Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 1 of 113

UNITED STATES DISTRICT COURT
EASTERN DISTRICT OF TEXAS

TEXARKANA DIVISION

BROADCOM CORPORATION, Civil Action No. 501CV302 e
a California corporation

Plaintiff, FIRST AMENDED COMPLAINT FOR

DAMAGES AND INJUNCTIVE RELIEF
V.

INTEL CORPORATION, JURY TRIAL DEMANDED
a Delaware corporation,

Defendant.

FIRST AMENDED COMPLAINT FOR DAMAGES AND INJUNCTIVE RELIEF
JURY TRIAL DEMANDED

Plaintiff Broadcom Corporation, by its attorneys, complains against Defendant Intel
Corporation, and alleges as follows:

Parties

1. Plaintiff Broadcom Corporation (“Broadcom™) is a corporation organized under
the laws of the State of California with its principal place of business at 1621 5 Alton Parkway,
Irvine, California 92618. Broadcom markets and sells integrated circuit products within this
District.

2. On information and belief, Defendant Intel Corporation (“Intel”) isa
corporation organized under the laws of the State of Delaware, with its principal place of
business at 2200 Mission Collegé Boulevard, Santa Clara, California 95052. On information
and belief, Intel manufactures, markets and sells integrated circuit products, including but not
limited to microprocessors and related chipsets, as well as computer components such as

motherboards that incorporate Intel's microprocessors in combination with other integrated

FIRST AMENDED COMPLAINT FOR
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-00302-DF Document4 Filed 12/14/Q1 Page 2 of 113

circuits. Intel’s products are marketed and sold within this District.

Jurisdiction and Venue

3. This is an action arising under the patent laws of the United States, 35 U.S.C.

§ 101 et seq. This Court has subject matter jurisdiction under 28 U.S.C. §§ 1331 and 1338(a).

4. Venue is proper in this judicial district under 28 U.S.C. §§ 1391(b) and (c) and
1400(b).

The Patents

5. United States Patent No. 6,189,064 B1, entitled “Graphics Display System with
Unified Memory Architecture” (the “'064 Patent”), names Alexander G. Maclnnis, Chengfuh
Jeffrey Tang, Xiaodong Xie, James T. Patterson and Greg A. Kranawetter as inventors. The '064
patent was duly and legally issued by the United States Patent and Trademark Office on
February 13, 2001. A copy of the '064 Patent is attached hereto as Exhibit A.

6. United States Patent No. 5,963,210, entitled “Graphics Processor, System and
Method for Generating Screen Pixels in Raster Order Utilizing a Single Interpolator” (the “'210
Patent™), names Michael C. Lewis and Stephen L. Morein as inventors. The '210 patent was
duly and legally issued by the United States Patent and Trademark Office on October 5, 1999. A
copy of the 210 Patent is attached hereto as Exhibit B.

7. United States Patent No. 6,178,198 B1, entitled “Apparatus For, And Method Of,
Processing Signals Transmitted Over A Local Area Network™ (the “'198 Patent”), names Henry
Samueli, Fang Lu, and Avanindra Madisetti as inventors. The '198 patent was duly and legally
issued by the United States Patent and Trademark Office on January 23, 2001. A copy of the
'198 Patent is attached hereto as Exhibit C.

8. Broadcom is the owner of all right, title and interest in and to the '064, '210,

and '198 Patents (the “Broadcom Patents™).

FIRST AMENDED COMPLAINT FOR -2-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 3 of 113

Background

9. Plaintiff Broadcom has been engaged in research and development in many
areas of integrated circuit, communications and computer technologies and has received, or
has been assigned, a number of patents relating to integrated circuit, communications and
computer technologies, including the '064, '210, and '198 patents.

10. On information and belief, the microprocessors designed and sold by
Defendant Intel, such as the well-known Pentium III, Pentium 4, and Celeron families of
microprocessors, must be combined with other components in order to operate as part of a
computer system or to communicate on a local area network.

11. On information and belief, Defendant Intel manufactures and sells integrated
circuits other than microprocessors that are specifically designed to be combined and to
operate with Defendant Intel's microprocessors as part of a computer system ("Intel Support
Chips"). Intel Support Chips include, among others, the Intel 82810, 82815, and 82830
families of chipsets with integrated graphics.

12. On information and belief, Defendant Intel manufactures and sells integrated
circuits other than microprocessors that are specifically designed to be used to create and
implement a local area network in conjunction with Defendant Intel's microprocessors and
other integrated circuits. These integrated circuits include, among others, the Intel 82558 Fast
Ethernet PCI Bus Controller with Integrated PHY, and the Intel 82559 Fast Ethernet
Multifunction PCI/Cardbus Controller ("Intel Networking Chips™).

13. On information and belief, the Intel Support Chips and Intel Networking Chips

include inventions that are claimed by the Broadcom Patents.

FIRST AMENDED COMPLAINT FOR -3-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 4 of 113

14. On information and belief, Defendant Intel also makes, uses, offers for sale and
sells computer motherboards ("Intel Motherboards") that incorporate the Intel Support Chips
and/or Intel Networking Chips and that are designed to be combined with one or more Intel
microprocessors as part of a computer system. The Intel Motherboards presently encompass,
among others, the Intel D810 and D815 families of motherboards.

15. On information and belief, anyone who purchases an Intel Motherboard must
also acquire an Intel microprocessor in order to operate the Intel Motherboard as partofa
computer system.

16. On information and belief, Intel manufactures and sells Network Interface
Cards that include the Intel Networking Chips and sells the Intel Networking Chips to third
parties for incorporation into the third parties' network interface cards.

17. On information and belief, the sale of Intel Motherboards, Intel Support Chips,
Intel Networking Chips, and Intel Network Interface Cards supports and/or augments the sale

of Intel Microprocessors, in part due to the incorporation of Broadcom's patented technology.

Count I

18. Broadcom repeats and realleges paragraphs 1-17.

19. On information and belief, the Defendant has infringed and is infringing the
'064 Patent by making, using, offering for sale, or selling in the United States, and/or by
inducing others to make, use, offer for sale, or sell in the United States, and/or by contributing
to the infringement by others who make, use, offer for sale, or sell in the United States,
products that incorporate the claimed invention of the '064 Patent, including, among others,
the Intel 82810, 82815, and 82830 families of chipsets with integrated graphics and Intel
Motherboards incorporating one or more of those components, separately and/or in
combination with other components, including but not limited to, Intel Microprocessors.

20. On information and belief, the Defendant's infringement of the '064 Patent has

FIRST AMENDED COMPLAINT FOR -4-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 5 of 113

been willful.
21. On information and belief, the Defendant’s infringement of the '064 Patent has
caused, and will continue to cause, Broadcom irreparable harm unless enjoined by the Court.

Broadcom has no adequate remedy at law.

Count 11

22. Broadcom repeats and realleges paragraphs 1-17.

23. On information and belief, the Defendant has infringed and is infringing the
'210 Patent by making, using, offering for sale, or selling in the United States, and/or by
inducing others to make, use, offer for sale, or sell in the United States, and/or by contributing
to the infringement by others who make, use, offer for sale, or sell in the United States,
products that incorporate the claimed invention of the '210 Patent, including, among others,
the Intel 82810, 82815, and 82830 families of chipsets with integrated graphics and Intel
Motherboards incorporating one or more of those components, separately and/or in
combination with other components, including but not limited to, Intel Microprocessors.

24, On information and belief, the Defendant's infringement of the '210 Patent has
been willful.

25. On information and belief, the Defendant’s infringement of the '210 Patent has
caused, and will continue to cause, Broadcom irreparable harm unless enjoined by the Court.
Broadcom has no adequate remedy at law.

Count III

26. Broadcom repeats and realleges paragraphs 1-17.

FIRST AMENDED COMPLAINT FOR -5-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 6 of 113

27. On information and belief, the Defendant has infringed and is infringing the
'198 Patent by making, using, offering for sale, or selling in the United States, and/or by
inducing others to make, use, offer for sale, or sell in the United States, and/or by contributing
to the infringement by others who make, use, offer for sale, or sell in the United States,
products that incorporate the claimed invention of the '198 Patent, including, among others,
the Intel 82558 and 82559 integrated circuits and motherboards and Network Interface Cards
made by Intel and third parties incorporating those components, separately and/or in
combination with other components, including but not limited to, Intel Microprocessors.

28. On information and belief, the Defendant's infringement of the '198 Patent has
been willful.

29. On information and belief, the Defendant’s infringement of the '198 Patent has
caused, and will continue to cause, Broadcom irreparable harm unless enjoined by the Court.

Broadcom has no adequate remedy at law.

Prayer for Relief

WHEREFORE, Broadcom Corporation respectfully requests that this Court enter
judgment in its favor and grant the following relief:

A. Adjudge that the Defendant has infringed and is infringing each of the
Broadcom Patents;

B. Enter orders preliminarily and permanently enjoining the Defendant from any
further acts of infringement of each of the Broadcom Patents;

C. Award Broadcom damages in an amount adequate to compensate Broadcom
for the Defendant’s infringement of the Broadcom Patents, including but not limited to the
damages attributable to the sale of Intel microprocessors and related components in

combination with the infringing devices, pursuant to 35 U.S.C. § 284;

FIRST AMENDED COMPLAINT FOR -6-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-06302-DF Document 4 Filed 12/14/Q1 Page 7 of 113

D. Adjudge that the Defendant's infringement of each of the Broadcom Patents is
willful;

E. Enter an order awarding Broadcom treble damages pursuant to 35 U.S.C. §
284;

F. Enter an order awarding Broadcom interest on the damages awarded and its
costs pursuant to 35 U.S.C. § 284;

G. Enter an order finding that this is an exceptional case and awarding Broadcom
its reasonable attorneys’ fees pursuant to 35 U.S.C. § 285; and

H. Award such additional relief as the Court may deem appropriate and just under

the circumstances.

Dated: December 14, 2001

“:d'w(,k..\ H D“-" k\\ Wl par-wis) e

Nicholas H. Patton '

Patton and Tidwell LLp *-ert W-Flase L,
4605 Texas Boulevard

P.O. Box 5398

Texarkana, TX 75505-5398

Telephone: (903) 792-7080

Facsimile: (903) 792-8233

Attorney for Plaintiff

BROADCOM CORPORATION

Dated: December 14, 2001

. Thed Uead Celd VTN { e toe

Y. Thad Heartfield Ratld W Aloedar @ .
HEARTFIELD & McGINNIS LLP

2196 Dowlen Road

Beaumont, TX 77706

Telephone: (409) 866-3318

Facsimile: (409) 886-5789

Of Counsel:

Terrence P. McMahon

Vera M. Elson

McDERMOTT, WILL & EMERY
2700 Sand Hill Road

Menlo Park, CA 94025

Telephone: (650) 233-5500
Facsimile: (650) 233-5599

FIRST AMENDED COMPLAINT FOR -7-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Case 5:01-cv-00302-DF Document 4

Fay E. Morisseau

McDERMOTT, WILL & EMERY
18191 Von Karman Avenue, Suite 500
Irvine, CA 92612-0187

Telephone: (949) 851-0633
Facsimile: (949) 851-9348

Raphael V. Lupo

McDERMOTT, WILL & EMERY
600 13th St. N.W.

12th floor

Washington, D.C. 20005

Telephone: (202) 756-8000
Facsimile: (202) 756-8087

FIRST AMENDED COMPLAINT FOR -8-
DAMAGES AND INJUNCTIVE RELIEF

MPK 45817-1.061806.0012

Filed 12/14/01 Page 8 of 113

Case 5:01-cv-Q_(3302-DF Document4 Filed 12/14/01 Page 9 of 113

A

azn United States Patent

(10) Patent No.: US 6,189,064 B1

Maclnnis et al. @s) Date of Patent: *Feb. 13, 2001
(54) GRAPHICS DISPLAY SYSTEM WITH 5,398,211 * 3/1995 Willenz et al. .
UNIFIED MEMORY ARCHITECTURE 5,604,514 2/1997 HAnCOCK .ovovmiininmisninrisnsscinss 345/154
5,758,177 5/1998 Gulick et al. ... 395/800.01
(75) lnventors: Alexander G. Maclnnis, Los Altos; 5,864,345 1/1999 Wickstrom et al. .vererreescenns 345/431
Chengfuh Jeffrey Tang, Saratoga; 5,049,439 9/1999 Ben-Yoseph et al. wcovcruenene 345/503
Xiaodong Xie, San Jose; James T. 5051,664 * 9/1999 Lambrecht et al. .
Patterson Sar’atogr Gr,eg A 5,956,041 9/1999 Koyamada et al. oooececnns 345/420
I > y 5,987,555 * 11/1999 Alzienetal. .
Kranawetter, San Jose, all of CA (US) 6006303 * 12/1999 Barnaby et al. .
73) Assi : Broadcom C tion, Irvine, CA
(73) ignee ([TS’;‘ com Corporation, Irvine OTHER PUBLICATIONS
(*) Notice: This patent issucd on a continued pros- Motorola, Inc.,, MC92100 “Scorpion” Graphics Display
ecution application filed under 37 CFR Generator, SDRAM Controller, and Digital Vidéo Encoder,
1.53(d), and is subject to the twenty year 1997, 6 pages.
[;z;:(r; t)(;;.rm provisions of 35 US.C. Power TV, Inc., Eagle™ Graphics/Audio Media Compositor
e Data Sheet, Version 1.7, Feb. 27, 1997, p. 63.
Under 35 U.S.C. 154(b), the term of this . .
patent shall be extended for O days. * cited by examiner
(21) Appl. No.: 09/437,209 Primary Examiner—Gopal C. Ray
(22) Filed: Nov. 9, 1999 (74) Attorney, Agent, or Firm—Christie, Parker & Hale,
LLP
Related U.S. Application Data
(60) Provisional application No. 60/107,875, filed on Nov. 9, 67 ABSTRACT
1998. A graphics display system iotegrated circuit is used in a
(51 Int. CL7 i GOGF 13/18; GO6F 9/46 set-top box for controlling a television display. The graphics
1) R VT & F—— 710/244; 710/111; 709/100; display system processes analog video input, digital video
345/133 input, and graphics input. The system incorporates a unified
(58) Field of Search .o..wmmsiricsscs 710/244, 240, ~ memory architecture that is shared by the graphics system,
710/41, 40, 113, 36, 116, 241, 111, 107, a CPU. and other peripherals. The unified memory archi-
711/151, 169, 100; 365/230.03; 709/100; tecture uses real time scheduling to service tasks. Critical
345/185, 133; 714/3; 348/552 instant analysis is used to find a schedule for memory usage
that does not affect memory requirements of real time tasks
(56) References Cited while at the same time servicing non-real-time tasks as
needed.
U.S. PATENT DOCUMENTS
5,155,816 10/1992 KOBD crovvuvummmsmsrsssrssssssisens 3957375 22 Claims, 37 Drawing Sheets

/J 1130

1132

‘ 1144

ARBITER

CPU REQUEST
TIMER BLOCK
1138 J

1134a
TASK 1

1134b
TASK 2

1134c
TASK 3

1134d
TASK 4

1134e
TASK S

1136
SPORADIC

Is

1142

SERVER
140d

LOW PRIORITY TASKS IN ROUND ROBIN

A

EXHIBIT

—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 10 of 113

U.S. Patent Feb. 13, 2001 Sheet 1 of 37 US 6,189,064 Bl
F
5 5 8 '
s o) n
o
- =
=] =]
> <

30
27

24

/“\
28
10 <—-32

E—
20

MEMORY
GRAPHICS
CHIP
CPU

14

VIDEO IN

34

12
AUDIO IN T
26

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 11 of 113

—

——

US 6,189,064 B1

Sheet 2 of 37

Feb. 13, 2001

U.S. Patent

¢ Old
ndo
ino 99 —
olanv 9
b olany HOLVHI IOV -4 2
N g J
oiany Il_ _
¢9 ™ * ITVOS
09 03aIA
_| ¥OLISOdINOD *—
“o (onza) O3dIA HONONHL I
O3AlA Um> sSSvd
9. W <
NI O3alA
. 9g YWd 0] 0L Ivioia
“—NITIOULNOD v /d \
MOGNIM ,
65| Ahase 2 R o
AV1dSid
(] pS |¥3T108LNOD m_mom"m_n_uwo «
\ o oz
AOWIW

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 12 of 113

——

—

US 6,189,064 B1

Sheet 3 of 37

Feb. 13, 2001

U.S. Patent

€ "9Old
ndo
1no 93 —
olanv y9
b |
oljanv {0 IR ENENM) 4 » ZS
NG| Q /J
olanv M
79— * ¥IVOS
09 03dIA
_| ¥OLISOdWOD —
A.So (oNaa) O3AAIA HONOYHL |
OFTIA O3A ssvd
e
9L W N NI O3aIA
65 9 VIa 0s Z. oL TvloIa
\—NITI0ULNOD v J \
MOGNIM . _
v, <
o9l | [OYS NI O3QIA
INION3
39ad d¥30023d
L vg |MFVIOBINOD| | ongon 03aIA <
A AHJOWIN NI O3AIA
SSVdAg
AMONW3N SIVYIHdRAd

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 13 of 113

US 6,189,064 Bl

Sheet 4 of 37

Feb. 13, 2001

U.S. Patent

¥ "Old
O3AIA HONOYHLSSVd
80L N\ || YOl zoL ool w 28
| waos k A B i
OdNOD ']
1" oaain i~ o3aA Wvds — odld :
JOMINOD | |
“ MOGNIM |
m 6 1n1o m
| /\ 14 34 I —— J
4311 Wy¥S | | aNalg | _[1¥3ANOD| | odid | || viwa |l |AdOwaw
. 86— 9 — 66— 06— 88 — 98— lou—/

—

o—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 14 of 113

US 6,189,064 B1

Sheet 5 of 37

Feb. 13, 2001

U.S. Patent

G 'Old

09

061

23N [«

HOLISOdWOD 03aiA

HILYIANOD
Jzis viva

i

29

ET@.

.NN_‘J

y3Ld

EJ‘

44300
LH3A

0El
P8L | 93aa
091 i
0 03aIA
981 D SSVdAd
030IA HONOYHLSSVd = PIL _
h v8lL S Pl % oaain
o8l 90TYNY
¥07102 m
< aNoxa |
- 89} 291 go1{ wagooaa | A\ 08
................ N 4 989¥-Nil | oaain
; > 03dN
L T VL - ALy
P b N Hoy > o [vwa y 4
[Z ¥ —8INOIL dvd dvd 128 >3
Hmol B < L 28T E
= | NW m S z [£
S I mm e 7 el led 04l VNG |
Pm=m| A X o3an | |ozain
e “ syl) vl oz1—
66 ool M — ————— net | 9V 8¢S
J 8 A oo 1n1o N9SH 4\
et e A
o) ! '
c | ¥ILNIANOD " o
ar (| w [X49 C | odl [
0™ ¢ 52 ol | | oer m 419
S B [wvanale N\ JANAZEDY | o¢y S NIM

_zz1

——

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 15 of 113

US 6,189,064 B1

Sheet 6 of 37

Feb. 13, 2001

U.S. Patent

9 'Old [92]
T 318avN3
lzzica] [ETNE
2252
[o:e] a [11:02] a ._wx_n_ [tz | MOGNIM
LHVISX | 3ZIeX H|igvis | | aasn | € QHOM
MOGQNIM MOGQNIM LON
MNVg
log: 1€l
3dAL YHd TV
[0:6] q [L1:02] q| [ezeel -~
LYVIS-A aN3-A VHd 1V Z QUOM
moanm M| moanm [H| moanim
[0:51]1 40100 mOaNIM HOlld UIAVT I QoM
AYOWIIN MOGNIM NIM
[92:62]
[0:52] LyV.LS AHOWIW MOaNIM LYWNOA 0 QIOM
NIM | —
/sm;a
NOLLV¥3dO
MOAQNIM

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01A Page 16 of 113

U.S. Patent Feb. 13, 2001 Sheet 7 of 37 US 6,189,064 B1

8 WINDOW DESCRIPTORS

300h
30508
ésgge WD PARAMETERS
300¢ ~—q— SMALLEST wD
30800 — 3 PARAMETERS
WDO X 302
_j—i 304
‘ -
' || L= SORTING
|
|
__ 306 __ 308
DMA c
SMALLEST WD (ASSEMBLE WD HEADER, WD HEADER, P
PARAMETERS GFX DATA GFX GFX DATA
——————-] HEADER AND FIFO n
REQUEST MEM- ?
ORY DATA) S
P

MEMORY CONTROLLER F I Go 7

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01‘\ Page 17 of 113

Sheet 8 of 37 US 6,189,064 B1

U.S. Patent Feb. 13, 2001

310 RESET
% 312
314 —
LOAD WD FROM
MEMORY
316 !
SEND NEW LINE
HEADER 318 —
1 INCREMENT
~— 320 LINE_COUNT
L SORT WD
322
IN_YSTART> NO
LINE_COUNT?
324
LOAD CLUT YES
rd
o 328
326 — REQ MEMORY
SEND NEW WIN & SEND CLUT
HEADER CDATA &
LUT_WR
! ~ 330 STROBE
REQ MEMORY &
SEND GFX DATA |
J p—
— 346 332
IN_YEND= YES
CLEAR ALL 8 LINE_COUNT?
WIN LINE - 334 |
DONE_FLAGS 338__NO SET WD DONE
= 1 FLAG
SET WIN LINE
DONE FLAG TO 336—

— 348 THIS WD SET NEW WD
INCREMENT UPDATE FLAG
LINE_COUNT 340 & INCREMENT

WD UPDATE
COUNTER
]

— 350 342

CLEAR NEW WD YES
UPDATE FLAG
& COUNTER

344

352 FLAG SET?

UPDATE NEW WD YES FIG.8

FROM MEMORY

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01‘ Page 18 of 113

U.S. Patent Feb. 13, 2001 Sheet 9 of 37 US 6,189,064 B1

_>/\/ 354
356
NO
YES
358
360
NO

WORD IS

YES DATA ?

NO ~_ 368

PIPE_COMP

FIG. 9

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 19 of 113

US 6,189,064 B1

Sheet 10 of 37

Feb. 13, 2001

U.S. Patent

0L 9OId
1n1o 4 e
N P
¥344ng aNN :
SOlRdVaD y¥3aN3 g
Y3LYIANOD 0414
A‘
oL ~ /| | SOIHdV¥9 ["| soHdvuD || SOIHdVNS
o — 1 v/ H Zel nv
JILYIANOD JILAIANOD
ZZv ANA ANA OL 99Y
Ol ¥¥¥ ANA
o, —/

gL/

AYOW3INW

T
”\ 0.g

"

—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 20 of 113

US 6,189,064 B1

Sheet 11 of 37

Feb. 13, 2001

U.S. Patent

il "OId

viva
avay

coy
N

NVYS

ss3yaav
avy

|

d3TIOULNOD
1N10
SOIHdVYD

oLy

I\«._&n_ W3IW 1N1D

JLRIM WIN LNTD

ooy -

IﬁOmz W3N LNTD
1414

) 44

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01A‘ Page 21 of 113

U.S. Patent Feb. 13, 2001 Sheet 12 of 37 US 6,189,064 B1

422

T
416
a1

L a2
FIG. 12

]
//
//

CLUT MEMORY WRITE
CLUT MEMORY DATA

MEMORY CLOCK
CLUT MEMORY REQUEST

—

—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 22 of 113

US 6,189,064 B1

Sheet 13 of 37

Feb. 13, 2001

U.S. Patent

€L 'Old
Bgos
* | 1¥334ngaaNn
1905
' || 9u3ddng aNn
¥Imd
SOIHdv¥9 | °99% | | gwu3d4na ann
4— Iy
P90S ¥ ¥344n4 AN
e 2905
* | cu3ddngann
9905 || zy3ddnaann
®905 || 1 u33dnaani

Nom\

GRAPHICS LINE BUFFER
CONTROLLER

vos__—

00S

AJOLI3A
NOLLD3TAS MOO0T1D

___Vls
- [0 X Re E 1)
FTEVNI MO0TD

|-

//w.\ cLs

0lS
\) STTVNOIS
TOULNOD ¥3I44Ng

AD0T1I AV1dSId

805G

STVNOIS
TOMLNOD ¥344Ng
MI0TO W3IN

(

6S

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 23 of 113

U.S. Patent Feb. 13, 2001 Sheet 14 of 37 US 6,189,064 B1
520
522
YES 'f
RESET N\ 524

LINE BliJFFERS

LOAD LINE BUFFERS _ £,s
WITH GRAPHICS

528
530
/_\/
[Yes CLOCK SWITCHING
LINE BUFFERS | _g3, |
RELEASED

|
CLOCK SWITCHING |~ 534
|

LINE BUFFERS [} _ 536
TO GF)? FILTER

538

YES

DETECT
VSYNC ?

NO

FIG. 14

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 24 of 113

U.S. Patent Feb. 13, 2001 Sheet 15 of 37 US 6,189,064 B1

FIG. 15

START ADDRESS
START ADDRESS

T/jBOZ
READ
POINTER

BTk
=

NN
MR
S \\\\\\\\\\
@ NN <
a & ML et
4—(— <E ELDN
W=
o

Case 5:01-cv-00§’92-DF Document4 Filed 12/14/01 Page 25 of 113

U.S. Patent Feb. 13, 2001 Sheet 16 of 37 US 6,189,064 B1

2 o
) o s [le)
e © o~ ©
[{=] \ <« «
© "
(< (O
LL
14
%\\ [17}
\§ o.
NI B
N
/2]
E \ NN g
oL o NN Y
i 2 NN &
g b= N 3
< N\
o Y £
£ z X @
(72] z \Q\\\\
NN
N
N
k\i‘\:\
NN
o~
)
.\\\ N
DN ©
©

-
READ
POINTER

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 26 of 113

U.S. Patent Feb. 13, 2001

START

Sheet 17 of 37

RENDER GLYPHS AT
HIGH RESOLUTION

FILTER THE GLYPHS
TO GENERATE
MULTI-LEVEL VALUES

REDUCE

650

652

654

NUMBER OF
BITS ?

l /‘ 656

REDUCE THE NUMBER
NO OF BITS
)
USE MULTI-LEVEL
VALUES AS /\658
ALPHA BLEND VALUES

FIG. 17

US 6,189,064 B1

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 27 of 113

US 6,189,064 B1

Sheet 18 of 37

Feb. 13, 2001

U.S. Patent

8L 'OId

cL

C

4300934 O3dIA

$0. coL

(€

0

C

00.

C

9lL

HOLIIAAOD
asvd
JNIL

YOSSAD0Ud
YINT/
NS JOLVINAOWIa

@3)007 [VIO

/¥3Lud
NI gWNOD HZ
IALLDVAY

NS
aaxoo1
VHNOYHO

aav

147

(472 0LL

80.

0s

—

904

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 28 of 113

—

U.S. Patent Feb. 13, 2001 Sheet 19 of 37 US 6,189,064 Bl
A
- 1
":__/
(2]
[T-] <
2 a
< o
=\ ™
o » 8 7]
~
T3 o
2 ©F &
3 7
2 \/ 5
: wl
X
S
2 5| <
" <
=
(o)
) 14
3 ,) 5
= £ |

706

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 29 of 113

U.S. Patent Feb. 13, 2001 Sheet 20 of 37 US 6,189,064 Bl
{k
(=)
:\/
Q
@ N
N~ »
<K o
[11]
=y T
[=] 8 0O
) O g
=) ~ 7]
i) \/
" a
3 11
X
3
2 g | 4
n <
=
o]
A % %
@ v O
O
3 <
™~ O
\/ >

k
-

TO ADC

706

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 30 of 113

—

U.S. Patent Feb. 13, 2001 Sheet 21 of 37 US 6,189,064 B1
<t 4
~
_/
F
N
o ¢ g
S ~ = = LL
~ >
\/ I
Y &)
%
N
~ A
1]
S 2
" O
(@)
= -
E .5 n
%) 20 v 4
& Q€o 5
N >
i AR
O K
T
h h

712

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 31 of 113

U.S. Patent Feb. 13, 2001 Sheet 22 of 37 US 6,189,064 B1

716
FIG. 22

OUTPUT
VIDEO

164

166

FIFO
TBC
CONTROLLER

714

INPUT
VIDEO

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 32 of 113

U.S. Patent Feb. 13, 2001

Sheet 23 of 37

782

INPUT
VSYNC ?

)

784

YES

y

TBC CONTROLLERY " _ 7g6
COUNTS SAMPLES

LOAD FIFO
WITH INPUT VIDEO

L _~ 788

Q

YES

790

TIMING SIGNALS

N\ 792

GENE[RATED

FIFO OUTPUT
TO DISPLAY

LN_ 794

Q

796
YES

US 6,189,064 B1

FIG. 23

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 33 of 113

U.S. Patent Feb. 13, 2001 Sheet 24 of 37

US 6,189,064 B1

' 802
up scaLe~
- OR — 4
3 DOWN SCALE ? S
n 72}
= o
= >
o
o h 4 .
SCALE L _ 804
DOWN
>/ 806
o/ CAPTUREIN
MEMORY
/_ 808
UP SCALE
OR
w DOWN SCALE ? w
< <
&) O
0 2]
pra o
< o
o)
a SCALE N 812
<N\~ 810 UP
l/_\/ 814
A 4
OUTPUT OUTPUT

FIG. 24

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 34 of 113

US 6,189,064 B1

Sheet 25 of 37

Feb. 13, 2001

U.S. Patent

891

O3dIA
O0TVNV

8

028

O3diA

Ge¢ 'Old O3dIA HONOYHL SSVd
(1]
9.l
44309
mﬁ\U on | ¥EVOS
o))
03dIA Z8L| ¥ATVOS| m = |4 2
vz8 - » r
44309
el N 72
88k V08l
gyl
— / -
o4ld
030aIA 4
3 4l
U3 TTOULNOD | odld | x
AHOWIN UNLAVD 2
D)

9cl \\

_—

viold

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 35 of 113

.

US 6,189,064 Bl

Sheet 26 of 37

Feb. 13, 2001

U.S. Patent

9¢ '9Old O3aIA HONOYHL SSVd 891
03dalA
90TYNY
08T
zz8
33907 9L} N
VIS
8L\ "HOH 0Z8
o 03aIA
HOLISOdWOD P INION3 m - “ viola
03aIA Z8L| ¥AWOS| M Z 3
- u SN
44309
| _8
88k ___V08)
gyl
\|/ v/ ’c
Jodid
03aIA X
[xp)
HITI0UINOD | odid | <
AHOWIW J8NLdVD m
ozl _/ 8 z0 —

ge 36 of 113

P

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Pa

US 6,189,064 B1

Sheet 27 of 37

Feb. 13, 2001

U.S. Patent

¢ "Old O3dIA HONOYHL SSVd 891
03aiA
90TVNV
HoglL = z28
9l N
43309 | y3qvos
98l \ "4OH 028
m 03alA
O3AIA n x
< 28L| WIAVOS| M= 2
vz8 m - ® f
< 443090
T | \sLb
88k Vo8l
8yl
RN N 25
| Odid
03aIA x
3 i
Y3 TIOULINOD |¢ odid ¢ X
AYOWIN JUNLAVD mk
85t 29L —

9zl \\

Case 5:01-cv-00302-DF Document 4 Filed 12/14/Q1 Page 37 of 113

U.S. Patent Feb. 13, 2001 Sheet 28 of 37 US 6,189,064 Bl
RESET
902
*
/’\
BLEND GRAPHICS 904
FILTER -\
GRAPHICS WINDOW 906
BLEND
GRAPHICS WINDOW, |
VIDEO AND BKGND 908

FIG. 28

Case 5:01-cv-0£)302-DF Document 4 Filed 12/14/01 Page 38 of 113

U.S. Patent Feb. 13, 2001 Sheet 29 of 37 US 6,189,064 B1

LOAD BOTTOM MOST 924
WINDOW
BLEND N\
NEXT WINDOW 926

928

LAST WINDOW
ON LINE

932
YES (
GO TO
LAST LINE NEXT
OF FIELD ? LINE

YES FIG. 29

Case 5:01-cv-00302-DF Document 4 Filed 12/14/Q1 Page 39 of 113

U.S. Patent

Feb. 13, 2001

Sheet 30 of 37

US 6,189,064 Bl

952 954
w— [
g

DRAW NEXT PIXEL 956
DISPLAY PASS-THRU | ——~
VIDEO OUTSIDE THE 958
ACTIVE AREA
DISPLAY BACKGROUND | —~
COLOR 960
BLEND PASS-THRU
VIDEO INSIDE THE [~)
ACTIVE AREA 962
BLEND VIDEO =\
WINDOW 964
BLEND GRAPHICS | \
WINDOW 968
970 /\l FIG. 30

ge 40 of 113

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Pa

—

——

US 6,189,064 B1

Sheet 31 of 37

Feb. 13, 2001

U.S. Patent

L€ Ol
391G
S 6905
POLS —_ ry3aangaNn || o
“
o 1906
y W — gu3ddNgaNt
qQoLs —— 2905
yaL cals — -
T ™~
SOIHdVYD ¥ ¥344nd 3NN
8& 2905 | [¢ ¥334nd ANIT .Sm
Q905
S || zu3ddnaann
€905 1 ¥344n9 3NIT
(
pos__—
0L}

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 41 of 113

U.S. Patent Feb. 13, 2001 Sheet 32 of 37 US 6,189,064 B1
< o
O O
- E - E
L Q|C:~ —————--—ooo\\ O|-— ooo—-:
= =
= =

o ©
o o
- o - -
L s L [0
[H] (]
= =
en] [an)]
0.4 [a4
< <

(@) :
9 >
— - Qg
(1
\ o9 .
|
oo)
=0 "\‘
[ve] (@] < w
— o~ ~N o~
> ~
L>_|_< L oo >LEL<'_’J> O
(@) o (_'J<<_(> =
| I | T |\ © 3

ge 42 of 113

—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Pa

US 6,189,064 B1

Sheet 33 of 37

Feb. 13, 2001

U.S. Patent

€€ "Old

y3iligyuv
14447

NIGOY ANNOY NI SHSVL ALRMOI™d MO

(1) 4

Y3IANIS

ZELL _—

L " 21aVy0dS
| oeLl
_m ot)

¢ MSVL
velh — pMSVL
preELL — S,
wely — ZMSVL
aver, —

L MSVL
eyELl

H) gchl
MD01d ¥IWIL
1S3NO3Y NdD

0ELl \:\

ge 43 of 113

—

s

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Pa

US 6,189,064 B1

Sheet 34 of 37

Feb. 13, 2001

U.S. Patent

pe ‘Old

ra- 1} J ¢

8}

9 SI¥

€}

———

[eAIdlu]

30IAA3S
ndd

ALRMORId
MO NdD

ALIMORId
HOIH NdD

HINLL

1s3n03Ad
30IAY3S NdD
SNONNILNOD

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 44 of 113

U.S. Patent Feb. 13, 2001 Sheet 35 of 37 US 6,189,064 B1

1160

TASK 2
\—/ 1158
TASK 3
TASK 4
\/1162

TASK 1

0
0
-
-

LOW PRIORITY
TASK
FIG. 35

to

ts

t6

t4 5

t3

t1

to

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 45 of 113

U.S. Patent Feb. 13, 2001 Sheet 36 of 37 US 6,189,064 Bl

HIGHEST PRIORITY
1170

CPU READ REQUEST WITH
BLOCKOUT COUNTER

1172

GFX/WD READ REQUEST WITH
BLOCKQUT COUNTER

ROUND ROBIN ARBITRATION

1174 — FOR 2 CLIENTS 1176
VIDED WINDOW READ VIDEO CAPTURE WRITE
REQUEST REQUEST

1178

REFRESH REQUEST
1180
AUDIO READ REQUEST |
1182 — 1184
[‘cPU READ REQUEST | GFX ACCELERATOR REQ. |
ROUND ROBIN ARBITRATION }
1190 —~ t FOR 5 CLIENTS ~— 1186

CPU WRITE REQUEST | GFX/WD READ REQUEST |

1188
DMA READ/WRITE REQUEST FIG.36

LOWEST PRIORITY

ge 46 of 113

—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Pa

US 6,189,064 B1

Sheet 37 of 37

Feb. 13, 2001

U.S. Patent

LS Old
HOLYHIATIIIOV SIOIHAVUO
00gl J
UOSSII0UdOI HOLI3A
AJOW3N yaisio3y yaLsIo3Y
11ns3y 1NdNI
\/.\ cvm_‘(\ mcm_.\
8¢
3N3ano
¥3TI08LINOD 7 WVYS
AHOWIW 90¢<1 viva
VYING
\/\ vog,—~ zogL _/
ys \IL

ndd

[44

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 47 of 113

US 6,189,064 Bl

1

GRAPHICS DISPLAY SYSTEM WITH
UNIFIED MEMORY ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the filing date of
U.S. provisional patent application number 60/107,875, filed
Nov. 9, 1998 and entitled “Graphics Chip Architecture,” the
contents of which arc hereby incorporated by reference. This
application is related to U.S. patent application Ser. No.
09/437/208, filed Nov. 9, 1999 and entitled “Graphics Dis-
play System,” the contents of which are hereby incorporated
by reference.

The present application contains subject matter related to
the subject matier disclosed in U.S. patent applications
entitled “Graphics Display System” (App. Ser. No. 09/437,
208), “Graphics Display System with Graphics Window
Control Mechanism” (App. Ser. No. 09/437,581), “Graphics
Display System with Color Look-Up Table Loading Mecha-
nism” (App. Ser. No. 09/437,206), “Graphics Display Sys-
tem with Line Buffer Control Scheme” (App. Ser. No.
09/437,325), “Graphics Display System with Window Soft
Horizontal Scrolling Mechanism™ (App. Ser. No. 09/437,
580), “Graphics Display Systcm with Window Descriptors”
(App. Ser. No. 09/437,716), “Graphics Display System with
Anti-Aliased Text and Graphics Feature” (App. Ser. No.
09/437,205), “Graphics Display System with Video Syn-
chronization Feature” (App. Ser. No. 09/437,207), “Graph-
ics Display System with Video Scaler” (App. Ser. No.
09/437,326), “Apparatus and Method for Blending Graphics
and Video Surfaces” (App. Ser. No. 09/437,348), “Graphics
Display System with Anti-Flutter Filtering and Vertical
Scaling Feature” (App. Ser. No. 09/437,327), and “Graphics
Accelerator” (App. Ser. No. 09/437,579), all filed Nov. 9,
1999.

FIELD OF THE INVENTION

The present invention relates generally to integrated
circuits, and more particularly to an integrated circuit graph-
ics display system.

BACKGROUND OF THE INVENTION

Graphics display systems are typically used in television
control electronics, such as set top boxes, integrated digital
TVs, and home network computers. Graphics display sys-
tems typically include a display engine that may perform
display functions. The display engine is the part of the
graphics display system that receives display pixel data from
any combination of locally attached video and graphics
input ports, processes the data in some way, and produces
final display pixels as output.

This application includes references to both graphics and
video, which reflects in certain ways the structure of the
hardware itself. This split does not, however, imply the
existence of any fundamental difference between graphics
and video, and in fact much of the functionality is common
to both. Graphics as uscd herein may include graphics, text
and video.

SUMMARY OF THE INVENTION

The present invention provides a unified memory system
including a memory that is shared by a plurality of devices.
The system includes a memory request arbiter coupled to the
memory. The memory request arbiter pecforms real time
scheduling of memory requests from different devices hav-

40

2

ing different priorities, and assures real time scheduling of
tasks, some of which do not inherently have pre-determined
periodic behavior. The arbiter provides access to memory by
requesters that are scositive to latency and do not have
determinable periodic behavior.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an integrated circuit graphics
display system according to 2 presently preferced embodi-
ment of the invention;

FIG. 2 is a block diagram of certain functional blocks of
the system,;

FIG. 3 is a block diagram of an alternate embodiment of
the system of FIG. 2 that incorporates an on-chip I/O bus;

FIG. 4 is a functional block diagram of exemplary video
and graphics display pipelines;

FIG. § is a more detailed block diagram of the graphics
and video pipelines of the system;

FIG. 6 is a map of an exemplary window descriptor for
describing graphics windows and solid surfaces;

FIG. 7 is a flow diagram of an exemplary process for
sorting window descriptors in a window controller;

FIG. 8 is a flow diagram of a graphics window control
data passing mechanism and a color look-up table loading
mechanism;

FIG. 9 is a state diagram of a state machine in a graphics
converter that may be used during processing of header
packets;

FIG. 10 is a block diagram of an embodiment of a display
engine;

FIG. 11 is a block diagram of an embodiment of a color
look-up table (CLUT);

FIG. 12 is a timing diagram of signals thal may be used
to load 2 CLUT;

FIG. 13 is a block diagram illustrating exemplary graph-
ics linc buffers;

FIG. 14 is a flow diagram of a system for controlling the
graphics line buffers of FIG. 13;

FIG. 15 is a representation of left scrolling using a
window soft horizontal scrolling mechanism;

FIG. 16 is a representation of right scrolling using a
window soft horizontal scrolling mechanism;

FIG. 17 is a flow diagram illustrating a system that uses
graphics elements or glyphs for anti-aliased text and graph-
ics applications;

FIG. 18 is a block diagram of certain functional blocks of
a video decoder for performing video synchronization;

FIG. 19 is a block diagram of an embodiment of a
chroma-locked sample rate converter (SRC);

FIG. 20 is a block diagram of an alternate embodiment of
the chroma-locked SRC of FIG. 19;

FIG. 21 is a block diagram of an exemplary line-locked
SRC;

FIG. 22 is a block diagram of an exemplary time base
corrector (TBC);

FIG. 23 is a flow diagram of a process that employs aTBC
to synchronize an input video to 2 display clock;

FIG. 24 is a flow diagram of a process for video scaling
in which downscaling is performed prior to capture of video
in memory and upscaling is performed after reading video
data out of memory;

FIG. 25 is a detailed block diagram of components used
during video scaling with signal paths involved in down-
scaling;

Case 5:01-cv-02302-DF Document4 Filed 12/14/01 Page 48 of 113

US 6,189,064 Bl

3

FIG. 26 is a detailed block diagram of components used
during video scaling with signal paths involved in upscaling;

FIG. 27 is a detailed block diagram of components that
may be used during video scaling with signal paths indicated
for both upscaling and downscaling;

FIG. 28 is a flow diagram of an excmplary process for
blending graphics and video surfaces;

FIG. 29 is a flow diagram of an exemplary process for
blending graphics windows into a combined blended graph-
ics output;

FIG. 30 is a flow diagram of an exemplary process for
blending graphics, video and background color;

FIG. 31 is a block diagram of a polyphase filter that
pecforms both anti-flutter filering and vertical scaling of
graphics windows;

FIG. 32 is a functional block diagram of an excmplary
memory scrvice request and handling system with dual
memory controllers;

FIG. 33 is a functional block diagram of an implementa-
tion of a real time scheduling system;

FIG. 34 is a timing diagram of an exemplary CPU
servicing mechanism that has been implemented using real
time scheduling;

FIG. 35 is a timing diagram that illustrates certain prin-
ciples of critical instant analysis for an implementation of
real time scheduling;

FIG. 36 is a flow diagram illustrating servicing of requests
according to the priority of the task; and

FIG. 37 is a block diagram of a graphics accelerator,
which may be coupled to a CPU and a memory controller.

DETAILED DESCRIPTION OF A PRESENTLY
PREFERRED EMBODIMENT

1. Graphics Display System Architecture

Referring to FIG. 1, the graphics display system accord-
ing to the present invention is preferably contained in an
integrated circuit 10. The integrated circuit may include
inputs 12 for receiving video signals 14, a bus 20 for
connecting to a CPU 22, a bus 24 for transferring data to and
from memory 28, and an output 30 for providing a video
output signal 32. The system may further include an input 26
for receiving audio input 34 and an output 27 for providing
audio output 36.

The graphic display system accepts video input signals
that may include analog video signals, digital video signals,
or both. The analog signals may be, for example, NTSC,
PAL and SECAM signals or any other conventional type of
analog signal. The digital signals may be in the form of
decoded MPEG signals or other format of digital video. In
an alternatc embodiment, the system includes an on-chip
decoder for decoding the MPEG or other digital video
signals input to the system. Graphics data for display is
produced by any suitable graphics library software, such as
Direct Draw marketed by Microsoft Corporation, and is read
from the CPU 22 into the memory 28. The video output
signals 32 may be analog signals, such as composite NTSC,
PAL, Y/C (S-video), SECAM or other signals that include
video and graphics information. In an allernate cmbodiment,
the system provides serial digital video output to an on-chip
or off-chip serializer that may encrypt the output.

The graphics display system memory 28 is preferably a
unified synchronous dynamic random access memory
(SDRAM) that is shared by the system, the CPU 22 and

25

30

35

50

4

other peripheral components. In the preferred embodiment
the CPU uscs the unified memory for its code and data while
the graphics display system performs all graphics, video and
audio functions assigned to it by software. The amount of
memory and CPU performance are preferably tunable by the
system designer for the desired mix of performance and
memory cost. In the preferred embodiment, a set-top box is
implemented with SDRAM that supports both the CPU and
graphics.

Referring to FIG. 2, the graphics display system prefer-
ably includes a video decoder 50, video scaler 52, memory
controller 54, window controller 56, display engine 58,
video compositor 60, and video encoder 62. The system may
optionally include a graphics accelerator 64 and an audio
engine 66. The system may display graphics, passthrough
video, scaled video or a combination of the different types
of video and graphics. Passthrough video includes digital or
analog video that is mot captured in mecmory. The
passthrough video may be selected from the analog video or
the digital video by a multiplexer. Bypass video, which may
come into the chip on a separate input, includes analog video
that is digitized off-chip into conveational YUV (luma
chroma) format by any suitable decoder, such as the BT829
decoder, available from Brooktree Corporation, San Diego,
Calif. The YUV format may also be referred to as YCrCb
format where Cr and Cb are equivalent to U and V, respec-
tively.

The video decoder (VDEC) 50 preferably digitizes and
processes analog input video to produce internal YUV
component signals with separated luma and chroma com-
poneats. In an alternate embodiment, the digitized signals
may be processed in another format, such as RGB. The
VDEC 50 preferably includes a sample rate converter 70 and
a time base corrector 72 that together allow the system to
receive non-standard video signals, such as signals from a
VCR. The time base corrector 72 enables the video encoder
to work in passthrough mode, and corrects digitized analog
video in the time domain to reduce or prevent jitter.

The video scaler 52 may perform both downscaling and
upscaling of digital video and analog video as needed. In the
preferred embadiment, scale factors may be adjusted con-
tinuously from a scale factor of much less than one to a scale
factor of four. With both analog and digital video input,
either one may be scaled while the other is displayed full
size at the same lime as passthrough video. Any portion of
the inpul may be the source for video scaling. To conserve
memory and bandwidth, the video scaler prefecably down-
scales before capturing video frames to memory, and
upscales after reading from memory, but preferably does not
perform both upscaling and downscaling at the same time.

The memory coatroller 54 preferably reads and writes
video and graphics data to and from memory by using burst
accesscs with burst lengths that may be assigned to each
task. The memory is any suitable memory such as SDRAM.
In the preferred embodiment, the memory controller
includes two substantially similar SDRAM controllers, one
primarily for the CPU and the other primarily for the
graphics display system, while either controller may be used
for any and all of these functions.

The graphics display system preferably processes graph-
ics data using logical windows, also referred to as viewports,
surfaces, sprites, or canvasses, that may overlap or cover one
another with arbitrary spatial relationships. Each window is
preferably independent of the others. The windows may
consist of any combination of image content, including
anti-aliased text and graphics, patteras, GIF images, JPEG

Case 5:01-cv-02302-DF Document4 Filed 12/14/01 Page 49 of 113

US 6,189,064 B1

5

images, live video from MPLG or analog video, three
dimensional graphics, cursors or pointers, control papels,
menus, tickers, or any other content, all or some of which
may be animated.

Graphics windows are preferably characterized by win-
dow descriptors. Window descriptors are data structures that
describe one or more parameters of the graphics window.
Window descriptors may include, for example, image pixel
format, pixel color type, alpha blend factor, location on the
screen, address in memory, depth order on the screen, or
other parameters. The system preferably supports a wide
variety of pixel formats, including RGB 16, RGB 15, YUV
4:2:2 (ITU-R 601), CLUT2, CLUT4, CLUTS or others. In
addition to each window having its own alpha blend factor,
each pixel in the preferred embodiment has its own alpha
value. In the preferred embodiment, window descriptors are
not used for video windows. Instead, parameters for video
windows, such as memory start address and window size arc
stored in registers associated with the video compositor.

In operation, the window controller 56 preferably man-
ages both the video and graphics display pipelines. The
window controller preferably accesses graphics window
descriptors in memory through a direct memory access
(DMA) cngine 76. The window controller may sort the
window descriptors according to the relative depth of their
corresponding windows on the display. For graphics
windows, the window controller preferably sends header
information to the display engine at the beginning of each
window on each scan line, and sends window header packets
to the display engine as needed to display a window. For
video, the window conlroller preferably coordinates capture
of non-passthrough video into memory, and transfer of video
between memory and the video compositor.

The display engine 58 preferably takes graphics informa-
tion from memory and processes it for display. The display
engine preferably converts the various formats of graphics
data in the graphics windows into YUV component format,
and blends the graphics windows to create blended graphics
output having a composite alpha valuc that is based on alpha
values for individual graphics windows, alpha values per
pixel, or both. In the preferred embodiment, the display
engine transfers the processed graphics information to
memory buffers that are configured as line buffers. In an
alternate embodiment, the buffer may include a frame buffer.
Io another alternate embodiment, the output of the display
enginc is transferred directly to a display or output block
without being transferred to memory buffers.

The video compositor 60 receives one or more types of
data, such as blended graphics data, video window data,
passthrough video data and background color data, and
produces a blended video output. The video encoder 62
encodes the blended video output from the video compositor
into any suitable display format such as composite NTSC,
PAL, Y/C (S-video), SECAM or other signals that may
include video information, graphics information, or a com-
bination of video and graphics information. In an altemate
embodiment, the video encoder converts the blended video
output of the video compositor into serial digital video
output using an on-chip or off chip serializer that may
encrypt the output.

The graphics accelerator 64 preferably performs graphics
operations that may require intensive CPU processing, such
as operations on three dimensional graphics images. The
graphics accelerator may be programmable. The audio
engine 66 preferably supports applications that create and
play audio locally within a set-top box and allow mixing of

20

60

6

the locally created audio with audio from a digital audio
source, such as MPEG or Dolby, and with digitized analog
audio. The audio engine also preferably supports applica-
tions that capture digitized baseband audio via an audio
capturc port and store sounds in memory for later use, or that
store audio to memory for temporary buffering in order to
delay the audio for precise lip-syncing when frame-based
video time correction is enabled.

Referring to FIG. 3, in an alternate embodiment of the
present invention, the graphics display system further
includes an /O bus 74 connected between the CPU 22,
memory 28 and one or more of a wide variety of peripheral
devices, such as flash memory, ROM, MPEG decoders,
cable modems or other devices. The on-chip I/0 bus 74 of
the present invention preferably eliminates the need for a
separate interface connection, sometimes referred in the art
to as a north bridge. The 1/O bus preferably provides high
speed access and data transfers between the CPU, the
memory and the peripheral devices, and may be used to
support the full complement of devices that may be used in
a full featured set-top box or digital TV. In the preferred
embodiment, the 1/O bus is compatible with the 68000 bus
definition, including both active DSACK and passive
DSACK (e.g., ROM/flash devices), and it supports external
bus masters and retry operations as both master and slave.
The bus preferably supports any mix of 32-bit, 16-bit and
8-bit devices, and operates at a clock rate of 33 MHz. The
clock rate is preferably asynchronous with (not synchro-
nized with) the CPU clock to enable independent optimiza-
tion of those subsystems.

Referring to FIG. 4, the graphics display system generally
includes a graphics display pipeline 80 and a video display
pipeline 82. The graphics display pipeline preferably con-
tains functional blocks, including window control block 84,
DMA (direct memory access) block 86, FIFO (first-in-
first-out memory) block 88, graphics converter block 90,
color look up table (CLUT) block 92, graphics blending
block 94, static random access memory (SRAM) block 96,
and filtering block 98. The system preferably spatially
processes the graphics data independently of the video data
prior to blending.

In operation, the window control block 84 obtains and
stores graphics window descriptors from memory and uses
the window descriptors to control the operation of the other
blocks in the graphics display pipeline. The windows may be
processed in any order. In the preferred embodiment, on
each scan line, the system processes windows one at a time
from back to front and from the left edge to the right edge
of the window before proceeding to the next window. In an
alternate embodiment, two or more graphics windows may
be processed in parallel. In the parallel implementation, it is
possible for all of the windows to be processed at once, with
the entire scan line being processed left to right. Any number
of other combinations may also be implemented, such as
processing a set of windows at a lower level in parallel, left
to right, followed by the processing of another set of
windows in parallel at a higher level.

The DMA block 86 retrieves data from memory 110 as
needed to construct the various graphics windows according
to addressing information provided by the window control
block. Once the display of a window begins, the DMA block
preferably retains any parameters that may be needed to
continue to read required data from memory. Such param-
eters may inctude, for example, the current read address, the
address of the start of the next lines, the number of bytes to
read per line, and the pitch. Since the pipeline preferably
includes a vertical filter block for anti-flutter and scaling

Case 5:01-cv-02302-DF Document4 Filed 12/14/01 Page 50 of 113

US 6,189,064 Bl

7

purposes, the DMA block preferably accesses a sel of
adjacent display lines in the same frame, in both fields. If the
output of the system is NTSC or other form of interlaced
video, the DMA preferably accesses both ficlds of the
interlaced final display under certain conditions, such as
when the vertical filter and scaling are enabled. In such a
case, all lines, not just those from the current display field,
are preferably read from memory and processed during
every display field. In this embodiment, the efective rate of
reading and processing graphics is equivalent to that of a
non-interlaced display with a frame rate equal to the field
rate of the interlaced display.

The FIFO block 88 temporarily stores data read from the
memory 110 by the DMAblock 86, and provides the data on
demand to the graphics converter block 90. The FIFO may
also serve to bridge a boundary between different clock
domains in the event that the memory and DMA operate
under a clock frequency or phasc that differs from the
graphics converter block 90 and the graphics blending block
94. In an alternate embodiment, the FIFO block is not
needed. The FIFO block may be unnecessary, for example,
if the graphics converter block processes data from memory
at the rate that it is read from the memory and the memory
and coaversion functions are in the same clock domain.

In the preferred embodiment, the graphics converter block
90 takes raw graphics data from the FIFO block and converts
it to YUValpha (YUVa) format. Raw graphics data may
include graphics data from memory that has not yet been
processed by the display engine. One type of YUVa format
that the system may use includes YUV 4:2:2 (ie. two U and
V samples for every four Y samples) plus an 8-bit alpha
value for every pixel, which occupies overall 24 bits per
pixel. Another suitable type of YUVa format includes YUV
4:4:4 plus the 8-bit alpha value per pixel, which occupies 32
bits per pixel. In an
converter may convert the raw graphics data into a different
format, such as RGBalpha.

The alpha value included in the YUVa output may depend
on a number of factors, including alpha from chroma keying
in which a transparent pixel has an alpha equal to zero, alpha
per CLUT entry, alpha from Y (luma), or alpha per window
where one alpha value characterizes all of the contents of a
given window.

The graphics converter block 90 preferably accesses the
CLUT 92 during coaversion of CLUT formatted raw graph-
ics data. In one embodiment of the present inveation, there
is only one CLUT. In an alteraate embodiment, multiple
CLUTs are used to process different graphics windows
having graphics data with different CLUT formats. The
CLUT may be rewritten by retrieving new CLUT data via
the DMA block when required. In practice, it typically takes
longer to rewrite the CLUT than the time available in a
horizontal blanking interval, so the system preferably allows
one horizoatal line period to change the CLUT. Noa-CLUT
images may be displayed while the CLUT is being changed.
The color space of the entries in the CLUT is preferably in
YUV but may also be implemented in RGB.

The graphics blending block 94 reccives output from the
graphics coaverter block 90 and preferably blends one
window at a time along the entire width of one scan line,
with the back-most graphics window being processed first.
The blending block uses the output from the converter block
to modify the contents of the SRAM 96. The result of each
pixel blend operation is a pixel in the SRAM that consists of
the weighted sum of the various graphics layers up to and
including the present one, and the appropriate alpha blend

alternate embodiment, the graphics 3

10

55

60

8

value for the video layers, taking into account the graphics
layers up to and including the present one.

The SRAM 96 is preferably configured as a set of
graphics line buffers, where each line buffer corresponds to
a single display line. The blending of graphics windows is
preferably performed one graphics window at a time on the
display line that is currently being composited into a line
buffer. Once the display line in a line buffer has been
completely composited so that all the graphics windows on
that display line have been blended, the line buffer is made
available to the filtering block 98.

The filtering block 98 preferably performs both anti-
flutter filtering (AFF) and vertical sample rate conversion
(SRC) using the same filter. This block takes input from the
line buffers and performs finite impulsc response polyphase
filtering on the data. While anti-flutter filtering and vertical
axis SRC are done in the vertical axis, there may be different
functions, such as horizontal SRC or scaling that are per-
formed in the horizontal axis. In the preferred embodiment,
the filter takes input from only vertically adjacent pixels at
one time. It multiplies each input pixel times a specified
coeflicient, and sums the result to produce the output. The
polyphase action means that the coefficients, which are
samples of an approximately continuous impulse response,
may be selected from a different fractional-pixel phase of the
impulse responsc every pixel. In an alternate embodiment,
where the filter performs horizontal scaling, appropriate
coefficients are selected for a finite impulse response
palyphase filter to perform the horizontal scaling. In an
alternate embodiment, both horizontal and vertical filtering
and scaling can be performed.

The video display pipeline 82 may include a FIFO block
100, an SRAM block 102,and a video scaler 104. The video
display pipeline portion of the architecture is similar to that
of the graphics display pipeline, and it shares some elements
with it. In the preferred embodiment, the video pipeline
supports up to one scaled video window per scan line, one
passthrough video window, and one background color, all of
which are logically behind the set of graphics windows. The
order of these windows, from back to front, is preferably
fixed as background color, then passthrough video, then
scaled video.

The video windows are preferably in YUV format,
although they may be in either 4:2:2 or 4:2:0 variants or
other variants of YUV, or alternatively in other formats such
as RGB. The scaled video window may be scaled up in both
directions by the display engine, with a factor that can range
up to four in the preferred embodiment. Uulike graphics, the
system generally does not have to correct for square pixel
aspect ratio with video. The scaled video window may be
alpha blended into passthrough video and a background
color, preferably using a constant alpha value for each video
signal.

The FIFO block 100 temporarily stares captured video
windows for transfer 1o the video scaler 104. The video
scaler preferably includes a filter that performs both upscal-
ing and downscaling. The scaler function may be a set of two
polyphase SRC functions, one for each dimension. The
vertical SRC may be a four-tap filter with programmable
coefficients in a fashion similar to the vertical filter in the
graphics pipeline, and the horizontal filter may use an 8-tap
SRC, also with programmable coefficients. In an alternate
embodiment, a shorter horizontal filter is used, such as a
4-tap horizontal SRC for the video upscaler. Since the same
filter is preferably used for downscaling, it may be desirable
to use more taps than are strictly needed for upscaling to
accommodate low pass filtering for higher quality down-
scaling.

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 51 of 113

US 6,189,064 Bl

9

In the preferred embodiment, the video pipeline uses 2
separalc window controller and DMA. In an aliernate
embodiment, thesc elements may be shared. The FIFOs arc
logically separate but may be implemented in a common
SRAM.

The video compositor block 108 blends the output of the
graphics display pipeline, the video display pipeline, and
passthrough vidco. The background color is preferably
blended as the lowest layer on the display, followed by
passthrough video, the video window and blended graphics.
In the preferred embodiment, the video compositor compos-
ites windows directly to the screen line-by-line at the time
the screen is displayed, thereby conserving memory and
bandwidth. The video compositor may include, but prefer-
ably does not include, display frame buffers, double-
buffered displays, off-screen bit maps, or blitters.

Referring to FIG. 5, the display engine 58 preferably
includes graphics FIFO 132, graphics converter 134, RGB-
to-YUV converter 136, YUV-444-10-YUV-422 converter
138 and graphics blender 140. The graphics FIFO 132
receives raw graphics data from memory through a graphics
DMA 124 and passes it to the graphics converter 134, which
preferably converls the raw graphics data into YUV 4:4:4
format or other suitable format. A window controller 122
controls the transfer of raw graphics data from memory to
the graphics converter 132. The graphics converter prefer-
ably accesses the RGB-to-YUV converter 136 duriag con-
version of RGB formatted data and the graphics CLUT 146
during conversion of CLUT formatted data. The RGB-to-
YUV converter is preferably a color space converter that
converts raw graphics data in RGB space to graphics data in
YUV space. The graphics CLUT 146 preferably includes a
CLUT 150, which stores pixel values for CLUT-formatted
graphics data, and a CLUT controller 152, which cantrols
operation of the CLUT.

The YUV444-10-YUV422 coaverter 138 converts graph-
ics data from YUV 4:4:4 format to YUV 4:2:2 format. The
term YUV 4:4:4 means, as is conventional, that for every
four horizontally adjacent samples, there are four Y values,
four U values, and four V values; the term YUV 4:2:2
means, as is conventional, that for every four samples, there
are four Y values, two U values and two V values. The
YUV444-10-YUV422 converter 138 is preferably a UV
decimator that sub-samples U and V from four samples per
every four samples of Y to two samples per every four
samples of Y.

Graphics datain YUV 4:4:4 format and YUV 4:2:2 format
preferably also includes four alpha values for every four
samples. Graphics data in YUV 4:4:4 format with four alpha
values for every four samples may be referred to as being in
aYUV 4:4:4:4 format; graphics data in YUV 4:2:2 format
with four alpha values for every four samples may be
referred to as being in aYUV 4:4:2:2 formal.

The YUV444-t0-YUV422 converter may also perform
low-pass filtering of UV and alpha. For example, if the
graphics data with YUV 4:4:4 format has higher than desired
frequency content, a low pass filter in the YUV444-to-
YUV422 converter may be turned on to filter out high
frequency components in the U and V signals, and to
perform matched filtering of the alpha values.

The graphics blender 140 blends the YUV 4:2:2 signals
together, preferably one line at 2 time using alpha blending,
to creale a single line of graphics from all of the graphics
windows on the current display line. The filter 170 prefer-
ably includes a single 4-tap vertical polyphase graphics filter
172, and a vertical coefficient memory 174. The graphics

35

55

10

filler may perform both anti-flutter filtering and vertical
scaling. The filter preferably receives graphics data from the
display engine through a sct of seven line buffers 59, where
four of the seven line buffers preferably provide data to the
taps of the graphics filter at any given time.

In the preferred embodiment, the system may receive
video input that includes one decoded MPEG video in
ITU-R 656 format and one analog video signal. The ITU-R
656 decoder 160 processes the decoded MPEG video to
extract timing and data information. In one embodiment, an
on-chip video decoder (VDEC) 50 coaverts the analog video
signal to a digitized video signal. [n an alternate
embodiment, an external VDEC such as the Brooktree
BT829 decoder converts the analog video into digitized
analog video and provides the digitized video to the system
as bypass vidco 130.

Analog video or MPEG video may be provided to the
videa compositor as passthrough video. Alternatively, either
type of video may be captured into memory and provided to
the video compositor as a scaled video window. The digi-
tized analog video signals preferably have a pixel sample
rate of 13.5 MHz, contain a 16 bit data stream in YUV 4:2:2
format, and include timing signals such as top field and
vertical sync signals.

The VDEC 50 includes a time base corrector (TBC) 72
comprising a TBC controller 164 and a FIFO 166. To
provide passthrough video that is synchronized to a display
clock preferably without using a frame buffer, the digitized
analog video is corrected in the time domain in the TBC 72
before being blended with other graphics and video sources.
During time base correction, the video input which runs
nominally at 13.5 MHZ is synchronized with the display
clock which runs nominaily at 13.5 MHZ at the output; these
two frequencies that are both nominally 13.5 MHz are not
necessarily exactly the same frequency. In the TBC, the
video output is preferably offset from the video input by 2
half scan line per field.

A capture FIFO 158 and a capture DMA 154 preferably
capture the digitized analog video signals and MP.EG video.
The SDRAM controller 126 provides captured video frames
to the external SDRAM. A video DMA 144 transfers the
captured video framesto a video FIFO 148 from the external
SDRAM.

The digitized analog video signals and MPEG video are
preferably scaled dowan to less than 100% prior to being
captured and are scaled up to more than 100% after being
captured. The video scaler 52 is shared by both upscale and
downscale operations. The video scaler preferably includes
a multiplexer 176, a set of line buffers 178, a horizontal and
vertical coefficient memory 180 and a scaler engine 182. The
scaler engine 182 preferably includes a set of two polyphase
filters, one for each of horizontal and vertical dimensions.

The vertical filter preferably includes a four-tap filter with
programmable filter coefficients. The horizontal filter pref-
erably includes an eight-tap filter with programmable filier
coefficients. In the preferred embodiment, three line buffers
178 supply video signals to the scaler engine 182. The three
line buffers 178 preferably are 720x16 two port SRAM. For
vertical filtering, the three line buffers 178 may provide
video signals to three of the four taps of the four-tap vertical
filter while the video input provides the video signal directly
to the fourth tap. For horizontal filtering, a shift register
having eight cells in series may be used to provide inputs to
the eight taps of the horizontal polyphase filter, each cell
providing an input to one of the eight taps.

For downscaling, the multiplexer 168 preferably provides
a video signal to the video scaler prior to capture. For

Case 5:01-cv-0£)302-DF Document4 Filed 12/14/01 Page 52 of 113

US 6,189,064 B1

1

upscaling, the video FIFO 148 provides a video signal to the
video scaler after caplure. Since the video scaler 52 is shared
between downscaling and upscaling filtering, dowanscaling
and upscaling operations are not performed at the same time
in this particular embodiment.

In the preferred embodiment, the video compositor 60
blends signals from up to four different sources, which may
include blended graphics from the filter 170, video from a
video FIFO 148, passthrough video from a multiplexer 168,
and background color from a background color module 184.
Alternatively, various numbers of signals may be
composited, including, for example, lwo or more video
windows. The video compositor preferably provides final
output signal to the data size converter 190, which serializes
the 16-bit word sample into an 8-bit word sample at twice
the clock frequency, and provides the 8-bit word sample to
the video encoder 62.

The video encoder 62 encodes the provided YUV 4:2.2
video data and outputs it as an output of the graphics display
system in any desired analog or digital format.

I1. Window Descriptor and Solid Surface
Description

Often in the creation of graphics displays, the artist or
application developer has a need to include rectangular
objects on the screen, with the objects having a solid color
and a uniform alpha blend factor (alpha value). These
regions (or objects) may be rendered with other displayed
objects on top of them or beneath them. In conveational
graphics devices, such solid color objects are rendered using
the number of distinct pixels required to fill the region. It
may be advantageous in terms of memory size and memory
bandwidth to render such objects on the display directly,
without cxpending the memory size or bandwidih required
in conventional approaches.

In the preferred embodiment, video and graphics are
displayed on regions referred to as windows. Each window
is preferably a rectangular arca of screen bounded by start-
ing and ending display lines and starting and ending pixels
on each display line. Raw graphics data to be processed and
displayed on a screen preferably resides in the external
memory. In the preferred embodiment, a display engine
converls raw graphics data into a pixel map with a format
that is suitable for display.

In one embodiment of the present invention, the display
engine implements graphics windows of many types directly
in bardware. Each of the graphics windows on the screen has
its own value of various paramclers, such as location on the
screen, starting address in memory, depth order on the
screen, pixel color type, eic. The graphics windows may be
displayed such that they may overlap or cover each other,
with arbitrary spatial relationships.

In the preferred embodiment, a data structure called a
window descriptor contains parameters that describe and
control each graphics window. The window descriptors are
preferably data structures for representing graphics images
arranged in logical surfaces, or windows, for display. Each
data structure preferably includes a field indicating the
relative depth of the logical surface on the display, a field
indicating the alpha value for the graphics in the surface, a
field indicating the location of the logical surface on the
display, and a field indicating the location in memory where
graphics image data for the logical surface is stored.

All of the elements that make up any given graphics
display screen are preferably specified by combining all of
the window descriptors of the graphics windows that make

20

3¢

35

45

50

60

12

up the screen into a window descriptor list. At every display
field time or a frame time, the display engine constructs the
display image from the current window descriptor list. The
display engine composites all of the graphics windows in the
current window descriptor list into a complete screen image
in accordance with the parameters in the window descriptors
and the raw graphics data associated with the graphics
windows.

With the introduction of window descriptors and real-time
composition of graphics windows, a graphics window with
a solid color and fixed translucency may be described
entirely in a window descriptor having appropriate param-
eters. These parameters describe the color and the translu-
cency (alpha) just as if it were a normal graphics window.
The only difference is that there is no pixel map associated
with this window descriptor. The display engine generates
pixcl map accordingly and performs the blending in real
time when the graphics window is to be displayed.

For example, a window consisting of a rectangular object
having a constant color and a constant alpha value may be
created on a screen by including a window descriptor in the
window descriptor list. In this case, the window descriptor
indicates the color and the alpha value of the window, and
a oull pixel format, i.e., no pixcl values are to be read from
memory. Other parameters indicate the window size and
location on the screen, allowing the creation of solid color
windows with any size and location. Thus, in the preferred
embodiment, no pixel map is required, memory bandwidth
requircments are reduced and a window of any size may be
displayed.

Another type of graphics window that the window
descriptors preferably describe is an alpha-only type win-
dow. The alpha-only type windows preferably use a constant
color and preferably have graphics data with 2, 4 or 8 bits
per pixel. For example, an alpha-4 format may be an
alpha-only format used in one of the alpha-only type win-
dows. The alpha-4 format specifies the alpha-only type
window with alpha blend values having four bits per pixel.
The alpha-only type window may be particularly useful for
displaying anti-aliased text.

A window controller preferably controls transfer of graph-
ics display information in the window descriptors to the
display engine. In one embodiment, the window controller
has internal memory to store eight window descriptors. In
other embodiments, the window controiler may have
memory allocated to store more or less window descriptors.
The window controller preferably reads the window descrip-
tors from external memory via a direct memory access
(DMA) module.

The DMA module may be shared by both paths of the
display pipeline as well as some of the control logic, such as
the window controller and the CLUT. In order to support the
display pipeline, the DMA module preferably has three
channels where the graphics pipeline and the video pipeline
use separate DMA modules. These may include window
descriptor read, graphics data read and CLUT read. Each
channel has externally accessible registers to control the
start address and the number of words to read.

Once the DMA module has completed a transfer as
indicated by its start and length registers, it preferably
activates a signal that indicates the transfer is complete. This
allows the DMA module that sets up operations for that
chanpel to begin setting up of another transfer. In the case of
graphics data reads, the window controller preferably sets up
a transfer of one line of graphics pixels and then waits for the
DMA controller to indicate that the transfer of that line is

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 53 of 113

US 6,189,064 Bl

13

complete before setting up the transfer of the next line, or of
a line of another window.

Referring to FIG. 6, each window descriptor preferably
includes four 32-bit words (labeled Word 0 through Word 3)
containing graphics window display information. Word 0
preferably includes a window operation parameter, a win-
dow format parameter and a window memory start address.
The window operation parameter preferably is a 2-bit field
that indicates which operation is to be performed with the
window descriptor. When the window operation parameter
is OOb, the window descriptor performs a normal display
operation and when it is 01b, the window descriplor per-
forms graphics color look-up table (“CLUT”) re-loading.
The window operation parameter of 10b is preferably not
used. The window operation parameter of 11b preferably
indicates that the window descriptor is the last of a sequence
of window descriptors in memory.

The window format parameter preferably is a 4-bit field
that indicates a data format of the graphics data to be
displayed in the graphics window. The data formats corre-
sponding to the window format parameter is described in
Table 1 below.

TABLE 1

Graphics Data Formats

win_ Data

format Format Data Format Description

0000b RGB16 §-BIT RED, 6-BIT GREEN, 5-BIT BLUE
0001b RGB15+1 RGB1S plus one bit alpha (keying)

0010b RGBA4444 4-BIT RED, GREEN, BLUE, ALPHA
0l00b CLUT2 2-bit CLUT with YUV and alpha in table
0l0Ib CLUT4 4-bit CLUT with YUV and alpha in table
0lob CLUTS 8-bit CLUT with YUV and alpha in table
olllb ACLUT16 8-BIT ALPHA, 8-BIT CLUT INDEX

1000b ALPHAO Single win_alpha and single RGB win__color
100ib ALPHAZ 2-bil alphs with single RGB win__color
I010b ALPHA4 4-bit alpha with single RGB win__color
I0lib ALPHAS 8-bit alpha with single RGB win color
1100b YUV422 U and V are sampled at half the rate of Y
b RESERVED Special coding for blank line in new header,

i.c., indicates an empty line

The window memory start address preferably is a 26-bit
data field that indicates a starting memory address of the
graphics data of the graphics window to be displayed on the
screen. The window memory start address points to the first
address in the corresponding external SDRAM which is
accessed to display data on the graphics window defined by
the window descriptor. When the window operation param-
cter indicates the graphics CLUT reloading operation, the
window memory start address indicates a starting memory
address of data to be loaded into the graphics CLUT.

Word 1 in the window descriptor preferably includes a
window layer parameter, a window memory pitch value and
a window color value. The window layer parameter is
preferably a 4-bit data indicating the order of layers of
graphics windows. Some of the graphics windows may be
partially or completely stacked on top of each other, and the
window layer parameter indicates the stacking order. The
window layer parameter preferably indicates where in the
stack the graphics window defined by the window descriptor
should be placed.

In the preferred embodiment, a graphics window with a
window layer parameter of 0000b is defined as the bottom
most layer, and a graphics window with a window layer
parameter of 1111b is defined as the top most layer.
Preferably, up to eight graphics windows may be processed

25

30

45

14

in each scan line. The window memory pitch value is
preferably a 12-bit data field indicating the pilch of window
memory addressing. Pitch refers to the difference in memory
address between two pixcls that are vertically adjacent
within a window.

The window color value preferably is a 16-bit RGB color,
which is applied as a single color to the entire graphics
window when the window format parameter is 1000b,
1001b, 1010b, or 1011b . Every pixel in the window
preferably has the color specified by the window color value,
while the alpha value is determined per pixel and per
window as specified in the window descriptor and the pixel
format. The engine preferably uses the window color value
to implement a solid surface.

Word 2 in the window descriptor preferably includes an
alpha type, a widow alpha value, a window y-end value and
a window y-start value. The word 2 preferably also includes
two bits reserved for future definition, such as high defini-
tion television (HD) applications. The alpha type is prefer-
ably a 2-bit data field that indicates the method of selecting
an alpha value for the graphics window. The alpha type of
00b indicates that the alpha value is to be selected from
chroma kcying. Chroma keying determines whether each
pixel is opaque or transparent based on the color of the pixel.
Opaque pixels are preferably considered to have an alpha
value of 1.0, and transparent pixels have an alpha value of
0, both on a scale of 0 to 1. Chroma keying compares the
color of each pixel to a reference color or to a range of
possible colors; if the pixel matches the reference color, or
if its color falls within the specified range of colors, then the
pixel is determined to be transparent. Otherwise it is deter-
mined to be opaque.

The alpha type of O1b indicates that the alpha value
should be derived from the graphics CLUT, using the alpha
value in each entry of the CLUT. The alpha type of 10b
indicates that the alpha value is to be derived from the
luminance Y. The Y value that results from conversion of the
pixel color 1o the YUV color space, if the pixel color is not
already in the YUV color, is used as the alpha value for the
pixel. The alpha type of 11b indicates that only a single alpha
value is to be applied to the entire graphics window. The
single alpha value is preferably included as the window
alpha value next.

The window alpha value preferably is an 8-bit alpha value
applied to the entire graphics window. The effective alpha
value for each pixel in the window is the product of the
window alpha and the alpha value determined for each pixel.
For example, if the window alpha value is 0.5 on a scale of
0to 1, coded as 0x80, then the effective alpha value of every
pixel in the window is one-half of the value encoded in or
for the pixel itself. If the window format parameter is 1000b,
i.e., a single alpha value is to be applied to the graphics
window, then the per-pixel alpha value is treated as if it is
1.0, and the effective alpha value is equal to the window
alpha value.

The window y-end value preferably is a 10-bit data field
that indicates the ending display line of the graphics window
on the screen. The graphics window defined by the window
descriptor ends at the display linc indicated by the window
y-end value. The window y-start value preferably is a 10-bit
data field that indicates a starting display line of the graphics
window on a screen. The graphics window defined by the
window descriptor begins at the display line indicated in the
window y-start value. Thus, a display of a graphics window
can start on any display line on the screen based on the
window y-start value.

Case 5:01-cv-003£2-DF Document 4 Filed 12/14/01 _Page 54 of 113

US 6,189,064 B1

15

Word 3 in the window descriptor preferably includes a
window filter enable parameter, a blank starl pixel value, a
window x-sizc valuc and a window x-start valuc. In
addition, the word 3 includes two bits reserved for future
definition, such as HD applications. Five bits of the 32-bit
word 3 are not used. The window filter enable parameter is
a 1-bit field that indicates whether low pass filtering is to be
enabled during YUV 4:4:4 to YUV 4:2:2 conversion.

The blank start pixel valuc preferably is a 4-bit parameter
indicating a number of blank pixels at the beginning of each
display line. The blank start pixel value preferably signifies
the number of pixels of the first word read from memory, at
the beginning of the corresponding graphics window, to be
discarded. This field indicates the number of pixels in the
fiest word of data read from memory that are not displayed.
For example, if memory words are 32 bits wide and the
pixels are 4 bits cach, there are 8 possible first pixels in the
first word. Using this ficld, 0 to 7 pixels may be skipped,
making the 1** to the 8% pixel in the word appear as the first
pixel, respectively. The blank start pixel value allows graph-
ics windows to have any horizontal starting position on the
screen, and may be used during soft horizontal scrolling of
a graphics window.

The window x-size value preferably is a 10-bit data field
that indicates the size of a graphics window in the x
direction, i.e., horizontal direction. The window x-size value
preferably indicates the number of pixels of a graphics
window in a display line.

The window x-start value preferably is a 10-bit data field
that indicates a starting pixel of the graphics window on a
display line. The graphics window defined by the window
descriptor preferably begins at the pixel indicated by the
window x-start value of each display line. With the window
x-start value, any pixel of a given display line can be chosen
to start painting the graphics window. Therefore, there is no
need to load pixels on the screen prior to the beginning of the
graphics window display arca with black.

I1I. Graphics Window Control Data Passing
Mechanism

In one embodiment of the present invention, a FIFO in the
graphics display path accepts raw graphics data as the raw
graphics data is read from memory, at the full memory data
rate using a clock of the memory controller. In this
embodiment, the FIFO provides this data, initially stored in
an external memory, to subsequent blocks in the graphics
pipeline.

In systems such as graphics display systems where mul-
tiple types of data may be output from one module, such as
a memory controller subsystem, and used in another
subsystcm, such as a graphics processing subsystem, it
typically becomes progressively more difficult to support a
combination of dynamically varying data types and data
transfer rates and FIFO buffers between the producing and
consuming modules. The conventional way to address such
problems is to design a logic block that understands the
varying parameters of the data types in the first module and
controls all of the relevant variables in the second module.
This may be difficult due to variable delays between the two
modules, duc to the use of FIFOs between them and varying
data ratc, and due to the complexity of supporting a large
number of data types.

The system preferably processes graphics images for
display by organizing the graphics images into windows in
which the graphics images appear on the screen, obtaining
data that describes the windows, sorting the data according

25

60

65

16

to the depth of the window on the display, transferring
graphics images from memory, and blending the graphics
images using alpha values associated with the graphics
images.

In the preferred embodiment, a packet of control infor-
mation called a header packet is passed from the window
controller to the display engiae. All of the required control
information from the window controller preferably is con-
veyed 1o the display engine such that all of the relevant
variables from the window coatroller are properly coatrolled
in a timely fashion and such that the control is not dependent
on variations in delays or data rates between the window
controller and the display engine.

A header packet preferably indicates the start of graphics
data for onc graphics window. The graphics data for that
graphics window continues until it is completed without
requiring a transfer of another header packet. A new header
packet is preferably placed in the FIFO when another
window is to start. The header packets may be transferred
according to the order of the corresponding window descrip-
tors in the window descriptor lists.

In a display engine that operates according to lists of
window descriptors, windows may be specified to overlap
one another. At the same time, windows may start and end
on any line, and there may be many windows visible on any
one line. There are a large number of possible combinations
of window starting and ending locations along vertical and
horizontal axes and depth order locations. The system pref-
erably indicates the depth order of all windows in the
window descriptor listand implements the depth ordering
correctly while accounting for ali windows.

Each window descriptor preferably includes a parameter
indicating the depth location of the associated window. The
range that is allowed for this parameter can be defined to be
almost any useful value. In the preferred embodiment there
arc 16 possible depth values, ranging from 0 to 15, with 0
being the back-most (deepest, or furthest from the viewer),
and 15 being the top or front-most depth. The window
descriptors are ordered in the window descriptor list in order
of the first display scan line where the window appears. For
example if window A spans lines 10 to 20, window B spans
lines 12 to 18, and window C spans lines 5 to 20, the order
of these descriptors in the list would be {C, A, B}.

In the hardware, which is a preferably a VLSI device,
there is preferably on-chip memory capable of storing a
number of window descriptors. In the preferred
implementation, this memory can store up to 8 window
descriptors on-chip, however the size of this memory may be
made larger or smaller without loss of generality. Window
descriptors are read from main memory into the on-chip
descriptor memory in order from the start of the list, and
stopping when the on-chip memory is full or when the most
recently read descriptor describes a window that is not yet
visible, i.e., its starting line is on a line that has a higher
number than the line currently being constructed. Once a
window has been displayed and is no longer visible, it may
be cast out of the on-chip memory and the next descriptor in
the list may read from main memory. At any given display
line, the order of the window descriptors in the on-chip
memory bears no particular relation to the depth order of the
windows on the screen.

The hardware that controls the compositing of windows
builds up the display in layers, starting from the back-most
layer. In the preferred embodiment, the back most layer is
layer 0. The hardware performs a quick search of the
back-most window descriptor that has not yet been

Case 5:01-cv-00§02-DF Document 4 Filed 12/14/01 Page 55 of 113

US 6,189,064 Bl

17

composited, regardless of its location in the on-chip descrip-
tor memory. In the preferred embodiment, this search is
performed as follows:

All 8 window descriptors are stored on chip in such a way
that the depth order numbers of all of them are available
simultaneously. While the depth numbers in the window
descriptors are 4 bit numbers, representing 0 to 15, the
on-chip memory has storage for 5 bits for the depth number.
Initially the 5 bit for each descriptor is set to 0. The depth
order values are compared in a hierarchy of pair-wise
comparisons, and the lower of the two depth numbers in
each comparison wins the comparison. That is, at the first
stage of the test descriptor pairs {0, 1 }, {2,3 }, {4, 5}, and
{6, 7} are compared, where (0-7) represent the eight
descriptors stored in the on-chip memory. This results in
four depth numbers with associated descriptor numbers. At
the next stage two pair-wise comparisons compare {(0, 1),
(2, 3)} and {(4, 5), (6, D}

Each of these results in a depth number of the lower depth
order number and the associated descriptor number. At the
third stage, one pair-wise comparison finds the smallest
depth number of all, and its associated descriptor number.
This number points the descriptor in the on-chip memory
with the lowest depth number, and therefore the greatest
depth, and this descriptor is used first to render the associ-
ated window on the screen. Once this window has been
rendered onto the screen for the current scan lige, the fifth
bit of the depth number in the on-chip memory is set to 1,
thereby ensuring that the depth value number is greater than
15, and as a result this depth number will preferably never
again be found to be the back-most window until all win-
dows have been rendered on this scan line, preventing
rendering this window twice.

Once all the windows have been rendered for a given scan
line, the fifth bits of all the on-chip depth numbers are again
set to 0; descriptors that describe windows that are no longer
visible on the screen are cast out of the on-chip memory;
new descriptors are read from memory as required (that is,
if all windows in the on-chip memory are visible, the next
descriptor is read from memory, and this repeats until the
most recently read descriptor is not yet visible oa the
screen), and the process of finding the back most descriptor
and rendering windows onto the screen repeats.

Referring to FIG. 7, window descriptors are preferably
sorted by the window controlicr and used to transfer graph-
ics data to the display engine. Each of window descriptors,
including the window descriptor 0 through the window
descriptor 7 300a-h, preferably contains a window layer
parameter. In addition, each window descriptor is preferably
associated with a window line done flag indicating that the
window deseriptor has been processed on a current display
line.

The window controller preferably performs window sort-
ing at each display line using the window layer parameters
and the window line done flags. The window controller
preferably places the graphics window that corresponds to
the window descriptor with the smallest window layer
parameter at the bottom, while placing the graphics window
that corresponds to the window descriptor with the largest
window layer parameter at the top.

The window controller preferably transfers the graphics
data for the bottom-most graphics window to be processed
first. The window parameters of the bottom-most window
are composed into a header packet and written to the
graphics FIFO. The DMA engine preferably sends a request
1o the memory controller to read the corresponding graphics

18
data for this window and send the graphics data to the
graphics FIFO. The graphics FIFO is then read by the
display engine to compose a display line, which is then
written to graphics line buffers.

The window line done flag is preferably set true whenever
the window surface has been processed on the current
display line. The window line done flag and the window
layer parameter may be concatenated together for sorting.
The window line done flag is added to the window layer
parameter as the most significant bt during sorting such that
{window line done flag[4], window layer parameter{3:0]} is
a five bit binary number, a window layer value, with window
line done flag as the most significant bit.

The window controller preferably selects a window
descriptor with the smallest window layer value to be
processed. Since the window line done flag is preferably the
most significant bit of the window layer value, any window
descriptor with this flag set, i.., any window that has been

. processed on the current display line, will have a higher

60

window layer value than any of the other window descrip-
tors that have not yet been processed on the current display
line. When a particular window descriptor is processed, the
window line done flag associated with that particular win-
dow descriptor is preferably sct high, signifying that the
particular window descriptor has been processed for the
current display line.

A sorter 304 preferably sorts all eight window descriptors
after any window descriptor is processed. The sorting may
be implemented using binary tree sorting or any other
suitable sorting algorithm. In binary tree sorting for eight
window descriptors, the window layer value for four pairs of
window descriptors are compared at a first level using four
comparators (o choose the window descriptor that corre-
sponds to a lower window in each pair.

In the sccond level, two comparators are used to select the
window descriptor that corresponds to the bottom most
graphics window in each of two pairs. In the third and the
last level, the bottom-most graphics windows from each of
the two pairs are compared against each other preferably
using only one comparator to select the bottom window.

A multiplexer 302 preferably multiplexes parameters
from the window descriptors. The output of the sorter, ie.,
window selected to be the bottom most, is used to select the
window parameters to be sent to a direct memory access
(“DMA”) module 306 to be packaged in a header packet and
sent to a graphics FIFO 308. The display engine preferably
reads the header packet in the graphics FIFO and processes
the raw graphics data based on information contained in the
header packet.

The header packet preferably includes a first header word
and a second header word. Corresponding graphics data is
preferably transferred as graphics data words. Each of the
first header word, the second header word and the graphics
data words preferably includes 32 bits of information plus a
data type bit. The first header word preferably includes a
1-bit data type, a 4-bit graphics type, a 1-bit first window
parameter, a 1-bit top/bottom parameter, a 2-bit alpha type,
an 8-bit window alpha value and a 16-bit window color
value. Table 2 shows contents of the first header word.

Case 5:01-cv-00302-DF

Document 4 Filed 12/14/01_Page 56 of 113

US 6,189,064 Bl

TABLE 2
First Header Word
Bit 32 3128 27 26 25-24 23-16 15-0
Position
Data Data graphics First top/ alpha window window
Content type type Window bottom type alpha color

The 1-bit data type preferably indicates whether a 33-bit
word in the FIFO is a header word or a graphics data word.
A data type of 1 indicates that the associated 33-bit word is
a header word while the data type of O indicates that the
associated 33-bit word is a graphics data word. The graphics
type indicates the data format of the graphics data 1o be
displayed in the graphics window similar to the window
format parameter in the word 0 of the window descriptor,
which is described in Table 1 above. In the preferred
embodiment, when the graphics type is 1111, there is no
window on the current display line, indicating that the
current display line is empty.

The first window parameter of the first header word
preferably indicates whether the window associated with
that first header word is a first window on a new display line.
The top/bottom parameter preferably indicates whether the
current display line indicated in the first header word is at the
top or the bottom edges of the window. The alpha type
preferably indicates a method of selecting an alpha value
individually for each pixel in the window similar to the alpha
type in the word 2 of the window descriptor.

The window alpha value preferably is an alpha value to be
applied to the window as a whole and is similar to the
window alpha value in the word 2 of the window descriptor.
The window color value preferably is the color of the
window in 16-bit RGB format and is similar to the window
color value in the word 1 of the window descriptor.

The sccond header word preferably includes the 1-bit data
type, a 4-bit blank pixel count, a 10-bit left edge value, a
1-bit filter enable parameter and a 10-bit window size value.
Table 3 shows coatents of the second header word in the
preferred embodiment.

TABLE 3
Second Header Word
Bit 32 31-28 25-16 10 9-0
Position
Data data Blank pixel Left edge filter window size
Content type count enabler

Similar to the first header word, the second header word
preferably starts with the data type indicating whether the
second header word is a header word or a graphics data
word. The blank pixel count preferably indicates a number
of blank pixels at a left edge of the window and is similar to
the blank start pixel value in the word 3 of the window
descriptor. The left edge preferably indicates a starting
location of the window on a scan line, and is similar to the
window x-start value in the word 3 of the window descriptor.
The filter enable parameter preferably enables a filter during
a conversion of graphics data from a YUV 4:4:4 format to
a YUV 4:2:2 format and is similar to the window filter
enable parameter in word 3 of the window descriptor. Some
YUV 4:4:4 data may contain higher frequency content than
others, which may be filtered by enabling a low pass filter
during a conversion to the YUV 4:2:2 format. The window

20

30

45

50

60

20

size value preferably indicates the actual horizontal size of
the window and is similar to the window x-size value in
word 3 of the window descriptor.

When the composition of the last window of the last
display line is completed, an empty-line header is preferably
placed into the FIFO so that the display engine may release
the display line for display.

Packetized data structures have been used primarily in the
communication world where large amount of data needs to
be transferred between hardware using a physical data link
(c.g., wires). The idea is not known to have been used in the
graphics world where localized and small data control
structures need to be transferred between different design
entities without requiring 2 large off-chip memory as a
buffer. In one embodiment of the present system, header
packels arc used, and a gencral-purpose FIFO is used for
routing. Routing may be accomplished in a relatively simple
manner in the preferred embodiment because the write port
of the FIFQ is the only interface.

In the preferred embodiment, the graphics FIFO is a
synchronous 32x33 FIFO built with a static dual-port RAM
with one read port and one write port. The write port
preferably is synchronous to a 81 MHz memory clock while
the read port may be asynchronous (not synchronized) to the
memory clock. The read port is preferably synchronous to a
graphics processing clock, which runs preferably a1 81 MHz,
but not necessarily synchronized to the memory clock. Two
graphics FIFO pointers are preferably generated, one for the
read port and one for the write port. In this embodiment,
each graphics FIFO pointer is a 6-bit binary counter which
ranges from 00000b to 111111b, ie., from O to 63. The
graphics FIFO is only 32 words deep and requires only 5 bils
to represent each 33-bit word in the graphics FIFO. An extra
bit is preferably used to distinguish between FIFO full and
FIFO cmpty statcs.

The graphics data words preferably include the 1-bit data
type and 32-bil graphics data bils. The data type is 0 for the
graphics data words. In order to adhere to a common design
practice that gencrally limits the size of a DMA burst into a
FIFO to half the size of the FIFO, the number of graphics
data words in one DMA burst preferably does not exceed 16.

In an alternatc embodiment, a graphics display FIFO is
not used. In this embodiment, the graphics converter pro-
cesses data from memory at the rate that it is read from
memory. The memory and conversion functions are in a
same clock domain. Other suitable FIFO designs may be
used.

Referring to FIG. 8, a flow diagram illustrates a process
for loading and processing window descriptors. First the
system is preferably reset in step 310. Then the sysiem in
step 312 preferably checks for a vertical sync (“VSYNC”).
When the VSYNC is received, the system in step 314
preferably proceeds to load window descriptors into the
window controller from the external SDRAM or other
suitable memory over the DMA channel for window
descriptors. The window controller may store up to eight
window descriptors in one embodiment of the present invea-
tion.

The step in step 316 preferably sends a new line header
indicating the start of a new display line. The system in step
320 preferably sorts the window descriptors in accordance
with the process described in reference to FIG. 7. Although
sorting is indicated as a step in this flow diagram, sorting
actually may be a continuous process of selecting the
bottorn-most window, i.e., the window to be processed. The
system in step 322 preferably checks to determine if a

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 57 of 113

US 6,189,064 B1

21

starting display line of the window is greater than the line
count of the current display line. If the starting display line
of the window is greater than the linc count, iec., if the
current display linc is above the starting display line of the
bottom most window, the current display line is a blank line.
Thus, the system in step 318 preferably increments the line
count and sends another new line header in step 316. The
process of sending a new line header and sorting window
descriptor continues as long as the starting display line of the
bottom most (in layer order) window is below the current
display line.

The display engine and the associated graphics filter
preferably operate in one of two modes, a field mode and 2
frame mode. In both modes, raw graphics data associated
with graphics windows is preferably stored in frame format,
including lines from both interlaced fields in the case of an
interlaced display. In the ficld mode, the display engine
preferably skips every other display line during processing.
In the field mode, therefore, the system in step 318 prefer-
ably increments the line count by two each time to skip
every other line. In the frame mode, the display engine
processes every display line sequentially. In the frame mode,
therefore, the system in step 318 preferably increments the
line count by one each time.

When the system in step 322 determines that the starting
display of the window is greater than the line count, the
system in step 324 preferably determines from the header
packet whether the window descriptor is for displaying a
window or re-loading the CLUT. If the window header
indicates that the window descriptor is for re-loading CLUT,
the system in step 328 preferably sends the CLUT data to the
CLUT and turns on the CLUT write strobe to load CLUT.

If the system in step 324 determines that the window
descriptor is for displaying a window, the system in step 326
preferably sends a new window header to indicate that
graphics data words for a new window on the display line
are going 1o be transferred into the graphics FIFO. Then, the
system in step 330 preferably requests the DMA module to
scad graphics data to the graphics FIFO over the DMA
channel for graphics data. In the event the FIFO does not
have sufficient space to store graphics data in a new data
packet, the system preferably waits until such space is made
available.

When graphics data for a display linc of a current window
is transferred to the FIFO, the system in step 332 preferably
determines whether the last line of the current window has
been transferred. If the last line has been transferred, a
window descriptor done flag associated with the current
window is preferably set. The window descriptor done flag
indicates that the graphics data associated with the current
window descriptor has been completely transferred. When
the window descriptor done flag is set, i.c., when the current
window descriptor is completely processed, the system sets
a window descriptor done flag in step 334. Then the system
in step 336 preferably sets a new window descriptor update
flag and increments a window descriptor update counter to
indicate that a new window descriptor is to be copied from
the external memory.

Regardless of whether the last line of the current window
has been processed, the system in step 338 preferably sets
the window line done flag for the current window descriptor
to signify that processing of this window descriptor on the
current display line has been completed. The system in step
340 preferably checks the window line done flags associated
with all eight window descriptors to determine whether they
are all set, which would indicate that all the windows of the

15

25

50

60

22

current display line have been processed. If not all window
line done flags are set, the system preferably proceeds to step
320 to sort the window descriptors and repeat processing of
the new bottom-most window descriptor.

If all eight window line done flags are determined to be set
in step 340, all window descriptors on the current display
line have been processed. In this case, the system in step 342
preferably checks whether an all window descriptor done
flag has been set to determine whether all window descrip-
tors have been processed completely. The all window
descriptor done flag is set when processing of all window
descriptors in the current frame or field have been processed
completely. If the all window descriptor done flag is set, the
system preferably returns to step 310 to reset and awaits
another VSYNC in step 312. If not all window descriptors
have been processed, the system in step 344 preferably
determines if the new window descriptor update flag has
been sct. In the preferred embodiment, this flag would have
been set in step 334 if the current window descriptor has
been completely processed.

When the new window descriptor update flag is set, the
system in step 352 preferably sets up the DMA to transfer a
new window descriptor from the external memory. Then the
system in step 350 preferably clears the new window
descriptor update flag. After the system clears the new
window descriptor update flag or when the new window
descriptor update flag is not set in the first place, the system
in step 348 preferably increments a line counter to indicate
that the window descriptors for a next display line should be
processed. The system in step 346 preferably clears all eight
window line done flags to indicate that none of the window
descriptors have been processed for the next display line.
Then the system in step 316 preferably initiates processing
of the new display line by sending a new line header to the
FIFO.

In the preferred embodiment, the graphics coaverter in the
display engine converts raw graphics data having various
different formats into a common format for subsequent
compositing with video and for display. The graphics con-
verter preferably includes a state machine that changes state
based on the content of the window data packet. Referring
to FIG. 9, the state machine in the graphics converter
preferably controls unpacking and processing of the header
packets. A first header word processing state 354 is prefer-
ably eatered wherein a first window parameter of the first
header word is checked (stcp 356) to determine if the
window data packet is for a first graphics window of a new
line. If the header packet is not for a first window of a new
line, after the first header word is processed, the state
preferably changes to a second header word processing state
362.

If the header packel is for a first graphics window of a new
line, the state machine preferably enters a clock switch state
358. In the clock switch state, the clock for a graphics line
buffer which is going to store the new line switches from a
display clock to a memory clock, e.g., from a 13.5 MHz
clock to a 81 MHz clock. From the clock switch state, a
graphics type in the first header word is preferably checked
(step 360) to determine if the header packet represents an
empty line. A graphics type of 1111b preferably refers lo an
empty line.

If the graphics type is 1111b, the state machine enters the
first header word processing state 354, in which the first
header word of the next header packet is processed. If the
graphics type is not 1111b, i.e. the display line is not empty,
the second header word is processed. Then the state machine

Case 5:01-cv-003_’_92-DF Document 4 Filed 12/14/01_ Page 58 of 113

US 6,189,064 B1

23

preferably enters a graphics content state 364 wherein words
from the FIFO are checked (step 366) one at a time to verify
that they arc data words. The state machine preferably
remains in the graphics content state as long as each word
read is a data word. While in the graphics content state, if a
word received is not a data word, i.e., it is a first or second
header word, then the state machine preferably enters a
pipeline complete state 368 and then to the first header
processing state 354 where reading and processing of the
next window data packet is commenced.

Referring to FIG. 10, the display engine 58 is preferably
coupled to memory over a memory interface 370 and a
CLUT over a CLUT interface 372. The display engine
preferably includes the graphics FIFO 132 which receives
the header packets and the graphics data from the memory
controller over the memory interface. The graphics FIFO
preferably provides received raw graphics data to the graph-
ics converter 134 which converts the raw graphics data into
the common compositing format. During the conversion of
graphics format, the RGB to YUV converter 136 and data
from the CLUT over the CLUT interface 372 are used to
converl RGB formatted data and CLUT formatled data,
respectively.

The graphics converter preferably processes all of the
window layers of each scan line in half the time, or less, of
an interlaced display line, due to the need to have lines from
both fields available in the SRAM for use by the graphics
filter when frame mode filtering is enabled. The graphics
converter operates al 81 Mz in one embodiment of the
present invention, and the graphics converter is able to
process up to eight windows on each scan line and up to
three full width windows.

For example, with a 13.5 MHz display clock, if the
graphics converter processes 81 Mpixels per second, it can
convert three windows, each covering the width of the
display, in half of the active display time of an interlaced
scan line. In one embodiment of the present invention, the
graphics converter processes all the window layers of each
scan line in half the time of an interlaced display line, due
to the need to have lines from both fields available in the
SRAM for use by the graphics filter. In practice, there may
be some more time available since the active display time
leaves out the blanking time, while the graphics converter
can operate continuously.

Graphics pixels arc preferably read from the FIFO in raw
graphics format, using one of the multiple formats allowed
in the preseat invention and specified in the window descrip-
tor. Each pixel may occupy as little as two bits or as much
as 16 bits in the preferred embodiment. Each pixel is
converted to a YUVa24 format (also referred to as aYUV
4:4:2:2), such as two adjacent pixels sharing a UV pair and
having unique Y and alpha values, and each of the Y, U, V
and alpha components occupying eight bits. The conversion
process is generally dependent on the pixel format type and
the alpha specification method, both of which arc indicated
by the window descriptor for the currently active window.
Preferably, the graphics converter uses the CLUT memory to
convert CLUT format pixels into RGB or YUV pixels.

Conversions of RGB pixels may require conversion to
YUV, and therefore, the graphics converter preferably
includes a color space converter. The color space converter
preferably is accurate for all coefficients. If the converter is
accurate to eight or nine bits it can be used to accurately
convert eight bit per component graphics, such as CLUT
entries with this level of accuracy or RGB24 images.

The graphics converter preferably produces one con-
verted pixel per clock cycle, even when there are multiple

10

50

-3

0

65

24

_ graphics pixels packed into one word of data from the FIFO.

Preferably the graphics processing clock, which preferably
runs at 81 MHz, is used during the graphics conversion. The
graphics converter preferably reads data from the FIFO
whenever both conditions are met, including that the con-
verter is ready to receive more data, and the FIFO has data
ready. The graphics converter preferably receives an input
from a graphics blender, which is the next block in the
pipeline, which indicates when the graphics blender is ready
to reccive more converted graphics data. The graphics
converter may stall if the graphics blender is not ready, and
as a result, the graphics converter may not be ready to
receive graphics data from the FIFO.

The graphics converter preferably converts the graphics
data into a YUValpha (“YUVa™) format. This YUVa format
includes YUV 4:2:2 values plus an 8-bit alpha value for
every pixel, and as such it occupics 24 bits per pixel; this
format is alternately referred to as aYUV 4:4:2:2. The
YUV444-10-YUV422 converter 138 converts graphics data
with the aYUV 4:4:4:4 format from the graphics converter
into graphics data with the aYUV 4:4:2:2 format and pro-
vides the data to the graphics blender 140. The YUV444.-
to-YUV422 converter preferably has a capacity of perform-
ing low pass filtering to filter out high frequency
components when needed. The graphics converter also
sends and receives clock synchronization information to and
from the graphics line buffers over a clock control interface
376.

When provided with the converted graphics data, the
graphics blender 140 preferably composites graphics win-
dows into graphics line buffers over a graphics line buffer
interface 374. The graphics windows are alpha blended into
blended graphics and preferably stored in graphics line
buffers.

1V. Color Look-Up Table Loading Mechanism

A color look-up table (“CLUT”) is preferably used to
supply color and alpha values to the raw graphics data
formatted to address information contents of the CLUT. For
a window surface based display, there may be multiple
graphics windows on the same display screen with different
graphics formats. For graphics windows using a color look-
up table (CLUT) format, it may be necessary to load specific
color look-up table entries from external memory to on-chip
memory before the graphics window is displayed.

The system preferably includes a display engine that
processes graphics images formatted in a plurality of for-
mats including a color look up table (CLUT) format. The
system provides a data structure that describes the graphics
in a window, provides a data structure that provides an
indicator to load a CLUT, sorts the data structures into a list
according 1o the location of the window on the display, and
loads conversion data into a CLUT for converting the
CLUT-formatted data into a different data format according
to the scquence of data structures o the list.

In the preferred embodiment, each window on the display
screen is described with a window descriptor. The same
window descriplor is used to control CLUT loading as the
window descriptor used to display graphics on screen. The
window descriptor preferably defines the memory starting
address of the graphics contents, the x position on the
display screen, the width of the window, the starting vertical
display line and end vertical display line, window layer, etc.
The same window structure parameters and corresponding
fields may be used to define the CLUT loading. For example,
the graphics contents memory starting address may define

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 59 of 113

US 6,189,064 B1

25

CLUT memory starting address; the width of graphics
window parameter may define the number of CLUT entries
to be loaded; the starting vertical display linc and ending
vertical display line parameters may be used to define when
to load the CLUT; and the window laycr parameter may be
used to define the priority of CLUT loading if several
windows are displayed at the same time, i.e., on the same
display line.

In the preferred embodiment, only one CLUT is used. As
such, the contents of the CLUT are preferably updated to
display graphics windows with CLUT formatted data that is
not supported by the current content of the CLUT. One of
ordinary skill in the art would appreciate that it is straight-
forward to use more than one CLUT and switch back and
forth between them for different graphics windows.

In the preferred embodiment, the CLUT is closely asso-
ciated with the graphics converter. fn one embodiment of the
present invention, the CLUT consists of one SRAM with
256 entries and 32 bits per entry. In other embodiments, the
number of entries and bits per entry may vary. Each entry
contains three color components; cither RGB or YUV
format, and an alpha component. For every CLUT-format
pixel converted, the pixel data may be used as the address lo
the CLUT and the resulting value may be used by the
converter to produce the YUVa (or alternatively RGBa)
pixel value.

The CLUT may be re-loaded by retrieving new CLUT
data via the direct memory access module when needed. It
generally takes longer to re-load the CLUT than the time
available in a horizontal blanking interval. Accordingly, in
the preferred embodiment, a whole scan line time is allowed
to re-load the CLUT. While the CLUT is being reloaded,
graphics images in non-CLUT formats may be displayed.
The CLUT reloading is preferably initiated by a window
descriptor that contains information regarding CLUT
reloading rather than a graphics window display informa-
tion.

Referring to FIG. 11, the graphics CLUT 146 preferably
includes a graphics CLUT controller 400 and a static dual-
port RAM (SRAM) 402. The SRAM preferably has a size of
256x32 which corresponds to 256 entries in the graphics
CLUT. Each entry in the graphics CLUT preferably has 32
bits composed of Y+U+V+alpha from the most significant
bit to the least significant bit. The size of each field,
including Y, U, V, and alpha, is preferably eight bits.

The graphics CLUT preferably has a write port that is
synchronized to a 81 MHz memory clock and a read port
that may be asynchronous to the memory clock. The read
port is preferably synchronous to the graphics processing
clock, which runs preferably at 81 MHz, but not necessarily
synchronized to the memory clock. During a read operation,
the static dual-port RAM (“SRAM”) is preferably addressed
by a read address which is provided by graphics data in the
CLUT images. During the read operation, the graphics data
is preferably output as read data 414 when a memory address
in the CLUT containing that graphics data is addressed by a
read address 412.

During write operations, the window controller preferably
controls the write port with 2 CLUT memory request signal
404 and a CLUT memory write signal 408. CLUT memory
data 410 is also preferably provided to the graphics CLUT
via the direct memory access module from the external
memory. The graphics CLUT controller preferably receives
the CLUT memory data and provides the received CLUT
memory data to the SRAM for writing,

Referring to FIG. 12, an exemplary timing diagram shows
different signals involved during a writing operation of the

15

25

56

wn
h

65

26

CLUT. The CLUT memory request signal 418 is asserted
when the CLUT is to be re-loaded. A rising edge of the
CLUT memory request signal 418 is used to reset a write
pointer associated with the write port. Then the CLUT
memory write signal 420 is asserted to indicate the begin-
ning of a CLUT re-loading operation. The CLUT memory
data 422 is provided synchronously to the 81 MHz memory
clock 416 to be written to the SRAM. The write pointer
associated with the write port is updated each time the
CLUT is loaded with CLUT memory data.

In the preferred embodiment, the process of reloading a
CLUT is associated with the process of processing window
descriptors illustrated in FIG. 8 since CLUT re-loading is
initiated by a window descriptor. As shown in steps 324 and
328 of FIG. 8, if the window descriptor is determined to be
for reloading CLUT in step 324, the system in step 328 sends
the CLUT data to the CLUT. The window descriptor for the
CLUT reloading may appear anywhere in the window
descriptor list. Accordingly, the CLUT reloading may take
place at any time whenever CLUT data is to be updated.

Using the CLUT loading mechanism in one embodiment
of the present invention, more than one window with dif-
ferent CLUT tables may be displayed on the same display
line. In this embodiment, only the minimum required entries
are preferably loaded into the CLUT, instead of loading all
the entries every time. The loading of only the minimum
required entries may save memory bandwidth and enables
more functionality. The CLUT loading mechanism is pref-
erably relatively flexible and casy to control, making it
suitable for various applications. The CLUT loading mecha-
nism of the present invention may also simplify hardware
design, as the same state machine for the window controller
may be used for CLUT loading. The CLUT preferably also
shares the same DMA logic and layer/priority control logic
as the window controller.

V. Graphics Line Buffer Control Scheme

In the preferred embodiment of the present invention, the
system preferably blends a plurality of graphics images
using line buffers. The system initializes a line buffer by
loading the line buffer with data that represents transparent
black, obtains control of a line buffer for a compositing
operation, composites graphics contents into the line buffer
by blending the graphics contents with the existing contents
of the line buffer, and repeats the step of compositing
graphics contents into the line buffer uatil all of the graphics
surfaces for the particular line have been composited.

The graphics line buffer temporarily stores composited
graphics images (blended graphics). A graphics filter pref-
erably uses blended graphics in line buffers to perform
vertical filtering and scaling operations to generate output
graphics images. In the preferred embodiment, the display
engine composites graphics images line by line using a clock
rate that is faster than the pixel display rate, and graphics
filters run at the pixel display rate. In other embodiments,
mulliple lines of graphics images may be composited in
parallel. In still other embodiments, the line buffers may not
be needed. Where line buffers are used, the system may
incorporate an innovative control scheme for providing the
line buffers containing blended graphics to the graphics filter
and releasing the line buffers that are used up by the graphics
filter.

The line buffers are preferably built with synchronous
static dual-port random access memory (“SRAM”) and
dynamically switch their clocks between a memory clock
and a display clock. Each line buffer is preferably loaded

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 60 of 113

US 6,189,064 B1

27

with graphics data using the memory clock and the contents
of the line bulfer is preferably provided to the graphics filter
synchronously to the display clock. In one cmbodiment of
the present invention, the memory clock is an 81 MHz clock
used by the graphics converter to process graphics data
while the display clock is a 13.5 MHz clock used to display
graphics and video signals on a television screen. Other
embodiments may use other clock speeds.

Referring to FIG. 13, the graphics linc buffer preferably
includes a graphics line buffer controlter 500 and line buffers
504. The graphics line buffer controller 500 preferably
receives memory clock buffer control signals 508 as well as
display clock buffer control signals 510. The memory clock
control signals and the display clock control signals are used
to synchronize the graphics line buffers to the memory clock
and the display clock, respectively. The graphics line buffer
controller receives a clock selection vector 514 from the
display eangine to control which graphics line buffers are to
operate in which clock domain. The graphics line buffer
controller returns a clock enable vector to the display engine
to indicate clock synchronization settings in accordance with
the clock selection vector.

In the preferred embodiment, the line buffers 504 include
seven line buffers 506 a—g. The line buffers temporarily store
lines of YUVa24 graphics pixels that are used by a subse-
quent graphics filter. This allows for four line buffers to be
used for filtering and scaling, two are available for progress-
ing by one or two lines at the end of every line, and one for
the current compositing operation. Each line buffer may
store an entire display line. Therefore, in this embodiment,
the total size of the line buffers is (720 pixels/display line)
* (3 bytes/pixel) * (7 lines) =15,120 bytes.

Each of the ports to the SRAM including line buffers is 24
bits wide to accommodate graphics data in YUVa24 format
in this embodiment of the present invention. The SRAM has
one read port and one write port. One read port and one write
port are used for the graphics blender interface, which
performs a read-modify-wrile typically once per clock cycle.
1a another embodiment of the present invention, an SRAM
with only one port is used. In yet another embodiment, the
data stored in the line buffers may be YUVa32 (4:4:4:4),
RGBa32, or other formats. Those skilled in the art would
appreciate that it is straightforward to vary the number of
graphics line buffers, ¢.g., to use different number of 1aps for
filter, the format of graphics data or the number of read and
write ports for the SRAM.

The line buffers are preferably controlled by the graphics
line buffer controller over a line buffer control interface 502.
Over this interface, the graphics line buffer controller trans-
fers graphics data to be loaded to the line buffers. The
graphics filter reads conteats of the line buffers over a
graphics line buffer interface 516 and clears the line buffers
by loading them with transparent black pixels prior 1o
releasing them to be loaded with more graphics data for
display.

Referring FIG. 14, a flow diagram of a process of using
line buffers to provide composited graphics data from a
display engine to a graphics filter is illustrated. After the
graphics display system is reset in step 520, the system in
step 522 receives a vertical sync (VSYNC) indicating a field
start. Initially, all line buffers preferably operate in the
memory clock domain. Accordingly, the line buffers are
synchronized to the 81 MHz memory clock in one embodi-
ment of the present invention. In other embodiments, the
speed of the memory clock may be different from 81 MHz,
or the line buffers may not operate in the clock domain of the

—
w»

[
o

60

28

main memory. The system in step 524 preferably resets all
line buffers by loading them with transparent black pixels.

The system in step 526 preferably stores composited
graphics data in the line buffers. Since all buffers are cleared
at every field start by the display engine to the equivalent of
transparent black pixels, the graphics data may be blended
the same way for any graphics window, including the first
graphics window to be blended. Regardless of how many
windows are composited into a line buffer, including zcro
windows, the result is preferably always the correct pixel
data.

The system in step 528 preferably detects a horizontal
sync (HSYNC) which sigpifies a new display line. At the
start of each display line, the graphics blender preferably
reccives a line buffer release signal from the graphics filter
when one or more line buffers are no longer needed by the
graphics filter. Since four line buffers are used with the
four-tap graphics filter at any given time, one to three line
buffers are preferably made available for use by the graphics
blender 1o begin constructing new display lines in them.
Once a line buffer release signal is recognized, an internal
buffer usage register is updated and then clock switching is
performed to enable the display engine to work on the newly
released one to three line buffers. In other embodiments, the
number of line buffers may be more or less than seven, and
more or less than three line buffers may be released at a time.

The system in step 534 preferably performs clock switch-
ing. Clock swilching is preferably done in the memory clock
domain by the display engine using a clock selection vector.
Each bit of the clock selection vector preferably corresponds
to ane of the graphics line buffers. Therefore, in one embodi-
ment of the present invention with seven graphics line
buffers, there are seven bits in the clock selection vector. For
example, a corresponding bil of logic 1 in the clock selection
vector indicates that the line buffer operates in the memory
clock domain while a corresponding bit of logic 0 indicates
that the line buffer operates in the display clock domain.

Other embodiments may have different numbers of line
buffers and the number of bits in the clock selection vector
may vary accordingly. Clock switching logic preferably
switches between the memory clock and the display clock in
accordance with the clock selection vector. The clock selec-
tion vector is preferably also used to multiplex the memory
clock buffer control signals and the display clock buffer
control signals.

Since there is preferably no active graphics data at field
and line starts, clock switching preferably is done at the field
start and the line start to accommodate the graphics filter to
access graphics data in real-time. At the ficld and line starts,
clock switching may be done without causing glitches on the
display side. Clock switching typically requires a dead cycle
time. A clock enable vector indicates that the graphics line
buffers are ready to synchronize to the clocks again. The
clock enable vector is preferably the same size at the clock
selection vector. The clock enable vector is returned to the
display engine lo be compared with the clock selection
vector.

During clock switching, the clock selection vector is sent
by the display engine to the graphics line buffer block. The
clacks are preferably disabled to ensure a glitch-free clock
switching. The graphics line buffers send the clock enable
vector to the display engine with the clock synchronization
settings requested in the clock selection vector. The display
engine compares contents of the clock selection vector and
the clock enable vector. When the contents match, the clock
synchronization is preferably turned on again.

Case 5:01-cv-003:92-DF Document4 Filed 12/14/01 Page 61 of 113

US 6,189,064 Bl

29

After the completion of clock switching during the video
inactive region, the system in step 536 preferably provides
the graphics data in the line buffers to the graphics filter for
anti-futter filtering, sample rate conversion (SRC) and dis-
play. At the end of the current display line, the system looks
for a VSYNC in step 538. If the VSYNC is detected, the
current field has been completed, and therefore, the system
in step 530 preferably switches clocks for all line buffers to
the memory clock and resets the line buffers in step 524 for
display of another ficld. If the VSYNC is not detected in step
538, the current display line is not the last display line of the
current field. The system continues to step 528 to detect
another HSYNC for processing and displaying of the next
display line of the current field.

VI. Window Soft Horizontal Scrolling Mechanism

Sometimes it is desirable to scroll a graphics window
softly, e.g., display text that moves from left to right or from
right to left smoothly on a television screen. There are some
difficulties that may be encountered in conventional methods
that seek to implement horizontal soft scrolling.

Graphics memory buffers are conventionally imple-
mented using low-cost DRAM, SDRAM, for example. Such
memory devices are typically slow and may require each
burst transfer to be within a page. Smooth (or soft) hori-
zontal scrolling, however, preferably enables the starting
address to be set to any arbitrary pixel. This may conflict
with the transfer of data in bursts within the well-defined
pages of DRAM. In addition, complex control logic may be
required to monitor if page boundaries are to be crossed
during the transfer of pixel maps for each step during soft
borizontal scrolling.

In the preferred embodiment, an implementation of a soft
horizontal scrolling mechanism is achieved by incremen-
tally modifying the content of a window descriptor for a
particular graphics window. The window soft horizontal
scrolling mechanism preferably enables positioning the con-
tents of graphics windows on arbitrary positions on a display
line.

In an embodiment of the present invention, the soft
horizontal scrolling of graphics windows is implemented
based on an architecture in which each graphics window is
independently stored in a normal graphics buffer memory
device (SDRAM, EDO-DRAM, DRAM) as a separate
object. Windows are composed on top of each other in real
time as required. To scroll a window to the left or right, a
special field is defined in the window descriptor that tells
how many pixels are to be shifted to the left or right.

The system according to the present invention provides a
method of horizontally scrolling a display window to the
left, which includes the steps of blanking out one or more
pixels at a beginning of a portion of graphics data, the
portion being aligned with a start address; and displaying the
graphics data starting at the first non-blanked out pixel in the
portion of the graphics data aligned with the start address.

The system according to the present invention also pro-
vides a method of horizontally scrolling a display window to
the right which includes the steps of moving a read pointer
to a new start address that is immediately prior to a current
start address, blanking out one or more pixels at a beginging
of a portion of graphics data, the portion being aligned to the
new start address, and displaying the graphics data starting
at the first non-blanked out pixel in the portion of the
graphics data aligned with the new start address.

In practice, each graphics window is preferably addressed
using an integer word address. For example, if the memory

15

60

65

30

system uses 32 bit words, then the address of the start of a
window is defined to be aligned to a multiple of 32 bits, even
if the first pixel that is desired to be displayed is not so
aligned. Each graphics window also preferably has associ-
ated with it a horizontal offset parameter, in units of pixels,
that indicates a number of pixels to be ignored, starting at the
indicated starting address, before the active display of the
window starts. In the preferred embodiment, the horizontal
offset parameter is the blank start pixel value in the word 3
of the window descriptor. For example, if the memory
system uses 32-bit words and the graphics format of a
window uses 8 bits per pixel, each 32-bit word contains four
pixels. In this case, the display of the window may ignore
one, two or three pixels (8, 16, or 24 bits), causing an
effective left shift of one, two, or three pixels.

In the embodiment illustrated by the above example, the
memory system uses 32-bit words. In other embodiments,
the memory system may use more or less number of bits per
word, such as 16 bits per word or 64 bits per word. In
addition, pixels in other embodiments may have various
different number of bits per pixel, such as 1, 2, 4, 8, 16, 24
and 32.

Referring to FIG. 15, in the preferred embodiment, a first
pixel (e.g., the first 8 bits) 604 of a 32-bit word 600, which
is aligned to the start address, is blanked out. The remaining
three 8-bit pixels, other than the blanked out first pixel, are
effectively shifted to the left by one pixel. Prior to blanking
out, a read pointer 602 points to the first bit of the 32-bit
word. After blanking out, the read pointer 602 points to the
ninth bit of the 32-bit word.

Further, a shift of four pixels is implemented by changing
the start address by one to the next 32-bit word. Shifts of any
number of pixels are thereby implemented by a combination
of adjusting the starting word address and adjusting the pixel
shilt amount. The same mechanism may be used for any
number of bits per pixel (1, 2, 4, etc.) and any memory word
size.

To shift a pixel or pixels to the right, the shifting cannot
be achieved simply by blanking seme of the bits at the start
address since any blanking at the start will simply have an
effect of shifting pixels to the left. Further, the shifting to the
right cannot be achieved by blanking some of the bits at the
end of the last data word of a display line since display of
a window starts at the start address regardless of the position
of the last pixel to be displayed.

Therefore, in one embodiment of the present invention,
when the graphics display is to be shifled to the right, a read
pointer pointing at the start address is preferably moved to
an address that is just before the start address, thereby
making that address the new start address. Then, a portion of
the data word aligned with the new start address is blanked
out. This provides the effect of shifting the graphics display
to the right.

For example, a memory system may use 32-bit words and
the graphics format of a window may use 2 bits per pixel,
¢.g.,a CLUT2 format. If the graphics display is to be shifted
by a pixel to the right, the read pointer is moved to an
address that is just before the start address, and that address
becomes a new start address. Then, the first 30 bits of the
32-bit word that is aligned with the new start address are
blanked out. In this case, blanking out of a portion of the
32-bit word that is aligned with the new start address has the
effect of shifting the graphics display to the right.

Referring to FIG. 16, a 32-bit word 610 that is aligned
with the starting address is shifted to the right by one pixel.
The 32-bit word 610 has a CLUT 2 format, and therefore

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 62 of 113

US 6,189,064 B1

31

contains 16 pixels. A read pointer 612 points at the begin-
ning of the 32-bit word 610. To shift the pixels in the 32-bit
word 610 to the right, an address that is just before the start
address is made a new start address. A 32-bit data word 618
is aligned with the new start address. Then, the first 30 bits
(15 pixels) 616 of the 32-bit data word 618 aligned with the
new start address are blanked out. The read pointer 612
points at a new location, which is the 31% bit of the new start
address. The 31° bit and the 32" bit of the new start address
may constitute a pixel 618. Insertion of the pixel 618 in front
of 16 pixels of the 32-bit data word 610 effectively shifts
those 16 pixels to the right by one pixel.

VII. Anti-Aliased Text and Graphics

TV-based applications, such as interactive program
guides, enhanced TV, TV navigators, and web browsing on
TV frequently require the display of text and line-oriented
graphics on the display. A graphical element or glyph
generally represents an image of text or graphics. Graphical
element may refer to text glyphs or graphics. In conventional
methods of displaying text on TV or computer displays,
graphical elements arc rendered as arrays of pixels (picture
elements) with two states for every pixel, i.e. the foreground
and background colors.

In some cases the background color is transparent, allow-
ing video or other graphics to show through. Due to the
relatively low resolution of most present day TVs, diagonal
and round edges of graphical elements generally show a
stair-stepped appearance which may be undesirable; and fine
details are constrained to appear as onc or more complete
pixels (dots), which may not correspond well to the desired
appearance. The interlaced nature of TV displays causes
horizontal edges of graphical elements, or any portion of
graphical elements with a significant vertical gradient, to
show a “fluttering” appearance with conventional methods.

Some conventional methods blend the edges of graphical
clements with background colors in a frame buffer, by first
reading the color in the frame buffer at every pixel where the
graphical element will be written, combining that value with
the foreground color of the graphical element, and writing
the result back to the frame buffer memory. This method
requires there to be a frame buffer; it requires the frame
buffer to use a color format that supports such blending
operations, such as RGB24 or RGBI16, and it does not
generally support the combination of graphical elements
over full motion video, as such functionality may require
repeating the read, combine and write back function of all
pixels of all graphical elements for every frame or field of
the video in a timely manner.

The system preferably displays a graphical element by
filtering the graphical element with a low pass filter to
generate a multi-level value per pixel at an intended final
display resolution and uses the multi-level values as alpha
blend values or the graphical element in the subsequent
compositing stage.

In one embodiment of the present invention, a method of
displaying graphical elements on televisions and other dis-
plays is used. A deep color frame buffer with, for example,
16, 24, or 32 bils per pixel, is not required to implement this
method since this method is effective with as few as two bits
per pixel. Thus, this method may result in a significant
reduction in both the memory space and the memory band-
width required to display text and graphics. The method
preferably provides high quality when compared with con-
ventional methods of anti-aliased text, and produces higher
display quality than is available with coaventional methods
that do not support anti-aliased text.

40

45

55

60

65

32

Referring to FIG. 17, a flow diagram illustrates a process
of providing very high quality display of graphical elements
in one embodiment of the present invention. First, the
bi-level graphical elements are filtered by the system in step
652. The graphical elcments arc preferably initially rendered
by the system in step 650 at a significantly higher resolution
than the intended final display resolution, for example, four
times the final resolution in both horizontal and vertical
axes. The filter may be any suitable low pass filter, such as
a “box” filter. The result of the filtering operation is a
multi-level value per pixel at the intended display resolution.

The number of levels may be reduced to fit the number of
bits used in the succeeding steps. The system in step 654
determines whether the number of levels are to be reduced
by reducing the number of bils used. If the system deter-
mines that the number of levels are to be reduced, the system
in step 656 preferably reduces the number of bits. For
example, the result of box-filtering 4x4 super-sampled
graphical elements normally results in 17 possible levels;
these may be converted through truncation or other means to
16 levels to match a 4 bit representation, or eight levels to
match a 3 bit representation, or four levels to match a 2 bit
representation. The filter may provide a required vertical
axis low pass filter function to provide anti-flutter filter effect
for interlaced display.

In step 658, the system preferably uses the resulting multi-
level values, either with or without reduction in the number
of bits, as alpha blend values, which are preferably pixel
alpha component values, for the graphical elements in a
subsequent compositing stage. The multi-level graphical
element pixels are preferably writtea into a graphics display
buffer where the values are used as alpha blend values when
the display buffer is composited with other praphics and
video images.

In an alternate embodiment, the display buffer is defined
to have a conslant foreground color consistent with the
desired foreground color of the text or graphics, and the
value of every pixel in the display buffer is defined to be the
alpha blend value for that pixel. For example, an Alpha-4
format specifies four bits per pixel of alpha blend value in a
graphics window, where the 4 bits define alpha blend values
of 0/16, 1/16, 2/16, . . ., 13/16, 14/16, and 16/16. The value
15/16 is skipped in this example in order to obtain the
endpoint values of 0 and 16/16 (1) without requiring the use
of an additional bit. In this example format, the display
window has a constant foreground color which is specified
in the window descriptor.

In another alternate embodiment, the alpha blend value
per pixel is specified for every pixel in the graphical element
by choosing a CLUT index for every pixel, where the CLUT
entry associated with every index contains the desired alpha
blend value as part of the CLUT contents. For example, a
graphical element with a constant foreground color and 4
bits of alpha per pixel can be encoded in a CLUT 4 format
such that every pixcl of the display buffer is defined to be a
4 bit CLUT index, and each of the associated 16 CLUT
entries has the appropriate alpha blend value (0/16, 1/16,
2/16, . . ., 14/16, 16/16) as well as the (same) constant
foreground color in the color portion of the CLUT entries.

In yet another alternate embodiment, the alpha per pixel
valucs arc used to form the alpha portion of color+alpha
pixels in the display buffer, such as alphaRGB(4,4,4,4) with
4 bits for each of alpha, Red, Green, and Blue, or
alphaRGB32 with 8 bits for each component. This format
does not require the use of a CLUT.

In still another alternate embodiment, the graphical ele-
ment may or may not have a constant foreground color. The

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 63 of 113

US 6,189,064 Bl

33

various foreground colors are processed using a low-pass
filter as described earlier, and the outline of the entire
graphical clement (including all colors other than the
background) is separately filtcred also using a low pass filter
as described. The filtered foreground color is used as either
the direct calor value in, e.g., an alphaRGB format (or other
color space, such as alphaYUV) or as the color choice in a
CLUT format, and the result of filtering the outline is used
as the alpha per pixel value in either a direct color format
such as alphaRGB or as the choice of alpha value per CLUT
entry in a CLUT formal.

The graphical elements are displayed on the TV screen by
compositing the display buffer containing the graphical
elements with optionally other graphics and video contents
while blending the subject display buffer with all layers
behind it using the alpha per pixel values created in the
preceding steps. Additionally, the translucency or opacity of
the entire graphical element may be varicd by specifying the
alpha value of the display buffer via such means as the
window alpha value that may be specified in a window
descriptor.

VIII. Video Synchronization

When a composite video signal (analog video) is received
into the system, it is preferably digitized and separated into
YUV (luma and chroma) components for processing.
Samples taken for YUV are preferably synchronized to a
display clock for compositing with graphics data at the video
compositor. Mixing or overlaying of graphics with decoded
analog video may require synchronizing the two image
sources exactly. Undesirable artifacts such as jitter may be
visible on the display unless a synchronization mechanism is
implemented to correctly synchronize the samples from the
analog video to the display clock. In addition, analog video
often does not adhere strictly to the television standards such
as NTSC and PAL. For example, analog video which
originates in VCRs may have synchronization signals that
are not aligned with chroma reference signals and also may
have inconsistent line periods. Thus, the syachronization
mechanism preferably should correctly synchronize samples
from non-standard analog videos as well.

The system, therefore, preferably includes a video syn-
chronizing mechanism that includes a first sample rate
converter for converting a sampling rate of a stream of video
samples to a first converted rate, a filter for processing at
least some of the video samples with the first converted rate,
and a second sample rate converter for converting the first
converted rate to a sccond converted rate.

Referring to FIG. 18, the video decoder 50 preferably
samples and synchronizes the analog video input. The video
receiver preferably receives an analog video signal 706 into
an analog-to-digital converter (ADC) 700 where the analog
video is digitized. The digitized analog video 708 is pref-
erably sub-sampled by a chroma-locked sample rate con-
verter (SRC) 708. A sampled video signal 710 is provided to
an adaptive 2H comb filter/chroma demodulator/luma pro-
cessor 702 to be separated into YUV (luma and chroma)
components. In the 2H comb filter/chroma demodulator/
luma processor 702, the chroma components are demodu-
lated. In addition, the luma component is preferably pro-
cessed by noise reduction, coring and detail enhancement
operations. The adaptive 2H comb filter provides the
sampled video 712, which has been separated into luma and
chroma components and processed, to a line-locked SRC
704. The luma and chroma components of the sample video
is preferably sub-sampled once again by the line-locked

w

5

65

34

SRC and the sub-sampled video 714 is provided to a time
base corrector (TBC) 72. The time base corrector preferably
provides an output video signal 716 that is synchronized to
a display clock of the graphics display system. In one
embodiment of the present invention, the display clock runs
at a nominal 13.5 MHz.

The synchronization mechanism preferably includes the
chroma-locked SRC 70, the line-locked SRC 704 and the
TBC 72. The chroma-locked SRC outputs samples that are
locked to chroma subcarrier and its reference bursts while
the line-locked SRC outputs samples that are locked 1o
horizontal syncs. In the preferred embodiment, samples of
analog video are over-sampled by the ADC 700 and then
down-sampled by the chroma-locked SRC to four times the
chroma sub-carrier frequency (Fsc). The down-sampled
samples are down-sampled once again by the line-locked
SRC to line-locked samples with an effective sample rate of
nominally 13.5 MHz. The time base corrector is used to
align these samples to the display clock, which runs nomi-
nally at 13.5 MHz.

Analog composite video has a chroma signal frequency
interleaved in frequency with the luma signal. In an NTSC
standard video, this chroma signal is modulated on 1o the Fsc
of approximately 3.579545 MHz, or exactly 227.5 times the
horizontal line rate. The Juma signal covers a frequency span
of zero to approximately 4.2 MHz. One method for sepa-
rating the luma from the chroma is to sample the video at a
rate that is a multiple of the chroma sub-carrier frequency,
and use a comb filter on the sampled data. This method
generally imposes a limitation that the sampling frequency
is a multiple of the chroma sub-carrier frequency (Fsc).

Using such a chroma-locked sampling frequency gener-
ally imposes significant costs and complications on the
implementation, as it may require the creation of a sample
clock of the correct frequency, which itself may require a
stable, low noise controllable oscillator (e.g. a VCX0) in a
control loop that locks the VCXO to the chroma burst
frequency. Different sample frequencies are typically
required for different video standards with different chroma
subcarrier frequencies. Sampling at four times the subcarrier
frequency, i.e. 14.318 MHz for NTSC standard and 17.72
MHz for PAL standard, generally requires more anti-alias
filtering before digitization than is required when sampling
at higher frequencies such as 27 MHz. In addition, such 2
chroma-locked clock frequency is often unrelated to the
other frequencies in a large scale digital device, requiring
multiple clock domains and asynchronous internal inter-
faces.

In the preferred embodiment, however, the samples are
not taken at a frequency that is a multiple of Fsc. Rather, in
the preferred embodiment, an integrated circuit takes
samples of the analog video at a frequency that is essentially
arbitrary and that is greater than four times the Fsc (4
Fsc=14.318 MHz) . The sampling frequency preferably is 27
MHz and preferably is not lacked to the input video signal
in phase or frequency. The sampled video data then goes
through the chroma-locked SRC that down-samples the data
to an effective sampling rate of 4 Fsc. This and all subse-
quent operations are preferably performed in digital pro-
cessing in a single integrated circuit.

The effective sample rate of 4 Fsc does not require a clock
frequency that is actually at 4 Fsc, rather the clock frequency
can be almost any higher frequency, such as 27 MHz, and
valid samples occur on some clock cycles while the overall
rate of valid samples is equal to 4 Fsc. The down-sampling
(decimation) rate of the SRC is preferably controlled by a

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 64 of 113

US 6,189,064 B1

35

chroma phase and frequency tracking module. The chroma
phase and frequency tracking module looks at the output of
the SRC during the color burst time interval and continu-
ously adjusts the decimation rate in order to align the color
burst phase and frequency. The chroma phase and frequency
tracking module is implemented as a logical equivalent of a
phase locked loop (PLL), where the chroma burst phase and
frequency are compared in a phase detector to the effective
sample rate, which is intended to be 4 Fsc, and the phase and
frequency etror lerms are used to control the SRC decima-
tion rate.

The decimation function is applied to the incoming
sampléd video, and therefore the decimation function con-
trols the chroma burst phase and frequeacy that is applied to
the phase detector. This system is a closed feedback loop
(control loop) that functions in much the same way as a
conventional PLL, and its operating parameters arc readily
designed in the same way as those of PLLs.

Referring to FIG. 19, the chroma-locked SRC 70 prefer-
ably includes a sample rate converter (SRC) 730, a chroma
tracker 732 and a low pass filter (LPF). The SRC 730 is
preferably a polyphase filter having time-varying coeffi-
cicnts. The SRC is preferably implemented with 35 phases
and the conversion ratio of 35/66. The SRC 730 preferably
interpolates by exactly 35 and decimates by (66+epsilon),
ie. the decimation rate is preferably adjustable within a
range determined by the minimum and maximum values of
epsilon, generally a small range. Epsilon is a first adjustment
value, which is used to adjust the decimation rate of a first
sample rate converter , i.., the chroma-locked sample rate
converter.

Epsilon is preferably generated by the control loop com-
prising the chroma tracker 732 and the LPF 734, and it can
be negative, positive or zero. When the output samples of the
SRC 730 are exactly frequency and phase locked to the color
sub-carrier then epsilon is zero. The chroma tracker tracks
phase and frequency of the chroma bursts and comparcs
them against an expected pattern.

In one embodiment of the present invention, the conver-
sion rate of the chroma-locked SRC is adjusted so that, in
effect, the SRC samples the chroma burst at exactly four
times per chroma sub-carrier cycle. The SRC takes the
samples at phases 0 degrees, 90 degrees, 180 degrees and
270 degreces of the chroma sub-carrier cycle. This means that
a sample is taken at every cycle of the color sub-carrier at a
zero crossing, a positive peak, zero crossing and a negative
peak, (0, +1, 0, -1) . If the pattern obtained from the samples
is different from (0, +1, 0, -1), this difference is detected and
the conversion ratio needs to be adjusted inside the control
loop.

When the output samples of the chroma-locked SRC are
lower in frequency or behind in phase, €.g., the pattern looks
like (-1, 0, +1, 0), then the chroma tracker 732 will make
epsilon negative. When epsilon is negative, the sample rate
conversion ratio is higher than the nominal 35/66, and this
has the effect of increasing the frequency or advancing the
phase of samples at the output of the chroma-locked SRC.
When the output samples of the chroma-locked SRC are
higher in frequency or leading in phase, e.g., the patiern
looks like (+1, 0, -1, 0), then the chroma tracker 732 will
make epsilon positive. When epsilon is positive, the sample
rate conversion ratio is lower than the nominal 35/66, and
this has the effect of decreasing the frequency or retarding
the phase of samples out of the chroma-locked SRC. The
chroma tracker provides error signal 736 to the L.PF 734 that
filters the error signal to filter out high frequency compo-

50

65

36

nents and provides the filtered error signal to the SRC to
complete the control loop.

The sampling clock may run at the system clock fre-
quency or at the clock frequency of the destination of the
decoded digital video. If the sampling clock is running at the
system clock, the cost of the integrated circuit may be lower
than one that has a system clock and a sub-carrier locked
video decoder clock. A one clock integrated circuit may also
cause less noise or interference to the analog-to-digital
converter on the 1C. The system is preferably all digital, and
does not require an external crystal or a voltage controlled
oscillator.

Referring to FIG. 20, an alternate embodiment of the
chroma-locked SRC 70 preferably varies the sampling rate
while the conversion rate is held constant. A voltage con-
trolled oscillator (e.g., VCXO) 760 varies the sampling rate
by providing a sampling frequency signal 718 to the ADC
700. The conversion rate in this embodiment is fixed at
35/66 in the SRC 750 which is the ratio between four times
the chroma sub-carrier frequency and 27 MHz.

In this embodiment, the chroma burst signal at the output
of the chroma-locked SRC is compared with the expected
chroma burst signal in a chroma tracker 752. The error
signals 756 from the comparison between the converted
chroma burst and the expected chroma burst are passed
through a low pass filter 754 and then filtered error signals
758 are provided to the VCXO 760 to control the oscillation
frequency of the VCXO. The oscillation frequency of the
VCXO changes in response to the voltage level of the
provided error signals. Use of input voltage to control the
oscillation frequency of a VCXO is well known in the art.
The system as described here is a form of a phase locked
loop (PLL), the design and use of which is well known in the
art.

After the completion of chroma-luma separation and other
processing to the chroma and luma components, the samples
with the effective sample rate of 4 Fsc (i.c. 4 times the
chroma subcarrier frequency) are preferably decimated to
samples with a sample rate of nominally 13.5 MHz through
the use of a second sample rate converter. Since this sample
rate is less than the electrical clock frequency of the digital
integrated circuit in the preferred embodiment, only some
clock cycles carry valid data. In this embodiment, the
sample rate is preferably coanverted to 13.5 MHz, and is
locked to the borizontal line rate through the use of hori-
zontal sync signals. Thus, the second sample rate converter
is a line-locked sample rate converter (SRC).

The line-locked sample rate converter converts the current
line of video to a constant (Pout) number of pixels. This
constant number of pixels Pout is normally 858 for ITU-R
BT.601 applications and 780 for NTSC square pixel appli-
cations. The current line of video may have a variable
number of pixels (Pin). In order to do this conversion from
a chroma-locked sample rate, the following steps are per-
formed. The number of input samples Pin of the current line
of video is accurately measured. This line measurement is
used to calculate the sample rate conversion ratio needed to
convert the line to exactly Pout samples. An adjustment
value to the sample rate conversion ratio is passed to a
sample rate converter module in the line-locked SRC to
implement the calculated sample rate conversion ratio for
the current line. The sample conversion ratio is calculated
only once for each line. Preferably, the line-locked SRC also
scales YUV components to the proper amplitudes required
by ITU-R BT.601.

The number of samples detected in a horizontal line may
be more or less if the input video is 2 non-standard video.

Case 5:01-cv-09§02-DF Document 4 Filed 12/14/01 Page 65 of 113

US 6,189,064 B1

37

For example, if the incoming video is from a VCR, and the
sampling rate is four times the color sub-carrier frequency (4
Fsc), then the number of samples taken between two hori-
zontal syncs may be more or less than 910, where 910 is the
number of samples per line that is obtained when sampling
NTSC standard video at a sampling frequency of 4 Fsc. For
example, the horizontal line time from a VCR may vary if
the video tape has been stretched.

The horizontal line time may be accurately measured by
detecting two successive horizontal syncs. Each horizontal
sync is preferably detected at the leading edge of the
horizontal sync. In other embodiments, the horizontal syncs
may be detected by other means. For example, the shape of
the entire horizontal sync may be looked at for detection. In
the preferred embodiment, the sample rate for each line of
video has been converted to four times the color sub-carrier
frequency (4 Fsc) by the chroma-locked sample rate con-
verter. The measurement of the horizontal linc time is
preferably done at two levels of accuracy, an integer pixel
accuracy and a sub-sample accuracy.

The integer pixel accuracy is preferably done by counting
the integer number of pixels that occur between two suc-
cessive sync edges. The sync edge is presumed to be
detected when the dala crosses some threshold value. For
example, in one embodiment of the present invention, the
analog-to-digital converter (ADC) is a 10-bit ADC, ie.,
converts an input analog signal into a digital signal with
(27°10-1=1023) scale levels. In this embodiment, the
threshold value is chosen to represent an appropriate slicing
level for horizontal sync in the 10-bit number system of the
ADC; a typical value for this threshold is 128. The negative
peak (or a sync tip) of the digitized video signal normally
occurs during the sync pulses. The threshold level would
normally be set such that it occurs at approximately the
mid-point of the sync pulses. The threshold level may be
automatically adapted by the video decoder, or it may be set
explicitly via a register or other means.

The horizontal sync tracker preferably detects the hori-
zontal sync edge to a sub-sample accuracy of (Ye)th of a
pixel in order to more accurately calculate the sample rate
conversion. The incoming samples generally do not include
a samplc taken exactly at the threshold value for detecting
horizontal sync edges. The horizontal sync tracker prefer-
ably detects two successive samples, one of which has a
value lower than the threshold value and the other of which
has a value higher than the threshold value.

After the integer pixel accuracy is determined (sync edge
has been detected) the sub-pixel calculation is preferably
started. The sync edge of a horizontal sync is generally not
a vertical line, but has a slope. In order to remove noise, the
video signal goes through a low pass filter. The low pass
filter generally decreases sharpness of the transition, ie., the
low pass filter may make the transilion from a low level lo
a high-level last longer.

The horizontal sync tracker preferably uscs a sub-sample
interpolation technique to obtain an accurate measurement
of sync edge location by drawing a straight line between the
two successive samples of the horizontal sync sigaal just
above and just below the presumed threshold value to
determine where the threshold value has been crossed.

Three values are preferably used to determine the sub-
sample accuracy. The three values are the threshold level
(T), the value of the sample that crossed the threshold level
(V2) and the value of the previous sample that did not cross
the threshold level (V1). The sub-sample value is the ratio of
(T-V1)/(V2-V1). In the present embodiment a division is

20

w

Q

55

60

38
not performed. The difference (V2-V1) is divided by 16 to
make a variable called DELTA. V1 is then incremented by
DELTA until it exceeds the threshold T. The number of times
that DELTA is added to V1 in order to make it exceed the
threshold (T) is the sub-pixel accuracy in terms of ¥1s” of a
pixel.

For example, if the threshold value T is presumed to be
146 scale levels, and if the values V1 and V2 of the two
successive samples are 140 and 156, respectively, the
DELTA is calculated to be 1, and the crossing of the
threshold value is determined through interpolation to be six
DEITAs away from the first of the two successive samples.
Thus, if the sample with value 140 is the nth sample and the
sample with the value 156 is the (n+1)th sample, the
(n+(%6))1h sample would have had the threshold value.
Since the horizontal sync preferably is presumed to be
detected at the threshold value of the sync edge, a fractional
sample, i.e., %16 sample, is added to the number of samples
counted between two successive horizontal syncs.

In order to sample rate convert the current number of
input pixels Pin to the desired output pixels Pout, the sample
rate converter module has a sample rate conversion ratio of
Pin/Pout. The sample rate converter module in the preferred
embodiment of the line-locked sample rate converter is a
polyphase filter with time-varying coefficients. There is a
fixed number of phases (I) in the polyphase filter. In the
preferred embodiment, the number of phases (I) is 33. The
control for the polyphase filter is the decimation rate (d_act)
and a reset phase signal. The line measurement Pin is sent to
a module that converts it to a decimation rate d_act such
that I/d__act (33/d_act) is equal to Pio/Pout. The decimation
rate d__act is calculated as follows: d__act=(I/Pout)*Pin.

If the input video line is the standardized length of time
and the four times the color sub-carrier is the standardized
frequency then Pin will be exactly 910 samples. This gives
a sample rale conversion ratio of (858/910). In the present
embodiment the number of phases (the interpolation rate) is
33, Therefore the nominal decimation rate for NTSC is 35
(=(33/858)*910). This decimation rate d__act may then be
sent to the sample rate converter module. A reset phase
signal is sent to the sample rate converter module after the
sub-sample calculation has been done and the sample rate
converter module starts processing the current video line. In
the preferred embodiment, only the active portion of video
is processed and sent on to a time base corrector. This results
in a savings of memory needed. Only 720 samples of active
video arc produced as ITU-R BT.601 output sample rates. In
other embodimeats, the entire horizontal line may be pro-
cessed and produced as output.

In the preferred embodiment, the calculation of the deci-
mation rate d_act is done somewhat differently from the
equation d__act=(I/Pout)*Pin. The results are the same, but
there are savings to hardware. The current line length, Pin,
will have a relatively small variance with respect to the
nominal line length. Pin is nominally 910. It typically varies
by less than 62. For NTSC, this variation is less than 5
microseconds. The following calculation is done: d_act
((I/Pout)*(Pin-Pin__nominal))+d__act_nominal

This preferably results in a hardware savings for the same
level of accuracy. The difference (Pin-Pin_nominal) may
be represented by fewer bits than are required to represent
Pin so a smaller multiplier can be used. For NTSC, d_act__
nominal is 35 and Pin__nominal is 910. The value (I/Pout)
*(Pin-Pin_nominal) may now be called a delta_dec (delta
decimation rate) or a second adjustment value.

Therefore, in order to maintain the output sample rate of
858 samples per horizontal line, the conversion rate applied

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 66 of 113

US 6,189,064 Bl

39
preferably is 33/(35+delta_dec) where the samples are
interpolated by 33 and decimated by (35+delta_dec). A
horizontal sync tracker preferably detects horizontal syncs,
accurately counts the number of samples between two
successive horizoatal syncs and generates delta_dec.

If the number of samples between two successive hori-
zontal syncs is greater than 910, the horizontal sync tracker
generales a positive delta_dec to keep the output sample
rate at 858 samples per horizontal line. On the other hand,
if the number of samples between two successive horizontal
syncs is less than 910, the horizontal sync tracker generates
a negative delta_dec to keep the output sample rate at 858
samples per horizontal line.

For PAL standard video, the horizontal sync tracker
generales the delta_dec to keep the output sample rate at
864 samples per horizontal linc.

In summary, the position of each horizontal sync pulse is
determined to sub-pixel accuracy by interpolating between
two successive samples, one of which being immediately
below the threshold value and the other being immediately
above the threshold value. The number of samples between
the two successive horizontal sync pulses is preferably
calculated to sub-sample accuracy by determining the posi-
tions of two successive horizontal sync pulses, both to
sub-pixel accuracy. When calculating delta_dec, the hori-
zontal sync tracker preferably uses the difference between
910 and the number of samples between two successive
horizontal syncs to reduce the amount of hardware needed.

In an alternate embodiment, the decimation rate adjust-
ment value, delta_dec, which is calculated for each line,
preferably goes through a low pass filter before going to the
sample rate converter module. One of the benefits of this
method is filtering of variations in the line lengths of
adjacent lines where the variations may be caused by noise

that affects the accuracy of the measurement of the sync ,

pulse positions.

In another alternative embodiment, the input sample clock
is not frec running, but is instead linc-locked to the input
analog video, preferably 27 MHz. The chroma-locked
sample rate converter converts the 27 MHz sampled data to
a sample rate of four times the color sub-carrier frequency.
The analog video signal is demodulated to luma and chroma
compouent video signals, preferably using a comb filter. The
luma and chroma component video signals are then seat to
the line-locked sample rate converter where they are pref-
erably converted to a sample rate of 13.5 MHz. In this
embodiment the 13.5 MHz sample rate at the output may be
exactly one-half of the 27 MHz sample rate at the input. The
conversion ratio of the line-locked sample rate converter is
preferably exactly one-half of the inverse of the conversion
ratio performed by the chroma-locked sample rate converter.

Referring to FIG. 21, the line-locked SRC 704 preferably
includes an SRC 770 which preferably is a polyphase filter
with time varying coefficients. The number of phases is
preferably fixed at 33 while the nominal decimation rate is
35. In other words, the conversion ratio used is preferably
33/(35+delta_dec) where delta_dec may be positive or
negative. The delta_dec is a second adjustment value,
which is used to adjust the decimation rate of the second
sample rate converter. Preferably, the actual decimation rate
and phasc arc automatically adjusted for cach horizontal line
so that the number of samples per horizontal line is 858 (720
"active Y samples and 360 active U and V samples) and the
phase of the active video samples is aligned properly with
the horizontal sync signals.

In the preferred embodiment, the decimation (down-
sampling) rate of the SRC is preferably controlled by a

15

25

50

65

40

horizontal sync tracker 772. Preferably, the horizontal sync
tracker adjusts the decimation rate once per horizontal line
in order to result in a corrcct number and phase of samples
in the interval between horizontal syncs. The horizontal sync
tracker preferably provides the adjusted decimation rate to
the SRC 770 to adjust the conversion ratio. The decimation
rate is preferably calculated to achieve a sub-sample accu-
racy of Yis. Preferably, the line-locked SRC 704 also
includes a YUV scaler 780 to scale YUV components to the
proper amplitudes required by ITU-R BT.601.

The time base corrector (TBC) preferably synchronizes
the samples having the line-locked sample rate of nominally
13.5 MHz to the display clock that runs nominally at 13.5
MHz. Sincc the samples at the output of the TBC are
synchronized to the display clock, passthrough video may be
provided to the video compositor without being captured
first.

To produce samples at the sample rate of nominally 13.5
MHz, the composite video may be sampled in any conven-
tional way with a clock rate that is generally used in the art.
Preferably, the composite video is sampled initially at 27
MHz, down sampled to the sample rate of 14.318 MHz by
the chroma-locked SRC, and then down sampled to the
sample rate of nominally 13.5 MHz by the line-locked SRC.
During conversion of the sample rates, the video decoder
uses for timing the 27 MHz clock that was used for input
sampling. The 27 MHz clock, being free-running, is not
locked to the line rate nor to the chroma frequency of the
incoming video.

In the preferred embodiment, the decoded video samples
are stored in a FIFO the size of one display line of active
video at 13.5 MHz, i.e., 720 samples with 16 bits per sample
or 1440 bytes. Thus, the maximum delay amount of this
FIFO is one display line time with a normal, nominal delay
of one-half a display line time.

In the preferred embodiment, video samples are outputted
from the FIFO at the display clock rate that is nominally 13.5
MHz. Except for vertical syncs of the input video, the
display clock rate is unrelated to the timing of the input
video. In alternate embodiments, larger or smaller FIFOs
may be used.

Evea though the effective sample rate and the display
clock rate are both nominally 13.5 MHz the rate of the
sampled video entering the FIFO and the display rate are
generally different. This discrepancy is due o differences
between the actual frequencies of the effective input sample
rate and the display clock. For example, the effective input
sample ralc is nominally 13.5 MHz but it is locked to operate
at 858 times the line rate of the video input, while the display
clock operates nominally at 13.5 MHz independently of the
line rate of the video input.

Since the rates of data entering and leaving the FIFO are
typically different, the FIFO will tend to either fill up or
become empty, depending on relative rates of the entering
and leaving data. In one embodiment of the present
invention, video is displayed with an initial delay of one-half
a horizontal line time at the start of every field. This allows
the input and output rates to differ up to the point where the
input and output horizontal phases may change by up to
onc-half a horizontal line time without causing any glitches
at the display.

The FIFO is preferably filled up to approximately one-
half full during the first active video line of every field prior
to taking any output video. Thus, the start of each display
field follows the start of every input video field by a fixed
delay that is approximately equal to one-half the amount of

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 67 of 113

US 6,189,064 B1

41
time for filling the entire FIFO. As such, the initial delay at
the start of every field is onc-half a horizontal line time in
this embodiment, but the initial delay may be different in
other embodiments.

Referring to FIG. 22, the time base corrector (TBC) 72
includes a TBC controller 164 and a FIFO 166. The FIFO
166 receives an input video 714 at nominally 13.5 MHz
locked to the horizontal line rate of the input video and
outputs a delayed input video as an output video 716 that is
locked to the display clock that runs nominally at 13.5 MHz.
The initial delay between the input video and the delayed
input video is half a horizontal line period of active video,
€.g., 53.5 us per active video in a horizontal line/2=26.75 us
for NTSC standard video.

The TBC controlier 164 preferably generates a vertical
sync (VSYNC) for display that is delayed by one-half a
horizontal line from an input VSYNC. The TBC controller
164 preferably also generates timing signals such as NTSC
or PAL standard timing signals. The timing signals are
preferably derived from the VSYNC generated by the TBC
controller and preferably include horizontal sinc. The timing
signals are not affected by the input video, and the FIFO is
read out synchronously to the timing signals. Data is read
out of the FIFO according to the timing at the display side
while the data is written into the FIFO according to the input
timing. A line resel resets the FIFO write poiater to signal a
new line. A read pointer controlled by the display side is
updated by the display timing.

As long as the accumulated change in FIFO fullness, in
either direction, is less than one-half a video line, the FIFO
will generally neither underflow nor overflow during the
video field. This ensures correct operation when the display
clock frequency is anywhere within a fairly broad range
centered on the nominal frequency. Since the process is
repeated every field, the FIFO fullness changes do not
accumulate beyond one field time.

Referring to FIG. 23, a flow diagram of a process using
the TBC 72 is illustrated. The process resets in step 782 at
system start up. The system preferably checks for vertical
sync (VSYNC) of the input video in step 784. After receiv-
ing the input VSYNC, the system in step 786 preferably
starts counting the number of incoming video samples. The
system preferably loads the FIFFO in step 788 continuously
with the incoming video samples. While the FIFO is being
loaded, the system in step 790 checks if enough samples
have been received to fill the FIFO up to a half full state.

When enough samples have been received to fill the FIFO
to the half full statc, the system in step 792 preferably
generates timing signals including horizontal sync to syn-
chronize the output of the TBC to the display clock. The
system in step 794 preferably outputs the content of the
FIFO coatinuously in sync with the display clock. The
system in step 796 preferably checks for another input
VSYNC. When another input vertical sync is detected, the
process starts counting the number of input video samples
again and slarts outputting output video samples when
enough input video samples have been received to make the
FIFO half full.

In other embodiments of the present invention, the FIFO
size may be smaller or larger. The minimum size acceptable
is determined by the maximum expected difference in the
video source sample rate and the display sample rate. Larger
FIFOs allow for greater variations in sample rate timing,
however at greater expense. For any chosen FIFO size, the
logic that generates the sync signal that initiates display
video fields should incur a delay from the input video timing

45

60

42

of one-half the delay of the entire FIFO as described above.
However, it is not required that the delay be one-half the
delay of the entire FIFO.

IX. Video Scaler

In certain applications of graphics and video display
hardware, it may be necessary or desirable to scale the size
of a motion video image either upwards or downwards. It
may also be desirable to minimize memory usage and
memory bandwidth demands. Therefore it is desirable to
scale down before writing to memory, and to scale up after
reading from memory, rather than the other way around in
either case. Conventionally there is either be scparate hard-
ware to scale down before writing to memory and to scale
up after reading from memory, or else all scaling is done in
one location or the other, such as before writing to memory,
even if the scaling direction is upwards.

In the preferred embodiment, a video scaler performs both
scaling-up and scaling-down of either digital video or digi-
tized analog video. The video scaler is preferably configured
such that it can be used for either scaling down the size of
video images prior to writing them to memory or for scaling
up the size of video images after reading them from memory.
The size of the video images are preferably downscaled
prior to being written to memory so that the memory usage
and the memory bandwidth demands are minimized. For
similar reasons, the size of the video images are preferably
upscaled after reading them from memory.

In the former case, the video scaler is preferably in the
signal path between a video input and a write port of a
memory controller. In the latter case, the video scaler is
preferably in the signal path between a read port of the
memory coatroller and a video compositor. Therefore, the
video scaler may be seen to exist in two distinct logical
places in the design, while in fact occupying only one
physical implementation.

This function is preferably achieved by arranging a mul-
tiplexing function at the input of the scaling engine, with one
input to the multiplexer being connected to the video input
port and the other connected to the memory read port. The
memory write port is arranged with a multiplexer at its input,
with one input to the multiplexer connected to the output of
the scaling engine and the other connected to the video input
port. The display output port is arranged with a multiplexer
at its input, with onc connected to the output of the scaling
enginc and the other input connected to the output of the
memory read port.

In the preferred embodiment, there are different clock
domains associated with the video input and the display
output functions of the chip. The video scaling engine uses
a clock that is selected between the video input clock and the
display output clock (display clock). The clock selection
uses a glitch-free clock selection logic, i.e. a circuit that
prevents the creation of extremely narrow clock pulses when
the clock sclection is changed. The read and write interfaces
to memory both use asynchronous interfaces using FIFOs,
so the memory clock domain may be distinct from both the
video input clock domain and the display output clock
domain.

Referring to FIG. 24, a flow diagram illustrates a process
of alternatively upscaling or downscaling the video input
800. The system in step 802 preferably selects between a
downscaling operation and an upscaling operation. If the
downscaling operation is selected, the system in step 804
preferably downscales the input video prior to capturing the
input video in memory in step 806. If the upscaling opera-

Case 5:01-cv-OQ_§02-DF Document 4 Filed 12/14/01 Page 68 of 113

US 6,189,064 B1

43

tion is selected in step 802, the system in step 806 preferably
captures the input video in memory without scaling it.

Then the system in step 808 outputs the downscaled video
as downscaled output 810. The system in step 808, however,
sends non-scaled video in the upscale path to be upscaled in
step 812. The system in step 812 upscales the non-scaled
video and outputs it as upscaled video output 814.

The video pipelinc preferably supports up to one scaled
video window and one passthrough video window, plus one
background color, all of which arc logically behind the sct
of graphics windows. The order of these windows, from
back to front, is fixed as background, then passthrough, then
scaled video. The video windows are preferably always in
YUV format, although they can be in either 4:2:2 or 4:2:0
variants of YUV. Alternatively they can be in RGB or other
formats.

When digital video, e.g., MPEG is provided to the graph-
ics display system or when analog video is digitized, the
digital video or the digitized analog video is provided to a
video compositor using one of three signal paths, depending
on processing requirements. The digital video and the digi-
tized analog video are provided to the video compositor as
passthrough video over a passthrough path, as upscaled
video over an upscale path and a downscaled video over a
downscale path.

Either of the digital video or the analog video may be
provided to the video compositor as the passthrough video
while the other of the digital video or the analog video is
provided as an upscaled video or a downscaled video. For
example, the digital vidco may be provided lo the video
compositor over the passthrough path while, at the same
time, the digitized analog video is downscaled and provided
to the video compositor over the downscale path as a video
window. In one embodiment of the present invention where

the scaler engine is shared between the upscale path and the

downscale path, the scaler engine may upscale video in
either the vertical or horizontal axis while downscaling
video in the other axis. However, in this embodiment, an
upscale operation and a downscale operation on the same
axis are not performed at the same time since only one filter
is used to perform both upscaling and downscaling for each
axis.

Referring to FIG. 24 a single video scaler 52 preferably
performs both the downscaling and upscaling operations. In
particular, signals of the downscale path only are illustrated.
The video scaler 52 includes a scaler engine 182, a set of line
buffers 178, a vertical coefficient memory 180A and a
horizontal coefficient memory 180B. The scaler engine 182
is implemented as a set of two polyphase filters, one for each
of horizontal and vertical dimensions.

In one embodiment of the present invention, the vertical
polyphase filter is a four-tap filter with programmable coef-
ficients from the vertical coefficient memory 180A. In other
embodimeants, the number of taps in the vertical polyphase
filter may vary. In one embodiment of the present invention,
the horizontal polyphase filter is an eight-tap filter with
programmable coefficients from the horizontal coefficient
memory 180B. In other embodiments, the number of taps in
the horizontal polyphase filter may vary.

The vertical and the horizontal coefficient memories may
be implemented in SRAM or any other suitable memory.
Depending on the operation to be performed, e.g. a vertical
or horizontal axis, and scaling-up or scaling-down, appro-
priate filter coefficients are used, respectively, from the
vertical and horizontal coefficient memories. Selection of
filter coefficients for scaling-up and scaling-down operations
are well known in the art.

15

50

55

44

The set of line buffers 178 are used to provide input of
video data to the horizontal and vertical polyphase filters. In
this embodiment, three line buffers are used, but the number
of the linc buffers may vary in other embodiments. In this
embodiment, each of the three line buffers is used to provide
an input to one of the taps of the vertical polyphase filter
with four taps. The input video is provided to the fourth tap
of the vertical polyphase filter. A shift register having eight
cells in series is used to provide inpuls to the eight taps of
the horizontal polyphase filter, each cell providing an input
to one of the eight taps.

In this embodiment, a digital video signal 820 and a
digitized analog signal video 822 are provided to a first
multiplexer 168 as first and second inputs. The first multi-
plexer 168 has two outputs. A first output of the first
multiplexer is provided to the video compositor as a pass
through video 186. A sccond output of the first multiplexer
is provided to a first input of a second multiplexer 176 in the
downscale path.

In the downscale path, the second multiplexer 176 pro-
vides either the digital video or the digitized analog video at
the second multiplexer’s first input to the video scaler 52.
The video scaler provides a downscaled video signal to a
sccond input of a third multiplexer 162. The third multi-
plexer provides the downscaled video to a capture FIFO 158
which stores the captured downscaled video. The memory
controller 126 takes the captured downscaled video and
stores it as a captured downscaled video image into a video
FIFO 148. An output of the video FIFO is coupled to a first
input of a fourth multiplexer 188. The fourth mulliplexer
provides the output of the video FIFO, which is the captured
downscaled video image, as an output 824 to the graphics
compositor, and this completes the downscale path. Thus, in
the downscale path, either the digital video or the digitized
analog video is downscaled first, and then captured.

FIG. 26 is similar to FIG. 25, but in FIG. 26, signals of the
upscale path are illustrated. In the upscale path, the third
multiplexer 162 provides either the digital video 820 or the
digitized analog video 822 to the capture FIFO 158 which
captures and stores input as a captured video image. This
captured video image is provided to the memory controller
126 which takes it and provides to the video FIFO 148 which
stores the captured video image.

An output of the video FIFO 148 is provided to a second
input of the second multiplexer 176. The second multiplexer
provides the captured video image to the video scaler 52.
The video scaler scales up the captured video image and
provides it 1o a second input of the fourth multiplexer 188 as
an upscaled captured video image. The fourth mulliplexer
provides the upscaled captured video image as the output
824 to the video compositor. Thus, in the upscale path, either
the digital video or the digitized analog video is captured
first, and then upscaled.

Referring to FIG. 27, FIG. 27 is similar to FIG. 2§ and
FIG. 26, but in FIG. 27, signals of both the upscale path and
the downscale path are illustrated.

X. Blending of Graphics and Video Surfaces

The graphics display system of the present invention is
capable of processing an analog video signal, a digital video
signal and graphics data simultaneously. In the graphics
display system, the analog and digital video signals are
processed in the video display pipeline while the graphics
data is processed in the graphics display pipeline. After the
processing of the video signals and the graphics data have
been completed, they are blended together at a video com-

Case 5:01-cv-09§02-DF Document4 Filed 12/14/01 Page 69 of 113

US 6,189,064 Bl

45

positor. The video compositor receives video and graphics
data from the video display pipeline and the graphics display
pipeline, respectively, and outputs to the video encoder
(“VEC").

The system may employ a method of compositing a
plurality of graphics images and video, which includes
blending the plurality of graphics images into a. blended
graphics image, combining a plurality of alpha values into a
plurality of composite alpha values, and blending the
blended graphics image and the video using the plurality of
composite alpha values.

Referring to FIG. 28, a flow diagram of a process of
blending video and graphics surfaces is illustrated. The
graphics display system resets in step 902. In step 904, the
video compositor blends the passthrough video and the
background color with the scaled video window, using the
alpha value which is associated with the scaled video
window. The result of this blending operation is then
blended with the output of the graphics display pipeline. The
graphics output has been pre-blended in the graphics blender
in step 904 and filtered in step 906, and blended graphics
contain the correct alpha value for multiplication by the
video output. The output of the video blend function is
multiplicd by the video alpha which is obtained from the
graphics pipeline and the resulting video and graphics pixel
data stream are added together to produce the final blended
result.

In general, during blending of different layers of graphics
and/or video, every layer {L1,12,13... Ln}, where L1 is
the back-most layer, each layer is blended with the compo-
sition of all of the layers behind it, beginning with 1.2 being
blended on top of L1. The intermediate result R(i) from the
blending of pixels P(i) of layer L(i) over the pixcls P(i-1) of
layer L(i-1) using alpha value A(i) is: R()=A(i)*P(i)+(1-
A(D))*P(i-1)

The alpha values {A(i)} are in general different for every
layer and for every pixel of every layer. However, in some
important applications, it is not practical to apply this
formula directly, since some layers may need to be pro-
cessed in spatial dimensions (¢.g. 2 dimensional filtering or
scaling) before they can be blended with the layer or layers
behind them. While it is generally possible to blend the
layers first and then perform the spatial processing, that
would result in processing the layers that should not be
processed if these layers are behind the subject layer that is
to be processed. Processing of the layers that arc not to be
processed may be undesirable.

Processing, the subject layer first would generally require
a substantial amount of local storage of the pixels in the
subject layer, which may be prohibitively expensive. This
problem is significantly exacerbated when there are multiple
layers to be processed in front of one or more layers that are
not to be processed. In order to implement the formula above
directly, each of the layers would have to be processed first,
ie. using their own local storage and individual processing,
before they could be blended with the layer behind.

In the preferred embodiment, rather than blending all the
layers from back to front, all of the layers that are to be
processed (e.g. filtered) are layered together first, even if
there is one or more layers behind them over which they
should be blended, and the combined upper layers are then
blended with the other layers that are not to be processed.
For example, layers {1, 2 and 3} may be layers that are not
to be processed, while layers {4, 5,6, 7, and 8} may be
layers that are to undergo processing, while all 8 layers are
to be blended together, using {A(i)} values that are inde-

=

Q

2

0

40

50

46

pendent for every layer and pixel. The layers that are to be
filtered, upper layers, may be the graphics windows. The
lower layers may include the video window and passthrough
video.

In the preferred embodiment, all of the layers that are to
be filtered (referred to as “upper” layers) are blended
together from back to front using a partial blending opera-
tion. In an alternate embodiment, two or more of the upper
layers may be blended together in parallel. The back-most of
the upper layers is not in general the back-most layer of the
entire operation.

In the preferred embodiment, at each stage of the
blending, an intermediate alpha value is maintained for later
use for blending with the layers that are not to be fillered
(referred to as the “lower” layers).

The formula that represents the preferred blending
scheme is:

R@=AQ)*P)+(1-A(D)"P(-1)
and
AR({)=AR(i-1)*(1-A())

where R(i) represents the color value of the resulting
blended pixel, P(i) represents the color value of the current
pixcl, A(i) represents the alpha value of the current pixel,
P(i-1) represents the value at the location of the current
pixel of the composition of all of the upper layers behind the
current pixel, initially this represents black before any layers
are blended, AR(J) is the alpha value resulting from each
instance of this operation, and AR(i-1) represents the inter-
mediate alpha value at the location of the current pixel
determined from all of the upper layers behind the current
pixel, initially this represents transparency before any layers
are blended. AR represents the alpha value that will subse-
quently be multiplied by the lower layers as indicated below,
and so an AR value of 1 (assuming alpha ranges from 0 to
1) indicates that the current pixel is transparent and the lower
layers will be fully visible when multiplied by 1.

In other words, in the preferred embodiment, at each stage
of blending the upper layers, the pixels of the current layer
arc blended using the current alpha value, and also an
intermediate alpha value is calculated as the product (1-A
(i)*(AR(i-1)). The key differences between this and the
direct evaluation of the conventional formula are: (1) the
calculation of the product of the set of {(1-A(i))} for the
upper layers, and (2) a virtual transparent black layer is used
to initialize the process for blending the upper layers, since
the lower layers that would normally be blended with the
upper layers are not used at this point in this process.

The calculation of the product of the sets of {(1-A(i)} for
the upper layers is implemented, in the preferred
embodiment, by repeatedly calculating AR())=AR(i-1)*(1-
A(i)) at each layer, such that when all layers {i} have been
processed, the result is that AR the product of all (1-AQ))
values for all upper layers. Alternatively in other
embodiments, the composite alpha value for each pixel of
blended graphics may be calculated directly as the product
of all (1-alpha value of the corresponding pixel of the
graphics image on each layer)'s without gencrating an
intermediate alpha at each stage.

To complete the blending process of the entire series of
layers, including the upper and lower layers, once the upper
layers have been blended together as described above, they
may be processed as desired and then the result of this
processing, a composite intermediate image, is blended with
the lower layer or layers. In addition, the resulting alpha

Case 5:01-cv-00§92-DF Document 4 Filed 12/14/01_ Page 70 of 113

US 6,189,064 Bl

47

values preferably are also processed in essentially the same
way as the image components. The lower layers can be
blended in the conventional fashion, so at some point there
can be a single image represcnting the lower layers. There-
fore two images, one representing the upper layers and one
representing the lower layers can be blended together. In this
operation, the AR(n) value at each pixel that results from the
blending of the upper layers and any subsequent processing
is used to be multiplied with the composite lower layer.

Mathematically this latter operation is as follows: let L(w)
be the composite upper layer resulling from the process
described above and after any processing, let AR(u) be the
composite alpha value of the upper layers resulting from the
process above and afler any processing, let L(1) be the
composite lower layer that results from blending all lower
layers in the conventional fashion and after any processing,
and let Result be the final result of blending all the upper and
lower layers, after any processing. Then, Result=L(u)+AR
(w*L(1). L(u) does not need to be multiplied by any
additional alpha values, since all such multiplication opera-
tions were already performed at an earlier stage.

In the preferred embodiment, a series of images makes up
the upper layers. These are created by reading pixels from
memory, as in a conventional graphics display device. Each
pixel is converted into a common format if it is not already
in that format; in this example the YUV format is used. Each
pixel also has an alpha value associated with it. The alpha
values can come from a variety of sources, including (1)
being part of the pixel value read from memory (2) an
element in a color look-up table (CLUT) in cases where the
pixel format uses a CLUT (3) calculated from the pixel color
value, e.g. alpha as a function of Y, (4) calculated using a
keying function, i.e. some pixel values are transparent (ie.
alpha=0) and others are opaque (alpha=1) based on a com-
parison of the pixel valuc with a set of reference valucs, ()]
an alpha value may be associated with a region of the image
as described externally, such as a rectangular region,
described by the four comers of the rectangle, may have a
single alpha value associated with it, or (6} some combina-
tion of these.

The upper layers are preferably composited in memory
storage buffers called line buffers. Each line buffer prefer-
ably is sized to contain pixcls of one scan linc. Each line
buffer has an element for each pixel on a line, and each pixel
in the line buffer has elements for the color components, in
this case Y, U and V, and one for the intermediate alpha value
AR. Before compositing of each line begins, the appropriate
line buffer is initialized to represent a transparent black
having already been composited into the buffer; that is, the
YUYV value is set to the value that represents black (i.e. Y0,
U=V=128) and the alpha value AR is set to represent
(1-transparcnt)=(1-0)=1.

Each pixcl of the currcnt layer on the current line is
combined with the value pre-existing in the line buffer using
the formulas already described, i.e.,

R()=A()*PE+1-A()*P(i-1)
and
AR(D=AR(i-1)*(1-A{).

In other words, the color value of the current pixel P(i) is
multiplied by its alpha value A(i), and the pixel in the line
buffer representing the same location on the line P(i-1) is
read from the line buffer, multiplied by (1-A(i)), and added
to the previous result, producing the resulting pixel value
R(i). Also, the alpha value at the same location in the line

20

35

55

60

48
buffer (AR(i-1)) is read from the buffer and multiplied by
(1-A(i)), producing AR(). The results R(i) and AR(i) are
then written back to the line buffer in the same location.

When multiplying a YUV value by an alpha value
between 0 and 1, the offset nature of the U and V values
should preferably be accounted for. In other words, Us=V=
128 represents a lack of color and it is the value that should
result from a YUV color value being multiplied by 0. This
can be done in at least two ways. In one embodiment of the
present invention, 128 is subtracted from the U and V values
before multiplying by alpha, and then 128 is added to the
result. In another embodiment, U and V values are directly
multiplied by alpha, and it is ensured that at the end of the
entire compositing process all of the coefficients multiplied
by U and V sum to 1, so that the offset 128 value is not
distorted significantly.

Each of the layers in the group of upper layers is prefer-
ably composited into a line buffer starting with the back-
most of the upper layers and progressing towards the front
until the front-most of the upper layers has been composited
into the line buffer. In this way, a single hardware block, i.e.,
the display engine, may be used to implement the formula
above for all of the upper layers. In this arrangement, the
graphics compositor engine preferably operates at a clock
frequency that is substantially higher than the pixel display
ratc. In one embodiment of the present invention, the
graphics compositor engine operates at 81 MHz while the
pixel display rate is 13.5 MHz.

This process repeats for all of the lines in the entire image,
starting at the top scan line and progressing to the bottom.
Once the compositing of each scan line into a line buffer has
been completed, the scan line becomes available for use in
processing such as filtering or scaling. Such processing may
be performed while subsequent scan lines are being com-
posited into other line buffers. Various processing operations
may be selected such as anti-futter filtering and vertical
scaling.

In alternative embodiments more than one graphics layer
may be composited simultaneously, and in some such
embodiments it is not necessary to use line buffers as part of
the compositing process. If all upper layers are composited
simultaneously, the combination of all upper layers can be
available immediately without the use of intermediate stor-
age.

Referring to FIG. 29, a flow diagram of a process of
blending graphics windows is illustrated. The system pref-
erably resets in step 920. In step 922, the system preferably
checks for a vertical sync (VSYNC). If a VSYNC has been
received, the system in step 924 preferably loads a line from
the bottom most graphics window into a graphics line buffer.
Then the system in step 926 preferably blends a line from the
next graphics window into the line buffer. Then the system
in step 928 preferably determines if the last graphics win-
dow visible on a current display line has been blended. If the
last graphics window has not been blended, the system
continues on with the blending system in step 926.

If the last window of the current display line has been
reached, the system preferably checks in step 930 to deter-
mine if the last graphics line of a current display field bas
been blended. If the last graphics line has been blended, the
system awaits another VSYNC in step 922. If the last
graphics line has not been blended, the system goes to the
next display line in step 932 and repeats the blending
process.

Referring to FIG. 30, a flow diagram of a process of
receiving blended graphics 950, a video window 952 and a
passthrough video 954 and blending them. A background

Case 5:01-cv-003:92-DF Document 4 Filed 12/14/01 Page 71 of 113

US 6,189,064 B1

49

color preferably is also blended in one embodiment of the
present invention. As step 956 indicates, the video composi-
tor preferably displays cach pixel as they are composited
without saving pixels to a frame buffer or other memory.

When the video signals and graphics data arc blended in
the video compositor, the system in step 958 preferably
displays the passthrough video 954 outside the active win-
dow area first. There are 525 scan lines in each frame and
858 pixels in each scan line of NTSC standard television
signals, when a sample rate of 13.5 MHz is uscd, per ITU-R
B.601. An active window area of the NTSC standard
television is inside an NTSC frame. There are 625 scan lines
per frame and 864 pixels in each scan line of PAL standard
television, when using the ITU-R Bt.601 standard sample
rate of 13.5 MHz. An active window area of the PAL
standard television is inside a PAL frame.

Within the active window area, the system in step 960
preferably blends the background color first. On top of the
background color, the system in step 962 preferably blends
the portion of the passthrough video that falls within the
active window arca. On top of the passthrough window, the
system in step 964 preferably blends the video window.
Finally, the system in step 968 blends the graphics window
on top of the composited video window and outputs com-
posited video 970 for display.

Interlaced displays, such as televisions, have an inherent
tendency to display an apparent verlical motion at the
horizontal cdges of displayed objects, with horizontal lines,
and on other points on the display where there is a sharp
contrast gradient along the vertical axis. This apparent
vertical motion is variously referred to as flutter, flicker, or
judder.

While some image elements can be designed specifically
for display on interlaced TVs or filtered before they are
displayed, when multiple such image objects are combined

onto one screen, there are still visible flutter artifacts at the 3

horizontal top and bottom cdgces of thesc objects. While it is
also possible to include filters in hardware to minimize
visible flutter of the display, such filters are costly in that
they require higher memory bandwidth from the display
memory, since both even and odd fields should preferably be
read from memory for every display field, and they tend to
require additional logic and memory on-chip.

Onc embodiment of the present invention includes a
method of reducing interlace flutter via automatic blending.
This method has been designed for use in graphics displays
device that composites visible objects directly onto the
screen; for example, the device may use windows, window
descriptors and window descriptor lists, or similar mecha-
pisms. The top and bottom edges (first and last scan lines) of
each object (or window) are displayed such that the alpha
blend value (alpha blend factor) of these edges is adjusted to
be one-half of what it would be if thesc same lines were not
the top and bottom lincs of the window.

For example, a window may constitute a rectangular
shape, and the window may be opaque, i.e. it’s alpha blend
factor is 1, on a scale of 0 to 1. All lines on this window
except the first and last are opaque when the window is
rendered. The top and bottom lines are adjusted so that, in
this case, the alpha blend value becomes 0.5, thereby caus-
ing these lines to be mixed 50% with the images that are
behind them. This function occurs automatically in the
preferred implementation. Since in the preferred
implementation, windows are rectangular objects that are
rendered directly onto the screen, the locations of the top and
bottom lines of every window are already known.

In one embodiment, the function of dividing the alpha
blend values for the top and bottom lines by two is imple-

15

28

40

65

50

mented only for the top fields of the interlaced display. In
another embodiment, the function of dividing the alpha
blend values for the top and bottom lines by two is imple-
mented only for the bottom fields of the interlaced display.

In the preferred embodiment, there exists also the ability
to alpha blend each window with the windows behind it, and
this alpha value can be adjusted for every pixel, and there-
fore for every scan line. These characteristics of the appli-
cation design are used advantageously, as the flutter reduc-
tion effect is implemented by controlling the alpha blend
function using information that is readily available from the
window control logic.

In a specific illustrative example, the window is solid
opaque white, and the image behind it is solid opaque black.
In the absence of the disclosed method, at the top and bottom
edges of the window there would be a sharp contrast
between black and white, and when displayed on an inter-
laced TV, significant flutter would be visible. Using the
disclosed method, the top and bottom lines are blended 50%
with the background, resulting in a color that is halfway
between black and white, or gray. When displayed on an
interlaced TV, the apparent visual location of the top and
bottom edges of the object is constant, and flutter is not
apparent. The same effect applies equally well for other
image examples.

The method of reducing interlace flutter of this embodi-
ment does not require any increase in memory bandwidth, as
the alternate field (the one not currently being displayed) is
not read from memory, and there is no need for vertical
filtering, which would have required logic and on-chip
memory.

The same function can alternatively be implemented in
different graphics hardware designs. For example in designs
using a frame buffer (conventional design), graphic objects
can be composited into the frame buffer with an alpha blend
value that is adjusted to one-half of its normal value at the
top and bottom edges of each object. Such blending can be
performed in software or in a blitter that has a blending
capability.

XI. Anti-Flutter Filtering/Vertical Scaling

In the preferred embodiment, the vertical filtering and
anti-flutter filtering are performed on blended graphics by
one graphics filter. One function of the graphics filter is low
pass filtering in the vertical dimension. The low pass filier-
ing may be performed in order to minimize the “flutter”
effect inherent in interlaced displays such as televisions. The
vertical downscaling or upscaling operation may be per-
formed in order to change the pixel aspect ratio from the
square pixels that are normal for computer, Internet and
World Wide Web content into any of the various oblong
aspect ratios that are standard for televisions as specified in
ITU-R 601B. In order to be able to perform vertical scaling
of the upper layers the system preferably includes seven line
buffers. This allows for four line buffers to be used for
filtering and scaling, two are available for progressing by
one or two lines at the end of every line, and one for the
current compositing operation.

When scaling or filtering are performed, the alpha values
in the line buffers are filtered or scaled in the same way as
the YUV values, ensuring that the resulting alpha values
correctly represeat the desired alpha values at the proper
location. Either or both of these operations, or neither, or
other processing, may be performed on the contents of the
line buffers.

Once the optional processing of the conteats of the line
buffers has been completed, the result is the completed set

Case 5:01-cv-00§02-DF Document 4 Filed 12/14/01 Page 72 of 113

US 6,189,064 B1

51

of upper layers with the associated alpha value (product of
(1-A(i)). Thesc results are used directly for compositing the
upper layers with the lower layers, using the formula:
Result=L(u)-AR(u)*L(1) as explaincd in detail in refercnce
to blending of graphics and video. If the lower layers require
any processing independent of processing required for the
upper layers or for the resulting image, the lower layers are
processed before being combined with the upper layers;
however in one embodiment of the present invention, no
such processing is required.

Each of the operations described above is preferably
implemented digitally using conventional ASIC technology.
As part of the normal ASIC technology the logical opera-
tions are segmented into pipeline stages, which may require
temporary storage of logic values from one clock cycle to
the next. The choice of how many pipeline stages are used
in each of the operations described above is dependent on
the specific ASIC technology used, the clock speed chosen,
the design tools used, and the preference of the designer, and
may vary without loss of generality. In the preferred embodi-
ment the line buffers are implemented as dual port memories
allowing one read and ome write cycle to occur
simultapeously, facilitating the read and write operations
described above while maintaining a clock frequency of 81
MHz. In this embodiment the compositing function is
divided into multiple pipeline stages, and therefore the
address being read from the memory is different from the
address being written to the same memory during the same
clock cycle.

Each of the arithmetic operations described above in the
preferred embodiment use 8 bit accuracy for each operand;
this is generally sufficient for providing an accurate final
result. Products are rounded to 8 bits before the result is used
in subsequent additions.

Referring to FIG. 31, a block diagram illustrates an
interaction between the line buffers 504 and a graphics filter
172. The line buffers comprises a set of line buffers 1-7 506
a-g. The line buffers are controlled by a graphics line buffer
controller over a line buffer control interface 502. In one
embodiment of the present invention, the graphics filter is a
four-tap polyphase filter, so that four lines of graphics data
516a~d arc provided lo the graphics filter at a time. The
graphics filter 172 sends a line buffer release signal 516¢ to
the line buffers to notify that one to three line buffers are
available for compositing additional graphics display lines.

In another embodiment, line buffers arc not used, but
rather all of the upper layers are composited concurrently. In
this case, there is one graphics blender for each of the upper
layers active at any one pixel, and the clock rate of the
graphics blender may be approximately equal to the pixel
display rate. The clock rate of the graphics blenders may be
somewhat slower or faster, if FIFO buffers are used at the
output of the graphics blenders.

The mathematical formulas implemented are the same as
in the first embodiment described. The major difference is
that instead of performing the compositing function itera-
tively by reading and writing a line buffer, all layers are
composited concurrently and the result of the series of
compositor blocks is immediately available for processing,
if required, and for blending with the lower layers, and line
buffers are not used for purposes of compositing.

Line buffers may still be needed in order to implement
vertical filtering or vertical scaling, as those operations
typically require more than one line of the group of upper
layers to be available simultaneously, altbough fewer line
buffers are generally required here than in the preferred

10

s

5

35

60

52

embodiment. Using multiple graphics blenders operating at
approximately the pixel rate simplifies the implementation
in applications where the pixel rate is relatively fast for the
ASIC technology used, for example in HDTV video and
graphics systems where the pixel rate is 74.25 MHz.

XII. Unified Memory Architecture/Real Time
Scheduling

Recently, improvements to memory fabrication technolo-
gies have resulted in denser memory chips. However
memory chip bandwidth has not been increasing as rapidly.
The bandwidih of a memory chip is a measure of how fast
conteants of the memory chip can be accessed for reading or
writing. As a result of increased memory density without
necessarily a commensurate increase in bandwidth, in many
conventional system designs multiple memory devices are
used for different functions, and memory space in some
memory modules may go unused or is wasted. In the
preferred embodiment, a unified memory architeclure is
used. In the unified memory architecture, all the tasks (also
referred 1o as “clients”), including CPU, display engine and
IO devices, share the same memory.

The unified memory architecture preferably includes a
memory that is shared by a plurality of devices, and a
memory request arbiter coupled to the memory, wherein the
memory request arbiter performs real time scheduling of
memory requests from different devices having differcnt
priorities. The unified memory system assures real time
scheduling of tasks, some of which do not inherently have
pre-determined periodic behavior and provides access to
memory by requesters that are sensitive to latency and do not
have determinable periodic behavior.

In an alternate embodiment, two memory controllers are
used in a dual memory controller system. The memory
controllers may be 16-bit memory controllers or 32-bil
memory controllers. Each memory controller can support
differcat configuration of SDRAM device types and banks,
or other forms of memory besides SDRAM. A first memory
space addressed by a first memory controller is preferably
adjacent and contiguous to a second memory space
addressed by a second memory coatroller so that software
applications view the first and second memory spaces as one
continuous memory space. The first and the second memory
controllers may be accessed concurrently by different cli-
ents. The software applications may be optimized to
improve performance.

For example, a graphics memory may be allocated
through the first memory controller while a CPU memory is
allocated through the second memory controller. While a
display engine is accessing the first memory controtler, a
CPU may access the second memory controller at the same
time. Therefore, 2 memory access latency of the CPU is not
adversely affected in this instance by memory being
accessed by the display engine and vice versa. In this
example, the CPU may also access the first memory con-
troller al approximately the same time that the display
engine is accessing the first memory controller, and the
display controller can access memory from the second
memory controller, thereby allowing sharing of memory
across different functions, and avoiding many copy opera-
tions that may otherwise be required in conventional
designs.

Referring to FIG. 32, a dual memory controller system
services memory requests generated by a display engine
1118, a CPU 1120, a graphics accelerator 1124 and an
input/output module 1126 are provided to a memory select

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 73 of 113

US 6,189,064 B1

53

block 1100. The memory select block 1100 preferably routes
the memory requests lo a first arbiter 1102 or to a second
arbiter 1106 based on the address of the requested memory.
The first arbiter 1102 sends memory requests to a first
memory controller 1104 while the second arbiter 1106 sends
memory requests to a second memory controller 1108. The
design of arbiters for handling requests from tasks with
different priorities is well known in the art.

‘The first memory controller preferably sends address and
control signals to a first external SDRAM and receives a first
data from the first external SDRAM. The second memory
controller preferably sends address and contro!l signals to 2
second external SDRAM and receives a second data from
the second external SDRAM.

The first and second memory controllers preferably pro-
vide first and sccond data received, respectively, from the
first and second external SDRAMs to a device that requested
the received data.

The first and second data from the first and second
memory controllers are preferably multiplexed, respectively,
by a first multiplexer 1110 at an input of the display engine,
by a second multiplexer 1112 at an input of the CPU, by a
third multiplexer 1114 at an input of the graphics accelerator
and by a fourth multiplexer 1116 at an input of the 1/0
module. The multiplexers provide either the first or the
second data, as selected by memory select signals provided
by the memory select block, to a corresponding device that
has requested memory.

An arbiter preferably uses an improved form of real time
scheduling to meet real-time latency requirements while
improving performance for latency-sensitive tasks. First and
second arbiters may be used with the flexible real time
scheduling. The real time scheduling is preferably imple-

mented on both the first arbiter and the second arbiter

independently.

When using a unified memory, memory latencies caused
by competing memory requests by different tasks should
preferably be addressed. In the preferred embodiment, a
real-time scheduling and arbitration scheme for unified
memory is implemented, such that all tasks that use the
unificd memory meet their real-time requirements. With this
innovative usc of the unificd memory architecture and
real-time scheduling, a single unified memory is provided to
the CPU and other devices of the graphics display system
without compromising quality of graphics or other opera-
tions and while simultaneously minimizing the latency expe-
rienced by the CPU.

The methodology used preferably implements real-time
scheduling using Rate Monotoaic Scheduling (“RMS") . It
is a mathematical approach that allows the construction of
provably correct schedules of arbitrary numbers of real-time
tasks with arbitrary periods for each of the tasks. This
methodology provides for a straight forward means for proof
by simulation of the worst case scenario, and this simulation
is simple enough that it can be dome by hand. RMS, as
normally applied, makes a number of simplifying assump-
tions in the creation of a priority list.

In the normal RMS assumplions, all tasks are assumed to
have constant periods, such that a request for service is made
by the task with stated period, and all tasks have a latency
tolerance that equals that task’s period. Latency tolerance is
defined as the maximum amount of time that can pass from
the moment the task requests service until that task’s request
bas been completely satisfied. During implementation of one
embodiment of the present invention, the above assumptions
have been modified, as described below.

20

40

wn

0

60

54

In the RMS method, all tasks are generally listed along
with their periods. They arc then ordered by period, from the
shortest to the longest, and prioritics are assigned in that
order. Multiple tasks with identical periods can be in any
relative order. In other words, the relative order amongst
them can be decided by, for example, flipping a coin.

Proof of correctness, i.e. the guarantee that all tasks meet
their deadlines, is constructed by analyzing the behavior of
the system when all tasks request service al exactly the same
time; this time is called the “critical instant”. This is the
worst case scenario, which may not occur in even a very
large set of simulations of normal operation, or perhaps it
may never occur in normal operation, however it is pre-
sumed to be possible. As each task is serviced, it uses the
shared resource, memory clock cycles in the present
invention, in the degree stated by that task. If all tasks meet
their deadlines, the system is guarantced to meet all tasks'
deadlines under all conditions, since the critical instant
analysis simulates the worst case.

Wheu the lowest priority real-time task meets its deadline,
without any higher priority tasks missing their deadlines,
then all tasks are proven to meet their deadlines. As soon as
any lask in this simulation fails o meet its deadline, the test
has failed and the task set cannot be guaranteed, and
therefore the design should preferably be changed in order
to guarantee proper operalion under worst case conditions.

In the RMS methodology, real-time tasks are assumed 10
have periodic requests, and the period and the latency
tolerance are assumed to have the same value. Since the
requests may not be in fact periodic, it is clearer to speak in
terms of “minimum interval” rather than period. That is, any
task is assumed 1o be guaranteed not to make two consecu-
tive requests with an interval between them that is any
shorter than the minimum interval.

The deadline, or the latency tolerance, is the maximum
amount of time that may pass between the moment a task
makes a request for service and the time that the service is
completed, without impairing the function of the task. For
example, in a data path with a constant rate source (or sink),
a FIFO, and memory access from the FIFO, the request may
occur as soon as there is enough data in the FIFO that if
service is granted immediately the FIFO does not underflow
(or overflow in case of a read operation supporting a data
sink). If service is not completed before the FIFO overflows
(or underflows in the case of a data sink) the task is impaired.

In the RMS methodology, those tasks that do not have
specified real-time constraints are preferably grouped
together and served with a single master task called the
“sporadic server”, which itself has the lowest priority in the
system. Arbitration within the set of tasks served by the
sporadic server is not addressed by the RMS methodology,
since it is not a real-time matter. Thus, all non-real-time
tasks are served whenever there is resource available, how-
ever the latency of serving any one of them is not guaran-
teed.

To implement real-time scheduling based on the RMS
methodology, first, all of the tasks or clients that need to
access memory are preferably listed, not necessarily in any
particular order. Next, the period of cach of the tasks is
preferably determined. For those with specific bandwidth
requirements (in bytes per second of memory access), the
period is preferably calculated from the bandwidth and the
burst size. If the deadline is different from the period for any
given task, that is listed as well. The resource requirement
when a task is serviced is listed along with the task. In this
case, the resource requirement is the number of memory

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 74 of 113

US 6,189,064 Bl

55

clock cycles required to service the memory access request.
The tasks are sorted in order of increasing period, and the
result is the set of priorities, from highest to lowest. If there
arc multiple tasks with the same period, they can be given
different, adjacent priorities in any random relative order
within the group; or they can be grouped together and served
with a single priority, with round-robin arbitration between
those tasks at the same priority.

In practice, the tasks sharing the unified memory do not
all have true periodic behavior. In one embodiment of the
present invention, a block out timer, associated with a task
that does not normally have a period, is used in order to force
a bounded minimum interval, similar to a period, on that
task. For example a block out timer associated with the CPU
has been implemented in this embodiment. If left
uncontrolled, the CPU can occupy all available memory
cycles, for example by causing a never-ending stream of
cache misses and memory requests. At the same time, CPU
performance is determined largely by “average latency of
memory access”, and so the CPU performance would be less
than optimal if all CPU memory accessed were consigned to
a sporadic server, i.., at the lowest priority.

In this embodiment, the CPU task has been converted into
two logical tasks. A first CPU task has a very high priority
for low latency, and it also has a block out timer associated
with it such that once a request by the CPU is made, it cannot
submit a request again until the block out timer has timed
out. In this embodiment, the CPU task has the top priority.
In other embodiments, the CPU task may have a very high
priority but not the top priority. The timer period has been
made programmable for system tuning, in order to accom-
modate different system configurations with different
memory widths or other options.

In one embodiment of the present invention, the block out
timer is started when the CPU makes a high priority request.
In another embodiment, the block out timer is started whea
the high priority request by the CPU is serviced. In other
embodiments, the block out timer may be started at any time
in the interval between the time the high priority request is
made and the time the high priority request is serviced.

A second CPU task is preferably serviced by a sporadic
server in a round-robin manner. Therefore if the CPU makes
a long string of memory requests, the first one is served as
a high priority task, and subsequent requests are served by
the low priority sporadic server whenever none of the
real-time tasks have requests pending, until the CPU block
out timer times out. In one embodiment of the present
invention, the graphics accelerator and the display engine
are also capable of requesting more memory cycles than are
available, and so they too use similar block out timer.

For example, the CPU read and write functions are
grouped together and treated as two tasks. A first task has a
theoretical latency bound of 0 and a period that is program-
mable via a block out timer, as described above. A second
task is considered to have no period and no deadline, and it
is grouped into the set of tasks scrved by the sporadic server
via a round robin at the lowest priority. The CPU uses a
programmable block out timer between high priority
requests in this embodiment.

For another example, a graphics display task is considered
to have a constant bandwidth of 27 MB/s, i.e., 16 bits per
pixel at 13.5 MHz. However, the graphics bandwidth in one
embodiment of the present invention can vary widely from
much less than 27 MB/s to a much greater figure, but 27
MBD/s is a reasonable figure for assuring support of a range
of applications. For example, in one embodiment of the

55

60

56

present invention, the graphics display task utilizes a block
out timer that enforces a period of 2.37 gs between high
priority requests, while additional requests are serviced on a
best-effort basis by the sporadic server in a low priority
round robio manner.

Referring to FIG. 33, a block diagram illustrates an
implementation of a real-time scheduling using an RMS
methodology. A CPU service request 1138 is preferably
coupled to an input of a block out timer 1130 and a sporadic
server 1136. An output of the block out timer 1130 is
preferably coupled to an arbiter 1132 as a high priority
service request. Tasks 1-5 1134a—e may also be coupled to
the arbiter as inputs. An output of the arbiter is a request for
service of a task that has the highest priority among all tasks
that have a pending memory request.

In FIG. 33, only the CPU service request 1138 is coupled
to a block out timer. In other embodiments, service requests
from other tasks may be coupled to their respective block out
timers. The block out timers are used to enforce a minimum
interval between two successive accesses by any high pri-
ority task that is non-periodic but may require expedited
servicing. Two or more such high priority tasks may be
coupled to their respective block out timers in one embodi-
ment of the present invention. Devices that are coupled to
their respective block out timers as high priority tasks may
include a graphics accelerator, a display engine, and other
devices.

In addition to the CPU request 1138, low priority tasks
1140a—d may be coupled 1o the sporadic server 1136. In the
sporadic server, thesc low priority tasks are handled in a
round robin manner, The sporadic server sends a memory
request 1142 to the arbiter for the next low priority task to
be serviced.

Referring to FIG. 34, a timing diagram illustrates CPU
service requests and services in case of a continuous CPU
request 1146. In practice, the CPU request is generally not
continuous, but FIG. 34 has been provided for illustrative
purposcs. In the example represented in FIG. 34, a block out
timer 1148 is started upon a high priority service request
1149 by the CPU. At time to, the CPU starts making the
continuous service request 1146, and a high priority service
request 1149 is first made provided that the block out timer
1148 is not running at time to. When the high priority service
request is made, the block out timer 1148 is started. Between
time to and time (,, the memory controller finishes servicing
a memory request from another task. The CPU is first
serviced at time t,. In the preferred embodiment, the dura-
tion of the block out timer is programmable. For example,
the duration of the block out timer may be programmed to
be 3 us.

Any additional high priority CPU request 1149 is blocked
out until the block out timer times out at time t,. Instead, the
CPU low priority request 1150 is handled by a sporadic
server in a round robin manner between time to and time t,.
The low priority request 1150 is active as long as the CPU
service request is active. Since the CPU service request 1146
is continuous, another high priority service request 1149 is
made by the CPU and the block out timer is started again as
soon as the block out timer times out at time t,. The high
priority service request made by the CPU at time t, is
serviced at time t; when the memory controller finishes
servicing another task. Until the block out timer times out at
time t,, the CPU low priority request 1150 is handled by the
sporadic server while the CPU high priority request 1149 is
blocked out.

Another high priority service request is made and the
block out timer 1148 is started again when the block out

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_Page 75 of 113

US 6,189,064 B1

57

timer 1148 times out at time t,. At time t;, the high priority
service request 1149 made by the CPU at time t, is serviced.
The block out timer does not time out until time t,. However,
the block out timer is not in the path of the CPU low priority
service request and, therefore, does not block out the CPU
low priority service request. Thus, while the block out timer
is still running, a low priority service request made by the
CPU is handled by the sporadic server, and serviced al lime
ts.

When the block out timer 1148 times out at time t,, it is
started again and yet another high priority service request is
made by the CPU, since the CPU service request is con-
tinuous. The high priority service request 1149 made by the
CPU at time t, is serviced at time t;. When the block out
timer times out at time Ly, the high priority service request
is once again made by the CPU and the block out timer is
started again.

The schedule that results from the task set and priorities
above is verified by simulating the system performance
starting from the “critical instant”, when all tasks request
service at the same time and a previously started low priority
task is already underway. The system is proven to meet all
the real-time deadlines if all of the tasks with real-time
deadlipes meet their deadlines. Of course, in order to per-
form this simulation accurately, all tasks make new requests
at every repetition of their periods, whether or not previous
requests have been satisfied.

Referring to FIG. 35, a timing diagram illustrates an
example of a critical instant apalysis. At time to, a task 1
1156, a task 2 1158, a task 3 1160 and a task 4 1162 reques!
service at the same time. Further, at time to, a low priority
task 1154 is being serviced. Therefore, the highest priority
task, the task 1, cannot be serviced until servicing of the low
priority task has been completed.

When the low priority task is completed at time ,, the task
1 is serviced. Upon completion of the task 1 at time 1,, the
lask 2 is serviced. Upon completion of the task 2 at time 15,
the task 3 is serviced. Upon completion of the task 3 at time
t,, the task 4 is serviced. The task 4 completes at time 15,
which is before the start of a next set of tasks: the task 1 at
t,, the task 2 at t,, the task 3 at t, and the task 4 at t,.

For example, referring to FIG. 36, a flow diagram illus-
trates a process of servicing memory requests with different
priorities, from the highest to the lowest. The system in step
1170 makes a CPU read request with the highest priority.
Since a block out timer is used with the CPU read request in
this example, the block out timer is started upon making the
highest priority CPU read request. Then the system io step
1172 makes a graphics read request. A block out timer is also
used with the graphics read request, and the block out timer
is started upon making the graphics read request.

A video window read request in step 1174 and a video
caplure write request in step 1176 have equal prioritics.
Therefore, the video window read request and the video
capture write request are placed in a round robin arbitration
for two tasks (clients). The system in step 1178 and step
1180 services a refresh request and a audio read request,
respectively.

While respective block out timers for the CPU read
request and the graphics read request are active, the system
places the CPU read request and the graphics read request in
a round robin arbitration for five tasks (clients), respectively,
in step 1182 and step 1186. The system in steps 1184, 1188
and 1190 places other lowest priority tasks such as a
graphics accelerator read/write request, a DMA read/write
request and a CPU write request, respectively, in this round
robin arbitration with five clients.

20

40

65

58

XIII. Graphics Accelerator

Displaying of graphics generally requires a large amount
of processing. If all processing of graphics is performed by
a CPU, the processing requirements may unduly burden the
CPU since the CPU generally also performs many other
tasks. Therefore, many systems that perform graphics pro-
cessing use a dedicated processor, which is typically referred
to as a graphics accelerator.

The system according to the present invention may
employ a graphics accelerator that includes memory for
graphics data, the graphics data including pixels, and a
coprocessor for performing vector type operations on a
plurality of components of one pixel of the graphics data.

The preferred embodiment of the graphics display system
uses a graphics accelerator that is optimized for performing
real-time 3D and 2D effects on graphics and video surfaces.
The graphics accelerator preferably incorporates specialized
graphics vector arithmetic functions for maximum perfor-
mance with video and real-time graphics. The graphics
accelerator performs a range of essential graphics and video
operations with performance comparable to hardwired
approaches, yet it is programmable so that il can mect new
and evolving application requirements with firmware down-
loads in the field. The graphics accelerator is preferably
capable of 3D effects such as real-time video warping and
flipping, texture mapping, and Gouraud and Phong polygon
shading, as well as 2D and image effects such as blending,
scaling, blitting and filling. The graphics accelerator and its
caches are preferably completely contained in an integrated
circuit chip.

The graphics accelerator of the present invention is pref-
erably based on a conventional RISC-type microprocessor
architecture. The graphics accelerator preferably also
includes additional features and some special instructions in
the instruction set. In the preferred embodiment, the graph-
ics accelerator is based on a MIPS R3000 class processor. In
other embodiments, the graphics accelerator may be based
on almost any other type of processors.

Referring to FIG. 37, a graphics accelerator 64 receives
commands from a CPU 22 and receives graphics data from
main memory 28 through a memory controller 54. The
graphics accelerator preferably includes a coprocessor
(vector coprocessor) 1300 that performs vector type opera-
tions on pixels. In vector type operations, the R, G, and B
components, ot the Y, U and V components, of a pixel are
processed in parallel as the three elements of a “vector”. In
alternate embodiments, the graphics accelerator may not
include the vector coprocessor, and the vector coprocessor
may be coupled to the graphics accelerator instead. The
vector coprocessor 1300 obtains pixels (3-tuple vectors) via
a specialized LOAD instruction.

The LOAD instruction preferably extracts bits from a
32-bit word in memory that contains the required bits. The
LOAD instruction also preferably packages and converts the
bits into the input vector format of the coprocessor. The
vector coprocessor 1300 writes pixels (3-tuple vectors) to
memory via a specialized STORE instruction. The STORE
instruction preferably extracts the required bits from the
accumulator (output) register of the coprocessor, converts
them if required, and packs them into a 32-bit word in
memory in a format suitable for other uses within the IC, as
explained below.

Formats of the 32-bit word in memory preferably include
an RGB16 format and a YUV format. When the pixels are
formatted in RGB16 format, R has 5 bits, G has 6 bits, and
B has 5 bits. Thus, there are 16 bits in each RGB16 pixel and

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 Page 76 of 113

US 6,189,064 B1

59

there are two RGB16 half-words in every 32-bit word in
memory. The two RGB16 half-words are selected,
respectively, via VectorLoadRGB16Left instruction and
VectorLoadRGB16Right instruction. The S or 6 bit elements
are cxpanded through zero expansion into 8 bit componcats
when loaded into the coprocessor input register 1308.

The YUV format preferably includes YUV 4:2:2 format,
which has four bytes representing two pixels packed into
every 32-bit word in memory. The U and V eclements
preferably are shared between the two pixels. A typical
packing format used to load two pixels having YUV 4:2:2
format into a 32-bit memory is YUYV, where each of first
and second Y’s, U and V has eight bits. The left pixel is
preferably comprised of the first Y plus the U and V, and the
right pixel is preferably comprised of the second Y plus the
U and V. Special LOAD instructions, LoadYUVLeft and
LoadYUVRight, are preferably used to extract the YUV
values for the left pixel and the right pixel, respectively, and
put them in the coprocessor input register 1308.

Special STORE instructions,
StoreVectorAccumulatorRGB16,
StoreVeciorAccumulatorRGB24,
StoreVectorAccumulatorYUVLeft, and
Store VectorAccumulatorYUVRight, preferably convert the
contents of the accumulator, otherwise referred to as the
output register of the coprocessor, into a chosen format for
storage in memory. In the «case of
Store VectorAccumulatorRGB16, the three components (R,
G, and B) in the accumulator typically have 8, 10 or more
significant bits each; these are rounded or dithered to create
R, G, and B valucs with 5, 6, and S bits respectively, and
packed into a 16 bit value. This 16 bit valuc is stored in
memory, selecting either the appropriate 16 bit half word in
memory via the store address.

In the case of StoreVectorAccumulatorRGB24, the R, G,
and B components in the accumulator are rounded or
dithered to create 8 bit values for each of the R, G, and B
components, and these are packed into a 24 bit value. The 24
bit RGB valuc is written into memory at the memory address
indicated via the store address. In the cases of StoreVecto-
rAccumulatorYUVLeft and
Store VectorAccumulatorYUVRight, the Y, U and V com-
ponents in the accumulator are dithered or rounded to create
8 bit values for each of the components.

In the preferred embodiment, the StoreVectorAccumula-
torYUVLeft instruction writes the Y, U and V values to the
locations in the addressed memory word corresponding to
the left YUV pixel, i.e. the word is arranged as YUYV, and
the first Y value and the U and V values are over-written. In
the preferred embodiment, the StoreVectorAccumulato-
rYUVRight instruction writes the Y value to the memory
location corresponding to the Y component of the right YUV
pixel, i.e. the sccond Y value in the preceding example. In
other embodiments the U and V values may be combined
with the U and V values already in memory creating a
weighted sum of the existing and stored values and storing
the result.

The coprocessor instruction set preferably also includes a
GreaterThanOREqualTo (GE) instruction. The GE instruc-
tion performs a greater-than-or-equal-to comparison
between each element of a pair of 3-clement vectors. Each
elemeant in each of the 3-element vectors has a size of one
byte. The results of all three comparisons, one bit per each
result, are placed in a result register 1310, which may
subsequently be used for a single conditional branch opera-
tion. This saves a lot of instructions (clock cycles) when
performing comparisons between all the elements of two
pixels.

60

65

60

The graphics accelerator preferably includes a data
SRAM 1302, also called a scratch pad memory, and not a
conventjonal data cache. In other embodiments, the graphics
accelerator may not include the data SRAM, and the data
SRAM may be coupled to the graphics accelerator instead.
The data SRAM 1302 is similar to a cache that is managed
in software. The graphics accelerator preferably also
includes a DMA engine 1304 with queued commands.

In other embodiments, the graphics accelerator may not
include the DMA engine, and the DMA engine may be
coupled to the graphics accelerator instead. The DMA
engine 1304 is associated with the data SRAM 1302 and
preferably moves data between the data SRAM 1302 and
main memory 28 at the same time the graphics accelerator
64 is using the data SRAM 1302 for its load and store
operations. In the preferred embodiment, the main memory
28 is the unified memory that is shared by the graphics
display system, the CPU 22, and other peripherals.

The DMA engine 1304 preferably transfers data between
the memory 28 and the data SDRAM 1302 to carry out load
and store instructions. In other embodiments, the DMA
engine 1304 may transfer data between the memory 28 and
other components of the graphics accelerator without using
the data SRAM 1302. Using data SRAM, however, gener-
ally results in faster loading and storing operations.

The DMA engine 1304 preferably has a queue 1306 to
hold multiple DMA commands, which are executed sequen-
tially in the order they are received. In the preferred
embodiment, the queue 1306 is four instructions deep. This
may be valuable because the software (firmware) may be
structured so that the loop above the inner loop may instruct
the DMA engine 1304 to perform a series of transfers, e.g.
to get two sets of operands and write one set of results back,
and then the inner loop may execute for a while; when the
inner loop is done, the graphics accelerator 64 may check the
command queue 1306 in the DMA engine 1304 to see if all
of the DMA commands have been completed. The queue
includes a mechanism that allows the graphics accelerator to
dectermine when all the DMA commands have been com-
pleted. If all of the DMA commands have been completed,
the graphics accelerator 64 preferably immediately proceeds
to do more work, such as commanding additional DMA
operations to be performed and to do processing on the new
operands. If not, the graphics accelerator 64 preferably waits
for the completion of DMA commands or perform some
other tasks for a while.

Typically, the graphics accelerator 64 is working on
operands and producing outputs for one set of pixels, while
the DMA engine 1304 is bringing in operands for the next
(future) set of pixel operations, and also the DMA engine
1304 is writing back to memory the results from the previous
set of pixel operations. In this way, the graphics accelerator
64 doces not ever have to wait for DMA transfers (if the code
is designed well), unlike a conventional data cache, wherein
the conventional data cache gets new operands only when
there is a cache miss, and it writes back results only when
either the cache writes it back automatically because it needs
the cache line for new operands or when there is an explicit
cache line flush operation performed. Therefore, the graph-
ics accelerator 64 of the present invention preferably reduces
or eliminates period of waiting for data, unlike conventional
graphics accelerators which may spend a large fraction of
their time waiting for data transfer operations between the
cache and main memory.

Although this invention has been described in certain
specific embodiments, many additional modifications and

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 77 of 113

US 6,189,064 Bl

61

variations would be apparent to those skilled in the art. It is
therefore to be understood that this invention may be prac-
ticed otherwise than as specifically described. Thus, the
present embodiments of the invention should be considered
in all respects as illustrative and not restrictive, the scope of
the invention to be determined by the appended claims and
their equivalents.

What is claimed is:

1. A unified memory system comprising:

a memory that is shared by a plurality of devices;

a memory request arbiter coupled to the memory, wherein
the memory request arbiter pecforms real time sched-
uling of memory requests from different devices having
different priorities; and

one or more block out timers, each block out timer being
associated with one or more devices and coupled
between the one or more associated devices and the
memory request arbiter, wherein each block out timer
is used to enforce a minimum interval between subse-
quent accesses by the one or more associaled devices,

wherein the unified memory system provides for real time
scheduling of tasks, some of which do not inherently
have pre-determined periodic behavior, and for access
to memory by devices that are sensitive to latency and
do not have determinable periodic behavior.

2. The unified memory system of claim 1 wherein the

devices associated with the block out timers include a CPU.

3. The unified memory system of claim 1 wherein the
devices associated with the block out timers make high
priority service requests through their associated block out
timers.

4. The unified memory system of claim 3 wherein each
block out timer blocks out the high priority service request
made by its one or more associated devices while the block
out timer is running until the block out timer times out.

5. The unified memory system of claim 4 wherein each
block out timer is started when any onc of its one or more
associated devices makes the high priority service request.

6. The unified memory system of claim 4 wherein each
block out timer is started when the high priority service
request made by any one of its one or more associated
devices is serviced.

7. The unified memory sysiem of claim 4 wherein each
block out timer is started some time between the time any
one of its one or more associated devices makes the high
priority service request and the time when the high priority
service request is serviced.

8. The unified memory system of claim 1 wherein a block
out period of at least one of the block out timers is pro-
grammable.

9. The unified memory system of claim 1 further com-
prising a round robin server for handling low priority tasks,
wherein one or morc devices that arc associated with the
block out timers are also coupled to the round robin server
as low priority tasks, and the round robin server requests
service to the memory request arbiter for one of the low
priority tasks coupled to the round robin server at a time in
a round robin manner.

10. The unified memory system of claim 9 wherein the
devices that arc associated with the block out timers are
handled as onc of the low priority tasks whenever their
associated block out timers are runping.

11. The unified memory system of claim 1 wherein each
block out timer is associated with one of the devices, is
coupled between the associated device and the memory
request arbiter, and is used to enforce the minimum time
interval between subsequent accesses by the associated
device.

10

30

40

45

65

62

12. The unified memory system of claim 1 wherein at least
one block out timer is associated with two or more devices,
is coupled between the associated devices and the memory
request arbiter, and is used to enforce the minimum time
interval between subsequent accesses by the associated
devices.

13. A method of designing real time scheduling compris-
ing the steps of:

running a critical instant analysis;

ordering periods of different tasks from the shortest to the

longest;

assigning priorilies based on the order in accordance to

the duration of the periods;

selecting tasks that are non-periodic but requires expe-

dited servicing, assigning high priorities to them, and
imposing a minimum interval between successive
accesses by these tasks; and

assigning low priority to non-periodic tasks, that do not

require expedited servicing, to be serviced in a round
robin manner.

14. The method of designing real time scheduling of claim
13 wherein the step of running a critical instant analysis
comprises the steps of assuming all tasks request service at
the critical instant, assuming a task is being serviced at the
critical instant, and determining whether or not all tasks can
be serviced within a period of each task.

15. The method of designing real time scheduling of claim
13 wherein the design for real time scheduling is
re-evaluated if the critical instant analysis fails.

16. The method of designing real time scheduling of claim
13 wherein the minimum interval between successive
accesses by the high priority tasks that are non-periodic but
requires expedited servicing is imposed by coupling a block
out timer between each of these tasks and a memory request
arbiter, such that high priority scrvice request by each these
tasks is blocked out while the block out timer coupled to the
task is running.

17. The method of designing real time scheduling of claim
16 wherein the block out timer is designed to start running
upon making of the high priority service request by the
coupled task.

18. The method of designing real time scheduling of claim
16 wherein the block out timer is designed to start running
upon servicing of the high priority service request made by
the coupled task.

19. The method of designing real time scheduling of claim
18 wherein the block out timer is designed to start running
some time between the time the high priority service request
is made by the coupled task and that high priority service
request is serviced.

20. The method of designing real time scheduling of claim
16 wherein the high priority tasks, that are non-periodic but
requires expedited scrvicing, are also coupled to a round
robin server that handles service requests from these high
priority tasks as low priority requests in a round robin
manner while respective block out timer is running.

21. The method of designing real time scheduling of claim
13 wherein real time scheduling is implemented indepen-
dently 1o first and second arbiters.

22. The method of designing real time scheduling of claim
21 wherein the first arbiter is coupled to a first memory
controller and the second arbiter is coupled to a second
memory controller, and wherein the first and second
memory controllers control first and second memory spaces
that are contiguous to each other.

* * ¥ ¥ %

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 78 of 113

United States Patent [

Lewis et al.

AT 00 AR

5,963,210
Oct. 5, 1999

(111 Patent Number:
(451 Date of Patent:

[54] GRAPHICS PROCESSOR, SYSTEM AND
METHOD FOR GENERATING SCREEN
PIXELS IN RASTER ORDER UTILIZING A
SINGLE INTERPOLATOR

[75] Iaventors: Michael C. Lewis, Redwood Estates;
Stephen L. Morein, San Jose, both of
Calif.

[73] Assignee: Stellar Semiconductor, Inc., San Jose,
Calif.

[21] Appl. No.: 08/624,260
[22] Filed: Mar 29, 1996

[51] Int.CLS ... GO6T 15/00
[52] US.CL ... 345/419
[58] Field of Search ... 395/119-125;
345/419-425

[56] References Cited

U.S. PATENT DOCUMENTS

4945500 7/1990 Deerifigcooovvevrercrrecvrreccnnne 395/122
5,345,541 9/1994 Kelley et al. v 395/126
5,509,110 4/1996 Latham 395/121
5,574,835 11/1996 Duluk, Jr. et al. .. 395/121
5,579,455 11/1996 Greene et al. 395/122
5,596,686 1/1997 Duluk, Jr. .ccveerinerneen 395/122

Primary Examiner—Almis R. Jankus

Attorney, Agent, or Firm—Sawyer & Associates
[57] ABSTRACT

A method and system for providing a graphics processor is
disclosed. The method and system include providing a
transformation processor, providing a rasterizer coupled to
the transformation processor, and providing an interpolator
coupled to the rasterizer. The transformation processor is for
producing a set of transformed data according to a set of
instructions from a set of raw data. The set of raw data
describes at least one three-dimensional object within a
bounded space extending from a display screen. The raster-
izer is for identifying portions of the transformed data
mapping a pre-defined area of the display screen in parallel
and for sequentially rendering the identified portions of the
transformed data in a pre-determined refresh order. The
refresh order is the order that screen data is provided to the
display screen to generate a screen image. The rasterizer
further includes processor array. The processor array
includes a plurality of primitive processors. Each of the
plurality of primitive processors processes a corresponding
portion of the transformed data and identifies whether the
corresponding portion of the transformed data that intersects
a selected area of the display screen. The interpolator is for
determining a visible portion of the identified portions
associated with selected area and characterizing the selected
arca according to transformed data associated with the
visible portion.

24 Claims, 6 Drawing Sheets

by s1 L 52 E

i1 | Processor Armay /| Memory i /| Interpolator | |

. 505 so1 | 41 |

1]]

P :

501 Pl 509 511~ 405 :

1])

41 531 1 :
Application !J Transformation (J Vo Format Conversion 403 a
103 105 P 503 :
) [:

Pt |

)]

) I

...........

EXHIBIT

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 79 of 113

5,963,210

Sheet 1 of 6

Oct. 5,1999

U.S. Patent

601
Kepdsiq

A

T
IoJjnqaurer,j

d1l "‘DId

60T
Kerdsiq

A

LOT

A

[S1

UOTBZLI3ISEY

VI ‘DId

L0T

S0t
UOTIEULIOJSURI],

A

101

UOTJEZLIAISEY

<
UOTJBULIOJSURL],

€01
uoneoiddy

€01
uoneorddy

—

—

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 80 of 113

5,963,210

Sheet 2 of 6

Oct. 5,1999

U.S. Patent

d¢ DId
A

W3u

L5t

Yo

y—

607

uonejodiauj
[EIUOZLIOH

L0t

(44

wonoq

o VC DI

A

[eD eiaq
[EIUOZLIOY

arejodiaju]
[BOTRA

A

(354

doy

£0C

uonenoE)
A1ETg|

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 81 of 113

U.S. Patent Oct. 5,1999 Sheet 3 of 6 5,963,210
s 303
301
> (1) >
> 2
> (3)
305
—— @ 1
—> (5) >
S X R
> (n-2) >
> (n-1) >
> (n) >

FIG. 3

e

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 82 of 113

5,963,210

Sheet 4 of 6

Oct. 5,1999

U.S. Patent

¢ DIH

m R .
) _ -
w o €0 B o1 o1
m cop m UOISIIAUO,) JBULIO b x uonjewLIojsuely, | x uoneonddy
! I
| | Poles Iy
““ o7 f~11g 605 | 0%
! : y b
[v ! 705 <08 .
1| orejodoquy [7 froway [7| Aewry sossacorq b
; s IS b
2 Hinbsjaxid uo paseq auljadid wa)sAg saydeln
11028 —
601 ol e e e e 10v
C | L0 J“ — —
&) “ m e — Ly ! 9% Sy
Kerdsiq ! 1orejodiauy uopoasiowy ~ | voneoyddy
! _ t ; UOTRULIOJSURI |, Dabt
. o A PXIdoBhiod | gp Iy
. A]

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 83 of 113

U.S. Patent Oct. 5,1999 Sheet 5 of 6 5,963,210
g
‘ ()
- (%]
_ @ o0 S~
G e
] @)
\ S
g .
g
=1
\O!
\O
5 @)
v |
g
21z
FARE:
A % §
gl |&
= 1 g A
ﬂk A
NEEERREIENE al |8
O |8
— | &
h e

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 84 of 113

U.S. Patent Oct. 5,1999 Sheet 6 of 6 5,963,210
717 .
\—
X Right Boundry 720 Y Bottom Boundry 721
719 718
701 \ \A
> 702 706
s 407
» X Counter Y Counter
705) 703 104
r ------- 1 _3 --- -‘l
LN ﬁi\ e
| \x/ myp
e Lo |
708~ | B /710 !
! X A
a .|
712N i C . ;
a)
a0 T — 0
E X ?Iﬁ |
E > + [~
v T i 1
A R
a O [
et 1
716~ 1 .
¥ A KO- AJP\ i
i B (X o +
e gl
L e e e m o m e m e m J

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 85 of 113

5,963,210

1

GRAPHICS PROCESSOR, SYSTEM AND
METHOD FOR GENERATING SCREEN
PIXELS IN RASTER ORDER UTILIZING A
SINGLE INTERPOLATOR

RELATED APPLICATIONS

The subject matter of this application is related to the
subject matter of U.S. application Ser. No. 08/624,261
entitled “Method and Apparatus for Identifying and Elimi-
nating Three-Dimensional Objects Visually Obstructed from
a Planar Surface” filed on Mar. 29, 1996 by Michael C.
Lewis and Stephen L. More in which is hereby incorporated
by reference.

FIELD OF THE INVENTION

This invention relates generally to graphics computer
systems, and more particularly to a graphics processor,
system and method for generating screen pixels in raster
order utilizing a single interpolator.

BACKGROUND OF THE INVENTION

In conventional computer systems, images are displayed
on a two-dimensional screen. The images are defined by
arrays of pixels which are either stored in computer memory
or received from sources connected to the computer system.

Many images of physical objects may be defined three-
dimensionally and may be stored or received as three-
dimensional raw data arrays. In recent years, efforts have
been undertaken to utilize three~dimensional raw data to
take into account the distance and various characteristics of
objects within screen images. One of the problems associ-
ated with the generation and display of such screen images
is the size and complexity of circuitry and logic currently
required to produce a stream of screen image data in the
order required by a display. Various techniques have been
developed to produce the screen data stream utilizing multi-
stage graphics computer systems.

One of the graphics compuler systems which have been
developed to produce the screen data stream is shown in
FIG. 1A. Graphics computer system 101 may be imple-
mented with a conventional X86 (such as the 400 series)
IBM-compatible or Maclntosh personal computer or a
graphics engine that includes application unit 103 which
generates geometries that are to be rendered. The output of
application unit 103 is a stream of geometry data charac-
terized in three-dimensional space. Transformation unit 105
transforms the geometry data from three-dimensional spatial
coordinates to two-dimensional display coordinates corre-
sponding to the screen plane. Transformation unit 105 also
reformats the geometry data into a more unified format. For
example, transformation unit 105 may accept as input inde-
pendent polygons, quad strips, concave polygons and higher
and only output triangle strips. The output of transformation
unit 105 includes graphics primitives readable by rasterizer
107 in display coordinates. Rasterizer 107 receives the
graphics primitives and converts them to pixels which in
turn are transmitted to display 109 to generate a screen
image.

Another graphics computer systems which has been
developed to produce the screen data stream is shown in
FIG. 1B. Graphics computer system 151 is shown which
includes frame buffer 111. Frame buffer 111 is utilized by
system 151 to decouple the rendering process from a video
refresh rate. This permits the image undergoing rendering to
be updated at a slower rate than the screen image shown on

15

20

25

40

60

2

display 109 is refreshed. Some implementations of raster-
izers 107 require associated frame buffers 111 to reorder
pixels into screen refresh order. The output of frame buffer
111, or rasterizer 107 if no frame buffer 111 exists, is a
stream of pixels, where each pixel contains one color
associated with one screen pixel.

With reference to FIG. 2A, conventional rasterizer 107 is
shown which outputs pixels in polygon order. The conven-
tional rasterizer includes slope, vertical, horizontal slope,
and horizontal processing units designated as delta
calculation, vertical interpolate, horizontal delta calc, and
horizontal interpolation units 203, 205, 207, 209, respec-
tively.

An example of triangle primitives rasterized by rasterizer
107 ate shown in FIG. 2B. The triangles are type classified
as: top, bottom, left, and right facing triangles 253, 255, 257,
259.

Conventionally, rasterizing occurs in three steps. The first
rasterizing step converts the three point format of the
triangle into three edpes. The edges are usually described in
the form of By+C. The second rasterizing step evaluates
points along the edges of the triangle. There are two inter-
polators utilized in the second step, one for the left edge and
one for the right edge. The output of the interpolator are
referred to as spans, which arc horizontal lines defined by a
y-valu, left and right x-values and any other parameters of
the polygon defined at the ends of the span. The third
rasterizing step also utilizes an interpolator which accepts a
span and outputs the pixels that the span defines. For each
pixel, the interpolator outputs the y-value and x-value of the
current pixel and the value of the parameters of each pixel.

Graphics computer systems 151 utilizing such conven-
tional rasterizers 107 require frame buffer 111 to reorder the
pixels into the order needed by display 109 and also require
a color unit to determine which pixel is visible and carries
the color to be utilized by the associated screen pixel.
Software applying the painters’ algorithm provide a simple
process to perform this task, which follows the rule that the
last pixel sent 1o a pixel in frame buffer 111 replaces the pixel
stored within frame buffer 111, However, in order to perform
this operation, the polygon data sent to rasterizer 107 must
be sorted from back-to-front.

Conventional hardware, such as SGI-GTX manufactured
by Silicon Graphics, Inc., that does not require back-to-front
sorting applies a z-buffer algorithm. Z-buffer algorithms
utilize an additional buffer, referred 1o as the z-buffer, that
stores range values (z-values) as described by K. Akeley and
T. Jermoluk in “High-Performance Polygon Rendering”,
SIGGRAPH 88, 239-246. The pixel currently stored in
frame buffer 111 and z-buffer is read by rasterizer 107 and
the z-values of the new pixel and the pixel in frame buffer
111 are compared by rasterizer 107. If the new pixel is in
front of the pixel in frame buffer 111 then the new pixel
replaces the pixel in frame buffer 111, otherwise the new
pixel is discarded. Some algorithms that determine the color
of a screen pixel require information about more than just
the frontmost polygon that intersects a screen pixel.
Examples of cases where informatijon about multiple poly-
gons is needed include: anti-aliasing, CSG (constructional
solid geometry), and transparency. One solution is to modify
frame buffer 111 to bold a list of pixels at each point and
after all polygons have been rendered process the list of
rendered pixels at each screen pixel into a single color.

Other work has been done to modify graphics computer
systems which use z-buffers to provide some of the features
of the multiple pixelscreen pixel system without the cost of

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 86 of 113

5,963,210

3

the memory needed by the multiple pixel/screen pixel
system, for example by drawing the polygons in front-to-
back or back-to-front order.

Rasterizers 107 that operate on data in polygon order are
efficient, since a single interpolator rasterizes multiple poly-
gons and, as long as there are polygons to be rasterized, the
interpolator can be rendering. One of the disadvantages is
that the pixels are not output in raster order and need to be
reordered by frame buffer 111. Additionally, since the pixels
are output in polygon order, it is impossible to merge pixels
from differcnt polygons into a single screen pixel before the
pixels are written into frame buffer 111 as a result the
bandwidth needed into frame buffer 111 is very high.
Another disadvantage is that if the color algorithm requires
information about more than one rasterized pixel in each
screen pixel either a very large frame buffer must be used or
the polygons must be presorted, and presorted does not work
in all cases.

A technique used to produce and transmit pixels in raster
order is implemented with processor per primitive architec-
ture 301 as partially shown in FIG. 3. Processor architecture
301 includes array 303 of n processor-interpolator pairs.
Each processor-interpolator pair of array 303 renders one
polygon over the entire screen. The interpolators used in a
processor per primilive are similar to those interpolators
used in the polygon order system except that since the pixels
arc output in raster order there is no need to outpul the
coordinate of each pixel. Instead, there is a need to indicate
whether or not a given polygon intersects the current pixel.
This can be done by comparing the y-values (vertical
coordinate) of the current pixels against the top and bottom
of the triangle and the x-values (horizontal coordinate) of the
current pixels against the left and right edges of the span at
the current y-value. The outputs of the interpolators of array
303 arc connccted to bus 305. The output data of the
respective interpolators is merged into a single stream by
selecting one of the interpolators that has a polygon that
intersects the current pixel during each clock cycle and
transmitting the pixel that the selected interpolator has
generated, where a clock cycle is defined by the processor to
coordinate transfers of data. During the following clock
cycle, a pext interpolator pixel is transmitted, and so on until
all the active interpolators for the current screen pixel have
transmitted their respectively generated pixels. Once an
entire screen of pixels has been generated and transmitted,
the interpolators then generate and transmit the associated
screen pixels for a next screen and so forth. A method of
merging pixels that may be applied with processor per
primitive architecture 301 is to use several z-value compare
units to determine which interpolator has generated the
frontmost screen pixel and to enable the interpolator with the
frontmost screen pixel to transmit the screen pixel data.
Disadvantages of processor per primitive architecture 301
include the large size of each interpolator processor, the
large number of interpolator processors required, and low
efficiency. Methods to reduce some of the disadvantages
include: presorting the polygons from top-to-bottom,
designing architecture 301 with the least number of proces-
sors required for the most complex scanline, loading the
processors from the top of the list of polygons and, as the
current scan line moves below the bottom of a polygon
loaded into a processor, removing the polygon from the
processor to free up space for a new polygon to be read from
the list of polygons. Despite these improvements, efficient
utilization of processor resources is low and the number of
processors needed is high. Therefore, there continues to be
a need for a more efficient and compact architecture.

30

w
[

40

50

65

4
SUMMARY OF THE INVENTION

In accordance with the present invention, there is pro-
vided a graphics processor, graphics processing system, and
methad for generating a screen image that associates three-
dimensional image data of multiple objects with respective
screen pixels and determine the screen pixel characteristics
in raster order utilizing a single interpolator.

The method of the present invention segments data
describing three-dimensional objects within an x-y planar
window into polygons, compares the polygons to determine
unobstructed polygons, interpolates the polygon data and
associates the characteristics of the unobstructed polygons
screen pixels, and generates a data stream of screen pixels in
raster order which is the order in which the screen pixels are
scannable onto a display.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of a graphics pipeline system
according to the prior art.

FIG. 1B is a block diagram of an alternate embodiment of
a graphics computer system according to the prior art.

FIG. 2A is a block diagram of a conventional rasterizer
implemented within the embodiments of FIG. 1A, 1B.

FIG. 2B is a block diagram of polygon primitives pro-
duced by the embodiments of FIG. 1A, 1B.

FIG. 3 is a block diagram of a conventional array of
interpolators implemented within the embodiments of FIG.
1A, 1B.

FIG. 4 is a block diagram of a graphics computer system
according to the present invention.

FIG. § is a block diagram of a graphics processor imple-
mented according to the present invention within the graph-
ics computer system of FIG. 4.

FIG. 6 is a block diagram represcatation of the processor
array implemented within the rasterizer of FIG. 4.

FIG. 7 is a block diagram representation of the interpo-
lator processor implemented within the processor of FIG. 5.

Like reference numerals refer to corresponding compo-
nents throughout the several diagrams. The most significant
digit of each reference numeral corresponds to the figure
number wherein the reference numeral first appears and the
associated component identified.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 4, a block diagram is shown of graphics
pipeline 401 wherein the present invention is implemented.
Graphics system 401 may be implemented on a single
semiconductor chip and may be optimized for specific
applications to produce a three-dimensional graphics image
utilizing integrated rasterizer 403. Graphics system 401
includes conventional application processor 103 which
stores and operates conventional application software that
generates the description of the scene to be rendered in terms
of a list of graphics objects and data describing the graphics
objects in a special or three-dimensional coordinate system,
conventional transformation processor 105 which converts
the data into a list of graphics primitives in two-dimensional
screen space and a pre-defined rasterizer format, and raster-
izer 403 which rasterizes the list of graphics primitives
utilizing polygon/pixel intersection unit 405 and integrated
interpolator 407.

Graphics system 401 may conventionally define a
selected graphics primitive as a triangle. Each set of tri-

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 87 of 113

5,963,210

5

angles are generated from the raw data describing the
surface of the corresponding three-dimensional object. Tri-
angles in screen (two-dimensional) space are defined by
three coordinates indicating the three points (vertices) of the
triangle. A coordinate in screen space is comprised of two
values, which describe the horizontal (x) and vertical (y)
position of a given point. Additional descriptive information
which is commonly associated with a graphics primitive are
parameters used in visibility calculations, color
determination, and z-value identification of each point. The
z-value indicates the distance from the viewer of that point
which may also be referred to as a depth position. With the
z-value konown at all three points of the triangle the z-value
of any point inside the triangle can be determined, since a
triangle is, by definition, planar, and the coordinates and the
z-value define the plane of the triangle. The z-value is used
in visibility calculations since the z-values of two polygons
at the same point can be compared to determine which is in
front of the other.

Other parameters arc used to determine the color of points
over the surface of the triangle. A common and popular
method is Gouraud shading. This method approximates the
behavior of diffuse illumination. The color at each point of
the triangle is determined in the transformation stage by
using a conventional lighting algorithm, for instance as
discussed by Foley—vanDam in Computer Graphics and
Practice. A lighting algorithm returns a color based on inpuls
that include geometry data, such as normals, color and
material data for the object that is being generated, and
location, color, and other specifications of the lighting
sources in the scene. The color is usually specified as 2
triplet of red, green and blue values. Each color value is
treated as an independent parameter and the value can be
determined at any point inside the triangle since the color is
specified at the three points of the triangle. Other parameters
which may be used include coordinates for texture mapping.
Texture mapping is a lypc of mapping that applies an image
(the texture) to a triangle in a scene. The texture coordinate
parameters define a triangle in the texture image and this
triangle image is warped to fit the triangle being rendered as
part of the scene. In general a triangle is specified by
providing the three coordinates of the points of the triangle
and, at each point, providing the value of the parameters that
are used in this system.

Rasterizer 403 processes the list of graphics primitives
from transformation processor 105 and renders the scene in
refresh order. A current screen pixel is defined as the pixel
in the scene that is currently being rendered. Rasterizer 403
initially defines the current screen pixel as the top-left most
pixel in the output image. As the scene is rendered, the
current screen pixel advances to the right of the screen on the
same horizontal scan line. Once rasterizer 403 has advanced
1o the rightmost pixel of the scan line, rasterizer 403 defines
the next current screen pixel as the first (leftmost) pixel on
the next scan line down. Other alternative refresh
(rendering) processes may be applied by rasterizer 403
which do not render horizontal lines sequentially, such as
interlaced processing in which the scene is drawn twice and
each rendering of a scene comprises every other horizontal
scan line, or, simple reordering processing in which the
scene is rendered from top-to-bottom with vertical scan lines
and rasterizer increments on a columnar basis from left-to-
right as each vertical line is drawn.

Polygon/pixe! intersection unit 405 includes an array of
processors. The processors are similar to the processors ina
processor per primitive system. Each processor is loaded
with one triangle and processes the respective triangle

55

6

regardless of whether the triangle intersects with the current
pixel. Each processor identifics whether the loaded primitive
intersects the current screcn pixel. Since only a single shared
interpolator 407 is utilized, logic to interpolate parameters in
each processor is not needed. Interpolator 407 is needed to
generate the interpolated parameters for each processor only
when the current screen pixel intersects the area of the
triangle loaded in a particular processor.

The polygons (primitives) read from transformation pro-
cessor 105 are loaded into available processars within
polygon/pixel intersect unit 405. Each processor rasterizes
one triangle; however, the utility efficiency of the processors
is improved by reusing processors o operate on multiple
triangles during a single image rendering. Once the current
screen pixel is below the bottom of a triangle, the processor
is done rendering that triangle. If a processor is done
rendering a triangle, the processor can be loaded with a new
triangle as long as the top of the new triangle is below the
current screen pixel. The process may be implemented by
sorting the triangles from top to bottom using the topmost
point in each triangle. This operation is performed after
graphics transformations are completed by transformation
processor 105, or alternatively by rasterizer 403.

The processor array of intersect unit 405 also includes
logic utilized to scan through the pixels on the screen. The
pixels are scanned in raster order and the output of the
scanning logic is the current screen pixel. For each screen
pixel, the outputs of all the processors are scanned. The
output of each processor indicates if the current screen pixel
intersects the area of the triangle. This is done to find which
triangles intersect each screen pixel. The output of the
processor array is a stream of screen pixels where each pixel
is defined by a list of polygon primitives. The polygons in
each screen pixel list are those that intersect the screen pixel.

Interpolator 407 reads in the polygon data and calculates
the value of the parameters for each screen pixel by direct
evaluation of the associated polygon data. The direct evalu-
ation method organizes the polygon data into a format that
describes the respective polygons in terms of equations of
the form v=f(x,y). This organization is developed by apply-
ing conventional mathematical rules, such as y=mx+b and
two points to describe a linc. The direct evaluation method
evaluales a parameter al an arbitrary point within the area of
the triangle polygon directly by applying the respective
equation v=f(x,y).

After being characterized by interpolator 407, the respec-
tive screen pixels are transmitted by rasterizer 403 in con-
ventional format and in the same order as the current screen
pixel is scanned on display 109. Therefore, the rendered
image may be transmitted directly to display 109 from
rasterizer 403. However, frame buffer 111 may be imple-
mented between rasterizer 403 and display 109 to delay
transmission of screen pixel data. If so, frame buffer 111
receives and transmits the rendered image in the same
sequential raster order.

Referring to FIG. §, a flow diagram of an embodiment of
graphics computer system processor 501 including inte-
grated rasterizer 403 is shown which implements the process
of the invention. Graphics system 501 is preferably imple-
mented in circuitry that is more dense for memory than
logic. Logic implementation of graphics system S01 is
preferable if the technology used to construct graphics
system 501 recommends or is preferably implemented in
logic rather than memory.

Integrated rasterizer 403 includes format converter 503
that accepts the polygons from transformation unit 105 and

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 88 of 113

5,963,210

7

transmits the geometry of the triangles to processor array
505 and the parameter data 1o parameter memory 507. This
embodiment of rasterizer 403 separates the processing of
geomelry data from the processing of parameter data and
therefore this data needs to be separated and put into a form
by format converter 503 that is readable by the processors
within array 505 and interpolator 407.

The format of the polygon data provided to format
converter 503 is machine-dependent. The assumption used
in this specification is that the polygons primitives output
from transformation unit 105 are triangles which are
described by three points, each poiat including the coordi-
nate of the point and the values of parameters at the point.

If the format of the polygons output from transformation
unit 105 into format converter 503 arc not triangles, such as
squares, rectangles, pentagons, or circles, or are triangles not
in a three point format then format converter 503 must be
modified accordingly. In such cases, the polygons in the
alternative format may be converted into three point tri-
angles by format converter 503 and then processed as
described herein. Alternatively, rasterizer 403 may be modi-
fied to directly process the alternative primitives or primitive
format, such modification may include the application of
polar or transform, such as fourier- or z-transform, coordi-
nate systems.

Format converter 503 calculates delta values and per-
forms sctup operations, such as with the geometry data to be
transferred to processor array 505. The processors in pro-
cessor array 505 are designed to perform forward-based
differencing operations to calculate the edges of the triangle.
Forward differencing requires data describing the edges of
the respective polygons to be supplied to the respective
processors at a starting value and a delta value. The starting
value is the horizontal position of an edge on the first scan
line that the edge is active. The delta value is the difference
between the position of the edge on the first scan line and the
position of the edge on the next scan line, and since the edge
is a straight line, the delta value is the difference between the
horizontal position of the edge on any two adjacent scan
lines. The polygon primitive data supplied to format con-
verter 503 are provided in a three point format. Format
converter 503 calculates the delta values for the respective
processors. After converting the geometry data, the con-
verted geometry data in the delta format is transmitted by
format converter 503 over bus 509 to processor array 505.

Format converter 503 also uscs the triangle data to
transmit the parameter data in a format readable by inter-
polator 407. Interpolator 407 utilizes the triangle data to
calculate the values of the parameters at a point on the
triangle. Interpolator 407 preferably uses the plane equation
v=Ax+By+C to calculate the value of a parameter of a
triangle at a certain point within the area of the triangle.
Format converter 503 converts the parameter data associated

with each poiat of the respective triangle into the A, B, C

values of the plane equation utilizing the associated geom-
etry data.

The three points of cach triangle are referred to as: a, b,
and c. Each point is defined by a vector including a
coordinate, which is comprised of an x and y value respec-
tively corresponding to horizontal and vertical directions,
and the associated parameters. Each parameter is processed
individually, and therefore only one parameter v is shown in
the following equations.

The conversion is performed utilizing the following steps:

First, the three points a, b, ¢ are re-written into vectors ab

and ac utilizing the following calculations:

—_

0

25

8

ab.x=b.x-a.x, ab.y=b.y-a.y, ab.v=b.v-a.v

4C.X=C.X~a.X, aC.y=C.y-a.y, aC.V=C.v~2.V
where a.x is the x component a.y is the y component and a.v
is the parameter of point a, such that point a is defined as
axayav.

A=ic/ke

Ba=jc/ke

C(ic*a.x+jc*a.y+kc*a.v)ke
where ic={ab.y*ac.v-ab.v*ac.y)

je=(ab.v*ac.x-ab.x*ac.v)

ke=(ab.x*ac.y—ab.y*ac.x)

Once the parameter data has been converted into A, B, C
values, format converter 503 transmits the data over bus 511
into memory array 507.

The parameter and geometry data need to remain associ-
ated so that the interpolator can calculate the correct value
for parameters when it outputs the rendered pixels.

The parameter and geometry data of each triangle is
associated by assignment of a common index number by
format converter 503. The processors in processor array 505
and portions of parameter memory 507 which respectively
receive the parameter and geometry data of a triangle are
also respectively assigned with the associated index num-
bers. A given triangle’s data is assigned an index number
that is not currently in use by format converter 503. The
geometry data output from format converter 503 is stored in
the processor of array 505 ideatified by the same index
number as the index number assigned to the triangle and the
triangle’s geometry data. The parameter data output from
format converter 503 is stored in memory 507 at a location
addressed by the same index number as the index number
assigned 1o the original triangle and the triangle’s geometry
data. In the case when a processor indicates that the triangle
conlained by the processor intersects the current screen
pixel, the index number of the processor may be used to
address the portion of memory 507 containing the parameter
data and to transfer the data to interpolator 407 which
calculates the value of the parameters at the current screen
pixel.

Processor array 505 includes n processors where the
pumber o of processors, which should be greater than the
number of triangles to be rendered, is defined by a graphics
system designer. Processor array 505 is loaded with the
triangle geometry data output from format converter 503,
such that each processor in array 505 is loaded with the
geomelry data from one triangle. Each of the processors
determines whether the current screen pixel is within the
area defined by the geometry of the triangle loaded into the
processor. Array 505 renders one triangle at a time in raster
order, where raster order is defined as that order in which the
screen pixels in a scene are scanned. Each processor renders
one triangle, such that all the pixcls that result from inter-
secting triangles with a screen pixel are output by the
respective processors before any pixels in the next screen
pixel are output. Thus, the scene to be displayed is rendered
by processor array 505 in raster order and is transferred by
array 505 to memory 507 as a stream of screen pixels.

Each pixel output from array 505 is defined by a list of
tokens produced by the processors of array 505. Each token
is produced by a respective processor to indicate whether the
triangle assigned to the processor intersects the screen pixel.
A token includes an index number and two flags. The index
number is the index number of the triangle from which the
geometry data was generated and is used to look up the
parameter data for that triangle in memory 507. The param-
eter data for that triangle is also associated with the same

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 89 of 113

5,963,210

9

index number and is stored in memory 507 at the address
indicated by the index number. The two flag bits are defined
as notvalid and last. When set, the last flag indicates that the
particular token is the last token in a list of tokens associated
with a screen pixel and the notvalid flag indicates that the
particular token is not valid. In the case where a list of tokens
contains a single token that has both the notvalid and last
flag set, no triangles intersect the current screen pixel. If the
notvalid flag is not set, the token indicates that the associated
triangle intersects the current screen pixel.

The four possible token states that may be applied are
therefore:

valid, containing an index that refers to a polygon

(triangle) and indicates that the polygon (triangle)
intersects the screen pixel and may be visible or con-
tribute to the color of the screen pixel;
lastvalid, containing an index that refers to a polygon
(triangle) and indicates that the polygon intersects with

 the screen pixel and may be visible or contribute to the
color of the screen pixel, and that this is the last
polygon associated with the screen pixel;

last notvalid, indicating that there are no polygons asso-

ciated with the screen pixel, and the next token will be
for the next screen pixel; and,

notvalid, containing an index that refers to a polygon

(triangle) and indicates that the polygon (triangle) docs
not intersect the screen pixel which further indicates
that this token is a null token and will not be generated
by the processor array.

Memory 507 has a number of entries equal to the number
of processors of array 505. Each memory address is asso-
ciated with one processor and contains the parameter data
from the triangle whose geometry data is stored with the
respective processor. Memory 505 is addressed with the
index numbers. Each entry in memory 507 contains the ABC
values for all paramcters of the polygon. Memory 507
provides the parameter data to interpolator 407. During each
clock cycle, a token is read from processor array 505. The
index number in the token is used by array 505 to address
and fetch the parameter data set from memory 507. The
parameter set and the flags from the respective token are
then transmitted to intcrpolator 407.

Interpolator 407 cvaluates the data read from memory 507
to determine the valucs of the parameters at the current
pixel. Interpalator 407 determines the values of the param-
eters by evaluating the equation Ax+By+C for each param-
eter and utilizing the A, B, C values read from memory 507.
From these values, interpolator 407 generates the rendered
screen pixels in a format conventionally readable by display
109.

Referring to FIG. 6, a block diagram is shown of proces-
sor array 505. Processor array 505 includes two counters
606, 608 which indicate the current screen pixel. Processor
array 505 includes a plurality of n processors which may be
sixteen or more. The 1st, n-1st, and nth processors 601, 625,
626 are shown in FIG. 6 as representative members of
processor array 505. Processor 601 is shown in detail as
represeatative of the various processors in array 505. The
processors of array 505 calculatc the intersections of the
respective triangles and screen pixels and array 505 trans-
mits the list of triangles that intersect the current screen
pixel. Each processor determines if the triangle stored in the
processor intersects the current screen pixel and transmits a
signal to priority encoder 623 that indicates the result of the
intersection determination. Priority encoder 623 convers the
intersection determination signal into the index number
associated with the triangle that intersects the current pixel.

10

20

25

40

50

55

65

10

Priority encoder 623 includes the array control logic of
processor array 505. The control logic in priority encoder
623 controls counters 606, 608 so that the current screen
pixel remains unchanged for the same number of clock
cycles as there are intersections. Thus, priority encoder 623
transmits one index number for each processor with an
active output (valid token). Priority encoder 623 also sets the
two flags in each token that is output.

For example, if there are sixteen processors in processor
array 505 with four processors containing triangles that
intersect the current screen pixel and these processors have
index numbers 4, 6, 10, 11, then priority encoder 623 will
utilize four clock cycles to transmit the respective tokens.
The fourth token will have the last flag set which causes
priority encoder 623 to increment the clocks 606, 608 to
identify the next current screen pixel to be rendered begin-
ning with the next clock cycle.

Once the last pixel of a frame has been rendered, priority
encoder 623 rescts counters 606, 608 to 0,0 which identifies
the initial current screen pixel for a fame at the top left of the
screen. Counters 606, 608 each include a limit register to
indicate the maximum value for each counter, and define the
resolution of the screen. When horizontal (x) counter 606
reaches a pre-determined maximum value, such as 1024, a
next value will be zero and vertical (y) counter 608 is
incremented by one. When horizontal and vertical counters
606, 608 reach pre-detcrmined maximum values, for
instance 1024, the current screen pixel is the last pixel for a
frame. After a new display list is provided to rasterizer 403
by transformation processor 105, the current screen pixel is
reset to zero and the process for rendering a frame begins
anew.

The processors of array 503 are loaded with the converted
triangles from format converter $03 shown in FIG. 5. If
processor array 505 is desigoed so that the number of
processors is greater than the number of triangles in a scene,
then the various processors of array 505 are loaded with the
triangles before the scene is rendered. Each triangle is
described by various start positions and deltas, whose values
are loaded into a set of registers within the respective
processor.

According to the process implemented by graphics pro-
cessor 401, the triangles are transmitted from transformation
processor 105 in a defined order, sorted by the topmost point
from top-to-bottom. At the beginning of the rendering of a
scene, each processor of array 505 is loaded with a triangle.
As long as the number of processors is greater than the
number of triangles that intersect the first scanline, then all
triangles that may be drawn on the first scanline are loaded
into processors. Each of the triangles are drawn by the
respective processors. Any polygons that do not intersect the
current scanline are identified by the respective processor
and remain inactive in the processor for the first scanline. If
the bottom of a triangle is above the next scanline then the
processor is marked as empty and a new triangle is loaded
into the processor before the next scanline. In this manner,
processor array 505 is kept loaded with triangles that either
intersect the cument scanline or will intersect a future
scanline.

Each processor includes registers 602, 603, 604, 609, 610,
611, 616 and 618 which store the data associated with
respective triangles. Register 602 stores the top y value of
the triangle. Register 603 stores the middle y value of the
polygon, where one edge ends and another begins. Register
604 stores the bottom y of a triangle. Register 609 stores the
initial left delta which defines the slope of the left edge.
Register 611 stores the initial right delta which defines the

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 90 of 113

5,963,210

11

slope of the right edge. Register 610 stores the third delta
which defines the second slope of the Ieft or right side of the
triangle. Register 616 stores the horizontal position of the
left edge of the triangle. Register 618 stores the horizontal
position of the right edge of the triangle.

The top y value may be used to indicate where the triangle
starts in a scene. The middle value may be used in two of the
four classifications of triangles. The classifications of tri-
angles applied by processor array 505 is shown in FIG. 2B.
Top and bottom triangles have onc horizontal edge while left
and right triangles can be viewed as always having one edge
on the right or left side and two edges on the other side.
Control unit 605 classifies the respective triangle and stores
two identification control bits which indicate the triangle
classification. If the triangle is either right or left, then the
middle y value indicates on which scanline the side with two
edges should switch from the upper edge to the lower edge.
The initial deltas are the slopes of the left and right edges of
triangle. If the triangle is either left or right, then there isa
second left or right edge and the delta stored in the initial
register of the side with two edges is the slope of the upper
edge. The slope of the lower edge is stored in third delta
register 610. If the triangle has a top or bottom classification,
then the contents of middle y register 603 and third delta
register 610 are not used. The left and right borizontal
registers 616, 618 are loaded with the initial horizontal
position of the two starting edges. If the triangle has either
left, right or top classifications, then the two values are equal
to the horizontal position of the topmost point. If the triangle
has a bottom classification, then the triangle has two topmost
points which are located at the same vertical position. The
horizontal position of the leftmost points is loaded into left
edge register 616 and the horizontal position of the right-
most point is loaded into right edge register 618.

Control unit 605 comparcs top, middle, and bottom y
values stored in registers 602, 603, 604 with the current y
value stored in counter 606 to determine which edges of the
triangle to use. When the current y value is above the top y
value of the triangle, then the current scanline is above the
triangle and the triangle is not visible in the scanline. When
the current scanline has not yet reached the triangle, the
respeclive processor is off-line and the contents of the
respective registers within the processor, specifically the left
and right registers 616, 618, arc left unchanged. When the
current scanline reaches the top of the triangle, the processor
is placed on-line by priority encoder 623 and the stored
triangle begins the rendering process.

If the current y value is between the top and middle ¥
values, then the triangle is visible in the scanline and the left
and right edge positions must be updated. The left and right
registers ace updated by adding the delta values, the contents
of left delta valuc register 609 for the left edge and the
contents of right delta value register 611 for the right value,
to the values stored in left and right registers 616, 618.

If the triangle is a “left” or “right” trangle, then the
comparison of the middle y value to the current y position
is used. If the current y value is between the middle y value
and the bottom y value, then either the left or right edge
swilches from the initial edge used by the processor on that
side of the triangle to the third edge of the triangle. If the
triangle is a left triangle and the y value is between the
middle and bottom y values, then the contents of left value
register 616 is incremented by the contents of third delta
register 610 and the contents of right value register 618 is
incremented by the contents of right delta register 611. If the
triangle is a right triangle and the y value is between the
middle and bottom y values, then the contents of left value

0

o

12

register 616 is incremented by the contents of left delta
register 609 and the conteats of right value register 618 is
incremented by the contents of third delta value register 610.
Since the third delta value is the slope of the third edge and
the beginning of the third edge is the location where the
previous edge ends, the result of switching to the third delta
value is to switch to the third edge.

If the current y value is below the bottom y value, then the
triangle is not visible on the current scanline and will not be
visible on any scanlines below the current scanline. The
triangle data contains no more useful information in the
rendering of the screen pixels. Therefore, the processor
containing the associated triangle data may be reloaded by
writing the data associated with another triangle over the
data of the prior triangle.

The contents of left and right value registers 619, 620
describe the left and right boundaries of the area covered by
the triangle on the current scanline. This area is generally
called a span of the triangle. If the current screen pixel is
between the left and right bounds of the triangle then the
triangle intersects the current screen pixel and the processor
transmits a valid token {(corresponding to a logical true
state). The current screen pixel is on the current scanline by
definition since the current scanline is specified by the
vertical position of the current screen pixel. Whether the
current screen pixel is within the span of the triangle in the
processor is determined by two equality comparators 619,
620 that compare the current horizontal position against the
contents of left and right value registers 616, 618. Each
equality comparator 619, 620 transmits a logical true signal
when the current screen pixel is on either (or both) the left
or/and right edge of the span. State machine 621 indicates if
the current screen pixel is inside the span with a one bit state
signal. When the left comparison is logically true the state of
the statc machine is set to inside and when the right
comparison is logically true the state is reset to outside.

The truth table of the stage machine is as follows:

leReq righteq current state new state
0 0 0 0
0 0 1 1
0 1 x 0
1 0 x 1
1 1 x 0

where ‘lefteq’ and ‘righteq’ are the outputs of the two
comparators 619, 620. ‘lefteq’ is the result of comparing the
current screen pixel to the left horizontal register and
‘righteq’ is the result of comparing the current screen pixel
to the right horizontal register. The current state is the state
of the machine during the current clock cycle. A positive
state indicates that the triangle is active (valid) at the current
pixel. The new state is the state of the machine during the
next clock cycle. The state of state machine 621 is output to
priority encoder 623.

With further reference to FIG. 5, triangle parameter
memory 507 reads in the tokens output from priority
encoder 623 in processor array 505 and replaces the index in
each token with the contents of parameter memory 507 at the
location addressed by the index from the token. The new
token, containing the parameter data is then output to
interpolator 407. The parameter is needed by interpolator
407 to calculate the values of the parameters over the surface
of the polygon. An alternative to utilizing tokens is to store
the parameter data in each processor along with the triangle
geometry and to include a multiplexer connecting to priorily
encoder 623 so that priority encoder 623 outputs the triangle

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 91 of 113

5,963,210

13

parameter data instead of the index. The alternative embodi-
ment would require an increased size of the data that flows
through processor array 505 and a corresponding increase in
the size of the circuitry, since storing data in memory 507 is
more arca efficient than storing the data in registers within
each processor of array 505.

A flow diagram of interpolator 407 utilized within graph-
ics processor 501 is shown in FIG. 7. lnterpolator 407
calculates the value of the parameters of a triangle at the
interscction of the current screen pixel and the surface of the
triangle. It calculates the valucs of the parameters by direct
evaluation. Since graphics processor 501 has a pipeline
design, processor array 505 generates tokens and then
uploads parameter data from parameter memory 507 before
transmitting the tokens to interpolator 407. This procedure
delays the arrival of tokens with parameter data at interpo-
lator 407 which may be required for a screen pixel that was
before the current screen pixel in processor array 505.
Interpolator 407 thercfore determines an interpolator curreat
screcn pixel with two counters 703, 704, counter 703 tracks
x values and counter 704 tracks y values.

Counters 703, 704 are controlled by the flags of the
incoming tokens. The “last” flag indicates that the list of
tokens that make up a screen pixel has ended and that
counters should be advanced to the next screen pixel.
Interpolator 407 includes two equality comparators 718, 719
to checks for bounds, two registers 720, 721 that store the
right and bottom boundaries of the screen, and decoder 702
that controls counters 703, 704 based on the flags from the
incoming token and the results of comparators 718, 719.

When the last flag is set for the incoming triangle, decoder
702 increments horizontal counter 703. The value stored in
register 720 is the right horizontal boundary of the screen
and is loaded by a host computer system when the computer
system is initialized or is a fixed value if the resolution is
fixed. Similarly, the value stored in registcr 721 contains the
bottom of the screen and is also loaded at initialization. If the
value stored in horizontal counter 703 is equal to the value
stored in x boundary register 720, then, when the next
triangle with the last valid flag set is received, x value
counter 703 is reset to zero and y value counter 704 is
incremented by one. If the value stored by y counter 704 is
cqual to the value stored in y boundary register 718, then,
when x counter 703 is reset to zero, y counter 704 is reset
to zero. When y counter 704 is zero and x couater 703 is zero
then the curceat interpolator pixel is the top left pixel. When
x and y counters 703, 704 are both equal to the boundary
registers then the current pixel is the last on the screen and
at the bottom right. Vertical counter 704 reset to zero
indicates the completion of a scene. Horizoatal counter 703
reset to zero indicates the end of a scanline. In this manner,
the currcnt screen pixel in the interpolator is updated,
scanning from left-to-right and top-to-bottom, keeping in
synchronization with the stream of tokens input from pro-
cessor array 505.

The flag bits 701 remain in synchronization with the
parameter processing and output with the rendering pixel
and the outputs of blocks 714, 715, 716 on output 717.

The data path portion of interpolator 407 includes several
individual intcrpolators 713, 714, 715, 716 of which inter-
polator 713 is shown in detail. Each of the interpolators 713,
714, 715, 716 evaluates one parameter of the triangle at the
current screen pixel. The parameter value is determined by
evaluating the equation Ax+By+C, where x and y are
coordinates of the current interpolator screen pixel and A,B,
and C are the parameter data associated with the triangle that
is in the token transmitted from memory 507 into interpo-

20

25

40

55

65

14

lator 407 and was originally generated from the three-point
form of the triangle in format converter 503. For a Gouraud
shaded triangle with z depth information, four interpolators
713, 714, 715, 716 are needed. Interpolator 713 is applied to
the z-value and interpolators 714, 715, 716 are applied to the
colors: red, green, and blue. Each interpolator 713, 714, 715,
716 is identical in structure, but the precision, in terms of
bit-width of the inputs, outputs, and internal busses vary
based on the precision needed by the parameter. Color
commonly utilize an eight bit result while z-values use a
sixteen bit result.

Each interpolator 713, 714, 715, 716 is comprised of two
multipliers 709, 710 and three operand adder 711. Multiplier
709 multiplies the current horizontal value stored by counter
703 by A value input 707 associated with the triangle.
Mutltiplier 709 performs the Ax portion of the Ax+By+C
calculation of the parameter. Multiplier 710 multiplies the
current vertical value stored in counter 704 by B value input
708 associated with the triangle. Multiplier 710 performs the
By portion of the Ax+By+C calculation of the parameter.
Three operand adder 711 outputs the sum of three inputs
707, 708, 712. Adder 711 can be constructed from two
operand adders by summing two of the inpuls in one two
operand adder and summing the output of the first adder with
the third input. Three operand adder 711 sums the results of
multipliers 709, 710 with C value input 712 associated with
the triangle. The result is the value of the parameter at the
current screen pixel for the input triangle.

In an alternate embodiment of graphics processor 501,
rather than convert the triangles into the Ax+By+C form, the
paramcter data is directly evaluated from the triangle data.
This is accomplished by finding the values of the parameters
at the intersection of the left and right edges with the current
scanline and then finding the intersection of the line defined
by those two endpoints with the current pixel. The alternate
embodiment works directly from the three point definition of
the triangle (o determine the valuc of the parameter at a point
on the screen. It does this by finding the left and right edges
that intersect the current scanline. The edges are defined by
their endpoints. The intersection of an edge and the scanline
is found by solving the following equation:

vy =(y/(p2.y-pl.y)=(p2.v-pl.v))+ply

where x,y are the coordinates of a point, v is the parameter,
pl.x is the x value of the first point, pl.y is the y value of
the first point, p2.x is the x value of the second poiat, and
p2.y is the y value of the second point.

The value of the parameter at both intersections is deter-
mined by the above equation and the value of x for both
edges is calculated. The value of the parameter is found by
the following equation:

wy)=(x/(xtight-xleft)*(vright~vief))+vieft

where vleft and vright are the values of the parameter at each
endpoint and xlelft and xright are the horizontal position of
the intersection.

The combined equation is:

wy) = (x/({y/(p4-y—p3-y)=(pd-x~p3-x}+ p3-x) =
Wi p2-y-pl-y)e(p2-x—pl-x)+ pl-x)s
Wy/pd-y-p3-y)=(pd-v—p3-v)+p3-v)-

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_ Page 92 of 113

5,963,210

15

-continued
(yip2-y-pl-»=@p2-v-pl-N+pl-+

(y/(p2-y=pl-y=(p2-v—pl-v)+pl-V)

where the cdges are p1-p2 and p3-p4. The combined equa-
tion replaces Ax+By+C in the first embodiment.

Although the invention herein has been fully described, it
may be appreciated that various of the structures described
herein may be implemented either in hardware, software, or
combinations thereof.

What is claimed is:

1. A graphics processor for providing an image from a set
of data describing at least one three-dimensional object
within a bounded space extending from a display screen, the
graphics processor comprising:

a processor array for identifying portions of the data
mapping a particular area of the display screen and for
rendering the identified portions of the transformed
data in an order, the processor array further including
a plurality of primitive processors, each of the plurality

of primitive processors for processing a correspond-
ing portion of the data and for identifying whether
the corresponding portion of the data intersects the
particular area; and

a single interpolator coupled to the processor array for
determining a visible portion of the identified portions
associated with the particular area and characterizing
the selected area according to a portion of the data
associated with the visible portion.

2. The graphics processor of claim 1 wherein each of the
plurality of primitive processors is further for providing an
output if the corresponding portion of the data intersects the
particular area.

3. The graphics processor of claim 2 wherein the data
includes geometric data and parameter data, and wherein:

the plurality of processors are for processing a corre-
sponding portion of the geometric data associated with
the corresponding portion of the data.

4. The graphics processor of claim 3 wherein the single
interpolator is further for interpolating a parameter data for
the visible portion of the data.

5. The graphics processor of claim 4 wherein the refresh
order is the order that screen data is provided to the display
screen to generate a screen image.

6. A graphics processor comprising:

a transformation processor for producing a set of trans-
formed data according to a set of instructions from a set
of raw data describing at least one threc-dimensional
object within a bounded space extending from a display
screen;

a rasterizer coupled to the transformation processor for
identifying portions of the transformed data mapping a
pre-defined area of the display screen in parallel and for
sequentially rendering the identified portions of the
transformed data in a pre-determined refresh order, the
refresh order being the order that screen data is pro-
vided to the display screen to generate a screen image,
the processor further including
a processor array including a plurality of primitive

processors, each of the plurality of primitive proces-
sors for processing a corresponding portion of the
transformed data and for identifying whether the
corresponding portion of the transformed data inter-
sects the pre-defined area; and

a single interpolator coupled to the rasterizer for deter-
mining a visible portion of the identified portions

w
th

40

45

55

60

65

16

associated with the pre-defined area and characterizing
the pre-defined area according to transformed data
associated with the visible portion.
7. The graphics processor as in claim 6 wherein the
graphics processor includes;

an application processor including a software application,
the software application including the set of instruc-
tions for generating the screen image.

8. The graphics processor as in claim 6 wherein the set of
transformed data comprises multiple sets of primitive data
respectively describing planar geometric shapes and param-
eter data associated with respective of the sets of primitive
data, each of the planar geometric shapes describing a
respective surface portion of the three-dimensional object.

9. The graphics processor as in claim 8 wherein the
rasterizer includes a memory for storing the associated
parameters of the respective multiple sets of primitive data.

10. The graphics processor as in claim 6 wherein the
interpolator includes:

a single interpolator processor connected to the processor
array for sequentially evaluating and comparing data
from each primitive processor associated with the pre-
defined area to determine the visible portion, the single
interpolator processor determining the visible portion
associated with each area of the display in the refresh
order.

11. The graphics processor as in claim 6 wherein the
predefined area comprises a screen pixel, a set of the screen
pixels define a screen image for display on the display
screen, the refresh order defining a pre-determined order of
a data stream of the screen pixels for transmission to and
illumination of the display.

12. The graphics processor of claim 6 wherein each of the
plurality of primitive processors is further for providing an
output relating to the corresponding portion of transformed
data if the corresponding portion of the transformed data
intersects the pre-defined area.

13. A graphics processor system comprising:

a graphics processor including:

a transformation processor for producing a set of trans-
formed data according to a sct of instructions from a
set of raw data describing atl least one three-
dimensional objects within a bounded space extend-
ing from a display screen;

a rasterizer coupled to the transformation processor for
identifying portions of the transformed data mapping
a pre-defined area of the display screen in parallel
and sequentially rendering the identified portions of
the transformed data in a pre-determined refresh
order, the refresh order being the order that screen
data is provided to the display screen to gencrate a
screen image, the rasterizer further including
a processor array including a plurality of primitive

processars, each of the plurality of primitive pro-
cessors processing a corresponding portion of the
transformed data and identifying whether the cor-
responding portion of the transformed data inter-
sects the pre-defined area;

a single interpolator coupled to the rasterizer for deter-
mining a visible portion of the identified portions
associated with the pre-defined area, characterizing
the pre-defined area according to transformed data
associated with the visible portion, and providing
rasterized data inctuding the visible portions; and

a display producing an image by scanning the raster-
ized data in the refresh order.

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 Page 93 of 113

5,963,210

17

14. The graphics processor system as in claim 13 includ-
ing:

a memory connecting to the graphics processor and

storing the rasterized data.

15. The graphics processor system as in claim 13 includ-
ing:

a user interface providing access by a user to the graphics
processor to accommodate the insertion of instructions
and data by the user to the system.

16. The graphics processor system as in claim 13 wherein

the graphics processor includes:

an application processor including a software application,
the software application including the set of instruc-
tions for generating the screen image.

17. The graphics processor system as in claim 13 wherein
the set of transformed data comprises multiple sets of
primitive data respectively describing planar geometric
shapes and parameter data associated with respective of the
sets of primitive data, each of the planar geometric shapes
describing a respective surface portion of the three-
dimensional object.

18. The graphics processor system as in claim 13 wherein
the interpolator further includes:

a single interpolator processor connected to the processor
array for sequentially evaluating and comparing data
from each primilive processor associated with a
selected respective area to determine the visible
portion, the single interpolator processor determining
the visible portion associated with each area of the
display in the refresh order.

19. The graphics processor system as in claim 13 wherein
the pre-defined area comprises a screen pixel, a set of the
screen pixels define a screen image for display on the display
screen, the refresh order defining a pre-determined order of
a data stream of the screen pixels for transmission to and
illumination of the display.

20. The graphics processor system as in claim 19 wherein
the rasterizer includes a memory for storing the associated
parameters of the respective multiple sets of primitive data.

21. The graphics processor system of claim 13 wherein
each of the plurality of primitive processors is further for
providing an output relating to the corresponding portion of
transformed data if the corresponding portion of the trans-
formed data intersects the pre-defined area.

10

25

30

18

22. A method for producing a graphics image including
the steps of:

obtaining data describing a three-dimensional object
within a space bounded in two directions x,y, the space
including a reference plane in the x,y directions, the
reference plane including an identifiable area, the three-
dimensional object having a plurality of surface por-
tions;

transforming the data into a plurality of geometric data
blocks describing a plurality of geometric surfaces, the
plurality of geometric surfaces describing the plurality
of surface portions of the three-dimensional object;

identifying a plurality of geometric data blocks which
map a portion of the plurality of geometric surfaces
onto the identifiable area of the reference plane, the
geometric data blocks being identified in parallel in a
plurality of primitive processors, cach primitive pro-
cessor processing a corresponding one of the plurality
of geometric data blocks; and

identifying a visible data block defining a geometric
surface that is nearest to the identifiable area along an
axis extending perpendicularly from the area of those
surfaces described by the identified geometric data
blocks, the visible data block being identified by a
single interpolator.

23. The method as in claim 22 wherein the method

includes:

generating the screen image according to a set of instruc-
tions.
24. The method as in claim 22 including the steps of:

interpolating the visible data block to determine a point on
the perpendicular axis;
characterizing the selccted arca according to transformed

data associated with the point; and
generating a set of screen data characterizing the selected
area and successively selected arcas obtained by repeat-
ing the prior steps, the set of screen data being gener-
ated in refresh order for directly scanning a screen
image onto a display.
* » *

L

Case 5:01-cv-00362-DF Document 4 Filed 12/14/01 -Page 94 of 113

az United States Patent

US006178198B1

10y Patent No.: US 6,178,198 B1

Samueli et al. 5) Date of Patent: *Jan. 23, 2001
(54) APPARATUS FOR, AND METHOD OF, 5,617,450 * 4/1997 Kakuishi et al. coverucervsicrons 375/230
PROCESSING SIGNALS TRANSMITTED 5,638,409 * 6/1997 Awataetal. . 375/355
OVER A LOCAL AREA NETWORK 5,724,397 * 3/1998 Torsti .. . 375/355
5,748,674 * 5/1998 Lim 3757233
(75) Inventors: Henry Samuell, Northridge; Fang Lu,
Irvine; Avanindra Madisetti, Torrance, OTHER PUBLICATIONS
all of CA (US) Joshi, Robiadra B. et al,, “WP 4.2: A 100 MHz, SMBaud
(73) Assignee: Broadcom Corproation, Irvine, CA QAM Decision-Feedback Equalizer for Digital Television
(US) Applications” 1994 IEEE International Solid-State Circuits
. . . Conference, ISSCC94/Session 4/Video and Communication
(*) Notice: This patent issued on a continued pros- Signal Processors/Paper WP 4.2 pp. 68—69.
ic;;((c’;; ?;%h;asl:,?egetg t%:dt:;eiz Cfﬁ Martin, James et al., “Local Area Networks Architectures
: ’ Je! Yy and Implementations™ Second Edition, 1994, pp. 167-170,
patent term provisions of 35 US.C. 204
154(a)2).)
Under 35 U.S.C. 154(b), the term of this (List continued on next page.)
patent shall be extended for 0 days.
Primary Examiner—Amanda T. Le
(21) Appl. No.: 08/976,557 (74) Attorney, Agent, or Firm—Christie, Parker & Hale,
(22) Filed: Nov. 14, 1997 LLP
&) ABSTRACT
(51) Imt.CL7 HO3K 11
Digital signals provided by a repeater connected to a plu-
(52) US.CL e 375/214; 375/232; 375/233; rality of clients by unshielded twisted wire pairs, are con-
375/286; 375/355 verted to analog signals which become degraded during
transmission through the wires. Clients convert the degraded
(58) Field of Searchconienenns 375/214, 232, ana]og signals to dlgltal Signals. D1g1tal sigual PhaSCS are
375/233, 348, 355, 222, 229, 286; 708/322, coarsely adjusted to have assumed zero crossing times
323 coincide in-time with a clock signal zero crossing. Signal
(56) References Cited polarity, and the polarity of any change, is determined at the
assumed zero crossing times of the digital signals. Pre-
U.S. PATENT DOCUMENTS cursor and post-cursor responses, resulting from signal
3962637 6/1976 Molley et al. .o 37547 degradation, are respectively inhibited by a feed forward and
4;597:089 6/1986 Motley et al. " 37513 2 decision feedback equalizer. The time duration of post-
4,599,732 7/1986 LeFever 375/13 cursor response is further inhibited by a high pass filter and
4,864,590 9/1989 Arnon et al. 375/14 a tail canceller. Phase adjustments are made, after response
5,003,555 3/1991 Bergmans ..o 375/12 inhibition, by determining the polarity, and the polarity of
5,031,194 * 7/1991 Crespo et 8l coovvveerinnrirevacees 375/230 any change, at the assumed zero crossing times. Before
?gg;g 1_115123:1; z:eﬁ ggﬁﬁ phase adjustments are made, a phase offset is provided in
,230, e L
5276711 1/1994 Rossi ... 375/106 ?hrg‘ﬁngiccﬁ?xﬁ;fxg”:éegma"""s introduced by
5444712 8/1995 Betis et al 370/110.1 pairs.
5,559,840 9/1996 Melas et al.
5,604,741 2/1997 Samueli et al. 51 Claims, 6 Drawing Sheets
20
INPUT 4B58 MLT DTOA
100Mb/s ENCODER SCRAMBLER ENDCODER CONVERTER ”_0::3—]/
1
L36 38 L42 L46 60 l
52 =30 64 =48 g
MLT=3 ATOD |
DESCRAMBLER DECODER EQUALIZER CONVERTER ||‘§} —3
— 66 62
TIMING
ouTPUT [5848 RECOVERY
—joOMo/s| DECODER t 6
-
\54 CLOCK =—I::|
GENERATOR | ==
EXHIBIT
| c

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 _Page 95 of 113

US 6,178,198 B1
Page 2

OTHER PUBLICATIONS Anderson, John B., “Digital Transmission Engineering”

. IEEE Press, 1999, S ization—C| . PP
Razavi, James et al., “Monolithic Phase-Locked Loops and 193199, 99, Synchronization—Chapter 4, pp
Clock Recovery Circuits” IEEE Press, 1996, Tutorial pp. ’

2-7. * cited by examiger

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01~ Page 96 of 113

U.S. Patent Jan. 23, 2001 Sheet 1 of 6 US 6,178,198 B1

FIG.1

PRIOR ART —— — — —Siormin— < —

CLIENT

PRIOR ART
MIl INTERFACE ~ 34
r ‘ 2
36— 4858 4B5B — 54
ENCODE DECODE
‘]
38~ SCRAMBLER DESCRAMBLER [~ 22
i
|
42 MLT—3 MLT-3 }~50
ENDCODER DECODER
[1
46— D TO A 47
CONVERTER EQUALIZER
//-40
FIC.3 0]/t 11 10/1[0 O SCRAMBLED BITS
PRIOR ART 1 1T 1 1 MLT-3 WAVEFORM

C(-10 O \\44

US 6,178,198 B1

Sheet 2 of 6

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01-~Page 97 of 113
Jan. 23, 2001

U.S. Patent

T | ¥OLvy3Ni9
——_| A207D G
89— A
1 ¥30003@ [S/9N00I
AYIA0D3Y aras 1Nd1N0
ONINIL
c9 _ 99— |.—
TD M:I mmwmwwz% > =]_¥3Z1vno3 mmmmwm‘o ={4318Wv80S3a
_ gy — v9—" 05— 26—
_ 09 9y Zy 8¢ 9¢
! A\ \ 1 1\ ,
_, Dl__ v 0L @ LN [T 8318NVE0S g58% LGN

(074

Vald

US 6,178,198 B1

Sheet 3 of 6

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01-Page 98 of 113
Jan. 23, 2001

U.S. Patent

—~——(SQ0I¥3d TOENAS) INWIL

0S G Or G O 6Z 0Z SL OL S 0O
T T T T T T T T T O—,.Ol
............................... 000
/
9zl
0L'0
v\l g
\ u g AAR
¥3TIIONVD ozt 1060
VL .
o — 00
901 *
¥3ZIvN03 97914
MOVEq33 ¥9
NOISID30 ~\
vil s 7ot ¥3ZIVNO
1\ HZILNYAD VA0 w M3 ¥3LYIANOD
) 0334 SSYdHOIH Indino a/v| 4oLV
NOISID3g ¢t NOISIO3Q 201 =" 001 — gy —
Q¥vH 140S

GII1d

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01-.Page 99 of 113

U.S. Patent Jan. 23, 2001 Sheet 4 of 6 US 6,178,198 B1
0.50
0.40+

20 30 40 S0
SYMBOL PERIODS

\co FIG.8
RN

B

SYMBOL ’
—— ~_y3 | PERIOD

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 -Page 100 of 113

US 6,178,198 B1

Sheet 5 of 6

Jan. 23, 2001

U.S. Patent

T3NNVHO

anv WO

8y 01l 914
QI0HS3YHL JAILdVAY
0g (0374 0} 074]! 0

8/ Ge'L—
III!» lllllll b e N Y e] mN.O|

08
RN AW A AN A= T D ke
\ / // ; /.\\ \ N \/ ; e
I NP A O/ U N RN W/ S 2 N W v — I 1sz0

i N NNN \\\\

e Z8 .
el e e B 7 iinint t uints | Sttt mini ittty Rttt <||lmmo
|||||||||||||||||||||||||||||||| &Hﬁﬁﬁﬂﬁwwnu|liu|uW|nLmN.—

0L YL

i

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 —-Page 101 of 113

U.S. Patent Jan. 23, 2001 Sheet 6 of 6 US 6,178,198 Bl
+ 82 0] + 0
Vi
0 86 0 e
V \
0 84 0
0 - 0 =
+0 TRANSITION —0 TRANSITION 0+ TRANSITION 0— TRANSITION
\ /
N

+ 140 _.--151 CORRUPTED
ZERO SAMPLE

....... 151 REDUCED
s ZERO SAMPLE
Z0-Vo-VorF

FIG.13

B T

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 ~-Page 102 of 113

US 6,178,198 B1

1

APPARATUS FOR, AND METHOD OF,
PROCESSING SIGNALS TRANSMITTED
OVER A LOCAL AREA NETWORK

This invention relates to systems for, and methods of,
providing for the transmission and reception of signals
through unshielded twisted pairs of wires between a repeater
and a plurality of clients. The invention particularly relates
to systems for, and methods of, using digital techniques for
enhancing the recovery, and the quality of such recovery, of
the analog signals passing through the unshielded twisted
pairs of wires to the client so that the information repre-
sented by such analog signals will be accurately recovered
at the client.

BACKGROUND OF THE INVENTION

In a hub-and-spoke network topology, a repeater resides
on a hub. The repeater facilitates an exchange of data
packets among a number of clients. A client can be a
computer, a facsimile machine, another computer, etc. The
repeater serves several ports where each port is connected to
an individual one of the clients with a separate point-to-point
link between the repeater and such client.

In 2 100BASE-TX signalling protocol, unshielded twisted
pairs of wires constitute the point-to-point link between the
repeater and each of the clients. Each link consists of two
pairs of unshielded twisted wires. One pair of the unshielded
twisted wires provides for a transmission of data from the
repeater to an individual one of the clients. The other pair of
the unshielded twisted wires provides for a transmission of
data from the individual one of the clients to the repeater.

When information is illustratively transmitted from the
repeater to an individual one of the clients in a 100BASE-
TX system, the information is originally in digital form. The
digital information may represent individual ones of a
plurality of analog levels. Specifically, in a 100BASE-TX
System, the digital signals may represent analog levels of
+1, 0 and -1.

The digital information at the repeater may be converted
to analog form and then transmitted in analog form through
the unshielded twisted pair of wires to the individual one of
the clients. The transmitted signals are received in analog
form at the individual one of the clients. The received signals
are then processed to recover the transmitted information
represented by the analog information.

The distance between the repeater and the individual one
of the clients may be as great as one hundred meters. The
unshielded twisted pair of wires coupling the repeater and
the individual one of the clients produces a degradation in
the characteristics of the signals as the signals pass through
the unshielded twisted pair of wires. The amount of the
degradation rapidly increases with increases in the length of
the unshielded twisted pair of wires connected between the
repeater and the individual one of the clients.

The degradation results in part from Inter Symbol Inter-
ference (ISI), signal attenuation, crosstalk, clock jitter and a
number of other factors. Such degradation severely distorts
the transmitted data signals. The degradation also results in
part from the fact that the analog information transmitted
from the repeater to the individual one of the clients is also
received at the other clients connected to the repeater and is
reflected back to the repeater, thereby affecting the charac-
teristics of the signals transmitted from the repeater to the
individual one of the clients.

Analog techniques have been used in the prior art to
process the analog signals received at the individual one of

55

60

65

2

the clients. These analog techniques have not been com-
pletely effective in eliminating the degradation or distortions
in the signals received at the individual one of the clients.
This has caused errors to be produced in the information
received and processed at the individual one of the clients.
This has been true even though the 100BASE-TX system
provides substantially greater noise immunity than other
types of systems and is able to handle smaller signal levels
than other types of systems.

BRIEF DESCRIPTION OF THE INVENTION

This invention relates to a system for, and method of,
converting analog signals received at a client from a repeater
to corresponding digital signals. The digital signals are
processed to shift the times for the production of the digijtal
signals so that the digital signals are produced at the zero
crossings of clock signals having a particular frequency. The
digital signals are also processed to determine at each instant
the magnitude of the digital signals closest to the magnitude
representing individual ones of a plurality of amplitude
levels such as +1, 0 and -1 and to then convert such
magnitude to such closest one of such amplitude levels. In
this way, the information represented by the transmitted
signals is accurately recovered at the client.

In one embodiment of the invention, digital signals pro-
vided by a repeater connected as by unshielded twisted pairs
of wires to a plurality of clients are converted to analog
signals. The analog signals become degraded during trans-
mission through the wires. At the client, the degraded analog
signals are converted to digital sigrals. Initially, the phases
of the digital signals are coarsely adjusted to have the times
assumed for a zero crossing of the digital signals coincide in
time with the zero crossing of a clock signal. This phase
adjustment is made by determining the polarity, and the
polarity of any change, in the digital signals at the time
assumed to be the zero crossings of the digital signal.

Subsequently the pre-cursor and post-cursor responses
(resulting from the signal degradations) in the digital signals
are respectively inhibited by a feed forward equalizer and a
decision feedback equalizer. A high pass filter and a tail
canceller also inhibit the post-cursor response of the digital
signals by limiting the time duration of the post-cursor
response.

Phase adjustments are made in the resultant digital
signals, after the inhibition in the pre-cursor and post-cursor
responses, by determining the polarity, and the polarity of
any change, in the digital signals at the times assumed to be
the zero crossings of the digital signals. However, before any
phase adjustments are made, a phase offset is provided in the
digital signals to compensate for phase degradations pro-
duced in the signals passing through the unshielded twisted
pairs of wires.

Although the invention is discussed in this application
with reference to the 100BASE-TX system, it will be
appreciated that the invention is not limited to the
100BASE-TX system. For example, the invention is appli-
cable to any 100BASE-TX system. The invention is also
applicable to other systems.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a schematic diagram, primarily in block form, of
a system known in the prior art and including a repeater, a
plurality of clients and a plurality of links (¢.g., unshiclded
twisted pairs of wires) each connected between the repeater
and an individual one of the clients;

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 ~Page 103 of 113

US 6,178,198 B1

3

FIG. 2 is a schematic diagram, primarily in block form, of
a system known in the prior art for encoding information in
digital form at the repeater, converting the digital informa-
tion to analog information at the repeater, transmitting the
analog information to a client, converting the analog infor-
mation to digital information at the client and decoding the
digital information at the client to recover the transmitted
information;

FIG. 3 is a schematic diagram showing how digital bits of
information are scrambled at the receiver in the prior art and
how the scrambled bits are encoded at the repeater to a
sequence of bits having a plurality of amplitude levels such
as +1, 0, and -1;

FIG. 4 is a circuit diagram, primarily in block form, of a
system known in the prior art for encoding information in
digital form and transmitting the information in an analog
form to a client and of a system included as one embodiment
of the invention for digitally processing the analog signals
received at the client to recover the encoded information;

FIG. 5 is a circuit diagram, primarily in block form, of a
system, including equalizers, for inclusion in the embodi-
ment shown in FIG. 4 to process digitally the analog signals
received at the client and to produce signals representative
of individual ones of the plurality of amplitude levels such
as +1, 0 and -1;

FIG. 6 is a curve schematically illustrating the pulse
response of a link (e.g. unshiclded twisted pairs of wires)
connected between the repeater and the client in the system
shown in FIGS. 4 and §;

FIG. 7 is a curve similar to that shown in FIG. 6 and
illustrates the response of the system after an operation of a
high pass filter included in the embodiment shown in FIG.
5 in limiting the length of a tail in the cable response shown
in FIG. 6;

FIG. 8 is a curve similar to that shown in FIGS. 5 and 6
and illustrates the response of the system after an operation
of a tail canceller included in the embodiment shown in FIG.
5 in limiting the length of the tail in the cable response
shown in FIG. 6;

FIG. 9 shows curve illustrating the pattern of digital
signals encoded at the repeater at the different amplitude
levels such as +1, 0 and -1 and the pattern of the analog
signals received at the client as a result of such encoding at
the repeater;

FIG. 10 illustrates the adaptive thresholds for controlling
whether the digital signals produced at each instant at the
client represent individual ones of a plurality of amplitude
levels such as +1, 0 and -1,

FIG. 11 shows different timing relationships between (a)
a voltage assumed at the client to be at a zero crossing in the
production of digital signals at the client and (b) a zero
crossing of a clock signal at a particular frequency, these
timing relationships being used to adjust the time at which
the voltage is assumed to be at the zero crossing;

FIG. 12 illustrates the timing offset, made in the voltage
assumed at the client to be at a zero crossing in the
production of digital signals at the client, to compensate for
the phase degradation produced during the passage of sig-
nals through the unshielded twisted pair of wires connected
between the repeater and the client; and

FI1G. 13 provides timing relationships similar to those
shown in FIG. 11 but including the effects of the offset
shown in FIG. 12.

DETAILED DESCRIPTION OF THE
INVENTION
The discussion in this specification may be considered to
relate specifically to 2 100BASE-TX system for the pur-

30

40

45

55

60

65

4

poses of explanation and understanding of the invention.
However, it will be understood that the concepts of this
invention and the scope of the claims apply to other types of
systems than the 100BASE-TX system. For example, the
concept of this invention and the scope of the claims apply
to any 100BASE-TX system. For example, the concepts of
the invention and the scope of the claims also apply 1o other
systems than 100BASE-TX systems.

FIG. 1 illustrates a system, generally indicated at 10, of
the prior art. The system includes a repeater 12 and a
plurality of clients 14, 16 and 18. The repeater 12 facilitates
the exchange of data packets between the repeater and the
clients 14, 16 and 18 and among the clients. Each of the
clients 14, 16 and 18 may be a computer, a facsimile
machine, another repeater or a number of other different
types of equipment. The clients 14, 16 and 18 may be
respectively connected to the repeater 12 as by cable or links
20, 22 and 24. The cables or links 20, 22 and 24 may be
respectively connected to ports 26, 26 and 30 in the repeater
12.

Although the following discussion relates to the transfer
of information from the repeater 12 to individual ones of the
clients 14, 16 and 18, it will be appreciated that the infor-
mation transfer may be from individual ones of the clients
14, 16 and 18 to the repeater 12 without departing from the
scope of the invention. Furthermore, a different number of
clients than three (3) may be connected to the repeater 12
without departing from the scope of the invention.

The cables or links 20, 22 and 24 may constitute pairs of
unshielded twisted wires. Two pairs of such wires may be
provided between the repeater 12 and each individual one of
the clients 14, 16 and 18. One pair of such wires provides for
a transmission of information from the repeater 12 to the
individual one of the clients 14, 16 and 18. The other pair of
such wires provides for the transmission of information from
the individual one of the clients 14, 16 and 18 to the repeater
12.

In the prior art, each of the links 14, 16 and 18 severely
distorts the transmitted data packets. The amount of the
degradation rapidly increases with increases in the length of
the link. The degradation results from Inter Symbol Inter-
ference (ISI), signal attenuation, crosstalk, clock jitter, etc.
Therefore, an adaptor is provided to couple data reliably to
and from the link. The adaptor provides the interface to a
computer on oane side (e.g., ISA, EISA, PCI, etc.) of the
adaptor and to the links such as the link 14 on the other side
of the adaptor. It can also include circuitry such as a
transducer to transmit data to, and receive data from, a link
such as the links 14, 16 and 18.

A transceiver generally indicated at 32 is shown in FIG.
2 and is known in the prior art with respect to most of the
blocks shown in FIG. 2. The transceiver 32 includes a
standard connector designated as a Media Independent Inter-
face (MII) 34. The Media Independent Interface 34 may be
a four (4)-bit wide data path in both the transmit and receive
directions. Clocked at a suitable frequency such as 25 MHz,
it results in a net throughput in both directions of data at a
suitable rate such as 100 Mb/sec. It provides a symmetrical
interface in both the transmit and receive directions and may
have a total of forty (40) clock, data and control pins.

The input data passes through the Media Independent
Interface 34 in FIG. 2 to a 4B5B Encoder 36. The input data
is grouped into nibbles (or groups of four (4) bits each). Each
4-bit nibble is then encoded to produce a five (5)-bit symbol.
The 4B5B encoding was originally provided to (1) maintain
dc balanced codes—in other words, equal numbers of 1’s

Case 5:01-cv-00382-DF Document 4 Filed 12/14/01 ~Page 104 of 113

US 6,178,198 Bl

5

and 0’s, (2) introduce redundancy so that control informa-
tion can be distinguished from data, and (3) provide suffi-
cient transitions to facilitate clock recovery. A consequence
of 4B5B encoding is that the data rate increases to a suitable
rate such as 125 Mb/sec. and the coding efficiency is reduced
to eighty percent (80%) because of this increase in data rate
without a corresponding increase in the amount of data
processed.

The 5B encoded symbols from the encoder 36 are intro-
duced to a scrambler 38 in FIG. 2. The 5B encoded symbols
are scrambled to ensure that the transmitted spectrum com-
plies with the Federal Communications Commission (FCC)
mandates on EMI. The scrambler 38 may be a maximal-
length Pseudo Noise (PN) sequence generator with a period
of 2047 bits. It is generated by an 11-b linear feedback shift
register (LFSR). The output bits from the scrambler 38 are
generated recursively as X(n)=X(n-11)+X(n-9). The
pseudo-random bit stream produced by the scrambler 38 is
exclusive-or’d with the transmit datastream. Scrambling
destroys the dc balance and transition properties of the 5B
codes.

The scrambled bits are indicated schematically at 40 in
FIG. 3. The scrambled bits 40 are encoded by an MLT-3
encoder 42 to produce bits indicated at 44 in FIG. 3. The
scrambled bits 40 provide a binary 1 when a transition is to
be made in the amplitude level between symbol values of
+1, 0 and ~1. If a scrambled bit is a 0, the amplitude level
of the previous bit in the sequence 44 is retained. By
controlling the transitions (not allowing a direct transition
between states +1 and -1), MLT-3 signalling limits the
maximum frequency to 31.25 MHz (Nyquist frequency is
62.5 MHz).

The signals from the MLT-3 encoder 42 are introduced to
a digital-to-analog converter 46 and the resultant analog
signals are passed through one of the links such as the link
in FIG. 1. The signals at the other end of the link such as the
link 20 are then processed by an analog equalizer 47 and the
resultant signals are introduced to an MLT-3 decoder 50. The
MLT-3 decoder operates to decode the signals previously
encoded by the MLT-3 encoder 42. The decoded signals then
pass to a descrambler 52 which operates to descramble the
signals previously scrambled by the scrambler 38. A 4B5B
decoder then operates to decode to four (4) bits the five (5)
bit encoding provided by the encoder 36. The signals in the
four (4) bit format then pass to the Media Independent
Interface 34.

The signals passing through the link such as the link 14 in
FIG. 1 have not been converted in the prior art to the digital
form such as provided as at 48 in FIG. 4 in the embodiment
of this invention. Instead, the signals passing through the
link such as the link 20 have been processed in the prior art
in the analog form. This has prevented the distortions
produced in the links such as the link 20 from being
eliminated to the extent that they are eliminated when the
signals are processed in the digital form as in the embodi-
ment of this invention. Furthermore, as will be seen from the
subsequent discussions, applicants use individual techniques
in this invention to process the signals in the digital form.
These individual techniques have not been provided in the
prior art. These individual techniques cause the information
represented by the digital signals to be recovered with an
enhanced accuracy relative to that obtained in the prior art.

FIG. 4 illustrates a circuit diagram, primarily in block
form, of applicants’ invention when incorporated in the prior
art system shown in FIG. 2. In FIG. 4, the blocks common
to the blocks shown in FIG. 2 are given the same numerical

45

6

designations as the corresponding blocks shown in FIG. 2.
However, additional blocks are shown in FIG. 4 and these
are given individual identifications in FIG. 4. These include
a transformer 60 between the digital-to-analog converter 46
and the link 20 and a transformer 62 between the link 20 and
the analog-to-digital converter 48.

A block generally indicated at 64 and generically desig-
nated as an equalizer receives the output of the analog-to-
digital converter 48 in FIG. 4. The equalizer 64 is shown in
detail in FIG. § and will be described in detail subsequently.
The digital signals from the analog-to-digital converter 48
are also introduced to a timing recovery stage 66, the output
of which passes to the analog-to-digital converter 48 to
control the operation of the converter. The operation of the
timing recovery stage 66 is controlled by a clock signal
generator 68 which generates clock signals at a particular
frequency such as approximately 125 MHz. The operation of
the clock signal generator 68 may be crystal controlled as at
70. In addition to receiving inputs from the analog-to-digital
converter 48, the timing recovery stage receives as an input
the output from the equalizer 64. The output of the equalizer
64 also passes to the MLT-3 decoder 50 also shown in FIG.
2.

As previously indicated, the MLT-3 encoder 42 provides
digital signals at a suitable frequency such as approximately
125 MHz. These signals are converted to analog signals by
the converter 46. After being introduced to the transformer
60, the analog signals are passed through the link such as the
link 20 to the transformer 62, which introduces the signals
to the analog-to-digital converter 48.

FIG. 9 illustrates at 70 the signals produced by the MLT
encoder 42. As will be seen, the signals from the encoder 42
have at each instant one of three (3) amplitude levels such
as +1, 0 and -1 to represent information. FIG. 9 also
illustrates at 72 the signals received at the analog-to-digital
converter 48. As will be seen, there is a considerable
degradation or distortion of the signals 72 relative to the
signals 70. This degradation is produced in the link 20 and
is also produced because of the interference provided by the
signals in the links 22 and 24.

It is desirable for the converter 48 to sample the analog
signals at the zero crossing and peak amplitude of the
waveform 70. In this way, the converter 48 will provide an
indication of the amplitude level of the encoded signals from
the encoder 42. For example, if the converter 48 samples the
analog signals in FIG. 9 at the times indicated at 74, 76 and
78, the converter will produce digital signals respectively
representing the analog levels +1, 0 and -1. However, if the
converter 48 samples the signals at a time indicated at 80 or
at a time indicated at 82, the converter will produce digital
signals which may not represent the proper one of the analog
levels +1, 0 and ~1. This may cause errors to be produced
in the reproduction of the information represented by the
digital signals produced by the converter 48.

The timing recovery stage 66 operates at a suitable
frequency such as approximately 125 MHz to produce
digital signals having amplitudes corresponding to the mag-
nitudes of the analog signals 72 in FIG. 9 at the instants of
conversion. The timing recovery stage 66 operates to adjust
the times that the digital signals are produced by the con-
verter 48 so that these signals occur at the zero crossings and
the peak amplitudes of the waveform 70. In this way, the
digital signals will be produced by the converter 48 at times
such as the times 74, 76 and 78 in FIG. 9 rather than at times
such as the times 80 and 82 in FIG. 9.

FIG. 10 illustrates how the timing recovery stage 66
initially operates to determine whether each digital conver-

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01.-Page 105 of 113

US 6,178,198 B1

7

sion has an amplitude level representing +1, 0 or -1. For an
analog voltage between -0.5 volts and +0.5 volts, the
amplitude level of the digital conversion of this analog
voltage is initially assumed to be 0. For an analog voltage
with a positive value greater than +0.5 volts, the amplitude
level of the digital conversion of the analog voltage initially
is assumed to be +1. When the analog voltage has a negative
value with an absolute magnitude greater than 0.5 volts, the
amplitude level of the digital conversion of the analog
voltage is initially assumed to be 1. These assumptions are
made because of the considerable distortion in the charac-
teristics of the signals 72 (FIG. 9) introduced to the con-
verler 48 relative to the characteristics of the signals 70
produced by the encoder 42.

FIG. 11 indicates how phase adjustments are initially
made for different operating conditions to have the time
assumed by the converter 48 for the zero crossing of the
digital voltage V, coincide in time with the time for the zero
crossing of the clock signals from the clock generator 68.
FIG. 11 indicates four (4) different conditions in which
phase adjustments are made in the time assumed by the
converter 48 for the zero crossing of the digital voltage. For
each of these four (4) conditions, the indication “0” repre-
sents the time at which the clock signal from the clock signal
generator 68 crosses the zero line. Furthermore, for each of
these four (4) operating conditions, V, indicates the voltage
which is actually produced by the analog-to-digital con-
verter 48 at the time assumed by the converter to constitute
the time at which a zero crossing occurs.

As will be seen in FIG. 4, the digital signals from the
analog-to-digital converter 48 are shown as being introduced
directly to the timing recovery stage 66. This occurs before
the equalizer 64 becomes operative to determine whether
each of the digital signals from the converter 48 has an
amplitude level of +1, 0, or -1. The digital signals from the
converter 48 are initially processed by the timing recovery
stage 66 because no significant information is obtained from
the operation of the equalizer 64 until a coarse adjustment
has been provided by the timing recovery stage in the times
for the production of the voltage V.

The first condition in FIG. 11 is designated as “+0
trapsition.” In this condition, the voltage V, is positive as
indicated by a “+” sign above and to the left of the “V_”
designation. Furthermore, the V,, voltage occurs before the
“0” voltage indicating the time at which the clock signals
from the generator 68 cross the zero line. As shown in the
curve at the left in FIG. 11, the voltage decreases from V,
to the “0” line crossing. Under such conditions, the time for
the production of the digital signals by the converter 48
would be moved to the right—or, from a time standpoint,
delayed—in FIG. 11 to have the V indication coincide in
time with the “0” indication.

If the V,, voltage should be negative with the same shape
of curve as shown in the “4+0” transition in FIG. 11, the V,,
voltage would be below and to the right of the “0” indica-
tion. Under such circumstances, the time for the production
of the digital signals by the converter 48 would be moved to
the left—or, from a time standpoint, advanced—in FIG. 11
to have V, coincide in time with the “0” indication.

The condition second from the left in FIG. 11 is desig-
nated as “~0 transition.” In that condition, V, is below the
“0” indication from a voltage standpoint and occurs to the
left—or, from a time standpoint, before—the “0” indication.
Furthermore, the V, voltage is negative as indicated by a “~”
sign to the left and below the “0” and “V,” indications.
Under such circumstances, the voltage V, is moved to the

25

35

45

50

55

60

65

8

right—or, from a time standpoint, delayed—to have the V,
indication coincide in time with the “0” indication.

If the V, indication should be positive with the same
shape of curve as shown in the “~0” transition in FIG. 11, the
V,, voltage would be above and to the right of the “0”
indication. Under such circumstances, the production of the
voltage V, would be moved to the left by the converter
48—or, from a time standpoint, advanced—in FIG. 11 to
have V, coincide in time with the “0” indication.

The third condition in FIG. 11 is designated as a “0+”
transition. In that condition, the “0” indication is below and
to the left—or, from a time standpoint, before—the V,
indication. In other words, V,, is positive relative to the “0”
indication. This is indicated by a “+” sign above and to the
right of the V, indication. Under such circumstances, the
production of the V, indication would be moved to the
left—or, from a time standpoint, advanced—in FIG. 11 to
have V, coincide in time with the “0” indication.

If the V, indication should be negative with the same
shape of curve as shown in the “0+” transition in FIG, 11, the
V, voltage would be below and to the left of the “0”
indication. Under such circumstances, the time for the
production of the digital signals by the converter 48 would
be moved to the right—or, from a time standpoint,
delayed—in FIG. 11 to have V,, coincide in time with the “0”
indication.

The fourth condition in FIG. 11 is designated as a “0~"
transition. In that condition, the “0” indication is above and
to the left—or, from a time standpoint, before—the V,
indication. In other words, V,, is negative relative to the “0”
indication. This is indicated by a “~” sign below and to the
right of the V, indication. Under such circumstances, the
timing of the V, indication would be moved to the left—or,
from a time standpoint, advanced—in FIG. 11 to have V,
coincide in time with the “0” indication.

If the V, indication should be positive with the same
shape of curve as shown in the “0-" transition in FIG. 11, the
V, voltage should be above and to the left of the “0”
indication. Under such circumstances, the production of the
digital signals by the converter would be moved to the
right—or, from a time standpoint, delayed—in FIG. 11 to
have V, coincide in time with the “0” indication.

After the time of the V, indication has been adjusted as
shown in FIG. 11 and discussed above to have it coincide in
time with the “0” indication, the digital signals from the
analog-to-digital converter 48 are introduced to the equalizer
64 in FIG. 4. The equalizer 64 is shown in detail in FIG. 5.
In FIG. 5, the signals from the analog-to-digital converter 48
are introduced to a high pass filter 100. The signals from the
high pass filter 100 in turn pass to a feed forward equalizer
102. A feed forward equalizer such as the equalizer 100 is
known in the prior art. The signals from the feed forward
equalizer 102 are introduced to an adder 104 which also
receives signals from an adder 106.

The adder 106 reccives the outputs from a decision
feedback equalizer 108 and from a tail canceller 110. A
decision feedback analyzer such as the equalizer 100 is
known in the prior art. The signals from the decision
feedback equalizer 108 are also introduced to the tail can-
celler 110. Signals are introduced to the decision feedback
equalizer 108 from a quantizer 112. The quantizer 112
receives the output from the adder 104. The quantizer 112
(also known as a slicer) is known in the art.

A feed forward equalizer, a decision feedback equalizer
and a slicer are shown in FIG. 7 and are disclosed in U.S.
Pat. No. 5,604,741, issued to Henry Samueli, Mark Berman

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 _Page 106 of 113

US 6,178,198 Bl

9

and Fan Lu on Feb. 18, 1997, for an “Ethernet System” and
assigned of record to the assignee of record of this applica-
tion. Reference is made to U.S. Pat. No. 5,604,741 if any
additional disclosure is necessary to complete the disclosure
of the feed forward equalizer 102, the decision feedback
equalizer 108, the quantizer 112 and the adder 104 in this
application.

As will be seen in FIG. 6, a composite signal generally
indicated at 120 is shown as being comprised of a left
portion 122 and a right portion 124. Each of the portions 122
and 124 has distortions. The distortions in the left portion
122 may be considered as a pre-cursor response. The dis-
tortions in the right portion 124 may be considered as a
post-cursor response. The distortions result in part from the
fact that the digital signals representing information or data
develop tails as they travel through the unshielded twisted
pairs of wires defined as the links 20, 22 and 24. The
distortions also result in part from the reflections from the
links 20, 22 and 24 to the repeater 12 in FIG. 1.

The feed forward equalizer 102 may be considered to
correct for distortions (or pre-cursor responses) in the por-
tion 122 of the composite signal 120. The decision feedback
equalizer 124 may be considered to correct for distortions
(or post-cursor responses) in the portion 124 of the com-
posite signal 120. As will be seen in FIG. 6, the distortions
(or post-cursor response) in the portion 124 of the composite
signal 120 result in a tail 126. This tail extends for a
considerable period of time as indicated by the number of
taps along the horizontal axis in FIG. 6. If corrections had to
be provided for as many as fifty (50) taps to eliminate or
significantly reduce the tail 126, this would unduly compli-
cate the construction of the decision feedback equalizer 64
in FIG. 4.

To simplify the construction of the equalizer 64 in FIG. 4,
the high pass filter 100 and the tail canceller 110 are included
in the embodiment of the equalizer as shown in FIG. 5. The
high pass filter 100 operates to block the passage of the low
frequency signals which constitute a significant portion of
the tail 126. As a result of the operation of the high pass filter
100, the length of the tail 126 is significantly reduced as
indicated at 128 in FIG. 7. As will be scen schematically by
a comparison of FIGS. 6 and 7, the numbser of taps is reduced
from approximately fifty (50) in FIG. 6 to approximately
(twenty) 20 in FIG. 7 because of the inclusion of the high
pass filter 100 in FIG. 5.

The tail canceller 110 reduces the number of taps required
in the decision feedback equalizer. This may be seen from
FIG. 8, which illustrates the tail on an enlarged schematic
basis. As shown in FIG. 8, the tail decays substantially on an
exponential basis from a position 130 which is the last tap
of the decision feedback equalizer. This exponential decay is
predictable. The tail canceller 110 accurately predicts the
shape of this exponential decay and provides a cancellation
of this exponential decay The tail canceller 110 may con-
stitute a first order recursive filter.

The output from the equalizer 64 in FIG. 4 is obtained
from the quantizer 112 in FIG. 5. The quantizer 112 provides
a plurality (e.g. 3) of progressive amplitude values and
determines the particular one of the three (3) amplitude
values closest to the output from the adder 104 for each of
the digital signals produced by the converter 48. The quan-
tizer 112 provides this output on a line 114 for each of the
digital signals to indicate the data or information represented
by such digital signals. In this way, the equalizer 64 in FIG.
4 restores the analog levels of the digital signals to the
analog levels of these digital signals at the repeater 12 even

25

45

65

10

with the distortions produced in these signals as they pass
through the unshielded twisted pairs of wires defining the
link such as the link 14.

The signals from the quantizer 112 in FIG. § are intro-
duced to the timing recovery stage 66 in FIG. 4. The timing
recovery stage provides a fine regulation of the time at which
the analog-to-digital converter 42 produces the voltage V..
As a first step in this regulation, the timing recovery stage 66
determines the amount of offset produced in the voltage V,
as a result of the distortion produced in the unshielded
tz\;)risted pairs of wires constituting the link such as the link

FIG. 12 illustrates the voltage V, at 140 and illustrates at
142 the “0” indication corresponding to the time at which the
clock signal provided by the generator 68 crosses the zero
axis. FIG. 12 also illustrates at 144 the shift in phase of the
voltage V_ as a result of the offset produced by the
unshielded twisted pair of wires constituting the link such as
the link 20. This voltage with the shifted phase is designated
as Z =V -V gwhere V is the offset voltage resulting from
the phase distortion or degradation produced by the
unshielded twisted pair of wires constituting the link such as
the link 20.

FIG. 13 provides a number of schematic representations
similar to those shown in FIG. 11 and discussed above.
However, many of the representations include a consider-
ation of the offset voltage V, discussed in the previous
paragraph and shown in FIG. 12. The first condition shown
in FIG. 13 is designated as a “+0” transition. In this
transition, V-V, has a value greater than 0. Furthermore,
V,-V,¢ has a positive value as indicated by the “+” sign
above and to the left of V.. Under such circumstances, V,
is shifted to the right—or, from a time standpoint, is
delayed—so that V-V, will correspond in time to the zero
crossing of the clock signals from the generator 68.

If V,-V_; should be negative with the same shape of
curve as shown in the “+0” transition in FIG. 13, the V-V
indication would be below and to the right of the “0”
indication. Under such circumstances, the time for the
production of the digital signals by the converter 48 would
be moved to the left—or, from a time standpoint,
advanced—in FIG. 13 to have V,, coincide in time with the
“0” indication.

The second condition in FIG. 13 is designated as a “~0”
transition. In this transition, V,+V g is less than 0. V- is
added to V,, in this transition because V,, is negative and the
delay represented by V5 advances V, toward a value of 0.
In this transition, the “0” indication is above and to the right
of the V, indication. This is indicated by a “~” sign below
and to the left of the V, indication. Under such
circumstances, the timing of the V, indication would be
moved to the right—or, from a time standpoint, delayed—in
FIG. 13 to have V,, coincide in time with the “0” indication.

If V,+V 5 should be greater than O with the same shape
of curve as shown in the “~0” transition in FIG. 13, the
V,+V,_, voltage would be above and to the right of the “0”
indication in FIG. 13. Under such circumstances, the V,
would be moved to the left—or, from a time standpoint,
advanced—in FIG. 13 to have V +V g coincide in time with
the “0” indication.

The third condition in FIG. 13 is designated as a “+0-"
transition. In this transition, V,-V,, is greater than 0.
Furthermore, the transition is from a+value to a value of 0
and then to a~value. (This is why it is designated as “+0-".)
Under such circumstances, V, is moved to the right—or,
from a time standpoint, delayed—in FIG. 13 to have V,
coincide in time with the “0” indication.

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 -Page 107 of 113

US 6,178,198 Bl

1

if V-V should be less than 0 with the same shape of
curve as shown in the “+0-" transition in FIG. 13, the
V-V, indication would be below and to the right of the
“(” indication. Under such circumstances, the V,, indication
would be moved to the left—or, from a time standpoint,
advanced—to have V, coincide in time with the “0” indi-
cation.

The fourth condition in FIG. 13 is designated as a “~0+”
transition. In this transition, V,+V z is less than 0. Vg is
added to V,, in this transition because V,, is negative and the
delay represented by V- advances V,, toward a value of 0.
Furthermore, the transition is from a-value (o a value of 0
and then to a+value. (This is why it is designated as “~0+".)
Under such circumstances, V, is moved to the right—or,
from a time standpoint, delayed—to have V,, coincide in
time with the “0” indication.

If V_+V , should be greater than 0 with the same shape
of curve as shown in the “~0+” transition in FIG. 13, the
V0+Vo,indicalion would be above and to the right of the “0”
indication. Under such circumstances, the V, indication
would be moved to the left—or, from a time standpoint,
advanced—to have V coincide in time with the “0” indi-
cation.

The fifth (5th) condition in FIG. 13 is designated as a
“00-" transition. (This results from the fact that the first two
(2) positions in this transition have values of 0 or values
close to 0 and the third position in this transition is negative).
The voltage V,, is between the two (2) zero (0) indications
and has a value greater than the two (2) zero (0) indications.
Under such circumstances, the V,, voltage is moved to the
right—or, from a time standpoint, is delayed—to have the
V,_ voltage correspond in time with the second of the two
zero (0) indications.

If V, should be less than the two 0 indications with the
same shape of curve as shown in the “00-" transition in FIG.
13, the V,, voltage should be below and to the right of the
second of the two zero (0) indications. Under such
circumstances, the V, voltage is moved to the left—or, from
a time standpoint, advanced—in FIG. 13 to have the V,
voltage correspond in time with the second of the two zero
(0) indications.

The sixth condition in FIG. 13 is designated as a “00+”
transition. (This results from the fact that the first two (2)
positions in this transition have values of 0 or values close
to 0 and the third position in this transition is positive.) The
voltage V,, is between the two zero (0) indications and has
a value less than the two zero (0) indications. Under such
circumstances, the V, voltage is moved to the right—or,
from a time standpoint, delayed—to have the V, voltage
correspond in time with the second of the two zero (0)
indications.

If V, should be greater than the two zero (0) indications,
with the same shape of curve as shown in the “00+”
transition in FIG. 13, the V,, voltage would be above and to
the right of the second of the two zero (0) indications. Under
such circumstances, the V,, voltage is moved to the left—or,
from a time standpoint, advanced—to have the V voltage
correspond in time with the second of the two zero (0)
conditions.

The system and method of this invention have certain
important advantages. They provide a conversion of the
received analog signals to digital signals. They provide for
a processing of the digital signals by the timing recovery
stage 66 to have the digital conversions occur at the zero
crossings of a reference clock signal generated by the
generator 68. In this way, the analog signals can be sampled

15

30

60

65

12

digitally at the times at which the amplitudes of the analog
signals represent individual ones of analog levels +1, 0 and
~1. This processing of the digital signals by the timing
recovery stage 66 initially provides a coarse regulation of
the time for the digital conversions by the converter 48.

Subsequently the equalizer 64 operates upon the digital
signals from the converter 48 to determine whether the
amplitudes of the digital signals have analog values of +1,
0 or -1. The operation of the equalizer 64 to determine the
amplitudes of the digital signal is facilitated by the inclusion
of the high pass filter 100 and the canceller 112 to limit the
length of the tail in the digital signals. The timing recovery
stage 66 then provides fine regulation of the signals from the
equalizer 64 to have the digital processing by the converter
48 occur at the zero crossings of the clock signals from the
clock signal generator 68.

Although this invention has been disclosed and illustrated
with reference to particular embodiments, the principles
involved are susceptible for use in numerous other embodi-
ments which will be apparent to persons of ordinary skill in
the art. The invention is, therefore, to be limited only as
indicated by the scope of the appended claims.

What is claimed is:

1. In combination for operating upon digital signals
provided at a particular frequency, which digital signals have
been scrambled and encoded and then converted to analog
signals to recover the information represented by such
digital signals,

first means for providing clock signals at the particular

frequency,

second meaans for converting the analog signals to digital

signals at the particular frequency,

third means responsive to the clock signals and to the

digital signals for initially providing a coarse adjust-
ment in the times at which the analog signals are
converted to the digital signals to obtain a zero value
for the digital signals at the zero crossings of the clock
signals;

an equalizer for providing signals for climinating the

effects, from each individual one of the digital signals,
of the digital signals adjacent in time to such individual
one of the digital signals,

fourth means responsive to the initial operation of the

third means for activating the equalizer, and

fifth means responsive to the activation of the equalizer

for providing a fine adjustment in the times at which the
analog signals are converted to the digital signals to
obtain a zero value for the digital signals at the zero
crossings of the clock signals.

2. In a combination as set forth in claim 1 wherein

the equalizer includes a feed forward equalizer for elimi-

pating from each digital signal the effects on such
digital signal from previous digital signals and wherein,
each digital signal includes a tail and wherein

the equalizer includes a decision feedback equalizer for

eliminating the tail from each digital signal.

3. In combination as set forth in claim 2 wherein

the third means is operative to adjust the time for the

conversion of the analog signals to the digital signals to
have such time coincide with the time for the produc-
tion of the zero voltage in the clock signals,

a link extends from the position of the encoding to the

position of the second means and wherein

the fifth means compensates for the length of the link in

providing the adjustment in the times at which analog

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 _Page 108 of 113

US 6,178,198 Bl

13

signals are converted to the digital signals to have such
time coincide with the zero crossing of the clock
signals.

4. In a combination as set forth in claim 1 wherein

the third means is responsive to the clock signals and to

the relative timing of the zero voltage in the clock
signals and the digital voltage at the time of the
conversion of the analog signals to the digital signals
and responsive to the polarity of the difference between
the zero voltage in the clock signals and the digital
voltage at the time of the conversion of the analog
signals to the digital signals for adjusting the timing of
the conversion of the digital signals in a direction to
minimize the time between the zero voltage in the clock
signals and the conversion of the analog signals to the
digital signals.

S. In a combination as set forth in claim 1 wherein

the third means is operative to adjust the time for the

conversion of the analog signals to the digital signals to
have such time coincide with the time for the produc-
tion of the zero voltage in the clock signals.

6. In a combination as set forth in claim 1 wherein

a link extends from the position of the encoding to the

position of the second means and wherein

the fifth means compensates for the length of the link in

providing the adjustment in the time at which analog
signals are converted to the digital signals to obtain the
coincidence between such conversion and the zero
crossing of the clock signals.

7. In combination for operating upon digital signals
provided at a particular frequency and representing
information, which digital signals have been scrambled and
encoded and then converted to analog signals, to recover the
information represented by the digital signals,

first means for providing clock signals at the particular

frequency,

second means for converting the analog signals to digital

signals at the particular frequency,
third means responsive to the clock signals and the digital
signals for providing coarse adjustments in the phase of
the digital signals to obtain a correspondence in phase
between the digital signals and the clock signals,

fourth means responsive to the digital signals for
minimizing, in each individual one of the digital
signals, the responses on such individual one of the
digital signals of adjacent ones of the digital signals,
and

fifth means responsive to the digital signals from the

fourth means for providing fine adjustments in the
phase of the digital signals to obtain a correspondence
in phase between the digital signals and the clock
signals.

8. In a combination as set forth in claim 7 wherein

the third means is initially operative without an operation

of the fourth and fifth means and wherein the fourth and
fifth means are subscquently operative without an
operation of the third means.

9. In a combination as set forth in claim 8 wherein

the digital signals from the second means have leading

and trailing portions and wherein

the fourth means includes a first equalizer responsive to

the digital signals from the second means for
minimizing, in the leading portion of each individual
one of the digital signals, the responses of the adjacent
digital signals and for minimizing, in the trailing por-

25

30

35

14

tion of each individual one of the digital signals, the
responses of the adjacent digital signals and wherein

a high pass filter operates to limit the length of the
post-cursor response before the introduction of the
digital signals to the second equalizer and wherein

a tail canceller is included to predict the shape of the
trailing end of the post-cursor response and to provide
a signal with such predicted shape to cancel the trailing
end of the post-cursor response and wherein

the third means determines the phase of the digital signals
at assumed zero crossings of such digital signals rela-
tive to the phase of the zero crossings of the clock
signals and adjusts the phase of the assumed zero
crossings to coincide with the phase of the zero cross-
ings of the clock signals and wherein

a link is provided between the position of converting the
analog signals and the second means and wherein

an offset is provided in the phase of the digital signals to
compensate for the effect of the link on the digital
signals and wherein

the fifth means determines the offset in the phase of the
digital signals relative to the zero crossings of the clock
signals and adjusts the phase of the digital signals to
coincide with the phase of the zero crossings of the
clock signals.

10. In a combination as set forth in claim 7 wherein

the digital signals from the second means have leading
and trailing portions and wherein

the fourth means includes a first equalizer responsive to
the digital signals from the second means for
minimizing, in the leading portion of each individual
one of the digital signals, the responses of the adjacent
digital signals and for minimizing, in the trailing por-
tion of each individual one of the digital signals, the
responses of the adjacent digital signals.

11. In a combination as set forth in claim 7 wherein

each of the digital signals has a relatively short pre-cursor
response and a relatively long post-cursor response and
wherein

a first equalizer operates to inhibit the short pre-cursor
response and a second equalizer operates to inhibit the
long post-cursor response and wherein

a high pass filter operates to limit the length of the
post-cursor response before the introduction of the
digital signals to the second equalizer. .

12. In a combination as set forth in claim 11 wherein

a tail canceller is included to predict the shape of the
trailing end of the post-cursor response and to provide
a signal with such predicted shape to cancel the trailing
end of the post-cursor response.

13. In a combination as set forth in claim 7 wherein

the third means determines the phase of the digital signals
at assumed zero crossings of such digital signals rela-
tive to the phase of the zero crossings of the clock
signals and adjusts the phase of the assumed zero
crossings to coincide with the phase of the zero cross-
ings of the clock signals.

14. In a combination as set forth in claim 7 wherein

a link is provided between the position of conversion of
the digital signals and the second means and wherein

an offset is provided in the phase of the digital signals to
compensate for the effect of the link on the digital
signals and wherein

the fifth means determines the offset in the phase of the
digital signals relative to the zero crossings of the clock

Case 5:01-cv-003Q2-DF Document 4 Filed 12/14/01 _Page 109 of 113

US 6,178,198 B1

15

signals and adjusts the phase of the digital signals to
coincide with the phase of the zero crossings of the
clock signals.

15. In combination for operating upon digital signals
provided at a particular frequency, which digital signals have
been scrambled and encoded and then converted to analog
signals, lo recover the information represented by such
digital signals,

first means for providing clock signals at the particular
frequency,

second means for converting the analog signals to digital
signals at the particular frequency,

there being a link between the position of converting to
the analog signals and the second means,

the digital signals having pre-cursor and post-cursor
responses,

third means for offsetting the phase of the digital signals
in accordance with the characteristics of the link,

fourth means responsive to the digital signals with the
offset phase for limiting the pre-cursor and post-cursor
responses, and

fifth means for adjusting the offset phases of the digital
signals to have the times for the zero crossings of the
digital signals correspond to the times for the zero
crossings of the clock signals.

16. In a combination as set forth in claim 15 wherein

the fourth means includes a first equalizer for inhibiting
the pre-cursor response in the digital signals and
includes a second equalizer for inhibiting the post-
cursor response in the digital signals.

17. In a combination as set forth in claim 16,

a high pass filter operative to limit the length of the
post-cursor response before the operation of the second
equalizer.

18. In a combination as set forth in claim 17,

a tail canceller for limiting the length of the post-cursor
response,

a first adder for combining the outputs of the second
equalizer and the tail canceller,

a second adder for combining the outputs of the first and
second equalizers, and

a quantizer responsive to the output of the second adder
at each instant for selecting, for each of the digital
signals, a particular one of a plurality of digital values
closest to the output of the second adder at that instant
and for using the selected one of the digital values as
the peak value of the digital signal at that instant,

the fifth means being operative to determine the polarity
of the value of the digital signals at times assumed for
the zero crossing of the digital signals and to determine
the relative times of occurrence of the assumed zero
crossings of the digital signals and the zero crossings of
the clock signals and to adjust the times assumed for the
zero crossings of the digital signals in accordance with
such determinations to have the times assumed for the
zero crossings of the digital signals coincide with the
times for the zero crossings of the clock signals.

19. In a combination as set forth in claim 16,

a tail canceller for limiting the length of the post-cursor
response, and

an adder for combining the outputs of the second equal-
izer and the tail canceller.

20. In a combination as set forth in claim 16,

an adder for combining the outputs of the first and second
equalizers, and

10

15

20

35

60

65

16

a quantizer responsive to the output of the adder at each
instant for selecting, in each of the digital signals, a
particular one of a plurality of digital values closest to
the output of the adder at that instant and for using the
selected one of the digital values as the peak value of
such digital signal at that instant. :

21. In a combination as set forth in claim 16, wherein

the fifth means determines the polarity of the digital
signals at times assumed for the zero crossings of the
digital signals and determines the relative times of
occurrence of the assumed zero crossings of the digital
signals and the zero crossings of the clock signals and
adjusts the times assumed for the zero crossings of the
digital signals in accordance with such determinations
to have the times assumed for the zero crossings of the
digital signals coincide with the times for the zero
crossings of the clock signals.

22. In combination for operating upon digital signals

provided at a particular frequency, which digital signals have
been scrambled and encoded and then converted to analog
signals, to recover the information represented by such
digital signals,

first means for providing clock signals at the particular
frequency,

second means for converting the analog signals to digital
signals at the particular frequency,

third means responsive to the digital signals for providing
a value of zero for the digital signals when the digital
signals have a value within particular limits and for
providing a value of +1 for positive values of the digital
signals above the particular limits and for providing a
value of -1 for negative values of the digital signals
below the particular limits, and

fourth means for determining the times for the changes of
the digital signals between the digital values of +1, 0
and -1 relative to the times for the zero crossings of the
clock signals and for determining the polarity of the
digital signals between such relative times and for
changing the times for the production of the digital
values of +1, 0 and -1 in accordance with such deter-
minations.

23. In a combination as recited in claim 22 wherein

the analog signals are provided at a particular position and
wherein

a link is provided between the particular position and the
second means and wherein fifth means are provided for
offsetting the time for the occurrence of the digital
signals representing +1, 0 and -1 in accordance with
the characteristics of the link.

24. In a combination as set forth in claim 23 wherein

a link is provided between the position of providing the
analog signals and the second means and wherein
means are provided for offsetting the time for the
occurrence of the digital signals representing +1, 0 and
-1 in accordance with the characteristics of the link and
wherein

sixth means are provided for determining the offset times
for the changes of the digital signals between the digital
values of +1, 0 and -1 relative to the times for the zero
crossings of the clock signals and for determining the
polarity of the digital signals between such relative
times and for changing the times for the production of
the digital values between +1, 0 and -1 in accordance
with such determinations.

25. In a combination as set forth in claim 24 wherein

the sixth means is operative after the operation of the
fourth means and wherein

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 _Page 110 of 113

US 6,178,198 B1

17

the digital signals include a pre-cursor response and a
post-cursor response and wherein

seventh means are provided for minimizing the pre-cursor
response and the post-cursor response after the opera-
tion of the fourth means but before the operation of the
sixth means.

26. In a combination as set forth in claim 25 wherein

the seventh means includes a first equalizer for minimiz-
ing the pre-cursor response and a second equalizer for
minimizing the post-cursor response and a quantizer
operatively coupled to the first and second equalizers
for selecting an individual one of the values of +1, 0
and -1 for each of the digital signals in accordance with
the magnitude of the digital signals relative to the
particular limits and wherein

the seventh means additionally includes a high pass filter
and a tail canceller for limiting the time duration of the
post-cursor response for each of the digital signals.

27. In a combination as set forth in claim 22 wherein

the digital signals include a pre-cursor response and a
post-cursor response and wherein fifth means are pro-
vided for minimizing the pre-cursor response and the
post-cursor response after the operation of the fourth
means.

28. In a combination as set forth in claim 27 wherein

the digital signals include a pre-cursor response and a

post-cursor response and wherein
sixth means are provided for minimizing the pre-cursor
response and the post-cursor response and wherein

the sixth means includes a first equalizer for minimizing
the pre-cursor response and a second equalizer for
minimizing the post-cursor response and a quantizer
operatively coupled to the first and second equalizers
for selecting an individual one of the values of +1, 0
and -1 for each of the digital signals in accordance with
the magnitude of the digital signals relative to the
particular limits.

29. In combination for use in a system providing first
signals having individual ones of a plurality of analog levels
to represent information,

a repeater,

a plurality of clients,

pairs of unshielded twisted wires, each pair being dis-

posed between the repeater and an individual one of the
clients to transmit the first signals between the repeater
and the individual one of the clients,

first means at each of the clients for receiving from the

repeater the first signals having individual ones of the
plurality of amplitude levels,

second means at each of the clients for providing clock

signals at a particular frequency,

third means at each of the clients for converting to digital

signals the first signals having the individual ones of
the different amplitude levels, and

fourth means at each of the clieats for adjusting the times

of the digital conversions of the first signals having the
different amplitude levels in accordance with the phase
differences between the zero crossings of the clock
signals and the digital conversions of the first signals.
30. In a combination as set forth in claim 29 wherein
a plurality of two pairs of unshiclded twisted wires are
provided and wherein each of the two pairs of the
unshielded twisted wires is connected between the
receiver and an individual one of the clients, one of the

15

20

30

45

18

pairs providing for the transmission of information
from the receiver to the individual one of the clients and
the other of the pairs providing for the transmission of
information from the individual one of the clients to the
receiver.

31. In a combination as set forth in claim 30, wherein

the pairs of the unshielded twisted wires between the
receiver and the individual ones of the clients have
impedance characteristics dependeat upon the lengths
of such wires and wherein

means are provided at each of the clients for offsetting the
times of the digital conversions of the first signals in
accordance with the impedance characteristics of the
unshielded twisted pairs of wire between the repeaters
and such clients.

32. In a combination as set forth in claim 31, wherein

the pairs of the unshielded twisted wires between the
receiver and the individual ones of the clients have
impedance characteristics dependent upon the lengths
of such wires and wherein

means are provided for offsetting the times of the digital
conversions of the first signals at each of the clients in
accordance with the impedance characteristics of the
unshielded twisted pairs of wires between the repeater
and such client.

33. In a combination as set forth in claim 32,

there being unshielded twisted pairs of wires between the
repeater and each of the clients, and

means at each of the clients for offsetting the phase of the
digital signals from the quantizer at such client, before
the fine adjustments in the phase of these signals at such
client, in accordance with the characteristics of the
unshielded twisted pairs of wires between the repeater
and such client, to have the zero crossings of these
signals coincide in phase with the zero crossings of the
clock signals at such client.

34. In a combination as set forth in claim 30, wherein

the digital conversions of the first signals at each of the
clients have a pre-cursor response and a post-cursor
response and wherein,

first equalizer means are provided at each of the clients for
limiting the pre-cursor response at such client and
wherein

second equalizer means are provided at each of the clients
for limiting the post-cursor response at such client.

35. In a combination as set forth in claim 29, wherein

the fourth means at each of the clients includes fifth means
for initially providing a coarse adjustment in the times
of the digital conversions of the first signals in accor-
dance with the phase differences between the zero
crossings of the clock signals and the digital conver-
sions of the first signals and wherein

the fourth means at each of the clients includes sixth
means for subsequently providing fine adjustmeats in
the times of the digital conversions of the first signals
at such clieat in accordance with the phase differences
between the zero crossings of the clock signals and the
digital conversions of the first signals.

36. In a combination as recited in claim 35 wherein

a plurality of two pairs of unshielded twisted wires are
provided and wherein each of the two pairs of the
unshielded twisted wires is connected between the
receiver and an individual one of the clients, one of the
pairs providing for the transmission of information
from the receiver to the individual one of the clients and

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01 ._Page 111 of 113

US 6,178,198 Bl

19

the other of the pairs providing for the transmission of
information from the individual one of the clients to the
receiver and wherein

the pairs of the unshiclded twisted wires between the

receiver and the individual ones of the clients have
impedance characteristics dependent upon the lengths
of such wires and wherein

means are provided at each of the clients for offsetting the

times of the digital conversions of the first signals in
accordance with the impedance characteristics of the
unshielded twisted pairs of wire at such client and
wherein

the digital conversions of the first signals at each of the

clients have a pre-cursor response and a post-cursor
response and wherein

first equalizer means are provided at each of the clients for

limiting the pre-cursor response at such client and
wherein

second equalizer means are provided at each of the clients

for limiting the post-cursor response at such client and
wherein

an adaptive threshold is provided and wherein

the outputs of the first equalizer means and the second

equalizer means at each of the clients are introduced to
an adder at such client and wherein

the output of the adder at each of the clients is introduced

to a quantizer at such client for selecting the individual
one of the analog levels in the plurality for each of the
digital signals at such client in accordance with the
amplitude and polarity of such digital signal relative to
the adaptive threshold and wherein

the information at each of the clients is provided by the

sequence of the amplitude levels from the quantizer at
such client.

37. In a combination as set forth in claim 36, including,

a high pass filter responsive at each of the clients to the

digital signals provided by the third means for limiting
the post-cursor response before the introduction of the
digital signals to the first and second equalizer means at
such client, and

a tail canceller at each of the clients for attepuating the

post-cursor response beyond a particular time for each
of the digital signals at such client.

38. In a method of operating upon digital signals provided
at a particular frequency, which digital signals have been
scrambled and encoded and then converted to analog
signals, to recover the information represented by such
digital signals, the steps of:

providing clock signals at the particular frequency,

converting the analog signals to digital signals at the

particular frequency,

converting the magnitude of each of the digital signals to

the individual one of a plurality of amplitude values
closest in value to the magnitude of such digital signal,
and

determining the times for the changes of the digital

signals between the individual one of the plurality of
amplitude values relative to the times for the zero
crossings of the clock signals to have the times for such
changes coincide with the times for the zero crossings
of the clock signals.

39. In a method as set forth in claim 38 wherein

the amplitude values in the plurality are +1, 0 and -1 and

wherein

15

20

35

50

65

20

the step of converting involves the conversion of the
magnitude of each of the digital signals to the indi-
vidual one of the amplitudes +1, 0 and -1 closest in
value to the magnitude of such digital signal.

40. In a method as set forth in claim 38 wherein

the analog signals are provided at a first particular posi-

tion and wherein

the analog signals are converted to digital signals at a

second particular position displaced from the first par-
ticular position and wherein

a link is provided between the first and second particular

positions and wherein

the time for determining the changes of the digital signals

between the individual ones of the plurality of ampli-
tude values relative to the times for the zero crossings
of the clock signals are offset by the characteristics of
the link.

41. In a method as set forth in claim 40 wherein

the digital signals include a pre-cursor response and a

post-cursor response and
wherein the pre-cursor response and the post-cursor
response in the digital signals are minimized before the
step of determining the times for the changes of the
digital signals between the individual ones of the
plurality of amplitude values relative to the times for
the zero crossings of the clock signals and wherein

the amplitude values in the plurality are +1, 0 and -1 and
wherein

the step of converting involves the conversion of the

magnitude of each of the digital signals to the indi-
vidual one of the amplitudes +1, 0 and -1 closest in
value to the magnitude of such digital signal.

42. In a method as set forth in claim 38 wherein

the digital signals include a pre-cursor response and a

post-cursor response and

wherein the pre-cursor response and the post-cursor

response in the digital signals are minimized before the
step of determining the times for the changes of the
digital signals between the individual ones of the
plurality of amplitude values relative to the times for
the zero crossings of the clock signals.

43. In a method of operating upon digital signals provided
at a particular frequency, which digital signals have been
scrambled and encoded and then converted to analog
signals, to recover the information represented by such
digital signals, the steps of:

providing clock signals at the particular frequency,

converting the analog signals to digital signals at the

particular frequency,

initially providing coarse adjustments in the phases at

which the digital signals are produced thereby to have
the times for the digital crossings of the digital signals
coincide with the times for the zero crossings of the
clock signals, and

subsequently providing fine adjustments in the phases at

which the digital signals are produced thereby to have
the times for the digital crossings of the digital signals
coincide with the times for the zero crossings of the
clock signals.

44. In a method as set forth in claim 43 wherein

the digital sigpals have a pre-cursor response and a

post-cursor response and wherein

the pre-cursor response and the post-cursor response are

minimized in the period between the coarse and fine
adjustmeants in the time at which the digital signals are
produced.

Case 5:01-cv-00302-DF Document 4 Filed 12/14/01_._Page 112 of 113

US 6,178,198 Bl

21

45. In a method as set forth in claim 44 wherein

the magnitude of each of these digital signals is adjusted,
in the period of time between the coarse and fine
adjustments in the phases of the digital signals, to
provide an individual one of a plurality of amplitudes
closest in value to such magnitude of such individual
one of the digital signals.

46. In a method as set forth in claim 43 wherein

the magnitude of each of these digital signals is adjusted,
in the period of time between the coarse and fine
adjustments in the phases of the digital signals, to
provide an individual one of a plurality of amplitudes
closest in value to such magnitude of such individual
one of the digital signals.

47. In combination for operating upon digital signals
provided at a particular frequency, which digital signals have
been scrambled and encoded and then converted to analog
signals, to recover the information represented by such
digital signals,

first means for providing clock signals at the particular
frequency,

second means for converting the analog signals to digital
signals at the particular frequency,

the digital signals having a pre-cursor response and a
Ppost-cursor response,

a feed forward equalizer for producing signals inhibiting
the pre-cursor response,

a decision feedback equalizer for producing signals inhib-
iting the post-cursor response,

an adder for combining the signals from the feed forward
equalizer and the decision feedback equalizer to pro-
vide resultant signals,

a high pass filter for producing signals limiting the time
duration of the post-cursor response before the intro-
duction of the digital signals to the feed forward
equalizer,

a tail canceller responsive to the digital signal from the
feed forward equalizer for producing signals further
limiting the time duration of the post-cursor response in
the digital signals,

a quantizer responsive to the resultant signals from the
adder for providing digital signals representing values
of +1, 0 and -1 in accordance with the amplitudes of
the resultant signals from the first adder, and

means responsive to the signals from the quantizer for
adjusting the phase of such signals to have the zero
crossings of these signals coincide in phase with the
zero crossings of the clock signals.

48. In combination for operating upon digital signals
provided at a particular frequency, which digital signals have
been scrambled and encoded and then converted to analog
signals, to recover the information represented by such
digital signals,

first means for providing clock signals at the particular
frequency,

second means for converting the analog signals to digital
signals at the particular frequency,

the digital signals having a pre-cursor response and a
PpOSt-Cursor response,

a feed forward equalizer for producing signals inhibiting
the pre-cursor response,

a decision feedback equalizer for producing signals inhib-
iting the post-cursor response,

an adder for combining the signals from the feed forward
equalizer and the decision feedback equalizer to pro-
vide resultant signals,

35

45

60

22

a high pass filter for producing signals limiting the time
duration of the post-cursor response before the intro-
duction of the digital signals to the feed forward
equalizer,

a tail canceller responsive to the digital signal from the
feed forward equalizer for producing signals further
limiting the time duration of the post-cursor response in
the digital signals,

a quantizer responsive to the resultant signals from the
adder for providing digital signals representing values
of +1, 0 and -1 in accordance with the amplitudes of
the resultant signals from the first adder,

the adder constituting a first adder,

a second adder responsive to the output signals from the
decision feedback equalizer and the tail canceller for
producing signals for introduction to the first adder for
combination with the signals from the feed forward
equalizer to produce the resultant signals,

means for introducing the signals from the quantizer to
the decision feedback equalizer for the production by
the decision feedback equalizer of the digital signals
inhibiting the post-cursor response,

means initially responsive to the digital signals from the
second means before the introduction of such digital
signals to the high pass filter for providing a coarse
adjustment in the phase of these digital signals to have
the zero crossings of these digital signals coincide in
phase with the zero crossings of the clock signals, and

means subsequently responsive to the digital signals from
the quantizer for providing a fine adjustment in the
phase of these signals to have the zero crossings of
these digital signals coincide in phase with the zero
crossings of the clock signals.

49. In combination for use in a system providing ficst

signals having individual ones of a plurality of analog levels
to represent information,

a repeater,

a plurality of clients,

pairs of unshielded twisted wires, each pair being dis-
posed between the repeater and an individual one of the
clients to transmit the first signals between the repeater
and the individual one of the clients,

first means in each of the clients for receiving the first
signals from the repeater,

second means for providing clock signals at a particular
frequency,

third means for converting the first signals to digital
signals,

the digital signals having a pre-cursor response and a
post-cursor response,

a feed forward equalizer at each of the clients for pro-
viding an output inhibiting the pre-cursor response in
the digital signals from the third means at such client,

a decision feedback equalizer at each of the clients for
providing an output inhibiting the post-cursor response
in the digital signals from the third means at such client,

a tail canceller at each of the clients for providing an
output limiting the duration of the post-cursor response
of the digital signals at such client,

a first adder at each of the clients for combining the
outputs from the feed forward equalizer and the tail
canceller to obtain first resultant signals at such client,

a second adder at each of the clients for combining the
output from the feed forward equalizer and the first

Case 5:01-cv-00302-DF Document4 Filed 12/14/01 _Page 113 of 113

US 6,178,198 B1

23

resultant signals from the first adder to produce second
resultant signals indicative of the information repre-
sented by the first signals,

a quantizer responsive at each of the clients to the second
resultant signals from the second adder at such client
for selecting for cach of the second resultant signals a
magnitude indicative of an individual one of a plurality
of amplitudes closest in magnitude to each of the
second resuliant signals,

means responsive to the magnitudes selected by the
quantizer for each of the digital signals for introducing
such magnitudes as the digital signals to the decision
feedback equalizer, and

means responsive at each of the clients to the magnitude
of the second resultant signals from the second adder
for adjusting the phase of the second resultant signals
to have the zero crossings of the second resultant
signals coincide in phase with the zero crossings of the
clock signals at such client.

50. In combination for use in a system providing first
signals having individual ones of a plurality of analog levels
to represent information,

a repeater,

a plurality of clients,

pairs of unshielded twisted wires, each pair being dis-
posed between the repeater and an individual one of the
clients to transmit the first signals between the repeater
and the individual one of the clients,

first means in each of the clients for receiving the first
signals from the repeater,

second means for providing clock signals at a particular
frequency,

third means for converting the first signals to digital
signals,

the digital signals having a pre-cursor response and a
post-cursor response,

a feed forward equalizer at each of the clients for pro-
viding an output inhibiting the pre-cursor response in
the digital signals from the third means at such client,

a decision feedback equalizer at each of the clients for
providing an output inhibiting the post-cursor response
in the digital signals from the third means at such client,

a tail canceller at each of the clients for providing an
output limiting the duration of the post-cursor response
of the digital signals at such client,
first adder at each of the clients for combining the
outputs from the feed forward equalizer and the tail
canceller to obtain first resultant signals at such client,

»

15

20

25

24

a second adder at each of the clients for combining the
output from the feed forward equalizer and the first
resultant signals from the first adder to produce second
resultant signals indicative if the information repre-
sented by the first signals,

a quantizer responsive at each of the clients to the second
resultant signals from the second adder at such client
for selecting for each of the second resultant signals
magnitude indicative of an individual one of a plurality
of amplitudes closest in magnitude to each of the
second resultant signals,

means responsive to the magnpitudes sclected by the
quantizer for each of the digital signals for introducing
such magnitudes as the digital signals to the decision
feedback equalizer,

a high pass filter at each of the clients for receiving the
digital signals from the third means at such client and
for passing the high frequency components of such
digital signals to the feed forward equalizer as inputs to
the feed forward equalizer at such client,

means initially responsive at each of the clients to the
digital signals from the third means before the intro-
duction of these signals to the high pass filter at such
client for providing a coarse adjustment in the phase of
these signals to have the zero crossings of these signals
coincide in phase with the zero crossings of the clock
signals at such client and,

means subsequently responsive at each of the clients to
the digital signals from the quantizer at such client for
providing a fine adjustment in the phase of these signals
to have the zero crossings of these signals coincide in
phase with the zero crossings of the clock signals at
such client.

51. In a combination as set forth in claim 50,

there being unshielded twisted pairs of wires between the
repeater and each of the clients, and

means at each of the clients for offsetting the phase of the
digital signals from the quantizer at such client, before
the fine adjustment in phase of these digital signals at
such client, in accordance with the characteristics of the
unshielded twisted pairs of wires between the repeater
and such client to have the zero crossings of these
signals coincide in phase with the zero crossings of the
clock signals at such client.

* Kk ok * X

