ORIGINAL MELODY A. KRAMER, SBN 169984 1 09 MAR 17 PM 2: 47 KRAMER LAW OFFICE, INC. 2 9930 Mesa Rim Road, Suite 1600 GUERK U.S. DISTRICT SEISE SOUTHERN DISTRICT SECONDANA 3 San Diego, California 92121 Telephone (858) 362-3150 4 mak@kramerlawip.com 5 J. MICHAEL KALER, SBN 158296 6 KALER LAW OFFICES 7 9930 Mesa Rim Road, Suite 200 San Diego, California 92121 8 Telephone (858) 362-3151 9 michael@kalerlaw.com 10 Attorneys for Plaintiff JENS ERIK SORENSEN, as Trustee of SORENSEN RESEARCH AND DEVELOPMENT TRUST 11 12 13 14 UNITED STATES DISTRICT COURT 15 FOR THE SOUTHERN DISTRICT OF CALIFORNIA 16 JENS ERIK SORENSEN, as Trustee of 17 SORENSEN RESEARCH AND 18 **COMPLAINT FOR PATENT** DEVELOPMENT TRUST, **INFRINGEMENT** 19 **Plaintiff** 20 v. REQUEST FOR JURY TRIAL 21 GRIZZLY INDUSTRIAL, INC., a 22 Washington corporation; ADJUSTABLE CLAMP COMPANY, an Illinois 23 corporation; U.S. TAPE COMPANY, 24 INC., a Pennsylvania corporation; WOODSTOCK INTERNATIONAL, 25 INC., a Washington corporation; and 26 DOES 1 - 100, 27 Defendants. 28 1 2 Plaintiff JENS E. SORENSEN, as TRUSTEE OF THE SORENSEN RESEARCH AND DEVELOPMENT TRUST ("SRDT"), for its Complaint for Patent Infringement against Defendants alleges as follows: ## THE PARTIES - 1. SRDT is a California resident, and the trustee of a trust organized according to California law, and owner of all rights to United States Patent No. 4,935,184 (hereinafter "'184 patent"). A true and correct copy of the '184 patent is attached hereto as Exhibit A. - 2. Defendant GRIZZLY INDUSTRIAL, INC. ("GRIZZLY") is a corporation organized under the laws of Washington, having a principal office located at 1821 Valencia Street, Bellingham, WA 98226. - 3. Defendant ADJUSTABLE CLAMP COMPANY ("ADJUSTABLE") is an Illinois corporation having a principal office located at 404 North Armour St. Chicago, IL 60642. - 4. Defendant U.S. TAPE COMPANY INC. ("US TAPE"), a Pennsylvania corporation having offices located at 2452 Quakertown Rd., Suite 300, Pennsburg, PA 18073 and 217 River Avenue, Patchogue, NY 11772. - 5. Defendant WOODSTOCK INTERNATIONAL, INC. ("WOODSTOCK"), a Washington corporation having a principal office address at 1821 Valencia Street, P.O. Box 2309, Bellingham, WA 98227. - 6. Defendants DOES 1 100 are other persons or entities, presently unidentified, that have also been engaged, directly or indirectly, in the manufacture, import, sale, and/or offer for sale in the United States of the products accused of infringement herein. - 7. On information and belief, Defendants have acted as agents of one or more of each other during some or all of the times relative to the subject matter of this Complaint. | Case N | lo. | | |--------|-----|--| |--------|-----|--| ## # ## **JURISDICTION and VENUE** - 8. This action arises under the Patent Laws of the United States of America, Title 35, United States Code. Jurisdiction is founded on Title 28, United States Code §§ 1331, 1332(a), and 1338(a). - 9. On information and belief, venue in this district is proper under 28 U.S.C. §§ 1391 and 1400(b) because Defendants have committed acts of infringement in this District. - 10. This Court has personal jurisdiction over Defendants because they have manufactured within, imported into, offered for sale, and/or sold infringing products in this District. ## **CLAIM FOR RELIEF** ## (Patent Infringement) - 11. SRDT realleges and incorporates herein by reference paragraphs 1 through 10, inclusive, as though fully set forth herein. - 12. The '184 patent entitled "Stabilized Injection Molding When Using a Common Mold Part With Separate Complimentary Mold Parts," was issued on June 19, 1990. - 13. On information and belief, Defendants have, within the past six years, made, imported into, sold and/or offered for sale within the United States and this District, products for which the two plastic component external plastic shells are manufactured through processes which incorporate all elements of the '184 patented process (hereinafter "Accused Products"). - 14. Accused Products include one or more of the product(s) specifically identified below as to each Defendant, and any other of Defendants' products sold under any name which were manufactured utilizing similar processes, including but not limited to, any other product manufactured using the same injection mold as any | of the products identified in the following table: | | | | | | | |---|--|--|--|--|--|--| | | | | | | | | | 1. Grizzly Industrial Cordless Drill 18 Volt | | | | | | | | 2. Grizzly Industrial ½ " Cordless Drill 18 Volt | | | | | | | | 3. 18 Gauge Stapler Kit (Model H7677) | | | | | | | | 4. 18 Gauge Full Range Stapler Kit (Model H7678) | | | | | | | | 5. 2-in-l Combination Nailer <i>I</i> Stapler (Model H7664) | | | | | | | | 6. 7/16" 16 Gauge Stapler (Model H7947) | | | | | | | | 7. ½" 16 Gauge Stapler (Model H7948) | | | | | | | | 8. 1 ¼" Brad Nailer (Model H6332) | | | | | | | | 9. 18 Gauge Brad Mailer Kit (Model H5527) | | | | | | | | 10. 18 Gauge 2" Mailer Kit (H7679) | | | | | | | | 11. 2 ½" Finish Nailer (Model H6143) | | | | | | | | 12. 34° Angle Finish Nailer - 2 ½" (Model H6144) | | | | | | | | 13. 15 Gauge 26° Angle Nailer (Model H7946) | | | | | | | | 14. 16 Gauge 26° Angle Nailer (Model H7995) | | | | | | | | 15. 18 Gauge 26° Angle Nailer (Model H7945) | | | | | | | | 16. 21 ° Round Head Framing Nailer (Model H7665) | | | | | | | | 17. 28° Clipped Head Framing Nailer (Model H8234) | | | | | | | | 18. 28° Clipped Head Framing Nailer (Model H6145) | | | | | | | | 19. 34° Clipped Head Framing Nailer (Model H6146) | | | | | | | | 20. 21 ° Round Head Framer (Model H7943) | | | | | | | | 21. 34° Clipped Head Framer (Model H7944) | | | | | | | | 22. Coil Roofing Nailer (Model H8230) | | | | | | | | 23. Coil Nailer (Model H8231) | | | | | | | | 24. Coil Roofing Nailer (Model H7951) | | | | | | | | 25. 2 1/2" Coil Nailer (Model H7949) | | | | | | | | 26. 2 3/4" Coil Nailer (Model H7950) | | | | | | | | | | | | | | | | 1 | 27. Air Nailer Kit (Model H8232) | |----|--| | 2 | 28. Air Nailer I Stapler Kit (Model H8233) | | 3 | 29. Framing I Brad I Palm Nailer Kit (Model H8235) | | 4 | 30. Brad Nailer / Stapler Kit (Model 8236) | | 5 | 31. 12V Cordless Drill (Model H7794) | | 6 | 32. 18V Cordless Drill (Model H7795) | | 7 | 33. 3 ¼" Portable Planer (Model H3141) | | 8 | 34. Pneumatic Glue Gun (Model H8175) | | 9 | 35. 12V Cordless Drill, H7794 | | 10 | 36. 18V Cordless Drill, H7795 | | 11 | 37. 18V Cordless Reciprocating Saw, G8611 | | 12 | 38. 18V ½ "Cordless Drill Kit, G8595 | | 13 | 39. 18V ½ "Cordless Drill Kit, G8600 | | 14 | 40. Heavy Duty ½ "Electric Drill, H0777 | | 15 | 41. Heavy Duty 3 ¼ "Portable Planer H3141 | | 16 | 42. Soldering Gun Kit, H7548 | | 17 | 43. Professional Pneumatic Glue Gun, H8175 | | 18 | 44. 5 Piece Rubber File Grips - Square, H3089 | | 19 | 45. 5 Piece Rubber File Grips Rectangular, H3090 | | 20 | 46. Jorgensen Bar/Spreader Clamps, H7322 H7326 | | 21 | 47. Shop Fox Quick Release Bar Clamps/Spreader Clamps, H6447 - | | 22 | 6451 | | 23 | 48. Shop Fox Heavy Duty Bar Clamps/Spreader Clamps H6452 - | | 24 | Н6457 | | 25 | 49. Ultimate Pro - Tape Fractional 25" Tape, H9485 | | 26 | 50. Ultimate Pro - Tape Metric 7.5m Tape, H9486 | | 27 | 51. Ultimate Pro Tape 26'/8m Tape, H9481 | | 28 | 52. 12V Cordless Drill, H7794 | | | Case No | 5. | 1 | 53. 18V Cordless Drill, H7795 | |----|---| | 2 | 54. 18V Cordless Reciprocating Saw, G8611 | | 3 | 55. 18V ½ "Cordless Drill Kit, G8595 | | 4 | 56. 18V ½ "Cordless Drill Kit, G8600 | | 5 | 57. Heavy Duty ½ "Electric Drill, H0777 | | 6 | 58. Heavy Duty 3 ¼ ' Portable Planer H3141 | | 7 | 59. Soldering Gun Kit, H7548 | | 8 | 60. Professional Pneumatic Glue Gun, H8175 | | 9 | 61. 5 Piece Rubber File Grips - Square, H3089 | | 10 | 62. 5 Piece Rubber File Grips Rectangular, H3090 | | 11 | 63. Jorgensen Bar/Spreader Clamps, H7322 H7326 | | 12 | 64. Shop Fox Quick Release Bar Clamps/Spreader Clamps, H6447 - | | 13 | 6451 | | 14 | 65. Shop Fox Heavy Duty Bar Clamps/Spreader Clamps H6452 - | | 15 | H6457 | | 16 | 66. Ultimate Pro - Tape Fractional 25" Tape, H9485 | | 17 | 67. Ultimate Pro Tape Metric 7.5m Tape, H9486 | | 18 | 68. Ultimate Pro Tape 26'/8m Tape, H9481 | | 19 | 69. ProTape Southpaw "Lefty" Tape Measure 25' | | 20 | 70. Ultimate ProTape Series | | 21 | 71. ProTape Construction Grade Measuring Tape | | 22 | 72. ProTape Closed Hand Wind Tapes | | 23 | | | 24 | 15. Defendants have not obtained a license or any other valid authorization | | 25 | for import, sale, or offer for sale in the United States of products manufactured | | 26 | through use of the '184 patented process. | | 27 | 16. Defendants have been on constructive notice of the '184 patent since its | | 28 | issuance on June 19, 1990 | 6. Case No. ___ 6 9 10 8 11 12 14 15 13 16 17 18 20 21 19 22 23 24 25 26 27 - One or more of the Defendants have been on actual notice of the '184 17. patent since as early as November 2004. - 18. Upon information and belief, the Defendants have engaged in design, manufacture, import, sell, and/or offer for sale within the United States, including this District, products that have dual-layer external plastic housings. - On information and belief, the Accused products identified herein and 19. as-yet-unidentified products manufactured through the same or substantially similar process have been manufactured through processes which incorporate all elements of the '184 patented process. - None of the Defendants have obtained a license or any other 20. authorization from the Plaintiff for manufacture, import, sale, and/or offer for sale in the United States of products manufactured through use of the '184 patented process. - Plaintiff's initial infringement notice to Defendants GRIZZLY and US 21. TAPE, provided
Defendants with a drawing and associated claim chart showing the substantial likelihood pursuant to 35 U.S.C. § 295, of the infringement of the '184 patented process by the import, sale and/or offer for sale in this District and the United States of one or more Accused Products and all other Defendants' products manufactured with processes which incorporate the elements of the '184 patent. - The evidence provided to Defendants in the initial letter and subsequent 22. correspondence, illustrate how the processes utilized to produce the Accused Products incorporated each element of the '184 patent claims. - Said initial letters requested Defendants pursuant to 35 U.S.C. § 295 to 23. provide factual information necessary to verify the manufacturing process used to make the Accused Products. - To date, Defendants have not produced admissible evidence 24. demonstrating the actual process used to manufacture the Accused Products. - SRDT made reasonable efforts to obtain process information for the 25. Accused Products, providing Defendants with an opportunity to prove that it was not 1 using the '184 process. - 26. On information and belief, Defendant made, used, imported, sold and/or offered for sale within the United States and this District, during the past six years and before February 5, 2008, the Accused Products using the '184 patent process, without authority to do so, in violation of 35 U.S.C. § 271, knowing such to be an infringement of the '184 patent, and in wanton and willful disregard of Plaintiff's '184 patent rights. - 27. On information and belief, Defendants contributed to infringement of the '184 patent and actively induced others to infringe the '184 patent by virtue of making, importing, selling, using and/or offering for sale within the United States and this District, in violation of 35 U.S.C. § 271, Accused Products manufactured using the '184 patent process in wanton and willful disregard of Plaintiff's '184 patent rights. - 28. On information and belief, the conduct of Defendants in willfully infringing the '184 patent, and contributing to infringement and inducing others to infringe the '184 patent, by the acts alleged hereinabove despite being on both constructive notice and actual notice, was deliberate, thus making this an exceptional case within the meaning of 35 U.S.C. § 285. - 29. On information and belief, Plaintiff has suffered damages by reason of Defendants' infringing conduct alleged hereinabove. The damages for Defendants' conduct are in an amount that constitutes at least a reasonable royalty for all of Defendants' sales of the Accused Products from six years prior to filing of this Complaint and continuing until February 5, 2008. - 30. On information and belief, the reasonable royalty owed to Plaintiff from Defendants is at least eight percent (8%) of gross revenues from sales of the Accused Products from six years prior to filing of this Complaint and continuing until February 5, 2008, and according to proof at trial. - 31. On information and belief, the reasonable royalty owed to SRDT from | Case No. | | |----------|--| |----------|--| | 1 |] | |----------|---| | 2 |] | | 3 | | | 4 | | | 5 | | | 5
6 | | | 7 | | | 8 | | | 9 |] | | ١0 | 1 | | 1 | | | 12 |] | | 13 | | | 14 | | | 15 | | | 16 | | | 17 | | | 17
18 | | | 19 | | | 20 | • | | 21 | | | 22 | | | 23 | | | 24 | | | 25 | | | 26 | | | 27 | | | 28 | | Defendants should be trebled on account of willful infringement by Defendants, and according to proof at trial. ## **PRAYER FOR RELIEF** WHEREFORE, SRDT prays that judgment be entered as follows: - a. For a determination that the Accused Processes are presumed to infringe the '184 patent pursuant to 35 U.S.C. § 295; - b. Defendants are adjudicated and decreed to have infringed the '184 patent; - c. Defendants are adjudicated and decreed to have contributed to the infringement of the '184 patent and to have induced others to infringe the '184 patent; - d. Defendants are ordered to account for damages adequate to compensate Plaintiff for the infringement of '184 patent, their contributory infringement of the '184 patent, and their inducement of infringement of the '184 patent, in the amount of at least eight percent (8%) of gross sales during the infringing time period as a reasonable royalty for all relevant sales of Accused Products and according to proof at trial, and such damages are awarded to Plaintiff; - e. Such damages as are awarded are trebled by the Court pursuant to 35 U.S.C. § 284 by reason of the willful, wanton, and deliberate nature of the infringement; - f. That this case is decreed an "exceptional case" and Plaintiff is awarded reasonable attorneys' fees by the Court pursuant to 35 U.S.C. § 285; - g. For interest thereon at the legal rate; - h. For costs of suit herein incurred; - i. For such other and further relief as the Court may deem just and proper. **DEMAND FOR JURY TRIAL** SRDT respectfully requests that its claims be tried to a jury. DATED this Friday, March 13, 2009. JENS ERIK SORENSEN, as Trustee of SORENSEN RESEARCH AND DEVELOPMENT TRUST, Plaintiff Kramer, Esq. Attorney for Plaintiff J. Michael Kaler, Esq. Attorney for Plaintiff Case No. _____ ## **EXHIBIT A** ## United States Patent [19] ------ [11] Patent Number: 4,935,184 Sorensen [45] Date of Patent: Jun. 19, 1990 [54] STABILIZED INJECTION MOLDING WHEN USING A COMMON MOLD PART WITH SEPARATE COMPLIMENTARY MOLD PARTS [75] Inventor: Jens O. Sorensen, Rancho Santa Fe, Calif. [73] Assignee: Primtee, Rancho Santa Fe, Calif. [21] Appl. No.: 386,012 [22] Filed: Jul. 27, 1989 ## Related U.S. Application Data [63] Continuation of Ser. No. 152,670, Feb. 5, 1988, abandoned. [56] References Cited #### U.S. PATENT DOCUMENTS | 3,543,338 12/1970 Cooper 264/246 | |------------------------------------| | 3,737,272 6/1973 Segmüller 425/248 | | 3,832,110 8/1974 Hehl | | 4,381,275 4/1983 Sorensen | | 4,422,995 12/1983 Schad | | 4,459,256 7/1984 Ziegler 264/242 | | 4,508,676—4/1985—Sorensen | #### FOREIGN PATENT DOCUMENTS 17577 1/1972 Australia ### OTHER PUBLICATIONS Promat 100-100/100, Nestal. Primary Examiner—Jill L. Heitbrink Attorney, Agent, or Firm—Edward W. Callan 57] ABSTRACT A process for injection molding plastic products having a closed end and an open end with laminated walls terminating in a rim at the open end. A first common mold part is combined with a first complementary mold part to assemble a first mold cavity in which the first plastic material is injected until it reaches the portion of the first mold cavity that defines the rim of the product. Portions of the first complementary mold part contact portions of the first common mold part to rigidly secure the mold parts in position in relation to each other in order to impede movement of the mold parts in relation to each other during injection of a first plastic material into the first mold cavity. The first plastic material is shaped such that when it is contained after solidification in a second mold cavity it provides one or more stabilizing regions that rigidly secure the first common mold part in position in relation to the second complementary mold part in order to impede movement of such mold parts in relation to each other during the injection of a second plastic material into the second mold cavity. A second plastic material having different characteristics than the first plastic material is injected until it reaches the portion of the second mold cavity that defines the rim of the product to form a laminated wall. 10 Claims, 5 Drawing Sheets U.S. Patent Jun. 19, 1990 Sheet 4 of 5 4,935,184 #### STABILIZED INJECTION MOLDING WHEN USING A COMMON MOLD PART WITH SEPARATE COMPLIMENTARY MOLD PARTS This is a continuation of co-pending application Ser. No. 07/152,670 filed on Feb. 5, 1988 now abandoned. #### BACKGROUND OF THE INVENTION molding of plastic products and is particularly directed to stabilizing the dimensions of mold cavities during the injection steps when using a common mold part and at least two complementary mold parts to assemble separate mold cavities for receiving separate injections of 15 plastic materials to produce a thin-walled, hollow plas- The use of a common mold part with at least two complementary mold parts to provide separate mold cavities for receiving separate injections of plastic mate- 20 rials for producing a hollow plastic product is known. In one known prior art method of cyclic injection molding a hollow plastic product, a first mold cavity is defined by a first common mold part and a first complementary mold part; and a second mold cavity is defined- 25 by the first common mold part and a second complementary mold part. The method includes the steps of: (a) combining the first common mold part with the first complementary mold part to assemble the first mold cavity; (b) injecting a first plastic material into the first mold (c) solidifying the injected first plastic material to form a first plastic material component; (d) combining the first common mold part with the 35 second complementary mold part to assemble the second mold cavity with the first plastic material component attached to the first common mold part so that when the second mold cavity is assembled the first plastic material component is contained within the sec- ond mold cavity; (e) injecting a second plastic material into the second mold cavity while the first plastic material component is contained therein; and (f) solidifying the injected second plastic material so 45 as to form a second plastic material component that fuses with the first plastic material component to produce a hollow plastic product. It also is known to expand upon this method by further using a third mold cavity defined by a second com- 50 mon mold part and the first complementary mold part, and a fourth mold cavity defined by the second common mold part and the second complementary mold part. The method further includes the steps of: (h) during step (d),
combining the second common 55 mold part with the first complementary mold part to assemble the third mold cavity; (i) during step (e), injecting a third plastic material into the third mold cavity; (j) during step (l), solidifying the injected third plastic 60 material to form a third plastic material component; (k) during step (a), combining the second common mold part with the second complementary mold part to assemble the fourth mold cavity with the third plastic material attached to the second common mold part so 65 that when the fourth mold cavity is assembled the third plastic material is contained within the fourth mold (1) during step (b), injecting the fourth plastic material into the fourth mold cavity while the solidified third plastic material is contained therein; and (m) during step (c), solidifying the injected fourth plastic material so as to form a fourth plastic material component that fuses with the third plastic material to produce a second said hollow plastic product. This method has been used for producing hollow plastic products having composite walls of separately The present invention generally pertains to injection 10 injected plastic materials. In performing such method, the first plastic material is injected until it reaches the parting line between the first common mold part and the first complementary mold part; the second plasticmaterial is injected until it reaches the parting line between the first common mold part and the second com-plementary mold part; the third plastic material is injected until it reaches the parting line between the second common mold part and the first complementary mold part; and the fourth plastic material is injected until it reaches the parting line between the second common mold part and the second complementary mold part. Typically, all four plastic materials are the same. #### SUMMARY OF THE INVENTION The present invention provides a method and apparatus for injecting molding hollow, thin-walled plastic products, having a closed end and an open end with laminated walls terminating in a rim at the open end, 30 where relative movement between the common mold part and the complementary mold parts is impeded during injection of the plastic materials. According to the present invention, the first and second plastic materials have different characteristics, and in the injection molding method described above, the step of solidifying the injected first plastic material to form the first plastic material component (step (c)) includes the step of (g) shaping the first plastic material component such that when the first plastic material component is so contained in the second mold cavity the first plastic material component provides one or more stabilizing regions that rigidly secure the first common mold part in position in relation to the second complementary mold part in order to impede movement of the first common mold part in relation to the second complementary mold part during the injection of the second plastic material into the second mold cavity, to thereby produce a thin-walled plastic product having controlled dimension in that the wall-thickness dimensions of the second mold cavity are stabilized by the stabilizing The step of injecting the first plastic material into the first mold cavity (step (b)) includes the step of (h) injecting the first plastic material until it reaches the portion of the first mold cavity that defines the rim of the product; and the step of injecting the second plastic material into the second mold cavity (step (e)) includes the step of (i) injecting the second plastic material until it reaches the portion of the second mold cavity that defines the rim of the product. When the method of the present invention utilizes two common mold cavities, such as described above, the step of solidifying the injected third plastic material to form the third plastic material component (step (j)) includes the step of shaping the third plastic material component such that when the third plastic material component is so contained in the fourth mold cavity the solidified third plastic material provides one or more stabilizing regions that rigidly secure the second common mold part in position in relation to the second complementary mold part in order to impede movement of the second common mold part in relation to the second complementary mold part during the injection of the fourth plastic material into the fourth mold cavity, to thereby produce a second thin-walled plastic product having controlled dimensions. The method of the present invention may also be used for molding a product having a side wall including an approximately longitudinal strip that may be transparent to provide a transparent window in the side wall. This feature is particularly advantageous when it is 15 desired to provide a longitudinal window in the side wall in order to monitor the level of a substance, such as a fluid, contained in the plastic product. In one embodiment, the first plastic material component is shaped to provide at least one stabilizing region that is transverse 20 to a parting line between the first common mold part and the first complementary mold part, whereby the longitudinal strip is defined by the transverse stabilizing region. A transparent window is provided in the side wall by injecting a transparent first plastic material into 25 the first mold cavity. A nontransparent second plastic material is injected into the second mold cavity to provide a nontransparent background for printing in the remainder of the side wall. In an alternative embodiment, the first plastic material component is shaped 30 such that when the first plastic material component is contained in the second mold cavity, the second mold cavity defines at least one unfilled cavity region that is transverse to a parting line between the first commonmold part and the second complementary mold part, 35 whereby the longitudinal strip is defined by the unfilled transverse cavity region. In this embodiment, a transparent window is provided in the side wall by injecting a transparent second plastic material into the second mold cavity; and a nontransparent first phistic material 40 is injected into the first mold cavity to provide a nontransparent background for printing in the remainder of the side wall. In another aspect of the method of the present invention, the step of shaping the first plastic material compo- 45 nent (step (g)) may further include the step of providing a first complementary mold part that is dimensioned in relation to the first common mold part such that when combined with the first common mold part to assemble the first mold cavity, portions of the first complemen- 50 part 12 contact portions 18 of the first common mold tary mold part contact portions of the first common mold part to rigidly secure the first common mold part in position in relation to the first complementary mold part in order to impede movement of the first common mold part in relation to the first complementary mold 55 part during the injection of the first plastic material into the first mold cavity. The present invention further provides apparatus for performing the method of the present invention and hollow, thin-walled plastic products molded according 60 to the method of the present invention. Additional features of the present invention are described in relation to the description of the preferred #### BRIEF DESCRIPTION OF THE DRAWING FIGS. 1A and 1B are sectional views illustrating a first mold cavity assembled by combining a first com- mon mold part with a first complementary mold part. FIG. 1A is a top sectional view taken along lines Ain FIG. 1B; and FIG. 1B is a side sectional view taken along lines B-B in FIG. 1A. FIGS. 1A and 1B further show the first plastic material injected into the first mold cavity. FIGS. 2A and 2B are sectional views illustrating a second mold cavity assembled by combining the first common mold part of FIGS. 1A and 1B with a second 10 complementary mold part. FIG. 2A is a top sectional view taken along lines A-A in FIG. 2B; and FIG. 2B is a side sectional view taken along lines B-B in FIG. 2A. FIGS. 2A and 2B further show the first plastic material component contained in the second mold cavity and the second plastic material injected into the second mold cavity. FIGS. 3A through 3D illustrate a series of steps in the performance of a preferred embodiment of the method of the present invention. FIG. 4 illustrates a first plastic material component formed in an alternative embodiment of the method of the present invention. FIG. 5 is a sectional view illustrating a second mold cavity containing the first plastic material component of FIG. 4. FIG. 5 also is a sectional view illustrating a product molded according to such alternative embodiment of the method of the present invention. FIG. 6 Illustrates a first plastic material component formed in a further alternative embodiment of the method of the present invention. FIG. 7 is a sectional view illustrating a second mold cavity containing the first plastic material component of FIG. 6. FIG. 7 also provides a sectional view of a product molded according to such further alternative embodiment of the method of the present invention. #### DESCRIPTION OF THE PREFERRED **EMBODIMENTS** Referring to FIGS. 1A and 1B the apparatus of a preferred embodiment of the present invention includes a first common mold part 10 and first complementary mold part 12. The first common mold part 10 is combined with the first complementary mold part 12 to assemble a first mold cavity 14. The first complementary mold part 12 is dimensioned in relation to the first common mold part 10 such that when so combined with the first common mold part 10 to assemble the first mold cavity 14, portions 16 of the first complementary mold part 10 to rigidly secure the first common mold part 10 in position in relation to the first complementary
mold part 12 in order to impede movement of the first common mold part 10 in relation to the first complementary mold part 12 during injection of the first plastic material 20 into the first mold cavity 14. The first plastic material 20 is injected into the mold cavity 14 through a gate 22 and a runner 24 in the first complementary mold part The injected first plastic material 20 is solidified to form a first plastic material component 20 by cooling the injected first plastic material in the first mold cavity 14, whereby the first plastic material component 20 is shaped in accordance with the dimensions of the first mold cavity 14. In an alternative embodiment, the first plastic material component may be further shaped following removal of the first complementary mold part Referring to FIGS. 2A and 2B the apparatus of a preferred embodiment of the present invention includes a second complementary mold part 26. The first common mold part 10 is combined with the second complementary mold part 26 to assemble a second mold cavity 28 with the first plastic material component 20 attached to the first common mold part 10, so that when the second mold cavity 28 is assembled, the first plastic material component 20 is contained within the second mold cavity 28. The first plastic material component 20 is shaped such that when the first plastic material component 20 is so contained in the second mold cavity 28 the first plastic material component 20 provides one or more stabilizing regions 30 that rigidly secure the first common mold 15 fourth mold cavity 48, with the first plastic material part 10 in position in relation to the second complementary mold part 26 in order to impede movement of the first common mold part 10 in relation to the second complementary mold part 26 during the insertion of a second plastic material 32 into the second mold cavity 20 The second plastic material 32 is injected into the second mold cavity 28 through a gate 34 and a runner 36 in the second complementary mold part 26 while the first plastic material component 20 is contained in the 25 second mold cavity 28. The injected second plastic material 32 is solidified by cooling in the second mold cavity 28 so as to form a second plastic material component 32 that fuses with the first plastic material component 20 to produce thin- 30 walled hollow plastic product 38 having controlled A preferred embodiment of a method of cyclic injection molding of hollow, thin-walled plastic products according to the present invention, utilizing two com- 35 mon mold parts and two complementary mold parts to provide four mold cavities is described with reference to FIGS. 3A through 3D. Referring to FIG. 3A, a second common mold part 40 is combined with the first complementary mold part 40 12 to assemble a third mold cavity 42; while at the same time the first common mold part 10 is combined with the second complementary mold part 26 to assemble a second mold cavity 28, with the first plastic material component 18 attached to the first common mold part 45 10, so that when the second mold cavity 28 is assembled, the first plastic material component 20 is contained within the second mold cavity 28. The formation of the first plastic material component 20 is discussed above in relation to FIGS. 1A and 1B. A third plastic material 44, which may be the same as the first plastic material 20, is injected into the third. mold cavity 42 through the gate 22 and the runner system 24 contained in the first complementary mold part 12; while at the same time, the second plastic mate- 55 rial 32 is injected into the second mold cavity 28 through the gate 34 and a runner system 36 contained in the second complementary mold part 26. The injected third plastic material 44 is solidified by cooling in the third mold cavity 42 to form a third plas- 60 tic material component 44; while at the same time the injected second plastic material 32 is solidified by cooling in the second mold cavity 28 so as to form the second plastic material component 28 that fuses with the first plastic material component 20 to produce the hol- 65 low, thin-walled plastic product 38. Referring to FIG. 3B, the first common mold part 10 and the second common mold part 40 are separated from the second complementary mold part 26 and the first complementary mold part 12 respectively; and the molded hollow, thin-walled plastic product 38 is ejected from first common mold part 10, while the third plastic material component 44 is retained on the third common mold part 40. The positions of the first common mold part 10 and the second common mold part 40 are then interchanged from those shown in FIG. 3B to those shown in FIG. 3C. Referring to FIG. 3C, the first common mold part 10 is combined with the first complementary mold part 12 to assemble the first mold cavity 14; while at the same time the second common mold part 40 is combined with the second complementary mold part 26 to assemble a component 44 attached to the third common mold part 40, so that when the fourth mold cavity 48 is assembled, the third plastic material component 44 is contained within the fourth mold cavity 48. The formation of the third plastic material component 44 is discussed above in relation to FIG. 3A. The first plastic material 20, which may be the same as the third plastic material 44, is injected into the first mold cavity 14 through the gate 22 and the runner system 24 contained in the first complementary mold part 12; while at the same time, a fourth plastic material 50, which may be identical to the second plastic material 32, is injected into the fourth mold cavity 48 through the gate 34 and a runner system 36 contained in the second complementary mold part 26. The injected first plastic material 20 is solidified by cooling in the first mold cavity 14 to form another first plastic material component 20; while at the same time the injected fourth plastic material 50 is solidified by cooling in the fourth mold cavity 48 so as to form the second plastic material component 48 that fuses with the third plastic material component 44 to produce a second hollow, thin-walled plastic product 52 Referring to FIG. 3D, the first common mold part 10 and the second common mold part 40 are separated from the first complementary mold part 12 and the second complementary mold part 26 respectively; and the second molded hollow, thin-walled plastic product 52 is ejected from second common mold part 40, while the first plastic material component 20 is retained on the first common mold part 10. The positions of the first common mold part 10 and the second common mold part 40 are then interchanged from those shown in FIG. 3D to those shown in FIG. 3A, and the cycle is re- As described above, the first plastic material component 20 is shaped such that when the first plastic material component 20 is contained in the second mold cavity 28, the first plastic material component 20 provides one or more stabilizing regions 30 that rigidly secure the first common mold part 20 in position in relation to the second complementary mold part 26 in order to impede movement of the first common mold part 10 in relation to the second complementary mold part 26 during injection of the second plastic material 32 into the second mold cavity 28: Likewise, the third plastic material component 44 is shaped such that when the third plastic material component 44 is contained in the fourth mold cavity 48, the third plastic material component 44 provides one or more stabilizing regions that rigidly secure the second common mold part 40 in position in relation to the second complementary mold part 26 in order to impede movement of the second common mold part 40 in relation to the second complementary mold part 26 during injection of the fourth plastic material 50 into the fourth mold cavity 48. The method described above with reference to FIGS. 5 3A through 3D may be used for producing hollow, thin-walled plastic products having laminated walls of different plastic materials. In performing such method, the first plastic material 20 is injected until it reaches a parting line 54 between the first common mold part 10 10 combined with a second complementary mold part 26 and the first complementary mold part 12 (FIG. 3C); and the second plastic material 32 is injected until it reaches a parting line 56 between the first common mold part 10 and the second complementary mold part 26 (FIG. 3A). Likewise, the third plastic material 44 is 15 injected until it reaches a parting line 58 between the second common mold part 40 and the first complementary mold part (FIG. 3A); and the fourth plastic material 50 is injected until it reaches a parting line 60 between the second common mold part 40 and the second 20 complementary mold part 26. Referring to FIGS. 4 and 5, the method of the present invention also may be used for molding a product 62 having a side wall 64 including at least one approximately longitudinal strip that may be transparent to 25 thereby provide a transparent window in the side wall In one embodiment, the first plastic material component 66 is shaped to provide at least one stabilizing region 68 that is transverse to a parting line 54 (FIG. 30 3C) between the first common mold part 10 and the first complementary mold part 12, whereby each longitudinal strip is defined by a transverse stabilizing region 68. The stabilizing regions 68 need not extend all the way to the parting line 54. A transparent window is provided in 35 the side wall 64 by injecting a transparent first plastic material into the first mold cavity to provide the first plastic material component 66. A nontransparent secand plastic material 72 is injected into the second mold cavity 74 to provide a nontransparent background for 40 printing in the remainder of the side wall 64. In an alternative embodiment, the first plastic material component 66 is shaped such that when the first plastic material component
66 is contained in the second mold cavity 74, the second mold cavity 74 defines at 45 least one unfilled cavity region 72 that is transverse to a parting line 56 (FIG. 3A) between the first common mold part 10 and the second complementary mold part 26, whereby longitudinal strips may be provided in the unfilled transverse cavity regions 72. The unfilled trans- 50 verse cavity regions 72 need not extend all the way to the parting line 56. In this embodiment, transparent windows are defined in the side wall 64 by injecting a transparent second plastic material into the second mold cavity 74 to fill the transverse cavity regions 72. Prior 55 thereto, a nontransparent first plastic material is injected into the first mold cavity to form the first plastic material component 66 and thereby provide a nontransparent background for printing in the remainder of the side wall 64. Referring to FIGS. 6 and 7, in a further preferred embodiment, the first plastic material component 82 that is shaped as shown in FIG. 6 to include a plurality of symmetrically disposed stabilizing regions 84, which extend approximately longitudinally over a portion of 65 the side wall 86 of the molded product 88. The first plastic material component 82 is molded in a first mold cavity in accordance with the teaching of applicant's U.S. Pat. application No. 7,463, filed Jan. 26, 1987 and in accordance of the above description to the extent that such description is compatible with the teaching of application Ser. No. 7,463. After the first plastic material component 82 is formed in a first mold cavity, which is assembled by combining a first complementary mold part 12 and a first common mold part 10, the first plastic component 82 is retained on the first common mold part 10 while the first common mold part 10 is to assemble a second mold cavity 90, as shown in FIG. Referring to FIG. 7, the first plastic material component 82 is shaped such that when the first plastic material component 82 is contained in the second mold cavity 90, the first plastic material component \$2 provides one or more stabilizing regions 84 that rigidly secure the first common mold part 10 in position in relation to the second complementary mold part 26 in order to impede movement of the first common mold part 10 in relation to the second complementary mold part 26 during injection of the second plastic material 92 into the second mold cavity 90. The injected second plastic material 92 is solidified by cooling in the second mold cavity 90 to form a second plastic material component 92 that fuses with the first plastic material component \$2 to produce the hollow, thin-walled, plastic product 88. The side wall 86 of the molded product 88 thus includes two layers of plastic 82, 92. The molded product 88 has controlled dimensions, is generally shaped as shown in FIG. 6, and has a lateral cross section as shown in FIG. 7. The side wall 86 of the molded product thus includes two layers of plastic 82, 92. The stabilizing regions 84 have a wall thickness equal to the thickness of the side wall 86 and are transverse to the parting line 56 (FIG. 3A) between the first common mold part 10 and the second complementary mold part 26 to thereby provide longitudinal transparent windows 84 in the side wall 86. The stabilizing regions 84 need not extend all the way to the parting line 56. In a preferred embodiment of this product, the other side-wall layer 90 is nontransparent and extends throughout the majority of the side wall 86. The present invention may be modified from the embodiments illustrated and described above. The common mold parts may be cavity mold parts instead of core mold parts, as illustrated and described herein. In addition, injections of plastic material into any given mold cavity may be made through more than one gate. Also, injections of plastic materials may be made into more than two mold cavities simultaneously, whereby the number of mold cavities included in the mold may be a multiple of the number of separate mold cavities required to produce a single product. For example, when using the method described and illustrated herein for producing a product composed of two plastic material components formed following injection of plastic material into two separate mold cavities, the number of mold cavities included in the mold may be any multiple of two, i.e. 2, 4, 6, etc. The present invention also can be used to mold products including more than two plastic material components formed following injection of plastic material into more than two separate mold cavities. In an embodiment requiring three separate mold cavities, a third. complementary mold part is used, and the fused first and second plastic material components are retained on FW 011 the first common mold part when the first common mold part is combined with the third complementary mold part to assemble the third mold cavity, with the fused-first and second mold parts being shaped to stabilize the common mold in relation to the third comple- 5 mentary mold part during injection of a third plastic material into the third mold cavity. The core-stabilization techniques described in applicant's U.S. Pat. Nos. 4,381,275 and 4,508,676; U.S. Pat. No. 3,737,272 to Stegmuller; and in Australian Patent 10 Specification 17,577/70 filed by Ryles and published Jan. 20, 1972 may be used to stabilize the common mold part in relation to the first complementary mold part during the injection of the first plastic material in lieu of the technique described above with relation to PIGS. 15 1A and 1B. The first and second plastic materials may be either the same material or different materials. It is sometimes advantageous to use first and second plastic materials having different physical characteristics. For example, 20 the present invention is ideally suited for molding a hollow, thin-walled plastic product in which the side wall must provide both a moisture barrier and a gas (such as Oxygen) barrier. To mold such a product, a plastic material having a desirable moisture-barrier 25 characteristic is selected as one of the injected plastic materials; and a plastic material having a desirable gasbarrier characteristic is selected as the other injected plastic material. I claim: 1. A method of cyclic injection molding a thin-walled hollow, plastic product having a closed end and an open end with laminated walls terminating in a rim at the open end, utilizing a first mold cavity and a second mold cavity, the first mold cavity being defined by a 35 first common mold part and a first complementary mold part, and the second mold cavity being defined by the first common mold part and a second complementary mold part, the method composing the steps of (a) combining the first common mold part with the 40 first complementary mold part to assemble the first mold cavity: (b) injecting a first plastic material into the first mold cavity; (c) solidifying the injected first plastic material to 45 form a first plastic material component; (d) combining the first common mold part with the second complementary mold part to assemble the second mold cavity with the first plastic material component attached to the first common mold part 50 so that when the second mold cavity is assembled the first plastic material component is contained within the second mold cavity; (e) injecting a second plastic material having different characteristics than the first plastic material into 55 the second mold cavity while the first plastic material component is contained therein; and (f) solidifying the injected second plastic material so as to form a second plastic material component that fuses with the first plastic material component to 60 produce a hollow plastic product; wherein step (c) comprises the step of (g) shaping the first plastic material component such that when the first plastic material component is so contained in the second mold cavity the first plastic 65 material component provides one or more stabilizing regions that rigidly secure the first common mold part in position in relation to the second com- plementary mold part in order to impede movement of the first common mold part in relation to the second complementary mold part during step (e), to thereby produce a thin-walled plastic product having controlled dimensions; wherein step (b) comprises the step of (h) injecting the first plastic material until it reaches the portion of the first mold cavity that defines the rim of the product; and wherein step (e) comprises the step of (i) injecting the second plastic material until it reaches the portion of the second mold cavity that defines the rim of the product. 2. A method according to claim 1 for molding a product having a side wall including an approximately longitudinal strip, wherein step (g) comprises shaping the first plastic material component to provide at least one said stabilizing region that is transverse to a parting line. between the first common mold part and the first complementary mold part, whereby said longitudinal strip is defined by said transverse stabilizing region. A method according to claim 2. wherein step (b) comprises injecting a said first plastic material that is transparent, whereby said strip defines a transparent window in the side wall; and wherein step (e) comprises injecting a said second plastic material that is nontransparent. 4. A method according to claim 1 for molding a product having a side wall including an approximately longitudinal strip, wherein step (g) comprises shaping the first plastic material component such that when the first plastic material component is contained in the second mold cavity, the second mold cavity defines at least one untilled cavity region that is transverse to a parting line between the first common mold part and the second complementary mold part, whereby said longitudinal strip is defined by said unfilled transverse cavity region. 5. A method according to claim 4,
wherein step (b) comprises injecting a said first plastic material that is nontransparent; and wherein step (e) comprises injecting a said second plastic material that is transparent, whereby said strip defines a transparent window in the side wall. 6. A method according to claim 1, for cyclic injection molding a plurality of thin-walled, hollow, plastic products, further utilizing a third mold cavity and a fourth mold cavity, the third mold cavity being defined by a second common mold part and the first complementary. mold part, and the fourth mold cavity being defined by the second common mold part and the second complementary mold part, the method further comprising the (h) during step (d), combining the second common mold part with the first complementary mold part to assemble the third mold cavity; (i) during step (e), injecting a third plastic material into the third mold cavity; (f) during step (f), solidifying the injected third plastic material to form a third plastic material component; (k) during step (a), combining the second common mold part with the second complementary mold part to assemble the fourth mold cavity with the third plastic material attached to the second common mold part so that when the fourth mold cavity is assembled the third plastic material is contained within the fourth mold cavity; 4,935,184 (I) during step (b), injecting the fourth plastic material into the fourth mold cavity while the solidified third plastic material is contained therein; and (m) during step (c), solidifying the injected fourth plastic material so as to form a fourth plastic material component that fuses with the third plastic material to produce a second hollow plastic prod- wherein step (j) comprises the step of that when the third plastic material component is so contained in the fourth mold cavity the third plastic material component provides one or more stabilizing regions that rigidly secure the second common mold part in position in relation to the second complementary mold part in order to impede movement of the second common mold part in relation to the second complementary mold part. walled plastic product having controlled dimen- 7. A method according to claim 6, for producing said products having laminated walls, wherein step (b) comprises the step of (o) injecting the first plastic material until it reaches the parting line between the first common mold part and the first complementary stold part; wherein step (e) comprises the step of (p) injecting the second plastic material until it 30 reaches the parting line between the first common mold part and the second complementary mold part; wherein step (i) comprises the step of (q) injecting the third plastic material until it reaches the parting line between the second common mold part and the first complementary mold part; and wherein step (1) comprises the step of (r) injecting the fourth plastic material until it reaches the parting line between the second common mold part and the second complementary mold part. 8. A method according to claim 6, wherein the first (n) shaping the third plastic material component such 10 plastic material is the same as the third plastic material and the second plastic material is the same as the fourth plastic material. 9. A method according to claim 1, wherein step (g) further comprises providing a said first complementary mold part that is dimensioned in relation to the first common mold part such that when so combined with the first common mold part to assemble the first mold cavity, portions of the first complementary mold part during step (I), to thereby produce a second thin- 20 idly secure the first common mold part in position in contact portions of the first common mold part to rigrelation to the first complementary mold part in order to impede movement of the first common mold part in relation to the first complementary mold part during 10. A method according to claim 1, further compris- ing the step of (j) between steps (c) and (d), separating said first common mold part with the first plastic material component attached thereto from said first complementary mold part without dividing that portion of said first complementary mold part that defines the rim of the product. 35 S JS 44 (Rev. 12/07) Case 3:09-cv-00531-BTM -CAB Document 1 Filed 03/17/09 Page 24 of 25 CIVII COVER SHEET Page 24 of 25 Office page 24 of 25 The JS 44 civil cover sheet and the information contained herein neither replace nor supplement the filing and service of pleadings or other p | as provided by local rules of co
purpose of initiating the civil d | | | | | per 1974, is r | required for the u | ise of the Clerk | of Court 1 | for the | |--|--|--|--|--|---|--
--|---|---| | I. (a) PLAINTIFFS | | | | DEFENDANTS | i.** | an in the same | 1 ()
1 () | | | | JENS ERIK SORENSEN, as Trustee of SORENSEN RESE
AND DEVELOPMENT TRUST | | | EARCH | £ | | | | | | | (b) County of Residence of | of First Listed Plaintiff San | Diego, Califor | rnia | County of Residence of First Listed Defendant Whatcom, Washington | | | | | | | (b) County of Residence of First Listed Plaintiff San Diego, Califor (EXCEPT IN U.S. PLAINTIFF CASES) | | | | (INCLERT AUSTRECASES ONLY) NOTE: IN LAND CONSENTATION OF THE LAND INVOLVED. | | | | | THE | | (c) Attorney's (Firm Name, | , Address and Telephone Nu | ımber) | | Attorneys (If Known) | | | and an include the second | | | | J. Michael Kaler, Kaler Law Office, 9930 Mesa Rim Rd., #2
San Diego, CA 92121 (858)362-3151 | | | 200, | BAYE | | | | | | | Melody A. Kramer, Kramer Law Office, Inc., 9930 Mesa Ri
#1600, San Diego, CA 92121 (858)362-3150 | | | im Rd., | '09 CV 0 531 L AJB | | | | | | | II. BASIS OF JURISD | ICTION (Place an "X" in Or | ne Box Only) | | TIZENSHIP OF PRI | NCIPAL | PARTIES | (Place an "X" in One
and One Box for | | | | 1 U.S. Government Plaintiff | 2 3 Federal Question
(U.S. Government Not | a Party) | , | | TF DEF | Incorporated or Pri | ncipal Place | - | <u>DE</u> F | | | J 4 Diversity | | c | Citizen of Another State |]2 🔲 2 | Incorporated and P | | 5 | 5 | | Defendant | (Indicate Citizenship or | f Parties in Item III) | | Citizen or Subject of a creign Country |]3 🗍 3 | of Business in Ar
Foreign Nation | iother State | 6 | 6 | | IV. NATURE OF SUIT | · | | | | | TO LINE OF I | OTHER | OTE A TEXT | DEC. | | CONTRACT | | RTS | | FORFEITURE/PENALTY | | RUPTCY | OTHER | | | | 110 Insurance 120 Marine 130 Miller Act 140 Negotiable Instrument 150 Recovery of Overpayment & Enforcement of Judgment 151 Medicare Act 152 Recovery of Defaulted Student Loans (Excl. Veterans) 153 Recovery of Overpayment of Veteran's Benefits 160 Stockholders' Suits 190 Other Contract 195 Contract Product Liability 196 Franchise REAL PROPERTY 210 Land Condemnation 220 Foreclosure 230 Rent Lease & Ejectment 240 Torts to Land 245 Tort Product Liability 290 All Other Real Property | PERSONAL INJURY 310 Airplane 315 Airplane Product Liability 320 Assault, Libel & Slander 330 Federal Employers' Liability 340 Marine 345 Marine Product Liability 350 Motor Vehicle 750 | PERSONAL IN 362 Personal In Med. Malp 365 Personal In Product Lie 368 Asbestos P. Injury Prod Liability PERSONAL PR 370 Other Frau 371 Truth in Le 380 Other Perso Property D. 70 Property D. Product Lie PRISONER PET 510 Motions to Sentence HABEAS COF 530 General 535 Death Pena 540 Mandamus 550 Civil Right 555 Prison Con | jury - ractice jury - ractice jury - rability ersonal luct ROPERTY d mding onal amage amage ability FITIONS Vacate RPUS: dty & Other s | □ 730 Labor/Mgmt. Reporting & Disclosure Act □ 740 Railway Labor Act □ 790 Other Labor Litigation □ 791 Empl. Ret. Inc. Security Act ■ IMMIGRATION □ 462 Naturalization Application □ 463 Habeas Corpus - Alien Detainee □ 465 Other Immigration Actions | □ 423 With 28 U PROPER □ 820 Copp □ 830 Pater □ 840 Trad SOCIAL □ 861 HIA □ 862 Blac □ 863 DIW □ 864 SSII □ 865 RSI □ 870 Taxe or D □ 871 IRS 26 U | JSC 157 TY RIGHTS yrights nt lemark SECURITY (1395ff) & Lung (923) C/DIWW (405(g)) | 410 Antitrust 430 Banks an 450 Commers 460 Deportati 470 Racketee Corrupt 470 Racketee 2480 Consume 480 Cable/Sa 810 Selective 850 Securities Exchang 875 Custome 12 USC 890 Other Sta 891 Agriculti 892 Economi 893 Environn 894 Energy A 895 Freedom Act 900 Appeal of 900 Appeal of 400 App | ad Banking ce ion with Industrial Allo Service or Challenger 3410 Auturnal Acts in Stabilizar mental Mat Allocation A of Information Fee Detequal Accesses tionality of | ed and ons ities/ ge tions ation Act tters Act ation erminations | | ☑ 1 Original □ 2 R | tate Court App | pellate Court | Reop | tated or cened Transferred another dis (specify) Tiling (Do not cite jurisdiction) | trict | 6 Multidist
Litigation | trict 7 1 | Appeal to
ludge fror
Magistrate
ludgment | m
e | | VI. CAUSE OF ACTION | Title 35 USC 2 | 71
cause: | | | | | | | | | VII. REQUESTED IN COMPLAINT: | | S A CLASS ACT | - 1 | DEMANDS
cording to Pri | 1) | CHECK YES onl | _ | in compla | | | VIII. RELATED CAS
IF ANY | E(S) (See instructions): | JDGE (see Not | | elated Cases) | | KET NUMBER | | | | MAG. JUDGE American LegalNet, Inc. www.FormsWorkflow.com ## UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF CALIFORNIA SAN DIEGO DIVISION # 161116 - SR * * C O P Y * * March 17, 2009 14:52:29 ### Civ Fil Non-Pris USAO #.: 09CV0531 Judge..: M. JAMES LORENZ Amount.: \$350.00 CK Check#.: BC#1126 Total-> \$350.00 FROM: SORENSEN V. GRIZZLY CIVIL FILING