EAI9]0

5/5’5

19

- 24

28

e 1

10
11
12
13
14
15
16
17
18

20|

21
22
23 |

25
26
27

Case 309-0v-01342-51 Document i AMNAUIFAMAE MIPARAL IO T
A A O O

08-CV-01080-CMP

| ENTERED
—{iiom " RECENED
JuL 15 008 B
LE
Bywﬁ%ﬁﬁ“o‘g}fé’géﬁfgﬁ%‘é’&v
IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF WASHINGTON
SEATTLE DIVISION
IMPLICIT NETWORKS, INC. §
: § ‘
» C08 10801
Plaintiff § C 1 %N
§ _
V. § C.A.NO.
§
INTERNATIONAL BUSINESS § PLAINTIFF’S ORIGINAL
MACHINES CORPORATION, § COMPLAINT
ORACLE CORPORATION, §
SAP AMERICA, INC., and ADOBE § JURY TRIAL DEMANDED
SYSTEMS INCORPORATED, §
§
Defendants §
§

Plaintiff, Implicit Networks, Inc. (“Plaintiff”), files this Original Complaint against
Defendants, International Business Machines Corporation (“IBM™), Oracle Corporation (“Oracle™),
SAP America, Inc. (“SAP”), and Adobe Systems Incorporated (“Adobe™), and alleges as follows:

THE PARTIES
1. Plaintiff is a Washington corporation with its principal place of business in Seattle,

Washington.

Plaintiff’s Original Complaint LAW OFFICES OF JAMES S. ROGERS
1500 Fourth Avenue, Suite 500
Page 1) Seattle WA 98101

Ph: 206/621-8525, Fax: 206/223-8224

=

oo 1 v La

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/

1

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 2 of 32

- IBM, on information and belief, is a corporation organized under the laws of the State of

New York. IBM is doing business in Washington, and, on information and belief, has a
principal place of business at North Castle Drive, Armonk, New York 10504. IBM may be
served with process by serving its registered agent, CT Corporation System, 350 North Saint
Paul Street, Dallas, Texas 75201.
Oracle, oni information and belief, is a corporation organized under the laws of the State of
Delawaré. Oracle is doing business in Washington, and, on informétion and belief, has a
principal place of business at 500 Oracle Parkway, Redwood Shores, California 94065.
Oracle may be served with process by serving its registered agent, Corporation Service
Company dba CSC, 701 Brazos Street, Suite 1050, Austin, Texas 78701.
SAP, on information aﬁd belief, is a corporation organized under the laws of the State of
Delaware. SAP is doing business in Washington, and, on information and belief, has a
principal place of business at 3999 West Chester Pike, Newton Square, Pennsylvania 19073.
SAP may be served with process by serving its registered agen;[, CT Corporatipn System,

350 North Saint Paul Street, Dallas, Texas 75201.

' Adobc; on information and belief, is a corporation organized under the laws of the State of

Delaware. Adobe is doing business in Washington, and, on information and belief, has a
principal place of business at 345 Park Avenue, San Jose, California 95110. Adobe may be
served with process by serving its registered agent, Corporation Service Company dba CSC,

701 Brazos Street, Suite 1050, Austin, Texas 78701.

Plaintiff’s Original Complaint LAW OFFICES OF JAMES 8. ROGERS

Page 2

1500 Fourth Avenue, Suife 500
Seattle WA 98101
Ph: 206/621-8525, Fax: 206/223-8224

N ,

~ O LA

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

10.

11.

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 3 of 32

JURISDICTION & VENUE

This is an action for infringement of a United States patent, among other actions.
Accordingly, lthis action arises under .the patent laws of the United States of America, 35
US.C. § 1 et. seq. and jurisdic'.[ion is properly based on Title 35 United States Code,
particularly § 271, and title 28 United States Code, particularly §. 1338(a).

IBM, upon information and belicf, transacts business in this judicial district by
manufacturing, selling, offering to sell, or using products and/or systems as described and
claimed in United States Patent Nps. 6,324,685 and 6,976,248, the pétents at issue in this
lawsuit, and/or by conducting other business in this judicial district.

Oracle, u]f)on information and belief, transacts business in this judicial district by
maﬁufacturing, selling, offering to sell, or using products and/or systems as described and
claimed in United States Patent Nos. 6,324,685 and 6,976,248, the patents at issue in this
lawsuit, and/or by conducting other bﬁsiness in this judicial district.

SAP, upon information and belief, transacts business in this judicial district by

manufacturing, selling, offering to sell, or using products and/or systems as described and

claimed in United States Patent Nos. 6,324,685 and 6,976,248, the patents at issue in this

lawsuit, and/or by conducting other business in this judicial district.
Adobe, upon information and belief, transacts business in this judicial district by
manufacturing, selling, offering to sell, or using products and/or systems as described and
claimed in United States Pétent NOS. 6,324,685 and 6,976,248, the patents at issue in this
lawsuit, and/or by conducting other business in this judicial district.

Venue is proper in this court under Title 28 United States Code § 1391(b) and 1400(b).

Plaintiff’s Original Complaint LAW OFFICES OF JAMES S. ROGERS

Page 3

1500 Fourth Avenue, Suite 500 -
Seattle WA 98101
Ph: 206/621-8525, Fax: 206/223-8224

NOO00 1 Oy

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 4 of 32

COUNTI
PATENT INFRINGEMENT AGAINST ALL DEFENDANTS

12. On November 27, 2001, United States Patent No. 6,324,685 (“the ‘685 pateﬁt”) entitled
“Applet Server that Provides Applets in Various Forms™ was duly and legally issued. A true
and correct copy of the “685 patent is attached as Exhibit A.

13. On December 13, 2005, United States Patent No. 6,976,248 (‘jhe 248 patent™) entitled
“Application Server Facilitating with Client’s Computer for Applets along with Various
Formats” was duly and legally issued. A true and correct copy of the ‘248 patent is attached
as Exhibit B,

14. Pursuant to 35 U.5.C. § 282, the above-listed United States Patents are presumed valid.

15. Edward Balassanian is the sole inventor of the. ‘685 and ‘248 patents. The ‘685 and ‘248
patents have been assigned to Plaintiff.

l16. IBM, on information and belief, manufactures, ﬁses, and‘sells-products that infringe the ‘685
and ‘248 patents, including without limitation, its Websphere Application Server.

17. Oracle, on information and belief, manufactures, uses, and sells products that infringe the
‘685 and ‘248 patents, including without limitation, its Oracle Application Server and BEA
WebLogic Server. |

18. SAP, on information and belief, manufactures, uses, and sells products that infringe the *685
and ‘248 patents, including without limitation, its NetWeaver Application Server.

19. Adobe, on information and belief, manufactures, uses, and sells products that infringe the
‘685 and ‘248 patents, including without limitation, its JRun and ColdFusion products.

/ |

i

Plaintiff’s (jriginal Complaint LAW OFFICES OF JAMES 8. ROGERS

1500 Fourth Avenue, Suite 500

Page 4 Seattle WA 98101

Ph: 206/621-8525, Fax: 206/223-8224

I

s 1 Sy

10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28

Case 3:09-cv-01342-Sl - Document 1 Filed 07/15/08 Page 5 of 32

20. The infringement of the ‘685 and ‘248 patents alleged above has injured the Plaintiff and
thus, it is entitled o recover damages adequate to compensate for IBM, Oracle, SAP, and

Adobe’s infringement, which in no event can be less than a reasonable royalty.

DEMAND FOR JURY TRIAL

21. Plaintiff hereby demands a jury trial on all claims and issues.

PRAYER FOR RELIEF

Wherefore, Piaintiff prays for eniry of judgment:

A. that Defendants IBM, Oracle, SAP, and Adobe have infringed one or more claims of
the 685 and ‘248 patents; |

B. that Defendants IBM, Oracle, SAP, and Adobe account for and pay to Plaintiff all
damages caused i)y the infringement of the ‘685 and ‘248 patents, which by statute can be no less
than a reasonable royalty;

C. that Plaintiff be granted pre-judgment and post-judgment interest- on the damages
caused to them by reasbn of Defendants, IBM, Oracle, SAP, and Adobe’s infringement of the ‘685 ‘
and ‘248 patents;

| D - that Plaintiff be graﬁted-its attorneys’ fees in this action;
E. : that costs be awarded to Plaintiff; and
F. that Plaintiff be granted such other and further relief aé the Court may deem just and

proper under the current circumstances.

/!

/

Plaintiff’s Original Complaint LAW OFFICES OF JAMES 5. ROGERS
1500 Fourth Avenue, Suite 500

Page 5 Seattle WA 98101

Ph: 206/621-8525, Fax: 206/223-8224

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case 3:09-cv-01342-SI- Document 1 Filed 07/15/08

A)
DATED this J_\éday of July, 2008. Respectfully submitted,

Page 6 of 32

'\LAW OFFICES OF JAMES S. ROGERS

Law Offices of J

ogers,

SHA #5335
es S. Rogers

1500 Pourth Avenue, Suite 500
Seattle, Washington 98101
Telephone: 206/621 -8525
Fax: 206/223-8224

OF COUNSEL:

Edward W. Goldstein

Corby R. Vowell

Matthew J.M. Prebeg

GOLDSTEIN, FAUCETT & PREBEG, L.L.P.
1177 West Loop South, Suite 400
Houston, Texas 77027

Telephone: ~ 713/877-1515

Fax: 713/877-1737
Attorneys for Plaintiff
Plaintiff’s Original Complaint . LAW OFFICES OF JAMES 8. ROGERS

Page 6

1500 Fourth Avenue, Suite 500
Seatile WA 98101
Ph: 206/621-8525, Fax: 206/223-8224

Case 3:09-cv-01342-SI

a2 United States Patent

Balassanian

Document 1 Filed 07/15/08 Page 7 of 32

T ORGSR T T

US 6,324,685 Bl
*Nov. 27, 2001

(10) Patent No.:
(45) Diate of Patent:

(54) APPLET SERVER THAT PROVIDES
APPLETS IN VARIOUS FORMS

(75) Invepor: Edward Balassanian, Kickland, WA
{us)

{73) Assignee: BeComm Corporation, Redmond, WA
(us)

{*} Notice: This pateat issued on a continued pros-

ccution application filed under 37 CFR

1.53(d), and is sobject to the twenty year

palent lenm provisions of 35 US.C

154(a¥2).

'Subjucl lo any disclaimer, the lerm of this
patent is extended or adjusted under 335
US.C. 154(b) by O days.

Sirer, Emin Giin, *Kimera Paper Trail,” http:/kimera.cs-
washinglon.edu/papers/index.himi [Accessed Oct, 4, 2000].
Sirer, Emin Gin, “Java, Cxtensibility and Security Related
Ligks,” hetp:/imera.cs. washington.edu/related/inde x. html

- {Accessed Oct. 4, 2000].

Sirer, Emin Goa, “Java-Relevant Aricies in the Press,”
http: /kimera.cs.washington edu/press/index.him! [Ac-
cessed Oct. 4, 2000].

“Project Members” btip://kimera.cs.washington edu/mem-
bers.htm! {Accessed Oct. 4, 20001,

Emin Gin Sirer, el al., “Distobuted Virtual Machines: A
System Architecture for Metwork Computing,” Dept. of
Computer Science & Engineering, University of Washing-
ion, Scattle, Washington http:/kimera.cs washinglon.edu
Feb. 26, 1998,

(List contimeed on next page.)

. Primary Fxaminer—Mark R. Powel}

(21) Appl. No.: 69/040,972
(22) Filed: Mar. 18, 1998

(51) Int.CL7
(52} US.CL T17/5; 71711
(58) Field of Search ... 395/705, 701,
395/200.33, 200.32, 188.01; T17/5, 1; 7097203,

202; 7137202

GO6F 9/45

(56) References Cited
U.S. PATENT DOCUMENTS

5,805,829 9/1998 Cohen et al, ...-....
5,828,840 * 10/1998 Cowan et al. ...

* .. 395/200.32
L]

5848274 * 12/1998 Hamby ct al.
*

395/200.33

Assistant Examiner—Hoang-Vu Antony Nguyen-Ba
(74 Anorney, Agent, or Firm—Perkins Cole LLP

G ABSTRACT

‘The present iovention 18 an applet server which accepts
requests for applets from client computers. A request speci-
fies 1he format in which an applet is 10 be delivered to the
requesting client computer. The applet server has a cache
which it uses lo store appleis for distribution to chient
compuiers. I the specified form of the requested applet is
available in the cache, the applel server wansmits the applet
to the requesting client. If the applet is ot available in the
cache, the server will attempt to build the applet from local
rescurces (program cade modnles and compilers) and trans-

. 3057705 former programs (verifiers and oplimizers). If the applei
5872915 * 211992 Drykes et al. 305/188.01 server is able 1o build the requested applet, it will then
5,884,078 = 3/1999 Faustini 3957701 transmit the applet to the requesting cliem compuier. If the

QOTHER PUBLICATIONS

“Eliminating Unnecessary Synchronization,” htip:/Kimer-
a.cs.v]vashinglon.edu;’synch!indcx.hmﬂ {Accessed Qul. 4,
20007

applet server is unable 1o build the requesled applet, il will
pass the request 10 another applat server on the network for
fulfillment of the request.

106 Claims, 3 Drawing Sheets

PIRINTIEE’S 6RIGINAL CMPLAINVT
ATTACHMENT K -7

mee -1

Fami

Cae Companett "'@AJ

Cow ®“‘:
=

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 8 of 32

US 6,324,685 B1

Page 2

OTHER PUBLICATIONS

Emin Gun Sirer, et al, “Desipn and Implementation of a
Distribmed Virwal Machine for Networked Computers,”
University of Washinglon, Depariment of Computer Science
and Engineering, Seallle Washington, 17" ACM Sympo-
sinm on Operating system Principles, Dec. 1993,

Sirer, Emin Giin, “A System Architecture for Next Genera-
tion Network Computing,” Dept. of Computer Science &
Lngineering, University of Washington, Sealtle, Washington
hsp:/farwrw.dyncorp—is.com/darpa/meetings/gradmeet 98/
Whilepapers/darpa—wp.himl Jun, 26, 1998,

Sirer, Bmin Giin, btip://www.cs washington.edu/homes/egs/
{Accessed Cet. 4, 2000].)

Sirer, Emin Giln, “Kimera—A System Archileclure for
Networked Computers,” htip:/kimera.cs.washington.edu/
[Accessed Ocl. 4, 2000].

Emin Giig Strer and Brian Bershad, “Kimera Architecture,”
hitp://kimera.cs washingion.edu/averview. himl [Accessed
Oct. 4, 2000].

Sirer, Emin Giin, “Security Flaws in Java lmplementations,”
hup:/kimera.<s.washinglon edo/laws/index.buni [Ac-
cessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera Bylecode Verification,” bup:/
kimera.cs.washington.edufvenfierhtml {Accessed Oct. 4,
2000],

Sirer, Emin Gon, “Kimera Test Suite,” hitp:/kimera.cs-
washington.edu/testsaite.himl [Accessed Oct. 4, 2000].
Sirer, Emin, Giln, “Kimera Disassembler,” htp:/&imera.c-
s.washinglon_edu/disassemhlerhim] [Accessed Ocl. 4,
2000].

* ciled by examiner

Case 3:09-cv-01342-SI, Document 1 Filed 07/15/08 Page 9 of 32

U.S. Patent

Nov. 27, 2001 Sheet 1 of 3 US 6,324,685 B1

Cliet Computer A

d—|

k‘\

12

Client Computer B

et

=

14

Untrusted
Netwark

18

16

. Applet Server Computer

\

’ J— 20
Network interface

26

Local Resources

Applet Server | [-’-2
Manager mnduia
cgmpu!er!
32b‘

303 ule
Cache Companent
o ’ Gompiter
modula
25a|f 2"]

32d I
I Cumpder [} modide
n
25¢ |

.')
:8
&
[t
r
(L]
=

-

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 10 of 32

U.S. Patent Nov. 27, 2001 Sheet 2 of 3 US 6,324,685 Bl

Applet—UR o Sg) $pééiﬁethenéfl1 the i'e aste
applet
Code-Type | (Source/Intermediate/Binary) specﬂ' es the

format the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting
client (e.g., x86)
Verification-Level (0-100) specifies the degree of verification to
be performed. 0 = no/minimal verificatian,
100 = maximum verification {highest level of
] security).
Optimization-Level (0-100) specifies the degree of optnmmat:on
: to be performed. 0 = ne/minimal
optimization, 100 = maximum optlmlzatlon.

Fig. 24

Applet URL . (Strmg) specifies the name of the requested
applet
Code-Type : {(Sourcefintermediate/Binary) specifies the
format the applet is to be delivered to the
raquesting client in. A request for binary
would specify the CPU of the requesting
- client (e.g., x86}

Verification-Level {0-100) specifies the degree of verification to

S be performed. 0 = no/minimal verification,
100 = maximum verification (highest level of
security).
Optimization-Level {0-100) specifies the degree of optlmlzauon
to be performed. 0 = no/minimal
optimization, 100 = maximum optimization.

Applet Length (0-2%) specifies the size of the requested
applet.

Applet Code The Requested Applet in the form specn’ ied
by the request data type.
Fig. 2B

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 11 of 32

U.S. Patent Nov.27,2001 Sheet 3 of 3 US 6,324,685 Bl

Program Module
44

Intermediale Compiler

42

Intesrmediate Form
Program Module

Transformed

Intermediate Form

Program Modute

50

Target Compiler

Applet 1 o
Fig. 3

|

Case 3:09-cv-01342-SI‘ Document 1 Filed 07/15/08 Page 12 of 32

US 6,324,685 Bl

1

APPLET SERVER THAT PROVIDES
APPLETS IN VARTOUS FORMS

FIELD OF THE INVENTION

‘The present invention relates to computer operating sys-
tems and, in pagticular, to a server architecture providing
application caching and security verification.

BACKGROUND OF TIHE INVENTION

The growth of the 'Internet’s importance to busipess,
along with the increased dependence upom corporate
networks, has ¢reated 4 demand for more secure and efficient
computer sysiems. The traditionzl solution 1o this problem
bas been to depend vpon improvements in hardware perfor-
mance t0 make up for the performance penalty that is
typically incurred when a computer system is made more
seeure and stable. Increased interconnectivity has also cre-
ated a need for improved interaperability amongss a variery
of computers that are now conoected 10 one another. One
solution to the problem of the varicty of computers inter-
connected wia the Intemet and corporate networks has been
the development of portable architeciuse neutral program-
ming langnages. The most widely known of these is Java,
though, there are numerous other architecture neutral lan-
guages.

Archileclure neviral programming languages allow pro-
grams downloaded from a server computer io a client
compuler to be interpreted and executed locally. This is
possible because the compiler gencrales partially compiled

intermediate byle-code, rather than fully compiled pative |,

machine code. In order 10 run 4 program, the client machine
uses an interpreler o execute Lhe compiled byte-code. The
byte-codes provide an architecture neutral object file format,
which allows the code 1o be lransported to muliiple plat-
forms. This allows the program to be Tun on any system
which implements the appropriate interpreter and run-time

system, Collectively, the interpreter and runtime system

implement a virieal machine. This structure cesults in a very
secure language.

The security of this systern is premised on the ability of
the byte-code to be verified independently by the client
computer, Using Java or some other virtuzl machine imple-
menting lechnology, a client can ensure that the downleaded
program will not crash the nser’s computer or perform
operations for which it does not have permission.

The traditional implementations of architecture neuiral
langueages are nof withoul problems. While providing tre-
mendous cross platform support, the current implementa-
tioos of architeclure newtral languages require thal every

client performs its own verification and interpretation of the

infermediate code. The high computalion and memory
requiremenis of a verifier, compiler and interpreter restrict
the applicability of these techoologies to powerful client
cOmputers,

Another prablem with performing the verification process
on the client computer is that any individual within an
organization may disable some or all of the checks per-
formed an downloaded code. The current structure of these
systems makes securily management at the enlerprise level
almost impossible. Since upgrades of security checking
software must be made on cvery clicnt compuler, the cost
ard tme involved in doing such upgrades makes it likely
that cutdated or corrupt copies of the verifier or interpreier
exist within an organization. Even when an organization is
diligenl in maintaining a client based security model, the
size of the undertaking in a large orzanization increases the
likcithood that there will be problems.

35

40

45

60

l

2

There is 1 need for 2 scalable disirbuted system archi-
tecture thal provides a mechanism for cliem compuiers 1o
request apd execule spplels in a safe manner without requir-
ing the client machines 1o have loeal resources 1o compile or
verily the code. There is a further need for a system in which
the applets may be cached in either an intermediale archi-
teclure peutral form or machine specific form in order to
increase overall syslem performance and efficiency.

SUMMARY OF THE INVENTION

1n accordance with on¢ embodiment of the invention, an
applet server architecrure is taught which allows client
computers ta request and execute applets in a safe manner
without requiring (he client to have local resources to verify
or compile the applet code. Compilation and byte-code
verification in the present invention are server based and
thereby provide more efficient use of resources and a flexible
mechanism for instituting enerprise-wide securily policies.
'The server architecture also provides a cache for applets,
allowing clients 1o receive applet code without baving 1o
access nodes outside the local metwork. The cache also
provides a mechanism For avoiding repeated verification and
compilation of previously requested applet code since any
clicnt requesling a given applet will bave the request satis-
fled by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given compuler can essén-
tially be viewed as a form of an inferpreter, interpreting
binary code into the associated electronic equivalents. The
present invention adds a level of indirection in the form of
an intermediate language that is processor independent. The
inlermediale language serves as the basis for security
verification, code oplimizations, or any other caompile fime
modifications that might be pecessary. The intermediate
form allows a sinple version of the source to be stored for
many targel platforms instead of having a different binary
for each potential target computer. Compilations to the 1arget
form can either be dane at the time of a cache hit or they can
be avoided all together if the target machine is able o
directly interpret the infermediate form. If the compilation is
done on he server, then a copy of the of the compiled code
as well as the intermediate form can be stored in the cache,
The performance advantage derived [rom caching Lhe com-
piled form as well as the inicrmediate depends upon the
number of clients with the same CPU.

The novel features believed characteristic of the invention
arc set forth in the appended ¢laims, The invention itself,
however, as well as other features and advantages thereof
will best be undersicod by refersace 10 the detailed descrip-
tion which follows, when read in conjunchon with the
accompanying drawings. '

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used to implement an applet server in one embodi-
ment of the present imveation;

FIG. 2a is a table which ustrates the structurs of the
request fommat Jala Lype;

FIG. 2b is a 1able which illustrates the stracture of the
returned code data type.

FIG. 3 is 2 diagram showing the compilation and trans-
formation of a program module inte an applet in a particelar
form.

DETAILED DESCRIPTION OF THE
INVENTION

Referring 1o FIG. 1, an applet server architecture accord-
ing 1o one embodiment of the jnvention is based on an applet

L

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 13 of 32

US 6,324,685 B1

3

. server computer 18 which in wm is connected to cliem
compuler A2, client computer 1314, an external network 16
and an untrusted network 18, The applet server computer 10
canaects io client computers 12 and 14, an external network
16, and an untrusted netwerk 18 by means of a network
interface 20 Typically this connection will involve one or
more of the compulers or networks having a connection to
the Infernet. .

The applet server computer 10 accamplishes its objectives
by manipulating computer programs in several formats, An
applet (e.g. applets 1-3, 25¢—25¢) is any form of program
instructions, whesher in binary, source or intermediate for-
mat. ko the case of this architecture, the applet code can
either be a sell contained program, or it ean be a cade
fragment associated with a larger application.

Binary format refers to processor specific machine
instruetions suilable for ruoning natively on a given com-
puting platform {also referred to as “target” because of the
concepl of “1argeling” a compiler i produce binary code for
a given processor type).

Source refers 1o non-binary applet code, generally in the
form of higher level languages (ie. C, C++, Java, Visual
Basic, ActiveX, Fortran, and Modula).

Intermediate format refers (v 4 common inlermediate
byte-code that is produced by compiling a given source code
input. The intermediate byte-code need not necessarily be
Java hyte-code.

Treating applets in this gencral sense allows client com-
puters 12 and 14 to request notl only applications, but
portions of applications. Cliem computers 12 and 14 are thus
able to use appler server computee 10 as the equivalent of 2
loader, loading in appropriate parts of the application in the
form of applels. In wra client computers 12 and 14 can run

large applications without requiring that the client comput- 3

crs'IE .and 14 have the resources to store the entire appli-
cation in memary al once.

Having 1he applets delivered from applet server computer
10 allows code in intermediate form to be verified,
optimized, and compiled before beinyg ransmitted 1o client
computers 12 and 14, This reduces the amount of work the

_client computers 12 and 14 have 1o do and provides a
convenient way to impose global restrictions on code.

In operation, elient compuler A 12 fransmits a request (o
an applet server computer 10 requesting an applet in a
particular form. The form may be selected from a large
madrix of many possible forms that can be recognized by the
system. The requesl specifies the format (source,
intermediate, or binary) in which (he client wishes lo receive

the applet. The request may also specify that the applet be

verified or have some other iransformation operation per-
formed upon it. Verification, oplimization and compression
are examples of types of transformation operations, The
request is received by the network interface 20 of the applet
server camputer 10 which passés the request onto the applet
server manager 22,

Alter imerpreting the request, the applet server manager

22 checks to sec if the tequesied applet is available in the
cache 24. The cache 24 stores applets in a variety of formats
(source, inlermediate, or binary). If the requested form of the
applel is avaitable in the cache 24 (applel 1 254, applet 2
25b, or applet 3 25¢ in this example) the applel server
manager 22 instructs the network interface 20 1o ransmit the
applel ta requesting clienl computer A 12. If Lhe requested
applel is not available in the cache 24, thea the applet server
manager 22 will atlempl 1o build the requested applel from
local resources 26 and one or more lransformation opera-

=3

15

n

3

40

4

ticns performed by one or more ol the transfomers 28.
Local resources 26 are comprised of compilers 30a, 305 and
30c and program code modules 32a, 32b, 32c and 32d. The
requested appiel is buill by selecling one or more program
code medules 32 and compiling them with one or more
compilers 30. Transformer operations may be performed by
tbe verifier 34 or ihe oplimizer 36. After the applet server
manager 22 builds (he applet, the neiwork inlerface 28
transmits the applet to the requesting ¢licol computer A 12,

If the request can not be satisfied by building the applet
from local resources 26 and fransformers 28, the applet
server manager 22 will pass a request for the requested
applet 1o external network 16 and/or untrusted network 18.
The applet server manager 22 may request the applet in
inlermediate form or in executable forn or it may request the
local resources 26 and iransformers 28 it oeeds to complete
building the applet itself.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retrieve
a given applet from the cache. PUT ks used o store an applet
in the cache. FLUSH is used 10 clear the cache of one or
more entries, When the cache is unable to locals an item in
sesponse 1o 2 GET operation, it sefurns a cache miss. The
program which issued the GET command is then responsible
for locating the desired form of the applet by ether means
and optionally storing™it in the cache when it is re(rieved
{usiog the PUT operation). The FLUSH command wiil clear
the cache of one or more ealries and any subsequent GETs
for the FLUSHed applet code will result in a cache miss.
This is useful if a particular applet nesds to be updated from
a remole server on a periodic basis, When using PUT, the
program issuing the command specifies a time (o live (TTL)
in the cache. When the TTL expircs, the cache entry is
removed by means of a FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not 1he requested form) and com-
piers 30. The program modules 32 are run through the
compiters 30 iz onder 1o produce applets in the requesied
form. The applel server manager 20 may also direct the
modules 32 10 be processed by a verifier 34 or another
transformer such as an optimizer 36, Program modules 32
are program code used to build applets. Prograrm modules 32
may be stored in local resources 26 in source, binary, or
intermediate formats, When an applet is built it may require
the operation of one or more compilers 30 upon doe or more
program modules 32, The program modules 32 may be
combined and recompiled with previously cached applets
amd the resulting applel may be also cached for use at a
luture time. Additienally, program modules 32, compilers 30
and transformers 28 (including verifiers 34 and optimizers
36) may be distributed across a network. The applet server
manager 22 may pass requests [or the components i1 needs
ta build a particular applet back to the network interface 20

.which in tum passes the request onlo the rest of the network

and may inciude exiernal metwork 16 and untrusted ncitwork
18

FIG. 3 provides further illusteation of how am applet is
produced from local resources and ransformers. In this
illustration the request is for an optimized and verified applet
compiled 10 a machive specific form. A program module 48
is compiled into an intermediaie form program module 44
by an intermediate compiler 42. The im¢rmediale form
program module 44 is then transformed by an optimizer 46
or a verifier 48. The resulting transformed intermediate form
program module 50 is then compiled by target compiler 52
into machine specific code applet 54.

There are two types of compilers used 1o build applels:
intermediate compilers 42 and target compilers 52. The

\5

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 14 of 32

US 6,324,685 B1

5

inicrmediate compiler 42 compiles program modules
{source applet code) 40 and produces 3 common inerme-
diate pseudo-binary representation of the source applet code
. {intermediate form program module 44), The word pseudo is

used because Lhe inlermediaie form 44 is nol processor.

specific but is stilf a binary representation of the source
program module 40. This intermediate form ecan be
re-largeted and compiled for a particular processor.
Alternatively, the intermediale form 44 can be interpreled by
an inlerpreter or virteal machine that understands the inter-
pal binary representation of the intermediate form. A target
compiler 32 compiles intermediate applet code 44 inlo an
applet 54 in a processor specitic format (binary) suitable for
running nalively on a given computing platform.

Transformers 56 are programs that take in intermediate
code and put oul intermediate code. Transtermers 56 are
generally used for things like verification and oplimization.
Olher transformers might included compressors thal identily
portions of cade that can be replaced with smaller equiva-
lents. Transformers can be matched up o any other com-
panent thal takes in imermediate code as an inpuf. These
in¢lude the cache 24 and the target compilers 52, Global
policies for transformers 56 c¢an be implemenied which
cosure that all applets are ron throvgh some set of trans-
formers before being returned to the client.

Averifier 48 is a Lype of translormer that is able 10 analyze
input code and determine areas that might not be safe, The
verificr 48 can determine the level of safety. Some verifiers
48 look for arcas where unsale or protecied memory is being

accessed, others might laok for accesses 10 systemn resources 4

such as 10 devices. Once a verifier 48 determines the poriion
ol umsafe applet code several sieps can be laken. The
offending code portion ¢an be encased with new code that
specifically prevents this unsafe code seciion from being
excculed, The unsale code can be modified 1o be safe. The
unsafe code can be flagged in such a way that a user can be
warned aboul the possible risks of executing the code
fragment. The verificr’s rale can therefore be summarized as
determining where unsafe code exists and possibly zliering
tbe offending code 10 render it harmless. Verifiers 48 can
operate on any format of input code, whether in source,
intermediate or binary form. However, since intermediate
code is 2 common format, it is most efficient to have a single
verifier that will operate on code in this format. This
climinates the need to build spacific knowledge of various
source Janguages ioto the venifier. Verifiers 48 are a form of
& transformer. Verifiers 48 1ake in intermediate code and put
owt verified intermediate code. Verifiers 48 are responsible
for identifying non-secure portions of cade in the interme-

diate code and modifying this code to make it secure. ;

Security problems generally include aocess 1o memory areas
that are unsafe (such as system memory, or memory outside
the application space of the applet), .

The choice of adding in 1be verification siep can be left up
to the client computer 12, the applet server computer 18 (see
FIG. 1), or can be based on the network that the applet
oniginated [rom. Server managers ¢can institute global poli-

. cies that affect all chients by forcing all applets 1o be n
through the verifier 48. Alternatively, veritication can be
reserved for un-trusted networks (18 in FIG. 1), or it can be
left up 10 the client to determine whether the verification
should be performed. In the preferred embodiment, verifi-
cation level is determined by the applet server 10. In-this
way, a uniform security policy may be implemented from a
single machine (i.e., the applet server 18).

Optimizers 46 are another 1ype of trapsformer program.
Optimizers 46 analyze code, making improvements to well

3

W
wn

[24]

65

6
known code [ragments by substituling in upl@mi‘zcd bul
equivalent code fragments. Oplimizers 46 1ake in inferme-
diale code 44 and put oul transformed intcrmediate code 58.
The transformed iniermediate code §0 is functionally
equivalent 1o the source inlermnediate code 44 in that they
share the same siructure.

Referring again 1o FIG. 1, policies may be instituted on
the applet server 10 that force a certain set of request
parametess regardless of what the cliemt asked for.

For example, the applel server manager 22 can run ihe
applet through a verifier 34 or cptimizer 36 repacdless of -
whether the client 12 requested this or not. Since the server
16 might have io go 10 an untrusied network 18 Lo retrieve
a given applet, it will then run this applel through the
required transformers 28, particularly the verifier 34 before
referning it to the elicnt 12. Since clients 12 and 14 have 1o
o Ihrough the applet server computer 16, this ensures that
clients 12 and 14 do oot receive applets direcily from an
unirusted network 18. In addition, since the server will be
dealing directly with untrusted network 18, il can be sel up
to institute policies based on 1he network. A trusted external
network 16 may be weated differently than an untrusted
nctwork 18. This will provide the ability to yun a verifier 34
only when dealing with an untrusied network 18, buat not
when dealing with a lrusted external seiwork 16. In ome
embodiment, all intermediate code 15 passed through a
verifier 34 and the source of the code mezely determines the
level of verification applied.

The ¢lient 12 is the target computer on which the user
wishes 10 execuie an applet, The client 12 requests applets
from the server 10 in a specific form. Applels can be
requested in varous formats including source, intermediate
and binary. In addition, an applet can be requesied with
verification andfor oiker compile lime operations.
Optiogally, the clicnt 12 can pass a verifier to the server 1o
provide verfication. If the server 10 implements its own
seeurity, then both the client and server verifiers will be run,
The verifier that is passed from the client to the server is
cached at the server for subsequent verification. The client
can refer to this verifier by a server-generated handle to
avoid having to pass the verifier each time an applet is
requested. '

Client computers 12 and 14 requesting applet code in
intermediale format need 1o have an inlerpreter or virtual
machine capable of interpreting the binary code in the
intcrmediate format if the applet is to be executed on the
clieat machine,

In the preferred embodiment, requests 10 the applet server
are in a format similar 1o those of an HTTP header z2od are
comprised of tags and values. In one embodiment, an H1TP
GET method is used 10 make the request (though use of the
AT protocol is not necessary to implement lhe presenot
inventian). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to
be run and the type of code (source/intermediate/binary), a
verificarion level and an aptimization level. New tags and
vilues can be added 10 exiend functiopality as needed and
the applet server manager 22 will discard any tag it does not
recognize. When the applet server compuser 10 returns the
requested zpplel 1o the requesting clicnt computer A 12, it
will transmit the request header followed by the applet code.
In this instance, the header will additionally include a field
which defines the length of the applet code. FIG, 2 provides
a 1able which illustraies the request formal and the returned
code format.

While this invention has been described with reference w
specific embodiments, this description is not meant la limit

4

Case 3:09-cv-01342-S]|

Document 1 Filed 07/15/08 Page 15 of 32

US 6,324,685 Bl

7

the scope of the invealion. Vadows modifications of the
disclosed embodiments, as well as olher embodiments of Lhe
invention, will be apparent to persons skilled in the art upon
reference lo this description. It is thezefore contemplated Lhat
the appeoded claims will cover any such modifications or
embodiments as falf within the scope of (be invention.
1 claim:
1. A method in a server computer for providing applica-
tions 10 cliem computers, lhe method comprising:
receiving a request from a clienl computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms;
in response to receiving the request,
generating the identified form of the application tfrom
another form of the application; and
sending the identified form of the application 1o the
cliem computer; aond
caching the identified form of the application s Lhat when
another request is received for the application in the
identified form, the idenlified form of Lhe application
can be sent without 1egenerating the identified form of
the application.
2. Amethod in a server computer for providing applica-
tions 10 client computers, the method comprising:
receiving a request from a client computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
af available forms; and
in response 1o receiving the request,
when the server computer daes not have the application
in the ather form, requesting the application in the
ather form from a compuler other than the server
compuier;
generating the identified form of the application from
another form of the application; and
sending tbe identified form of the application to the
client compuier.
3. A method in a server compuier for providing applica-
tons to client compaters, the methed comprising:
receiving a request fram a client computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and
in response 1o receiving the request,
generating (he identified form of the application from
another form of the application including when the
server compuler dees not have the identified form of
the application, requesting the application in the

other form from a computer other than the server :

computer; and
sending the identified form of the application to the
client computer.
4. A method in a server computer for praviding applica-
tions to clien! compuiers, 1he method comprising:
receiving a request from a cliemt computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and
in response to receiving the request,
generating the identified form of the application from
another form of the application; and
sending the identified form of the application 10 the
client computer
wherein the identified form is an intermediate form.

5. The methed of ¢laim 4 wherein the intermediale form
is fava byte code.

2

10

2

\5

8

6. The method of claim 4 wherein the ntermediate fom
¢an be interpreted by an interpreter executing on {he chieat
camputer, ’

7. A method in a server computer for providing applica-
lions to client computers, the method comprising:

receiving a request from a clicnt compulter, the request

identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and

in respanse 1o receiving the requesl,

generating the identified form of the application from
© another form of the application; and
seading the ideotified form of the application to the
clienl compuler
wherein 1he identified form is a target form.

8. The method of claim 7 wherein the target form is
directly exceudable by a processor of the clienl compuler

9. A method in a server computer for providing applica-
lions to clieal computers, the method comprising:

receiving a request [rom & clicat computer, the request

identifying an application and idemifying a form of the
application, the identified form being one of & plurality
of available forms; and

in response 10 receiving the request,

generating the identified form of the application from
another form of the applicalion; and

sending the identified form of the application to the
client computer

whercin the other form is a source form

1¢. The method of claim § wherein the sowrce form is Java
SOUrce. o

1i. A method in a server computer for providing apphi-
cations to client computers, the method comprising:

receiving 2 request from a client computer, the request

identifying an application aad ideniifying a form of the |
application, the identified form being one of a plurality
of available forms; and

in response 1o receiving the request

transforming the application into a transformed form;
generating the identified form of the application from
Lhe transfozmed form of the application; and .
sending the identified form of the application 1o the client
computer.

12. The method of claim 11 wherein the transforming is
verifying the application.

13, The method of claim 11 wherein the wansforming is
oplimizing the application.

14, The method of claim 11 wherein the transforming is
compressing the application.

15. A methed in a server compuler for providing appli-
cations 1o clienl computers, the method comprising:

receiving a request from a clieat compuier, the request

identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and

in response 10 receiving the request,

generaling the identified form of the application from
aoother form of the application and caching the
generated identified form so thay when the ideatified
form of the application has been stored in a cache,
the identified form of the application is retrieved
from the cache; and

sending the identified form of the epplication retrieved
from the cache 10 the clienl computer.

16. A method in 2 server compuler {or providing appli-
cations to client compuiers, the method comprising:

Case 3:09-cv-01342-S]|

9
receiving @ request from a client compuier, the request
identilying an application and identifving a form of 1he
application, the identificd form being onc of a pluralily
of available [orms; and
in response 1o receiving the request,
generating lhe identified form of the application from
another form of the application; and
sending 1he identified form of the application ta the
- . client computer
wherein the application is a portion of a larger appli-
cation.
17. A method in a server computer for providing appli-
calions 1o client compulers, the method cornprising:
receiving a request from a client compulier, the request
identifying an application and idenotifying a form of the
application, the identified form being ene of a plurality
of available {forms; and
in response la receiving the request,
generating the identifled forra of 1he application from®
another form of the application; and ’

sending the identificd form of the application to the 20

client computer
wherein the server eomputer functions as a loader for
the client computer.
18. A methed in a server computer for providing appli-
cations io cliest computers, the method comprising:
receiving a request from a clienl compuler, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
ol available forms; and
in fesponse 1o receiving the request,
generating the identified form of the application {rom
another form of the application; and
sending the identified form of the application to the
client computer wherein the application is an agplet.
19. A method in a server computer for providing apph-
calions 1o clhent computers, the method comprising:
receiving a request from a client computer, the request
identifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and
in Fesponse (o receiving the request,
penerating the identified form of the application from
another form of the application; and
sending the identified form of the application to the
client computer
wherein the application inclndes modules, wherein the
generaling includes generating of modules of the
identified form, and wherein (he gencrating includes
combining modules of the idemified form that were

previously generated with modules of the identified 5

form that are generated in response 1o receiving the
request.

20. The method of elaim 19 wherein the modules of the
identified form that were previcusly generated are retreved
from a cache,

21. A method in a server computer for providing appli-
cations 1o client computers, the method comprising:

receiving a request from a clienl computer, the request

idestifying an application and identifying a form of the
application, the identified form being one of a plurality
of available forms; and

in response to receiving the request,

generating the identified form of the application from
another form of the application;

after generating the identified form of the application,
storing he ideptified form of 1he apphlication in a
cache; and

Document 1 Filed 07/15/08 Page 16 of 32

US 6,324,685 Bl

10
sending the identificd form of (he applicalion ta the clicnt
compuler.
22. The methad of claim 21 including in response (o
receiving a fush request, removing the identified form of {he
5 application [rom the cache.

23, The method of ¢laim 22 wherein the flush request is
received from 4 computer other than the server compuier.

24. The method of claim 21 including storing a lme Lo
live indicator with the stored identified form of the appli-
cation.

25. A method in a server computer {or providiog appli-
cations lo client compulers, the method comprising:

receiving a request from a client computer, the request

identifying an application and identifying & form of the
application, the jdentified form being one of a plurality
of available forms; and

in response fo receiving the request,

transforming an intermediate form of the application
into a teansformed version of the intermediate form
of the application; :

generaling the idendified form of she application from
the transformed version of the imermediate form of
the application; and

sending the identificd form of the application (o the
client compuiei.

26. A method in a server computer for providing appli-
cations to client compuiers, the method comprising:

receiving a request from a clienr computer, the request

identifying an application and identifying a form of the
application, the ideatificd form being one of a pluralily
of available forms; and

in response to receiving the request,

verifying the application;

generating the identified form of the application from
the verified application; and

sending Lhe identified form of the application 1o lhe
client computer.

27. The method of claim 26 wherein the verifying is
specified by Lhe client compuler.

28, The method of claim 26 wherein the verifying is
specified by another computer.

29. The method of claim 26 wherein the verifying is
specified by the server computer.

36. The method of <laim 26 including receiving a verifier
from.the client compuler.

31. The method of claim 30 including sending 16 the clent
computer a handle for the verifier o 1hat the client compuier
can subsequently identify the verifier to the server computer.

32, A method in 2 server computer for providing appli-
calions to clienl compulers, the melbod comprising: -

receiving a request from a client computer, the request

identifying an application and identifying a form of the
application, tbe identified [orm being vne of a pharality
of available forms; .

< transtorming the application that is identified in the
request using a comumon transformation;

in response to receiviog the request,

generating the identified form of the application from
the trapsformed application; and

- sending the identified form of the application 10 the

client compufer.

33. A method in a server computer for providing appli-
cations fo clicnl computers, the method comprising:

receiving a request from a chient computer, the request

idemifying an application and identifying a form of ihe
v application, the 1dentified form being ooe of a plurality
of available forms; and -

%

45

i

60

65

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 17 of 32

US 6,324,685 Bl

11
in Tesponse 10 receiving Lhe request,
generating the ideqtified form of the application from
another form of the application; and
sending the identified form of the application 10 (he
client computer
wherein the identified form indicales a processor of the
clicnl computer.
34. A method in # clienl computer for relrieving zn
application in an identified form, the method comprising:
sending to a server computer a request that identifies an
application and identifies a form of the application, the
identified form being one of a plurality of available
forms; and
in fesponse to sending (he request, receiving from the
-server computer the identified form of the application
wherein the server computer generated the identified
form of the application from amother form of the
application in response to receiving the request from
the client computer
wherein affer 1be server computer generated the identified
form of the application, the server computer slored the
identified form of the application in a cache so that
when another request is received for the idemtified form
of the application, the server computer can rétrieve the
identified form of the application without regenerating
the idenlificd form of the upplicakion.
35. A metbod in a client computer for retricving an
application in an idemified form, the method comprising:
sending to a server computer a request that identifies an
application aod identifies a forrm of the application, the
identified form being one of a plurality of available
farms; and

in response to sending Lhe request, receiving from the

server computer the identified form of the application
wherein ibe server computer geaeraled the idenified
form of the application from another form of the
application in esponse lo receiving the request from
the client ¢computer whesein when the server compuler
does not have the application in the other form, the
server computer requests the other form of the appli-
cation from a compulter other than the server compitter.

36. A method in a client computer for retrieving an

application in an identified form, the method comprising;

sending 1o a server compuler a request that identifies an
- application and identifies a form of ke application, the
identified form being one of a pluralily of available
forms; and

in response to sending the request, receiving from the
server compuier the identified form of the application
wherein the server computer generaled the ideatified

30

form of the application from another form of the

application in response o receiving the request from
“the client computer; and

wherein the identificd form is an inlermediate form.

37. The method of claim 36 wherein the intermediaie
form is Java byte code.

38. The method of claim 36 wherein the intermediate
form can be inlerpreied by an interpreter executing on the
client compuler.

39. A melhod in a client computer for retricving an
application in an identified form, the method ¢comprising:

sending 1o 4 server computer a request that idegtifies an

applicalion 2nd identifics a form of the application, the
idenufied form being one of a plurality of available
forms; and

o response 10 sending the request, receiving from (he

server compuiter the identified form of the application

35

60

65

12
wherein the server compulse gencrated (he identified
form of the application from another form of the
application in response to receiving the request from
the client compuier
wherein the identified form is a target form.
40. The methiod of claim 34 wherein the target form is
directly execmable by a processor of the clienl computer.
41, A method in a client compuler for retricving an
application in an idestified form, the method comprising:

sending to a server computer a request that identifies an
application and identifies a form of the application, the
identificd form being one of a plurality of availabie
forms; and .
in response to sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the application from another form of the
application o response 1o receiving the request from
the client computer
wherein the other form is 2 source form.
42. The method of ¢laim 41 wherein the source form is
Java source.
43. A method in a cliest compuier for retrieving an
application in an identified form, the method comprising:

" sending [0 a Server computer a request that identifies an
application and identifies a form of the application, the
ienified form being one of a plorality of available
forms; and

in response to sending the request, receiving from the
scrver computer the identified form of the application
wherein the server computer generaled the identified
form of the application from another form of the
application in response to receiving the request from
the client computer
wherein the server computer transforms Lhe application
before generating 1he identified farm the application,
44. The method of claim 43 wherein the transforming is
verifying the application,
45. The method of ¢laim 43 wherein the transforming is
optimizing the application.
46. The methed of claim 43 wherein the transforming is
compressing the application.
47. A method in a client computer for retrieving an
application in an identified form, the method comprising:
sending 10 a server compuler a request that identifies an
application and identifies a form of the application, the
identified form being one of a plurality of avarlable
forms; and .
in response fo sending the reguesl, receiving from the
server computer the identified form of the application
wherein the server computer geoerated the identified
form of the application from another form of the
application in response to receiving the request from
the elient compuicr
wherein the server compuler caches the identified form of
the application and wherein the server computer sub-
sequently retricves the identified form of the applica-
tion from the cache, rather than generating the identi-
fied form of Lhe application.
48, A meihod in a cliem computer for reirieving an
application in an identified form, the method comprising:
sending 10 a server computer a request that identifies an
application and idenlifies a form of the application, the
identified form being one of a plurality of available
forms; and -

17

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 18 of 32

US 6,3
13

in response 1o sending the request, receiviog [rom the
server computer the identified form of the application
wherein the server computer gecerated the identified
form of the application from another farm of ihe
application in response lo receiving the request from
the clienl computer

wherein the application is a portion of a larger application.

49. A method in 2 clienl compuier [or retrieving an

application in ao identified form, the method comprising:

sending lo a server computer a request that identifies an
application and identifies a form of the application, the
identificd form being one of a plurality of available

. forms; and

i response fo sending the request, receiving from the
server computer the identified form of the application
wherein the server compuler generaled the identified
form of the application from another form of the
application in response 10 receiving the request from
the client computer

wherein the application is an applel.

50. A method in a client computer for retrieving an

application in an identified form, the method comprising:

sending to a server compuler a request that identifies an
application and identifies a form of the application, the
identified form being one of a plurality of available
forms; and

in response to sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the applicalion from another form of the
application in respunse (o receiving the request from
the client computer wherein the application lncludes
modules, wherein ihe server compuler generales mod-
ules of the idenmified form, and wherein the server
computer combines modules of the identified form that
were previously generated with modules of the identi-
fied form that are penerated in response Lo receiving the
Tequest. ‘

51. The meihod of claim 30 wherein Lhe modules of the
identified form that were previously generated are retrieved
by 1be server computer from a cache.

52. A method in a client computer for retrieving an
application in an identified form, the method comprising:

sending fo a server computer a request that idemifies an

application and idemiifies a form of the application, the
wentified form being one of a pluralily of available
forms; and

in response 10 sending Lhe request, receiving from the

server computer the identified form of the application
wherein the server computer generated the identified
form of the applicaticn from another form of (he
application in response 10 receiving the request from
the client computer

wherein 1he request includes an indication to verify the |

application.
53. The method of elaim 52 includiog sending a verifier
fromr the clicnl computer to the server compuler.
54. A method in a client computer for retrieving an
applicalion in an wenlified form, 1he method comprising:
sending (o a server computer a request that identifies an
application and identifies a form of the application, the
idemtified form heing ane of a plurality of available
forms; and
in response o sending lhe request, teceiving [rom 1he
server compuler the identified form of the application

24,685 Bl
14

wherein the server compuler generated the idemified
form of the application from anoiher form of the
application in response to receiving the request from
the client computer

wherein the server compuler iransforms cach application

using a commeon' iransformation.

55. A computer-readable medivm containing instructions
for controlling a server compulter 1o provide applets 1o client
computers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and idertifying a form of the
applet, the identified form being one of a phrality of
possible compiled forms of the applet; and

in respanse o receiving a request, using a compiler 1o

compile the identified form of the applet from an
un-compiled form of 1he applet and seading the iden-
tified form of the applet to the client computer that sent
the request; and

caching the identified form of the applet so thal when -

anolher request is received for the same applet in the
identified form, the identified ferm of the applet can be
sent without recompiling the identified form of the
applet

whezeby reguests of different client computers idemtify

different forms of the same applet.

36. A compuler-readable medium containing instructions
for conirolling a server computer (o provide applets to client
compuiers, by a method comprising:

receiving requests from client compulers, each request

identifying an applet aod idemtifying a form of ihe
applet, the identificd form being one of a plurality of
possible compiled forms of the applet; and

in response 10 receiving the request,

when (he server compuler does nol have the applet in
the un-compiled form, requesting the applet in the
un-compiled form from a compuler ather than the
server compuler;

using a compiler to compile the identified torm of the
applet from the un—compiled form of the applet; and

sending the identified form of the applet to the client
computer thal sent the request

whereby requests of different cliem computers identify
different forms of the same applet.

57. The compuicr-readable medium of claim 56 whercin
the other compuiter is accessible via the Intermet.

58. The computer-readable medium of claim 56 wherein
the secver compuier and client computer are conpecled 1o a
local arca oetwork and the server computer and the other
compater are connected via the Internet.

59, A computer-readable medium conlaining instructions
for controlling a server compuler 1o provide applets to client
computers, by a method comprising;

receiving requests from cliemt computers, cach request

identifying an applet and identifying a form of the
appiet, the identificd form being one of a plurahity of
possible compiled forms of the applet; and

in response o receiving a request, using a compiler to

compile the idemified form of the applet from an
un-compiled form-of the applet and sending the iden-
tificd form of the applet 1o the client computer that sent
the request

wherein the applet is part of a web page and whercby

requests of different client computers identify different
forms of the same applet.

6. A compuier-readable medium cootaining insifuctions
for controlling a server computer 1o provide apples lo clienl
compulers, by a method comprising:

5

30

0

w

L

|3

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 19 of 32

US 6,324,685 B1

15
receiving requests from client computers, cach request
identifying an applet and idenfilying a form of Lhe
applet, the identified form being onc of a pluralily of
possible compiled forms of the applet; and

0 response 10 receiving a request, using a compiler to

comptle the identified {form of the applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein U wp-compiled {orm s an iotermediate form

and whereby requests of different client computers
identify different forms of the same applet.

61. The computer-readabie medium of claim 66 wherein
the intermediate form is Java byle code.

62, A compuler-readable medium contsining insirsctions
for controlling a server computer to provide appleis to clicnt
computers, by a method comprising:

receiving requests from cliemt computers, each request

identifying an applet and identilying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

0 response o receiving a requesl, using a compiler to

compile the identified form of the applet from an
ue-compiled form of the applet and sending the iden-
itficd form of (he applet to 1he clicat computer that seni
the request

wherein the identified form is directly executable by a

processor of the client compuler that sent the request
and whereby requests of difierent client computers
identify different forms of the same applet.

63. A computer-readable medium conaining instruetions
for controlling 4 server compuier to provide applets 10 client
computers, by 2 methed comprising:

recelving requests from client computers, each request

identifying an applet and 1dentifving a forn of the
appiet, the identified form being one of a plurality o
possible compiled forms of the applet; and ‘
_in responsc 1o teceiving a4 request, using a compiler 1o
compile ihe ideotified form of (he applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet to the client computer that semt
. the request
wherein the un-compiled form is a source form and
wherchy requests of different client computers identify
different forms of the same applet.

64, The compuier-readable medium of claim 63 wherein
e source form is Java source.

65. A computer-readable medivm containing instructions

for controlling a server computer 1o provide applets to client |

computers, by a method comprising:
reeeiving requests from client computers, each request
identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and
iD response to receiving a request, iransforming an
un-compiled form of the applet, compiling using a
compiler the identified form of the applet from 1he
transformed, un-compiled form of the appiet, and send-
ing the identified form of the applet to the client
- compuier that sent the request
whereby requests of different clisat computers identify
different forms of the same applet.
66. The computer-readable medium of ¢laim 65 wherein
the transforming is verifying the applet.
67. The compuler-readable medium of claim 65 wherein
the transforming is optimizing she applet.

16
68. The computer-readable medium of claim 65 wherein
the (ransfosming is compressing the applet.
69. A compuier-readable medium containing instructions
for controlling a server compuler Lo provide applets (o client
5 compuiers, by a method comprising:
receiving requests from client computers, each request
identifying, an applel and identifying a form of the
applet, the identified form being one of a plurality of
passible
compiled [orms of the appley;
in response to receiving e request, using a compiler o
compile the idenkified form of the applet from an
un-compiled form of the applet and seoding the iden-
tificd form ol (he applet 1o the clicni compuler Lbal senl
5 the request;
storing the identified form of the applet in a cache so that
when another request is retrieved, the server compulter
retrieves the identified form of the applet from the
cache and sends the idemified form of the applet
reirieved from the cache Lo the clienl computer
whereby tequests of different clicnl computers identify
different forms of the same applet.

70. A computer-readable medium conlaining instructions
for controlling & server computer to provide appiels to client
compulers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, the ideniified form being one of a plurality of
possible compiled forms of the applet; and

in response 10 veceiving a request, using a compiler 0

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tificd form of the applet 1o the clieal computer that senl
the request

wherein the applet is a portion of a computer program and

whereby requests of different client compulers identify
different forms of the same applet.

71. A computer-readable mediurn containing instructions
for controlling a server compuler 1o provide appless to client
computers, by a method comprising:

recelving requesis from client computers, ¢ach request

identifying an applet and idenifying 2 form of the
applet, the identified form being one of a plurality of
possitle compiled forms of the applet; and

in response to receiving a request, using a compiler 0

compile the identificd form of the applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet to the clieat compauter thal sent
the request

wherein the server computer functions as a loader for the

client compuier and whereby requests of different client
compulers identify different forms of the same applet.

72. A computer-readable medium containing instructions
for controlling a server computer Lo provide applets 1o client
compuiers, by a method comprising:

recelving requesis from client computers, each request

idemifying an applel and wentifying 2 form of the
applet, 1he identified form being one of a plurality af
possible compiled forms of the applet;

in response to receiving a request, using a compiler 10

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein the applet ineludes multiple modules, wherein

the server compuier geocrates a module of the identi-

25

35
60

65

N

Case 3:09-cv-01342-S]|

Document 1 Filed 07/15/08 Page 20 of 32

US 6,324,085 Bl

17
fied form, and wherein the server computer compiles
one of the modules into the identified foro in response
10 reeciving Lhe request and wheredy requests of dif-
ferent client computers identify different forms of the
same applet.

T3. A computer-readable medium containing instructions
for controlling a server computer to provide applets 1o client
computers, by a method comprising:

receiving requests from client computers, each reguest

identifying an applet and identifying a form of the

appict, the identified form being one of a plurality of
possible compiled forms of the applet;
in response 1o receiving, using a compiler to compile the
identified form of the applet from an un-compited form
of 1k applel and sending he identified {form of the
applet to the client computer that sent the request; and

afier penerating the identified form of the applet, sioring
the idemified form of the applet in a cache

whereby requests of diffevent client computers 1denufy

different forms of the same appled.

74. The computer-readable medium of claim 73 including
in response to receiving a fush request, removing the
identified form of the applel from the cache.

75. The compuler-readable medium of claim 74 wherein

the flush request is recvived from a computer other Lhan the 2

server computer.

76. The computer-readable medium of claim 73 including
2 SO tme 1o Hve indicator with the stored identified form
of the applet.

77. A comptuler-readable mcd:um conlaining mstruclions
{or controtling a sexver computer 1o provide applets to client
compuiers, by a methed comprising:

receiving requests from client compulers, each request
identifying an applet and identiflying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the appley;

In Tesponse (0 Teceiving a request, ransforming an inter-
mediate form of the applet into a iransformed version
of the intermediate form of the appler and compiling
using a compiler (he identified form of the applel from

E

30

35

the transformed intermediate form of the applet and

sending the identified form of the applet to the client
computer that sent the request; and

whereby requests of different clienl computers idcntify

different forms of the same applet.

78. A computer-readable medinm containing instructions
for controlling a server computer to provide applets to client
computers, by 2 method comprising:

reeiving requests [rom client compuiers, each request

identifying an applet and identifying a form of the
applet, the identified form being one of a plerality of
possible compiled forms of the applet, a request includ-
ing a verifier sent from the client computer for use in
verifying the applet; and

in response (o receiving a requesl, using a compiler 1o

compile Lhe identified form of the applet from an
un-compiled form of the applet and sending the iden-
lified form of the applet 1o he client computer that sent
the request

whereby requesis of differemt client computers identify

different forms of the same applet.

79, A computer-readable medivm containing instructions
for controlling 2 server computer to pravide applets fo client
computers, by a methed comprising:

receiving requests from client compulers, each request

identifying an applet and identifying a form of the

45

W

Q

65

8
applet, the identificd form being onc of a plurality of
possible compiled forms of the applet; and

in response to receiving a request, transforming each

applet that is identified in a request using a common
transformatian, compiling using a compiler the identi-
fied form of the applet from the transformed form of the
applet, and sending the identified form of ihe applet to
the client compufer that sent the request

whereby requests of different client computers identify

different forms of the same applet.

80. A computer-readable medium containing instructions
for controlling a server computer to provide appleis to elient
camputers, by a metbod comprising:

reeciving requests from client computers, cach request

identifying an applet and idemifying a form of the
applet, the identified form being cne of a phuality of
possible compiled forms of the applet; and

in response to receiving a request, using a compiler 1o

compile the identificd form of the applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet 1o the client computer that sent
the request;

wherein the ideatified form indicates a processor of 1he

chien! camputer

whereby requests of different clienl computers identify

dilferent forms of the same applet.
81. A server computer for providing applets in a plurality
of forms, comprising:
means for receiving from client computers requests for
applets, each request identifying a form of the appiet;

means for retreving he applet identified in a request, the
retrieved applet being in a form other than the form
identified in the request;

means for generating he identified form of the applet

from the retrieved other form of the applel afier receiv-
ing the request;

means for scoding the identificd form of the applet to the

clienl computer that requested 1he applel; and
means for caching the identified form of the applet so that
when another request is received for the same applet in
the identified form, the identified form of the applet can
be sent without regenerating the identified form of the
applet.
$2. A server computer for providing applets in a pluralily
of forms, comprising:
means for receiving from client computers requests for
applets, each request identifying a form of the applet;

mesns for retrieving the applel identified in a request, the ~
retrieved applet being in a form other than the form
wdentified in the request;

means for generating the identified form of the applct

from the retrieved other form of the applet after receiv-
ing the request;

means for sending the identified form of the applet to the

client computer 1hal requested Lhe applet; and

means for when the server computer does not have the

applel in the other form, requesting the other form of
the applet from a compuier other than ihe server
mmpulﬁ:r‘

83. The server computer of claim 82 wherein the ather
compuler is accessible via the Internet.

84, The server computer of claim 82 wherein the server
computer and client computer are connected to a focal area
pelwork and the sepver and the other compuler are connected
via the Isternet.

2.0

Case 3:09-cv-01342-SI

Document 1 Filed 07/15/08 Page 21 of 32

US 6,324,685 Bl

19
83. Aserver compuler for providing applets in a plurality
of forms, comprising;
means for reeciving from clienl computers requests for
applets, cach request identifying a form of the appiet;

means for retrieving the applet identified in a requesy, the
retrieved applet being in a form other ihan the form
identified in the request;

means for generaling the identified form of the applet

from the retrieved other form of the appiet after receiv-
ing the request; and

means for sending the identified form of the applet to the

client computer (hat requested the applet
wherein the applet is part of a web page.
86. A server computer for providing applets in 2 plurality
of forms, comprising:
means for receiving from client computers requests for
applets, each request identifying a form of the applet;

means for retrieving the applet identified in a request, the
retrieved applet being in 2 form other than the form
identificd in the request;

means for pencrating the identified form of the applet

from the retrieved oiker fone of the applet after receiv-
ing the requesy;

means for sending the identified form of the applet to the

client computer that requested the applel; and

means for ransfomming the applet before geperating the

identificd form of the applet.
87. The server computer of claim 86 wherein the trans-
forming is verifying the applet.
88. A server computer for providing applets in a plurality
of forms, comprising:
means for receiving from client computers requests for
applets, each request identifying a form of the applet;

means for retrieving the zpplet identified in a request, the
retrieved applet being in a form other thaa the form
identified in the request,

means for generating the identified form of the applet

from the retrieved other form of the applet after receiv-
ing the request; ‘

means for sending the identified form of the applet to the

client computer that requested the applet; and

means for, rather than generating the identified form of the

applet, retrieving the identified form of the applet from
a cache, ’

89. A compuler-readable medivm containiog 2 data
siructure, the data siructure including a request generated by
a client computer, the request identifying an applet and
identifying a form of the identified applet, the identified
form being one of a plurality of compiled forms of the
identified applet wherein when a server computer receives
the request, the server compuier uses a compiler to compile
the identified form of the applet from an un-compiled form
of ths applet and then sends the identified form of the applet
1o the client computer that generated the request wherein the
server computer caches the idenlificd form of the applet so
that when another request is received for the same applet in
the identified form, the identified form of the applel can be
senl withou! eeompiling the identified form of the applet.

90. A computer-readable medium containiog a data
structure, the data structure including a request generated by
a client compuier, the request identifying an applet and
identifying a form of the identified applet, the identificd
[orm being one of a plurality of compiled (orms of the
identified applei wherein when a server computer receives

20
the request, the server computer uses a compiler 1o conpile
the identified form of the applet from an vn-compiled form

. of the applet and thea sends the identified form of the applet

10

-
L.n

X

40

o

0

to the client compuier that generated the request wherein in
response (0 receving the request, the server computer
requests 1he applet in the un-compiled form from a computer
other than the server computer.

91. A computer-readable medium containing a data
structure, the data structuse including a request generated by
a client computer, the request jdentifying an applet and
identifying a form of the identified applet, the identified
form being ooe of 2 plurality of compiled [orms of the
identified applet wherein when a server compuler receives
ke request, the server computer uses a compiler to compite
the identified form of the applet from an un-compiled form
of the applet and then sends the identified form of the applet
10 the client computer (hal generated (he request wherein the
applet is part of a web page.

92. A computer-readable medium conlaining a data
siruclure, the daia stircture including a request generated hy
3 client computer, the request identifying an applet and
identifying & form of the identified appley, the identified
form being one of a plurality of compiled {orms of the
identified applet wherein when a server computer receives
the request, the server compuler uses a compiler to compile
the identified form of the applet from an un-compiled form
of the zpplet and then sends the identified form of the applet
o the clisnt computer that generated the request wheeein the
un-compiled form is an intermediate form.)

93. The computer-readable medivm of claim 92 wherein
the intermediate form is Java byte code.

94. A computer-readable medium containing a data
struciure, the data structure including a request generated by
a client compuier, the request identifying an applet and

5 identifying a fonn of the identified applet, the identified

[orm being ope of a plurality of compiled forms of the
wdentified applet wherein when a server computer receives
the request, the server computer uses a compiler (o compile
the identified form of the applel from an un-compiled form
of the applet and then sends the identified form of the applet
1o the clicnt computer that generated the request wherein the
un-compiled form is a source form.

95, The computerreadable medivm of claim 94 wherein
the souree form is Java source.

96. A computer-readable medium contaiping a data
slructure, the data structure including a request generated by
a clieot compuler, the reguest identifying an applet and
idemifying a form of the identified applei, the identified
form being one of a plurality of cowpiled forms of the
identified applet wherein when a server compuler receives
the request, the server computer uses a compiler (o compile
the identified form of the applet from an up-compiled form
of the applet and then sends the identified form of the applet
1o the client computer that generated the request wherein the
server compuler transforms the applet before compiling Lhe
applet.

97. The computer-readable medium of claim 96 wherein
the transforming is verifying the applet.

98. The computer-readable medivm of claim 96 wherein
the iransforming is optimizing the applet.

99. A computer-readable medium conlaining instructions
for controlling a client compuler, the instructions being
generaled by a server computer in response 10 reéceiving a
request from a client computer, the request identifying an
applet and identifying a form of 1he applet, whersin the
server computer gederates the insiruetions by compiling a
compiled form of the applet from an un-compiled form of

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 22 of 32

21
the applet wherein the server compuier retricves the
un-compiled form of the applet from a compuler other than
the server computer.

180. A compuler-readable medium containing instructions
for controlling a clieat computer, the insiructions being
generaled by a server computer in response lo receiving a
request from a client computer, the request identifying an
applet and identifying a form of the applet, wherein the
server computer generates the instructions by compiling 2
compiled form of the applet from an vn-compiled form of
the applet wherein the server compuier stoges the compiled
form of the applet in a cache.

101. A computer-readable medium containing instructions
for controlling a client computer, the iostructions being
generated by a server compiler int response ta receiving a
request from z client compuwier, the request identifying an
applel and identifying a [orm of the applel, wherein the
server computer penetales the mstructions by compiling a
compiled form of the applet from an un-<compiled form of
the applel wherein the un-compiled form of the applet is
Java intermediate code.

102. A computer-readable mediuvm containiag instructions
for comrolling a client computer, the instructions being
generated by a server compuler in response o receiving a
request from a ¢lient compaler, the request identifying an
applet’ and identifying a form of the applet, wherein the
server ¢omputer generales the insiructions by compiling a
compiled form of the applet from an un-compiled form of
the applet wherein the un-compiled form of the applet is
Java source code. :

103 A computer-readable medivm containiag instructions
for controlling a cliest computer, the instructions being
generated by a server computer in response to receiving a
request from a cliemt computer, the request identifying an
applet and identifying a form of the applet, wherein the
server compuler generales the instruclions by compiling a
compiled form of the applet from an wn-compiled form of
the applet wherein the insiructions are part of a web page.

104. A server computer comprising:

tocal resources that include compilers and modules;

a cache for stoning applets;

a wansformer; and

an zpplet server manager that

receives requests from client computers for an applet in
an identified form,

when the identified form of the applet is stored in the
cache, sends Lhe identified form of the applel stored
in the cache 10 the client compuler that sent the
request, and . '

when 1he identified [orm of the applet is not stored in
the cache, gencrates the identified form of the applet

12

US 6,324,685 Bl

—_

5

35

22
using a compiler and a module, stores the identificd
form of the applet in the cache, and sends the
identified form of the applet 10 the client computer
that sent the request
wherein the applet server manager uses the iransformer Lo
transform 1he module before penerating the identified
form of the applel.
105, A server compuler comprising:
local resources that inchude compilers and modules;
a cache for storing applets
a transformer; and

“an applet server manager that

receives requests from client computers for an applet in
an identified form,
when the identified form of the applet is stored in the
cache, sends the identified form of the applet stored
in the cache to lhe client compuler that sent the
request,
when the ilentified {orm of the applet is not siored in
the cache, generates the identificd form of the applet
using a compiler and a module, stores the identitied
form of the applet in the cache, and scnds the
identified form of the applet 10 the client computer
that seol the request
wherein the applet server manager uses the transformer to
transform the idemtified applet afler it is geperated
using the compiler.
106. A server computer comprising:
local resources that include compilers and modules;
a cache for storing applets; and

an applel server manager that
receives requests fram client computees for an applel in
an identified form,
when the identified form of the applel is stored in the
cache, sends the identified form of the applet siored
in the cache fo the client compuler that sent the
request, and
when the identified form of the applet is not stored in
the cache, generaies the identificd form of the applet
using a compiler and a module, stores the identified
form of the applet in ihe cache, and sends the
identified form of the applet to the client computer
that sent the request
wherein the applet server manager retrieves a mochle
rom a computer other thaa the server camputer when
a module that is not another form of the applet is not
stored with the local resource.

* x & ow %

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 23 of 32

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NQ. :6,324,685B1 Page 1 of 1
DATED : November 27, 2001
INVENTOR(S) -+ Edward Balassanian

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below: -

Column 3, .
Line 64, after “A 12.” begin a new paragraph;

Column 5,
- Ling 31, delete “10” and insert -- 10 --;

Columu 6
Line 10, the paragraph beginning with “For™ should be part of the preceding patagraph;

Column 12,
Line 6, delete “34” and insert -- 39 —;

Column 17,
Line 13, after “receiving” insert - a request —; and

Column 19,
Ling 38, delele the comma after “request” and insert a semicolon,

Signed and Sealed this

Twenty-third Day of July, 2002

Anest:

JAMES E. ROGAN
Autesiing Officer Director of the United States Potens and Trademark Office

L5

Case 3:09-cv-01342-SI

Document 1 Filed 07/15/08 Page 24 of 32

a T US006976248B2
az United States Patent (10) Patent No.: . US 6,976,248 B2
Balassanian (43) Date of Patent: Dee. 13, 2005
{54) APPLICATION SERVER FACILITATING 6,324,685 B1 * 11/2001 Balassanian T17/118
WITH CLIENT’S COMPUTER FOR APPLETS 6,336,213 Bl = 172002 Beadle et ol e 7171136
ALONG WITH VARIQUS FORMATS 6446081 Bl =~ 9/2002 Preston 671031
6,594,820 Bl * /2003 Ungar 7177124
75) Inventor: i i 6,636,900 B2 * 10/2003 Abdelnus T19/316
{75) Inventor: Edward Balassanian, Kirkland, WA 6704926 BL * 32004 Blandy ct al. T 217748
(Us)
6,742,165 R2 * 52004 Tevetal ... e T16/%
. . 6,745386 B1 * 62004 Yellin ... 7174166
{73) Assignee: Implicit Networks, Inc., Bellevue, WA 6.836,589 Bi * 122004 Chan et al, 7197310
(US) 6,842,897 Bl * 1/2005 Beadle et al, .. 7181
{*) Notice: Subject lo any disclaimer, the term of this OTHER PUBLICATIONS
atent is extended or adjusted ‘
{I.S.l:f?. 152{):1:; b; 4-;5 dagrgs under 35 Yang et al, “Developing integrated web and database appli-
) cations using JAVA applets and JDBC drivers”, ACM SIG-
SCE, pp 302-306, 1998.*
21y Appl. No.: 09 .
(21} App!. No-: 09/968,704 Newsome el 3], “Proxy compilation of dynamically loaded
{22) Filed: Oct, 1, 2001 Java classes with Mola”, ACM LCTES, pp 204~212, Jun.
. Lo 2002
{65) Prior ?ubllmtlon Data Begole et al, “Transparent shering of Java applets: a repli-
US 20020100038 Al Jul. 25, 2002 cated approach”, ACM UIST, pp 55-64, 1997.*
Related U.S. Application Data (Contioued)
63} Conliguation of application No. 08/040.97 _ Primary Examiner—Anil Khatri
€3 1s,n1l':;§ l:;: P:fpﬁ? %?;24,235_' 972, Biled o Ma (74) Anorney, Ageni, or Firm—Morgan & Fionegan, LLP
57 ABSTRACT
G Int. CL . . GOGF 9/45 &7 : A
(52) US.CL 717!148 717/14& 709203 The present inveniion is an applet server which accepts
{58} Field of Search . T8, 118, requests for applets from client comyputers. A request speci-
7171135 139 140_142, 148, 151, 152, fies the format in which an applet is io be delivered to the
165, 162, 166; 709,203, 223 requesting client computer. The applet server has a cache
) which it uses to store applets for distribution 1o client
(56) References Cited computers. If the specified form of the requested applet is
) available in the cache, the applet server transmits the applet
U.5. PATENT DOCUMENTS to the requesting client. If the applet is nat available in the
5,706,502 A * 1/1998 Foley ¢t al.c.cccc.oee., FUHI0 cache, the server will attempt to build the applet from lacal
5,761,421 A * 61908 van Hoff ot al. resources (program code modules and compilers) and trans-
5,805,829 A * 9/1998 Cohen et al. former programs (verifiers and optimizers). If the applet
5828840 A * 10/1998 Cowanetal server is able to build the requested applet, it will then
3,848,274 A 12/1998 Hamby et al. transmil the applet to the requesting client computer. If the
g:g;i’g;; A ?;1399 Dykes et al. applet server is unable to build the requested applet, it will
5230 184 31 . 'sgi]?)i fva}':;:“; a! 70opgy Pass the request to another applet server on the network for
6,282,702 B1 * 82001 Ungar . 717149 ulflllment of the cequest,
6,295,643 Bl * 9%/2001 Brown e a .. T17/148
6,321,377 Bl * 11/2001 Beadle ct al 48 13 Claims, 3 Drawing Sheets

PLAINTIFF% dR1GINAL. CompLAINT

MIAMMENT B~ 24

24

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08

Page 25 of 32

US 6,976,248 B2

Page 2

OTHER PUBLICATIONS

Benton et al, “Compiling standard ML io ava bytecode”,
ACM ICFP, pp 129-140.*

Sirer, Emin Gfin, “Java—Relevant Articles in the Press,”
[Accessed Oct. 4, 2000].

“Project Members” http://kimera.cs.washington.edu/mem-
bers.bvm! [Accessed Oct. 4, 20000

Emin Giln Sirer, et al., “Distributed Virual Machines: A
System Architecture for Network Computing,” Dept. of
Computer Science & Cngineering, University of Washing-
ton, Seattle, Washington hup:/kimera cs.washinglon.edu
Feb. 28, 1998

Emin Giin Sirer, et al.,, “Design and Implementation of a
Distributed Virtual Machine for Networked Computers,”
University of Washinglon, Depaniment of Computer Science
and Engineering, Seattle, Washington, 17* ACM Sympo-
sium on Operating system Principles, Dec. 1999.

Sirer, Emin Giin, “A System Architeciure for Next Genera-
tion Network Computing,” Dept. of Computer Science &
Engioeering, University of Washinglon, Seattle, Washingion
Jun. 26, 1998.

25

[Accessed Oct. 4, 2000].

Siter, Emin Gin, “Kimera—A System Acschitecture for
Networked Computers,” [Accessed Oct. 4, 2000).

Emin Giio Sirer and Brian Bershad, “Kimera Architecture,”
[Accessed Oct. 4, 2000]

Sirer, Emin Giin, “Security Flaws in Java lmplcme_matious,"
[Accessed Cct. 4, 2000],

Sirer, Emin Giin, “Kimera Dylccode Verification,” [Ac-
cessed Oct. 4, 2000]).

Sirer, Emin Giin, “Kimera Test Suite,” [Accessed Oct. 4,
2000},

Sirer, Bmin, Giin, “Kimera Disassembler,” [Accessed Oct. 4,
20000,

* cited by examiner

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 26 of 32 '

U.S. Patent

Dec. 13, 2005

Client Computer A

L

=

12

Client Computer B

]

S~

14

Trusted
Extemnal
Network

Sheet 1 of 3

US 6,976,248 B2

Untrusted
Metwork

18

16

J-QD

= Network Inferface

J_22

Applet Server
Manager

Cache Component

Applet 3

253
25b
25c

Mremmmar deii e mememmm e i m—

Applet Server Computer

— —

l Compiler |

Local Reseurces

30a madule
| o
Compilss

iz

3231

A
32bl
32c

306

|
32d l

16

U.S. Patent

Case 3:09-cv-01342-S]|

Document 1 Filed 07/15/08 Page 27 of 32

Dec. 13, 2005 Sheet 2 of 3
Request Data Type
| Tag Value , :
Applet-URL (String) specifies the name of the requested
applet
Code-Type (Sourcef/intermediate/Binary)} specifies the

farmat the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting
client {e.g., x86)

Verification-Leve)

{0-180) specifies the degree of vernification to
be performed. O = no/minimal verification,
100 = maximum verification (highes! level of
security).

Optimization-Level

(0-100) specifies the degree of optimization
{0 be performed. 0 = nofmtinimat
optimization, 100 = maximum optimization.

Fig. 24
Code Data Type :
Tag Value
Applet-URL {String) specifies the name of the requested
i applet :
Code-Type i (Sourcefintermediate/Binary) specifies the

format the applet is toa be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting

client (e.g., x36)

Verification-Level

{0-100} specifies the degree of verification to
be performed. 0 = nofminimal verification,

100 = maximum verification (highest level of
security). .

Optimization-Level

| {O-100) specifies the degree of optimization
i to be performed. 0 = no/minimal
optimization, 100 = maximum optimization.

Applet Length

{0-2%) specifies the size of the requested
applet.

Applet Code

The Requested Applet in the form specified
| by the request data type.

Fig. 2B

17

US 6,976,248 B2

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08

U.S. Patent

Dec. 13, 2005 Sheet 3 of 3
Program Module
40
ntermediate Cormmpiler
' 42

Interemediate Form
Pragram Module

r-—-.f._....'_.—-..--——_._.._.

1.

_———

| Transformerns
l 48

T, S p—— Ao

Transfarmed
Intermedisate Form
Program Madule

Targel Compiler
52
Applet ;h
54
Fig. 3

2%

Page 28 of 32

US 6,976,248 B2

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 29 of 32

US 6,976,248 B2

1 :
APPLICATION SERVER FACILITATING
WITH CLIENT’S COMPUTER FOR APPLETS
ALONG WITH VARIOUS FORMATS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

. This application is & continuation of U.S, patent applica-
tien Ser. No. 89/040,972, filed Mar. 18, 1998, now U 8. Pat.
No. 6,324,685

FIELD OF THE INVENTION

The present invention relates (o compuier operating sys-
fems and, in particuiar, 1o a server architeciure providing
application caching and security verification.

BACKGROUND QF THE INVENTION

The growth of the Internet’s imporiance to business,
along with the increased dependence upon corporate

nelworks, has created 2 demand for more secure and efficient =

compuler systems. The iraditional solution to this problem
has been to depend upon improvements in hardware perfor-
mance 1o make up for the performance penalty that is
typicatly incurred when a computer system is made more

secure and stable. Increased interconnectivity has also cre-

ated a need for improved intcroperability amongst a variety
of computers that ate now connected (0 one ancther. One
solution 10 the problem of the variety of computers infer-
connecled via the Inlemet and corporate networks has been
the development of portable architecture neutral program-
ming languages, The most widely known of these is Java,
though, there are numerous other architecture neutral lan-
guages. '

Architecture neutral programming langnages allow pro-
grams downloaded from a server computer to a client
compuler to be interpreted and executed locally. This is
possible because the compiler generates partially compiled
inlermediaie byte-code, rather than fully compiled native
machine code. In order to run a program, the clieat machine
uses an interpreter to ¢xecute the compiled byte-code. The
byie-cedes provide an architecture neutral object file format,
which allows the code 10 be transported to multiple plai-
forms. This allows the program to be run on any system
which implements the appropriate interpreter and run-time
system. Collectively, the interpreter and runtime system
implement a virtual machine, This structure results in a very
secure language.

The security of this system is premised on the ability of
the byte-code to be verified independently by the client
computer. Using Java or some other virtual machine imple-
menting technology, a client can ensure that the downloaded
program will not crash the wser’'s computer or perform
operations for which it does not have permission.

The traditional implementations of architecture neutral s

languages are oot without problems. While providing tre-
mendous cross platform support, the current implementa-
tions of architecture neutral languages require thai every
clieat performs ils own verification and interpretation of the
intermediate code. The bigh computation and memory
requirements of a verifier, compiler and inferpreter restrict
the applicability of these echnologies to powerful client
computers.

Anolher problem with performing the verificalion process
on he ¢liem computer is that any individual within an
organization may disable some or all of the checks per-
formed on downloaded code. The current stracture of these

24

10

2

syslems makKes securily management at the enterprise jevel
almost impossible. Since upgrades of security checking
software must be made on every client compuier, the cost
and time involved in doing such vpgrades makes if likely
that ouldated or cormupt copies of the venfier or inlerproter
exist withie an organization. Even whea an organization is
diligent in maintaining a clienl based security moded, the
size of the underlaking in a large organization increases the
likelibood that there wiil be problems.

There is a need for a scalable distributed system archi-
tecture that provides a mechanism far client computers to
request and execute applels in 4 safe manner without requir-
ing the client machines to have kocal resources 1o compile or
verify the code. There is a further need for a sysiem in which

3 the applets may be cached in either an intermediate archi-

tecture neutral form or machine specific form in order to
increase overall system performance and cfficiency.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, an
appiel server archilecture is taught which allows client
computers to request and execule applets in a safe manper
without requiring the client 1o have local resources to verify
or compile the applet code. Compilation and byle-code
verification in 1he present invention are server based amd
thereby provide more efficient use of resources and a flexible
mechanism for instituting enterprise-wide security policics.
The server archilecture also provides a cache for applets,
allowing clienis to receive appict code without having to
access nodes outside the ocal nelwork. The cache also
provides a mechanism for avoidiag repeated verification and
compilation of previously requesied applet code since any

. client requesting a given applet will have the request satis-

43

50

60

fied by a single cache eniry.

Machine specific binary code is essentially interpreted
code since the processor for & given computer can essen-
tially be viewed as a form of ar inlerpreter, interpreting
binary code into the associated electronic equivalents. The
present invention adds a level of indirection in the form of
an intermediate language thal is processor independent. The
intermediate langnage serves as the basis for security
verification, code optimizations, or any other compile time
modifications thal might be necessary, The intermediate
form aliows a single version of the source 10 be stored [or
many targel platforms instead of having a different binary
for each potential targel computer. Compilations to the target
form can either be done at the time of a cache hitor they can
be avoided all together if the target machine is able 1o
directly interpret the intermediate form. If the compilation is
done on the server, hen a copy of the of the compiled code
as well a5 the istermediate form can be stored in the cache.
The performance advantage derived from caching the com-
piled form as well as the intermediate depends upon the
number of clients with the same CPU.

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as oiber features and advantages thereof
will best be understiood by reference to the detailed descrip-
tion which follews, when read in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used o implement an applet server in one embodi-

s meat of the present invention;

FIG. 22 is a table which illustrates the structure of the
request format data type;

Case 3:09-cv-01342-SI

Document 1 Filed 07/15/08 Page 30 of 32

US 6,976,248 B2

3

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FEG. 3 is a diagram showing the compilation and trans-
farmation of a program module into an applet in a particular
form.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, an applet server architeciure aceord-
ing o one embodiment of 1he invention is based on an applet
server computer 10 which in murn is connected to cliem
computer A 12, client computer B 14, an exiernal network 16
and an untrusted network 18. The applet server computer 10
connects o client computers 12 and 14, an external network
16, and an vatrusted network 18 by means of 3 network
interface 20. Typically this connection will invalve one ar
mote of the computers or networks having a connection 10
the Internel.

"The applet server computer 10 accomplishes its objectives
by manipulating eomputer proprams in several formats. An
applet (e.g. applets 1-3, 232-23¢) is any form of program
instructions, whether in binary, source or inlermediate for-
mai, In the case of this architccture, the applet code can
¢ither be a self contained program, or it can be a code
fragment associated with a larger application.

Binary format refers to processor specific machine
instructions suitable for running natively on 4 given com-
puting platform (also referred 1o as “target” because of the
concept of “targeling” a compiler to produce binary code for
2 given processor Lype).

Soutce refers to non-binary applet cade, generally in the
form of higher level langrages (ie. C, C++, Java, Visual
Basic, Active X, Fortran, and Modula).

Intermedizte format refers to a common intermediste
byle-code that is produced by compiling 2 given source code
input. The intermediate byte-code need not necessarily be
Java byte-code.,

Treating applets in this general sense allows chient com-
puters 12 and 14 fo request not only applications, but
portions of applications. Client computers 12 and 14 are thus
able 1o use applet server computer 10 as the equivalent of a
loader, loading in appropriate paris of the application in the
form of applets. In turn client computers 12 and 14 can run
large applications without requiriag thal the client compui-
ers 12 and 14 have the resources 10 store the entire appli-
Calion 1 memory at once.,

Having the applets delivered from applet server computer

10 allows code in intermediate form to be verified, :

aptimized, and compiled before being transmitted to client
computers 12 and 14, This reduces the amount of work the
elient computers 12 and 14 have o do and provides a
convenient way 1o impose global restrictions on code.

in operation, clicnt computer A 12 transmits a request 10
an applet server computer 10 requesting an applel in
particular form. The form may be selected from a large
matrix of many possible forms that can be recognized hy the
sysiem. The request specifies the [ormat {source,
intermediate, or binary) ity which the client wishes to receive
the applet. The request may also specify that the applet be
verified or have some other transformation eperation pre-
formed upon it Verification, optimization and compression
arc cxamples of types of iransformation operations. The
request is reecived by the network interface 200 of the applet
server computer 10 which passes the request onto the apple:
server manager 22 :

30

30

4

After interpreting the request, the applet server manager
22 checks to sce if the requested applet is available in the
cache 24, The cache 24 siores applels in a variety of formals
(source, intermediate, or binary). If the requested form of the
applet is available in the cache 24 (applet 1 252, applet 2
25b, or applet 3 25¢c in this example) the applet server
manager 22 instructs the network imerface 20 to transmit the
applel lo requesling client computer A 12,

If the requested applet is not available in the cache 24,
then the applet server manager 22 will attempt to build the
requested applet from loeal resources 26 and one or more
tramsformation operaticns performed by one or more ol the
transformers 28. Local resources 26 are comprised of com-
pilers 30z, 304 and 30c and program code modules 324, 325,
32¢ and 324. The requested applet is buil by selecting one
or more program code modules 32 and compiling them with
one or more compilers 30. Transformer operations may he
performed by the verifier 34 or \he optimizer 36, Afier the
appler server manager 22 builds the applei, the petwork
interface 20 (ransmits the applet to the requesting client
computer A 12,

I{ the request can nol be satisled by building the applet
from local resources 26 and transformers 28, the applet
server manager 22 will pass a request for the requested
applet 1o external network 16 and/os untrusied network 18,
The applet server manager 22 may request the applet in
intermediate form or in execulable form or it may request the
local resources 26 and transformers 28 it needs to complete
building the applet itseff.

The cache 24 is capable of respoading 1o the following
commands: GET, PUT, and FLUSH. GET is used to retgieve
a given applet from the cache. PUT is used to store an applet
in the éache. FLUSH is used to clear the cache of one or
more eotrics. When the cache is unable 1o locate an item in
response to a GET operation, it returns a cache miss. The
program which issued the GET command is then respansible
for locating the desired form of the applet by other means
and optionally storing it in the cache when it is retrieved
(using the PUT operation). The FLUSH command will ¢lear
the cache of onc or more entries and any subsequent GETs
for the FLUSHed applet code wilt resnlt in a cache miss,
This is useful if a particular applet needs 10 be updated from
a remote server on a perodic basis. When using PUT, the
program issting the commaad specifies a time 1o live (TTL)
in the cache. When the TTL expires, the cache entry is
removed by means of a FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not the requested form) and com-
pilers 30. The program modules 32 are run through the
compilers 30 in order to produce applets in the requested
form. The applet server manager 28 may also direct the
modules 32 v be processed by a verifier 34 or another
transformer such as an optimizer 36, Program modules 32
are program code used to build applets, Program modules 32
may be stored in Jocal resources 26 in source, binary, or
imtermediate formats, When an applet is built it may require
the aperation of one or more compilers 30 upon one or more
program modules 32. The progeam modules 32 may be
combined and recompiled with previously cached applets
and the resulting applel may be also cached for use a1 a
future time. Additionally, program modules 32, compilers 30
and transformers 28 (including verifiers 34 and optimizees
36) may be distribuied across a natwork. The applet server
manager 22 may pass requests for the components i needs
to build a particular applet back to the network interface 26
which in turn passes the request onto the rest of the network
and may include extesnal network 16 and wntrusted network
18

Case 3:09-cv-01342-SI Document 1 Filed 07/15/08 Page 31 of 32

US 6,976,248 B2

5

. FIG. 3 provides funher illustration of how an applet is
produced from local resources and tramsformers. In this
Ulustration the request is for an optimized and verified applet
compiled to 2 machine specific form. A program module 40
is compiled into an intermediate form program module 44
by an intermediate compiler 42. The intermediate form
program module 44 is then transformed by ar optimizer 46
or a verifier 48. The resulting transformed intermediale form
program module 50 is then compiled by target compiler 52
into machine specific code applet 54.

These are two types of compilers used 10 build applets:
intermediate compilecs 42 and target compilers 52. The
imermediate compiler 42 compiles program maodules
{(source applet code) 40 and produces a commeon interme-
diate pscudo-binary representation of the source applet code
(intermediate form program module 44). The word pseudo is
used because the intermediate form 44 is not processor
specific but is still a binary representation of the source
program module 40. This intermediale form can be
re-largeted and compiled for a panicular processor.
Alternatively, the intermediate form 44 can be inferpreied by
an interpreter or virlwal machine that understands the inler-
nal binary representation of the intermediate form. A target
compiler 52 compiles inlermediate applet code 44 into ap
applet 54 in a processor specific formas (binary) suitable for
running natively on a given computing plaiform.

. Transformers 56 are programs that take in inlermediate
code and put out intermediate code. Transformers 56 are
geoerally used for things like verification and optimization.
Onber transformers might included compressors that ideatify
portions of code thal can be replaced with smaller equiva-
lents. Transfomters can be maiched up to any other com-
pooent ihat takes in intermediate code as an input. These
include the cache 24 and the targel compilers 52. Global
policies for transformers 56 can be implemented which
ensure that all applets are run through some set of trans-
formers before being tetumed o the client,

Averifier 48 is a type of ransformer that is able 10 analyze
input code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers
48 look for areas where unsafe or protected memory is being
accessed, others might look for accesses lo system resources
such as 10 devices. Once a venifier 48 determines the portion
of unsafe applet code several sieps can be laken. The
offending code portion can be encased with new code that
specilically prevents this uasale code section from being
executed. The wnsafe code can be modified 1o be safe, The
unsafe code can be flagged in such a way that a user can be
warned about the possible risks of executing the code
fragment. The verifier’s role can therefore be summarized as
determining where unsafc code cxists and possibly altering
the offending code 1o render it harmless. Verifiers 48 can
operaic on any format of input cade, whether in source,
intermediate or binary form. However, since imermediate
code is 4 common format, it is most eficient (o bave a single
verifier that will operate on code in this formal. This
eliminates the need te butld specific knowledge of various
source languages into the verifier. Verifiers 48 are a form of
a transformer. Verificrs 48 take in inlermediate code and put
out verificd inlermediate code. Verifiers 48 are responsible
for identifying non-secure portions of code in the interme-
diate code and modifying this code 1o make it secure.
Security problems generally include access o memory arcas
{ha! are unsale (such as syslem memory, or memory vutside
the application space of the applet).

The choice of adding in the verification slep can be leff up
to the client computer 12, the applet server computer 10 (see

10

20

60

3

6
FIG. 1), or can be based on the network that the applet

- originated from. Server managers can institute global poli-

cies that affect all clients by foreing all applets to be run
through the verifier 48. Aliernatively, verification can be
reserved for un-trusted networks (18 io FIG. 1, or it can be
left up to lhe client to delermine whelher the verification
should be performed. In the preferred embodiment, verifi-
cation level is determined by the applet server 10. In this
way, a uniform security policy may be implemented from a
single machine (i.c., the applet server 14).

Optimizers 46 arc another type of iransformer program.
Optimizers 46 analyze code, making improvements 1o well
known code fragments by substituting in optimized but
equivalent code {ragrments. Optimizers 46 (ake in interme-
diale code 44 and pi out transformed intermediate code 5¢.
The transformed intermediate code 50 is functionally
equivalent to the source inermediate code 44 in that they
share the same structure.

Referring again to FIG. 1, policies may be instituted on
the applet server 10 that force a certain set of request
parameters regardiess of what the client asked for. For -
example, the applet server manager 22 can tun the applet
through a verifier 34 or optimizer 36 regardless of whether
the client 12 requested this or not. Sioce the server 10 might
have to go to an untrusted network 18 to retdeve a given
appley, it will then run this applet through the required
transformers 28, particularly 1he verifier 34 before returning
it to the clicnt 12. Since clicnts 12 and 14 have to go through
the applet server computer 10, this cnsures that clicois 12
and 14 do not receive applets directly from an untrusted
petwork 18. In addition, since the server wili be dealing
directly with uetrusted network 18, it can be set up to
instilute policies based on the network. A trusted external
network 16 may be mreated differenily than an uotrusted

3 network 18. This will provide the ability 10 ua a verifier 34

only when dealing with an untrusted network 18, but not
when dealing with a trusied exiernal petwork 16. in one
cmbodiment, all intermediate code is passed through a
verifier 34 and the source of the code merely determines the
level of verification applied.

The client 12 is the targei compuler on which the user
wishes to exccute an applet. The client 12 requests applets
from the server 1G in a specific form. Applets can be

. requested in vanious formats including source, intermediate

and binary. In addition, an applet can be requested with
verification and/or other compile timc operations.
Optionally, the client 12 can pass a verifier to the server 10
provide verification, If the server 10 implements its own
security, then both the client and server verifiess will be run.
The verifier that is passed from the client to the server is
cached at the server for subsequent verification. The client
can refer to this venifier by a server-generated handle to
avoid ‘having to pass the verifier each time an applet is

. requesicd.

" Client computers 12 and 14 requesting applet code in
intermediate format need to have an interpreter or virtual -
machine capabie of interpreting the binary code in the
intermediate format if the applet is 1o be executed on the
client machine.

In the preferred embodiment, requesis to the applet server
are in a format similar lo those of an HTTP keader and are
comprised of tags and values. In one embodiment, an HTTP
GET method is used Lo make Lhe request {though use of the

5 HTTP protocol is nol pecessary to implement the present

invention). The request is made up of a series of 1ags which
specify the requesied applet, the platform oo which it is o

Case 3:09-cv-01342-SI

Document 1 Filed 07/15/08 Page 32 of 32

US 6,976,248 B2

7

be run and the type of code {source/intermediate/binary), a
verification level and an optiznization level. New fags and
values can be added to extend functionality 25 nceded and
the applet server manager 22 will discard any tag it docs not
recognize. When the applet server computer 1 reums the
requested applet (o the requesting client computer A 12, it
will ransmit the request beader followed by the applet code.
In (his instance, the header will additionally include a feld
which defines the length of the applet code. FIG. 2 provides
a table which illustrates the request format and the returned
code format.

While this invention has been deseribed with reference to
specific embodiments, this description is not meant to Limit
the scope of the inventon. Various modifications of the
disclosed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the arl upon
reference (o this description. N is therefore comemplated 1hat
the appended claims will cover any such modifications or
embodiments as fall within the scope of the invention,

I claim: .

1. A method operating on a computer system for manag-
ing requests to a server compuler for applets in a client
server environment wherein each request for an appler
specifies one form of the applet out of a plurality forms of
the applet, comprising:

a) teceiving on said server computer a request from a =

client compuler for an applet in a form selected from a
Plurality forms;

b) compiling said applet into said sclected form from a

" local resource comprising at least onc source module
and ope compiler which acts on said source module 1o
produce said selecied form; and

€) transmitting said applet in said selected form 1o said
clisnt computer.

2. The method of claim 1, further comprising the siep of:

copying said applet in said sclected form 1o a local cache
after compiling said applet from said local resource if
said cache docs not contain a ¢opy of said applel in said
selecled form.

3. The method of claim 2, further comprising the step of:

transmitling a request to an external resource for said
applet in said sclected form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said local resource, and

directing said external resource to transmit said applel in
said sclected form 10 said server computer,

4. The methad of claim 1, further comprising the step of:

transmiiting a request lo an external resource for supply-
ing said applet in said selected form if said applet can
not be compiled from said local resource and

directing said external resource 1o ransmit said applet in
said selected form to said server computer.

5. A method operaling on a computer system for manag-
ing requesls to a server compuier for applets in a client
server covironment wherein cach request for an applet
specifies one form of said applet cut of a pluralily of forms
of said applet, compnsmg

2) receiving on said server computer 2 request from a
client computer for an applet in a speeified form
selected from a plurality of forms;

b) determining whether said applet is slored in said
specified form in a local cache and, if so, transmiiling
said applet in said specified form !o said client com-
puter; :

43

50

3

¢) if said applet is not stored in said selected form in said
local cache, compiling said applel into said sclected
form from a local resource comprising at least one
soutce module and one compiler which acis on said
source module o produce said selecied form and
transmitting said applel in said selected form to said
cliem computer.

6. The method of claim 5, further comprising the step of:

copying said applet in said selected form 10 said cache
after compiling said appict from said local resource if
said cache does nol contain a copy of said applet in said
form.

7. The method of claim &, furlher comprising the siep of:

{ransmitting a request 10 an external resource for said
applet in said selecled form if a copy of said applel is
not stored in said local cache and said applet can not be
compiled from said local resource, and

directing said external resource to transmil said applet in
said form 1o said server compuier.

$§. The method of claim 5, further comprising the siep of; -

transmitting a request to an external yesource for said
applet in said selected form if a copy of said applet is
not stored in said local cache and said applet c2n not be
compiled from said local resources, and divecting said
external resource 10 transmit said applet o said selected
form to said scrver computer.

9. A methed operating on a compuier sysiem for gener-
ating an applet in response o a request by a client computer
wherein each request for an applet specifies one form of the
applet out of a plurality forms of the applet, comprising:

a) receiving on a server computer a request from a client
computer for an applet in a form sclected from a
plurality forms;

b) compiling an applet program modulc into an interme-

diate form program module;

¢) transmilting said applet in said selected form 1o said

client computer.

10 The method of claim 9, further comprising the siep ol:

transforming said intermediate form program module into

a transformed intermediate form program module with
at least one transformer program.

11. The method of claim 10, wherein said at least one
transformer program is selecied from the group consisting of
verifying computer programs, optimizing computer
programs, compressing computer programs, debugging
compuier programs, usige MOMMOring ¢ompuler programs
and encrypling computer programs.

12. The methed of claim 11, fusther comprising the step
of;

compiling said transformed intermediale form program

madule into machine specific binary code with a target
compiler.

13. The method of claim 10, further comprising the step
of:

compiling said transformed intermediate form program
madule into machine specific binary code with a targed
compiler.

52~

