From:#0JCase3:09-cv-00201-SI Documentl Filed01/05/0R20PRdeuditad;y P.004/021

® ®

Katherine Kelly Lutton (CAB # 194971) ﬁ‘?jﬁl@ '
lutton@ft.com :
Robert J. Kent (CAB # 250905) . L g&
RIKent@fr,com Ky
FISH & RICHARDSON P.C; R 'S 2
500 Arguello Street, Suite 500 No,qqfl??‘qﬁ’o 0
Redwood City, California 94063 ey, gs 0/?" Wy
Telephone: (550) 839-5070 STRIGL T S NG,
Facsimile: (650) 839-5071 s e O ag
=-1ng iy
Attorneys for Plaintiffs .
SUN MICROSYSTEMS INCORPORATED
UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA . Qﬁ}?
g
SUN MICROSYSTEMS INCORPORATED, & [{GA¢ no.{ O 0o
Delaware corporation, - a @ ﬁ
Plaintiff, COMPLAINT FOR DECLARATORY
. JUDGMENT OF NON-INFRINGEMENT,
v, , INVALIDITY AND
‘ UNENFORCEABILITY
IMPLICIT NETWORKS, INC., a Washington
corporation, JURY TRIAL DEMANDED
Defendant. '
‘1. Sun Microsystems Incorporated (“Sun”) hereby brings this action for declaratory

judgment against Implicit Networks, Inc. (“Implicit”), Specifically, Sun seeks, amongst other
things, declaratory judgment of non-infringement, invalidity and unenforceability of .8, Patent
Nos. 6,324,685 (“the '685 pats;:nﬁ”), entitled “Applet server that provides applets in various forms,”
4‘1nd 6,976,248 (“the '248 patent”;), entitled “Application server facilitating with client’s computer
for applets along with various formats.”

2. Upon information and belief, Implicit is a patent holding company that makes no
products and whose principal and only business is licensing and enforcing pétents. Implicit claims
to own the *685 and "248 patents, True and correct copies of the *685 and '248 patents are attached
as Exhibits A and B (respectively),

COMPLAINT FOR DBCLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCARILITY
Case No.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page2 of 41

3. Upon information and belief, as part of its patent licensing business strategy, Implicit
offers licenses to, and files patent infringement suits against, prominent high technology companies.
Upon information and belief, through either these arms-length license negotiations or as a result of
litigation settlements, Implicit has in fact licensed various patents to high technology companies.
Such companies include two high technology corporations headquartered in this judicial district.

4. Implicit’s public website consists of one page enumerating its technology that is
“currently available for licensing.” A true and correct copy of the website is attached as Exhibit C.
At the bottom of the webpage, Implicit solicits requests for licenses over the enumerated
technology, and includes an interactive link allowing website viewers throughout the country
including in this judicial district to send electronic mail to Implicit.

5. On July 15, 2008, Implicit filed a lawsuit against Adobe Systems Incorporated,
International Business Machines Corporation, Oracle Corporation, and SAP America, Inc. in the
United States District Court for the Middle Western District of Washington, Civil Action No. C08-
01080, alleging that various products and services of those respective companies infringed both the
’685 and ’248 patents. Implicit seeks damages.

6. On January 14, 2008, Implicit sent a letter to Sun’s litigation counsel amongst others.
A true and correct copy of this letter is attached as Exhibit D. In the letter, Implicit states its
intention to imminently add Sun as a defendant in the aforementioned Washington litigation, or in
the alternative file a new complaint against Sun.

7. As the above-stated facts indicate, Implicit has asserted rights under the *685 and
’248 patents based on certain as-yet unidentified ongoing activity of Sun. Based on Implicit’s
expressed intention to commence litigation against Sun, an actual, substantial, and continuing
justiciable controversy exists between Sun and Implicit, requiring a declaration of rights by this
Court.

8. In terms of venue, Sun has its headquarters in this judicial district and conducts
substantial business and maintains extensive facilities in this district. It is likely that a great deal of

evidence concerning Sun’s allegedly infringing conduct is located in this district. It is also likely

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCABILITY
Case No.

N

N e N = v, |

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page3 of 41

that many of the witnesses who will be asked to testify in this matter will be located in this judicial
district. The relevant facts are set forth below.

THE PARTIES

9. Sun is a corporation organized and existing under the laws of Delaware with its
corporate headquarters and principal place of business at 4150 Network Circle, Santa Clara, CA
95054.

10. Upon information and belief, Implicit is incorporated under the laws of the state of
Washington with a registered agent for service of process located at 701 Fifth Avenue, # 7000,
Seattle, Washington, 98104.

JURISDICTION AND VENUE

11. This is a declaratory judgment action brought pursuant to the Federal Declaratory
Judgment Act, 28 U.S.C. § 2201 et seq., for patent non-infringement, invalidity and
unenforceability arising under the patent laws of the United States, Title 35, United States Code.
This Court has subject matter jurisdiction over the causes of action stated herein pursuant to 28
U.S.C. §§ 1331, 1338(a) and 2201, because this action concerns a federal question arising under the
patent laws of the United States.

12. Implicit is subject to personal jurisdiction in this District because Implicit has
purposefully availed itself of the privilege of doing business in California, including pursuing its
licensing efforts directly and through its website efforts in this judicial district and actually licensing;
its various patents to at least two entities headquartered in this judicial district. Further, upon
information and belief, Implicit has substantial contacts With California because of its ongoing
attempts to license patents to other entities in the state of California.

13. Venue is proper in this District pursuant to 28 U.S.C. §§ 1391 and 1400(b) because
Implicit has engaged in sfgniﬁcant activity in this district including seeking licensing arrangements
in this district.

COUNT I: NON-INFRINGEMENT:OF THE 685 AND °248 PATENTS

14. Sun incorporates by reference and realleges paragraphs 1 through 13, above, as if
fully set forth herein.

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCABILITY
Case No.

LN

~N O W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page4 of 41

15. The products and services provided by Sun and utilized by its customers do not
infringe and have not infringed, either directly, indirectly, or by equivalents, any claim of the *685
patent or the 248 patent.

COUNT II: INVALIDITY OF THE ’685 AND ’248 PATENTS

16. Sun incorporates by reference and realleges paragraphs 1 through 15, above, as if
fully set forth herein.

17. The claims of the 685 and *248 patents are invalid for failure to satisfy the
requirements of patentability specified by Title 35 of the United States Code, including §§ 101, 102,
103 and/or 112.

COUNT III: DECLARATORY RELIEF REGARDING EQUITABLE ESTOPPEL

18. Sun incorporates by reference and realleges paragraphs 1 through 17, above, as if
fully set forth herein.

19. The first of Implicit’s *685 and 248 patents issued on November 27, 2001—over
seven years ago and more than six years before the institution of this action and Sun’s first notice of
Implicit’s claims. Since that time, Implicit has unreasonably delayed asserting its claims with
prejudice to Sun. During this delay, Sun relied on its detriment to Implicit’s affirmative actions and
representations (in the claims, patent application and prosecution history) about what its patents did
and did not cover.

20. Pursuant to the Federal Declaratory Judgment Act, 28 U.S.C. §§ 2201 et seq., Sun
requests the declaration of the Court that the *685 and ’248 patents are unenforceable by the
doctrine of equitable estoppel.

COUNT1V: DECLARATORY RELIEF REGARDING LACHES

21. Sun incorporates by reference and realleges paragraphs 1 through 20, above, as if
fully set forth herein.

22. The first of Implicit’s 685 and ’248 patents issued on November 27, 2001—over
seven years ago. Since that time, Implicit has unreasonably and inexcusably delayed bringing any
action and now threatens to imminently file suit.

e

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCABILITY
Case No.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page5 of 41

23. Pursuant to the Federal Declaratory Judgment Act, 28 U.S.C. §§ 2201 et seq., Sun
requests the declaration of the Court that the ’685 and ’248 patents are unenforceable by the
doctrine of laches.

COUNT V: DECLARATORY RELIEF REGARDING MARKING

24, Sun incorporates by reference and realleges paragraphs 1 through 23, above, as if
fully set forth herein.

25. Upon information and belief, prior to the filing of this action, Sun was not given
constructive notice of Implicit’s claimed patent rights through marking or other appropriate means.

26. Pursuant to the Federal Declaratory Judgment Act, 28 U.S.C. §§ 2201 et seq., Sun
requests the declaration of the Court that Implicit failed to mark or otherwise provide proper notice
of the *685 and 248 patents pursuant to 35 U.S.C. § 287 and therefore any potential damages are
accordingly limited.

COUNT VI: DECLARATORY RELIEF REGARDING
PROSECUTION HISTORY ESTOPPEL

27. Sun incorporates by reference and realleges paragraphs 1 through 26, above, as if
fully set forth herein.

28. During prosecution of the 685 and ’248 patents, Implicit made statements and
representations to the Patent Office, without limitation relating to the definition of the term
“applet,” to which the applicant must now be bound. Implicit made these statements in attempt to
seek allowance of the patents and cannot now try to recapture that which the application gave up.

29. Pursuant to the Federal Declaratory Judgment Act, 28 U.S.C. §§ 2201 et seq., Sun
requests the declaration of the Court that Implicit is barred, under the doctrine of Prosecution
History Estoppel, from construing the claims of either the 685 patent or the’248 patent in such a
way as to cover any of Sun’s products or processes.

COUNT VII: EXCEPTIONAL CASE

30. | Sun incorporates by reference and realleges paragraphs 1 through 29, above, as if
fully set forth herein.
/1]

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCABILITY
Case No.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page6 of 41

31. On information and belief, prior to filing its complaint, Implicit knew, or reasonably
should have known, that the patent claims were invalid and/or not infringed by Sun or that its
claims were barred in whole or in part. Implicit’s filing of the complaint and continuing to pursue
its present claims in view of this knowledge makes this case exceptional within the meaning of
35 U.S.C. § 28s5.

COUNT VIII: DECLARATORY RELIEF REGARDING DAMAGES

32. Sun incorporates by reference and realleges paragraphs 1 through 29, above, as if
fully set forth herein.

33. Upon information and belief, some of the products accused of infringing the *685 or
’248 patents are used by or manufactured for the United States as provided in 28 U.S.C. § 1498(a).

34, Pursuant to the Federal Declaratory Judgment Act, 28 U.S.C. §§ 2201 et seq., SAP
requests the declaration of the Court that Implicit’s claims for relief and prayer for damages may be
limited due by 28 U.S.C. § 1498(a).

PRAYER FOR RELIEF

WHEREFORE, Sun prays for judgment against Implicit as follows:

(a) Declare that Sun’s products do not infringe, either directly or indirectly, literally or
by equivalents, any claim of the 685 patent or the *248 patent;

(b) Declare that the 685 and *248 patents are invalid;

(c) Declare that the *685 and ’248 patents are unenforceable;

(d Issue an injunction preventing Implicit and those in concert with Implicit from
harassing Sun or Sun customers, seeking licenses from Sun or Sun customers, and accusing Sun or
Sun customers of infringing any claim of Implicit’s ’685 or 248 patents;

(e) Issue an Order awarding Sun its costs, expenses and reasonable attorney fees as
provided by law; and

® Award Sun any other and further relief as this Court may deem just and proper.
/17
/1]

/17

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCABILITY
Case No.

ESN

~N N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page7 of 41

DEMAND FOR JURY TRIAL

Plaintiff requests a trial by jury on all matters appropriately tried to a jury.

Dated: January 15, 2009 FISH & RICHARDSON P.C.

A

Ro'bert J. Kent

Attorneys for Plaintiffs
SUN MICROSYSTEMS INCORPORATED

50630413.doc

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-
INFRINGEMENT, INVALIDITY AND UNENFORCABILITY
Case No.

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page8 of 41

EXHIBIT A

Case3:09-cv-00201-SI

az United States Patent

Balassanian

Documentl Filed01/15/09 Page9 of 41

L

US 6,324,685 Bl
*Nov. 27, 2001

(10) Patent No.:
(45) Date of Patent:

(54) APPLET SERVER THAT PROVIDES
APPLETS IN VARIOUS FORMS

(75) Inventor: Edward Balassanian, Kirkland, WA

(US)
(73) Assignee: BeComm Corporation, Redmond, WA
(Us)

(*) Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C
154(a)(2).

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/046,972

(22) Filed: Mar. 18, 1998
(51) It CL7 oo GOG6F 9/45
(52) US.CL oo 717/5; 717/1

(58) Field of Search 395/705, 701,
395/200.33, 200.32, 188.01; 717/5, 1; 709/203,
202; 713/202

(56) References Cited
U.S. PATENT DOCUMENTS
5,805,829 + 9/1998 Cohen et al.coueeeee. 395/200.32
5,828,840 * 10/1998 Cowan et al. . .. 395/200.33
5,848,274 * 12/1998 Hamby et al. 395/705
5,872,915 * 2/1999 Dykes et al. ... 395/188.01
5,884,078 *3/1999 Taustinicccoeervvvrvvevnennnne. 395/701

OTHER PUBLICATIONS

“Eliminating Unnecessary Synchronization,” http://kimer-
a.cs.washington.edu/synch/index.btml [Accessed Oct. 4,
2000).

CHvnd Computer A

Sirer, Emin Giin, “Kimera Paper Trail,” http://kimera.cs-
.washington.edu/papers/index.html [Accessed Oct. 4, 2000].
Sirer, Emin Giin, “Java, Extensibility and Security Related
Links,” http://kimera.cs.washington.edu/related/index.html
[Accessed Oct. 4, 2000].

Sirer, Emin Giin, “Java-Relevant Articles in the Press,”
http://kimera.cs.washington.edu/press/index.html [Ac-
cessed Oct. 4, 2000].

“Project Members” http://kimera.cs.washington.edu/mem-
bers.html [Accessed Oct. 4, 2000].

Emin Giin Sirer, et al., “Distributed Virtual Machines: A
System Architecture for Network Computing,” Dept. of
Computer Science & Engineering, Universily of Washing-
ton, Seattle, Washington http:/kimera.cs.washington.edu
Feb. 26, 1998.

(List continued on next page.)

Primary Examiner—Martk R. Powell
Assistant Examiner—Hoang-Vu Antony Nguyen-Ba
(74) Attorrey, Agent, or Firm—Perkius Coie LLP

67 ABSTRACT

The present invention is an applet server which accepts
requests for applets from client computers. A request speci-
fies the format in which an applet is to be delivered to the
requesting client computer, The applet server has a cache
which it uses to store applets for distribution to client
computers. If the specified form of the requested applet is
available in the cache, the applet server transmits the applet
to the requesting client. If the applet is not available in the
cache, the server will attempt to build the applet from local
resources (program code modules and compilers) and trans-
former programs (verifiers and optimizers). If the applet
server is able to build the requested applet, it will then
transmit the applet to the requesting client computer. If the
applet server is unable to build the requested applet, it will
pass the request to another applet server on the network for
fulfillment of the request.

106 Claims, 3 Drawing Sheets

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Pagel0 of 41

US 6,324,685 B1
Page 2

OTHER PUBLICATIONS

Emin Giin Sirer, et al., “Design and Implementation of a
Distributed Virtual' Machine for Networked Computers,”
University of Washington, Department of Computer Science
and Engineering, Seattle Washington, 177 ACM Sympo-
sium on Operating system Principles, Dec. 1999.

Sirer, Emin Giin, “A System Architecture for Next Genera-
ticn Network Computing,” Dept. of Computer Science &
Engineering, University of Washington, Seattle, Washingion
http://wrww.dyncorp—is.com/darpa/meetings/gradmeet98/
‘Whitepapers/darpa—wp.html Jun. 26, 1998.

Sirer, Emin Giin, http://www.cs.washington.edu/homes/egs/
[Accessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera—A System Architecture for
Networked Computers,” http://kimera.cs.washington.edu/
[Accessed Oct. 4, 2000].

Emin Giin Sirer and Brian Bershad, “Kimera Architecture,”
hitp://kimera.cs.washington.edu/overview.htm!l [Accessed
Oct. 4, 2000].

Sirer, Emin Giin, “Security Flaws in Java Implementations,”
http://kimera.cs. washington.edu/flaws/index.html [Ac-
cessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera Bytecode Verification,” hitp://
kimera.cs.washington.edu/verifierhtml [Accessed Oct. 4,
2000].

Sirer, Emin Giin, “Kimera Test Suite,” http:/kimera.cs-
.washington.edu/testsuite.htm] [Accessed Oct. 4, 2000].
Sirer, Emin, Giin, “Kimera Disassembler,” http://kimera.c-
s.washington.edu/disassembler.html [Accessed Oct. 4,
2000].

* cited by examiner

Case3:09-cv-00201-SI

U.S. Patent

Nov. 27, 2001

Client Computer A

[

‘\\

12

Client Computer B

-

Documentl Filed01/15/09

Sheet 1 of 3

Pagell of 41

US 6,324,685 B1

Untrusted
Network

Trusted 18

External
Network

10

f_/

16

h J

Applet Server Computer

P Network interface

J—2D

Applet Server
Manager

R il

22) Local Resources

32b

Cache Component

-30a module

Compiler I

24 ‘ |
250 I)

S
25b ! Compiler Hl delﬂe

25¢ | |

2 L
l Transformers o
’ i Verifier X/\ 34 36 Optimizer I

Fig. 1

Case3:09-cv-00201-SI Documentl Filed01/15/09 Pagel?2 of 41

U.S. Patent Nov. 27, 2001 Sheet 2 of 3 US 6,324,685 Bl

Applet-URL (String) specifies the name of the requested
applet
Code-Type (Source/Intermediate/Binary) specifies the
format the applet is to be delivered to the
requesting client in. A request for binary
-would specify the CPU of the requesting
client (e.g., x86)
Verification-Level (0-100) specifies the degree of verification to
be performed. 0 = no/minimal verification,
100 = maximum verification (highest level of
security).
Optimization-Level {0-100) specifies the degree of optimization
to be performed. 0 = no/minimal
optimization, 100 = maximum optimization.

Fig. 24

Code Déta Type

Applet-URL (String) specifies the name of the requested

applet .
GCode-Type (Source/Intermediate/Binary) specifies the

format the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting
client (e.g., x86)

Verification-Level (0-100) specifies the degree of verification to
be performed. 0 = no/minimal verification,
180 = maximum verification (highest leve! of
security).

Optimization-Level (0-100; specifies the degree of optimizaticn
to be performed. 0 = no/minimal
optimization, 100 = maxirrium. optimization.

Applet Length (0-2%) specifies the size of the requested
applet.
Appiet Code The Requested Applet in the form specified

by the request data type.

Fig. 2B

Case3:09-cv-00201-SI Documentl Filed01/15/09 Pagel3 of 41

U.S. Patent Nov. 27, 2001 Sheet 3 of 3 US 6,324,685 Bl

Program Module
40

Intermediate Compiler 1)
42

Interrmediate Form
Program Module

44

I Transformers

48, R
I) 46 , 56

__ Transformed
Intermediate Form
Program Module
50

Target Compiler

Applet \ o

Fig. 3

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Pagel4 of 41

US 6,324,685 B1

1

APPLET SERVER THAT PROVIDES
APPLETS IN VARIOUS FORMS

FIELD OF THE INVENTION

The present invention relates to computer operating sys-
tems and, in particular, to a server architecture providing
application caching and security verification.

BACKGROUND OF THE INVENTION

The growth of the Internet’s importance to business,
along with the increased dependence upon corporate
networks, has created a demand for more secure and efficient
computer systems. The traditional solution to this problem
has been to depend upon improvements in hardware perfor-
mance to make up for the performance penalty that is
typically incurred when a computer systemn is made more
secure and stable. Increased interconnectivity has also cre-
ated a need for improved interoperability amongst a variety
of computers that are now connected to one another. One
solution to the problem of the variety of computers inter-
connected via the Internet and corporate networks has been
the development of portable architecture neutral program-
ming languages. The most widely known of these is Java,
though; there are numerous other architecture neutral lan-
guages.

Architecture neutral programming languages allow pro-
grams downloaded from a server computer to a client
computer to be interpreted and executed locally. This is
possible because the compiler generates partially compiled
intermediaté byte-code, rather than fully compiled native
machipe code. In order torun a program, the client machine
uses an interpreter to execute the compiled byte-code. The
byte-codes provide an architecture neutral object file format,
which allows the code to be transported to mulliple plat-
forms. This allows the program to be run on any system
which implements the appropriate interpreter and run-time
system. Collectively, the interpreter and runtime system
impiement a virtual machine. This structure results in a very
secure language,

The security of this system is premised on the ability of
the byte-code to be verified independently by the client
computer. Using Java or some other virtual machine imple-
menting technology, a client can ensure that the downloaded
program will not crash the user’s computer or perform
operations for which it does not have permission.

The traditional implementations of architecture neutral
languages are not without problems. While providing tre-
mendous cross platform support, the current implementa-
tions of architecture neutral languages require that every
client performs its own verification and interpretation of the
intermediate code. The high computation and memory
requirements of s verifier, compiler and interpreter restrict
the applicability of these technologies to powerful client
comptess.

Another probjem with performing the verification process
on the client compnter is that any individual within an
organization may disable some or all of the checks per-
formed on downloaded code. The current structure of these
systems makes security management at the enterprise level
almost impossible. Since upgrades of security checking
software must be made on every client computer, the cost
and time involved in doing such upgrades makes it likely
that outdated or corrupt copies of the verifier or interpreter
exist within an organization. Even when an organization is
diligent in maintaining a client based security model, the
size of the undertaking in a large organization increases the
likelihood that there will be problems.

10

15

20

30

40

45

50

55

60

65

>

ek

There is a need for a scalable distributed system archi-
lecture that provides a mechanism for client computers to
request and execnte applets in a safe manner without requir-
ing the client machines to have local resources to compile or
verify the code. There is a further need for a system in which
the applets may be cached in either an intermediate archi-
tecture neutral form or machine specific form in order to
crease overall system performance and efficiency.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client
computers to request and execute applets in a safe manner
without requiring the client to have local resources to verify
or compile the applet code. Compilation and byte-code
verification in the present invention are server based and
thereby provide more efficient use of resources and a flexible
mechanism for instituting enterprise-wide security policies.
The server architecture also provides a cache for applets,
allowing clients to receive applet code without having to
access nodes outside the local network. The cache also
provides a mechanism for avoiding repeated verification and
compilation of previously requested applet code since any
client requesting a given applet will have the request satis-
fied by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essen-
tially be viewed as a forra of an interpreter, interpreting
binary code into the associated electronic equivalents. The
present ievention adds a level of indirection in the form of
an intermediate language that is processor independent. The
intermediate language serves as the basis for security
verification, codé optimizations, or any other compile time
modificatious that might be necessary. The intermediate
form allows a single version of the source to be siored for
many target platforms instead of having a different binary
for each potential target computer. Compilations to the 1arget
form can either be done at the time of a cache hit or they can
be avoided all together if the target machine is able to
directly interpret the intermediate form. If the compilation is
done on the server, then a copy of the of the compiled code
as well as thie intermediate form can be stored in the cache.
The performance advantage derived from caching the com-
piled form as well as the intermediate depends upon the
number of clients with the same CPU.

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as other features and advantages thereof
will best be understood by reference to the detailed descrip-
tion which follows, when read in conjunction with the
accorapanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
mray be used to implement an applet server in one embodi-
ment of the present invention; :

FIG. 2a is a table which illustrates the structure of the
request format data type;

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FIG. 3 is a diagram showing the compilation and trans-
formation of a program module into an applet in a particular
form.

DETAILED DESCRIPTION OF THE
INVENTION
Referring to FIG. 1, an applet server architecture accord-
ing to one ernbodiment of the invention is based on an applet

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Pagel5 of 41

US 6,324,685 Bl

3

server computer 10 which in turn is connected to client
computer A12, client computer B14, an external network 16
and an untrusted network 18. The applet server computer 10
connects (o client computers 12 and 14, an external network
16, and an untrusted petwork 18 by means of a network
interface 20. Typically this connection will involve one or
more of the computers or networks having a connection to
the Internet.

The applet server computer 10 accomplishes its objectives
by manipulating computer programs in several formats. An
applet (e.g. applets 1-3, 254-25c¢) is any form of program
instructions, whether in binary, source or intermediate for-
mat. In the case of this architecture, the applet code can
either be a self contained program, or it can be a code
fragment associated with a larger application.

Binary format refers to processor specific machine
instructions suitable for running natively on a given com-
puting platform (also referred to as “target” because of the
concept of “targeting” a compiler to produce binary code for
a given processor type).

Source refers to non-binary applet code, generally in the
form of higher level languages (i.e. C, C++, Java, Visual
Basic, ActiveX, Portran, and Modula).

Intermediate format refers to a common intermediate
byte-code that is produced by compiling a given source code
input. The intermediate byte-code need not necessarily be
Java byte-code,

Treating applers in this gereral sense allows client com-
puters 1Z and 14 to request not only applications, but
portions of applications. Client computers 12 and 14 are thus
able to use applet server computer 10 as the equivalent of a
loader, loading in appropriate paris of the application in the
form of aoplets. In turn client computers 12 and 14 can run

large applications without requiring that the client comput-

ers 12 and 14 have the resources to. store the entire appli-
cation in memory at once.

Having the applets delivered from applet server computer
10 allows code in interinediate form to be verified,
optimized, and compiled before being transmitted to clieat
computers 12 and 14. This reduces the amount of work the
client computers 12 and 14 bave to do and -provides a
convenient way to impose global restrictions on code.

In operation, client computer A 12 transmits a request to
an applet server computer 10 requesting an applet in a
particular form. The form may be selected from a large
matrix of many possible forms that can be recognized by the
system. The request specifies the format (source,
intermediate, or binary) in which the client wishes to receive
the applet. The request may also specify that the applet be
verified or have some other transformation operation per-
formed upon it. Verification, optimization and compression
are examples of types of transformation operations. The
request is received by the network interface 20 of tie applet
server computer 10 which passes the request onto the applet
server mianager 22,

After interpreting the request, the applet server manager
22 checks to see if ihe requested applet is available in the
cache 24. The cache 24 stores applets in a variety of formats
(source, intermediate, or binary). If the requested form of the
applet is available in the cache 24 (applet 1 254, applet 2
25b, or applet 3 25c in this example) the applet server
manager 22 instructs the network interface 20 to transmit the
applet to requesting client computer A 12. If the requested
applet is not available in the cache 24, then the applet server
manager 22 will attempt fo build the requested applet from
locai resources 26 and cpe or more transformation cpera-

5

10

A8

0

25

20

40

45

50

55

60

65

4

tions performed by one or more of the transformers 28.
Local resources 26 are comprised of compilers 304, 30b and
30c and program code modules 324, 32b, 32¢ and 324. The
requested applet is built by selecting one or more program
code modules 32 and compiling thern with one or more
compilers 30. Transformer operations may be perforined by
the verifier 34 or the optimizer 36. After the applet server
manager 22 builds the applet, the network interface 20
transmits the applet to the requesting client computer A 12.

If the request can not be satisfied by building the applet
from local resources 26 and transformers 28, the applet
server manager 22 will pass a request for the requested
applet 1o external network 16 and/or untrusted network 18,
The applet server manager 22 may request the applet in
intermediate form or in executable form or it may request the
local resources 26 and transformeérs 28 it needs to complete
building the applet itself.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retrieve
a given applet from the cache. PUT is used to store an applet
in the cache. FLUSH is used to clear the cache of one or
more entries. When the cache is unable to locate an item in
response 1o a GET operation, it returns a cache miss. The
program which issued the GET command is then responsible.
for locating the desired form of the applet by other means
and optionally storing it in the cache when it is retrieved
(using the PUT operation). The FLUSH command will clear
the cache of one or more entries and any subsequent GETs
for the FLUSHed applst code will result in a caclie miss.
This is useful if a particular applet needs to be updated from
a remote server on a periodic basis. When using PUT, the
program issuing the command specifies a time to live (TTL)
in the cache. When the TTL expires, the cache entry is
removed by means of a FLUSH operation.

Local resources 26 are comprised of program moduies 32
(applets in source form, not the requested form) and com-
pilers 30. The program modules 32 are run through the
compilers.30 in order to produce applets in the requested
form. The applet server manager 20 may also direct the
modules 32 to be processed by a verifier 34 or another
transformer such as an opiimizer 36. Program modules 32
are program code used 1o build applets. Program modules 32
may be stored in local resources 26 in source, binary, or
intermediate formats. When an applet is built it may require
the cperation of one or more corapilers 30 upen one or wore
program modules 32. The program modules 32 may be
combined and recompiled with previously cached applets
and the resulting applet may be also cacked for use at a
future time. Additionally, program modules 32, compilers 30
and transformers 28 (including verifiers 34 and optimizers
36) may be distributed across a network. The applet server
manager 22 may pass requests for the components it needs
to build a particular applet back to the network interface 20
which in tirn passes the request onto the rest of the network
and may include external network 16 and untrusted network
18.

FIG. 3 provides further illustration of how an applet is
produced frore local rescurces and transformers. In this
illustration the request is for an optimized and verified applet
compiled 16 a machine specific form. A program module 40
is compiled into an intermediate form program module 44
by an intermediate compiler 42. The intermediate form
program module 44 is then transformed by an optimizer 46
or a verifier 48. The resulting transformed intermediate form
program module 50 is then compiled by target compiler 52
into machine specific code applet 54.

There are two types of compilers used to build applets:
intsrmediate compilers 42 and target compilers 52. The

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Pagel6 of 41

US 6,324,685 Bl

S

intermediate compiler- 42 compiles program modules
(source applet code) 40 and produces a common interme-
diate pssudo-binary representation of the source applet code
(intermediate form program module 44). The word pseudo is
used because the intermediate form 44 is nol processor
specific tut is still a binarv representation of the source
program module 40. This intermediate form can be
re-targeicd and compiled for a particular processor.
Alternatively, the intermediate form 44 can be interpreted by
ap interpreter or virtual machine that understands the inter-
nal binary representation of the intermediate form. A target
compiler £2 comniles intermediate applet code 44 into an
applet 54 in. a processor specific format (binary) suitable for
running natively on a given computing platform.

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization.
Other transformers might included compressors that identify
pertions of code thay can be replaced with smaller equiva-
lents. Transformers can be matched up to any other com-
ponent that takes in intermediate code as an input. These
include the cache 24 and the target compilers 52. Global
policies fer transformers 56 can be implewented which
ensure that all aprlets are run through some set of trans-
formers hefore being returned 4o the client.

Averifier 481s a type of transformer that is able to analyze
tput code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers
48 look {or areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as 19 davices. Once a verifier 48 determines the portion
of unsafe applel code several steps can be taken. The
offending code portion can be encased with new code that
specifically prevents this unsafe code section from being
executed. The unsafe code can be medified to be safe. The
unsafi: code can be flagged ia such a way that a user can be
warned about the possible risks of executing the code
fragisem. The venfier’s role cait therefore be summarized as
detertniniug where unsafe code exists and possibly altering
the offending code to render it harmless. Verifiers 48 can
operale on eny formai of input code, whether in source,
intermediate or binary form. However, since intermediate
code js a common format, it is inost efficient to have a single
verifier that will operate on code in this format. This
eliminatss the need to build specific knowledge of various
source languages into the verifier. Verifiers 48 are a form cf
a transforroer: Verifieys 48 take in intermediate code and put
out verified intermediate code. Verifiers 48 are responsible
for identifying non-securs portions of code in the interme-
diate code and miccifying this code to make il secure.
Security problerns generaily include access to memory areas
that are unsafe (such as system memory. or memory outside
the application space cof the applet).

The chnics of adding in the verification step can be left up
to the client compuiter 12, the apolet server computer 10 (see
FIG. 1), or can be based on the network that the applet
originated ffom. Server managers can institute global poli-
cies that affect all clienis by -forcing all applets to be run
through the verifier' 48. Alternatively, verification can. be
reserved for un-trusted networks (18'in FIG. 1), or it can be
left up to the client to determine whether the verification
should be performed. In the preferred embediment, verifi-
catién level is determined by the applet server 10. In this
way, a uniform security policy may be implemented frem a
single machine (i.e., the applet server 10).

Opiimizers 46 are awmother type of iransformér program.
Optimizers 46 analyze cods, making:improvements to well

5

10

30

35

45

55,

-60

-65

(=

6

known code fragments by substituting in optimized but
equivalent code fragmenis. Optimizess' 46 take in interme-
diate code 44 and put out transformed intermediate code 50.
The transformed intermediate code 50 is fanctionally
equivalent to the source intermediate code 44 in that they
share the same structure.

Referring again to FIG. 1, policies may be instituted on
the applet server 10 that force a certain set of request
parameters regardless-of what the client-asked for.

For example, the applet server manager 22 can mn the
applet through a verifier 34 or optimizer 36 regardless of
whether the client 12 requested this or not. Since the server
10 might have to go 1o an untrusted network 18 to retrieve
a given applet, it will then run this applet through the
required transformers 28, particularly the verifier 34 before
returning it to the client 12. Since clients 12 and 14 have to
go through the. applet server computer 10, this ensures that
clients 12 and 14 do not receive applets direcily from an
untrusted network 18. In addition, since the server will be
dealing directly with untrusted network 18, it can be set up
to institute policies based on the network. A trusted external
network 16 may be treated differently thun an untrusted
network 18, This will provide the ability to mn a verifier 34
only when dealing with an untrusted network 18, but nov
when deaiing with a trusted external network 16, In one
embodiment, all .infermediate code is passed through. a
verifier 34 and the source of the code merely determines ine
level of verification applied.

The client 12 is the target computer on which the user
wishes to execute an applet. The client 12 requests applets
from the server 10 in a specific form. Applets can be
requested in various forrpats inchiding source, intermediate
and binary: In addition, an applet can be requested with
verification and/or other comnile lime operations.
Optionally, the client 12 can pass a verifier to the server to
provide verification. If the server 10 iniplements iis own
security, then both the client and server verifiers will be run.
The verifier. that is passed from the client to the server is
cached at the server for subsequent verification. The. client
can refer to this verifier by a server-generated handle to
avoid having to pass the verifier each time an applet is
requested.

Client computers 12 and 14 requesting applet code in
intermediate format need to have an inteipreter or virtual
machine capable of interpreting the binary code in the
intermediate: format if the applet is 10 be executed on the
client machine,

In the preferred embodiment, requests Lo the applet server
are in a format similar to those of an HTT? header and are
comprised of tags and values. In one embodiment, an HTTP
GET method is used to make the rzquest (though use of the
HTTP protocol is not necessary to implement the present
invention). The request is made up of a series of tags which-
specify the requested applet, the platiorny on whick: it is to
be mun ané the type of code (source/intermediate/binary), a
verification level and an optimization level. New tags and
values can be added to extend functionality as needed and
the applet server manager 22 will discard any tag it does tot
recognize. When the dpplet server computer 10 returns the
requested applet to the requesting client computer A 12, it
will transmit the request hezder followed by the applet code.
In this instance, the header will additionally include a field
which defines the length of the applet code. FIG. 2 nrovides
a table which illustrates the request format and the returaed
cpde format.

‘While this invention has beea described with reference to
specific expbediments, this description is net meant to timit

Case3:09-cv-00201-SI Documentl

US 6,3
7

the scape: of ‘the imvention. Various modifications of the
disclosed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the appended: claims will cover any such modificatious or
embodiments as fall within the scope of the inventicn.
I claim:
1. A methoed in a server computer for providing applica-
tions to' ciient computers, the method coraprising:
receiving a request from a client computer, the request
identifying an application and identifying a form of the
application, the identified forin being one of a plurality
of available forms;
in respopse to receiving the request,
generating the identified form of the application from
another form of the application; and
sending the identified form of the application to the
client computer; and
caching the identified form of the application so that when
another request is received for the application in the
identified form, the identified form of the application
can be senl-wilthout regenerating the identified: form of
the ﬁpplicati'on
2. A method in a'server computer for providing applica-
tions 1o ciient corbpuiers, the method comprising:
receiving a request from a client computer, the request
ideniifying an application and identifying a form of the
application, the identified form being oxe of a plurality
of avatiable forms; and
in response by réceiving the request,
when'the server computer does not have the. application
in the otker form, requesting the application in the
other form trom a computer other than the server
coruputer;
zenerating the ideutified form of the application from
" another form of the application; and
ding the identified form of the apvlication to the
client computer.
3. A method In a Server computer for pr0v1dmg apphba—
uon< 10 client computers, the method comprising:
receiving a request: from: a client’ computer, the request
identifying an application and identifying a form of the
application, the.identified form being.one of a plhrrality
cf available forms; and
i respunse Lo veceiving the request, -
genecating the idzntified £3rm of the application from
apother form of the application including when the
server computer does not have the identified form of
the application, requesting the application in the

cther form from a computer other than the server .

computer; and
sending the identified form of the applicaticn to the
client coinputer.
4. A method im o server computer for providing applica-
tions to client computers, the method comprising:
recelving a request from .a client computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and
in response to receiving the request,
generating the identified form of the application from
anather form of the application; and
sendipg. the identified form of the applicaiion to the
" clenr compuier
wherein the identified form is an intermediate form.
5. The méthod of claim 4 wherein the intermediate form
is Java byte code.

Filed01/15/09 Pagel7 of 41

24,685 B1

8

6. The method of claim 4 wherein the intermediate form
can be interpreted by an interpreter executing on the client
compufer.

7. A method in a server. cornputer for providing applica-

5 tions 1o client computers, the method comprising:
receiving a request from a client compater, the request
" identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and

10 response 10 receiving the request,
generating the identified form of the application from
another form of the application; and
sending the identified form of the application to the
s client computer

wherein the identified form is a target form.
8. The method of claim 7 wherein the target form is
directly execulable by a processor of the client computer.
9. A method in a server computer for providing applica-
tions to client computers, the method comprising:

2 receiving a request from a client computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
of availeble forms; ard

10 response Lo receiving the request,
generating the ideatified {orm of the application from
another form of the application; and
sending the identified form of the application to ths
client computer
wherein the other form is a source form.
10. Thie method of claim 9 wherein the source form is Java
SOurce.
11. A method in a server compuier for providing appli-
cations to client compulers, the method comprising:
receiving a request from a client computer, the request
identifying an dpplication and identifying a forns of the
application, the identified [orm being one of a plurality
of available forms; and
in response to recsiving the request,
trensforming the application into a transformed form;
generating the identified form of the application from
the transformed form of the application; and
sending the identified form of 1the application to the client
computer.
12. The method of claim 11 wherein the transforming is
verifying the application.
13. The method of claim 11 wherein the transforming is'
optimizing the application.
14. The method of claim 11 wherein the transforming is
compressing the application.
15. A meihod in a server commputer for providing appli-
cations to client comprters, the method comprising:
receiving a requesi from a client comouter, the request
identitying an application and identitying a form of the
application, the identified form being ove of a plurality
of available forms; and
in response 1o receiving the request,
generating the idertified form of the application from
another form of the application and caching the
generaied idertified form so that when the identified
form of the application has been stored in a cache,
the identified form of the application is retrieved
from the cache; and
sending the identified form of the application retrieved
from the cache to the client computer.
16. A method in a secver compurer for providing appli-
cations to clicnt computers, tie method comprising:

30

60

55

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Pagel8 of 41

US 6,324,685 B1

9

receiving -a request from a client computer, the request
ideniifying an application and identifying & form of the
application, the identified form being one of 2 plurality
of available forms; and
in response to receiving the request,
generating the identified form of the application from
another form of the application; and
sending’ the. identified form of the application to the
client. computer
wherein the application is a portion of a larger ‘appli-
cation.
17. A method in a server computer for providing appli-
cations 1o client computers, the method comprising:
receiving a request from a client computer, the request
identifying an application and identifying a form of the

application, the identified form being one of a plurality -

of available forms; and
in response to receiving the request,

generating the identified form of the application from
another form of the application; and

sending the identified form of the application to the
client computer

wherein the server computer functions as a loader for
the client computer.

18. A method in a server computer for providing appli-
cations to client computers, the method comprising:

receiving a request from a client computer, the request

identifying an application and identifying a form of the

application, tke identified form being one of a plurality

i available forms; and

in response lo receiving the request,

generating lae identified form of the application from
another form of the application; and

sending the identified form of the application to ihe
client computer wherein the application is an applet.

19. A method in a-server computer for providing appli-
catiogs to client computers, the method comprising:

recciving a request from a client computer, the request

Jrdentifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and

in response to feceiving the request,

generating the identified. form of the application from
another form of the application; and

sending lhe identified form of the applicaticn to the
client computer

wherein the application includes modules, wherein the
generating includes. generating of modules of. the
identified form, and wherein the generating includes
cornbining modules of the identified form that were
previously generated with modules of the identified
form that are generated in response to receiving the
request,

20. The method of claim 19 wherein the modules of the
identified form that were previously generated ate retrieved
from a cache.

21. A method in a server computer for providing appli=
cations (o client computers, the method comprising:

‘receiving a request from a client computer, the request

identifying an apmlication and identifying a form of the
application, the identified form beiag ore of a plurality
of aveilable forms; ang

in response 1o receiving the request,

_generating the identifed form of the application from
anotlier forin of the application;

after generating the identified form of the application,
storing the identificd form of the application in a
cache; and

45

50

60

65

10

sending the identified form.of the application to the client

computer.

22. The method of claim 21 including in respouse to
receiving a flush request, removing the identified form of the
application from the cache.

23. The ‘method of claim 22 wherein the Aush request is
received from a computer other than the server computer.

24. The method of <laim 21 including storing a time o
live indicator with the s:ored identified form of the appli-
cation.

25. A method in a server computer for providing appli-
caricns (o client computers, the . method comprising:

receiving a request from a clieat computer, the- request

identifying an application and identifying a form of the
application, the identifisd form being-one of a plurality
of available forms; and

in response to receiving the request,

transforming an intermediate form of the application
into a transformed version of the intermediate form
of the application;

generating the identified form of the application from
the transfornied version of the iniermediate form of
the application; and

sending the identified form of the application to the
client computer.

26. A method in a server compuier for providing zppli-
cations 1o client computers, the method comprising:

receiving a request from a client computer, the request

identifying an application and ideatityiag a form of the
application, the identified form being one of a plurality
of available forms, and
in- response to receiving the request,
verifying the application;
generating the idenrified form of the application from
the verified application; and
sending the ideatified-form of the application to the
client computer.
27. The method of claim 26 wherein the verifying is
specified by the client computer.
28. The method of claim 26 wherein the verifying is
specified by another computer.
29. The method of claim 26 wherein the verifying is
specified by thie server corputer.
30. The method of claim 26 including receiving a verifier
from the client computer.
31. The method of clairm 30 including sending 19 the client
corapiiter a handle for the verifier so that the client computer
can subsequently identify the verifier tc the server computer.
32. A method in a server computer for providing appli-
cations 1o clien: computers, the method compiising:
receiving a vequest ficm a client cowpnter, the request
jdentifying an application and identifying a form of the
applicaticn, the identified form being one of a plurality
of avaiiable forms; _

transforming the application that is identified in the
request vsing a commen transformation;

in response 1o recejving the request, .

generating the adentified form of the application from
the transformed application; and

sending the identified form of the application to the
client. computer.

33. A method in a server computer for providing appli-
cations to client computers, the method comprising:

receiving a request from a. client computer, the request

identifying an application and ideatifying a form of the
application, the identifled form being one of a plurality
of available forms; and

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Pagel9 of 41

US 6,324,685 Bl

11

in response to receiving the request,
generating the identified form of the application from
another form of the application; and
sending the identified form of the application to-the
client compuier
wherzin the identified form indicates a processor of the
client computer.

34. A method in a client computer for retrieving an
application in an identified form, the method comprising:

sending to a server computer a request that identifies an

application and identifics a form of the application, the
identified form being one of a plurality of available
forms; and

in response to sending the request, receiving from the

server computer the identified form of the application
wherein the server computer generated the identified
form of the application from another form of the
application in response to receiving the request from
the client computer

wherein after the server computer generated the identified

form of the application, the server computer stored the
identified form of the application in a cache so that
when another request is received for the identified form
of the application, the server computer can retrieve the
identified form of the application without regenerating
the ideuntified form of the application.

35. A method in a client computer for retrieving an
application in an identified form, the method comprising:

sending to a server computer a request that identifies an

application and identifies a form of the application, the
identified form. being one of a plurality of available
forms; and

in response to sending the request, receiving from the

server computer the identified form of the application
wherein the server computer generated the identified
form of the application from another form of the
application in respouse to receiving the request from
the client computer wherein when the server computer
«ioes not have the application in the other form, the
server compnter requests the other form of the appli-
cation from a computer other than the server computer.

36. A method in a client computer for retrieving an
application in an identified form, the method comprising:

sending to a server computer a request that identifies an

application and identifies a form of the application, the
identified form being one of a plurality of available
forms; and

in tresponse to sending the request, receiving from the

server computer the identified form of the application
wherein the secver cownputer generated the identified
form of the application from anothe:r forin of the
applization in response to receiving the request from
the client corapnter;- and

whereit the identified form is an intermediate form.

37. The method of claim 35 wherein the intermediate
form is Java byte code.

38. The method of claim 36 wherein the intermediate
form can be interpreted by an interpreter executing on the
client computer.

39. A method in a client computer for retrieving an
application in an identified form, the method comprising:

sending tc a server computer a request that identifies an

application and identifies a form of the application, the
identified form being one of a plurality of available
forms; and

in response to.sending the request, receiving from the

server computer the identified form of the application

10

15

20

30

35

12

wherein the server computer generated the identified
form of the application from another form of the
application in response. to receiving the request from
the client computer
wherein the .identified form is a target form.
40. The method of claim 34 wherein the target form is
directly executable by a processor of the client computer.
41. A method in a client computer for retrieving- an
application in an identified form, the method comprising:
sending to a server computer a request that identifies an
applicaticn and identifies a form of the application, the
identified form being ope of a plurality of available
forms; and
in response 1o sending the request, receiving from the
server computer the identified form of the application
wherein .the server computer generated the identified
form of the application from amother form of the
application in response to receiving the request from
the client computer
wherein the other form is a source form.
42. The method of claim 41 wherein the source form is
Java source.
43. A method in a client computer for retrieving an
application in an identified form, the method comprising:
sending to a server computer a request that ideniifies an
application and identifies a form of the application, the
identifisd form being one of a plurality of available
forms; and
in response to sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the application from another form of the
application in response to receiving the request from
the client computer:
wherein the server compuler transforms the application
before generating the identified form the application.
44. The method of claim 43 wherein the transforming is
verifying ke application.
45. The method of claim 43 wherein the transforming is
optimizing the application.
46. The method of claim 43 wherein the transforming is
compressing the application.
47. A method in a client computer for retrieviig an
applicalion’in an identified form, the method comprising:
sending to a server computer a request that identifies an
application and identifies a form of the applicatinn, the
identified form being one of a plurality of available
forms; and
in response to sending .the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the application from another form of the
application in response to receiving the request from
the client computer
wherein the server comiputer caches the identified form of
the application and wherein the szrver computer sub-
sequently retrieves the identified form of the applica-
fion from-the cache, rather than generating the identi-
fied form of the apglication.
48. A method in a client computer for reirieving an
application in an identified form, the method comprising:
sending to a server computer a request that identifies an
application and identifies a form of the application, the
identified form being one of a plurality of available
forms; and

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page20 of 41

US 6,324,685 B1

13

in response to sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identifizd
form of the application from another form cf the
application in response to receiving the request from
the client computer ’

whereir the application is a portion of a larger application.:

49. A method in a client computer for retrieving an
application in an identified form, the method comprising:
sending to a server computer a request that identifies an
application &nd .identifies a form of the application, the
identified form being one of a plurality of -available
forms; and
in response to sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generaied the identified
form of the application from another form of the
application in response to receiving the request from
the client computer
wherein the application is an applet.
50. A wmelhod in a client computer for retrieving an
application in an ideatified form, the method comprising:
sending to a server compuier a request that identifies an
application and ideutifies a form of the applicatior, the
iderntificd form being one of a plurality of available
forms; and) '
in response to sending the request, receiving from the
server computer the identified form of the application
wheréin the server computer generated the identified
form of the application from another form of the
application in response to receiving the request from
the client compuier wherein the application includes
moduies, wherein the server computer generates mod-
ules of the identified form, and wherein the server
comyputer combines modules of the identified form that
were previously generated with modules of the identi-
fied forimn that are generated in response to receiving the
request.)
51. The raethod of claim 50 wherein the modules of the
identified form that were previously generated are retrieved
by tize server computer from a cache.
52. A method in a client computer for retrieving an
application in an identified form, the method comprising:
sending 10 a server computer a request that identifies an
appiication and identifies a form of the application, the
identified form being one of a plurality of available
foims; and
in response 1o sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the. identified
form of the application from anotber form of the
application in response to receiving the request from
the client computer
wherein-the 1equest includes an indication to verify the
application.
53. The method of claim 52 including sending a verifier
from the client computer to the server computer.
54. A method. in a client computer for retrieving an
application in an identified. form, the method comprising:
sending 1o a server computer a request that identifies an
application-and identifies a form of the application, the
identified form being one of a pluraiity of available
forms; and
in respionse to sending the request, receiving from -the
server computet the identified form of the applicaticn

14

wherein the server computer generated the identified
form of the applicaticn from another form of the
application in response 1o receiving the request from
the client computer
5 wherein the.server computer transforms each application
using a common transformation.

55. A-computer-readable medium containing instructions
for controlling a server computer to provide applets to client
computers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in response-lo receiving a request, using a compiler to

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
iified form of the applet to the client computer that sent
the request; and

caching the identified form of the applet so that when

another request is received for the same applet in the
identified form, the ideotified form of the applet can be
senl without recompiling the identified form of the
applet

whereby requests of different client computers identify

different forms of the same applet.

56. A computer-readable medium containing instruciions
for controlling a server computer to provide applets to client
computers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled. forms of the applet; and

in responss to receiving the request,

" when the server compulter doss not have the applet in
the un-compiled form, requesting the applet in the
un-compiled form frem a computer other than the
server computer;

using a compiler to compile the identified form of the
applet from the un-compiled form of the applet; and

sending the identified form of the applet to the client
computer that sent the request

whereby requests of diffcrent client computers identify
different forms of the same applet.

§7. The computer-readable medium of claim 56 wherein
45 the other computer is accessible via the Internet.

58. The computer-readable medium of claim 56 wherein
the server computer and client computer are connected 1o a
local area petwork and the server computer and the other
computer-are connected via.the Internet.

59. A computer-readable medium containing instrictions
for controliing a server computer to provide applels to client
compulets, by a method comprising:

receiving requests from. client computers, each request

identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in tesponse to receiving a request, using a compiler fc

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tified form of the agplet to the client compitter that sent
the reques!

wherein the applet is part of a web page and whereby

requests of different client computers identify different
forms of the same applet.

60. A computer-readable medium containing instructions
for controlling a server computer to provide applets to client
computers, by 2 method comprising:

10

35

50

60

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page?21 of 41

US 6,324,685 Bl

15

receiving requests from client computers, each request
identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in response to receiving a request, using a compiler to

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tifiec form of the applet to the client computer that sent
the request

wherein the un-compiled form is an intermediate form

and whereby requests of different client computers
identify different forms of the same applet.

61. The computer-readable medium of claim 60 wherein
the intermediate form is Java byte code.

62. A computer-readable medium containing instructions
for controlling a server computer to provide applets to client
compuiers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in response to receiving a request, using a compiler to

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tified form .of th¢ applet to the client computer that seat
the request

wherein the identified fovm is directly executable by a

processor of the clicnt computer that sent the request
and whereby requests of different client computers
identity different forms of the same applet.

63. A computer-readable medium containing instructions
for controlling a server computer to provide applets to client
computers, by a method comprising:

recciving requests from client computers, each request |

identifying an applet and identifying a form of the
.appiet, the identified form being oue of a plurality of
possible compiled forms of the applet; and

in-response to receiving a request, using a compiler to
compile the identified form of the applet from .an
un-compiled formn of the applet and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein the un-compiled form is a source form and

whereby requests of different client computers identify
different forms of the same applet.

64. The computer-readable medinm of claim 63 wherzin
the source form is Java source.

65. A computer-readable medium containing instructions
for cortrolling a server computer to provide applets to client
computers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, the identified form being cne of a piurality of
possible compiled forms of the applet; and

in response to receiving a request, transforming an

un-compiled form of the applel, compiling using a
compiler the identified form of the applet from the
transformed, un-compiled form of the applet, and send-
ing the identified form of the applet to the client
computer that sent the request

whereby requests of different client computers identify

different forms of the same applet.

66. The computer-readable medium of claim 65 wherein
the transforruing is verifying the applet.

67. The computer-readable medium of claim §5 wherein
the transforming is cptimizing ths applet.

5

20

50

5

60

65

16

68. The computer-readable ranedium of claim 65 wherein
the transforming is compressing the applet.

69. A computer-readable medium containing instructions
for controlling a server computer to provide applets to client
compulers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible
conipiled forms of the applet;
in response to receiving a request, using a compiler to
compile the identificd form of the applet from an
un-conpiled form of the applet dnd sending the iden-
tified form of the applet to the client computer that sent
the request;
storing the identified form of the applet in a cache so that
when another request is retrieved, the server computer.
retrieves the identified form of the applet from the
cache and sends the identified form of the applet
retrieved from the cache to the client computer

whereby requests of different client computers identify
different forms of the same applet.

70. A computer-readable medium conptaining. instructions
for coatrolling a server computer to provide applets te client
compulers, by a method comprising:

receiving requests from client computers, cach request

ideniifying 'an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applel, and

in response to receiving a request, using a compiler to

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet to the ciient computer that sent
the request

wherein the applet is a portion of a computer program and

whereby requests of different clisnt computers ideatify
different forms of the samz applet.

71. A computer-readable medium containing instructions
for contrelling a server computer to previds apolets to-clieni
compnters, by a method comprising:

receiving requests from client: computers, each. request

identifying an applet and identifying s form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in response o receiving a request, using a compiler to

compile the identified form of the applet from an
un-compiled form of the applet-and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein the server computer functions as a loader for the

client computer and whereby requests of different client
computers identify different forms of the same applet.

72. A computer-readable medium containing instructions
for controlling a server-computer to provide applets to client
computers, by a method comprising: '

receiving requests from client computers, cach request

identifying an applet and identifying a form of the
applet, tke identified form being one of a plurality of
possibie compiled forms of the applet;

in respouse to receiving a request, using a compiler to

compile the identified form of the- applet from -an
un-compiled form of the applet and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein the applet includes multiple 1sodules,. wherzin

the server computer generaies a mocule of the identi-

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page22 of 41

S 6,524,085 B1

17

fied-form, and wherein the server computer compiles

one of the modules into the identified form in response

to receiving the request and whereby requests of dif-
ferent client computers- identify different forms of the
same applet,

73. A ccmputer-readable medium containing instructions
for conwelling a server computer to provide applets to client
cemputers, by a method comprising:

receiving requests’ from. client computers, each request

identifying an applet and identifying a form of the
applet,.the identified form being one of a plurality of
possihle compiied forms of the applet;
in response o receiving, using a compiler to compile the
identified formn of the applet from an un-compiled form
of the applet and sending the identified form of the
applel (o the client computer that sent the request; and

after generating the identified form of the applet, storing
the identified form of the applet in a cache

whereby requests of different client computers identify

different forms of the same applet.

74. The computer-readable medium of claim 73 including
in response fo recciving a flush request, removing the
identified -form of the applet from the cache.

75. The computer-readable medium of claim 74 wherein
the flush request is,received from a computer other Lhan the
Server computer.)

76. The corputer-readable mediurm of claim 73 including
a storiug time to live indicator with the stored identified form
of the applet.

77. A computer-rezdable muedium containing instructions
for ~oxtrolling a ssrver computer to provide applets to client
computels, by a method comprising:

receiving requests from client computers, each request

identifying ari avplet and identifying a form of the
applet, the identified fonn being one of a plurality of
possible compiled forms of the applet;

imresronse 1o receiving a request, transforming an inter-

mediale form of the applet into a transformed version
of the intermediate form of the applet and compiling
using a compiler the identified form of the applet from
the fransformed intermediate form of the applet and
sending. the identified ;form of the applet to the client
computer that sent the request; and

whereby requests of different client computers identify

different forms of lhe same applet. '

78. A computer-readable medium containing instructions
for coatroliing a server computer to provide applets to client
computers, by a method comprising:

receiving requests from client computers, eazh request

identifying an .zpplet and identitying a form of the
applet, the identified form. being one of a plurahty of
possible compiled forms of the applet, a request includ-
ing a verifier sent from the client computer for use in
verifying the applet; and

in response o receiving a request, using a compiler to

compile the- ideniified form of the applet from an
un-compiled form of the applet and sending the iden-

tified form of the applet to the client compnier that sent

the request
whereby requests: of different client computers: identify
cifferent forms of the same applet.
79. A computer-readable mediim containing instructions
for controlling a server computer to provide applets to clieat
computers, by a method comprising:

receaving requests frorn client computers, each request.

identifying an epplet and idestifying & form of the

10

15

40

50

55

60

18
applet, the identified form being one of a plurafity of
possible compiled. forms of the applet; and

in response: 10 receiving a request, transforming each

applet-that is identified in a request wsing a common
transformation, compiling using a compiler the identi-
fied form of the applet from the transformed form of the
applei, and sending the identified form of the applet to
the client computer that sent the request

whereby requests of different client computers identify-

differzct forms of the same applet.

80. A computer-readable medium coataining instructiens
for controiling & seiver computer to provide applets to client
computers, by & method comprising:

receiviug requests from client computers, each request

identifying an applet aad identifying a form of the
applet, the identified fcrm being one of a plurality of
possible compiled forms of the applet; and

in response to receiving a request, using a compiler to

compile the identified form of- the applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet ‘o the client compuler that sent
the request;’

wherein the identified form indicates a processor of the

client computer

whereby requests of dgifferent client computers identify

different forms of the same applet.
81. Aserver computer for providing applets in a pluzality”
of forms, comnnsmg
means for receiving from client computers requesis for
applets, each request identifving a form of the applet;

means for retrieving the applet identified in 4 request, the
retrieved applet being in a form other than the form
identified in the request;

means for generating the identified form of ke applet

from the retrieved other form of the appiet after receiv-
ing the request;

means for sending the identified form of tae applet to the

client computer that requested the applet; and
means for caching the identified form of the applet so that
when another request is received for the same applet in
the identified form, the ideatified form of the applet can
be sert without regenerating tlie identified form of the
applet.
82. A:server computer for providing appiets in a plurality
of forms, comprising:
means for receiving from client compuiers requests for
applets, cach request ideutifying a form of .ths applei;

means for retrieving ths applet identified in a request, the
rbtrevcd applet being in a form other ih&n the form
identified in the request;

means for generating the identified form of the applet

from the retrieved other form of the appiet after recew-
ing the request;
means for sending the ideuiified form of the applet to the
client computer thal requested the spplet; and

means for when the server computer does not have the
applet-in the-other form, requesting the other form of
the applet from a cornputer olhcr then the server
computer.

83. The server computer of claim-82 wherein the other
computer is-accessible via the Internet.

84. The server computer of claim 82 wherein the server
computer and client-computer are connected to a local area
network and the server and the other com putcr are corpected.

via the Interngt

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page23 of 41

US 6,324,685 Bi

19

85. A server computer for providing applets in & plurality
of forms, comprising:
means for receiving from client computers requests for
appleis, .each request identifying 2 form of the-apolet,

means for retrieving the applet identified in a request, the
retrieved applet being in a form other thap the form
identified in the request;

means for generating the identified form of the: applet

from the retrieved other form of the applet after receiv-
ing the request; and

means for sending the identified form of the applet to the

clisnt computer that requested the applet
wherein the applet is part of a web page.
86. A server comrputer for providing applets in a plurality
of forms, cornprising:
means for receiving from client computers requests for
applets. each requsst identifying a form of the applet;

means for retrieving the applet identified in a request, the
refrieved apalet being in a form other than the form
identified in the request;

means for generating the identified form of the applet

from the retrieved other form of the applet after receiv-
ing the request;

means for.sending the identified form of the applzito the

client computer that requested the applet; and

means for transforming the applet before generaiing the

identified form of the applet.

87. The server-computer of ciaim 86 wherein the trans-
forming is verifying the appiei.

88, A server compuier for providing applets in 8 plurality
of forms, comprising;

mcans for receiving from client computers r,qLFSLS for

applets: each request identifying a form of the applet;
meais for retrieving the .mplel identified in a request, the
relricved applei bemfr in a {erm other than the form
“identiied in the request,
weans for generating the ideotified form of the applct
frour the retrieved other form of the applet after réceiv-
ing-the request;
means for'sending the identified form of the applet to the
" client computer thai requested the applet; and
means for, rather-than gencrating the identified form of the
.applet, retrieving the identified form of the applet from
a cache,

89. A computer-rcadable medium containing a data
structure, the data stiucture including a request gencrated by
a client. computer, the request identifying an applet and
identifying a form of -the identified applef, the identificd
form beigg one of a pluraiity of compiled forms of the

identified spplet wherein when a server computer receives

the request, the server computer uses a cempiler to compile

the identified form of the applet from an un-compiled form

of the applet and then serds the identified form of the applet
tc the client computer that generated the request wherein the
server computer caclies the identified form of ihe applet so
that when another request is received for the same applet in
the identified forin, the identified form of the applet can be
sent withdut recompiling the identified form of the applet.

90. A computer-readablé medium containing a data
structure, the.dala structure including a requést generated by
a client: computer, the request identifying an applet and
identifying a form of the. identified applet, the identified
form being one of a plugality of compiled forms of the
identified applet wherein whea a server computer receives

5

10

30

L
[

40

45

50

55

€0

65

20
the request, the server computer uses a compiler to compile
the identified form of the applet from an un-compiled form
of the applet and then sends the identified form of the applet.
1o tke client computer that ger:erated the request vsherein in:
response to teckiving the request, the server computer
requests the applet in'the un-compiled form from a computer
other than the server computer.

91. A computer-readable medinm cootaining a data
struciure, the data structure incleding a request generated by
a client computer, the request identifying an applet and
identifying a formn of the identified applet, the identified
form being epe -of a plurality of compiled:forms of the
identified applet wherein when a server computer receives
the request, the server compiiter usés a compiler to compiie
the identified form of the applet from an un-compiled form
of the applet and then sends the identified ferm of the applet
to the client computer that generzied the request wherein the
applet.is part of a'web page.

92. A computer-readable medium containing a data
siructure, the data structure including a request generated by
2 client computer, the request identifying ap applet and
identifying. a form of the identified applet, the identified
form being one of a plurality of compiled forms of the
identified applet wherein when a server computer reczives
the request, the server computer uses a compiler to compile
the identified form of the applet from an un-compiled form
cf the appiet and then sends the identified form.of the applet
to the client computer that generated the request wherein the
un-compiled form is aw intermediate form.

93. The compnter-readable. mediuny of claim 92 wherein
the intermediate form. is Java byte code.

94. A computer-readable mediom containing = daia
structure, the data structure including a request generated by
a client comaputer, the requast identifying an applet and
identifying a form of the identificd applet, the icentified
form being one of a murahty of compiled forms of the
identified applet wherzin when a server computer recsives
the request, the server compnies uses a compiier o compile
the identified form of the applet from 2u en-dompiled fonn
of the applet and then sends the identified form of the applet
to the client computer that generated the request swherein the
un-compiled form is a source form.

95. The computer-readable medium of claim 94 wherein
the source form is Java source.

96. A compuler-readable medium contaiging a dauia
structure, the daia stracture including a request generated by
a client computer, the request identifying an applet and
identifying a form of the identified applet, the identified
form being cre of a plurality of ccinpiled forms of ihe
identified applet wherein wheun a server computer receives
the request, the server computeér vses a compiler to compile
the identified form of the applet from an un-compiled form
of Lbe applet and then sends the identified form of the applet
1o the client compuler that generated ihe request wherein the
server computer transforms the applet before compiling the
applet.

97..The computer-readable medium of claim 96 wherein
the transforming is verifying the applet.

98. The compiter-readable medium of claim 96 whersin
the transiorming is optimizing the applet.

99, A computer-readable medium contzining instructions
for controlling' 4 cijent computer, the instractions being:
generaied by a server compuier in response 10 rceiving &
request from a client compuier, Ihe request 1deut1\°yu-{; an.
applet and 1dent1fymv a form of the applet wherein the
server computer generztes the instructions by ccmpiiing ‘a
compiled ferm of the applet from ac un-compiled fornr of

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page24 of 41

US 6,324,685 Bl

21
the applet ‘wherein the server compniter retrieves the
un-compiied form of the applet from a computer other than
the server computer.

100. A computer-readable medium containing instructions
for controlling a. client computer, the instructions being
generated by a server computer in response to receiving a
request from a client computer, the request identifying an
applet and identifying a form of the applet, wherein the
server coraputer generates the instructions by compiling a
compiled form of the applet from an un-compiled form of
the applet wherein the server computer stores the compiled
form of the applat in a cache.

101. A conmiputer-readable medium containing instructions
for controlling a- client computer, the instructicns being
generated by a server computer in response to receiving a
request-from a client computer, the request identifying sn
applet and identifying a form of the applet, wherein the
server computer generates the instructions by compiling a
compiled. form of the applet from an un-compiled form of
the applet wherein the nn-compiled form cf the applet is
Java inlermediale coile.

102. A computer-readable medium containing instructions
for confrolling a client computer,. the instructions being
generated by a server computer in response 1o receiving a
request from a client computer, the request identifying an
applei and identifving & form of the applet, wherein the
server computer generates the instructions by compiling a
cowpiled form of the. applet-from an un-compiled form of
the applet wherein the un-compiled form of the applet is
Java soirce code.

103. A compater-readable mediuin containing instructions
for comirolling & client computer, the instructions being
genérafed by a server computer in response to receiving a
request frow a client computer, the request identifying an
apple: and identifying a form of the applet, wherein the
server computer generates the instructions by compiling a
compiled-form of ths applet from an un-compiled form of
the: applet wherein tie instructions are part of & web page.

104. A server computer comprising;

local resources that include compilers and modules;

a cache for stoving applets;

a trapsformer; and

an applet server manager that

receives requests from client computers for an applat in
an identified form,

when tke identified form of the applet is stored in the
cache, sends the ideniificd form of the applet stored
in the cache-10 the client computer that sent the
request, and ¢

when the ideéntified form of the applet is noi stored 1
‘ibe cache; generates the identified form of the applat

135

30

35

40

50

22
using a compiler and a module, steres the identified
form ‘of the applet in the cache, and sends the
identified form of the applet to the client compnuter
that sent the request

wherein the applet server manager uses the transformer o
transforma the module befére generating the identified
form of ‘the applet.
105. A server computer comprising:
local resources that include compilers and modules;
a cache for storing applets
a transformer; and
an applet server manager that
receives requests from client computers for aa applet in
an identified form,

when the identified form of the applel is stored i the
cache, sends the identified form of the applet stored
in the cache to the clieni computer thai sent the
request, '

when the identified form of the applet is.not stored in
the cache, generates the identified form of the applet
u'singva compiler and @ module, stores the identified
form of the applet in the .cache, and tends the
identified form of the applet to the client computer
that sent the request
wherein the applet server manager uses the transtormer to
transform the identified applet after it is generated
using the compiler.
106. A server comiputer comprising:
local resources that inciude’ compilers and miodules;
a cache for storing applets; and
an applet server manager that
receives requests from client computers for an applet in
an identified form,

whep the identified form of the applet is stored in the
cache, sends the-ideaiified forrm of the applet stored
i the cache 16 the client computer that serit the
request, and

wheu the identified furm of the applet is not stored in
the cache, generates the identified form of the applet
using a compiler and a module, stores the identified
form of the applet in ‘the cache, and sends ‘the
identified form of the applet to the-client computer
that sent the request ' ’

wherein the "applet sefver manager retrieves a module

from a computer other than fne server computer when

a module that is not another form of the applet is not

stored with the local resource.

* * L ®

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page25 of 41

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,324,685 Bl Pagelof 1

DATED

: November 27, 2001

INVENTOR(S) : Edward Balassanian

It is certified that error appears in the above-identiiied patent and that said Letters Patent is
hereby corrected as shown below:

Column 3,
Line 64, after “A 12.” begin a new paragraph;

Column 5,
Line 31, delete “10” and insert -- IOQ---;

Column 6
Line 10, the paragraph beginning with “For” should be part of the preceding paragraph;

Column 12,
Line 6, delete “34” and insert -- 39 --;

Coluran 17,
Line 13, after “receiving” insert -- a request --; and

Column 19,
Line 38, delete the comma after “request” and insert a semicolon.

Signed and Sealed this

Twenty-third Day of July, 2002

Attest:

JAMES L. ROGAaN
Azesring Officer Director of the United States Patent and Trademark Office

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page26 of 41

EXHIBIT B

Case3:09-cv-00201-SI Documen

United States Patent

tl Filed01/15/09 Page27 of 41

N

(12) @0) Patent No.: US 6,976,248 B2
Balassanian (45) Date of Patent: Dec. 13, 2005
(54) APPLICATION SERVER FACILITATING 6,324,685 B1 * 11/2001 Balassanian 717/118
WITH CLIENT’S COMPUTER FOR APPLETS 6,336,213 Bl * 1/2002 Beadle et al. 7171136
ALONG WITH VARIOUS FORMATS 6,446,081 B1 * 9/2002 Preston 707/104.1
6,594,820 B1 * 7/2003 Ungarccccoeeveenens 717/124
. : R 6,636,900 B2 * 10/2003 Abdelnur 719/316
(75) Inventor: Eggvard Balassanian, Kirkland, WA 6704926 Bl * 3/2004 Blandy ct al, 748
Us) 6,742,165 B2 * 5/2004 Levetal. ..o 716/1
. .. 6,745,386 Bl * 6/2004 Yellin 7177166
(73) Assignee: Implicit Networks, Inc., Bellevue, WA 6,836,889 Bl * 12/2004 Chan et al. 719310
(Us) 6,342,897 BL * 1/2005 Beadle et al.crvrrerinn. 718/1
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
is ex j 35 :
%atsencl Tsletje)nl()i;i;g gggsted under Yang et al, “Developing integrated web and database appli-
o o cations using JAVA applets and JDBC drivers”, ACM SIG-
) SCE, pp 302-306, 1998.*
(21) Appl. No.: 09/968,704 Newsome et al, “Proxy compilation of dynamically loaded
(22) Filed: Oct. 1, 2001 Java classes with MoJo”, ACM LCTES, pp 204-212, Jun.
2002.*
(65) Prior Publication Data Begole et al, “Transparent sharing of Java applets: a repli-
US 2002/0100038 Al Jul. 25, 2002 cated approach”, ACM UIST, pp 5564, 1997.*
Related U.S. Application Data (Continued)
Lo JE) - . Primary Examiner—Anil Khatri
(63) %’ nfgn;g’usg‘; %;Fplx\}?%o;z:gs? /040,972, filed on Mar. (74) Anorney, Agent, or Firm—Morgan & Finnegan, LLP
57 ABSTRACT
(51) Imte CL7 e GO6F 9/45 G7)
(52) US.Cl oo 717/148; 717/140; 709/203 The present invention is an applet server which accepts
(58) Field of Searchcccooovvivr v 717/116, 118, requests for app‘lets fr'om client computers. A request speci-
717/136, 139, 140142, 148, 151, 152, fies the format in which an applet is to be delivered to the
165, 162, 166; 709/203, 223 requesting client computer. The applet server has a cache
which it uses to store applets for distribution to client
(56) References Cited computers. If the specified form of the requested applet is

U.S. PATENT DOCUMENTS

5,706,502 A * 1/1998 TFoley et al. 707/10
5,761,421 A * 6/1998 van Hoff et al, . . 709/223
5.805,829 A * 9/1998 Cohen et al.o 7087202

A

A

A

5,828,840 * 10/1998 Cowan el al. 709/203
5,848,274 12/1998 Hamby et al.

5,872,915 2/1999 Dykes et al.

5,884,078 A 3/1999 Taustini

available in the cache, the applet server transmits the applet
to the requesting client. If the applet is not available in the
cache, the server will attempt to build the applet from local
resources (program code modules and compilers) and trans-
former programs (verifiers and optimizers). If the applet
server is able to build the requested applet, it will then
transmit the applet to the requesting client computer. If the
applet server is unable to build the requested applet, it will
pass the request to another applet server on the network for

6.230,184 BL * 5/2001 White et al. coerrrrrrrrs 709/201 \
6.282,702 BL * /2001 URZAT covvvrverrrrrreerrreren 7177143 ulfillment of the request.
6,295,643 B1 * 9/2001 Brown ct al. . . T17/148
6.321.377 B * 11/2001 Beadle ef al. oo 717/148 13 Claims, 3 Drawing Sheets
— s \\/\/{u
St Comrinet O e LSRN ’J‘_h
.:—— % oDt Sor W Comuli
R | R
e e T o
— (D) |
I 10|
ik \%gm{
=D Lol |)
C=Dh,, 1. C_T:_Sm[
=0 | e !

Case3:09-cv-00201-SI

Documentl Filed01/15/09 PageZ28 of 41

US 6,976,248 B2
Page 2

OTHER PUBLICATIONS

Benton et al, “Compiling standard ML to ava bytecode”,
ACM ICFP, pp 129-140.*

Sirer, Emin Giin, “Java—Relevant Articles in the Press,”
[Accessed Oct. 4, 2000].

“Project Members” http://kimera.cs.washington.edu/mem-
bers.html [Accessed Oct. 4, 2000].

Emin Giin Sirer, et al., “Distributed Virtual Machines: A
System Architecture for Network Computing,” Dept. of
Computer Science & Engineering, University of Washing-
ton, Seattle, Washington http://kimera.cs.washington.edu
Feb. 26, 1998.

Emin Giin Sirer, et al,, “Design and Implementation of a
Distributed Virtmal Machine for Networked Computers,”
University of Washington, Department of Computer Science
and Engineering, Seattle, Washington, 17 ACM Sympo-
sium on Operating system Principles, Dec. 1999.

Sirer, Emin Giin, “A System Architecture for Next Genera-
tion Network Computing,” Dept. of Computer Science &
Engineering, University of Washington, Seattle, Washington
Jun. 26, 1998.

[Accessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera—A System Architecture for
Networked Computers,” [Accessed Oct. 4, 2000].

Emin Giin Sirer and Brian Bershad, “Kimera Architectlure,”
[Accessed Oct. 4, 2000].

Sirer, Emin Gtin, “Security Flaws in Java Implementations,”
[Accessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera Bytecode Verification,” [Ac-

_cessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera Test Suite,” [Accessed Oct. 4,
20001

Sirer, Emin, Giin, “Kimera Disassembler,” [Accessed Oct. 4,
2000].

* ciled by examiner

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page29 of 41

U.S. Patent Dec. 13, 2005 Sheet 1 of 3 US 6,976,248 B2

Unteusted

Client Computer A [« Netwark

—

12

18

Trusted

Extemal
Network

Client Computer B | 16 10

Applet Server Computer

S

14

20
» Network Interface f

26

Looal Resources

Applet Server
Manager @
i 32b‘
3Ca module
Cache Component l
Appiet 1 24 module
253 30b
Applet 2 32d
25b i modulo
Applet 3 o
25¢c ‘ 10¢

- — —— — -

Transformers

34 Qptirmzer

Case3:09-cv-00201-SI

U.S. Patent

Documentl Filed01/15/09 Page30 of 41

US 6,976,248 B2

Dec. 13, 2005 Sheet 2 of 3
Request Data Type
Tag Value
Applet-URL (String) specifies the name of the requested
applet
Code-Type {Sourcef/intermediate/Binary) specifies the

format the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting

client (e.g., x86)

i
f

Verification-Level

(0-100) specifies the degree of verification to
be performed. O = no/minimal verification,
100 = maximum verification {(highest level of
security).

‘Optimization-Level

(0-100) specifies the degree of optimization
to be performed. 0 = no/minimal
optimization, 100 = maximum optimization.

Fig. 24

Code Data Type

Tag Value

Applet-URL (String) specifies the name of the requested
applet

Code-Type (Sourcelintermediate/Binary) specifies the

format the applet is to be delivered {o the
requesting client in. A request for binary
would specify the CPU of the requesting

client {(e.g., x88)

Verification-Level

(0-100) specifies the degree of verification to
be perfarmed. 0 = no/minimal verification,
100 = maximum verification (highest level of
security).

Optimization-Level

(C-100) specifies the degree of optimization
{o be performed. 0O = no/minimal
| optimization, 100 = maximum optimization.

Applet Length

(0-2%) specifies the size of the requested
applet.

Applet Code

The Requested Applet in the form specified
by the request data type.

rig. 2B

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page31 of 41

U.S. Patent Dec. 13, 2005 Sheet 3 of 3 US 6,976,248 B2

Program Maodule
40

Intermediate Compiler —\
42

Interrmediate Form
Program Moduie

44

! Transformers

48

E \ 456

Transformed
Intermediate Form

Program Madule
50

Target Compiler =

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page32 of 41

US 6,976,248 B2

1

APPLICATION SERVER FACILITATING
WITH CLIENT’S COMPUTER FOR APPLETS
ALONG WITH VARIOCUS FORMATS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. patent applica-
tion Ser. No. 09/040,972, filed Mar. 18, 1998, now U.S. Pat.
No. 6,324,685.

FIELD OF THE INVENTION

The present invention relates to computer operating sys-
tems and, in particular, to a server architecture providing
application caching and security verification.

BACKGROUND OF THE INVENTION

The growth of the Internet’s importance to business,
along with the increased dependence upon corporate
networks, has created a demand for more secure and efficient
computer systems. The traditional solution to this problem
has been to depend upon improvements in hardware perfor-
mance to make up for the performance penalty that is
typically incurred when a computer system is made more
secure and stable. Increased interconnectivity has also cre-
ated a need for improved interoperability amongst a variety
of computers that are now connected to one another. One
solution to the problem of the variety of computers inter-
connected via the Internet and corporate networks has been
the development of portable architecture neutral program-
ming languages. The most widely known of these is Java,
though, there are numerous other architecture neutral lan-
guages.

Architectwie neutral programming languages allow pro-
grams downloaded from a server computer to a client
computer to be interpreted and executed locally. This is
possible because the compiler generates partially compiled
mlermediate byte-code, rather than fully compiled native
machine codz. tn order to run a program, the client machine
uses an interpreler to execute the compiled byte-code. The
byte-codes provide an architecture neutral object file format,
which aliows the code to be transported to multiple plat-
forms. This allows the program 1o be run on any system
which implements the appropriate interpreter and run-time
system. Collectively, the interpreter and runtime system
implement 4 virtual machine. This structure results in a very
sccure language.

The security of this system is premised on the ability of
the byte-code to be verified independently by the client
computzr. Using Java or some other virtual machine imple-
menting techknology, a client can ensure that the downloaded
program will oot crash the user’s computer or perform
operations for which it does not have permission.

The traditional implementations of architecture neutral
languages are hot without problems. While providing tre-
mendous cross platform support, the current implementa-
tions of architecture neutral languages require that every
client perforins its own verification and interpretation of the
intermediate code. The high computation and memory
requirements of a verifier, compiler and {nterpreter restrict
the applicakbility of these technologies to powerful client
compuiers.

Another problem with performing the verification process
or the client computer is that any individual within an
organization may disable some or all of the checks per-
tormed on downloaded code. The current structure of thess

w

10

15

30

35

40

45

60

2

systems makes security management at the eaterprise level
almost impossible. Since upgrades of security checking
software must be made on every client computer, the cosi
and time involved in doing such upgrades makes it likely
that outdated or corrupt copies of the verifier or interpreter
exist within an organization. Even when an organization is
diligent in maintaining a client based security model, the
size of the undertaking in a large organization increases the
likelihood that there will be problems.

There is a need for a scalable distributed system archi-
tecture that provides a mechanism for client computers to
request and execute applets in a safe manner without requir-
ing the client machines to have local resources to compile or
verify the code. There is a further need for a system in which
the applets may be cached in either an intermediate archi-
tecture neutral form or machine specific form in order to
increase overall system performance and efficiency.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client
computers to request and execute applets in a safe manner
without requiring the client to have local resources to verify
or compile the applet code. Compilation and byte-code
verification in the present invention are server based and
thereby provide more efficient use of resources and a flexible
mechanism for instituting enterprise-wide security policies.
The server architecture also provides a cache for applets,
allowing clients to receive applet code without having io
access nodes outside the local network. The cache also
provides a mechanism for avoiding repeated verification and
compilation of previously requested applet code since any
client requesting a given applet will have the request satis-
fled by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essen-
tially be viewed as a form of an interpreter, interpreting
binary code into the associated electronic equivalents. The
present invention adds a level of indirection in the form of
an intermediate language that is processor independeant. The
intermediate language serves as the basis for security
verification, code optimizations, or any other compile time
modifications that might be necessary. The intermediate
form allows a single version of the source to be stored for
many target platforms instead of having a different binary
for each potential target computer. Compilations to the target
form can either be done at the time of a cache hit or they can
be avoided all together if the target machine is able io
directly interpret the intermediate form. If the compilation is
done on the server, then a copy of the of the compiled code
as well as the intermediate form can be stored in the cache.
The performance advantage derived from caching the com-
piled form as well as the intermediate depends upon the
number of clienis with the same CPU.

The novel features believed characteristic of the iavention
are set [orth in the appended claims. The invention itself,
however, as well as other features and advantages thereof
will best be understood by reference to the detailed descrip-
tion which follows, when-read in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used 1o implement an applet server in one embodi-

s ment of the present invention; :

FIG. 2a 1s a table which illustrates the structure of the
request format data type;

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page33 of 41

9

US 6,976,248 B2

3

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FIG. 3 is a diagram showing the compilation and trans-

formation of a program module into an applet in a particular
form. '

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, an applet server architecture accord-
ing to one embodiment of the invention is based on an applet
server computer 10 which in tum is connected to client
computer A 12, client computer B 14, an external network 16
and an untrusted network 18. The applet server computer 10
connects 1o client computers 12 and 14, an external network
16, and an untrusted network 18 by means of a network
interface 20. Typically this connection will involve one or
more of the compulers or networks having a connection o
the Internet.

The applet server computer 10 accomplishes ils objectives
by manipulating computer programs in several formats. An
applet (e.g. applets 1-3, 252-25c¢) is any form of program
instructions, whether in binary, source or intermediate for-
mat. In the case of this architecture, the applet code can
either be a self contained program, or it can be a code
fragment associated with a larger application.

Binary format refers to processor specific machine
instructions suitable for running natively on a given com-
puting platiorm {also referred to as “target” because of the
concepi of “targeting” a compiler to produce binary code for
a given processor type).

Source refers to non-binary applet code, generally in the
form of higher level languages (i.e. C, C++, Java, Visual
Basic, ActiveX, Fortran, and Modula).

Intermediate format refers to a common intermediate
byte-code that is produced by cempiling a given source code
input. The intermediate byte-code need not necessarily be
Java byte-code. ‘

Treating appleis in this 2eneral sense allows client com-
puters 12 and 14 to request not only applications, but
portions of applications. Client computers 12 and 14 are thus
able to use applet server computer 10 as the equivalent of a
loader, loading in appropriate parts of the application in the
form of applets. In turn client computers 12 and 14 can run
large applications without requiring that the client comput-
ers 12 and 14 have the resources to storc the entire appli-
cation in memory at once.

Having the applets delivered from applet server computer
10 allows code in intermediate form lo be verified,
optimized, and compiled before being transmitted to client
computers 12 and 14. This reduces the amount of woik the
client computers 12 and 14 have to do and provides a
convenient way to impose global restrictions on code.

In operation, client computer A 12 transmits a request to 3

an applet server compuier 10 requesting an applet in a
particular form. The form may be selected from a large
matrix of many possibie forms that can be recognized by the
system. The request specifies the format (source,
intermediate, or binary) in which the client wishes to receive
the applet. The request may also specify that the applet be
verified or have some other transformation operation pre-
formed upon it. Verification, optimization and compression
arc examples of types of transformation operations. The
request is received by the network interface 20 of the applet
server computer 10 which passes the request onto the applet
server manager 22.

3

10

30

40

45

50

60

4

Aflter interpreling the request, the applet server manager
22 checks to scec if the requested applet is available in the
cache 24. The cache 24 stores applets ip a variety of formats
(source, intermediate, or binary). If the requested form of the
applel is available in the cache 24 (applet 1 254, applet 2
25b, or applet 3 25¢ in this example) the applet server
manager 22 instructs the network interface 20 to transmit the
applet to requesting client computer A 12.

If the requested applet is not available in the cache 24,
then the applet server manager 22 will attempt to huild the
requested applet from local resources 26 and one or more
transformation operations performed by one or more of the
transformers 28. Local resources 26 are comprised of com-
pilers 30a, 305 and 30¢ and program code modules 324, 326,
32c¢ and 32d. The requested applet is built by selecting one
or more program code modules 32 and compiling them with
one or more compilers 30. Transformer operations may be
performed by the verifier 34 or the optimizer 36. After the
applet server manager 22 builds the applet, the network
interface 20 transmits the applet to the requesting client
computer A 12,

If the request can not be satisficd by building the applet
from local resources 26 and transformers 28, the applel
server manager 22 will pass a request for the requested
applet to external network 16 and/or untrusted network 18.
The applet server manager 22 may request the applet in
intermediate form or in executable form or it mayv request the
local resources 26 and transformers 28 it needs to complete
building the applet itself.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retrieve
a given applet from the cache. PUT is used Lo store an applet
in the cache: FLUSH is used to clear the cache of one or
more entries. When the cache is unable to locate an item in
response o0 a GET operation, it relurns a cache miss. The
program which issued the GET command is then responsible
for locating the desired form of the applet by other means
and optionally storing it in the cache when it is retrieved
(using the PUT operation). The FLUSH command will cleat
the cache of one or more entries and any subsequent GETs
for the FLUSHed applet code will result in a cacke miss.
Thris is useful if a particular applet needs to be updated from
a remote server on a periodic basis. "When usmg PUT, the
program issuing the command specifies a time to live (3TL)
in the cache. When the TTL expires, the cache entry is
removed by means of a FLUSH operation.)

Local resources 26 are comprised of program modules 32
(applets in source form, not. the requested form) and com-
pilers 30. The program modules 32 are run through the
compilers-30 in order to produce applets in the requested
form. The applet server manager 20 may also dircet the
modules 32 1o be processed by a verifier 34 or another
iransformer such as.an optimizer 36. Program modules 32
are program code used to build applets. Program modules 32
may be stored in local resources 26 in source, binary, or
intermediate formats. Wher an applet is built it may require
the operation of one or more compilers 36 upon one or more
program modules 32. The program modules 32 may be
combined and recompiled with previously cached applets
and the resulting applet may be also cached for use at a
future time. Additionaliy, program modules 32, compiiers 30
and transformers 28 (including verifiers 34 and optimizers
36) may be distributed across a zetwork. The applet server
manager 22 may pass requests for the components it needs
to build a particular applet back to the network interface 20
which in turn passes the request onto the rest of the network
and may include external network 16 and unnusted network
18. :

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page34 of 41

US 6,976,245 B2

5

FIG. 3 provides further illustration of how an applet is
produced from local resources and transformers. In this
illustration the request is for an optimized and verified applet
compiled to a machine specific form. A program module 40
is compiled into an intermediale form program module 44
by an intermediate compiler 42. The intermediate form
program module 44 is then transformed by an optimizer 46
or a verifier 48. The resulting transformed intermediate form
program module 50 is then compiled by target compiler 52
into machine specific code applet 54.

There are two types of compilers used to build applets:
intermediate compilers 42 and target compilers 52. The
intermediate compiler 42 compiles program modules
(source applet code) 40 and produces a common interme-
diate pseudo-binary representation of the source applet code
(intermediate form program module 44). The word pseudo is
used because the intermediate form 44 is not processor
specilic but is sill a binary representation of the source
program module 40. This intermediate form can be
re-targeted and compiled for a particular processor.
Alternatively, the intermediate form 44 can be interpreted by
an interpreter or virtual machine that understands the inter-
nal binary representation of the intermediate form. A target
compiler 52 compiles intermediate applet code 44 into an
applet 54 in a processcr specific format (binary) suitable for
runming natively on a given computing platform.

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization.
Other transformers might included compressors that identily
portions of code that can be replaced with smaller equiva-
lents. Transformers can be matched up to any other com-
ponent that takes in intermediate code as an input. These
include the cache 24 and the target compilers 52. Global
policies for transformers 56 can be implemented which
ensure that all applets are run through some set of trans-
formers before being returned to the client. -

Acverifier 48 is a type of transformer thal is able to analyz
input code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers
48 look for areas where unsafe or protecled memeory is being
accessed, others might look for accesses to system resources
such as IO devices. Once a verifier 48 determines the portion
of unsafe applet code several steps can be taken. The
olfending code portion can be encased with new code that
specifically prevents this unsafe code section from being
executed. The unsafe code can be modified to be safe. The
unsafe code can be flagged in such a way that a user can be
warned about the possible risks of executing the code
fragment. The verifier’s role can therefore be summarized as
determining where unsafe code exists and possibly altering
the offending code to render it harmless. Verifiers 48 can
operate on any format of input code, whether in source,
intermediate or binary form. However, since intermediate
code is a common format, it is most efficient to have a single
verifier that will operate on code in this format. This
eliminates the need to duild specific knowledge of various
source languages into the verifier. Verifiers 48 are a form of
a transformer. Verifiers 48 take in intermediate code and put
out verified intermediate code. Verifiers 48 are responsible
for identifying non-secure portions of code in the interme-
diate code and modifying this code to make it secure.
Security problems generally include access to memory areas
that are unsafe (such as system memory, or memory outside
the application space of the applet).

The choice of adding in the verification step can be left up
to the client computer 12, the applet server computer 10 (see

10

[
o

35

40

50

6

FIG. 1), or can be based on the network that the applet
originated from. Server managers can institute global poli-
cies that affect all clients by forcing all applets io be run
through the verifier 48. Alternatively, verification can be
reserved for un-trusted networks (18 in FIG. 1), or it can be
left up to the client to determine whether the verification
should be performed. In the preferred embodiment, verifi-
cation level is determined by the applet server 10. In this
way, a uniform security policy may be implemented from a
single machine (i.e., the applet server 10).

Optimizers 46 are another type of transformer program.
Optimizers 46 analyze code, making improvements to well
known code fragments by substituting in optimized but
equivalent code fragments. Optimizers 46 take in interme-
diate code 44 and put out transformed intermediate code 50.
The transformed intermediate code 50 is functionally
equivalent to the source intermediate code 44 in that they
share the same structure.

Referring again to FIG. 1, policies may be instituted on
the applet server 10 that force a certain set of request
parameters regardless of what the client asked for. For
example, the applet server manager 22 can run the applet
through a verifier 34 or optimizer 36 regardless of whether
the client 12 requested this or not. Since the server 10 might
have lo go (o an untrusted network 18 (o relreve a given
applet, it will then run this applet through the required
transformers 28, particularly the verifier 34 before returning
it to the client 12. Since clients 12 and 14 have to go through
the applet server computer 10, this ensures that clients 12
and 14 do not receive applets directly from an untrusted
network 18. In addition, since the server will be dealing
directly with untrusted network 18, it can be set up to
institute policies based on the network. A trusted external
network 16 may be treated differently than an untrusted
network 18. This will provide the ability to run a verifier 34
only when dealing with an untrusted network 18, but not
when dealing with a trusted external network 16. In one
embodiment, all intermediate code is passed through a
verifier 34 and the source of the code merely determines the
level of verification applied.

The client 12 is the target compuler on which the user
wishes to exceute an applet. The client 12 requests applets
from the server 10 in a specific form. Applets can be
requested in various formats including source, intermediaie
and binary. In addition, ac applet can be requested with
verification and/or other compile time operations.
Optionally, the client 12 can pass a verifier to the server to
provide verification. If the server 10 implements its own
security, then both the client and server verifiers will be run.
The verifier that is passed from the client to the server is
cached at the server for subsequent verification. The client
can refer to this verifier by a server-generated handle 1o
avoid having to pass the verifier each time an applet is
requested.

Client computers 12 and 14 requesting applet code in
intermediate formart need to have an interpreter or virtual
machine capable of interpreting the binary code in the
intermediate format if the applet is to be executed on the
client machine.

In the preferred embodiment, requests to the applet server
are in a format similar to those of an HTTP beader and are
comprised of tags and values. In one embodiment, an HTTP
GET mcthod is used to make the request (though use of the

5 HTTP protocol is not necessary to implement the present

invention). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to

Case3:09-cv-00201-SI

Documentl Filed01/15/09 Page35 of 41

US 6,976,248 B2

7

be run and the type of code (source/intermediate/binary), a
verification level and an optimization level. New tags and
values can be added to extend functionality as needed and
the applet server manager 22 will discard any tag it does not
recognize. When the applet server computer 10 returns the
requested applet to the requesting client computer A 12, it
will transmit the request header followed by the applet code.
In this instance, the header will additionally include a field
which defines the length of the applet code. FIG. 2 provides
a table which illustrates the request format and the returned
code format.

While this invention has been described with reference to
specific embodiments, this description is not meant to limit
the scope of the invention. Various modifications of the
disclosed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the appended claims will cover any such modifications or
embodiments as fall within the scope of the invention.

I claim:

1. A method operating on a computer system for manag-
ing requests to a server computer for applets in a client
server environment wherein each request for an applet
specifies one form of the applet out of a pluralily forms of
the applet, comprising;:

a) receiving on said server computer a request from a
client computer for an applet in a form selected from a
plurality forms;

b) compiling said applet into said selected form from a
local resource comprising at least onc source module
and one compiler which acts on said source module to
produce said selected form; and

c) transmitting said applet in said selected form to said
client computer.

2. The method of claim 1, further comprising the step of:

copying said applet in said selected form to a local cache
after compiling said applet from said local resource if
said cache does not contain a copy of said applet in said
selected form.

3. The method of claim 2, further comprising the step of:

transmitting a request to an external resource for said
applet in said selected form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said local resource, and)

directing said external resource to transmit said applet in
said selected form to said server computer.

4. The method of claim 1, further comprising the step of:

transmitting a request to an external resource for supply-
ing said applet in said sclected form if said applet can
not be compiled from said local resource and

directing said external resource to transmit said applet in
said selected form to said server computer.

5. A method operating on a computer system for manag-
ing requests to a server computer for applets in a client
server environment wherein each request for an applet
specifies one form of said applet out of a plurality of forms
of said applet, comprising:

a) receiving on said server computer a request from a
client computer for an applet in a specified form
selected from a plurality of forms;

b) determining whether said applet is stored in said
specified form in a local cache and, if so, transmitting
said applet in said specified form to said client com-
puter;

10

35

40

45

0

wr

8

c) if said applet is not stored in said selected form in said
local cache, compiling said applet into said selected
form from a local resource comprising at least one
source module and one compiler which acts on said
source module to produce said selected form and
transmitting said applet in said selected form to said
client computer.

6. The method of claim 5, further comprising the step of:

copying said applet in said selected form to said cache
after compiling said applet from said local resource if
said cache does not contain a copy of said applet in said
form.

7. The method of claim 6, further comprising the step of:

transmitting a request to an external resource for said
applet in said selected form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said local resource, and

directing said external resource to transmit said applet in
said form to said server computer.

8. The method of claim 5, further comprising the step of:

transmifting a request to an external resource for said
applet in said selected form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said local resources, and directing said
external resource to transmit said applet in said selected
form to said server computer.

9. A method operating on a computer system for gener-
ating an applet in response to a request by a client computer
wherein each request for an applet specifies one form of the
applet out of a plurality forms of the applet, comprising:

a) receiving on a server computer a request from a client
computer for an applet in a form selecied from a
plurality forms;

b) compiling an applet program module into an interme-
diate form program module;

c) transmitting said applet in said selected form to said
client computer.

10. The method of claim 9, further comprising the siep of:

transforming said intermediate form program module into
a transformed intermediate form program module with
at least one transformer program.

11. The method of claim 10, wherein said at leasl one
transformer program is selected from the group consisting of
verifying computer programs, optimizing computer
programs, compressing computer programs, debugging
compuler programs, Usage monitoring computer programs
and encrypting computer programs.

12. The method of claim 11, further comprising ihe step
of:

compiling said transformed intermediate form program
module into machine specific binary code with a target
compiler.

13. The method of claim 10, further comprising the step

of:

compiling said transformed intermediate form program
module into machine specific binary code with a target
compiler.

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page36 of 41

EXHIBIT C

www.implicitietworks.com - infJia3@3:@mEV-00201-SI Documentl Filed01/15/09 Page37 of 41

Implicit Networks, Inc.

Company Ovearview

Implicit Networks was founded in 1996 with the goal of developin? distributed computing platforms for resource oriented,
distributed devices and applications. implicit's solution allows applications to be composecﬁon the fly from reusable resources at the
intra~device level and inter-device level. This model provides a basis for interoperability, flexible processing of rich-media, and
transparent access to network services for connected devices. The platform includes an operating environment for connected
devices, a dynamic component delivery model, a gesture interface 1%r media and content-centric devices, a mechanism for

discovering and controlling media-rich content in a network, dataflow processing engines, and novel ways to connect devices across
both the LAN and WAN.

Technology

The following is a subset of the technoiogy developed by Implicit and currently available for licensing:
Operating Environment for resource-orienred & connected devices

Implicit's platform for distributed computing enables devices to effectively ‘plug-in’ to a network. discover services, and
dynamically assemble application functionality through a deciarative model that requires no knowledge of device
characteristics, network constrairits, or data formats. In addition to dramatically reducing code size anc working-set size on
devices, this platform enables the development of new rescurces and services in a reusaple manner that extends device and
application functionality in profound ways. This platform has been ported to Linux, Windows CE/XP, FreeBSD, and ucLinux. In
practice, this solution has heen used for developing a diverse range of devices including residential gateways, set-top-
boxes, handheld media players, and home control systems.

Dynamic Component Delivery Model

Implicit's dynamic component delivery system facilitates versioning, provisioning and billing for 3rd party development of
components. The system allows developers to build components at algorithm level granularity in the language that is best
suited to the domain. Components car be requested at run time by devices of varying form factors and processing
requirements. The system can dynamically target (including compiling, transforming, and packaging) and deliver
components to client devices. Centralized management of components aliows operarors to administer services, while
developers focus on algorichin development. In addition to provisioning software, the system also provides a Lilling model
that can track usage of compcnents on clients.

Gesture Interface for Media Rich Devices

Implicit's gesture-based user interface maximizes usage of the screen real estate for displaying of content while improving
usabhility in multimedia applications. The interface provides gestures for direct manipulation of content without the need for
extraneous buttons or toolbars. Example gestures inciude support for scaling images, sk.pping through audio and video
tracks, and rewinding and forwarding motion video. This interface has been used for improving usabi ity on handheld
-devices, televisions, and other media-rich devices.

Content Discovery and Media Management

Amplicit's content discovery and media management piatform enakies dynamic discovery of devicas, content, and resources
within a LAN and WAN environment. This system allows devices to aggregate their resources on the fly to create virtual
appliances that users can then interact with in an intuitive manner. A user can, for example, create a virtual ‘home-theater'
appliance by combining a networked television with a networked stereo and a wireless handheld. The user car then watch a
movie on this appliance such that the video from the movie is routad o the screen of the network television, rhe audio
routed to the speakars of the network stereo, and instant-replays and control accessed from the handhaid, Resources and
services on each device can be developed without premonition of being used in this manner. Likewise. the resource discovery
maodel allows the network t6 manage the routing and rendering of content without raguiring the user ro.have understanding
of the nuances of media-formats. device capabilities, or network topclogies.

Dataflow Processing Engine
Implicit's data processing engine dynamically assembles components to process constraint-based dataflows at an intra-

device and inter—device level. The engine combines stateful packet inspection with a mapping engine to provide efficient and
dynamic handling of datafiow processing. This dynamic nature has proven to be far more flexibie and efficient than

www.implicitnstworks.com - In@gde®2092ev-00201-SI Documentl Filed01/15/09 Page38 of 41.

traditional pipeline-hased media engines since it rejtes on inspection of. conterit rather than fite types and source
descriptions. As a result dataflows can be daynamically constructed that extend from a network interface to a media end-
point (e.g. from an Ethernet MAC to a screen to display video). The system is able to interpolate dataflow processing across
devices so, for example, a text file can be routed to a speaker across the LAN with one or more intermediary devices serving
to convert the rext to speech for final rendering as audio on the target speaker. This system has been used in VoIP systems,
madia players, media gataways, residenvial gatewavs and similar dataflow-centric devices.

Implicit's technolagy is protected by the following patents: US 6,976,248 US 6,324,685; US 6,907,446; US 6,629,163; LS
6,507,349. US 7,391,791, PCT 1177514)

Licensing

For informaticn about licensing tmpiicit's inteilectua! proparty peortfolio and rechnology platform, please contact us.

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page39 of 41

EXHIBIT D

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page40 of 41

Hosie| Rice v

ATTORNEYS AT LAW

188 The Embarcadero, Suite 730
San Francisco, California 94105

T: 415.247.6000 F: 415.247.6001

January 14, 2009

VIA E-MAIL AND REGUEAR MAIL

Katherine K. Lutton

Fish & Richardson

500 Arguello Street, Suite 500
Redwood City, CA 94063
lutton@elr.com

David A. Nelson

Jeanifer A, Bauer

Latham & Watkins LLP

5800 Sears Tower, 233 S. Wacker Drive
Chicago, Illinots 60606
david.nelsonizehw.com
Jennifer.baueri@lw.com

Jason W, Wolff

Fish & Richardson
12390 El Camino Real
San Diego, CA 92130
wolff@tr.com

Robert W, Stone

Pouglas W. Colt

Quinn Emanuel Urquhart Gliver & Hedges
555 Twin Dolphin Drive, Suite 360
Redwood Shores, CA 94065
roberistonediquinnemanuel.com
dougcoltfoquinnemanuel.com

Ralph H. Palumbo

Philip S. McCune

Summitt Law Group

315 5™ Avenue S, Suite 1000
Seattle, WA 98104
ralphpfecsummitiaw.com

philm@Esummitlaw.com

Re: Implicit Networks, Inc. v. IBM, Inc. et al.
Dear Counsel:

By this letter, I write to ask it you will stipulate to Implicit Networks filing an amended
complaint which adds two new defendants, specifically, Sun Microsystems. Inc. and Microsofl

Corporation.

If the existing defendants object to this request, we will need to file a contested motion
for leave to amend or a new case accompanied with a related case notice.

weae.hosiclaw.com

Case3:09-cv-00201-SI Documentl Filed01/15/09 Page4l of 41

Hosz | Ruck wip

ATTORNEYS Al LAW
Thank you for your consideration. / /

Very truly yours, A

Spencer Hosie ’/

