© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl

SPENCER HOSIE (CA Bar. No. 101777
shosie@hosielaw.com

BRUCE WECKER (CA Bar No. 078530)
bwecker@hosielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)
gbishop@hosielaw.com

HOSIE RICE LLP

188 The Embarcadero, Suite 750

San Francisco, CA 94105

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff

IMPLICIT NETWORKS, INC.

Filed02/19/10 Pagel of 37

UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT OF CALIFORNIA
SAN FRANCISCO DIVISION

IMPLICIT NETWORKS, INC.,
Plaintiff,
V.

VMWARE, INC. and RED HAT, INC.,

Defendants.

Case No. C 10-00720 JCS

ORIGINAL COMPLAINT AND JURY
DEMAND

Plaintiff, Implicit Networks, Inc. (“Implicit”) hereby files its complaint against

defendants Red Hat, Inc. (“Red Hat”) and VMware, Inc. (“VVMware”) (collectively

“Defendants”) for patent infringement. For its complaint, Implicit alleges, on personal

knowledge as to its own acts and on information and belief as to all other matters, as follows:

ORIGINAL COMPLAINT AND JURY DEMAND

CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page2 of 37

THE PARTIES

1. Implicit is a corporation organized under the laws of the State of
Washington, with its principal place of business in Seattle, Washington.

2. Red Hat is a corporation organized under the laws of the State of
Delaware, doing business in California, with its principal place of business in Raleigh,
North Carolina.

3. VVMware is a corporation organized under the laws of the State of
Delaware, doing business in California, with its principal place of business in Palo Alto,
California.

JURISDICTION & VENUE

4. This complaint asserts a cause of action for patent infringement under the
Patent Act, 35 U.S.C. 8 271. This Court has subject matter jurisdiction over this matter
by virtue of 28 U.S.C. § 1338(a). Venue is proper in this Court by virtue of 28 U.S.C. §
1391(b) and (c) and 28 U.S.C. § 1400(b), in that Defendants may be found in this district,
have committed acts of infringement in this district, and a substantial part of the events or
omissions giving rise to the claim occurred and a substantial part of property that is the
subject of the action is situated in this district.

5. This Court has personal jurisdiction over Red Hat because it provides
infringing products and services in, the Northern District of California. Red Hat transacts
business in this judicial district by manufacturing, selling, offering to sell, or using
products and/or systems as described and claimed in United States patent Nos. 6,324,685
and 6,976,248, the patents at issue in this lawsuit, and/or by conducting other business in
this judicial district. Red Hat may be found in this district, Red Hat has committed acts

of infringement in this district, and a substantial part of the events or omissions giving

ORIGINAL COMPLAINT AND JURY DEMAND 2 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page3 of 37

rise to the claim occurred and a substantial part of the property that is the subject of the
action is situated in this district.

6. This Court has personal jurisdiction over VMware because it has a place
of business in, and provides infringing products and services in, the Northern District of
California. VMware transacts business in this judicial district by manufacturing, selling,
offering to sell, or using products and/or systems as described and claimed in United
States patent Nos. 6,324,685 and 6,976,248, the patents at issue in this lawsuit, and/or by
conducting other business in this judicial district. VMware may be found in this district,
VVMware has committed acts of infringement in this district, and a substantial part of the
events or omissions giving rise to the claim occurred and a substantial part of the
property that is the subject of the action is situated in this district.

INTRADISTRICT ASSIGNMENT

7. Pursuant to Civil LR 3-2(c), this case should be subject to district-wide

assignment because it is an Intellectual Property Action.
COUNT I
PATENT INFRINGEMENT

8. On November 27, 2001, United States Patent No. 6,324,685 (“the "685
patent”) entitled “Applet Server that Provides Applets in Various Forms” was duly and
legally issued. A true and correct copy of the 685 patent is attached as Exhibit A.

9. On December 13, 2005, United States Patent No. 6,976,248 (“the *248
patent”) entitled “Application Server Facilitating with Client’s Computer for Applets
along with Various Formats” was duly and legally issued. A true and correct copy of the

’248 patent is attached as Exhibit B.

ORIGINAL COMPLAINT AND JURY DEMAND 3 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page4 of 37

10. Pursuant to 35 U.S.C. § 282, the above-listed United States Patents are
presumed valid.

11. Edward Balassanian is the sole inventor of the *685 and 248 patents. The
’685 and 248 patents have been assigned to Plaintiff. Plaintiff Implicit is the sole legal
and rightful owner of the 685 and ’248 patents.

RED HAT’S INFRINGEMENT

12. Red Hat makes, uses, and sells products that infringe the 685 and *248
patents, such products including without limitation, its application server products and
services including the Red Hat JBoss Application Server product family, which provide a
J2EE enterprise server that implements Java Server Pages technology. In addition, Red
Hat has infringed and is still infringing the *685 and 248 Patents in this country, through,
inter alia, its active inducement of others to make, use, and/or sell the systems, products
and methods claimed in one or more claims of the patents. In addition, Red Hat has
infringed and is still infringing these patents in this country through, inter alia, providing
and selling goods and services including products designed for use in practicing one or
more claims of the patents, where the goods and services constitute a material part of the
invention and are not staple articles of commerce, and which have no use other than
infringing one or more claims of the patents. Red Hat has committed these acts with
knowledge that the goods and services it provides are specially made for use in a manner
that directly infringes these patents.

13. Red Hat’s infringing conduct is unlawful and willful. This conduct makes

this an exceptional case as provided in 35 U.S.C. § 285.

ORIGINAL COMPLAINT AND JURY DEMAND 4 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page5 of 37

14, The infringement of the 685 and *248 patents alleged above has injured
the Plaintiff and thus, it is entitled to recover damages adequate to compensate for Red
Hat’s infringement, which in no event can be less than a reasonable royalty.

15. Asaresult of the infringement by Red Hat, Plaintiff has been damaged,
and will continue to be damaged, until these defendants are enjoined from further acts of
infringement. Red Hat will continue to infringe unless enjoined by this Court. Plaintiff
faces real, substantial and irreparable damage and injury of a continuing nature from
infringement for which Plaintiff has no adequate remedy at law.

VMWARE’S INFRINGEMENT

16. VMware makes, uses, and sells products that infringe the ’685 and 248
patents, such products including without limitation, its application server products and
services including the VMware SpringSource application server product family, which
provide a J2EE enterprise server that implements Java Server Pages technology. In
addition, VMware has infringed and is still infringing the *685 and *248 Patents in this
country, through, inter alia, its active inducement of others to make, use, and/or sell the
systems, products and methods claimed in one or more claims of the patents. In addition,
VMware has infringed and is still infringing these patents in this country through, inter
alia, providing and selling goods and services including products designed for use in
practicing one or more claims of the patents, where the goods and services constitute a
material part of the invention and are not staple articles of commerce, and which have no
use other than infringing one or more claims of the patents. VMware has committed
these acts with knowledge that the goods and services it provides are specially made for

use in a manner that directly infringes these patents.

ORIGINAL COMPLAINT AND JURY DEMAND 5 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page6 of 37

17. VMware’s infringing conduct is unlawful and willful. This conduct
makes this an exceptional case as provided in 35 U.S.C. § 285.

18. The infringement of the 685 and *248 patents alleged above has injured
the Plaintiff and thus, it is entitled to recover damages adequate to compensate for
VVMware’s infringement, which in no event can be less than a reasonable royalty.

19. Asaresult of the infringement by VMware, Plaintiff has been damaged,
and will continue to be damaged, until these defendants are enjoined from further acts of
infringement. VVMware will continue to infringe unless enjoined by this Court. Plaintiff
faces real, substantial and irreparable damage and injury of a continuing nature from
infringement for which Plaintiff has no adequate remedy at law.

PRAYER FOR RELIEF

Wherefore, Plaintiff prays for entry of judgment against each of Red Hat and
VMware:

A. that the *685 and ’248 patents are valid and enforceable;

B. that Red Hat and VMware have infringed one or more claims of the *685
and ’248 patents;

C. that Red Hat and VMware account for and pay to Plaintiff all damages
caused by the infringement of the *685 and ’248 patents, which by statute can be no less
than a reasonable royalty;

D. that infringement by Red Hat and VMware of the *685 and *248 patents be
adjudged willful and that the damages to Plaintiff be increased by three times the amount

found or assessed pursuant to 35 U.S.C. § 284;

ORIGINAL COMPLAINT AND JURY DEMAND 6 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page7 of 37

E. that Plaintiff be granted pre-judgment and post-judgment interest on the
damages caused to them by reason of infringement by Red Hat and VMware of the *685
and ’248 patents;

F. that this Court issue a preliminary and final injunction enjoining Red Hat
and VMware, their officers, agents, servants, employees and attorneys, and any other
person in active concert or participation with them, from continuing the acts herein
complained of, and more particularly, that Red Hat and VMware and such other persons
be permanently enjoined and restrained from further infringing the *685 and 248 patents;

G. that this Court require Red Hat and VMware to file with this Court, within
thirty (30) days after entry of final judgment, a written statement under oath setting forth
in detail the manner in which Red Hat and VMware have complied with the injunction;

H. that this be adjudged an exceptional case and the Plaintiff be awarded its
attorney’s fees in this action pursuant to 35 U.S.C. § 285 against Red Hat and VMware;

l. that this Court award Plaintiff its costs and disbursements in this civil

action, including reasonable attorney’s fees against Red Hat and VMware; and

ORIGINAL COMPLAINT AND JURY DEMAND 7 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page8 of 37

J. that Plaintiff be granted such other and further relief as the Court may

deem just and proper under the current circumstances.

DATED: February 19, 2010

ORIGINAL COMPLAINT AND JURY DEMAND

Respectfully submitted,

/sl George F. Bishop

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

BRUCE WECKER (CA Bar No. 078530)
bwecker@hosielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)
gbishop@hosielaw.com

HOSIE RICE LLP

188 The Embarcadero, Suite 750

San Francisco, CA 94105

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

8 CASE NO. C 10-00720 JCS

© 0O N o o A W N PP

N R NN NN N DN DN R PR R R R R R R e
©® N o O N W N kB O © 0w N oo 00 M W N L O

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page9 of 37

DEMAND FOR JURY TRIAL

Implicit demands a jury trial on all claims and issues so triable.

DATED: February 19, 2010

ORIGINAL COMPLAINT AND JURY DEMAND

Respectfully submitted,

/sl George F. Bishop

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

BRUCE WECKER (CA Bar No. 078530)
bwecker@hosielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)
gbishop@hosielaw.com

HOSIE RICE LLP

188 The Embarcadero, Suite 750

San Francisco, CA 94105

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

9 CASE NO. C 10-00720 JCS

Case3:10-cv-00720-SI Documentl Filed02/19/10 Pagel0 of 37

EXHIBIT A

Case3:10-cv-00720-SI

a2 United States Patent

Balassanian

Documentl Filed02/19/10 Pagell of 37

US00632468581 '

US 6,324,685 B1
*Nov. 27, 2001

(10) Patent No.:
@5) Date of Patent:

(54) APPLET SERVER THAT PROVIDES
APPLETS IN YARIOUS FORMS

(75) luventor: Edward Balassanian, Kirkland, WA
(US) -

(73) Assignee: BeComm Corporation, Redmond, WA
‘ (Us)

This patent issued on a continued pros-
ccution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 US.C.
154(2)(2).

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 09/030,972

(22) Filed: Mar. 18, 1998
(51) mwcCL’ GOGF 9/45
(52) uUs.Q. 717/8; TV
(58) Field 0f Search ...owrmmurscmmssersons 395/705, 701,
395/200.33, 200,32, 188.01; 717/5, 1; 709/203,
: 202; 7137202
66 References Cited
U.S. PATENT DOCUMENTS
5,805,829 * 9/1998 Coben et ol. wewemmmrsewee 305/200.32

5,828,840 * 10/1998 Cowan'et al. . . 395/20033

58183274 * 12/1993 Hamby € al. .oowosces 3957105
5872915 * 21999 Dykes et al. 395/188,01
5884078 * 3/1999 FavSHD ercoroomrenemme .. 395101

OTHER PUBLICATIONS
“Eliminating Unnecessary Synchronization,” http://kimer-

a.cs.washington.cdu/synch/index.htm] [Accessed Oct. 4, -

2000],

o]

Choucamnte s

Sirer, Emin Gfin, “Kimera Paper Trail,” http://kimera.cs-
.washington.edu/papers/index.html [Accessed Oct. 4, 2000].
Sirer, Bmin Glin, “Java, Extensibility and Security Related
Links,” http://kimera.cs.washington.cdu/related/index. htinl
[Accessed Oct. 4, 2000].

Sirer, Bmin Giin, “Java-Relevant Articles in the Press,”
hitp:/fkimera.cs.washington.cdu/press/index.htm! [Ac-
cessed Oct. 4, 2000),

“Project Members” http://kimera.cs.washington.cdu/mem-
bers.html [Accessed Oct. 4, 2000].

Emin Giin Sirer, et al, “Distributed Virtual Machines: A
System Architecure for Network Computing,” Dept. of
Corputer Science & Engineering, University of Washing-
ton, Seattle, Washinglon http://kimera.cs.washington.edu
Feb. 26, 1998. - :

(List continued on next page.)

Primary Exqminer—Mark R. Powell
Assistant Examiner—Hoang-Vu Antony Nguyen-Ba
(74) Attorney, Agent, or Firm~—Perkins Coie LLP

7 : ABSTRACT

The present invention is an applet server which accepts
requests for applets from client computers. A request speci-
fies the format in which an applet is to be delivered to the
requesting client computer. The applet server has a cache
which it uses to store applets for distribution to client
computers. If the specified form of the requested applet is
available in the cache, the applet server transmits the applet
to the requesling client, If the applet is not available in the
cache, the server will attempt to build the applet from local
resources (program code modules and conopilers) and frans-
former programs (verifiers and optimizers). If the applet
server is able 1o build the requested applet, it will then
transmit the applet to the requesting client computer. If the
applet server is unable to build the requested applet, it will
pass the request to another applet server on the network for
fulfillment of the request. '

106 Claims, 3 Drawing Sheets

]

= WA
— IEE'!‘P..
= a
= RS

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Pagel?2 of 37

US 6,324,685 B1
Page 2

OTHER PUBLICATIONS
Emin Giin Sirer, et .al,, “Design and Implementation of a

Distributed Virmal Machine for Networked Computers,”

University of Washington, Department of Computer Science
and Engineering, Seattfe Washington, 17** ACM Sympo-
sium on Operating system Principles, Dec. 1999.

Sirer, Emiu Giln, “A System Architecture for Next-Genera-
tion Netwark Computing,” Dept. of Computer Science &
Engineering, Univesity of Washington, Seattle, Washington
http://wrww.dyncorp-is.com/darpa/meetings/gradmeet98/
‘Whitepapers/darpa-wp.html Jua. 26, 1998,

Sirer, Bmin Giln, http://www.cs.washington.cdu/homes/egs/
[Accessed Oct. 4, 2000].

Sirer, Emin Giln, “Kimera—A System Architecture for
. Netwotked Compnuters,” hitp://kiméra.cs.washington.edu/
[Accessed Oct. 4, 2000].

Emin Giln Sirer and Brian Bershad, “Kimera Architecture,”
hitp://kimera.cs.washington.cdu/overviewhtml [Accessed
Oct. 4, 2000].

Sirer, Bmin Gin, “Security Flaws in Java Implementations,”
http://kimera.cs.washington.edu/flaws/index.htrol [Ac-
cessed Oct. 4, 2000].

Sirer, Bmin Gin, “Kimera Bytecode Verification,” hgps//
kimera.cs.washington.edu/verifier.htm] [Accessed Oct. 4,
2000].

Sirer, Emin Giin, “Kimera Test Suite,” btip://kimera.cs-
.washington.edu/testsuite.htm].[Accessed Oct, 4, 2000].
Sirer, Emin, Giin, “Kimera Disassembler,” http://kimeta.c-
s.washington.edu/disassemblechtm! [Accessed Oct. 4,
2000]. ; : .

* cited by examiner

Case3:10-cv-00720-SI

AU.S. Patent

Client Computer A |«

H

12

Client Computer B |-

Nov. 27,2001

Documentl Filed02/19/10 Pagel3 of 37

US 6,324,685 B1

Sheet 1 of 3

H

14

y Applet Server Computer

Network Interface

J'-20.'

Applet3

26

[— L.ocal Resources
Applet Server ‘

° Manager ub

cornpllerl
32b|
3
Cache Component

Applet 1

G
COnlp‘ler II
f24 I
30b

32d |
’*
I 30c |

Case3:10-cv-00720-SI Documentl Filed02/19/10 Pagel4 of 37

U.S. Patent Nov.27,2000 Sheet 2 of 3 US 6,324,685 B1

Applet—URL o [(Stnrg) speclf es he name of the reque
applet
Code-Type (Source/Intermediate/Binary) specifies the

format the applet is to be delivered to the
regquesting client in. A request for binary
-woulld specify the CPU of the requesting
client (e.g., x86)

Verification-Level (0-100) specifies the degree of verification to
be performed. 0 = no/minimal verification,
100 = maximum verification (highest level of
. security).

Optimization-Level (0-100) specifies the degree of optimization
to be performed. 0 = no/minimal
optimization, 190 = maximum optimization.

S Fig. 24

Applet—URL ' T (Stnng) speclf ies the name of the requested '
applet

Code-Type (Sourcefintermediate/Binary) speclf es the

- ' format the applet is to be delivered to the
| requesting client in. A request for binary
would specify the CPU of the requesting
client (e.g., x86)
 Verification-Level (0-100) specifies the degree of verification to

. be performed. 0 = no/minimal verification,.

100 = maximum verification (highest leve! of
A security).
Optimization-Level (0-100) specifies the degree of optimization
to be performed. 0 = no/minimal
aptimization, 100 = maximum.optimization.

Applet Length S (0-2*) specifies the size of the requested
. . | applet,
Applet Code The Requested Applet in the form specified
CL by the request data type.

Fig. 2B

Case3:10-cv-00720-SI Documentl Filed02/19/10 Pagel5 of 37

U.S. Patent Nov.27,2001 Sheet 3 of 3 US 6,324,685 B1

) Program Module .
/ - 40

Intermediate Compiler r\-)
42

) Interrmediate Form
Program Modula
44

I—-'——_-—.-d.———-—

I Transformers

.. Trensformed
Intermediate Form
Program Module 50 :

Targel Compiler LL
52

Applet]\
54

Fig. 3

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Pagel6 of 37

US 6,324,685 Bl
1 - 2 :
APPLET SERVER THAT PROVIDES There i5 a need for a scalable distributed system archi-
APPLETS IN VARIOUS FORMS tecture that provides a mechanism for client computers 10
tequest and execute appleis in a safe manner without requir-
FIELD OF THE INVENTION ing the client machines to bave local resources to compile or

The present invention relates to computer operating sys-
fems and, in particular, to a server architecture providing
application caching and security verificatior.

BACKGROUND OF THE INVENTION

The growth of the Internet’s importance to business,
along with the increased dependence. upon corporate
networks, has created a demand for more secure and efficient
computer systems. The traditional solution to this problem
has been to depend upon improvements in hardware perfor-
mance 1o make up for the performance penalty that is
typically incurred when a computer system is made more
secure and stable. Increased interconnectivity has also cre-
ated a need for improved interoperability amongst a variety
of computers that are now connected to one another. One’
solution to the problein of the variety of compulers inter-
connected via the Jolernet aud corporate networks has been
the development of portable architecture neutral program-
ming languages. The most widely knowa of these is Java,
tiougk; there are numerous other architecture neutral lan-
guages,

Architecture neutral programming languages allow pro-
grams dowploaded from' a server computer 10 a client
computer to be interpreted and executed locally. This is
possible because the compiler generates partially compiled
intermediaté byte-code, rather than fully compiled native
machine code. In order to-1un a program, the client machine
uses an interpreter to execute the compiled byte-code. The
byte-codes provide an architecture neutral object file format,
which allows the code 10 be transported to multiple plat-
forms. This allows the program to be run on any system
which implements the appropriate interpreter and run-time
system. Collectively, the interpreter and runtime system
impiement a virtual machine. This structure results in a very
sccure language.

Tlie security of this system is premised on the ability of
the- byte-code to be verified independently by the client
computer. Using Java or some other virtual machine imple-
menting technology, a client can ensure that the downloaded
program will not crash the user’s computer or perform
operations for which it dogs not have permission.

_ The traditional implementations of architecture neutral
languages are not without probicms., While providing tre-
mendous cross platform support, the current implementa-
tions of architecture neutral lapguages require that every
client performs its own verification and interpretation of the
intermediate code. The high computation and memory
requirments of verifier, compiler and interpreter restrict
the applicability of these technologies to powerful client
" computess.

Another probiem with perfonmng the venﬁcanon process
on the client compnuter is that any individual within an
organization may disable some or all of the checks per-
formed on downloaded code, The current structure of these
systems makes security management at the enterprise level
almost impossible. Since upgrades of security checking
software must be made cn-every client computer, the cost
and time involved in doing such upgrades makes it likely

that outdated or corrupt copies of the verifier or interpreter

exist within an organization. Even When an organization is
diligent in maintaining a client hased security model, the
size of the undertaking in a large organization increases the
likelihood that there will be problems.

5

10

verify the code. There is a further need for a system in which
the applets may be cached in cither an intermediate archi-
tecture neutral form or machine specific form in order fo
inérease overall system performance and efficiency.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client
computers 1o request and execule applets in a safe manner

" without requiring the client 1o have local resourcts to verify

25

35

40

a5

55

60

or compile the applet code, Compilation and byte-code
verification in the present invention are server based and
thereby provide more efficient use of resources and a flexible
mechanism for instituting enterprise-wide security policies.
The server architecture also provides a cache for applets,
allowing clients to receive applet code without baving to
access nodes outside the local metwork. The cache also
providesa mechanism for avoiding repeated verification and
compilation of previously requested applet code since any
client requesting a given applet will have the request satis-
fied by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essen-
tially be viewed as a form of an interpreter, interpreting
binary code into the associated ¢lectronic equivalenls. The
present invention adds a level of indirection in the form-of
an intermediate language that js processor independent, The
intermediate language serves as the basis for security
verification, cedé optimizatious, or any other compile time
modificatious that might be necessary. The intermediale
form allows a single version of the source to be siored for
many target plaiforms instead of having a different binary
for each potential targst computer. Compilatiois to the target
form cab either be done at the time of a cache hit or they can
be avoided all together if the target machine is able to
directly interpret the intermediate form. Jf the compilation is
done on the server, then a copy of the of the compiled code
&s well as the interrediate form can be stored in the cache.
The performance advaniage derived from caching the com-
piled form as well as the intermediate depends upon the
number of clients with the samé CPU.

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as other features and advantages ihereof
will best be. understood by reference to the detailed descrip-
tion which follows, when read in conjunction with the
accompanying drawings.

"BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram. showing the major components which
may be used o implement an applet server in one embod1-
ment of the present invention;

FIG. 2a js a table which illustrates the structure of the
request format data type;

FIG. 2b is a table which illustrates the siructure of the
returped code data {ype.

FIG. 3 is a diagram showiug the compilation and trans-
formation of a program modnle into an appletin a particular
form. .

DETAILED DESCRIPTION OF THE
"INVENTION

Referring to FIG. 1, an applet server architecture accord-
ing 1o one erabodiment of the invention is based oa an applet

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Pagel7 of 37

US 6,324,685 B1

3

server computer 10 :which in tum is coonected to client
computer A12, client computer B14, an exterpal network 16
and an untrusted network 18. The applet server computer 10
connecls 1o client computers 12 and 14, an external network
16, and an untrusted network 18 by means of a network
interface 20. Typically this connection will involve one or
more of the computcrs or networks having a connection to
the Internet.

The applet server computer 10 accomplishes its objectives
by manjpulating computer progrars in scveral formats. An
applet (e.g. applets 1-3, 284-25¢) is any form of program
instructions, whether in binary, source or interinediate for-
mal In the case of this architecture, the applet code can
either be a sclf contained program, or it can be a code
fragment associated with a larger application.

Binary format refers to processor specific machine
instructions suitable for running natively on a given com-
puting platform (also referred to as “target” because of the
concept of “targeting” a compiler to producs bmary code for
a given processor type).

Source refers to non-binary applet code, generally in the
form of higher level languages (i.c. C, C++, Java, Visnal
Basic, ActiveX, Fortran, and Modila),

Intermediate format refers to a coipmon intermediate
byte-code that is produced by compiling a given source code
input. The intermediate byte-code need not necessarily be
Java byie-code,

Treating appless in this gereral sense allows client com-
puters 12 .and 14 to request not only applications, but

portious of applications. Client computers 12 and 14 are thus

5

10

able 10 use applet server computer 10 as the eqmvalcm ofa -

loader, loading in zppropriate paris of the application in the
form of applets. In turn clent computers 12 and 14 can run
larpe applications without requiring that the client comput-
ers 12 and-14 have the resources 10, store the entirs appli-
cation in memory at once.

Having the applets delivered from applet server computer
10 allows code in intermediate form to be verified,
optimized, and compiled before being transmwitted to client
computers 12 and 14. This reduces the amount of work the
client computers 12 and 14 have to do and -provides 2
convenient way to impose global restrictions on code.

I» operation, client computer A 12 transmits a request to

an applet server computer 10 requesting an applet in a :

particular form. The form may be selected from a large
matrix of many possible forms that can be recognized by the
system. The .request specifies the format (source,
intermediate, or binary) in which the client wishes 1o receive
the applet. The request may also specify that the applet be

verified or haye some other transformation operation per- .

formed upon it. Verification, optimization and compressxon
are examples of types of transformation operations. The
requestis received by the hetwork interface 20 of the applet
server computer 10 which passes the request onto the applet
server manager 22, .

Afier interpreting the request, the app]et server manager
22 checks 10 see if the requested applet is available in the
cache 24, The cache 24 siores applets ini a varicty of formats
(source, intermediate, or binary). If the requested form of the
applet is availeble in the cache 24 (applet 1 254, applet 2
25b, or applet 3 25¢ in this example) the applet server
manager 22 instructs the network interface 20 to lransmit the
applet to requesting ‘client computer A 12, If the requested
applet is not available in the cache 24, then the applet server
‘manager 22 will attempt fo build the requested applet from
local resources 26 snd one or more trapsformation opera-

40

55

60

65

4

tions performed by one or more of the transformiers 28.
Local resources 26 are comprised of compilers 304, 305 and
30c and program code modules 32a, 32b, 32¢ and 324, The
requested applet is built by selecﬁng one or more program
code modules 32 and compiling them with one or more
compilers 30. Transformer opcrauons may be performed by
the verifier 34 or the optimizer 36. After the applet server

- manager 22 builds the applet, the network interface 20

transmits the applet to the requesting client computer A 12.

If the request can not be satisfied by building the applet
from local resources 26 and transformers 28, the applet
server manager 22 will pass a request for the requested
applet to external network 16 and/or untrusted neiwork 18.
The applet server manager 22 may request the applet in
intermediate form or in executable form or it may request the-
local resources 26 and transformérs 28 it needs to complete
building the applet itself.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retcieve
a given applet from the cache. PUT is used to store an applet
in the cache. FLUSH is used to clear the cache of one or
more entries. When the cache is unable 10 Iocate an item in
response to a GET operation, it returns a cache miss, The
gorogram which issued the GET command is then responsible

r locating the desired form of the applet by other means
and optionally storing it in the cache when it is retrieved
(using the PUT operation). The FLUSH command will clear
the cache of onle or more ‘entries and any subsequent GETs
for the FLUSHed applet code will result in a cache miss.
This is useful if a particular applet needs to be updated from
a remole server on a periodic basis, When using PUT, .the
program issuing the command specifies a time to Live (TTL)
in the cache. When the TTL expires, the cache entry is
removed by means of a FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not the requesied fonn) and com-
pilers 30. The program modules 32 are run through the
compilers.30 in order to produce applets in the requested
form. The applet server manager 20 may also direct ths
modules 32 to be processed by a verifier 34 or another
transforier such as an opiimizer 36. Program modules 32
are program code used to build applels. Program raodules 32
may be stored in local resources 26 in source, binary, or
intermediate formats, When an applet is built it may require
the operation of one or more compilers 30 upon one or more
program modules 32, The program modules 32 may be
combined and recompiled with previously cached applets
and the resulting applet may be also cacked for use at a
future time. Additionally, program modules 32, compilers 30
and transformers 28 (including verifiers 34 and optimizers
36) may be distributed across a network. The applet server
manager 22 may pass requests for the components it needs
to buiid & particular applet back to the network interface 20
which in tim passes the request onto the rest of the network
and may include; external network 16 and untrusted netwoﬂ(
18.

FIG. 3 provides further illustration’ of how an applet is
produced from- locul rescurces and transformers. 'In this

_illustration the request js for an optimized and verified applet

compiled 16 a machine specific form. A program module 40
is compiled irito an intermediate fonm program module 44
by .aa intermediate compiler 42. The intermediate form
program module 44 is then transformed by an optimizer 46
or a verifier 48. The cesulting transformed intermediate form
program modvle 50 is then compiled by target compiler 52
into machine specific code applet 54.

There are two types of compilers used to build applets:
intsrmediate compilers 42 and target tompilers 52. The

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Pagel8 of 37

US 6,324,685 Bl

5 ,
intermediate compiler-42 compiles program modules
(source applet code) 40 and produces a common interme-
diate pssudo-binary representation of the source applet code
(intermediate form program module 44). The word pseudo is
ustd because the intermediate form 44 is not processor
specific yut- is still a binary represcptation of the source
program module 40. This intermediate form can be
re-targeited and compiled for a particular processor.
Allemauvely, the intermediate.form 44 can be interpreted by
an-interpreter oc virtual machine that understands the inter-
nal binary representation of the intermediate form. A tanget
compiler £2 compiles intermediate applet code 44 info an
applet 54 in.a processor specific format (binary) suituble for
running uatively on a given computing plaiform.

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization.
Other transformers might included compressors that ldenufy

portions of code that can be replaced with smaller equiva--

lents. Transformers can be maiched up 10 any other com-
ponent that takes in ntermediate code as an input. These
include the cache 24 aud the target compilers 52. Global
policies for transformers' §6 cza be ‘implewented which
casure that all applets are run through some set af trans-
formers before being remimed 4o the client,

Averifier 484s a type of transformer that is abile to analyze
input code and determine areas that might not be safe. The
verifier 48 can dciermine the level of safety. Some verifiers
48 Inok for areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as 10dzvices. Once a verifier 48 detenmines the portion
of unssie spplet code scveral stzps can be'taken. The
offending code portion can be encased with new code that
specifically prevents this uiisafe code section from being
executed. The unsafe code can be modified to be safe. The
unsafe code can be flagged i such a way that a user can be
warned about_the pessible risks of gxeculing the code
fragtuent. The verifier’s role caix therefore be summanzed as
detentining where unsafe ¢ode exists‘and possibly altering
the &ffending code to render. it barmless. Verifiers 48 can
operute on eny format of input code, whether in source,
intermediafe or binary fqnn However, since intermediate
code is a'corimox format, it is inost efficient to have a single
verifier that will operate on code in this format, This
eliminatss the need to build specific knowledge of various
source languages into the verifier. Verifiers 48 are a form of
a transforiner: Verifiers 48 take in intermediate code aud put
out verfied intermediate code. Verifiers 48 are lesponmble
for identifying non-seture portions of code iu the interme-
diate code and weodifying this code ‘to make it secure.
Seturity probleras generally inctuds access to memory aceas
that are mmfe (such as system memory, or roemory ¢ outside
ths application spage cf the applet).

The clinics of addmg in'the verification step can be lef up
1o the clisnt computer 12, the apolet server compnter 10 (see
FIG. 1j, or can be based on the network that thé applet
ongmat..d from. Server managers can instimte global poli-
cies that affect All clients by -forcing all applets to bte nin
through the verifier 48. Altcmauve‘y, verification can. be
reserved for bn-trusted networks (18'in FIG. 1), or it can be
left np to the client o delermine whether the verification
should be performed In the preferred embodiment, verifi-
calion leve! is detcrmined by the spplet server 10. In this
way, a vniform secarity polity may be implemented frem a
single mathine (ie., the applet server 10).

Opiimizers 46 are avother fype of transformér program,
Optiniizers 46 analyze code, making:improvements 1o weijl

: 6
known code fragments by substituting in optimized but
equivalent code fragments. Optimizess 46 1ake in intemme-
diate code 44 and put out transformed intermediate code 50,
The transformed intermediate code 50 is functionally
equivalent {o the source. iritermediate code 44 in that they

_ share the same structure.

25

45

55,

60

65

Referring again to FiG. 1, policies may be instituted, on
the applet server 10 that force a cerfain set of request
parameters regardiess-of what the cliznt-asked for.

For example, th applet server manager 22 can run the
applet through a verifier 34 or optimizer 36 regardless of
whether the client 12 requested this or not. Since the server
10 nght havé to go 1o an untrusted network 18 to retrisve
a given applet, it will then run this applet through the
required transformers 28, particularly the verifier 34 before
returning it (o the client 12. Since clients 12 and 14 bave to
go through the applet server computer 10, this ensures that
clients 12 and 14 do not receive applets direcily from an
untrusted setwork 18. In addition, since the server will be
dealing directly with untrusted netwock 18, it can be s¢t up
Lo institute policies based on the network. A trusted extemal
network 16 may be treated differently than an untrusted
network 18. This will provide the ability to run a verifier 34
only when dealing with an untrusted network 18; but nor
when desding with' a trusted external petwork 16, In one
embodiment, all infermediate code is passed through.a
vesifier 34 and the source of the code merely determmcs Lae.
level of verificalion applied.

The client 12 is the farget computer on which the user-
wishes to execute an applet. The client 12 requests applsis
fron the server 10 in a spécific form. Applets can be
requested in various formats including source, inlermediste
and binary: In addition; an applet can be requested with
verification and/or other compile lime operations.
Optionally, the client 12 can pass a verifier o the server (o
provide verification. If the server 10 impléments its own
security, then bolh the client and server verifiers will be run.
The verificr. that is passed frond the client to the'server is
cached at the server for subsequent verification, The, chent
can refer to this verifier by a sctver-generaled handle lo_
avoid having: to pass the verifier cach time an applst is
requested.

Client computers 12 and 14 rcqueslmv app‘et code in
intermediate format need to have an inteipreter or virtual
machine capable of mlcrprelmg the binary code in b
intermediate format ‘i the applet is to be executed on the
client machine,

In the preferred embodiment, requests to thie applet server

are in a format similar to those of an HTTP header and are

comprised of tags and values, In one embodiment, an HTTP
GET method is used 1o make the request (though use of the
HTTP protocol is.not necessacy to 1mpx'ﬂent the present
invention). The request is made up of a series of tags which-
specify the requested applet, the platiorns on whick it is to.
be. i and (ke type of code (sourcc/mtennedxalclbmary) a
verification.level and an opnmxzahon level. New tags and
values can be added to'extend functionality as needcd and
the appletserve.r manager 22 will discard any tag it does not
fecognize. Whed. the sipplet s€rver compnter 10 returms the
requested apolet 10 the reéquesting client'computer A 12, it
will transmit the request header followed by the applet code.
In this instance, the beadgr will additionally fnclude a field
which defines the length of the applet code, FIG. 2 provides
a fable which illustraies the request formas and the retured
code format.

‘While this invention has beca described with referencs 10
specific eyobediments, this description is nct meant ta limit

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Pagel9 of 37

US 6,324,685 B1

7.
the scape: of-the invention. Various moditications of the
disclosod embodiments, as well as other embodiments of the
invention; will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the mppsnded:claims will cover any such- modificatious or
embodimenys-as fall within the scope of the invention.
I claim: .
. 1. Amethod in a server computer for providing applica-
lions to client coraputers, the method comprising;
receiving a request from a client computer,. the request
identifying an apphcauon and identifyirg a form of the
application, the identified forin being one of a plurality
of available forms;
in respnpse to receiving the request,
generating the identified form of the application from
- another fonn of the application; and
scnding the identified form of the application 1o the
client computer; and
caching the identified form of the application so that when
another ‘request is received forthe application in the
identified form, the identified form of the application

cun be gent-without regenerating the identified-form of*

the appl.lcaubn.
2. A method in &'server computer for pmvxdmg applica-
tions to <iiant.compuiers, the . method comprising:
recsiving a request from a clicnt computer, the ‘vequest
idectifying an applicition and identifying 2 form of the
appiication, the identified form being oxe of a plurality
of available forms; and
in respanse b feceiving the request,
whenrthe server computer does not have the application
in the other form, requesting the application in the
cther-form from a comiputer other than the server
computer;
Zeperating the Jdcuuﬂcd form of the application from
" apotter form of the application; and
sending the identified form of the application to the
client compuler
3: A method in a servér computer for provxdmg applica~
uons 1b ciient computers, the method comprising:
receiving a requesi: froos a client’computer, the request
1denhf)nng an application add identifying a form of the
application, the.identified form being.one of & plurality
of available forins; and
in response o receiving the request,.
geneceting the idgntified Eorm of the application from
apother form of the application including when the
server computer does not have the 1denuﬁed form of
the application, requesting the application in the
cther form from a computer other lhan Abe server
computer; and
sgading the identified form of the applwauon ic- the
client coinputer.
4. A method in a sevver compuler for providing applica-
tions to client computers, the method comprising:
receiving a request from .a client computer, the request
.denu?ymg an application and idontifying a form of the
-application, the identified form bcmg onc of a plurality.
of available forms, and .
in response to receiving the request,
genenting ihe identified form of .the application from
apether form of the application; and
sending. the identified form of the applicaiion to the
clienr computer -
wherein the identified form is an intermediate form.
5. The pitthod of clai 4 wherein the intennediate form
is Java byte code.

10

2§

ap

55

8
6. 'The method of claim. 4 wherein the iatermediate form
can'be interpreted by an injerpreter exccuting on the client
‘computer.
7. A method in a server. computer for providing applica-

5 lions 10 client compnters, the method comprising;

receiving a request from a client compater, the -request
" * identifying an application and identifying a form of the
application, the identified form being one of a plurality
of-available forms; and
in response to receiving the request,
generating the identified form of the application from
another form of the application; and
stnding the identified form of the applicalion o the
client computer

1 wherein the identified form is a target form.

8. The method of claim 7 wherein the targe1 form is
directly executable by a processor of the client computer.
9. A method in a server computer for providing applica-
tions to ¢lient computers, the method comprising:
receiving a3 request from s clien! computer, the request
identifying an application and identifying a form of the
application, the identified forn being ope of a plurality .
of svailable forms and
in response to receiving the request,.
generating the ideutificd form of the application from
another form of the application; and
sending the identified form of the application 1o the
client computer
wherein the other form js a source {form.
10. Tlic method of claim 9 wherein the source form is Java
source.
11. A method in a server compulter for providing appli-
cations to client computers, the metbod comprising:
recciving a request from a client computer, the vequest
identitying an dpplication and identifying a forns of the
applicaticn, the identified form being one of a phurality
of available forws; and
in response to receiving the request,

" &0 transforming the application into a transformed form;

generating the identifed form. of the application from
the transforzed form of the application; and
sending-the identitied form of the application to the client
computer, :

45 12. The method of claim 11 wherein lhe traus[ormmy is

- verifying the application.
13. The method of claim 11 wherein the transforming is’
optimizing the application.
14, The method of claim 11.wherein the iransformmg is

so compressing the apphcau.on

15. A melhoa in a server computer for prov:dmg appli-
cations 1o clitnt computers, the method vomprising:
receiving .a requesi from a client computer, the request
identifyiog an application and identitying a form of the
application, the identified form being one-of a plurality
of svailable forms; and .
in respopse 1o receiving the request,
generaling the idectified form of the application from
apother -fonn of the application and caching the

60 generated idertified form so that when the identified

formy of the application has been stored in 2 cache,
the. identified form of the application is retrie%ed
from the cache; and

sending the identified form of the application retrieved

65 from the cache to the chcm compulter.

16. A 1method in a szcver compurer for providing applis
cations to client conpters, the method: comprising:

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page20 of 37

US 6,324,685 B1.

9
receiving -a request from a client computer, the request
identifying an application and identifying a form of the

application, the identificd form being.one of.& plurality-

of available fonns, and
in response to receiving the request;
generating the identified form of the application from
another form of the application; and
sending’ the. identified form of the application to‘the
cliznt.computer
wherein-the application is a portion of a larger-apphi-
cation.
17. A-method in a server- computer for providing appli-
cations > client computers, the method comprising:
receiving a request from a client computer, the request
identifying an applieation and identifying a form of the
application, the idextificd form being ove of a plurality
of available forms. and
in response 1o recciving the request,
generating the identified form of the application from
another-form of the application; and
sending the identified form of the application to the
clicnt computer
wherein the server, computer functions as a loader for
the client computer.
18. A wethed in a server computer for prowdmg appli-
catiocs to client computers, the method comprising:
receiving a request from a client computer, the requsst
identifying an application and identifying a form of the
'applicalion, tke identified form being one of a plurality
of available forms; and
in n-.sponse to recziving the request,
generating tae identified form-of the application from
another form of -the application; and
sending the identified form of the application to the
chcnl computer “wherein the application is an applet.
19. A method in a-server computer for prov:dmg appli-
catiogs to client computers, the method compnsmg
recuiving a reques(from a. client computer, the’ request
Jidentifying an application and identifying a form of the
application, the identified form being one of a plurality
of avejlable forms; and
in response to receiving the request,

generating the identified. form of the apphcanon from -

another form of the application; and

sending the ideutified: form of the apphcauon 10 the
clienf computer

whereiu the application includes modules, wherein the
genenating includes. generating of modnles of . the
identified form, and-wherein the generdling mdudes
combining modules of the identified form that were
pre\'musly generated with modules of the identified
form that are-generated in response to .reccmn, 3 the
request,

20. The method of claim 19 wherein the modules of the
identified form that were previously generated are retrieved
from a cache,

21. A method in # server computer for providing applis
cations to client computess, the method comprising:
~‘receiving a request from’ a client computer, the request

identifying an applicaiion and identifying a form of the
applicalion, the identified form being core of 2 plurality
of aveilable forms; and

in respense 1o recziving the request,

_gendrating the identided forin of the application from
anottier form~of the application;

after generating the identified-form of the appfication,
stosing the identified form of the application in a
ciche; and-

15

25

.

10

sending the identified form.of the application fo the client

computer.

22. The method of claim 21 including in response to
receiving a flush request, removing the identified form of the-
application from the cache.

23. 'The method of claim 22 wherein the ush request is
received from a cqmputer other than the' server computer,

24. The mettiod of claim-21 including storing a ime fo
live indicator with the sored identified form of the appli-
cation.

-25. A method in & server computer for providing appfi-
caticns fo clicnt computers, the.method comprising:
receiving a request from a clieat computer, the: request

. identifying an application and'identifying a form of the

application, the idantified form being-one of a pluratity

of available forms; and

in response to receiving the request,

I.ransformmg an intermediate form of the application
into a transformed version of the intermediate form
of tha’ application;

generating the identificd form of the application from .
the transformed version of the intermediate form of
the application; and

sending the identified form of the spplication to the
client compuler.

26. A method in a server computer for pro\'ldmg ppli-
cations fo client compniers, the method comprising:

recejving 2 request from a client computer, the request

identifying #n applicatios and ideatifying s form of the
application, the identified form being one of a plurality
of avajlable forms, and

in :esponse-tb receiving ihe request,

'mg the application;

generalmg"lbe identified form of the application from
the verificd application; and

sending the identificd forh of the applicatios 1o the
clieni computer.

27. The wethod of claim 26 ‘wherein the verifying is
specified by the client computer.

28. The method of claim 26 wherein the verifying is

“ specified by auother computer._

50

60

65

29. The method of claim 26 whetein’ the: verifying is
specified by the seryer corpurer.

30. The method of claim 26 incfuding receiving a verifier
from the clical computer.

31. The methad of clairn 30 including sending to the client
cornpiiter a handle for the verifier 2o that the client computer
can subsequently 1denut'y the verifier to the server tomputer,

32. A wethod in a server computer for pmv;dmg appli-
catfons (o clien: computers, the method compiising:

receiving a request from » cliznt computer, the request

jdentifyiog an application and identifying & form of the
applicaticn, the identified form bemg one of a phrality
of aviifable forms;

l'ansfonnmg the application that is idemified in ke

request using 1 common trapsformation;

in response 1o; Jeceiving the request,

generating the.adentfied form af the, application from
the Iransformed application; and

sending the identified form of the applicatioa to the
client. computer

33. A metbod in 2 server computer for providmg appha
cations to client’computers, the method compnsing:

receiving, & request from a client compiter, the request

1dcnufy1ug an application and identifying a form of the
application, the identified form being vne of a plurality
of available forras; and-

Case3:10-cv-00720-SI

US 6,324,685 B1

11

in response to receiving the request,

generating the identified form of the application from
another form of the application; and
sending the identified form of the application to-the
clietit compurer
whersin the identified form indicates a processor of the
client computer.
34. A method in a client computer for remevmg an
application in an identified form, the method comprising:

sending fo a server computer a request that identifies an
application and identifies & form of the application, the
identified form being one of a pluratity of available
forms;. .and

in response to sending the request, recciving fiom the
server computer the identified form of the application

wherein the server compuler generated the identifiec

forin of the application from another form of the
application in respouse to receiving the request from
the client computer

wherein after the server computer generated the identified
form of the application, the server computer stored the
identified form” of the application in a cache so that
when another request is received for the-identified form
of ths application, the server computer can retricve the
identified form of the application without regenerating
the identified form of the application.

35. A method in a clisnt computer for retricving an

application in an identified form, the method comprising:

sending 1o a seryer computer a request that identifics an

application and identifies a form of the application, the

identified form being one of a plurality of available 3

forms; and

in response o sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the application from apother form of the
application in response to receiving the request from
ihe client eomputer wherein when the server computer
-does nol have the spplication in the otber form, the

scrver compnter requests the other form of the appli- .

cation from a comnputer other than the server computer,
36. A method in a client computer for retrieving sn
application in an identified form, the method comprising:
sending to a server computer a request that identifies an
application and identifies a form of the application, the
identified form beiug one of a plurality of available
forms; and
in response lo sending the request, receiving from the
* server computer the identified form of. the application
wherein the server cownputer generated the identified
form of ihe application from another form of the
applization in response 1o ‘receiving the request from
the client -coraputes;- and
" wherein the 'identified forn is an intermediate form,
37. The method of claim 36 wherein the intermediate
form is Java byte code.
38. The method of claim 36 wherein the intermediate

form can be interpreted by an interpreter executing on the -

client computer.
39. A method in a client computer for :etnevmg an
application in an identified form, the method comprising;
sending te a server computer a request that identifies an
application and identifies a form of the application, the
_identified form being one of a plurality of avauable
" forms; and
in response 10.sending the request, receiving from the
server computer the ideatified form of the application

Documentl Filed02/19/10 Page?21 of 37

12
wherein the server computer generated the identified
form of the application from amother form of the
application-in response. to recciving the request from
the client computer
wherein the .identified form is a target form.
40. The method of claim 34 wherein the 1arget form is
directly executable by a processor of the client computer.
41. A method in a client computer for mtnevmg an
application in an idéntified form, the method -comprising:
sending to a'server computer a request that identifies an
application.and identifies a form of the applicstion, the
identified form being one of a plurality of available
forms; and
in response, to_sending the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the application from amother form of the
application in response to receiving the request from
the client computer
wherein the other form is a sourcs form
42. The method of claim 41 wherein the source form is
Java source.
43. A method in a client computer for retrieving an
application in an identified form, the method comprising:
sending to a server computer a request that identifies an
application and identifies a form of the application, the
identified form being one of a plurslity of available
forms; and
in response to sending the request, receiving from the
server computer the identified form of the application
wherein' the server compuler gencrated the identified
form oi the application from another form of the
application in responsc to receiving the request from
the client computer-
wherein the server computer fransforms the application
beforé genierating the identified form the applicstion.
44. The method of claim 43 wherein the transforming is
verifying ke application,
45, Tke method of claim 43 wherein the transforming is
optimizing the application.
46, The method of claim 43 wherein the transforming is
compressing the application.
47. A method in a client comiputer for retnevuig an .
application’in an identified form, the method comprising:
sending 1o a server compuler a request that identifies an
application and identifies a'form of the application, the
identified form being one of a phirality of available
forms; and
in response to sending .the request, receiving from the
server computer the identified form of the application
wherein the server computer generated the identified
form of the application from another form of the
application in response to receiving the request from
the client computer
wherein the' ssrver coniputer caches the identified form of
the application and wherein the server computer sub-
sequently reirieves the identified form of the applica-
tion from- the cache, rather than generating the ideati-
fied form of the application.
48. A method- in a client computer for reirieving an
application in an identified form, the method comprising;
sending 1o a server computer a request that identifies an
application and jdentifies a form of the application, the
identified form being one of u plurality of availsble
forms; and

s

10

15

25

45

55

(]

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page22 of 37

US 6,324,685 Bl

13

in response 10 sending the request, receiving from the
serves- computer the identified form of the application
wherein the server computer generated the identifizd
fonn of the application from another form of the
application in response to receiving the request from
the client computer

whereip the apphmuon isa portion of a larger apphmuon .

49. A method in a clen. computer for relnevmg an
application in an identified form, the method comprising:
sending to a sérver computer a request that identifies an
application #nd.identifics a form of the application, the
identified . form being one of a plurality of-available
forms; and
in response fo scnding the request, receiving from the
server.computer the identified form of the application
wherein the seiver computer generated the identified
form of the apglication from another form of the
- application in response to receiving the request from
the client computer
wherein the application is an applet.
50. A wethod in a client computer for retrdeving an
application in ap ideatified form, the method comprising:

- sending to a server computer a request that identifies an
application arid ideutifies a form of the application, the
idertificd forma being one of 2 plurality of avaxlable
forrus; and

in response to sending the request, receiving from the
server compuicer the identified form of the application
wheréin' the server compuier geperated the identified
form ‘of the appju:auon from another foim of the
application in rcsponse 10 receiving the request from
the ¢lienl computer wherein the application includes
modules, wherein the. server computer generates mod-
ules of the identified form, and wherein the server
compater combines modules of the identified form that
syere peeviously generated with modules of the identi-
fled fonm that are generated in response to receiving the
request.)
51. The method of claim 50 wherein the modules of the
identified form-that were previously generated are retricved
by tte server computer from a cache,
§2. A method in a client computer for retrieving an
application io an idenfified form, the-method comprising:
sending to- a servor computer a request that identifies 2n
application &nd identifies a form of the applicstion, the
identified form being one of a plurality of available
fotms; and

5

10

25

DN
<

in response to sending the request, receiving from the 50

server computer the identified form of the application
wberein the server computer generated the.identified
form of the application from another form of the
application in response to receiving the request fiom
the clisut computer
wherein-the request mcludes an indication to vzrify the
application. .
53. The method of claim 52 m..ludmg sending a verifier
from the client computer to the ‘segver camputer.
54, A method. in a client computer for-retrieving an
applicatioa in an identified. form, tke method comprising:
sending fo a server computer a request that identifics an
application-and identifies a form of the application, the
identified form being oue of a pluraiity of zvailable
forms; and
in resgionse to sending the request, receiving from -the
server computes the identified form of the application

60

14

wherein the server computer generated the identified
form of ibe applicaticn from aoother form of " the’
application in response 1o receivieg the request from
the client computer

wherein the.server computer transforms cach application

using a common transformation,

55. A'computer-readable medium contajning instrnctions
for controlling a server computer to provide applets fo client
computers, by a method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the
applet, 1he identified form being one of a plurality of
possible compiled forms of the applet; and

in response-to receiving a request, using a compiler to

corapile the identified form of the applet from an
vn-compiled form of the applet and sending the iden-
tified form of the applei to the client computer that sent
the request; and

caching the identified form of the applet so that when

another request is received for the same applet in the
identified form, the identified form of the applet can be
sent without recompllmg the identified form of the
applet

whereby requests of different client computers identify

different forms of the same -applet.

56. A compuler-readable medium contalning instructions
for controlling a server computer tp provide applets 1o client
compnters, by & method comprisitig:

receiving requests from clicrd computers; each request

identifying an applet and idsptifying 2 form of the
applet, the identificd form being one of a plurslity of
possible compiled. forms of the applet; and

in response W receiving the request,

when the server computer does not have the app)el in
the un-compiled form, requesting the applet in thé
un-compiled form frem a computer other than the
scrver computer; '

using a compiler o compile the identified form of the
applet from the un-compiled form of the applet; and

sending the identified form of the applet to the client
computer that sent the request

whereby requests of different client computers identify
different forms of the same applet.

57. The computer-readable medium of claim 56 wherein

5 the other computer is accessible via the Internet.

58. The computer-readable medium of claim 56 wherein
the server computer and client computer are connected o a
local area network and the server computer and the other

computer-are connected via.the Intemnet,

59. A computer-readable medlum containing instnictions
for controliing a server ccmpmer 1o provide applets to client
oompmrrs, by a meihod comprising:

receiving: requests from client computers, each request

identifying an applet .and identifying a form of the
applet, the identified forra being one of a plurality of
possible compiled forms of the applet; and

in response to receiving a request, vsing a compiler fc

compile the identified form of the applet from an
un-compiled form of the: spplet and sending the iden-
iified form of the ajsplet to the client computer that sent
the request

wherein the applet s part of 2 web page and whereby

requests of different client computers identify different

* forms of the same applet.

60. A computer-readable medium containing instructions
for controlling a server computer 1o provide applets to client - -
computers; by a method comprising: -

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page23 of 37

US 6,324,685 BI

15
recciving requests from client computers, cach request
identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in respouse to receiving a request, using a compiler to

compile the identified form of the applet from an
un-compiled form of the applet and sending the iden-
tifiec form of the applet to the client compuler that sent
the request

wherein the un-compiled form is an mlermedlale form

and whereby requests of Gifferent client computers
identify differen? forms of the same applet.

61. The computer-readable medium of claim 60 wherein
the intermediate form is Java byte code.

62. A comiputer-readable medjum containing'instructions
for controlling a server computer to provide applels to client
compulels, by a method comprising:

receiving requests from client computers, each request

identifying an applet 'and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applcl, and

in response to receiving a request, using a compiler to

compile the identified form of the applet from an
up-compiled form of the applet and sending the iden-
tified form .of the applet 4o the client computer that seat
the 1cquest

wherein the identified fovm is diréctly executable by a

processor of the clivnt computer that sent the request
and whereby requests of different client computers.
identify different forms of the same applet

63. A computer-readable medium containing instructions
for controlling a server compuer to provide applets 1o client
computers, by a method, comprising:

recciving requests from client computers, each request

identifying an applet and identifying a form of the 3

.appiel, the identified form being one of a pluralisy of
possible compiled forms of the applet; and

in-response fo recciving a request, using a compiler to
compile the identified form of the applet- from an
un-compiled form of the applet and sending the iden~
tified form of the applet to the client computer that sent
the request

wherein -the. un-~compiled form is a source form' and

whereby requests of different client computers identify
different forms of the same applet.

64. The computer-readable medium of claim 63 wherein
the source form is Java source.

65. A computer-readable medinm containjng instructions
for controlling a server computer to provide applets to client
computers, by & method comprising:

receiving requests from client computers, each request

identifying an applet and identifying a form of the

applet, the identified form being one of a plurzlity of.

passible compilsd forms of the applet; and
in response to receiving a request, transfoxmmg an
un-compiled form of-the applet, compiling using a
compiler the jdentified form of the applet from the
transformed, un-compiled form of the applet, and send-
ing the idenl.iﬁed form of the applet to the client
computsr that sent the request
whereby requesis.of different client computers identify
different forms of the same applet.
66. The. computer-re.ndable medfum of claim 65 wherein
the transforning is-verifying the applet.
67. The computer-readable medium of claim §5 wiherein
the transforming is cptimizing the applet,

45

50

]

16

68. The computer-readable. medinm of claim €5 wherein
the transforming is compressing the applel

69. A computer-readable medium containing instructions
for controlling a server computer to provide applets to clieat

s compulers, by a method comprising:

receiving requests from client computers, cach request
idenfifying an appler and identifying a form of the
applet, the identified form being one of a plurality of
possible

10 compiled forms of the applet;

in response to receiving a request, using & compiler to
compils the identified form of-the applet from an
un-compiled form' of the applet and sending the iden-
tified form of the applet to the client computer that sent

15 the. xequesl,

storing the identified form of the applet in a cache so that
when another request is retrieved, the server computer.
- retrieves the identified form of the applet from the
cache and sends the identified form of the applet
retrieved from the cache to the client computer
whereby requests, of different client computers identify
different forms of the same applet.
70. A coruputer-readable medium coptaining. iustractions
for coatrolling a server computer to provide applels 1o client

25 computers, by 2 method comprising:

receiving requests from client computers, ¢ach request
identifying an applet and identifying a form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet, und

in response 10 receiving a request, using a compiler to

compile the identified form of ihe applet from an
un-compiled form of the applet and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein the applet is 4 portion of 2 computer program sud

whereby requests of different cli=nt computers identify
diffezent forms of the sam: applet.

71. A computer-readable medinm containing instructions
for contreifing a server computer 16 provide applets to clent
computers, by a2 method comyprising:

receiving requests from client: comphiers, each request

identifying an applet and identifving- 2 form of the
applet, the identified foro being one of a plurality of
possible compiled forms of the applet; dnd

in response to receiving a request, using a compiler to

compile the idsntified form of the applet from an
un-compiled form of the applet-and sending the iden-
tified form of the applet to the client computer that sent
the request

wherein the server computer functions as a Joader for the

client coruputer and whereby requests of different client
computers identify different forms:of the same applet,

72, A computer-readable medium containing instructions

5 for controlling a server- computer to provide applets to clieat

computers, by a method comprising:

receiving requests from client computers, cach request
identifying un applet and identifying a form of the
applet, tke identified form beiag one of a plurality of
possible compiled fonms of the applet;

in response to receiving a request, using a- compiler to
compile ke identified form of the-. applet from -an
un-compiled form of the applet and sending the iden-
tified form of the applet to the client computer that seat

65 the request:

wherein the applet includes, multiple modules,.whcrem
the server computer genecates a mocule of the identi-

Case3:10-cv-00720-SI

17

fied-form, and' wherein the server computer compiles

one of the modules' into the identified form-in response .

to recelving the-request and whereby requests .of dif-
ferent client computers-identify different forms of the
same applet,

73. A ccmputer-readable medium containing instructions
for conwrolling & server computer-to provide applels to client
computers; by a method comprising:

receiving requests from. client computers, each request

identifying an applet and identifying a form of the
applet;.the identified form being one of 2 plurality of
possihle compped forms of the applet;
in sesponse o receiying, using a compiler to compile, the
_ identified form of tlie applet from an un-compiled form
of the. applet and sending the identified form of the
applst to the client computer that sent the request; and

after generating the identified form of the applet, storing
the identified form of the applet in a cache

whereby requests of different client computers identify

differcut forms of the same applet.

74, The computer-ssadable medium of claim 73 including
in response to receiving a flush request, removing the
identified -form of the applet From the cache.

75. The computer-readable medium of claim 74 wherein
the Rush request.is.rsceived from a-computes other thau the
server ¢ompuler.

76. The computer-réadable medium of.claim 73 includiog
a storiug time 1o live indicator with 1hestored idemified form
of the applet.

77. A ‘rompuler-rezdable suedium containing instructions
for nontrolling assrvir coxuputer to. provide applcls 1o client

'compmsxs. by 2 method comprising:

regeiving requests from client computers, each request

identifying an applet and identifying a form of the
applet; the idendificd form being one of g plurakity of
possible compiled forms of the applet;

inreSronse 10 recciving ' request, transforming an inter-

-fuediate form of the applet into a transfonged version
-uf the intermediate form of thie applet and compiling
using a compiler the. identified form of the applet from
the lrans_mmn.d intermediate form of the applet and
sending, the, i .deuuﬁed,torm of the applel to the client

" computer that seat.the .request; and

whereby requests of different client computers identify

different forms of the same applet,

78. A commputer-readable medium containing {nstructions
for controliing a server computer to provide applets to clieat
computers, by a metiod comprising:

receiving requests from client computers, each reguest

identifying an .zpplet and identifying a form of the
applet, the ideniificd form. being one of a plurahty of
possxme corapiled forms, of the applet, a requ..st inchid-
ing a yedifier. sent from the client computet for use in
vcnf;mg the épplet; and

in tcspons: to receiving a request, using a cmnpder to

compile the- identified form of the applei from an
un-comapiled ﬁmn of the applut and sending the iden-
tified form of the spplet 1o the client computer that sent,
the reguest

whereby' requests: of. different client computers-identify

gifferent forms of the sam¢- applet,

79. A:compuler-readable meditim containing instrustions
for controlling a server computer to provide ple!.uo clieat
compuiess, by a method comprising:

receiving . requests from client computers, each regrest -

identifying an 2pplet and identifying .= form of the

1S 6,324,685 Bl

s

10

-
w

30

45

)
<

55

63

Documentl Filed02/19/10 Page24 of 37

18)
applet, the identified form being one of 1 pluraity. of
possible compiled. forns of the applet; and

in response: to receiving a request, transforming each

applet-that is identified in a request using a common
transformation, compiling using a compiler.the identi- .
fied form of the applet from the transformed form of the

applet, and-sending the identified form of the applet ta

the client compufer that seni the request

whereby requests of different client computers identify-

gdifferam forms of the sxme applets

80. A computer-readable medium containing instructiens
for controzling d seiver computer 1o provide applets to-client
computers, by & method comprising:

recciviug, requests from client computers, ¢zch: request

jdentifying an applet sad identifying & form of the
applet, the identified form being one of a plurality of
possible compiled forms of the applet; and

in ‘response 1o réceiving a request, using a compiler o

compile the identified form of.the applet from an
un~compiled-form of the applet and sending the iden-
tifisd form of the applel to the client computer that sent
the request;’

v/herein the identified form indicstes 2 processor of the

- client computer

whereby requests ef different clisnt computers identi€y-

different forms of the same applet.
81. Aserver computer for providiag applets in a phizality”
of forms, comnnsmg'
means for réceiving from cliel computers requests for
applets, each request identifving a Joith of the zpplet;

means for retricving the applet ideritified in a reduest; the
retricved applet being in a form other than the form
identified in the request;

pieans for generating ibe identified form of \be apples

from the retrieved othe form of the appiet after receiv-
ing the request;

means for sending the identified form of the applet (o the

client counzpiter tha? requested the applet; and
means fot caching the identified form of the applet ;ﬂ-)'lﬁal
whenrapother request is received for the $ame applet in
the identified forin, the ideatified foro of the appletcsn
be set withoul regenerating the identified form of the
applet,
82. Asserver computer, for pmudmg appiets ju 2 plurality
of forms, oompnsmg
means for receiving fom client compuibs requests for
applets, cach request ideutifying 2 form of ths apples;

means for retrieviag ths applet 1depnﬁe-d in a request, the
retieved: applel being in 2 form oihier thén the form
identified in the request;

ricaps for generating the identified form of the: applet

from the retdeved other torm of the. applel after rece:v-
ing IBG fequest;
means for sending the jdeutificd forin of the applet to the
client computer that requesled the applel;-and

means for when the server cotiputer does not Bave the
applet-in the-other form, requesting ¢be otber forit of
the applet from 2 computer other thao the server
comphier.

83. The server computer of claim-82.whertin the-other
computer 1$-sccessibls vix the Intemet.

84. The server computer cof claim 82 -wherein the server
computer and client-computer are connected to a local arsa
network and the server and the other oomputer are cornected
via the Intsrost: .

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page25 of 37

US 6,324,685 Bl

19 .
85, A server computer for providing applets in & plurality
of forms, comprising:

means for receiviug ffom client computers reqacsts for
appleis, .each request identifying: 3 form of the-applet;

racans for retrieving the applet identified in a request, the
retrieved applet being in a form other’than the form
identified"in the request;

means for generating the; identitied form of the: applet

from tke retrieved other form of the applet after-receiv- 4

ing the request; and

means-for sending the ideitificd form of the applet to the
clisn! computer that requesied the applet

~whereiu the. applet is part of a web page.

86. A server couputer for providing applets in a plurality

of forms, comprising:

means for receiving from client computers requests for

applets, cach request identifying a form of the applet;

mexas for retricving the applet identified ip a'request, the

- retrieved” ap-olet being in a form other than the form
-identified in the request;

means for generating the identified form of the applet
from: the'retyieved other form of the applet aftei receiv-
ing the request;

means for.sending the identified form of the applst o the’

clizn! compuer that requested the applet; and .
means for transforming ke applet befare generating the
identified form of the applet. -

87. The Server-compuler of cleim 86.wherein the trans-
forining is verifying tke applet.

88. Axcirver compiuter for providing applets in a plu:ahly
of foims, comprising:

mivans for receiving from client computers r:quesl.s for

#pplets: each request identifying a form of the applet;
meaps fer retveving e applet identified in a request, the
riireved 1pplu being in a fom) «other thar the form
-identified in the request,
seeans for generating thbe, ideatified form of tha applet
frourths retrieved other forth of tbe applet aflerréceiv-
ing by request;
meigs for'sending the identified form of the applet to the
* client'computer that requested:the applet; and
means for, rather-than gencrating the identified form of the
.applet, retrieving the identified form of the applet fom
a cacha.

89. A romputer-readable medium confaining a data
struchire, the dutn structure including a request gericrated by
a client computer, the requsst identifying an applet and
identifving 2 forn of .the identified applet, the identified
form being obe of a Pluratity’ of compiled forms of the
identified applet wherein when a server comsputer reccives,
the request, the server computer usts a ccmpiler-to compile

the identified fornm'of the applet from an un*compiled form .

of the apylel and then sends the identified form of the applet
to the cbcn! computer that generated the request wherein the
server computer cachies the identified form of the applet so
that when another request is received for the same .applet in
the identified fonm, the identified forsh of the applt can be
sent wilhout-recompiling the jdedtified form of the applet,
90. A computer-readablé medium, contajning a dats
structure, the.dma struclure including a requést genesated by
a client- computer, the -regaest identifying an applet and
identifying a form- of the. identified applet,, the identified
form being one of a pleality of, compiled forms of the
identified applel wherein whea a server compuler receives

I
“

B

0

(4]

6

20
the request, the server computer uses a compiler to compile
1hie identified form of the appl.,t from an un-compiled fom:
of the applet and then sends the identificd fomi of the applet.
{o the chien compulter that gercrated the request v/herein it
response to reckiving the reatest, the server computer
requests the applet ip'the un-corpiled form from a computer
other than the server cemputer.

91. A computer-readable’ medinm coptaining a data,
structure, the data struchure including a request gencrated by
a client computer, the request identifying an applet and
identifying a fonn-of the identified applet, the; identified
form being -ope -of 2 plurality of compiled:forms of the
identified -applet wherein when a server computer receives
the request, the server compiiter usés a compiler to compiic
the identificd form of the applet from an uva-compiled form
of the applet and then sends the identified form of the applet
to the clicnt computer that generzied the request wherein the
applet.is part of a-web page.

92. A compuicr-readable, medium containing a data
structure, the data structure including a requést generated by
2 client computer, the request identifying so applet and
idemtifying: a form of the identified’ applet, the identified
form being one of a plurality of compiled forms of the
identified applet wherein when'a server computer recsives.
the request, the server computer uses a compiler to compile:
the identified form of the applet from an un-compiled form
tf the applet and then sends the identified form.of the applet
to the client computer that genprated the'request whesein the
vn-compiled form is aw intermediate form.

93. The compnler-readab‘e medmm of.claim 92 wherein
the intermediste form. is Java byte code. o

94. A comiputer-readable mcdmm contaiding & dnia
structure, the dats structure inclading a request getitrated b)
a client corapuier, the request identifying an applet. and
identifying 2 ‘form of the jdentified! applet, the igentified
form being one of a Pluralxty of compiled fozms of (ke
identified applet whersin vehen a server computar receives
the request, the server compuier ses a compiter (o compile
the identified form of the applst from sn yn-Sompiled 'orm
of the applet and thea sends the identified-form of the spplet
to the client compuler that gencrated the request whereia the
un~complled form is a source form.

95. The computcr-readable wmedivm of claim 94 wherein
the source form is Java'source.

96. A compuler-rendable medium containing .a duta
structure, the data stracturé including a request generatéd by
a ¢lient computer, the request identifying an applet and
identifying a form of the identified .npplet, 1he identified
form being cne of a plurility of ccinpiled forms of the
identified- applet wherem ‘when a server computer receives
the requesl, the server computer uses a compiler to compile
the identified form of the applel from an un-compiled form
of the applet and then sends the identified form. of the applet
10 fhe clienf computer that generated thie rquest-wherein the
server computer transforms the applet before compilmg the,
spplet,

97.The computet-readable medium of claim 96 wherein
the transfonming is verifying the applet,

98. The compuler-rcadable medium of claim 96 whersin

the trzpsforming is, optimizing the. applet.

99. A comper-readable medium conl,mmg insinuctions
for controlling’ 4_clicat computer, (hie instnictions’ bemg-
generated by a server cainpwier in respouss to mccxvmg &
request {rom a client computer, "1e request identifying an.
applet and |dcnhfym, a form of the applel, v'he'tm the
secver computer genefatss” the instructions by compiling 2
compiled ferm of the uppler fom a0 wn-compiled forar of

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page26 of 37

US 6,324,685 B1

21

the applef-wherein the server compnter retrigves the
un-compiled form of the applet from a computer other than
the.sepver computer.

100, A computer-readable medium confaining instructions
for controlling a. client computer, the instructions being
generated by a server computer in response to receiving a
request from a client computer, the request identifying an
applet and identifying a form of the applet, whezein the
server corapuler generates the fnstructions by compiling a

- compiled form of the 2pplet from an un-compiled.form of
the applet wherein the server computer storgs the compiled
form of the applét io a cache.

101. A computer-readable medium containing instruciions
for controlling a- client computer, the instructicns being
generated by a server computer in responss to receiving a
request.fidm a client computer, the request identifying an

- applet and identifying a form of the applet, wherein the
server compuler generates the instructions by compiling a
compiled. form of the applet from an un-:ompiled form of
the applet wherein tne nn-compiled fora of the applet is
Java intermediate code.

102. A computer-rsadable medium containing instructions
for controlling a. client computar,. the instructions being
gencrated-by a“server computer in response to receiving a
request from a client computer, the request identifying an
applet and identifying a form. of the applet, wherein the
server computer generates the instructions by compiling a
cowpiled: formi of the. applet-from an un-compiled form of
the applet wherein the un-édmpiled form of the applet is
Java soirce code.

103.4 con:pater-rcadable medium oontammg instructions
for commllmg a client, .compater, the mstmmqns be.mg
gentcalfed by a server computer in‘response %o receiving a
rzquest frow a clizot computér, the request identifying an
apple: and identifying a form of the applet, wherein the

10

30

35

server computer generates the instructions by compiling a

compiled-form of ths applet from an un-compiled form of
the applel whereid the mslm"llons are part of & web page:.
104. A server computsr éornprising:
16631 resources that include-compilers and miodules;
a cache for storing applets;
a trapsformenr; and
an applet server manager that
rectives requests from tlient computers for an appletin
- an identifiad form,
when tke identified form of the applet is slored in the
cache, sends the idextifled form of the applet stored
“in the zache.10 the client computer”that sgat the
teguest, and ¢
when the. idéntified form of the applet-is uoi stored 1n
o cache; gencrates 1he identified form of the applet

40

50

22
using a-compiler aad 2 module, stores the identified
form ‘of the applet in the cache, and sends the
identified form of the applet to the-client computer
that sent the request
wherein the-applet server manager uses the transformer ‘o
transforma the module before generating the identified
form of the applet. :
105, A server computer comprising:
local resources that include compilers and modules;
a cachie for storing applets
a transforingr; and
dn applet server manager that
Teceiviss requests from client computers.for 2a applet in
an.identified form,
when 1he adenuﬁed form of the applet is stored iu the.
cache, sends the identified form of the applet stored
in the cache to the client computer that s:nt the
request,
when the, identificd fcrm of the applet is.not stored in
the cache, generates the identified form of the applet
using-a compiler and & nodiile, stores the identified
fora of thé applet in the .cache, and sends the:
identified form of the applet to the <lient computer
that sent the request
wherein the applét server manager usss-the transformer to
transform the identified applef after it is- geacrated
using the compiler.
106. A server computer comprising:
local resources that inginde’ compilets angd méodules;
a cache for storing applers; and
an applel server manager that
receives requiests from client computers for an appletin
an 1denuﬁed form,
when fbe identified form' of 1he applet.is stored in the
cache, sends the-idealified fore of the applet stored
in the cache 10 the client tomputer that sernt the
request, and
when the identified form of the applet is not stored in
the cache, generates the identified form of 1he applet
usmg a compiler and a module, stores the identified
form of the applet o “the cache, and ‘sends:‘the
identifiéd form of the applet to the-client computer
that sént the request *
wherein the ‘applet seiver manager retrieves a module
from a compuwr otker than foe server computer when
a module that is not_another form of the applet js not
stored with the local resource.

* x = %'g

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page27 of 37

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION .
PATENTNO. :6,324,685B1 . | _ Pagelof 1
. DATED : November 27;- 2001)

INVENTOR(S)y : Edward Balassanian

It Is certified that error appears In the above-identified patent and that said Latters Patent is
hereby corrected as shown below:

Column 3;
Line 64, after “A 12.” begin a new paragraph;

Column 5 '
Line 31, delete “10” and insert -- 10--;

Column 6, .
Line 10, the paragraph beginning with “For” should be part of the preceding paragraph;

Column 12
Line 6, delete “34” and insgrt -39 -

Column 17, =~ .- .
Line 13, after “receiving” insert -- a request --; and

Column 19,
Line 38, delete the comma after “request” and insert a semicolon.

Signed and Sealed this

Twenty-third Day of July, 2002

Altest:

’ JAMES E. ROGAN
Azcsring Officer Director of the United States Patent and Tradzmark Office

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page28 of 37

EXHIBIT B

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page29 of 37

A 0 000 0
US006976248B2 :

«» United States Patent

(10) Patent No.: US 6,976,248 B2

Balassanian @45) Date of Patent: Dec. 13, 2005
(54) APPLICATION SERVER FACILITATING 6,324,685 Bl * 11/2001 Balassonian c.euwccos 717/118
WITH CLIENT’S COMPUTER FOR APPLETS 6,336,213 Bl * 12002 Beadle et al. - 17136
ALONG WITH VARIOUS FORMATS 6,446,081 Bl * 5/2002 Preston 707/104.1

(75)

™)

(1)
(2)

63

(63

3y
(2
8

(56)

Inventor: Edward Balassanian, Kirkland, WA
Us)
Assignee: ' Implicit Networks, Inc., Bellevue, WA
(Us)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 478 days.
Appl. No.: 09/968,704
Filed: Oct. 1, 2001
Prior Publication Data
US 2002/0100038 A1 Jul. 25, 2002
Related U.S. Application Data
Continuation of spplication No, 09/040,972, Gled on Mar.
18, 1998, now Pal. No. 6,324,685,
Int. C1.7 .. GOGF 9/45
JUS. Cl s 717/148; 717/140; 7097203 -
Ficld of Searchoccnreercisisirianens 717116, 118,
717/136, 139, 140-142, 148, 151, 152,
165, 162, 166; 7097203, 223
References Cited
U.S. PATENT DOCUMENTS
5,706,502 A * 1/1998 Toley etal.coveuiveunne 707/10
5,761,420 A * 6/1998 van HoE et al, .. .
5,805,829 A * 9/1998 Cohen et al.
5,828,840 A * 10711998 Cowan et al.
5848274 A 12/1998 Hamby et al,
5872915 A 201999 Dykes ct al.
5.884,078 A 3/1999 Faustini
6,230,184 Bl * 5/2001 White et al, ...ccerrvecranes 709/201
6,282,702 Bl * §/2001 Ungar 717148
6,295,643 Bl * 9/2001 Brown et al; . . 717/148
6,321,377 Bl * 11/2001 Beadle et al. 717/148

e T17/124
... 719/316
e T17/148

6,594,820 Bl * 72008 Ungar ...
6,636,900 B2 * 10/2003 Abdelnur
6704926 BL = 3/2004 Blandy ctol. ...

6,742,165 B2 * 572004 Lev et al ecvereensuenernnne 761

6,745,386 Bl * 62004 Yellin e 7177166

6,836,889 Bl * 122004 Chan et al. .. . 719/310

6,842,897 Bl * 1/2005 Beadle et al, .cceuruees e 71871
OTHER PUBLICATIONS

Yang ct al, “Developing integrated web and database appli-

cations using JAVA applets and JDBC drivers”, ACM SIG-

SCE, pp 302-306, 1998.*

Newsome et al, “Proxy compilation of dynamically loaded

Java classes with MoJo”, ACM LCTES, pp 204-212, Jun.

2002.* .
Begole ct al, “Transparent sharing of Java applets: a repli-

cated approach”, ACM UIST, pp 55-64, 1997.*

(Continued)

Primary Examiner—Anil Khatri
(74) Attorney, Agent, or Firm—Morgan & Finnegan, LLP

67 ABSTRACT

The present invention is an applet server which accepts
requests for applets from client computers. A request speci-
fies the format in which an applet is to be delivered to the
requesting client computer. The applet server has a cache
which it uses to store applets for distribution to client
computers. If the specified form of the requested applet is
available in the cache, the applet server transmits the applet
to the requesting client. If the applet is not available in the
cache, the server will attempt to build the applet from local
resources {program code modules and compilers) and trans-
former programs (verifiers and optimizers). If the applet
server is able to build the requested applet, it will then
transmit the applel to the requesting client computer. If the
applet server is unable to budld the requested applet, it will
pass the request to another applet server on the network for
fulfillment of the request,

13 Claims, 3 Drawing Sheets

A caad B .
Sl L@, !
=l
= 5 S

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page30 of 37

US 6,976,248 B2
Page 2
OTHER PUBLICATIONS [Accessed Oct. 4, 2000].
Beanton et al, “Cgmpiling‘ standard ML to ava bytecode”, Sir;r, Emin Giln, “Kimera—A System Architecture for
ACM ICFB, pp 129-140. Networked Computers,” [Accessed Oct. 4, 2000],

Sirer, Emin Giin, “Java-Relevant Articles in the Press,”
[Accessed Oct. 4, 2000].

“Project Members” hitp://kimera.cs.washington.edw/mem-
bers.html [Accessed Oct. 4, 2000].

Bmin Giin Sirer, ct al., “Distributed Virtual Machines: A
System Architecture for Network Computing,” Dept, of
Computer Science & Engincering, University of Washing-
ton, Seattle, Washington butp:/kimera.cs.washington.edu
Peb. 26, 1998, N

Emin Giin Sirer, et al., “Design and Implementation of a
Distributed Virtual Machine for Networked Computers,”
University of Washington, Department of Computer Science
and Enginecring, Seaitle, Washington, 17 ACM Sympo-
sinm on Operating sysiem Principles, Dec. 1999.

Sirer, Emin Giin, “A System Arschitecture for Next Genera-
tion Network Computing,” Dept. of Computer Scicoce &
Engincering, University of Washington, Seatde, Washington
Jun. 26, 1998.

Emin Giin Sirer and Brian Bershad, “Kimera Architecture,”
[Accessed Oct. 4, 2000].

Sirer, Emin Giin, “Security Flaws in Java Implementations,”
[Accessed Oct. 4, 2000].

Sirer, Emin Giin, “Kimera Bylecode Verification,” [Ac-

_cessed Oct. 4, 2000].

Sirer, Emin Giln, “Kimers Test Suite,” {Accessed Oct. 4,
2000]

Sirer, Emin, Giln, “Kimera Disassembler,” [Accessed Oct. 4,
2000},

* cited by examiner

Case3:10-cv-00720-SI

U.S. Patent

Dec. 13, 2005

Sheet 1 of 3

Documentl Filed02/19/10 Page31 of-37

Client Computer A

Untrusted
Network

.

H

12

Trusted

Client Computer B

Extemal
Network

aE 16

US 6,976,248 B2

—\

14

r Applet Server Computer

J‘ZO

»{ Network Interface

Bl

F" Local Resources

Applet Server J" 22 T
Manager @
l 32b|
303 /module
| Cache Component I
et 1
S |
253 30b
] Applet 2 32dl
-25b |
Applet3 o
25¢ ‘

| N —‘r,;‘.w?on;;?s' -
n Optimizer l
lk“ * |

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page32 of 37

U.S. Patent Dec.13,2005 - Sheet 2 of 3

US 6,976,248 B2 -

Request Data Type

 Tag Value
Applet-URL (String) specifies the name of the requested
applet :
Code-Type (Source/Intermediate/Binary) specifies the

format the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting

client (e.g., x86)

Verification-Level

(0-100) specifies the degree of verification to
be performed. 0 = no/minimal verification,
100 = maximum verification (highest level of
security).

_Optimization-Level

(0-100) specifies the degree of optimizatioh‘
fo be performed. 0 = no/minimal
optimization, 100 = maximum optimization.

Fig. 24

Code Data Type
| Tag Value ,
Applet-URL (String) specifies the name of the requested
applet
Code-Type (Source/intermediate/Binary) specifies the

format the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting
client (e.g., x86)

Verification-Level

(0-100) specifies the degree of verification to
be performed. 0 = no/minimal verification,
100 = maximum verification (highest level of

security).

Optimization-Level

(0-100) specifies the degree of optimization
to be performed. O = no/minimal

-optimizatior, 100 = maximum optimization.

Applet Length (0-2%) specifies the size of the requested
applet. _
Applet Code The Requested Applet in the form specified

by the request data type.

Fig. 2B

Case3:10-cv-00720-SI Documentl Filed02/19/10 Page33 of 37

U.S. Patent. Dec. 13, 2005 Sheet 3 of 3

Program Module
40

Intermediate Compiler }\
42

Interrmediate Form
Program Module

44

Transformed
inteymadiate Form
Program Module

Targel Compiler

52

US 6,976,248 B2

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page34 of 37

US 6,976,248 B2

1

APPLICATION SERVER FACILITATING
WITH CLIENT'S COMPUTER FOR APPLETS
ALONG WITH VARIOUS FORMATS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. patent applica-
tion Ser. No. 09/040,972, filed Mar. 18, 1998, now U.S. Pat.
HNo. 6,324,685,

FIELD OF THE INVENTION

The present invention relates to computer operating sys-
tems and, in particulas, to a server architecture providing
application caching and security verification.

BACKGROUND OF THE INVENTION

The growth of the {nternet’s importance to business,
along with the increased dependence upon corporate
networks, has created a demand for more secure and efficient
computer systems. The traditional solution to this problem
has been to depend upon improvements in hardware perfor-
mance to make up for the performance penalty that is
typically incurred when a computer system is made more

secure and stable, Increased interconnectivily has also cre-:

ated a need for improved inleroperability amongst a variety
of computers that are aow connected to one another. One
solution to tbe problem of the variety of computers inter-
connected via the Internet and corporate petworks has been
the development of portable architecture neutral program-
ming languages. The most widely known of these is Java,
though, there are numerous other architecturc neutral lan-
guages,

Architectuie neutral programming languages allow pro-
grams downloaded from a server computer to a client
compuiter to be interpreted and executed locally. This is
possible because the compiler generates partially compiled
mtennediate by:e-code, rather than fully compiled native
machine cods. In order ‘o run a program, the client machine
uses 2n interpreler to execule the compiled byte-code. The
byte-codes provide an architecture neunal object file format,
which allows the code to be transported to multiple plat-
forms. This allows-the program to be run on any system
which implements the appropriate interpreter and run-time
systemn. Collectively, the interpreter and runtime system
implement a virtual machine. This structure resulls in a very
secure language.

The security of this system is premised on the ability of
the byte-code to be verified independently by the client
compntsr, Using Java or some other virtual machine imple-
menting technology, a client can ensure (hat the downloaded
program will not crash the user’s computer or perform
operations for which it does not have permission.

The iraditional implementations of architecmre neutral
languages are ot without problems. While providing tre-
mendous cross platform support, the cumrent implementa-
tions of architecture neutral languages require that every
client perforins its own verification and interpretation of the
intermediate code. The bigh computation and memory
requirements of a verifier, compiler and interpreter restrict
the applicability of these technologles to powerful client
computers.

Another pzoblem with performing the venfmtmn process
ot the clism computer is that any individual within' an
organization may disable some or all of the checks per-
" formed on downloaded code. Tae current structure of thess

5

10

e
(=]

55

: 2

systems makes security management at the enterprise level
almost impossible. Since upgrades of security checking
software must be made on every client computer, the cost
and time involved in doing such upgrades makes it likely
that outdated or corrupt copies of the verifier or interpreter
exist within an organization. Even when an organization is
diligent in maintaining a client based sccurily model, the
size of the undertaking in a large organization increases the
likelihood that there will-be problems.

There is a nced for a scalable distributed system arch1~
tecture that provides a mechanism for client computers to
request and execute applets in a safe manner without requir-
ing the client machines to have local resources to compile or
verify the code. There is a further need for a system in which
the applets may be cached in either an intermediate archi-
tecture neutral form or machine specific form in order to
increase overall system performance and efficiency.

SUMMARY OF THE INVENTION

. In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client
coraputers to request and execute applets in a safe manner
without requiring the client to bave local resousces 10 verify
or compile the applet code. Compilation and byte-code
verification in the present invention are server based and
thereby provide more elficient use of resources and a fexible
mechanism for instituting enterprise-wide securily poiicies.
The scrver architecture also provides a cache for applets,
allowing clients to receive applet code without having to
access nodes ontside the local network. The cache also
provides a mechanism for avoiding repeated verification and
compilation of previously requested applet code since aay
client requesting a given applet will have the request satis-
fied by a single cache entry.

Machine specific binary code is esscatially interpreted
code since the processor for a given compuler can essen-
tially be viewed as a form of an inlerpreter, interpreting
binary code iolo the associated electronic equwalems The
present invention adds a level of inditection in the form of
an intermedijate language that is processor independeat. The
intermediate language serves as the basis for security
verification, code optimizations, or any other compile time
modifications that might be necessary. The intermediate
form allows a single version of the source to be stored for
many target platforms instead of having a differcat binary
for each potential target computer. Compilations to the target
form can either be done at the time of a cache bit or they can
be avoided all together if the target machine is able to
directly interpret the intermediate form. If the compilation is
done oo the server, then 2 copy of the of the eomp.led code
as well as the intermediate form can be stored in the cache.
The performance advantage derived from caching the com-
piled form as well as the intermediate depends upon the
number of clients with the same CPU.

The novel features believed characteristic of the iavention
are set forth in the appended. claims. The invention itself,
however, as well as other features and advantages thercof
wil] best be understood by reference to the detailed descrip-
tion which follows, when read in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used to unplement an applet server in one embodi-
ment of the present invention;

FIG. 2a 1s a table which illustrates the structure ot the

" request format data type;

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page35 of 37

US 6,976,248 B2

3 .
FIG. 2b is 5 1able which itlusirates the structure of the
rsturned code data type.

FIG. 3 is a diagram showing the compilation and trans-

formation of a program module inlo an applet in a particular
form. ’

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, an applet server architecture accord-
ing to one embodiment of the invention is based on ap applet
server computer 10 which in turn is connected to client
computer A 12, client computer B 14, an external network 16
and an unirusied network 18. The applet server computer 10
conaccls Lo client compulers 12 and 14, an external network
16, and au untrusted nciwor: 18 by means of a network
interface 20. Typically this connection will involve one or
more of the compulers or networks having a connection Lo
the Internet.

‘The applet server computer 10 accomplishes its objeciives
by manipulating computer programs in several formals. An
applet {e.g. applets 1-3, 252~25¢) is any form of program
instructions, whetber in binary, sousee or intermediaie for-
mat. In the case of this architecture, the applet code can
either be a self ¢oniained program, or it can be a code
- fragment associated with a larger application.

Binary format refers to processor specific machine
jnstructions suitable for runping natively on a given com-
puting platform (also referred to as “target” because of the
concept of “targeting” a conmipiler to produce binary code for
a given proressor lype).

Source refers to non-binary applet code, generally in the
. form of highet level languages (i.c. C, C++, Java, Visual
Basic, ActiveX, Fortrad, and Modula).

Intermediale format refers to a common intcrmediale
byte-code that is produced by compiling a given source code
input, The intermediate byte-code need nol necessarily be
Java byte-code. -

Treating applets in this general sense allows client com-
puters 12 and 14 to request not only applications, but
portions of spplications. Client computers 12 and 14 are thus
able to use applet server computer 10 as the equivalent of a
loader, loading in appropriate parts of the application in the
form of applets. [n turn client computers 12 agd 14 can run
large applications without requiring that the client comput-
ers 12 and 14 bave the resources to store the cntire appli-
cation in memory at oncs.

Having the applets delivered from applet server compuler
10 allows code in intenmediate form to be verified,
optimized, and compiled before being transmitted to client
compuless 12 and 14. This reduces.the amount of wouk the
client computers 12 and 14 bave to do and provides a
convenicat way to impase global restrictions on code.

In operation, cliert computer A 12 transmits a request o
an applet server compuier 1§ requesting an applet in a
particular form. The form may be selected from a large
matrix of many possibie forms that can be recognized by the
system. The request specifies the format (source,
intermediate, or binary)in which the client wishes to receive
the applet. The request may also specify that the applet be
verified or have some other transformation operation pre-
formed upon it. Verification, optimization and compression
arc examples of types of transformation operations. The
request is received by the network interface 20 of the applet
server computer 10 which passes the request onto the applet
server manager 22.

H

10

20

25

20

¢

55

a3

4

Afier interpreting the request, the applet server manager
22 checks to sec if the requested applet is available in the
cache 24. The cache 24 stores applets in 3 variety of formats
(source, intermediate, or binary). If the requested form of the
applet is available in the cache 24 (applet 1 254, applet 2

25b, or applet 3 25¢ in this example) the applet server

manager 22 jostructs the aetwork interface 20 to transmit the
applet 10 requesting client computer A 12,

If the requested applet is not available in the cache 24,
then the applet server manager 22 will attempt to huild the
requested applet from local resources 26 and one or more
transformation operations performed by one or more of the
transformers 28. Local resources 26 are .comprised of com-
pilers 30a, 30b and 30c and program code modules 324, 325,
32¢ and 324. The requested applet is built by selecting one
or mor¢ program code modules 32 and compiling them with
one or more compilers 30. Transformer operations may be
performed by the verifier 34 or the optimizer 38, After-the
applet server manager 22 builds the applet, the network
interface 20 transmits the applet to the requesting client
computer A 12.

If the request can not he satisfied by building thc applet
from locul resources 26 and transformers 28, the applet
server manager 22 will pass a request for the requested
applet to external network 16 and/or untrusted network 18.
The appiet server manager 22 may request the applet in
intermediate form or in executable form or it may request the
local resources 26 and transformers 28 it needs to complete
building the applet itsclf.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retricve
a piven applet from the cache. PUT is used to store an applet
in the cache: FLUSH is used to clear the cache of ons or
more entries. When the cache is unable to locate an item in
response (0 a GET operation, il returns a cache miss. The
program which issued the GET command is then responsihle
for locating the desired form of the applet by other means
and optionally storing it in 1he cache when it is retrieved
(using the PUT operation). The FLUSH commaud will cleat
the cache of one or moie entries and any subsequent GETS
for the FLUSHed applet code will reswt in a cache miss,
Tliis is useful if a particular applet needs to be updated fromt
2 remote server on a periodic basis, When using PUT, the
program issuing the command specifies a time to live (TTL)
in the cache. When the TTL expires, the cache entry ls
removed by means of u FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not the requested form) and com-
pilers 30, The program modules 32 are rug through the
compilers-30 in order to produce applets in the requested
form. The applet scrver manager 20 may also direct the
modules 32 to be processed by a verifier 34 or another
iransformer such as.an optimizer 36. Program modules 32
are program code used to build applets, Program modules 32
may be stored in local resources 26 in source, binary, or
intermediate formats. When an applet is built it may require
the operation of one or more compilers 30 upon one or more
program 1oodules 32. The. program modules 32 may be
combined and recompiled with- previously cached applets
and the resulting applet may be also cached for use a1 a
fuure time. Additionally, program modules 32, cornpiiers 30
and transformers 28 (including verificrs 34 and optimizers
36) may be distributed across a cetwork. The applet server
manager 22 may pass requests for the components it needs
1o build a particular applet back to the nctwork interface 20
which in turn passes the request onto the vest of the nstwork
and may include external network 16 and un‘msted network
18.

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page36 of 37

US 6,976,248 B2

5

FIG. 3 provides further illustration of how an applet is
produced from local resources and transformers. In this
illustration thé request is for an optimized and verified applet
compiled to a machine specific form. A program module 40
is compiled into an intermediate form program module 44
by an intermediate compiler 42. The inlermediate form
program module 44 is then transformed by an optimizer 46
or a verifier 48. The resulting transformed intermediate form
program module 50 is then compiled by target compiler 52
into machine specific code applet 54.

There are two types of compilers used to build applets:
intermediate compilers 42 and target compilers 52. The
intermediate compiler 42 compiles program modules
(source applet code) 40 and produces a common interme-
diate pseudo-binary representation of the source applet code
(intermediate form program module 44). The word pseudo is
used because the iotermediate form 44 -is not processor
specific but is still a binary representation of the source
program module 40. This intcrmediate form can be
re-targeted and compiled for a particular processor.
Alternatively, the intermediate form 44 canbe interpreted by
an interpreter or virtual machine that understands the inter-
nal binary representation of the intermediate form. A rarget
compiler 52 vompiles intermédiate applet code 44 into an
applet 54 in a processcr specific format (binary) suitable for
running natively on a given computing platform.

Transformers 56 are programs that take in intermediate
- ¢ode and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization.
Other transformers might included compressors that identify
portions of code thal can be replaced with smaller cquiva-
lents. Transformers can be matched up to any other com-
ponent that takes in intermediate code as an input. These
include the cache 24 and the target compilers 52. Global
policies for Iransformers 56 can be implemented which
ensure that all applets are rua through some set of trans-
formers before being returned to the clicnt.

Averifier 48 is atype of transformer that is able to analyze
input code and determine areas that might not be safe. The
verifier 48 can determine the levél of safety. Some verifiers
48 look for areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as 10 devices. Once a verifier 48 determines the portion
of unsafe applet code several steps can be taken. The
offending code portion can be encased with new code that
specifically prevents this unsafe code section from being
executed. The unsafe code can be modified to be safe. The
unsafe code can be flagged in such a way that a user can be
warmned about the possible risks of executing the code
fragment. The verifier’s role can therefore be summarized as
determining where unsafe cods exists and possibly altering
the offending code to render it harmless. Verifiers 48 can
operate on any format of imput code, whether in source,
intermediate or binary form. However, since intermediate
code is a comraon format, it is most efficient to have a single
verifier that will operate on code ip this format. This
eliminates the need 10 build specific knowledge of various
source languages into the verifier. Verifiers 48 are a form of
a transformer. Verifiers 48 take in intermediate code and put
out verified intermediate code. Verifiers 48 are responsible
for identifying non-secure portions of code in the interme-
diate code and modifying this code to make it secure.
Securiry problems generally include access to memory areas
that are nnsafe (Such as system memory, or memory oulside
the application space of the applet).

The choice of adding in the verification step can be left up
10 the client computer 12, the applet server computer 10 (see

10

25

6

FIG. 1), or can be based on the network that the applet
originated from. Server managers can institute global poli-
cies that affect all clients by forcing all applets to be run
through the verifier 48, Allematively, verification can be
reserved for un-trusted nerworks (18 in FIG. 1), or it can be
left up to the client to determine whether the verification
should be performed. In the preférred embodiment, verifi-
cation leve] is determined by the applet server 10. In this

.way, a uniform security policy may be implemented from a

single machirie (i.c., the applet server 10).

Optimizers 46 are another type of transformer program.
Optimizers 46 analyze code, making improvements to well
known code fragments by substituling in optimized but
equivalent code fragments. Optimizers 46 take in interme-
diate code 44 and put out transformed intermediate code S0.
The transformmed intermediate code 50 is functionally
equivalent to the source intermediate code 44 in that they
share the same structure.

Referring again to FIG. 1, policies may be instituted on
the applet server 10 that force a certain set of request
parameters regardless of what the clieat asked for. For
example, the applet server manager 22 can run the applet
through a verifier 34 or optimizer 36 regardless of whether
the client 12 requested this or not. Since the server 10 might
have 10 go to an untrusted network 18 (o retricve a given
applet, it will then run this applet throngh ihe required
transformers 28, particularly the verifier 34 before returning

- itto the client 12, Since clients 12 and 14 have to go through

3

as

60

the applet server computer 10, this ensures that clients 12
and 14 do not receive applets directly from an untrusied
network 18. In addition, since the server will be dealing
directly with untrusted network 18, it can be set up to
institute policies based on the network. A trusted extemal
network 16 may be wreated differently than an untrusted
network 18. This will provide the ability to run a verifier 34
only when dealing with an untrusted network 18, but not
when dealing with a trusted exiernal network 16. lo one
embodiment, all intermediatc code is passed through a
verifier 34 and the source of the code merely determmes the
level of verification applied.

The client 12 is the target computer on which'the user
wishes to excente an applet. The cliont L2 requests appleis

‘from the server 10 in a specific form. Applets can be

requested in various formats including source, intermediate
and binary. In addition, an applet can be requested with
verification and/or other compile time operations.
Optionally, the client 12 can pass a verifier to the server lo
provide verification, If the server 10 implements its own
security, then both the client and server verifiers will be run.
The verifier that is passed from the client to the server is
cached at the server for subsequent verification. The client
can refer to this verifier by a server-generated handle to
avoid having to pass the verifier each time an applet is
requested.

Client computers 12 and 14 mquesung applet code in
intermediate format need to have an interpreter or virtual
machine capable of interpreting the binary code in the
intermediate format if the applet is to be exccuted on the
client machine.

In the preferred embodiment, requests to the applet server
are in a format similar to those of an HTTP header and are
comprised of tags and values. In one embodiment, an HTTP
GET mcthod is used to make the request (though usc of the
HTTP protocol is not necessary to implement the present
invention). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to

Case3:10-cv-00720-SI

Documentl Filed02/19/10 Page37 of 37

US 6,976,248 B2

7

be run and the type of code (source/intermediate/bipary), a
verification level and an optimization level, New tags and
values can be added to extend functionality as needed and
the applet server manager 22-will discard any tag it does not

ize. When the applel server computer 10 refurns the
requested applet to the requesting client computer A 12, it
will transmit the request header followed by the applet code.
In this instance, the header will additionally include a field
which defines the length of the applet code. FIG. 2 provides
a table which illustrates the request format and the returned
code format.

While this invention has been described with reference o
specific embodiments, this description is not meant to limit
the scope of the invention. Various modifications of the
disclosed embodiments, as well as other embodimenis of the
invention, will be apparent to persons skilled ia the axt upon
reference 1o this description. It is therefore contemplated that
the appended claims will cover any snch modifications or
embodiments as fall within the scope of the invention.

I claim:

1. A method operating on a computer system for manag-
ing requests to a server compuler for applets in a client

server environment wherein cach request for an applet-

specifies one form of the applet out of a plurality forms o[
the applet comprising:

a) receiving on said server computer a request from a
client computer for an applet in a form selected from a
plurality forms;

b) compiling said applet into said selected form from a
local resource comprising at least onc source module

and one compiler which acts on said source module to 3

produce said selected form; and

c) trapsmitting said applet in said selected form to said
client computer.

2. The method of claim 1, further comprising the step of:

copying said applet in said selecied form to a local cache
after compiling said applet from said local resource if
said cache does not contain a copy of said applel in said
selected form.

3. The method of claim 2, further comprising the siep of:

transmitling 2 request to an exiernal resource for said
applet in said selected form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said local resource, and

directing said exiernal resource to transmit said applet in
said selected form to said server computer.

4. The method of claim 1, further comprising the step of:

tmnsmmmg a request (0 an external resource for supply-
ing said applet in said selected form if said applet can
not be compiled from said local resource and

directing said external resource to transmit said applet in
said selected form to said secver computer.

5. A method operaling on a computer system for manag-

ing requests to a server computer for applets in a client

server environment wherein each request for an applet,

specifies one form of said applet out of a plurality of forms
of said applet, comprising:)
a) receiving on said server computer a request from a

5

a5

50

client computer for an applet in a specified form -

selected from a plurality of forms;

b) determining whether said applet is stored in said
specified form in a local cache and, if so, ragsmitting
said applet in said specified form to said client com-
puter;

60

8

c) if said applet is not stored in said selected form in said
local cache, compiling said applet into said selected
form from a local resource comprising at least one
source module and one compiler which acts on said
source module to produce said selected form and
transmitting said applet in said selected form to said
client computer.-

6. The method of claim §, further comprising the step of:

copying said applet in said selected form to said cache
afier compiling said applet from said local resource if

_said cache does not contain a copy of said applet in said
fom. -

7. The method of cleim 6, further comprising the step of:

transmitting a request to an external resource for said
applet in said selected form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said local resource, and)

directing said external resource to transmit said applet in
" said form 10 said server computer,

8. The method of claim 5, further comprising the siep of:

uansnnumg a request to an external resource for said
applet in said selectcd form if a copy of said applet is
not stored in said local cache and said applet can not be
compiled from said Iocal resources, and directing said

. external resource to transmit $aid applet in said selected
form 1o said server computer.

9. A method operating on a compulter system for gener-
ating an applet in response to a request by a client computer -
wherein each request for an applet specifies one form of the
applet out of a plurality forms of the applet, comprising:

a) receiving on a server compuler a request from a client
computer for an applet in a form selected from a
plurality forms;

b) compiling an applet program module into an interme-
diate form program module; .

¢) transmitting said applet in said selected form to said
client computer.

10. The méthod of claim 9, further comprising the step of:

transforming said intermediate form program module into
a transformed intermediate form program module with
at least one transformer program.

11, The method of claim 10, wherein said at least one
transformer program is selected from the group consisting of
verifying computer programs, optimizing computer
programs, compressing compiuter programs, debugging
computer programs, usage monitoring computer programs
and encrypting compuler programs.

12. The method of claim 11, furither comprising the step
of:

compiling said transformed intermediate form program .
module into machige specific binary code with a target
compiler.

13. The method of claim 10, further comprising the siep

of:

compiling said transformed intermediate form program
module into machipe specific binary code with a 1arget
compiler.

* % X ¥

