S /s

SE4

15225

10
11
12
13
14
15
16
17
18

19

20

21

22

23

24

Case 2:08-cv-00184-JLR Document 1

Filed 02/04/08 Page 1 of 33

Fii
oo :lﬁﬂfs%ﬂ :-__-gggﬁfu
OO B0y g
| TR O VAT I A i e
D‘STRJcT’bR'CTCBURT
08-CV-00184-CMP WASHiN, DE?;?;%
IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF WASHINGTON
SEATTLE DIVISION
IMPLICIT NETWORKS, INC. §
. £08-0184 —ur
Plaintiff, § NO.
' §
V. §
‘ § PLAINTIFF’S ORIGINAL
AQVANCED MICRO DEVICES, INC., § COMPLAINT,
INTEL CORPORATION, § - -
NVIDIA CORPORATION, §
RA‘LZA MICROELECTRONICS, § JURY TRIAL DEMANDED
REALNETWORKS, INC., and §
SUN MICROSYSTEMS, INC., §
§
Defendants. § |
Plaintiff, Implicit Networks, Inc. (“Plaintiff’), files this On'ginal Complaint against
Defeﬁdaﬁts, Advanced Micro Devices, Inc. (“AMb”), Intel Corporation (“Intel™), NVIDIA

Corporation(*NVIDIA”), Raza Microelectronics (“Raza”), RealNetworks, Inc. (“Real”), and Sun

Microsystems, Inc. (“Sun”), and alleges as follows:

‘Washington.

PLAINTIFF’S ORIGINAL COMPLAINT -1

Plaintiff is.a Washington corporation with its

THE PARTIES

principal place of business in Seattle,

LAW OFFICES OF JAMES S, ROGERS
1500 Fourth Avenue, Suite 500

Seattle WA 98101

Ph: 206/621-8525 Fax: 206/223-8224

Fd

10
11
12

13

14 .

15

16

17

18
19
20
21
22
23

24

L2

Case 2:08-cv-00184-JLR Document1 Filed 02/04/08 Page 2 of 33

Advanced Micro Devices, Inc., on informaﬁon ;md belief, is a corporation organized under
the laws of the étate ‘of Delaware. AMD is doing business in Washington, and, on
infofmation and belief, has a principal place of business at One AMD Place (P. O. Box '
3453), Sunnyvale, CA 94088-3453. AMD may be served with proceés by serving its
registered agent, CT Corporation System, 1801 West Bay Drive NW, Suite 206, Olympia,
WA 98502.

Intel Corporation, on informaﬁon and belief, 1s a corporation organized under the laws of the
State of Delaware. Intel is doing business in Washington, and, on information and belief, has
a principal place of business at 2200 Mission College Blvd., Santa Clara, CA 95052-8119.
Iintel may be served with process bjr serving its registered agent, Mr. David Jay Thomsen,

315 East D ’Street, Tacoma, Washington 98421-1803.

- INVIDIA Corporation, on information and belief, is a-corporation organized under the laws of

the State of Delaware. NVIDIA is doing business i1_1 Washing’gon, and, on information and
belief, has a principal place of business at 2701 San Tomas Expressway, Santa Clara, CA

95050. NVIDIA may be served with process by serving its registered agent, CT Corporation

| System, 1801 West Bay Drive NW, Suite 206, Olympia, WA 98502.

Raza Microelectronics, on information and belief, is a corporation organized under the laws
of the Stéte of Califomi_a. Raza is doing business in Washington, and, on information and
belief, has a principal place of business at 18920 Forge Drive, Cupertino, CA 95014-0701.
Raza may be served with process by serving its reéistered agént, GKL Corporate Search, Inc.,
élS L. Street, Suite 1250, Sacramento, CA 95814. |

RealNetworks, Inc., on information and belief, is a corporation organized under the laws of

the_ State of Washington. Real is doing business in Washingtdn, and, on information and

LAW OFFICES OF JAMES S. ROGERS

PLAINTIFE’'S ORIGINAL COMPLAINT -2 - 1500 Fourth Avenue, Suite 500

Seattle WA 98101
Ph: 206/621-8525 Fax: 206/223-8224

10
11

12

14
15
16
17
18
19
20
21

22

24

110,

11.

PLAIN

Case 2:08-cv-00184-JLR Document1 Filed 02/04/08 Page 3 of 33

b.elief, has a principal place of business at 2601 Elliott Avenue, Seattle, WA 98121. Real
may be served with process by serving its registered agent, Mr. Robert R. Kimball, 2601
Elliott Ave., #1000, Seattle, WA 981119223,
Sun Microsystems, Inc., on information and belief, is a corporation organized under the laws
of the State of Delaware. Sun is doing busineés in Washington, and, on information and
belief, has a principal place of business at 4150 Network Circle, Santa Clara, CA 95054,
Sun may be served with process by serving its registered agent, Corporation Service
Company, 6500 Harbour Heights Parkway, Mukileto, WA 98275.

JURISDICTION & VENUE
This is an action for infringement of a United States patent, among. other actions.
Accordingly, this actibn arises under the patent laws of the United States of America, 35
U.S.C. § I et. seq. and jurisdiction is properly based on Title 35 United States Code,
paﬁicularly § 271, and title 28 United States Code, particularly § 1338(a). |
AMD, upon information and belief, transacts business in this judicial district byr
amanﬁfacthring, selling, offering to sell, or using products and/or systems as described and
claimed in Unifed States_ Patent No. 67,629,1 63, the patent at issue in this lawsuit, and/or by
conducting other business in this judicial district.
Intel, upon information and belief, transacts business in this judicial distr_ict by

manufacturing, selling, offering to sell, or using products and/or systems as described and

~ ‘claimed in United States Patent No. 6,629,163, the ﬁatent at issue in this lawsuit, and/or by

conducting other business in this judicial district.

NVIDIA, upon information and belief, transacts business in this judicial district by

manufacturing, selling, offering to sell, or using products and/or systems as described and

LAW OFFICES OF JAMES 5. ROGERS
TIFF’S ORIGINAL COMPLAINT -3 1500 Fourth Avenue, Suite 500

: Seattle WA 98101
Ph: 206/621-8525 Fax: 206/223-8224

10
11

12

14
15
16
17
18
19
20
21

22

24

12.

14.

15.

16.

17.

PLAIN|

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 4 of 33
claimed in United States Patent No. 6,629,163, the patent at issue in this lawsuit, and/or by
conducting other business in this judicial district.

Raza, upon information and belief, ‘transacts business in this judicial district by

manufacturing, selling, offering to sell, or using products and/or systems as described and

iclaimed in United States Patent No. 6,629,163, the patent at issue in this lawsuit, and/or -by

conducting other business in this judicial district.

Rezﬂ, uypon information and belief, transacts bgsiness in this judicial district by
manufacturing, selling, offering to sell, or using products andx’ér systems as described and
claimed in United States Patent No. 6,629,163, the patent at issue in..this lawsuit, and/or by
conducting other busiﬁess in this judicial district.

Sun, upon information and belief, transacts business ‘_in this judicial district | by
manufacturing, selling, o_ffering to sell, or using products and/or systems as described and
claimed in United States Patent No. 6,629,163, the patent at issue in this lawsuit, and/or by
conducting other business in this judicial district,

Venue is proper in this court under Title 28 United States Code § 1391(5) and 1400(5). '

| COUNT1
PATENT INFRINGEMENT AGAINST ALL DEFENDANTS -
On September 30, 2003, United States Patent No. 6,629,163 (“the ‘163 patent”) entitled

“Methods and System for Démultiplexing a First Sequence of Packet Components to Identify
Specific Components Wherein Subsequent Components afe Processed Wit.hout Re- -
Identifying Components” was duly and legally issued. A true and correc?t copy of the “163
patent is attached as Exhibit A.

Pursuant to 35 U.S.C. § 282, the above-listed United States Patent is presumed valid. '

LAW OFFICES OF JAMES 8. ROGERS -
TIFF’S ORIGINAL COMPLAINT -4 1500 Fourth Avénue, Suite 500

Seaitle WA 98101

Ph: 206/621-8525 Fax: 206/223-8224

10

11

12

14

15

16

17

18

19

20

21

22

23

24

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 5 of 33

18. |Edward Balassanian is the sole inventor of 'the ‘163 patent. The ‘163 patent has been
assigned to Plaintiff. |

19, Intel, on information and belief, manufactures, uses, and sells products that infringe the 163
patent, including without limitation, products incorporating its Viiv Technology.

20, Raza, formerly Amersham Biosciences, on information and belief, manufactures, uses, and
sells products that inﬁnge tﬁé ‘163 patent, including without limitation, its Alchemy family
of processors.

21l. AMD, on information and belief, manufactures, uses, and sells products that infringe the
*163 patent, including without limitation, its Alchemy and ATI Radeon lines of products.

22. Sun, on information and belief, manufactures, uses, and sells products that infringe the ‘163
patént, including without limitation, its Java Media Framework.

23. [NVIDIA, on information and belief, manufactures, uses, and sells products that infringe the
‘163 patent, including without limitation, products incorporating its Stant Media software.

24, Real, on information and belief, manufactures, uses, and sells produqts that infringe the ‘163
patent, including without limitation, its Helix DNA Client.

25. |The infringement of the ‘163 patent alleged above has injured the Plaintiff and thus, it is
entitled to recover damages adequate to compensate for Intel, Raza, AMD, Sun, NVIDIA,
Real’s infringement, which in ﬂo event can be less than a reasonable royalty.

DEMAND FOR JURY TRIAL
26. [Plaintiff hereby demands a jury trial on all claims and issues.
PRAVER FOR RELIEF
Wherefore, Plaintiff prays for entry of judgment:
: LAW OFFICES OF JAMES S. ROGERS
PLAINTIFF’S ORIGINAL COMPLAINT -5 L300 Fourth Avenie, Suite 300
Ph: 206/621-8525 Fax: 206/223-8224

10
1

12

14
15
16
17
18
19
20

21

22

24

Case 2:08-cy-00184-J-LR Document 1 Filed 02/04/08 Page 6 of 33

1AL that Defendants, Intel, Raza, AMD, Sun, NVIDIA, and Real have infringed one or

more claims of the ‘163 patent; .

B. that Defendants, Intel, Raza, AMD, Sun, NVIDIA, and Real account for and pay to

Plaintiff all damages caused by the infringement of the 163 patent, which by statute can be no less

than a reasonable rovalty;

caused

of the *

proper

PLAIN

C. that Plaintiff be granted pre—j.udgment and post-judgment interest on the damages
to them by r;:aéoﬁ of Deféndants, Intel, Raza, AMD, Sun, NVIDIA, and Real’s infringement
163 patent; |

D. that Plaiﬁtiff be granted its attorneys’ fees in this action;r

E(. that costs be awarded to Plaintiff;

F. that Plaintiff'be granted such ‘other and further relief as the Court may deemju'st and

under the current circumstances.
DATED this i day of February, 2008.

Respectfully submitted,

LAW OFFICES OF JAMES S. ROGERS

5 S. Rog
Law Offices ¢f James S. Rogers
1500 Fourth Avenue, Suite 500
Seattle, Washington 98101
Telephone: -~ 206/621-8525
Fax: 206/223-8224

LAW OFFICES OF JAMES S. ROGERS
TIFF’S ORIGINAL COMPLAINT -6 1500 Faurth Avenue, Suite 500

: ‘ Seattle WA 98101
' Ph; 206/621-8523 Fax: 206/223-8224

10

11
12
13

14

15.

16
17
18
19
20
21
22
23

24

PLAIN

‘Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 7 of 33

Of Counsel:

Edward W. Goldstein

Corby R. Vowell

Matthew J.M. Prebeg

Stephen W, Abbott

GOLDSTEIN, FAUCETT & PREBEG, L.L.P.
1177 West Loop South, Suite 400
Houston, Texas 77027

Telephone: 713/877-1515

Fax: ' 713/877-1737

Attorneys for Plaintiff

TIFF’S ORIGINAL COMPLAINT -7

LAW OFFICES OF JAMES S. ROGERS
1500 Fourth Avenue, Suite 500

Seattle WA 98101 .

Ph: 206/621-8525 Fax: 206/223-8224

o~

12y United States Patent

Balassanian

Case 2:08-cv-00184-JLR Document 1 --Filed-02/04/08 Page 8 0f 33 .- -

US006629163B1

US 6,629,163 B1
Scp. 30, 2003

4(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR

EP

Bhatti, Nina T., et al.
v

(73)

DEMULTIPLEXING A FIRST SEQUENCE OF
PACKET COMPONENTS TO IDENTIFY
SPECIFIC COMPONENTS WHEREIN
SUBSEQUENT COMPONENTS ARE
PROCESSED WITHOUT RE-IDENTIFYING
COMPONENTS

Inventor: Edward Baiassanian, Kirkland, WA
(Us)

Assignee: Implicit Networks, Inc., Bellevue, WA
(Us)

*) Notice: Subject o any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/474,664
Filed: Dec. 29, 1999

Int. CL7 e, GOGF 13/00; HO4L 12/56;
| HO4L, 12/54
U.S CL . . 710/3%; 710/1; 710/3;
71[),’20 7]0!% H 71(1/51 F10/131; 370/401
370/487; 370/498; 370/535; 370/536; 370/542
Field of Search . L7104, 3, 33, 38,
710’13] 132, 20 51 370/401 487, 498,

535, 536, 542

References Cited

U.5. PATENT DOCUMENTS

* 611995
1011996
171998
2/1999

* 872000

* 12/3000

* 8001

3/2002

FOREIGN PATENT DOCUMENTS |
0408132 A1l

5,425,020
5,568,478
5710917
3,870,479
6,101,180
6,157,622
6,275,507
6,359,011

Hluchyj et al. 370/235
van Loo, Jr. et al. 370/392
Musa et al. 707,201
Feiken et al, v 7137160
Tsurmoka .ccooeonicene. 3907401
Tanaka et al. 340/7.46
Anderson et al. 370487
Mowvshovich et al. 370/536

A
A
A
A
A
A

Bt
B1 *

1/1991
OTHLR PUBLICATIONS

, “Coyote: A System for Constructing

ine—(rain Configurable Communication Services,” The

PLAINTIFE ORIGINAL CORPLAINT

EXH!BIT

A — PAGES

University of Arizona at Tucson, ACM Transactions on
Computer Systems, vol. 16, No. 4, Nav, 1998, pp. 321-366.

O'Malley, Sean W. and Larry L. Peterson, “A Dynamic
Network Architecture,” Umiversity of Arizona, ACM Trans-
aclions on Computer Systems (LOCS), vol. 10, No. 2, May
1992, pp. 114143,

Fiuczynski, Marc E. and Brian N. Bershad, “An Extensible
Protocol Architecture for Application-Specific Nerwork-
ing,” University of Washington at Seattle, Proceedings of the
1996 Winter USENIX Technical Conference.

Pardyak, Przemyslaw and Brian N. Rershad, “Tynamic
Binding for an Extensible System,” University of Washing-
ton at Scattle, Proceedings of the Second USENIX Sympo-
sium on Operating Syqtems Design and Implementation
(OSDI) 1996.

Bailey, Mary I.. et al., “PathFinder: A Pattern—-Based Packet
Classifier,” University of Arizona at Tucson, Proceedings of
the First Symposium on Operating Systems Design and
Implementation, USENTX Asscciation, Nov. 1994,

Mosberger, Bavid, “Scout: A Path-—Based Operating Sys-
tem,” A Dissertation Submitted to the Faculty of the Depart-
ment of Computer Science, The University of Arizona, pp.
87-97, 1997,

* cited by examiner

Primary Examiner—Jeffrey Gaffin
Assistant Fxaminer—Tammara Peyton
(74) Attorney, Agent, or Firm—Perkins Coie LLP

(57 ABSTRACT

A mcthod and system for demultiplexing packets of a
message is provided. The demultiplexing system receives
packets of ‘a message, identifies a sequence of message
handlers for processing the message, identifies state infor-
mation associated wilh the message for each message
handler, and invokes the message handlers passing the
message and the associated stale information. The sysiem
identifics the message handlers based on the initial data type
of the message and a target data type. The identified message
handlers effect the conversion of the data to the target data
type through various intermediate data types.

44 Claims, 16 Drawing Sheets

US 6,629,163 B1

_| LABELNAP

GET

'/'f”

LABELMAP
GET

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 9 of 33
U.S. Patent Sep. 30, 2003 Sheet 1 of 16
101 102 103
ya /~ ja
150
| MESSAGE _
DRVER [———= Yty [DEMUX |
105
149~ Ve
QUEUE | 1HReAD
\\ 106
151 :
_*3\ 'MESSAGE
| SEND
;/rfﬂf
MESSAGE
SEND
108
va
- MESSAGE
SEND
’/,,09 /,,410
MESSAGE | |
:54~\Sg
‘ //r174
155 ~ MESSAGE
—“\\3\// SEND
Fig. 1
PLAVNTIRF'S ofallNAL ComplAINT
EXHp\T A — PRAEE 4 | 9

U.S. Patent

P1

Sep. 30, 2003

Sheet 2 of 16

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 10 of 33

US 6,629,163 B1

NULL

P2 P3 P4
iy |D2 03[1 P12
D2 1 DS D15 1
i 2 |03 Mool 2wy
Fig. 2
/300
MEMORY 303
304 305 306 307
L / - -
LABEL NAP
FORWARDING DEUY
DRIVERS T
COMPONENT | [CONPONENT | | oo SEk
308 309 310
/ £ -
P CONVERSION | | INSTANCE
sropioes || ROUTNES DATA
cPU 21 1/0 20z
Fig. 3
PLANTIEF'S ORPAGIIAL comMpLmT |0

EXMB\T A - PAGE (o

pL_mM'TI\’"F =,

ExHweit A

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 11 of 33

U.S. Patent Sep. 30, 2003 Sheet 3 of 16 US 6,629,163 Bl
PATH (StackList)
462
450 440 SESSION 430
463 // N
453 443 433
TCP \ TCP - TeP \
4 j | 442) 432
431 52 4371 431
423|424| 425
420 : S g
N P \ NN/
) 422
421
413 414|415
_ (&
410 ;
N ETHERNET A Z
l) 412
411
/475 /472 /471
QUEUE QUEUE QUEUE
. PathEntry
JF}@?- 4 (REFERENCE)
OAGIWAL CofMPLAIT W

- PAGE |

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 12 of 33

U.S. Patent Sep. 30, 2003 Sheet 4 of 16 US 6,629,163 Bl
Map 507
QulputLabel /
Targellabel
MessageQueve /~ 02 TargeiKey
505
PathEniry MultiployList /505
nPath B _
pMap]
501 multiplaylist -
PAIH /_ StackList phddress
pPathEniry - Member -
MessageQueue 7 / , f503
S?dcdmﬂ - . : 525
prodrss: 2 - 505 Member :
. PalhEntry /~ Bndies S
StockListEntry
: PathlstEniry
Address /7 504 Addresstniry
URL '
Name
Hindinglist 506
Curren’rBinding—\BindingLisi/ tinding 510
: k pBinding =] pSession
Key
: PathList
ActivePaths
. pEdge
Binding‘ f 211
Fig. 5

EXHIRIT A — PAGE (2 al 12

US 6,629,163 B1

9 Jy

™
™
kS
™
i
(]

(@]
@
o

o0}

—~
S |
m = PG.\ Butpug
@ kS
L U s
— m \ EEEE‘/: abp3d -

s 7 0 B Feyd
£ - mr__c%,_nuq . 1m_n£m=_.€_mm 0
3 - , ‘ o = nl\ [000}014
a m - EEHE_P_&\\ uolssagd l\\; buipuigd FEITLH)

x g cpg/ PR AT (" eiqo Buipulg jpg-/ UoIsses s
- : ‘ 2
= g , : ¢09
3 5
: S
3 = 606 hju3gjoq 3
g 3 3 <
. . a
;o ; 24
8 v pyg/ Bupug 92

= ‘ e
N <
u
T
T =
: N.mho\
Mx
u

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 14 of 33

U.S. Patent Sep. 30, 2003 Sheet 6 of 16 US 6,629,163 Bl

(Message, PothEntry)

MessageSend

FaihEntrg -=>

Mamber 705

YES 704
f Pa’mEnIrL -—>
Pl }posmoﬂ _b Pat
aikEntry =-> Nember -->
StockListEniry y /7
-—_m nexiEnry = List Heod
Dala (F?;thfniry -=>
705 Path --> StackList)
Nexitntry = :
YES lihextBel [T >
{position)
NO

retVal = nextEntry -->

Member --> Binding -->

Ed ¢ —=> Messoge ondler

{Message, nexiEniry)
List = Demux 767
Message, - /
PaihEn F?’rHE)’r Address,
ohin Fig. 74

¥
Return
{retval)

PLAANTIEF S OpiatNAL COoMPLAWLWT
Ml T A - PASE (X

A

Case 2:08-cv-00184-JLR Document1 Filed 02/04/08 Page 15 of 33

U.S. Patent Sep. 30, 2003 Sheet 7 of 16 US 6,629,163 Bl

710
f
Select next

Candidate path
in List

|
| 717

NextEntry -->
Pat

Queu eHessuEe
Message, NextEniry)

1

Humber of C)
C%ngdfdruﬁe Return
Path > 1
714 .
Yk Fig. 7C

PathEntry ~—>

~PalhEntry >
Wuliipio MulkiplayLidt = Lis

hultiplayList

Yes 716
L

MessageSend
(Message, nextEntry)

Fig. 7B

PLAW TIFF < [OR1OWAL CoMPLAAVNT

EAHiEsT A~ PAGE = 2

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 16 of 33

U.S. Patent Sep.30,2003 Sheet 8 of 16 US 6,629,163 Bl
: Message
oy M
4} niy
/ bi
Initialize
Demux
_% fé’f 7
N0 — Find Path

803 '
YES f Y f&?é’
Get Next Binding Process Path
804 Hopping

Break

return

s‘tufus mUal]e

1
return

YES

next binding

Get Session
809~ !
* Nail Binding
810
other

Simplex F]g 8

PLAINTIEF's ORAGINAL compLagT :
EXHIBIT A — PACE \w \o

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 17 of 33

U.S. Patent Sep. 30, 2003 Sheet 9 of 16 US 6,629,163 B1

Initiolize
Demux

901
Map 4
PathEntry ~-> Map
* 302
message = Message
path = null /
oddress Elem = nulf
savedStatus = 0 f 905
Status = demux Continue
f90.5
status =
909 PathEntry ==> Path -->
Y Shatus
patn Address =
pathEntry ~—> Path ——>
: Address /907
| demux
addressElem = continue pathAddress =
pathAddress ——> ‘ Address
CurrentBinding = \-910
pathEntry -=> Member 908
-2 AddressEn‘iry InitEnd /
stalus = demux Conlinue /‘9”
binding List =
pothAddress ~->
BindingList
CurrentBinding = /9!2
&pathAddress -->
CurrentBinding
postpone = 0
* 813 .
traverse = ListDataNext f
session = Null F Ig * 9

PLAINTIFFS o1GWAL ComMPLAINT
EAVIBAT A ~?A§E Vv AR

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 18 of 33

U.S. Patent Sep. 30, 2003 Sheet 10 of 16 US 6,629,163 B1

InitEnd

1002
1001 ‘ f
| pathAddress =
--> Member édﬂEs’f COPY>
. Me athEntry -
-=> Blndlng -—> Pagh -3 ﬁr.fjdress,

Flogs ==

. PathEntry => WMember
Simplex

-> AddressEntry)

fIUUS r
pothAddress = (Refurn)
AddressCreate

(PathEntry ~> Path ->
Address —>-URL)
1004
glem = null f
1005

inding =

~=—{ Return)

Bindinglist,
& elem)

pathAddress —->
CurreniBinding =
ListTailinsert
pathAddress —->
BindingList, binding)

glem = =
PathEntry -->
Member -->
AddressEntry

Fig. 10

PLANTIEF 'S o &= AL CotaPL Aot
XM T A - PACE 192 W

U.S. Patent

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 19 of 33

Sep. 30, 2003 Sheet 11 of 16 US 6,629,163 B1

(Gethext Binding)

i /lmf

binding = fraverse
{Bindingtist,
currentBinding)

1102

Return
{binding)

NO 1103
)

traillist = LabelMopGet
{(map --> Oulput Label,
mop —-> Torget Label)

1104
= size of >
IIOS\L trailList
currentBinding = \
ListTail (bindinglist)
Data
* f” 06 1109
tmpTrajl = -> Key && map
ListHeadRemove -> Targel key
(traillist) refunlist = -
: Prepare Multicast Paths
i 1es 110 {IrailList, map)
Address Extend binding —> Key =
(pathAddress, naing T> etyk_ 1
L tmpTrai) map ~—> Target kef (Reiurn)
111 multiple
L s
binding = map —~> Target key = |’
ListTail Data Null '
(binding List) ' |
I

etur
(break)

Fig. 11

PLAMO TIEF 'S QG IIAL (oMPLAIND T

EXHIBAT A — PAGE

i 14

U.S. Patent

|

Sep. 30, 2003

Sheet 12 of

{ Get Key)

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 20 of 33

16 US 6,629,163 Bl

edge = binding —-> Edge
Edge protocol = edge

-1201
/

Fig. 12

1211
/_

traverse = ListDataNexi

saved status

1213
f

status = saved status
savedstatus = 0

—-=> Protacol
Stetus = edge ——> /- 1202
DemuxKey (message, -
pathAddrass, map)
/ 1204 1203 /- 1205
binding --> Flags [[EMOYE traverse = ListDataMext
1 = Binding-Remave hastpone postpone++

Y
Return
(next binding

\pos?y

1209
f

/'!207
postpone --

traverse = ListDataPrey

savedStatus =
Slatus

NO

saved status

YES

Vom0
Z

stafus = demux
continue

Return
{continue)

PLAIWNTIF F'S mpnpﬁb COMPEATOT
EXAVRANT A — Pe 2o

binding
-> Flegs & Binding
~ Remove

20

Return
{next binding)

U.S. Patent

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 21 of 33

Sep. 30, 2003 Sheet 13 of 16 US 6,629,163 B1

(Get Session)

]

session = TableGet
{protocal ~> SessionTable,
& binding -> key)

session =
CreateSession
{protocol)

!

session —=—> key =
LabeiReference
(binding ——> key)

|

Table Put
{protocal ~> sessionTable
& session ~> key session

Y

protocol ——>
CreateSession
(session)

Y

(Raturn }

Fip 13

PLAmCIEr's oA IAL ComMPLANST

EXHIAT A

-PAGE2\

2\

U.S. Patent

1405
s

binding --> session = | NO
session

1 fMO

binding —-> key = .
Label Reference
(session —-> key)

‘ /?407
session —-> BindingTable
[edge —-> Edgelc?] =
binding

o

binding
--> Edge -->
CreateBinding
birding

continue |_,

Sep. 30, 2003

Nl
Binding

session —->
BindingTable

edge ==>
Eggeld]

Sheet 14 of 16

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 22 of 33

US 6,629,163 Bl

1402
r

binding = session ~->
BindingTable
[edge —-> EdgelD]

1 ff 403

ListDataSet
{*currentBinding,
binding)

!

binding -> flags

simplex

Return

(simplex)

1409
/

binding ==> Flog ! =
Binding - Remove

Y

{ return)

PLANOT\FE 'S ORLQINAL CoMpLAINT
EAHIBAT A - PAGE 22

Fig. 14

U.S. Patent

PLAINTIFE = 2
EXVRAT B

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 23 of 33

Find Path

Sep. 30, 2003

Sheet 15 of 16

US 6,629,163 Bl

1502
S

Flags == simplex &&

entry = LisiHeadData

path = entry —> Path

binding -»
{ Pﬂ!hL?s’f

No 1505

glem = null
shortEntry = null

Pq’rﬁEni ->
Path && Irjyc’rh ->

stajus ==

Extend

o 1505

firsiBinding =

ListHeacData
{pathAddress ~->

Binding List)

ListDataNext
{binging -> Pathlist,
& elem)

(Llsm;xi[entr

-> Binding && !
Path -» S’rucl?Ll

firstBindin
== listNexiOata

Slacklist, NUL[E)
ist, enfry

StackListEn && IshortEntryl 1{entr
-> Paip -> S?uckhsf*srlyze(< !

=> Paih ->
~> Member
isthext{entry —>

=> member =>

PathEn’r
ath &% pu1h -) Slu1u
== eytend

shortErtry —> Fath ~> 1308
StackListSize shorfEntry = 1
entry
|
/4511
path = entry -> Path
fl5}'3 /f574
Create Poth {poth Address, elem = aull
PathEntry —> m » entry = ListHeadDalg

PuihEn’rry -> 00€

(palh —> SlackList)

elem = PathEniry ->

YEs /’5’5 ISIG\

I

]

!

Member —> AddressEniry
sntry = PalhEntry

PAS\NAL CorPLAANT

- PAGL 23

ExtendPath
{path, map, status

-G

1A

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 24 of 33

e

J.S. Patent Sep. 30, 2003 Sheet 16 of 16 US 6,629,163 Bl

Process
Path Hopping

| PathEntry => Path = path

* - ~1611
entry = LisiHeadData
(path -> StackList)

PathEntry -> Path
= = path

- 1603
oldStack = Pathintry -> f
Path -> slacklist

! 1604
newSlack = /
path => StackList-

i

1605
oldEim = ListNext f
(oldStack, Null)

i

1606
elem = ListNext f
(NewStock, Null)

1609
f

entry = ListDotaPrey
{newStack, & elem)

gldEn
ListDaIaNext nldsiuck -1608

&oldelem) && ent
ListDataNext (newStack, elem]
bk en't? --> Member ——>

Binding == oldEniry
Member ~->
Binding

L

1612
ListHeadInsert f
(refurnlist, Eniry)

. |
Fig. 16 (it

AP T A — Pﬁen; 2 A

1
METHOD AND SYSTEM FOR
DEMULTIPLEXING A FIRST SEQUENCE OF
PACKET COMPONENTS TO IDENTIFY
SPECIFIC COMPONENTS WHEREIN
SUBSEQUENT COMPONENTS ARE
PROCESSED WITHOUT RE-IDENTIFYING
COMPONENTS

TECHNICAL FIELD

The present invention relates generally to a compuier
system for dala demuliiplexing.

BACKGROUND

Compu[cr systems, which are becoming incressingly
pcrvaswf: generale data in a wide variety of formats. The
Etcmc{ is an example of interconnected computer systems

al generate data in many different formats. Indeed, when
data is generated on one computer system and is transmitted
ta another computer system to be displayed, the data may be
converted in many differcnt intermediare t'ormais before it is
c\lfcntually displayed. For cxample, the generating computer
system may tnitially store the data in a bitmap format. To
Sf;;nd the data to another computer system, the computer
system may first compress the bitmap data and then encrypt
th;e compressed data. The computer system may then canvert
that compressed data tnto a TCP format and then into an IP
f(l)rrnat. The IP formatied data may be converted into a
lrlans;mis.-sion [orinal, such as an ethernet format. The dala in
Il]e transmission formal is then sent to a receiving computer
system. The receiving computer system would need to
perform each of these conversions in teverse order to
N nverl lhe dala in the bitmap format. In addition, the
reccwma cOMmpuler system may need to convert the bitmap
dhta into a formal that is appropriate for rendering on output

|
device.

: ‘ In order to process data in such a wide varicty of formats,
both sending and 1eceiving computer sysiems nesd 10 have
many conversion routines available to support the various
fc?rmats. These computer systems (ypically use predefined
configuration information to load the correct combination of
conversion routines for processing data. These computer
systems also use a process-oriented approach when process-
ing data with these conversion routines, When using. a
process-oriented approach, a computer syslem may creale a
separate process for cach conversion that peeds to take
place. A compuier system in certain siluations, however, can
be expected o receive data and to provide data in many
defcrcm formals thal may not be known uniil the data is
réceived, The overhead of statically providing each possible
series of conversion routines is very high. For example, a
computer system that serves as a central controller for data
l'E.CB]Vf:d within a home would be expected to process data

'rccclved via telephone lines, cable TV lines, and satellite
connections in many cht}erem formais. The central controller
would be expected to oviput the dala o compuler displays,
television displays, entertainment centers, speakers, record-
ing devices, and so on in many different formats. Moreover,
since the various conversion routings may be developed by
different organizations, it may not he easy to identify that the
cutput format of one conversicn routine is compatible with
the input format of another conversion routine.

It would be desirable to have a technique for dynamicallv
identifying a series of conversion routines for processing
data In addilion, it would be desirable to have a technique
it which the oulput formal of one conversion rouline can be

PLAVWDTIFE'S O GIWVAL CoMPLANIT
BXHier T A

—PAGE 25 26

10

15

50

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 25 of 33

US 6,629,163 Bl

2

identified as being compatible with the input format of
another conversion routine. Tt would also be desirable in
store the identification of a series of conversion routines so
that the series can be quickly identified when' data is
received.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram illusirating example processing
of a message by the conversion sysiem.

FIG. 2 is a block diagram illustrating a sequence of edges.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment.

FIG. 4 s a block diagram illustrating example path data
structures in one embodiment.

FIG. 5 is a block diagram that illustrates the interrela-
tionship of the data structures of & path.

FIG. 6 is a block diagram that iliusirales the interrela-
tionship of the data structures associated with a session.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrai-
ing the pracessing of the message send routine.

F1G. 8 is a flow diagram of the demux routine.

FIG. 9 is a flow diagram of the initialize demux routine.. '

FIG. 10 is a flow diagram of the init end routine.

FIG. 11 i5 a ﬂow diagram of a rouiine to get the next
binding.

FIG. 12 is a flow diagram of the get key routine.

F1G. 13 is a flow diagram of the gel session routine.

FIG. 14 is a flow diagram of the nail binding routine.

F1G. 15 iz a flow diagram of the find path routine.

FIG. 16 is a flow diagram of the process of path hopping
routine.

DETAILED DESCRIFTTION

A method and system for converting a message that may
contain multiple packets from an source formal inle a target
format. When a packet of a message is received, the con-
version system in one embodiment searches for and identi-
fies a sequence of conversion routines (or more generally
message handlers) for processing the packets of the message
by comparing the input and output formats of the conversion
routines. (A message is a collection of data that is related in
some way, such as stream of video or audio data or an email
message.) The identified sequence of conversion routines is
used to convert the message from the source format to the
target format using various intermediale formais. The con-
version system then queues the packet for processing by the
identified sequence of conversion routines. The conversion
system storcs the identified sequence so that the sequence
can be quickly [ound (without scarching) when the next
packet in the message is received, When subsequent packets
of the message are received, the conversion system identifics
the sequence and queues the puckets for pressing by the
sequence. Recause lhe conversion syslem receives mulliple
messages with different source and target formats and iden-
tifies a sequence of conversion routines for each message,
the conversion systems effectively “demultiplexes™ the mes-

- sages. That is, the conversion system demultiplexes the

messages by receiving the message, identifying the
seguence of conversion routines, and contrelling the pro-
cessing of each message by the identified sequence.
Morcover, since the conversion routines may need to retain
state information between the receipt of one packet of a
message and the nexl packet of that message, the conversiun

PLAIN TIFE'S FW“‘"-‘AL COMPLAWIT
Sl T A —PAcE 20

3

system maintains state information as an instance or session
olf the conversion routine. The conversion system routes all
packels for a message through the same session of each

] - . - .
conversiod routine so that the same state or instaece infor-

mation catl be used by all packets of the message. A 5

sequence of sessions of conversion routines is referred to as
a|“path.” In one cmbodiment, each path has a path thread
assaciated with it for processing of each packet destined for
that path.

In one embodiment, the packets of the messages are
initially received by “drivers,” such s an Ethernet driver.

\ hen a driver receives a packet, it forwards the packet to a
fci)rwarding. component of the conversion system. The for-
warding component is responsible for identifying the session
of ihe conversion routine that shold next process the packet
and invoking that convession routine. When invoked by a
d: iver, the forwarding component may use a demultiplexing
(‘l‘demux”) component o identify the session of the first
cpnvcrsicm‘muline of the path that is to pracess the packet
and then gueues the packel for processing by the path. A path
thread is associated with each path. Fach path thread is
responsible for retrieving packets from the queus of its path
and forwarding the packets to the forwarding component.
When the forwarding component is invoked by a path
thread, it initially invokes the first conversion routine in the
path. Thar conversion routine processes the packet and
forwards the processed packet 1o the forwarding component,
which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and
fdrwarding the processed packet to the next conversion
n:)utine continues until the last conversion routine in the path
isl invoked. A conversion routine may defer invocation of the
forwarding component until it aggregates muitiple packets
of may invoke the forwarding component multiple times for
a|packet once for each sub-packet,

The forwatding component identifies the next conversion
routine in the path wsing the demux component and stores
that identification so that the forwarding component can
quickly identify the conversion routine when subsequent
packets of the same message are received. The demux
(_:(‘-Jmpo[]ﬁ.nt searches for the conversion routine and session
tlIal is to next process a packet, The demux component then
stores the identification of the scssion and conversion rou-
line as part of a path dala siructure so that the conversion
system does not need 1o search for the scssion and conver-
sion routine when requested to demultiplex subsequent
packets of the same message. When searching for the next
conversion rovtine, the demux componeni invokes a label

map get component that identifies the next conversion

componenl identifies the session associated with that mes-
sage by, in one embodiment, inveking code associated with
the conversion toutine. In general, the code of the conver-
st;on roulige determines what session should be associated
with a message. In certain situations, multiple messages may
share the same session. The demux component then extends
tl%.ue path for processing that packet to include that scssion
H{ld conversion routine. The sessions are identified so that
ef“:h packet is associated with the appropriate state infor-
mation. The dynamic identification of conversion routines is
described in. U8, patent application Ser. No, (9/304,973,
filed an May 4, 1999, entitled “Method and System for
Generating a Mapping Between Types of Data,” which is

herelry incorporated by reference.

FIG.'1 is a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packels of the message from a network. The

rtuﬁne- Onee the conversion routine is found, the demux <

£

60

29

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 26 of 33

US 6,629,163 Bl

4

driver performs any appropriale processing of the packet and
invokes a message send routine passing the processed packet
along with a relerence path entry 150, The message send
rouline is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are
represented by triangles. Each member path entry represents
a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it
is being invoked by a driver. The message send routine
invokes the demux routine 102 to search for and identify the
path of sessions that is to process the packet. The demux
routine may in turn invoke the label map get routine 104 1o
identify a sequence of conversion routines for processing the
packet. In this example, the label map get routine identifies
the first three conversion routines, and the dernux routine
creates the member path entries 151, 152, 153 of the path for
these conversion routines. Each path entry identifies a ses-
sion for a conversion routine, and the sequence of path
entries 151-155 ideatifies a path. The message send routine
then quenes the packet on ihe queve 149 for the path thai is
1o process the packets of the message. The path thread 105
for the path refrieves the packst from the gueue and invokes
the message send routine 106 passing the packet and an

s indication of the path. The message send routine determines

that the next session and conversion routine as indicated by
path entry 151 has already been found. The message send
routine then invokes the instance of the conversion rouline
for the session. The conversion routine processes the packet
and then invokes the message sead routine 167, This pro-
cessing continues until the message send routine invokes the
demux routine 110 afier the packet is processed by the
conversion routing represented by path entry 153. The
demux routine examines the path and determines that it bas
no more path entries. The demux routine then invokes the
1abel map get rowtine 111 1o identify the conversion routines
fur further processing of the packel. When (be conversion
routines are ideatified, the demiux routine adds path eniries
154, 155 to the path. The messages send routing invokes the
conversion routine associated with path entry 184,
Eventually, the conversion rouline associated with path
entry 155 performs the final processing for the path.

The label map get routine identifies a sequence of “edges™
for converting data in one format inte another format. Each
cdge corresponds to a conversion routine for converting data
from one format to another, Each edge is part of a “protocol”
(or morc generally a compenent) thai may inclede multiple
related edges. For example, a protocol may have edges that
each converl data in one format into several different for-
mats. Bach edge has an input format and an output format.
The label map get routine identifies a sequence of edges such
that the output format of each cdge is compatible with the
input format of another edge in the sequence, excepl for the
input format of the first edge in the sequence and the output
format of the last edge in the sequence. FIG. 2 is a block
diagram ilinsirating a seguence of edges. Protocol P1
includes an edge for converting format D1 to format D2 and
an edge for converting format D1 to format D3; protocol P2
includes an cdge for converting format D2 to format DS, and

"s0 un. A sequence {or converling [ormat D1 to format D15

is shown by the curved lines and is defined by the address

'4p1:1, P2:1, P3:2, P4:7.” When a packet of data in format

D1 is processed by Lhis sequence, il is converled to [ormat
1215, During the process, the packet of data is sequentially
converled 1o format D2, DS, and D13, The output format of
protocal P2, edge 1 (i.c., P2:1) is format DS, but the input
format of P3:2 is format D10. The label map get routine uses

PLAMNTLER 'S ORAGIWAL CoMPLART
~ PAGE 27

EXAEit B

5

an aliasing mechanism by which two formats, such as D5
and D10 are identified as being compatible. The usc. of
dlmsmg allows different names of the same [ormat or
compalible formats o be correlated.
TIG. 3 is a block dlagram illustrating components of the
canversmn system in one embodiment. The conversion
syql’_cm 300 can operale on a compuler system with a central
processing unit 301, 1/0 devices 302, and memory 303. The
1/Q devices may mclude an lnternet connection, a connec-
Ln Lo various output devices such as a television, and a
annecnon 1o various input devices such as a iclevision
receiver. The media mapping system may be storcd as

ms1ruc110ns on a computer-readable medium, such as a disk

dnve, memory, or data tracsmission medium. The data
structures of the media mapping system may also be stored
on a compuier-readable medium. The conversion system
mcludes drivers 304, a forwarding camponent 305, a demux
compouem 06, a 1abe[map get component 307, path data
structurcs 308, conversion routines 309, and instance data
310. Each drwer receives data in a source format and
forwards the data o the forwarding component. The for
warding component identifies the next conversion routine in
the path and invokes that conversion routine to process a
packet. The fcuward’iug component may invoke the demux
component lo search for the next conversion routine and add
that conversion routing to the path. The demux component
may invoke the label map get component to idenlify the next
conversmn routine 10 process the packet, The demux com-
pgnent stares information defining the paths in the path
structeres. The conversion routines stote their staie infor-
mation in the instance data.

FIG. 4 is a block diagram illustrating example path data

structures in one embodiment. The demux component iden- -

tifies a sequence of “cdges” for converting data in onc
térmal into another format by invoking the label map get
componem Each edge corresponds lo a conversion routine
far converting data from one format o another. As discussed
abovt, cach cdge is part of a “protocol” that may include
l:nulilple related edges. For example, a protacol may have
edgcﬁ that ¢ach convert data in one farmat into several
dilferent formats. Each edge has as an input format (“input
label”) and an output format (“output label”). Each reciangle
fepresents a session 410, 420, 430, 440, 450 for a protocol.
A session corresponds to an instance of a protacol. That is,
tﬁc scssion includes the protocol and state information
assocxaled with that instance of the protocol. Session 410
corresponds to a session for an Ethernet protocol; scssion
420 corresponds to a session for an IP protocol; and sessions
430 440, 450 correspond ta sessions far a TCP protocol.

rlG 4 illustrates three paths 461, 462, 463. Each path 5

mdudcs edges 411, 421, 431. The paths share the same
E.thcrnct session 410 and IP session 420, but cach path has
a umque TCP session 430, 440, 450, Thus, path 461 includes
sessions 410, 420, and 43(; path 462 includes sessions 410,
420, and 440; and path 463 includes sessions 410, 420, and
450 ‘The conversion: syslem represenls each path by a
sequeucc of path entry siructures. Each palh entry structure
15 represented by a triangle. Thus, path 461 is represented by
plalh entries” 415, 425, and 433. The conversion system
represents the path entries of a path by a stack list. Each path

a}so has a queue 471, 472, 473 associated with it. Each

" queue stores the messages that are to be processed by the

Lbnvcrsmn routines of the edges of the path. Each session

1ncludcs a binding 412, 422, 432, 442, 452 thal is repre-
se.ntsd by an oblong shape adjacent to the correspoading
edge A binding for an edge of a session represents those
paths thal include the edge. The binding 412 indicates that

27)

20

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 27 of 33

US 6,629,163 B1

6

three paths are bound (or “nailed”} to edge 411 of the
Lthernet session 410. The conversion System uses a path list
lo track the paths thal are bound 10 a binding. The path list
of binding 412 identifies path eniries 413, 414, and 415.
FIG. 5 is 4 block diagram that illustrates the interrela-
tionship of the data strucitres of a path. Each path has a
corresponding path strecture 501 that contains status infor-
mation and pointers 0 a message queus struciure 562, a
stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Bach
message handler returns a status for the path. The status of
extend means thal additional path entries should be added to
the path. The status of end means that this path should end
at this point and subsequent processing should continue at a
new path. The slatus of coniinwe means that the protocol
does not care how the path is handled. In one embodiment,
when a path has a status of continue, the system creates a
copy of the path and extends the copy. The message queue
structure identifies the messages (or packets of a message)
that are queued up for processing by the path and identifies

" the path entry at where the processing should start. The stack

40

LH]

list structure ¢onfains a list of pointers 1o the path entry
structures 505 that comprise the path. Each path eatry
structure contains a pointer to the corresponding path data
structure, a pointer to a map structure 507, a pointer to a
multiplex list 508, a pointer 1o the corresponding path
address structure, and a polater 10 a member siructure 509, .
A map steucture identifies the output label of the edge of the
path entry and opticnally a targel Jabel and a targel key. A
target key identifies the session associated with the protocol
that converts the packet o the targel label. (The terms
“media,” “label,” and “formal” are used interchangeably to
refer to the output of a protocol.) The multiplex list is used
during the demux process to track possible next edges when

_a path is being identified as having more than one next edge.

The member structure indicales that the path entry repre-
sents an edge of a path and contains a pointer to a binding
structure to which the path cniry is associated {or “nailed”),
a stack list entry is the position of the path entry within the
assnciated stack list, a path list entry is the position of the
path cntry within the associated path list of a-binding and an
address eptry is the position of the binding within the
associated path address. A path address of a path identifies
the bindings to which the path entries are bound. The path
address structurc contains a URL for the path, the name of
the path identified by the address, a pointer to a binding list
structure 506, and the identification of the current binding
within the binding list. The URL (e.g., “protocol:/ftep(0)Ap
(0)/eth{0)”) identifies conversion rowtines (e.g., protocols
and edges) of a path in a human-readable format. The URT.
(universal resource locator) includes a type field (e.g.,
“protocal”™) followed by a scquence of items {¢.g., “tep(0)").
The type field specifies the [ormat ol the [ollowing infor-
mation in the URL, that specifies that the type field is
followed by a sequence of items. Cach item identifies a
prolocol and an edge (e.g., the prolocol is “tep™ and the edge
is “0). In one embodiment, the items of a URL may also
cantain ap jdentifier of state information that is to be used
when processing a message, Thesc URLs can be used to
illustrale 1o @ user various paths that are available for
processing a message. The current binding is the last binding
in the path as the path is being buill. The binding list
structure conlains a list of pointers o the binding siruciures
assaciated with the path. Each binding structure 510 con-
taing a poiuter W a session structute, a poiniet o an edge
structure, 2 key, a path list structure, and a list of active paths
through the binding. The key identifies the state information

PLANTIFE'S

7

for a session of a protocol. A path list strecture contains

pointers to the path entry structures associated with the
binding.

FIG. 6 is a block diagram that illustrates the interrela-
tonship of the data structures associated with a session, A
session structure 601 contains the context for the session, a
pointer 10 a protocol structure for the session, a pointer to a
binding table structure 602 for the bindings associated with
the session, and the key. The binding table structure contains
.1|1lg,1 of pointers 1o the bmdm_r, slructures 510 for the session.
The binding structure is described above with reference to

FIIG 5. The path List structure 603 of the binding structure
c?nlams a list of pointers to path entry striciures 505. The
path entry structures are described with reference to FIG. 5.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrat-

ing the processing of the message send routine. The message
Stl’,nd routine is passed a message along with the path entry
associated with the session that last processed the message.

T‘he message setid routine invokes the message handler of
thc pext edge io the path or queues the message for pro-

c?ssmg by a pa:h The message handler invokes the demux

rouline ilentily the next path entry of the path. When a
dlrivcr receives a message, it invokes the message send
rautine passing a rcfcrence path entry. The message send
rqutine examines the passed path entry to determine (1)

whcthcr multiple paths branch from the path of the passed
path entry, {2) whether the passed path entry is a reference
with an associated path, or (3) whether the passed path entry
is a member with a next path entry. If multiple paths branch

fr‘lom the path of the passed path emtry, then the routine
recursively invokes the message send routine for cach path.

If the paih eatry is a reference with an associated path, then
the driver previously invoked the message send routine,

Whlch associated a path with the reference path entry, and
1hc routine places the message on the queue for the path. If
lhc passed path enlry is a member with a next path eniry,
1hcn ihe routine invokes the message handler (ie., conver-
sion routine of the cdac) associated with the next path entry.

If; the passed path entry is a reference without an associated
pfuh or is a member without a next path eniry, then the
routine invokes the demux routine to identify the next path
eniry. ‘The routine then recursively invokes the messages
send routine passing thal next path entry. In decision block

7(|]1 if the passed path entry has a multiplex list, then the
path branches off into multiplc paths and the routine con-

11[]1.[(;',‘1 al block 708, else the reuline continues at block 702.

Al packet may be processed by several different paths. For
c):;amplc, if a certain message is directed to two different

output devices, then the message is processed by two

::n'uluplc partial paths when searching for a complete path, In

déeision block 702, if the passcd path enlry is a member,
{Hen either the next path entry indicates a naited binding or
tﬂc path needs 10 be extended and the routine continues at
block 704, else the routine continucs at black 703. A nailed
binding is 2 binding {&.g., edge and protocol) is associated
with a session. In decision block 703, the passed path entry
is a reference and if the passed path cntry has an associated
phth then the rouline can queue the message for the asso-
L!Zl(f:d pith and the routine continues at block 703A, else the
rouunc needs to identify a path and the routine continues at
block 707. In block T03A, the routine sets the enlry to the
ﬁn,t path entry in the path and continues at block 717. In
h]nck 704, the rowtine sets the variable position to the stack
llst entry of the passed path entry. In decision block 708, the
rouune sels the variable next cntry ta the next path entry in

the pdlh If there is a next entry in the path, then the mext

0P\ EHNAL ComplanT

EXHielT A - PAGE 29

different paths. Also, 1 message may need to be processed by 3

o
L

290

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 28 of 33

US 6,629,163 Bl

8

session and edge of the protocol have been identified and the
routine continues at block 7046, else the routine continues at
block 707. In block 706, the routine passes the message 10
the message handler of the edge associated with the next
entry and then returns. In block 706, the routine invokes the
demux routine passing the passed message, the address of
the passed path entry, and the passed path entry. The demux
routine rcturns a kst of candidate paths for processing of the
message. In decision block 708, if at least one candidate path
is returned, then the routine continues at block 7049, ¢lse the
routine returns.

Blocks 709-716 illustrate the processing of a list of
candidate paths that extend from the passed path entry. In
blocks 710716, the routine loops selecting each candidate

;s path and sending the message to be process by each candi-

date path. In block 710, the routine sets the next entry to the
first path eniry of the next candidate path. In decision block
711, il all the canclidate paths have nol yet been processed,
then the routine continues at block 712, else the routine
returns. In decision block 712, if the next entry is equal 1o
the passed path entry , then the path is to be extended and
the rouline conlinues at block 7035, else the routine continues
at block 713, The candidate paths include a first path entry
that is a reference path catey for ncw paths or that is the last
pulh entry of a path being extended. In decision block 713,

if the number of candidate paths is greater than one, then the
routine conlinues al block 714, clse the routine continucs at
block 718. In decision black 714, if the passed path entry has
1 multiplex list associated with i, then the routine contines
at block 718, ¢lse the routine coatinues at block 718, In
block 715, the routine associates the list of candidate path
with the muliplex list of the passed path entry and continues
at block 716. In block 716, the routine sends the message to
the next cntry by recursively invoking the message send
routine. ‘Fhe routine then loops to block 710 1o select the
next entry associated with the next candidate path.

Blocks 717-718 are performed when the puassed path
entry Is a reference path entry that has a path associated with
it. In block 717, if there is a path associated with the next
entry, then the ‘routine continues at block 718, else the
rouline returns. In block 718, the routine queues the message
for the path of the next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This
routine is passed the packet (message) that is received, an
address structure, and a path cntry struciure. The demux
routine extcnds a path, creating ane if necessary. 'The rowtine
loops idemifying the next binding (edge and protocal) that
is 1o process the message and “nailing” the binding 1o a
session for the message, If not already nailed. After identi-
fying the nailed binding, the routine searches for the shortest |
path through the nailed binding, creating a path if none
exists. In block 801, the routine invokes the initialize demux
routine, In blocks 802810, the routine loops identifying a
path ar portion of a path for processing the passed message.

5 In decision block 802, if there is a current status, which was

returned by the demuxkey routine that was last imvoked
(e.g., continue, extend, end, or postpong), then the routine
conlinues at biock 803, else the routine continues at block
R11. In block 803, the routine invokes the get next binding
routine. The get next binding routine returns the next bind-
ing in the path. The binding is the edge of a protocol. That
routine extends the path as appropriate to include the bind-
ing. The routine retumns a return status of break, binding, or
multiple. The refurn status of hinding indicates that the next

5 binding in the path was found by extending the path as

appropriate and the routine continues to “nail” the binding to
a session as appropriale. The return stalus of multiple means

9

thal multiple trails (e.g., candidate paths) were identified as
posmble exiensions of the path, In a decision block 804, if
the yetorn slatus is break, then the routine continues at biock
831 If the return status is multiple, then the routine returns.
If the return status is binding, then the routine continues at
block 805. 11 decision block 805, if ihe retrieved binding is
n;.uled as indicated by being assigned to a session, then the
routine loops to block 802, else the routine continues at
block §06. In block 806, the routine invokes the get key
roulmc of the edge associated with the binding, The gel key
routine creates the key for the session associated with the

message. If a key cannot be created until subsequent bind-

irltgs are processed or because the current binding is to be
removed, then the pet key routine returns a next binding
status, else it returns a continue status. In decision block 807,
if the return slatus of the get key routine is next binding, then
the routine laaps to block 802 to pet the next binding, clse
the routine continues at block 808. In block 808, the routine
invokes the routine get session. The rouline get session
returns the session associated with the key, creating a new

session if necessary. In block 809, the routine invokes the

rgutine nail binding. The routine nail binding retricves the
binding if one is already nailed to the session. (Mherwise,
that roulige pails the binding to the session. In decision
black 810, if the nail binding routine returns a status of
‘simplcx, then the rouline continues at block 811 because
anly one path van use the session, else the routine loops (o
hlock 802. Immediately upon return from the nail binding
rou[me the routine may invoke a set map routine of the edge
pf.s&_,mg the session and a map to allow the edge 10 set 1is
map. In block 811, the routine invokes the find path routine,
wll-uch finds the shortest path through the binding list and
creales 4 path it necessary. In block 812, the routine invokes
the procuss path hoppmg routine, which determines whether
lhe identified path is part of a different path. Path hopping
Uu,urq when, for ¢xample, IP fragments are built up along
5ep4ratc paths, but once the fragments are built up they can
be processed by the same subsequent path.

FIG. 9 is a flow diagram of the initialize demux routine.
This routine 1s invoked to initialize the local data struclures
that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current statvs js
demux extend, then the routine is to extend the path of the
p.‘asscd path entry by adding additional path entries. If the
current status is demux end, then the demux routine is
endmg the current path. If the cument status is demux
contmuc then the demux routine is in the process of
contlmuug to extend or in 1he process of starting a path
identified by the passed address. In block 961, the routine
sets 1he local map structure to the map structure in the passed
palh entry structure. The map structure identifies the output
label the arget label, and the target key. In the block 902,
tﬁe routine initializes the logal message structure to the
passe,d message structure and initializes the pointers path
and address ¢lement to null. Tn block 903, the routine sets of
the variable saved status to ¢ and the variable status to
demux continue. The variable saved status is used to track
1ﬁe status of the demux process when backtracking to nail a
binding whose nail was,posiponed. In decision block %04, if
the passed path entryis associated with a path, then the
routine continues at block 905, else the routine continues at
b‘lock 906. In block 905, the routine sets the variable status
to the status of that path. In block 906, if the variable status
is demux coutinue, then the routine continues at block 907.
If the variable status is demux end, then the routine contin-
ues at bloek 908, If the variable status is demux exlend, then

PLAUTIER 'S ORAGIDAL ComPLayor 24
EXHievTt A '—PF\&E 2T

40

L

w
n

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 29 of 33

US 6,629,163 Bl

10

the routine continues at block 909, In block 907, the status
is demux continue, and the routine sets the local pointer path
address to the passed address and continues at block 91 1. In
block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux ¢xtend, and the rontine sets the local path
address to the address of the path that contains the passed
path eotry. In biock 910, the routine sets the address element
and the current binding of the path address pointed to by the
local pointer path address to the address entry of the member
structure ol the passed path entry. In the block 911, the
routine sets the local variable status to demux continue and
sets the local binding list structure to the binding list
structure from the local path address structure. In block 912,

5 the routine sets the local pointer current binding Lo ihe

address of the current binding pointed to by local pointer
path addrcss and sets the local variable postpone 1o 0. In
block 913, the routine sets the function lraverse o the
function that retrieves the next data i a list and sets the local
pointer session to null. The routine then returns.

FIG. 10 is a flow diagram of the init end routine. If the
path is simplex, then the routine creates a pew path from -
where 1he oiher one ended, else the routine creaies a copy of
the path. In block 1001, if the binding of the passed path
entry is simplex (ie., only one path can be bound 1o this
binding}, then the routine continucs at block 1002, clsc the
routine continues at blogck 1003, In block 1002, the rouline
sets the local pointer path address to point to an address
structure that is a copy of the address structure associated
with the passed path entry structure with its current binding
to the address entry associaled with the passed path entry
structure, and then retums. In block 1003, the routine sects
the local pointer path address to point to an address structure
that contains the URL ol the path that contains the passed
path entry. In block 1004, the rouline seis the local pointer
¢lement to null to initialize the selection of the bindings. Tn
blocks 1005 through 1007, the routine loops adding all the
bindings for the address of the passed path entry that include
and are before the passed path eniry to the address pointed
to by the local path address. In block 1005, the routine
retrieves the next binding from the binding list starting with
the first. If there is no such binding, then the routine returns,
¢lse the routine continucs at block 1006. In block 1006, the
rouline adds the binding 10 the binding hst of the local path
address struclure and sels the current binding of the local
variable path address. In the block 1007, if the local pointer
elemeni is equal to the address entry of the passed path entry,
then the routine returns, else the routine loops to block 1005
to sclect the next binding.

FIG. 11 is a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there is no nexi binding, then the routine
invokes the routine label map get to identify the list of edges
(“trails™) that will map the output label to the target label. If
enly cne trail is identified, then the binding list of path
address is extended by the edges of the trail, If multiple trails
are identified, then a path is created for each trail and the
routine returns so that the demux process can be invoked for
each created path. In block 1101, the routine sets the local
pointer binding Lo point to the next or previous (as indicated
by the traverse function) binding in the local binding list. In
block 1102, if a binding was found, then the rovitine returns
an indication that a binding was found, else the rouline
cantinues at black 1103 In block 1103, the rouline invokes
the label map get function passing the output label and target
label of the local map structure. The label map get function
returns a trail list. A trail is a list ol edges from the output

PlLANNTIER 'S
EARI BT I

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 30 of 33

US 6,629,163 Bl

11

label to the target tabel. In decision block 1104, if the size
of the trail list is one, then the rouline continues at block
1105, else he routine continues at block 1112, Tn blocks
1105-1111, the routine extends the binding list by adding a
bmdmg data structure for cach edge in the trail. The routine
then sets the local binding to the last binding in the binding
llqt In block 1105, the routine sets the local pointer current
bmdmg to point 1o the last binding in the local binding list.
[l'll block 1106, the routine sets the local variable temp trail
tar the trail in the trail list. In block 1197, the rouline exiends
thlc binding list by temp trail by adding a binding for each
edge in the trail. These bindings are not yet nailed. In block
1108, the routine sets the local binding to paint to the last
hinding in the local binding tist. In decision block 1109, if
the lacal binding does not have a key for a session and the
lacal map has a target key for a session, then the routine sets
the key Eor the binding to the target kev of the local map and
continues at block 1110, else the rouling loops to block 1101

1d retrieve the next binding in path. In block 1110, the

1
the Iocal map. In block 1111, the routine seis the target key
[the local map to null and then loop io block 1101 to retuen
the next binding. ln decision block 1112, if the local session
s sel, then the demultiplexing is already in progress and the
rdutine returns a break status. In block 1113, the routine
invokes a preparc multicast paths routine to preparc a path
entry for each (rail in the trail hist. The routine then returns
a |multiple status.

FIG. 12 is a low diagram of (be gel key routine. The get
Key 1outine invokes an edge’s demux-key routine 1o retrieve
a'key for the session associated with the message. The key
identifies the session of a protocol. The demux key routine

| .
creates the appropriate key for the message. The demux kev

r&ulinc returns a status of remove, postpone, o other. The
sttus of remove indicates that the eurrent binding should be
removed from the path. The status of posipene indicates that
the demux key routine cannot create the key because it needs
in‘formatiou provided by subscquent protocols in the path,
For example, a TCP session is defined by a combination of
a remote and lacal port address and an IP address. Thus, the
TpP protocol postpones the creating of a key until the IP
protocol identifies the 11 address. The get key routine retums
next binding status 1o continve at the next binding in the
ath. Qtherwise, the routine returns a continue status. In
ock 1201, the routine sets the locak edge to the edge of the
local binding (current binding) and sets the local protocol 1o
thle protacol of the local edge. In block 1202, the routine
invokes the demux key routine of the local edge passing the

local message, local path address, and local map. The demux

O

e

==

ock 1203, if the demux key routine returns a status of

temove, then the routine continues at block 1204. I the

. demux key routine returns a status of postpone, then (he

routine continues at block 1205, ¢lse the routine continues at

b}ock 1206. In block 1204, the routine sets the flag of the
local binding (o indicate that (he binding is to be removed
arlld continues at black 1206. In block 1205, the routine sets
th‘e variable fraverse to the function to list the nexi data,
increments the variable postpone, and then returns a next
binding status. In blocks 1206-1214, the routine processes
the posiponing of the creating of a key In blocks
1207-1210, if the creating of a key has been posipened, then
the rouline indicales lo backlrack on the path, save the
demux status, and sel the demux status o demux contiaue.
In blacks 1211-1213, if the creating of a key has not been
poslponcd then the routine indicates to continue forward in

the path and 1o restore any saved demux status, The save

?124 SWIAL COMPLAINT

“PA&E 20

routme sels the key of the local binding to the target key of o

key routine sets the key in the local binding. In decision 3
b

w

—_
w

)
=

12

demux slatus is the status associated by the binding where
the backirack started. In decision block 1206, if the variable
postpone is set, lhen the routine continues at block 1207, else
the routine coniinues at block 121%1. In block 1207, the
routine decrements the variable postpone and seis the vari-
able traverse o the list previous data function. In decision
block 1208, if the variable saved siatus is set, then the
routine continues at block 1210, clse the routine continues at
block 1209. The variable saved status contains the status of
the demux process when the demux process started to
backtrack. In block 1209, the routine sets the variable saved
status to the variablc staws. In block 1210, the routine sets
the variable status to demux continue and continues at Plock
1214. In block 1211, the routine sets the variable traverse to
the list next data function. In decision block 1212, if the
variable saved status in set, then the routine conlinues at
btock 1213, clse the routine continues at block 1214, In
block 1213, the rouline sets the variable status to the variable
saved status and sels the variable saved status to 0. In
decision block 1214, if the local binding indicates that it is
10 be removed, then the routine returns a next binding status,
else the roufine returns a continue stams.

FIG. 13 is a flow diagram of the get session routine. This

routine reirieves the session data structure, creating a data

23

30

65

20

structure session il necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session 1able of the local protocol indicated by the key
of the local binding. Hach protocol maintains a mapping
from each key to the session associated with the key. In
decision block 1302, if there is no session, then the routine
continucs at block 1303, else the routine returns, In block
1303, the routine creates a session for the local protocol. In
block 1304, the routine initializes lhe key for the local
scssion based on the key of the local binding. In block 1305,
the routine puts the session into the session table of the local
protocol. To Dlock 1306, the routine invokes the creale

“session function of the protocol to allow the protocol to

initialize its context and then relurns.

T1G. 14 is a flow diagram of the nail binding routine. This
routine determines whether 2 binding is already associated
with (“nailed 107) the session, I[so, the rovline returns lhat
binding. If not, the routine associates the hinding with the
session. The routine remurms a status of simplex o indicate
that only one path can extend Lthrough the nailed binding. In
decision block 1401, if the binding table of the session
contains an entry for the edge, then ihe routine continues at
block 1402, ¢lse the routine coptinues at block 1405. In
block 1402, the rowtine sets the binding to the entey from the
binding table of the local session for the edge. In block 1403,
the routine sets the current binding to point to the binding
from the session. In block 1404, if the binding is simplex,
then the routine returns a simplex status, else the routine
returns. Blocks 1405 through 1410 are performed when
there is no biading in the session for the edge, In block 1405,

5 the routine sets the session of the binding to the variable

session. In block 1406, the routine sets the key of the binding
to the key from the session. In block 1407, the routine scts
the entry for the edge in the binding table 6f the local session
1o the binding. In block 1408, the routine invokes the create
binding function of the edge of the binding passing the
hinding sa the edge can initialize the binding, 1f that function
returns a status of remove, the routine continues at block
1469. In block 1409, the routine sels the binding 1o be
removed and then returns.
FIG. 15 is a flow diagram of the find path routine. The find

path routine identifies the shortest path through the binding
list. If o such path exists, then the rouline extends a path to

PLANTIEE 'S azacswm, C/OMVLAJ(UT
EXHIBIT A - paGE 2]

Case 2:08-_cv-00184-JLR Document 1 Filed 02/04/08 Page 31 of 33

US 6,629,163 Bl

13

lncludr:: the binding list. In decision block 1501, if the
blqd1ng is simplex and a path already goes through this
biding (returned as an en!ry), then the rowtine continues at
b10ck 1502, clse the routine contimies at block 1503, In
block 1502, the routine sets ihe path to the path of the eniry
and retuzns. In block 1503, the routine initializes the pointers
Blcment and short entry to null. In block 1504, the routine
scis the path to the path of the passed path entry. If the local
palh is not null and its stats s demux extend, then the
o me continues at block 1509, else the routine continues at
bl&ck 1505. In blocks 1505—1508 the routine loops identi-
f}flng the shortest path through the bindings in the binding
hsl The reutine loops ss:lectmg cach path through the
hmdmg The selected path is eligible if it starts at the first
blndlng in the binding list and the path ends at the binding,
ﬂle routine loops setting the short entry to the shortest
cllglble path found so far. In block 1505, the routine sets the
vatiable first binding to the flrst bmdmg in the binding list
Oi|the path address. In block 1508, the routine sclects the
next path (entry) in the path list of ihe binding starting with
ihﬁ first. If a path js selected (indicating that there are mare
paths in the binding), then the routine continues at block
15|07, else the routine continues at block 1509. In block
1507, the routine determines whether the selected path starts
atjthe first binding in the binding list, whether the selected
path ends at the last bmdmg in the binding list, and whether
lhf‘: number of palh entries in the sclected path is less than the
aumber of path entries in the shortest path selected so far, If
the:se conditions are all satisfied, then the routine continues
atilack 1508, else the coutine loups to black 1506 (o select
Ih? next path {entry}. In block 1508, the routine scts the
shortest path (short eniry) to the selected path and loops to
bl@)ck 1506 to select the next path through the binding. In
blm,k 1509, the rouline sels the selected patb (entry) to the
Shortcst path. In decision block 1510, if a path has been
fOund then the routine contimues al block 1511, clse the
'l‘oulmc continues at block 1512, In block 1511, the routine
wls the path to the path of the sclected path entry and
rctums Blocks 1512-1516 are performed when no palhs
have been found. In block 1512, the routine sets the path 10
the path of the passed deh entry. I the passed path enlry has
a |path and its status is demuX extend, then the routine
canfinues at block 15185, else the routine continucs at block
1513, In block 1513, the rovline creates a path For the path
aLJidrcss. In block 1514, the routine sets the variable element
fo null and sets the path entry to the first element in the stack
list of the path. In block 1515, the routine sets the variable
6lemeur, 10 be address entry of the member of the passed path
emry and sets the path entry (o the passed path entry. In

black 1516, the routine invokes the cxtond path routine to 3

szleml the path and then returns, The extend path rouline
Creates a path through the bindings of the binding list and
seis the path status to the current demux status.

FIG. 16 is a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the
b]ndmg list is not the same path as that of the pussed path
cntrv Tn decision block 1601, if the path of the passed path
Gllnrv is sel, then the routine continues at block 1602, else the
routine continues at black 1609. In decision block 1602, if
lhe path of the passed path enlry is egual 1o the local path,
[lllen the routine coutinues at 1612, else path hopping s
otcurring and the routine continues at block 1603. In blocks
16031607, the rouline loops positioning pointers al Lhe first
path entries of the paths that are not at the same binding. In
black 1603, the routine seis the variable old stack to the
slack list of the path of the passed path eniry. In block 1604,

the routine sets the variable new stack to the stack list of the

20

30

35

40

60

=3
h

2\

14

local path. In block 1605, the routine sets the variable old
element to the next element in the old stack. In block 1606,
the routine sefs the variable element o the next element in
the new stack. In decision block 1607, the routine loops until
the path entry that is not in the same binding is located. In
decision block 1608, if the variable old entry is set, then the
routine is not at lhe end of the hopped-from path and the
routine contipues al block 1609, else routine confinues al
block 1612, In block 1609, the routine sets the variable cotry
lo ihe previous entry in the hopped-to path. In block 1610,
the routine sets the path of the passed path entry to the local
path. Inbleck 1611, the routine sets the local entry to the first
path entry of the stack list of the local path. In block 1612,
the routine inserts an entry into return list and then returns.

Although the conversion sysiem has been described in
terms of vatious embodiments, the invention is not limited
1o these embodiments. Medification within the spirt of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Alsa, a reference 1o a single copy of the message can be
passed to each conversion reviine or demuxkey routine.
These routines can advance the relerence past, the header
information for the protocol so that the reference is posi-
toned at the next header. After the demmx process, the

; reference can be reset to point to the first header for

processing by the conversion routines in sequence. The
scope of the invention is defined by the claims that follow.

What is claimed is:

1. A melhod in a computer system for processing a
message having a sequence of packets, lhe method com-
prising:

providing a plurality of components, each component

being a software routine for converting data with an
input format into data with an output format;

far the first packet of the message,

identifying a sequence of components for processing
the packets of the message such that the outpul
formar of the components of the sequence match the
input format of the next cormponent in the sequence;
and

storing an indication ol each of the identified compa-
nents so that the sequencc does not need lo be
re-identified for subscquent packets of the mcssage;
and

for cach of a plurality of packets of the message in

sequence,

for each of a plurality of components in the identified

sequence, ‘

retrieving state information relating 1o performing
the processing of the component with the previous
packet of the message;

performing the processing of the identified compo-
nent with Lhe packet and the relrieved state infor-
mation; and

storing stale information relating to the processing of
the component with the packet for use when
processing the next packet of the message.

2. The method of claim 1 wherein the storing of an
indication of each of the identified components includes
sloring a key [or use in retrieving state information relaling
ta the message.

3, The methed of ¢laim 1 wherein a second component of
lhe sequence of components that are identified is identified
after the processing of the first packet by a first component
is performed.

4. The method of claim 1 wherein the packet may be
wransformed by each component of an identified sequence,

PLAANTIER g
BlwsyT A

15

_Ii. The method of claim 1 wherein the identified sequence
of components for two messages are different.

(Ii- The method of claim 1 including crealing a separate
thread for cach message,

¥. The method of claim & wherein the identified sequence
of Eomponcms for a message are executed by the thread for
the message.

8. The method of claim 1 wherein the retrieving of stale
inflormation includes Tequesting the component to provide
the state information,

B. The melhod of claim 1 wherein the performing of the
processing of the component includes deferring performing
of | the next component in the identified sequence until
multiple packets are processed by the component.

;10. The method of claim 1 wherein the identifying of a
sequence of components includes deferring identification of
thd next component of the sequence until processing of the
last component identified so far in the sequence is per-
formed.

- The method of c¢laim 1 wherein two messages share

one or more components and associated stale informaticn.
2. The method of ¢laim 1 wherein an autput format of a
component in the identified sequence for a messape matches
an‘ input format of the mext component in the identified
sequence for the message. : .
|l3. The method of claim 1 wherein a component has
multiple output formats.
!14. The method of claim 1 wherein a plurality of
sequences of components are identified for a message.
15. A method in a eomputer system demultiplexing pack-
cts of messapes, the method comprising:
identifying a sequence of components for processing each
message based on Lhe first packet of the message so that
subsequent packels of lhe message can be processed
without re-identifying the components, wherein dilfer-
ent sequences of components can be identified for
different messages, cach companent being u software
routing;.and .
for each packet of each message, performing the process-
ing of the identified sequence of components of the
message wherein state information generated by per-
" forming Lhe processing of a component for a packet is
available to the component when the component pro-
cesses the next packet of the message,
16, The mcthod of claim 15 wherein the sequence of
components is identified as the first packet of the message is
processed.
‘ 17. The method of claim 15 wherein a packet of 2 message
as processed by a component of the identified sequence for

identified sequence. :

18. The method of claim 15 wherein the components of an
ienlified seyuence for 4 message are execuled within a
thread associate with a single message.

| 19, The method of claim 15 wherein the state information
includes requesting the component that generated the state
information to provide the state information.

20. The method of claim 15 wherein the performing of the
processing of the component includes deferring performing
0|f the mext component in the identified sequence uptil
multiple packets are processed by the component.

| 21. The method of claim 15 wherein the identifying of a
sequence of components includes deferring identification of
the next component of the sequence until processing of the
last component identified so far in the sequence is complete.
22, The methad af claim 15 wherein two messages share
one or more cemponents and associated state information.

t%e message is available to the next component in the 3

PAGE B2

w

14

*
=

5

\

60

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 32 of 33

US 6,629,163 Bl

16

23. The method of claim 15 wherein an output format of
a component in the identified sequence for a message
matches an input format of the next component in the
identified sequence for the message.

24. The method of claim 15 wherein a componenl has
multiple output formats.

25. The method of claim 15 wherein a' plurality of
sequences of components are identified for a message.

26. A computer system for processing packets of
messages, the method comprising:

a plurality of components, cach component having an

input format and an cutpul [ormat;

identification means that identifies a sequence of compo-

nents for each message afier a packet of the message
has been reccived, such that the output format of a
component in an identified sequence matches the input
format of the next compaonent in the idemtified
sequence;

receiving means thal receives packeis of the messages;

and

demultiplexing means thal routes packels of messages 1o

lhe sequence of componenis idenlified for each mes-
sage for performing the processing of the components
on the packets. .

27. The computer system of claim 26 including means
that stores and retrieves stale information for each compo-
nent of the identified sequence of compenents for each
Message.

28. The compuier systemn of ¢laim 26 wherein a packe(of
a message as processed by a component of the identified
sequence for the message is available to the next component
in the identified sequence.

29. The computer system of claim 26 wherein the per-
forming of the processing of the component includes defer-
ring performing of the next component in the identified
sequence until multiple packets are processed by the com-
ponent.

30. The computer system of ¢laim 26 whercin identifica-
tion means deferring identification of the next component of
the sequence until processing of the last component identi-
fied so far in the sequence is complete.

31. ‘The computer system of claim 26 wherein two mes-
sages share one or more components and associated state
information.

32. The compuier system of claim 26 wherein an cutput
format ©of & component in the identified sequence for a
message Matches an input format of the next component i
the identified sequence for the message.

- 33. The computer system of claim 26 wherein a compa-
nent has multiple output formats. B

34. The computer system of claim 26 wherein the iden-
tification tmcans identifics a plurality of sequences of com-
ponents for a message.

35, A computer-readable medium containing instruction
demultiplexing packets of messages, by method comprising:

identifying a message-specific sequence of components

for processing the packets of ¢ach message upon
recelving the first packet of the message wherein sub-
sequent packels of the message can use the message-
specific sequence identified when the first packet was
recgived; and ‘
for each packel of the message, invoking the identified
sequence of components in sequence to perform the
processing of each compaonent-for the packet wherein
each component saves message-specific siate informa-
tion so that that-componenl can use the save Message-

ORAGINAL ComPLAT -

17

specific staie information when that component per-
forms its processing on the next packet of the message.
36 The computer-readable medium of ¢laim 35 wherein
seond camponent of the message-specxﬁc sequence Is
1dc!nhﬂml alter the first packet is processed by a first com-
poncm of the message-specific sequence.
3;7 The computer-readable medium of claim 35 wherein
a packet may be transformed by each componenl of an
identified sequence,

crcatmg a scparaic thread for cach message.

39. The computer-readable medivm of claim 38 wherein
the identified sequence of components for a message is
exccuted by the thread for the message.

40 The computer-readable medium of claim 35 wherein 15

thc performing of the pracessing of the component includes
dcflerrmg performing of the next component in the identified
sequence until multiple packets are processed by the com-
ponent.

PLALTIFE'S ORIGINAL COMPLAIDT

| 7 3%

Exvigic A~ PAGE 33

Case 2:08-cv-00184-JLR Document 1 Filed 02/04/08 Page 33 of 33

US 6,629,163 Bl

18

41. The compuier-readable medium of claim 35 wherein
the identifying of a sequence of components includes defer-
ring identification of the next component of the sequence
until processing of the last component identified so far in the
sequence is performed.

42. The computer-readable medium of claim 35 wherein
two messages share one or more components and associaled

- state information.
38 The computer-readable medinm of claim 35 mcludmg 10

43, The computer-readable medium of claim 35 wherein
an ontput format of a component in the identified sequence
for a message matches an input format of the mext compo-
nent in the identified sequence for the message.

44. The computer-readable medivm of claim 35 wherein
a plurality of sequences of companents are identified for &
message.

