O 0 N1 L AW N e

NN NN NN N N = e ke et e e e
R I = N N . = T V- B - T N - W ¥ T - N VY R O R =)

28

116890_1

Case3:04-PJ<02876-EDL Documentl

~—

DAY CASEBEER MADRID & BATCHELDER LLP
Lloyd R. Day, Jr. (90875)

James R. Batchelder (136347)

Robert M. Galvin (171508)

Paul S. Grewal (196539)

20300 Stevens Creek Blvd., Suite 400

Cupertino, California 95014

Telephone: (408) 873-0110

Facsimile: (408) 873-0220

Attorneys for Plaintiff,
SUN MICROSYSTEMS, INC.

FiledO7/46/04 Pagel of 33

ORIGINAL

JUL 1 € 2004

08@%@%

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN JOSE DIVISION

SUN MICROSYSTEMS, INC.,
a Delaware Corporation

€04 02876

Plaintiff, COMPLAINT FOR:

V.

CASCABEL RESEARCHLLC, No. 4,751,740
Defendant. 2. DECLARATORY JUDGMENT OF
NONINFRINGEMENT OF U.S. PATENT
No. 5,182,709
DEMAND FOR JURY TRIAL

COMPLAINT

1. DECLARATORY JUDGMENT OF
NONINFRINGEMENT OF U.S. PATENT

COPY

<o o

2. Wi %(,NG
GF A

E‘F]LING

EDL

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page2 of 33

THE PARTIES

I. Plaintiff Sun Microsystems, Inc. (“Sun”) is a corporation existing under the laws of
Delaware with its principal place of business in Santa Clara, California.

2. On information and belief, Defendant Cascabel Research LLC (“Cascabel”) is a
limited liability company existing under the laws of Illinois with its principal place of business in
Deerfield, Illinois.

JURISDICTION AND VENUE
3. This action arises under the patent laws of the United States, Title 35 of the United
States Code. This court has subject matter jurisdiction pursuant to 28 U.S.C. 1338(a) and 2201.
4. Venue is proper in this Court pursuant to 28 U.S.C. 1391(b) and 1400(b).
INTRADISTRICT ASSIGNMENT

5. Assignment to the San Jose Division of California is proper under Northern District
Local Rule 3-2 because a substantial part of the events giving rise to this action occurred in Santa
Clara County.

FIRST CAUSE OF ACTION
(Declaratory Judgment of Noninfringement of U.S. Patent No. 4,751,740)

6. Sun incorporates the allegations in paragraphs 1 through 5 above.

7. Cascabel asserts that it is the owner of U.S. Patent No. 4,751,740 (“the ‘740
patent”) and that Sun’s manufacture, use, or sale of StarOffice and “Java” infringe the ‘740 patent.

Attached hereto as Exhibit 1 is a true and correct copy of the ‘740 patent.

8. Neither StarOffice nor “Java” infringe any valid claim of the ‘740 patent.
9. Sun has reasonable apprehension of suit for infringement by Cascabel.
10. An actual and justiciable controversy exists between Sun and Cascabel regarding

Sun’s alleged infringement of the ‘740 patent. Sun seeks a judicial determination and declaration
that neither StarOffice nor “Java” infringe any valid claim of the ‘740 patent. Such a
determination and declaration is necessary and appropriate at this time in order that the parties may
ascertain their respective rights and duties.

11/

COMPLAINT 1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page3 of 33

SECOND CAUSE OF ACTION
(Declaratory Judgment of Noninfringement of U.S. Patent No. 5,182,709)

11. Sun incorporates the allegations in paragraphs 1 through 10 above.

12. Cascabel claims that it is the owner of U.S. Patent No. 5,182,709 (“the <709
patent”) and that Sun’s manufacture, use, or sale of StarOffice and “Java” infringe the ‘740 patent.
Attached hereto as Exhibit 2 is a true and correct copy of the ‘709 patent.

13. Neither StarOffice nor “Java” infringe any valid claim of the ‘709 patent.

14. Sun has reasonable apprehension of suit for infringement by Cascabel.

15. An actual and justiciable controversy has arisen and exists between Sun and
Cascabel regarding Sun’s alleged infringement of the ‘709 patent. Sun seeks a judicial
determination and declaration that neither StarOffice nor “Java” infringe any valid claim of the
“709 patent. Such a determination and declaration is necessary and appropriate at this time in
order that the parties may ascertain their respective rights and duties.

PRAYER FOR RELIEF

Wherefore, Sun requests that the Court enter judgment in its favor and against Cascabel as

follows:

a. Declare that the ‘740 and ‘709 patents are not infringed by Sun;

b. Award Sun its costs and expenses of suit incurred and attorney fees as allowed by
law; and

c. Grant Sun such other and further relief as the Court may deem proper.

DEMAND FOR JURY TRIAL
Plaintiff Sun hereby demands trial by jury for all issues so triable.
CERTIFICATION OF INTERESTED ENTITIES OR PERSONS

Pursuant to Civil L.R. 3-16, the undersigned certifies that as of this date, other than the
named parties, there is no such interest to report.
/11
/11
/11

COMPLAINT 2

O O N9 N ke WD =

NN NN NN N NN e e e e e e e e
0 N N K A WD =S 0O NN N R WD = O

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page4 of 33

Dated: July 16, 2004 DAY CASEBEER MADRID & BATCHELDER LLP

Lloyd R. Day, Jr’

Attorneys for Plaintiff,
SUN MICROSYSTEMS, INC

COMPLAINT 3

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page5 of 33

Exhibit 1

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page6 of 33

United States Patent [
Wright

4,751,740
Jun. 14, 1988

[11] Patent Number:
451 Date of Patent:

[54] APPARATUS, METHOD, AND STRUCTURE
FOR TRANSLATING A DOCUMENT
HAVING ONE STRUCTURE INTO A
DOCUMENT HAVING ANOTHER
STRUCTURE

[75] Inventor: Terence J. Wright, Tyngsboro, Mass.

[73] Assignee: Wang Laboratories, Inc., Lowell,

Mass.
[21] Appl. No.: 679,675
[22] Filed: Dec. 10, 1984
[51] Imt. CL* ..o GO06K 9/00
[52] US. Cl coceerrernnesreneneinecasens 382/1; 364/518,;
364/900; 382/61
[58] Field of Searchc.ccccceuces 382/1, 61; 364/518,
364/523
[56] References Cited
U.S. PATENT DOCUMENTS
4,435,766 3/1984 Haber et al.ccceeverreecreenns 364/200
4,435,778 3/1984 Cason et al. ... 364/900
4,532,588 7/1985 Foster 364/200
4,573,192 2/1986 Roth et al. ...covvcvevvenvncncrnnnnes 382/61

OTHER PUBLICATIONS

Office Information Architecture: Concepts, GC23-07-
65-0, First Edition, IBM, 1983 pp. 1-1 to 2-3.
Document Content Architecture: Revisable-For-
m-Text Reference 5C23-0758-0, First Edition, IBM,
1983, pp. 15-26.

Joan E. Knoerdel, Shirley Ward Watkins, Document
Interchange Format, Institute for Computer Sciences
and Technology, National Bureau of Standards, U.S.
Department of Commerce, Feb. 1984, pp. 1-6, 11.

V. Joboloff, Theo Schieich, Introduction to Interscript,
Xerox Corp., Dec. 4, 1984, pp. 55-62.

R. M. Ayers, Interscript Document Interchange Stan-
dard Concepts and Facilities, Xerox Corp., Dec. 1983,
sections 6-11.

1. R. Campbell-Grant, Peter J. Robinson, Office Docu-

VERSION WITH
STRUCTURE A
101

A-1
TRANS
203

ment Architecture, 6th Working Draft, ECMA, 30 May
1984, pp. 68-92.

M. Zisman, Good Fits, Bad Fits and Misfits, Computer
World, 1/21/85, pp. ID/1-ID/12.
Document Context Architecture:
m-Text Reference, SC23-0758-0, IBM,
179-184,

B. Reid, Scribe . . ., Thesis CMU-CS-81-100, Car-
negie-Mellon University 1980, pp. 41-46, 49.

Revisable~For-
1983, pp.

Primary Examiner—Leo H. Boudreau
Attorney, Agent, or Firm—Michael H. Shanahan;
Gordon E. Nelson

[57] ABSTRACT

Method, apparatus, and document structure used to
translate a document having one structure into a docu-
ment having another structure. A document having the
first structure is translated into an equivalent document
having an intermediate structure, and the document
having the intermediate structure is translated into an
equivalent document having the second structure. The
intermediate document structure is sequential, and
translation from the document having the intermediate
structure to the document having the second structure
may begin before the translation from the document
having the first structure to the document having the
second structure is complete. The sequential document
structure consists of segments representing components
of the document. If a given component is dependent
from another component, the dependent component is
nested within the component it is dependent from. The
entire document is represented by a segment in which
all segments representing components are nested. Other
structures in the intermediate document structure repre-
sent attributes applying to sections of the document text
and items such as line ends, tabs, and indentations.

57 Claims, 12 Drawing Sheets

VERSION WITH
STRUCTURE C
105

Cc-1
TRANS
205

VERSION WITH
INTERMED.
STRUC. T 201

B8-I
TRANS.
207

VERSION WITH
STRUCTUREB
103

D-1
TRANS,
209

VERSION WITH
STRUCTURE D
Q7

DOCUMENT STRUCTURE TRANSLATION IN THE PRESENT

INVENTION

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page7 of 33

U.S. Patent

VERSION WITH
STRUCTURE A

o]

A

A-B
TRANS.
1

v

VERSION WITH
STRUCTURE B
103

4¢—P TRANS.

1o

Jun. 14, 1988 Sheet 1 of 12
A-C VERSION WITH
¢—————» TRANS. |[¢&—————» STRUCTURE C
109 105
a
A-D
TRANS.
n3
v
c-D
TRANS
s
A
B~C
TRANS.
"7
\: 4
B-D VERSION WITH

STRUCTURE D
107

FlG I :PRIOR-ART DOCUMENT STRUCTURE TRANSLATION

4,751,740

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page8 of 33

US. Patent Jun. 14, 1988 Sheet2of 12 4,751,740

VERSION WITH VERSION WITH
STRUCTURE A STRUCTURE C
101 105

[
A-1 c-1I
TRANS TRANS
203 205
4
A
VERSION WITH
INTERMED.
STRUC: I 20|
B-I D-1
TRANS. TRANS.
207 209

VERSION WITH VERSION WITH

STRUCTURE B STRUCTURE D

103 ' 107

FIG 2 DOCUMENT STRUCTURE TRANSLATION IN THE PRESENT
INVENTION

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page9 of 33

US. Patent Jun. 14, 1988 Sheet30f12 4,751,740
A-1
DOC WITH DOCWITH EXTRACT,
STRUCTURE STRUCTURE PROGRAM
A 305 1 307 309
I-B
COMPOS.
PROGRAM
31
DOCUMENT & PROGRAM STORAGE 303 *
PROCESSOR 30l
A BUF STATE
- BUF
319
CODE CODE
IEUF FROM |=" BUF 32i
3l 309

PROCESSOR LOCAL MEMORY 3I3

FlG 3: DOCUMENT TRANSLATION SYSTEM DURING TRANSLATION FROM SOURCE
STRUCTURE TO INTERMEDIATE STRUCTURE

Case3:04-cv-02876-EDL Documentl Filed07/16/04 PagelO of 33

US. Patent Jun. 14, 1988 Sheet4of 12 4,751,740

A-I
DOCWITH DOCWITH
STRUCTURE| |STRUCTURE EXTRACT.

PROGRAM
B 40l I 307 309

I-B
COMPOS.
PROGRAM

3l

DOCUMENT & PROGRAM STORAGE 303

PROCESSOR 30l

40§J BUF
319
CODE | _.CODE
I BUF |~
317 FroM BUF 32

PROCESSOR LOCAL MEMORY 3i3

FIG. 4: DOCUMENT TRANSLATION SYSTEM DURING TRANSLATION FROM
INTERMEDIATE STRUCTURE TO DESTINATION STRUCTURE

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagell of 33

U.S. Patent Jun. 14, 1988 Sheet50f12 4,751,740
I-A
305 307 309 COMP.
507
P E—
303
301
315 317 319 CODE
FROM |~ 32!
309
313
SYSTEM USING STRUCTURE A 50i
NETWORK
505,
B-I
4 31
307 o EXTR.
509
303
301
: CODE
403 317 319 Foomt b 321
311
313

SYSTEM USING STRUCTURE B 503

FIG. 5 :00CUMENT TRANSLATION SYSTEM IN A NETWORK

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel2 of 33

4,751,740

Sheet 6 of 12

Jun. 14, 1988

U.S. Patent

MIIAHIA0 FYNLONHLS LNIWNO0J FLVIATIWHILNI ”w O_.H_

b9 SO3 6€9 S03
— A N A ~
zﬁ@@m 19 619 1€9 129
' TS 983 ,LX3L, 21S 2s3 oL
G£9 VO3 0£9 LD
~ A ™ Ve A N
629 €59 129 129 1€9 629 129
129 JL A3Y, LV ov3 o} oL ,39vd, 219 0} oL
129 VYOS 09 v
e A ™~ ' —A- ™
G29 €29 129 619 109
129 0L ,A3Y, DLV avs oL waw. 2SS
v
219 Q03 119 Q0S G09 SOS
- Y - A N A N
€09
609 1) €19 609 209 109
oLa 203 20 oLa 20as _s_<uw_mw_ 9SS

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel3 of 33

Sheet 7 of 12 4,751,740

Jun. 14, 1988

U.S. Patent

_>m<L__m_ 482 Gi8 08 si8 08 ¢ig
015
8
g v
e 108 S3LAE b)
(STILAS) 109 1938 169 (
ci8 _>m<w_k_m_ 2SS "“To1s8’ 053 608
8 v
v
108
608 208 s08 €08 2 109
L 4a A 1av 300 0SS
v TIv130 LNIWO3S ANVNIS ONY 3010A 1 G "©)| 4
VL3I0 INIWO3IS 1x3L:))|
129 129 g
—— s N
619 529
159 | £€9 L0L {109 9SS
X35 | os3 ﬂ A3 ov3 w a1 SoL
8
129 oL e
g —_— A ~— —A Y
€0L §0L | oo
soL | 629) 1N,
S0L | 62 | i3udin| oo [ANTHEINN ov3 NS 203
8 v
12 0530 "¥LLV
<W A N
60 €0L 104 619 109
209 £29 629 | €29 | y3nd5 | 622 | 1xai
.NJW@W. 20s .uz_._mumw_@ VS | A3Y,0V]| OVS | '"TTo1d 20 | '"5ig' | Oss

4,751,740

Sheet 8 of 12

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel4 of 33
Jun. 14, 1988

U.S. Patent

s ebl bl SHIl | swil
NVIYLS|,4713HS, LN3ILINOD ¥OLdI¥2S3a |,4713HS,
so3| so3 4713HS IWYN | S0S
D
9 6l cell | 8
T el 39005 e Gell |,3400S el
LX3L, 1X3L 434NN, 1X3l 5s3a |'w3aNn, 1X3L
s03 2 39vd vO3 Q3¥0JS¥IANN | 3LNgLlY vOS 2 39vd
o) g
g v
7011 62l 221 gzl €zl | 60l 12! sl 2
1D LX3L 43L00d| 1x3al $9S3a | 1o |¥3L004|M30vaH,| 1X3l
gd 1 39vd SO3| 431004 | Lvwyod 831004 4S sos| s03| y3avaH
g \v/
v
St | eoll I | eon | 2ot | soll coll ol
$2s3a | 11D |y3av3H, sosaa | Lo | Lo |,1x3d, SHOLAINOS3A |Wv3IHLS,
LYWH04 ¥3aV3H 4S S0S| LywyOod 1X3l S ad S0S Y2018 04NI 000 SOS
v J¥NLONYLS JLVIGIWHILNI HLIM Ol 3¥N9I4 40 LNIWND0A: || "©)|

ANIWO3S J13HS LX3L 3WVN - m O_L v

106 LE9 106 £06 510

4713HS, IWVN, 506

=30 2S3 SLN3ILNOD J473HS i | 503
\
v
£06 106
: S06 IWVYN L09 109
§06] 804 SHILOVHVHD FAUYH, 534S _u_._wmm_ 198

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel5 of 33

U.S. Patent Jun. 14, 1988 Sheet9of 12 4,751,740
ADMINISTRATIVE BLOCK 103
| 2 3 4 | _DTI003
0|0
ajaia
DOC INFO BLOCKS 1001
L INDEX B FOR [P35
19 — BLOCK 5 HR [P12
NA [P20 1033 > Ps FR |P26
] 40 RIES
NIEI006 PIES 1008 1010
NIBIOO5 PIBIOOT RIBIOO9
TEXT BLOCK 1002
L > - 1031
20 1T 130 T qex
N
031 SHELF
A A | 1015
(ACIO33 - ETXI03I o3 -
- | 21 31T A AT Z_ PAGE|
. 1027
FOR|HR [FR
1035 A A
1033 | FA A
N
AN
——— 103
oT [T ST 25 T eace2
FOR ARIER]" vA_ I (03] 037 | 1029
' 1023
1035 A A A
DOCUMENT BODY ,
CHAIN 1026 /1033 033 103 103
IzeTr JIZTH—-*ss Tl'\"*
FOR| \1I03 [FOR
1035 A 1035 A A
FOOTER 1017 HEADER I0I9 FORMAT 102

FIG IO : DOCUMENT WITH PRIOR-ART STRUCTURE

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel6 of 33

US. Patent Jun. 14, 1988 Sheet 100f 12 4,751,740

INIT 1201
y

RESULT=T

NOT

EXHAUSTED 1203

TERM 1207

GET NEXT 1209
CHAR.
CHAR
F ETX
1211
PROCESS
CHAR
1213
NO
1217 1221
WRITE ANY
1218 END CODES NOT
| EXHAUSTED
=F
RESTORE
1219 | PREV CHAIN
STATE
|

NOTE: IF A PROCESSING STEP FAILS, RESULT = F

FIG. |2 : maIN TRANSLATION LOOP

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel7 of 33

US. Patent Jun. 14, 1988 Sheet 110f12 4,751,740

FROM (2]l

| REEL
seTpB 70| |PROCESS WRITE PROCESS
START OF | |VISUAL CTL 252}‘%% ITEM
ATTR ATTRIBUTES SPEC | BYTE
1305 1305 ‘ 1315 [3i9 ‘
WRITE SET PB TO
START OF
CHARACTER SN
1313 1325
Y A
Lo e -
,,
1213 TO 1205

FI1G. |3 pETAIL OF PROCESS CHAR 1213

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel8 of 33

U.S. Patent Jun. 14, 1988 Sheet 120f12 4,751,740

FROM 1309

TO 1313

FlG !4 ATTRIBUTE PROCESSING DETAIL

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Pagel9 of 33

4,751,740

1

APPARATUS, METHOD, AND STRUCTURE FOR
TRANSLATING A DOCUMENT HAVING ONE
STRUCTURE INTO A DOCUMENT HAVING
ANOTHER STRUCTURE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to structures used for
documents in data and word processing systems and
more particularly to apparatus, methods, systems, and
structures used to translate a document having one
structure into an equivalent document having another
structure.

2. Description of the Prior Art: FIG. 1

Documents may be written and processed using
many different kinds of data processing or word pro-
cessing systems. Documents processed using a given
system have a document structure specific to that sys-
tem. Thus, if a document is to be processed first on one
system and then on another, it must be translated from
a document having the structure required for the first
system into a document having the structure required
for the second system. In the prior art, translation from
one structure to another was accomplished by writing a
translation program specific to the two structures. The
consequences of this approach are shown in prior-art
FIG. 1. In that Figure, there are represented four ver-
sions of a document, version 101 having structure A,
version 103 having stucture B, version 105 having struc-
ture C, and version 107 having structure D. Six pro-
grams, represented by the boxes labelled 109, 111, 113,
115, 117, and 119, are necessary to permit translation of
a version having any one of the structures into a version
having any of the other structures. As further structures
are added, the number of translation programs required
increases disproportionately. If all translations may be
made in either direction, the number of translation pro-
grams N required for a number of structures n is ex-
pressed by N=(n—1)+(n—2)+..+(n—(n—1)). More-
over, in order to write each of the translation programs,
a detailed knowledge of both document structures is
required. That requirement is disadvantageous in two
respects. First, if translation programs are to be pro-
vided for any considerable number of structures, the
programmer must spend a great deal of time studying
the structures. Second, where one of the document
structures is confidential and proprietary to one manu-
facturer and the other is confidential and proprietary to
another, the knowledge required to write a translation
program for the structures may be unobtainable.

SUMMARY OF THE INVENTION: FIG. 2

The present invention solves the problem just de-
scribed by providing an intermediate document struc-
ture for use in document translation. As shown in FIG.
2, translation from a document having a first structure
into a document having a second structure is accom-
plished by translating the document having the first
structure into a document having an intermediate struc-
ture and then translating the document having the inter-
mediate structure into a document having the second
structure. Thus, Version 101 of the document is trans-
lated into Version 103 of the document by using A-I
translator 203 to translate Version 101 into Version 201
having the intermediate structure and then using B-I
translator 207 to translate Version 201 into Version 103.

15

30

35

45

2

As may be seen from FIG. 2, when translation is done
via a Version 201 having the intermediate structure,
only as many translation programs are required as there
are document structures other than the intermediate
structure. Thus, for the four structures A, B, C, and D
represented in FIG. 2, 4 programs, A-I translator 203,
C-I translator 205, B-I translator 207, and D-I translator
209, are required instead of the 6 programs of the prior
art. Since the number of programs required in the prior
art increases disproportionately as the number of docu-
ment structures, increases, the present invention is par-
ticularly advantageous when a large number of differ-
ent document structures must be dealt with.

Further advantages of the present invention stem
from the fact that each program translates between a
single structure and the intermediate structure. Thus, a
programmer writing a translation program need only
understand two structures: the one he is immediately
concerned with and the intermediate structure. More-
over, since translation between confidential document
structures can be achieved by translating from the first
confidential structure to the intermediate structure and
then from the intermediate structure to the second con-
fidential structure, there is no need to disclose confiden-
tial structures as long as all programmers know and
understand the intermediate structure.

The present invention is particularly valuable when a
number of word or data processing systems utilizing
different document structures are connected by means
of a network. In the absence of an intermediate struc-
ture, a variety of document structures must be trans-
ferred over the network; when an intermediate struc-
ture is available, all documents may be translated into
the intermediate structure before being placed on the
network, and the network need only deal with the inter-
mediate structure.

The intermediate structure used in a preferred em-
bodiment of the invention has a sequential structure, i.e.,
one in which the logical relationships of the compo-
nents of the document to one another are represented
by the locations of the components relative to each
other in the document structure. Because the structure
is sequential, there is no need for a translation of a docu-
ment into the intermediate structure to be complete
before translation from the intermediate structure into
the target structure begins. Thus, in a network, the
intermediate structure may be transmitted over the
network as it is produced and translated into the target
structure as it is received.

It is thus an object of the invention to provide an
improved data or document processing system.

It is another object of the invention to provide an
improved method and improved apparatus for translat-
ing a document having one structure into an equivalent
document having another structure.

It is an additional object of the invention to provide a
document structure particularly adapted to use in trans-
lating documents.

It is a further object of the invention to provide a
sequential document structure for use in networked
systems.

It is yet another object of the invention to provide a
sequential document structure wherein components
dependent from other components are nested within the
components they are dependent from.

It is a further additional object of the invention to
provide an expandable sequential document structure.

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page20 of 33

4,751,740

3

Other objects and advantages of the present invention
will be understood by those of ordinary skill in the art
after referring to the detailed description of a preferred
embodiment and the drawings, wherein:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of prior-art translation of
document structures.

FIG. 2 is a block diagram of translation of document
structures in the present invention.

FIG. 3 is a block diagram of a document translation
system during translation from a source structure to an
intermediate structure.

FIG. 4 is a block diagram of a document transiation
system during translation from an intermediate struc-
ture to a target structure.

FIG. 5 is a block diagram of a document translation
system in a network.

FIG. 6 is an overview of the intermediate document
structure of the present invention.

FIG. 7 is a detail of a text segment in the intermediate
document structure of the present invention.

FIG. 8 is a detail of voice and binary segments in the
intermediate document structure of the present inven-
tion.

FIG. 9 is a detail of a named text shelf segment in the
intermediate document structure of the present inven-
tion.

FIG. 10 is a block diagram of a document with prior-
<-art structure.

FIG. 11 is the document of FIG. 10 with the interme-
--diate structure of the present inventon.

FIG. 12 is a flow chart of a main translation loop for
~translating documents having the structure of the docu-
ment of FIG. 10 into the intermediate structure of the
present invention.

FIG. 13 is a detailed flow chart of the character-proc-
+-essing step in the flow chart of FIG. 12.
~- FIG. 14 is a detailed flow chart of the attribute pro-
"~ cessing step in the flow chart of FIG. 13.

DESCRIPTION OF A PREFERRED
EMBODIMENT

The following description of a preferred embodiment
first describes implementations of the invention in a
single stand-alone document processing system and in a
network of document processing systems. Thereupon, it
describes a preferred embodiment of the intermediate
document structure, and finally, it provides an example
of translation between the preferred embodiment of the
intermediate document structure and a prior-art docu-
ment structure.

1. Stand-alone Translation System of the Present
Invention: FIGS. 3 and 4

A block diagram of a stand-alone system for docu-
ment translation according to the present invention is
presented in FIG. 3. The document translation system
shown in that figure is implemented in a standard multi-
user document processing system such as the Wang
Laboratories, Inc. “ALLIANCE” (TM) system. Such a
document processing system commonly includes at
least a mass storage device such as a disk drive for
storing documents and document processing programs,
a processor for processing documents, and local storage
used by the processor to store data and programs while
processing a document. In FIG. 3, these components
are represented as document and program Storage 303,

20

25

30

45

55

65

4

processor 301, and processor local memory 313. Under
control of a program, processor 301 may fetch data and
programs from document and program storage 303. to
local memory 313, may execute the programs and pro-
cess the data in local memory as specified by the pro-
grams, and may store processed data in storage 303.
Other components of the system, not important for the
present discussion and therefore not shown in FIG. 3,
may include terminals for the users and means for read-
ing and writing floppy disks.

Translation is necessary in a document processing
system of the type shown in FIG. 3 when a user of the
system wishes to process a document having a docu-
ment structure different from that used in the document
processing system. Such a situation may arise when the
user has a copy of the document on a floppy disk made
by a different document processing system. In this case,
the document must be read from the floppy into storage
303 and then translated into the proper form before
further processing is possible. Translation using an in-
termediate structure takes place in two steps: from the
first document structure to the intermediate structure
and from the intermediate structure to the second docu-
ment structure. FIG. 3 shows the document processing
system while executing the first step. Storage 303 con-
tains document with structure A 305, document with
intermediate structure I 307, and two programs: A-I
extraction program 309 and I-B composition program
311. Program 309 is termed an extraction program be-
cause it extracts information from a document having
structure A and produces a document containing the
same information and having intermediate structure I
Program 311 is termed a composition program because
it composes a document having structure B from the
information contained in the document having structure
L

During the first step, processor local memory 313
contains four buffers, i.e., areas of memory in which
data and programs relevant to the translation operation
are stored during the translation operation. A buffer 315
contains the portion of document 305 which is currently
being translated into the intermediate structure; I buffer
317 contains the result of the translation of the contents
of A buffer 315 into the intermediate structure; state
buffer 319 contains data which indicates the current
state of the translation operation; code buffer 321, fi-
nally, contains the code from program 309 which pro-
cessor 301 is currently executing. .

During translation from structure A to structure I,
the system operates as follows: for each portion of doc-
ument A 305 being translated, processor 301 moves the
components of document A’s structure containing the
portion from storage 303 into A buffer 315. Processor
301 then begins translating the contents of A buffer 315
under control of code from program 309. If code other
than what is presently in code buffer 321 is required to
perform the translation, that code is copied from pro-
gram 309 into code buffer 321. As processor 301 trans-
lates, it places the result in I buffer 317. When I buffer
317 is full, it is copied to document I 307; similarly,
when a portion of document 365 which is not presently
contained in A buffer 315 is required, the required por-
tion of document A 305 is copied from storage 303 to A
buffer 315.

Variations on the above implementation of the inven-
tion will be immediately apparent to one skilled in the
art. For example, document processing systems of the
kind typified by the “ALLIANCE” generally have

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page2l of 33

4,751,740

5

relatively small memories 313; consequently, the buffers
315, 317, and 321 will not be large and transfers between
storage 303 and these buffers will frequently occur.
When implemented in a system such as a general-pur-
pose data processing system with large local memory,
the buffers may be large enough to accept ar entire
document and all of code 309; and transfers between
storage 303 and local memory 313 may occur only at
the beginning and end of the translation operation.
Large systems may also include means for permitting
direct transfer of data between storage 303 and memory
313; in such systems, data would be transferred between
document 305 and document 307 and buffers 315 and
317 and code from program 309 to buffer 321 without
the direct intervention of processor 301. Further. in a
multiprogramming system, state buffer 319 may contain
state permitting interruption and resumption of a pro-
cessing operation.

The second step is analogous to the first. FIG. 4
shows the document processing system during this step.
The documents involved are the document with struc-
ture I 307 which resulted from the first step and a docu-
ment with structure B which is to be the result of the
second step. The program involved is I-B composition
program 311. The buffers are I buffer 317, state buffer
319, code buffer 321, and B buffer 403, which contains
data destined for document 401. Code buffer 321 con-
tains code from I-B composition program 311. During
the translation operation, processor 301 under control
of I-B composition program 311 reads a portion of doc-
ument 307 into I buffer 317, translates the contents of I
buffer 317 into structure B, and places the result in B
buffer 403. When B buffer 403 is full, its contents are
written to document 401. Portions of program 311 are
copied to code buffer 321 as required to perform the
translation operation.

If the document processing system must deal with
documents having structures other than structure A,
then there must be a program analogous to A-I extrac-
tion program 309 for every structure which the docu-
ment processing system must deal with. Of course, the
number of such programs is reduced if all document
processing systems adopt the convention that docu-
ments on floppy disks are in the intermediate structure.
In that case, only two programs are required: I-B com-
position program 311 and a B-I extraction program for
translating documents having the B structure into ones
having the I structure.

2. Document Translation according to the Present
Invention in a Network: FIG. §

The situation in a networked system in which all
documents which are transferred via the network have
the intermediate structure is similar to the one which
arises when all documents on floppy disks have the
intermediate structure. As shown in FIG. 5, each of the
systems in the network must have a composition pro-
gram for translating documents from the intermediate
structure into the structure used in the system and an
extraction program for translating documents from the
structure used in the system to the intermediate struc-
ture. ’

Network 505 of FIG. 5 connects two systems, system
501 using structure A and system 503 using structure B.
Each system has storage 303. processor 301, and mem-
ory 313. System 501 further has A-I extraction program
309 and I-A composition program 507, while system
503 has I-B composition program 311 and B-I extraction

20

25

30

35

45

50

55

60

65

6

program 509. FIG. 5 shows systems 501 and 503 as they
would be set up in the course of a transfer of a docu-
ment from system 501 to system 503. System 501 first
operates under control of A-I extraction program 309 to
translate document with structure A 305 into document
with structure I 307 in the manner previously described.
When the translation is finished, document with struc-
ture I 307 is sent via network 505 from system 501’s
storage 303 to the equivalent storage in system 503.
System 503 then operates under control of I-B composi-
tion program 311 to translate document 307 into docu-
ment with structure B 401. In a transfer of a document
from system 503 to system 501, the reverse of the above
occurs. System 503, operating under control of B-I
extraction program 509, translates a document having
structure B into its equivalent having structure I. That
document is then sent via network 505 to system 501
which, operating under control of I-A composition
program 507, translates the document with structure I
into one with structure A.

Since all of the documents transferred via network
505 have the intermediate structure I, a given system
attached to the network need only have an extraction
program for translating the system’s document struc-
ture into the intermediate structure and a composition
program for translating the intermediate structure nto
the system’s document structure. Thus, regardless of
the number of kinds of document structures used by
systems attached to the network, a given system need
only have two translation programs.

In the preceding discussion, it has been presumed that
each step in the translation process translated an entire
document. However, in embodiments of the invention
in which the intermediate document structure is sequen-
tial, it is possible to translate from the first structure to
the intermediate structure to the second structure in a
continuous process in which the document having the
intermediate structure is translated into one having the
second structure as fast as the document having the
intermediate structure is produced. In the stand-alone
system of FIGS. 3 and 4, the two steps in the translation
can be carried out by separate processes, one executing
the extraction program and the other the composition
program. In such a system there is no need for a sepa-
rate document with the intermediate structure; instead,
as A-I extraction program 309 executed by the first
process outputs to I buffer 317, I-B composition pro-
gram 311 executed by the second process reads from
buffer 317 and outputs to buffer 403. When that buffer is
full, program 311 outputs to document with structure B
401.

In the networked system of FIG. 5, A-I extraction
program 309 executing in system 501 may output from
buffer 317 directly to network 505, and I-B composition
program 311 executing in system 501 may place data
received over network 505 directly into buffer 317.
Again, there is no need for a document with the inter-
mediate structure in storage 303 of either system 501 or
system 503. Which of the possible implementations is
employed in a given system depends on the characteris-
tics of the system. For example, in a system in which
speed of transfer across network 505 is not a limiting
factor, or one in which the size of storage 303 is, the
document with the intermediate structure may be out-
put directly to network 505. If, on the other hand, the
speed of transfer is a limiting factor or the size of stor-
age 303 is not, the document with the intermediate

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page22 of 33

4,751,740

7

structure may be output to storage 303 and from there
to the network.

3. The Intermediate Document Structure in a Preferred
Embodiment:

FIG. 6

As previously indicated, the intermediate document
structure in a preferred embodiment is sequential, i.e.,
the logical relationships between the components of the
document are represented by the locations relative to
each other of the components in the document struc-
ture. The intermediate document structure of a pre-
ferred embodiment is further distinguished by the fact
that components of the document which are dependent
from other components are nested within the compo-
nents from which they are dependent. Both of these
characteristics may be seen in FIG. 6, which shows
parts of the intermediate document structure for a sim-
ple document. FIG. 6 represents a single sequence of
data. Thus, the points indicated by A—A in the first and
second lines of the figure are the same. Wavy lines
indicate that the document structure includes material
between the wavy lines which has been omitted.

The major component of the embodiment of the in-
termediate structure shown in FIG. 6 is the segment.
The intermediate structure for a document contains at a
minimum a single segment. Components of the docu-
ment may be represented by other segments, which are
then nested in the segment representing the entire docu-
“.ment. A segment may contain components other than
- segments. These components include the data codes,
- generally character codes, which represent the docu-
- ment contents, attributes, which specify modifications
~to the appearance of the texi represented by a sequence
of character codes, control specifiers, which indicate

modifications which apply to a single point in the text

represented by a sequence of character codes, and de-
=.scriptors, which immediately follow the beginning of a
--.segment, attribute, or control specifier and contain in-
“..formation concerning the segment, attribute, or control
.specifier to which they belong.

In a preferred embodiment, the beginning of each
segment is represented by a segment start code and a
segment type code indicating the type of the segment,
and the end of each segment is represented by a segment
end code and the segment type code for the segment. In
FIG. 6, the segment which contains all of the other
components of the document has the ‘stream’ type. The
start of the segment is marked by start of segment (SOS)
605, which contains start segment code (SSC) 601 and
segment type code (STC) 603 indicating the ‘stream’
type. The end of the stream segment is marked by the
end of segment (EOS) 641 in FIG. 6. EOS 641 for the
stream segment contains end segment code ESC) 637
and a repetition of STC 603 indicating the stream type.

The stream segment contains a descriptor and a seg-
ment of the ‘text’ type. The descriptor contains adminis-
trative information about the document. Examples of
such information include the name of the person who
created the document, the name of the person who
typed the document, the document’s title, a description
of its contents, and the document’s classification, for
example letter or memo. The descriptor begins with
start of descriptor (SOD) 611 and ends with end of
descriptor (EOD) 617. SOD 611 contains start descrip-
tor code (SDC) 607 and descriptor type code (DTC)
609 identifying the descriptor type, and EOD 617 con-
tains end descriptor code (EDC) 615 and a repetition of

—

5

20

25

35

40

45

55

60

65

8
DTC 609. The area between SOD 611 and EOD 617
contains descriptor contents (DC) 613. In a preferred
embodiment, all descriptors belonging to a segment
must immediately follow that segment’s SOS 605. De-
scriptors may not overlap and DC 613 may not contain
a segment or another descriptor.

Segments of ‘text’ type contain the sequence of char-
acter or numeric codes which makes up the document
and may also contain control specifiers, attributes, de-
scriptors and other segments. SOS 605 for the text seg-
ment of FIG. 6 contains SSC 601 and STC 619 specify-
ing the ‘text’ type, and EOS 639 for the text segment
contains ESC 637 and STC 619 for the ‘text type. The
sequence of character or numeric codes in the text seg-
ment is represented by text codes (TC) 621.

The text segment of FIG. 6 also contains an attribute
and a control specifier. The attribute is a revision attri-
bute which indicates that a sequence of characters has
been revised. The attribute begins with start of attribute
(SOA) 627 and ends with end of attribute (EOA) 635. In
a preferred embodiment, SOA 627 contains start attri-
bute code (SAC) 623 and an attribute type code (ATC),
which indicates the type of the attribute. Here, ATC
625 indicates the ‘revision’ attribute. EOA 635 contains
end attribute code (EAC) 633 and ATC 625. The attri-
bute applies to all of the characters represented hy the
character codes occurring between SOA 627 and EOA
635. The actual effect of the attribute depends on the
document structure of the document which is finally
produced from the intermediate document structure.
For example, in some documents, a bar may appear in
the margin next to the text represented by the character
codes to which the attribute applies. In others, the attri-
bute may have no meaning and will be ignored in the
translation process. As will be explained in more detail
later, attributes may overlap or be nested within a seg-
ment, but may not extend across segment boundaries.
All descriptors applying to an attribute immediately
follow SOA 627 for the attribute.

Control specifier (CTL) 630 in the text segment of
FIG. 6 specifies a page break at the point in the se-
quence of character codes at which CTL 630 occurs.
CTL 630 consists of two parts: control code (CC) 629
indicating a control specifier, and control type code
(CTC) 631 indicating the kind of control specifier. CTC
631 in FIG. 6 is for a page break. Other CTC codes may
specify line breaks, tabs, indentations, and similar text
formatting functions. A CTL 630 may be immediately
followed by one or more descriptors further describing
the formatting operation specified by CTL 630.

In a present embodiment, SSC 601, ESC 637, SDC
607. EDC 615, SAC 623. EAC 633, and CC 629 are
distinct arbitrary 8-bit codes; the type codes indicated
by STC 603, DTC 609, ATC 625, and CTC 631 are
distinct arbitrary 16-bit codes. In other embodiments.
the codes may have different lengths. The character
codes may belong to a set of character codes such as the
ASCII, EBCDIC, or Wang Laboratories, Inc.’s WIS-
CII character code set or code sets such as those for’
Prestel terminals. The numeric codes may include codes
used to represent fixed decimal values or floating point.
values. Other types of segment may have other kinds of
codes representing the information they contain.

In a present embodiment of the text segment, confu-
sion between the codes used to define segments, de-
scriptors, attributes, and control specifiers and the
codes used to represent data is avoided by means of a
unique eight-bit identity code which specifies that the

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page23 of 33

4,751,740

9

preceding eight bits are not to be interpreted as one of
the codes which marks the beginning or end of a seg-
ment, attribute, descriptor, or control specifier, but
instead as a data code. This technique is illustrated in
FIG. 7, where TC 621 in the third portion of the seg-
" ment shown in the figure contains a character code
identical with SSC 601. That character code is followed
by identity code (IDC) 707, which prevents the code
from being interpreted as the start of a segment. Varia-
tions of the technique just described may be employed
in other embodiments. For example, the order of the
code identifying the component and the code identify-
ing the component type may be reversed and the iden-
tity code may indicate that a following code is not to be
interpreted as a type code.

An advantage of the intermediate document structure
of the present invention is its adaptability. In a present
embodiment, a document has five kinds of components:
segments, descriptors, attributes, control specifiers, and
data codes. However, segments, descriptors, attributes,
and control specifiers are identified by means of 8-bit
codes, and consequently, new kinds of components may
be added without changing the basic nature of the docu-
ment structure. The same is true with regard to new
types of segments, attributes, descriptors, and control
specifiers. The types of these components are specified
by 16-bit codes, and thus, it is possible to have up to
2**16 different types of segment and the same number
of types for the attributes, the descriptors, and the con-
trol specifiers. Such adaptability of the intermediate
structure is required to deal with the progress of docu-
ment processing technology. For example, originally,
documents were composed only of text; however, as
the technology of document processing has expanded,
documents have come to include images and voice data,
and the present invention includes segment types for
voice data and images and for the the binary data repre-
senting a voice signal or an image. As other items are
included in documents, corresponding segment types
may be added to the intermediate structure.

4. Segment Types in a Present Embodiment: FIGS. 7
and 8

In a present embodiment, there are 11 segment types:

. stream: the stream segment type represents an entire

document and contains the segments representing the
components of the document.

2. text: the text segment type represents the body of the
text of the document.

3. header: the header segment type represents the page

headers used in a document.

footer: the footer segment type represents the page

footers used in a document.

5. note: the note segment type represents text which is a
note to the makers of the document. Notes are printed
only on request.

6. footnote: the footnote segment type represents the
text of a footnote which refers to a point in the text
corresponding to the location of the footnote seg-
ment.

7. shelf: the shelf segment type represents data which
has been stored for later use in the document.

8. external reference: the external reference segment
type represents information which is required for the
document but not contained in the document. The
contents of the external reference segment specify
how the information referred to is to be located.

—

5

15

40

45

50

65

10

9. binary: the binary segment type contains information
represented by binary data codes instead of character
codes. In a present embodiment, the binary segment
type contains the data used to represent images and
voice signals.

10. image: the image segment type contains information
required to interpret the binary data in a binary seg-
ment representing an image.

11. voice: the voice segment type contains information
required to interpret the binary data in a binary seg-
ment representing voice data.

Of these types, the text, header, footer, note, footnote,
and shelf segments in a present embodiment all repre-
sent text sequences, and consequently may contain TCs
621, attributes, and control specifiers. FIG. 7, showing
a detailed representation of a text segment is exemplary
for all of these segment types. The text segment of FIG.
7 represents text which begins with a title which is
centered and underlined and which has been revised.
The segment begins with SSC 601 and STC 619 specify-
ing a text segment, contains CC 629 and CTC 702 speci-
fying that the following text is to be centered, SAC 623
and ATC 625 specifying the beginning of a revised
section of text, SAC 623 and ATC 703 specifying the
beginning of a section of text which is underlined, attri-
bute descriptor 711, specifying that the underline is to
be a single underline and including SDC 607, DTC 709
indicating single underline, EDC 615, and DTC 709,
TC 621 representing the sequence of characters in the
title, EAC 633 and ATC 703 marking the end of the
portion to be underlined, two occurrences of CC 629
and CTC 705 ‘return’ marking the end of the title and a
blank line following the title, TC 621 containing the text
following the title, EAC 633 and ATC 625 marking the
end of the portion of the text which was revised, addi-
tional TC 621, and ESC 637 and STC 619 specifying the
end of the segment. As previously explained, IDC 707
and SSC 601 in the third line of the figure show how the
identity code is used to distinguish data codes from
those which indicate the start or end of a component of
the document. FIG. 7 also shows how, as previously
explained, attributes may overlap.

In a present embodiment, the text, header, footer,
note, footnote, and shelf segment types all have the
general form just presented; however, the header and
footer segment types in a present embodiment may not
contain other segments. There is no such restriction for
the text, note, footnote, and shelf types. For example, a
text segment may include a note or footnote segment,
and if the text includes a picture, an image segment and .
a binary segment representing the image.

A segment of the external reference type has as its
contents the information required to locate the external
reference. For example, if the external reference is to
another document, the external reference segment will
contain the information which the document processing
system requires to locate the other document

In a present embodiment, a binary segment is always
preceded by a segment specifying how the data con-
tained in the binary segment is to be interpreted. Pres-
ently, such interpretive segments are either voice seg-
ments or image segments. Other embodiments may of
course include other kinds of interpretive segments.
FIG. 8 presents a detailed representation of one such
combination of an interpretive segment with a binary
segment. In that figure, the interpretive segment is a
voice segment. The voice segment begins with SSC 601
and STC 801 for the voice type and ends with ESC 637

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page24 of 33

4,751,740

11

and STC 801 for the voice type. Its contents are the
information required to properly interpret the contents
of the binary segment. In a present embodiment, the
contents of the voice segment include audio data type
(ADT) 803, which specifies the type of audio data con-
tained in the binary segment, V 805, specifying the
version of that type, the digitization rate (DR) 807 for
the audio data, and the length of time (T) 813 repre-
sented by the following binary data.

The binary segment begins with SSC 601 and STC
811 for the binary type and ends with ESC 637 and STC
811 for the binary type. The contents of the segment
include L 813, specifying the length of the data in bytes,
and BC 815, containing the binary data codes. The
contents of L 813 and BC 815 are interpreted solely as
binary data, and consequently, a binary segment in a
present embodiment cannot contain other segments,
attributes, or control specifiers.

The relationship between the image segment and the
binary segment containing the image data is substan-
tially the same as that between the voice segment and
the binary segment containing the voice data. In a pres-
ent embodiment, the information used to interpret the
image data includes image type, horizontal and vertical
size, horizontal and vertical resolution, the encoding
scheme, the version of the encoding scheme, the encod-
ing parameter, a code indicating the hardware which
was the source of the image, the display format, and the
display color. In other embodiments, the binary seg-

" ment may contain codes representing video images and
. the image data may include the information needed to
. produce a video image from those codes.

5. Attribute Types in a Present Embodiment

A present embodiment of the invention has 11 attri-
bute types:

1. underscore: the underscore attribute indicates that
the sequence of characters specified in the attribute is

. to be underscored.

.. 2. script: the script attribute indicates that the specified

-~ sequence of characters is a subscript or superscript.
3. bold: the bold attribute indicates that the specified
sequence is to be in bold-face type.

4, optional: the optional attribute indicates that the spec-
ified sequence of characters is to be displayed or not
as the user specifies.

5. no break: the no break attribute indicates that the
specified sequence of characters will not be broken
when lines are formatted.

6. strike through: the strike through attribute indicates
that the characters in the specified sequence will be
overstruck by a specified character.

7. table of contents: the table of contents attribute indi-
cates that the characters in the specified sequence are
to be included in the table of contents.

8. index: the index attribute indicates that the characters
in the specified sequence are to be included in the
document’s index.

9. revision: the revision attribute indicates that the text
represented by the specified sequence has been re-
vised.

10. reverse video: the reverse video attribute indicates
that the characters in the specified sequence are to be
displayed in a manner which is the reverse of that
usually used.

11. italics: the italics attribute indicates that the charac-

- ters in the specified sequence are to be in italics.

—

0

20

45

50

60

65

12

Several of the above attributes may have several vari-
ants. For example, in a present embodiment, underscore
may specify one or two-line underscore and script may
specify a superscript or a subscript. As pointed out in
the discussion of the text segment and shown in FIG. 7,
a given variant is specified by means of an attribute
descriptor 711 in the attribute.

6. Control Specifier Types in a Present Embodiment

In a present embodiment, there are thirteen types of
control specifiers. They are the following:

1. alignment: the text at the point of the control specifier
is to be aligned on a character such as a decimal point,
comma, or asterisk.

2. tab alignment: the text at the point of the tab align-
ment control specifier is to be aligned with the next
tab stop.

3. indent alignment: the left margin at the point of the
indent alignment specifier is temporarily reset a
previously-specified amount.

4. center: the line following the control specifier is cen-
tered.

5. hard return: the hard return control specifier specifies -
a point at which the current line must end until the
author of the document specifies otherwise.

6. soft return: the soft return control specifier specifies
the point at which the current line ends as the docu-
ment is currently formatted. :

7. hard page: the hard page control specifier specifies
the point at which the current page must end until the
author of the document specifies otherwise.

8. soft page: the soft page control specifier specifies the
point at which the current page ends as the document
is currently formatted.

9. column: the column control specifier specifies the
point at which a column begins. Descriptors follow-
ing the column control specifier specify the line spac-
ing, line justification, lines per inch, and pitch in the
column.

10. set format: the set format control specifier specifies
the point at which a new format for the text begins.
Descriptors following the set format specifier specify
the new format. The descriptors may specify line
spacing, settings for alignment, tabs, and indentation,
and settings for centering, right justification, line
justification, lines per inch, and pitch.

11. set character set: the set character set control speci-
fier specifies the point in the text at which a new
interpretation of the document’s character codes be-
gins. The interpretation is specified by a descriptor
following the set character set control specifier.

12. merge: the merge control specifier indicates a point
at which text characters from another document will
be inserted into this document.

13. no merge: the no merge control specifier indicates a
point at which no merging will be permitted.

As is apparent from the above descriptions, where a
control specifier has a number of possible effects on the
format of the document, the exact effects are specified
by means of descriptors immediately following the con-
trol specifier.

7. Using Descriptors to Name Document Components:
FIG. 7

In some prior-art document structures, document
components may have character-string names. The
names may be used in various document processing
operations to refer to the components. In a present

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page25 of 33

4,751,740

13
embodiment of the intermediate document structure, a
component’s name is represented by a descriptor of the

‘name’ type. FIG. 9 shows how a descriptor of the name -

type may be used to represent the name of a text shelf
segment. The descriptor follows immediately after STC
901 for the shelf and consists of SDC 607, DTC 903 for
the ‘name’ type, a character sequence 905 representing
the name, EDC 615, and DTC ‘name’ 903.

8. A Document with a Prior-art Structure and its
Equivalent with the Intermediate Structure: FIGS.
10-11 ‘

The discussion next turns to a specific example of
translation between a given document structure and the
intermediate structure. There are first presented a docu-
ment having a document structure of the type presently
used in word processing and an equivalent document
having the intermediate structure of the present inven-
tion. Thereupon, the methods by which the translations
are accomplished are discussed.

FIG. 10 is an illustration of the document structure of
the type presently used. The structure is made up of
equal-sized numbered blocks in a file. The blocks have
three different kinds of contents: administrative infor-
mation about the document, indexes by means of which
components of the document may be located, and the
actual text of the documents. The administrative blocks
are at fixed locations in the file. Blocks of other types
may be anywhere in the file. Thus, except for the ad-
ministrative blocks, there is no relationship between the
location of a block in the file and its function in the
document. .Blocks are located in the file by means of
pointers specifying block numbers. The pointers may be
used to link blocks into chains and to form indexes by
which the blocks may be located.

The document illustrated in FIG. 10 contains two
pages of text and a named text shelf. Each page has a
header and footer, and a portion of the text on one of
the pages is underscored. The pages of text are con-
tained in document body chain 102S. Document body
chain 1025 consists of text blocks 1002. Each text block
1002 in the chain is linked by means of a pointer to the
preceding and following block in the chain. The double
linking makes it possible to move easily from one part of
the document body to another.

The text blocks in the chain have two major compo-
nents: the text portion (T) and the attribute portion (A).
T contains character codes for the text of the document,
codes representing tabs indentations, page breaks, and
the like, and special codes called attribute characters.
The last character in T of each text block is a special etx
character code indicating the end of T. In FIG. 10,
attribute characters appear as AC 1033 and the etx
character as etx 1031.

The A portion of a text block 1002 contains informa-
tional attributes and visual attributes. Each informa-
tional attribute corresponds to an attribute character
and contains references by means of which other text
blocks 1002 containing the information required for the
informational attribute may be located. The information
applies at the location in the text specified by the attri-
bute character corresponding to the informational attri-
bute. In FIG. 10, there are three format attributes (FA)
"1035, each one specifying a format for text and corre-
sponding to an AC 1033 in T of text block 1002 contain-
ing FA 1035. The visual attributes specify ranges of
characters in the text to which a modification such as
underlining or bold face type applies. In FIG. 10, there

5

15

20

25

35

40

45

14
is one visual attribute, VA 1023, specifying which por-
tion of the text is underlined.

Document body chain 1025 contains two pages of
text. In the document structure of FIG. 10, each page
must have a FA 1035. The FA 1035 specifies the page’s
format, any headers or footers for the page, and the fact
that the AC 1033 corresponding to the FA 1035 also
specifies the location of the beginning of a new page.
The format, header, and footer are specified by means
of references in FA 1035 to text block chains containing
the information required for the format, header, and
footer. Thus, FA 1035 in the first block (21) in page 1
1027 has three references, represented by FOR, HR,
and FR. FOR refers to the text block (35) containing
the page format, HR refers to the text block (12) con-
taining the header, and FR refers to the text block (26)
containing the footer. The first text block in page 2 1029
has the same informational attribute as the first text
block in page 1 1027. In addition, text block (15) of that
page contains VA 1023, the visual attribute indicating
the part of the text which is underscored.

The chains of text blocks containing the header,
footer, and format referred to in FA 1035 are each made
up of only 1 block in the present example document.
Text block (26) contains footer 1017, text block (12)
contains header 1019, and text block 35 contains format
1021. Header 1019 and footer 1017 both have FAs 1035
containing the reference FOR referring to format 1021.
Headers’, footers, and text thus all share the same for-
mat. The final component of the document of FIG. 10,
text shelf 1015, is made up of another chain of text
blocks containing 2 blocks. (20) and (30).

The remaining parts of the document structure of
FIG. 10 are four administrative blocks 1031 containing
document info blocks 1001, document table (DT) 1003,
and three index blocks 1033 including name index block
(NIB) 1005, page index block (PIB) 1007, and reference
index block (RIB) 1009. Document info blocks 1001
include administrative information about the document
such as the document s title, creator, subject, size, and
so forth. DT 1003 contains pointers to the document’s
indexes. P10 points to NIB 1005, P16 points to PIB
1007, and P40 points to RIB 1009. DT 1003 is always at
a fixed location in the document structure, and conse-
quently, any component of the document can be located
by using DT to find the proper index and then using the
index to locate the component.

The three index blocks correspond to three indexes: a
name index by which a named component of the docu-
ment may be located using the component’s name, a
page index by which individual pages of the document
may be located, and a reference index by which chains

. containing information referred to by references in in-

55

60

65

formational attributes may be located. In the document
of FIG. 10, each of these indexes is contained in one
index block: the name index in NIB 1005, the page index
in PIB 1007, and the reference index in RIB 1009. In
larger documents, an index may contain more than one
index block.

The name index is made up of name index entries
(NIEs) 1006. Each name index entry contains a name
and a pointer to the first text block of the chain contain-
ing the named component. Thus, NIE 1006 in NIB 1005
contains P20 pointing to text block (20), the first text
block in text shelf 1015. The page index in PIB 1007 is
made up of page index entries (PIEs) 1008. Each PIE
contains a page number and a pointer to the first text
block for the page. The document of FIG. 10 has two

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page26 of 33

4,751,740

. 15

pages, the first beginning on block (21) and the second
beginning on block (9), and accordingly, the PIE for
page 1 contains P21 and that for page 2 contains P9. The
reference index in RIB 1009 is made up of reference
index entries (RIEs) 1010. Each RIE contains a refer-
ence number (represented here by FOR, HR, and FR),
and a pointer to the first block of the chain containing
the reference, here block (35) for FOR, block (12) for
HR, and block (26) for FR.

The components of the document structure and those
of the intermediate document structure correspond as
follows:

Structure of FIG. 10 Intermediate Structure

entire document
document body chain
1025

text shelf 1015
footer 1017

header 1019

format 1021

tabs, page breaks,
etc.

VA 1023

Doc info blocks 1001

stream segment
text segment

text shelf segment

footer segment

header segment

set format control specifier
control specifiers

attribute
descriptors

The intermediate structure has no components corre-
sponding to DT 1003 or the index blocks, since the
relationship of the components to each other in the
intermediate structure is determined by their positions

.« relative to each other in the intermediate structure.
. FIG. 11 shows the translation of the document of
.+~ FIG. 10 into an equivalent document with the interme-
- -(iate structure. That document begins with SOS for the
- ‘stream’ type 1101 and ends with EOS for the stream
type 1151. Immediately following SOS 1101 are de-
scriptors 1103 containing the information from docu-
ment information blocks 1001 of the FIG. 10 document.
. Then comes SOS for the ‘text’ segment for the contents
-~of document body chain 1025, followed by PB CTL
.~ 1107, a page break control specifier marking the begin-
.~ning of page 1, a set format control specifier 1109 and
-~text format descriptors 1111 containing information as
to how the text is to be formatted. The format described
in text format descriptors 1111 remains in effect until
another SF CTL 1109 occurs in the text segment. The
information in descriptors 1111 is obtained from format
1021 of the FIG. 10 document. Following descriptors
. 1111 is a header segment for the page 1 header. The
segment includes SOS ‘header’ 1113, SF CTL 1109 for
the header format, header format descriptors 1115,
header text 1117, and EOS ‘header’ 1119. Header text
1117 is obtained from header 1019, and header format
descriptor from format 1021, as specified by FA 1035 in
header 1019.

Next in the intermediate structure comes a footer
segment for the page, containing SOS “footer’ 1121, SF
CTL 1109, footer format descriptor 1123, footer text
1125, and EOS ‘footer’ 1127. Like a format, once a
header or footer is established, it remains effective until
a new one is established. Following the footer segment
is page 1 text 1129. At the end of the text comes PB
CTL 1107 for the page break at the end of the first page.
Since page 2 has the same format, header, and footer as
page 1, there is no need for format, header, or footer
segments. Next is page 2 text 1131, from page 2 1029.
Page 2 1029 contains a visual attribute indicating an
underscore, and consequently, included in page 2 text
1131 is an underscore attribute, which contains SOA

15

20

25

30

40

45

16

‘underscore’ 1133, an attribute descriptor 1135 indicat-
ing whether the underscore is single or double, the
underscored portion of text 1131, and EOA ‘under-
score’ 1139. Thereupon come ununderscored text 1131
and EOS ‘text’ 1141, marking the end of the text seg-
ment. The rest of the stream segment is occupied by the
text shelf segment corresponding to text shelf 1015.
That segment includes SOS ‘shelf’ 1143, a descriptor
1145 containing the shelf name (obtained from NIB
1005), the shelf content 1147, from the text blocks in
text shelf 1015, and EOS ‘shelf 1149'. Following the
text shelf segment and terminating the intermediate
document structure is EOS ‘stream’ 1151.

9. Translation Methods

As may be seen by a comparison of FIGS. 10 and 11,
relationships which are expressed by means of attri-
butes, indexes, and pointers in the document structure
of FIG. 10 are expressed by means of nested segments,
attributes, and descriptors in the document structure of
FIG. 11. Thus, in the document structure of FIG. 10,
the fact that each page has an identical header is ex-
pressed by the fact that the reference HR appears in FA
1035 for each page, while the same fact is expressed in
the document structure of FIG. 11 by placing a header
segment in the text segment ahead of the text for the
first page to which it applies.

In programming terms, what happens is that when
AC 1033 is encountered in T of block (21), the process-
ing of document body chain 1025 must be interrupted,
FA 1035 must be examined, and if it specifies a page
break, new header, new footer or new format, a PB
CTL 1107, a header segment, a footer segment, or a SF
CTL 1109 and its associated descriptors 1111 must be
placed in the intermediate structure. After that has been
done, the processing of document body chain 1025 must
be resumed. If, as is the case here, the header or footer
referred to in FA 1035 itself has in its text an AC 1033
and that AC 1033 refers to another FA 1035 containing
a reference (here the reference to format 1021, FOR),
then the processing of the header or footer must be
interrupted to process the chain of blocks referred to by
that reference. The nested components of the intermedi-
ate document structure thus correspond to a processing
sequence in which the processing of a given component
of the document of FIG. 10 is begun, is interrupted
when information from another component is required,
and is resumed when the processing of the other com-
ponent is complete.

In a present embodiment, the required processing
sequence is achieved by means of a stack which is part
of State Buf 319: when the processing of a first compo-
nent is interrupted, state including the kind of compo-
nent and the current location in the component is saved
on the stack. Then the new component is located and
processed. When the processing of the new component
is complete, the saved state is restored from the stack
and processing of the first component continues. Gener-
ally speaking, in the document structure of FIG. 10, an
interruption or resumption of processing of a compo-
nent involves a shift from one chain of text blocks to
another.

FIG. 12 shows the main translation loop of a pre-
ferred embodiment of a translation program for translat-
ing the document structure of FIG. 10 into the interme-
diate document structure. During operation of the loop
in a system such as that shown in FIG. 3, the portions of

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page27 of 33

4,751,740

17
the document which are currently being translated are
read from storage 303 into A buf 315; as the intermedi-
ate document is produced, it is written to I buf 317, and
from there to storage 303. The portions of the program
currently being executed are contained in code buf 321,
and state buf 319 contains the stack, a position block
indicating the location of the character currently being
processed, a value indicating the kind of component
being processed, the character currently being pro-

5

cessed, and other values necessary for the operation of 10

the program.

The loop begins with initialization block 1201. Proce-
dures in that portion of the program output SOS
‘stream’ 1101 and then read the contents of doc info
blocks 1001 and place descriptors 1103 containing the
information from those blocks immediately after SOS
101. Initialization continues by using DT 1003 to locate
the first text block in document body chain 1025. Once
the block is found, the program outputs SOS ‘text’ 1105
and begins to process the characters in T one at a time.
Processing is done in the main translation loop.

On entering the main translation loop, two boolean
variables, result and not$exhausted, are set to True
(block 1203). As may be seen from decision block 1205,
the main translation loop will continue to operate until
either result or not$exhausted is false. result is set to
False if any processing step in the main translation loop
fails, and not exhausted is set to False when the entire
document has been translated. The main translation
loop thus terminates either as a result of a failure in
translation or upon completion of translation.

Translation then commences with the first character
in T of the first text block in page 1 1027 and continues
one character at a time (block 1209). As shown by block
1211, if the character being processed is any character
other than etx 1031, it is processed by process char 1213.
As will be explained in more detail later, if the character
is a text character, processing of the current chain con-
tinues; if it is an AC 1033, state is saved and the next
character processed by the main loop is the first byte
from the corresponding informational attribute. If one
of the bytes in the informational attribute is a reference
to another text chain, the program saves state, outputs a
code indicating the type of the chain it is processing,

25

30

35

40

outputs the characters necessary to indicate the start of 45

the new component being processed, and processing
continues with bytes from the text chain referred to in
the reference.

If the character is etx 1031, the end of T in a text
block in the chain currently being processed has been
reached. The manner in which processing continues is
determined by whether the text block is the last in a
page, the last in a chain. or the last in a document. If the
text block is not the last in a chain, it will contain a
pointer to its successor; if the text block is the last on a
page, the first character in the successor block will be
an AC 1033 corresponding to a FA 1035 specifying a
page break. When the text block is neither the last in a
chain or the last on the page, processing continues with
the first character of T in the successor block. (decision
block 1215). When the text block is the last on a page,
that character will be AC 1033 corresponding to FA
1035 specifying the page break, and a PB CTL 1107 will
be output in the course of processing the AC 1033.

The program determines whether the text block is the
last in the document by examining the stack. If it is
empty, there are no other chains to be processed and no
more characters in the present chain. When the text

50

55

65

18

block is the last in the chain, but not the last in the
document (decision block 1217), processing of the com-
ponent represented by the chain has been completed,
and the program writes the codes necessary to end the
component to the intermediate document (block 1218)
and then restores the state saved when processing of the
current chain began (block 1219). That state contains
the location of the next character to be processed, and
processing continues as described. If the text block is
the last in the document, not$exhausted is set to F
(block 1221), which terminates the main translation
loop. On termination, the codes necessary to end the
stream segment containing the document are output to
the intermediate document.

Continuing with FIG. 13, which presents a detail of
process char block 1213, the program first determines
whether the character being processed is part of a se-
quence of text (decision block 1300). If it is, it deter-
mines whether the character is an AC 1033 (block
1301). If it is, the program saves the current state (block
1303) and resets the position block to indicate the begin-
ning of the informational attribute associated with AC
1033 (block 1305). Thus, the next character fetched in
the main loop is the first byte of the associated attribute.
If the character is not an AC 1033, the program next
determines whether it is a control character, ie.,
whether it is a tab, indent, carriage return, or the like
(block 1309). If it is, the program writes a control speci-
fier corresponding to the control character to the docu-
ment with the intermediate structure (block 1315). If it
is not, the program examines the visual attributes associ-
ated with the character to determine whether they have
changed (block 1311). If they have, it does the process-
ing required to begin or end an attribute in the interme-
diate document and then outputs the character to the
intermediate document (block 1313). Thereupon, the
next character is fetched.

If the character is not part of the text, it is part of an
informational attribute or some other non-textual entity
such as a format. In that case, further processing de-
pends on whether the character is a reference (block
1315). If it is, the current state is again saved and the
position block is set to the start of the chain referred to
by the reference (blocks 1323 and 1325). Thus, the next
character processed by the main loop will be the first
character of that chain. If the character is not a refer-
ence and the item currently being processed is not yet
finished (decision block 1317), the character is pro-
cessed as required for the item (block 1321). For exam-
ple, if what is being processed is an informational attri-
bute specifying a page break, the program will output a
PB CTL 1107. If the item is finished, the program wil}
restore the state saved when the processing of the item
began (block 1319).

FIG. 14, finally, contains a detailed representation of
the visual attribute processing performed in block 1311.
In a present embodiment, the translation program re-
ceives attribute information about a character from the
document of FIG. 10 in the form of a bit array indicat-
ing which attributes are on and which are off for that
character. The translation program first compares the
entire bit array associated with the current character
with the entire bit array associated with the last charac-
ter received from the block. If there is no change, the
program goes directly to block 1313 (block 1401). If
there has been a change, the program compares the two
bit arrays bit by bit. If a bit in the array for the current
character is the same as the corresponding bit in the

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page28 of 33

4,751,740

19

array for the previous character, the program simply
compares the next bits (block 1405); if they are not, the
program determines from the comparison of the corre-
sponding bits whether the visual attribute represented
by the bits has been turned on or off (block 1409). In the
former case, the program writes the codes necessary to
start the attribute to the intermediate document (block
1411); in the latter, the program writes the codes neces-
sary to end the attribute (block 1413).

A concrete example of how the program works is
provided by the processing of page 1 1027. During
initialization, the program examines DT 1003 to deter-
mine if there is a pointer to PIB 1007. If there is, there
is text in the document, and the program outputs SOS
‘text’ 1105. Using PIE 1008 to page 1 of the document in
PIB 1007, the program locates text-block (21), the first
block in page 1 1027, and begins processing the first
character in the block. That character is AC 1033 corre-
sponding to FA 1035, so the program saves state and
begins processing FA 1035. FA 1035 specifies a page
break, and consequently, PB CTL 1107 is output to the
document with the intermediate structure. FA 1035 also
specifies a new format, the one referred to by FOR.
Consequently, process char 1213 again saves state, lo-
cates block (35) containing format 1021, sets the state to
specify the first character in block (35) and that the
chain being processed is a format chain, and outputs SF
CTL 1109. The main translation loop then forms format
descriptors as required by the text of block 35. When
. etx 1031 in block (35) is reached, the program responds

~;-as shown in FIG. 12 for an etx 1031 which is the last in

:.. a chain. In this case, a control specifier is being pro-
= cessed, and thus, no special end codes are required

The program then restores the state saved when pro-
cessing format 1021 began and resumes processing FA
103S. The next item is reference HR for header 1019, so
the program again saves the current state, outputs SOS
‘header 1113°. and begins processing T in header 1019.
- The first character in T of header 1019 is, however, AC
. 1033 referring to FA. 1035 in A of header 1019. This FA
.. 1035 contains only the reference FOR to format 1021.
«.. Process char 1213 therefore again saves the current
state, outputs SF CTL 1109 following SOS ‘header’
1113, saves state again, produces header format descrip-
tors 1115 from the text in format 1021, and restores state
as previously described. Since there are no further items
in FA 1035, state is again restored and the remaining
characters in header 1019 are processed, to produce
header text 1117. When etx 1031 in header 1019 is
reached, state is again restored and processing of FA
1035 continues.

The next item in FA 1035 is FR, referring to footer
1017, which is processed in the fashion described for
header 1019. When processing of footer 1017 is finished,
processing of AC 1033 in block (21) is finished and the
remaining text characters in the block and the remain-
ing blocks of page 1 are processed to produce page 1
text 1129. When AC 1033 of block (9), the first block in
page 2, is reached, FA 1035 in that block is processed.
Since FA 1035 of block (9) specifies the same format,
header, and footer as FA 1035 of block (21), there is no
need to output 2 new SF CTL, header segment, or
footer segment, and all that is output is PB CTL 1107
marking the end of page 1. Processing continues as
described above until all of the components of the docu-
ment have been translated.

Translation from the intermediate structure to the
document structure of FIG. 10 employs the same gen-

20

25

30

35

40

45

50

60

65

20

eral methods as translation in the other direction. First,
the document structure is initialized by setting up the
administrative blocks and the first index blocks and
loading doc info blocks 1001 with the information from
doc info block descriptors 1103. Then the processing of
the contained segments begins. Each segment corre-
sponds to a different text chain in the document struc-
ture of FIG. 10, and consequently, each time the begin-
ning of a segment is encountered, processing of the
current chain must be interrupted and processing of a
new chain commenced. Each time the end of a segment
is encountered, processing of the chain corresponding
to the segment containing the segment which ended
must resume. Again, the program uses the technique of
saving state on a stack each time processing is inter-
rupted and restoring state each time processing of a
segment terminates.

While a document translated from a given document
structure into the intermediate document structure and
then back to the original document structure will con-
tain the same information as the original document, the
final document structure may not be completely identi-
cal with the original document structure. For example,
many of the text blocks of FIG. 10 contain attributes
referring to a single header block 1019. In the intermedi-
ate document structure, a header segment is produced
each time the header changes. The program which
translates from the intermediate document structure to
the structure of FIG. 10 may not check whether a given
header segment is identical to a header segment which
appeared previously in the document. If it does not
perform such a check, the program will translate each
header segment it encounters into a separate text block
and the resulting document structure will contain more
text blocks and RIEs 1010 than the original document
structure.

10. Conclusion

The foregoing Description of a Preferred Embodi-
ment has disclosed how an intermediate document
structure may be used to translate a document having
one structure into an equivalent document having an-
other structure, has showed how stand-alone and net-
work systems may be constructed which use the inter-
mediate structure to translate documents, has disclosed
a preferred embodiment of the intermediate document
structure, and has shown in detail how a document may
be translated from a prior-art document structure to the
intermediate structure of the present invention and vice-
versa.

The preferred embodiment disclosed herein is, how-
ever, only one possible embodiment of the invention.
For example, the basic form of the intermediate docu-
ment structure of the present invention may be main-
tained while employing different conventions regarding
the codes which begin and end segments, attributes,
descriptors, and control specifiers. Moreover, some
embodiments may have a segment or other construct
corresponding to each reference, rather than only to
references which establish new formats, headers, or
footers. Further, the document structure of the present
invention is inherently expandable, and consequently
new components and new types of the components
disclosed herein may be added. Finally, translation
using the intermediate structure may be accomplished
by programs employing algorithms different from those
disclosed herein but having the same result. Thus, the
preferred embodiment disclosed herein is to be consid-

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page29 of 33

4,751,740

21
ered in all respects illustrative and not restrictive, the
scope of the invention being indicated by the appended
claims rather than the foregoing description, and all
changes which come within the meaning and range of
equivalency of the claims are intended to be embraced
therein.

What is claimed is:

1. A document structure for representing a document
being interchanged among document processing sys-
tems comprising:

one or more nestable segments for representing com-

ponents of the document, more than one level of
nesting being permitted in a segment and the seg-
ments being so ordered that a segment representing
a component dependent from a given component is
always nested within the segment representing the
given component,

each segment having one of a plurality of types and

containing

(1) means for identifying the start and type of the
segment at the beginning of the segment;

(2) means for representing the contents of the seg-
ment; and

(3) means for identifying the end and type of the
segment at the end of the segment.

2. In the document structure of claim 1 and wherein:

the means for identifying the type and start of the

segment are a start segment code and a segment
type identifier code in sequence; and

the means for identifying the type and end of the

segment are an end segment code and the segment
type identifier code in sequence.

3. In the document structure of claim 2 and wherein:

a start segment code occurring elsewhere in the docu-

ment structure than at the start of a segment or an
end segment code occurring elsewhere in the docu-
ment structure than at the end of a segment is asso-
ciated with an unambiguous identity code,
whereby the start segment code or the end segment
code is marked as not beginning or ending a segment.

4. In the document structure of claim 1 and wherein:

the means for representing the contents of the seg-

ment contains at least one descriptor containing
information about the segment.

5. In the document structure of claim 4 and wherein:

all descriptors belonging to the segment immediately

follow the means for identifying the type and start
of the segment.

6. In the document structure of claim 5 and wherein:

each descriptor sequentially includes

(1) means for identifying the type and start of the
descriptor;

(2) means for representing the contents of the de-
scriptor; and

(3) means for identifying the type and end of the
descriptor.

7. In the document structure of claim 6 and wherein:

the means for identifying the type and start of the

descriptor are a start descriptor code and a descrip-
tor type identifier code in sequence;

the means for identifying the type and end of the

descriptor are an end descriptor code and the de-
scriptor type identifier code in sequence; and

the means for representing the contents of the de-

scriptor is a sequence of character codes.

8. In the document structure of claim 7 and wherein:

a start descriptor code occurring elsewhere in the

document structure than at the start of a descriptor

5

15

20

30

35

40

45

55

60

65

22
or an end descriptor code occurring elsewhere in
the document structure than at the end of a descrip-
tor is associated with an unambiguous identity
code,
whereby the start descriptor code or the end descriptor
code is marked as not beginning or ending a descriptor.

9. In the document structure of claim 1 and wherein:

the means for representing the contents of a segment
includes means for representing the text of a docu-
ment. '

10. In the document structure of claim 9 and wherein:

the means for representing the text of a document
includes a string of information including text
codes.

11. In the document structure of claim 10 and

wherein the means

for representing the text of a document further in-
cludes an attribute for supplying information con-
cerning a portion of the string.

12. In the document structure of claim 11 and

wherein:
the attribute sequentially includes
(1) means for identifying the type and start of the
attribute;

(2) the portion of the string; and

(3) means for identifying the type and end of the
attribute.

13. In the document structure of claim 12 and

wherein:

the means for identifying the type and start of the
attribute are a start attribute code and an attribute
type identifier code in sequence;

the means for identifying the type and end of the
attribute are an end attribute code and the attribute
type identifier code in sequence; and

the means for representing the contents of the attri-
bute is a sequence of text codes.

14. In the document structure of claim 13 and

wherein:

a start attribute code occurring elsewhere in the doc-
ument structure than at the start of an attribute or
an end attribute code occurring elsewhere in the
document structure than at the end of an attribute
is associates with an unambiguous identity code,

whereby the start attribute code or the end attribute
code is marked as not beginning or ending an attribute.

15. In the document structure of claim 11 and

wherein:

the attribute further includes at least one descriptor
containing information about the attribute.

16. In the document structure of claim 15 and

wherein:

all descriptors belonging to the attribute immediately
follow the means for identifying the type and start
of the attribute.

17. In the document structure of claim 16 and

wherein:
each descriptor sequentially includes
(1) means for identifying the type and start of the
descriptor;

(2) means for representing the contents of the de-
scriptor; and

(3) means for identifying the type and end of the
descriptor. -

18. In the document structure of claim

wherein:

17 and

wherein:

wherein:

wherein:

..wherein the control means includes

-.whereby the control code is marked as not specifying a

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page30 of 33

4,751,740

23

the means for identifying the type and start of the
descriptor are a start descriptor code and a descrip-
tor type identifier code in sequence;

the means for identifying the type and end of the
descriptor are an end descriptor code and the de- 5
scriptor type identifier code in sequence; and '

the means for representing the contents of the de-
scriptor is a sequence of character codes.

19. In the document structure of claim 18 and

10

a start descriptor code occurring elsewhere in the
document structure than at the start of a descriptor
or an end descriptor code occurring elsewhere in
the document structure than at the end of a descrip-
tor is associated with an unambiguous identity 15
code,

whereby the start descriptor code or the end descriptor

code is marked as not beginning or ending a descriptor.

20. In the document structure of claim 10 and

20

the means for representing the text of a document
includes control means specifying information con-
cerning a point in the string.

21. In the document structure of claim 20 and

25

the control means includes means for specifying the
point at which the control means applies and the
type of control means.

22. In the document structure of claim 21 and

30

(1) a control means code at the point at which the
control means applies and

(2) a control means type code following the control
means code.

23. In the document structure of claim 22 and 35

wherein:

a control code occurring elsewhere in the document
structure than the position in the string at which it
applies is preceded by an unambiguous identity code,

position in the string at which a control code applies
24. In the document structure of claim 21 and

wherein:

the control means further includes at least one de-
scriptor containing information about the segment.
25. In the document structure of claim 24 and

45

wherein:

all descriptors belonging to the control means imme-
diately follow the means for specifying the point-at
which the control means applies and the type of the
control means. .

26. In the document structure of claim 25 and

50

wherein:

each descriptor sequentially includes
(1) means for identifying the type and start of the
descriptor;
(2) means for representing the contents of the de-
scriptor; and
(3) means for identifying the type and end of the
descriptor.
27. In the document structure of claim 26 and

55

60

wherein:

the means for identifying the type and start of the
descriptor are a start descriptor code and a descrip-
tor type identifier code in sequence;

the means for identifying the type and end of the
descriptor are an end descriptor code and the de-
scriptor type identifier code in sequence; and

65

24

the means for representing the contents of the de-
scriptor is a sequence of character codes.

28. In the document structure of claim 27 and

wherein:

a start descriptor code occurring elsewhere in the
document structure than at the start of a descriptor
or an end descriptor code occurring elsewhere in
the document structure than at the end of a descrip-
tor is associated with an unambiguous identity
code,

whereby the start descriptor code or the end descriptor
code is marked as not beginning or ending a descriptor.

29. In the document structure of claim 1 and wherein

the plurality of types includes a stream type specify-
ing that the segment having the type contains an
entire document and

any segment in the means for representing the con-
tents of the segment has a type other than the
stream type.

30. In the document structure of claim 1 and wherein:

the plurality of types includes a text type specifying
that the segment having the type contains docu-
ment text;

the document structure has at least one text segment
having the text type; and

the means for representing the contents of the seg-
ment includes text character codes.

31. In the document structure of claim 1 and wherein:

the plurality of types includes an external reference
type specifying that the segment having the type
contains a reference to information external to the
document;

the document structure includes at least one external
reference segment having the external reference
type; and

the means for representing the contents of the exter-
nal reference segment includes means for identify-
ing the external reference.

32. In the document structure of claim 1 and wherein:

the plurality of types includes a binary type specify-
ing that the segment having the type contains codes
representing binary values;

the document structure includes at least one binary
segment having the binary type; and

the means for representing the contents of the binary
segment includes codes representing binary values.

33. In the document structure of claim 32 and

wherein: _

the codes representing binary values include a code
specifying the number of codes representing binary
values contained in the segment.

34. In the document structure of claim 32 and

wherein:

the plurality of types includes a binary interpretation
type specifying that the segment having the type
contains codes indicating how the codes in an asso-
ciated binary segment are to be interpreted;

the document structure includes at least one binary
segment and a binary interpretation segment hav-
ing a binary interpretation type associated with the
binary segment; and

the means for representing the contents of the seg-
ment includes codes indicating how the binary
values in the associated binary segment are to be
interpreted.

35. In the document structure of claim 34 and

wherein:

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page31 of 33

4,751,740

25

the associated binary segment contains binary voice
data;

the binary interpretation type is a voice type; and

the binary interpretation segment is a voice segment
specifying how the binary voice data is to be inter-
preted.

36. In the document structure of claim 35 and

wherein: .

the associated binary segment contains binary image
data;

the binary interpretation type is an image type; and

the binary interpretation segment is an image segment
specifying how the binary image data is to be inter-
preted.

37. In the document structure of claim 1 and wherein:

the plurality of types includes
a header type;

a footer type;

a note type;

a footnote type; and
a shelf type.

38. In the document structure of claim 1 and wherein:

the segments further include a segment for represent-
ing an entire document and

the segments representing the components are nested
within the segment for representing the entire doc-
ument.

39. In the document structure of claim 1 and wherein:

the segment representing the dependent component is
nested within the segment representing the other
component at the location in the segment repre-
senting the other component at a point correspond-
ing to the point in the other component where
information contained in the dependent component
is required.

40. The document structure as set forth in claim 1 and

wherein:

a segment may have any length required by the com-
ponent it represents.

41. The documment structure as set forth in claim 1

and wherein:

no segment in the document structure requires infor-
mation contained in a following segment.

42. In a system for interchanging documents between

document processing systems,
a method of automatically translating a first docu-
ment structure representing a document into an
interchange document structure which represents
the document and which consists of one or more
nestable segments for representing components of
the document comprising the steps of:
for any component of the first document structure,
translating the component into a first segment of
the interchange document structure;

if the component being translated has dependent
component containing information required in
the component being translated, translating the
dependent component into a second segment of
the sequential document structure which is
nested at a point in the first segment correspond-
ing to the point in the component being trans-
lated where the inforamtion is required.

43. In the method of claim 42 and wherein:

the first structure is one of a plurality of structures;
and

the steps of the method are performed using process-
ing means programmed to translate any of the plu-
rality of structures into the interchange structure.

10

20

25

30

35

45

50

55

60

65

26

44. In a system for interchanging documents between

document processing systems,

a method of automatically translating an interchange
document structure representing a document dur-
ing an interchange, the interchange document
structure consisting of one or more nestable seg-
ments for representing components of the docu-
ment, into a second document structure represent-
ing the document comprising the steps of:
for any segment of the interchange structure, trans-

lating the segment into a first component of the
second document structure until a nested seg-
ment is reached;

translating the nested segment into a second com-
ponent of the second document structure;

arranging the second component relative to the first
component as required by the second document
structure; and

continuing the translation of the segment.

45. In the method of claim 44 and wherein:

the step of translating the segment of the interchange
structure includes saving the state required to
translate the segment when the nested segment is
reached; and

the step of continuing the translation of the segment
includes restoring the state required to translate the
segment.

46. In the method of claim 44 and wherein:

the second structure is one of a plurality of structures;
and

the steps of the method are performed by processing
means programmed to translate the interchange
structure into any of the plurality of structures.

47. In a system for interchanging documents between

document processing systems,
a method of automatically translating a first docu-
ment structure representing a document into a
second document structure representing the docu-
ment comprising the steps of:
(1) translating the first document structure into an
interchange document structure which repre-
sents the document and which consists of one or
more nestable segments for representing compo-
nents of the document by performing steps in-
cluding
(a) for any component of the first document
structure, translating the component into a
first segment of the interchange document
structure and

(b) if the component being translated has a de-
pendent component containing information
required in the component being translated,
translating the dependent component into a
second segment of the interchange document
structure which is nested at a point in the first
segment corresponding to the point in the
component being translated where the infor-
mation is required; and
(2) translating the interchange document structure
into the second document structure by perform-
ing steps including
(a) for any segment of the interchange structure,
translating the segment into a first component
of the second document structure until a
nested segment is reached,

(b) translating the nested segment into a second
component of the second document structure,

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page32 of 33

4,751,740

27
(c) arranging the second component of the sec-
ond document structure relative to the first
component thereof as required by the second
document structure, and
(d) continuing the translation of the segment of
the interchange structure.
48. In the method of claim 47 and wherein:
step (2) is begun before step (1) is complete and con-
tinues concurrently with step (1).

49. In the method of claim 47 and wherein:

the first structure and the second structure belong to
a plurality of structures;

the translation of step (I) is performed using process-
ing means programmed to translate one or more of
the plurality of structures into the interchange
structure; and

the translation of step (2) is performed using process-

ing means programmed to translate the interchange
structure into one or more of the plurality of struc-
tures.

50. In the method of claim 47 and wherein:

the translation of step (1) is performed using first

processing means;

the translation of step (2) is performed using second

proc\essing means connected to the first processing
means via networking means; and

the method further includes the step of transferring

the interchange structure from the first processing
means to the second processing means via the net-
working means.

51. In the method of claim 50 and wherein: the step of
transferring the interchange structure is begun before
step (1) is finished and continues concurrently with step
(1) and

step (2) begins after receiving the beginning of the

interchange structure in the second processing
means and continues concurrently with step (1) and
with the step of transferring the interchange struc-
ture.

52. In a system for interchanging documents between
document processing systems,

apparatus for translating a first document structure

representing a documnet into an interchange docu-
ment structure representing the document and con-
sisting of one or more nestable segments for repre-
senting components of the document, the apparatus
comprising:

first receiving means for receiving the first document

structure;

second receiving means for receiving the interchange

document structure, and

processing means connected to the first and second

receiving means for receiving the first document
structure form the first receiving means and re-
sponding thereto by, for any component of the first
document structure, translating the component
into a first segment of the interchange document
structure and if the component being translated has
a dependent component containing information
required in the component being translated, trans-
lating the dependent component into a second seg-
ment of the sequential document structure which is
nested at a point in the first segment corresponding
to the point in the component being translated
where the information is required and providing
the interchange document structure thus produced
to the second receiving means.

5

10

20

25

30

45

50

55

65

28

53. In a system for interchanging documents between
document processing systems,

apparatus for translating an interchange document
structure representing a document and consisting
of one or more nestable segments for representing
components of the document into a second docu-
ment structure representing the document compris-
ing:

first receiving means for receiving the interchange
document structure,

second receiving means for receiving the second
document structure; and

processing means connected to the first and second
receiving means for receiving the interchange
document structure from the first receiving
means and responding thereto by sequentially
translating any segment of the interchange struc-
ture into a first component of the second docu-
ment structure until a nested segment is encoun-
tered, suspending translation of the segment con-
taining the nested segment, sequentially translat-
ing the nested segment into a second component
of the nested structure, arranging the second
component relative to the first component as
required by the second document structure, and
resuming translation of the segment and provid-
ing the second document structure thus pro-
duced to the second receiving means.

54. In a system for interchanging documents between
document processing systems,
apparatus for translating a first document structure
representing a document into a second document
structure representing the document comprising:

(1) first receiving means for receiving the first
structure;

(2) extraction means connected to the first receiv-
ing means and responsive to the first structure
for producing an interchange document struc-
ture representing the document and consisting of
one or more nestable segments for representing
components of the document by, for any compo-
nent of the first document structure, translating
the component into a first segment of the inter-
change document structure and if the component
being translated has a dependent component
containing information required in the compo-
nent being translated, translating the dependent
component into a second segment of the sequen-
tial document structure which is nested at a point
in the first segment corresponding to the point in
the component being translated where the infor-.
mation is required;

(3) second receiving means connected to the ex-
traction means for receiving the interchange
structure;

(4) composition means connected to the second
receiving means and responsive to the inter-
change structure for receiving the interchange
structure and producing the second structure
therefrom by sequentially translating any seg-
ment of the interchange structure into a first
component of the second document structure
until a nested segment is encountered, suspend-
ing translation of the segment containing the
nested segment, sequentially translating the
nested segment into a second component of the
nested structure, arranging the second compo-
nent relative to the first component as required

Case3:04-cv-02876-EDL Documentl Filed07/16/04 Page33 of 33

4,751,740

29
by the second document structure, and resuming
translation of the segment; and
(5) third receiving means connected to the compo-
sition means for receiving the second structure,
+ whereby the first structure is translated into the second
structure.
55. In the apparatus of claim 54 and wherein:
the composition means begins producing the second
structure before the extraction means is finished
producing the interchange structure.
56. In the apparatus of claim 54 and wherein:
the first receiving means and the extraction means are
included in a first document processing system;

10

20

25

30

35

45

50 .

55

60

65

30

the third receiving means and the composition means
are included in a second document processing sys-
tem; and

the second receiving means includes network means
connecting the first document processing system
and the second document processing system.

57. In the apparatus of claim 56 and wherein:

the second receiving means begins providing the
interchange structure to the network means before
the extraction means has finished producing the
interchange structure; and

the composition means begins producing the second
structure before it has received all of the inter-

change structure from the network means.
* * * * %

