Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 1 of 62 PagelD #: 1

G‘ﬁ/ Py T
IN THE UNITED STATES DISTRICT COURT ~ +/ /7 :
FOR THE EASTERN DISTRICT OF TEXAS \ ' !

MARSHALL DIVISION -

(1) INTERGRAPH HARDWARE
TECHNOLOGIES COMPANY, INC,, a
Nevada corporation,

Plaintiff, .)
Civil Action No. 2-03Cy-034 58 —qf

VS.

(1) TEXAS INSTRUMENTS
INCORPORATED, a Delaware corporation,

Defendant.

LS M LS > L S L M2 S L S L S

COMPLAINT FOR PATENT INFRINGEMENT

Plaintiff INTERGRAPH HARDWARE TECHNOLOGIES COMPANY ("IHTC") for its

Complaint against Defendant TEXAS INSTRUMENTS INCORPORATED alleges:
THE PARTIES

1. IHTC is a corporation duly organized and existing under the laws of the State of
Nevada, and has a principal place of business at 2325-B Renaissance Drive, Suite 16, Las Vegas,
NV 89119. IHTC is a wholly-owned subsidiary of Intergraph Corporation ("Intergraph Corp."),
a Delaware corporation with its principle place of business in Huntsville, Alabama.

2. THTC is informed and believes, and on that basis alleges, that Defendant TEXAS
INSTRUMENTS INCORPORATED (“TT”) is a Delaware corporation with its principal place of
business at 12500 TI Boulevard, Dallas, Texas 75243-4136.

JURISDICTION AND VENUE

3. The court has subject matter jurisdiction pursuant to 28 U.S.C. §§1331 and
1338(a) because this action arises under the patent laws of the United States, 35 U.S.C. §81 et
seq. Venue is proper in this federal district pursuant to 28 U.S.C. §§1391(b)-(c) and 1400(b) in
that TI has done business in this District, has committed acts of infringement in this District, and

continues to commit acts of infringement in this District, entitling THTC to relief.

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 2 of 62 PagelD #: 2

INFRINGEMENT OF U.S. PATENT NO. 5,560,028

4, On September 24, 1996, United States Patent No. 5,560,028 (the “”028 patent™)
was duly and legally issued for an invention entitled “Software Scheduled Superscalar Computer
Architecture.” THTC was assigned the ‘028 patent and THTC continues to hold all rights and
interest in the ‘028 patent. A true and correct copy of the ‘028 patent is attached hereto as
Exhibit A.

5. Upon information and belief, TI has infringed and continues to infringe the “028
patent. The infringing acts include, but are not limited to, the manufacture, use, sale,
importation, and/or offer for sale of Digital Signal Processors ("DSPs") utilizing TI's
TMS320C6000 platform, including TI's C62x, C64x and C67x generations, and Application
Specific Integrated Circuits ("ASICs") containing such DSPs; and inducement of others to
manufacture, use, sell, import, and/or offer for sale of such DSPs and ASICs. Tl is liable for
infringement of the ‘028 patent pursuant to 35 U.S.C. § 271.

6. TI's acts of infringement have caused damage to IHTC and IHTC is entitled to
recover from TI the damages sustained by IHTC as a result of TI’s wrongful acts in an amount
subject to proof at trial. TTI's infringement of IHTC's exclusive rights under the ‘028 patent will
continue to damage THTC, causing irreparable harm, for which there is no adequate remedy at
law, unless enjoined by this Court.

7. Upon information and belief, TT's infringement of the ‘028 patent is willful and
deliberate, entitling IHTC to increased damages under 35 U.S.C. § 284 and to attorneys’ fees and
costs incurred in prosecuting this action under 35 U.S.C. § 285.

INFRINGEMENT OF U.S. PATENT NO. 5,794,003

8. On August 11, 1998, United States Patent No. 5,794,003 (the *”003 patent”) was
duly and legally issued for an invention entitled “Instruction Cache Associative Crossbar Switch
System.” IHTC was assigned the ‘003 patent and IHTC continues to hold all rights and interest
in the ‘003 patent. A true and correct copy of the ‘003 patent is attached hereto as Exhibit B.

9. Upon information and belief, T1 has infringed and continues to infringe the 003

patent. The infringing acts include, but are not limited to, the manufacture, use, sale,

_2.-

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 3 of 62 PagelD #: 3

importation, and/or offer for sale of DSPs utilizing TT's TMS320C6000 platform, including TT's
C62x, C64x and C67x generations, and ASICs containing such DSPs; and inducement of others
to manufacture, use, sell, import, and/or offer for sale of such DSPs and ASICs. TI 1s liable for
infringement of the ‘003 patent pursuant to 35 U.S.C. § 271.

10. TI's acts of infringement have caused damage to [HTC and IHTC is entitled to
recover from TI the damages sustained by IHTC as a result of TI's wrongful acts in an amount
subject to proof at trial. TI's infringement of IHTC's exclusive rights under the ‘003 patent will
continue to damage IHTC, causing irreparable harm, for which there is no adequate remedy at
law, unless enjoined by this Court.

11. Upon information and belief, TI's infringement of the ‘003 patent is willful and
deliberate, entitling IHTC to increased damages under 35 U.S.C. § 284 and to attorneys’ fees and
costs incurred in prosecuting this action under 35 U.S.C. § 285.

INFRINGEMENT OF U.S. PATENT NO. 6,360,313 B1

12. On March 19, 2002, United States Patent No. 6,360,313 B1 (the *’313 patent”)
was duly and legally issued for an invention entitled “Instruction Cache Associative Crossbar
Switch.” THTC was assigned the ‘313 patent and IHTC continues to hold all rights and interest
in the <313 patent. A true and correct copy of the 313 patent is attached hereto as Exhibit C.

13. Upon information and belief, TI has infringed and continues to infringe the “313
patent. The infringing acts include, but are not limited to, the manufacture, use, sale,
importation, and/or offer for sale of DSPs utilizing TI's TMS320C6000 platform, including TT's
C62x, C64x and C67x generations, and ASICs containing such DSPs; and inducement of others
to manufacture, use, sell, import, and/or offer for sale of such DSPs and ASICs. TI 1s liable for
infringement of the ‘003 patent pursuant to 35 U.S.C. § 271.

14. TT's acts of infringement have caused damage to IHTC and IHTC is entitled to
recover from TI the damages sustained by THTC as a result of TI's wrongful acts in an amount
subject to proof at triél. TT's infringement of IHTC's exclusive rights under the ‘313 patent will
continue to damage IHTC, causing irreparable harm, for which there is no adequate remedy at

law, unless enjoined by this Court.

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 4 of 62 PagelD #: 4

15. Upon information and belief, TI's infringement of the ‘313 patent is willful and
deliberate, entitling IHTC to increased damages under 35 U.S.C. § 284 and to attorneys’ fees and
costs incurred in prosecuting this action under 35 U.S.C. § 285.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff Intergraph Hardware Technologies Company requests entry of
judgment in its favor and against Texas Instruments Incorporated as follows:

a) Declaration that Texas Instruments Incorporated has infringed U.S. Patent Nos.
5,560,028, 5,794,003 and 6,360,313 B1;

b) Permanently enjoining Texas Instruments Incorporated, its officers, agents,
employees, and those acting in privity with them, from further infringement, contributory
infringement and/or inducing infringement of U.S. Patent Nos. 5,560,028, 5,794,003 and
6,360,313 B1;

c) Awarding the damages arising out of Texas Instruments Incorporated's
infringement of U.S. Patent Nos. 5,560,028, 5,794,003 and 6,360,313 B1, including enhanced
damages pursuant to 35 U.S.C. § 284, to Intergraph Hardware Technologies Company, together
with prejudgment and post-judgment interest, in an amount according to proof;

d) An award of attorneys’ fees pursuant to 35 U.S.C. § 285 or as otherwise permitted

by law; and
€) For such other costs and further relief as the Court may deem just and proper.
DATED: January 30, 2003 Respectfully submittgd,

By:

Franklin Jones Jr.

State Bar No. 00000055

JONES AND JONES, INC., P.C.
201 West Houston Street

P.O. Drawer 1249 '
Marshall, TX 75671-1249
Telephone: (903) 938-4395
Facsimile: (903) 938-3360
maizieh@millerfirm.com

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 5 of 62 PagelD #: 5

Otis W. Carroll — Attorney-In-Charge

State Bar No. 03895700

nancy@icklaw.com

IRELAND CARROLL AND KELLEY, P.C.
6101 South Broadway, Suite 500

P.O. Box 7879

Tyler, TX 75711

Telephone: (903) 561-1600

Facsimile: (903) 561-1071

S. Calvin Capshaw

State Bar No. 03783900
ccapshaw(@bmoh.com
BROWN McCARROLL LLP
1127 Judson Road, Suite 220,
P.O. Box 3999

Longview, Texas 75601-5157
Telephone: (903) 236-9800
Facsimile: (903) 236-8787

George M. Schwab

CA State Bar No. 058250
gms@townsend.com

K.T. Cherian

CA State Bar No. 133967
ktc@townsend.com

R. Scott Wales

CA State Bar No. 179804
rsw(@townsend.com

April E. Abele
aeabele@townsend.com

CA State Bar No. 180638

Gregory S. Bishop

CA State Bar No. 184680
gsbishop@townsend.com
TOWNSEND AND TOWNSEND AND CREW LLP
Two Embarcadero Center, 8th Floor
San Francisco, California 94111
Telephone: (415) 576-0200
Facsimile: (415) 576-0300

David Vance Lucas

General Counsel

INTERGRAPH CORPORATION
Mail Stop IW2008

Huntsville, Alabama 35894-0001
Telephone: (256) 730-2032
Facsimile: (256) 730-2247
dvlucas@ingr.com

Attorneys for Plaintiff
INTERGRAPH CORPORATION

SF 1427607 vl

Case 2:03-cv-00034-DF Document1 Filed 01/30/03 Page 6 of 62 PagelD #: 6

United States Patent (9
Sachs et al.

W 0 O A J

US00556002
(111 Patent Number: '+ 5,560,028
@451 Date of Patent: ‘Sep. 24, 1996

{54] SOFTWARE SCHEDULED SUPERSCALAR
COMPUTER ARCHITECTURE
{751 Inventors: Howard G. Sachs, Belvedere; Siamak
Arya, Palo Alto, both of Calif.
[73] Assignee: Intergraph Corporation, Huntsville,
Ala.
[21] Appl. No.: 422,753
[22] Filed: Apr. 13, 1995
Related U.S. Application Data
[63] Continuation of Ser. No. 147,800, Nov. 5, 1993, abandoned.
[51] Int. CLS eeeoomeenmemmrmreonseammanns GO6F 9/00; GOGF 9/38
EZATR (T 64 T ——. 395/800; 364/DIG. 1;
364/DIG. 2; 364/262.4; 364/263.3; 364/946.2;
364/946.9
[58] Field of Searcheee 395/800; 364/DIG. 1,
364/DI1G. 2
[56] References Cited
’ U.S. PATENT DOCUMENTS
4,437,149 3/1984 Pomerene ef al. .ccreervirnscrines 364/200
4,847,755 7/1989 Morrison et al. .. 3641200
4,933,837 6/1990 Freidin 3647200
5,055,997 10/1991 Sluijter et al. . 3641200
5,081,575 1/1992 Hilleret al. 3951325
5,101,341 3/1992 Circello et aL 395/375
5,121,502 6/1992 Rauv et al. .eeccmmmsesrerissasemsenser 395/8
5,129,067 771992 Johnson ... 3951375
5,151,981 9/1992 Wescott et al. .. 3957375
5,179,680 1/1993 Colwell et al. .. 395/425
5,197,137 3/1993 Kumaret al. 395/375
5203,002 4/1993 Wetzel ... 395/800
5,214,763 5/1993 Blaner et al. 395/375
5,226,169 7/1993 Gregor 395/800
5,233,696 8/1993 Suzukicoereeee 395/375
5,297,255 3/1994 Hamanaka et al. 395,200
5297,281 3/1994 Emmaetal. 395/650
5,299,321 3/1994 BZUKA .ovrcrraecrmmsasesessanennamsenss 395/375
FOREIGN PATENT DOCUMENTS

0449661A2 10/1991 European Pat. OF. .

0496928A2 8/1992 European Pat. Off. .
OTHER PUBLICATIONS

Case et al., “DEC enters microprocessor business with
alpha,” Microprocessor Report 6(3):1,6~14 (Mar. 4, 1992).
Dutton, “The design of the DEC 3000 model 500 AXP
workstation,” IEEE 1063-6390/93, pp. 449-455 (1993).
Allison, “DEC 7000/10000 model 600 AXP multiprocessor
server,” IEEE 1063-6390/93, pp. 456464 (1993).

Grove et al., “GEM optimizing compliers for alpha AXP
systems,” IEEE 1063-6390/93, pp. 465-473 (1993).
Minagawa, Kenji, et al., IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, May
9-10, 1991, “Pre-decoding mechanism for superscalar
architecture”, pp. 21-24.

De Gloria, Alessandro, et al., Processing Comp. Euro. 1992,
May 4, 1992, “A programmable instruction format extension
to VLIW architectures”, pp. 35-40.

(List continued on next page.)

Primary Examiner—Tod R. Swann

Assistant Examiner—Valerie Darbe

Attorney, Agent, or Firm—Townsend and Townsend and
Crew, L1LP

[57} ABSTRACT

A computing system is described in which groups of indi-
vidual instructions are executable in parallel by processing
pipelines, and instructions to be executed in parallel by
different pipelines are supplied to the pipelines simulta-
neously. During compilation of the instructions those which
can be executed in paralle]l are identified. The system
includes a register for storing an arbitrary number of the
instructions to be executed. The instructions to be executed
are tagged with pipeline identification tags and group iden-
tification tags indicative of the pipeline to which they should
be dispatched, and the group of instructions which may be
dispatched during the same operation. The pipeline and
group identification tags are used to dispatch the appropriate
groups of instructions simultaneously to the differing pipe-
lines.

23 Claims, 11 Drawing Sheets

|-CACHE
32 KB (512 FRAMES)
2-WAY SET-ASSOCIATIVE

=

i~ 70

|

[T1TF

miw|is|u]lBir
\ 64
s12
] o] TR gy 18 .
o1 =] 80 B 81 B &1 B 81 £ &1 B e B 81 B €0 BE—=SELY o5
TEST] ML M MUX Ml UL MUXE—] MUX] !
rorT| | EXPET EXPE] EXPE—] EXPE—] EXPR—] EXPE—] EXPL| EXPE EXPE = sEi 6 SEL4
8 7 s 5 4 3 g2 1) = SEL6
T T AT AT T
pvg | PV7 | PVe | PVsS | Bv4 | PV3 | PV2 | PVI 184
PORT
: VALIDO
OLD j-{HoLD |- HOLD |+ HOLD [+{HOLD [~{ HOLD {+{HOLD [+| HOLD {-{HOLD NHOLD

v
PIFEE PIPE7 PIPE6 PIPES PIPE4 PIPE3 PIPE2 PIPET FIPEC

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 7 of 62 PagelD #: 7

5,560,028 .'
Page 2

OTHER PUBLICATIONS

Bakoglu, H. B,, et al., “The IBM RISC System/6000 Pro-
cessor: Hardware Overview,” IBM J. Res. Develop. (Jan.
1990) 34(1):12-22.

Fisher, Joseph A., et al, “Paralle] Processing: A Smart
Compiler and a Dumb Machine,” Proceedings of the ACM
SIGPLAN ’84 Symposium on Compiler Construction, S/G-
PLAN Notices (Jun. 1984) 19(6):37-47.

Agerwala, Tilak, et al., “High Performance Reduced Instruc-
tion Set Processors,” IBM Research Report No. 12434
(#55845) (Jan. 9, 1987), IBM Thomas J. Watson Research
Center, Yorktown Heights, New York.

Patterson, David A., et al., Computer Architecture—A Quan-
titative Approach, Morgan Kaufmann Publishers, Inc., San
Mateo Calif., 1990, Table of Contents, pp. xi—xwv.

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 8 of 62 PagelD #: 8

U.S. Patent Sep. 24, 1996 Sheet 1 of 11 5,560,028

SECONDARY CACHE

20 34\1!128
/ 22

DATA-CACHE / 128
-~ 32leL~—32
32
32 KB FOUR-WAY
SET-ASSOCIATIVE 30
32 BYTE LINE e
g6
PREDECODER
128 64 ’ AND
CACHE 64 DRAM
3X324 2X 64/\ ,@ CONTROLLER MEMORY
128 64 32
CPU/FPU CONTROLLER
INSTRUCTION ‘
CACHE
16 KB TWO-WAY
SET-Assocm'.INE 12
32 BYTE Li 532 / -
32 64
: e
36
I/O (586 BUS)
PCI BUS

Fia. 1

Case 2:03-cv-00034-DF Document1 Filed 01/30/03 Page 9 of 62 PagelD #: 9

U.S. Patent Sep. 24, 1996 Sheet 2 of 11 5,560,028
31 30 0
s INSTRUCTION
1 31
FIG. 2
INSTRUCTION 1 | INSTRUCTION2 | | INSTRUCTION n

FiG. 3

wo | wi w2 | ws|wsl| ws| ws| wr
| 32 BYTES >

FIG. 4

Case 2:03-cv-00034-DF Document 1 Filed 01/30/03 Page 10 of 62 PagelD #: 10

U.S. Patent Sep. 24,199 Sheet 3 of 11 5,560,028

wo | wi | w2 | w3 |ws]|ws| we | wr?
[GROUP 0]

FIG. 5A

S= 0 0 1 1 1 0 0 0

Wo | Wi | w2 | W3 | wa)| W5 | wWs | W7
[GROUPO] [GROUPt1] [GROUP2]

FiG. 5B

S= 0 1 0 1 0 1 0 1
WO | W1 | W2 | W3 | WA | W5 [W6 | W7
[GO] [G1] [G2] [G3] [G4] [G5] [Ge] [G7]

FIG. 5C
83 59 56 0
S INSTRUCTION
4 3 57

FIG. 6

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 11 of 62 F3age|D #: 11

U.S. Patent |

5,560,028

Sheet 4 of 11

Sep. 24, 1996

anaHs | I])) . y y
,amoz&xmlll:o\\ :o\\ So\\ os\\ So\\ So\\ ,8\\ 000/

Z Oid
1SV ddiHl aNOO3s 1SHId
wm.erwxw mw;.:%wxw ww._.Dﬁwam S31ND3axX3
4 &ngummv . € n_DunruW_G c n_JrOmmu I &DMUEO
w._u..r_m m._._m>N,_.m
Silg v9
A

114 .
oVl

ai3dld —— 0010 LHEO HQO0 0010 100 1000 0100 {100

d ANIM3did :
7 _

H30003034d

AHOWIW NI INvHH
L 0

slid 99c=2E X8

JAHOVO-I NI INVHA

4 Y
S S S sgllgee
\ \ \——
1 1 0 _ I 1 I
¥ dNOHD € dNOYD 1) I NOYD

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 12 of 62 PagelD #: 12

U.S. Patent

Sep. 24, 1996 Sheet 5 of 11 5,560,028
50~ sEconDARY
CACHE
Y256
60
N PRE-DECODER
4512 76 74
70~_ ‘ '
PHYSICAL Y EL I
ADDRESS
84 R PRIMARY 256| TAGS
19 INSTRUCTION
1 — CACHE l
90
~4 82
LB A 73///512 100
| _~BITS [12:5] /
VIRTUAL —} 19 3
ADDRESS = ASSOCIATIVE CROSSBAR
BITS [31:13] BITS{ 21 —
4:2] p B
|_~BITS [31:2] . . X
. PIPE| |PIPE| ___ |PIPE
MUX] 0 1 7
T T T T\sz BITS
ADDRESSES

FIG. 8

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 13 of 62 PagelD #: 13

U.S. Patent Sep. 24, 1996

Sheet 6 of 11 - 5,560,028
31 13 12 5 4 2
REAL ADDRESS |
ﬁ\19 \\8 \\3
ga-"| Mg ™\ 81
i : | —
INSTRUCTION TAG
256 X 512 557%
512 Y512
91" 92 |
. +
A MUX
120 125
512
Y v
ASSOCIATIVE CROSSBAR 100
1(64 \1\64 o o o *\64
PIPEO PIPE 1 PIPE7

FIG. 9

4
i
H*
S %0
S N
S S
o -~
~ =
S &
5 ..M, vl 1L} 7 S ¥ R 11
M_A\ La 2a La 0a
) 1383H D3ds
: —{iTolokyr -
- A v |
g g) | D o e
3 g L8} 951 gsi ¥51 esi— | | est 151 051
— ~ £
o -
5§ g T 8EL—
i 7 LE1—
- _9g1—
= T [n
am.v m veL— > 3HNOIA
3 i A - eel—’ | ; Ol
S g ovi NET-TE
8 _ D
£l el

F, 8 et
. M | N
I
™ € 7777 N\ 7777, .77 |~ 0€l
S o e e el el)
3 - FnnoE sd Sd Sd sd S d |
o & w5 v ~ ~-
s ¥t g dnouo } dNOHDO 0 dNOYD
& Dnm ww/L
Q |
m 4 6 3HNDI4 WOH4

-

—

 Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 15 of 62 PagelD #: 15

5,560,028

Sheet 8 of 11

Sep. 24, 1996

U.S. Patent

LE DI
o1t oo | oo proos oo |
b frosrenrennees b : M :
18— m m T | |
S g seensreeeens o o e e o
28l H | | m | m m
L " " " ; '
L S— — — . m m
eaLd | | T | m
T — R — SRS SN SN A— SO —— S
velg m m m | ™
| " " " "
A S SRR IRV VRSO USSR N S g 3did
oa1-=! m m m m ™0z
||||||||||||| Levasnonannancan 2 " \% \”..
98—} i gog ! ! Az T
........................... SR CROPt U PPN U SRS SO £ 3did
Nm—.\wl y- 4 [o -. p — /IN.ON
21 oLl SL1 pLL|ELH 2Lt 1L
L9G¥€210
Ly | g oy | I
2a 9a 1a 0a
‘ | oLt
BB BEADSY
0o o 0 0
11 eet1 geL Ied

SHL1VYd AHOM NOLLONYLSNI

/ow FHNDId NWOHA

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 16 of 62 PagelD #: 16

U.S. Patent Sep. 24,1996 Sheet 9 of 11 5,560,028

ALU ALU | LOAD |STORE| LOAD | FP FP Br

0 0) 0 1 1 1 2
GROUP TAG
FIG. 12
CLOCK 1 — ALU ALU LOAD STORE
CLOCK2— LOAD FP FP

CLOCK3— BRANCH

FIG. 13

N~
—
H*
o)
ER
= S vi ‘Old

—
m N 03did +3did 23dld €3dld v3dld S3did 93did Z3did 83did
5 4 , R R R SN A R S B
! Q10HN z >| @10H |+{ A 1OH |+{ G10H |+{ Q10H |+{ ATOH [+{ GTOH |»{ AOH {+{ GTOH |+ aTOH
=2 0 AIvA . ,
a¥ 1HOd
- . + ¥9y IAd eAd €Ad | VAd | SAd 9Ad LAd 8Ad
s B —— et e L L L L]
Q o : oms B o Bl BleBle By s B3l =53 L B8
) S L) as S1ES =gxa 3axa (=2 axa [2axa 2 dxa =axa =3 axa 2ldxa 2ldxal |idod
S o 27135 -S13S —IX NI XN IXNIN X OIN XN ESIXNINEZIXOW FSIXOWESIXNN - (1S3
= 2 013 F1ES—= k8 = 18 = b8 =] ke | b8 =2 18 = ke = ke =] 18
LL (70} y T
— 21g
5
E]
3 ~ el
S ¥ Sql 3did
w a (ot Lijatfellv]si]a] 21

& 3 4 3
Q i Ly
3
@ X F 3
m SNOILONULSNI 378VN3 ‘
> ~— 12204
o = g e _” od
o™
2 m , m>~h<_oomm<.kmw AVM-2
2 R $al dNOYO ed SANVLL 218) Dl 28
© v ol| tifai|el|{viisi]ol 4]
@) U.)

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 18 of 62 PagelD #: 18

U.S. Patent Sep. 24,1996 Sheet 11 of 11 5,560,028

GROUP IDS
17161514 131211 10

NEXT FRAME [O[1]1]7]0[1]0]0]

CURRENT FRAME [1]0f0{1]0]1]1]0]

8
FRAME
INSTRUCTION ENABLES | FLAG
7181514131211 10 7 NEXT ——10]
CLK 1 [O]0J0J0[0[11111 LATER GROUP? | arGupe |-
7\ A3 11
A7 ,
. /7 _Z_
O
%)
DECODE m |m
m m
z |
, {3 = e
) |
PC INST. ENABLE NFF ~
cLK 2 [01T1] [ofoJo[i[1]0]0]0] [0] (6]ofolZ
cLk 3 [710[7] [O[0[i[o[ofofo[o] [6] ~ PROGHAM

CLK 4 [1]1]0] [1TiToJo[0]o]0]0] (@CLOCK 1)
CLK 5 [0]0]0] [0JoToToTolo]0]1] [0]
CLK & [0]0T7] [oToToT0]0]1]110] [0]

CLK 7 [0[1]1] [o[F[AT1TTToT0]0] [0]

cLK 8 [1[1]1] [i]oJoJolo[o]o]0]
FiG. 15

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page 19 of 62 PagelD #: 19

5,560,028 T

1

SOFTWARE SCHEDULED SUPERSCALAR
COMPUTER ARCHITECTURE

This is a continuation of application Ser. No. 08/147,800
filed Nov. 5, 1993, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to the architecture of computing
systems, and in particular to an architecture in which groups
of instructions may be executed in parallel, as well as to
methods and apparatus for accomplishing that.

A common goal in the design of computer architectures is
t0 increase the speed of execution of a given set of instruc-
tions. Many solutions have been proposed for this problem,
and these solutions generally can be divided into two groups.

According to a first approach, the speed of execution of
individual instructions is increased by using techniques
directed to decreasing the time required to execute a group
of instructions serially. Such techniques include employing
simple fixed-width instructions, pipelined execution units,
separate instruction and data caches, increasing the clock
rate of the instruction processor, employing a reduced set of
instructions, using branch prediction techniques, and the
like. As a result it is now possible to reduce the number of
clocks to execute an instruction to approximately one. Thus,
in these approaches, the instruction execution rate is limited
to the clock speed for the system.

To push the limits of instruction execution to higher
levels, a second approach is to issue more than one instruc-
tion per clock cycle, in other words, to issue instructions in
parallel. This allows the instruction execution rate to exceed
the clock rate. There are two classical approaches to parallel
execution of instructions.

Computing systems that fetch and examine several
instructions simultaneously to find parallelism in existing
instruction streams to determine if any can be issued
together are known as superscaler computing systems. In a
conventional superscaler system, a small number of inde-
pendent instructions are issued in each clock cycle. Tech-
niques are provided, however, to prevent more than one
instruction from issuing if the instructions fetched are
dependent npon each other or do. not meet other special
criteria. There is a high hardware overhead associated with
this hardware instruction scheduling process. Typical super-
scaler machines include the Intel i960CA, the IBM RIOS,
the Intergraph Clipper C400, the Motorola 88110, the Sun
SuperSparc, the Hewlett-Packard PA-RISC 7100, the DEC
Alpha, and the Intel Pentium.

Many researchers have proposed techniques for super-
scaler multiple instruction issue. Agerwala, T, and J. Cocke
{1987] “High Performance Reduced Instruction Set Proces-
sors,” IBM Tech. Rep. (March), proposed this approach and
coined the name “superscaler.” IBM described a computing
system based on these ideas, and now manufactures and sells
that machine as the RS/6000 system. This system is capable
of issuing up to four instructions per clock and is described
in “The IBM RISC System/6000 Processor,” IBM J. of Res.
& Develop. (January, 1990) 34:1.

The other classical approach to paralle] instruction execu-
tion is to employ a “wide-word” or “very long instruction
word” (VLIW) architecture. A VLIW machine requires a
new instruction set architecture with a wide-word format. A
VLIW format instruction is a long fixed-width instruction
that encodes multiple concurrent operations. VLIW systems
use multiple independent functional units. Instead of issuing

25

30

35

45

50

55

2

multiple independent instructions to the units, a VLIW
system combines the multiple operations into one very long
instruction. For example, in 2 VLIW system, multiple inte-
ger operations, fioating point operations, and memory ref-
erences may be combined in a single “instruction.” Each
VLIW instruction thus includes a set of fields, each of which
is intetpreted and supplied to an appropriate functional unit.
Although the wide-word instructions are fetched and
executed sequentially, because each word controls the entire
breadth of the parallel execution hardware, highly parallel
operation results. Wide-word machines have the advantage
of scheduling parallel operation statically, when the instruc-
tions are compiled. The fixed width instruction word and its
paralle]l hardware, however, are designed to fit the maximum
parallelism that might be availabie in the code, and most of
the time far less parallelism is available in the code. Thus for
much of the execution time, most of the instruction band-
width and the instruction memory are unused.

There is often a very limited amount of parallelism
available in a randomly chosen sequence of instructions,
especially if the functional units are pipelined. When the
units are pipelined, operations being issued on a given clock
cycle cannot depend upon the outcome of any of the
previously issued operations already in the pipeline. Thus, to
eficiently employ VLIW, many more parallel operations are
required than the number of functional units.

Another disadvantage of VLIW architectures which
results from the fixed number of slots in the very long
instruction word for classes of instructions, is that a typical
VLIW instruction will contain information in only a few of
its fields. This is inefficient, requiring the system to be
designed for a circumstance that occurs only rarely—a fully
populated instruction word.

Another disadvantage of VLIW systems is the need to
increase the amount of code. Whenever an instruction is not
full, the unused functional units translate to wasted bits,
no-ops, in the instruction coding. Thus useful memory
and/or instruction cache space is filled with useless no-op
instructions. In short, VLIW machines tend to be wasteful of
memory space and memory bandwidth except for only a
very limited class of programs.

The term VLIW was coined by J. A. Fisher and his
calleagues in Fisher, 1. A., J. R. Eliis, J. C. Ruttenberg, and
A. Nicolau [1984], “Paralle]l Processing: A Smart Compiler
and a Dumb Machine,” Proc. SIGPLAN Conf. on Compiler
Construction (June), Palo Alto, CA, 11-16. Such a machine
was commercialized by Multifiow Corporation.

For a more detailed description of both superscaler and
VLIW architectures, see Computer Architecture—a Quan-
titative Approach, John L. Hennessy and David A. Patterson,
Morgan Kaufmann Publishers, 1990.

SUMMARY OF THE INVENTION

We have developed a computing system architecture,
which we term software-scheduled superscaler, which
enables instructions to be executed both sequentially and in
parallel, yet without wasting space in the instraction cache
or registers. Like a wide-word machine, we provide for
static scheduling of concurrent operations at program com-
pilation. Instructions are also stored and loaded into fixed
width frames (equal to the width of a cache line). Like a
superscaler machine, however, we employ a traditional
instruction set, in which each instruction encodes only one
basic operation (load, store, etc.). We achieve concurrence
by fetching and dispatching “groups™ of simple individual

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 20 of 62 PagelD #: 20

- , 5,560,028

3

instructions, arranged in any order. The architecture of our
invention relies upon the compiler to assign instruction
. sequence codes to individual instructions at the time they are
compiled. During execution these instruction sequence
codes are used to sort the instructions into appropriate
groups and execute them in the desired order. Thus our
architecture does not suffer the high hardware overhead and
runtime constraints of the superscaler strategy, nor does it
suffer the wasted instruction bandwidth and memory typical
of VLIW systems.

Our system includes a mechanism, an associative cross-
bar, which routes in parallel each instruction in an arbitrarily
selected group to an appropriate pipeline, as determined by
a pipeline tag applied to that instruction during compilation.
Preferably, the pipeline tag will correspond to the type of
functional unit required for execution of that instruction,
e.g., floating point unit 1. All instructions in a selected group
can be dispatched simultaneously.

Thus, in one implementation, our system includes a cache
line, register, or other means for holding at least one group
of instructions to be executed in parallel, each instruction in
the group having associated therewith a pipeline identifier
indicative of the pipeline for executing that instruction and
a group identifier indicative of the group of instructions to be
executed in parallel. The group identifier causes all instruc-
tions having the same group identifier to be executed simul-
taneously, while the pipeline identifier causes individual
instructions in the group to be supplied to an appropriate
pipeline.

In another embodiment the register holds muiltiple groups
of instructions, and all of the instructions in each group
baving a2 common group identifier are placed next to each
other, with the group of instructions to be executed first
placed at one end of the register, and the instructions in the
group to be executed last placed at the other end of the
register.

In another embodiment of our invention a2 method of
executing arbitrary numbers of instructions in a stream of
instructions in parallel includes the steps of compiling the
instructions to determine which instructions can be executed
simultaneously, assigning group identifiers to sets of instruc-
tions that can be executed in parallel, determining a pipeline
for execution of each instruction, assigning a pipeline iden-
tifier to each instruction, and placing the instructions in a
cache line or register for execution by the pipelines.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a preferred imple-
mentation of this invention;

FIG. 2 is a diagram illustrating the data structure of an
instruction word in this system;

FIG. 3 is a diagram illustrating a group of instruction
words;

FIG. 4 is a diagram illustrating a frame containing from
one to eight groups of instructions;

FIG. 5aq illustrates the frame structure for one maximum-
sized group of eight instructions;

FIG. 5b illustrates the frame structure for a typical mix of
three intermediate sized group of instructions;

FIG. 5c illustrates the frame structure for eight minimum-
sized groups, each of one instruction; .

FIG. 6 illustrates an instruction word after predecoding;

FIG. 7 illustrates the operation of the predecoder;

10

15

30

35

40

45

50

55

60

4

FIG. 8 is 2 diagram illustrating the overall structure of the
instruction cache;

FIG. 9 is a diagram illustrating the manner in which
frames are selected from the instruction cache;

FIG. 10 is a diagram illustrating the group selection
function in the associative crossbar;

FIG. 11 is a diagram illustrating the group dispatch
function in the associative crossbar;

 FIG. 12 is a diagram illustrating a hypothetical frame of
instructions; and

FIG. 13 is a diagram illustrating the manner in which the
groups of instructions in FIG. 12 are issued on different
clock cycles.

FIG. 14 is a diagram illustrating another embodiment of
the associative crossbar.

FIG. 15 is a diagram illustrating the group select function
in further detail.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

FIG. 1 is a block diagram of a computer system according
to the preferred embodiment of this invention. FIG. 1
illustrates the organization of the integrated circuit chips by
which the computing system is formed. As depicted, the
system includes a first integrated circuit 10 that includes a
central processing unit, a floating point unit, and an instruc-
tion cache.

In the preferred embodiment the instruction cache is a 16
kilobyte two-way set-associative 32 byte line cache. A set
associative cache is one in which the lines (or blocks) can be
placed only in a restricted set of locations. The line is first
mapped into a set, but can be placed anywhere within that
set. In a two-way set associative cache, two sets, or com-
partments, are provided, and each line can be placed in one
compartment or the other.

The system also includes a data cache chip 20 that
comprises a 32 kilobyte four-way set-associative 32 byte
line cache. The third chip 30 of the system includes a
predecoder, a cache controller, and a memory controller. The
predecoder and instruction cache are explained further
below. For the purposes of this invention, the CPU, FPU,
data cache, cache controller and memory controller all may
be considered of conventional design.

The communication paths among the chips are illustrated
by arrows in FIG. 1. As shown, the CPU/FPU and instruc-
tion cache chip communicates over a 32 bit wide bus 12 with
the predecoder chip 30. The asterisk is used to indicate that
these communications are multiplexed so that a 64 bit word
is communicated in two cycles. Chip 10 also receives
information over 64 bit wide buses 14, 16 from the data
cache 20, and supplies information to the data cache 20 over
three 32 bit wide buses 18.

The specific functions of the predecoder are described in
much greater detail below; however, essentially it functions
to decode a 32 bit instruction received from the secondary
cache into a 64 bit word, and to supply that 64 bit word to
the instruction cache on chip 160.

The cache controller on chip 30 is activated whenever a
first level cache miss occurs. Then the cache controller either
goes to main memory or to the secondary cache to fetch the
needed information. In the preferred embodiment the sec-
ondary cache lines are 32 bytes and the cache has an 8
kilobyte page size.

Case 2:03-cv-00034-DF __Document 1 Filed 01/30/03 Page 21 of 62 PagelD #: 21

5,560,028 b

5

The data cache chip 20 communicates with the cache
controller chip 30 over another 32 bit wide bus. In addition,
the cache controller chip 30 communicates over a 64 bit
wide bus 32 with the DRAM memory, over a 128 bit wide
bus 34 with a secondary cache, and over a 64 bit wide bus
36 to input/output devices.

As will be described, the system shown in FIG. 1 includes
both conventional and novel features. The system includes
multiple pipelines able to operate in paraliel on separate
instructions. The instructions that can be dispatched to these
parallel pipelines simultaneously, in what we term “instruc-
tdon groups,” have been identified by the compiler and
tagged with a group identification tag. Thus, the group tag
designates instructions that can be executed simultaneously.
Instructions within the group are also tagged with a pipeline
tag indicative of the specific pipeline to which that instrue-
tion should be dispaiched. This operation is also performed
by the compiler.

In this system, each group of instructions can contain an
arbitrary number of instructions ordered in an arbitrary
sequence. The only limitation is that all instructions in the
group must be capable of simultaneous execution; ¢.g., there
cannot be data dependency between instructions. The
instruction groups are collected into larger sets and are
organized into fixed width *“‘frames” and stored. Each frame
can centain a variable number of tightly packed instruction
groups, depending upon the number of instructions in each
group and on the width of the frame.

Below we describe this concept more fully, as well as
describe a mechanism to route in parallel each instruction in
an arbitrarily selected group to its appropriate pipeline, as
determined by the pipeline tag of the instruction,

In the following description of the word, group, and frame
concepts mentioned above, specific bit and byte widths are
used for the word, group and frame. I should be appreciated
that these widths are arbitrary, and can be varied as desired.
None of the general mechanisms described for achieving the
result of this invention depends upon the specific implemen-
tation.

In one embodiment of this system the central processing
unit includes eight functional units and is capable of execut-
ing eight instructions in parallel. We designate these pipe-
lines using the digits 0 to 7. Also, for this explanation each
instruction word is 32 bits (4 bytes) long, with a bit, for
example, the high order bit § being reserved as a flag for
group identification. FIG. 2 therefore shows the general
format of all instructions. As shown by FIG. 2, bits 0 to 30
represent the instruction, with the high order bit 31 reserved
to fiag groups of instructions, i.e., collections of instructions
the compiler has determined may be executed in parallel.

FIG. 3 illustrates a group of instructions. A group of
instructions consists of one to eight instructions (because
there are eight pipelines in the preferred implementation)
ordered in any arbitrary sequence; each of which can be
dispaiched to a different parallel pipeline simultaneously.

FIG. 4 iliustrates the structure of an instruction frame. In
the preferred embodiment an instruction frame is 32 bytes
wide and can contain up to eight instruction groups, each
comprising from one to eight instructions. This is explained
further below.

When the instruction stream is compiled before execu-
tion, the compiler places instructions in the same group next
to each other in any order within the group and then places
that group in the frame. The instruction groups are ordered
within the frame from left to right according to their issue
sequence. That is, of the groups of instructions in the frame,

30

35

45

50

55

65

6

the first group to issue is placed in the leftmost position, the
second group to issue is placed in the next position to the
right, etc. Thus, the last group of instructions to issue within
that frame will be placed in the rightmost location in the
frame. As explained, the group affiliation of all instructions
in the same group is indicated by setting the S bit (bit 31 in
FIG. 2) to the same value. This value toggles back and forth
from 0 to 1 to 0, etc., between adjacent groups to thereby
identify the groups. Thus, all instructions in the first group
in a frame have the S bit set to 0, all instructions in the
second group have the S bit set to 1, all instructions in the
third group have the S bit set to 0, etc., for all groups of
instructions in the frame.

To clarify the use of a frame, FIG. 5 illustrates three
different frame structures for different hypothetical groups
of instructions. In FIG. 5z the frame structure for a group of
eight instructions, all of which can be issued simultaneously,
is shown. The instruction words are designated WO, W1, . .
.» W7. The S bit for each one of the instruction words has
been set to 0 by the compiler, thereby indicating that all eight
instructions can be issued simultaneously.

FIG. 5b illustrates the frame structure for 3 typical mix-
ture of three intermediate sized groups of instructions. In
FIG. 5b these three groups of instructions are designated
Group 0, Group 1 and Group 2. Shown at the left-hand side
of FIG. 5b is Group 0 that consists of iwo instruction words
W0 and W1. The S bits for each of these instructions has
been set to 0. Group 1 of instructions consists of three
instruction words, W2, W3 and W4, each having the S bit set
to 1. Finally, Group 2 consists of three instruction words,
WS, W6 and W7, each having its S bit set to 0.

FIG. Sc illustrates the frame structure for eight minimum
sized groups, each consisting of a single instruction.
Because each “group” of a single instruction must be issued
before the next group, the S bits toggle in a sequence
01010101 as shown.

As briefly mentioned above, in the preferred embodiment
the group identifiers are associated with individual instruc-
tions in a group during compilation. In the preferred embodi-
ment, this is achieved by compiling the instructions to be
executed using a well-known compiler technology. During
the compilation, the instructions are checked for data depen-
dencies, dependence upon previous branch instructions, or
other conditions that preclude their execution in parallel
with other instructions. These steps are performed using a
well-known compiler. The result of the compilation is a
group identifier being associated with each instruction. It is
not necessary that the group identifier be added to the
instruction as a tag, as shown in the preferred embodiment
and described further below. In an altemative approach, the
group identifier is provided as a separate tag that is later
associated with the instruction. This makes possible the
execution of programs on our system, without need to revise
the word width,

In addition, in some embodiments the compiler will
determine the appropriate pipeline for execution of an
individual instruction. This determination is essentially a
determination of the type of instruction provided. For
example, load instructions will be sent 1o the load pipeline,
store instructions to the store pipeline, etc. The association
of the instruction with the give pipeline can be achieved
either by the compiler, or by later examination of the
instruction itself, for example during predecoding.

Referring again to FIG. 1, in normal operation the CPU
will execute instructions from the instruction cache, accord-
ing to well-known principles. On an instruction cache miss,

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 22 of 62 PagelD #: 22

E 5,560,028

7

-however, the entire frame containing the instruction missed
is transferred from the main memory into the secondary
cache and then into the primary instruction cache, or from
the secondary cache to the primary instruction cache, where
it occupies one line of the instruction cache memory.
Because instructions are only executed out of the instruction
cache, all instructions ultimately undergo the following
procedure.

At the time a frame is transferred into the instruction
cache, the instruction word in that frame is predecoded by
the predecoder 30 (FIG. 1), which as is explained below
decodes the retrieved instruction into a full 64 bit word. As
part of this predecoding the S bit of each instruction is
expanded to a full 3 bit field 000, 001, . . ., 111, which
provides the explicit binary group number of the instruction.
In other words, the predecoder, by expanding the S bitto a
three bit sequence explicitly provides information that the
instruction group 000 must execute before instruction group
010, although both groups would have all instructions within
the group have S bits set to 0. Because of the frame rules for
sequencing groups, these group numbers correspond to the
order of issue of the groups of instructions. Group 0 (000)
will be issued first, Group 1 (001), if present, will be issued
second, Group 2 (010) will be issued third. Ultimately,
Group 7 (111), if present, will be issued last. At the time of
predecoding of each instruction, the S value of the last word
in the frame, which belongs to the last group in the frame to
issue, is stored in the tag field for that line in the cache, along
with the 19 bit real address and a valid bit. The valid bit is
a bit that specifies whether the information in that line in the
cache is valid. If the bit is not set to “valid,” there cannot be
a match or “hit” on this address. The S value from the last
instruction, which S value is stored in the tag field of the line
in the cache, provides a “countdown” value that can be used
to know when to increment to the next cache line.

As another part of the predecoding process, a new 4 bit
field prefix is added to each instruction giving the explicit
pipe number of the pipeline to which that instruction will be
routed. The use of four bits, rather than three allows the
system to be later expanded with additional pipelines. Thus,
at the time an instruction is supplied from the predecoder to
the instruction cache, each instruction will have the format
shown in FIG. 6. As shown by FIG. 6, bits 0 to 56 provide
57 bits for the instruction, bits 57, 58 and 59 form the full
3 bit S field, and bits 60-63 provide the 4 bit P field.

FIG. 7 illustrates the operation of the predecoder in
transferring a frame from memory to the instruction cache.
In the upper portion of FIG. 7, the frame is shown with a
hypothetical four groups of instructions. The first group
consists of a single instruction, the second group of three
instructions, and each of the third and fourth groups of two
instructions. As described, instruction is 32 bits in length and
include an S bit to separate the groups. The predecoder
decodes the instruction shown in the upper portion of FIG.
7 into the instruction shown in the lower portion of FIG. 7.
As shown, the instructions are expanded to 64 bit length,
with each instruction including a 4 bit identification of the
pipeline to which the instruction is to be assigned, and the
expanded group field to designate the groups of instructions
that can be executed together. For illustration, hypothetical
pipeline tags have been applied. Additionally, the prede-
coder examines each frame for the minimum number of
clocks required to execute the frame, and that number is
appended to the address tag 45 for the line. The address tag
consists of bits provided for the real address for the line, 1
bit to designate the validity of the frame, and 3 bits to specify
~ the minimum time in number of clock cycles, for that frame

30

35

45

65

to issue. The number of clocks for the frame to issue is
determined by the group identification number of the Jast
word in the frame. At this stage, the entire frame shown in
the lower portion of FIG. 7 is present in the instruction
cache.

It may be desirable to implement the system of this
invention on computer systems that already are in existence
and therefore have instruction structures that have already
been defined without fields for the group information, pipe-
line information, or both. In this case in another embodiment
of this invention the group and pipeline information is
supplied on a different clock cycle, then combined with the
instructions in the cache. Such an approach can be achieved
by adding a “no-op” instruction with fields that identify
which instructions are in which group, and identify the
pipeline for execution of the instruction, or by supplying the
information relating to the paralle] instructions in another
manner. It therefore should be appreciated that the manner
in which the data arrives at the crossbar to be processed is
somewhat arbitrary. We use the word “associated” herein to
designate the concept that the pipeline and group identifiers
are not required to have a fixed relationship to the instruction
words. That is, the pipeline and group identifiers need not be
imbedded within the instructions themselves as shown in
FIG. 7. Instead they may arrive from another means, or on
a different cycle.

FIG. 8 is a simplified diagram illustrating the secondary
cache, the predecoder, and the instruction cache. This draw-
ing, as well as FIGS. 9, 10-and 11, are used to explain the
manner in which the instructions tagged with the P and S
fields are routed to their designated instruction pipelines.

In FIG. 8 instruction frames are fetched in a single

‘transfer across a 256 bit (32 byte) wide path from a sec-

ondary cache 50 into the predecoder 60. As explained above,
the predecoder expands each 32 bit instruction in the frame
to its full 64 bit wide form and prefixes the P and S fieids.
After predecoding the 512 bit wide instruction is transferred
into the primary instruction cache 70. At the same time, tag
is placed into the tag field 74 for that line.

The instruction cache operates as a conventional physi-
cally-addressed instruction cache. In the example depicted
in FIG. 8, the instruction cache will contain 512 bit fully-
expanded instruction frames of eight instructions each orga-
nized in two compartments of 256 lines.

Address sources for the instruction cache arrive at a
multiplexer 80 that selects the next address to be fetched.
Because instructions are always machine words, the low
order two address bits <1:0> of the 32 bit address field
supplied to multiplexer 80 are discarded. These two bits
designate byte and half-word boundaries. Of the remaining
30 bits, the next three low order address bits <4:2>, which
designate a particular instruction word in a frame, are sent
directly via bus 81 to the associative crossbar (explained in
conjunction with subsequent figures). The next low eight
address bits <12:5> are supplied over bus 82 to the instruc-
tion cache 70 where they are used to select one of the 256
lines in the instruction cache. Finally, the remaining 19 bits
of the virtual address <31:13> are sent to the translation
lookaside buffer (TLB) 90. The TLB translates these bits
into the high 19 bits of the physical address. The TLB then
supplies them over bus 84 to the instruction cache. In the
cache they are compared with the tag of the selected line, to
determine if there is a “hit” or a “miss” in the instruction
cache.

If there is a hit in the instruction cache, indicating that the
addressed instruction is present in the cache, then the

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 23 of 62 PagelD # 23

9

selected frame containing the addressed instruction is trans-
ferred across the 512 bit wide bus 73 into the associative

5,560,028 -
10
ways. In the horizontal direction are the pipeline pathways
180, 181, . . ., 187. In the venical direction are the

crossbar 100. The associative crossbar 100 then dispatches
the addressed instruction, with the other instructions in its
group, if any, to the appropriate pipelines over buses 110,
111, ..., 117. Preferably the bit lines from the memory cells
containing the bits of the instruction are themselves coupled
to the associative crossbar. This eliminates the need for
numerous sense amplifiers, and allows the crossbar to oper-
* ate on the lower voltage swing information from the cache
line directly, without the normally intervening driver cir-
cuitry to slow system operation.

FIG. 9 is a block diagram illustrating in more detail the
frame selection process. As shown, bits <4:25> of the virtual
address are supplied directly to the associative crossbar 100

~over bus 81. Bus 81, as explained above will preferably
include a pair of conductors, the bit lines, for each data bit
in the field. Bits <12:5> supplied over bus 82 are used to
select a line in the instruction cache. The remaining 19 bits,
translated into the 19 high order bits <31:13> of physical
address, are used to compare against the tags of the two
selected lines (one from each compartment of the cache) to
determine if there is a hit in either compartment. If there is
ahit, the two 512 bit wide frames are supplied to multiplexer
120. The choice of which line is ultimately supplied to
associative crossbar 100 depends upon the real address bits
<31:13> that are compared by comparators 125. The output
from comparators 125 thus selects the appropriate frame for
transfer to the crossbar 100.

FIG. 10 illustrates in more detail the group select function
of the associative crossbar. A 512 bit wide register 130,
preferably formed by the SRAM celis in the instruction
cache contains the frame of the instructions to be issued. For
the purposes of illustration, register 130 is shown as con-
taining a frame having three groups of instructions, with
Group 0 including words W0, W1 and W2; Group 1 con-
taining words W3, W4 and W5; and Group 2 containing
words W6 and W7. For illustration, the instructions in Group
0 are to be dispatched to pipelines 1, 2 and 3; the instructions
in Group 1 to pipelines 1, 3 and 6; and the instructions in
Group 2 to pipelines 1 and 6. The three S bits (group
identification field) of each instruction in the frame are
brought out to an 8:1 multiplexer 140 over buses 131, 132,
133, ..., 138. The S field of the next group of instructions
to be executed is present in a 3 bit register 145. As shown
in FIG. 10, the hypothetical contents of register 145 are 011.
These bits have been loaded into register 145 using bus 81
described in conjunction with FIG. 9. Multiplexer 140 then
compares the value in this register against the contents of the
S field in each of the instruction words. If the two values
maich, the appropriate decoder 150 is enabled, permitting
the instruction word to be processed on that clock cycle. If
the values do not match, the decoder is disabled and the
instruction words are not processed on that clock cycle. In
the example depicted in FIG. 10, the contents of register 145
match the § field of the Group 1 instructions. The resulting
output, supplied over bus 142, is communicated to S register
144 and then to the decoders via bus 146. The S register
contents enable decoders 153, 154 and 1585, ali of which are
in Group 001. As will be shown in FIG. 11, this will enable
these instructions W3, W4 and W5 to be sent to the pipelines
for processing.

FIG. 11 is a block diagram illustrating the group dispatch-
ing of the instructions in the group 1o be executed. The same
registers are shown across the upper portion of FIG. 11 as in
the lower portion of FIG. 10. As shown in FIG. 11, the
crossbar switch itself consists of two sets of crossing path-

20

30

40

45

50

55

65

instruction word paths, 190, 191, . . . , 197. Each of these
pipeline and instruction pathways is themselves a bus for
transferring the instruction word. Each horizontal pipeline
pathway is coupled to a pipeline execution unit 200, 201,
202, . . ., 207. Each of the vertical instruction word
pathways 190, 191, . . ., 197 is coupled to an appropriate
portion of register 130 (FIG. 10).

The decoders 170, 171, . . ., 177 associated with each
instruction word pathway receive the 4 bit pipeline code
from the instruction. Each decoder, for example decoder
170, provides as output eight 1 bit contro! lines. One of these
control lines is associated with each pipeline pathway cross-
ing of that instruction word pathway. Selection of a decoder
as described with reference to FIG. 10 activates the output
bit control line corresponding to that input pipe number. This
signals the crossbar to close the switch between the word
path associated with that decoder and the pipe path selected
by that bit line. Establishing the cross connection between
these two pathways causes a selected instruction word to
flow into the selected pipeline. For example, decoder 173
has received the pipeline bits for word W3. Word W3 has
associated with it pipeline path 1. The pipeline path 1 bits are
decoded to activate switch 213 to supply instruction word
W3 1o pipeline execution unit 201 over pipeline path 181, In
a similar manner, the identification of pipeline path 3 for
decoder D4 activates switch 234 to supply instruction word
W4 to pipeline path 3. Finally, the identification of pipeline
6 for ward W5 in decoder D5 activates switch 265 to transfer
instruction word W5 to pipeline exccution unit 206 over
pipeline pathway 186. Thus, instructions W3, W4 and W5
are executed by pipes 201, 203 and 206, respectively.

The pipeline processing units 200, 201, . . . , 207 shown
in FIG. 11 can carry out desired operations. In a preferred
embodiment of the invention, each of the eight pipelines first
includes a sense amplifier to detect the state of the signals on
the bit lines. In one embodiment the pipelines include first
and second arithmetic logic units; first and second floating
point units; first and second load units; a store unit and a
contro] unit. The particular pipeline to which a given instruc-
tion word is dispatched will depend upon hardware con-
straints as well as data dependencies.

FIG. 12 is an example of a frame and how it will be
executed by the pipeline processors 200-207 of FIG. 11. As
shown in FIG. 12 the frame includes three groups of
instructions. The first group, with group identification num-
ber 0, includes two instructions that can be executed by the
arithmetic logic unit, a load instruction and a store instruc-
tion. Because all these instructions have been assigned the
same group identification number by tbe compiler, all four
instructions can execute in parallel. The second group of
instructions consists of a single load instruction and two
floating point instructions. Again, because each of these
instructions has been assigned “Group 1,” all three instruc-
tions can be executed in parallel. Finally, the last instruction
word in the frame is a branch instruction that, based upon the
compiler’s decision, must be executed last.

FIG. 13 illustrates the execution of the instructions in the
frame shown in FIG. 12. As shown, during the first clock the
Group 0 instructions execute, during the second clock the
load and floating point instructions execute, and during the
third clock the branch instruction executes. To prevent
groups from being split across two instruction frames, an
instruction frame may be only partially filled, where the last
group is too large to fit entirely within the femaining space
of the frame.)

Case 2:03-cv-00034-DF_-Document 1 Filed 01/30/03 Page_24 Qf 62 PagelD #: 24

- | 5,560,028

11

FIG. 14 is a diagram illustrating another embodiment of
the associative crossbar. In FIG. 14 nine pipelines 0-8 are
shown coupled to the crossbar, The three bit program
counter PC points to one of the instructions in the frame, in
combination with the set of 8 group identification bits for the
frame, indicating the group affiliation of each instruction, are
vsed to enable a subset of the instructions in the frame. The
enabled instructions are those at or above the address
indicated by the PC that belong to the current group.

The execution ports that connect to the pipelines specified
by the pipeline identification bits of the enabled instructions
are then selected to multiplex out the appropriate instruc-
tions from the current frame. If ane or more of the pipelines
is not ready to receive 2 new instruction, a set of hold latches
at the output of the execution ports prevents any of the
enabled instructions from issuing until the “busy” pipeline is
free. Otherwise the instructions pass transparently through
the hold latches into their respective pipelines. Accompa-
nying the output of each port is a “port valid” signal that
indicates whether the port has valid information to issue to
the hold latch,

FIG. 15 is a diagram illustrating the group select function
in further detail. This figure illustrates the mechanism used
to enable an addressed group of instructions within a frame.
The program counter is first decoded into a set of 14 bit
signals. Seven of these signals are combined with the eight
group identifiers of the current frame to determine whether
each of the seven instructions, 11 to 17, is or is not the start
of alater group. This information can then be combined with
the other 7 bit signals from the PC decoder to determine
which of the eight instructions in the frame should be
enabled. Using the pipeline identifying field each enabled
instruction ¢an be combined with the other 7 bit signal to
determine which of the eight instructions in the frame should
be enabled. Each such enabled instruction can then signal
the execution port, as determined by the pipeline identifier,
to multiplex out the enabled instruction. Thus if I2 is
enabled, and the pipeline code is 5, the select line from I2 to
port § is activated, causing 12 to flow to the hold latch at pipe
s.

Because the instructions that start later groups are known,
the system can decide easily which instruction starts the next
group. This information is used to update the PC to the
address of the next group of instructions. If no instruction in
the frame begins the next group, ie., the last instruction
group has been dispatched to the pipelines, a flag is set. The
flag causes the next frame of instructions to be brought into
the crossbar. The PC is then reset to 10. Shown in the figure
is an exemplary sequence of the values that the PC, the
instruction enable bits and the next frame flag take on over
a sequence of eight clocks extending over two frames.

The processor architecture described above provides
many unique advantages to a system using this invention.
The system described is extremely flexible, enabling instruc-
tions to be executed sequentially or in parallel, depending
entirely upon the “intelligence” of the compiler. As compiler
technology improves, the described hardware can execute
programs more rapidly, not being limited to any particular
frame width, number of instructions capable of paraliel
execution, or other external constraints. Importantly, the
associative crossbar aspect of this invention relies upon the
content of the message being decoded, not upon an external
control circuit acting independently of the instructions being
executed. In essence, the associative crossbar is self
directed. In the preferred embodiment the system is capable
of a parallel issue of up to eight operations per cycle. For a
more complete description of the associative crossbar, see

2

40

45

55

65

12

copending U.S. application Ser. No, 08/147,797, filed Nov.
5, 1993, and entitled “Instruction Cache Associative Cross-
bar Switch.”

Although the foregoing has been a description of the
preferred embodiment of the invention, it will be apparent to
those of skill in the art that numerous modifications and
variations may be made to the invention without departing
from the scope as described herein. For example, arbitrary
numbers of pipelines, arbitrary numbers of decoders, and
different architectures may be employed, yet rely upon the
system we have developed.

We claim: :

1. A computing system having a plurality of processing
pipelines for executing groups of individual instructions,
within very long instruction words, each individual instruc-
tion to be executed in each group being executed by different
processing pipelines in parallel, the computing system com-
prising:

a main memory for storing a very long instruction word;

a very long instruction word storage, coupled to the main

memory, for receiving the very long instruction word
from the main memory, and for holding the very iong
instruction word, the very long instruction word includ-
ing a predetermined number N of individual instruc-
tions, and including at least one group of M individual
instructions to be executed in parallel, where M=N,
each individual instruction in the very long instruction
word storage to be executed having a pipeline identifier
indicative of a processing pipeline for executing the
individual instruction, and having a group identifier
indicative of a group of individual instructions to which
the individual instruction is assigned for execution in
parallel;

group decoder means responsive to the group identifier

for each individual instruction in the very long instruc-
tion word storage to be executed for enabling each
individual instruction in the very long instruction word
storage having a similar group identifier, to be executed
in paralle] by the plurality of processing pipelines; and
pipeline decoder means responsive to the pipeline iden-
tifier of each individual instructions in the very long
instruction word storage to be executed for causing
each individual instruction in a group of individual
instructions having the similar group identifier to be
supplied to the different processing pipelines.

2. The computing system in claim 1, wherein the very
long instruction word storage includes the at least one group
of M individual instructions, and also includes group iden-
tifiers and pipeline identifiers for each individual instruction
in the at least one group of M individual instructions.

3. The computing system in claim 2, wherein each indi-
vidual instruction in the at least one group of M individual
instructions has associated therewith a different pipeline
identifier.

4. The computing system of claim 1, wherein the very
long instruction word storage hoids a first group of indi-
vidual instructions to be executed in paralle]l and 2 second
group of individual instructions to be executed in paralle]
after the first group, each individual instruction in the first
group baving associated therewith a first group identifier
different from a second group identifier associated with each
individual instruction in the second group, the first group
and the second group being placed adjacent to each other in
the very long instruction word storage.

5. The computing system of claim 4 wherein:

the very long instruction word storage comprises a line in

a cache memory having a fixed number of storage
locations; and

Cas‘e 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 25 of 62 PagelD #: 25

5,560,028 -

13

the first group of individual instructions is placed at one
end of the line in the cache memory, and the second
group of individual instructions is placed next to the
first group of individual instructions.

6. A method of executing in a plurality of processing
pipelines arbitrary numbers of instructions in a stream of
instructions in parallel which have been compiled to deter-
mine which instructions can be executed in parallel, the
method comprising:

in response to the compilation, assigning a common group

identifier t6 a group of instructions which can be
executed in parallel;

determining a processing pipeline for execution of each
instruction in the group of instructions to be executed;

assigning a pipeline identifier to each instruction in the
group;

embedding the common group identifier and the pipeline

identifier into the group of instructions;

forming a very long instruction word with a fixed number

of the instructions including at least the group of
instructions having the common group identifier as
well as at least one other instruction having a different
group identifier; and

storing the very long instruction word in a2 main memory.

7. A method as in claim 6 further comprising the step of;

placing the very long instruction word retrieved from the

main memory into a very long instruction word regis-
ter; and

executing the group of instructions in the plurality of

processing pipelines in parallel.

8. A method as in claim 7,

wherein the very long instruction word register holds at

least two groups of instructions; and

wherein the step of placing the instructions in the very

long instruction word register comprises placing the
group of instructions adjacent to the at least one other
instruction having the different group identifier in the
very long instruction word register.

9. A method as in claim 8 wherein the step of executing

" the group of instructions in parallel comprises:
coupling the very long instruction word register to a
detection means to receive group identifiers of each
instruction to be executed in the very long instruction
word; and

supplying only instructions having the common group

identifier to the processing pipelines.

10. In a computing system having a pluratity of process-
ing pipelines in which groups of individual instructions,
within very long instruction words, are executable in parallel
by processing pipelines, a method for supplying each indi-
vidual instruction in a group to be executed in parallel to
corresponding appropriate processing pipelines, the method
comprising:

retrieving a very long instruction word from a main

memory;

storing in a very long instruction word storage the very

long instruction word, the very long instruction word
including groups of. individual instructions to be
execuied in parallel, each individual instruction to be
executed in the very long instruction word having
embedded therein a pipeline identifier indicative of the
corresponding appropriate processing pipeline which
will execute that instruction and a group identifier
indicative of the group identification;

comparing the group identifier of each individual instruc-

tion in the very long instruction word to an execution
group identifier to identify an execution group; and

20

30

35

55

14

using the pipeline identifier of individual instructions in
the execution group to execute each individual instruc-
tion in the execution group in the corresponding appro-
priate processing pipelines.

11. Ina computing system having a plurality of processing
pipelines in which groups of individual instructions, from a
very long instruction word, are executable in parallel by the
plurality of processing pipelines, an apparatus for routing
each individual instruction in a paricular group to be
exccuted in parallel to an appropriate processing pipeline,
the apparatus comprising:

a main memory for storing the very long instruction word;

a very long instruction word storage coupled to the main
memory, for receiving the very long instruction word
from the main memory and for holding the very long
instruction word, the very long instruction word includ-
ing groups of individual instructions, each individual
instruction to be executed in the very long instruction
word storage having associated therewith a pipeline
identifier indicative of a processing pipeline for execut-
ing that individual instruction and also having associ-
ated therewith a group identifier to designate a group of
individual instructions to which that individual instruc-
tion is assigned, the pipeline identifier and the group
identifier embedded in the very long instruction word;

a crossbar switch having a first set of connectors coupled
to the very long instruction word storage and a second
set of connectors coupled to the plurality of processing
pipelines;

a router coupled to the very long instruction word storage
and the crossbar switch, responsive to a pipeline iden-
tifier for each individual instruction to be executed in
the group for routing each individual instruction in the
group from connectors of the first set Of connectors
onto appropriate connectors of the second set of con-
nectors, to thereby supply each individual instruction in
the group to be executed in parallel to the appropriate
processing pipeline.

12. The apparatus of claim 11,

wherein the first set of connectors includes a set of first
communication buses, one first communication bus for
each individual instruction to be executed in the very
long instruction word storage;

wherein the second set of connectors includes a set of
second communication buses, one second communica-
tion bus for each processing pipeline; and

wherein the router comprises:

a set of decoders coupled to the very long instruction
word storage, each decoder for receiving as input
signals the pipeline identifier of each individual
instruction in the very long instruction word storage
and in response thereto for supplying as output
signals switch control signals corresponding to each
individual instruction in the very long instruction
word storage; and

a set of switches coupled to the set of decoders and to
the crossbar switch, one switch of the set of switches
at cach intersection of each of the first set of com-
munication buses with each of the second set of
communication buses, each switch for receiving the
switch control signals and for providing connections
in response to receiving a corresponding switch
control signal to thereby supply each individual
instruction in the group to be executed in parallel to
the appropriate processing pipeline.

13. The apparatus of claim 12 further comprising:

Case 2:03-cv-00034-DFADocument 1 Filed 01/30/03 Page 26 of 62 PagelD #: 26

E 5,560,028

15

detection means coupled to the very long instruction word
storage, for receiving the group identifier of each
individual instruction in the very long instruction word
storage to be executed and in response thereto supply a
group control signal; and
wherein the set of decoders are also coupled to the
detection means for receiving the group control signal
and in response thereto supply the switch control signal
for only those individual instructions in the group to be
supplied to the plurality of processing pipelines.
14. The apparatus of claim 13,
wherein the detection means comprises a multiplexer
coupled to receive group identifiers of each individual
instruction in the very long instruction word storage
and a group identifier for a group of individual instruc-
tions to be next executed, and in response thereto allow
the group of individual instructions to be supplied to
the plurality of processing pipelines.
15. Apparatus as in claim 14 wherein the multiplexer
supplies output signals to the set of decoders to indicate a
group identifier of a group of individual instructions to be
next supplied 1o the plurality of processing pipelines.
16. In 2 computing system having a plurality of process-
ing pipelines in which groups of individual instructions,
within a very long instruction word, are executable by the
plurality of processing pipelines, each individual instruction
in the very long instruction word to be executed having
embedded therein a group identifier and a pipeline identifier,
an apparatus for routing each individual instruction of a
group of individual instructions to be executed in parallel to
an appropriate processing pipeline of the plurality of pro-
cessing pipelines, the apparatus comprising:
a main memory for storing the very long instruction word;
a very long instruction word storage coupled to the main
memory, for receiving the very long instruction word
from the main memory and for holding the very long
instruction word the very long instruction word includ-
ing groups of instructions to be executed in parallel,
including pipeline identifiers and group identifiers;

selection means coupied to the very long instruction word
storage for receiving the group identifier for each
individual instruction in the very long instruction word,
for determining in response thereto a group of indi-
vidual instructions to be executed in parallel, and for
outputting a control signal;

decoder means coupled to the selection means and to the

very long instruction word storage, for receiving the
control signal and the pipeline identifier for each indi-
vidual instructions in the very long instruction word,
for determining in response thereto the appropriate
processing pipeline for each individual instruction of
the group, and for outputting switch control signals;

a crossbar switch coupled to the decoder means, having a

first set of connectors coupled to the very long instruc-
tion word storage for receiving the very long instruc-
tion word therefrom and a second set of connectors
coupled to the plurality of processing pipelines, for
coupling each individual instruction of the group to an
appropriate processing pipeline in response to the
Switch control signals.
17. The apparatus of claim 16,

wherein the first set of connectors comprises a set of first
communication buses, one first communication bus for
each individual instruction held in the very long
instruction word storage;

wherein the second set of connectors comprises a set of
second communication buses, one second communica-
tion bus for each processing pipeline;

25

30

45

50

55

65

16

wherein the decoder means comprises a set of decoders
coupled to receive as first input signals the pipeline
identifiers for each individual instruction in the group
and as second input signals the pipeline identifiers for
remaining individual instructions in the very long
instruction word; and

wherein the crossbar switch comprises a set of switches,

one switch for every intersection between each of the
first set of connectors and each of the second set of
connectors, each switch for providing connections, in
response io receiving the switch control signals,
between each individual instruction in the group to be
executed in parallel to the appropriate processing pipe-
line.

18. The apparatus of claim 17,

wherein the selection means comprises a multiplexer

coupled to receive the group identifiers for each indi-
vidual instruction in the very long instruction word
storage, and in response to the group identifiers, enable
the decoder means to output switch control signals for
each individual instructions of the group.

19. The apparatus of claim 18,

wherein the multiplexer supplies a switch control signal to

the decoder means to enable the decoder means to
output switch control signals for each individual
instruction of the group of individual instructions from
the very long instruction word.

20. In 2 computing system having a plurality of process-
ing pipelines in which groups of individual instructions are
executable, each individual instruction in a group executable
in parallel by the plurality of processing pipelines, a method
for transferring each individual instruction ir a group to be
executed through a crossbar switch having a first set of
connectors coupled to a very long instruction word storage
for receiving individual instructions therefrom, a second set
of connectors coupled to the plurality of processing pipe-
lines, and switches between the first set and the second set.
Of connectors, the method comprising:

retrieving the very long instruction

memory;

storing in the very long instruction word storage, the very

long instruction word, the very long instruction word
having a set of individual instructions including at least
one group of individual instructions to be executed in
parallel, each individual instruction in the at least one
group having embedded therein a unigue pipeline iden-
tifier indicative of the processing pipeline which will
execute that individual instruction, the very long
instruction word storage also including at least one
other individual instruction not in the at least one group
of individual instructions, the at least one other indi-
vidual instruction having embedded therein a different
pipeline identifier; and

using the unique pipeline identifiers of the individual

instructions in the at least one group of individual
instructions to control the switches between the first set
of connectors and the second set of connectors to
thereby supply each individual instruction in the at least
one group to be executed in parallel to an appropriate
processing pipeline.

21. Amethod as in claim 20 wherein the step of using the
pipeline identifiers comprises:

supplying the unique pipeline identifiers of each indi-

vidual instructions in the at least one group of indi-
vidual instructions to individual decoders of a set of
decoders, each decoder of which provides an output

word from a main

Case 2:03-cv-00034-DF_ Document 1 Filed 01/30/03 Page 27 of 62 PagelD #: 27

5,560,028 -

17
" signal indicative of the Unique pipeline identifiers of
the individual instruction supplied thereto; and
using the output signals of the sets of decoders to control
the switches between the first set of connectors and the

second set of connectors to thereby supply each indi- 3

vidual ‘instruction in the at least one group to be
executed in paralle] to an appropriate processing pipe-
line.)

22. A method as in claim 21 wherein each individual
instruction in the storage further includes a group identifier
embedded therein to designate among the instructions
present in the very long instruction word storage, which of
the individual instructions may be simultaneously supplied
to the plurality of processing pipelines, and the method
further comprises:

supplying a group identifier for a group of instructions to

be executed by the processing pipelines together with
the group identifiers of the individual instructions in the
at least one group of individual instructions to a selec-
tor;

comparing the group identifier of the group of instructions

to be executed by the processing pipelines with the
group identifiers of the individual instructions in the at
least one group of instructions, to provide output com-
parison signals; and

using both the output comparison signals and the output

signals to control the switches between the first set of
connectors and the second set of connectors to thereby
supply each instruction in the at least one group to be
executed in parallel to the appropriate processing pipe-
line.

23. In a computing system having a plurality of process-
ing pipelines in which groups of individual instructions are

b

0

; - 18
executable by the plurality of processing pipelines, a method
for supplying each individual instruction in a group of
individual instructions to be executed in parallel to an
appropriate processing pipeline, the method comprising:
retrieving a very long instruction word from a main
memory; ’
storing in a very long instruction word storage the very
long instruction word retrieved from the main memory,
the very long instruction word including groups of
individual instructions to be executed in parallel, each
individual instruction in a group of individual instruc-
tions having embedded therein a pipeline identifier
indicative of a processing pipeline which will execute
that individual instruction and having embedded
therein a group identifier indicative of a group identi-
fication;
comparing a group identifier for each individual instruc-
tion in the very long instruction word with an execution
group identifier of those instructions to be next
executed in parallel; and
using a pipeline identifier for those instructions to be next
executed in parallel to control switches in a crossbhar
switch having a first set of connectors coupled to the
very long instruction word storage for receiving the
very long instruction word therefrom and a second set
of connectors coupled to the plurality of processing
pipelines to thereby supply each individual instruction
in the at least one group to be executed in parallel to the
appropriate processing pipeline.

* X ok ¥k %

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,560,028
DATED ! Sept. 24, 1996
INVENTOR(S) : Howard G. Sachs

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

On title. page, item [54], and in col. 1, line 1:

In the title, please delete "SUPERSCALAR" and insert ~SUPERSCALER~.

Signed and Sealed this
Thirty-first Day of December, 1996

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

Case 2:03-cv-00034-DE_ Document 1 Filed 01/30/03 Page 29 of 62 PagelD #: 29

US005794003A

United States Patent [19] (111 Patent Number: 5,794,003
Sachs 1451 Date of Patent: Aug. 11, 1998
[54] INSTRUCTION CACHE ASSOCIATIVE FOREIGN PATENT DOCUMENTS
CROSSBAR SWITCH SYSTEM 0449 661 A2 10/1991 European Pat. Off. .
[75] Inventor: Howard G. Sachs. Belvedere. Calif. 00322 gg; :22 lg:g g"mpm g:: gg
[73] Assignee: Intergraph Corporation. Huntsville, OTHER PUBLICATIONS
Ala.
Minagawa et al., “Pre-decoding mechanism for superscalar
[21] Appl. No.: 754,337 architecture”. IEEE Pacific Rim Conference on Communi-
cations, Computers. and Signal Processing. Pp- 21-24. May
[22] Filed: Nov. 22, 1996 9.1991.
' ’ DeGioria et al., “A programmable instruction format exten-
Related U.S. Application Data sion to VLIW architecture”, Computer Systems and Soft-
. ware Engineering 6th Annual European Computer Confer-
[63) Continuation of Ser. No. 498,135, Jul. 5, 1995, abandoned,
which is a continuation of Ser. No. 147,797, Nov. 5, 1993, ence. pp. 36-37. May 4. 1992.
abandoned. : Agerwala et al., “High performance reduced instruction set
{51] Int. CL® GOSF 9/30 g;%%cssors}‘ RC 12434 (#55845). Computer Science. Jan. 9.
52] US. CL .o 395/391; 395/379; 395/800)
[58] Field of Search 3957709, 390 Bakoglu et al.. “The IBM RISC system/6000 processor:
(58] o e o, hardware overview.” IBM J. Res. Develop.. 34(1):12.22
395/391. 392. 379. 312. 800 (Jan.. 1990)
{561 References Cited (List continued on next page.)
U.S. PATENT DOCUMENTS Primary Examiner—Parshotam S. Lall
Assistant Examiner—Viet Vu
4,437,149 3/1984 Pomerene et al.oereooee.n. 395/389 :
4347755 711989 Morzison of al " 3051170 érnome); Agent, or Firm—Townsend and Townsend and
49333837 6/1990 Freidin e 395/452 ew LLE
5,055,997 10/1991 Sluijter et al. .. 395/312 ABST
- 5,081,575 1/1992 Hilleret al. 395/312 157) RACT.
3101341 3/1992 Circello et al. - 395389 A computing system as described in which jndividual
gg;'gg gﬁ;’g Rauetal. .. - 395/800 instructions are executable -in paralle] by processing
5.151 981 911992 pipelines. and instructions to be executed in parallel by
5,179,680 1/1993 different pipelines are supplied to the pipelines simulta-
5197137 3/1993 neously. The system includes storage for storing an arbitrary
5203002 A/1993 Welzel womeovrovmerersrovo number of the instructions to be executed. The instructions
5,214,763 5/1993 to be executed are tagged with pipeline identification tags
5,226,169 7/1993 indicative of the pipeline to which they should be dis-
5233,606 8/1993 patched. The pipeline identification tags are supplied to a
5239654 8/1993 system which controls a crossbar switch, enabling the tags
‘;ég;:i:f ;j :z to be used to control the switch and supply the appropriate
5209321 3/1994 lizul instructions simultancously to the differing pipelines.
5,367,694 11/1994
5442760 8/1995 33 Claims, 5 Drawing Sheets

50-.

SECONDARY
CACHE

28
R rT—"
}'75 7
P

Is'z
N 2-WAY SET f
SicaL ASSOCIATE
84 ADDRESS | PRIMARY 2s8| TaGS
i INSTRUCTION |
w S CACHE
k. o
ne 78 73112 100
~BITS [12:5] ! .

VIR

ADDRE! ~
BITS (31:13] Y
BITS {42] 81

. 8ITS (312}
MUX

~328ITS
ADDRESSES

55 17 ——I——9—r-{ ASSOCIATIVE CROSSEAR |
-~ 80

&4 8 L

ano [T e
e ﬁ

rd ver [P

Case 2:03-cv-00034-DE_ Document 1 Filed 01/30/03 Page 30 of 62 PagelD #: 30

5,794,003
Page 2

OTHER PUBLICATIONS

De Gloria et al.. *A programmable instruction format exten-
sion to VLIW architectures.” Proceedings Comp. Euro.
1992, pp. 35-40 (May 4. 1992).

Fisher et al., “Parallel processing: a smart compiler and a
dumb machine.” SIGPLAN Notices. 19(6):37-47 (Jun.,
1984).

Hennessy et al.. Computer Architecture; A Quantitative
Approach, ISBN 1-55880-069-8. Morgan Kaufmann Pub-
lishers, Inc. (1990).

Brian Case. et al. “DEC Enters Microprocessor Business
with Alpha.” Microprocessor Reporr (Mar. 4, 1992) 6(3):1,
6-14.

Todd A. Dutton. “The Design of the DEC 3000 Model 500
AXP Workstation.” IEEE (1993) 1063-6390/93. pp.
449-455.

Brian Allison, “DEC 7000/10000 Model 600 AXP Multi-
processor Server.” [EEE (1993) 1063-6390/93. pp.
456464,

R. B. Grove. et al., “GEM Optimizing Compilers for Alpha
AXP Systems.” IEEE (1993) 1063-6390/93. pp. 465—473.
Johnson, “Superscalar Microprocessor Design”. Prentice—
Hall 1991 pp. 233-235.

Minagawa et al, “Pre-Decoding Mechanism for Superscalar
Architecturc”. IEEE Computers & Signal Processing. Dec.
1991. pp. 21-24.

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 31 of 62 PagelD #: 31

U.S. Patent Aug. 11, 1998 Sheet 1 of 5 5,794,003
SECONDARY CACHE
20 34# 128
/2
DATA-CACHE / 128
32kL—{32
32*
32 KB FOUR-V_}I%YE
SET-ASSOCIATI
32 BYTE LINE 30
96
PREDECODER
128 64 AND
CACHE 64 DRAM
IX32p 2X644 184 CONTROLLER MEMORY
18 ™S4 18 M;ﬁ;ﬂgﬁ\(1M — 4M
128 64 32
CPU/FPU CONTROLLER
INSTRUCTION
CACHE
16 KB TWO-WAY
SET-ASSOCIATIVE | 12
32BYTELINE // a2
32+ 64
10 J(i“
36
I/0 (586 BUS)
PCI BUS

FIG. 1

Case 2:03-cv-00034-DE. Document 1 Filed 01/30/03 Page 32 of 62 PagelD #: 32

U.S. Patent Aug. 11, 1998 Sheet 2 of 5 5,794,003

50~ SECONDARY

CACHE
1256
60
™ PRE-DECODER
4512 76 74
70
PHYSICAL 2N SET I
ADDRESS
84~_ PRIMARY 256| TAGS
[10 INSTRUCTION
1 ~ CACHE 1
90 ,
~4 82
LB /8 73/;/512 100
|~ BITS [12:5] ! /
VIRTUAL —} 18 3
ADDRESS ~ ASSOGIATIVE CROSSBAR
BITS [31:13] /TN
0 110 | 111 y
| _-BITS [31:2] ‘
PIPE PPE| .. |PIPE
Mux |8 0 1 7
11T Resomrms
ADDRESSES

FiG. 2

Case 2:03-cv-00034-DF _ Document 1 Filed 01/30/03 Page_33 of 62 PagelD #: 33

5,794,003

Sheet 3 of 5

Aug. 11, 1998

U.S. Patent

£ Old
I e
S S R S " m m FE
—vm_. m m m m Mu_-N m m ..:.\\.v»..\“nn\m/—.QN
T R H— S S— (R - R— S 2adid
H m m m m m
L ! ! : : :
L - R S — _ i :
d i m P vEe m |
[- e ORI S SR SR S —— S ¥ 3did
d : : : :
b : : : :
I e e B R A I ",
egi—"7 T R
p— el AR RRAAEEEEEEEE B SAGERETTTIET S SUNISSIIY SIS S S
81—)
LY 9/l 2Li
193713s _:__:_\ :______\ ________\
3gooaa I :a ag za ta 0q 2o
W M MH WE 1 T HIGNNN
“T T 3NN3did
M 9M SM M M ZM LM OM N
L AN A v vomr
Y Y Y
£ dNOYD 2 dNOHD I dNOYD

Case 2:03-cv-00034-DE. Document 1 Filed 01/30/03 Page 34 of 62 PagelD #: 34

5,794,003

Sheet 4 of 5

Aug. 11, 1998

U.S. Patent

v Old
03did 13did ¢3did €3did v3did S3did 93did L3dld 8 3dld
_ t + ottt ottt
GTOHN # —1910H |+ A1OH+{ATOH [+ GTOH |+ GTOH |+{QTOH [+{ G1OH |+{ GTOH [+ G 10H
04anvA F]]
140d
. + Y9y INd | 2Ad | eAd YAd | SAd 9ANd | LAd | 8Ad
e P R N N R
o._mwu_ml,,o‘P,w € v B s (319 =21 2 2 s
103138 | J p935 5138 —Hax3 F3laxa 2 dxa =2 axa = dxa = axa Baxa —ldX3a]dX3| [14H0d
3009030 Z13s 138 X NIN ESIXNIN 2IXNIN)i F=Ixnin F=sixnin F=ixnin =xninf=Ixnin] - | 1sal
o135 L3S — 8 b8 e = 18 18 =] 18 =] 1i8 =] 18 =] 18
3
2Is
)
¥9
o | (a e | v |s | o :l_
v9 ¥
m>~b<_00wm<.5m AVM-2
o0r-"] SAWVYHL 215) gy 2¢
IHOVO-|

Case 2:03-cv-00034-DF_ Document 1 Filed 01/30/03 Page. 35 of 62 PagelD #: 35

U.S. Patent Aug. 11, 1998 Sheet 5 of 5 5 ,794,003

200

N

PIPELINE

TAG INSTRUCTION CACHE A
CACHE 70

205

CROSSBAR

SENSE

AMPLIFIERS 210 210

PIPELINES ' ' coe

FIG. 5

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page 36 of 62 PagelD #: 36

5.794.003

1

INSTRUCTION CACHE ASSOCIATIVE
CROSSBAR SWITCH SYSTEM

This is a Continuation of application No. 08/498.135,
filed Jul. 5. 1995. now abandoned: which is a continuation
of Ser. No. 08/147.797 filed Nov. 5. 1993, now abandoned.
the disclosure of which is incorporated by reference.

BACKGROUND OF THE INVENTION

This invention relates to the architecture of computing
systems, and in particular to an architecture in which indi-
vidual instructions may be executed in parallel. as well as to
methods and apparatus for accomplishing that.

A common goal in the design of computer architectures is
to increase the speed of execution of a given set of instruc-
tions. One approach to increasing instruction execution rates
is to issue more than one instruction per clock cycle. in other
words, to issue instructions in parallel. This allows the
instruction execution rate to exceed the clock rate. Comput-
ing systems that issue multiple independent imstructions
during each clock cycle must solve the problem of routing
the individual instructions that are dispatched in parallel to
their respective execution units. One mechanism used to
achieve this parallel routing of instructions is generally
calied a “crossbar switch.”

In present state of the art computers. e.g. the Digital
Equipment Alpha, the Sun Microsystems SuperSparc, and
the Intel Pentium. the crossbar switch is implemented as part
of the instruction pipeline. In these machines the crossbar is
placed between the instruction decode and instruction
exccute stages. This is becausc the conventional approach
requires the instructions to be decoded before it is possible
to determine the pipeline to which they should be dis-
patched. Unfortunately, decoding in this manner slows sys-
tem speed and requires extra surface area on the integrated
circuit upon which the processor is formed. These disad-
vantages are explained further below.

SUMMARY OF THE INVENTION

We have developed a computing system architecture that
enables instructions to be routed to an appropriate pipeline
more quickly. at lower power, and with simpler circuitry
than previously possible. This invention places the crossbar
switch earlier in the pipeline. making it a part of the initial
instruction fetch operation. This allows the crossbar to be a
part of the cache itself, rather than a stage in the instruction
pipeline. It also allows the crossbar to take advantage of
circuit design parameters that are typical of regular memory
structures rather than random logic. Such advantages
include: lower switching voltages (200-300 milliamps
rather than 3-5 volts); more compact design, and higher
switching speeds. In addition, if the crossbar is placed in the
cache. the need for many sense amplifiers is eliminated.
reducing the circuitry required in the system as a whole,

To implement the crossbar switch. the instructions com-
ing from the cache. or otherwise arriving at the switch. must
be tagged or otherwise associated with a pipeline identifier
to direct the instructions to the appropriate pipeline for
execution. In other words. pipeline dispatch information
must be available at the crossbar switch at instruction fetch
time. before conventional instruction decode has occurred.
There are several ways this capability can be satisfied: In one
embodiment this system includes a mechanism that routes
cach instruction in a set of instructions to be executed in
parallel to an appropriate pipeline, as determined by a
pipeline tag applied to each instruction during compilation.

35

45

55

2

or placed in a separate identifying instruction that accom-
Ppanies the original instruction. Alternately the pipeline affili-
ation can be determined after compilation at the time that
instructions are fetched from memory into the cache. using
a special predecoder unit.

Thus, in one implementation, this system includes a
register or other means, for example. the memory cells
providing for storage of a line in the cache. for holding
instructions to be executed in parallel. Each instruction has
associated with it a pipeline identifier indicative of the
pipeline to which that instruction is to be issued. A crossbar
switch is provided which has a first set of connectors
coupled to receive the instructions. and a second set of
connectors coupled to the processing pipelines to which the
instructions are to be dispatched for execution. Means are
provided which are responsive to the pipeline identifiers of
the individual instructions in the group supplied to the first
set of connectors for routing those individual instructions
onto appropriate paths of the second set of comnectors.
thereby supplying each instruction in the group to be
executed in parallel to the appropriate pipeline.

In a preferred embodiment of this invention the associa-
tive crossbar is implemented in the instruction cache. By
placing the crossbar in the cache all switching is done at low
signal levels (approximately 200~300 millivolts). Switching
at these low levels is substantially faster than switching at
higher levels (5 volts) after the sense amplifiers. The lower
power also eliminates the need for large driver circuits. and
climjnates numerous sense amplifiers. Additionally by
implementing the crossbar in the cache, the layout pitch of
the crossbar lines matches the pitch of the layout of the
cache.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a typical environ-
ment for a preferred implementation of this invention;

FIG. 2 is a diagram illustrating the overall structure of the
instruction cache of FIG. 1;

FIG. 3 is a diagram illustrating one embodiment of the
associative crossbar;

FIG. 4 is a diagram illustrating another embodiment of the
associative crossbar; and

FIG. 5 is a diagram illustrating another embodiment of the
associative crossbar.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

FIG. 1 is a block diagram of a computer system incor-
porating the associative crossbar switch according to the
prefared embodiment of this invention. The following
briefly describes the overall preferred system environment
within which the crossbar is incorporated. For additional
information about the system. see copending U.S. Patent
application Ser. No. 08/147.800. filed Nov. 5. 1995. and
entitied “Software Scheduled Superscaler Computer
Architecture,” which is incorporated by reference herein.
FIG. 1 illustrates the organization of the integrated circuit
chips by which the computing system is formed. As
depicted. the system includes a first integrated circuit 10 that
includes a central processing unit. a floating point unit. and
an instruction cache.

In the preferred embodiment the instruction cache is a 16
kilobyte two-way set-associative 32 byte line cache. A set
associative cache is one in which the lines (or blocks) can be
placed only in a restricted set of locations. The line is first

Case 2:03-cv-00034-DF__Document 1 Filed 01/30/03 Page_ 37 of 62 PagelD #: 37

5.794.003

3

mapped into a set. but can be placed anywhere within that
set. In a two-way set associative cache. two sets. or
compartments, are provided. and each line can be placed in
one compartment or the other.

The system also includes a data cache chip 2¢ that
comprises a 32 kilobyte four-way set-associative 32 byte
line cache. The third chip 3@ of the system includes a
predecoder, a cache controller. and a memory controller. The
predecoder and imstruction cache are explained further
below. For the purposes of this invention, the CPU. FPU,
data cache. cache controller and memory controller all may
be considered of conventional design.

The communication paths among the chips are illustrated
by amrows in FIG. 1. As shown. the CPU/FPU and instruc-
tion cache chip communicates over a 32 bit wide bus 12 with
the predecoder chip 30. The asterisk is used to indicate that
these communications are multiplexed so that a 64 bit word
is communicated in two cycles. Chip 10 also receives
information over 64 bit wide buses 14, 16 from the data
cache 20, and supplies information to the data cache 26 over
three 32 bit wide buses 18. The predecoder decodes a 32 bit
instruction received from the secondary cache into a 64 bit
word. and supplies that 64 bit word to the instruction cache
on chip 10.

The cache controller on chip 30 is activated whenever a
first level cache miss occurs. Then the cache controller either
goes 1o main memory or to the secondary cache to fetch the
needed information. In the preferred embodiment the sec-
ondary cache lines are 32 bytes and the cache has an 8
kilobyte page size.

The data cache chip 20 communicates with the cache
controller chip 3® over another 32 bit wide bus. In addition,
the cache controlier chip 38 communicates over a 64 bit
wide bus 32 with the DRAM memory, over a 128 bit wide
bus 34 with a secondary cache, and over a 64 bit wide bus
36 to input/output devices.

As will be described further below. the system shown in
FIG. 1 includes multiple pipelines able to operate in parallel
on separate instructions which are dispatched to these par-
allel pipelines simultaneously. In one embodiment the par-
allel instructions have been identified by the compiler and
tagged with a pipeline identification tag indicative of the
specific pipeline to which that instruction should be dis-
patched.

In this system. an arbitrary number of instructions can be
executed in parallel. In one embodiment of this system the
central processing unit includes eight functional units and is
capable of executing cight instructions in parallel. These
pipelines are designated using the digits 0 to 7, Also, for this
explanation each instruction word is assumed to be 32 bits
(4 bytes) long.

As briefly mentioned above, in the preferred embodiment
the pipeline identifiers are associated with individual
instructions in a set of instructions during compilation. In the
preferred embodiment, this is achieved by compiling the
instructions to be executed using a well-known compiler
technology. During the compilation. the instructions are
checked for data dependencies. dependence upon previous
branch instructions. or other conditions that preclude their
execution in parallel with other instructions. The result of
the compilation is identification of a set or group of instruc-
tions which can be executed in parallel. In addition. in the
preferred embodiment. the compiler determines the appro-
priate pipeline for execution of an individual instruction.
This determination is essentially a determination of the type
of instruction provided. For example. load instructions will

35

45

55

65

4

be sent to the load pipeline, store instructions to the store
pipeline. etc. The association of the instruction with the
given pipeline can be achieved either by the compiler. or by
later examination of the instruction itself. for example.
during predecoding.

Referring again to FIG. 1. in normal operation the CPU
will execute instructions from the instruction cache accord-
ing to well-known principles. On an instruction cache miss.
however. a set of instructions containing the instruction
missed is transferred from the main memory into the sec-
ondary cache and then into the primary instruction cache. or
from the secondary cache to the primary instruction cache.
where it occupies one line of the instruction cache memory.
Because instructions are only executed out of the instruction
cache. all instructions ultimately undergo the following
procedure.

At the time a group of instructions is transferred into the
instruction cache, the instruction words are predecoded by
the predecoder 30. As part of the predecoding process. a
multiple bit field prefix is added to each instruction based
upon a tag added to the instruction by the compiler. This
prefix gives the explicit pipe aumber of the pipeline to which
that instruction will be routed. Thus. at the time an instruc-
tion is supplied from the predecoder to the instruction cache.
each instruction will have a pipeline identifier.

It may be desirable to implement the system of this
invention on computer systems that already are in existence
and therefore have instruction structures that have already
been defined without available blank fields for the pipeline
information. In this case. in another embodiment of this
invention, the pipeline identifier information is supplied on
a different clock cycle. then combined with the instructions
in the cache or placed in a separate smaller cache. Such an
approach can be achieved by adding a “no-op” instruction
with fields that identify the pipeline for execution of the
instruction. or by supplying the information relating to the
parallel instructions in another manner. It therefore should
be appreciated that the manner in which the instruction and
pipeline identifier arrives at the crossbar to be processed is
somewhat arbitrary. T use the word “associated” herein to
designate the concept that the pipeline identifiers are not
required to have a fixed relationship to the instruction words.
That is. the pipeline identifiers need not be embedded within
the instructions themselves by the compiler. Instead they
may arrive from another means. or on a different cycle.

FIG. 2 is a simplified diagram illustrating the secondary
cache, the predecoder. and the instruction cache. This figure,
as well as FIGS. 3, 4 and 5, are used to explain the manner
in which the instructions tagged with the pipeline identifier
are routed to their designated instruction pipelines.

In FIG. 2. for illustration. assume that groups of instruc-
tions 1o be executed in parallel are fetched in a single
transfer across a 256 bit (32 byte) wide path from a sec-
ondary cache 50 into the predecoder 60. As explained above,
the predecoder prefixes the pipeline “P” field to the instruc-
tion. After predecoding the resulting set of instructions is
transferred into the primary instruction cache 70. At the
same time. a tag is placed into the tag field 74 for that line.

In the preferred embodiment the instruction cache oper-
ates as a conventional physically-addressed instruction
cache. In the example depicted in FIG. 2. the instruction
cache will contain 512 bit sets of instructions of eight
instructions each. organized in two compartments of 256
lines.

Address sources for the instruction cache arrive at a
multiplexer 80 that selects the next address to be fetched.

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 38 of 62 PagelD #. 38

5.794.003

5

Because preferably instructions are always machine words.
the low order two address bits <1:0> of the 32 bit address
field supplied to multiplexer 80 are discarded. These two bits
designate byte and half-word boundaries. Of the remaining
30 bits. the next three low order address bits <4:2>. which
designate a particular instruction word in the set. are sent
directly via bus 81 to the associative crossbar. The next low
eight address bits <12:5> are supplied over bus 82 to the
instruction cache 70 where they are used to select one of the
256 lines in the instruction cache. Finally. the remaining 19
bits of the virtual address <31:13> are sent to the translation
lookaside buffer (TLB) 90. The TLB translates these bits
into the high 19 bits of the physical address. The TLB then
supplies them over bus 84 to the instruction cache. In the
cache they are compared with the tag of the selected line. to
determine if there is a “hit” or a “miss™ in the instruction
cache.

If there is a hit in the instruction cache. indicating that the
addressed instruction is present in the cache. then the
selected set of instructions is transferred across the 512 bit
wide bus 73 into the associative crossbar 180. The associa-
tive crossbar 100 then dispatches the addressed instructions
to the appropriate pipelines over buses 110, 111, . . ., 117.
Preferably the bit lines from the memory cells storing the
bits of the instruction are themselves coupled to the asso-
ciative crossbar. This eliminates the need for numerous
sense amplifiers. and allows the crossbar to operate on the
lower voltage swing information from the cache line
directly. without the normally intervening driver circuitry to
slow system operation.

FIG. 3 illustrates in more detail onc embodiment of the,
associative crossbar. A 512 bit wide register 130, which
represents the memory cells in a line ofthe cache (or can be
a physically separate register). contains at least the set of
instructions capable of being issued. For the purposes of
illustration, register 139 is shown as containing up to eight
instruction words W9 to W7. Using means described in the
copending application referred to above, the instructions
have been sorted into groups for parallel execution. For
illustration here, assume the instructions in Group 1 are tobe
dispatched to pipelines 1. 2 and 3; the instructions in Group
2 to pipelines 1. 3 and 6; and the instructions in Group 3 to
pipelines 1 and 6. The decoder select signal enables only the
appropriate set of instructions to be executed in parallel,
essentially allowing register 130 to contain more than just
one set of instructions. Of course, by only using register 130
only for one set of parallel instructions at a time. the decoder
select signal is not needed.

As shown in FIG. 3. the crossbar switch itself consists of
two sets of crossing pathways. In the horizontal direction are
the pipeline pathways 189, 181, 187. In the vertical
direction arc the instruction word paths, 196, 191, 197.
Each of these pipeline and instruction pathways is them-
selves a bus for transferring the instruction word. Each
horizontal pipeline pathway is coupled to a pipeline execu-
tion unit 200, 201. 202. 207. Each of the vertical
instruction word pathways 190, 191. . . ., 197 is coupled to
an appropriate portion of register or cache line 130.

The decoders 170. 171. 177 associated with each
instruction word pathway receive the 4 bit pipeline code
from the instruction. Each decoder. for example decoder
170. provides eight 1 bit control lines as output. One of these
control lines is associated with cach pipeline pathway cross-
ing of that instruction word pathway. Selection of a decoder
as described with reference to FIG. 3 activates the output bit
control line corresponding to that input pipe number. This
signals the crossbar to close the switch between the word

35

40

50

55

60

65

6

path associated with that decoder and the pipe path selected
by that bit line. Establishing the cross connection between
these two pathways causes a selected instruction word to
flow into the selected pipeline. For example. decoder 173
has received the pipeline bits for word W3. Word W3 has
associated with it pipeline path 1. The pipeline path 1 bits are
decoded to activate switch 213 to supply instruction word
W3 to pipeline execution unit 281 over pipeline path 181. In
a similar manner. the identification of pipeline path 3 for
decoder D4 activates switch 234 to supply instruction word
W4 to pipeline path 3. Finally. the identification of pipeline
6 for word W5 in decoder D5 activates switch 265 to transfer
instruction word W5 to pipeline execution unit 206 over
pipeline pathway 186. Thus. instructions W3, W4 and W5
are exccuted by pipes 201, 203 and 206. respectively.

The pipeline processing units 209, 201. 207 shown in
FIG. 3 can carry out desired operations. In a preferred
embodiment of the invention, each of the eight pipelines first
includes a sensc amplifier to detect the state of the signals on
the bit lines from the crossbar. In one embodiment the
pipelines include first and second arithmetic logic units; first
and second floating point units: first and second load units;
a store unit and a control unit. The particular pipeline to
which a given instruction word is dispatched will depend
upon hardware constraints as well as data dependencies.

FIG. 4 is a diagram illustrating another embodiment of the
associative crossbar, In FIG. 4 nine pipelines 0-8 are shown
coupled to the crossbar. The decode select is used to enable
a subset of the instructions in the register 130 for execution
just as in the system of FIG. 3.

The execution ports that connect to the pipelines specified
by the pipeline identification bits of the enabled instructions
are then selected to multiplex out the appropriate instruc-
tions from the contents of the register. If one or more of the
pipelines is not ready to receive a new instruction. a set of
hold latches at the output of the execution ports prevents any
of the enabled instructions from issuing until the ‘“busy”
pipeline is free. Otherwisc the instructions pass transpar-
ently through the hold latches into their respective pipelines.
Accompanying the output of each port is a “port valid”
signal that indicates whether the port has valid information
to issue to the hold latch.

FIG. § illustrates an alternate embodiment for the inven-
tion where pipeline tags are not included with the
instruction, but arc supplied separately, or where the cache
line itself is used as the register for the crossbar. In these
situations, the pipeline tags may be placed into a high speed
scparate cache memory 280. The output from this memory
can then control the crossbar in the same manner as
described in conjunction with FIG. 3. This approach elimi-
nates the need for sense amplifiers between the instruction
cache and the crossbar. This enables the crossbar to switch
very low voltage signals more quickly than higher level
signals, and the nced for hundreds of sense amplifiers is
eliminated. To provide a higher level signal for control of the
crossbar, sensc amplifier 205 is placed between the pipeline
tag cache 200 and the crossbar 100. Because the pipeline tag
cache is a relatively small memory, however. it can operate
more quickly than the instruction cache memory. and the
tags therefore are available in time to control the crossbar
despite the sense amplifier between the cache 208 and the
crossbar 100. Once the switching occurs in the crossbar. then
the signals arc amplified by sense amplifiers 210 before
being supplied to the various pipelines for execution.

The architecture described above provides many unique
advantages to a system using this crossbar. The crossbar

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page 39 of 62 PagelD #: 39

5.794.003

7

described is extremely flexible. enabling instructions to be
executed sequentially or in parallel, depending entirely upon
the “intelligence” of the compiler. Importantly. the associa-
tive crossbar relies upon the content of the message being
decoded. not upon an external control circuit acting inde-
pendently of the instructions being executed. In essence, the
associative crossbar is self directed.

Another important advantage of this system is that it
allows for more intelligent compilers. Two instructions
which appear to a hardware decoder (such as in the prior art
described above) to be dependent upon each other can be
determined by the compiler not to be interdependent. For
example. a hardware decoder would not permit two instruc-
tions R1+R2=R3 and R3+R5=R6 to be executed in parallel.
A compiler, however. can be “intelligent” enough to deter-
mine that the second R3 is a previous value of R3, not the
one calculated by R14+R2. and therefore allow both instruc-
tions to issue at the same time. This allows the software to
be more flexible and faster.

Although the foregoing has been a description of the
preferred embodiment of the invention. it will be apparent to
those of skill in the art the numerous modifications and
variations may be made to the invention without departing
from the scope as described herein. For example, arbitrary
numbers of pipelines, arbitrary numbers of decoders. and
different architectures may be employed. yet rely upon the
system we have developed.

I claim:

1. A computing system comprising:

means for forming groups of software-scheduled

instructions, software-scheduled instructions within
each of the groups executable in parallel; and

a super-scaler cache for routing esach of the software-

scheduled instructions within the groups to be executed

in parallel to an appropriate instruction pipeline of a

plurality of instruction pipelines. the super-scaler cache

comprising:

super-scaler storage for holding one group of the
groups of software-scheduled imstructions, each
software-scheduled instruction within the one group
having embedded therein an instruction pipeline
identifier of a plurality of instruction pipeline iden-
tifiers;

an associative crossbar having a first set of connectors
coupled to the super-scaler storage for receiving cach
of the software-schednled instructions therefrom.
and a second set of connectors coupled to the plu-
rality of instruction pipelines; and

means responsive to the instruction pipeline identifier
of each of the software-scheduled instructions. for
coupling appropriate connectors of the first set of
connectors 1o appropriate connectors of the second
set of connectors, to thereby supply each of the
software-scheduled instructions to the appropriate
instruction pipeline for parallel execution.

2. The computing system of claim 1 wherein:

the first set of connectors comprises a set of first com-

munication buses. one first communication bus for each
of the softwarc-scheduled instructions in the super-
scaler storage:

the second set of connectors comprises a set of second

communication buses. one second communication bus
for each of the plurality of instruction pipelines:; and
the means responsive to the plurality of instruction pipe-
line identifiers comprising:
a set of selectors coupled to the super-scaler storage to
receive as first input signals the instruction pipeline

15

35

45

55

65

8

identifier of each of the software-scheduled instruc-
tions and in response thereto supply as output signals
switch control sigmals for each of the software-
scheduled instructions; and

a set of switches. coupled to the set of selectors. one
switch located at each intersection of each of the first
communication buses with each of the second com-
munication buses, the set of switches providing
connections in response to the switch control signals
to thereby supply each of the software-scheduled
instructions in parallel to the appropriate instruction
pipelines.

3. A computing system comprising:

means for assembling sets of software-scheduled instruc-
tions to be executed in parallel; and

a super-scaler cache for routing each of the software-
scheduled instructions in a group to be executed in

parallel. to an appropriate instruction pipeline of a

plurality of instruction pipelines. the super-scaler cache

comprising:

a super-scaler storage for holding the sets of software-
scheduled instructions, including at least a set of
software-scheduled instructions, and a set of instruc-
tion pipeline identifiers, each individual instruction
of the first set of software-scheduled instructions
having associated therewith an instruction pipeline
identifier of the sct of instruction pipeline identifiers;

an associative crossbar having a first set of connectors
coupled to the super-scaler storage for receiving the
set of software-scheduled instructions therefrom and
a second set of connectors coupled to the plurality of
instruction pipelines;

selection means connected to receive the instruction
pipeline identifiers of the set of instruction pipeline
identifiers, the selection means for supplying in
response thereto output signals; and

switching means coupled to receive the output signals
for selectively connecting connectors of the first set
of connectors to connectors of the second set of
connectors to thereby supply each software-
scheduled instruction in the set of software-
scheduled instructions to be executed in parallel to
the appropriate instruction pipeline.

4. The computing system of claim 3 wherein

the first set of connectors comprises a set of first com-
munication buses, one of the first communication buses
for each of the software-scheduled instructions in the
set of software-scheduled instructions in the super-
scaler storage;

the second set of connectors comprises a set of second
communication buses. one of the second communica-
tions buses for each of the plurality of instruction
pipelines;

the selection means comprises a set of selectors coupled
to receive the instruction pipeline identifiers and in
response thereto supply as the output signals a plurality
of switch control signals; and

the switching means includes a set of switches. one of the
switches at each intersection of each of the first set of
communication buses with the second set of commu-
nication buses. the set of switches providing connec-
tions in response to receiving the plurality of switch
control signals to thereby supply cach of the software-
scheduled instructions of the set of software-scheduled
instructions to the appropriate instruction pipeline.

5. The computing systerm of claim 4 wherein cach selector

in the set of selectors comprise a multiplexer.

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page 40 of 62 PagelD #: 40

5.794.003

9

6. In a computing system. a method for transferring
software-scheduled Instructions to be executed through an
associative crossbar switch in a super-scaler cache. the
associative crossbar switch having a first set of connectors
coupled to a super-scaler storage in the super-scaler cache
for receiving each of the software-scheduled instructions
therefrom and a second set of connectors coupled to a
plurality of instruction pipelines. the method comprising the
steps of:

forming groups of software-scheduled instructions.

software-scheduled instructions within each group

executable in parallel:

storing in the super-scaler storage in the super-scaler

cache one group of the groups of software-scheduled
instructions to be executed in parallel. each software-
scheduled instruction in the one group having embed-
ded therein an instruction pipeline identifier of a plu-
rality of instruction pipeline identifiers; and

using the instruction pipeline identifier of each of the

software-scheduled instructions to control switches in
the associative crossbar switch in the super-scaler
cache between the first set of connectors and the second
set of connectors to thereby supply each of the
software-scheduled instructions to an appropriate
instruction pipeline.

7. The method of claim 6 wherein the step of using the
instruction pipelinc identifier comprises:

supplying the instruction pipeline identifiers of each of the

software-scheduled instructions in the one group of
software-scheduled instructions to a corresponding
number of selectors. each of the selectors providing an
output signal indicative of the instruction pipeline
identifier; and

using the output signal of each of the selectors to control

the switches between the first set of connectors and the

second set of connectors to thereby supply each of the
software-scheduled instructions to the appropriate
instruction pipeline.

8. An apparatus for routing software-scheduled instruc-
tion words to a plurality of instruction pipelines, the appa-
rams comprising:

means for forming groups of software-scheduled instruc-

tion words. software-scheduled instruction words in

each group executable in parallel; and

a very long instruction word cache for storing a group of

software-scheduled instuction words, each of the
software-scheduled instruction words in the group hav-
ing embedded therein a unigue instruction pipeline
identifier, the very long instruction word cache further
comprising:

an assocjative crossbar having a plurality of connectors
coupled to the plurality of instruction pipelines. for
selecting which of the plurality of connectars to
couple to which of the plurality of instruction pipe-
lines in response to switch sclection signals;

a sclector for asserting output signals in response to the
instruction pipeline identifiers embedded with each
of the group of software-scheduled instruction
words; and

a switch coupled to the associative crossbar, and to the
selector. for asserting switch selection signals to the
associative crossbar in response to the output signals.

9. An apparatus for routing software-scheduled instruc-
tion words to a plurality of instruction pipelines. the appa-
1atus comprising:

means for assembling a group of software-scheduled

instruction words. software-scheduled instruction

words in the group executable in parallel; and

15

25

35

45

50

55

65

10

an very long instruction word cache for storing the group

of software-scheduled instruction words and a group of
instruction pipeline identifiers. the group of instruction
pipeline identifiers associated with the group of
software-scheduled instruction words. the very long
instruction word cache further comprising;

an associative crossbar including a plurality of connec-
tors coupled to the plurality of instruction pipelines.
for selecting which of the plurality of conneciors to
couple to which of the plurality of instruction pipe-
lines in response to switch selection signals:

a selector for asserting output signals in response to the
instruction pipeline identifiers associated with each
of the group of software-scheduled instruction
words; and

a switch coupled to the associative crossbar. and to the
selector. for asserting switch selection signals to the
associative crossbar in response to the output signals.

10. The computing system of claim 2. wherein the instruc-
tion pipeline identifier embedded within each software-
scheduled instruction is determined by a compiler.

11. The computing system of claim 1. wherein the means
for forming the groups of software-scheduled instructions
comprises a compiler.

12. The computing system of claim 3. wherein the means
for assembling the sets of software-scheduled instructions
comprises a compiler.

13. The computing system of claim 4. wherein the instruc-
tion pipeline identifiers of the set of instruction pipeline
identifiers are determined by a compiler.

14. The method of claim 6, wherein the step of forming
groups of software-scheduled instructions comprises using a
compiler.

15. The method of claim 7. wherein the instruction
pipeline identifiers in the one group of instruction pipeline
identifiers are determined by a compiler.

16. The apparatus of claim 8. wherein the means for
forming groups of software-scheduled instruction words
comprises a compiler.

17. The apparatus of claim 8. wherein the instruction
pipeline identifiers of the group of instruction pipeline
identifiers are determined by a compiler.

18. The apparatus of claim 9, wherein the software-
scheduled instructions of the group of software-scheduled
instructions are determined by a compiler.

19. The apparatus of claim 9, wherein the means for
assembling a group of software-scheduled instruction words
comprises a compiler.

20. In a computing system in which groups of software-
scheduled instructions are formed and in which software-
scheduled instructions within each of the groups are execut-
able in parallel, a super-scaler cache for routing each of the
software-scheduled instructions within the groups to be
executed in parallel to an appropriate instruction pipeline of
a plurality of instruction pipelines. the super-scaler cache
comprising:

super-scaler storage for holding one group of the groups

of software-scheduled instructions, each software-

scheduled instruction within the one group having

embedded therein an instruction pipeline identifier of a

plurality of instruction pipeline identifiers:

an associative crossbar having a first set of connectors

coupled to the super-scaler storage for receiving each

of the software-scheduled instructions therefrom. and a

second set of connectors coupled to the plurality of

instruction pipelines; and

means responsive to the instruction pipeline identifier of

each of the software-scheduled instructions. for cou-

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 41 of 62 PagelD #: 41

5.794.003

11

pling appropriate connectors of the first set of connec-

tors to appropriate connectors of the second set of

connectors. to thereby supply each of the software-
scheduled instructions to the appropriate instruction
pipeline for parallel execution;

wherein the instruction pipeline identifier embedded
within each software-scheduled instruction is deter-
mined by a compiler.

21. The super-scaler cache of claim 20 wherein:

the first set of connectors comprises a set of first com-
munication buses. one first communication bus for each
of the software-scheduled instructions in the super-
scaler storage:

the second set of connectors comprises a set of second
communication buses, one second communication bus
for each of the plurality of instruction pipelines; and

the means responsive to the plurality of instruction pipe-
line identifiers comprising:

a set of selectors coupled to the super-scaler storage to
receive as first input signals the instruction pipelinc
identifier of each of the software-scheduled instruc-
tions and in response thereto supply as output signals
switch control signals for each of the software-
scheduled instructions; and

a set of switches. coupled to the set of selectors , one
switch located at each intersection of each of the first
communication buses with each of the second com-
munication buses, the set of switches providing
connections in response to the switch control signals
to thereby supply each of the software-scheduled
instructions in parallel to the appropriate instruction
pipelines.

22. In a computing system in which sets of software-
scheduled instructions are executable in parallel, a super-
scaler cache for routing each of the software-scheduled
instructions in a group to be executed in parallel. to an
appropriate instruction pipeline of a plurality of instruction
pipelines. the super-scaler cache comprising:

a super-scaler storage for holding the sets of software-
scheduled instructions. including at least a set of
software-scheduled instructions, and a set of instruction
pipeline identifiers, each individual instruction of the
first set of software-scheduled instructions having asso-
ciated therewith an instruction pipeline identifier of the
set of instruction pipeline identifiers;

an associative crossbar having a first set of connectors
coupled to the super-scaler storage for receiving the set
of software-scheduled instructions therefrom and a
second set of connectors coupled to the plurality of
instruction pipelines;

selection means connected to receive the instruction pipe-
line identifiers of the set of instruction pipeline
identifiers. the selection means for supplying in
response thereto output signals; and

switching mcans coupled to receive the output signals for
selectively connecting connectors of the first set of
connectors to connectors of the second set of connec-
tors to thereby supply each software-scheduled instruc-
tion in the set of software-scheduled instructions to be
executed in parallel to the appropriate instruction pipe-
line;

wherein the instruction pipeline identifiers of the set of
instruction pipeline identifiers are determined by a
compiler.

23. The super-scalar cache of claim 22 wherein

the first set of connectors comprises a set of first com-
munication buses, one of the first communication buses

—

Q

25

35

55

60

65

12

for each of the software-scheduled instructions in the
set of software-scheduled instructions in the super-
scaler storage;

the second set of connectors comprises a set of second

communication buses. one of the second communica-
tions buses for each of the plurality of instruction
pipelines;

the sclection means comprises a set of selectors coupled

to receive the instruction pipeline identifiers and in
response thereto supply as the output signals a plurality
of switch control signals; and

the switching means includes a set of switches, one of the

switches at each intersection of each of the first set of
communication buses with the second set of commu-
nication buses. the set of switches providing connec-
tions in response to receiving the plurality of switch
control signals to thereby supply each of the software-
scheduled instructions of the set of software-scheduled
instructions to the appropriate instruction pipeline.

24. The super-scalar cache of claim 23 wherein each
selector in the set of selectors comprise a multiplexer.

25. In a computing system in which groups of software-
scheduled instructions are executable in parallel. a method
for transferring each software-scheduled instruction in a
group to be executed through an associative crossbar switch
in a super-scaler cache. the associative crossbar switch
having a first set of connectors coupled to a super-scaler
storage in the super-scaler cache for receiving each of the
software-scheduled instructions therefrom and a second set
of connectors coupled to a plurality of instruction pipelines.
the method comprising:

storing in the super-scaler storage in the super-scaler

cache one group of the groups of software-scheduled
instructions to be executed in parallel. each software-
scheduled instruction in the one group having embed-
ded therein an instruction pipeline identifier of a plu-
rality of instruction pipeline identifiers; and

using the instruction pipelinc identifier of each of the

software-scheduled instructions to control switches in
the associative crossbar switch in the super-scaler
cache between the first set of connectors and the second
set of connectors to thereby supply ecach of the
software-scheduled instructions to an appropriate
instruction pipeline;

wherein the instruction pipeline identifiers in the one

group of instruction pipeline identifiers are determined
by a compiler.

26. The method of claim 25 wherein the step of using the
instruction pipeline identifier comprises:

supplying the instruction pipeline identifiers of each of the

software-scheduled instructions in the ome group of
software-scheduled instructions to a corresponding
number of selectors. each of the selectors providing an
output signal indicative of the instruction pipeline
identifier; and

using the output signal of each of the selectors to control

the switches between the first set of connectors and the
second set of connectors to thereby supply each of the
software-scheduled instructions to the appropriate
instruction pipeline.

27. In a computing system in which groups of software-
scheduled instructions are executed in parallel by parallel
processors. an apparatus for routing groups of software-
scheduled instruction words to a plurality of instruction
pipelines, the apparatus comprising:

a very long instruction word cache for storing a group of

software-scheduled instruction words. each of the

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 42 of 62 PagelD #: 42

5.794.003

13

software-scheduled instruction words in the group hav-

ing embedded therein a unique instruction pipeline

identifier. the very long instruction word cache further
comprising:

an associative crossbar having a plurality of connectors
coupled to the plurality of instruction pipelines. for
selecting which of the plurality of connectors to
couple to which of the plurality of instruction pipe-
lines in response to switch selection signals;

a selector for asserting output signals in response to the
instruction pipeline identifiers embedded with each
of the group of software-scheduled imstruction
words; and

a switch coupled to the associative crossbar. and to the
selector, for asserting switch selection signals to the
associative crossbar in response to the output signals;

wherein the instruction pipeline identifiers of the group of

instruction pipeline identifiers are determined by a

compiler.

28. In a computing system in which a group of software-
scheduled instructions is executed in parallel by parallel
processors. an apparatus for routing the group of software-
scheduled instruction words to a plurality of instruction
pipelines. the apparatus comprising:

an very long instruction word cache for storing the group

of software-scheduled instruction words and a group of
instruction pipeline identifiers. the group of instruction
pipeline identifiers associated with the group of
software-scheduled instruction words, the very long
instruction word cache further comprising:

an associative crossbar including a plurality of connec-
tors coupled to the plurality of instruction pipelines.

15

14

for selecting which of the plurality of connectors to
couple to which of the plurality of instruction pipe-
lines in response to switch selection signals;

a selector for asserting output signals in response to the
instruction pipeline identifiers associated with each
of the group of software-scheduled instruction
words; and

a switch coupled to the associative crossbar. and to the
selector. for asserting switch selection signals to the
associative crossbar in response to the output signals;

wherein the instruction pipeline identifiers of the group of
instruction pipeline identifiers are determined by a
compiler.

29. The super-scaler cache of claim 2#. wherein the
software-scheduled instructions of the one group are deter-
mined by a compiler.

30. The super-scaler cache of claim 22. wherein the
software-scheduled instructions of the set of software-
scheduled instructions are determined by a compiler.

31. The method of claim 25. wherein the software-
scheduled imstructions in the one group of software-
scheduled instructions are determined by a compiler.

32. The very long instruction word cache of claim 27.
wherein the software-scheduled instructions of the group of
software-scheduled instructions are determined by a com-
piler.

33. The apparatus of claim 28. wherein the software-
scheduled instructions of the group of software-scheduled
instructions are determined by a compiler.

* kX X % %

Case 2:03-cv-00034-DF_ Document 1 Filed 01/30/03 Page 43 of 62 PagelD #. 43

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,794,003 Page 1 of 1
DATED : August 11, 1998
INVENTOR(S) : Howard G. Sachs

It is certified that error appears in the abave-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 2,
Line 56, delete * filed November 5, 1995 and insert -- filed November 5, 1993 --.

Signed and Sealed this

Twenty-third Day of October, 2001

Hihstes P L6l

Antest:

NICHOLAS P. GODICI
Antesting Officer Acting Director of the United States Patent and Trademark Office

Case 2:03-cv-00034-DE_ Document 1 Filed 01/30/03 Page 44 of 62 PagelD #: 44

VA e A
US006360313B1

(12)

United States Patent

Sachs et al.

US 6,360,313 B1
*Mar. 19, 2002

(10) Patent No.:
@5) Date of Patent:

(54

(75)

(73)

*)

e2y)
22

(63)

1)
(52)

(58)

(56)

INSTRUCTION CACHE ASSOCIATIVE
CROSSBAR SWITCH

Inventors: Howard G. Sachs, Los Altos; Siamak
Arya, Cupertino, both of CA (US)

Assignee: Intergraph Corporation, Huntsville,

AL (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.:
Filed:

09/657,758
Sep. 8, 2000

Related U.S. Application Data

Continuation of application No. 09/057,861, filed on Apr. 9,
1998, which is a continuation of application No. 08/754,337,
filed on Nov. 22, 1996, now Pat. No. 5,794,003, which is a
continuation of apphcanon No. 08/498,135, filed on Jul. 5,
1995, now abandoned, which is a continuation of apphcatlon
No. 08/147 797, filed on Nov. 5, 1993, now abandoned.

Int. CL.” . . GO6F 9/38
US.CL .. 712/215 712/24 712/207;
712/213; 712/234

Field of Search 712/23, 24, 208,
712/210, 211, 212, 213, 214, 215, 234,

207; 395/706

References Cited
U.S. PATENT DOCUMENTS

4,437,149
4,833,599
4,847,755

A 3/1984

A

A
4,933,837 A

A

A

A

A

5/1989
7/1989
6/1990
10/1991
10/1991
1/1992
3/1992

Pomerene et al.
Colwell et al.
Morrison et al.
Freidin

Sluijter et al.
Colwell et al.
Hiller et al.
Circello et al.

5,055,997
5,057,837
5,081,575
5,101,341

5,121,502 A 6/1992 Rau et al.
5,129,067 A 7/1992 Johnson
5,151,981 A 9/1992 Westcott et al.
5,179,680 A 1/1993 Colwell et al.
5,197,137 A 3/1993 Kumar et al.
5,203,002 A 4/1993 Wetzel
5,214763 A 5/1993 Blaner et al.

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

EP 0363 222 A2 4/1990
EP 0 426 393 A2 5/1991
EP 0449 661 A2 10/1991
EP 0463296 A2 1/1992

(List continued on next page.)
OTHER PUBLICATIONS

Adams et al., “HARP: A Statically Scheduled Multiple—In-
struction-Issue Architecture and it Compiler”, Technical
Report 163, University of Hertfordshire, Hatfield, Herts UK,
pp. 1-8, Sep. 1993.

Agerwala et al., “High Performance Reduced Instruction Set
Processors”, RC 12434 (#55845), Computer Science, Jan. 9,
1987.

(List continued on next page.)

Primary Examiner—Viet D. Vu
(74) Attorney, Agent,
Firm—Townsend&Townsend&Crew

&) ABSTRACT

A computing system as described in which individual
instructions are executable in parallel by processing
pipelines, and instructions to be executed in parallel by
different pipelines are supplied to the pipelines simulta-
neously. The system includes storage for storing an arbitrary
number of the instructions to be executed. The instructions
to be executed are tagged with pipeline identification tags
indicative of the pipeline to which they should be dis-
patched. The pipeline identification tags are supplied to a
system which controls a crossbar switch, enabling the tags
1o be used to control the switch and supply the appropriate
instructions simultaneously to the differing pipelines.

or

122 Claims, 5 Drawing Sheets

2.WAY SET I
PHYSICAL ASSOCIATE
84 ADDRESS PRIMARY 256| TAGS
INSTRUCTION
19 CACHE
%0 \
s 82 512 100
— /an-s [12:5] /
AboRess ASSOCIATIVE CROSSBAR
BITS (3113 Brrsuz] a1
30
VBITS fat2)
MUX
32 BITS

ADDRESSES

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page 45 of 62 PagelD #: 45

US 6,360,313 B1
Page 2

U.S. PATENT DOCUMENTS

5,226,169 A 7/1993 Gregor
5,233,696 A 8/1993 Suzuki
5,239,654 A 8/1993 Ing-Simmons et al.
5,297,255 A 3/1994 Hamanaka et al.
5,297,281 A 3/1994 Emma et al.
5,299,321 A 3/1994 lizuka
5,333,280 A * 7/1994 Ishikawa et al. 712/241
5,337,415 A 8/1994 Delano et al.
5,355,460 A 10/1994 Eickemeyer et al.
5,367,694 A 11/1994 Ueno
5,442,760 A * 81995 Rustad et al. 7127215
5,459,844 A 10/1995 Eickemeyer et al.
5,500,942 A 3/1996 Eickemeyer et al.
5,761,470 A 6/1998 Yoshida
5,819,088 A 10/1998 Reinders
5,922,065 A 7/1999 Hull
FOREIGN PATENT DOCUMENTS
EP 0463 299 A2 1/1992
EP 0496 928 A2 8/1992
EP 0652510 A2 5/1995
wO WO 98/38791 9/1998

OTHER PUBLICATIONS

Allison, DEC 7000/10000 Model 600 AXP Multiprocessor
Server, IEEE, 1063—6390/93, pp. 456-464 (1993).
Anderson, D.W. et al. [1967] “The IBM 360 model 91:
Processor Philosophy and instruction handling.” IBM J.
Research and Development 11:1 (Jan.) pp. 8-24.

Arya et al., “An Architecture for High Instruction Level
Parallelism”, pp. 1-21, Jan. 1995.

Bakoglu et al., “The IBM RISC system/6000 processor:
hardware overview”, IBM J. Res. Develop., 34(1):12-22
(Jan., 1990).

Beck et al., “The Cydra 5 Minisupercomputer: Architecture
and Implementation”, J. Supercomputing, 7:143-179
(1993).

Butler, et al, “Single Instruction Stream Parallelism Is
Greater than Two”, 1991 ACM, pp. 276-286.

Case et al,, “DEC Enters Microprocessor Business With
Alpha”, Microprocessor Report, 6(3):1,6-14, (Mar. 4,
1992).

Chang et al., “Comparing Static and Dynamic Code Sched-
uting for Multiple—Instruction-Issue Processors”, Proceed-
ings of the 24" International Symposium on Microarchitec-
tures—MICRO24, pp. 1-9, 1991.

Charlesworth, A.E., [1981]. “An approach to scientific pro-
cessing: The architecture design of the AP-120B/FPS—164
family” Computer 14:9 (Sep.), pp. 18-27.

Chen, “The Effect of Code Expanding Optimizations on
Instruction Cache Design” JEEE Transactons on Comput-
ers, 42(9) pp. 1045-1057, Sep. 1993.

Colwell, et al., “A VLIW Architecture for a Trace Schedul-
ing Compiler”, IEEE Transactions on Computers, 37(8) pp.
967-979, Aug. 1988.

Colwell, R.P. et al. [1987]. “A VLIW architecture for a trace
scheduling compiler.” Proc. second Conf. on Architectural
Support for Programming Languages and Operating Sys-
tems, IEFF/JACM (Mar.), pp. 180-192.

Conte, “Trade-Offs in Processor/Memory Interfaces for
Superscalar Processors”, MICRO-25, The 25" Annual
International Symposium on Microarchitecture, Dec. 1992.

De Gloria et al., “A Programmable Instruction Format
Extension to VLIW Architectures”, Proceedings Comp.
Euro. 1992, pp. 35-40 (May 4, 1992).

Dehnert et al., “Compiling for the Cydra 5%, J. Supercom-
puting, 7, pp. 181-227, May 1993.

Dehnert, J.C. et al. [1989]. “Overlapped loop support on the
Cydra 5.” Proc. Third Conf. on Architectural Support for
Programming Languages and Operating Systems (Apr.),
TEEE/ACM. Boston, pp. 26-39.

Dorozhevets et al., The El-Brus-3 and Mars—M: Recent
Advances in Russian High-Performance Computing, Jour-
nal of Supercomputing, 6(1):5-48 (Mar. 1, 1992).

Dutton, “The Design of the DEC 3000 Model 500 AXP
Workstation”, JEEE, 1063-6390/93, pp. 449455 (1993).
Fisher et al., “Instruction—Level Parallel Processing”, Sci-
ence, 253, pp. 1233-1241, Sep. 1991.

Fisher et al., “Parallel Processing: A Smart Compiler and a
Dumb Machine”, SIGPLAN Notices, 1%(6):37-47 (Jun.
1984).

Fisher et al., “Parallel Processing: A Smart Compiler and a
Dumb Machine”, ACM-Sigplan 84 Compiler Construciton
Conference, 19(6), Jun. 1984.

Fisher, “Trace Scheduling: A Technique for Global Micro-
code Compaction”, IEEE Transactions on Computers,
C-30(7):478-490 Jul. 1981.

Fisher, “Very Long Instruction Word Architectures and the
ELI-512”, Proceedings of the 10" Symposium on Computer
Architecture, ACM Press, pp. 140-150 (1983).

Gee et al., “Cache Performance of the SPEC92 Benchmark
Suite”, JEEE MICRO, pp. 17-27, Aug. 1993.

Gray et al,, “Static Instruction Scheduling for the HARP
Multiple-Instruction—Issue Architecture™, Technical Report
142, University of Hertfordshire, Hatfield, Herts UK, Oct.
1992.

Grove et al., “GEM Optimizaing Compilers for Alpha AXP
Systems”, IEEE, 1063-6390/93, pp. 464473 (1993).
Gwennap, “Visionaries See Beyond Superscalar”, Micro-
processor Report, pp. 18-19, Dec. 6, 1993.

Hennessy et al., “Computer Architecture; a Quantitative
Approach”, ISBN 1-55880~069-8, Morgan Kaufmann Pub-
lishers, Inc., San Mateo Calif. (1990) Table of Contents, pp.
Xi-%v.

Hennessy et al.,, “Computer Technology and Architecture:
An Evolving Interaction”, IEEE Computer, pp. 18-29, Sep.
1991.

Hsu et al,, “Highly Concurrent Scalar Processing”, 13%
International Symposium on Computer Architecture, pp.
Tokyo, 1986, pp. 1-10.

Johnson, “Superscalar Microprocessor Design”, Prentice
—Hail 1991 pp. 233-235.

Johnson, “Superscalar Microprocessor Design”, Prentice
—Hall, Englewood Cliffs, New Jersey, 1991.

Karl, “Some Design Aspects for VLIW Architectures
Exploiting Fine—Grained Parallelism”, Proceedings of the
5% International PARLE Conference, pp. 582-599, Jun.
1993,

Kato et al., “Delayed Instruction Execution on a Long
Instruction Word (LIW) Computer”, Systems & Computers
in Japan, 23(14):13-22 (Jan. 1, 1992).

Lam et al,, “Limits of Control Flow on Parallelism”, Com-
puter Architecture News, 20(2):46~57 (1992).

Case 2:03-cv-00034-DE.. Document 1 Filed 01/30/03 Page 46 of 62 PagelD #: 46

US 6,360,313 B1
Page 3

Lam, “Software Pipelining: An Effective Scheduling Tech-
nique for VLIW Machines”, Proceedings of ACM SIGPLAN
‘88 Conference on Programming Language Design and
Implementation, pp. 318-328, Jun. 1988.

Mahlke et al., “Effective Compiler Support for Predicated
Execution Using the Hyperblock”, MICRO 25, Proceedings
of the 25 Annual International Symposium on Microarchi-
tectures, IEEE Computer Society Press, pp. 45-54, Dec.
1992.

Mahlke et al,, “Sentinel Scheduling for VLIW and Super-
scalar Processors”, In Proceedings of ASPLOS V, 27(9) pp.
238-247, Sep. 1992,

Minagawa et al., “Pre—decoding Mechanism for Superscalar
Architecture”, IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing, pp. 21-24 (May
9, 1991).

Moon et al, “An Efficient Resource-Constrained Global
Scheduling Technique for Superscalar and VLIW Proces-
sors”, MICRO 25, Proceedings of the 25" Annual Interna-
tional Symposium on Microarchitectures, pp. 55-71, Dec.
1992.

Nicolau et al., “Measuring the Parallelism Available for Very
Long Instruction Word Architectures”, IEEE Transactions
on Computers, C-33(11), pp. 968-976, Nov. 1984.

Oyang et al.,, “A Cost Effective Approach to Implement A
Long Instruction Word Microprocessor”, Computer Archi-
tecture News, 18(1), Mar. 1990, pp. 59-72.

Pan et al.,, “Improving the Accuracy of Dynamic Branch
Prediction Using Branch Correlation”, Fifth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-V), vol. 27, pp.
7684 (1992).

Park et al, “On Predicated Execution”, Technical Report
HPL-91-58, Hewlett—Packard Laboratories May 1991.
Rau et al., “Efficient Code Generation for Horizontal Archi-
tectures: Compiler Techniques and Architectural Support”,
Proceedings of the Ninth Annual International Symposium
on Computer Architecture, pp. 131-139, 1982.

Rau et al,, “Instruction-Level Parallel Processing: History,
Overview and Perspective”, J. Supercomputing, vol. 7, PpP-
9-50 (1993).

Rau, “Cydra™ 5 Directed Dataflow Architecture”, Proceed-
ings of COMPCON 1988.

Rau, “Dynamic Scheduling Techniques for VLIW Proces-
sors”, Technical Report HPL-93-52, Hewlett—Packard
Laboratories, Jun. 1993.

Rau, B.R,, et al. [1989]. “The Cydra 5 departmental super-
computer: Design philosophies, decisions, and tradeoffs,”
IEEE Computers, 22:1 (Jan.), pp. 12-34.

Rau, et al. (Editors), “Instruction-Level Parallelism”, reprint
from J. Supercomputing, 7(1/2), 1993.

Schuette et al,, “Instruction~Level Experimental Evaluation
of the Multiflow Trace 14/300 VLIW Computer”, J. Super-
computing, vol. 7, pp. 249-271 (1993).

Silberman et al, “An Architectural Framework for Support-
ing Heterogeneous Instruction—Set Architectures”, JEEE
Computer, 26(6), pp. 39-56, Jun. 1993.

Sites (Editor), “Alpha Architecture Reference Manual”,
Digital Press 1992.

Smith et al.,, “Boosting Beyond Static Scheduling in a
Superscalar Processor”, [EEE Computer, pp. 344353, 1990.
Smith, I.E. [1989]. “Dynamic instruction scheduling and the
astronautics ZS-I" Computer 22:7 (Jul.), pp. 21-35.

Smith, J.E. et al. [1987]. “The ZS-I central processors,”
Proc. Second Conf. on Architectural Support for Program-
ming Languages and Operating Systems, IEEE/ACM
(Mar.), pp. 199-204.

Sohi and Vajapeyam [1989]. “Tradeoffs in instruction format
design for horizontal architectures,” Proc. Second Conf. on
Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (Apr.), pp. 15-25.

Sohi, G.S. [1990]. “Instruction issue logic for high—perfor-
mance, interruptible, multiple functional unit pipelined com-
puters,” IEEE Trans. on Computers 39:3 (Mar.), 349-359.
Steven et al., “An Evaluation of the iHARP Multiple-In-
struction-Issue Processor”, Division of Computer Science,
Univ. of Hertfordshire, Hatfield, Hertfordshire, pp- 1-8, Sep.
1995.

Stevens et al., “iHARP: A Multiple Instruction Issue Pro-
cessor”, Technical Report No. 125, Hatfield Polytechnic,
Nov. 1991.

Stevens, “An introduction to the Hatfield Superscalar Sched-
uler”, Technical Report No. 316, University of Herfordshire,
Hatfield, Herts UK, Spring 1998.

Stone et al., “Computer Architecture in the 1990s”, [EEE
Computer, pp. 30~37, Sep. 1991.

The SPARC Architecture Manual, Version 8, Prentice Hall,
New Jersey, 1992.

Tjaden et al., “Detection and Parallel Execution of Parallel
Instructions”, IEEE Transactions On Computers,
C-19(10):889-895 Oct. 1970.

Tomasulo, R-M. [1967], “An efficient algorithm for exploit-
ing multiple arithmetic units,” IBM J. Research and Devel-
opment 11:1 (Jan.), 25-33.

Uht, “Extraction of Massive Instruction Level Parallelism”,
Computer Architecture News, 21(3):5-12, Jun. 1993.
Weall, “Limits of Instruction Level Parallelism”, Proceedings
of the Fourth International Conference on Architectural
Support for Programming Languages and Operation Sys-
tems, pp. 176-188, Apr. 1991.

Warter et al., “Enhanced Modulo Scheduling for Loops With
Conditional Branches”, MICRO 25, Proceedings of the 25
Annual International Symposium on Microarchitecture, pp.
170-179 (1992).

Warter et al,, “The Benefit of Predicated Execution for
Software Pipelining”, HICSS-26 Conference Proceedings,
vol. 1, pp. 497-506, Jan. 1993.

Weaver et al. (Editors), “The SPARC Architecture Manual—
Version 9”7, SPARC International Inc., PTR Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

Weiss and Smith [1984]. “Instruction issue logic for pipe-
lined supercomputers,” Proc. 11th Symposium on Cormputer
Architecture (Jun.) pp. 110-118.

Horst et al., “Multiple Instruction issue in the Nonstop
cyclone processor” Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, IEEE Com-
puter Society Press, WAshington, (May 28-31, 1990) pp.
216-226.

Requa et al,, “The Piecewise data flow archtiecture: Archi-
tectural concepts” IEEE Transaction on Computers (1983)
C-32(5):425-438.

Wang et al., “I-NET mechanism for issuing multiple instruc-
tions”Proceedings of Supercomputing IEEE Computer Soci-
ety (Nov. 14-18, 1988) Orlando, FL., pp. 88-95.

* cited by examiner

Case 2:03-cv-00034-DFE_ Document 1 Filed 01/30/03 Page 47 of 62 PagelD #: 47

U.S. Patent Mar. 19,2002 Sheet 1 of 5 US 6,360,313 B1
SECONDARY CACHE
20 34\J(123
/o
DATA-CACHE / 128
32l L4132
32"
32 KB FOUR-WAY
SET-ASSOCIATIVE 30
32 BYTE LINE |~
96
PREDECODER
128 64 AND
CACHE 64 DRAM
3X32) 2X B4y 484 CONTROLLER MEMORY
18 14 16 MéAMN([))RY 1M - 4M
128 64 32
e, CONTROLLER
INSTRUCTION
CACHE
16 KB TWO-WAY
SET-ASSOCIATIVE | 12
32BYTELINE | /, 1.,
32* 64
10 J[\“
36
/O (586 BUS)

PCI BUS

FIG. 1

Case 2:03-cv-00034-DF__Document 1 Filed 01/30/03 Page 48 of 62 PagelD #: 48

U.S. Patent

Mar. 19, 2002 Sheet 2 of 5 US 6,360,313 B1
50~ SECONDARY
CACHE
X256
60
N PRE-DECODER
4512 76 74
" 2.-WAY SE"F ‘
PHYSICAL ASSOCIATE
84 ADDRESS | PRIMARY 256| TAGS
1o INSTRUCTION
1 CACHE
90\ , 82 Dz .
|_-BITS [12:5] | /
VIRTUAL "} 19 3
ADDRESS >~ ASSOCIATIVE CROSSBAR
BITS [31:13] /0N
Y30 F/110 111 64
BITS [31:2] . - '
= PPE| (PIPE| .. |PIPE
wux |8 0 1 7

T T T T\az BITS

ADDRESSES

FIG. 2

US 6,360,313 B1

Sheet 3 of §

Case 2:03-cv-00034-DFE_ Document 1 Filed 01/30/03 Page 49 of 62 PagelD #: 49
Mar. 19, 2002

U.S. Patent

£ Old
oy 7T oo o S + + + 03dld N o0z
L S L m w m %

18— % w Pooee— T~ | m 4102
S SR SN SRS R S | S
H | “
l :
Vo -
d | vEZ m
= JER SUNSRUORRNEE SN SR RO WO ISR WO DA N
s |
RS SO OSSOSO OURRRRUTN USRS O NSO NS DO S—

ogs—"7 T g9z — W

NQ—\MAY. B R

LLL 2Ll L1
193138 _______\ :_E___\ :______\
3goo3a [za " za ||[1a I N
M Mu | 254 JT HIGANN
4 ANN3did
IM M SM M EM ZM m oM
NogL
L I\ —— T —]
€ dNOHD 2 dNOHD I JNOHD

—

Case 2:03-cv-00034-DF __Document 1 Filed 01/30/03 Page 50 of 62 PagelD #: 50

US 6,360,313 B1

Sheet 4 of §

Mar. 19, 2002

U.S. Patent

2

0

3did

!

l3dld 23did €3dld ¥3did S3did 93did L3did 83did

q

ﬁ

v "OId

q

S R

I

QTOHN < Q1OH |~ A1OH [~ GTOH |+ G1OH -+ @10H SoITo._ozlo._oITn:oI
0 alTvA r , .
1H0d
. \H\ 9}t IAd end eAd vAd SAd 9Ad LAd 8Ad
=S 0 N Y
913s4522—231 0 31 4 e e iy 2 s 9 3 ¢ 8
103138 _ |) y135 58S —Haxa = axa [axa = axa = axa Flaxa —1dX3 [3dX3 =3dX3| {1hod
300234 Z13s 138 —=IXNN EIXNIN E=IXNIN ESIXNIN E=IXnin E=ixnin =Exnin i Exnw] | 1sal
[13s 18 =] 18 = 18 =] 18 =] L8 18 =] 18 [—] 18 | =] I8
2Is
¥9
oo | uwla|ea|{w]|s ||
v
ANLVIOOSSY-L3S AVYM-2
o] (S3IWvY4 215) gy 2¢
IHOVO-|

Case 2:03-cv-00034-DFE__ Document 1 Filed 01/30/03 Page 51 of 62 PagelD #: 51

U.S. Patent Mar. 19,2002 Sheet 5 of 5 US 6,360,313 Bl

200

N\

PIPELINE

TAG INSTRUCTION CACHE N
CACHE 70

Y V‘ \L y
205}7

> CROSSBAR A 100

AMPL?FEIESE 210 Y Y Y Y 210

PIPELINES eoe

FIG. 5

Case 2:03-cv-00034-DE__Document 1 Filed 01/30/03 Page 52 of 62 PagelD #: 52

US 6,360,313 B1

1

INSTRUCTION CACHE ASSOCIATIVE
CROSSBAR SWITCH

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
09/057,861 filed Apr. 9, 1998, now pending; which is a
continuation of application Ser. No. 08/754,337 filed Nov.
22, 1996, which issued as U.S. Pat. No. 5,794,003 on Aug.
11, 1998; which is a continuation of application Ser. No.
08/498,135 filed Jul. 5, 1995, now abandoned; which is a
continuation of application Ser. No. 08/147,797 filed Nov. 5,
1993, now abandoned; the disclosures of which are incor-
porated by reference for all purposes.

This application also incorporates by reference for all
purposes application Ser. No. 08/422,753 filed Apr. 13,
1995, which issued as U.S. Pat. No. 5,560,028 on Sep. 24,
1996; which is a continuation of application Ser. No. 08/147,
800 filed Nov. 5, 1993, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to the architecture of computing
systems, and in particular to an architecture in which indi-
vidual instructions may be executed in parallel, as well as to
methods and apparatus for accomplishing that.

Acommeon goal in the design of computer architectures is
to increase the speed of execution of a given set of instruc-
tions. One approach to increasing instruction execution rates
Is to issue more than one instruction per clock cycle, in other
words, 1o issue instructions in parallel. This allows the
instruction execution rate to exceed the clock rate. Comput-
ing systems that issue multiple independent instructions
during each clock cycle must solve the problem of routing
the individual instructions that are dispatched in parallel to
their respective execution units. One mechanism used to
achieve this parallel routing of instructions is generally
called a “crossbar switch.”

In present state of the art computers, e.g. the Digital
Equipment Alpha, the Sun Microsystems SuperSpare, and
the Intel Pentium, the crossbar switch is implemented as part
of the instruction pipeline. In these machines the crossbar is
placed between the instruction decode and instruction
execute stages. This is because the conventional approach
requires the instructions to be decoded before it is possible
to determine the pipeline to which they should be dis-
patched. Unfortunately, decoding in this manner slows sys-
tem speed and requires extra surface area on the integrated
circuit upon which the processor is formed. These disad-
vantages are explained further below.

SUMMARY OF THE INVENTION

We have developed a computing system architecture that
enables instructions to be routed to an appropriate pipeline
more quickly, at lower power, and with simpler circuitry
than previously possible. This invention places the crossbar
switch earlier in the pipeline, making it a part of the initial
instruction fetch operation. This allows the crossbar to be a
part of the cache itself, rather than a stage in the instruction
pipeline. It also allows the crossbar to take advantage of
circuit design parameters that are typical of regular memory
structures rather than random logic. Such advantages
include: lower switching voltages (200-300 milliamps
rather than 3-5 volts); more compact design, and higher
switching speeds. In addition, if the crossbar is placed in the
cache, the need for many sense amplifiers is eliminated,
reducing the circuitry required in the system as a whole.

20

25

30

35

40

45

50

55

60

65

2

To implement the crossbar switch, the instructions com-
ing from the cache, or otherwise arriving at the switch, must
be tagged or otherwise associated with a pipeline identifier
to direct the instructions to the appropriate pipeline for
execution. In other words, pipeline dispatch information
must be available at the crossbar switch at instruction fetch
time, before conventional instruction decode has occurred.
There are several ways this capability can be satisfied: In one
embodiment this system includes a mechanism that routes
each instruction in a set of instructions to be executed in
parallel to an appropriate pipeline, as determined by a
pipeline tag applied to each instruction during compilation,
or placed in a separate identifying instruction that accom-
panies the original instruction. Alternately the pipeline affili-
ation can be determined after compilation at the time that
instructions are fetched from memory into the cache, using
a special predecoder unit.

Thus, in one implementation, this system includes a
register or other means, for example, the memory cells
providing for storage of a line in the cache, for holding
instructions to be executed in parallel. Each instruction has
associated with it a pipeline identifier indicative of the
pipeline to which that instruction is to be issued. A crossbar
switch is provided which has a first set of connectors
coupled to receive the instructions, and a second set of
connectors coupled to the processing pipelines to which the
instructions are to be dispatched for execution. Means are
provided which are responsive to the pipeline identifiers of
the individual instructions in the group supplied to the first
set of connectors for routing those individual instructions
onto appropriate paths of the second set of connectors,
thereby supplying each instruction in the group to be
executed in paralle] to the appropriate pipeline.

In a preferred embodiment of this invention the associa-
tive crossbar is implemented in the instruction cache. By
placing the crossbar in the cache all switching is done at low
signal levels (approximately 200~300 millivolts). Switching
at these low levels is substantially faster than switching at
higher levels (5 volts) after the sense amplifiers. The lower
power also eliminates the need for large driver circuits, and
climinates numerous sense amplifiers. Additionally by
implementing the crossbar in the cache, the layout pitch of
the crossbar lines matches the pitch of the layout of the
cache.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a typical eaviron-
ment for a preferred implementation of this invention;

FIG. 2 is a diagram illustrating the overall structure of the
instruction cache of FIG. 1;

FIG. 3 is a diagram illustrating one embodiment of the
associative crossbar;

FIG. 4is a diagram illustrating another embodiment of the
associative crossbar; and

FIG. 5 is a diagram illustrating another embodiment of the
associative crossbar.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

FIG. 1 is a block diagram of a computer system incor-
porating the associative crossbar switch according to the
preferred embodiment of this invention. The following
briefly describes the overall preferred system environment
within which the crossbar is incorporated. For additional
information about the system, see application Ser. No.

Case 2:03-cv-00034-DF ~Document 1 Filed 01/30/03 Page 53 of 62 PagelD #: 53

US 6,360,313 B1

3

08/422,753 filed Apr. 13, 1995, which issued as U.S. Pat.
No. 5,560,028 on Sep. 24, 1996; which is a continuation of
application Ser. No. 08/147,800 filed Nov. S, 1993, now
abandoned, and entitled “Software Scheduled Superscaler
Computer Architecture,” which is incorporated by reference
herein. FIG. 1 illustrates the organization of the integrated
circuit chips by which the computing system is formed. As
depicted, the system includes a first integrated circuit 10 that
includes a central processing unit, a floating point unit, and
an instruction cache.

In the preferred embodiment the instruction cache is a 16
kilobyte two-way set-associative 32 byte line cache. A set
assaciative cache is one in which the lines (or blocks) can be
placed only in a restricted set of locations. The line is first
mapped into a set, but can be placed anywhere within that
set. In a two-way set associative cache, two sets, or
compartments, are provided, and each line can be placed in
one compartment or the other.

The system also includes a data cache chip 20 that
comprises a 32 kilobyte four-way set-associative 32 byte
line cache. The third chip 30 of the system includes a
predecoder, a cache controller, and a memory controller, The
predecoder and instruction cache are explained further
below. For the purposes of this invention, the CPU, FPU,
data cache, cache controller and memory controller all may
be considered of conventional design.

The communication paths among the chips are illustrated
by arrows in FIG. 1. As shown, the CPU/FPU and instruc-
tion cache chip communicates over a 32 bit wide bus 12 with
the predecoder chip 30. The asterisk is used to indicate that
these communications are multiplexed so that a 64 bit word
Is communicated in two cycles. Chip 10 also receives
information over 64 bit wide buses 14, 16 from the data
cache 20, and supplies information to the data cache 20 over
three 32 bit wide buses 18. The predecoder decodes a 32 bit
instruction received from the secondary cache into a 64 bit
word, and supplies that 64 bit word to the instruction cache
on chip 10.

The cache controller on chip 30 is activated whenever a
first level cache miss occurs. Then the cache controller either
goes o main memory or to the secondary cache to fetch the
needed information. In the preferred embodiment the sec-
ondary cache lines are 32 bytes and the cache has an 8
kilobyte page size.

The data cache chip 20 communicates with the cache
controller chip 30 over another 32 bit wide bus. In addition,
the cache controller chip 30 communicates over a 64 bit
wide bus 32 with the DRAM memory, over a 128 bit wide
bus 34 with a secondary cache, and over a 64 bit wide bus
36 to input/output devices.

As will be described further below, the system shown in
FIG. 1 includes multiple pipelines able to operate in parallel
on separate instructions which are dispatched to these par-
allel pipelines simultancously. In one embodiment the par-
allel instructions have been identified by the compiler and
tagged with a pipeline identification tag indicative of the
specific pipeline to which that instruction should be dis-
patched.

In this system, an arbitrary number of instructions can be
executed in parallel. In one embodiment of this system the
central processing unit includes eight functional units and is
capable of executing cight instructions in parallel. These
pipelines are designated using the digits 0 to 7. Also, for this
explanation each instruction word is assumed to be 32 bits
(4 bytes) long.

As briefly mentioned above, in the preferred embodiment
the pipeline identifiers are associated with individual

10

20

25

35

45

50

55

60

65

4

instructions in a set of instructions during compilation. In the
preferred embodiment, this is achieved by compiling the
instructions to be executed using a well-known compiler
technology. During the compilation, the instructions are
checked for data dependencies, dependence upon previous
branch instructions, or other conditions that preclude their
execution in parallel with other instructions. The result of
the compilation is identification of a set or group of instruc-
tions which can be executed in parallel. In addition, in the
preferred embodiment, the compiler determines the appro-
priate pipeline for execution of an individual instruction.
This determination is essentially a determination of the type
of instruction provided. For example, load instructions will
be sent to the load pipeline, store instructions to the store
pipeline, etc. The association of the instruction with the
given pipeline can be achieved either by the compiler, or by
later examination of the instruction itself, for example,
during predecoding.

Referring again to FIG. 1, in normal operation the CPU
will execute instructions from the instruction cache accord-
ing to well-known principles. On an instruction cache miss,
however, a set of instructions containing the instruction
missed is transferred from the main memory into the sec-
ondary cache and then into the primary instruction cache, or
from the secondary cache to the primary instruction cache,
where it occupies one line of the instruction cache mermory.
Because instructions are only executed out of the instruction
cache, all instructions ultimately undergo the following
procedure.

At the time a group of instructions is transferred into the
instruction cache, the instruction words are predecoded by
the predecoder 30. As part of the predecoding process, a
multiple bit field prefix is added to each instruction based
upon a tag added to the instruction by the compiler. This
prefix gives the explicit pipe number of the pipeline to which
that instruction will be routed. Thus, at the time an instruc-
tion is supplied from the predecoder to the instruction cache,
cach instruction will have a pipeline identifier.

It may be desirable to implement the system of this
invention on computer systems that already are in existence
and therefore have instruction structures that have already
been defined without available blank ficlds for the pipeline
information. In this case, in another embodiment of this
invention, the pipeline identifier information is supplied on
a different clock cycle, then combined with the instructions
in the cache or placed in a separate smaller cache. Such an
approach can be achieved by adding a “no-op” instruction
with fields that identify the pipeline for execution of the
instruction, or by supplying the information relating to the
parallel instructions in another manner. It therefore should
be appreciated that the manner in which the instruction and
pipeline identifier arrives at the crossbar to be processed is
somewhat arbitrary. I use the word “associated” herein to
designate the concept that the pipeline identifiers are not
required to have a fixed relationship to the instruction words.
That is, the pipeline identifiers need not be embedded within
the instructions themselves by the compiler. Instead they
may arrive from another means, or on a different cycle.

FIG. 2 is a simplified diagram illustrating the secondary
cache, the predecoder, and the instruction cache. This figure,
as well as FIGS. 3, 4 and 5, are used to explain the manner
in which the instructions tagged with the pipeline identifier
are routed to their designated instruction pipelines.

In FIG. 2, for illustration, assume that groups of instruc-
tions to be executed in parallel are fetched in a single
transfer across a 256 bit (32 byte) wide path from a sec-

Case 2:03-cv-00034-DF_ Document 1 Filed 01/30/03 Page 54 of 62 PagelD #: 54

US 6,360,313 B1

5

ondary cache 50 into the predecoder 60. As explained above,
the predecoder prefixes the pipeline “P” field to the instruc-
tion. After predecoding the resulting set of instructions is
transferred into the primary instruction cache 70. At the
same time, a tag is placed into the tag field 74 for that line.

In the preferred embodiment the instruction cache oper-
ates as a conventional physically-addressed instruction
cache. In the example depicted in FIG. 2, the instruction
cache will contain 512 bit sets of instructions of eight
instructions each, organized in two compartments of 256
lines.

Address sources for the instruction cache arrive at a
multiplexer 80 that selects the next address to be fetched.
Because preferably instructions are always machine words,
the low order two address bits <1:0> m of the 32 bit address
field supplied to multiplexer 80 are discarded. These two bits
designate byte and half-word boundaries. Of the remaining
30 bits, the next three low order address bits <4:2>, which
designate a particular instruction word in the set, are sent
directly via bus 81 to the associative crossbar. The next low
eight address bits <12:5> are supplied over bus 82 to the
instruction cache 70 where they are used to select one of the
256 lines in the instruction cache. Finally, the remaining 19
bits of the virtual address <31:13> are sent to the translation
lookaside buffer (TLB) 90. The TLB translates these bits
into the high 19 bits of the physical address. The TLB then
supplies them over bus 84 to the instruction cache. In the
cache they are compared with the tag of the selected line, to
determine if there is a “hit” or a “miss” in the instruction
cache.

If there is a hit in the instruction cache, indicating that the
addressed instruction is present in the cache, then the
selected set of instructions is transferred across the 512 bit
wide bus 73 into the associative crossbar 100. The associa-
tive crossbar 100 then dispatches the addressed instructions
to the appropriate pipelines over buses 110, 111, . . . , 117.
Preferably the bit lines from the memory cells storing the
bits of the instruction are themselves coupled to the asso-
ciative crossbar. This eliminates the need for numerous
sense amplifiers, and allows the crossbar to operate on the
lower voltage swing information from the cache line
directly, without the normally intervening driver circuitry to
slow system operation,

FIG. 3 illustrates in more detail one embodiment of the
associative crossbar. A 512 bit wide register 130, which
represents the memory cells in a line of the cache (or can be
a physically separate register), contains at least the set of
instructions capable of being issued. For the purposes of
illustration, register 130 is shown as containing up to eight
instruction words W0 to W7. Using means described in the
copending application referred to above, the instructions
have been sorted into groups for parallel execution. For
illustration here, assume the instructions in Group 1 are to be
dispatched to pipelines 1, 2 and 3; the instructions in Group
2 to pipelines 1, 3 and 6; and the instructions in Group 3 to
pipelines 1 and 6. The decoder select signal enables only the
appropriate set of instructions to be executed in parallel,
essentially allowing register 130 to contain more than just
one set of instructions. Of course, by only using register 130
only for one set of parallel instructions at a time, the decoder
select signal is not needed.

As shown in FIG. 3, the crossbar switch itself consists of
two sets of crossing pathways. In the horizontal direction are
the pipeline pathways 180, 181, . . ., 187. In the vertical
direction are the instruction word paths, 190, 191, ...,197.
Each of these pipeline and instruction pathways is them-

30

45

50

55

6

selves a bus for transferring the instruction word. Each
horizontal pipeline pathway is coupled to a pipeline execu-
tion unit 200, 201, 202, 207. Each of the vertical instruction

word pathways 190, 191, . . . | 197 is coupled to an
appropriate portion of register or cache line 130.
The decoders 170, 171, . . . , 177 associated with each

instruction word pathway receive the 4 bit pipeline code
from the instruction. Each decoder, for example decoder
170, provides eight 1 bit control lines as output. One of these
control lines is associated with each pipeline pathway cross-
ing of that instruction word pathway. Selection of a decoder
as described with reference to FIG. 3 activates the output bit
control line corresponding to that input pipe number. This
signals the crossbar to close the switch between the word
path associated with that decoder and the pipe path selected
by that bit line. Establishing the cross connection between
these two pathways causes a selected instruction word to
flow into the selected pipeline. For example, decoder 173
has received the pipeline bits for word W3. Word W3 has
associated with it pipeline path 1. The pipeline path 1 bits are
decoded to activate switch 213 to supply instruction word
W3 to pipeline execution unit 201 over pipeline path 181. In
a similar manner, the identification of pipeline path 3 for
decoder D4 activates switch 234 to supply instruction word
‘W4 to pipeline path 3. Finally, the identification of pipeline
6 for word W5 in decoder D5 activates switch 265 to transfer
instruction word W5 to pipeline execution unit 206 over
pipeline pathway 186. Thus, instructions W3, W4 and W5
are executed by pipes 201, 203 and 206, respectively.

The pipeline processing units 200, 201, . . . , 207 shown
in FIG. 3 can carry out desired operations. In a preferred
embodiment of the invention, each of the eight pipelines first
includes a sense amplifier to detect the state of the signals on
the bit lines from the crossbar. In one embodiment the
pipelines include first and second arithmetic logic units; first
and second floating point units; first and second load units;
a store unit and a control unit. The particular pipeline to
which a given instruction word is dispatched will depend
upon hardware constraints as well as data dependencies.

FIG. 4 is a diagram illustrating another embodiment of the
associative crossbar. In FIG. 4 nine pipelines 0-8 are shown
coupled to the crossbar. The decode select is used to enable
a subset of the instructions in the register 130 for execution
just as in the system of FIG. 3.

The execution ports that connect to the pipelines specified
by the pipeline identification bits of the enabled instructions
are then selected to multiplex out the appropriate instruc-
tions from the contents of the register. If one or more of the
pipelines is not ready to receive a new instruction, a set of
hold latches at the output of the execution ports prevents any
of the enabled instructions from issuing until the “busy”
pipeline is free. Otherwise the instructions pass transpar-
ently through the hold latches into their respective pipelines.
Accompanying the output of each port is a “port valid”
signal that indicates whether the port has valid information
to issue to the hold laich. FIG. 5 illustrates an alternate
embodiment for the invention where pipeline tags are not
included with the instruction, but are supplied separately, or
where the cache line itself is used as the register for the
crossbar. In these situations, the pipeline tags may be placed
into a high speed separate cache memory 200. The output
from this memory can then control the crossbar in the same
manner as described in conjunction with FIG. 3. This
approach eliminates the need for sense amplifiers between
the instruction cache and the crossbar. This enables the
crossbar fo swilch very low voltage signals more quickly
than higher level signals, and the need for hundreds of sense

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page 55 of 62 PagelD #: 55

US 6,360,313 B1

7

amplifiers is eliminated. To provide a higher level signal for
control of the crossbar, sense amplifier 205 is placed
between the pipeline tag cache 200 and the crossbar 100.
Because the pipeline tag cache is a relatively small memory,
however, it can operate more quickly than the instruction
cache memory, and the tags therefore are available in time
to control the crossbar despite the sense amplifier between
the cache 200 and the crossbar 100. Once the switching
occurs in the crossbar, then the signals are amplified by
sense amplifiers 210 before being supplied to the various
pipelines for execution.

The architecture described above provides many unique
advantages to a system using this crossbar. The crosshar
described is extremely flexible, enabling instructions to be
executed sequentially or in parallel, depending entirely upon
the “intelligence” of the compiler. Importantly, the associa-
tive crossbar relies upon the content of the message being
decoded, not upon an external control circuit acting inde-
pendently of the instructions being executed. In essence, the
associative crossbar is self directed.

Another important advantage of this system is that it
allows for more intelligent compilers. Two instructions
which appear to a hardware decoder (such as in the prior art
described above) to be dependent upon each other can be
determined by the compiler not to be interdependent. For
example, a hardware decoder would not permit two instruc-
tions R1+R2=R3 and R3+R5=R6 1o be executed in parallel.
A compiler, however, can be “intelligent” enough to deter-
mine that the second R3 is a previous value of R3, not the
one calculated by R1+R2, and therefore allow both instruc-
tions to issue at the same time. This allows the software to
be more flexible and faster.

Although the foregoing has been a description of the
preferred embodiment of the invention, it will be apparent to
those of skill in the art the numerous modifications and
variations may be made to the invention without departing
from the scope as described herein. For example, arbitrary
numbers of pipelines, arbitrary numbers of decoders, and
different architectures may be employed, yet rely upon the
system we have developed.

What is claimed is:

1. In a computing system having a plurality of processing
pipelines in which groups of individual instructions, within
a very long instruction word, are executable by the plurality
of processing pipelines, individual instructions in the very
long instruction word to be executed having associated
therewith group identifiers and pipeline identifiers, an appa-
ratus for routing each individual instruction of a group of
individual instructions to be executed in paralle]l to an
appropriate processing pipeline of the plurality of processing
pipelines, the apparatus comprising:

amain memory for storing the very long instruction word;

a very long instruction word storage coupled to the main
memory, for receiving the very long instruction word
from the main memory and for holding the very long
instruction word the very long instruction word includ-
ing groups of instructions to be executed in parallel,
including pipeline identifiers and group identifiers;

a selection circuit coupled to the very long instruction
word storage for receiving the group identifiers
included in the very long instruction word, for deter-
mining in response therelo a group of individual
instructions to be executed in parallel, and for output-
ting a control signal;

a decoder circuit coupled to the selection circuit and to the
very long instruction word storage, for receiving the

20

40

45

60

65

8

control signal and the pipeline identifiers included in
the very long instruction word, for determining in
response thereto the appropriate processing pipeline for
each individual instruction of the group, and for out-
putting switch control signals;

a switching circuit coupled to the decoder circuit, having

a first set of connectors coupled to the very long
instruction word storage for receiving the very long
instruction word therefrom and a second set of con-
nectors coupled to the plurality of processing pipelines,
for coupling each individual instruction of the group to
an appropriate processing pipeline in response to the
switch control signals.

2. The apparatus of claim 1,

wherein the first set of connectors comprises a set of first

communication buses, one first communication bus for
each individual instruction held in the very long
instruction word storage;

wherein the second set of connectors comprises a set of

second communication buses, one second communica-
tion bus for each processing pipeline;

wherein the decoder circuit comprises a set of decoders

coupled 1o receive as first input signals the pipeline
identifiers and as second input signals the pipeline
identifiers; and

wherein the switching circuit comprises a set of switches,

one switch for every intersection between each of the
first set of connectors and each of the second set of
connectors, each switch for providing connections, in
response to receiving the switch control signals,
between cach individual instruction in the group to be
executed in paralle] to the appropriate processing pipe-
line.

3. The apparatus of claim 2

wherein the selection means comprises a multiplexer

coupled to receive the group identifiers for each indi-
vidual instruction in the very long instruction word
storage, and in response to the group identifiers, enable
the decoder means to output switch control signals for
cach individual instructions of the group.

4. The apparatus of claim 3,

wherein the multiplexer supplies a switch control signal to

the decoder means to enable the decoder means to
output switch control signals for each individual
instruction of the group of individual instructions from
the very long instruction word.

5. In a computing system having a plurality of processing
pipelines in which groups of individual instructions are
exccutable, each individual instruction in a group executable
in parallel by the plurality of processing pipelines, a method
for transferring each individual instruction in a group to be
cxecuted through a switching unit having a first set of
connectors coupled to a very long instruction word storage
for receiving individual instructions therefrom, a second set
of connectors coupled to the plurality of processing
pipelines, and switches between the first set and the second
set of connectors, the method comprising:

retrieving the very long instruction word from a main

memory;

storing in the very long instruction word storage, the very

long instruction word; the very long instruction word
having a set of individual instructions including at least
one group of individual instructions to be executed in
parallel, individual instructions in the at least one group
having associated therewith pipeline identifiers indica-
tive of the processing pipeline which will execute that

Case 2:03-cv-00034-DF__Document 1 Filed 01/30/03 Page.56 of 62 PagelD #: 56

US 6,360,313 B1

9

individual instruction, the very long instruction word
storage also including at least one other individual
Instruction not in the at least one group of individual
instructions, the at least one other individual instruction
also having associated therewith the pipeline identifi-
ers; and

using the pipeline identifiers to control the switches
between the first set of connectors and the second set of
connectors to thereby supply each individual instruc-
tion in the at least one group to be executed in parallel
to an appropriate processing pipeline at a time different
from when the at least one other individual instruction
Is supplied to an appropriate processing pipeline.

6. A method as in claim 5 wherein the step of using the

pipeline identifiers comprises:

supplying the pipeline identifiers to individual decoders
of a set of decoders, each decoder of which provides an
output signal; and

using the output signals of the sets of decoders to control
the switches between the first set of connectors and the
second set of connectors to thereby supply each indi-
vidual instruction in the at least one group to be
executed in parallel to an appropriate processing pipe-
line.

7. A method as in claim 6 wherein individual instructions
in the storage further includes group identifiers associated
therewith to designate among the instructions present in the
very long instruction word storage, which of the individual
Instructions may be simultaneously supplied to the plurality
of processing pipelines, and the method further comprises:

supplying a group of instructions to be executed by the

processing pipelines together with the group identifiers
to a selector;

using the group identifiers to provide output determina-

tion signals; and

using both the output determination signals and the output

signals to control the switches between the first set of
connectors and the second set of connectors to thereby
supply each instruction in the at least one group to be
executed in parallel to the appropriate processing pipe-
line.

8. In a computing system having a plurality of processing
pipelines in which groups of individual instructions are
executable by the plurality of processing pipelines, a method
for supplying each individual instruction in a group of
individual instructions to be executed in parallel to an
appropriate processing pipeline, the method comprising:

retrieving a very long instruction word from a main

memory;

storing in a very long instruction word storage the very

long instruction word retrieved from the main memory,
the very long instruction word including groups of
individual instructions to be executed in parallel, the
individual instructions having associated therewith
pipeline identifiers indicative of processing pipelines
which will execute the individual instructions and
having associated therewith group identifiers indicative
of a group identification;

comparing the group identifiers to an execution group

identifier of those instructions to be next executed in
parallel; and

using the pipeline identifiers to control switches in a

switch having a first set of connectors coupled to the
very long instruction word storage for receiving the
very long instruction word therefrom and a second set

15

25

35

40

45

50

60

10

of connectors coupled to the plurality of processing
pipelines to thereby supply each individual instruction
in the at least one group to be executed in parallel to the
appropriate processing pipeline.

A computing system comprising:

a compiler for forming groups of instructions having
opcodes including a first group of instructions and a
second group of instructions, instructions in the first
group of instructions executable in parallel, and
instructions in the second group of instructions execut-
able in parallel;

a first memory storage having at least a memory location,
the memory location for storing the first group of
instructions, for storing the second group of instruc-
tions comprising at least one instruction, and for storing
group identifiers that indicate which instructions are
included within the first group of instructions and
which instructions are included within the second
group of instructions;

a pre-decoder coupled to the first memory storage for
decoding opcodes of instructions in the first group of
instructions and opcodes of instructions in the second
group of instructions, for forming a first group of
expanded instructions, a sccond group of expanded
instructions, and expanded group identifiers, and for
determining processing pipeline identifiers associated
with expanded instructions in the first group of
expanded instructions and processing pipeline identi-
fiers associated with expanded instructions in the scc-
ond group of expanded instructions, in response
thereto;

a second memory storage coupled to the predecoder
having at least a memory location, the memory location
for storing the first group of expanded instructions, the
second group of expanded instructions, the expanded
group identifiers, the processing pipeline identifiers
associated with the expanded instructions in the first
group of expanded instructions, and the processing
pipeline identifiers associated with the expanded
instructions in the second group of expanded instruc-
tions;

a decoder coupled to the second memory storage for
receiving the first group of expanded instructions, the
second group of expanded instructions, and the
expanded group identifiers, and for issuing the first
group of expanded instructions in response to the
expanded group identifiers;

a plurality of processing pipelines;

a crossbar coupled to the decoder and to the plurality of
processing pipelines, for issuing expanded instructions
in the first group of expanded instructions to processing
pipelines of the plurality of processing pipelines in
response to the processing pipeline identifiers associ-
ated with the expanded instructions in the first group of
expanded instructions.

10. The computing system of claim 9 wherein a first
processing pipeline identifier from the processing pipeline
identifiers associated with the expanded instructions in the
first group of expanded instructions identifies a first floating
point unit pipeline.

11. The computing system of claim 10 wherein a second
processing pipeline identifier from the processing pipeline
identifiers associated with the expanded instructions in the
first group of expanded instructions identifies a first arith-
metic logic unit pipeline.

12. The computing system of claim 10 wherein a second
processing pipeline identifier from the processing pipeline

hd

Case 2:03-cv-00034-DF__Document 1 Filed 01/30/03 Page-57 of 62 PagelD #: 57

US 6,360,313 B1

11

identifiers associated with the expanded instructions in the
first group of expanded instructions identifies a second
floating point unit pipeline.

13. The computing system of claim 11 wherein a third
processing pipeline identifier from the processing pipeline
identifiers associated with the expanded instructions in the
first group of expanded instructions identifies a second
floating point unit pipeline.

14. The computing system of claim 9 wherein a first
processing pipeline identifier from the processing pipeline
identifiers associated with the expanded instructions in the
second group of expanded instructions identifies a store unit
pipeline.

15. The computing system of claim 14 wherein a second
processing pipeline identifier from the processing pipeline
identifiers associated with the expanded instructions in the
second group of expanded instructions identifies a control
unit pipeline.

16. The computing system of claim 9

wherein the decoder is also for issuing the second group

of expanded instructions in response to the expanded
group identifiers; and

wherein the crossbar is also for issuing expanded instruc-

tions in the second group of expanded instructions to
processing pipelines of the plurality of processing
pipelines in response to the processing pipeline iden-
tifiers associated with the expanded instructions in the
second group of expanded instructions.

17. The computing system of claim 9 wherein the group
identifiers are associated with instructions in the first group
of instructions and with instructions in the second group of
instruction.

18. The computing system of claim 17 wherein the group
identifiers are embedded with instructions in the first group
of instructions and with instructions in the second group of
instruction.

19. The computing system of claim 9 wherein the first
group of expanded instructions comprises at least one
expanded instruction and the second group of expanded
instructions comprises at least two expanded instructions.

20. The computing system of claim 19 wherein the second
memory storage includes at least the two expanded instruc-
tions of the second group of expanded instructions and the
one expanded instruction of the first group of expanded
Instructions.

21. The computing system of claim 9

wherein the compiler is also for forming a third group of

instructions, the instructions in the third group of
instructions executable in parallel;

wherein the memory location of the first memory storage

1s also for storing a third group of instructions in
parallel with the first group of instructions and the
second group of instructions; and

wherein the group identifiers indicate which instructions

are included within the third group of instructions.

22. The computing system of claim 21 wherein the third
group of instructions comprises at least one instruction.

23. The computing system of claim 9 wherein the first
memory storage is a superscaler cache.

24. The computing system of claim 9 wherein one
expanded instruction of the second group of expanded
instructions is a branch instruction.

25. The computing system of claim 9 wherein the com-
piler explicitly identifies instructions that can be performed
in parallel for the first group of instructions.

26. A method for issuing groups of individual software-
scheduled instructions in parallel for processing comprises:

20

25

40

45

50

55

60

65

12

forming a first group of software-scheduled instructions,
a second group of software-scheduled instructions
comprising at least one instruction, and group identi-
fiers indicating which software-scheduled instructions
are included within the first group of software-
scheduled instructions and which software-scheduled
instructions are included within the second group of
software-scheduled instructions, software-scheduled
instructions in the first group of software-scheduled
instructions having opcodes and executable in parallel,
and software-scheduled instructions in the second
group of software-scheduled instructions having
opcodes and executable in parallel;

storing the first group of software-scheduled instructions,

the second group of software-scheduled instructions,
and the group identifiers in parallel in a first memory
location;
forming a first group of expanded software-scheduled
instructions, a second group of expanded software-
scheduled instructions, and expanded group identifiers
in response to opcodes of software-scheduled instruc-
tions in the first group of software-scheduled instruc-
tions and opcodes of software-scheduled instructions in
the second group of software-scheduled instructions;

determining processing pipelines appropriate for
expanded software-scheduled instructions in the first
group of expanded software-scheduled instructions and
processing pipelines appropriate for expanded
software-scheduled instructions in the second group of
expanded software-scheduled instructions also in
response to the opcodes of software-scheduled instruc-
tions in the first group of software-scheduled instruc-
tions and the opcodes of software-scheduled instruc-
tions in the second group of software-scheduled
instructions; and

issuing the first group of expanded software-scheduled

instructions to the processing pipelines appropriate for
expanded software-scheduled instructions in the first
group of expanded software-scheduled instructions, in
response to the expanded group identifiers.

27. The method of claim 26 further comprising:

issuing the second group of expanded software-scheduled

instructions to the processing pipelines appropriate for
expanded software-scheduled instructions in the sec-
ond group of expanded software-scheduled
instructions, in response to the expanded group iden-
tifiers.

28. The method of claim 26 wherein a first processing
pipeline appropriate for an expanded software-scheduled
Instruction in the first group of expanded software-scheduled
instructions is coupled to a first arithmetic logic processing
unit.

29. The method of claim 28 wherein a second processing
pipeline appropriate for an expanded software-scheduled
instruction in the first group of expanded software-scheduled
instructions is coupled to a first floating point processing
unit.

30. The method of claim 28 wherein a second processing
pipeline appropriate for an expanded software-scheduled
Instruction in the first group of expanded software-scheduled
Instructions is coupled to a second arithmetic logic process-
ing unit.

31. The method of claim 29 wherein a third processing
pipeline appropriate for an expanded software-scheduled
instruction in the first group of expanded software-scheduled
instructions is coupled to a second arithmetic logic process-
ing unit.

Case 2:03-cv-00034-DF—Document 1 Filed 01/30/03 Page-58 of 62 PagelD #: 58

US 6,360,313 B1

13

32. The method of claim 28 wherein a second processing
pipeline appropriate for an expanded software-scheduled
instruction in the first group of expanded software-scheduled
instructions is coupled to a load unit.

33. The method of claim 26 wherein a first processing
pipeline appropriate for an expanded software-scheduled
Instruction in the second group of expanded software-
scheduled instructions is coupled to a store unit.

34. The method of claim 33 wherein a second processing
pipeline appropriate for an expanded software-scheduled
instruction in the second group of expanded software-
scheduled instructions is coupled to a control unit,

35. The method of claim 26 further comprises:

storing the first group of expanded software-scheduled

instructions, the second group of expanded software-
scheduled instructions, and the expanded group
identifiers, in a second memory location;

wherein the step of issuing the first group of expanded

software-scheduled instructions comprises issuing the
first group of expanded software-scheduled instructions
and the second group of expanded software-scheduled
instructions from the second memory location to a
decoder; and

issuing the first group of expanded software-scheduled

instructions to the processing pipelines appropriate for
the expanded software-scheduled instructions in the
first group of expanded software-scheduled instructions
from the decoder in response to the expanded group
identifiers stored in the second memory location.

36. The method of claim 35 further comprises:

issuing the second group of expanded software-scheduled

instructions to the processing pipelines appropriate for
the expanded software-scheduled instructions in the
second group of expanded software-scheduled instruc-
tions from the decoder in response to the expanded
group identifiers stored in the second memory location.

37. The method of claim 36 wherein the processing
pipelines appropriate for the expanded software-scheduled
Instructions in the first group of expanded software-
scheduled instructions are identified by processing pipeline
identifiers.

38. The method of claim 37 wherein the step of storing the
first group of expanded software-scheduled instructions fur-
ther comprises storing the processing pipeline identifiers in
the second memory location.

39. The method of claim 38 wherein the step of issuing the
first group of expanded software-scheduled instructions to
the processing pipelines comprises issuing the first group of
expanded software-scheduled instructions to a crossbar.

40. The method of claim 39 wherein the crossbar is an
associative crossbar responsive to the processing pipeline
identifiers.

41. The method of claim 35 wherein the first group of
expanded instructions comprises at least two expanded
instructions.

42. The method of claim 41 wherein the second group of
expanded instructions comprises at least one expanded
instruction.

43. The method of claim 42 wherein the two expanded
instructions of the first group of expanded instructions and
the one expanded instruction of the second group of
expanded instructions are stored in the second memory
location.

44. The method of claim 26 wherein the step of forming
the first group of software-scheduled instructions, the sec-
ond group of software-scheduled instructions, and the group
identifiers comprises using a compiler to form the first group

15

20

25

30

35

40

50

55

60

65

14

of software-scheduled instructions, the second group of
software-scheduled instructions, and the group identifiers.

45. The method of claim 44 wherein the group identifiers
are associated with instructions in the first group of instruc-
tions and with instructions in the second group of instruc-
tion.

46. The method of claim 44 wherein the compiler explic-
itly determines parallel executable instructions among a
plurality of instructions to include in the first group of
software-scheduled instructions.

47. The method of claim 26 wherein the step of forming
the first group of software-scheduled instructions, the sec-
ond group of software-scheduled instructions, and the group
identifiers further comprises the step of forming a third
group of software-scheduled instructions executable in par-
allel; and

wherein the group identifiers also indicate which

software-scheduled instructions are included within the
third group of software-scheduled instructions.

48. The method of claim 26 wherein the first memory
location is a cache location in a superscaler cache.

49. Amethod for issuing a group of individual instructions
in parallel for processing comprises:

storing in parallel a plurality of instructions and instruc-

tion grouping information in a location in a memory,
the plurality of instructions and the instruction group-
ing information determined by a compiler, the instruc-
tion grouping information indicating which instructions
of the plurality of instructions belong to a first group of
instructions and can be issued in parallel, and indicat-
ing at least another instruction of the plurality of
instructions that can be issued after the first group of
instructions;

issuing the first group of instructions in response to the

instruction grouping information; and

coupling instructions in the first group of instructions to

instruction pipelines appropriate for the instructions in
the first group of instructions.

50. The method of claim 49 further comprises

after coupling instructions in the first group of

instructions, issuing the at least another instruction in
response to the instruction grouping information; and
coupling the at least another instruction to an instruction
pipeline appropriate for the at least another instruction.

51. The method of claim 50 wherein the instruction
grouping information also indicates which instructions of
the plurality of instructions belong to a second group of
instructions and can be issued in parallel after the at least
another instruction.

52. The method of claim 49

wherein the instructions in the first group of instructions

include instruction types; and

wherein coupling instructions in the first group of instruc-

tions further comprises determining the instruction
pipelines appropriate for the instructions in the first
group of instructions in response to the instruction
types.

53. The method of claim 52 wherein the instruction types
comprise opcodes.

54. The method of claim 50 wherein issuing the first group
of instructions further comprises receiving the first group of
instructions, the at least another instruction, and the instruc-
tion grouping information from the location in the memory.

55. The method of claim 50 wherein the first group of
instructions comprises at least two instructions.

56. The method of claim 50 wherein the first group of
instructions comprises at least one instruction.

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page.59 of 62 PagelD #: 59

US 6,360,313 B1

15

57. The method of claim 55 wherein an instruction frame
comprises the plurality of instructions and instruction group-
ing information, and

wherein the instruction frame includes at least the two
instructions of the first group of instructions and the at
least another instruction.

58. The method of claim 50 wherein the compiler explic-
itly identifies parallel executable instructions from the plu-
rality of instructions.

59. The method of claim 52 wherein the instruction types
comprise pipeline identifiers that identify the instruction
pipelines appropriate for the instructions in the first group of
instructions.

60. The method of claim 59 wherein the pipeline identi-
fiers are determined by the compiler.

61. The method of claim 60 wherein coupling instructions
in the first group of instructions comprises using a crossbar
swiich to couple the instructions in the first group of
instructions to the instruction pipelines appropriate for the
instructions in the first group of instructions in response to
the pipeline identifiers.

62. The method of claim 50 wherein the memory is a
cache and the location is a cache entry.

63. A computing system comprising;

a cache including a plurality of cache entries, a cache
entry of the plurality of cache entries configured to
store in parallel a plurality of software-scheduled
instructions and instruction grouping information, the
instruction grouping information configured to identify
a first group of software-scheduled instructions from
the plurality of software-scheduled instructions and to
identify at least another software-scheduled instruction
from the plurality of software-scheduled instructions,
the at least another software-scheduled instruction to be
issued after instructions in the first group of software-
scheduled instructions.

64. The computing system of claim 63 wherein the
instruction grouping information is also configured to iden-
tify a second group of software-scheduled instructions from
the plurality of software-scheduled instructions, instructions
in the second group of software-scheduled instructions to be
issued after at least another software-scheduled instruction.

65. The computing system of claim 63

wherein the cache is also configured to issue the first
group of software-scheduled instructions, the at least
another software-scheduled instruction, and the
instruction grouping information;

the computing system further comprising a group decoder
coupled to the cache and configured to receive the first
group of software-scheduled instructions, the at least
another software-scheduled instruction, and the
instruction grouping information, and to issue the first
group of software-scheduled instructions in response to
the instruction grouping information.

66. The computing system of claim 65 wherein the group
decoder is also configured to issue the at least another
software-scheduled instruction, after the first group of
software-scheduled instructions in response to the instruc-
tion grouping information.

67. The computing system of claim 65

wherein each instruction in the first group of software-
scheduled instructions includes an instruction type,

the computing system further comprising an instruction
decoder coupled to the cache and configured to receive
the instruction types of the instructions in the first
group of software-scheduled instructions and to deter-

5

15

20

25

30

3s

45

50

wn
W

=
(=1

65

16

mine instruction pipelines appropriate for each of the
instructions in the first group of software-scheduled
instructions.

68. The computing system of claim 67 wherein the
Instruction type comprises an opcode, and the instruction
decoder comprises an opcode decader.

69. The computing system of claim 67 further comprising:

a pipeline coupler coupled to the group decoder and to the

instruction decoder and configured to receive the first
group of software-scheduled instructions and config-
ured to couple each instruction in the first group of
software-scheduled instructions to the instruction pipe-
lines appropriate for the instructions in the first group
of software-scheduled instructions.

70. The computing system of claim 69 wherein the
pipeline coupler is a crossbar switch.

71. The computing system of claim 65 wherein the first
group of software-scheduled instructions comprises at least
two instructions.

72. The computing system of claim 71 wherein the first
group of software-scheduled instructions comprises at least
one instruction.

73. The computing system of claim 72 wherein an instruc-
tion frame comprises the plurality of software-scheduled
instructions and instruction grouping information; and
wherein the instruction frame includes at least the two
instructions of the first group of software-schedule instruc-
tions and the at least another software-scheduled instruction.

74. The computing system of claim 63 wherein the cache
is a superscaler cache.

75. The computing system of claim 63 wherein a compiler
explicitly identifies parallel executable instructions from the
plurality of software-scheduled instructions that form the
first group of software-scheduled instructions.

76. The computing system of claim 67 wherein the
instruction types comprise pipeline identifiers indicative of
instruction pipelines appropriate for the instructions in the
first group of software-scheduled instructions.

77. The method of claim 49 wherein the instruction
grouping information also indicates instruction pipelines
appropriate for the instructions in the first group of instruc-
tions; and

wherein coupling instructions in the first group of instruc-

tions 1o the instruction pipelines appropriate for the
instructions in the first group of instructions is in
response to the instruction grouping information.

78. The method of claim 77 wherein the instruction
grouping information also indicates instruction pipelines
appropriate for the instructions in the second group of
instructions.

79. The computing system of claim 65 further comprising
an switching unit coupled to the cache and configured to
receive the instructions in the first group of software-
scheduled instructions and to couple the instructions in the
first group of software-scheduled instructions to instruction
pipelines appropriate for each of the instructions in the first
group of software-scheduled instructions in response to the
instruction grouping information.

80. The computing system of claim 79 wherein the
switching unit is also configured to receive the at least
another software-scheduled instruction and to couple the at
least another software-scheduled instruction to an instruc-
tion pipeline appropriate the at least another software-
scheduled instruction in response to the instruction grouping
information.

81. A computing system in which instructions are issued
in parallel to processing pipelines, the computing system
comprising;

Case 2:03-cv-00034-DF_Document 1 Filed 01/30/03 Page.60 of 62 PagelD #: 60

US 6,360,313 B1

17

a storage configured to store an instruction frame, the
instruction frame including a plurality of instructions
including a group of instructions and at least another
instruction in parallel, instructions in the group of
instructions to be issued in parallel, the at least another
instruction to be issued at a time different from a time
when the group of instructions is to be issued, the
instruction frame also including data associated with
the plurality of instructions, the data associated with the
plurality of instructions indicative of which instructions
in the plurality of instructions are included in the group
of instructions, the data associated with the plurality of
instructions also indicative of processing pipelines
appropriate for the plurality of instructions, and the
data associated with the plurality of instructions deter-
mined at a compile time; and

a switching circuit coupled to the storage, configured to
issue the instructions in the group of instructions in
parallel, to processing pipelines appropriate for the
instructions in the group of instructions, in response to
the data associated with the plurality of instructions.

82. The computing system of claim 81 wherein the group
of instructions comprises at least two instructions.

83. The computing system of claim 81 wherein the group
of instructions comprises one instruction.

84. The computing system of claim 81 wherein the
switching circuit is also configured to issue the at least
another instruction to a processing pipeline appropriate for
the at least another instruction in response to the data
associated with the plurality of instructions.

85. The computing system of claim 81 wherein the
processing pipelines appropriate for the instructions in the
group of instructions are respectively coupled to execution
units appropriate for the instructions in the group of instruc-
tions.

86. The computing system of claim 85 wherein an execu-
tion unit appropriate for a first instruction in the group of
instructions is a memory.

87. The computing system of claim 86 wherein an execu-
tion unit appropriate for a second instruction in the group of
instructions is an arithmetic logic unit.

88. The computing system of claim 86 wherein an execu-
tion unit appropriate for a second instruction in the group of
instructions is a floating point unit.

89. The computing system of claim 85 wherein an execu-
tion unit appropriate for one instruction in the group of
instructions is a branch unit.

90. The computing system of claim 85 wherein a type of
execution unit appropriate for a first instruction in the group
of instructions and a type of execution unit appropriate for
a second instruction in the one group of instructions are
similar.

91. The computing system of claim 81 wherein the
plurality of instructions in the instruction frame are deter-
mined at the compile time.

92. A method for issuing groups of instructions in parallel
to processing pipelines, the method comprising:

storing in a storage, an instruction frame, the instruction
frame including a plurality of instructions including a
group of instructions and at least another instruction in
parallel, instructions in the group of instructions to be
issued in parallel, the at least another instruction to be
issued at a time different from a time when the group
of instructions is to be issued, the instruction frame also
including data associated with the plurality of
instructions, the data associated with the plurality of
instructions indicative of which instructions are

10

20

25

30

35

40

45

55

60

65

18

included in the group of instructions, the data associ-
ated with the instructions also indicative of processing
pipelines appropriate for the plurality of instructions,
and the data associated with the plurality of instructions
determined at compile time; and

Issuing the instructions in the group of instructions in
parallel to processing pipelines appropriate for the
instructions in the group of instructions, in response to
the data associated with the plurality of instructions.

93. The method of claim 92 further comprising:

during compile time, determining the plurality of instruc-
tions in the instruction frame.

94. The method of claim 92 wherein the group of instruc-

tions comprises at least two instructions.

95. The method of claim 94 further comprising, before
Issuing the group of instructions, issuing the at least another
instruction to a processing pipeline appropriate for the at
least another instruction in response to the data associated
with the plurality of instructions.

96. The method of claim 92 wherein the processing
pipelines appropriate for the instructions in the group of
instructions are respectively coupled to execution units
appropriate for the instructions in the group of instructions.

97. The method of claim 96 wherein a type of execution
unit appropriate for a processing pipeline appropriate for a
first instruction in the group of instructions is an arithmetic
logic unit.

98. The method of claim 97 wherein a type of execution
umit appropriate for a processing pipeline appropriate for a
second instruction in the group of instructions is an arith-
metic logic unit.

99. The method of claim 96 wherein a type of execution
unit appropriate for a processing pipeline appropriate for a
first instruction in the group of instructions is a floating point
unit.

100. The method of claim 96 wherein a type of execution
unit appropriate for a processing pipeline appropriate for a
first instruction in the group of instructions is a memory unit
and a type of execution unit appropriate for a processing
pipeline appropriate for a second instruction in the group of
instructions is a memory unit.

101. A method of operating a microprocessor comprises:

compiling computer code to determine a frame of instruc-
tions;

storing in 2 memory storage the frame of instructions, the
frame of instructions including a plurality of instruc-
tions and issue data, the plurality of instructions includ-
ing at least a first instruction, a second instruction, and
a third instruction, the issue data comprising data
indicating that the first instruction is to be issued before
the second instruction and the third instruction and that
the second and third instructions are to be issued in
parallel, and the issuc data indicating respective pro-
cessing units appropriate for the first instruction, the
second instruction, and the third instruction; and

issuing the first instruction to a processing unit appropri-
ate for the first instruction in response to the issue data;
and

issuing the second instruction and the third instruction in
parallel to respective processing units appropriate for
the second instruction and the third instruction in
response to the issue data.

102. The method of claim 101 wherein the processing unit

appropriate for the first instruction is a memory unit.

103. The method of claim 102 wherein a Pprocessing unit
appropriate for the second instruction is a memory unit.

Case 2:03-cv-00034-DF _Document 1 Filed 01/30/03 Page.61 of 62 PagelD #: 61

US 6,360,313 B1

19

104. The method of claim 102 wherein a processing unit
appropriate for the second instruction is an arithmetic logic
umit.

105. The method of claim 101 wherein issuing the first
instruction to a processing unit comprises using a switching
unit to couple the first instruction to the processing unit
appropriate for the first instruction in response to the issue
data.

106. A computing system having a plurality of processing
pipelines for exccuting groups of individual instructions,
within very long instruction words, each individual instruc-
tion to be executed in each group being executed by different
processing pipelines in parallel, the computing system com-
prising:

a main memory for storing a very long instruction word;

a very long instruction word storage, coupled to the main

memory, for receiving the very long instruction word
from the main memory, and for holding the very long
instruction word, the very long instruction word includ-
ing a predetermined number N of individual
instructions, and including at least one group of M
individual instructions to be executed in parallel, where
M<=N, cach individual instruction in the very long
instruction word storage to be executed having an a
pipeline identifier indicative of a processing pipeline
for executing the individual instruction, and having a
group identifier indicative of a group of individual
instructions to which the individual instruction is
assigned for execution in parallel;

instruction in a group decoder responsive to the group

identifier for each individual instruction in the very
long instruction word storage to be executed for
enabling each individual instruction in the very long
instruction word storage having a similar group
identifier, lo be executed in parallel by the plurality of
processing pipelines; and

a pipeline decoder responsive to the pipeline identifier of

cach individual instructions in the very long instruction
word storage to be exccuted for causing each individual
instruction in a group of individual instructions having
the similar group identifier to be supplied to the dif-
ferent processing pipelines.

107. The computing system of claim 106 wherein M is
greater than or equal to 1.

108. The computing system of claim 106 wherein M is
greater than 1.

109. The computing system in claim 106, wherein the
very long instruction word storage includes the at least one
group of M individual instructions, and also includes group
identifiers and pipeline identifiers for each individual
instruction in the at least one group of M individual instruc-
tions.

110. The computing system in claim 107, wherein each
individual instruction in the at least one group of M indi-
vidual instructions has associated therewith a different pipe-
line identifier.

111. The computing system of claim 106, wherein the
very long instruction word storage holds a first group of
individual instructions to be executed in parallel and a
second group of individual instructions to be executed in
parallel after the first group, each individual instruction in
the first group having associated therewith a first group
identifier different from a second group identifier associated
with cach individual instruction in the second group, the first
group and the second group being placed adjacent to each
other in the very long instruction word storage.

15

30

35

40

50

55

60

65

20
112. The computing system of claim 111 wherein:
the very long instruction word storage comprises a line in
a cache memory having a fixed number of storage
locations; and
the first group of individual instructions is placed at one
end of the line in the cache memory, and the second
group of individual instructions is placed next to the
first group of individual instructions.

113. A method of executing in a plurality of processing
pipelines arbitrary numbers of instructions in a stream of
instructions in parallel which have been compiled to deter-
mine which instructions can be executed in parallel, the
method comprising:

in response to the compilation, assigning a common group

identifier to a group of instructions which can be
executed in parallel;

determining a processing pipeline for execution of each

instruction in the group of instructions to be executed;
assigning a pipeline identifier to each instruction in the
group;

associating the common group identifier and the pipeline

identifier with the group of instructions;

forming a very long instruction word with a fixed number

of the instructions including at least the group of
instructions and the common group identifier as well as
at least one other instruction having a different group
identifier, the at least one other instruction to be issued
at a time different from instructions in the group of
instructions; and

storing the very long instruction word in a main memory.

114. A method as in claim 113 further comprising;

placing the very long instruction word retrieved from the

main memory into a very long instruction word regis-
ter; and

executing the group of instructions in the plurality of

processing pipelines in parallel.

115. A method as in claim 114,

wherein the very long instruction word register holds at

least two groups of instructions; and

wherein placing the instructions in the very long instruc-

tion word register comprises placing the group of
instructions adjacent to the at least one other instruction
having the different group identifier in the very long
instruction word register.

116. A method as in claim 115 wherein executing the
group of instructions in parallel comprises:

coupling the very long instruction word register to a

detection means to receive group identifiers associated
with each instruction to be executed in the very long
instruction word; and

supplying only instructions in the group of instructions to

the processing pipelines in response to the group iden-
tifiers.

117. In a computing system having a plurality of process-
ing pipelines in which groups of individual instructions,
within very long instruction words, are executable in parallel
by processing pipelines, a method for supplying each indi-
vidual instruction in a group to be executed in parallel to
corresponding appropriate processing pipelines, the method
comprising;

retrieving a very long instruction word from a main

memory;

storing in a very long instruction word storage the very

long instruction word, the very long instruction word

Case 2:03-cv-00034-DFE.. Document 1 Filed 01/30/03 Page. 62 of 62 PagelD #: 62

US 6,360,313 B1

21

including groups of individual instructions to be
executed in parallel, the groups of individual instruc-
tion to be executed in the very long instruction word
having associated therewith pipeline identifiers indica-
tive of the corresponding appropriate processing pipe-
line which will execute the instructions and group
identifiers indicative of groups of instructions;

using the group identifiers in the very long instruction

word to identify an execution group; and

using the pipeline identifiers to execute each individual

instruction in the execution group in the corresponding
appropriate processing pipelines.

118. In a computing system having a plurality of process-
ing pipelines in which groups of individual instructions,
from a very long instruction word, are executable in parallel
by the plurality of processing pipelines, an apparatus for
routing each individual instruction in a particular group to be
executed in paralle] to an appropriate processing pipeline,
the apparatus comprising:

a main memory for storing the very long instruction word;

a very long instruction word storage coupled (o the main
memory, for receiving the very long instruction word
from the main memory and for holding the very long
instruction word, the very long instruction word includ-
ing groups of individual instructions, individual
Instructions to be executed in the very long instruction
word storage having associated therewith pipeline
identifiers indicative of processing pipelines for execut-
ing the individual instructions and also having associ-
ated therewith group identifiers to designate groups of
individual instructions to which individual instructions
are assigned, the groups of individual instructions
including at least a first group of individual instructions
and at least another individual instruction, the pipeline
identifiers and the group identifiers included in the very
long instruction word;

a switching circuit having a first set of connectors coupled
to the very long instruction word storage and a second
set of connectors coupled to the plurality of processing
pipelines; and

a router coupled to the very long instruction word storage
and the switching circuit, responsive to the pipeline
identifiers for routing each individual instruction in the
first group of individual instructions from connectors of
the first set of connectors onto appropriate connectors
of the second set of connectors, to thereby supply each
individual instruction in the first group of individual
instructions to be executed in parallel to the appropriate
processing pipeline at a time different from when the at
least another individual instruction is supplied to an
appropriate processing pipeline.

20

25

35

40

45

22
119. The apparatus of claim 118,

wherein the first set of connectors includes a set of first
communication buses, one first communication bus for
each individual instruction to be executed in the very
long instruction word storage;

wherein the second set of connectors includes a set of
second communication buses, one second communica-
tion bus for each processing pipeline; and

wherein the router comprises:

a set of decoders coupled to the very long instruction
word storage, the decoders in the set for receiving as
input signals the pipeline identifiers included in the
very long instruction word storage and in response
thereto for supplying as output signals switch control
signals corresponding to each individual instruction
in the very long instruction word storage; and

a set of switches coupled to the set of decoders and to
the switching circuit, one switch of the set of
switches at each intersection of each of the first set
of communication buses with each of the second set
of communication buses, each switch for receiving
the switch control signals and for providing connec-
tions in response to receiving a corresponding switch
control signal to thereby supply each individual
instruction in the group to be executed in parallel to
the appropriate processing pipeline.

120. The apparatus of claim 119 further comprising;

a detection circuit coupled to the very long instruction
word storage, for receiving the group identifiers
included in the very long instruction word storage to be
executed and in response thereto supply a group control
signal; and

wherein the set of decoders are also coupled to the
detection circuit for receiving the group control signal
and in response thereto supply the switch control signal
for only those individual instructions in the group to be
supplied to the plurality of processing pipelines.

121. The apparatus of claim 120,

wherein the detection circuit comprises a multiplexer
coupled to receive the group identifiers included in the
very long instruction word storage and in response
thereto allow the group of individual instructions to be
supplied to the plurality of processing pipelines.

122, Apparatus as in claim 121 wherein the multiplexer

supplies output signals to the set of decoders to indicate the
group of individual instructions to be next supplied to the

50 plurality of processing pipelines.

* ¥ * ¥ %

