18 of 35
	image 19 of 35
	image 20 of 35
	image 21 of 35
	image 22 of 35
	image 23 of 35
	image 24 of 35
	image 25 of 35
	image 26 of 35
	image 27 of 35
	image 28 of 35
	image 29 of 35
	image 30 of 35
	image 31 of 35
	image 32 of 35
	image 33 of 35
	image 34 of 35
	image 35 of 35

