| 2 | André E. Jardini (State Bar No. 71335) aej@kpclegal.com K.L. Myles (State Bar No. 243272) klm@kpclegal.com KNAPP, PETERSEN & CLARKE 550 North Brand Boulevard, Suite 1500 | E-illing | | | | | | | | |----------|---|--|--|--|--|--|--|--|--| | | Glendale, California 91203-1922
Telephone: (818) 547-5000
Facsimile: (818) 547-5329 | | | | | | | | | | 7 | Joseph S. Farzam (State Bar No. 210817) farzam@lawyer.com JOSEPH FARZAM LAW FIRM 1875 Century Park East, Suite 1345 Los Angeles, California 90067 Telephone: (310) 226-6890 Facsimile: (310) 226-6891 | SEP 2 4 2012 RICHARD W. WIEKING | | | | | | | | | 10
11 | Attorneys for Plaintiff PI-NET INTERNATIONAL, INC. | CLERK, U.S. DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA OAKLAND | | | | | | | | | 12 | UNITED STATES I | DISTRICT COURT | | | | | | | | | 13 | NORTHERN DISTRIC | | | | | | | | | | 14 | NORTHERN DISTRIC | 1 | | | | | | | | | 15 | PI-NET INTERNATIONAL, INC., | C12-4957 JCs | | | | | | | | | 16 | Plaintiff, |) COMPLAINT FOR PATENT | | | | | | | | | 17 | v. |) INFRINGEMENT | | | | | | | | | | FIRST NATIONAL BANK OF
NORTHERN CALIFORNIA, |) DEMAND FOR JURY TRIAL | | | | | | | | | 19 | Defendant. | | | | | | | | | | 20 | |) | | | | | | | | | 21 | | | | | | | | | | | 22 | <u>INTRODUCTION</u> | | | | | | | | | | 23 | 1. Plaintiff PI-NET INTERNATIONAL, INC., files this complaint for patent | | | | | | | | | | 24 | infringement and jury demand against defendant FIRST NATIONAL BANK OF | | | | | | | | | | 25 | NORTHERN CALIFORNIA ("the defendant"), and alleges as follows: | | | | | | | | | | 26 | <u>PARTIES</u> | | | | | | | | | | 27 | 2. Plaintiff PI-NET INTERNATION | NAL, INC. ("PI-NET") is a California | | | | | | | | | 28 | corporation with its principal place of business in Menlo Park, California. PI-NET has been | | | | | | | | | | | -1 | - | | | | | | | | | | l . | t . | | | | | | | | 1540677.1 90000/00007 KNAPP, PETERSEN & CLARKE 1 a provider of innovative software products, services and solutions that enable distributed 2 transaction processing and control over public and private networks, including, without 3 limitation, the Internet and the World Wide Web. 4 The patents asserted here were issued to Dr. Lakshmi Arunachalam, PI-NET'S 5 founder. The patents disclose the fundamental technology underlying Web commerce and 6 Web banking by use of Web applications. The patents describe a method and apparatus for 7 providing real-time, two-way transactional capabilities on the Web from Web applications. 8 The examples of the pioneering technology in the patents encompass the transactions 9 commonly entered into by defendant with their Web banking customers. 10 4. Defendant FIRST NATIONAL BANK OF NORTHERN CALIFORNIA is 11 headquartered in South San Francisco, California. FIRST NATIONAL BANK OF 12 NORTHERN CALIFORNIA operates as a Bank. JURISDICTION AND VENUE 13 5. This action arises under the patent laws of the United States, Title 35, United 14 15 States Code, including 35 U.S.C. sections 271 and 281-285. This Court has jurisdiction 16 over the action pursuant to 28 U.S.C. sections 1331 and 1338(a). 17 6. Upon information and belief, defendant is subject to this Court's specific and 18 general personal jurisdiction due at least to their substantial business within the State of California and this judicial district, including: Operating a bank by use of Internet transaction capabilities which 20 (a) infringe the patents herein alleged in California and in this judicial district; and 21 22 (b) Regularly doing or soliciting business, engaging in other persistent courses of conduct; and/or 23 Deriving substantial revenue from products and/or services provided to 24 (c) 25 individuals in California and in this judicial district. Venue is proper in this judicial district under 28 U.S.C. sections 1391(b) (c) 26 27 and (d) and 28 U.S.C. section 1400(b). 28 //// #### **GENERAL ALLEGATIONS** - 8. On November 16. 1999, the United States Patent and Trademark Office duly and legally issued United States Patent Number 5,987,500 (the "'500 patent") entitled "'Value-Added Network System For Enabling Real-Time, By-Directional Transactions On A Network" to Dr. Lakshmi Arunachalam. PI-NET is the assignee of all rights, title and 6 interest in the '500 patent including the right to recover damages for past infringement. A 7 copy of the '500 patent is attached to the complaint as exhibit A. - 9. On January 31, 2012, the United States Patent and Trademark Office duly and 9 legally issued United States Patent Number 8,108,492 (the "'492 patent") entitled "Web 10 Application Network Portal" to Dr. Lakshmi Arunachalam. PI-NET is the assignee of all 11 rights, title and interest in the '492 patent, including the right to recover damages for past 12 infringement. A copy of the '492 patent is attached to the complaint as exhibit B. - 10. The '500 patent is valid and enforceable. - 11. The '492 patent is valid and enforceable. - 12. Defendant infringes the '500 patent directly, contributorily and/or by active linducement by conducting real-time two-way transactions on the Web concerning banking 17 transactions from Web banking applications. Such capabilities include eBusiness banking, eRetail banking and other banking products and services. This real-time two-way transactional capability on the Web is described in the '500 patent and infringed by defendant. - Defendant infringes the '492 patent directly, contributorily and/or by active 13. inducement by conducting real-time two-way transactions on the Web concerning banking transactions from Web banking applications. Such capabilities include eBusiness banking, 24 Retail banking and other banking products and services. This real-time two-way transactional capability on the Web is described in the '492 patent and infringed by 26 defendant. - The online capabilities of defendant FIRST NATIONAL BANK OF 14. NORTHERN CALIFORNIA infringe the '500 and '492 patents, exemplified, in part, by the 1 2 8 13 14 15 20 21 27 -3- following screen shot of its opening screen which displays the Web banking applications and eBusiness banking and Internet banking at http://www.fnbnorcal.com/ of the inventions of the patents-in-suit: 15. Defendant's infringing acts have been without express or implied license by PI-NET, and/or in violation of PI-NET'S rights or claims for relief. #### FIRST CLAIM FOR RELIEF #### **INFRINGEMENT OF THE '500 PATENT** - 16. PI-NET incorporates by reference each and every allegation in paragraphs 1 through 15, as though fully set forth herein. - 17. Defendant has been and now is infringing, inducing the infringement of, and/or contributing to the infringement of the '500 patent, literally and/or under the doctrine of equivalence, by conducting real-time two-way transactions on the Web in connection with Web banking to their customers. KNAPP, PETERSEN & CLARKE 1 7 2 28 //// 17 18 19 20 21 22 24 - 19. As a result of defendant's infringing conduct, PI-NET has suffered and will 4 continue to suffer, substantial and irreparable damage. Upon information and belief, 5 defendant's infringement, induced infringement and/or its contributory infringement of the 6 \ 500 patent will continue unless enjoined by this Court. - 20. Defendant's infringement is and has been willful. - 21. Upon information and belief, to the extent defendant lacked actual knowledge of the '500 patent prior to this lawsuit, at a minimum they had constructive notice of the '500 10 patent by operation of at least 35 U.S.C. section 287. - 11 22. PI-NET has no adequate remedy at law for defendant's infringement, 12 contributory infringement, and/or induced infringement of the '500 patent. Unless the 13 defendant's infringing activities are enjoined by this Court, PI-NET will continue to suffer 14 monetary damages in an amount not yet determined. #### SECOND CLAIM FOR RELIEF #### INFRINGEMENT OF THE '492 PATENT - PI-NET incorporates by reference each and every allegation in paragraphs 1 23. 18 through 22, as though fully set forth herein. - 24. Defendant has been and now is infringing, inducing the infringement of, 20 and/or contributing to the infringement of the '492 patent, literally and/or under the doctrine 21 of equivalents, by conducting real-time two-way transactions on the Web in connection with 22 Web banking to their customers. - 25. PI-NET has not authorized the defendant to use its technology for transactions 24 over the Web with its customers as covered by the '492 patent. - As a result of defendant's infringing conduct, PI-NET has suffered and will 26. 26 continue to suffer, substantial and irreparable damage. Upon information and belief, 27 defendant's infringement, induced infringement and/or its contributory infringement of the 28 500 patent will continue unless enjoined by this Court. 1 3 7 8 15 16 17 19 23 25 28 //// | 1 | 9. | That the Court declare this to be an exceptional case pursuant to 35 U.S.C. | |----|-------------|--| | 2 | section 285 | , and award PI-NET its attorneys' fees. | | 3 | 10. | That the Court award PI-NET enhanced damages pursuant to 35 U.S.C. | | 4 | section 284 | | | 5 | 11. | That the Court award a compulsory future royalty. | | 6 | 12. | That PI-NET be awarded costs of Court; and | | 7 | 13. | That PI-NET be awarded such other and further relief as the Court deems just | | 8 | and proper. | | | 9 | | | | 10 | Dated: Sep | tember 20, 2012 KNAPP, PETERSEN & CLARKE | | 11 | | | | 12 | | By: Man | | 13 | | André E. Jardini | | 14 | | K.L. Myles Attorneys for Plaintiff PI-NET INTERNATIONAL, INC. | | 15 | | PI-NET INTERNATIONAL, INC. | | 16 | | | | 17 | | | | 18 | | | | 19 | | | | 20 | |
| | 21 | | | | 22 | | | | 23 | | | | 24 | | | | 25 | | | | 26 | | | | 27 | | | | 28 | | | | | | _ | KNAPP, PETERSEN & CLARKE ### #### **DEMAND FOR JURY TRIAL** Plaintiff PI-NET INTERNATIONAL, INC. hereby demands a trial by jury in this matter. Dated: September 20, 2012 KNAPP, PETERSEN & CLARKE By: André E. Jardin K.L. Myles Attorneys for Plaintiff PI-NET INTERNATIONAL, INC. ### Exhibit A ### United States Patent [19] #### Arunachalam [11] Patent Number: 5,987,500 [45] Date of Patent: *Nov. 16, 1999 [54] VALUE-ADDED NETWORK SYSTEM FOR ENABLING REAL-TIME, BY-DIRECTIONAL TRANSACTIONS ON A NETWORK [75] Inventor: Lakshmi Arunachalam, Menlo Park, Calif. [73] Assignee: Pi-Net International, Inc., Menlo Park, Cal [*] Notice: This patent issued on a continued pros- ecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2). [21] Appl. No.: 08/879,958 [22] Filed: Jun. 20, 1997 #### Related U.S. Application Data [62] Division of application No. 08/700,726, Aug. 5, 1996, Pat. No. 5,778,178 [60] Provisional application No. 60/006,634, Nov. 13, 1995. [52] U.S. Cl. 709/203 201, 202, 203, 213, 301, 302, 303, 304, 305; 710/200 [56] **Ref** References Cited PUBLICATIONS "Coding with HTML forms: HTML goes interactive", Andrew Davidson, Dr. Dobb's Journal, V20, N6, Jun. 1995, p. 16. Primary Examiner-Robert B. Harrell Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor & Zafman LLP [57] ABSTRACT The present invention provides a method and apparatus for providing real-time, two-way transactional capabilities on the Web. Specifically, one embodiment of the present invention discloses a configurable value-added network switch for enabling real-time transactions on the World Wide Web. The configurable value added network switch comprises a system for switching to a transactional application in response to a user specification from a World Wide Web application, a system means for transmitting a transaction request from the transactional application, and a system for processing the transaction request. Additionally, a method for enabling object routing is disclosed, comprising the steps of creating a virtual information store containing information entries and attributes associating each of the information entries and the attributes with an object identity, and assigning a unique network address to each of the object identities. Finally, a method is disclosed for enabling service management of the value-added network service, to perform OAM&P functions on the services network. #### 35 Claims, 13 Drawing Sheets FIG. 1A (PRIOR ART) FIG. 8 U.S. Patent Nov. 16, 1999 Sheet 4 of 13 5,987,500 - OSI MODEL <u>300</u> | APPLICATION | | |--------------|------------| | ALLEGATION | | | | <u>307</u> | | PRESENTATION | | | | <u>306</u> | | CECCION | 000 | | SESSION | | | | <u>305</u> | | TRANSPORT | | | | 004 | | | <u>304</u> | | NETWORK | | | | <u>303</u> | | DATA LINK | | | | <u>302</u> | | PHYSICAL | | | | <u>301</u> | # FIG. 3 | | _ | | USER 100 | \ | \ | | _ | | / | / | / | USER 100 | \ | \ | \ | | |---------------------|------------------------|-----------------------------|---------------------|-----------|--------------|---|------|---------------------|----------------------|---------------------|--------------|---------------------|---|----------|-------------------------------|-------| | | 0 | • TELCO | • CATV | | | | | | | CARRIERS | • TELCO | • CATV | | | | | | | INTERNET | SERVICE
PROVIDERS
-UP | | | WALK-IN | | | INTERNET | PROVIDERS | | <u>a</u> | | | WALK-IN | | | | | WEB SITE WEB SERVER | • O/S
• HARDWARE | DIAL-UP | | | | | | WEB SITE WEB SERVER | • O/S
• HARDWARF | | DIAL-UP | | | | | | SERVICE
CHANNELS | | | • CALL CTR
• IVR | 2 | • KIOSK | • ATM
• CASH REGISTER
• LIVE TELLER | | SERVICE
CHANNELS | TRANSWEB
EXCHANGE | • WEB PAGE | | • CALL CTR
• IVR | 2 | KIOSK | • CASH REGISTER • LIVE TELLER | M | | BACK
OFFICE | MIDDLEWARE | MIDDLEWARE
APPLICATIONS | 4GL
APPLICATIONS | OPERATING | SYSTEM | HARDWARE | . 4A | 웃힐 | MIDDLEWARE | MIDDLEWARE | APPLICATIONS | 4GL
APPLICATIONS | 9 | | HARDWARE | G. 4B | | a 0 | DATABASE | | APPS | | I A BOAMA DE | | FIG | BACK
OFFICE | DATABASE | | <u></u> | APPS | | HARDWARE | | FIG | FIG. 5A FIG. 5B ## FIG. 5C FIG. 5E ### FIG. 6B FIG. 7 FIG. 8 #### VALUE-ADDED NETWORK SYSTEM FOR ENABLING REAL-TIME, BY-DIRECTIONAL TRANSACTIONS ON A NETWORK #### RELATED APPLICATIONS This is a divisional of application Ser. No. 08/700,726, filed Aug. 5, 1996, now U.S. Pat. No. 5,778,178. #### FIELD OF THE INVENTION The present invention relates to the area of Internet communications. Specifically, the present invention relates to a method and apparatus for configurable value-added network switching and object routing. #### BACKGROUND OF THE INVENTION With the Internet and the World Wide Web ("the Web") evolving rapidly as a viable consumer medium for electronic commerce, new on-line services are emerging to fill the needs of on-line users. An Internet user today can browse on the Web via the use of a Web browser. Web browsers are software interfaces that run on Web clients to allow access to Web servers via a simple user interface. A Web user's capabilities today from a Web browser are, however, extremely limited. The user can perform one-way, browseonly interactions. Additionally, the user has limited "deferred" transactional capabilities, namely electronic mail (e-mail) capabilities. E-mail capabilities are referred to as "deferred transactions" because the consumer's request is not processed until the e-mail is received, read, and the person or system reading the e-mail executes the transaction. This transaction is thus not performed in real-time. FIG. 1A illustrates typical user interactions on the Web today. User 100 sends out a request from Web browser 102 in the form of a universal resource locator (URL) 101 in the following manner: http://www.car.com. URL 101 is processed by Web browser 102 that determines the URL corresponds to car dealer Web page 105, on car dealer Web server 104. Web browser 102 then establishes browse link 103 to car dealer Web page 105. User 100 can browse Web page 105 and select "hot links" to jump to other locations in Web page 105, or to move to other Web pages on the Web. This interaction is typically a browse-only interaction. Under limited circumstances, the user may be able to fill out 45 a form on car dealer Web page 105, and e-mail the form to car dealer Web server 104. This interaction is still strictly a one-way browse mode communications link, with the e-mail providing limited, deferred transactional capabilities. Under limited circumstances, a user may have access to 50 two-way services on the Web via Common Gateway Interface (CGI) applications. CGI is a standard interface for running external programs on a Web server. It allows Web servers to create documents dynamically when the server receives a request from the Web browser. When the Web server dynamically executes the appropriate CGI script and transmits the output of the execution back to the requesting Web browser. This interaction can thus be termed a "two-way" transaction. It is a severely limited transaction, however, 60 because each CGI application is customized for a particular type of application or service. For example, as illustrated in FIG. 1B, user 100 may access bank 150's Web server and attempt to perform transactions on checking account 152 and to make a payment on loan account 154. In order for user 100 to access checking account 152 and loan account 154 on the Web, CGI 2 application scripts must be created for each account, as illustrated in FIG. 1B. The bank thus has to create individual scripts for each of its services to offer users access to these services. User 100 can then interact in a limited fashion with these individual applications. Creating and managing individual CGI scripts for each service is not a viable solution for merchants with a large number of services. As the Web expands and electronic commerce becomes more desirable, the need increases for robust, real-time, 10 bi-directional transactional capabilities on the Web. A true real-time, bi-directional transaction would allow a user to connect to a variety of services on the Web, and perform real-time transactions on those services. For example, although user 100 can browse car dealer Web page 105 15 today, the user cannot purchase the car, negotiate a car loan or perform other types of real-time, two-way transactions that he can perform with a live salesperson at the car dealership. Ideally, user 100 in FIG. 1A would be able to access car dealer Web page 105, select specific transactions that he desires to perform, such as purchase a car, and perform the purchase in real-time, with two-way interaction capabilities. CGI applications provide user 100 with a limited ability for two-way interaction with car dealer Web page 105, but due to the lack of interaction and management between the car dealer and the bank, he will not be able to obtain a loan and complete the purchase of the car via a CGI application. The ability to complete robust real-time, twoway transactions is thus not truly available on the Web today. #### SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method and apparatus for providing real-time, two-way transactional capabilities on the Web. Specifically, one embodiment of the present invention discloses a configurable value-added network switch for enabling real-time transactions on the World Wide Web. The configurable value added network switch comprises means for switching to a transactional application in response to a user specification from a World Wide Web application, means for transmitting a transaction request from the transactional application, and means for processing the transaction request. According to another
aspect of the present invention, a method and apparatus for enabling object routing on the World Wide Web is disclosed. The method for enabling object routing comprises the steps of creating a virtual information store containing information entries and attributes, associating each of the information entries and the attributes with an object identity, and assigning a unique network address to each of the object identities. Other objects, features and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description. #### BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description of the present invention as set forth below FIG. 1A is an illustration of a current user's browse capabilities on the Web via a Web browser. FIG. 1B is an illustration of a current user's capabilities to perform limited transactions on the Web via CGI applications. FIG. 2 illustrates a typical computer system on which the present invention may be utilized. FIG. 3 illustrates the Open Systems Interconnection (OSI) FIG. 4A illustrates conceptually the user value chain as it exists today. FIG. 4B illustrates one embodiment of the present invention FIG. 5A illustrates a user accessing a Web server including one embodiment of the present invention. one embodiment of the present invention. FIG. 5C illustrates an example of a point-of-service (POSvc) application list. FIG. 5D illustrates a user selecting a bank POSvc application from the POSvc application list. FIG. 5E illustrates a three-way transaction according to one embodiment of the present invention. FIG. 6A illustrates a value-added network (VAN) switch. FIG. 6B illustrates the hierarchical addressing tree struc- 20 ture of the networked objects in DOLSIBs. FIG. 7 illustrates conceptually the layered architecture of a VAN switch. FIG. 8 is a flow diagram illustrating one embodiment of the present invention. #### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention relates to a method and apparatus 30 for configurable value-added network switching and object routing and management. "Web browser" as used in the context of the present specification includes conventional Web browsers such as NCSA Mosaic™ from NCSA and Netscape Mosaic™ from Netscape™. The present invention 35 is independent of the Web browser being utilized and the user can use any Web browser, without modifications to the Web browser. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent to one of ordinary skill in the art, however, that these specific details need not be used to practice the present invention. In other instances, well-known structures, interfaces and processes have not been shown in detail in order not to unnecessarily obscure the present invention. FIG. 2 illustrates a typical computer system 200 in which the present invention operates. The preferred embodiment of the present invention is implemented on an IBMTM Personal Computer manufactured by IBM Corporation of Armonk, N.Y. Alternate embodiments may be implemented on a Macintosh™ computer manufactured by Apple™ Computer, Incorporated of Cupertino, Calif. It will be apparent to those of ordinary skill in the art that other alternative computer system architectures may also be employed. In general, such computer systems as illustrated by FIG. 55 2 comprise a bus 201 for communicating information, a processor 202 coupled with the bus 201 for processing information, main memory 203 coupled with the bus 201 for storing information and instructions for the processor 202, a read-only memory 204 coupled with the bus 201 for storing 60 static information and instructions for the processor 202, a display device 205 coupled with the bus 201 for displaying information for a computer user, an input device 206 coupled with the bus 201 for communicating information and command selections to the processor 202, and a mass 65 storage device 207, such as a magnetic disk and associated disk drive, coupled with the bus 201 for storing information and instructions. A data storage medium 208 containing digital information is configured to operate with mass storage device 207 to allow processor 202 access to the digital information on data storage medium 208 via bus 201. Processor 202 may be any of a wide variety of general purpose processors or microprocessors such as the Pentium™ microprocessor manufactured by Intel™ Corporation or the Motorola™ 68040 or Power PC™ brand microprocessor manufactured by manufactured by Motorola™ FIG. 5B illustrates the exchange component according to 10 Corporation. It will be apparent to those of ordinary skill in the art, however, that other varieties of processors may also be used in a particular computer system. Display device 205 may be a liquid crystal device, cathode ray tube (CRT), or other suitable display device. Mass storage device 207 may be a conventional hard disk drive, floppy disk drive, CD-ROM drive, or other magnetic or optical data storage device for reading and writing information stored on a hard disk, a floppy disk, a CD-ROM a magnetic tape, or other magnetic or optical data storage medium. Data storage medium 208 may be a hard disk, a floppy disk, a CD-ROM, a magnetic tape, or other magnetic or optical data storage > In general, processor 202 retrieves processing instructions and data from a data storage medium 208 using mass storage device 207 and downloads this information into random access memory 203 for execution. Processor 202, then executes an instruction stream from random access memory 203 or read-only memory 204. Command selections and information input at input device 206 are used to direct the flow of instructions executed by processor 202. Equivalent input device 206 may also be a pointing device such as a conventional mouse or trackball device. The results of this processing execution are then displayed on display device > The preferred embodiment of the present invention is implemented as a software module, which may be executed on a computer system such as computer system 200 in a conventional manner. Using well known techniques, the application software of the preferred embodiment is stored on data storage medium 208 and subsequently loaded into and executed within computer system 200. Once initiated, the software of the preferred embodiment operates in the manner described below. > FIG. 3 illustrates the Open Systems Interconnection (OSI) reference model. OSI Model 300 is an international standard that provides a common basis for the coordination of standards development, for the purpose of systems interconnection. The present invention is implemented to function as a routing switch within the "application layer" of the OSI model. The model defines seven layers, with each layer communicating with its peer layer in another node through the use of a protocol. Physical layer 301 is the lowest layer, with responsibility to transmit unstructured bits across a link. Data link layer 302 is the next layer above physical layer 301. Data link layer 302 transmits chunks across the link and deals with problems like checksumming to detect data corruption, orderly coordination of the use of shared media and addressing when multiple systems are reachable. Network bridges operate within data link layer 302. > Network layer 303 enables any pair of systems in the network to communicate with each other. Network layer 303 contains hardware units such as routers, that handle routing, packet fragmentation and reassembly of packets. Transport layer 304 establishes a reliable communication stream between a pair of systems, dealing with errors such as lost packets, duplicate packets, packet reordering and fragmen- tation. Session layer 305 offers services above the simple communication stream provided by transport layer 304. These services include dialog control and chaining. Presentation layer 306 provides a means by which OSI compliant applications can agree on representations for data. Finally, 5 application layer 307 includes services such as file transfer. access and management services (FTAM), electronic mail and virtual terminal (VT) services. Application layer 307 provides a means for application programs to access the OSI environment. As described above, the present invention is 10 implemented to function as a routing switch in application layer 307. Application layer routing creates an open channel for the management, and the selective flow of data from remote databases on a network. #### A. Overview FIG. 4A illustrates conceptually the user value chain as it exists today. The user value chain in FIG. 4A depicts the types of transactions that are performed today, and the channels through which the transactions are performed. A includes any type of commercial or other type of interaction that a user may want to perform. Examples of transactions include a deposit into a bank account, a request for a loan from a bank, a purchase of a car from a car dealership or a of other transactions are also possible. A typical user transaction today may involve user 100 walking into a bank or driving up to a teller machine, and interacting with a live bank teller, or automated teller machine (ATM) software applications. Alternatively, user 30 100 can perform the same transaction by using a personal computer (PC), activating application software on his PC to access his bank account, and dialing into the bank via a modem line. If user 100 is a Web user, however, there is no current mechanism for performing a robust, real-time trans- 35 action with the bank, as illustrated in FIG. 4A. CGI scripts provide only limited two-way capabilities, as described above. Thus, due to this lack of a robust mechanism by which real-time Web transactions can
be performed, the bank is unable to be a true "Web merchant," namely a 40 merchant capable of providing complete transactional services on the Web. According to one embodiment of the present invention, as illustrated in FIG. 4B, each merchant that desires to be a Web merchant can provide real-time transactional capabili- 45 ties to users who desire to access the merchants' services via the Web. This embodiment includes a service network running on top of a facilities network, namely the Internet, the Web or e-mail networks. For the purposes of this application, users are described as utilizing PC's to access 50 the Web via Web server "switching" sites. (Switching is described in more detail below). Users may also utilize other personal devices such as network computers or cellular devices to access the merchants' services via appropriate switching sites. These switching sites include non-Web 55 network computer sites and cellular provider sites. Five components interact to provide this service network functionality, namely an exchange, an operator agent, a management agent, a management manager and a graphical user interface. All five components are described in more 60 As illustrated in FIG. 5A, user 100 accesses Web server 104. Having accessed Web server 104, user 100 can decide that he desires to perform real-time transactions. When Web server 104 receives user 100's indication that he desires to 65 perform real-time transactions, the request is handed over to an exchange component. Thus, from Web page 105, for example, user 100 can select button 500, entitled "Transactions" and Web server 104 hands user 100's request over to the exchange component. The button and the title can be replaced by any mechanism that can instruct a Web server to hand over the consumer's request to the exchange compo- FIG. 5B illustrates exchange 501. Exchange 501 comprises Web page 505 and point-of-service (POSvc) applications 510. Exchange 501 also conceptually includes a switching component and an object routing component (described in more detail below). POSvc applications 510 are transactional applications, namely applications that are designed to incorporate and take advantage of the capabilities provided by the present invention. Although exchange 501 is depicted as residing on Web server 104, the exchange can also reside on a separate computer system that resides on the Internet and has an Internet address. Exchange 501 may also include operator agent 503 that interacts with a management manager (described in more detail below). Exchange 501 creates and allows for the management (or "transaction" for the purposes of the present invention 20 distributed control) of a service network, operating within the boundaries of an IP-based facilities network. Thus, exchange 501 and a management agent component, described in more detail below, under the headings "VAN Switch and Object Routing," together perform the purchase of a car with financing from a bank. A large variety 25 switching, object routing, application and service management functions according to one embodiment of the present > Exchange 501 processes the consumer's request and displays an exchange Web page 505 that includes a list of POSvc applications 510 accessible by exchange 501. A POSvc application is an application that can execute the type of transaction that the user may be interested in performing. The POSvc list is displayed via the graphical user interface component. One embodiment of the present invention supports HyperText Markup Language as the graphical user interface component. Virtual Reality Markup Language and Java™ are also supported by this embodiment. A variety of other graphical user interface standards can also be utilized to implement the graphical user interface. > An example of a POSvc application list is illustrated in FIG. 5C. User 100 can thus select from POSvc applications Bank 510(1), Car Dealer 510(2) or Pizzeria 510(3). Numerous other POSvc applications can also be included in this selection. If user 100 desires to perform a number of banking transactions, and selects the Bank application, a Bank POSvc application will be activated and presented to user 100, as illustrated in FIG. 5D. For the purposes of illustration, exchange 501 in FIG. 5D is shown as running on a different computer system (Web server 104) from the computer systems of the Web merchants running POSvc applications (computer system 200). Exchange 501 may, however, also be on the same computer system as one or more of the computer systems of the Web merchants. > Once Bank POSvc application 510 has been activated, user 100 will be able to connect to Bank services and utilize the application to perform banking transactions, thus accessing data from a host or data repository 575 in the Bank "Back Office." The Bank Back Office comprises legacy databases and other data repositories that are utilized by the Bank to store its data. This connection between user 100 and Bank services is managed by exchange 501. As illustrated in FIG. 5D, once the connection is made between Bank POSvc application 510(1), for example, and Bank services, an operator agent on Web server 104 may be activated to ensure the availability of distributed functions and capabilities. Each Web merchant may choose the types of services that it would like to offer its clients. In this example, if Bank decided to include in their POSvc application access to checking and savings accounts, user 100 will be able to perform real-time transactions against his checking and savings accounts. Thus, if user 100 moves \$500 from his checking account into his savings account, the transaction 5 will be performed in real-time, in the same manner the transaction would have been performed by a live teller at the bank or an ATM machine. Therefore, unlike his prior access to his account, user 100 now has the capability to do more types of robust, real-time transactions from a Web client is a significant aspect of the present invention. Bank can also decide to provide other types of services in POSvc application 510(1). For example, Bank may agree with Car dealership to allow Bank customers to purchase a car from that dealer, request a car loan from Bank, and have the entire transaction performed on the Web, as illustrated in FIG. 5E. In this instance, the transactions are not merely two-way, between the user and Bank, but three-way, to one aspect of the present invention, this three-way transaction can be expanded to n-way transactions, where n represents a predetermined number of merchants or other service providers who have agreed to cooperate to provide services to users. The present invention therefore allows for 25 "any-to-any" communication and transactions on the Web, thus facilitating a large, flexible variety of robust, real-time transactions on the Web. Finally, Bank may also decide to provide intra-merchant or intra-bank services, together with the inter-merchant services described above. For example, if Bank creates a POSvc application for use by the Bank Payroll department, Bank may provide its own employees with a means for submitting timecards for payroll processing by the Bank's Human Resources (HR) Department. An employee selects 35 the Bank HR POSvc application, and submits his timecard. The employee's timecard is processed by accessing the employee's payroll information, stored in the Bank's Back Office. The transaction is thus processed in real-time, and the employee receives his paycheck immediately. B. Van Switching and Object Routing As described above, exchange 501 and management agent 601, illustrated in FIG. 6A, together constitute a value-added network (VAN) switch. These two elements may take on server or master-slave roles. Management manager 603 is illustrated as residing on a separate computer system on the Internet. Management manager 603 can, however, also reside on the same machine as exchange 501. Management on exchange 501. VAN switch 520 provides multi-protocol object routing, depending upon the specific VAN services chosen. This multi-protocol object routing is provided via a proprietary protocol, TransWeb™ Management Protocol (TMP). TMP 55 the present invention. incorporates the same security features as the traditional Simple Network Management Protocol, SNMP. It also allows for the integration of other traditional security mechanisms, including RSA security mechanisms. One embodiment of the present invention utilizes TMP 60 and distributed on-line service information bases (DOLSIBs) to perform object routing. Alternatively, TMP can incorporate s-HTTP, Java™, the WinSock API or ORB with DOLSIBs to perform object routing. DOLSIBs are virtual information stores optimized for networking. All 65 information entries and attributes in a DOLSIB virtual information store are associated with a networked object identity. The networked object identity identifies the information entries and attributes in the DOLSIB as individual networked objects, and each networked object is assigned an Internet address. The Internet address is assigned based on the IP address of the node at which the networked object For example, in FIG. 5A, Web server 104 is a node on the Internet, with an IP address. All networked object associated with Web server 104 will therefore be assigned an Internet than browse his bank account. The ability to perform these 10 address based on the Web server 104's IP address. These networked objects thus "branch" from the node, creating a hierarchical tree structure. The Internet address for each networked object in the tree essentially establishes the individual object as an "IP-reachable" or accessible node on the Internet. TMP utilizes this Internet address to uniquely identify and access the object from the DOLSIB. FIG. 6B illustrates an example of this hierarchical addressing tree structure. Each object in the DOLSIB has a name, a syntax and an amongst the consumer, Bank and Car
dealership. According 20 encoding. The name is an administratively assigned object ID specifying an object type. The object type together with the object instance serves to uniquely identify a specific instantiation of the object. For example, if object 610 is information about models of cars, then one instance of that object would provide user 100 with information about a specific model of the car while another instance would provide information about a different model of the car. The syntax of an object type defines the abstract data structure corresponding to that object type. Encoding of objects defines how the object is represented by the object type syntax while being transmitted over the network. C. Management and Administration As described above, exchange 501 and management agent 601 together constitute a VAN switch. FIG. 7 illustrates conceptually the layered architecture of VAN switch 520. Specifically, boundary service 701 provides the interfaces between VAN switch 520, the Internet and the Web, and multi-media end user devices such as PCs, televisions or telephones. Boundary service 701 also provides the interface to the on-line service provider. A user can connect to a local application, namely one accessible via a local VAN switch, or be routed or "switched" to an application accessible via a remote VAN switch. Switching service 702 is an OSI application layer switch. different roles as necessary, including peer-to-peer, client- 45 Switching service 702 thus represents the core of the VAN switch. It performs a number of tasks including the routing of user connections to remote VAN switches, described in the paragraph above, multiplexing and prioritization of requests, and flow control. Switching service 702 also manager 603 interacts with the operator agent 503 residing 50 facilitates open systems' connectivity with both the Internet (a public switched network) and private networks including back office networks, such as banking networks. Interconnected application layer switches form the application network backbone. These switches are one significant aspect of Management service 703 contains tools such as Information Management Services (IMS) and application Network Management Services (NMS). These tools are used by the end users to manage network resources, including VAN switches. Management service 703 also provides applications that perform Operations, Administration, Maintenance & Provisioning (OAM&P) functions. These OAM&P functions include security management, fault management, configuration management, performance management and billing management. Providing OAM&P functions for applications in this manner is another significant aspect of the present invention. Finally, application service 704 contains application programs that deliver customer services. Application service 704 includes POSvc applications such as Bank POSvc described above, and illustrated in FIG. 6A. Other examples of VAN services include multi-media messaging, archival/ retrieval management, directory services, data staging, conferencing, financial services, home banking, risk management and a variety of other vertical services. Each VAN service is designed to meet a particular set of requirements related to performance, reliability, maintenance and ability 10 to handle expected traffic volume. Depending on the type of service, the characteristics of the network elements will differ. VAN service 704 provides a number of functions including communications services for both management and end users of the network and control for the user over 15 the user's environment. FIG. 8 is a flow diagram illustrating one embodiment of the present invention. A user connects to a Web server running an exchange component in step 802. In step 804, the user issues a request for a transactional application, and the 20 web server hands off the request to an exchange in step 806. The exchange activates a graphical user interface to present user with a list of POSvc application options in step 808. In step 810, the user makes a selection from the POSvc application list. In step 812, the switching component in the 25 exchange switches the user to the selected POSvc application, and in step 814, the object routing component executes the user's request. Data is retrieved from the appropriate data repository via TMP in step 816, and finally, the user may optionally continue the transaction in step 818 30 or end the transaction. Thus, a configurable value-added network switching and object routing method and apparatus is disclosed. These specific arrangements and methods described herein are merely illustrative of the principles of the present invention. 35 Numerous modifications in form and detail may be made by those of ordinary skill in the art without departing from the scope of the present invention. Although this invention has been shown in relation to a particular preferred embodiment, it should not be considered so limited. Rather, the present 40 invention is limited only by the scope of the appended claims. We claim: 1. A configurable value-added network switch for enabling real-time transactions on a network, said config- 45 urable value-added network switch compromising: means for switching to a transactional application in response to a user specification from a network application, said transactional application providing a user with a plurality of transactional services managed 50 by at least one value-added network service provider, said value-added network service provider keeping a transaction flow captive, said plurality of transactional services being performed interactively and in real time; means for transmitting a transaction request from said 55 transactional application; and means for processing said transaction request. 2. The configurable value-added network switch as claimed in claim 1 wherein said means for switching to a 60 transactional application further comprises: means for receiving said user specification; means for enabling a switch to said transactional application: and means for activating said transactional application. 3. The configurable value-added network switch as claimed in claim 2 wherein said means for activating said transactional application further includes means for creating a transaction link between said network application and said transactional application. 4. The configurable value-added network switch as claimed in claim 2 wherein said means for receiving said user specification further comprises: means for presenting said user with a list of transactional applications, each of said transactional application being associated with a particular value-added network service provider; and means for submitting said user specification according to a user's selection of said transactional application from said list of transactional applications. 5. The configurable value-added network switch as claimed in claim 1 wherein said means for processing said transaction request further comprises means for coupling said means for transmitting to a host means. 6. The configurable value-added network switch as claimed in claim 5 wherein said host means contains data corresponding to said transaction request. 7. The configurable value-added network switch as claimed in claim 1 wherein said value-added network service providers cooperating to provide said plurality of transactional services to users. 8. The configurable value-added network switch as claimed in claim 1 further comprising means for controlling and prioritizing multiple transaction requests initiated by various users. 9. The configurable value-added network switch as claimed in claim 1 further comprising means for providing security management, fault management, configuration management, performance management and billing management. 10. A method for configuring a value-added network switch for enabling real-time transactions on a network, said method for configuring said value-added network switch compromising the steps of: switching to a transactional application in response to a user specification from a network application, said transactional application providing a user with a plurality of transactional services managed by at least one value-added network service provider, said valueadded network service provider keeping a transaction flow captive, said plurality of transactional services being performed interactively and in real time; transmitting a transaction request from said transactional application; and processing said transaction request. 11. The method for configuring said value-added network switch as claimed in claim 10 wherein said step of switching to a transactional application further comprises the steps of: receiving said user specification; enabling a switch to said transactional application; and activating said transactional application. 12. The method for configuring said value-added network switch as claimed in claim 11 wherein said step of activating said transactional application further includes a step of creating a transaction link between said network application and said transactional application. 13. The method for configuring said value-added network switch as claimed in claim 11 further comprising the steps controlling security; performing fault management; providing configuration management; managing performance; and enabling billing management. 14. The method for configuring said value-added network switch as claimed in claim 11 wherein said step of receiving said user specification further comprises steps of: presenting said user with a list of transactional 5 applications, each of said transactional application being associated with a particular Internet service provider; and submitting said user specification according to a user's selection of said transactional application from said list of transactional applications. 15. The method for configuring said value-added network switch as claimed in claim 10
wherein said step of processing said transaction request further comprises the step of transmitting said transaction request to a host means. 16. The method for configuring said value-added network switch as claimed in claim 15 wherein said host means contains data corresponding to said transaction request. 17. The method for configuring said value-added network switch as claimed in claim 10 wherein said value-added network service providers cooperate to provide said plurality of transactional services to said user. 18. The method for configuring said value-added network switch as claimed in claim 10 further comprising the step of controlling and prioritizing multiple transaction requests ²⁵ initiated by various users. 19. A method for enabling object routing on a network, said method for enabling object routing comprising the steps of: associating an object identity with information entries and attributes, wherein the object identity represents a networked object; storing said information entries and said attributes in a virtual information store; and assigning a unique network address to said object identity. 20. The method in claim 19 wherein said step of associating said object identity with said information entries and said attributes in said virtual information store further includes the step of associating a name, a syntax and an 40 encoding for said object identity. 21. The method in claim 20 wherein said name associated with said object identity specifies an object type. 22. The method in claim 21 wherein said object type and an object instance uniquely identify an instantiation of said 45 object type. 23. The method in claim 22 wherein said syntax defines a data structure for said object type. 24. The method in claim 19 further comprising the step of utilizing said unique network address to identify and route 50 said object identity on the network. 25. The method in claim 19 further comprising the step of utilizing said unique network address to identify and route said object identity on the Internet. 26. The method in claim 19 further comprising the step of 55 utilizing said unique network address of said object identity to perform Operations, Administration, Maintenance & Provisioning (OAM&P) functions. 27. An object router on a network, said object router comprising: means for associating an object identity with information entries and attributes, wherein the object identity represents a networked object; means for storing said information entries and said attributes in a virtual information store; and means for assigning a unique network address to said object identity. 28. The object router in claim 27 wherein said means for associating said object identity with said information entries and said attributes in said virtual information store further includes means for associating a name, a syntax and an encoding for said object identity. 29. The object router in claim 28 wherein said name of said object identity specifies an object type. 30. The object router in claim 29 wherein said object type and an object instance uniquely identify an instantiation of said object type. 31. The object router in claim 30 wherein said syntax defines a data structure for said object type. 32. The object router in claim 27 further comprising means for utilizing said unique network address to identify and route said object identity on the network. 33. The object router in claim 27 further comprising means for utilizing said unique network address to identify and route said object identity on the Internet. 34. The object router in claim 27 further comprising the step of utilizing said unique network address of said object identity to perform Operations, Administration, Maintenance & Provisioning (OAM&P) functions. 35. A configurable value-added network system for enabling real-time transactions on a network, said configurable value-added network system comprising: means for switching to a transactional application in response to a user specification from a network application, said transactional application providing a user with a plurality of transactional services managed by at least one value-added network service provider, said value-added network service provider keeping a transaction flow captive, said plurality of transactional services being performed interactively and in real time; means for activating an agent to create a transaction link between said user application and said transactional application; means for transmitting a transaction request from said transactional application; and a host means for processing said transaction request and retrieving data corresponding to said transaction request. 28 ### (12) United States Patent #### Arunachalam (10) Patent No.: US 8,108,492 B2 (45) Date of Patent: Jan. 31, 2012 #### (54) WEB APPLICATION NETWORK PORTAL (76) Inventor: Lakshmi Arunachalam, Menlo Park, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 12/628,060 (22) Filed: Nov. 30, 2009 (65) **Prior Publication Data** US 2010/0306102 A1 Dec. 2, 2010 #### Related U.S. Application Data - (60) Division of application No. 11/980,185, filed on Oct. 30, 2007, now Pat. No. 8,037,158, which is a continuation-in-part of application No. 09/792,323, filed on Feb. 23, 2001, now Pat. No. 7,340,506, which is a division of application No. 09/296,207, filed on Apr. 21, 1999, now Pat. No. 6,212,556, which is a continuation-in-part of application No. 08/879,958, filed on Jun. 20, 1997, now Pat. No. 5,987,500, which is a division of application No. 08/700,726, filed on Aug. 5, 1996, now Pat. No. 5,778,178. - (60) Provisional application No. 60/006,634, filed on Nov. 13, 1995. - (51) Int. Cl. G06F 13/00 (2006.01) #### (56) #### References Cited #### U.S. PATENT DOCUMENTS 4,829,372 A 5/1989 McCalley et al. 7/1989 Trottier et al. 4,851,988 A 7/1989 Trottier et al | 4,984,155 | Α | 1/1991 | Geler et al. | |-----------|---|---------|------------------------| | 5,125,091 | Α | 6/1992 | Staas, Jr. et al. | | 5,148,474 | Α | 9/1992 | Haralambopoulos et al. | | 5,159,632 | Α | 10/1992 | Crandall | | 5,231,566 | Α | 7/1993 | Blutinger et al. | | 5,239,662 | Α | 8/1993 | Danielson et al. | | 5,285,383 | A | 2/1994 | Lindsey et al. | | 5,297,249 | A | 3/1994 | Bernstein et al. | | 5,329,589 | Α | 7/1994 | Fraser et al. | | 5,329,619 | Α | 7/1994 | Page et al. | | 5,347,632 | Α | 9/1994 | Filepp et al. | | 5,367,635 | Α | 11/1994 | Bauer et al. | | 5,383,113 | Α | 1/1995 | Kight et al. | | 5,404,523 | Α | 4/1995 | Dellafera et al. | | | | (Cont | tinued) | | | | | | 1/1001 Color et al #### FOREIGN PATENT DOCUMENTS WO WO WO 97/18515 A1 5/1997 WO 00/63781 A1 10/2000 #### OTHER PUBLICATIONS U.S. Appl. No. 12/268,060, filed Nov. 30, 2009, Arunachalam. U.S. Appl. No. 12/628,066, filed Nov. 30, 2009, Arunachalam. U.S. Appl. No. 12/628,068, filed Nov. 30, 2009, Arunachalam. U.S. Appl. No. 12/628,069, filed Nov. 30, 2009, Arunachalam. (Continued) Primary Examiner - Viet Vu #### (57) ABSTRACT The present invention provides a method and apparatus for providing real-time, two-way transactional capabilities on the Web. Specifically, one embodiment of the present invention discloses a method for enabling object routing, the method comprising the steps of creating a virtual information store containing information entries and attributes associating each of the information entries and the attributes with an object identity, and assigning a unique network address to each of the object identities. A method is also disclosed for enabling service management of the value-added network service, to perform OAM&P functions on the services network. #### 13 Claims, 13 Drawing Sheets ## US 8,108,492 B2 Page 2 | U.S. P. | ATENT | DOCUMENTS | 5,892,821 A | 4/1999 | | |---|--|--
--|---|---| | 5,408,619 A | 4/1995 | Oran | 5,893,076 A
5,895,454 A | | Hafner et al.
Harrington | | 5,414,812 A | | Filip et al. | 5,897,621 A | | Boesch et al. | | 5,428,792 A | | Conner et al. | 5,901,228 A | | Crawford | | 5,432,937 A
5,434,974 A | | Tevanian et al.
Loucks et al. | 5,909,492 A | | Payne et al. | | 5,440,744 A | | Jacobson et al. | 5,910,987 A | 6/1999 | Ginter
Gupta et al. | | 5,442,771 A | | Filepp et al. | 5,913,061 A
5,931,967 A | 8/1999 | | | 5,442,791 A | | Wrabetz et al. | 5,946,509 A | | Morton et al. | | 5,444,192 A | | Shetyo et al.
Hegarty et al. | 5,956,400 A | | Chaum et al. | | 5,446,896 A
5,452,433 A | | Nihart et al. | 5,956,509 A | | Kevner | | 5,455,903 A | 10/1995 | Jolissaint et al. | 5,958,004 A
5,960,411 A | | Helland et al.
Hartman et al. | | 5,475,819 A | | Miller et al. | 5,987,500 A | | Arunachalam | | 5,491,800 A | | Goldsmith et al. Stutz et al. | 6,003,085 A | | Ratner et al. | | 5,517,645 A
5,519,868 A | | Allen et al. | 6,014,651 A | | Crawford
Helland et al. | | 5,537,464 A | | Lewis et al. | 6,014,666 A
6,049,785 A | | Gifford | | 5,539,909 A | | Tanaka et al. | 6,049,819 A | | Buckle et al. | | 5,557,780 A | | Edwards et al.
Hoover et al. | 6,055,514 A | 4/2000 | | | 5,560,005 A
5,577,251 A | | Hamilton et al. | 6,055,567 A | | Ganesan et al. | | | | Chen et al. | 6,073,237 A
6,092,053 A | | Ellison et al.
Boesch et al. | | 5,592,378 A | | Cameron et al. | 6,094,673 A | | Dilip et al. | | 5,604,905 A | | Tevanian et al. | 6,101,482 A | 8/2000 | De Ångelo et al. | | 5,613,148 A
5,664,111 A | | Bezviner et al.
Nahan et al. | 6,101,527 A | | Lejeune et al. | | 5,671,279 A | | Elgamal et al. | 6,119,152 A | | Carlin et al.
Boesch | | 5,677,708 A | 10/1997 | Matthews, III et al. | 6,125,185 A
6,125,352 A | | Franklin et al. | | - 1 1 | | Carlin et al. | 6,128,315 A | | Takeuchi | | - 1 - 1 | | Bezy et al. Anderson et al. | 6,134,594 A | | Helland et al. | | 5,706,442 A
5,708,780 A | | Levergood et al. | 6,135,646 A | | Kahn et al. | | 5,710,887 A * | 1/1998 | Chelliah et al 705/26.62 | 6,145,090 A
6,185,609 B1 | | Yamaguchi et al.
Rangarajan et al. | | 5,712,913 A | 1/1998 | | 6,192,250 BI | | Buskens et al. | | 5,715,314 A | | Payne et al. Danish et al. | 6,205,433 B1 | | Boesch et al. | | 5,715,444 A
5,724,424 A | | Gifford | 6,212,556 B1 | | Arunachalam | | 5,737,533 A | | de Hond | 6,212,634 B1
6,249,291 B1 | | Gerr et al.
Popp et al. | | 5,742,762 A | | Scholl et al. | 6,279,001 B1 | | DeBettencourt et al. | | | | Gennaro et al. | | | | | 5,742,768 A | | | 6,289,322 B1 | | Kitchen et al. | | 5,745,681 A | 4/1998 | Levine et al. | 6,295,522 B1 | 9/2001 | Boesch | | | 4/1998
5/1998 | | 6,295,522 B1
6,301,601 B1 | 9/2001
10/2001 | Boesch
Helland et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A | 4/1998
5/1998
5/1998
5/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. | 6,295,522 B1
6,301,601 B1
6,327,577 B1 | 9/2001
10/2001
12/2001 | Boesch | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A | 4/1998
5/1998
5/1998
5/1998
5/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001 | Boesch
Helland et al.
Garrison et al.
Crawford
Gancsan et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002 | Boesch
Helland et al.
Garrison et al.
Crawford
Gancsan et al.
Guenthner et al.
Burfield et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
6/2002 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
7/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,457,066 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
6/2002
9/2002
9/2002 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
7/1998
8/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al | 6,295,522 B1
6,301,601 B1
6,327,579 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,457,066 B1
6,473,740 B2 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
6/2002
9/2002
9/2002
10/2002 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
7/1998
8/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,463,362 B1
6,411,943 B1
6,457,066 B1
6,457,066 B1
6,473,740 B2
6,473,791 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
6/2002
9/2002
9/2002
10/2002 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A *
5,794,221 A
5,794,234 A
5,809,483 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
9/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,453,426 B1
6,473,706 B2
6,473,791 B1
6,473,791 B1
6,486,895 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
6/2002
9/2002
9/2002
10/2002
11/2002 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A
5,794,221 A
5,794,234 A
5,809,483 A
5,812,779 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
9/1998 | Levine et al. Herz
et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Egendorf Church et al. Broka et al. Ciscon et al. | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,457,066 B1
6,473,740 B2
6,473,740 B2
6,473,791 B1
6,486,895 B1
6,490,567 B1
6,530,518 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
6/2002
9/2002
9/2002
10/2002
11/2002
11/2002
3/2003 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A
5,794,221 A
5,809,483 A
5,812,779 A
5,822,569 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
9/1998
10/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Croscon et al. McPartlan et al. | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,457,066 B1
6,473,740 B2
6,473,791 B1
6,486,895 B1
6,490,567 B1
6,530,518 B1
6,533,427 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
9/2002
9/2002
10/2002
11/2002
12/2002
12/2003
4/2003 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A
5,794,221 A
5,794,221 A
5,809,483 A
5,812,779 A
5,822,569 A
5,826,085 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
9/1998
10/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Egendorf Church et al. Broka et al. Ciscon et al. | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,453,426 B1
6,473,706 B1
6,473,791 B1
6,486,895 B1
6,490,567 B1
6,530,518 B1
6,553,427 B1
6,574,607 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
6/2002
9/2002
9/2002
10/2002
10/2002
11/2002
3/2003
3/2003
4/2003
6/2003 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A
5,794,221 A
5,794,234 A
5,809,483 A
5,812,779 A
5,822,569 A
5,826,685 A
5,826,241 A
5,828,666 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
9/1998
9/1998
10/1998
10/1998
10/1998 | Levine et al. Herz et al. Rose et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al | 6,295,522 B1
6,301,601 B1
6,327,577 B1
6,327,579 B1
6,334,116 B1
6,360,262 B1
6,363,362 B1
6,411,943 B1
6,453,426 B1
6,473,740 B2
6,473,791 B1
6,486,895 B1
6,490,567 B1
6,530,518 B1
6,553,427 B1
6,553,427 B1
6,574,607 B1
6,625,581 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
6/2002
9/2002
9/2002
10/2002
11/2002
12/2002
3/2003
4/2003
6/2003
9/2003 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski | | 5,745,681 A 5,754,939 A 5,757,917 A 5,758,072 A 5,758,072 A 5,771,354 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,794,234 A 5,809,483 A 5,812,779 A 5,822,569 A 5,826,085 A 5,826,241 A 5,828,666 A 5,835,726 A | 4/1998
5/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Focsaneanu et al. Schwed | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,457,066 B1 6,457,066 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 B1 6,678,666 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
3/2002
9/2002
9/2002
10/2002
11/2002
12/2002
3/2003
4/2003
9/2003
1/2004 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. | | 5,745,681 A
5,754,939 A
5,757,917 A
5,758,072 A
5,758,327 A
5,771,354 A
5,774,670 A
5,778,178 A
5,780,780 A
5,781,631 A
5,793,964 A
5,794,221 A
5,794,221 A
5,809,483 A
5,812,779 A
5,826,085 A
5,826,085 A
5,826,085 A
5,826,041 A
5,835,726 A
5,845,061 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
9/1998
10/1998
10/1998
10/1998
11/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Egendorf Church et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Focsaneanu et al. Schwed Miyamoto et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,457,066 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,553,427 B1 6,553,427 B1 6,553,648 B1 6,678,664 B1 6,678,696 B1 6,678,696 B1 6,678,696 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
9/2002
9/2002
9/2002
10/2002
11/2002
12/2002
3/2003
4/2003
9/2003
1/2004
1/2004
3/2004 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,809,483 A 5,812,779 A 5,822,569 A 5,826,085 A 5,826,085 A 5,826,085 A 5,828,666 A 5,835,726 A 5,845,061 A 5,845,073 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
9/1998
10/1998
10/1998
10/1998
10/1998
11/1998
11/1998
12/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Focsaneanu et al. Schwed | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,695 B1 6,678,696 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 | 9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
6/2002
9/2002
9/2002
10/2002
11/2002
3/2003
4/2003
6/2003
9/2003
1/2004
1/2004
1/2004
1/2004 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Marhur et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,758,072 A 5,771,354 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,794,221 A 5,809,483 A 5,812,779 A 5,826,085 A 5,826,085 A 5,826,241 A 5,828,666 A 5,835,726 A 5,845,061 A 5,845,073 A 5,845,073 A 5,845,074 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998
12/1998
12/1998
12/1998
12/1998 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Schwed Miyamoto et al. Carlin et al. Woolston Gervais et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,457,066 B1 6,473,740 B2 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,530,518 B1 6,553,427 B1 6,574,607 B1 6,574,607 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,839,677 B2 6,850,996 B2 |
9/2001
10/2001
12/2001
12/2001
12/2001
3/2002
6/2002
9/2002
9/2002
10/2002
11/2002
3/2003
4/2003
6/2003
1/2004
1/2004
1/2004
1/2005
2/2005 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Marhur et al. Wagner | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,072 A 5,771,354 A 5,774,670 A 5,781,631 A 5,780,780 A 5,781,631 A 5,794,221 A 5,809,483 A 5,812,779 A 5,826,085 A 5,826,241 A 5,826,666 A 5,835,726 | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998
12/1998
12/1998
12/1998
12/1999
1/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Fiscon et al. Criscon et al. McPartlan et al. Bennett et al. Stoin et al. Focsaneanu et al. Carlin et al. Woolston Gervais et al. Sonderegger et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,453,426 B1 6,473,740 B2 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,530,567 B1 6,530,696 B1 6,678,696 B2 6,850,974 B1 6,850,974 B1 6,850,974 B1 6,850,974 B1 6,851,111 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
12/2001
3/2002
9/2002
9/2002
10/2002
11/2002
12/2002
3/2003
4/2003
6/2003
9/2004
1/2004
1/2004
1/2005
2/2005
2/2005
2/2005 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Mathur et al. Wagner Ganesan et al. Coffee | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,178 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,809,483 A 5,812,779 A 5,822,569 A 5,826,085 5,835,073 A 5,845,061 A 5,845,073 A 5,845,064 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
10/1998
12/1998
12/1998
1/1999
1/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Cschwed Miyamoto et al. Carlin et al. Carlin et al. Carlin et al. Schwed Miyamoto et al. Carlin et al. Conderegger et al. Henckel et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,678,664 B1 6,678,664 B1 6,678,669 B1 6,678,696 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,996 B2 6,856,974 B1 6,931,111 B1 6,932,268 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
12/2001
3/2002
9/2002
9/2002
9/2002
10/2002
11/2002
3/2003
4/2003
9/2003
1/2004
1/2004
1/2005
2/2005
2/2005
8/2005 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Mathur et al. Wagner Ganesan et al. Coffee McCoy et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,809,483 A 5,812,779 A 5,826,241 A 5,826,685 A 5,826,241 A 5,828,666 A 5,835,726 A 5,835,726 A 5,845,061 A 5,845,073 A 5,845,073 A 5,845,065 A 5,845,073 A 5,845,0674 A 5,859,978 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998
11/1998
12/1998
12/1998
1/1999
1/1999
1/1999
1/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Fiscon et al. Criscon et al. McPartlan et al. Bennett et al. Stoin et al. Focsaneanu et al. Carlin et al. Woolston Gervais et al. Sonderegger et al. | 6,295,522 B1 6,301,601 B1 6,327,579 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,457,066 B1 6,457,066 B1 6,473,740 B2 6,473,740 B2 6,473,740 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,996 B2 6,856,974 B1 6,931,111 B1 6,932,268 B1 6,932,268 B1 6,932,268 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
12/2001
3/2002
6/2002
9/2002
10/2002
11/2002
11/2002
12/2003
6/2003
6/2003
9/2004
1/2004
1/2004
1/2004
1/2005
8/2005
8/2005
8/2005 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Marhur et al. Wagner Ganesan et al. Coffee McCoy et al. Ganesan et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,758,072 A 5,771,354 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,809,483 A 5,812,779 A 5,826,085 A 5,826,241 A 5,826,666 A 5,835,726 A 5,835,061 A 5,845,063 A 5,845,061 A 5,845,073 A 5,845,061 A 5,845,073 A 5,845,066 A 5,835,726 A 5,845,073 5,859,978 A 5,864,866 A 5,870,772 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
12/1998
12/1998
12/1998
12/1998
12/1999
1/1999
1/1999
2/1999
2/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Eigendorf Church et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Focsaneanu et al. Carlin et al. Woolston Gervais et al. Sonderegger et al. Henckel et al. Boesch et al. Lawlor et al. Kight et al. Kight et al. Kight et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,369,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,457,066 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,533,427 B1 6,574,607 B1 6,525,581 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,668 B1 6,714,962 B1 6,839,677 B2 6,850,996 B2 6,856,974 B1 6,931,111 B1 6,932,268 B1 6,948,063 B1 7,076,784 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
12/2001
12/2002
3/2002
9/2002
9/2002
10/2002
11/2002
3/2003
3/2003
1/2004
1/2004
1/2005
2/2005
8/2005
8/2005
7/2006 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Helland et al. Marhur et al. Wagner Ganesan et al. Coffee McCoy et al. Granesan et al. Russell et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,178 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,809,483 A 5,812,779 A 5,822,569 A 5,826,085 5,835,726 A 5,845,061 A 5,845,073 A 5,845,073 A 5,845,073 A 5,845,073 A 5,845,073 A 5,845,074 A 5,870,724 A 5,870,724 A 5,873,072 A 5,873,072 A 5,873,093 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
12/1998
12/1998
1/1999
1/1999
2/1999
2/1999
2/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stoin et al. Tossaneanu et al. Schwed Miyamoto et al. Carlin et al. Woolston Gervais et al. Henckel et al. Boesch et al. Lawlor et al. Kight et al. Williamson et al. | 6,295,522 B1 6,301,601 B1 6,327,579 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,457,066 B1 6,457,066 B1 6,473,740 B2 6,473,740 B2 6,473,740 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,996 B2 6,856,974 B1 6,931,111 B1 6,932,268 B1 6,932,268 B1 6,932,268 B1 | 9/2001
10/2001
12/2001
12/2001
12/2001
12/2001
3/2002
9/2002
9/2002
10/2002
11/2002
12/2003
3/2003
1/2004
1/2004
1/2004
1/2005
2/2005
8/2005
9/2005
9/2005
7/2006
7/2006 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Marhur et al. Wagner Ganesan et al. Coffee McCoy et al. Ganesan et al. | | 5,745,681 A 5,754,939 A 5,757,917 A 5,758,072 A 5,758,072 A 5,771,354 A 5,774,670 A 5,781,178 A 5,780,780 A 5,781,631 A 5,794,221 A 5,794,221 A 5,794,234 A 5,809,483 A 5,812,779 A 5,812,779 A 5,826,085 5,836,066 A 5,873,073 A 5,873,073 A 5,870,473 A 5,870,473 A 5,870,473 A 5,873,072 A 5,873,072 A 5,873,093 A 5,878,043 A |
4/1998
5/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998
12/1998
12/1998
12/1999
1/1999
1/1999
2/1999
2/1999
3/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Schwed Miyamoto et al. Carlin et al. Sonderegger et al. Henckel et al. Boesch et al. Lawlor et al. Carlin et al. Sonderegger et al. Henckel et al. Lawlor et al. Lawlor et al. Kight et al. Lawlor et al. Casey et al. Casey et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,696 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,996 B2 6,856,974 B1 6,931,111 B1 6,932,268 B1 6,948,063 B1 7,076,784 B1 7,080,051 B1 7,107,244 B2 7,120,602 B2 | 9/2001
10/2001
12/2001
12/2001
12/2001
12/2001
3/2002
9/2002
9/2002
9/2002
10/2002
11/2002
11/2003
3/2003
4/2003
9/2003
1/2004
1/2004
1/2005
2/2005
8/2005
8/2005
9/2006
7/2006
7/2006
9/2006
10/2006 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Marhur et al. Wagner Ganesan et al. Coffee McCoy et al. Granesan et al. Granesan et al. Crawford Kight et al. Kitchen et al. Kitchen et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,178 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,809,483 A 5,812,779 A 5,822,569 A 5,826,085 5,835,726 A 5,845,061 A 5,845,073 A 5,845,073 A 5,845,073 A 5,845,073 A 5,845,073 A 5,845,074 A 5,870,724 A 5,870,724 A 5,873,072 A 5,873,072 A 5,873,093 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998
12/1998
12/1998
12/1998
12/1999
1/1999
2/1999
2/1999
3/1999
3/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stoin et al. Tossaneanu et al. Schwed Miyamoto et al. Carlin et al. Woolston Gervais et al. Henckel et al. Boesch et al. Lawlor et al. Kight et al. Williamson et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,457,066 B1 6,473,740 B2 6,473,740 B2 6,473,741 B1 6,553,427 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 7,076,784 B1 7,080,051 B1 7,076,784 B1 7,080,051 B1 7,107,244 B2 7,120,602 B2 7,146,338 B2 | 9/2001 10/2001 12/2001 12/2001 12/2001 12/2001 3/2002 3/2002 9/2002 10/2002 10/2002 11/2003 4/2003 4/2003 1/2004 1/2005 2/2005 8/2005 8/2005 8/2005 8/2005 7/2006 9/2006 10/2006 10/2006 10/2006 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Helland et al. Mathur et al. Wagner Ganesan et al. Coffee McCoy et al. Ganesan et al. Russell et al. Crawford Kight et al. Kitchen et al. Kight et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,778,178 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,794,221 A 5,809,483 A 5,812,779 A 5,822,569 A 5,826,085 5,835,726 A 5,835,726 A 5,845,061 A 5,845,073 A 5,873,073 A 5,873,073 A 5,873,073 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,093 A 5,878,141 A 5,878,140 A 5,878,140 A | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
12/1998
12/1998
1/1999
1/1999
2/1999
2/1999
2/1999
3/1999
3/1999
3/1999
3/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stoin et al. Focsaneanu et al. Schwed Miyamoto et al. Carlin et al. Woolston Gervais et al. Lawlor et al. Lawlor et al. Kight et al. Williamson et al. Casey et al. Chaum Daly et al. Chaum Daly et al. Chaum Daly et al. DeFrancesco et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,451,426 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,533,427 B1 6,574,607 B1 6,525,581 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,664 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,996 B2 6,856,974 B1 6,931,111 B1 6,932,268 B1 6,938,063 B1 7,076,784 B1 7,080,051 B1 7,107,244 B2 7,120,602 B2 7,146,338 B2 7,175,074 B2 | 9/2001 10/2001 12/2001 12/2001 12/2001 12/2001 12/2001 12/2002 9/2002 9/2002 10/2002 11/2002 12/2002 3/2003 1/2004 1/2005 2/2005 8/2005 8/2005 8/2005 8/2005 7/2006 9/2006 10/2006 12/2006 12/2006 12/2006 12/2006 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Helland et al. Wagner Ganesan et al. Coffee McCoy et al. Granesan et al. Russell et al. Crawford Kight et al. Kitchen et al. Kight et al. Mejias et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,758,072 A 5,758,072 A 5,778,178 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,794,221 A 5,794,221 A 5,794,221 A 5,809,483 A 5,812,779 A 5,826,085 A 5,826,085 A 5,826,241 A 5,826,666 A 5,835,726 A 5,845,061 A 5,845,061 A 5,845,061 A 5,845,073 A 5,845,073 A 5,845,073 A 5,870,473 A 5,870,473 A 5,870,473 A 5,870,473 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,073 A 5,873,073 A 5,873,074 A 5,873,074 A 5,873,075 | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
10/1998
11/1998
11/1998
11/1999
11/1999
1/1999
1/1999
1/1999
1/1999
1/1999
1/1999
3/1999
3/1999
3/1999
3/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Schwed Miyamoto et al. Carlin et al. Sonderegger et al. Henckel et al. Boesch et al. Lawlor et al. Lawlor et al. Casey et al. Lawlor et al. Casey et al. Chaum Daly et al. Chaum Daly et al. DeFrancesco et al. Takano | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 B1 6,678,664 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,974 B1 6,931,111 B1 6,932,268 B1 6,948,063 B1 7,076,784 B1 7,080,051 B1 7,107,244 B2 7,120,602 B2 7,146,338 B2 7,175,074 B2 7,177,846 B2 | 9/2001 10/2001 12/2001 12/2001 12/2001 12/2001 12/2002 9/2002 9/2002 10/2002 11/2002 11/2002 11/2003 4/2003 4/2003 4/2003 1/2004 1/2004 1/2004 1/2005 2/2005 8/2005 9/2005 7/2006 7/2006 9/2006 10/2006 12/2006 2/2007 2/2007 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Helland et al. Wagner Ganesan et al. Coffee McCoy et al. Ganesan et al. Crawford Kight et al. Kitchen et al. Kight et al. Mejias et al. Moenickheim et al. | | 5,745,681 A 5,754,939 A 5,754,939 A 5,757,917 A 5,758,072 A 5,758,072 A 5,771,354 A 5,774,670 A 5,778,178 A 5,780,780 A 5,781,631 A 5,793,964 A 5,794,221 A 5,794,221 A 5,809,483 A 5,812,779 A 5,826,085 A 5,826,241 A 5,826,666 A 5,835,726 A 5,845,061 A 5,845,073 A 5,845,073 A 5,845,073 A 5,859,978 A 5,864,866 A 5,870,724 A 5,873,072 5,873,073 A 5,873,073 A 5,878,140 A 5,878,140 A 5,878,140 A 5,878,141 A 5,878,140 | 4/1998
5/1998
5/1998
5/1998
6/1998
6/1998
7/1998
7/1998
8/1998
8/1998
8/1998
8/1998
10/1998
10/1998
10/1998
11/1998
12/1998
12/1998
12/1998
12/1999
1/1999
2/1999
2/1999
3/1999
3/1999
3/1999
3/1999 | Levine et al. Herz et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Schwed Miyamoto et al. Carlin et al. Sonderegger et al. Henckel et al. Boesch et al. Lawlor et al. Kight et al. Lawlor et al. Kight et al. Lawlor et al. Carlin et al. Conderegger et al. Henckel et al. Lawlor et al. Carlin et al. Lawlor et al. Kight et al. Williamson et al. Chaum Daly et al. DeFrancesco et al. Takano Ratner et al. | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,530,518 B1 6,533,427 B1 6,534,607 B1 6,625,581 B1 6,678,664 B1 6,678,696 B1 6,678,696 B1 6,678,696 B1 6,678,696 B1 6,678,696 B1 6,678,696 B1 7,107,244 B2 7,120,602 B2 7,146,338 B2 7,175,074 B2 7,177,846 B2 7,177,846 B2 7,177,846 B2 7,177,846 B2 7,177,846 B2 | 9/2001 10/2001 12/2001 12/2001 12/2001 12/2001 12/2001
12/2002 9/2002 9/2002 9/2002 10/2002 11/2002 11/2003 4/2003 4/2003 4/2003 1/2004 1/2004 1/2005 2/2005 2/2005 2/2005 7/2006 9/2006 10/2006 12/2006 12/2006 2/2007 5/2007 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Mathur et al. Wagner Ganesan et al. Coffee McCoy et al. Ganesan et al. Crawford Kight et al. | | 5,745,681 A 5,754,939 A 5,757,917 A 5,758,072 A 5,758,072 A 5,771,354 A 5,771,354 A 5,774,670 A 5,781,631 A 5,793,964 A 5,794,221 A 5,794,221 A 5,794,234 A 5,809,483 A 5,812,779 A 5,826,085 A 5,826,241 A 5,826,666 A 5,835,726 A 5,845,061 A 5,845,061 A 5,845,061 A 5,845,063 A 5,845,063 A 5,845,063 A 5,845,063 A 5,845,063 A 5,845,063 A 5,870,473 A 5,870,473 A 5,870,473 A 5,870,473 A 5,870,473 A 5,873,072 A 5,873,072 A 5,873,072 A 5,873,073 | 4/1998 5/1998 5/1998 5/1998 6/1998 6/1998 7/1998 7/1998 8/1998 8/1998 8/1998 10/1998 10/1998 10/1998 12/1998 12/1998 12/1999 1/1999 1/1999 2/1999 2/1999 2/1999 3/1999 3/1999 3/1999 3/1999 3/1999 3/1999 | Levine et al. Herz et al. Rose et al. Filepp et al. Gardner et al. Crawford Montulli Arunachalam Ahmed Chaum Rogers et al. Broka et al. Ciscon et al. McPartlan et al. Bennett et al. Stein et al. Schwed Miyamoto et al. Carlin et al. Sonderegger et al. Henckel et al. Boesch et al. Lawlor et al. Lawlor et al. Casey et al. Lawlor et al. Casey et al. Chaum Daly et al. Chaum Daly et al. DeFrancesco et al. Takano | 6,295,522 B1 6,301,601 B1 6,327,577 B1 6,327,579 B1 6,334,116 B1 6,360,262 B1 6,363,362 B1 6,411,943 B1 6,453,426 B1 6,453,426 B1 6,473,740 B2 6,473,791 B1 6,486,895 B1 6,490,567 B1 6,530,518 B1 6,553,427 B1 6,553,427 B1 6,574,607 B1 6,625,581 B1 6,678,664 B1 6,678,664 B1 6,678,696 B1 6,714,962 B1 6,839,677 B2 6,850,974 B1 6,931,111 B1 6,932,268 B1 6,948,063 B1 7,076,784 B1 7,080,051 B1 7,107,244 B2 7,120,602 B2 7,146,338 B2 7,175,074 B2 7,177,846 B2 | 9/2001 10/2001 12/2001 12/2001 12/2001 12/2001 12/2001 12/2002 9/2002 9/2002 9/2002 10/2002 11/2002 11/2002 11/2003 1/2004 1/2004 1/2005 2/2005 8/2005 8/2005 7/2006 7/2006 7/2006 10/2006 12/2007 2/2007 7/2007 | Boesch Helland et al. Garrison et al. Crawford Gancsan et al. Guenthner et al. Burfield et al. Crawford Gamache et al. Mein et al. Cockrill et al. Al-Ghosein et al. Robertson et al. Gregory Krichilsky Chang et al. Carter et al. Perkowski Ganesan Helland et al. Helland et al. Helland et al. Wagner Ganesan et al. Coffee McCoy et al. Ganesan et al. Crawford Kight et al. Kitchen et al. Kight et al. Mejias et al. Moenickheim et al. | | 7,296,004 | BI | 11/2007 | Garrison et al. | |--------------|------|---------|---------------------| | 7,302,408 | B2 | 11/2007 | Engdahl et al. | | 7,302,411 | B2 | 11/2007 | Ganesan et al. | | 7,330,831 | B2 | 2/2008 | Biondi et al. | | 7,334,128 | B2 | 2/2008 | Ganesan et al. | | 7,340,506 | B2 | 3/2008 | Arunachalam | | 7,366,696 | B1 | 4/2008 | Ganesan et al. | | 7,366,697 | B2 | 4/2008 | Kitchen et al. | | 7,383,226 | B2 | 6/2008 | Kight et al. | | 7,389,514 | B2 | 6/2008 | Russell et al. | | 7,392,223 | Bl | 6/2008 | Ganesan et al. | | 7,395,243 | Bl | 7/2008 | Zielke et al. | | 7,395,319 | B2 | 7/2008 | Harris et al. | | 7,451,400 | B2 * | 11/2008 | Bales et al 715/734 | | 7,590,550 | B2 * | 9/2009 | Schoenberg 705/2 | | 7,600,027 | B2 * | 10/2009 | Yan 709/227 | | 2001/0037318 | Αl | 11/2001 | Lindskog | | 2002/0062218 | A1 | 5/2002 | Pianin | | 2002/0152200 | Αl | 10/2002 | Krichilsky et al. | | 2003/0069922 | Αl | 4/2003 | Arunachalam | | 2008/0091801 | A1 | 4/2008 | Arunachalam | | 2009/0094347 | Al * | 4/2009 | Ting et al 709/219 | | | | | | #### OTHER PUBLICATIONS Order, Motion to Bifurcate and for early trial on the Issue of Inequitable Conduct, on Mar. 19, 2009, Dismissal with Prejudice, order dated Dec. 30, 2009, Denied as Moot, Order Granted, signed by JJF, C.A. No. 08-131 (JJF), Allstate Docket #155. Order, Motion to Bifurcate and for early trial on the Issue of Inequitable Conduct, on Mar. 19, 2009, Dismissal with Prejudice, order dated Dec. 30, 2009, Denied as Moot, C.A. No. 08-132 (JJF) and C.A. No. 08-133 (JJF), Dell Docket #155, signed by JJF, Order, Motion to Bifurcate and for early trial on the Issue of Inequitable Conduct, on Mar. 19, 2009, Dismissal with Prejudice, order dated Dec. 30, 2009, Denied as Moot, C.A. No. 08-132 (JJF) and C.A. No. 08-133 (JJF), Dell Docket #155. Plaintiff WebXchange Inc.'s Surreply in Opposition to Defendants' Motion to Bifurcate, and for Early Trial on, the Issue of Inequitable Conduct (C.A. No. 08-132 (JJF) and C.A. No. 08-133 (JJF), is Granted Plaintiff's Surreply in Opposition to Defendant's Motion to Bifurcate and for Early Trail on, The Issue on Inequitable Conduct is deemed filed (Entered Dec. 30, 2009), Dell Docket #157. Dell Inc.'s Second Amended Answer and Counterclaims to WebxChange Inc.'s Original Complaint for Patent Infringement (Entered: Jan. 20, 2010), Dell Docket #164. Plaintiff WebxChange Inc.'s Surreply in Opposition to Defendants' Motion to Bifurcate, and for Early Trial on, The Issue of Inequitable Conduct (Entered Dec. 30, 2009), Fedex Docket #212. Memorandum Opinion C.A. 08-133-JJF, and C.A. 08-132-JJF (Entered Dec. 30, 2009), Fedex Docket #215. Defendant's Fedex Corporation, Fedex Kinko's Office & Print Services, Inc., and Fedex Corporate Services, Inc.'s Second Amended Answer, Affirmative Defenses, and Counterclaims to Plaintiff WebXchange, Inc.'s Complaint (Entered Jan. 20, 2010), Fedex Docket #217. U.S. Appl. No. 60/208,057, filed May 31, 2000, Krichilsky. U.S. Appl. No. 08/168,519, filed Dec. 1993, Gifford. UIUC, "The Common Gateway Interface", pp. 1-4, http://hoohoo.ncsa.uiuc.edu/cgi/primer.html, Retrieved on May 22, 2001, WBX 000. Arnold, K. et al., "Media-Independent Interfaces in a Media-Dependent World", USENIX Conference on Object-Oriented Technologies, Monterey, CA Jun. 1995, WBX001. Arshad, K.M. et al., "A CORBA based framework for trusted E-Commerce Transactions", Enterprise Distributed Object Computing Conference, pp. 18-25, EDOC '99 Sep. 27, 1999, WBX002. Atkinson, R., RFC 1825: "Security Architecture for the Internet Protocol", Naval Research Laboratory, Category: Standards Track, Network Working Group, Aug. 1, 1995, WBX007. Banks, M., "America Online: A Graphics-based Success", Link-Up, Jan./Feb. 1992, WBX008. Banks, M., "Compuserve for Windows", M.I.S Press, 1994, WBX009. Baquero, C.et al., "Integration of Concurrency Control in a Language with Subtyping and Subclassing", USENIX Conference on Object-Oriented Technologies, Jun. 1995, WBX010. Barron, C. and Weil, B., "Dr. Dobbs Portal: Implementing a Web Shopping Cart", Online Transactions in PERL, Sep. 1, 1996 WBX011. Bharat, K. et al., "Visual Obliq: A System for Building Distributed, Multi-User Applications by Direct Manipulation", SRC 130a, DEC, Oct. 31, 1995, WBX012. Bharat, K. et al., "Distributed Applications in a Hypermedia Setting", Proc. Intl Workshop on Hypermedia Design, http. www.cc.gatech.edugvupeoplePhDKrishnaIWHD.html, Jun. 1, 1995 WBX013. "CyberCash Cash Register Internet Payment Service". retrieved May 23, 2001 http://www.cybercash.com/ cashregister pp. 1-2. 1996, WBX034. "CyberCash—Cash Register—How it Works" retrieved May 23, 2001http://www.cybercash.com/cashregister/howitworks.html pp. 1-3, 1996, WBX035. "CyberCash—Industry Leading Features" retrieved May 23, 2001 http://www.cybercash.com/cashregister/features.html pp. 1-4. 1996, WBX036. "CyberCash Cash Register—Online Secure Payment Service" CashRegister Demos.retrieved May 23, 2001 http://www.webdata.cybercash.com/demos/pp. 1-2. 1996, WBX038. "CyberCash FraudPatrol.TM. Service" retrieved oMay 23, 2001 http://www.cybercash.com/fraudpatrol/pp. 1-2. 1996, WBX039. "CyberCash FraudPatrol—How It Works" retrieved on May 23, 2001 http://www.cybercash.com/fraudpatrol/howitworks.html pp. 1-2 '96, WBX040. "CyberCash Home", http://www.cybercash.com [retrieved on May 23, 2001] 1996, WBX041. "CyberCash ICVerify for Windows" Version 2.5 Upgrade, http://www.cybercash.com/icverify/upgrade.html pp. 1-2 [retrieved on May 23, 2001] 1996, WBX043. Cybercash, "ICVERIFY—Features" retrieved on May 23, 2001 http://www.cybercash.com/icverify/features.html, 1996, pp. 1-3, WBX044. Brando, T., "Comparing DCE and CORBA", Mitre Document MP 95B-93, Mar. 1, 1995, WBX018. Business Wire, "Open Market releases first complete software solution" 1995, WBX025. Business Wire, "Sunsoft delivers early access release of Distributed Objects Environment", Jun. 14, 1995, WBX026. Case, J. et al., "Network Management and the Design of SNMP", Connexxions (ISSN 0894-5926), vol. 3, No. 3, Mar. 1989, WBX027. Chung, S. et al., "A Heterogeneous Distributed Information System", IEEE, pp. 443-447, 1993, WBX029. Courtney, A., "Phantom: An Interpreted Language for Distributed Programming", Proceedings of USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX030. Cybercash, "Affiliate Marketing Service", http://www.cybercash.com/products/affiliatemarketing.html [retrieved on May 23, 2001] 1996, WBX031. "CyberCash B2B Payment Services", http://www.cybercash.com/b2b pp. 1-2 [retrieved May 23, 2001] 1996, WBX032. CyberCash B2BServices, 1996, WBX033. CyberCash Cash Register Internet Payment Service—Online Secure Payment Service. retrieved on May 23, 2001 from http://www.cybercah.com/cashregister pp. 1-2, '96, WBX034. "CyberCash—Cash Register—How it Works" retrieved May 23, 2001 from http://www.cybercash.com/cashregister/howitworks.html pp. 1-3. '96, WBX035. "CyberCash—Industry Leading Features", retrieved May 23, 2001 http://www.cybercash.com/cashregister/features.html pp. 1-4, 1996, WBX 036. "CyberCash Cash Register—Online Secure Payment Service" CashRegister Demos.retrieved May 23, 2001 http://www.webdata.cybercash.com/demos/pp. 1-2 1996, WBX038. "CyberCash FraudPatrol.TM.
Service" retrieved on May 23, 2001 http://www.cybercash.com/fraudpatrol/pp. 1-2. 1996, WBX039. "CyberCash FraudPatrol—How It Works" retrieved onMay 23, 2001, http://www.cybercash.com/fraudpatrol/howitworks.html pp. 1-2 1996,WBX 040. Cybercash, "ICVerify—Features" retrieved on May 23, 2001 from http://www.cybercash.com/icverify/features.html, 1996, pp. 1-3, WBX044. Cybercash, "Payment Software for Brick and Mortar Merchants" http://www.cybercash.com/pcauthorize 1996-2001, WBX046. Dr. Gui on Components, COM and ATL, http://msdn.microsoft.com/ library/welcome/dsmsdn/msdn_drguion020298.htm, Feb. 2, 1998, pp. 1-61 [retrieved on May 22, 2001], WBX057. Cybercash, "Products" 1996. retrieved on May 23, 2001 from <URL: http://www.CyberCash.com/products/, 1996, pp. 1-2, WBX048. Cybercash, "WebAuthorize—Enterprise and Hosting Payment Processing". retrieved on May 23, 2001 from <URL:http://www.cybercash.com/webauthorize/, 1996,pp. 1-2, WBX050. Davis et al., "A Protocol and Server for a Distributed Digital Technical Report Library", Apr. 25, 1994, WBX051. Davison, A., "Coding with HTML forms HTML goes interactive", (hypertext markup language)(Tutorial), Dr. Dobb's Journal, Jun. 6, 1995, vol. 20, No. 6, 19 pages, WBX052a. Davison, A., "Coding with HTML forms: HTML goes interactive", Dr. Dobb's Journal, Jun. 6, 1995, vol. 20, No. 6, pp. 70-79, WBX052b. "Distributed Object Technology in the Financial Services Industry: Trading and Risk Management", A White Paper, Sun Microsystems, 1995, WBX053. Deng, R.H. et al., "Integrating Security in CORBA-based Architectures", IEEE, Jun. 1995, pp. 50-61, WBX054. Detlefs, D. et al., Debugging Storage Management Problems in Garbage Collected Environments, Proc of USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX055. Dietinger, T., Object-Oriented Implementation of a Multiprotocol Hyper-G client for MS-Windows, Diplomarbeit inTelematik, TU Graz, Jul. 1, 1995, WBX056. Birrell A. et al., "Network Objects", SRC Research Report, Feb. 28, 1994, WBX014. Edwards, N., Object Wrapping (for WWW)—The Key to Integrated Services, ANSA Phase III, Apr. 25, 1995, WBX058. Ehikioya, S.A., "An Agent-Based System for Distributed Transactions: a Model for Internet-Based transactions", Elec and Computer Engg IEEE Canadian Conf, VI, May 9, 1999, p. 289-294, WBX059. Microsoft DJ Order, C-08-05149 WHA "Order Granting Defendant's Motion to Dismiss", Federal Court of Northern California, Feb. 17, 2009, WBX060. "Portal Solutions, an Open Market eBusiness Solution Brief". White Paper. Open Market, Forrester Research TechRankings, Feb. 2001, WBX061. "Wireless Solutions, An Open Market eBusiness Solution Brief", WhitePaper. Open Market, Forrester Research Tech Rankings, Feb. 2001, WBX062. Fraga, J. et al., "A Programming Model for Real-Time Applications in Open Distributed Systems", IEEE, 1995, pp. 104-111, WBX063. Birrell A. et al., "Implementing Remote Procedure Calls", Xerox Palo Alto Research Center, ACM Transactions, Feb. 1, 1994, WBX015. Bowen, C. et al., "How to Get the Most out of CompuServe" 5th Ed. 1991, Random House, Inc. 1991, WBX016. Braden, R. et al., RFC 1122: "Requirements for Internet Hosts—Communication Layers" Oct. 1, 1989, WBX017. Broadvision, "Broadvision One-to-One: On-line Marketing and Selling Application System Developers' Guide", 1995, WBX020. Broadvision, "Broadvision One-to-One: On-Line Marketing and Selling Application System: Dynamic Command Center User's Guide", 1995, WBX021. Broadvision, "Broadvision One-to-One: On-Line Marketing and Selling Application System: Installation and System Administration Guide" 1995, WBX022. Broadvision, "Broadvision One-to-One: On-Line Marketing and Selling Application System: Technical Overview", 1995, WBX023. Glossbrenner, A., "MasterGuide to Compuserve", "Chapter 15: Travel Services: Join CompuServe and See the World", Prentice Hall, 1987. WBX065. Gross, C., "Taking the Splash Diving into ISAPI", ISAPI Programming, Microsoft Interactive Developer, www.Microsoft.com/mind/0197/ISAPI.htm, Jan. 1, 1997, pp. 1-10, retrieved May 22, 2001 WBX066. "Open Market Inc, Managing in a Turbulent Environment", Harvard Business School, 9-196-097, Aug. 29, 1996, WBX067. Hickey, M., "Shopping at Home: One Modern Line, No Waiting", Home PC, Dec. 1, 1994, p. 307, Dialog, File 647, Acc# 01038162, WBX068A. Lang, "Cashing In: The Rush is on to Buy and Sell on the Internet But on Sidelines for Now", Advertising Age, Dec. 19, 1994, p. 11, Dialog, File 16, Acc# 05419137, WBX068B. Lichty, T., "America Online Tour Guide", MacIntosh Edition, Version 2, Chapter 1, 3, 8,10, 1992, WBX068C. Tymnet, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/tymnet, Retrieved on May 1, 2007, WBX068D. Cox, B. et al., "NetBill Security and Transaction Protocol", Carnegie Millon University, Pittsburgh, PA 15212-3890, undated, WBX068E. Lamond, K. et al., "Credit Card Transactions Real World and OnLine", http://www.virtualschool.edu/mon/ElectronProperty/klamond/credit_card.htm, 1996, pp. 1-16, WBX068F. "Open Market Catalog Centre", Enterprise Content, //www. openmarket.com/cgi-bin/gx..cgi/AppLogic+FT- Content Server?pagename=FutureTense/Apps/Xcelerate/Render&c=Arti_ 727.WBX069 Business Wire, High Beam Wire, "Open Market releases first complete software solution" Oct. 16, 1995, WBX070. McCloghrie, K. et al., RFC 1156, "Management Information Base for Network Management of TCP/IP-based internets", May 1, 1990, WBX071. Case, J. et al., RFC 1157 May 1, 1990, WBX072. Rose, M. RFC 1283: "SNMP over OSI", Dec. 1, 1991, WBX073. Rose, M. et al., RFC 1155: "Structure and Identification of Management Information for TCP/IP-based internets", May 1, 1990, WRX074 Case, J. et al., RFC 1442: "Structure of Management Information for version 2 of the Simple Network Management Protocol (SNMPv2)", AllState 00011394 Apr. 1, 1993, WBX075. "ORBIX Programmer's Guide", IONA Technologies, Oct. 1, 1997, WBX076A-E. "ORBIX Programmer's Guide", Release 1.3.1, IONA Technologies, Feb. 1, 1995, WBX077. Ito, J. et al., "Using meta-objects to support optimization in the Apertos Operating System", USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX078. Jordan, M. et al., "Software Configuration Management in an Object-Oriented Database", USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX079. Kane, P., "Prodigy Made Easy", "Chapter 6, Shopping Made Easy", 2nd ed., 1993, WBX080. Lagoze, C. et al., "Dienst: Implementation Reference Manual", May 5, 1995, WBX081. Open Market Commerce Products, Enterprise Content www. openmarket.com/cgi-bin/gx.cgi/ AppLogic+FTContentServer?pagename=FutureTense/Apps/ Xcelerate/Render&c=A_ZZZ, WBX082 Lange, D.B. et al., "Program Explorer: A Program Visualizer for C++", Proceedings of the USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX083. Laufer. K., "A Framework for Higher Order Functions in C++", Proceedings of the USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX084. Li, G. and Bacon, J., "Supporting Distributed Real-Time Objects", IEEE Jul. 1994, pp. 138-143, WBX085. Limprecht, R., "Microsoft Transaction Server", IEEE, Compcon '97 Proceedings, 1997, pp. 14-18, WBX086. Maffeis, S., "Adding Group Communication and Fault-Tolerance to CORBA", Proceedings of the USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX087. Mahindra, A. et al., "Dynamic Insertion of Object Services", Proceedings of the USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX088. McCloghrie, K. et al., RFC 1213, "Management Information Base for Network Management of TCP/IP-based internets: MIBI-II", SNMP Working Group, Mar. 1, 1991, WBX089. McCloghrie, K. et al., RFC 1447, "Party MIB for version 2 of the SIMPLE Network Management Protocol", SNMP Security Working Group, Apr. 1, 1993, WBX090. McKie, S., "EEP Meets Web E-Commerce", DBMS, Jul. 1, 1998, WBX091. McMaster D. et al., RFC 1516: "802.3 Repeater devices—Definition of Managed Objects", Feb. 9, 1992, WBX092. "Allstate Connects with Countrywide Producer Network in Seven Months Using Microsoft Visual Studio NET and the .NET Framework", Microsoft.Net Customer Solution, Jan. 2003, WBX 093. O'Brien Jones, U.S. Appl. No. 90/010,346 which is the 5,778,178 Re-exam doc, Exhibits Part 1-WBX101, Exhibits Part 2-WBX102, Nov. 21, 2008 Third Party Requests, WBX094. "Microsoft Component Services, Server Operating System, A Technology Overview", http://www.microsoft.com/com/wpaper/compsvcs.asp,Aug. 15, 1998, [retrieved on May 22, 2001],WBX095. Allstate Uses Web Services to Quickly Create Insurance Policy Management Solution, Microsoft .NET Customer Solution Case Study, Jan. 2005, WBX098. Mitchell et al., "An Overview of the Spring System", Sun Microsystems, WBX099. Muckelbauer, P. and Russo, V., "Lingua Franca: An IDL for Structured Subtyping Distributed Object Systems", USENIX Conference: Object-Oriented Technologies, Monterey, CA, WBX 100. Reynolds, J. Posting to comp doc USENET group, http://nyurl.com/53a95p, RFC 1212, 1213- Google groups on concise definitions MIB and MIBII, Exhibit G, Mar. 27, 1991, WBX045. Relihan, L. et al., "Untangling the World-Wide Web.", 12th Annual International Conference on Systems Documentation, Oct. 1, 1994, pp. 17-24, ACM, WBX102A. Rose, M. T., "The Simple Book: An Introduction to Internet Management", 1994, pp. 14-15, 379-387 (2nd ed.) Exhibit F, WBX102C. "Open Market Enterprise: Content Server", www.openmarket.com/cgi-bin/gx.cgi/ AppLogic+FTContentServer?pagename=FutureTense/Apps/ Xceleratlerate/Render&c=Artic, pp. 1-4,WBX103. "Open Market Enterprise:Content Center", www.openmarket.com/ cgi-bin/gx.cgi/ AppLogic+FTContentServer?pagename=FutureTense/Apps/ Xcelerate/Render&c=Artic,Retrvd5/15/01, WBX104. "Open Market Enterprise:Content-Driven eBusiness", www.openmarket.ccm/cgi-bin/gx.cgi/AppLogic+FT ContentServer?pagename=FutureTense/Apps/Xcelerate/Render
&c=Artic, WBX105. "Open Market ShopSite 5.0", Retrieved on May 15, 2001 from:<URLhttp://www.openmarket.com/cgi-bin/gx.cgi/ AppLogic+FTCont- entServer?pagename=Future Tense/Apps, WBX 112. Orfali, R. et al., "Essential Client/Server Survival Guide"-John Wiley and Sons—Set 1, 1994, WBX114. Orfali R. et al., "Essential Client/Server Survival Guide"-John Wiley Orfali, R. et al., "Essential Client/Server Survival Guide"-John Wiley and Sons—Set 2, 1994, WBX115. Orfali, R.; Harkey, D.; Edwards, J., "Essential Client/Server Survival Guide" John Wiley and Sons, Sets 1-4, Jun. 16, 2005, WBX116. Orfali, R. et al., "Essential Client/Server Survival Guide"-John Wiley and Sons—Set 4, 1994, WBX117. Pavlou, G. et al., "A Generic Management Information Base Browser", WBX119. Peterson, L. et al., "Computer Networks, A Systems Approach", Morgan Kaufmann Publishers, Inc., 1996, pp. 472-507, WBX120. Pitkow, J. et al., "Using the Web as a Survey Tool: Results from the Second WWW User Survey", conducted 10/15 & Nov. 1994, presented at 3rd Intl WWW Conference Apr. 10-14, 1995; WBX121. Netscape Unveils New Versions of Commercial Applications for Enhanced Integration with Corporate Databases, NetScape Press Release, May 13, 1996, WBX122. Raatikainen, K., "Database Access in Intelligent Networks", Proceedings of IFIP TC6 Workshop on Intelligent Networks, pp. 163-183, WBX123. Radia, S. R. et al., "The Spring Object Model", Proceedings of the USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX124. Rosenberry, et al., "OSF Distributed Computing Environment— Understanding DCE"—O'Reilly & Associates, Jun. 1993, WBX126. Rubin, C. "Wired: In the Bag", Jun. 1997, WBX127. Schepp et al., "The Complete Guide to CompuServe: Chapter 12: Travel Services: See the World Today the Compuserve Way", 1990, pp. 409-437, McGraw Hill, WBX128. Schmidt, D. et al., "Object-Oriented Components for High-Speed Network Programming", Predgs of USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX 129. Siegel, J., "Common Object Services Specification vol. 1, Rev 1, First Edition", OMG Doc Jan. 1, 1994, Mar. 1, 1994, WBX130, WBX130A. "Common Desktop Environment: Product Glossary", SunSoft, 1994-1995, WBX131. "Common Desktop Environment: Applications Builder User's Guide", SunSoft, 1994-1995, WBX132. "OpenStep Development Tools", SunSoft, 1996, WBX133A, WBX133B. Porting NextStep 3.2/3.3 Applications to OpenStep on Solaris, Sunsoft, 1996, WBX134. "Solstice X.500 Programming Reference", SunSoft, 1996, WBX135, A, B. Tatters, W., "Navigating the Internet with Compuserve: Chapter 17: Business on the Net", 1995, pp. 352-374, Sams Publishing, WBX136. Technical Staff, The Conductor Financial Services Framework": Distributed Objects on the Internet, Block Financial Corporation White Paper, BFC Technology Center, Oct. 17, 1995WBX137. Vogler, H. et al., "The Transaction Internet Protocol in Practice: Reliability for WWW Applications", IEEE 1999 Internet Workshop IWS99, (ISSN-0-7803-5925-9), Feb. 18, 1992, WBX146. Weich, C., "Generic Containers for a Distributed Object Store", Pregs of the USENIX Conference (Jun. 1995) on Object-Oriented Technologies, Monterey, CA, May 18, 1995, WBX150. "SmallTalk" Wikipedia SmallTalk http://www.objs.com/x3h7/smalltalk.htm and http://en.wikipedia.org/wiki/Smalltalk WBX151. Wollrath, A. et al., "Simple Activation for Distributed Objects", Proceedings of the USENIX Conference on Object-Oriented Technologies, Monterey, CA, Jun. 1995, WBX152. USENIX, "Agenda of Proceedings of the USENIX Conference on Object-Oriented Technologies", Monterey, CA, Jun. 1995, WBX153. "Common Desktop Environment: Desktop Kornshell User's Guide", Sun Microsystems, 1994-1995, WBX 154. "Common Desktop Environment: Help System Author's and Programmer's Guide", Sun Microsystems, 1994-1995, (Three parts) WBX155. "Common Desktop Environment: Internationalization Programmer's Guide", Sun Microsystems, 1994-1995, WBX156. "Common Desktop Environment: Tooltalk Messaging Overview", Sun Microsystems, 1994-1995, WBX157 "Common Desktop Environment: Common StyleGuide and Certification CheckList", SunSoft, 1994-1995, WBX158, 158C. "Common Desktop Environment: Programmer's Overview", SunSoft, 1994-1995, WBX159. Developer's Guide to Internationalization, Sun Microsystems, 1994, WBX 160. "Dr. Gui's Gentle Guide to COM", http://www.microsoft,com/Com/news/drgui.asp [retrieved on May 22, 2001], Nov. 1, 1999, WBX161. "iPIN Company Info", http://www.ipin.com/01comp.html [retrieved on May 23, 2001], iPIN Interactive Transaction Services, Inc., 2000, WBX162. "iPIN Home", http://www.ipin.com [retrieved on May 23, 2001], iPIN Interactive Transaction Services, Inc., 2000, WBX163. "iPIN Service Options", http://www.ipin.com/02prod_service.html [retrieved on May 23, 2001], iPIN Interactive Transaction Services, Inc., 2000, WBX164. "iPIN Solutions", http://www.ipin.com/02prod_solution.html [retrieved on May 23, 2001], iPIN Interactive Transaction Services, Inc., 2000, WBX165. "iPIN Partners", http://www.ipin.com/03part.html [retrieved on May 23, 2001], iPIN Interactive Transaction Services, Inc., 2000, WBX166. "iPIN Technology", http://www.ipin.com/02prod_tech.html [retrieved on May 23, 2001], iPIN Interactive Transaction Services, Inc., 2000, WBX167. NetScape Products: Open and Secure Internet Software, 1995, WBX168A. NetScape Merchant System, Data Sheet 1995, WBX168B. NetScape Internet Applications, Customer Showcase 1995, WBX168C. NetScape Server API, 1995, WBX 168D. NetScape Object-Oriented Pradigm of Server Configuration, 1995, WBX168E. RSA: Verisign Redirection Information, Important Announcement 1995, WBX168F. RSA: Verisign to Provide Digital IDs for Open Market's Secure WebServer, 1995, WBX168G Verisign Adds the Missing Component to Online Security Solutions 1995, WBX168H. Hickman, K.E.B.; Netscape, "The SSL Protocol", 1995, WBX1681. NetScape iStore DataSheet, 1995, WBX168J. Choudhury, A.K. et al., "Copyright Protection for Electronic Publishing over Computer Networks", 1995 IEEE Network, 9, May/Jun., vol. 3 pp. 12-20 (1995) WBX168L. NSAPI Basics, (Chapter 1) http://developer.netscape.com/docs/manuals/enterprise/nsapi/svrop.htm [retrieved on May 22, 2001], 1997, WBX174. "OpenStep User Interface Guidelines", SunSoft, 1996, WBX175. "OpenStep Programming Reference", SunSoft, 1996, (12 parts) WBX176. "QuickStart to Using the Open Step Desktop", SunSoft, 1996, WBX177. Rose, M. et al., "RFC 1065:Structure and Identification of Management Information for TCP/IP-based internets", Aug. 1, 1988, WBX178. Stewart, B., RFC 1318: "Definition of Managed Objects for Parallel-printer-like Hardware Devices", Apr. 1, 1992, WBX179. Rivest, R., "RFC 1321: The MD5 Message-Digest Algorithm", 1997, WBX 180. Solaris Common Desktop Environment: MOTIF Transition Guide, Sun Microsystems, 1997, WBX181. "Solaris Common Desktop Environment: Programmer's Guide", Sun Microsystems, 1994-1995, WBX182. "The iPin Approach", http://www.ipin.com/02prod.html, 2000, [retrieved on May 23, 2001], Interactive Transaction Services, Inc., WBX183. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"-Part1-1, John Wiley and Sons, 1996, WDX201. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"-Part1-2, John Wiley and Sons, 1996, WBX202. Orfali, R. et al., "The Essenial Distributed Objects Survival Guide"- Part1-3, John Wiley and Sons, 1996, WBX203. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part2-1, John Wiley and Sons, 1996, WBX204. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part2-2, John Wiley and Sons, 1996, WBX205. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part2-3, John Wiley and Sons, 1996, WBX206. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part3-1, John Wiley and Sons, 1996, WBX207. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part3-2, John Wiley and Sons, 1996, WBX208. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part3-3, John Wiley and Sons, 1996, WBX209. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Part4-1, John Wiley and Sons, 1996, WBX210. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"- Orfali, R. et al., "The Essential Distributed Objects Survival Guide"-Part4-2, John Wiley and Sons, 1996, WBX211. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"-Part4-3, John Wiley and Sons, 1996, WBX212. Orfali, R. et al., "The Essential Distributed Objects Survival Guide"-Part4-4, John Wiley and Sons, 1996, WBX213. Broadvision, "Broadvision One-to-One: Programmer's Reference, Part 1" 1995, WBX214. Broadvision, "Broadvision One-to-One: Programmer's Reference, Part 2" 1995, WBX215. OMG, "The Common Object Request Broker: Architecture and Specification", CORBA v2.0_(NYC-#1655390-v1), Jul. 1995-1996, WBX216. The Open Group, "Inter-domain Management: Specification Translation", 1997, WBX222. The Open Group, "Inter-domain Management_Summary of Similarities and Differences", 1997, WBX223. The Open Group, "Inter-domain Management_object models comparison", 1997, WBX224. Miller, M., "Managing Internetworks with SNMP", 1993, pp. 138-139, M&T Books., '506 Inter Partes Re-examination Exhibit 12, Dec. 2008, WBX225. Umar, A., "Distributed Computing: A Practical Synthesis", "Appendix B: Tutorial on TCP/IP Protocol Suite", (BellCore), 1993, WBX226. Umar, A., "Distributed Computing: A Practical Synthesis", "Chapter Client-Server Systems and Application- Interconnectivity", (BellCore), 1993, WBX227. SPERO, "Binary Gateway Interface-An API for Dynamically Extensible http Servers", Jul. 1, 1994, Retrieved on Apr. 5, 2009 from http://www.ibiblio.org/mdma-release/BGI-spec.txt, WBX228. "Point, Click and Shop Never So Easy;The CheckFree Wallet",NewsHound,SJMercury News, PRNewswire,Apr. 10, 1995, Retrieved Apr. 5, 2009 from
http://besser.tsoa.nyu.ed_ZZZ,WBX229. DEC ObjBroker,1.0.9,Apr. 3, 1996,http://209.85.173.132/search?q=cache:c3iJxZca3aUJ:www.faqs.org/faqs/object-faq/part3/+DEC%27s+ObjectBroker+Service&cd=9&,hl=en&ct=clnk&g_ZZZ,WBX230. Arunachalam, U.S. Appl. No. 11/980,185_Duty of Candor Rule 56 Disclosure, Feb. 11, 2009, WBX220. Anunachalam, U.S. Appl. No. 11/980,185_Duty of Candor Rule 56 Disclosure, Mar. 4, 2009, WBX221. NYC-#1579692-v1-WebXchange_—_March_3_DELL_Complaint.DOC, Mar. 3, 2008, WBX217. NYC-#1579751-v1-WebXchange_—_March_3_Allstate_Complaint.DOC, Mar. 3, 2008, WBX218. NYC-#1579947-v1-WebXchange ___March_3_FedEx_Complaint.DOC, Mar. 3, 2008, WBX219. "Easel Corporation Introduces Comprehensive Program", Mar. 13, 1995, Business Wire, http://209.85.173.132/search?q=cache:McscjZC2srEJ:findarticles/mi_m0EIN/ is_1995_Marc_ZZZ, WBX231. "Internet Information Commerce: The First Virtual", Jul. 1995, 1st USENIX Wkshp:E-Commerce, NY Retrod Apr. 9, 2009http://www.usenix.org/publications/library/proceedings/ec95/f__ZZZ.WBX232. "O'Reilly Releases Website", WebView, EIT, May 12, 1995, V7: Issue 41, ISSN 1004-042X, Computer underground Digest, RtrvdApr. 5, 2009 http://cu-digest.org/CUDS7/cud74_ZZZ, WBX233. "RSA And EIT Joint Venture", Terisa Systems, EIT and RSA: Secure HTTP, Jun. 13, 1994, Retrieved on Apr. 5, 2009 http://1997.webhistory.org/www.lists/www-talk.1994q2/0980.html, WBX234. "CommerceNet The First Large-Scale Market Trial", EIT: CommerceNet, Aug. 3, 1994, Proc. May 1994, Ties That Bind conference, Rtrvd Apr. 5, 2009 http://internet.eser_ZZZ, WBX235. Rubin, A., "IETF-Stockholm meeting" NetCheck: E-signatures, Aug. 5, 1995, pp. 1-2, CIPHER, Newsletter IEEE Computer Society's TC 8, http://www.ieee-security.org/Cipher/Pastlssu_ZZZ, WBX236. Open Market, "FastCGI:A High-Performance Web Server Interface", Apr. 1996, Retrieved on Apr. 5, 2009 http://www.fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm,WBX 237. #### US 8,108,492 B2 Page 7 Sun Microsystems, "HotJava", Wikipedia, the free encyclopedia, Jun. 1995, Retrieved on Apr. 5, 2009 from http://en.wikipedia.org/wiki/HotJava, WBX238. W3C Status Codes, HTRESP_html_w3_org, 1992 WBX239. Hewlett Packard, "HP Odapter/OpenODB", Jul. 1994, Retrieved on Apr. 5, 2009 from http://web.bilkent.edu.tr/Online/oofaq/oo-faq-S-8.13.0.5.html, WBX240. Internet Shopping Network_ISN Business Newswire (1995) WBX241. WBX241. NCR Co-operative Frameworks 3, (1993) WBX242. Distributed Objects Everywhere, NEO, Wikipedia (1996) WBX243. NetMarket (1996) WBX244. Enterprise Object Netorks, Wikipedia (1996) WBX245. OMG Document No. 91 12 1 Revision 1 1 (1997) WBX246. DigiCash Smartcards (1997) WBX247. IBM System Object Model_SOM (1998) WBX248. IBM System Object Model_SOM,DSOM (1998) WBX249. Open Market StoreBuilder (1995) WBX250. WebXpress Web StoreFront (1996) WBX251. PNC, Industry.Net do eCommerce (1996) WBX252. 10KPowerShip,PowerPartner (1996) WBX253. T. Berners Lee Hypertext Mark up Language RFC1866(1995) WBX 254. E. Nebel RFC1867 (1995) WEBX255. RFC1942 (1996) WEBX256. J. Seidman RFC1980 (1996) WBX257. HTML—Wikipedia, the free encyclopedia—Notepad (1998) WBX258. Berners-Lee, T., RFC 1630, "Universal Resource Identifiers in WWW", Network Working Group, CERN, Jun. 1994 WBX259. Object Broker Service Middleware Sourcebook (1995) WBX260. WBXexecsummary4809new2bizplan[1] (2009) WBX268. Kramer, Douglas Java Whitepaper May 1996, WBX500. * cited by examiner FIG. 1A (PRIOR ART) U.S. Patent Jan. 31, 2012 Sheet 4 of 13 US 8,108,492 B2 OSI MODEL 300 | APPLICATION | | |--------------|------------| | | <u>307</u> | | PRESENTATION | | | | <u>306</u> | | SESSION | | | | <u>305</u> | | TRANSPORT | | | | <u>304</u> | | NETWORK | | | | 303 | | DATA LINK | | | | 302 | | PHYSICAL | | | | <u>301</u> | # FIG. 3 | | _ | / | WERN 100 | \ | \ | \ | | | _ | / | / | USER 100 | \
 | \ | \ | | |---------------------|----------------------------------|------------|---------------------|-----------|----------|---------------|------|----------------|-------------------------------------|--------------------------|-------------|-----------------------------|-----------|---------|---------------------------|-------| | | CARRIERS • WIRELESS • CATV | | | | | | | | CARRIFRS | •TELCO | • WIRELESS | ·CATV | | | | | | | INTERNET
SERVICE
PROVIDERS | | PROVIDERS | | WALK-IN | | | | INTERNET | PROVIDERS | | DIAL-UP | | WALK-IN | | | | | WEB SITE WEB SERVER | • HARDWARE | DIAL | DIAL-UP | | | | | WEB SITE WEB SERVER O/S HARDWARE | | | DA | | | | | | SERVICE
CHANNELS | | | - CALL CTR | > | KIOSK | CASH REGISTER | | SERVICE | TRANSWEB | • WEB PAGE
• POS APPS | | • CALL CTR
• IVR
• PC |)
- | KIOSK | CASH REGISTER UNE TELLER | 4B | | BACK | MIDDLEWARE | MIDDLEWARE | 4GL
APPLICATIONS | OPERATING | SYSTEM | HARDWARE | . 4A | BACK
OFFICE | MEDOLEWARE | MIDDLEWARE | AFFUCATIONS | 4GL
APPLICATIONS | OPERATING | SYSTEM | HARDWARE | IG. 4 | | BA
PHO | DATABASE | 1 | HOST
TP
APPS | | HARDWARE | | FIG | ₩. | DATABASE | | FSCH | APS - | | 70 | | F | FIG. 5A FIG. 5B ## FIG. 5C FIG. 5E ### FIG. 6B FIG. 7 Jan. 31, 2012 **Sheet 13 of 13** US 8,108,492 B2 FIG. 8 1 #### WEB APPLICATION NETWORK PORTAL ### CROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional and claims the priority benefit of U.S. patent application Ser. No. 11/980,185 filed Oct. 30, 2007 now U.S. Pat. No. 8,037,158, which is a continuation-in-part of U.S. patent application Ser. No. 09/792, 323, now U.S. Pat. No. 7,340,506, filed Feb. 23, 2001, which 10 is a divisional of U.S. patent application Ser. No. 09/296,207, filed Apr. 21, 1999, now U.S. Pat. No. 6,212,556, which is a continuation-in-part of U.S. patent application Ser. No. 08/879,958, now U.S. Pat. No. 5,987,500, filed Jun. 20, 1997, which is a divisional and claims the priority benefit of U.S. 15 patent application Ser. No. 08/700,726, now U.S. Pat. No. 5,778,178, filed Aug. 5, 1996, which claims the priority benefit of U.S. provisional application 60/006,634 filed Nov. 13, 1995. This application also claims benefit under 35 U.S.C. 119(e) to U.S. Provisional application Ser. No. 60/006,634 20 filed Nov. 13, 1995. The following applications are related applications: application Ser. Nos. 09/863,704; 12/628,066; 12/628,068; 12/628,069, 12/932,758 and 60/206,422. #### BACKGROUND #### 1. Field of the Invention The present invention relates to the area of Internet communications. Specifically, the present invention relates to a method and apparatus for configurable value-added network 30 switching and object routing. 2. Background of the Invention With the Internet and the World Wide Web ("the Web") evolving rapidly as a viable consumer medium for electronic commerce, new on-line services are emerging to fill the needs 35 of on-line users. An Internet user today can browse on the Web via the use of a Web browser. Web browsers are software interfaces that run on Web clients to allow access to Web servers via a simple user interface. A Web user's capabilities today from a Web browser are, however, extremely limited. 40 The user can perform one-way, browse-only interactions. Additionally, the user has limited "deferred" transactional capabilities, namely electronic mail (e-mail) capabilities. E-mail capabilities are referred to as "deferred transactions" because the consumer's request is not processed until the 45 e-mail is received, read, and the person or system reading the e-mail executes the transaction. This transaction is thus not performed in real-time. FIG. 1A illustrates typical user interactions on the Web today. User 100 sends out a request from Web browser 102 in 50 the form of a universal resource locator (URL) 101 in the following manner: http://www.car.com. URL 101 is processed by Web browser 102 that determines the URL corresponds to car dealer Web page 105, on car dealer Web server 104. Web browser 102 then establishes browse link 103 to car 55 dealer Web page 105. User 100 can browse Web page 105 and select "hot links" to jump to other locations in Web page 105, or to move to other Web pages on the Web. This interaction is typically a browse-only interaction. Under limited circumstances, the user may be able to fill out a form on car dealer 60 Web page 105, and e-mail the form to car dealer Web server 104. This interaction is still strictly a one-way browse mode communications link, with the e-mail providing limited, deferred transactional capabilities. Under limited circumstances, a user may have access to 65 two-way services on the Web via Common Gateway Interface (CGI) applications. CGI is a standard interface for running 2 external programs on a Web server. It allows Web servers to create documents dynamically when the server receives a request from the Web browser. When the Web server receives a request for a document, the Web server dynamically executes the appropriate CGI script and transmits the output of the execution back to the requesting Web browser. This interaction can thus be termed a "two-way" transaction. It is a severely limited transaction, however, because each CGI application is customized for a particular type of application or service. For example, as illustrated in FIG. 1B, user 100 may access bank 150's Web server and attempt to perform transactions on checking account 152 and to make a payment on loan account 154. In order for user 100 to access checking account 152 and loan account 154 on the Web, CGI application scripts must be created for each account, as illustrated in FIG. 1B. The bank thus has to create individual scripts for each of its services to offer users access to these services. User 100 can then interact in a limited fashion with these individual applications. Creating and managing individual CGI scripts for each service is not a viable solution for merchants with a large number of services. As the Web expands and electronic commerce becomes 25 more desirable, the need increases for robust, real-time, bidirectional
transactional capabilities on the Web. A true realtime, bi-directional transaction would allow a user to connect to a variety of services on the Web, and perform real-time transactions on those services. For example, although user 100 can browse car dealer Web page 105 today, the user cannot purchase the car, negotiate a car loan or perform other types of real-time, two-way transactions that he can perform with a live salesperson at the car dealership. Ideally, user 100 in FIG. 1A would be able to access car dealer Web page 105, select specific transactions that he desires to perform, such as purchase a car, and perform the purchase in real-time, with two-way interaction capabilities. CGI applications provide user 100 with a limited ability for two-way interaction with car dealer Web page 105, but due to the lack of interaction and management between the car dealer and the bank, he will not be able to obtain a loan and complete the purchase of the car via a CGI application. The ability to complete robust realtime, two-way transactions is thus not truly available on the Web today. #### SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method and apparatus for providing real-time, two-way transactional capabilities on the Web. Specifically, one embodiment of the present invention discloses a configurable value-added network switch for enabling real-time transactions on the World Wide Web. The configurable value added network switch comprises means for switching to a transactional application in response to a user specification from a World Wide Web application, means for transmitting a transaction request from the transactional application, and means for processing the transaction request. According to another aspect of the present invention, a method and apparatus for enabling object routing on the World Wide Web is disclosed. The method for enabling object routing comprises the steps of creating a virtual information store containing information entries and attributes, associating each of the information entries and the attributes with an object identity, and assigning a unique network address to each of the object identities. 4 Other objects, features and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description. #### BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description of the present invention as set forth below FIG. 1A is an illustration of a current user's browse capabilities on the Web via a Web browser. FIG. 1B is an illustration of a current user's capabilities to perform limited transactions on the Web via CGI applications. FIG. 2 illustrates a typical computer system on which the present invention may be utilized. FIG. 3 illustrates the Open Systems Interconnection (OSI) Model. FIG. 4A illustrates conceptually the user value chain as it exists today. FIG. 4B illustrates one embodiment of the present invention. FIG. 5A illustrates a user accessing a Web server including 25 one embodiment of the present invention. FIG. 5B illustrates the exchange component according to one embodiment of the present invention. FIG. 5C illustrates an example of a point-of-service (POSvc) application list. FIG. 5D illustrates a user selecting a bank POSvc application from the POSvc application list. FIG. 5E illustrates a three-way transaction according to one embodiment of the present invention. FIG. 6A illustrates a value-added network (VAN) switch. FIG. 6B illustrates the hierarchical addressing tree structure of the networked objects in DOLSIBs. FIG. 7 illustrates conceptually the layered architecture of a VAN switch. FIG. 8 is a flow diagram illustrating one embodiment of the $\,^{40}$ present invention. #### DETAILED DESCRIPTION The present invention relates to a method and apparatus for 45 configurable value-added network switching and object routing and management. "Web browser" as used in the context of the present specification includes conventional Web browsers such as NCSA Mosaic™ from NCSA and Netscape MosaicTM from NetscapeTM. The present invention is inde- 50 pendent of the Web browser being utilized and the user can use any Web browser, without modifications to the Web browser. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent to one of 55 ordinary skill in the art, however, that these specific details need not be used to practice the present invention. In other instances, well-known structures, interfaces and processes have not been shown in detail in order not to unnecessarily obscure the present invention. FIG. 2 illustrates a typical computer system 200 in which the present invention operates. The preferred embodiment of the present invention is implemented on an IBMTM Personal Computer manufactured by IBM Corporation of Armonk, N.Y. Alternate embodiments may be implemented on a 65 MacintoshTM computer manufactured by AppleTM Computer, Incorporated of Cupertino, Calif. It will be apparent to those of ordinary skill in the art that other alternative computer system architectures may also be employed. In general, such computer systems as illustrated by FIG. 2 comprise a bus 201 for communicating information, a processor 202 coupled with the bus 201 for processing information, main memory 203 coupled with the bus 201 for storing information and instructions for the processor 202, a readonly memory 204 coupled with the bus 201 for storing static information and instructions for the processor 202, a display 10 device 205 coupled with the bus 201 for displaying information for a computer user, an input device 206 coupled with the bus 201 for communicating information and command selections to the processor 202, and a mass storage device 207, such as a magnetic disk and associated disk drive, coupled with the bus 201 for storing information and instructions. A data storage medium 208 containing digital information is configured to operate with mass storage device 207 to allow processor 202 access to the digital information on data storage medium 208 via bus 201. Processor 202 may be any of a wide variety of general purpose processors or microprocessors such as the Pentium™ microprocessor manufactured by Intel™ Corporation or the Motorola™ 68040 or Power PC™ brand microprocessor manufactured by manufactured by Motorola™ Corporation. It will be apparent to those of ordinary skill in the art, however, that other varieties of processors may also be used in a particular computer system. Display device 205 may be a liquid crystal device, cathode ray tube (CRT), or other suitable display device. Mass storage device 207 may be a conventional hard disk drive, floppy disk drive, CD-ROM drive, or other magnetic or optical data storage device for reading and writing information stored on a hard disk, a floppy disk, a CD-ROM a magnetic tape, or other magnetic or optical data storage medium. Data storage medium 208 may be a hard disk, a floppy disk, a CD-ROM, a magnetic tape, or other magnetic or optical data storage medium. In general, processor 202 retrieves processing instructions and data from a data storage medium 208 using mass storage device 207 and downloads this information into random access memory 203 for execution. Processor 202, then executes an instruction stream from random access memory 203 or read-only memory 204. Command selections and information input at input device 206 are used to direct the flow of instructions executed by processor 202. Equivalent input device 206 may also be a pointing device such as a conventional mouse or trackball device. The results of this processing execution are then displayed on display device 205. The preferred embodiment of the present invention is implemented as a software module, which may be executed on a computer system such as computer system 200 in a conventional manner. Using well known techniques, the application software of the preferred embodiment is stored on data storage medium 208 and subsequently loaded into and executed within computer system 200. Once initiated, the software of the preferred embodiment operates in the manner described below. FIG. 3 illustrates the Open Systems Interconnection (OSI) reference model. OSI Model 300 is an international standard that provides a common basis for the coordination of standards development, for the purpose of systems interconnection. The present invention is implemented to function as a routing switch within the "application layer" of the OSI model. The model defines seven layers, with each layer communicating with its peer layer in another node through the use of a protocol. Physical layer 301 is the lowest layer, with responsibility to transmit unstructured bits across a link. Data link layer 302 is the next layer above physical layer 301. Data link layer 302 transmits chunks across the link and deals with problems like checksumming to detect data corruption, orderly coordination of the use of shared media and addressing when multiple systems are reachable. Network bridges operate within data link layer 302. Network layer 303 enables any pair of systems in the network to communicate with each other. Network layer 303 contains hardware units such as routers that handle routing, packet fragmentation and reassembly of packets. Transport 10 layer 304 establishes a reliable communication stream between a pair of systems, dealing with errors such as lost packets, duplicate packets, packet reordering and fragmentation. Session layer 305 offers services above the simple communication stream provided by transport layer 304. These 15 services include dialog control and chaining. Presentation layer 306 provides a means by which OSI compliant applications can agree on representations for data.
Finally, application layer 307 includes services such as file transfer, access and management services (FTAM), electronic mail and vir- 20 tual terminal (VT) services. Application layer 307 provides a means for application programs to access the OSI environment. As described above, the present invention is implemented to function as a routing switch in application layer 307. Application layer routing creates an open channel for the 25 management, and the selective flow of data from remote databases on a network. #### A. Overview FIG. 4A illustrates conceptually the user value chain as it exists today. The user value chain in FIG. 4A depicts the types of transactions that are performed today, and the channels through which the transactions are performed. A "transaction" for the purposes of the present invention includes any type of commercial or other type of interaction that a user may want to perform. Examples of transactions include a deposit into a bank account, a request for a loan from a bank, a purchase of a car from a car dealership or a purchase of a car with financing from a bank. A large variety of other transactions are also possible. A typical user transaction today may involve user 100 40 walking into a bank or driving up to a teller machine, and interacting with a live bank teller, or automated teller machine (ATM) software applications. Alternatively, user 100 can perform the same transaction by using a personal computer (PC), activating application software on his PC to access his bank account, and dialing into the bank via a modern line. If user 100 is a Web user, however, there is no current mechanism for performing a robust, real-time transaction with the bank, as illustrated in FIG. 4A. CGI scripts provide only limited two-way capabilities, as described above. Thus, due to this lack of a robust mechanism by which real-time Web transactions can be performed, the bank is unable to be a true "Web merchant," namely a merchant capable of providing complete transactional services on the Web. According to one embodiment of the present invention, as 55 illustrated in FIG. 4B, each merchant that desires to be a Web merchant can provide real-time transactional capabilities to users who desire to access the merchants' services via the Web. This embodiment includes a service network running on top of a facilities network, namely the Internet, the Web or e-mail networks. For the purposes of this application, users are described as utilizing PC's to access the Web via Web server "switching" sites. (Switching is described in more detail below). Users may also utilize other personal devices such as network computers or cellular devices to access the merchants' services via appropriate switching sites. These switching sites include non-Web network computer sites and cellular provider sites. Five components interact to provide this service network functionality, namely an exchange, an operator agent, a management agent, a management manager and a graphical user interface. All five components are described in more detail below. As illustrated in FIG. 5A, user 100 accesses Web server 104. Having accessed Web server 104, user 100 can decide that he desires to perform real-time transactions. When Web server 104 receives user 100's indication that he desires to perform real-time transactions, the request is handed over to an exchange component. Thus, from Web page 105, for example, user 100 can select button 500, entitled "Transactions" and Web server 104 hands user 100's request over to the exchange component. The button and the title can be replaced by any mechanism that can instruct a Web server to hand over the consumer's request to the exchange component. FIG. 5B illustrates exchange 501. Exchange 501 comprises Web page 505 and point-of-service (POSvc) applications 510. Exchange 501 also conceptually includes a switching component and an object routing component (described in more detail below). POSvc applications 510 are transactional applications, namely applications that are designed to incorporate and take advantage of the capabilities provided by the present invention. Although exchange 501 is depicted as residing on Web server 104, the exchange can also reside on a separate computer system that resides on the Internet and has an Internet address. Exchange 501 may also include operator agent 503 that interacts with a management manager (described in more detail below). Exchange 501 creates and allows for the management (or distributed control) of a service network, operating within the boundaries of an IP-based facilities network. Thus, exchange 501 and a management agent component, described in more detail below, under the headings "VAN Switch and Object Routing," together perform the switching, object routing, application and service management functions according to one embodiment of the present invention. Exchange 501 processes the consumer's request and displays an exchange Web page 505 that includes a list of POSvc applications 510 accessible by exchange 501. A POSvc application is an application that can execute the type of transaction that the user may be interested in performing. The POSvc list is displayed via the graphical user interface component. One embodiment of the present invention supports Hyper-Text Markup Language as the graphical user interface component. Virtual Reality Markup Language and JavaTM are also supported by this embodiment. A variety of other graphical user interface standards can also be utilized to implement the graphical user interface. An example of a POSvc application list is illustrated in FIG. 5C. User 100 can thus select from POSvc applications Bank 510(1), Car Dealer 510(2) or Pizzeria 510(3). Numerous other POSvc applications can also be included in this selection. If user 100 desires to perform a number of banking transactions, and selects the Bank application, a Bank POSvc application will be activated and presented to user 100, as illustrated in FIG. 5D. For the purposes of illustration, exchange 501 in FIG. 5D is shown as running on a different computer system (Web server 104) from the computer systems of the Web merchants running POSvc applications (computer system 200). Exchange 501 may, however, also be on the same computer system as one or more of the computer systems of the Web merchants. Once Bank POSvc application 510 has been activated, user 100 will be able to connect to Bank services and utilize the application to perform banking transactions, thus accessing data from a host or data repository 575 in the Bank "Back Office." The Bank Back Office comprises legacy databases and other data repositories that are utilized by the Bank to store its data. This connection between user 100 and Bank services is managed by exchange 501. As illustrated in FIG. 5D, once the connection is made between Bank POSvc application 510(1), for example, and Bank services, an operator agent on Web server 104 may be activated to ensure the availability of distributed functions and capabilities. Each Web merchant may choose the types of services that 10 it would like to offer its clients. In this example, if Bank decided to include in their POSvc application access to checking and savings accounts, user 100 will be able to perform real-time transactions against his checking and savings accounts. Thus, if user 100 moves \$500 from his checking 15 account into his savings account, the transaction will be performed in real-time, in the same manner the transaction would have been performed by a live teller at the bank or an ATM machine. Therefore, unlike his prior access to his account, user 100 now has the capability to do more than 20 browse his bank account. The ability to perform these types of robust, real-time transactions from a Web client is a significant aspect of the present invention. Bank can also decide to provide other types of services in POSvc application 510(1). For example, Bank may agree 25 with Car dealership to allow Bank customers to purchase a car from that dealer, request a car loan from Bank, and have the entire transaction performed on the Web, as illustrated in FIG. 5E. In this instance, the transactions are not merely two-way, between the user and Bank, but three-way, amongst the consumer, Bank and Car dealership. According to one aspect of the present invention, this three-way transaction can be expanded to n-way transactions, where n represents a predetermined number of merchants or other service providers who have agreed to cooperate to provide services to users. The 35 present invention therefore allows for "any-to-any" communication and transactions on the Web, thus facilitating a large, flexible variety of robust, real-time transactions on the Web. Finally, Bank may also decide to provide intra-merchant or intra-bank services, together with the inter-merchant services described above. For example, if Bank creates a POSvc application for use by the Bank Payroll department, Bank may provide its own employees with a means for submitting time-cards for payroll processing by the Bank's Human Resources (HR) Department. An employee selects the Bank HR POSvc application, and submits his timecard. The employee's time-card is processed by accessing the employee's payroll information, stored in the Bank's Back Office. The transaction is thus processed in real-time, and the employee receives his paycheck immediately. B. Van Switching and Object Routing As described above, exchange 501 and management agent 601, illustrated in FIG. 6A, together constitute a value-added network (VAN) switch. These two elements may take on different roles as necessary, including peer-to-peer, client-server or master-slave roles. Management manager 603 is illustrated as residing on a separate computer system on the Internet. Management manager 603 can, however, also reside on the same machine as exchange 501. Management manager 603 interacts with the operator agent 503
residing on 60 exchange 501. VAN switch 520 provides multi-protocol object routing, depending upon the specific VAN services chosen. This multi-protocol object routing is provided via a proprietary protocol, Trans Web™ Management Protocol (TMP). TMP 65 incorporates the same security features as the traditional Simple Network Management Protocol, SNMP. It also allows for the integration of other traditional security mechanisms, including RSA security mechanisms. One embodiment of the present invention utilizes TMP and distributed on-line service information bases (DOLSIBs) to perform object routing. Alternatively, TMP can incorporate s-HTTP, JavaTM, the WinSock API or ORB with DOLSIBs to perform object routing. DOLSIBs are virtual information stores optimized for networking. All information entries and attributes in a DOLSIB virtual information store are associated with a networked object identity. The networked object identity identifies the information entries and attributes in the DOLSIB as individual networked objects, and each networked object is assigned an Internet address. The Internet address is assigned based on the IP address of the node at which the networked object resides. For example, in FIG. 5A, Web server 104 is a node on the Internet, with an IP address. All networked object associated with Web server 104 will therefore be assigned an Internet address based on the Web server 104's IP address. These networked objects thus "branch" from the node, creating a hierarchical tree structure. The Internet address for each networked object in the tree essentially establishes the individual object as an "IP-reachable" or accessible node on the Internet. TMP utilizes this Internet address to uniquely identify and access the object from the DOLSIB. FIG. 6B illustrates an example of this hierarchical addressing tree structure. Each object in the DOLSIB has a name, a syntax and an encoding. The name is an administratively assigned object ID specifying an object type. The object type together with the object instance serves to uniquely identify a specific instantiation of the object. For example, if object 610 is information about models of cars, then one instance of that object would provide user 100 with information about a specific model of the car while another instance would provide information about a different model of the car. The syntax of an object type defines the abstract data structure corresponding to that object type. Encoding of objects defines how the object is represented by the object type syntax while being transmitted over the network. C. Management and Administration As described above, exchange 501 and management agent 601 together constitute a VAN switch. FIG. 7 illustrates conceptually the layered architecture of VAN switch 520. Specifically, boundary service 701 provides the interfaces between VAN switch 520, the Internet and the Web, and multi-media end user devices such as PCs, televisions or telephones. Boundary service 701 also provides the interface to the on-line service provider. A user can connect to a local application, namely one accessible via a local VAN switch, or be routed or "switched" to an application accessible via a remote VAN switch. Switching service 702 is an OSI application layer switch. Switching service 702 thus represents the core of the VAN switch. It performs a number of tasks including the routing of user connections to remote VAN switches, described in the paragraph above, multiplexing and prioritization of requests, and flow control. Switching service 702 also facilitates open systems' connectivity with both the Internet (a public switched network) and private networks including back office networks, such as banking networks. Interconnected application layer switches form the application network backbone. These switches are one significant aspect of the present invention. Management service 703 contains tools such as Information Management Services (IMS) and application Network Management Services (NMS). These tools are used by the end users to manage network resources, including VAN switches. Management service 703 also provides applications that perform Operations, Administration, Maintenance & Provisioning (OAM&P) functions. These OAM&P functions include security management, fault management, configuration management, performance management and billing management. Providing OAM&P functions for applications in this manner is another significant aspect of the present invention. Finally, application service 704 contains application programs that deliver customer services. Application service 704 includes POSvc applications such as Bank POSvc described above, and illustrated in FIG. 6A. Other examples of VAN services include multi-media messaging, archival/retrieval management, directory services, data staging, conferencing, financial services, home banking, risk management and a 15 variety of other vertical services. Each VAN service is designed to meet a particular set of requirements related to performance, reliability, maintenance and ability to handle expected traffic volume. Depending on the type of service, the characteristics of the network elements will differ. VAN service 704 provides a number of functions including communications services for both management and end users of the network and control for the user over the user's environment. FIG. 8 is a flow diagram illustrating one embodiment of the present invention. A user connects to a Web server running an exchange component in step 802. In step 804, the user issues a request for a transactional application, and the web server hands off the request to an exchange in step 806. The exchange activates a graphical user interface to present user with a list of POSvc application options in step 808. In step 810, the user makes a selection from the POSvc application list. In step 812, the switching component in the exchange switches the user to the selected POSvc application, and in step 814, the object routing component executes the user's request. Data is retrieved from the appropriate data repository via TMP in step 816, and finally, the user may optionally continue the transaction in step 818 or end the transaction. Thus, a configurable value-added network switching and object routing method and apparatus is disclosed. These specific arrangements and methods described herein are merely 40 illustrative of the principles of the present invention. Numerous modifications in form and detail may be made by those of ordinary skill in the art without departing from the scope of the present invention. Although this invention has been shown in relation to a particular preferred embodiment, it should not 45 be considered so limited. Rather, the present invention is limited only by the scope of the appended claims. What is claimed is: - 1. A system, comprising: - a Web server, including a processor and a memory, for offering one or more Web applications as respective point-of-service applications in a point-of-service application list on a Web page; - each Web application of the one or more Web applications 55 for requesting a real-time Web transaction; - a value-added network (VAN) switch running on top of a facilities network selected from a group consisting of the World Wide Web, the Internet and an e-mail network, the VAN switch for enabling the real-time Web transactions from the one or more Web applications; - a service network running on top of the facilities network for connecting through the Web server to a back-end transactional application; and - a computer system executing the Back-end transactional 65 application for processing the transaction request in real-time. - The system of claim 1, wherein the VAN switch is an application layer switch in the application layer of the OSI model. - 3. The system of claim 1, wherein the VAN switch enables the switching to Web merchant services in response to a Web server's receipt of a selection of one of the point-of-service Web applications corresponding to the Web merchant services from the point-of-service application list on the Web page. - 4. The system of claim 1, wherein each Web merchant service includes one of the one or more Web applications offered as a VAN service, utilizing the VAN switch. - 5. The system of claim 1, wherein each Web application of the one or more Web applications is a value-added network (VAN) service or online service atop the Web, utilizing the VAN switch. - 6. The system of claim 1, wherein the service network includes the one or more Web applications and wherein the service network manages the flow of real-time Web transactions from the one or more Web applications and includes the VAN switch. - 7. The system of claim 1, wherein the Web server is configured to receive a Web transaction request and wherein the Web transaction request is a request to perform one of the real-time Web transactions from one of the one or more Web applications, utilizing the VAN switch. - 8. The system of claim 1, further comprising: - a computer system executing a back-end transactional application for processing the transaction request in real-time, wherein said computer system includes a data repository, wherein the data repository is a data repository to store banking data, and wherein retrieving data includes retrieving banking data to complete a real-time Web banking transaction as one of the real-time Web transactions from a banking Web application as one of the one or more Web applications. - The system of claim 1, further comprising the one or more Web applications offered as software-as-a-service atop the Web. - 10. A method for performing real-time Web transactions from a Web application, comprising: - receiving a request at a Web server, including a processor and a memory, for a real-time Web transaction from a Web application on a Web page, wherein the Web server is configured to hand over the request to a Value Added Network
(VAN) switch; - offering a plurality of Web applications including the Web application on a Web page, upon receipt from a Web server a selection of the Web application from the offered Web applications, the Web application corresponding to a respective back-end transactional application, wherein the back-end transactional application is an application running at the back-office server of one or more Web merchants or at the back-end; - receiving a request for Web merchant services upon receipt by a Web server a selection of the Web application, wherein the request for Web merchant services is a request to connect to the selected back-end transactional application to perform an interactive real-time Web transaction from the Web application, wherein the transactional application is an on-line service provided by one or more Web merchants or the back-end; - switching utilizing the VAN switch to the back-end transactional application in response to receiving the request from the Web server; 12 - providing distributed control of a service network, operating within the boundaries of an IP-based facilities network: - connecting to specified ones of the Web merchant services or to back-end services, wherein the connection to the Web merchant services or back-end transactional services is managed; - accessing data from a host or data repository coupled to the back office server of one or more Web merchants or to the back-end transactional application, wherein the back office server or back-end is coupled to legacy databases and other data repositories that are utilized by the one or more of the Web merchants or the back-end transactional application to store data; and completing the real-time Web transactions from the Web application. - 11. The method of claim 10, wherein the real-time Web transactions are Web transactions from the Web application accessing a value-added network service. - 12. A computer-implemented system, operated by a business entity comprising: - a Web application network portal, wherein the portal includes memory and a processor and one or more Web applications offered respectively by one or more Web merchants or other service providers, or by multiple sub-entities of the business entity who have agreed to cooperate to provide on-line Value Added Network (VAN) services atop the Web for access by employees of the business entity; - a list of one or more point-of-service employee Web applications on a Web page offered by the business entity that operates the portal, said portal allowing access to the one or more point-of-service applications on the Web page from said list, and wherein the portal offers the one or more point-of-service applications as on-line services on the Web page, and further wherein the portal is operated by the business entity over a service network running on top of a facilities network, the facilities network being selected from a group consisting of: the World Wide Web, the Internet and email networks, said service network including a VAN Switch; - one or more back-end transactional applications running at one or more back-end host computers, corresponding, respectively to the one or more point-of-service applications accessed, to complete a real-time Web transaction from the Web application on the Web page. - 13. The portal of claim 12, wherein the one or more Web applications include a plurality of point-of-service applications on the Web page, wherein the business entity and the sub-entities offer Web applications which are selected from a group consisting of payroll Web applications, human resources Web applications, expense report Web applications, time card Web applications, travel Web applications, vacation Web applications, financial Web applications and sales commission Web applications.