COMPLAINT Case 8:12-cv-00913-AG-MLG Document 1-1 Filed 06/08/12 Page 1 of 26 Page ID #:1 3 5 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 25 27 28 Plaintiff AIM IP, LLC ("AIM IP") alleges as follows: 1. This case is an action for patent infringement under the Patent Laws of the United States, as set forth in 35 U.S.C. §§ 271 and 280 through 285. ## **PARTIES** - AIM IP is a limited liability company organized under the laws of the 2. State of California, with its principal place of business located at 26522 La Alameda Avenue, Suite 360, Mission Viejo, California 92691. - On information and belief, Defendant Yealink Network Technology .3. Co., Ltd. ("Yealink") is a Chinese Company with its principal place of business located at 4th-5th Floor, South building, No. 63 Wanghai Road, 2nd Software Park, Xiamen 361008, China, and is doing business in this Judicial District and elsewhere. On information and belief, Yealink may be served at 4th-5th Floor, South building, No. 63 Wanghai Road, 2nd Software Park, Xiamen 361008, China, via an office, a managing or general agent, or any other agent authorized by appointment or by law to receive service of process. ## JURISDICTION AND VENUE - This Court has federal subject matter jurisdiction over this action 4. under 28 U.S.C. §§1331, 1332(a)(1), 1332(c)(1) and 1338(a). - 5. Venue is proper in this Court pursuant to 28 U.S.C. §§1391(a), 1391(c), and 1400(b), including without limitation because Yealink is advertising, marketing, using, selling, and/or offering to sell products in this Judicial District. ## FIRST CAUSE OF ACTION FOR PATENT INFRINGEMENT - 6. AIM IP repeats and realleges the allegations contained in paragraphs 1 through 5 above, inclusive, as if fully repeated and restated herein. - 7. AIM IP is the owner by assignment of United States Patent No. 5,920,853 ("the '853 Patent") entitled "Signal Compression Using Index Mapping Technique For The Sharing Of Quantization Tables." The '853 Patent issued on July 6, 1999. A true and correct copy of the '853 Patent is attached as Exhibit A. Adil Benyassine, Huan-Yu Su, and Eyal Shlomot are listed as the inventors of the '853 Patent. The three inventors were employees of Rockwell International Corporation, the initial assignee of the patent. Rockwell developed the technology of the '853 Patent and contributed to the promulgation of the International Telecommunications Union, Telecommunications Standardization Sector of ITU ("ITU-T"), Series G: Transmission Systems and Media, Annex B: A silence compression scheme for G.729 optimized for terminals conforming to 8. - Recommendation V.70 ("G.729B") standard. The '853 Patent was appropriately disclosed as essential to the standard. 9. Yealink has directly infringed and continues to infringe one or more claims of the '853 Patent under 35 U.S.C. § 271 by making, using, selling, offering for sale, and/or importing products that support or utilize a system for coding and/or decoding feature vectors of a signal according to the G.729B standard as claimed in the '853 Patent, but not limited to, the Yealink IP Video Phone VP-2009P, Yealink Simple IP Phone SIP-18P, Yealink Enterprise HD IP Phone SIP-T28P, Yealink Enterprise HD IP Phone SIP-T26P, Yealink Enterprise HD IP Phone SIP-T20P, and Yealink - 10. Yealink received notice from AIM IP of the '853 Patent and a number of products that are accused of infringing the '853 Patent by letter dated January 24, 2011. Yealink did not respond to AIM IP's January 24, 2011 letter, and there has been no indication that Yealink has made any changes to its accused products, or otherwise ceased its infringing activities, after it received AIM IP's January 24, 2011 letter. Enterprise HD IP Phone SIP-T18P, and reasonably similar products, which are advertised or otherwise indicated as being compliant with the G.729B standard. 11. After Yealink received notice of the '853 Patent and a number of products that are accused of infringing the '853 Patent, Yealink has knowingly contributed to the infringement, and continues to contribute to infringement of one 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 or more of the claims of the '853 Patent by making and unlawfully selling or offering to sell to customers products, including but not limited to the Yealink IP Video Phone VP-2009P, Yealink Simple IP Phone SIP-18P, Yealink Enterprise HD IP Phone SIP-T28P, Yealink Enterprise HD IP Phone SIP-T26P, Yealink Enterprise HD IP Phone SIP-T22P, Yealink Enterprise HD IP Phone SIP-T20P, and Yealink Enterprise HD IP Phone SIP-T18P, which constitute a material part of the invention and are not a staple article or commodity of commerce suitable for substantial noninfringing use. Further, after receiving notice of the '853 Patent, Yealink has induced infringement, and continues to induce infringement, of one or more of the claims of the '853 Patent by making and unlawfully selling or offering to sell to customers products, including without limitation the Yealink IP Video Phone VP-2009P, Yealink Simple IP Phone SIP-18P, Yealink Enterprise HD IP Phone SIP-T28P, Yealink Enterprise HD IP Phone SIP-T26P, Yealink Enterprise HD IP Phone SIP-T22P, Yealink Enterprise HD IP Phone SIP-T20P, and Yealink Enterprise HD IP Phone SIP-T18P, with specific intent that these products be used by Yealink's customers to infringe the '853 Patent. - 12. Yealink's continuing use of the claimed invention after receiving notice of the '853 Patent and a number of products that are accused of infringing the '853 Patent by letter dated January 24, 2011 shows an intent to infringe or cause others to infringe the '853 Patent. In addition, Yealink is willfully infringing the '853 Patent. - 13. As a result of Yealink's infringement of the '853 Patent, AIM IP has suffered monetary damages in an amount not yet determined, and will continue to suffer damages in the future unless Yealink's infringing activities are enjoined by this Court. - 14. Yealink's wrongful acts have damaged and will continue to damage AIM IP irreparably, and AIM IP has no adequate remedy at law for those wrongs and injuries. In addition to their actual damages, AIM IP is entitled to a 2 3 4 5. 6 7 8 9 10 11 12 13 14 15 16 .17 18 19 20 21 22 23 24 25 26 27 28 preliminary and permanent injunction restraining and enjoining Yealink and its agents, servants and employees, and all persons acting thereunder, in concert with, or on their behalf, from infringing the '853 Patent. ## PRAYER FOR RELIEF WHEREFORE, AIM IP respectfully requests that this Court enter: - A judgment in favor of AIM IP that Yealink has infringed, directly 1. and/or indirectly, by way of inducing and/or contributing to the infringement of the '853 Patent; - An injunction enjoining Yealink and its officers, directors, agents, servants, affiliates, employees, divisions, branches, subsidiaries, parents, and all others acting in concert or privity with any of them from infringing, inducing the infringement of, or contributing to the infringement of the '853 Patent; - 3. A judgment and order requiring Yealink to pay AIM IP its damages, costs, expenses, and prejudgment and post-judgment interest for Yealink's infringement of the '853 Patent as provided under 35 U.S.C. § 284; - An award to AIM IP for enhanced damages, as provided under 35 4. U.S.C. § 284, resulting from the knowing, deliberate, and willful nature of Yealink's prohibited conduct; - A judgment and order finding that this is an exceptional case within 5. the meaning of 35 U.S.C. § 285 and awarding to AIM IP its reasonable attorneys' fees; and - Any and all other relief to which AIM IP may show itself to be 6. entitled. ## JURY TRIAL DEMANDED AIM IP hereby demands a trial by jury of all issues so triable. Respectfully submitted, RUSS AUGUST & KABAT Dated: June 7, 2012 | | Case | 8:12-cv-00913-AG-MLG | Document 1-1 | Filed 06/08/12 | Page 6 of 26 | Page ID #: | 6 | |----------------------|--|----------------------|--|--|---|------------|---| | RUSS, AUGUST & KABAT | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 8:12-cv-00913-AG-MLG | M
En
A
En
Fr
En
12
Lo
Te | Iarc A. Fenster, mail: mfenster@lexander C.D. Gmail: agiza@rakredricka Ung, Stmail: fung@rakle424 Wilshire Bos Angeles, Calielephone: (310) acsimile: (310) attorneys for PlaiIM IP, LLC | State Bar No.
Praklaw.com
Fiza, State Bar
Ilaw.com
ate Bar No. 25
aw.com
oulevard, 12th
fornia 90025
826-7474
826-6991 | | | | | | | | | | | | | | 25 | | | | | | | | | 26 | | | | | | | | | 27 | | | | | | | | | 28 | | | | | | | | | | | | 5 | | | | COMPLAINT ## United States Patent [19] Benyassine et al. [11] Patent Number: 5,920,853 [45] Date of Patent: Jul. 6, 1999 [54] SIGNAL COMPRESSION USING INDEX MAPPING TECHNIQUE FOR THE SHARING OF QUANTIZATION TABLES [75] Inventors: Adil Benyassine, Costa Mesa; Huan-Yu Su, San Clemente; Eyal Shlomot, Irvine, all of Calif. [73] Assignee: Rockwell International Corporation, Newport Beach, Calif. [21] Appl. No.: 08/702,780 [22] Filed: Aug. 23, 1996 [56] References Cited ### U.S. PATENT DOCUMENTS 414, 417, 418, 422; 382/232, 253, 305 | 4,963,030 | 10/1990 | Makur | 348/422 | |-----------|---------|---------------|---------| | 4,969,192 | 11/1990 | Chen et al | 704/222 | | 5,253,053 | 10/1993 | Chu et al | 348/384 | | 5,300,931 | 4/1994 | Lindsay et al | 341/106 | | 5,420,639 | 5/1995 | Perkins | 348/418 | | | | | | | 5,506,801 | 4/1996 | Tawel | 364/807 | |-----------|--------|--------------
----------| | 5,524,170 | 6/1996 | Matsuo et al | 704/222 | | 5,592,227 | 1/1997 | Feng | 348/414 | | 5,619,717 | 4/1997 | Staats 39 | 5/800.36 | Primary Examiner—Maria N. Von Buhr Attorney, Agent, or Firm—Philip K. Yu [57] ABSTRACT A signal compression system includes a coder and a decoder. The coder includes an extract unit for extracting an input feature vector from an input signal, a coder memory unit for storing a predesigned vector quantization (VQ) table for the coder such that the coder memory unit uses a set of primary indices to address entries within the pre-designed VQ table, a coder mapping unit for mapping indices from a set of secondary indices to the first set of indices, and a search unit for searching for one index out of the set of secondary indices, wherein the index from the set of secondary indices corresponds to an entry in the coder memory unit, and the entry best represents the input feature vector according to some predetermined criteria. On the decoder side, the decoder includes a decoder memory unit for storing the same pre-designed VQ table and set of primary indices as the coder memory unit, a decoder mapping unit, and a retrieval unit, wherein the entry indicated by the index best represents the input feature vector. 15 Claims, 13 Drawing Sheets Jul. 6, 1999 Sheet 4 of 13 5,920,853 _FIG. 4. Jul. 6, 1999 Sheet 5 of 13 Jul. 6, 1999 Sheet 6 of 13 5,920,853 ## VQ Table 1: | 1730 | | | | | | | | | | | |--|--------------|------|---|---|-------|---|-------------|---|---|-------------| | 1568 | 1486 | 2168 | 3751 | 9074 | 12134 | 13944 | 17983 | 19173 | 21190 | 21820 | | 1733 2512 3357 4708 6977 10296 17024 17956 19145 20350 1744 2436 3308 8731 10432 12007 15614 16639 21359 21913 1786 2369 3372 4521 6795 12963 17674 18988 20855 21640 1631 2433 3361 6328 10709 12013 13277 13904 19441 21088 1489 2364 3291 6230 9227 10403 13843 15278 17721 21451 1869 23533 3475 4365 9152 14513 15908 17022 20611 21411 2070 3025 4333 5854 7805 9231 10597 16047 20109 21834 1910 2673 3419 4261 11168 15111 16577 17591 19310 20265 14811 1815 2624 4623 6495 9588 13958 16428 19351 21286 1292 3171 4707 5808 10904 12500 14162 15664 21124 21789 12866 1907 2548 3453 9574 11964 15978 17344 19691 22495 1921 2720 4604 6684 11503 13992 14350 15262 16997 20791 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 1798 2497 3617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 13354 15231 18494 20966 22033 3016 3794 5405 7469 12488 13984 15328 16334 19952 20791 2021 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14090 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 1612 2284 2944 3572 8219 13959 15924 17339 18592 20117 2420 3156 6542 10156 3036 31172 31049 15668 3860 1984 6036 3462 3328 10362 31763 18389 20117 2420 3156 6542 10215 12061 13574 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 16077 12890 1931 1449 18677 1875 2786 4231 6320 6694 10149 11785 15886 20579 21754 1306 4475 6511 8227 9765 10844 12161 8971 21300 1585 22366 3462 | 1730 | 2640 | 3450 | 4870 | 6126 | 7876 | 15644 | 17817 | 20294 | 21902 | | 1744 | 1568 | 2256 | 3088 | 4874 | 11063 | 13393 | 18307 | 19293 | 21109 | 21741 | | 1786 | 1733 | 2512 | | 4708 | 6977 | 10296 | 17024 | 17956 | 19145 | 20350 | | 1631 2433 3361 6328 10709 12013 13277 13904 19441 21088 1489 2364 3291 6250 9227 10403 13843 15278 17721 21451 21651 2070 3025 4333 5854 7805 9321 10597 16047 20109 21834 1910 2673 3419 4261 11168 15111 16577 17591 19310 20265 2192 3171 4707 5808 10904 12500 14162 15664 21124 21789 1286 1907 2548 3453 9574 11964 15978 17344 19691 22495 1921 2720 4604 6684 11503 12992 14350 15262 16997 20791 1798 2497 5617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 12354 15328 16334 19952 20791 2203 3040 3796 5442 11987 13512 14931 16370 17866 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15688 18862 20974 2492 2605 3860 2441 13275 14644 16010 17099 16233 3850 3590 4707 11056 12441 15622 17168 18803 2912 4229 7988 9572 1562 15244 14556 16529 20004 21073 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15688 18862 19831 1612 2284 2944 3572 8109 16233 18333 19172 2430 3656 3669 2441 3375 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 1863 19378 14687 15938 17077 18890 1863 1938 1172 1364 146010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 3579 14687 15938 17077 18890 19831 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 3933 11413 12730 15024 16248 17499 18058 19378 | 1744 | 2436 | 3308 | 8731 | 10432 | 12007 | 15614 | 16639 | 21359 | 21913 | | 1489 | 1786 | 2369 | 3372 | 4521 | 6795 | 12963 | 17674 | 18988 | 20855 | | | 1869 | 1631 | 2433 | 3361 | 6328 | | 12013 | 13277 | 13904 | 19441 | 21088 | | 2070 3025 4333 5854 7805 9231 10597 16047 20109 21834 1910 2673 3419 4261 11168 15111 16577 17591 19310 20265 1141 1815 2624 4623 6495 5958 13968 16428 19351 21286 2192 3171 4707 5808 10904 12500 14162 15664 21124 21789 1286 1907 2548 3453 9574 11964 15978 17344 19691 22495 1921 2720 4604 6684 11503 12992 14350 15262 16997 20791 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 1798 2497 5617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 12354 15231 18494 20966 22033 3016 3794 5406 7469 12488 13984 15328 16334 19952 20791 2203 3040 3796 5442 11987 13512 14931 16370 17856 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 1997 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1878 2786 4231 6320 8694 10149 11785 17013 18608 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1878 2786 6323 4323 | 1489 | 2364 | 3291 | 6250 | 9227 | 10403 | 13843 | 15278 | 17721 | 21451 | | 1910 2673 3419 4261 11168 15111 16577 17591 19310 20265 1141 1815 2624 4623 6495 59588 13968 16428 19351 21286 2192 3171 4707 5808 10904 12500 14162 15664 21124 21789 1286 1907 2548 3453 9574 11964 15978 17344 19691 22495 1921 2720 4604 6684 11503 12992 14350 15262 16997 20791 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 17788 2497 5617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 12354 15231 18494 20966 22033 3016 3794 5406 7469 12488 13984 13328 16334 19952 20791 2203 3040 3796 5442 11987 13512 14931 16370 17856 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15662 17078 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 679 1411 4654 8006 11446 13249 15763 1880 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 1875
2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 1880 20579 21754 1303 1955 2395 3322 12023 13764 15883 14443 20538 13731 1246 1849 2902 4508 721 12710 14835 16314 19335 22344 14680 2902 4508 5250 13744 13651 1748 13770 14821 16709 19787 21132 14661 1849 2902 4508 5659 7342 11748 13370 14442 18044 1304 1305 13662 2366 3362 5659 3342 11710 14835 16314 | 1869 | 2533 | 3475 | 4365 | | 14513 | 15908 | 17022 | 20611 | 21411 | | 1141 | 2070 | 3025 | | 5854 | 7805 | 9231 | 10597 | 16047 | 20109 | 21834 | | 2192 3171 4707 5808 10904 12500 14162 15664 21124 21789 1286 1997 2548 3453 9574 11964 15978 17344 19691 22495 1921 2720 4604 6684 11503 12992 14350 15262 16997 20791 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 1798 2497 5617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 12354 15231 18494 20966 22033 3016 3794 5406 7469 12488 13984 15328 16334 19952 20791 2203 3040 3796 5442 11987 13512 14931 16370 17856 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 15638 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17339 18952 20117 2420 3156 6542 10215 12061 13334 15305 16452 18717 1980 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 1838 2396 3578 4608 5650 11274 14355 15886 20579 21754 1838 2296 3578 4608 5650 11274 14355 15886 20579 21754 1838 2296 3578 4608 5650 11274 14355 15886 20579 21754 1860 1446 1849 19785 15267 1848 19900 1862 1366 136 | 1910 | 2673 | 3419 | 4261 | 11168 | 15111 | 16577 | 17591 | 19310 | 20265 | | 1286 1907 2548 3453 9574 11964 15978 17344 19691 22495 1921 2720 4604 6684 11503 12992 14350 15262 16997 20791 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 1798 2497 5617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 12354 15231 18494 20966 22033 3016 3794 5406 7469 12488 13984 15328 16334 19952 20791 2203 3040 3796 5442 11987 13512 14931 16370 17856 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 1831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 1365 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1303 1955 2395 3322 12023 13764 1583 18077 20180 12334 1366 1446 13249 15763 18127 20361 21567 1303 1955 2395 3322 12023 13764 1583 18077 20180 12334 1366 1446 13249 15763 18127 20361 21567 1303 1955 2395 3322 12023 13764 1583 18077 20180 12334 1366 | 1141 | 1815 | 2624 | 4623 | 6495 | 9588 | 13968 | 16428 | 19351 | 21286 | | 1921 2720 4604 6684 11503 12992 14350 15262 16997 20791 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 1798 2497 5617 11449 13189 14711 17050 18195 20307 21182 1009 1647 2889 5709 9541 12354 15231 18494 20966 22033 3016 3794 5406 7469 12488 13984 15328 16334 19952 20791 2203 3040 3796 5442 11987 13512 14931 16370 17856 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 22873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13334 15305 16452 18717 19880 16672 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16798 18058 19378 1388 2596 3578 4608 5650 11274 14355 15866 20579 21754 1338 2596 3578 4608 5650 11274 14355 15866 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1438 2102 2663 3462 5659 7342 11748 13370 14442 18044 21373 1246 | 2192 | 3171 | 4707 | 5808 | 10904 | 12500 | 14162 | 15664 | 21124 | 21789 | | 2052 2759 3897 5246 6638 10267 15834 16814 18149 21675 | 1286 | 1907 | 2548 | 3453 | 9574 | 11964 | 15978 | 17344 | 19691 | 22495 | | 1798 | 1921 | 2720 | 4604 | 6684 | 11503 | | 14350 | 15262 | 16997 | 20791 | | 1009 | 2052 | 2759 | 3897 | 5246 | 6638 | 10267 | 15834 | 16814 | 18149 | 21675 | | 3016 3794 5406 7469 12488 13984 15328 16334 19952 20791 | 1798 | 2497 | 5617 | 11449 | 13189 | 14711 | 17050 | 18195 | 20307 | 21182 | | 2203 3040 3796 5442 11987 13512 14931 16370 17856 18803 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 <t< td=""><td>1009</td><td>1647</td><td>2889</td><td>5709</td><td></td><td>12354</td><td>15231</td><td>18494</td><td>20966</td><td>22033</td></t<> | 1009 | 1647 | 2889 | 5709 | | 12354 | 15231 | 18494 | 20966 | 22033 | | 2912 4292 7988 9572 11562 13244 14556 16529 20004 21073 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 <td< td=""><td>3016</td><td>3794</td><td>5406</td><td>7469</td><td>12488</td><td>13984</td><td>15328</td><td>16334</td><td>19952</td><td>20791</td></td<> | 3016 | 3794 | 5406 | 7469 | 12488 | 13984 | 15328 | 16334 | 19952 | 20791 | | 2861 3607 5923 7034 9234 12054 13729 18056 20262 20974 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 <t< td=""><td>2203</td><td>3040</td><td>3796</td><td>5442</td><td>11987</td><td>13512</td><td>14931</td><td>16370</td><td>17856</td><td>18803</td></t<> | 2203 | 3040 | 3796 | 5442 | 11987 | 13512 | 14931 | 16370 | 17856 | 18803 | | 3069 4311 5967 7367 11482 12699 14309 16233 18333 19172 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 < | 2912 | 4292 | 7988 | 9572 | 11562 | 13244 | 14556 | 16529 | 20004 | 21073 | | 2434 3661 4866 5798 10383 11722 13049 15668 18862 19831 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 1530 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 <t< td=""><td>2861</td><td>3607</td><td>5923</td><td>7034</td><td>9234</td><td>12054</td><td>13729</td><td>18056</td><td>20262</td><td>20974</td></t<> | 2861 | 3607 | 5923 | 7034 | 9234 | 12054 | 13729 | 18056 | 20262 | 20974 | | 2020 2605 3860 9241 13275 14644 16010 17099 19268 20251 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17031 18608 1960 679 1411 4654 | 3069 | 4311 | 5967 | 7367 | 11482 | 12699 | 14309 | 16233 | 18333 | 19172 | | 1877 2809 3590 4707 11056 12441 15622 17168 18761 19907 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127
20361 21567 1838 2596 3578 <td< td=""><td>2434</td><td>3661</td><td>4866</td><td>5798</td><td>10383</td><td>11722</td><td>13049</td><td>15668</td><td>18862</td><td>19831</td></td<> | 2434 | 3661 | 4866 | 5798 | 10383 | 11722 | 13049 | 15668 | 18862 | 19831 | | 2107 2873 3673 5799 13579 14687 15938 17077 18890 19831 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 | 2020 | 2605 | 3860 | 9241 | 13275 | 14644 | 16010 | 17099 | 19268 | 20251 | | 1612 2284 2944 3572 8219 13959 15924 17239 18592 20117 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 | 1877 | | 3590 | 4707 | 11056 | 12441 | 15622 | 17168 | 18761 | 19907 | | 2420 3156 6542 10215 12061 13534 15305 16452 18717 19880 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7 | 2107 | 2873 | 3673 | 5799 | 13579 | 14687 | 15938 | 17077 | 18890 | 19831 | | 1667 2612 3534 5237 10513 11696 12940 16798 18058 19378 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 612 | 1612 | 2284 | 2944 | 3572 | 8219 | 13959 | 15924 | 17239 | 18592 | 20117 | | 2388 3017 4839 9333 11413 12730 15024 16248 17449 18677 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508< | 2420 | 3156 | 6542 | 10215 | 12061 | 13534 | 15305 | 16452 | 18717 | 19880 | | 1875 2786 4231 6320 8694 10149 11785 17013 18608 19960 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 </td <td>1667</td> <td>2612</td> <td>3534</td> <td>5237</td> <td>10513</td> <td>11696</td> <td>12940</td> <td>16798</td> <td>18058</td> <td>19378</td> | 1667 | 2612 | 3534 | 5237 | 10513 | 11696 | 12940 | 16798 | 18058 | 19378 | | 679 1411 4654 8006 11446 13249 15763 18127 20361 21567 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 </td <td>2388</td> <td>3017</td> <td>4839</td> <td>9333</td> <td>11413</td> <td>12730</td> <td>15024</td> <td>16248</td> <td>17449</td> <td>18677</td> | 2388 | 3017 | 4839 | 9333 | 11413 | 12730 | 15024 | 16248 | 17449 | 18677 | | 1838 2596 3578 4608 5650 11274 14355 15886 20579 21754 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511< | 1875 | 2786 | 4231 | 6320 | 8694 | 10149 | 11785 | 17013 | 18608 | 19960 | | 1303 1955 2395 3322 12023 13764 15883 18077 20180 21232 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 </td <td>679</td> <td>1411</td> <td>4654</td> <td>8006</td> <td>13446</td> <td>13249</td> <td>15763</td> <td>18127</td> <td>20361</td> <td>21567</td> | 679 | 1411 | 4654 | 8006 | 13446 | 13249 | 15763 | 18127 | 20361 | 21567 | | 1438 2102 2663 3462 8328 10362 13763 17248 19732 22344 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 </td <td>1838</td> <td>2596</td> <td>3578</td> <td>4608</td> <td>5650</td> <td>11274</td> <td>14355</td> <td>15886</td> <td>20579</td> <td>21754</td> | 1838 | 2596 | 3578 | 4608 | 5650 | 11274 | 14355 | 15886 | 20579 | 21754 | | 860 1904 6098 7775 9815 12007 14821 16709 19787 21132 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 </td <td>1303</td> <td>1955</td> <td></td> <td>3322</td> <td>12023</td> <td>13764</td> <td>15883</td> <td>18077</td> <td>20180</td> <td>21232</td> | 1303 | 1955 | | 3322 | 12023 | 13764 | 15883 | 18077 | 20180 | 21232 | | 1673 2723 3704 6125 7668 9447 13683 14443 20538 21731 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 | 1438 | 2102 | 2663 | 3462 | 8328 | 10362 | 13763 | 17248 | 19732 | 22344 | | 1246 1849 2902 4508 7221 12710 14835 16314 19335 22720 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 62 | 860 | 1904 | 6098 | 7775 | 9815 | 12007 | 14821 | 16709 | 19787 | 21132 | | 1525 2260 3862 5659 7342 11748 13370 14442 18044 21334 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 48 | | | *************************************** | | | 9447 | 13683 | | | | | 1196 1846 3104 7063 10972 12905 14814 17037 19922 22636 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 |) | | | 4508 | | 12710 | 14835 | | 19335 | 22720 | | 2147 3106 4475 6511 8227 9765 10984 12161 18971 21300 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 | | | | *************************************** | | 11748 | 13370 | | | | | 1585 2405 2994 4036 11481 13177 14519 15431 19967 21275 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 | } | | | | | | | 17037 | | | | 1778 2688 3614 4680 9465 11064 12473 16320 19742 20800 1862 2586 3492 6719
11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 | | | | 6511 | | | 10984 | 12161 | 18971 | 21300 | | 1862 2586 3492 6719 11708 13012 14364 16128 19610 20425 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 | | | | | | *************************************** | 14519 | | | 21275 | | 1395 2156 2669 3386 10607 12125 13614 16705 18976 21367 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 | | ~~~~ | 3614 | 4680 | 9465 | | | | 19742 | 20800 | | 1444 2117 3286 6233 9423 12981 14998 15853 17188 21857 2004 2895 3783 4897 6168 7297 12609 16445 19297 21465 | | | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | *************************************** | 20425 | | <u>2004</u> <u>2895</u> <u>3783</u> <u>4897</u> <u>6168</u> <u>7297</u> <u>12609</u> <u>16445</u> <u>19297</u> <u>21465</u> | | | | | | | | | | | | | | | | | ~ | | | | | 21857 | | 1405 2863 6360 9100 11200 14271 15002 17711 20470 20071 | | | | | | | | | 19297 | 21465 | | | 1495 | 2863 | 6360 | 8100 | 11399 | 14271 | 15902 | 17711 | 20479 | 22061 | | 2484 3114 5718 7097 8400 12616 14073 14847 20535 21396 | | | | | | | | | | | | 2424 3277 5296 6284 11290 12903 16022 17508 19333 20283 | | | | | | | | | | | | 2565 3778 5360 6989 8782 10428 14390 15742 17770 21734 | | | | | | | | *************************************** | | | | <u>2727 3384 6613 9254 10542 12236 14651 15687 20074 21102</u> | 2727 | 3384 | 6613 | 9254 | 10542 | 12236 | 14651 | 15687 | 20074 | 21102 | Jul. 6, 1999 Sheet 7 of 13 | 1916 | 2953 | 6274 | 8088 | 9710 | 10925 | 12392 | 16434 | 20010 | 21183 | |------|------|------|-------|-------|-------|-------|-------|-------|-------| | 3384 | 4366 | 5349 | 7667 | 11180 | 12605 | 13921 | 15324 | 19901 | 20754 | | 3075 | 4283 | 5951 | 7619 | 9604 | 11010 | 12384 | 14006 | 20658 | 21497 | | 1751 | 2455 | 5147 | 9966 | 11621 | 13176 | 14739 | 16470 | 20788 | 21756 | | 1442 | 2188 | 3330 | 6813 | 8929 | 12135 | 14476 | 15306 | 19635 | 20544 | | 2294 | 2895 | 4070 | 8035 | 12233 | 13416 | 14762 | 17367 | 18952 | 19688 | | 1937 | 2659 | 4602 | 6697 | 9071 | 12863 | 14197 | 15230 | 16047 | 18877 | | 2071 | 2663 | 4216 | 9445 | 10887 | 12292 | 13949 | 14909 | 19236 | 20341 | | 1740 | 2491 | 3488 | 8138 | 9656 | 11153 | 13206 | 14688 | 20896 | 21907 | | 2199 | 2881 | 4675 | 8527 | 10051 | 11408 | 14435 | 15463 | 17190 | 20597 | | 1943 | 2988 | 4177 | 6039 | 7478 | 8536 | 14181 | 15551 | 17622 | 21579 | | 1825 | 3175 | 7062 | 9818 | 12824 | 15450 | 18330 | 19856 | 21830 | 22412 | | 2464 | 3046 | 4822 | 5977 | 7696 | 15398 | 16730 | 17646 | 20588 | 21320 | | 2550 | 3393 | 5305 | 6920 | 10235 | 14083 | 18143 | 19195 | 20681 | 21336 | | 3003 | 3799 | 5321 | 6437 | 7919 | 11643 | 15810 | 16846 | 18119 | 18980 | | 3455 | 4157 | 6838 | 8199 | 9877 | 12314 | 15905 | 16826 | 19949 | 20892 | | 3052 | 3769 | 4891 | 5810 | 6977 | 10126 | 14788 | 15990 | 19773 | 20904 | | 3671 | 4356 | 5827 | 6997 | 8460 | 12084 | 14154 | 14939 | 19247 | 20423 | | 2716 | 3684 | 5246 | 6686 | 8463 | 10001 | 12394 | 14131 | 16150 | 19776 | | 1945 | 2638 | 4130 | 7995 | 14338 | 15576 | 17057 | 18206 | 20225 | 20997 | | 2304 | 2928 | 4122 | 4824 | 5640 | 13139 | 15825 | 16938 | 20108 | 21054 | | 1800 | 2516 | 3350 | 5219 | 13406 | 15948 | 17618 | 18540 | 20531 | 21252 | | 1436 | 2224 | 2753 | 4546 | 9657 | 11245 | 15177 | 16317 | 17489 | 19135 | | 2319 | 2899 | 4980 | 6936 | 8404 | 13489 | 15554 | 16281 | 20270 | 20911 | | 2187 | 2919 | 4610 | 5875 | 7390 | 12556 | 14033 | 16794 | 20998 | 21769 | | 2235 | 2923 | 5121 | 6259 | 8099 | 13589 | 15340 | 16340 | 17927 | 20159 | | 1765 | 2638 | 3751 | 5730 | 7883 | 10108 | 13633 | 15419 | 16808 | 18574 | | 3460 | 5741 | 9596 | 11742 | 14413 | 16080 | 18173 | 19090 | 20845 | 21601 | | 3735 | 4426 | 6199 | 7363 | 9250 | 14489 | 16035 | 17026 | 19873 | 20876 | | 3521 | 4778 | 6887 | 8680 | 12717 | 14322 | 15950 | 18050 | 20166 | 21145 | | 2141 | 2968 | 6865 | 8051 | 10010 | 13159 | 14813 | 15861 | 17528 | 18655 | | 4148 | 6128 | 9028 | 10871 | 12686 | 14005 | 15976 | 17208 | 19587 | 20595 | | 4403 | 5367 | 6634 | 8371 | 10163 | 11599 | 14963 | 16331 | 17982 | 18768 | | 4091 | 5386 | 6852 | 8770 | 11563 | 13290 | 15728 | 16930 | 19056 | 20102 | | 2746 | 3625 | 5299 | 7504 | 10262 | 11432 | 13172 | 15490 | 16875 | 17514 | | 2248 | 3556 | 8539 | 10590 | 12665 | 14696 | 16515 | 17824 | 20268 | 21247 | | 1279 | 1960 | 3920 | 7793 | 10153 | 14753 | 16646 | 18139 | 20679 | 21466 | | 2440 | 3475 | 6737 | 8654 | 12190 | 14588 | 17119 | 17925 | 19110 | 19979 | | 1879 | 2514 | 4497 | 7572 | 10017 | 14948 | 16141 | 16897 | 18397 | 19376 | | 2804 | 3688 | 7490 | 10086 | 11218 | 12711 | 16307 | 17470 | 20077 | 21126 | | 2023 | 2682 | 3873 | 8268 | 10255 | 11645 | 15187 | 17102 | 18965 | 19788 | | 2823 | 3605 | 5815 | 8595 | 10085 | 11469 | 16568 | 17462 | 18754 | 19876 | | 2851 | 3681 | 5280 | 7648 | 9173 | 10338 | 14961 | 16148 | 17559 | 18474 | | 1348 | 2645 | 5826 | 8785 | 10620 | 12831 | 16255 | 18319 | 21133 | 22586 | | 2141 | 3036 | 4293 | 6082 | 7593 | 10629 | 17158 | 18033 | 21466 | 22084 | | 1608 | 2375 | 3384 | 6878 | 9970 | 11227 | 16928 | 17650 | 20185 | 21120 | | 2774 | 3616 | 5014 | 6557 | 7788 | 8959 | 17068 | 18302 | 19537 | 20542 | | 1934 | 4813 | 6204 | 7212 | 8979 | 11665 | 15989 | 17811 | 20426 | 21703 | | 2288 | 3507 | 5037 | 6841 | 8278 | 9638 | 15066 | 16481 | 21653 | 22214 | | 2951 | 3771 | 4878 | 7578 | 9016 | 10298 | 14490 | 15242 | 20223 | 20990 | | 3256 | 4791 | 6601 | 7521 | 8644 | 9707 | 13398 | 16078 | 19102 | 20249 | | 1827 | 2614 | 3486 | 6039 | 12149 | 13823 | 16191 | 17282 | 21423 | 22041 | | 1000 | 1704 | 3002 | 6335 | 8471 | 10500 | 14878 | 16979 | 20026 | 22427 | | 1646 | 2286 | 3109 | 7245 | 11493 | 12791 | 16824 | 17667 | 18981 | 20222 | | 1708 | 2501 | 3315 | 6737 | 8729 | 9924 | 16089 | 17097 | 18374 | 19917 | | 2623 | 3510 | 4478 | 5645 | 9862 | 11115 | 15219 | 18067 | 19583 | 20382 | | U. | S. Pa | atent | | Jul. | 6, 1999 | | Sheet 8 | of 13 | | 5,9 | 20,853 | |----|-------|-------|------|-------|---------|-------|---------|-------|-------|-------|--------| | 1 | 2518 | 3434 | 4728 | 6388 | 8082 | 9285 | 13162 | 18383 | 19819 | 20552 | | | | 1726 | 2383 | 4090 | 6303 | 7805 | 12845 | 14612 | 17608 | 19269 | 20181 | | | | 2860 | 3735 | 4838 | 6044 | 7254 | 8402 | 14031 | 16381 | 18037 | 19410 | | | | 4247 | 5993 | 7952 | 9792 | 12342 | 14653 | 17527 | 18774 | 20831 | 21699 | | | | 3502 | 4051 | 5680 | 6805 | 8146 | 11945 | 16649 | 17444 | 20390 | 21564 | | | | 3151 | 4893 | 5899 | 7198 | 11418 | 13073 | 15124 | 17673 | 20520 | 21861 | | | | 3960 | 4848 | 5926 | 7259 | 8811 | 10529 | 15661 | 16560 | 18196 | 20183 | | | | 4499 | 6604 | 8036 | 9251 | 10804 | 12627 | 15880 | 17512 | 20020 | 21046 | | | | 4251 | 5541 | 6654 | 8318 | 9900 | 11686 | 15100 | 17093 | 20572 | 21687 | | | | 3769 | 5327 | 7865 | 9360 | 10684 | 11818 | 13660 | 15366 | 18733 | 19882 | | | | 3083 | 3969 | 6248 | 8121 | 9798 | 10994 | 12393 | 13686 | 17888 | 19105 | | | | 2731 | 4670 | 7063 | 9201 | 11346 | 13735 | 16875 | 18797 | 20787 | 22360 | | | | 1187 | 2227 | 4737 | 7214 | 9622 | 12633 | 15404 | 17968 | 20262 | 23533 | | | | 1911 | 2477 | 3915 | 10098 | 11616 | 12955 | 16223 | 17138 | 19270 | 20729 | | | | 1764 | 2519 | 3887 | 6944 | 9150 | 12590 | 16258 | 16984 | 17924 | 18435 | | | | 1400 | 3674 | 7131 | 8718 | 10688 | 12508 | 15708 | 17711 | 19720 | 21068 | | | | 2322 | 3073 | 4287 | 8108 | 9407 | 10628 | 15862 | 16693 | 19714 | 21474 | | | | 2630 | 3339 | 4758 | 8360 | 10274 | 11333 | 12880 | 17374 | 19221 | 19936 | | | | 1721 | 2577 | 5553 | 7195 | 8651 | 10686 | 15069 | 16953 | 18703 | 19929 | | Jul. 6, 1999 Sheet 9 of 13 VQ Table 2: | -435 | -815 | -742 | 1033 | -518 | |-------|-------|-------------|-------|---------------------------------------| | -833 | -891 | 463 | -8 | -1251 | | -1021 | 231 | -306 | 321 | -220 | | 57 | -198 | -339 | -33 | -1468 | | 171 | -350 | 294 | 1660 | 453 | | -701 | -842 | -58 | 950 | 892 | | 584 | 31 | -289 | 356 | -333 | | | | | | · · · · · · · · · · · · · · · · · · · | | -109 | -808 | 231 | 77 | -87 | | -859 | 1236 | 550 | 854 | 714 | | -877 | -954 | -1248 | -299 | 212 | | -77 | 344 | -620 | 763 | 413 | | -314 | -307 | -256 | -1260 | -429 | | 711 | 693 | 521 | 650 | 1305 | | -112 | -271 | -500 | 946 | 1733 | | 575 | -10 | -468 | -199 | 1101 | | 145 | -285 | -1280 | -398 | 36 | | -1133 | -835 | 1350 | 1284 | -95 | | -1459 | -1237 | 416 | -213 | 466 | | -15 | 66 | 468 | 1019 | -748 | | -338 | 148 | 1445 | 75 | -760 | | 389 | 239 | 1568 | 981 | 113 | | -312 | -98 | 949 | 31 | 1104 | | 1127 | 584 | 835 | 277 | -1159 | | 539 | -114 | 856 | -493 | 223 | | 2197 | 2337 | 1268 | 670 | 304 | | -1596 | 550 | 801 | -456 | -56 | | 1154 | 593 | -77 | 1237 | -31 | | 397 | 558 | 203 | -797 | -919 | | 334 | 1475 | 632 | -80 | 48 | | -545 | -330 | -429 | -680 | 1133 | | 1320 | 827 | -398 | -576 | 341 | | -163 | 674 | -11 | -886 | 531 | Jul. 6, 1999 Sheet 10 of 13 VQ Table 3: | 582 | -1201 | 829 | 86 | 385 | |-------|-------|-------|-------|-------| | 1450 | 72 | -231 | 864 | 661 | | -163 | -526 | -754 | -1633 | 267 | | 573 | 796 | -169 | -631 | 816 | | 519 | 291 | 159 | -640 | -1296 | | 1549 | 715 | 527 | -714 | -193 | | -457 | 612 | -283 | -1381 | -741 | | -344 | 1341 | 1087 | -654 | -569 | | -543 | -1752 | -195 | -98 | -276 | | -235 | -728 | 949 | 1517 | 895 | | 502 | -362 | -960 | -483 | 1386 | | 450 | -466 | -108 | 1010 | 2223 | | -28 | -378 | 744 | -1005 | 240 | | 271 | -15 | 909 | -259 | 1688 | | -1011 | 581 | -53 | -747 | 878 | | -498 | -1377 | 18 | -444 | 1483 | | 1015 | -222 | 443 | 372 | -354 | | 669 | 659 | 1640 | 932 | 534 | | 1385 | -182 | -907 | -721 | -262 | | 569 | 1247 | 337 | 416
 -121 | | 369 | -1003 | -507 | -587 | -904 | | 72 | -141 | 1465 | 63 | -785 | | 208 | 301 | -882 | 117 | -404 | | -912 | 623 | -76 | 276 | -440 | | -267 | -525 | 140 | 882 | -139 | | -697 | 865 | 1060 | 413 | 446 | | 581 | -1037 | -895 | 669 | 297 | | 3 | 692 | -292 | 1050 | 782 | | -1061 | -484 | 362 | -597 | -852 | | -1182 | -744 | 1340 | 262 | 63 | | -774 | -483 | -1247 | -70 | 98 | | -1125 | -265 | -242 | 724 | 934 | Jul. 6, 1999 **Sheet 11 of 13** 5,920,853 ## Mapping Unit 1 | Secondary Index | Primary Index | |-----------------|---------------| | 0 | 96 | | 1 | 52 | | 2 | 20 | | 3 | 54 | | 4 | 86 | | 5 | 114 | | 6 | 82 | | 7 | 68 | | 8 | 36 | | 9 | 121 | | 10 | 48 | | 11 | 92 | | 12 | 18 | | 13 | 120 | | 14 | 94 | | 15 | 124 | | 16 | 50 | | 17 | 125 | | 18 | 4 | | 19 | 100 | | 20 | 28 | | 21 | 76 | | 22 | 12 | | 23 | 117 | | 24 | 81 | | 25 | 22 | | 26 | 90 | | 27 | 116 | | 28 | 127 | | 29 | 21 | | 30 | 108 | | 31 | 66 | Figure 7 (Sheet 1 of 3) Jul. 6, 1999 Sheet 12 of 13 5,920,853 # Mapping Unit 2 | Secondary Index | Primary Index | |-----------------|---------------| | 0 | 31 | | 1 | 21 | | 2 | 9 | | 3 | 3 | | 4 | 10 | | 5 | 2 | | 6 | 19 | | 7 | 26 | | 8 | 4 | | 9 | 3 | | 10 | 11 | | 11 | 29 | | 12 | 15 | | 13 | 27 | | 14 | 21 | | 15 | 12 | Figure 7 (Sheet 2 of 3) Jul. 6, 1999 Sheet 13 of 13 5,920,853 # Mapping Unit 3 | Secondary Index | Primary Index | |-----------------|---------------| | 0 | 16 | | 1 | 1 | | 2 | 0 | | 3 | 0 | | 4 | 8 | | 5 | 25 | | 6 | 22 | | 7 | 20 | | 8 | 19 | | 9 | 23 | | 10 | 20 | | 11 | 31 | | 12 | 4 | | 13 | 31 | | 14 | 20 | | 15 | 31 | Figure 7 (Sheet 3 of 3) ### 5,920,853 1 ### SIGNAL COMPRESSION USING INDEX MAPPING TECHNIQUE FOR THE SHARING OF QUANTIZATION TABLES #### FIELD OF INVENTION The present invention relates to data compression in communications systems and in particular to scalar and vector quantization in speech, audio and image coding using embedded design. ### ART BACKGROUND Modern communications systems rely heavily on data compression techniques for "lossy" coding of signals such as speech, audio, still images and video sequences. As can be understood by those skilled in the art, coding of signals can done in either "lossy" or "lossless" methods, where lossy coding means that some distortion is introduced to the input signal by the coding system. FIG. 1 depicts a general structure of a module (10) for signal compression and decompression in accordance with the present invention. The module (10) comprises an encoder (100) and a decoder (150). For data-receiving operations, only a decoder (150) is required. For data transmissions between two separate stations, the encoder and decoder should be provided at both the transmitting station and the receiving station. As a conceptual tool, compression will be described as occurring at the encoder (100) and decoder (150). In practical implementation, the encoder (100) and decoder (150) are contained in a single data module (10), which is implemented at both the transmitter station and receiver station. The input signal (110) to the system is fed into the feature extraction unit (120) of the encoder (100). The extracted features are quantized by the feature quantization unit (130) and the resulting representation (131), which may include indices, is sent to the decoder (150). The features decoding unit (160) receives the lossy representation (151) and generates the lossy version (161) of the features from the lossy representation (151). The lossy version (161) is used by the signal reconstruction module (170) to produce the reconstructed output signal (180). As can be understood from the description above, quantization methods play a major role in data compression. 45 Quantization can be done on a single feature of the compressed signal, commonly called Scalar Quantization (SQ), or can be performed on a vector of features, commonly called Vector Quantization (VQ). Since a single feature can be regarded as a one-dimensional vector, SQ can be considered as a particular case of VQ. In the following description of this disclosure, the VQ schemes will be discussed. An example of speech coding algorithm which utilizes VQ as well as SQ is the recently adopted International Telecommunications Union (ITU) Recommendation G.729. The concept of VQ is a well-established technique for signal compression. The technique can be generalized as follows. A table which holds a set of vectors, representing the signal (or some features of the signal), is first constructed. For each vector of the original signal (or a feature evector), the table is searched for the best representative entry in the table. The index of that entry is then stored or transmitted. Using the index as a pointer to an entry in the table, a lossy version of the original vector can be retrieved. The quantization table can be stored or can be represented according to some rule(s), such as a mapping scheme from an index to a vector. 2 FIG. 2 illustrates a typical structure of a VQ encoder (200) and a VQ decoder (250). The input vector (215) is presented to the search unit (220). The search unit (220) compares the input vector to each of the vectors stored in the VQ table (225), using the comparison unit (230). The comparison unit (230) compares the input vector to a vector in the table (225) using a distance measure which can also depend on a vector of distance parameters (235). The index (140) of the best representative vector is stored or transmitted to the VQ decoder (250) through a communications channel (245). The VQ decoder (250), including a retrieval unit (255), uses the index (240) to retrieve an entry from a copy (260) of the VQ table (225), which becomes the decoded output (265). In some applications, the VQ table may be represented by a few smaller tables and a combining unit. The single index into the former larger table can be replaced with a few indices into these small tables. Upon retrieval, the entries from all the tables are combined into one output vector. Such VQ systems are commonly called "product code VQ." The basic structure of a product code VQ is depicted in FIG. 3. A produce code encoder (310) communicates with a product code decoder (350) (or "VQ decoder") via a communication channel (345) coupled to a retrieval unit (360). The input vector (315) is presented to the search unit (320). The search unit (320) compares the input vector to the entries in the multiple VQ tables (325), using the comparison unit (330). The comparison unit (330) compares the input vector to some combination of the vectors in the tables using a distance measure which can depend also on a vector of distance parameters (335). The indices (340) are stored or transmitted to the VQ decoder (350). The VQ decoder (350) uses the indices (340) to retrieve the entries from a copy (355) of the VQ table (325) and combine them using a combining unit (365). The combined vector becomes the decoded output (370). Commonly, each signal compression scheme (such as a speech coding algorithm) uses specifically pre-designed quantization tables, which might be large and occupy a significant portion of the available memory. However, in many practical applications, different compression schemes are used for the same signal. For example, different coding algorithms can be used for different rates in a variable-rate speech coding scheme. Hence, a method for sharing quantization tables in those cases is greatly desired. If all the schemes are designed at the same time, quantization tables can be shared by a technique called Constrained Storage VQ ("CSVQ"). However, if a new compression scheme is designed to work together with an already existing compression scheme, a new approach to the sharing of quantization tables is needed. ### SUMMARY OF THE PRESENT INVENTION A signal compression system is disclosed, which generally comprises a coder and a decoder. The coder comprises an extraction unit for extracting an input feature vector from an input signal, a coder memory unit for storing a predesigned VQ table for the coder with the coder memory unit using a set of primary indices to address entries within the pre-designed VQ table, a coder mapping unit for mapping indices from a set of secondary indices to the set of primary indices with the set of secondary indices corresponding to a pre-selected subset of the pre-designed VQ table, a search unit for searching for one index out of the set of secondary indices with the index from the set of secondary indices corresponding to an entry in the coder memory unit, wherein the entry best represents the input feature vector according to some predetermined criteria. The index from the set of secondary indices can then be transmitted through a communications channel. On the decoder side, the decoder comprises a decoder memory unit for storing the same pre-designed VQ table as the coder memory unit with the decoder memory unit also using the set of primary indices to address entries within the pre-designed VQ table, a decoder mapping unit for mapping the one index from the set of secondary indices to one index from the set of primary indices, a retrieval unit for retrieving an entry from the decoder memory unit by mapping the one index from the set of primary indices to an entry from the decoder memory unit, wherein the entry best represents the input feature vector. The index mapping approach in accordance with the 15 present invention can be applied to address the problem of spectral quantization for speech signals, as well as spectral quantization of the background noise presented during silence periods. In many speech communications systems, the pre-designed VQ table (420) is designed for a faithful representation of the speech spectrum. However, the background noise during silence periods can be faithfully represented using a smaller number of bits and smaller quantization tables. A subset of the tables used for speech spectral quantization can be chosen to
represent the spectrum of the background noise, and the index mapping technique described above can be used to represent this subset. Further, different search units and comparison units can be used for speech spectral quantization and for background noise spectral quantization. ### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts a typical structure of a module for signal compression and decompression using VQ quantization. FIG. 2 depicts a typical structure of a VQ encoder and a VQ decoder. FIG. 3 depicts a basic structure of a product code VQ. FIG. 4 depicts a generalized structure of the index mapping system in accordance with the present invention. FIG. 5 depicts a generalize structure of multiple index mapping system in accordance with the present invention. FIG. 6 lists the three (3) pre-designed VQ tables in accordance with the ITU Recommendations G.729/G.729A. FIG. 7 lists the three (3) index mapping units for the three (3) VQ tables in accordance with the present invention. ## DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An efficient data compression and decompression system using VQ for a communications system is disclosed. In the following description, numerous specific details are set forth, such as tables, indices, or memory sizes, in order to provide a thorough understanding of the present invention. It should be understood, however, by those skilled in the art that these details are not required to practice the present invention. In other instances, well known circuits, methods and the like are not set forth in detail to avoid unnecessarily obscuring the present invention. In any speech coding system, the quantization of the speech spectrum requires a substantial number of bits for its faithful representation in order to cover the wide range of speech spectra. However, a background acoustic noise is almost always present during typical speech communications in a car, in an office or on the street. The spectrum of the background noise has a much smaller dynamic range 4 than that of speech communications, and thus requires much fewer number of bits for its faithful representation. Therefore, the usage of the conventional quantization scheme for the speech spectrum in order to quantize the background noise spectrum has become redundant due to the number of bits required. A possible solution to the above-described problem is to have a different representation for the spectrum of the background noise. This representation may also be of the form of tables which have smaller sizes than the ones used for speech, due to the considerably fewer number of bits needed for the spectrum representation of the background noise. However, this approach ends up requiring a substantial increase in memory storage for the new tables, as can be appreciated by those skilled in the art. A further improved approach to the above-described problem is to use a reduced version of the existing tables, which represent the speech spectrum, for the representation of the background noise spectrum. To that end, an auxiliary look-up table of an extremely small memory storage requirement can be designed. This auxiliary table uses indices of the pre-selected useful entries from the speech spectrum tables. As can be appreciated by those skilled in the art, this approach will result in a much less complex system, as well as fewer number of bits for representing the background noise. With the above described system in mind, the data compression system in accordance with the present invention uses a scheme of index mapping, which can be implemented using a table of look-up pointers, for sharing quantization tables. The basic structure of an index mapping system is described in FIG. 4. A feature vector (410) has to be quantized by a pre-designed VQ table (420). However, only a predetermined subset of the entries of the pre-designed VQ table (420) needs to be used for the quantization of the feature vector (410). This pre-determined subset of the entries is defined by its set of primary indices (430) into the quantization table (420). The set of primary indices (430) is generated by a mapping unit (440) from a set of secondary indices (450). A search unit (460) runs over all the indices in the set of secondary indices (450), each defining a unique entry in the VQ table (420) by the index mapping unit (440), and chooses the entry from the pre-determined subset of the entries which best represents the features vector according to a predetermined set of criteria, through the comparison unit (465). The indices from the set of secondary indices (450) are now describing the "lossy" representation (131) of the features vector (410) and transmitted to by a decoder (150) of FIG. 1. The index mapping technique described above can be extended to include a multiplicity of pre-designed VQ tables and a multiplicity of index mapping units for the implementation of various product code VQ systems (as in FIG. 3). Note that in FIG. 3, each VQ table (325, 355) can be implemented by a unique pair of index mapping unit and a pre-designed VQ table such as index 440 and table 420 in RIG. 4 The index mapping approach in accordance with the present invention may be further applied to address the problem of spectral quantization for speech signals, as well as spectral quantization of the background noise presented during silence periods. In many speech communications systems, the pre-designed VQ table (420) is designed for a faithful representation of the speech spectrum. Similarly, the background noise during silence periods can also be faithfully represented using smaller number of bits and smaller quantization tables. A subset of the tables used for speech spectral quantization can be chosen to represent the spectrum of the background noise, and the index mapping technique described above can be used to represent this subset. As should be noted, different search units and comparison units can be used for speech spectral quantization and for background noise spectral quantization. A 3-table product code VQ with 128, 32, and 32 entries is used for spectral quantization of speech signals in the ITU Recommendations G.729 and Annex A of Recommendations G.729 ("G.729A"). The 3-table product code VQ according to the Recommendations is listed in FIG. 6. However, as contributed by Assignee of the present invention, for the quantization of the background noise in Recommendations G.729B, only 32, 16 and 16 entries, respectively, out of the 3 VQ tables are needed. The 3 mapping units for the 3 VQ tables in accordance with the present invention are listed in FIG. 7. The contents of ITU Recommendations G.729, G.729A and G.729B ("Coding of Speech at 8 kbit/s Using Conjugate-Structured Algebraic- 20 Code-Excited Linear-Prediction" and its Annexes A and B) are hereby incorporated by reference. FIG. 5 depicts an index mapping system for the quantization of the background noise according to the ITU Recommendations G.729B. Two indices are used to describe the entries into the VQ tables. The first index (510) is mapped by the first index mapping module (520) into the first VQ table (530). The second index (550) is mapped by the second index mapping module (560) into the second VQ table (570) and is also mapped by the third index mapping module (580) into the third VQ table (590). From the above description, a methodology for sharing quantization tables between different data compression schemes have been disclosed. The methodology uses index mapping technique into existing quantization tables for table space reduction and memory saving. In particular, the methodology according to the present invention allows for sharing spectral quantization tables between Recommendations G.729/G.729A and G.729B. Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. We claim: - 1. A system for coding and decoding feature vectors of a signal transmitted through a communications channel, comprising a coder and a decoder, wherein: - a) the coder comprises: - extraction means for extracting an input feature vector from the signal; 60 coder memory means for storing one pre-designed VQ table for the coder, the coder memory means using a set 65 of primary indices to address entries within the pre-designed VQ table; 6 - coder mapping unit for mapping indices from a set of fixed length secondary indices to the set of primary indices, the set of secondary indices corresponding to one pre-selected subset of the pre-designed VQ table; - search means coupled to the coder mapping unit for searching for one index out of the set of secondary indices, wherein the one index from the set of secondary indices corresponds to one index from the set of primary indices which corresponds to an entry in the coder memory means, wherein the entry in the coder memory means which best represents the input feature vector according to predetermined criteria; - b) the decoder comprises: - decoder memory means for storing the same at least one pre-designed VQ table as stored by the coder memory means, the decoder memory means also using the set of primary indices to address
entries within the pre-designed VQ table; - decoder mapping unit for mapping the one index from the set of secondary indices to one index from the set of primary indices; - retrieval means for retrieving an entry from the decoder memory means by mapping the one index from the set of primary indices as mapped by the decoder mapping unit to one entry from the decoder memory means, wherein the entry best represents the input feature vector. - 2. A system according to claim 1, wherein: - the coder mapping unit comprises a lookup table; and the decoder mapping unit comprises a lookup table. - 3. A coder for coding feature vectors of a signal for processing, comprising: - extraction means for extracting an input feature vector from the signal; - coder memory means for storing one pre-designed VQ table for the coder, the coder memory means using a set of primary indices to address entries within the pre-designed VQ table; - coder mapping unit for mapping indices from a set of fixed length secondary indices to the set of primary indices, the set of secondary indices corresponding to one pre-selected subset of the pre-designed VQ table; - search means coupled to the coder mapping unit for searching for one index out of the set of secondary indices, wherein the one index from the set of secondary indices corresponds to one index from the set of primary indices which corresponds to an entry in the coder memory means, wherein the entry in the coder memory means best represents the input feature vector according to predetermined criteria to an entry in the coder memory means which best represents the input feature vector according to predetermined criteria. - 4. A decoder for decoding a feature vector of a signal received from a coder having a pre-designed VQ table, a set of primary indices, and a set of fixed length secondary indices associated therewith, said decoder comprising: - decoder memory means for storing the pre-designed VQ table and a pre-selected subset of the pre-designed VQ table associated with the set of secondary indices, wherein the decoder memory means uses the set of primary indices to address entries within the pre-designed VQ table; - decoder mapping unit for mapping an index from the set of secondary indices to an index from the set of primary indices; - retrieval means for retrieving an entry from the decoder memory means by mapping the index from the set of primary indices as mapped by the decoder mapping unit to an entry from the decoder memory means, wherein the entry best represents the feature vector. - 5. A system for coding and decoding feature vectors of a signal transmitted through a communications channel, comprising a coder and a decoder, wherein: - a) the coder comprises: - extraction means for extracting an input feature vector 10 comprising: from the signal; - coder memory means for storing at least one pre-designed VQ table for the coder, the coder memory means using at least one set of primary indices to address entries within the at least one pre-designed VQ table; - at least one coder mapping unit for mapping indices from at least one set of fixed length secondary indices to the at least one set of primary indices, the at least one set of secondary indices corresponding to at least one 20 pre-selected subset of the pre-designed VQ table; - search means coupled to the coder mapping means for searching for at least one index out of the at least one set of secondary indices, wherein the at least one index from the at least one set of secondary indices corre- 25 sponds to at least one index from the at least one set of primary indices which corresponds to at least one entry in the coder memory means, wherein the at least one entry in the coder memory means best represents the input feature vector according to predetermined criteria 30 to at least one entry in the coder memory means which best represents to the input feature vector according to predetermined criteria; - b) the decoder comprises: - decoder memory means for storing at least one pre- 35 designed VQ table which is the same as stored by the coder memory means, the decoder memory means also using at least one set of primary indices to address entries within the at least one pre-designed VQ table; - decoder mapping unit for mapping the at least one index 40 from the least one set of secondary indices to the at least one set of primary indices; - retrieval means for retrieving at least one entry from the decoder memory means by mapping the at least one index from the at least one set of primary indices as mapped by the decoder mapping unit to at least one entry from the decoder memory means, wherein the at least one entry best represents the input feature vector. - 6. A coder for coding feature vectors of a signal, com - extraction means for extracting an input feature vector from the signal: - coder memory means for storing at least one pre-designed VQ table for the coder, the coder memory means using 55 at least one set of primary indices to address entries within the at least one pre-designed VQ table; - at least one coder mapping unit for mapping indices from at least one set of fixed length secondary indices to the at least one set of primary indices, the at least one set 60 of secondary indices corresponding to at least one pre-selected subset of the pre-designed VQ table; - search means coupled to the coder mapping means for searching for at least one index out of the at least one set of secondary indices, wherein the at least one index 65 mapping units comprise: corresponds to at least one index from the at least one set of primary indices which corresponds to at least one - entry in the coder memory means, wherein the at least one entry in the coder memory means best represents the input feature vector according to predetermined criteria to at least one entry in the coder memory means which best represents to the input feature vector according to predetermined criteria. - 7. A decoder for decoding a feature vector of a signal, which is coded by a coder comprising coder memory means with at least one pre-designed VQ table, said decoder - decoder memory means for storing said at least one pre-designed VQ table and a pre-selected subset of the pre-designed VQ table associated with a set of fixed length secondary indices, wherein the decoder memory means uses at least one set of primary indices to address entries within the at least one pre-designed VQ table; - decoder mapping unit for mapping at least one index from the set of secondary indices to the at least one set of primary indices: - retrieval means for retrieving at least one entry from the decoder memory means by mapping the at least one index as mapped by the decoder mapping unit to at least one entry from the decoder memory means, wherein the at least one entry best represents the feature vector. - 8. A coder for coding feature vectors of a signal, com- - extraction means for extracting an input feature vector from the signal; - coder memory means for storing first, second and third pre-designed VQ tables for the coder, the coder memory means using first, second and third sets of primary indices to address entries within the first, second and third pre-designed VQ tables, respectively; - three (3) coder mapping units for mapping indices from a first set of fixed length secondary indices to the first set of primary indices and from a second set of fixed length secondary indices to the second and third sets of primary indices, wherein the first and second sets of secondary indices correspond to 3 subsets of the first, second and third sets of primary indices of the first, second and third pre-designed VQ tables, respectively; - search means coupled to the 3 coder mapping units for searching for 2 secondary indices out of the first and second sets of secondary indices, wherein each of the 2 secondary indices from the first and second sets of secondary indices corresponds to 3 indices from the first, second and third sets of primary indices which correspond to 3 entries in the coder memory means' 3 pre-designed VQ tables, wherein the 3 entries best represent the input feature vector according to predetermined criteria. - 9. The system according to claim 8, wherein the 3 coder mapping units are implemented using first, second and third lookup tables, wherein: - first lookup table comprises: {96, 52, 20, 54, 86, 114, 82, 68, 36, 121, 48, 92, 18, 120, 94, 124, 50, 125, 4, 100, 28, 76, 12, 117, 81, 22, 90, 116, 127, 21, 108, 66}; - second lookup table comprises: {31, 21, 9, 3, 10, 2, 19, 26, 4, 3, 11, 29, 15, 27, 21, 12}; and - third lookup table comprises: {16, 1, 0, 0, 8, 25, 22, 20, 19, 23, 20, 31, 4, 31, 20, 31}. - 10. The system according to claim 8, wherein the 3 coder - first means for generating a mapping from a secondary index to a primary index in accordance with a first set of ordered pairs of secondary and primary indices respectfully, comprising: {0,96}, {1,52},{2,20}, {3,54}, {4,86}, {5,114},{6,82}, {7,68}, {8,36}, {9,121},{10,48}, {11, 92}, {12,18}, {13,120}, {14, 94}, {15,124}, {16,50}, {17,125}, {18,4}, {19,100}, 5 {20,28}, {21,76}, {22,12}, {23,117}, {24,81}, {22}, {26,90}, {27,116}, {28,127}, {29,21}, {30, 108}, {31,66}; second means for generating a mapping from a secondary index to a primary index in accordance with a second set of ordered pairs of secondary and primary indices respectively, comprising: {0,31}, {1,21}, {2,9}, {3,3}, {4,10}, {5,2}, {6,19}, {7,26}, {8,4}, {9,3}, {10,11}, {11,29}, {12,15}, {13,27}, {14,21}, {15,12}; third means for generating a mapping from a secondary 15 index to a primary index in accordance with a third set of ordered pairs of secondary and primary indices respectively, comprising: {0,16}, {1,1}, {2,0}, {3,0}, {4,8}, {5,25}, {6,22}, {7,20}, {8,19}, {9,23}, {10,20}, {11,31}, {12,4}, {13,31}, {14,20}, {15,31}. 11. A decoder for decoding a feature vector of a coded signal based on a first and second set of fixed
length secondary indices, wherein the coded signal has been coded by a coder with first, second and third pre-designed VQ tables, comprising: means for receiving the first and second secondary indi- decoder memory means for storing the first, second and third pre-designed VQ tables which are the same VQ tables as stored by the coder, the decoder memory means using first, second and third sets of primary indices to address entries within the first, second and third pre-designed VQ tables; three (3) decoder mapping units for mapping the first secondary index to a first primary index out of the first set of primary indices, and mapping the second secondary index to second and third primary indices out of the second and third sets of primary indices; retrieval means for retrieving 3 entries from the decoder memory means by mapping the first, secondary and third primary indices as mapped by the three decoder mapping units to 3 entries from the decoder memory means, wherein the 3 entries best represent the feature vector. 12. A system for coding and decoding feature vectors of a signal transmitted through a communications channel, comprising a coder and a decoder, wherein: a) the coder comprises: extraction means for extracting an input feature vector 50 from the signal; coder memory means for storing first, second and third pre-designed VQ tables for the coder, the coder memory means using first, second and third sets of primary indices to address entries within the first, 55 second and third pre-designed VQ tables, respectively; three (3) coder mapping units for mapping indices from a first set of fixed-length secondary indices to the first set of primary indices and from a second set of fixed-length secondary indices to the second and third sets of primary indices, the first and second sets of secondary indices corresponding to 3 subsets of the first, second and third sets of primary indices of the first, second and third pre-designed VQ tables, respectively; search means coupled to the 3 coder mapping units for 65 searching for 2 secondary indices out of the first and second sets of secondary indices, wherein each of the 10 2 secondary indices from the first and second sets of secondary indices corresponds to 3 entries from the first, second and third set of primary indices, wherein the 3 entries best represent the input feature vector according to predetermined criteria; and b) the decoder comprises: means for receiving the first and second secondary indices: decoder memory means for storing the first, second and third pre-designed VQ tables, the decoder memory means using first, second and third sets of primary indices to address entries within the first, second and third pre-designed VQ tables; three (3) decoder mapping units for mapping the first secondary index to a first primary index out of the first set of primary indices, and mapping the second secondary index to second and third primary indices out of the second and third sets of primary indices; retrieval means for retrieving 3 entries from the decoder memory means by mapping the first, second and third primary indices as mapped by the three decoder mapping units to 3 entries from the decoder memory means, wherein the 3 entries best represent the input feature vector. 13. The system according to claim 12, wherein said signal comprises an encoded speech signal comprising a speech period and a silence period, and wherein said speech period is encoded in accordance with said three pre-designed VQ tables, and said silence period is encoded in defined with said first and second set of secondary indices. 14. The system according to claim 12, wherein the 3 coder mapping units are implemented using first, second and third lookup tables, wherein: first lookup table comprises: {96, 52, 20, 54, 86, 114, 82, 68, 36, 121, 48, 92, 18, 120, 94, 124, 50, 125, 4, 100, 28, 76, 12, 117, 81, 22, 90, 116, 127, 21, 108, 66}; second lookup table comprises: {31, 21, 9, 3, 10, 2, 19, 26, 4, 3, 11, 29, 15, 27, 21, 12}; and third lookup table comprises: {16, 1, 0, 0, 8, 25, 22, 20, 19, 23, 20, 31, 4, 31, 20, 31}. 15. The system according to claim 12, wherein the 3 coder mapping units comprise: first means for generating a mapping from a secondary index to a primary index in accordance with a first set of ordered pairs of secondary and primary indices respectfully, comprising: {0,96}, {1,52}, {2,20}, {3,54}, {4,86}, {5,114}, {6,82}, {7,68},{8,36}, {9,121},{10,48}, {11, p}, {12,18}, {13,120}, {14,94}, {15,124}, {16,50}, {17,125}, {18,4}, {19,100}, {20,28}, {21,76}, {22,12}, {23,117}, {24,81}, {25,22}, {26,90}, {27,116}, {28,127}, {29,21}, {30, 108}, {31,66}; second means for generating a mapping from a secondary index to a primary index in accordance with a second set of ordered pairs of secondary and primary indices respectively, comprising: {0,31}, {1,21}, {2,9}, {3,3}, {4,10}, {5,2}, {6,19}, {7,26}, {8,4}, {9,2}, {10,11}, {11,29}, {12,15}, {13,27}, {14,21}, {15,12}; third means for generating a mapping from a secondary index to a primary index in accordance with a third set of ordered pairs of secondary and primary indices respectively, comprising: {0,16}, {1,1}, {2,0}, {3,0}, {4,8}, {5,25}, {6,22}, {7,20}, {8,19}, {9,23}, {10,20}, {11,31}, {12,4}, {13,31}, {14,20}, {15,31}. * * * * * ## UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. : 5,920,853 Page 1 of 1 APPLICATION NO.: 08/702780 DATED : July 6, 1999 INVENTOR(S) : Benyassine et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below. In the claims, column 6, lines 52-54, delete "to an entry in the coder memory means which best represents the input feature vector according to predetermined criteria." In the claims, column 7, lines 31-33, delete "to at least one entry in the coder memory means which best represents the input feature vector according to predetermined criteria." In the claims, column 8, lines 4-6, delete "to at least one entry in the coder memory means which best represents the input feature vector according to predetermined criteria." Signed and Sealed this Twenty-fourth Day of August, 2010 David J. Kappos Director of the United States Patent and Trademark Office