- VS B

O 0 3 O W

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

. Case3:12-cv-00685-SI Documentl

-

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)
gbishop@hosielaw.com

WILLIAM P. NELSON (CA Bar No. 196091)
wnelson@hosielaw.com

HOSIE RICE LLP

600 Montgomery Street, 34" Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

UNITED STATES DISTRICT COURT

Filed02/10/12 Pagel of 18
-’
F1i L E

RICHARD w. WIEKING
NORCLEPK U.S. DISTRICT COURT
THERN DISTRICT OF CALIFORNiA /

JSC‘

FOR THE NORTHERN DISTRICT OF CALIFORNIA

IMPLICIT NETWORKS, INC.,
Plaintiff,
V.

HEWLETT-PACKARD COMPANY,

Defendant.

COMPLAINT AND JURY DEMAND

N12 0585

COMPLAINT AND DEMAND FOR
JURY TRIAL

Case No. CV

L T S VS

O 0 g0 N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:12-cv-00685-SI Documentl Filed02/10/12 Page2 of 18

Plaintiff Implicit Networks, Inc. (“Implicit” or “Plaintiff”) hereby files its complaint
against defendant Hewlett-Packard Company (“HP” or “Defendant”), for patent
infringement. For its complaint, Plaintiff alleges, on personal knowledge as to its own acts
and on information and belief as to all other matters, as follows:

PARTIES

1. Implicit is a corporation organized under the laws of the State of Washington,
with its principal place of business in Seattle, Washington.

2. HP is a corporation organized under the laws of the State of Delaware, with its
principal place of business in Palo Alto, California.

JURISDICTION AND VENUE

3. This complaint asserts a cause of action for patent infringement under the
Patent Act, 35 U.S.C. § 271. This Court has subject matter jurisdiction over this matter by
virtue of 28 U.S.C. § 1338(a). Venue is proper in this Court by virtue of 28 U.S.C. § 1391(b)
and (c) and 28 U.S.C. § 1400(b), in that HP may be found in this district, has committed acts
of infringement in this district, and a substantial part of the events or omissions giving rise to
the claim occurred and a substantial part of property that is the subject of the action is
situated in this district.

4. This Court has personal jurisdiction over HP because Defendant has a place of
business in, and provides infringing products and services in, the Northern District of

California.

STATEMENT OF FACTS.

A. Implicit’s Server Request Management Patent

5. On March 18, 1998, Edward Balassanian filed the first patent application on

his invention of novel methods and systems for serving applets to client computers over the

COMPLAINT AND JURY DEMAND 1 Case No.

O 0 1 O B WD

NN N NN N N N N M o e e e e e e e
[>-IEEEEN B Y B - 7S B \ B« BN - B~ - R N« N ¥, TR N U6 B O B)

Case3:12;cv-00685-SI Documentl Filed02/10/12 Page3 of 18
- -/

Internet or other computer networks, and for moving processing of applets to the server-side.
This invention solved problems of distributing to numerous, diverse clients the diverse
applications those clients demanded, and of accelerating processing and economizing on use
of client-side resources by moving processing of applets to the server-side. On October 31,
2007, Mr. Balassanian filed the application for what became U.S. Patent No. 8,056,075 (the
‘075 Patent). The ‘075 Patent discloses a novel method for delivering applets to client
computers from the Internet or other networks, with the use of a server manager that
performs server-side processing that includes compressing, optimizing and/or verifying the
applets. A true and correct copy of the ‘075 Patent is attached hereto as Exhibit A.

B. HP’s Infringement.

6. HP infringes the ‘075 Patent by, inter alia, making and selling products and
services, including computer servers such as the HP-UX server, that practice the methods of
the ‘075 Patent. The HP-UX server with Apache-based Web Server is an enterprise-class
web server, which provides http web serving. As stated by HP, the HP-UX server with
Apache-based Web Server is “Enterprise Ready: The highly scalable HP-UX-11i Apache-
based Web Server is always available servicing enterprise requirements for multiple web
servers, geographically dispersed servers, and servicing millions of http/https pages and
eCommerce transactions 24/7.” These HP servers receive requests for web pages and other
applets from client computers that are connected to the server over the Internet or other
networks. The HP servers forward the client requests, to the Internet or other networks, and
receive back the requested web page or other applet. The HP server compresses or otherwise

processes the web page or other applet, and returns the applet to the client computer.

COMPLAINT AND JURY DEMAND 2 Case No.

AW N

O 0 a0 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:12-cv-00685-SI Documentl Filed02/10/12 Page4 of 18

- -/
COUNT 1
PATENT INTRINGEMENT
7. Plaintiff incorporates by this reference paragraphs 1 through 6 above, as if

fully set forth herein.

8. On November 8, 2011, United States Patent No. 8,056,075, entitled “Server
Request Management,” was duly and legally issued.

9. Pursuant to 35 U.S.C. Section 282, the ‘075 Patent is presumed valid.

10. Edward Balassanian is the sole inventor of the ‘075 Patent. This patent has
been assigned to Plaintiff. Plaintiff Implicit is the sole legal and rightful owner of the ‘075
Patent.

11. HP makes, uses, and sells products that infringe the ‘075 Patent, as alleged
above. This conduct constitutes infringement under 35 U.S.C. § 271(a).

12. HP has also infringed and is still infringing the ‘075 Patent in this country,
through, inter alia, its active inducement of others to make, use, and/or sell the systems,
products and methods claimed in one or more claims of the patent. HP supplies infringing
products to others, including HP-UX server with Apache-based Web Server. Numerous HP
customers directly infringe the ‘075 Patent. HP’s customers directly infringed the ‘075
Patent, and were induced to do so by HP. HP has been selling its infringing products and
services for many years. HP continues to sell these products today. HP advertises infringing
uses, provides support, and instructs customers to use HP products in an infringing manner.
HP knows of the ‘075 Patent and its contents. HP actively and knowingly encouraged, aided
and abetted its customers to directly infringe the ‘075 Patent. HP offered its infringing
products for sale with the intent of promoting their use to infringe, and with that object, HP

intentionally encouraged its customers to infringe the ‘075 Patent by advertising its products

COMPLAINT AND JURY DEMAND 3 Case No.

O 0 N0 N W -

D N NN N NN NN M e e e e e e e
0 N SN kR W N~ O YW NNy N R WD~ o

Case3:12-cv-00685-SI Documentl Filed02/10/12 Page5 of 18
- -
for infringing uses, and instructing its customers how to use the products to engage in
infringement. HP specifically intended that its customers infringe the ‘075 Patent, and knew
that its actions would encourage customers to actually infringe the ‘075 Patent. This conduct
constitutes infringement under 35 U.S.C. § 271(b).

13. In addition, HP has infringed and is still infringing the ‘075 Patent in this
country through, inter alia, providing and selling goods and services including products
designed for use in practicing one or more claims of the ‘075 Patent, where the goods and
services constitute a material part of the invention and are not staple articles of commerce,
and which have no use other than infringing one or more claims of the ‘075 Patent. HP’s
customers commit the entire act of direct infringement. HP has committed these acts with
knowledge that the goods and services it provides are specially made for use in a manner that
directly infringes the‘075 Patent. This conduct constitutes infringement under 35 U.S.C. §
271(c).

14. As aresult of the infringement by HP, Plaintiff has been damaged, and will
continue to be damaged, until this Defendant is enjoined from further acts of infringement.

15. HP will continue to infringe unless enjoined by this Court. Plaintiff faces real,
substantial and irreparable damage and injury of a continuing nature from infringement for
which Plaintiff has no adequate remedy at law.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff prays for entry of judgment:
A. that the Patent-in-Suit is valid and enforceable;

B. that Defendant has infringed one or more claims of the Patent-in-Suit;

COMPLAINT AND JURY DEMAND 4 Case No.

£ VS I \S]

O 0 a0 O W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:12-cv-00685-SI Documentl Filed02/10/12 Page6 of 18

C. that Defendant account for and pay to Plaintiff all damages caused by the
infringement of the Patent-in-Suit, which by statute can be no less than a reasonable
royalty;

D. that Plaintiff be granted pre-judgment and post-judgment interest on the
damages caused to them by reason of Defendant’s infringement of the Patent-in-Suit;

E. that this Court require Defendant to file with this Court, within thirty (30)
days after entry of final judgment, a written statement under oath setting forth in detail
the manner in which Defendant has complied with the injunction;

F. that this be adjudged an exceptional case and the Plaintiff be awarded its
attorney’s fees in this action pursuant to 35 U.S.C. § 285;

G. that this Court award Plaintiff its costs and disbursements in this civil

action, including reasonable attorney’s fees; and

H. that Plaintiff be granted such other and further reltef as the Court may
deem just and proper under the current circumstances.
Dated: February 10,2012 Respectfully submittgd

SPENCER HASIE (CA Bar No. 101777)
shosie@hogtelaw.com

DIANE S.RICE((CA Bar No. 118303)
drice@hgsielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)

w2

wnelson@hosielaw.com

HOSIE RICE LLP

600 Montgomery Street, 34" Floor
San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

COMPLAINT AND JURY DEMAND 5 : Case No.

[\S]

O 6 13 &N »n B W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:12-cv-00685-SI Documentl Filed02/10/12 Page7 of 18

A4

COMPLAINT AND JURY DEMAND

4

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

Case No.

(8}

O 0 3 &N . AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:12-cv-00685-8|

-

Documentl Filed02/10/12 Page8 of 18

-’

DEMAND FOR JURY TRIAL

Plaintiff, by its undersigned attorneys, demands a trial by jury on all issues so triable.

Dated: February 10, 2012

COMPLAINT AND JURY DEMAND

GEORGE F. BISHOP (CA Bar No. 89205)
gbishop@hosielaw.com

WILLIAM P. NELSON (CA Bar No. 196091)
wnelson@hosielaw.com

HOSIE RICE LLP

600 Montgomery Street, 34™ Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

7 Case No.

Case3:12-cv-00685-SI Documentl Filed02/10/12 Page9 of 18

EXHIBIT A

Case3:12-cy-00685-8|

Documentl F|Ied02/10/12 PagelO of 18

azy United States Patent (10) Patent No.: US 8,056,075 B2
Balassanian 4s) Date of Patent: *Nov. 8§, 2011
(54) SERVER REQUEST MANAGEMENT 6,253,228 Bl* 6/2001 Terrisetal. ... 709/203
6,757,894 B2* 6/2004 Eylonetal. . 717/177
. H 6,766,366 Bl * 7/2004 Schafer etal. 709/223
(76) Inventor: Flltjigvard Balassanian, Kirkland, WA 6996817 B2* 22006 Birum etal, "0
(US) 7,069,204 B2* 6/2006 Clough et al. .. 709/203
7,131,122 Bl * 10/2006 Lakhdhir 717/168
(*) Notice: Subject to any disclaimer, the term of this 7,150,015 B2* 12/2006 Pace etal. 7177176
patent is extended or adjusted under 35 7,155,715 B1* 12/2006 Cuietal.ccovnine 717177
U.S.C. 154(b) by 931 days. 7,444,629 B2* 10/2008 Chirakansakcharoen
etal. .o 717/166
This patent is subject to a terminal dis- 7,523,158 Bl * 4/2009 Nickerson et al. 709/203
claimer. 7,721,283 B2* 5/2010 Kovachka-Dimitrova
etal. ... 717177
, 7,814,475 B2* 102010 Cohenetal. 717/168
(21) Appl. No.: 11/933,161 7,934,212 B2* 4/2011 Lakhdhir ... 717/170
(22) Filed Oct. 31. 2007 7,991,834 B2* 82011 Ferrisetal,ccoeenne 709/203
iled: ct, 31,
OT'HER PUBLICATIONS
(65) Prior Publication Data Bonisch et al, “Server side compresslets for internet multimedia
US 2008/0140772 A1 Jun. 12, 2008 streams”, IEEE, pp. 82-86, 1999.*
L Wirthlin et al, “Web based IP evaluation and distribution using
Related U.S, Application Data applets”, IEEE vol. 22, No. 8, pp. 985-994, 2003 *
(63) Continuation of application No. 11/241,985, filed on (Continued)
Oct. 4, 2005, now Pat. No. 7,774,740, which is a
continuation of application No, 09/968,704, filed on Primary Examiner — Anil Khatri
Oct. 1, 2001, now Pat. No. 6,976,248, which is a
continuation of application No. 09/040,972, filed on (57 ABSTRACT
Mar. 18, 1998, now Pat. No. 6,324,685. Th . A .
e present invention is an applet server which accepts
(61) Int.Cl requests for applets from client computers. A request speci-
GU6F ",/445 (2006.01) fies the format in which an applet is to be delivered to the
GOGE /44 (20()6‘01) requesting client computer. ‘The applet server has a cache
(52) US.Cl 717'/177. 717/171: 709/203 which it uses to store applets for distribution to client com-
53 F" l.d fCl """ lﬁt """ S h ’ 717/’1 68-177: puters. If the specified form of the requested applet is avail-
(58) Field of Classification Search 709/203_ 204’ able in the cache, the applet server transmits the applet to the
S lication file f ! hhi B requesting client. Ifthe applet is not available in the cache, the
ee application hile for complete search hustory. server will attempt to build the applet from local resources
- (program code modules and compilers) and transformer pro-
(56) References Clted grams (verifiers and optimizers). If the applet server is able to
U.S. PATENT DOCUMENTS build the requested applet, it will then transmit the applet to
) therequesting client computer. If the applet server is unable to
;ggg;ég : N Z?}ggg x;:sto‘;l.e{;i """"""""" ;};i{;}) build the requested applet, it will pass the request to another
5926631 A * 7/1999 McGarvey ... " "70323 applet server on the network for fulfillment of the request.
6,105,063 A * 82000 Hayes,Jr. . . 709/223
6,195,794 B1* 2/2001 BUXtON ...ocovvveririvvirerinns 717/108 13 Claims, 3 Drawing Sheets

= WESS
= |2
STl
=l T2
i v =

{
L D)

)

: Case3:12-cv-00685-SI Documentl Filed02/10/12 Pagell of 18

US 8,056,075 B2
Page 2

OTHER PUBLICATIONS Lai et al, “On the performance of wide area thin client computing”,

’ . . ACM Trans. on Compt. Sys> vo. 24, No. 2, pp. 175-209, 2006.*
Ding et al, “Selective Java applet filtering on Internet”, IEEE, pp.

110-114, 1999 .* * cited by examiner

Case3:12-cv-00685-SI

U.S. Patent

Client Computer A

g

\ﬁ

12

Cilient Computer B

~

14

Documentl Filed02/10/12 Pagel?2 of 18

-/
Nov. 8, 2011 Sheet 1 of 3 US 8,056,075 B2
Untrusted
Network
Trusted
External
Network
18 10
f./
\ Applet Server Computer
20
—~»4 Network Interface f

26

—— vl e —————

Local Resources

Applet Server r{' 22 2a
Manager
A
32b
303 /modue
Cache Component 8
J2¢
Coms Dy | ou
25a|[
250 Compiler il modulo
°
25¢ 30¢
.
N Transformers

|
|

28

J

Fig. 1

Case3:12-cv-00685-SI

U.S. Patent

Nov. 8, 2011

Documentl Filed02/10/12 Pagel3 of 18

Sheet 2 of 3 US 8,056,075 B2

PR e L A S 2 YT R T L
2% ,.g, } !'{.l.’g‘, «.,_.-, s U ke
5 ZSGBNCH 5‘21»2’;..3, Ml il EERbE

plet-URL A (Stnng) specifies the name of the'requested)
applet
Code-Type {Sourcelintermediate/Binary) specifies the

format the applet is to be delivered (o the
requesting client in. A request for binary
would specify the CPU of the requesting
client (e.g., x86)

Verification-Level

(0-100) specifies the degres of verification to
be performed. O = no/minimal verification,
100 = maximum verification (highest level of
security).

Optimization-Level

(0-100) specifias the degree of optimization
to be performed. O = no/minimal
optimization, 100 = maximum optimization.

l ~ ‘“
5 fqﬁ-a 35 g.i’

;?S;;f)%i;%ﬁ;m tlt« ﬁ Wj :.— I:“'f B % ;a; %

Fig. 24

A LRI
(String) specmes the name of the requested

ADDIet-URL
applet
Code-Type (Source/Intermediate/Binary) specifies the

format the applet is to be delivered to the
requesting client in. A request for binary
would specity the CPU of the requesting

client (e.g., x86)

Verification-Level

(0-100) specifies the degree of verifi catlon to
be performed. O = no/minimal verification,
100 = maximum verification (highest level of
security).

Optimization-Level

' (0-100) specifies the degree of optimization
to be performad. 0 = no/minimal
optimization, 100 = maximum optimization.

Apolet Lenath (0-2%) specifies the size of the requested
applet.
Applet Code The Requested Applet in the form specified

by the requast data type.

Fig. 2B

Case3:12-cv-00685-SI Documentl Filed02/10/12 Pagel4 of 18

U.S. Patent Nov. 8, 2011 Sheet 3 of 3 US 8,056,075 B2
Program Module -
40
Inlarmediate Compiler
42

inlerrmediate Form
Program Modula

44

r —— —— —

I Trensformers l

I 48 “ R 56
-

T ranciormed
Intermediate Form
Program Module

50

Target Complier

Applet 1 "
Fig. 3

Case3:12-cy-00685-8|

Documentl Filed02/10/12 Pagel5 of 18

-/

US 8,056,075 B2

1
SERVER REQUEST MANAGEMENT

PRIORITY CLAIM

This application is a continuation of U.S. application Ser.
No. 11/241,985 filed Oct. 4, 2005 now U.S, Pat. No. 7,774,
740 which is a continuation of U.S. application Ser. No.
09/968,704 filed on Oct. 1, 2001 now 1J.S. Pat. No. 6,976,248,
which is a continuation of U.S. application Ser. No. 09/040,
972 filed on Mar. 18, 1998, now U.S. Pat. No. 6,324,685.

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to computer operating system
and, in particular to a server architecture providing applica-
tion caching and security verification.

The growth of the Internet’s importance to business, along
with the increased dependence upon corporate networks, has
created a demand for more secure and efficient computer
systems. The traditional solution to this problem has been to
depend upon improvements in hardware performance to
make up for the performance penalty that is typically incurred
when a computer system is made more secure and stable.
Increased interconnectivity has also created a need for
improved interoperability amongst a variety of computers
that arc now connected to one another. One solution to the
problem of the variety of computers interconnected via the

Internet and corporate networks has been the development of 3

portable architecture neutral programming languages. The
most widely known of these is the Java™ programming lan-
guage, though, there are numerous other architecture neutral
languages.

Architecture neutral programming languages allow pro-
grams downloaded from a server computer to a client com-
puter to be interpreted and executed locally. This is possible
because the compiler generates partially compiled interme-
diate byte-code, rather than fully compiled native machine
code. In order to run a program, the client machine uses an
interpreter to execute the compiled byte-code. The byte-
codes provide an architecture neutral object file format,
which allows the code to be transported to multiple platforms.
This allows the program to be run on any system which
implements the appropriate interpreter and run-time system.
Collectively, the interpreter and runtime system implement a
virtual machine. This structure results in a very secure lan-
guage.

The security of this system is premised on the ability of the
byte-codeto be verified independently by the client computer.
Using the Java™ programming language or some other vir-
tual machine implementing technology, a client can ensure
that the downloaded program will not crash the user’s com-
puter or perform operations for which it does not have per-
mission.

The traditional implementations of architecture neutral
languages are not without problems. While providing tremen-
dous cross platform support, the current implementations of
architecture neutral lJanguages require that cvery client per-
forms its own verification and interpretation of the interme-
diate code. The high computation and memory requirements
of a verifier, compiler and interpreter restrict the applicability
ol these technologies to powerful client computers.

Another problem with perlorming the verification process
on the client computer is that any individual within an orga-
nization may disable some or all of the checks performed on
downloaded code. The current structure of these systems

15

20

25

35

40

45

50

55

60

65

2

makes security management at the enterprise level almost
impossible. Since upgrades of security checking software
must be made on every client computer, the cost and time
involved in doing such upgrades makes it likely that outdated
or corrupt copies of the verifier or interpreter exist within an
organization. Even when an organization is diligent in main-
taining a client based security model, the size of the under-
taking in a large organization increases the likelihood that
there will be problems.

There is a need for a scalable distributed system architec-
ture that provides a mechanism for client computers to
request and execute applets in a safe manner without requir-
ing the client machines to have local resources to compile or
verify the code. There is a further need for a system in which
the applets may be cached in either an intermediate architec-
ture neutral form or machine specific form in order to increase
overall system performance and efficiency.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client com-
puters to request and execute applets in a safe manner without
requiring the client to have local resources to verify or com-
pile the applet code. Compilation and byte-code verification
in the present invention are server based and thereby provide
more efficient use of resources and a flexible mechanism for
instituting enterprise-wide security policies. The server archi-
tecture also provides a cache for applets, allowing clients to
receive applet code without having to access nodes outside
the local network. The cache also provides a mechanism for
avoiding repeated verification and compilation of previously
requested applet code since any client requesting a given
applet will have the request satisfied by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essentially
be viewed as a form of an interpreter, interpreting binary code
into the associated electronic equivalents. The present inven-
tion adds a level of indirection in the form of an intermediate
language that is processor independent. The intermediate lan-
guage serves as the basis for security verification, code opti-
mizations, or any other compile time modifications that might
be necessary. The intermediate form allows a single version
of'the source to be stored for many target platforms instead of
having a different binary for each potential target computer.
Compilations to the target form can either be done at the time
of a cache hit or they can be avoided all together if the target
machine is able to directly interpret the intermediate form. If
the compilation is done on the server, then a copy of the of the
compiled code as well as the intermediate form can be stored
in the cache. The performance advantage derived from cach-
ing the compiled form as well as the intermediate depends
upon the number of clients with the same CPU.

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as other features and advantages thereof will
best be understood by reference to the detailed description
which follows, when read in conjunction with the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used to implement an applel server in one embodi-
ment of the present invention;

FIG. 2a is a table which illustrates the structure of the
request format data type;

) Case3:12-c<;(3f()685-8l Documentl Filed02/10/12 Pagel6 of 18

-’

US 8,056,075 B2

3

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FIG. 3 is a diagram showing the compilation and transfor-
mation of a program module into an applet in a particular
form.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, an applet server architecture according
to one embodiment of the invention is based on an applet
server computer 10 which in turn is connected to client com-
puter A 12, client computer B 14, an external network 16 and
an untrusted network 18. The applet server computer 10 con-
nects to client computers 12 and 14, an external network 16,
and an untrusted network 18 by means of a network interface
20. Typically this connection will involve one or more of the
computers or networks having a connection to the Internet.

The applet server computer 10 accomplishes its objectives
by manipulating computer programs in several formats. An
applet (e.g. applets 1-3, 25a-25¢) is any form of program
instructions, whether in binary, source or intermediate for-
mat. In the case of this architecture, the applet code can either
be a self contained program, or it can be a code fragment
associated with a larger application.

Binary format refers to processor specific machine instruc-
tions suitable for running natively on a given computing
platform (alsoreferred to as “target” because of the concept of
“targeting” a compiler to produce binary code for a given
processor type).

Source refers to non-binary applet code, generally in the :

form of high level languages (i.e. the C™, C++™, Java™,
Visual Basic™, ActiveX™, Fortran™, and Modula™ pro-
gramming languages.

Intermediate format refers to acommon intermediate byte-
code that is produced by compiling a given source code input.
The intermediate byte-code need not necessarily be Java™
byte-code.

Treating applets in this general sense allows client com-
puters 12 and 14 to request not only applications, but portions
of applications. Client computers 12 and 14 are thus able to
use applet server computer 10 as the equivalent of a loader,
loading in appropriate parts of the application in the form of
applets. In turn client computers 12 and 14 can run large
applications without requiring that the client computers 12
and 14 have the resources to store the entire application in
memory at once,

Having the applets delivered from applet server computer
10 allows code in intermediate form to be verified, optimized,
and compiled before being transmitted to client computers 12
and 14. This reduces the amount of work the client computers
12 and 14 have to do and provides a convenient way to impose
global restrictions on code.

In operation, client computer A 12 transmits a request to an
applet server computer 10 requesting an applet in a particular
form. The form may be selected from a large matrix of many
possible forms that can be recognized by the system. The
request specifies the format (source, intermediate, or binary)
in which the client wishes to receive the applet. The request
may also specify that the applet be verified or have some other
transformation operation preformed upon it. Verification,
optimization and compression are examples of types of trans-
formation operations. The request is received by the network
interface 20 of the applet server computer 10 which passes the
request onto the applet server manager 22.

After interpreting the request, the applet server manager 22
checks to see if the requested applet is available in the cache
24. The cache 24 stores applets ina variety of formats (source,

45

55

60

65

4

intermediate, or binary). If the requested {form of the applet is
available in the cache 24 (applet 1 254, applet 2 254, or applet
3 25¢ in this example) the applet server manager 22 instructs
the network interface 20 to transmit the applet to requesting
client computer A 12.

Ifthe requested applet is not available in the cache 24, then
the applet server manager 22 will attempt to build the
requested applet from local resources 26 and one or more
transformation operations performed by one or more of the
transformers 28. Local resources 26 are comprised of com-
pilers 30a, 305 and 30c¢ and program code modules 32a, 325,
32¢ and 32d. The requested applct is built by selecting one or
more program code modules 32 and compiling them with one
or more compilers 30. Transformer operations may be per-
formed by the verifier 34 or the optimizer 36. After the applet
server manager 22 builds the applet, the network interface 20
transmits the applet to the requesting client computer A 12.

If the request can not be satisfied by building the applet
from local resources 26 and transformers 28, the applet server
manager 22 will pass a request for the requested applet to
external network 16 and/or untrusted network 18. The applet
server manager 22 may request the applet in intermediate
form or in executable form or it may request the local
resources 26 and transformers 28 it needs to complete build-
ing the applet itself.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retrieve
a given applet from the cache. PUT is used to store an applet
in the cache. FLUSH is used to clear the cache of one or more
entries. When the cache is unable to locate an item in response
to a GET operation, it returns a cache miss. The program
which issued the GET command is then responsible for locat-
ing the desired form of the applet by other means and option-
ally storing it in the cache when it is retrieved (using the PUT
operation). The FLUSH command will clear the cache of one
or more entries and any subsequent GETs for the FLUSHed
applet code will result in a cache miss. This is useful if a
particular applet needs to be updated from a remote server on
a periodic basis. When using PUT, the program issuing the
command specifies a time to live (TTL) in the cache. When
the TTL expires, the cache entry is removed by means of a
FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not the requested form) and compil-
ers 30. The program modules 32 are run through the compil-
ers 30 in order to produce applets in the requested form. The
applet server manager 20 may also direct the modules 32 to be
processed by a verifier 34 or another transformer such as an
optimizer 36. Program modules 32 are program code used to
build applets. Program modules 32 may be stored in local
resources 26 in source binary, or intermediate formats. When
an applet is built it may require the operation of one or more
compilers 30 upon one or more program modules 32. The
program modules 32 may be combined and recompiled with
previously cached applets and the resulting applet may be
also cached for use at a future time. Additionally, program
modules 32, compilers 30 and transformers 28 (including
verifiers 34 and optimizers 36) may be distributed across a
network. The applet server manager 22 may pass requests for
the components it needs to build a particular applet back to the
network interface 20 which in turn passes the request onto the
rest of the network and may include external network 16 and
untrusted network 18.

FIG. 3 provides further illustration of how an applet is
produced from local resources and transformers. In this illus-
tration the request is for an optimized and verified applet
compiled to a machine specific form. A program module 40 is

. Case3:12-cv700685-SI

Documentl Filed02/10/12 Pagel7 of 18

US 8,056,075 B2

5

compiled into an intermediate form program module 44 by an
intermediate compiler 42. The intermediate form program
module 44 is then transformed by an optimizer 46 or a verifier
48. The resulting transformed intermediate form program
module 50 is then compiled by target compiler 52 into
machine specific code applet 54.

There are two types of compilers used to build applets:
intermediate compilers 42 and target compilers 52. The inter-
mediate compiler 42 compiles program modules (source
applet code) 40 and produces a common intermediate
pseudo-binary representation of the source applet code (inter-
mediate form program module 44). The word pscudo is used
because the intermediate form 44 is not processor specific but
is still a binary representation of the source program module
40. This intermediate form can be re-targeted and compiled
for a particular processor. Alternatively, the intermediate
form 44 can be interpreted by an interpreter or virtual
machine that understands the internal binary representation
of the intermediate form. A target compiler 52 compiles inter-
mediate applet code 44 into an applet 54 in a processor spe-
cific format (binary) suitable for running natively on a given
computing platform.

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization.
Other transformers might included compressors that identify
portions of code that can be replaced with smaller equiva-
lents. Transformers can be matched up to any other compo-
nent that takes in intermediate code as an input. These include

the cache 24 and the target compilers 52. Global policies for :

transformers 56 can be implemented which ensure that all
applets are run through some set of transformers before being
returned to the client.

A verifier 48 is a type of transformer that is able (o analyze
input code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers 48
look for areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as 1O devices. Once a verifier 48 determines the portion
of unsafe applet code several steps can be taken. The offend-
ing code portion can be encased with new code that specifi-
cally prevents this unsafe code section from being executed.
The unsafe code can be modified to be safe. The unsafe code
can be flagged in such a way that a user can be warned about
the possible risks of executing the code fragment. The veri-
fier’s role can therefore be summarized as determining where
unsafe code exists and possibly altering the otfending code to
render it harmless. Verifiers 48 can operate on any format of
input code, whether in source intermediate or binary form.
However, since intermediate code is a common format, it is
most efficient to have a single verifier that will operate on
code in this format. This eliminates the need to build specific
knowledge of various source languages into the verifier, Veri-
fiers 48 are a form of a transformer. Verifiers 48 take in
intermediate code and put out verified intermediate code.
Verifiers 48 are responsible for identifying non-secure por-
tions of code in the intermediate code and modifying this code
to make it secure. Security problems generally include access
to memory areas that are unsafe (such as system memory, or
memory outside the application space of the applet).

The choice of adding in the verification step can be left up
to the client computers 12, the applet server computer 10 (see
FIG. 1), or can be based on the network that the applet origi-
nated from. Server managers can institute global policies that
affect all clients by forcing all applets to be run through the
verifier 48. Alternatively, verification can be reserved for
un-trusted networks (18 in FIG. 1), or it can be left up to the

S

20

25

35

40

50

55

60

65

6

client to determine whether the verification should be per-
formed. In the preferred embodiment, verification level is
determined by the applet server 10. In this way, a uniform
security policy may be implemented from a single machine
(i.e., the applet server 10).

Optimizers 46 are another type of transformer program.
Optimizers 46 analyze code, making improvements to well
known code fragments by substituting in optimized but
equivalent code fragments. Optimizers 46 take in intermedi-
ate code 44 and put out transformed intermediate code 50.
The transformed intermediate code 50 is functionally equiva-
lent to the source intermediate code 44 in that they share the
same structure.

Referring again to FIG. 1, policies may be instituted on the
applet server 10 that force a certain set of request parameters
regardless of what the client asked for. For example, the
applet server manager 22 can run the applet through a verifier
34 or optimizer 36 regardless of whether the client 12
requested this or not. Since the server 10 might have to go to
anuntrusted network 18 to retrieve a given applet, it will then
run this applet through the required transformers 28, particu-
larly the verifier 34 before returning it to the client 12. Since
clients 12 and 14 have to go through the applet server com-
puter 10, this ensures that clients 12 and 14 do not receive
applets directly from an untrusted network 18. In addition,
since the server will be dealing directly with untrusted net-
work 18, it can be set up to institute policies based on the
network. A trusted external network 16 may be treated differ-
ently than an untrusted network 18. This will provide the
ability to run a verifier 34 only when dealing with an untrusted
network 18, but not when dealing with a trusted external
network 16. In one embodiment, all intermediate code is
passed through a verifier 34 and the source of the code merely
determines the level of verification applied.

The client 12 is the target computer on which the user
wishes to execute an applet. The client 12 requests applets
fromthe server 10 in a specific form. Applets can be requested
in various formats including source, intermediate and binary.
In addition, an applet can be requested with verification and/
orother compile time operations. Optionally, theclient 12 can
pass a verifier to the server to provide verification. If the
server 10 implements its own security, then both the client and
server verifiers will be run. The verifier that is passed from the
client to the server is cached at the server for subsequent
verification. The client can refer to this verifier by a server-
generated handle to avoid having to pass the verifier each time
an applet is requested.

Client computers 12 and 14 requesting applet code in inter-
mediate format need to have an interpreter or virtual machine
capable of interpreting the binary code in the intermediate
format if the applet is to be executed on the client machine.

In the preferred embodiment, requests to the applet server
are in a format similar to those of an HTTP header and are
comprised of tags and values. In one embodiment, an HTTP
GET method is used to make the request (though use of the
HTTP protocol is not necessary to implement the present
invention). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to be
run and the type of code (source/intermediate/binary), a veri-
fication level and an optimization level. New tags and values
can be added to extend functionality as needed and the applet
server manager 22 will discard any tag it does not recognize.
When the applet server computer 10 returns the requested
applet to the requesting client computer A 12, it will transmit
the request header followed by the applet code. In this
instance, the header will additionally include a field which

. Case3:12-cv-00685-SI

Documentl Filed02/10/12 Pagel8 of 18

-’

US 8,056,075 B2

7

defines the length ol the applet code. FIG. 2 provides a table
which illustrates the request format and the returned code
format.

While this invention has been described with reference to
specific embodiments, this description is not meant to limit
the scope of the invention. Various modifications of the dis-
closed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the appended claims will cover any such modifications or
embodiments as fall within the scope of the invention.

I claim:
1. A method for delivering one or more applets to one or
more client computers, comprising, in no particular order, the
steps of:
configuring an applet server manager at a server computer
to manage at least one request from the one or more
client computers for the one or more applets, the applet
server manager having access to one or more networks;

receiving the at least one request at the applet server man-
ager;

passing the at least one request from the applet server

manager to at least one of the one or more networks;
receiving the one or more applets at the applet server man-
ager from the at least one of the one or more networks;
processing the one or more applets at the applet server
manager, wherein processing the one or more applets
includes at least one of the following steps:
compressing the one or more applets before sending the
one or more applets to the one or more client computers,
optimizing the one or more applets before sending the one
or more applets to the one or more client computers, and
verifying the one or more applets before sending the one or
more applets to the one or more client computers; and
sending the one or morc applets from the applet server
manager to the one or more client computers.

10

15

20

25

30

8

2. The method of claim 1 wherein processing the one or
more applets further includes discarding at least one of the
one or more applets based on one or more policies.

3. The method of claim 1 wherein processing the one or
more applets further includes transforming at least one of the
one or more applets by modifying the data in the at least one
of the one or more applets before sending the one or more
applets to the one or more client computers.

4. The method of claim 1 wherein at least one of the one or
more networks is a trusted network.

5. The method of claim 1 wherein at least one of the one or
more networks is an untrusted network.

6. The method of claim 1 wherein the at least one request
specifies the name of at least one of the one or more applets
using a Uniform Resource Locator.

7. The method of claim 1 wherein the at least one request
specifies at least one of the one or more applets using an
HTTP header.

8. The method of claim 1 wherein the at least one request
specifies at least one of the one or more applets using a cookie.

9. The method of claim 1 wherein processing the one or
more applets includes producing at least one of the one or
more applets in the form of a web page.

10. The method of claim 1 wherein processing the one or
more applets includes producing at least one of the one or
more applets in the form of a portion of a web page.

11. The method of claim 1 wherein sending the one or more
applets includes sending at least one of the one or more
applets to the one or more client computers in an HTTP
response.

12. The method of claim 1 wherein the at least one request
is processed prior to passing the at least one request from the
applet server manager to at least one of the one or more
networks.

13. The method of claim 1 wherein processing the one or
more applets further includes performing security verifica-
tion based on one or more policies.

PR T

