5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg1of94 PgID 98

UNITED STATES DISTRICT COURT
EASTERN DISTRICT OF MICHIGAN
SOUTHERN DIVISION

BURROUGHS, INC.,
a Delaware corporation,

Plaintiff, Case No. 5:12-cv-14804-JCO-MAR

y Hon. John Corbett O'Meara

PANINI NORTH AMERICA, INC. JURY TRIAL DEMANDED

a Delaware corporation,

Defendant.

Andrew M. Grove (P48368)
Charles W. Duncan, Jr. (P75288)
Emily J. Tait (P74708)

Honigman Miller Schwartz and Cohn LLP
39400 Woodward Avenue, Suite 101
Bloomfield Hills, M1 48304-5048
Tel:  248-566-8300

Fax: 248-566-8315
jgrove@honigman.com
cduncan@honigman.com
etait@honigman.com

Attorneys for Plaintiff Burroughs, Inc.

FIRST AMENDED COMPLAINT
Plaintiff BURROUGHS, INC., ("Burroughs') by its undersigned attorneys, for its
Complaint against defendant PANINI NORTH AMERICA, INC. (“Panini”) alleges as follows:
NATURE OF THE ACTION
1 This is an action for patent infringement arising out of Panini's infringement of U.S.
Patent No. 6,546,396 ("the '396 patent") in violation of the patent laws of the United

States, 35 U.S.C. 88 271 and 281-285.



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg2of94 PgID 99

THE PARTIES
Burroughs is a Delaware corporation with a principal place of business |ocated at 41100
Plymouth Road, Plymouth, Michigan, 48170.
Upon information and belief, Defendant Panini North Americais a Delaware corporation
with aprincipal place of business at 577 Congress Park Drive, Dayton, Ohio 454509.
JURISDICTION AND VENUE
This action arises under the patent laws of the United States, Title 35 of the United States
Code.
This Court has jurisdiction over the subject matter of this action pursuant to 28 U.S.C. 88
1331 and 1338(a).
Upon information and belief, this Court has persona jurisdiction over Panini because
Panini has placed its infringing products into the stream of commerce knowing and
intending that this judicial district was and is a likely destination of those products, has
caused injury to Plaintiff in this judicial district, and has committed acts of infringement
inthisjudicial district.
Venueis proper in thisjudicia district under 28 U.S.C. 88 1391(b) and (c), and 1400(b).
COUNT | —Direct Patent I nfringement
The United States Patent and Trademark Office ("PTO") duly and legally issued the '396
patent, entitted "Document Processing System With a Multi-Platform Application
Programming Interface,” to Unisys Corporation on April 8, 2003. The '396 patent was
subsequently assigned to Burroughs Payment Systems, Inc. A true and correct copy of

the "396 patent is attached as Exhibit A and is made a part of this Complaint.



10.

11.

12.

13.

14.

15.

5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 3 0of94 PgID 100

Burroughs is the owner of this patent, and its ownership is duly reflected in the
assignment records of the PTO.
The defendant Panini has infringed and is still infringing the ‘396 patent by making,
using, importing, selling, and offering to sell document processing systems with multi-
application programming interfaces that embody the patented invention, and the
defendant will continue to do so unless enjoined by the court.
For example, Panini makes, uses, sells, offers to sell, and imports the document
processing systems such as “VisionX,” “MyVisionX” and “I-Ded” using the “Vision
API” multi-application programming interface, and these products embody the invention
as reflected in the claims of the ‘396 patent, including but not limited to clams 1-28 and
42.
Panini also infringes by performing the inventive methods claimed in the ‘396 patent.
Specifically, when Panini’s document processing systems such as “Vision X,”
MyVisionX” and “I-Ded” operate in conjunction with Panini’s “Vision API” multi-
application programming interface, Panini directly infringes method claims of the ‘396
patent, including but not limited to claims 29-41 and 43.
Burroughs has given Panini written notice of the ‘396 patent and Panini’s infringement
thereof.

COUNT Il — Contributory Patent I nfringement
Burroughs repeats and re-alleges the foregoing allegations.
Panini is contributing to the infringement of the ‘396 patent by, among other things,
selling the document processing systems “VisionX,” “MyVisionX” and “I-Ded” that

include the “Vision API” multi-application programming interface to Panini’s customers,



16.

17.

18.

5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg40f94 PgID 101

who include (for example) the Meijer supermarket chain in the state of Michigan.
Panini’ s customers directly infringe certain system claims of the ‘396 patent (clams 1, 14
and 42 for example) when they use these systems in the manner Panini designed them to
be used. When Panini’ s customers use these systems in the manner Panini designed them
to be used, such customers also directly infringe certain method claims of the ‘396 patent
(claims 29 and 43, for example).

According to the Panini Vison APl Reference Manual, Panini’s Vision APl multi-
application programming interface “is the software interface to drive the [sic] Panini’s
devices. TheVision API isthe ‘standard’ API for every machine manufactured by Panini.
This API will be able to drive different kind[s] of maching[s]. It organizes the software
interface in two layers. It's composed of an ‘Interface’ library and a ‘device engine

library that contains the specific code of a specific device.”

The Panini Vision APl Reference Manual further states that Panini’s “Vision API” multi-
application programming interface was “created to supply our customers request of an
easy-to-use and very specific Interface.”

By selling the document processing systems “VisionX,” “MyVisionX” and “[-Deal” with
this “very specific Interface” to Panini’s customers, Panini contributes to its customers

infringement of the ‘396 patent. The systems have no substantial non-infringing uses
because Panini designed them specifically to perform the inventive methods; and Panini’s
customers requested, and in fact use, the systems and methods in the manner for which

they were intended.



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg5o0f94 PgID 102

19. Panini knows how its systems and Vision API operate. Panini’s systems and Vision API
were specifically created by Panini for the purpose of being used by its customers in a

manner that infringes the system and method claims of the * 396 patent.

20. Burroughs is being injured by Panini’ s direct and contributory infringement.
RELIEF REQUESTED

WHEREFORE, Plaintiff Burroughs respectfully requests that this Court enter a judgment
and order that:

A. Panini hasinfringed the '396 patent;

B. Panini's infringement of the '396 patent has been willful and deliberate;

C. Panini and its officers, agents, representatives, employees and all othersin concert
or participation with them, directly or indirectly, be enjoined preliminarily and permanently from
infringing, inducing others to infringe and contributing to the infringement of the '396 patent;

D. Plaintiff Burroughs be awarded damages adequate to compensate for Panini’s
infringement of the '396 patent together with pre-judgment interest pursuant to 35 U.S.C. § 284;

F. Plaintiff Burroughs be awarded treble damage, costs and reasonable attorneys
fees and expenses in this action in accordance with 35 U.S.C, 88 284 and 285; and

G. Plaintiff Burroughs be awarded such other and further relief as this Court may
deem just and proper.

Respectfully submitted, this 30th day of January, 2013.
By: gAndrew M. Grove
HONIGMAN MILLER SCHWARTZ AND
COHN LLP
Andrew M. Grove (P483868)

Charles W. Duncan, Jr. (P75288)
Emily J. Tait (P74708)




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg60of94 PgID 103

Honigman Miller Schwartz and Cohn LLP
39400 Woodward Avenue, Suite 101
Bloomfield Hills, M1 48304-5048

Ted:  248-566-8300

Fax: 248-566-8315
jgrove@honigman.com

cduncan@honigman.com
etait@honigman.com
Attorneys for Plaintiff Burroughs, Inc.

JURY DEMAND

Plaintiff Burroughs, Inc. hereby requests atrial by jury of all issues so triable.

Respectfully submitted, this 30th day of January, 2013.

12005816.1

By: gAndrew M. Grove
HONIGMAN MILLER SCHWARTZ AND
COHN LLP

Andrew M. Grove (P48368)
Charles W. Duncan, Jr. (P75288)
Emily J. Tait (P74708)

39400 Woodward Avenue, Suite 101
Bloomfield Hills, M1 48304-5151
Tel:  248-566-8300

Fax: 248-566-8315
jarove@honigman.com
cduncan@honigman.com
etait@honigman.com

Attorneys for Plaintiff Burroughs, Inc.




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 7 0of 94 PgID 104

EXHIBIT A



e o Roe S AR ARG R

a2 United States Patent
Borkowski et al.

US006546396B1
10y Patent No.: US 6,546,396 B1
5) Date of Patent: Apr. 8, 2003

(549) DOCUMENT PROCESSING SYSTEM WITH A
MULTI-PLATFORM APPLICATION
PROGRAMMING INTERFACE

(75) TInventors: Joseph D. Borkowski, Ann Arbor;
Steven Russell, Novi; Thomas L.
Bondy, Canton; Weston J. Morris;
Craig F. Lapan, both of Livonia, all of
MI (US)

signee: Unisys Corporation, Blue Bell,
73)  Assi Uni C i Blue Bell, PA
(US)
otice: ubject to any disclaimer, the term of this
*)  Noti Subj y disclai h f thi
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 08/993,454

(22) Filed: Dec. 10, 1997

(51) Int. CL7 oo GO6F 17/00
(52) US.CL oo 707/102; 709/318; 709/316;
707/103 R; 707/103 Y; 707/103 F
(58) Field of Search ..........ccocccceee. 707/1-206, 500,
707/502, 517-525, 511-516; 709/1-108,
310-332

(56) References Cited

U.S. PATENT DOCUMENTS

5,778,222 A * 7/1998 Herrick et al. .............. 707/103
5778377 A * 7/1998 Marlin et al. ..... 707/10
5,781,905 A * 7/1998 Awane et al. .................. 707/2

Wait Ex to 702
Connect

C: EXOCX connacls to Track Driver
A: Craata Track sub system

C: MXRetry
A CLRX* C_InitSorter
C_InitSorter

704
Show Int C: R_InitSorter w/ errs.
Sorter Error A SETR

C: R_InitSorter

C: MX_Abort
A: Kill everything

710,
C: R_PowerUp wj errs

Show ADp ) . . XE ExceptionDetected

PowerlUp
Exception
C: MX_Abort
A Killeverything
714

Show Track
PowerUp
Exception

PowerDown

€ Powertlp
C: MX_Abort £ M Continue
& Killeverything

Y

" E PaweredUp

C: M Fowerlp
A: E PowaredUp

O

LEGEND:

C: App Disconnects

¥ ; 708 C: TE_PowerDownStart
w@m”e‘é:‘“ or TE_PowarDownAbort
° A SETX

C: App OCX cannects to Track Driver

1

C: M Powsillp
A: Read DP1xCON.inl
C_Powerlp

¢ :‘“-"“"'“"‘]F C: M Powerlp
o orrors|

_ (Track already powered up}

A EPowerlp 4 E poweredlp

OTHER PUBLICATIONS

Liang et al. “An optimization methodology for document
structure extraction on Latin character documents”, Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
vol. 23, Issue 7, Jul. 2001, pp. 719-734.*

Yang et al., “Client browsing module for internet collabo-
rations”, Systems, Man, and Cybernetics, 2001 IEEE Inter-
national Conference on, vol. 4, 2001, pp. 2317-2321.*
Newman, “Delivering the correct multimedia in a standards
dominated environment”, Euromicro Conference, 2001,
Proceedings 27th, 2001, pp. 331-335.*

* cited by examiner

Primary Examiner—David Jung
(74) Attorney, Agent, or Firm—Charles A. Johnson; Mark
T. Starr

(7) ABSTRACT

A common programming interface for multiple types of
document processing systems. An object interface is defined
that includes properties, methods, and events that are appli-
cable to multiple types of document processing systems. For
a particular document processing system of a particular type,
an instance of the object interface is established, and an
application program controls overall operations of the docu-
ment processing system by setting values of properties in the
object interface, invoking methods in the object interface,
and responding to events reported via the object interface.
System specific track drivers handle system specific inter-
face requirements and interact with an application program
via an instance of the object interface. The single application
programming interface promotes ease of development for
application programs and some reuse of code.

43 Claims, 13 Drawing Sheets

SET X* consists of 4 events

sent by the cage:

- C_GetTrackPicture/
R_GelTrackPleture

- XE TrackPicture

- E ExceptionDetectod

- XE ExceplioninProgress

[CLR X* consists of 2 events
sent by the cage:

- XE ReadyToReprocess
- E ExceplionComplete

Wait Track to

C: R_PowerDovitt Wait Trark 1o

A: CLRX*

E PoweredDown
C: R_PowerDown
A: E PoweredDown

718

712 €: 1Sec timeout
A: E PowaringUp

C; M Powerown
A: C_PowerDown

C: M ReadyToPracess
A: C_SetMandatoryDovices

“M {function)” Indicates initiation of a method to perform the function
“TE?

Indicates a track event
o Indicates an exception



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg9of94 PgID 106

U.S. Patent Apr. 8, 2003

Sheet 1 of 13

US 6,546,396 Bl

100
LANGUAGE CUSTOMIZABLE Ve 106
EXCEPTION DATABASE
- APPLICATION
108 VISUAL C++
v [~ VISUAL BASIC
DELPHI
EXCEPTION HANDLER OTHER OCX CONTAINER
VISUAL BASIC - TRACK OBJECT
8 INTERFACE
EXCEPTION OBJECT |~ 122 -
INTERFACE
124 /- 104 r 120
SHARED TRACK SHARED
MEMORY AND —>| DRIVER «— MEMORY AND —
SEMAPHORES SEMAPHORES
TRACK 114
COMMAND 4
INTERFACE
1/ 112 ‘k 116
RS 232 sCS|
- 102 l l - 110
DP 35
IMAGE
DOCUMENT
PROCESSOR SUBSYSTEM

FIG. 1



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg100f94 Pg ID 107

U.S. Patent

Apr. 8, 2003 Sheet 2 of 13

COMMON
INTERFACE
ESTABLISHMENT

\ 4

US 6,546,396 Bl

DEFINE A TRACK OBJECT INTERFACE
HAVING PROPERTIES, METHODS, AND
EVENTS FOR MULTIPLE TYPES OF
DOCUMENT PROCESSING SYSTEMS

202
~

A 4

INTERFACE ON MULTIPLE
DOCUMENT PROCESSING
SYSTEMS

|

ESTABLISH THE TRACK OBJECT ¢~ 204

FOR EACH SYSTEM, INSTALL A SYSTEM-

SPECIFIC TRACK DRIVER AND COUPLE
THE TRACK DRIVER TO THE OBJECT
INTERFACE AND DOCUMENT TRACKER

l

FOR EACH SYSTEM, INSTALL A SYSTEM-

SPECIFIC EXCEPTION HANDLER AND
COUPLE THE EXCEPTION HANDLER TO
THE TRACK DRIVER

END

FIG. 2



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg110f94 PgID 108

U.S. Patent

Apr. 8, 2003

Sheet 3 of 13

US 6,546,396 Bl

300
LANGUAGE CUSTOMIZABLE /~ 306
EXCEPTION DATABASE
: APPLICATION
3
302 VISUAL C++
v [~ VISUAL BASIC
DELPHI
EXCEPTION HANDLER OTHER OCX CONTAINER
INTERFACE
EXCEPTION OBJECT |~ %08 118 .
INTERFACE
e 304
SHARED SHARED d
MEMORY AND —| gm%'é ¢ MEMORY AND 330
SEMAPHORES SEMAPHORES
Cgmi"‘\m | MEMORY _ MEMORY
MAPPED
328 |  INTERFACE MAFPED
MESSAGE SYSTEM [N ("
326 332
A
Y
DEVICEDRIVER [N
CTTR, JCT e
J 316 318
A A r /- Y /- \ 4
DP500 TRACK CONTROL | TRACK SYSTEMNWM T rppy icaTION
312 |  DOCUMENT R OCESSOR STATISTICS e
PROCESSOR | ( RECOVERY DATA
320

FIG. 3



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 12 of 94 PgID 109

U.S. Patent

Apr. 8, 2003

Sheet 4 of 13

US 6,546,396 Bl

400
LANGUAGE CUSTOMIZABLE /‘ 412
EXCEPTION DATABASE
: APPLICATION
402 VISUAL G++
e VISUAL BASIC
DELPHI
EXCEPTION HANDLER OTHER OCX CONTAINER
VISUAL BASIC e TRACK OBJECT
INTERFACE
EXCEPTION OBJECT |~ 404 118 -
INTERFACE
e 408
SHARED SHARED
MEMORY AND —» gg@%’; «— MEMORY AND -
SEMAPHORES SEMAPHORES
A
Y ~ 414
DEVICE DRIVER
A
\ 4
DP1X00 416
nTEreacE [
BOARD
4184
1 -4
7
(COMMON APIBOARD)|  DP1800| __ 410
DOCUMENT Y~
PROCESSOR

FIG. 4



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg130f94 PgID 110

U.S. Patent Apr. 8, 2003 Sheet 5 of 13 US 6,546,396 B1

502

/ vaems

552 AN

Track To
OCXRcv

Config Inf
onig inio “AppMsgOut” _ -

or OCX Dead Thread

Events AN
510 AN
OCXRev Q \
ng?(( I;gv “methodg” TracFI‘(dEvent
Thread 508 / 532 \
“getAppMsg” \
\ Various \
« ” OCX Methods / OCX Send Q
‘AppMethod” or \ Track ” “eventq” 1\ :
AppOCXChg Doc Proc Event Warnings ]
events Comp _ Rd
) Ack Rd 514  RY
\ y / 30
. \ \ ~ Responses 2
Device INI \ 512 7 1o OCX
files N g

N A Completed 540 Post

] . o os
558  Config Info Main State Doc Info Docs Warnings

Machine Threa

Thread

“cage”

e
s
g 556
// Doc in Proc | —
/ Table
/ 516 TrackCmd !
/ \ Removed Sema4d
i
I | Track Cmd I Track Event Current
l\ “*curCmd” : R/eady s Warnings
\ 544 | 'ragk E¥eN
\ s20 \ rspQ” [~ \
Track Cmd \ 528 538
Ready\ \ / 518
N
Task Level
<\ Track Driver 526 522 524
Thread - Reset Track - \
“mainDriver- Track - Track
Loop” Status

Commands | Common
Track Status —1 APl Board

NT CAPI
Driver

Figure 5

~ Pl
Track Autoinc CHl —

Commands



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg140f94 PgID 111

U.S. Patent

Exception
Handler

602

Methods

Properties

Apr. 8, 2003

Sheet 6 of 13

612

US 6,546,396 Bl

/ Events
614 N i 546
N DP1X00 —~——~~_( TrackTo
“AppMsgOut” _ -] Exception OCX Rev
or OCX Dead 0CX Thread
Events
- 510 /A__ 548
OCXRev Q
OCX To « " Track
Track Rev methodq -
Thread - 508

~

“getExMsg”

" Doc Proc

COmp

OCX Send Q

Track Status —

“ExMethod” or . AckRdy ~_ , pr »
“EXOCXChg” Oc;’(“&l':t‘;fo i A eventg” |+~
events Y
\ 514 i AN Completed Docs
N
Various INI | | 510 o~ ResRonses \
< AN D&cument
) ; eanu
558  Config Info Mﬁ;’;,?it:;e Threa Warnings
Ihreag Do Info Threa
pad cage Delete Doc 616
, [
pd \ Doc in Proc
y { Table [
/ 516 TrackCmd ! 556
// \ Removed Sema4/
]
' | TrackCmd | ! Track Event
“ ” Current
l‘ *curCmd { R/eadv S Warnings
\ 544 | Iragk =ren
\ 590 \\ /L’ rspQ N \
Track Cmd \ 598 538
Ready\ \ / 518
\
~ Task Level
~ l Track Driver 526 522 524
Thread - Reset Track - \
“maligoDll;i,\,ler- gtraat‘:xk - Track
y NT CAPI Commands ™~ Common
Driver API| Board

Track
Commands

Figure 6

~
Autolnc Ctl —




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg150f94 PgID 112

U.S. Patent Apr. 8, 2003 Sheet 7 of 13 US 6,546,396 B1

Wait Ex to 702 SET X* consists of 4 events
Connect sent by the cage:
- C_GetTrackPicture/
C: Ex OCX connects to Track Driver R_GetTrackPicture
C: MX Retry A: Create Track sub system - XE TrackPicture
A: CLR X* C InitSorter - E ExceptionDetected

C_InitSorter - XE ExceptioninProgress

Show Init Wait Init 704 CLR X* consists of 2 events
Sorter Error C: R_InitSorter w/ errs Sorter sent by the cage:
A: SETX* - XE ReadyToReprocess

- E ExceptionComplete

C: MX_Abort C: R_InitSorter
A: Kill everything

/ Wait App to 708 C: TE_PowerDownStart
Connect or TE_PowerDownAbort
A: SETX*

C: App OCX connects to Track Driver

C: R_PowerDown
A: CLR X*

E PoweredDown
C: R_PowerDown

Wait Track to
Power Down

710
_PowerUp wj errs

C:R
A: XE ExceptionDetected

Show App Wait App to A: E PoweredDown
Eower_ P Powe‘r,ﬁp
xception

C: MX_Abort C: M PowerUp
A: Kill everything A: Read DP1xCON.inl
C_PowerlUp
& 714 C: 18Sectimeout
C: R_PowerUp w/ errs A: E PoweringUp

A: SETX*

C: XM Retry
A: CLRX*

Show Track
PowerUp
Exception

712
Wait Track to
PowerUp

C_PowerDown C: MPowerDown
C_PowerUp CRP y A: C_PowerDown
. : P R_TOWEIYD ¢ M PowerUp
C: MX_Abort 2 I\cﬂl)-(ﬁ(;gntmue A é";o‘:;r:rﬁ) (Track already powered up)
A: Kill everything E PoweredUp : P A: EPoweredUp
C: M PowerUp
A: E PoweredUp
) . C: M ReadyToProcess
C: App Disconnects A: C_SetMandatoryDevices
LEGEND:
“M (function)” Indicates initiation of a method to perform the function
“TE” Indicates a track event
“xX Indicates an exception

Figure 7A



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 16 0f94 PgID 113

US 6,546,396 B1

Sheet 8 of 13

Apr. 8, 2003

U.S. Patent

gz ‘b14

g/ ‘614

g/ ainbi4

dpjswi4 3

pwgdeq

-uoN X ¥
JAHTD Y
anupuod XW :9

uondaaxy
pu) Buy 10
90Q UON Moy

Buiyfaene 1y v
Hoqy WX D

\

pwgdoquoN X H 39

1o puegpjor|g 7 Y
fuipued dpygwy4 40
puegjoe|g pue
mojgdoig W :p  MOIREISH 2D

Buiyplsene |1y v

Buiyou Jo
aje|dwonma|gjoIdLy J J0
ajqejieayyibuswyosy 3 -
(4o} pwgooquoNX H :

dsay puigooq uoqy WX 9
pu9 B J0 -uoN X 9y
20Q UON JIeM puigoog
UoN X W 9 mrvoen
S uondea
4 XX vl o y
ejqesigebew| 9 :y XIH1D ERITET|

. SIPIoH W D ssav0idolApeay 3 ¥ A9y WX 9 Hu| moys
Jadies v 30 J1u| S32JABP |JB D)

(119)

X3 135 v
(o) Ul Y 9
Bujpued s)

ssado1d | Aue :9 a|p| buton

Bujhpesy 3 v

e|qes|gebew| 5 Jnoswiy 995 | 1)

X3 H1D 'V .
Aney wx 19 3 Am_mmv v s o ._ ,,xmm_m v
ajqesigebew| y :9 (30) N WUl Y 9 sadlAaq Hu| | dn Jamod abew) 3

olpia v
a)9jdwon ale
ssao0ld Wl 9

X H1D ¥
dn Jemogd abew| :9

uoidaax3 9|p|
Butory moys

Buiyphians iy vy
Hoqy WX :0

Y



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg170f94 PglID 114

US 6,546,396 Bl

Sheet 9 of 13

Apr. 8, 2003

U.S. Patent

g. b4

g/, ainbi4
gl ‘bi4

(moy3 ueys) jonyuonmoly 9 (g

X3 H1D
{0} 201do1hpy Y :9

201dolApY I ¥
{uoseal ou 1o
o} aloub shes dde y o}

mojqdoys 31 9

Buiyiaane |y v
22/ Hoqy XW :9

Bupphsens |1y v
uoqy Xi :9

soidolApy 9D
X3 135 'Y
(13) s01dolApy Y 9

aoidolApy 9
»X3 13S ¥
(119) 2014oLApY Y D

moj4 0}
Apeay bunjen

paddojsmoll 3 v
mojqdoys | :9
20140l ApY 9 1Y
Mol U I 19

mojl4 0}
Apeay bunjey

(fidwe seddoy "be)

ajjdwosuondedxy 3 - (adu3 ﬁm.ﬁ%w v xx dojg 3 :y
sseonudoyoLhpeoy IX - (uoseas doys dde) (uoseas dois dde) | ydwgmoljoLkpuoten 3 v
:obed ay) Aq Jues mojqdois 3] 9 301d0JAPY H D unajmojjolApyaxew W 9

sjuaAa Z Jo s)sIsu0d X3 Y19

ssalbioiduiuondasxy 3x
pojosjequondaaxy 3
sinp|gyoel) 3X
aimjolgyoe1liey Y
feimaigydeiien g -

:afiea ay) Aq Juss

SJUdAD § Jo SISISu0d X3 139

so1dorApy 9 v
soidoLApyoNe W D

0c’/




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 18 0f94 PgID 115

U.S. Patent Apr. 8, 2003 Sheet 10 of 13

C: TE_AlIDocsDone
(no err)
A: C_RdyToProc

C: R_RdyToProc {ok)

C: TE_AlIDocsDone

(no err and CLR X*
(App asked flow to stop A: C_FlowControl
or Black Bankd or Film (start flow)
Skip)

A: E_FlowStopped or
E_MicrofilmSkip or
E_BlackBand or ,
E_HoppeEmpty 724

/' C: TE_IlmageDone

m TE_HsemDone

C: XM_NoMoreDocs

C: XM_NoMoreDocs
(and all docs done)
(and App asked flow to stop
or Black Band or Film Skip in

progress) C: TE_AlIDocsDone {er)
CLR X* A: SETX*
_FlowStopped or
_MicrofiimSkip or
_BlackBand
C: XM_HandPocket
A: E_ProcessDocComplete
XE_DocReprocess
726

C: XM_Delete
A: E_ProcessDocComplete
XE_DocReprocess

Show Flow
Exception

.

C: xm_Abort

A: Kill everything
XM_Refeed
C

C:
A: C_FiowCtrl (SingleFeed)

C: TE_AlIDocsDone
{no err)

A: E_ProcessDocComplete
XE_DocReprocess

C: TE_AliDocsDone (err)
C_RdyToProc

C: R_RdyToProc (err)
A: XE NestedExceptioninProgress
C_RdyToProc

Getting Ready
To Refeed

728

Figure 7C

C: M_MergeFeed
A: C_Mc‘argeFeed

US 6,546,396 Bl

C: M_Accept
A: If pending doc
E_ReadComplete

C: M_DocCompleteAck

TE_TooLateToPocket,
C: M_StopFlow

(and all docs done) A: ‘;.t_‘l:k;WCtrl
A: CLR X" P C: M_Process
C_RdyToProc A: C_Process

C: TE_ReadComplete
A: If no docs wtg M_Accept
E_ReadComplete

SET X* consists of 4 events

sent by the cage:

- C_GetTrackPicture/
R_GetTrackPicture

- XE TrackPicture

- E ExceptionDetected

- XE ExceptioninProgress

CLR X* consists of 2 events
sent by the cage:

- XE ReadyToReprocess
- E ExceptionComplete

A: XE NestedExceptioninProgress

730

Refeed Single
oc

'



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg190f94 PgID 116

U.S. Patent Apr. 8, 2003 Sheet 11 of 13 US 6,546,396 B1

C: Exception is detected involving no docs

A: xe EXCEPTION DETECTED
C: Operator presses Abort button
A: Operator or Track clears problem A: xm CLEAR EXCEPTION (ABORT) -

C: xe READY TO REPROCESS
SHOW
ERROR
814

C: Operator says ignore the error
A: xm CLEAR EXCEPTION

C: 200msec timeout
A: xe TRACK PICTURE

A: Track clears exception
C: xe READY TO REPROCESS

A
816

\ C: Exception is detected involving docs
C: Operator presses Abort button A: xe EXCEPTION DETECTED
A: xm CLEAR EXCEPTION (ABORT)

SHOW
ERROR
& PREPARE
REPASS

C: No docs left,
or only Feedcheck Docs left

A: xm NO MORE DOCS C: Exception is detected

(one doc involved)
A: e NESTED EXCEPTION

C: Operatormakes recovery selections

810

C: Doc ‘completes’
A: xe REPROCESSED

C: Doc‘completes’
A: xe REPROCESSED

LOGICALLY C: Operator asked to Hand

PROCESS Pocket or Delete the doc
A: xm HAND POCKET or
XM DELETE DOC C: Operator asked to
Refeed Doc
A: xm REFEED

C: Exception is detected
{no docs involved)
A: e NESTED EXCEPTION

START STOP
REQUIRED

C: Operator or track
corrects problem

A: e READYTO

812 REPROCESS

Figure 8



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 200f94 PgID 117

U.S. Patent Apr. 8, 2003 Sheet 12 of 13 US 6,546,396 B1

APPLICATION STATES TABLE, METHODS

Application States

1O lamod
dn buuamogd

9lp|

Apeay Bumen

3|p| buioo

Apeay

Bueug

.C/\ SAOWBY

8)a|dwo) peay
$58001d

ae|dwo) ssea0id 1epm
ol 10

NEGREY

10 Buuamod
Mo|{ 0} Apeay buiyep

Methods

CLI Capture®
DocAccept
DocProcess
DocReject®
FlowStart X
FlowStop X
Goldle X
GoReadyToProcess X
ImageEndOfFile
MakeReadyToFlow
MakeReadyToFlowTerminate X
MergeFeed X X
MFilmGetLength
MFilmHorizontalAnnotate
MFilmSlew
MFilmVerticalAnnotate
NVMRead® o s e o o [ [o
NVMWrite® e 1o o [o [o |o [° [o
PowerDown X
PowerUp XX
PrintLine®
Recover®
ResumeFeeding
StkResetPockets

XXX XK

>

x| >

o D X< XX >
-]
[:]

x|
[
-]
o
o
[
°

Legend
° = DP 500 Only

FIG.9



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg210f94 PgID 118

U.S. Patent Apr. 8, 2003 Sheet 13 of 13 US 6,546,396 B1

APPLICATION STATES TABLE, EVENTS

Application States
PFlFeeEEEERRERE
D B (B S B |12 |2 (® 1o e
o Bl Bl BEIS® 8] &
= 2 |2 & T |& < |3 2 °
c O ) Y N o 197}
S Q (=3 ° o ;]
C | 5 = |8
Z S
Events = &
BlackBand X
CLICaptured® X
DocComplete XXX IX[X|[X]|X
DocReadComplete X
DocRejected”® X
ExceptionComplete XX IX[X[X[X{X|IX[X|X[X]X]X
ExceptioninProgress XXX [X]X XX |X[X[X[X[X]X
FlowStopped X
HopperEmpty X
Idle X
MachineDead XIX XXX [X XXX X[X[X][X]X
MakeReadyToFlowComplete X
MFilmGetFilmLengthComplete X XX
MFilmSkipEvent®® X X | X
MFilmSkewComplete X X | X
PoweredDown X
PoweredUp X
PoweringUp X
Readying X
ReadyToFlow X
ReadyToProcess X
RecoveryComplete X
RepassVerify XXX |X[X[X
StackerButtonPressed® X | X|X XXX |X|X[X[X][X
Warning XIXIX XX [X[X[X|X|X[X]|X
Legend
° = DP 500 Only

°® = DP 1XXX only

FIG. 10



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg220f94 PgID 119

US 6,546,396 B1

1

DOCUMENT PROCESSING SYSTEM WITH A
MULTI-PLATFORM APPLICATION
PROGRAMMING INTERFACE

COPYRIGHT NOTICE

This patent document includes an Appendix that contains
material that is subject to copyright protection. The copy-
right owner does not object to reproduction of the patent
document as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyrights
whatsoever.

FIELD OF THE INVENTION

The present invention relates generally to automated
document processing systems, and more particularly, to
methods for and arrangements of multiple types of docu-
ment processing systems that share a common application
programming interface.

BACKGROUND

Automated document processing systems have been used
for a number of years to process checks, remittances, and
other forms of documents. Such systems vary in capabilities
in terms of document throughput and mechanisms for
extracting data. For example, some systems use optical
character recognition techniques while other systems use
magnetic ink character recognition. Examples of such sys-
tems include the DP 30, DP 500, and DP 1800 document
processing systems from Unisys Corporation.

Many of today’s systems do not share a common lineage.
That is, today’s systems are successors to systems that were
developed in different locations by different engineers using
different platforms. As a result, DP30 systems evolved to
where application programs ran under the Windows and
0OS/2 operating system environments, DP 500 systems
evolved to where application programs ran in a CTOS
environment, and DP 1800 systems evolved to where appli-
cation programs ran on the Motorola 68000 family of
MICroprocessors.

With multiple types of application environments, it is
expensive to develop applications for the various document
processing systems because each system requires a program-
mer having a relatively unique skill-set. To assemble a group
of programmers who possesses skills for all three platforms
has been found to be difficult. Therefore, separate staffs of
programmers have been required for the different platforms.
This is expensive for vendors of automated document pro-
cessing systems, as well as for customers who develop
custom applications for different types of systems.

SUMMARY OF THE INVENTION

The present invention is directed to methods for and
arrangements of document processing systems that share a
common application programming interface. The common
programming interface includes an object interface with
properties, methods and events. The properties, methods,
and events of the object interface are descriptive of multiple
types of document processing systems. Instances of the
object interface on multiple types of document processing
systems provide a common application programming inter-
face on the multiple types of document processing systems.

In a first aspect of the invention, a document processing
system is provided with a generalized programming inter-
face for an application program. The system is comprised of:

10

15

20

25

30

35

40

45

50

55

60

65

2

a first document processor having a first set of capabilities
that are accessible via a first set of command codes; an
object interface having properties, methods, and events for
the first document processor, and having properties,
methods, and events for a second document processor hav-
ing a second set of capabilities; and a track driver coupled
to the first document processor and to the object interface,
configured and arranged to interface with the first document
processor and provide selected ones of the first set of
command codes to the first document processor in response
to methods initiated via the object interface, and in response
to status codes returned from the first document processor,
report events to an application program via the object
interface.

Another embodiment of a document processing system
with a generalized programming interface for an application
program is provided in another aspect of the invention. The
system is comprised of: a first document processor having a
first set of capabilities that are accessible via a first set of
command codes; a data processing system having an input/
output port and including an object interface having
properties, methods, and events for the first document
processor, and having properties, methods, and events for a
second document processor having a second set of capabili-
ties; and a track driver coupled to the first document pro-
cessor via the input/output port and to the object interface,
configured and arranged to interface with the first document
processor and provide selected ones of the first set of
command codes to the first document processor in response
to methods initiated via the object interface, and in response
to status codes returned from the first document processor,
report events to an application program via the object
interface.

A method for operating a document processing system is
yet another aspect of the invention. The method is comprised
of the steps of: setting in an object interface values of
properties that are associated with the document processing
system, the object interface additionally having properties of
another different document processing system; invoking
methods for controlling operations of the document process-
ing system, wherein the methods are defined in the object
interface, and the object interface additionally includes
methods for controlling different operations of the different
document processing system; and processing events gener-
ated by the document processing system and reported via the
object interface, the object interface additionally having
event definitions for the different document processing sys-
tem.

In another aspect of the invention, a method is provided
for establishing a programming environment for a plurality
of document processing systems, each document processing
system having a document processor with different capa-
bilities that are accessible via a different set of command
codes. The method is comprised of the steps of: defining an
object interface having properties, methods, and events that
are descriptive of the document processors; establishing a
plurality of respective instances of the object interface for
the plurality of document processing systems, the instances
of the object interface having a common programming
interface for implementing application programs; coupling a
plurality of respective track drivers to the instances of the
object interface, each track driver responsive to methods
initiated from the respective instance of the object interface,
and configured and arranged to provide predetermined com-
mand codes to the document processor and report events
back to the object interface.

The above Summary of the Invention is not intended to
describe each disclosed embodiment of the present inven-



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 23 0of94 PgID 120

US 6,546,396 B1

3

tion. This is the purpose of the figures and of the Detailed
Description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects and advantages of the present invention will
become apparent upon reading the following detailed
description and upon reference to the drawings in which:

FIG. 1 is a block diagram of an example document
processing system according to one embodiment of the
present invention;

FIG. 2 is a flow chart of an example method for estab-
lishing a common application programming interface for
multiple types of document processing systems;

FIG. 3 is a block diagram of a second example document
processing system according to an embodiment of the
present invention;

FIG. 4 is a block diagram of a third example document
processing system according to an embodiment of the
present invention;

FIG. 5 is a task model diagram of the example document
processing system of FIG. 4 when running an example
application program;

FIG. 6 is a task model diagram of the document process-
ing system of FIG. 4 when responding to exception condi-
tions;

FIGS. 7A, 7B, and 7C comprise a state diagram of a
generalized track driver for an example document process-
ing system;

FIG. 8 is a state diagram for an example exception handler
for a document processing system according to an embodi-
ment of the present invention;

FIG. 9 is a state table that indicates valid methods that
may be invoked for particular states of an application
program for a document processing system; and

FIG. 10 is a state table of possible events to which an
application program must be programmed to respond.

While the invention is amenable to various modifications
and alternative forms, specifics thereof are shown by way of
example in the drawings and the written description. It
should be understood, however, that the intention is not to
limit the invention to the particular embodiments described.
On the contrary, the intention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION

The present invention is believed to be applicable to a
variety of document processing systems and arrangements.
The invention has been found to be particularly advanta-
geous in various types of document processing systems
having different document processors. An appreciation of
various aspects of the invention is best gained through a
discussion of various application examples operating in such
environments.

FIG. 1 is a block diagram of a first example document
processing system according to an embodiment of the
present invention. Major components of system 100 include
document processor 102, track driver 104, application pro-
gram 106, and exception handler 108. An example document
processor 102 is the DP 35 document processor from Unisys
Corporation. An image subsystem 110 is coupled to docu-
ment processor 102, wherein image subsystem 100 captures
and stores digital images of documents moved by document
processor 102. Document processor 102 is coupled to track

5

35

45

55

60

65

4

driver 104 via RS232 channel 112 and track command
interface 114. Track driver 104 sends commands to docu-
ment processor 102 via channel 112 and track command
interface 114 and receives status codes back from document
processor 102 via channel 112 and interface 114. Image
subsystem 110 is coupled to track driver 104 via SCSI
channel 116 and interface 114. Digital images of documents
captured by image subsystem 110 are provided to track
driver 104 via SCSI channel 116.

Various capabilities supported by different document pro-
cessors include MICR and OCR reading, encoding,
endorsing, image capturing, microfilming, and courtesy
amount reading. Different document processors are also
capable of processing documents at different speeds.

Track driver 104 is specifically tailored to interface with
document processor 102. Specifically, other types of docu-
ment processing systems, for example, DP 500 and DP 1800
systems, have track driver elements that are different from
track driver 104. Track driver 104 generates document
processor-specific commands and sends them to document
processor 102 via channel 112. Such commands are gener-
ated in response to methods of track object interface 118 that
are initiated by application program 106. Track driver 104
also reports status information received from document
processor 102 to application program 106 via properties of
track object interface 118. Track driver 104 is coupled to
track object interface 118 via shared memory and semaphore
structures as indicated by line 120.

Track driver 104 handles requests made via object inter-
face 118 from application program 106 and issues com-
mands to control document processor 102. Track driver 104
runs in the background. Driver 104 responds to asynchro-
nous events from document processor 102 and reports the
events to application program 106 via object interface 118.
For exception type events, driver 104 reports to exception
handler 108 via exception object interface 122.

Exception handler 108 of system 100 reports error status
codes received by track driver 104 to an operator. Exception
handler 108 is coupled to track driver 104 via exception
object interface 122 and shared memory and semaphore
structures as indicated by line 124. Exception handler 108
reads customized error messages from database 126,
wherein the messages of database 126 are associated with
various error codes received by track driver 104. The
complexity of application program 106 is reduced because
exception handler 108 responds to error codes from docu-
ment processor 102, thereby relieving application program
106 from having to respond to such error codes.

Exception handler 108 runs in the background and pro-
vides a pop-up display with an explanation for document
processor 102 errors when they occur. Errors are indexed by
number in exception database 126. Exception handler
directs an operator as follows:

1. Presents a list of documents that are in error to the

operator.

2. Directs the operator to reprocess documents with the

original application commands.

3. Compares code lines on repass to detect operator error.

4. Directs the operator to the pocket for pocketing com-

pleted items by hand.

5. Provides the option to delete the document.

Exception object interface 122 provides communication
between exception handler 108 and track driver 104 and is
implemented using Microsoft’s object centered exchange.

Exception database 126 is an Access 2.0-format database
containing all information that is viewable via exception



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 24 of 94 PgID 121

US 6,546,396 B1

5

handler 108. The information therein includes button labels,
error messages, etc. The database contains an empty field
next to an English language field for storing nationalized
text. The information contained in the exception database
pertains to diagnostic information from document processor
102. The text in the database includes step-by-step instruc-
tions to guide an operator in correcting a problem with
document processor 102.

Track object interface 118 is the interface between appli-
cation 106 and track driver 104. Track object interface 118
provides a simplified interface between application program
106 and document processor 102, provides application
events that are consistent with Windows event-driven
programming, translates properties into message packets,
and checks property boundaries. The object interface pro-
vides control of document processor 102 based on values of
properties set by application program 106, and notifies
application program 106 of document processor 102 events
through the event reporting mechanism.

In an example embodiment, track object interface 118 is
implemented in an object centered exchange (OCX) that is
available with Windows NT from Microsoft Corporation.
OCX supports a variety of programming languages for
developing application program 106. For example, such
languages include Visual C++, Visual Basic, Delphi, and
Visual FoxPro. Track object interface 118 is defined for use
on a variety of document processing systems. For example,
the same track object interface 118 is deployed on DP 35
systems, DP 500 systems, and DP 1800 systems. Properties,
methods, and events are constructs that are available with
OCX, and track object interface 118 is defined in terms of
these constructs. A property describes a characteristic fea-
ture of a document processing system 100, a method
describes a control sequence that can be initiated for a
document processing system 100, and an event indicates
status information reported back from a document processor
102. Properties, methods, and events are used by both track
driver 104 and application program 106 to control the
operation of document processing system 100. By providing
a track driver 104 that is tailored to the specific operational
requirements for document processor 102 and providing a
track object interface 118 that is common to multiple
platforms, a single programming interface may be used to
develop applications for multiple platforms. The single
interface allows programmers to easily program on multiple
platforms, and may also provide for portability of code
segments.

An example application program 106 controls all system
100 functions for conventional and image document
processing, which includes feeding documents, reading code
lines, endorsing, microfilming, encoding, and storing
images. Such functions are accomplished by setting values
associated with properties in object interface 118 and initi-
ating control methods defined in object interface 118. Object
interface 118 notifies application program 106 of events
reported by track driver 104.

FIG. 2 is a flow chart of an example method for estab-
lishing a common programming interface on multiple types
of document processing systems. Examples of the different
types of document processing systems include the DP 35,
DP 500, and DP 1800 systems as described above. At block
202, an object interface is defined, where the object interface

10

15

20

25

30

35

40

45

50

55

60

65

6

includes properties, methods, and events for the different
types of document processing systems. An example defini-
tion of an object interface is set forth in the attached
appendix. Continuing now at block 204, the track object
interface is established on multiple types of document
processing systems. As shown in the example system 100 of
FIG. 1, track object interface 118 is installed on a computer
system running Windows NT. For each of the different types
of document processing systems, at block 206 a system-
specific track driver is established and coupled to the track
object interface and to the system specific document pro-
cessor. As shown in the example system of FIG. 1, track
driver 104 is coupled to track object interface 118 and to
document processor 102. At block 208, a system-specific
exception handler is established and coupled to the system
specific track driver. For example, exception handler 108 is
coupled to track driver 104 of system 100, as shown by
exception object interface 122 and shared memory line 124.
Once instances of the track object interface, track drivers,
and exception handlers have been established on the docu-
ment processing systems, application programs may be
developed using the application programming interface to
the track object interface. For example, application program
106 of FIG. 1 may be developed to interface with track
object interface 118.

FIG. 3 is a block diagram of a second example document
processing system according to an embodiment of the
present invention. System 300 is similar to system 100 of
FIG. 1 in that it includes an exception handler 302 coupled
to a track driver 304 and an application program 306 that is
also coupled to track driver 304. Note that in accordance
with the present invention, track object interface 118 for
system 300 is another instance of track object interface 118
for system 100. Therefore, even though application program
306 may differ in functionality from application program
106 of system 100, document processor 312 may possess
different capabilities, and the interface to document proces-
sor 312 is different from the interface to document processor
102, application program 306 and application program 106
may use the same programming interface to control the
operations of systems 300 and 100, respectively. As indi-
cated above for document processing system 100, in system
300 exception object interface 308, exception handler 302,
and message database 310 are tailored to the specific
requirements for system 300. Similarly, track driver 304 is
specifically tailored to interact with document processor
312, wherein document processor 312 is an example DP 500
document processor.

In example system 300, exception handler 302, track
driver 304, and application program 306 are software com-
ponents that execute on a computer system running the
Windows NT operating system. A system board is com-
prised of track control processor 314, track system non-
volatile memory 316, and application non-volatile memory
318. Track control processor 314 of the system board is
coupled to document processor 312 via cable 320 and
coupled to device driver 322 via I/O bus 324. Device driver
322 interfaces with track control processor 314 via an /O
port. Message system 326 defines a protocol for interfacing
between device driver 322 and track command interface
328.



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 250f94 PgID 122

US 6,546,396 B1

7

Application NVM 318 is available for storage of data by
application program 306, as illustrated by line 330. Note that
the physical coupling of application program 306 to appli-
cation NVM 318 is via bus 324. Track system NVM 316 is
similarly available for storage of statistics and recovery data
by track command interface 328 as illustrated by line 332.

FIG. 4 is a block diagram of a third example document
processing system according to an embodiment of the
present invention. As with systems 100 and 300, system 400
includes an exception handler 402, an exception object
interface 404, a message database 406, and a track driver
408, all of which are tailored to the specific requirements for
system 400. Example system 400 also includes a DP 1800
document processor 410. Track object interface 118 is yet
another instance of the track object interface as described
along with systems 100 and 300. Application program 412
controls overall operation of system 400. Exception handler
402, track driver 408, application program 412, and device
driver 414 are software components that execute on a
computer system operating Windows NT.

Device driver 414 is a conventional device driver that
provides the interface between track driver 408 and interface
board 416. Interface board 416 is coupled to device driver
414 via a conventional computer system input/output bus.
Cable 418 couples interface board 416 to common API
board 420 of DP 1800 document processor 410.

The attached appendix includes an example application
program along with an example specification for track object
interface 118. The specification of the database includes
properties, methods, and events that are common to the
different types of document processing systems 100, 300,
and 400, and specifications of properties, methods, and
events that are unique to the different types of document
processing systems. Those skilled in the art will recognize
that there are multiple ways in which a database may be
expressed and fall within the scope of the present invention.

FIG. 5 is a task model diagram for example document
processing system 400. In the example task model of FIG.
5, application block 502 corresponds to application program
412 of FIG. 4. Most other blocks in the task model diagram
represent various control threads of track driver 408.
Generally, dotted lines represent event-driven transitions
from one task to another, and solid lines represent com-
mands to and responses from the various tasks.

Beginning now at task block 502, an application program
initiates a method, as indicated by line 504. Task block 506,
which is performed as specified by track object interface
118, inserts the method from application block 502 in
method queue block 508. Task block 510 monitors queue
508 for methods to perform. Task block 510 sends a com-
mand to task block 512, as indicated by line 514, wherein the
command is determined according to the method read from
method queue 508. An example method is FlowStart. The
main state machine of task block 512 inserts the command
into a command queue as represented by block 516. A task
level track driver of task block 518 reads commands from
block 516, as indicated by line 520, and forwards a specific
track command to the device driver of task block 522. The
device driver of task block 522 then issues a track command
to interface board block 524.

Task block 518 receives status codes from task block 522,
as indicated by line 526, and inserts responses from a

10

15

20

25

30

35

40

45

50

55

60

65

8

document processor into the response queue of block 528.
The main state machine of block 512 reads responses from
block 528 and inserts the responses in an event queue as
indicated by line 530 and block 532. An example response
results in updating the value of a property in either the track
object interface 118 at task block 506 and reporting the
property back to application block 502, as indicated by line
534. Other types of status codes returned from the document
processor, for example warning codes, are returned to appli-
cation block 502 via warnings block 538 and task block 540.

Events that are reported back to application block 502 are
generally initiated at track driver block 518 in response to
various status codes returned from the document processor.
For example, track driver block 518 returns a ReadyToPro-
cess event to state machine 512, as indicated by dotted line
544. State machine block 512 reports the event to receiver
thread block 546 via line 548. Block 506 receives events
from receiver thread block 546 via line 550, and such events
are reported back to application block 502, as shown by line
552.

Those skilled in the art will recognize that the present
invention supports additional functions for document pro-
cessing. For example, the invention provides for tracking
information related to documents in process as indicated by
block 556, as well as for loading various configuration
information as indicated by block 558.

FIG. 6 is an example task model diagram for processing
exceptions generated from certain status codes returned
from a document processor. The task structure for exception
handling is similar to the task structure of FIG. 5, and,
therefore, the corresponding discussion will not be repeated.
Exception handler block 602 remains idle until an exception
event occurs. Task block 546 for the receiver thread moni-
tors the events reported by task block 512. Events such as
document jams or mis-sorts are events that cause task block
546 to report the event to task block 612. The event is then
reported back to exception handler 602 via line 614.

In an example exception handler function, task block 616
for a document clean-up thread is activated by a method
initiated from exception handler 602. Task block 616 reads
documents from table 556 and instructs the document pro-
cessor to reprocess the document as specified by the com-
mands in table 556. When reprocessing documents, if a
document is out of sequence, a nested exception occurs, and
the operator may elect to rerun the document or pocket the
document for later processing.

FIGS. 7A, 7B, and 7C comprise a state diagram for an
example track driver 408. In state transitions, note that “C:”
represents a command being issued, and “A:” represents the
action taken based upon that command. At state 702, track
driver 408 waits for an exception handler 402 to connect to
track driver 408. At state 704, track driver 408 waits for a
sorter of document processor 410 to initialize. Track driver
408 then waits for an application program 412 to connect, as
shown at state 708. Once an application connects to track
driver 408, track driver 408 transitions to state 710 to wait
for the application program to initiate a PowerUp method. In
response to initiation of a PowerUp method from application
program 412, appropriate commands are issued to document
processor 410, and at state 712, track driver 408 waits for
document processor 410 to power-up. State 712 transitions



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 26 of 94 PgID 123

US 6,546,396 B1

9

to state 714 if document processor 410 responds with any
one of various error codes. Once document processor 410 is
in an acceptable powered up state, both states 712 and 714
transition to state 716. At state 716, track driver 408 remains
idle until application program 412 disconnects, initiates a
GoReadyToProcess method, or initiates a PowerDown
method.

Track driver 408 transitions from idle state 716 to state
718 in response to initiation of a GoReadyToProcess
method. At state 718, track driver 408 initializes various
devices associated with document processor 410 and tran-
sitions to ready state 720 when all devices have been
initialized.

One method that causes track driver 408 to transition from
ready state 720 is a FlowStart method. In response to the
FlowStart method from an application program 412, track
driver 408 transitions to state 722 to get ready to process a
flow of documents. In a general scenario, track driver 408
transitions to state 724 of state 7C when document processor
410 is ready to process and processes documents. While
documents are flowing through document processor 410,
track driver 408 remains in state 724. Under normal
conditions, when document processor 410 has completed
processing all documents, an event is issued to track driver
408, and track driver 408 transitions from flowing state 724
back to state 722 to get ready to flow documents. Various
other events such as a BlackBand document event or a
HopperEmpty event cause track driver 408 to transition
from state 724 back to ready state 720.

Track driver 408 transitions from flowing state 724 to
exception state 726 upon encountering an error condition,
and track driver 408 transitions from state 726 to state 728
in response to a method to refeed a document of exception
object interface 404. State 730 refeeds single documents and
transitions to state 728 when all documents have been refed,
and state 728 transitions to state 726 when all documents
have been refed. When the exception condition has been
successfully processed, state 726 transitions back to ready
state 720 of FIG. 7B.

Continuing now with FIG. 8, a state diagram is shown of
an example exception handler 302 in accordance with the
present invention. At state 802, exception handler 402
remains in an idle state until an exception event is detected.
When an event exception that involves documents occurs,
exception handler 402 transitions to state 804. At state 804,
exception handler 402 displays an error message for the
operator and prepares to repass the documents. If the opera-
tor presses an abort button, exception handler 402 transitions
back to idle state 802. However, if the operator makes
recovery selections, exception handler 402 transitions to
state 806.

In state 806, the operator can make various selections for
processing the documents. If the operator asks to refeed the

10

15

20

25

30

35

40

45

50

55

10

document, exception handler 402 transitions to state 808. If
the document is refed and processed normally, exception
handler 402 transitions from state 808 back to next docu-
ment state 806. If the operator asks to hand pocket or delete
the document, exception handler 402 transitions from next
document state 806 to state 810. When processing of the
document is complete, exception handler 402 transitions
from state 810 back to next document state 806. If in
processing state 808, exception handler 402 detects another
exception event, exception handler 402 transitions from
state 808 to nested error state 812.

Returning now to idle state 802, if exception handler 402
detects an exception event that does not involve documents,
exception handler 402 transitions to state 814. At state 814,
exception handler 402 displays an error message to the
operator and waits for operator action. If the problem is
cleared, exception handler 402 transitions back to idle state
802. If the operator indicates that the error should be
ignored, exception handler 402 transitions to state 816
where the error condition is cleared, and exception handler
402 then transitions back to idle state 802.

FIG. 9 is a state table that shows methods that are valid
to initiate for different states of an application program in an
example embodiment of the invention. An “X” in an entry in
the table indicates that when an application program is in the
indicated state, it is valid to initiate the corresponding
method. An “0” in an entry in the table indicates that for
document processing systems such as the example DP 500,
when an application program is in the indicated state, it is
valid to initiate the corresponding method.

FIG. 10 is a state table that shows events to which an
application program must respond. An “x” in an entry in the
table indicates that when an application program is in the
state indicated by the “x”, the corresponding event may
occur, and the application program must be programmed to
respond to the event. Note that as indicated by the legend,
various events in the table are associated with DP 500 and
DP 1xxx example systems only.

The above specification, examples and data provide a
complete description of the manufacture and use of the
composition of the invention. Those skilled in the art will
recognize that the arrangements described above are oper-
able on various categories of computer systems and data
processing arrangements, and that the described methods
operable in such arrangements may be embodied in
software, firmware, microcode, A6, PGAs, as well as other
forms. Software implementations may be distributed in
various forms of computer readable media known in the art.
Since many embodiments of the invention can be made
without departing from the spirit and scope of the invention,
the invention resides in the claims hereinafter appended.



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 27 of 94 PgID 124

15

20

25

30

35

40

US 6,546,396 B1
11

APPENDIX

12

The following is an example of a Visual Basic application program. The Visual Basic

example program has the following features:

* Paper handling--set for auto feed from the primary hopper; merge feed if the

Merge button is selected.

+ Readers--set for MICR read only with display each code line during document

flow.

» State integrity--the application state is displayed. The DPOCX control is large

enough to display OCX control state.

+ Document integrity--the application-assigned IM for each document is displayed

as they are completed, as well as the document status.

Warnings--set for warnings that are occur during processing are displayed.
Control buttons-set for enabled/disabled, based on application state.

Private Sub CmdExit-Clicko
Unload Me
End Sub

Private Sub CmdGoidle_Click()
CmdGoidle.Enabled = False
CmdStartFlow.Enabled = False
cmdMergefeed.Enabled = False
RunStateMachine (e_goidle)

End Sub

Private Sub cmdGoReady_Click()
cmdGoReady.Enabled = False
cmdPowerOff.Enabled = False
CmdExit.Enabled = False
RunStateMachine (E_readytostart)

End Sub

Private Sub cmdMergeFeed_Click()
If RunState = s_entering Then
frmDP500.Dpocx1.MergeFeed 1 'mergefeed
Else
frmDP500.Dpocx1.FlowStart 4 'singlemerge
RunState = s_entering
End If
End Sub

Private Sub cmdPowerOff_Click()
cmdGoReady.Enabled = False



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 28 of 94 PgID 125

US 6,546,396 B1
13 14

cmdPowerQff. Enabled = False

CmdExit.Enabled = False

RunStateMachine (e_poweroffbutton)
End Sub

Private Sub cmdPowerOn_Click()
cmdPowerOn.Enabled = False
CmdExit.Enabled = False
RunStateMachine (e_poweron)

10 End Sub

Private Sub cmdResumeFlovv_Click()
frmDP500.cmdResumeFlow.Enabled = False
frmDP500.Dpocx1.ResumeFeeding

15 End Sub

Private Sub CmdStartFlow_Click()
CmdStopFlow.Enabled = True
cmdMergeFeed.Enabled = True

20 CmdStartFlow-Enabled = False
CmdGoidle.Enabled = False
RunStateMachine (e_startbutton)

End Sub

25  Private Sub CmdStopFlow-Clicko
cmdMergeFeed.Enabled = False
CmdStopFlow.Enabled = False
cmdResumeFlow.Enabled = False
CmdStartFlow.Enabied = True

30 RunStateMachine (e_stopflow)

End Sub

Private Sub Dpocx1_BlackBandEvent()
RunStateMachine (e_blackband)
35 End Sub

Private Sub Dpocx1_DocComplete()
IbIDINNumber-Caption = Dpocx1.cAppDocDIN
Select Case Dpocx1.cDocCompleteStatus
40 Case 0
IbliDocStatus.Caption = "Good"
Case 1
IbIDocStatus.Capton = "Reprocessed"”
Case 3 'bits 0 and 1 set
45 ibiDocStatus.Capton = "Reprocessed and Hand Pocketed"
Case 5 'bits 0 and 2 set

34



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg29 0of 94 PgID 126

US 6,546,396 B1
15 16

IbIDocStatus.Caption ="Reprocessed and Deleted"”
End Select
End Sub

5  Private Sub Dpocx1_DocReadComplete()

Codeline = Dpocx1.rRdr1CodeLine
IbIReaderLine.Capton = Codeline
RunStateMachine (e_docreadcomplete)

End Sub

10

Private Sub Dpocx1_ExceptionComplete()
cmdResumeFlow.Enabled = Dpocx1.ecManualDropSwitch

End Sub

15  Private Sub Dpocx1-FlowStopped()
RunStateMachine (e_flowstopped)
End Sub

Private Sub Dpocx1-HopperEmpty()
20 RunStateMachine (e_hopperempty)
End Sub

Private Sub Dpocx1-ldle()
RunStateMachine (e_idle)
25 End Sub

Private Sub Dpocx1-MachineDead()
IbIAPPState.Caption = "DP500 not usable ... exit application”
End Sub

30
Private Sub Dpocx1_PoweredDown()
RunStateMachine (e_deactivated)
End Sub

35  Private Sub Dpocx1-PoweredUp()
RunStateMachine (e_activated)
End Sub

Private Sub Dpocx1_PoweringUp()
40 RunStateMachine (e_activating)
End Sub

Private Sub Dpocx1_Readying()

RunStateMachine (e_readying)
45 End Sub

35



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 30 of 94

10

15

20

25

30

35

40

45

US 6,546,396 B1
17 18

Private Sub Dpocx1_ReadyToProcess()
RunStateMachine (e_readytoprocess)
End Sub

Private Sub Dpocx1_Warning()
Ib!Warning.Caption = Dpocx1.wAlertEnglishText
End Sub

Private Sub Form_Load()
Width = 800 * Screen. TwipsPerPixelX
Height = 600 Screen.TwipsPerPixelY
Screen.MousePointer = 1
CenterForm Me

cmdPowerOn.Enabled = False
CmdExit.Enabled = False
cmdGoReady.Enabled = False
cmdPowerOff.Enabled = False
CmdStopFlow.Enabled - False
cmdResumeFlow.Enabled = False
CmdGoidle.Enabled = False
CmdStartFlow.Enabled = False
cmdMergeFeed.Enabled = False

RunState = s_poweroff

IblAppState = "Powered Off"

Call SetCommandButtons(RunState)
End Sub

Pg ID 127

Attribute VB_Name = "startup”
Option Explicit

Global RunState As Integer

'states

Global Const_s-poweroff = 0
Global Const s_powerup =1
Global Const s_idle =2

Global Const s_getready = 3
Global Const s_ready = 4
Global Const s_goingidle = 5
Global Const s_entering = 6
Global Const s_powerdown =7

‘events

36



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 31 0f94 PglID 128

US 6,546,396 B1
19 20

Global Const e_poweron =0
Global Const e_activating = 1
Global Const e_activated = 2
Global Const e_deactivated = 3
5  Global Const e_readytoprocess = 6

Global Conste_idle=7
Global Const e_readying = 8
Global Const e_backband =9
Global Const e_flowstopped = 10

10  Global Const e_hopperempty = 11
Global Const e_docreadcomplete = 12
Global Const e_readytostart = 13
Global Const e_poweroffbufton = 14
Global Const e_stopflow = 15

15  Global Const e_startbutton = 16
Global Const e_goidle = 17
Global Const e_exit =18

Global basedrive As String
20  Globai readerini As String
Global pocketini As String
Global Codeline As String
Global docDIN As Integer
Global trkcount As Integer

25
Sub ConfigureRun()

frmDP500.Dpocx1.iEntrylgnoreDogEarError = False
frmDP500.Dpocx1.iEntryStopOnBlackBand = False

30 frmDP500.Dpocx1.iRdrFontLoadPath = readerini
frmDP500.Dpocx1.iStkSetlLogicalPocketsPath = pocketini
frmDP500.Dpocx1.iEndFontSetup = ™
frmDP500.Dpocx1.ilmgCarSetupFilePath = ™
frmDP500.Dpocx1.iimgAnnotate = ™

35 frmDP500.Dpocx1.ilmgimageDirectory = "
frmDP500.Dpocx1.iEncPosition = 0
frmDP500.Dpocx1.iHSEMOutSort = False
frmDP500.Dpocx1.iMfilmLamplntensity = 3
frmDP500.Dpocx1.iXcpHandlerStyle = 0

40 frmDP500.Dpocx1.iXcpSeckdridentity = "
frmDP500.Dpocx1 iXcpSecFdrOptions = 0

docDIN =1

45  End Sub

37



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 32 0of94 PgID 129

US 6,546,396 B1
21 22

Sub CenterForm(myform As Form)
myform.Left = (Screen.Width - myform Width)/2
myform.Top = (Screen.Height - myform.Height)/2
End Sub

Sub Main()
readerini = CurDir +"\READER.INI"
pocketini = CurDir + "POCKET.INI"
frmDP500.Show 0
10  End Sub

Sub RunStateMachine(event As Integer)
Select Case RunState

15 Case s_poweroff
Select Case event
Case e_poweron 'operator button
trkCount=0
RunState = s_powerup
20 frmDP500.Dpocx1.PowerUp
End Select

Case s_powerup
Select Case event
25 Case e_activating 'dp500 event
trkCount = trkCount + 1
frmDP500.IblAppState = "Powering Up" + Str(trkCount)
Case e_activated 'dp500 event

trkCount =0
30 frmDP500.|blAppState ="idle"
RunState = s_idle
End Select
Case s_idle
35 Select Case event

Case e_readytostart 'operator button
Call ConfigureRun
RunState = s_getready
frmDP500.Dpocx1.GoReadyToProcess
40 Case e_poweroffbutton 'operator button
frmDP500.IblAppState ="Powering Down"
RunState = s_powerdown
frmDP500.Dpocx1.PowerDown
End Select
45
Case s-goingidle

38




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 33 0f94 PgID 130

US 6,546,396 B1
23 24

Select Case event
Case e_idle'dp500 event
frmDP500.1blAppState = "Idle"
RunState = s_idle
5 End Select

Case s_powerdown
Select Case event
Case e_deactivated 'dp500 event
10 frmDP500.IblAppState = "Powered Off"
RunState = s_poweroff
End Select

Case s_getready
15 Select Case event
Case e_readying 'dp500 event
trkCount = trkCount + 1
frmDP500.IblAppState = "Initalizing Track" + Str(trkCount)
Case e_readytoprocess 'dp500 event
20 trkCount =0
RunState = s_ready
frmDP500.IblIAppState = "Ready"
End Select

25 Case s_ready
Select Case event
Case e_startbutton 'operator button
frmDP500.IblAppState = "Entering”
RunState = s_entering
30 frmDP500.Dpocx1.FlowStart O 'autofeed
Case e_goidle 'operator button
frmDP500.IblAppState = "Going |dle"
RunState = s_goingidle
frmDP500.Dpocx1.Goidle
35 End Select

Case s_entering
Select Case event
Case e_stopflow 'operator button
40 frmDP500.Dpocx1.FlowStop
Case e_flowstopped 'dp500 event
frmDP500.IblIAppState = "Ready"”
RunState = s_ready
Case e_blackband 'dp500 event
45 frmDP500.IblAppState = "Ready"
RunState = s_ready

39



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg340f94 PgID 131

US 6,546,396 B1
25 26

Case e_hopperempty 'dp500 event
frmDP500.IblAppState = "Ready"
RunState = s_ready

Case e_docreadcomplete 'dp500 event

5 Call AcceptAndProcessDoc
End Select
End Select
10 .change buttons as needed

Call SetCommandButtons(RunState)
End Sub
15 Sub AcceptAndProcessDoc()

'accept doc
frmDP500.Dpocx1.DocAccept

20 frmDP500.Dpocx1.pAppDocData = Codeline
frmDP500.Dpocx1.pAppDocDIN = docDIN
docDIN = docDIN + 1

'Endorse options

25 frmDP500.Dpocx1.pEndFrontOptons = 0
frmDP500.Dpocx1.pEndRearOptons = 0
frmDP500.Dpocx1.pEndFrontLinet = "
frmDP500.Dpocx1.pEndFrontLine2 =™
frmDP500.Dpocx1.pEndFrontLine3 =""

30 frmDP500.Dpocx1.pEndFrontLine4 = ™"
frmDP500.Dpocx1.pEndRearLine1 =™
frmDP500.Dpocx1.pEndRearLine2 =™
frmDP500.Dpocx1.pEndRearLine3 ="
frmDP500.Dpocx1.pEndRearLine4 =™

35 frmDP500.Dpocx1.pEndFrontFontNumber = 0
frmDP500.Dpocx1.pEndRearFontNumber = 0
frmDP500.Dpocx1.pEndFrontLogoNumber = 0
frmDP500.Dpocx1.pEndRearLogoNumber = 0
frmDP500.Dpocx1.pEndFrontLogoPosition = 0

40 frmDP500.Dpocx1.pEndRearLogoPosition = 0
frmDP500.Dpocx1.pEndRearLogoNumber = 0
frmDP500.Dpocx1.pEndRearLogoNumber = 0

'stamp
45 frmDP500.Dpocx1.pStmpOptions = 0
frmDP500.Dpocx1.pStmpFrontPosition = 0

40



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 35 of 94

10

15

20

25

30

35

40

45

US 6,546,396 B1
27 28

frmDP500.Dpocx1.pStmpRearPositon = 0

'Encoder data
frmDP500.Dpocx1.pEncData = "
frmDP500.Dpocx1.pEncOptons = 0

'Mfilmer
frmDP500.Dpocx1.pMfilmOptions = 0
frmDP500.Dpocx1.pMfilmVerticalAnnotation = ™

'Image
frmDP500.Dpocx1.plmgCarDocType = 0
frmDP500.Dpocx1.plmgOptions = 0
frmDP500.Dpocx1 pimgFilename = "

'exception handling
frmDP500.Dpocx1.pXcpDeleteAllowed = Faise
frmDP500.Dpocx1.pXcpldentify =™
frmDP500.Dpocx1.pXcpOptions = 0

'Pocket
frmDP500.Dpocx1.pStkPocket = 1

'process the doc
frmDP500.Dpocx1.DocProcess

End Sub
Sub SetCommandButtons(state As Integer)

Select Case state

Case s_poweroff
frmDP500.cmdPowerOn.Enabled = True
frmDP500.CmdExit.Enabled = True

Case s_idle
frmDP500.cmdGoReady.Enabled = True
frmDP500.cmdPowerOff Enabled = True
frmDP500.CmdEXxit.Enabied = True

Case s_ready
frmDP500.CmdGoidle.Enabled = True
frmDP500.CmdStartFlow.Enabled = True
frmDP500.cmdMergeFeed.Enabled = True
frmDP500.CmdStopFlow.Enabled = False

End Select

End Sub

41

Pg ID 132



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 36 of 94 PgID 133

US 6,546,396 B1
29 30

DP Track OCX Properties
The following notes apply to all properties:
¢ In general, if the hardware configuration does not support the value contained
in a particular property, the fact is logged by the system software and the
5 property setting is ignored. For more information, see the descriptions for the
cDocCompleteStatus or iMandatoryDevices properties.
Invalid property values for a device result in the device being disabled.
Once an output property is set to a value, it retains that value until it is
modified by the application. Input properties are updated just before an event
10 is fired.
The following topics describe DP track OCX properties:
C* Properties-Document Completion
Cfg* Properties--Configuration
Ec* Properties--Exception Complete
15  Ep* Properties--Excepton in Progress
I* Properties--Initialization
P* Properties--Process Document
R* Properties--Reader
Rec* Properties--Recovery from Power Failure
20 Repass* Properties--Repass Documents
Start* Properties--Start Up
T* Properties—-Track Nondocument Commands
wAlert* Properties--Warnings

25  C* Properties--Document Completion
C* properties are available after the DocComplete Event is fired. They are set by the
document processor and read by the application. The ¢* properties identify which
document is processed and initiate storage of the document record. DocComplete
events are generated for documents in the order that the DocProcess methods were
30 issued.
DP 250/500 only--These properties are also valid during power failure recovery to
provide an application with required information for item level recovery. The
following topics describe c* properties:
cAppDocData Property
35  cAppDocDataSAPropertu
cAppDocDIN Property
cDocCompleteStatus Property
cStkPocket Property

40 cAppDocData Property
Type: User Defined
This property is valid only during the DocComplete Event. It contains the value of
the pAppDocData Property when the DocProcess Method was invoked for this
document. The maximum size is 231 bytes.

45 Related Properties, Events, and Methods
pAppDocData Property, DocProcess Method, DocComplete Event

42



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 37 0f94 PgID 134

US 6,546,396 B1
31 32

cAppDocDataSA Property
Type: Variant - must be a safe array of unsigned characters.
This property has the same purpose as the cAppDocData property except that this
5  property can contain binary data with embedded NULLs (byte value of 0x00). The

content of this structure is not known by the DPOCX or Track Control and is copied
without examination. The SA suffix on this property represents "Safe Array”". See
the \notes\demo\vc40 for a demonstration of the safe array implementation.
Related Properties, Events, and Methods

10  cAppDocData Property, pAppDocData Property, pAppDocDataSA Property,
DocProcess Method, DocComplete Event

cAppDocDIN Properly
Type: Long

15  This property is valid only during the DocComplete Event. It contains the value of
the pAppDocDIN Property when the DocProcess Method was invoked for the
corresponding document.
Related Properties, Events, and Methods
pAppDocDIN Property, repassAppDocDIN Property, DocComplete Event,

20  DocProcess Method

cDocCompleteStatus Properly
Type: Long
This property is valid only during the DocComplete Event.
25 Valid Values
All bits have two values: 0 (off) and 1 (on). A returned value of 0 (all bits off) in
cDocCompleteStatus indicates that the item was processed successfully. Any bit
being set to 1 indicates that a device operation was not performed as requested.
Below the table are the conditions under which bits can be set by Track Control.
30  More than one bit can be set at one time. Not all bits comprising this property are
used by all sorter types. Exceptions are noted where applicable in the foliowing

table.
Note: Bit 0 is the least significant bit.
Bit Description
35 0 Is set to 1 to indicate the document is involved in a transport exception
condition and was successfully recovered. This can be used by
balancing applications.
1 is set to 1 if the document was hand pocketed by the operator during
exception reprocessing.
40 2 is set if the document was deleted by the operator during exception

reprocessing or if the document was a feed check item and stop on
feed check is selected in the INI file. (Used on DP 1XXX only.)

3 Is set if the document was outsorted to the reject pocket by the HSEM
device. (Not used on DP 30.)

43



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 38 of 94 PgID 135

US 6,546,396 Bl
33 34

4 Is set if the document is a feed check item that was sent to the reject
pocket. No other bits are meaningful in a feed check, since all devices
are turned off during a feed check. (Used on DP 1 XXX only.)

5 Is set if the HSEM operation was incomplete. (Not used on DP 30.)
5 6 Is set if the IMAGE operation was incomplete.
7 Is set if the MICROFILMER operation was incomplete. (Not used on
DP 30.)
8 Is set if the FRONT ENDORSE (MJE) operation was incomplete.
9 Is set if the REAR ENDORSE (MJE) operation was incomplete.
10 10 Is set if the application-supplied POCKET NUMBER was invalid and
the document was rejected.
" Is set if the FRONT STAMP operation was incomplete.
12 Is set if the REAR STAMP operation was incomplete.
13 Is set if the CAR operation was incomplete. (Not used on DP 30.)
15 14 is set if the LOW SPEED ENCODE operation was incomplete. (Not

used on DP 1XXX.)

Conditions for Track Control to Set Bits

Bits 5-14 are intended to give the application feedback about incomplete device

operations. Any of these bits would be set if some part of the application-supplied
20 data for a device was invalid. This means that Track Control either modified the data

or the device was not used for this document. An example of data modification

would be an invalid endorse character supplied by the application. In this case the

invalid character would be translated to a blank. An example of turning off a device

for a document would be an invalid endorse font number. Conditions under which
25  Track Control sets bits 5-14 differs among the various sorter platforms. Jump to the

subsection for the sorter of your choice:

« DP30

« DP 250/500

e DP1XXX
30 DP 30

Bit 6 will be set under any of the following conditions:
- An image request was made when the image module is not fitted.
- The image option was switched off by the operator during exception
processing.
35 Bits 8 and 9 will be set under any of the following conditions:
- Endorse data was sent, but the endorser is not fifted.
- Endorse data length is greater than the maximum and has been
truncated.
- Endorse data has invalid characters which have been changed to
40 blanks.
- Endorser margin setting is greater than the maximum.
- The endorse option was switched off by the operator during exception
processing.
Bits 11 and 12 will be set under any of the following conditions:
45 - Stamp position is greater than the maximum.
- A stamp request was made when stamp is not fitted.

44



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 39 0of 94 PgID 136

US 6,546,396 B1
35 36

- The stamp option was switched off by the operator during exception
processing.
DP 250/500
All devices provide positive feedback for operations requested by the
5 application. Such devices include the low speed encoder, all endorsement,
all stamps, HSEM, microfilm, image, CAR, and pocket modules. For
example, if an operator hand pockets an item but device operations have not
been completed for this item, the application is told via the
cDocCompleteStatus property.
10 DP 1XXX
- The operator disabled a device via the console switch, and the device
was being used for this document but was not mandatory.
- If asked to PEP, but the PEP endorsement data was truncated
- if asked to PEP, but the PEP endorser is not fitted
15 - If asked to stamp endorse, but the stamp unit is not fifted
- If asked to front stamp, but only a rear stamp is fitted (and used
instead)
- If asked to rear stamp, but only a front stamp is fitted (and used
instead)
20 - If asked to MJE, but the MJE endorser is not fitted
- If asked to MJE, but the operator has turned off power to the MJE unit
- if asked to use an invalid MJE font, resulting in the default, font 6
being used instead
- If asked to use an invalid MJE logo, resulting in no logo being printed
25 - if asked to MJE, but the MJE endorsement data was truncated
- If asked to microfilm, but the microfilmer is not fitted
- If asked to microfilm, but the operator has turned off power to the
microfilmer
- If MFILMTRACKINGON=1 in the DP1 XXX Reader Initialization file,
30 but a document is received without a microfilmer vertical annotation,
causing MFILMTRACKINGON to be turned off
- If asked to microfilm, but the microfilm vertcal annotation was
truncated
- If asked to microfilm, but the document was hand pocketed or deleted
35 during an exception (can only be detected if MFILMTRACKINGON=1)
- If asked to image, but image is not fifted
- If asked to capture a second front image, but only one camera is fifted
- If asked to image, but the operator has powered off the image unit
- If asked to image, but the Image AppDocData was truncated
40 - If asked to image, but the document was hand pocketed or deleted
during an exception
- If asked to CAR, but CAR is not fitted
- If asked to HSEM, but HSEM is not fifted
- If asked to HSEM, but the encode data was truncated
45 - If asked to HSEM, but the encode data had invalid characters that
were translated to spaces

45



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg400f94 PgID 137

10

15

20

25

30

35

40

45

US 6,546,396 B1
37 38

- if asked to HSEM, but the document was hand pocketed or deleted
during an exception

- If asked to place the document in an invalid pocket, and the document
was sent to the reject pocket (outsorted) instead

1. It is possible for xome CAR, HSEM, and pocketing errors to go undetected
because those units either do not report all error conditions to track control, or
because of operator error.

2. If a document was outsorted due to an HSEM error, and the application
dictates not stopping on outsort errors, then this is reported via bit 3 (HSEM
Qutsort) and not in bit 5 (HSEM incomplete).

Related Properties, Events, and Methods

iMandatoryDevices Property, DocComplete Event, DocProcess Method

cStkPocket Property

Type: Short

This property is set by Track Control and is available to applications during the
DocComplete Event. It contains the physical pocket number to which the
corresponding document was sorted.

Valid Values

This property has a value of 1-X, where 1 is the reject pocket and X is the highest
physical pocket on the sorter.

Related Propeties, Events, and Methods

iStkSetLogicalPocketsPath Property, pStkPocket Property, DocProcess Method,
DocComplete Event

Cfg* Properties-Configuration

Cfg* properties are available after the PoweredUpEvent is received. They are set by
the document processor and read by the application. Because system software
turns off application device commands for devices that are not fitted, the application
is not required to examine these properties. They can be used to verify the
application is running on suitable document processor hardware. The following
topics describe cfg* properties:

cfgDevicesFifted Property, cfgNumPockets Property, cfgNVMBase Property,
cfgNVMLen Property

cfgDevicesFitted Property

Type: Long

This property defines a bit map describing the machine configuration. Bit 0
represents the least significant bit.

Notes:

1. This bit mapping is different from the bit map used for the iMandatoryDevices
Property

2. More detailed configuration information can be found in the Configuration INI
file for your sorter.

Bit Description

46



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg410f94 PgID 138

US 6,546,396 B1

39 40

0 Feeder fitted

1 Manual drop fitted

2 Low speed encoder fitted

3 Rear rotary stamp fitted

5 4 Front rotary stamp fitted

5 Rear endorser fitted

6 Front endorser fitted

7 Microfilm fitted

8 Image fitted
10 9 CAR fitted

10 HSEM fitted

11 Code line image fitted

12 Master printer fitted

13 Secondary feeder fitted
15 14 MICR reader fitted

15 OCR1 reader fitted

16 OCR2 reader fitted

17-31 Reserved, set to zero

This property is available after the PoweredUp Event
20  Related Properties, Events, and Methods
PoweredUp Event, PowerinalUp Event, PowerUp Method

cfgNumPockets Property
Type: Short
25  This property describes the number of stacker pockets fitted to the machine. Itis
available after the PoweredUp Event.
Related Properties, Events, and Methods
PoweredUp Event, PoweringUp Event, PowerUp Method

30 cfgNVMBase Property
Type: Long
DP 250/500 only--This property is the base address of the user nonvolatile memory
(NVM) area that is mapped to application memory space. C++ and Delphi32 users
can use this address to overlay structures on the NVM memory space. The NVM

35 memory space is 48K bytes if NVM recovery is enabled, or 4K bytes if NVM recovery
is not enabled. This property is available immediately upon program load and prior
to the PoweredUp Event. If you are running the application with a simulator and not
using the DP500TCP driver, this property points to a zero initialized segment of
conventional memory.

40 Related Properties, Events, and Methods
CfgNVMLen Prol2ea, PoweredUp Event, PoweringUp Event, PowerUp Method

cfgNVMLen Property
Type: Long

47



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 42 of 94 PgID 139

10

15

20

25

30

35

40

45

US 6,546,396 B1
41 42

DP 250/500 only--This property indicates the nonvolatile memory (NVM) memory
segment length with the base address at cigNVMBase. It is available immediately
upon program load and prior to the PoweredUp Event.

Related Properties, Events, and Methods

cfgNVMBase Property

Ec* Properties--Exception

Ec* properties are available after the ExceptionComplete Event is fired. They are set
by the document processor and read by the application. The following topic
describes ec* properties:

ecManualDropSwitch Property

ecManualDropSwitch Property

Type: Boolean

True during an ExceptionComplete Event if the document entry is redirected from the
feeder to the manual drop station as part of exception recovery. Flow may then be
restarted from the feeder by issuing the ResumeFeeding Method.

DP 1 XXX--This property is always false because there is no manual drop station on
the DP 1 XXX.

Related Properties, Events, and Methods

ExceptionComplete Event, ExceptioninProgress Event, ResumeFeeding Method

Ep* Properties--Exception in Progress

Ep* properties are available when the ExceptionProgress Event is fired.
The following topics describe the ep* properties:

epExceptionCode Property

epExceptionDevice Property

epExceptionType Property

epExceptionCode Property
Type: String
This property defines a 5-byte ACSI! string of hexadecimal characters representing a
unique error code. This error code describes the exception in progress and is sorter
specific. The Exception Handler uses this error code when accessing the error
database.
Error Code Example
01 A522 0101 "
Related Properties, Events, and Methods )
epExceptionDevice Property, epExceptionType Property, ExceptionlnProgress Event

epExceptionDevice Property

Type: Long

This property identifies which device is involved with the exception in progress.
Refer to the following table, which defines the bit pattern. Note that bit 0 is the least
significant bit.

Bit Description

48




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 43 0f94 PgID 140

US 6,546,396 B1

43 44
0 Feeder
1 Manual drop
2 Low speed encoder
3 Rear rotary stamp
5 4 Front rotary stamp
5 Rear endorser
6 Front endorser
7 Microfilm
8 Image
10 9 CAR
10 HSEM
11 Code line image
12 Master printer
13 Secondary feeder
15 14 MICR reader
15 OCR1 reader
16 OCR2 reader
17 Track
18 Stacker
20 19-31 Reserved, set to zero

Related Properties, Events, and Methods
epExceptionCode Property, epExceptionDevice Property, epExceptionType
Property, ExceptioninProgress Event

25 epExceptionType Property
Type: Long
This property's value describes the type of exception in progress. It is valid only
during the ExceptioninProgress Event.
Value Description
None
Track error
Feed error, which will result in a feed check (DP 1XXX only)
Start up/power on confidence error/track power up error
Printer error
General
Track jam or missort
DP 1XXX--application is too late to pocket
DP 1XXX--Operator pressed start/stop bar, causing flow to
stop.
40 9 DP 1XXX--Waiting for operator to press start/stop bar
10 Pocket full
Related Properties, Events, and Methods
cDocCompleteStatus Property, epExcetionCode Praperty, epExceptionDevice
Property, epExceptionType Property, ExceptionComplete Event,
45  ExceptioninProgress Event, rRdrDocStatus Property

30

35

ONOORhWN-=2O0

49



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 44 0f94 PgID 141

US 6,546,396 Bl
45 46

I* Properties--Initialization
I* properties are set by the application before issuing the GoReadyToProcess
Method.
They define the machine initialization prior to flowing documents. The following
5  topics describe i* properties:

iEndPaosition Property
iEndFontSetUp Property
iEntrylgnoreDogEarError Property
iEntryStopOnBlackBand Property

10 iHSEMOptions Property
iHSEMOutSort Property
ilmgAnnotate Property
ilmgAnnotateSA Property
ilmgCarSetupFilePath Property

15 ilmgimageDirectory Property
iMandatoryDevices Property
iMfilmLampintensity Property
iRdrFontLoadPath Property
iStkSetLogicalPocketsPath Property

20  iXcpHandlerStyle Property
iXcpSecFdridentify Property
iXcpSecFdrOptions Property

iEncPosition Property

25 Type: Short
DP 250/500 only--This property defines the encoder start position. It is supported
only by the low speed encoder.

Value Description
30 0 Standard Position--1/4 inch from the leading edge of the
document (default)
1 Venezuelan--3/16 inch from the leading edge of the document

Related Properties, Events, and Methods
pEncOptions Property, GoReadyToProcess Method

35
iEndFontSetUp Property
Type: CString
This property is a path to the configuration file for determining the user-defined fonts
and logos available to the front and rear endorsers.

40  DP 30 Endorser--The character endorser supports two character sizes: large
(approximately 10 point) and small (approximately 6 point). Both have 10-
characters-per-inch spacing. The large character size does not support lower-case
letters. If the large character size is selected and DocEndorserLine1 contains lower-
case letters, they are translated to upper-case. If the font file path is not specified,

45  the DP 30 defaults to large characters. pEndFrontLine1 or pEndRearLine1 define

50



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 450f94 PgID 142

10

15

20

iy

25

30

35

40

45

US 6,546,396 B1
47 48

the endorse data. Character selection is established in the DP 30 MJE Initialization
File.

DP 500 DLME--The DLME character endorser supports a mixture of 15 CPI dual-line
endorsement and 7.5 single-line endorsement. pEndFrontLinel or pEndRearLinel
properties are for the top DLME line and pEndFrontLine2 or pEndRearLine2
properties are for the bottom DLME line. The DLME behavior is not configurable and
is unaltered by iEndFontSetUp.

DP 500 SLME--The SLME character endorser supports a single line of 10 CPI.
pEndFrontlLine1 or pEndRearlinet properties define the endorse data. The SLME
behavior is not configurable and is unaltered by iEndFontSetUp.

DP 250/500 MJE--The MJE supports predefined fonts and downloadable logos. The
DP 250/500 MJE Initialization File defines logos required for the next document run.
If iEndFontSetUp is not defined, the default endorse fonts are used and the logo
bitmaps are undefined.

DP 1825 MJE--The DP 1XXX Stamp and Endorsement Initialization File defines the
user-defined fonts and logos to be downloaded into the DP 1825 MJE.

DP 1 1 50 PEP/Stamp--The PEP single-line endorser and rotary stamp positions are
set up at this time from the DP 1XXX Stamp and Endorsement Initialization File.
Both the stamp and PEP begin printing in areas defined by ABA areas. Note that the
PEP and rotary stamp positions cannot be set on a document-by-document basis.
Related Properties, Events, and Methods

pEndFrontLine1, pEndFrontLine2, pEndFrontLine3, pEndFrontLine4,
pEndRearLine1, pEndRearlLine2, pEndRearLine3, pEndRearLine4 Properties,
GoReadyToProcess Method

iEntrylgnoreDogEarError Property

Type: Boolean

DP 250/500 only--This property determines whether documents that are detected by
the system as dog ear feed errors are stopped in the track after the feeder. If dog
ear feed errors are not to be ignored, the system prompts the operator to remove
and repair the item and re-enter the item using the manual drop. No application
intervention is required.

Related Properties, Events, and Methods

GoReadyToProcess Method

iEntryStopOnBlackBand Propefty

Type: Boolean

This property determines whether documents that are detected by the system as
black band items cause the feeder to stop. If stop on black band is TRUE, the
system generates the BlackBand Event and document flow stops when a black band
item is detected.

DP 30 only--There is no black band detection hardware.

DP 250/SW only--The black band item stops in the view1 station.

DP 1XXX only--The black band item goes to a sorted pocket. The application must
accept and process it.

Related Properties, Events, and Methods and Events

51



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 46 of 94 Pg ID 143

10

15

20

25

30

35

40

45

US 6,546,396 B1
49 50

BlackBand Event, GoReadyToProcess Method

iHSEMOptions Property

Type: Long

Note: This property extends the control of the HSEM for the DP 1150 sorter only.

The declaration of HSEM exceptions versus HSEM outsort behavior can be defined

using the iHSEMOutsort property. The IHSEMOptions property defines extended

processing options for the HSEM.

Bit 0 HSEM Dogear Detection. The HSEM detects documents with
damaged lower right corners (dogears) and inhibits encoding of these
documents. Some users wish to encode all documents by disabling
dogear detection.

Valid Values for Bit 0:
1 = Disable Dogear detection
0 = Dogear Detection on (DEFAULT)

Bit 1-31 reserved (set to 0)

Related Properties, Events, and Methods

iHSEMOutsort Property, GoReadyToProcess Method

iHSEMOutSort Property

Type: Boolean

This property determines whether or not the items involved in HSEM ignorable errors
are outsorted to the reject pocket or treated as a device error. TRUE means
documents are outsorted to the reject pocket when HSEM ignorable errors occur
during document processing. Documents that are outsorted have a
cDocCompleteStatus Property of OUTSORTED (bit 3 set). The exception handler is
invoked when HSEM errors occur on 10 consecutive documents. egardless of this
property's setting, if this situation occurs, the documents with the consecutive HSEM
errors are outsorted, and the exception handler is invoked.

Related Properties, Events, and Methods

cDocCompleteStatus Property, GoReadyToProcess Method

ilmgAnnotate Property

Type: CString

This property defines the application annotation data that is stored in the header
record of all future image files. The application can use this data to keep information
such as business day, type of work, or run number. This annotation is applied to
subsequently created files. This property is used only if the ilmgCarSetupFilePath
Property is not NULL. The maximum size of the annotation is 128 bytes.

Related Properties, Events, and Methods

iimaannotate Property, iimgCarSetupFilePath Property, iimgimageDirectory
Property, GoReadyToProcess Method

ilmgAnnotateSA Property
Type: Variant - must be a safe array of unsigned characters.

52



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 47 of 94 PgID 144

10

15

20

25

30

35

40

45

US 6,546,396 B1
51 52

This property has the same purpose as the ilimgAnnotate property except that this
property can contain binary data with embedded NULLs (byte value of 0x00). The
content of this structure is not known by the DPOCX or Track Control and is copied
without examination. The SA suffix on this property represents "SafeArray”. See the
\notes\demolvc40 for a demonstration of the safe array implementation.

Related Properties, Events, and Methods

iimgAnnotate Property, ImageEndOf File Method

ilmgCarSetupFilePath Property

Type: CString

This property is a fully qualified path to the file defining the image and CAR
initialization parameters. If this property is set to NULL, no image or CAR setup
occurs and document imaging is not enabled. See Image and CAR Initialization File
for a detailed description of this file.

Related Properties, Events, and Methods

GoReadyToProcess Method

ilmgimageDirectory Property

Type: CString

This property sets the subdirectory for image storage. This is an 8-character field
conforming to the directory naming conventions of NT and Novell. This subdirectory
name is appended to the default base image storage directory. For example, if the
Image Capture Server default base storage directory is C:\Images and the
ilmgimageDirectory is Mylmages, then images are stored in the C:\Images\Mylmages
directory. This property is used only if the ilmgCarSetupFilePath Property is not
NULL.

Related Properties, Events, and Methods

GoReadyToProcess Method, iimgCarSetupFilePath Property, plmgCarDocType
Property,

plmgFilename Property, pimgOptions Property

iMandatoryDevices Property

Type: Long

This property defines a bit map that describes which devices cannot be disabled or
missing on the document processor. Disabling a device applies only to the DP
1XXX. The DP 1XXX has a contro! panel next to the power switch with buttons
connected to the track devices. If a mandatory device is disabled by the control
panel, the exception handler indicates that the mandatory device must be re-
enabled. If a device that is not mandatory is disabled, the operator can enable and
disable the device as needed. In this case, the application is informed in the
cDocCompleteStatus Property. On all sorter types, if a mandatory device is not
fitted, an unrecoverable exception is displayed during the GoReadyToProcess
Method. The exception handler displays the error, and the application receives the
MachineDead Event once the operator acknowledges the error.

DP 1XXX only--The application enables the HSEM by specifying it as a mandatory
device. Ifit is not defined as mandatory, the application cannot use the HSEM, even

53




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 48 0f 94 Pg ID 145

US 6,546,396 Bl
53 54

if it is fitted. In this case, all HSEM commands in the subsequent DocProcess
methods are ignored.
Notes:
1. Not afl bits comprising this property are used on afl sorter types. Exceptions
5 are noted in the following table.
Bit 0 is the least significant bit.
This bit map is different than the bit map defined for cfgDevicesFitted
Property
Mandatory Device
MICR
OCR1
OCR2
Secondary feeder (not used on DP 30)
Front endorser (MJE)
Rear endorser (MJE or PEP)
Front stamp
Rear stamp
HSEM (not used on DP 30)
Microfilmer (not used on DP 30)
20 10 Image
11 Low speed encoder (not used on DP 1XXX)
12 Master printer (not used on DP 1XXX)
13 CAR (not used on DP 30)
Related Properties, Events, and Methods
25 cDocCompleteStatus Property, DocProcess Method, GoReadyToProcess Method,
MachineDead Event

w N

=3

10

15

OCO~NOOOhwNn-0O

iMfilmLamplintensity Property
Type: Short
30  DP 250/500 only--This property adjusts the microfilm lamp luminosity. Valid values
are 1 to 5 with 5 being the brightest. The default is 3.
Related Properties, Events, and Methods
GoReadyToProcess Method

35 iRdrFontLoadPath Property
Type: CString
This property is a fully qualified path to a reader configuration file. If this property is
NULL, no reader code lines are to be returned to the application in the
DocReadComplete Event.

40 DP 30--The reader configuration file contains the configuration details for the single
reader that is fitted.
DP 250/500--The reader configuration file contains the configuration details for all
three reader positions. Paths to font files are specified, and font switch parameters
for each reader are described. CLlis also enabled. See DP 500 Reader

45 Initialization File for details on the file format.

54



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg490f94 PgID 146

US 6,546,396 B1
55 56

DP 1XXX--The file describes paper handling, the readers, and a general setup for a
run. See DP 1XXX Reader Initializabon File for details on the file format.

Related Properties, Events, and Methods

DocReadComplete Event, GoReadyToProcess Method

iStkSetLogicalPocketsPath Property
Type: CString
This property is a fully qualified path to the file describing the waterfall pockets
configuration. This enables the track control to cascade pockets automatically and
10  to stop the track when a logical pocket is full. If the property is set to NULL, logical
pockets map to physical pockets and the reject pocket is set to pocket 1. Pocket
names will be assigned according to physical pocket number (1, 2, 3, etc.). See DP
Stacker Waterfall Pocket Initialization File for details on the file format.
Related Properties, Events, and Methods
15  cfgNumPockets Property, pStkPocket Property, GoReadyToProcess Method

iXcpHandlerStyle Property

Type: Long

This property defines the options for the Exception Handier (EXCEPT.EXE). This is
20  reserved and must be set to zero.

Related Properties, Events, and Methods

pXcpOptions Property, GoReadyToProcess Method

iXcpSecFdridentify Property
25 Type: CString
DP 250/500 only--This is a reserved property.
Related Properties, Events, and Methods
pXcpldentify Propertym iXcpSecFdrOptions Property, GoReadyToProcess Method

30 iXcpSecFdrOptions Property
Type:Long
DP 250/500 only--This is a reserved property.
Related Properlies, Events, and Methods
pXldentify Property, GoReadyToProcess Method
35
P* Properties--Process Document
P* properties are set by the application prior to invoking the DocProcess Method.
These properties determine the machine operations applied to the document. The
following topics describe the p* properties:
40  pAppDocData Property
pAppDocDataSA Property
pAppDocDIN Property
pEncData Property
pEncOptions Property
45  pEndFrontFontNumber and pEndRearFontNumber Property

55



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 50 0f 94 Pg ID 147

US 6,546,396 B1
57 58

pEndFrontLine1, pEndFrontLine2, pEndFrontLine3, pEndFrontLine4,
pEndRearLine1, pEndRearLine2, pEndRearLine3, pEndRearlLine4 Properties
pEndFrontLogoNumber and pEndRearLogoNumber Property
pEndFrontLogoPosition and pEndRearLogoPositon Property
5 pEndFrontOptions and pEndRearOptions Property

pEndFrontPosition and pEndRearPosition Property
pimgCarDocType Property
pimgFilename Property
plmgOptions Property

10  pMfilmOptions Property
pMfilmVerticalAnnotation Property
pStkPocket Property
pStkWaterfallCascade Property
pStmpFrontPosition, pStmpRearPosition Properties

15  pStmpOptions Property
pXcpDeleteAllowed Property
pXcpldentify Property
pXcpOptions Property

20 pAppDocData Property
Type: User Defined
This property must be set to a value before the DocProcess Method is invoked. The
property value is returned during the DocComplete Event in the cAppDocData
Property. The maximum size of this property is 231 bytes. This information is stored
25  on the Image Capture Server in the.IDX file if the document is being imaged. This
property is provided to the application for coordinating the multi-document latency
between the DocReadComplete Event and the DocComplete event.
Related Properties, Events, and Methods
cAppDocData Property, DocComplete Event, DocProcess Method

30
pAppDocDataSA Property
Type: Variant - must be a safe array of unsigned characters.
This property has the same purpose as the pAppDocData property except that this
property can contain binary data with embedded NULLs (byte value of 0x00). The
35  content of this structure is not known by the DPOCX or Track Control and is copied
without examination. The pAppDocData property is not used if this property is set by
the application. Applications should also use the cAppDocDataSA property if they
set this property. The SA suffix on this property represents "Safe Array”. See the
\notes\demo\vc40 for a demonstration of the safe array implementation.
40 Related Properties, Events, and Methods
cAppDocData Property, cAppDocDataSA Property, pAppDocData Property,
DocProcess Method, DocComplete Event

pAppDocDIN Property
45 Type: Long

56



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg510f94 PgID 148

US 6,546,396 B1
59 60

The document identification number (DIN) is an application-level document number
that ties document processing by the system software to document processing by
the application software. The DIN ranges from 1 to the maximum value that can be
contained in a long integer. In the.IDX image format, pAppDocDIN identifies an
5  individual document. This DIN number is returned in the cAppDocDIN Property

during the DocComplete Event.
Related Properties, Events, and Methods
cAppDocDIN Property, DocComplete Event, DocProcess Method,
repassAppDocDIN Property

10
pEncData Property
Type: CString
The document encode line is a string containing the data to be encoded on this
document. The character data of the string is left justfied. The right-most character

15  of this string is encoded as the right-most character on the document. See DP
Character Sets for details of allowable encode characters and their corresponding
byte values. The pEncOptions Property determines if this property is used and if the
HSEM is to be used.
DP 30 If more than 70 characters are referred to by this property, only the first 70

20  characters are used.
DP 250/500 The following table defines character limits for the encoders. If more
than the maximum-allowed characters are referred to by this property, only up to the
maximum-allowed characters are used. For example, the low speed encoder
character limit is 92. If more than 92 characters are referred to, only the first 92

25  characters are used. Refer to "Encoder Type" in the DP 30/250/500 Configuration
Initialization File to see the specific encoder capabilities for your sorter.

Encoder Maximum Characters
Low speed encoder 92
HSEM 12,13, or 16

30 HSEM with full-field encode 65
DP 1150 The DP 1150 supports an optional high speed encoder module. The
application must provide exactly the same number of characters as are on the HSEM
print drum, which is 16. The number of characters available is set by the
HSEMCOLS key in the DP 1XXX Configuration Initialization File.

35 DP 500, DP 11 50--The following table defines the legal values in the pEncData
property for use with the HSEM. Any invalid characters are translated to spaces,
and the failure is reported in the cDocCompleteStatus property for that document.

Font Amount Field Length Character Map

40 E13B 10 columns nnnnAnnnnnnnnnnA
E13B 11 columns nnnAnnnnnnRnnnnA
CMC7 n/a nnnnnnnnnnNNNNNS

Legend*
n = number or space (0x20, 0x30-0x39)
45 A = Amount symbol or space (0x20, 0x96)
s = Special symbol or space (0x20, 0x91-0x95)

57



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg520f94 PgID 149

US 6,546,396 B1
61 62

Related Properties, Events, and Methods
iHSEMOQutSort Property, pEncOptions Property, DocProcess Method

pEncOptions Property

5 Type: Long
This property is a collection of flags that control the encode process.
Note: Bit 0is the least significant bit.

Bit Value Description
Bit 0--Encode Active 1 Encode operation requested
10 0 No Encode for this item
Bit 1 --Use HSEM* 1 Use HSEM for encoding if possible
Do not use HSEM
Bits 2 through 31 0 Reserved
15 Legend

* This bit is not used on the DP 30.

If all documents are to be encoded, Encode Active can be set to TRUE one time at

the beginning of a run. pEncData Property is the requested encode data. If the

HSEM is requested, the buffer is parsed and any encoding that can be performed on
20 the HSEM is directed to that device. This enables the same program to run on a

machine with or without a HSEM.

DP 250/500--See the HSEM optimization parameter in the DP 500 Reader

Initialization File.

DP | XXX--Bit 0 and bit 1 must both be set because the DP 1XXX supports only the
25 HSEM. When using the HSEM, track speed must be set to 500 in the DP 1XXX

Reader Initialization File.

Related Properties, Events, and Methods

pEncData Property, DocProcess Method

30 pEndFrontFontNumber and pEndRearFontNumber Property
Type: Short
These properties are defined only for the DP 250/500 and DP 1XXX multijet
endorser (MJE). Set this property to O if you are not using the MJE hardware. If an
invalid font is specified, or if an MJE module is installed but this property is 0, this
35 property is reset to the default value of font 6. Font numbers 1 through 7 are for
predefined fonts. The foliowing table defines the predefined fonts.

Characters DP 500 DP 500 DP 1XXX

Font Lines of Per Maximum Max. Line Max. Line
No. Description  Print Inch Characters Length Length

1 1-line large 1 5 45 45 64

2 1-line 1 7.5 70 70 64

medium

3 2-line 2 10 180 90 64

4 3-line 3 10 180 60 64

5 4-line 4 10 180 45 64

58



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 53 0of 94 PgID 150

US 6,546,396 B1

63 64
6 SLME 1 10 90 90 64
emulation
7 DLME 2 15 180 90 64
emulation

Based on the font number chosen, each endorser line is truncated to the maximum
line length. The DP 1XXX MJE supports downloaded fonts; refer to the DP 1XXX
Stamp and Endorsement Initialization File. The DP 1XXX MJE supports 8
downloadable fonts, 15 downloadable logos, and a total of 4 lines of print on each
5 the MJE front and MJE rear. These properties are ignored on the DP 1XXX if the
iEndFontSetUp property is null.
Related Properties, Events, and Methods
iEndFontSetUp Property, pEndFrontLine1, pEndFrontLine2, pEndFrontLine3,
pEndFrontLine4, pEndRearLine1, pEndRearline2, pEndRearLine3, pEndRearLine4,
10 pEndFrontLogoNumber and pEndRearLogoNumber, pEndFrontLogoPosition,
pEndRearLogoPosition, pEndFrontOptions and pEndRearOptions,
pEndFrontPosition and pEndRearPosition Property, DocProcess Method

pEndFrontlLine1, pEndFrontLine2, pEndFrontLine3, pEndFrontLine4,
15 pEndRearLine1, pEndRearLine2, pEndRearLine3, pEndRearLine4
Type: CString
The document endorse line is a string containing the data to be endorsed on the next
document. The character data of this string is left justified. For rear endorsements,
the left-most character of this string is endorsed as the character closest to the
20 leading edge of the document. For front endorsements, the left-most character of
this string is endorsed as the character closest to the trailing edge of the document.
The number of allowable characters and lines of endorsement text depends on the
type of endorser used and, if multiple fonts are supported by the endorser, the font
number selected. If any data is truncated, the application is informed in the
25 cDocCompleteStatus property for that document. For all endorsers except the DP
1XXX PEP, see DP Character Sets for a list of valid endorsement characters.
DP 250/500 SLME/DLME--A maximum of 60 characters for each endorse line is
allowed.
DP 250/500/1150/1825 MJE--The number of characters per line and the number of
30 lines per document are defined by the font selected. See the pEndFrontFontNumber
and pEndRearFontNumber Property.
DP 1825 PEP--Only uppercase characters, numbers, and spaces are permitted.
Invalid characters are translated to spaces. A maximum of 40 characters will be
printed; excess characters are truncated.
35  DP 1XXX--This property is ignored if the iEndFontSetUp proprty is null.
Related Properties, Events, and Methods
iEndFontSetUp Property, pEndFrontFontNumber and pEndRearFontNumber
Propertv,
pEndFrontOptions and pEndRearOptions Property, pEndFrontPosition and
40 pEndRearPosition Property, DocProcess Method

pEndFrontLogoNumber and pEndRearLogoNumber Property

59



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg540f94 PgID 151

10

15

20

25

30

35

40

US 6,546,396 B1
65 66

Type: Short
These properties are defined only for the DP 250/500 and DP 1XXX multijet
endorser (MJE).

Value Description
0 No logo
1 through 16 Selects a previously downloaded logo

The logo prints only if the appropriate pEndFrontOptions and/or pEndRearOptions
Property has turned on the endorser. If an invalid logo is selected, no logo is printed,
and the application is informed of this in the cDocCompleteStatus property for that
document. This property is ignored if the iEndFontSetUp property is null.

Related Properties, Events, and Methods

iEndFontSetUp Property, pEndFrontLogoPosition and pEndRearLogoPosition
Property,

pEndFrontOptions and pEndRearOptions Property, DocProcess Method

pEndFrontLogoPosition and pEndRearLogoPosition Property

Type: Short

DP 250/500 MJE, DP 1150 MJE--The logo position is defined in 1 /10 inch
increments from the leading edge of the document. If the logo and text positions
overlap, the logo is blanked out wherever the endorsement text overlaps the logo.
Creating the logo with extra "white space" allows you to fine tune the positioning of
the logo.

DP 1825 MJE--This property is ignored, since text and logos cannot be positioned
independently of each other on the DP 1825 MJE. Positioning of both text and logos
is done via the pEndFrontPosition and pEndRearPositon Properties. If the defined
text and logo areas overlap, the text and graphic are merged together, printing on
top of each other. Creating the logo with extra "white space" allows you to fine tune
the positioning of the logo.

DP 1XXX PEP/Stamp Endorser--When using DP 1XXX PEP endorsers, stamp
position is determined by the DP 1XXX Stamp and Endorsement Initialization File.
In general, custom logos are created using Windows Paintbrush and converting the
resulting *.bmp files to a format acceptable to the particular endorser on your sorter.
If your particular endorser supports this feature, then the logo conversion utility is
installed on the Track PC along with the Common API software. For instructions on
creating the DP 1150 MJE logos, see the DP 1150 MJE Logo Conversion
Utility'shelp ile. Logos are not directly interchangeable between endorser types.
However, a single *.bmp file can be converted individually for each type of MJE.
Related Properties, Events, and Methods

pEndFrontLogoNumber and pEndRearLogoNumber Property, pEndFrontOptions and
pEndRearOptions Property, DocProcess Method

pEndFrontOptions and pEndRearOptions Property

Type: Long

This property defines a collection of flags controliing the endorse process.
Note: Bit 0is the least significant bit.

60



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg550f94 PgID 152

10

15

US 6,546,396 B1

67 68
Bit Value Description
Bit 0--Endorse Active* 1 Endorse operation requested
0 No endorse for this item
Bit 1 --End Trailing Edge: 1 Orient the endorse position from
DP 30 the trailing edge of the document
0 Orient the endorse position from the leading

edge of the document

Bit 1 --End Trailing Edge: 1 Endorsement position (1.4 inches
DP 500 and DP 1XXX MJE adjacent to the trailing edge)

0 pEndFrontPosition and pEndRearPosition

Property contains the endorsement position
Bit 2--DP 30 Reserved
Bit 2--Logo Trailing Edge: 1 Endorsement position (1.4 inches
DP 500 adjacent to the trailing edge)

0 pEndFrontLogoPosition and
pEndRearlogoPosition Property contains the
logo position

Bits 3 through 31 0 Reserved
Legend

* For DP 1XX PEP endorsers, only bit 0 is used. Trailing and leading edge
information is determined by the DP 1XXX Stamp and Endorsement Initialization
File.

If all documents are to be endorsed, Endorse Active can be set to TRUE one time at
the beginning of a run. This property is ignored if the iEndFontSetUp property is null.
Related Properties, Events, and Methods

pEndFrontLine1, pEndFrontLine2, pEndFrontLine3, pEndFrontLine4,
pEndRearLine1, pEndRearLine2, pEndRearline3, pEndRearline4 Properties,
pEndFrontPosition and pEndRearPosition Property, DocProcess Method

pEndFrontPosition and pEndRearPosition ProperW

Type: Short

The document endorse margin is an offset in 1/10th inches from the edge specified
in the pEndFrontOptions and pEndRearOptions Property. For the DP 500, this is
always the leading edge of the document. Refer to pEndFrontOpttons and
pEndRearOptions Property for the end trailing edge DP 500 endorsement option.

61



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 56 of 94 PgID 153

US 6,546,396 B1
69 70

The minimum value for this property is 0. For US banking, see Endorsement Areas
for more information on areas 1 through 4.
DP 1XXX--When using DP 1XXX PEP endorsers, position is determined by the DP
1XXX Stamp and Endorsement Initialization File. For the DP 1XXX MJE, the
5  property is rounded to the nearest inch and it affects the logo position as well. If the

application needs better positioning control, insert spaces into the endorsement text.
This property is ignored if the iIEndFontSetUp propety is null.
Related Properties, Events, and Methods
iEndFontSetUp Property, pEndFrontLine1, 12EndFrontLine2, pEndFrontLine3,

10 pEndFrontLine4, pEndRearLine1, pEndRearLine2, pEndRearLine3, pEndRearlLine4
Properties, pEndFrontOptions and pEndRearOptions Property, DocProcess Method

plmgCarDocType Property
Type: Short

15  This property determines the entry from the CAR parameter file to be applied to this
document. if pimgCarDocType is set to 0, CAR is not performed on the document.
The CAR parameter file name is supplied by the application in the
CARPARAMFILENAME key in the file specified by the ilmgCarSetupFilePath
Property. This property is ignored if the iimgCarSetupFilePath property is null.

20 Related Properties, Events, and Methods
iimgCarSetupFilePath Property, DocProcess Method

plmgFilename Property
Type: CString
25  The image file name is the name of the file in which the next document image is
stored. This is an 8-character field conforming to the file naming conventions of NT
and Novell. The file is created in the directory specified in the ilmgimageDirectory
Property. Refer to the IDX Image Storage File Structure for information about the
image storage format. This property is ignored if the iimgCarSetupFilePath property
30 is nuil.
DP 30--The system software appends the appropriate suffixes to the file names.
The valid suff ixes are .JPG for single documents compressed using JPEG format
and TIF for single documents compressed using CCITT format. JPG files follow the
JPEG industry standard file structure. TIFF files follow the 6.0 TIFF industry
35 standard. If the OUTPUTTYPE key in the iimgCarSetupFilePath Property specifies
a single document per file, the application must change the file name for every
document to avoid overwriting and losing images.
DP 1XXX--If the document is in a feed check, the plmgFilename property is ignored.
All imaging is turned off until flow stops after the feed check. For more information
40  about feed checks, see the cDocCompleteStatus property.
Related Properties, Events, and Methods
ImgAnnotate Property, iimgCarSetupFilePath Property, iimgimageDirectory Property,
DocProcess Method

45  plmgOptions Property
Type: Long

62



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg57 of 94 PgID 154

10

US 6,546,396 B1
71 72

This property is a collection of flags controlling the image process. This property is
ignored if the ilmgCarSetupFilePath Property is null.
Note: Bit 0 is the least significant bit.

Bit Value Description
Bit 0--Store Front Image 1 1 Capture on front image camera 1
0 No capture
Bit 1--Store Front Image 2 1 Capture on front image camera 2
No capture
Bit 2--Store Rear Image 1 1 Capture on rear image camera 1
0 No capture
Bit 3--Store Rear mage 2 1 Capture on rear image camera 2
0 No capture
Bit 4--Close Last Batch 1 This is the first document of a new batch; flag
the last file opened as EOF.
The plmgFilename property should be
different for this document than for the
previous document.
0 No action
Bit 5--Close This Batch 1 This is the last document of a batch; flag the
current batch as EOF when this document is
stored.
If more documents are to be processed, the
next document's pimgFilename property
should reference a different file name than
the current document.
0 No action
Bits 6 through 31 0 Reserved

Related Properties, Events, and Methods
iimgAnnotate Property, imgCarSetupFilePath Property, iimgimageDirectory
Property, DocProcess Method

pMfilmOptions Property

Type: Long

This property is a collection of flags controlling the microfilm process for each item.
Note: Bit 0 is the least significant bit.

Bit Value Description
Bit 0--Microfilm Active 1 Microfilm this document
0 No microfilm

63



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 58 of 94 Pg ID 155

US 6,546,396 B1

73 74
Bit 1 --Left Blip Active 1 Apply the left blip to the microfilm when
microfilming this document
0 No left blip
Bit 2--Right Blip Active 1 Apply the right blip to the microfilm when
microfilming this document
0 No right blip
Bits 3 through 31 0 Reserved

Related Properties, Events, and Methods
pMfilmVerticalAnnotation Property, DocProcess Method

pMfiimVerticalAnnotation Property
5 Type: CString

This property defines the numeric annotation applied between the front and rear
sides of the document images on the microfilm.
DP 250/500--Up to 9 characters can be placed on the film.
DP 1XXX--Up to 12 alphanumeric characters (letters, numbers, and spaces) can be

10 placed on the film. Characters are first validated, and any invalid characters are
changed to a question mark "?" before being placed on the film. This property is
required and must be unique if the key MFILMTRACKINGON = 1 in the DP 1XXX
Reader Initialization File. If this property is not supplied, then MFILMTRACKINGON
is set to zero until the next GoReadyToProcess method.

15 Related Properties, Events, and Methods
pMfilmOptions Property, DocProcess Method

pStkPocket Property
Type: Short

20  This property describes the pocket number for the current document being
processed. If the pocket humber is invalid, the document is sorted to the reject
pocket. If waterfall pockets are defined, the pocket number refers to the logical
pocket number. Waterfall pocket sets can be defined in a file specified by the
iStkSetlLogicalPocketsPath Property. Both logical and physical pockets are

25 numbered sequentially starting with 1.
Related Properties, Events, and Methods
cStkPocket Property, iStkSetLogicalPocketsPath Property, DocProcess Method

pStkWaterfallCascade Property
30 Type: Short
Valid Values
0 = No cascade
1 = Cascade after pocketing this document
2 = Cascade before pocketing this document
35  This property controls cascading of documents within a logical pocket set. See the
DP Stacker Waterfall Pocket.INI File for a description on how to define logical pocket
sets. pStkWaterfallCascade is used fo force a cascade to the next physical pocket

64



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 59 of 94 PgID 156

US 6,546,396 B1
75 76

in a logical pocket set. Based on the value of pStkWaterfallCascade the cascade will

occur before or after the pocketing of this document.

Example

1. Physical pockets 10-15 are part of logical pocket set 4 in the order 10-15.

2. Documents sent to logical pocket 4 are initially sent to physical pocket 10.

3. The application decides to cascade to physical pocket 11.

4, The application sets the pStkWaterfallCascade property to 1 or 2 the next

time it processes a document to logical pocket 4.

Important Note

10 A cascade will not occur if the application performs a cascade for a logical pocket
and Track Control determines that this logical pocket is currently using the last
physical pocket in its set. |In other words, the cascade feature does not automatically
wrap back to the beginning of a logical pocket set. Instead Track Control will declare
a logical pocket full exception. All the items processed to a full logical pocket before

15  the track is stopped are sent to the last pocket of the logical pocket set. The
exception handler guides the operator through logical pocket full exception. The
application state is not changed even though flow was temporarily stopped. The
application will receive the ExceptionInProgress and ExceptionComplete event for
this error scenario. An application can use the rPktSetsCantCascade properties if

20  the above described logical pocket full exception is undesirable. For more details,
see rPktSetsCantCascade1 and rPktSetsCantCascade2.

Related Properties, Events, and Methods
iStkSetLogicalPocketsPath Property, pStkPocket Property, rPktSetsCantCascade1,
iPktSetsCantCascade2 Properties, DocProcess Method, StkResetPockets Method

25
pStmpFrontPosition, pStmpRearPosition Properties
Type: Short
DP 30--The stamp position is an offset 1/10-inch from the leading or trailing edge of
a document. The leading edge values range from 0 through 77. The trailing edge

30  value remains constant at 15.

DP 250/500--The front stamp position is fixed and is subject to the document's
length. The rear stamp position is defined as an offset in 1/10th inches from the
leading-edge of a document. The values range from 0 through 35. Refer to the
pStmpOptions Property for rear stamp options.

35  DP 1XXX--This property does not apply. The DP 1XXX stamp position is defined by
the DP 1XXX Stamp and Endorsement Initialization File. This property is ignored if
the iEndFontSetUp property is null.

Stamp Endorsement Example (valid for all sorter platforms)
For US banking, the endorsement areas are as follows:
40 e Payee endorsements is 1.5 inches (3.81 cm) with the pStmpRearPosition
property set to the trailing edge.
* Second transit endorsement is 1.5 inches (3.81 cm) with the pStmpRearPosition
property set to the leading edge.
s Bank of first deposit is 3.0 inches (7.62 cm) with the pStmpRearPosition property
45 set to the leading edge.

65



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 60 of 94 PgID 157

10

20

25

30

US 6,546,396 B1
77 78

s First transit endorsement is 0.05 inches (0.13 cm) with the pStmpRearPosition
property set to the leading edge. The system ensures that a stamp position set
to 0 is within first transit endorsement.

Related Properties, Events, and Methods

pStmpOptions Property, DocProcess Method

pStmpOptions Property

Type: Long

This property is a collection of flags controlling the stamp process.

DP1XXX--This property is ignored if the iEndFontSetUp property is null.

Notes:

1. Only bits 0 and 2 are defined for the DP 1XXX. Stamp position for the DP
1XXX is defined by the DP 1XXX Stamp and Endorsement Initialization File.

2. Bit 0 is the least signfficant bit.

3. The DP 30 supports either the front or rear stamp. The DP 500 can support

both.
Bit Value Description
Bit 0--Rear Stamp Active 1 Rear stamp this document
0 No stamp
Bit 1 --Rear Stamp Leading Edge 1 Rear stamp (1.4 inches or 3.4 adjacent to
the trailing edge)
0 Rear stamp position contained in
pStmpRearPosition property
Bit 2--Front Stamp Active 1 Front stamp this document
0 No stamp
Bits 3 through 31 0 Reserved

Related Properties, Events, and Methods
pStmpFrontPosition, pStmpRearPosition Properties, DocProcess Method

pXcpDeleteAllowed Property

Type: Boolean

This flag specifies whether or not the exception handler (EXCEPT.EXE) permits an
operator to delete this item during exception processing. The valid values are TRUE
and FALSE. The default value is TRUE. When set to TRUE, the operator can
delete the document. When set to FALSE, the operator cannot delete the document.
This ensures proper processing of documents that are required to be reprocessed.
Such documents, for example batch separation tickets, are most likely not to be
deleted by an operator during exception processing.

Related Properties, Events, and Methods

DocProcess Method

pXcpldentify Property

66



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 61 0of 94 PgID 158

US 6,546,396 B1
79 80

Type: CString
This property defines the text string that is displayed to identify the current document
to the operator during exception reprocessing. The string length is from 1 to 48
characters. If pXcptidentify is set to NULL, the pXcpOptions Property determines

5 how exception documents are identified.
Related Properties, Events, and Methods
pXcpOptions Property, DocProcess Method

pXcpOptions Property

10 Type: Long
The pXcpOptions property defines the options for the document during exception
reprocessing. Bits 0, 1, and 2 define which logical reader codelines are not used
during exception handling. The contents of reader codelines 1, 2, and 3 are defined
in the reader INI file for your sorter.

15 Note: Bit 0 s the least significant bit.

Bit Value Description
0 1 Inhibit reader 1.
0 Use reader 1 code line if available.
1 1 Inhibit reader 2.
0 Use reader 2 code line if available.
2 1 Inhibit reader 3.
0 Use reader 3 code line if available.
3 Defines StartOfTransaction (DP 1XXX only).
1 This document is the first document of a transaction. See below.
0 No transaction checking.

DP 1XXX pairs mode transactional integrity

There are some applications (such as remittance processing) that require all
documents that are part of a single transaction to remain together during document
sorting. Feedcheck conditions create special problems for applications attempting to

20 maintain transaction integrity. This is because a feedcheck can split a transaction by
sending the feedcheck items to the reject pocket, whereas the rest of the transaction
that is not involved in the feedcheck is sent to a valid sorted pocket. There are two
approaches to maintaining transaction integrity, depending on the number of
documents that compose a transaction:

25 Transactions of more than two documents--The application should set
STOPONFEEDCHECK=1 in the reader ini file. This guarantees that transactions
that would be split due to a feedcheck will remain intact when the feedcheck
documents are refed.

Transactions of one or two documents--The application can use the above

30 method successfully, or, if higher document throughput is desired, the application
can set STOPONFEEDCHECK=0 and set the "StartOfTransaction" flag in the
pXcpOptions property for each document that starts a new transaction. (Note that

67



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 62 of 94 PgID 159

US 6,546,396 B1
81 82

each batch separator ticket should also be marked as "StartOfTransaction".) In this
configuration, Track Control assures that any document marked as
"StartOfTransaction” that is fed just prior to a feedcheck is not separated from the
feedcheck document that follows it. The entire transaction will be sent to the reject
5 pocket and be marked as being involved in the feedcheck. It should be noted that

the StartOfTransaction document will have been encoded, endorsed, microfilmed,
imaged, etc., as requested by the application, but the remaining feedcheck
documents will not have been.
Note that a transaction can still be broken at the tail end of the feedcheck. For

10 example, the start of a transaction may be the last document fed during the
feedcheck. In the case when flow resumes after the feedcheck, the application must
recognize that the first document read is not the start of a transaction and should be
rejected, so that the entire transaction is in the reject Pocket together.
Related Properties, Events, and Methods

15  iXcpHandierStyle Property
pXcpldentify Property

R* Properties--Reader
R* properties are valid after the DocReadComplete Event has started. They are set
20 by the document processor and read by the application. The following topics
describe r* properties:
rPktSetsCantCascade1, rPktSetsCantCascade2 Properties
rPktSetsNearfull1, rPktSetsNearfull2 Properties
rRdr1CantReadCount, rRdr2CantReadCount, rRdr3CantReadCount Properties
25 rRdr1CodelLine, rRdr2Codeline, rRdr3CodelLine Properties
rRdrDocLength Property
rRdrDocStatus Prgperty
rRdrMICRAnalogCantReadCount and rRdrMICRDigitalCantReadCount Properties <
Updated

30
rPktSetsCantCascade1, rPktSetsCantCascade2 Properties
Type: Long
These properties are available to the application during the ReadComplete event.
They are bit patterns that represent which logical pocket sets are currently sorting to
35 the last physical pocket in their defined sets. Property rPktSetsCantCascade1 is for
logical sets 1-31, and rPktSetsCantCascade? is for logical sets 32-48. See the DP
Stacker Waterfall Pocket.INI File section for details on how to define logical pocket
sets. Each bit of these properties represents a different logical pocket set. This
pocket-to-bit mapping is defined by the following diagrams:
40  rPktSetsCantCascade1

Bit: AN 30 29 - 4 3 2 1 0

Pocket set: * 31 30 --- 5 4 3 2 1

68



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 63 of 94 PgID 160

10

15

20

25

30

35

US 6,546,396 B1

83 84
rPktSetsCantCascade2
Bit: 31 30 - 17 16 - 2 1 0
Pocket set: * *x - ** 48 - 34 33 32
Legend

*

Bit 31 in each property is reserved as the sign bit.
had Bits 17-30 in rPkiSetsCantCascade2 are reserved.

A request to cascade within a logical pocket set (see pStkWaterfaliCascade) is not

actioned when sorting to the last physical pocket in a logical pocket set. A logical

pocket full exception occurs instead. An application using the pStkWaterfallCascade
feature can use these properties to avoid a logical pocket full exception. See the
pStkWaterfallCascade property for a desciption of the logical pocket full exception.

Note: The use of the rPktSetCantCasadeX properties is not required unless an
application is using the pStkWaterfallCascade feature and it cannot tolerate
extra items in the last pocket of a logical pocketset.

Examples

If rPktSetsCantCascade1 has a value of 3, then logical pocket sets 1 and 2 are

currently sorting to the last physical pockets defined in their sets. The following is a

scenario (DP35, DP250 or DP500) where this property could be used to avoid a

logical pocket full exception and extra items in the last pocket of a logical set.

1. An application receives a DocReadComplete event for the next document.
The rPktSetsCantCascadeX properties are updated during each read
complete event.

2. The application determines that the next document is to be pocketed in logical
pocket 4 and a cascade BEFORE is required.

3. The rPktSetCantCasade1 property shows that logical pocket 4 is currently on
the last physical pocket of the set. A cascade to the next pocket cannot be
done. The application decides to have the logical set emptied and reset
before processing this document.

4. The application issues a StkResetPockets method for logical pocket 4.

5. Track control turns on the pocket lights for all the physical pockets in logical
set 4.

6. The application prompts the operator to empty all the pockets in logical set 4.

7. The operator acknowledges the application prompt.

8 The application processes the document WITHOUT cascade. The document

is sorted to the first physical pocket in logical pocket set 4.
A logical pocket full exception is almost unavoidable on a DP 1XXX because the DP
1XXX cannot halt documents in the track like the other sorters. If a logical pocket full
condition must be avoided on a DP 1XXX sorter, the application can do the following:
1. Keep a count of the number documents sent to last pocket of each logical
pocket set. The application can use the rPktSetsCantCascadeX properties to
trigger when a set is how on its last pocket.

69



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 64 0of94 PgID 161

US 6,546,396 B1

85 86
2. The application can issue the FlowStop Method when a threshold count is
reached for the last pocket of a set.
3. The application can issue the StkResetPockets method for one or more sets

after the FlowStopped Event is received.
5 Related Properties, Events, and Methods

iStkSetLogicalPocketsPath Property
pStkPocket Property
pStkWaterfallCascade Property
DocReadComplete Event

10 DocProcess Method
StkResetPockets Method

rPktSetsNearfull1, rPktSetsNearfull2 Properties
Type: Long
15 These properties are available to the application during the DocReadComplete
event. They are bit patterns that represent which logical pocket sets are currently
near full. rPktSetsNearFull1 is for logical sets 1-31 and rPktSetsNearFull2 is for
logical sets 32-48. A logical set is near full when it is sorting to the last pocket
defined in a logical set and the count of documents sorted to this last pocket is close
20  to the application defined DOCSPERPOCKET value. See the.DP Stacker Waterfall
Pocket INI File section for details on how to define logical pocket sets and the
DOCSPERPOCKET value. Each bit of these properties represents a different logical
pocket set. This pocket-to-bit mapping is defined by the following diagrams:
rPktSetsNeartull1

Bit: 31 30 29 - 4 3 2 1 0
Pocket set: * 31 30 - 5 4 3 2 1
25
rPktSetsNearfull2
Bit: 31 30 - 17 16 - 2 1 0
Pocket set: * ** - *x 48 - 34 33 32
Legend

*  Bit 31 in each property is reserved as the sign bit.
> Bits 17-30 in rPktSetsNearfull2 are reserved.

30 The DOCSPERPOCKET feature does not automatically wrap back to the first pocket
in a logical set when the last physical pocket in the set is full. Instead a logical
pocket full exception occurs. An application using the DOCSPERPOCKET feature
can use these properties to avoid a logical pocket full exception.

Note: The use of the rPktSetsNearFullX properties is not required unless an

35 application is using the DOCSPEPPQCKET feature and it cannot folerate

extra items in the last pocket of a logical pocketset.

70



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 650f94 PgID 162

10

15

20

25

30

35

40

45

US 6,546,396 B1
87 88

The corresponding bit for a logical pocket set is turned on when the count of
documents sorted to the last pocket in the set is close to the DOCSPERPOCKET
value. See the following for a definition of "close" on each sorter type:

DP35, DP250, DP500 = DOCSPERPOCKET -5

DP 1XXX = DOCSPERPOCKET - 10

Example

If rPktSetsNearFull2 has a value of 3 then logical pocket sets 32 and 33 are near

full. One or more of the bits may be on at the same time. The following is a

scenario where this property could be used to avoid a logical pocket full exception

and extra items in the last pocket of a logical set.

1. An application receives a DocReadComplete event for the next document.
The rPktSetsNearFullX properties are updated during each read complete
event.

2. The rPktSetNearFull property shows that logical pocket 4 is currently near
full. The application decides to have the logical set emptied.

3. The application issues a FlowStop method. The application handles all the
items currently in progress while waiting for the FlowStopped event.

Note: Muitiple sets may become near full simultaneously. The applicafion should
issue the FlowStop method only once.

4. Once the FlowStopped event is received, the application issues a
StkResetPockets method for logical pocket 4.

5. Track Control turns on the pocket lights for all the physical pockets in logical
set 4.

6 The application prompts the operator to empty all the pockets in logical set 4.
7. The operator acknowledges the application prompt.

8. The application issues the FlowStart method.

9 Track Control turns off the pocket lights for all the physical pockets in logical

set 4.

10.  Track Control turns off the corresponding bit in rPkiSetsNearFull1 for logical
set 4.

11. Further documents intended for logical set 4 are sorted to the first pocket in
logical set 4.

Related Properties, Events, and Methods
iStkSetLogicalPocketsPath Property, pStkPocket Property, DocReadComplete
Event, FlowStart Method, FlowStop Method, StkResetPockets Method

rRdriCantReadCount, rRdr2CantReadCount, rRdr3CantReadCount Properties
Type: Short

This property defines the number of can't read characters (1 Ah characters) in each
code line. There is a limit on the DP 1XXX MCR readers; they do not return leading
edge can't read characters. Refer to the rRdrMICRAnalogCantReadCount and
rRdrMICRDigitalCantReadCount Properties to get the full count If the
iRdrFontLoadPath property is NULL, no reader code lines are to be returned to the
application in the DocReadComplete Event, and the rRdrXCantReadCount
properties have a value of zero.

Related Properties, Events, and Methods

71



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 66 of 94 PgID 163

US 6,546,396 B1
89 90

rRdr1CodelLine, rRdr2CodeLine, rRdr3CodelLine Properties
rRdrMICRAnalogCantReadCount and rRdrMICRDigitalCantReadCount Properties
DocReadComplete Event

5 rRdr1CodeLine, rRdr2CodelL.ine, rRdr3CodeLine Properties
Type: CString
This property defines the reader code line, including spaces (except for the DP 1XXX
MICR readers). The maximum code line is 95 characters. The first character in the
buffer is the leftmost character of the code line. Spaces are not compressed from
10 the code line. See DP Character Sets for the ASCIl values returned by the readers
for valid characters. The physical reader that maps to each of these properties is
defined in the DP 250/500 Reader Initialization File or the DP 1XXX Reader
Initialization File. If the iRdrFontLoadPath property is NULL, no reader code lines
are to be returned to the application in the DocReadComplete Event, and the
15 rRdrXCodeline properties have a value of zero.
DP 500--If you are using OCR readers and performing font switching, the following
characters may be returned within the reader code line string. They mark the font
switch occurrences.

Value Description
20  0OXCQ and 0xC1 Font switch on string occurred.
0XDQ through 0xD7 Font switch on position occurred.

Related Properties, Events, and Methods
rRdr1 CantReadCount, rRdr2CantReadCount, rRdr3CantReadCount Properties
DocReadComplete Event
25
rRdrDocLength Property
Type: Short
DP 250/500 only--This property describes the document length in 10ths of inches. It
is valid only if the reader options are set up to request the document length. This
30  option can be set in the file specified by the iRdrFontLoadPath Property. If the
iRdrFontLoadPath property is NULL, no reader code lines are to be returned to the
application in the DocReadComplete Event, and the rRdrDocLength property has a
value of zero.
Related Properties, Events, and Methods
35 iRdrFoniLoadPath Property, DocReadComplete Event

rRdrDocStatus Property

Type: Long

This property indicates information that describes the special conditions, such as

40 feed check items, associated the document.

Note: Bit 0 is the least significant bit.

Bit Value Description

0 (DP 1XXX only) 1 DP 1XXX feed check item that will be rejected.
This item is flagged as a feed check item in
cDocCompleteStatus Property.

72



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 67 of 94 Pg ID 164

10

15

20

25

30

35

US 6,546,396 B1
91 92

The application should not enable any devices on
this document and should send this document to
the reject pocket when issuing the DocProcess
method for this document.

0 Normal.

Bits 1 through 31 0 Reserved.
Related Properties, Events, and Methods
DocReadComplete Event

rRdrMICRAnalogCantReadCount and

rRdrMICRDigitalCantReadCount Properties

Type: Shorl

These properties are valid only on the DP 1XXX. HSEM applications that need to
detect overencoded amount fields use this property. The rRdr1CantReadCount,
rRdr2CantReadCount, rRdr3CantReadCount Properties do not report the number of
leading can't read characters in the codeline. This makes it difficult for applications
that need to detect overencoded amount fields. The
rRdrMICRAnNalaocgCantReadCount and rRdrMICRDigitalCantReadCount Properties
report the total number of can't read characters from the Analog MICR reader and
the Digital MICR reader, respectively (when in resolved reader mode). This includes
the leading can't read characters. If the iRdrFontLoadPath property is NULL, no
reader code lines are to be returned to the application in the DocReadComplete
Event, and the rRArMICRXXXCantReadCount properties have a value of zero.
Related Properties, Events, and Methods

rRdr1CantReadCount, rRdr2CantReadCount, rRdr3CantReadCount Properties
rRdr1 CodelLine, rRdr2CodelLine, rRdr3Codel.ine Properties

DocReadComplete Event

Rec* Properties--Recovery from Power Failure

DP 250/500 only--Rec* properties are initially set by the track when the
RecoveryComplete Event is started. The recDoclndex Property is then set by the
application to index the list of recovery documents. See NVM Recovery for the
nonvolatile memory (NVM) recovery process description. The following topics
describe the rec* properties:

recDocCount Property

recDoclndex Property

recDocCount Property

Type: Short

DP 250/500 only--This property indicates the number of documents in the recovery
list. A value of 0 indicates that no documents are available for recovery.

Related Properties, Events, and Methods

recDoclIndex Property, RecoveryComplete Event

73



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 68 of 94 Pg ID 165

10

15

20

25

30

35

US 6,546,396 Bl
93 94

recDoclndex Property

Type: Short

DP 250/500 only--This property recovers document data after an abnormal
termination. It depends on data stored in NVM by track control. The values range
from 0 to recDocCount-1. When recDoclndex is set, the c* properties are set to the
value of the corresponding previously processed document. A value of 0 is the
document originally processed first. The application reprocesses data by using a
control loop from 0 to recDocCount-1.

Related Properties, Events, and Methods

C* Properties-Document Completion, recDocCount Property, RecoveryComplete
Event

Repass* Propetlies--Repass Documents

The repass properties allow the application to control the reprocessing of individual
documents during exception handling. They are valid during the RepassVerify Event
handling. The following topics describe the repass* properties:

repassAppDocDIN Property

repassControl Property

repassRdr1CantReadCount, repassRdr2CantReadCount,
repassRdr3CantReadCount Properties

repassRdr1CodelLine, repassRdr2Codeline, repassRdr3Codeline Properties
repassRdrDocLength Property

repassRdrDocStatus Property

repassAppDocDIN Property

Type: Long

This property returns the value of the pAppDocDIN originally set for this document by
the application. The application can use this value to aid in exception reprocessing
during the RepassVerify Event.

Related Properties, Events, and Methods

pAppDocDIN Property, RepassVerify Event

repassControl Property

Type: Long

This property is set by the application during the RepassVerify Event handling to

specifiy the reprocessing options for a repass document.

Note: Bit 0 is the least significant bit.

Bit Value Description

Bits O through 3 0000 Default exception handler repass processing. The
exception handler prompts the operator to verify the
repassed items that do not compare.

0001 Iltems compare; reprocess the document.

0002 Items do not compare; reject the repass document,
mark the item as deleted, and continue reprocessing.

74



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 69 of 94 PgID 166

10

15

20

25

30

35

US 6,546,396 B1
95 96

DocComplete event for the item that will be deleted.

0003 Iltems do not compare; the exception handler asks the
operator to find the correct document and refeed it.

Bits 4 through 31 0 Reserved.
Related Properties, Events, and Methods
DocComplete Event, RepassVerify Event

repassRdriCantReadCount, repassRdr2CantReadCount,
repassRdr3CantReadCount Properties

Type: Short

This property defines the number of can't read characters (1Ah characters) in each
code line for documents being refed during exception processing. There is a limit on
the DP 1XXX MCR readers; they do not return leading edge can't read characters.
The physical reader that maps to each of these properties is defined in the DP
250/500 Reader Initalization or the DP 1XXX Reader Initialization File. These
properties are available to the application during the repassVerify Event.

Related Properties, Events, and Methods

rRdrMICRAnNalogCantReadCount and rRArMICRDigitaiCantReadCount Properties
repassRdr1CodeLine, repassRdr2CodelLine, repassRdr3Codeline Properties

repassVerify Event

repassRdr1 CodelLine, repassRdr2CodeLine, repassRdr3CodeLine Properties
Type: CString

These properties are available to the application during the repassVerify Event. This
property defines the reader code line, including spaces (except for the DP 1XXX
MICR readers) for the document being refed during exception processing. The
maximum code line is 95 characters. The first character in the buffer is the leftmost
character of the code line. Spaces are not compressed from the code line. See DP
Character Sets for the ASCII values returned by the readers for valid characters.
DP 500--If you are using OCR readers and performing font switching, the following
characters may be returned within the reader code line string. They mark the font
switch occurrences.

Value Description
0xCO0 and 0xC1 Font switch on string occurred.
0xDO through 0xD7 Font switch on position occurred.

Related Properties, Events, and Methods
repassRdr1CantReadCount, repassRdr2CantReadCount,
repassRdr3CantReadCount Properties

repassVerify Event

repassRdrDocLength Property

Type: Short

DP 250/500 only--This property describes the document length in 10ths of inches for
documents being refed during exception processing. These properties are available
to the application during the repassVerify Event. It is valid only if the reader options

75



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 700f94 Pg ID 167

US 6,546,396 B1
97 98

are set up to request the document length. This option can be set in the file
specified by the iRdrFontLoadPath Property. For the DP 30 and DP 1XXX, it will
always be zero.
Related Properties, Events, and Methods

5 iRdrFontLoadPath Property, repassVerify Event

repassRdrDocStatus Property
This is a reserved field.

10 Start* Properties--Start Up
The Start* properties are available after the OCX is loaded. The following topics
describe the Start* properties:
StartSorterType Property
StartState Property

15
StartSorterType Property
Type: Short
This property informs the application which type of sorter is active (connected to the
OCX).
Value Description
0 Not connected
1 DP 35
2 DP 250
3 DP 500
4 DP 1150
5 DP 1825

20  Related Properties, Events, and Methods
StartState Property

StartState Property
Type: Short
25  This property indicates the state of the sorter interface before any methods are
invoked by the application.

Value Description
1 ST_POWEREDOFF--the DP sorter is powered off.
2 ST _IDLE--the DP sorter is already powered up and the

previous application disconnected in ST_IDLE. Issuing the
PowerUp Method results in an immediate PoweredUp Event.

3 ST_DEAD--the DP sorter is not usable, and the application
should terminate.
This property enables the application to bypass the power up screen if the track is
already powered up. It is available immediately upon program load and prior to the
PoweredUp Event.
30 Related Properties, Events, and Methods

76



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 71 0f94 PgID 168

10

15

20

25

30

35

40

45

US 6,546,396 B1
99 100

None.

T* Properties-Track Nondocument Commands
T* properties are set by the application prior to issuing a nondocument command.
The following topics describe the t* properties:
tDspWriteLine1and tDspWriteLine2 Properties
timgEOFAnnotation Property
tMfilmHorizontalAnnotate Property

tMfilmLength Property
tMfilmLengthDP1X00Spool Property
tMfilmOptions Property

tMfilmSlewLength Property
tMfilmVerticalAnnotate Property

tDspWriteLine1 and tDspWriteLine2 Properties

Type: CString

DP 30 only--The display write lines are strings set by the application that contain the
data to be written to the DP 30 display panel. The numbers 1 and 2 correspond to
the first and second lines of the display. The character data of this string is left
justified. If more than 16 characters are referred to by these properties, only the first
16 characters are used. If fewer than 16 characters are referred to, trailing spaces
are assumed.

Related Propenies, Events, and Methods

None

timgEOFAnNnNotation Property

Type: CString

The application sets this property to define the annotation placed in the header
record of the EOF file when a EOF is created as a result of the ImageEndOfFile
Method. The header record maximum size is 128 bytes. This property is only valid
in the Ready State on all sorters.

Related Properties, Events, and Methods

ImageEndOf File Method

tMfilmHorizontal Annotate Property

Type: CString

The application sets this property to define a horizontal alphanumeric annotation for
the microfilm when a MFilmHorizontalAnnotate Method is issued. Valid character
codes are 20h to 5Fh. Refer to the Character Codes and CAPI| Device Characters
topic for further information.

DP 250/500--Up to 16 characters can be placed on the film.

DP 1XXX--Up to 12 alphanumeric characters (lefters, numbers and spaces) can be
placed on the film. Characters are first validated, and any invalid characters are
changed to a question mark "?" before being placed on the film. This property is
only valid in the Ready State.

Related Properties, Events, and Methods

77



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 72 of 94 PgID 169

US 6,546,396 B1
101 102

tMfilmOptions Property, MFilmHorizontalAnnotate Method

tMfilmLength Property
Type: Short
5  This property defines the length of microfilm remaining in inches. ltis set by the

track control after the MFiimGetFilmLengthComplete Event is fired as a response to
the MFilmGetLength Method.
DP 1XXX--This property is only valid in the Ready State.
Related Properties, Events, and Methods

10 tMfimLengthDP1X00Spool Property, MFilmGetFilmLengthComplete Event,
MFilmGetiLength Method

tMfilmLengthDP1X00Spool Property
Type: Short

15  This property is available only on the DP 1XXX, and is valid only in the Ready State.
A DP 1XXX reader sorter is equipped with a large spool of film. At 1000 feet in
length, this large spool is more than four times the size of a standard spool. The
large spool is cut into four or more smaller, standard-sized spools (200 feet) during
film development. The MFilmSkip event indicates that a length of microfilm has

20 passed that equals the length of a standard spool. The film slews automaticaily for
four feet to separate the standard spools on the large spool. The application can
place a human-readable horizontal annotation on the film at this time. Start flow
must be issued by the application to resume flow. This property defines the length of
microfilm remaining in inches on the large spool. It is set after the

25  MFilmGetFilmLengthComplete event is fired as a response to the MFilmGetLength
method. The tMfilmLength property defines the length of microfilm remaining in
inches on the logical, standard-sized segment of the large spool. If the application
issues an MFilmSlew method during the Ready state, a new standard size spool is
started at that point. The DP 1XXX will not issue an MFilmSkip event for another

30 200 feet.
Related Properties, Events, and Methods
tMfilmLength Property, tMfilmSlewLength Property, MFilmGetFilmLengthComplete
Event, MFilmSkip Event, FlowStart Method, MFilmGetLength Method

35 tMfilmOptions Property
Type: Long
The application sets this property to control the microfilm process. Left and right can
be applied to the microfilm with a horizontal or vertical microfilm annotation.
DP 1XXX--This property is only valid in the Ready State.
40 Note: Bit 0is the least signfficant bit.

Bit Value  Description

Bit 0 0 Reserved

Bit 1--Left Blip Active 1 Apply the left blip to the microfilm
No left blip

78




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 73 0f94 PgID 170

US 6,546,396 B1

103 104
Bit 2--Right Blip Active 1 Apply the right blip to the microfilm
0 No right blip
Bit 3--Large Horizontal 0 Normal horizontal characters
Characters (DP 1XXX only)
1 Human-readable characters
Bits 3 through 31 0 Reserved

Related Properties, Events, and Methods
tMfilmHorizontalAnnotate Property, tMfilmVerticalAnnotate Property,
MFilmHorizontalAnnotate Method, MFilmVerticalAnnotate Method

5 tMfilmSlewLength Property

Type: Short
The application sets this property to define the length microfiim to be slewed when
the MFilmSlew Method is invoked.
DP 250/500--This property defines the length of microfilm to slew in inches.

10 DP 1XXX--The DP 1XXX document processor advances the microfiim a fixed length
of 48 inches. This property is only valid in the Ready State.
Related Properties, Events, and Methods
MFilmSlewComplete Event, MFilmSlew Method

15  tMfilmVerticalAnnotate Property
Type: CString
The application sets this property to define a vertical annotation for the microfiim
when a MFilmVerticalAnnotate Method is issued. Refer to the Character Codes and
CAPI Device Characters topic for further information

20  DP 250/500--Up to 9 numeric characters can be placed on the film.
DP 1XXX--Up to 12 alphanumeric characters (lefters, numbers, and spaces) can be
placed on the film. Characters are first validated, and any invalid characters are
changed to a question mark "?" before being placed on the film. This property is
only valid in the Ready State.

25 Related Properties, Events, and Methods
tMfilmOptions Property, MFilmVerticalAnnotate Method

wAlert* Properties--Warnings

WAIlert* properties are available when the Warning Event is started. They are set by
30 the document processor and read by the application.

The following topics describe the wAlert* properties:

wAlert Property, wAlertEnglishText Property, wAlertPktsFull Property

wAlert Property

35 Type: Short
The Warning Event is fired up to once per 1.5 seconds, if the warning context has
changed or there is more than one warning. If there is more than one, the warning
messages cycle through, one warning event fired after another. This property
indicates the type of warning in effect. Create a message to display to the operator

79




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg740f94 PgID 171

US 6,546,396 B1
105 106

that indicates the event in effect. Do not use a dialog box that requires operator
response. In general, these warnings do not apply to the DP 30, except where

indicated.

Warnings Description

0X0000 No warning

0X0001 Image stop track

0x0002 Sensor dirty

0x0003 HSEM ribbon retry

0x0004 HSEM attention

0x0005 HSEM ribbon low

0x0006 HSEM cover open

0x0007 HSEM module up

0Xo0008* Document removed view 1

0X0009* Document removed manual drop

0X000A* Document removed view 2

0X000B* Microfilm cover open

0X000C* Microfilm drawer open

0X000D* Microfilm lamp life

0X000E* Microfilm film low

0X000F* View 2 window open

0X0010 DP 1XXX microfilm stopped for film skip

0X0011* MJE front ink low

0x0012* MJE rear ink low

0x0013* Clean front MJE

0x0014* Clean rear MJE

0X01XXA Pocket XX full. This refers to either logical or physical pockets,
depending on the setting of the FULLPOCKETINFO key in the DP
Stacker Waterfall Pocket INI File. The message refers to only the first
pocket (or pocket set) if more than one pocket (or pocket set) is full
simultaneously.

Legend

S * Does not apply to the DP 1XXX
A This is the only warning that applies to the DP 30. 1t is also available on all other
sorters.
Related Properties, Events, and Methods
wAlertEnglishText Property, Warning Event
10
wAlertEnglishText Property
Type: CString
This property is an English text description of the warning in effect. (The Warning
Event is fired up to once per 1.5 seconds, if the warning context is changed and
15  there is more than one warning.)
Related Properties, Events, and Methods
wAlert Property, Warning Event

wAlertPktsFull Property

80



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 750f94 PgID 172

10

15

20

25

30

35

40

US 6,546,396 B1
107 108

Type: Short

This property is valid during the Warning event. It is set (value=1) if there are
currently any full pocket sets that are stopping document flow. This property gives
the application more timely information about the state of any full pocket sets. The
related wAlert property is updated during every Warning event but if there is more
than one warning condition, its value changes with every Warning event. This
makes it challenging for applications to use the warnAlert property alone to keep
track of pocket full and pocket not full conditions.

Related Properties, Events, and Methods

wAlert Property, wAlertEnglishText Property, Warning Eyent

DP Track OCX Methods

The methods are commands the applications can issue to control the reader sorter.
See the DP Track State Diagrams and Tables for information on when they are valid.
The following topics describe DP track OCX methods.
CLICapture Method

DisplayLine Method

DocAccept Method

DocProcess Method

DocReject Method

FlowStart Method

FlowStop Method

Goldle Method

GoReadyToProcess Method

ImageEndOf File Method

MakeReadyToFlow Method
MakeReadyToFlowTerminate Method

MergeFeed Method

MFilmGetLength Method

MFilmHorizontalAnnotate Method

MFilmSlew Method

MFilmVerticalAnnotate Method

MTREnter, MTREXxit, MTRCommand Methods
NVMRead Method

NVMWrite Method

PowerDown Method

PowerUp Method

PrintLine Method

Recover Method

ResumeFeeding Method

StkResetPockets Method

CLICapture Method
Note:This method applies fo the DP 250/500 sorters only.

81



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 76 0of94 PgID 173

US 6,546,396 B1
109 110

CLIPath1 and CLIPath2 define the destination path for a document code line image
that is stored to disk in a Windows .BMP file. If the CLIPathX is NULL, the CLIPathX
is ignored.
This method may only be invoked for a document which has received the

5 DocReadComplete Event but not the DocAccept Method. Based on the DP 500
document processor reader hardware, the following table describes the code line
image data that is returned at the application-defined CLI paths.

Reader1 Reader2 Reader3 CLIPath1 CLIPath2
CMC7/E13B None None None None
CMC7/E13B None CLI CMC7/E13B None
CMC7/E13B OCR1 None OCR1 None
CMC7/E13B None OCR2 OCR2 None
CMC7/E13B OCR1 OCR2 OCR1 OCR2
CMC7/E13B OCR1 CLI OCR1 CMC7/E13B
Dual E13B None CLI LowerE13B None

Dual E13B CLI CLI Upper E1 3B LowerE13B
Dual E13B OCR1 CLI OCR1 LowerE13B
Dual E13B OCR1 OCR2 OCR1 OCR2
Parameters

CLIPath1 of type CString
10 CLIPath2 of type CString
Related Properties, Events, and Methods
CLICaptured Event, DocReadComplete Event, DocAccept Method

DisplayLine Method

15  DP 35--This method applies only to DP 35 sorters.
This method transfers the DspWriteLine1 parameter--a string containing the ASCII
data--to the DP 35 display. This method is valid after the sorter is powered up. The
data to be written to the DP 35 display is defined by the tDspWriteLine1 and
tDspWiriteLine2 Properties. The Line 1 corresponds to the top line of the display

20 panel and Line 2 corresponds to the bottom line. The character data of this string is
left justified. If more than 16 characters are referred to by these properties, only the
first 16 characters are used. If fewer than 16 characters are referred to, trailing
spaces are assumed.
Related Properties, Events, and Methods

25  tDspWriteLine1 and tDspWriteLine2 Properties

DocAccept Method

When the DocReadComplete Event is received, the application must issue either the

DocAccept Method or DocReject Method. If the DocAccept method is invoked, the
30 application must issue the DocProcess Method before the next DocAccept method.

DP 250/500--The DocAccept method causes the document to move from the view 2

station to the print hold station. A DocReadComplete event may then occur for the

next document. This method is valid in the ReadComplete state.

82



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 77 0of94 PgID 174

US 6,546,396 B1
111 112

DP 30 and DP 1XXX--The DocAccept method does not affect the document in the
DP sorter. The DocProcess Method must be issued before the next document read
complete event occurs.
Related Properties, Events, and Methods

5  DocComplete Event, DocReadComplete Event, DocProcess Method, DocReject
Method, DocAccept Method

DocProcess Method
This method is issued for each accepted document. The p* properties set by the
10  application before the DocProcess method is invoked determine the document
processing.
The following sequence is possible.
DocReadComplete Event, DocAccept Method, DocProcess Method....
Repeat
15  Because of the view 2 station and print hold station on the DP 250/500, the following
sequence is possible on the DP 250/500:
DocReadComplete Event, DocAccept Method, DocReadComplete Event,
DocProcess Method, DocAccept Method, DocProcess Method.... Repeat
Use this second sequence for processing document pairs (stub, check, stub, check
20  sequence) on the DP 250/500. This method is valid in the Process state.
Related Properties, Events, and Methods
P* Properties--Process Document, DocReadComplete Event, DocAccept Method,
DocProcess Method

25  DocReject Method
DP 250/500 only-When the DocReadComplete Event is received, the applicaton
must issue a DocAcccept Method or DocReject Method. [f the DocReject Method is
invoked, the DocRejected Event is fired when the document is rejected. This
method is valid in the ReadComplete state. The DocReject method is performed
30  when the operator removes the document from the view 2 station. Prompt the
operator to remove the view 2 document when DocReject is issued. Remove the
prompt when the DocRejected Event is fired.
Related Properties, Events, and Methods
DocReadComplete Event, DocReiected Event, DocAccept Method, DocProcess
35 Method

FlowStart Method
This method starts documents flowing from an entry station. The entry station is
defined by the entry mode parameter. This method is valid in the Ready state.

40 DP 30
The merge modes (values 4 and 5) do not apply.
DP 1XXX
The MFilmSkip Event may halt document flow. Also, the manual drop modes
(values 2 and 3) do not apply to high speed sorters.

45  The sorter hardware requires that the Start/Stop button or Start/Stop bar be pressed
on the sorter before flow can start. After receiving the FlowStart method, the Track

83



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 78 0f94 PgID 175

US 6,546,396 B1
113 114

Control Exception Handler will direct the operator to press the Start/Stop button or
bar to begin document flow.
Example
The following is a Visual Basic coding example for autofeed mode.
5 Dpocx.FlowStart 0
The following table defines the entry modes.
Value Entry Mode Description

0 Autofeed Sets the document processor to flow documents from the
document feeder. Once issued, documents continue to flow
from the feeder until a FlowStopped Event, BlackBand
Event, HopperEmpty Event, MFilmSkip Event, or an
exception switches the entry station to the manual feeder.

1 Singlefeed Sets the document processor to feed a single document
from the feeder. Once issued, a document is fed through
the reader. Once the document is accepted, a FlowStopped
Event indicates completion of the single feed operation. A
FlowStopped event, BlackBand Event, HopperEmply Event,
MFilmSkip Event, or an exception switching the entry
station to the manual feeder may occur instead of the
DocReadComplete Event.

2% Autodrop Sets the document processor to enter documents from the
manual drop station. Once issued, documents continue to
be accepted from the manual drop station until a
FlowStopped event (caused by invoking the FlowStop
Method occurs.

3* Singledrop Sets the document processor to enter a single document
from the manual drop station. Once issued, a document is
fed through the reader. Once the document is accepted, a
FlowStopped Event indicates completion of the single feed
operation. A FlowStopped event (caused by invoking the
FlowStop Method) may occur instead of the
DocReadComplete Event.

4 Singlemerge Sets the document processor to enter a single document
from the secondary feeder. Once issued, a document is fed
through the reader. Once the document is accepted and
processed, a FlowStopped , BlackBand, HopperEmpjy, or
MfilmSkip Event indicates completion of the single feed
operation.

5 Automerge Sets the document processor to flow documents from the
secondary feeder. Once issued, documents continue to
flow from the feeder until a FlowStopped Event,
HopperEmpty Event , BlackBand Event, MFilmSkip Event,
or an excepton switches the entry station to the manual
feeder.

Legend

84



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg790f94 PgID 176

US 6,546,396 B1
115 116

*  Does not apply to DP 1XXX sorters.
** Does not apply to DP 30 sorters
Related Properties, Events, and Methods
BlackBand Event, DocReadComplete Event, ExceptionComplete Event,
5  FlowStopped Event, HopperEmpty Event, MFilmSkip Event, FlowStop Method

FlowStop Method
This method stops document flow and the current entry mode. It is valid in the
Entering state.

10 Applications must continue to process documents until a FlowStopped Event is
received. The application can expect to receive codelines for up to two documents
on the DP 500 and six documents on the DP 1XXX before the track stops.

DP 30, DP 250/500--If the manual drop station is not processing a document when
FlowStop is invoked, the manual drop is stopped and a FlowStopped Event is

15  reported.

DP 1XXX--If a non-document exception is in progress, the FlowStop method
terminates the exception, then returns the system to the Ready state.
Related Properties, Events, and Methods

Flow, FiowStart Method

20
Goldle Method
This method prepares the sorter for deactivation or new initialization. The Idle Event
is fired when the Goldle Method is complete. This occurs only when all outstanding
documents are processed and completed with DocComplete Events and the

25  PrintLine Methods and the nondocument methods (such as MFilmGetLength Method
and ImageEndOfFile Method) are completed. This method is valid in the Ready
state.

Related Properties, Events, and Methods
DocComplete Event, Idle Event, ImageEndOfFile Method, MFilmGetLength Method,

30  MFilmHorizontalAnnotate Method, MFilmSlew Method, MFilmVerticalAnnotate

Method, PrintLone Method

GoReadyToProcess Method
This method initializes the sorter for document processing. Readers, encoders,

35 endorsers, waterfall pockets, image devices, and run time parameters are initialized.
Initialization is defined by the I* Properties-Initializabgn. If a device does not require
reinitialization, this reinitialization is not performed. While the machine is initializing,
the Readying Event is fired once per second to show progress. This method is valid
in the Idle state.

40 Related Properties, Events, and Methods
I* Properties--Initialization, Readying Event

ImageEndOfFile Method

This method forces the storage of all currently buffered images and the closing of all
45  image files. If the IDX storage is in effect, the EOF File is created for all previously

opened batches. Its primary purpose is to allow applications to perform end-of-job

85



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg800f94 PgID 177

US 6,546,396 B1
117 118

functions. End of batch operations can be performed by using the pimgOptions
Property flags. This method is valid in the Ready state before the Goldle Method is
invoked.
Related Properties, Events, and Methods

5  plmgOptions Property, ttmgEOFAnnotation Property, Goldle Method

MakeReadyToFlow Method

DP 30--This method does not apply to the DP 30.

MakeReadyToFlow is a non-document method for all sorters except the DP 30 that
10  can be issued by the application in the Ready state. The MakeReadyToFlow

method causes Track Control to check for and correct conditions which inhibit the

sorter from flowing. Flow does not actually start. The excepton handler prompts the

operator to correct any conditions preventing flow from starting.

Note: Use of this method is nefther mandatory, nor recommended. It is designed
15 for use in systems interfaced to hosts which require a separate "Ready To

Flow" logical state.

When all conditions inhibiting flow have been corrected, the

MakeReadyToFlowComplete event is issued to the application. At this point the

application still must send the FlowStart method to actually start flowing documents.
20  Related Propeties, Events, and Methods

MakeReadyToFlowTerminate Method, MakeReadyToFlowComplete Event

MakeReadyToFlowTerminate Method
DP 30--This method does not apply to the DP 30.

25  MakeReadyToFlowTerminate method ends the Make Ready To Flow operation that
is currenfly in progress. Track Control fires the MakeReadyToFlowComplete Event
in response to this method.

Related Propeties, Events, and Methods
MakeReadyToFlow Method, MakeReadyToFlowComplete Event

30
MergeFeed Method
This method directs the document flow from the secondary feeder for the
MergeCount number of documents. It may be issued any time during the Entering
state after a FiowStart Method has been issued. If MergeFeed is issued before the
35 merge feeding completes for a prior MergeFeed command, MergeCount is added to
the remaining documents to be merged.
Applications DO NOT have to stop flow before or start flow after issuing this method.
This transition from feeding to merging and back to to feeding is performed by track
control.
40 Example
The following example feeds one document from the secondary feeder.
Dpoxc.MergeFeed 1
DP 1XXX--Only a MergeCount value of one document can be selected. Only one
MergeFeed command can be issued every six documents.
45 Parameters
MergeCount of type Short

86




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg810f94 PgID 178

US 6,546,396 B1
119 120

Related Properties, Events, and Methods
iXcpSecFdrldentify Property, FlowStart Method

MFilmGetLength Method
5 This method returns the amount of microfilm remaining in inches. When the
operation is complete, the MFilmGetFilmLengthComplete Event is fired. This
method is valid in the Ready state for all sorters except the DP 30, or the Entering
state for DP 500 sorters only.
Related Properties, Events, and Methods
10 tMfilmLength Property, MFilmGetFilmLengthComplete Event

MFilmHorizontalAnnotate Method

This method puts a horizontal annotabon on. microfilm. This can be issued in the

Ready state for all sorters except the DP 30, or the Entering state for DP 500 sorters
15  only.

Related Propetiles, Events, and Methods

tMfilmHorizontalAnnotate Property, tMfilmOptions Property

MFilmSlew Method
20 This method advances the microfilm in preparation of removal from the microfilmer.
When the operation is complete, the MFilmSlewComplete event is fired. This
method is valid in the Ready state for all sorters except the DP 30 or the Entering
state for DP 500 sorters only.
DP 250/500--The distance slewed is determined by the tMfilmSlewLength property.
25  DP 1XXX--The DP 1XXX document processor advances the microfilm a fixed length
of 48 inches. The tMfilmSlewLength Property is ignored.
Related Properties, Events, and Methods
tMfilmSlewLength Property, MFImSlewComplete Event

30 MFilmVerticalAnnotate Method
This method puts a vertical annotation on the microfilm and is valid in the Ready
state for all sorters except the DP 30 or the Entering state for DP 500 sorters only.
Related Properties, Events, and Methods
tMfilmVerticalAnnotate Property, tMfilmOptions Property

35
MTREnter, MTREXxit, MTRCommand Methods
These are methods reserved for Unisys Engineering.'

NVMRead Method

40  DP 250/500 only--This method is designed for use with Visual Basic and Visual
Foxpro. (These development tools do not allow pointer types.) C++ and Delphi32
users should use the cfgNVMBase Property. NVMRead reads 4 bytes of data from
NVM at NVMOFFSET. The 4 bytes of data is returned by NVMRead as a Long.
NVMOFFSET is described in increments of 4 bytes. A value of 1 references bytes 4

45  through 7 in NVM. The NVM area is 10 K in length. Attempting to write data beyond
the 10 K user section results in a processor access violation.

87




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 82 0of94 PgID 179

US 6,546,396 B1
121 122

Example
The following example reads the first 4 bytes of NVM and stores them in NVMDATA.
NVMDATA - DPOCX1.NVMRead 0
Parameters
5 NVMOFFSET of type Long
Reurns
Long
Related Properties, Events, and Methods
cfgNVMBase Property
10 NVMWrite Method

NVMWrite Method
DP 250/500 only--This method is designed for use with Visual Basic and Visual
Foxpro. (These tools do not allow pointer types.) C++ and Delphi32 users should
15 use the cfgNVMBase Property.
NVMWrite writes NVMDATA to NVM at the offset specified by NVMOFFSET.
Attempting to write data beyond the 10 K user section results in a processor access
violation.
Example
20 The following example writes a value of 1 at the first 4 bytes of NVM.
Call DPOCX1.NVMWrite (1, 0)
Parameters
NVMDATA of type Long
NVMOFFSET of type Long
25 Related Properties, Events, and Methods
cfgNVMBase Property, NVMRead Method

PowerDown Method

When PowerDown is complete, the PoweredDown Event is fired. This method is
30 valid in the Idle state.

DP 30--When the application issues a PowerDown, the system software disables all

communicabon with the DP 30.

DP 250/500--When the application issues PowerDown, the system software powers

down the DP 250 or DP 500 track and master printer. If the application terminates
35 from the Idle state without issuing PowerDown, the track remains powered up.

DP 1XXX--When the application issues a PowerDown, the exception handler may

prompt the operator to manually power off the sorter.

Related Properties, Events, and Methods

PowerUp Method, PoweredDown Event

40
PowerUp Method
DP 30--When the application issues PowerUp, the system software communication
with the DP 30 is enabled. No errors are reported to the exception handler
(EXCEPT.EXE).

45 DP 250/500--When the application issues PowerUp, the system software powers up
the DP 250 or DP 500 track and master printer. ff the application previously

88



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 83 0of 94 PgID 180

US 6,546,396 B1
123 124

terminated without issuing PowerDown, the transport is not reloaded and the
PoweredUp Event is issued immediately. This is an example of the application
connecting in the Idle state.
DP 1XXX--When the application issues PowerUp, the system software powers up
5 the sorter track. If the application previously terminated without issuing PowerDown,

the transport is not reloaded and the PoweredUp Event is issued immediately. This
is an example of the application connecting in the Idle state.
All sorters
If the power up results in a power on confidence failure, the exception handler is

10 invoked. PowerlUp can take as long as 100 seconds for the DP 250/500 and 900 (15
minutes) for the DP 1XXX, depending on the devices filled. While PowerUp is
occurring, the PoweringUp Event fires up once per second to show progress. When
PowerlUp is complete, the PoweredUp Event is fired.
Related Properties, Events, and Methods

15  PoweredUp Event, PoweringUp Event, PowerDown Method

PrintLine Method

Note: This method dbes not apply to the DP 1XXX sorters.

This method transfers the PriWriteLine parameters string containing the data to be
20 wdften to the printer to the master printer for printing. This method is valid after the

sorter is powered up. The maximum number of characters on a line is MAXCHAR.

MAXCHAR is 30 characters for the DP 30 printer, and is 40 characters for the DP

250/500 master printer. If PrtWriteLine exceeds MAXCHAR, only the first

MAXCHAR characters are used. If fewer than MAXCHAR characters are referred
25  to, trailing spaces are assumed.

Parameters

PrtWriteLine of type Cstring

Related Properties, Events, and Methods

Goldle Method

30
Recover Method
Note: This method applies fo the DP 250 and DP 500 sorters only.
This method transfers the system from Idle state to Recovery state. If the previous
run ended abnormally with documents in the track, the exception handler

35 (EXCEPT.EXE) is invoked to reprocess the outstanding documents. Once the
recovery is completed, the RecoveryComplete Event is fired. The application can
then use the recDoclndex Property and recDocCount Property to examine the C*
Properties-Document Completion for the documents processed previous to the
abnormal termination. This method is valid in the Idle state.

40 Related Properties, Events, and Methods
C* Properties-Document Completion, Rec* Properties--Recovery from Power
Failure, RecoveryComplete Event

ResumeFeeding Method

45 If the ecManualDropSwitch Property is set to TRUE after an ExceptionComplete
Event, it indicates that the document entry is switched to manual drop. The

89




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg840f94 PgID 181

US 6,546,396 B1
125 126

ResumeFeeding Method causes the document entry to switch from the manual drop
station back to the application entry station. This method is valid in the Entering
state. The operator should be allowed to process the documents which were
removed from the track but did not appear in the error document list. These

5 documents are entered in the manual drop also or can be placed back in front of the
feeder. ResumeFeeding is equivalent to the following sequence:
FlowStop Method, FlowStopped Event, FlowStart Method with last application entry
mode
DP 1XXX--This method is not needed for the DP 1XXX sorter, because the

10 ecManualDropSwitch Property is never set to TRUE.

Related Properties, Events, and Methods
ecManualDropSwitch Property, ExceptionComplete Event, FlowStopped Event,
FlowStart Method, FlowStop Method

15 StkResetPockets Method
This method is used to reset a waterfall pocket set back to its first physical pocket in
the logical pocket set. See the DP Stacker Waterfall Pocket.INI File section for a
description on how to define logical pocket sets. The parameter
(LogicalPocketNumber) can select a single logical pocket set or all logical pockets
20  sets (0O=all logical pockets). This method is legal from the Ready state for all sorter
types or while flowing for the DP30, DP250 and DP500 sorters. A typical scenario
for using this method on all sorter types is as follows:
1. The application is in the Ready State.

2. The application issues the StkResetPockets method one or more times.
25 3. Track Control turns on the pocket lights for the physical pockets that have
been reset.
4, The application prompts the operator to empty all the pockets that have

flashing lights or that are full.
The operator empties the pockets and acknowledges the application prompt.
The application either issues the FlowStart or Goldle method.
Track Control turns off the pocket lights for the-pockets that have been reset.
Logical sets that have been reset begin with the first physical pocket in the
logical set.
The StkResetPockets method can also be used while flowing when the sorter type is
35 a DP30, DP250 or DP500. These sorters have the ability to stop items in the track
after they have been read and before they have been processed. A scenario for
using this method while flowing is as follows:

,
(VS)
<o
©N@;

1. The system is flowing documents.
2. The application reads a document and determines that this is a header ticket
40 to a new batch. It also determines that a logical pocket set needs to be
emptied.
3. The application issues the StkResetPockets method one or more times for

the sets that need to be empted. This is done before issuing the DocProcess
method for the header ticket. The documents are temporarily halted in the
45 track.

90



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 850f94 PgID 182

10

15

20

25

35

40

45

US 6,546,396 B1
127 128

4, Track Control turns on the pocket lights for the physical pockets that belong
to the logical sets that have been reset.

5. The application prompts the operator to empty all the pockets that have
flashing lights or that are full.

6. The operator empties the pockets and acknowledges the application prompt.

7 The application issues the DocProcess method for the header ticket that
triggered the StkResetPockets method.

8. Track Control turns off the pocket lights for the pockets that have been reset.

9. Logical sets that have been reset begin with the first physical pocket in the
logical set.

StkResetPockets can also be issued after first reaching the Ready State. This will
assure that the track pockets are in a known state before a run begins.
Parameters

LogicalPocketNumber of type Short

Related Properties, Events, and Methods

DP Stacker Waterfall Pocket.INI File, pStkPocket Property, cStkPocket Properly,
pStkWaterfallCascade Property, iStkSetLogicalPocketsPath Property,
rPktSetNearFull Property, rPktSetsCantCascade1, rPktSetsCantCascade2
Properties

DP Track OCX Events

Events are signals from the track to the application that relay major events have
occured and/or information is available. The following topics describe DP track OCX
events.

BlackBand Event

CLICaptured Event

DocComplete Event

DocReadComplete Event

DocRejected Event

ExceptionComplete Event

ExceptioninProgress Event

FlowStopped Event

HopperEmpty Event

Idle Event

MachineDead Event
MakeReadyToFlowComplete Event
MFilmGetFilmLengthComplete Event

MFilmSkip Event

MFilmSlewComplete Event

MTREXxited, MTREntered, MTRResponse Events
PoweredDown Event

PoweredUp Event

PoweringUp Event

Readying Event

ReadyToProcess Event

RecoveryComplete Event

91



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 86 of 94 PgID 183

10

15

20

25

30

35

40

45

US 6,546,396 B1
129 130

RepassVerify Event
StackerButtonPressed Event
Warning Eyent

BlackBand Event

This event indicates the transition from Entering state to Ready state. This occurs
during a feed mode when a black band document enters the track and the
iEntryStopOnBlackBand Property is set to TRUE.

DP 250/500--The black band item stops and can be removed from the view 1 station
or be pocketed by starting the flow again.

DP 1XXX--The black band item must be accepted and processed by the application.
No documents after the black band item are fed until the applicaton issues a
FlowStart Method.

Related Properties, Events, and Methods

iEntryStopOnBlackBand Property, FlowStart Method

CLICaptured Event

DP 250/500 only--This event indicates that the CLI| capture process is complete.
Related Properties, Events, and Methods

CLICapture Method

DocComplete Event

This event is fired when all document processing is completed for a document. The
application should use the data associated with the C* Properties--Document
Completion to store the data record associated with this document. Every
DocProcess Method results in a DocComplete event. However, documents that are
rejected by the DocReject Method do not receive a DocComplete event. Any
documents for which a DocComplete is received between ExceptionProgress and
ExceptionComplete events are documents involved in that excepton.

Related Properties, Events, and Methods

C* Properties--Document Completion, DocProcess Method, DocReject Method,
ExceptionComplete Event, ExceptionInProgress Event

DocReadComplete Event

This event occurs when the reader code line data for a document is available for
application processing. The R* Properties contain the reader code line results. The
application must issue a Document Method or DocRegest Method before another
DocReadComplete event occurs. No DocReadComplete event will be received after
an ExceptioninProgress event has been received, until an Exception event is
received.

Related Properties, Events, and Methods

R* Properties--Reader, DocAccept Method, DocReject Method, ExceptionComplete
Event, ExceptioninProgress Event

DocRejected Event

92



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 87 0of 94 PgID 184

US 6,546,396 B1
131 132

DP 250/500 only--This event occurs when a DocReject Method is issued for a
document and the operator has removed the document from the view 2 station.
Related Properties, Events, and Methods

DocReiect Method

ExceptionComplete Event
This event occurs when the exception processing is complete. The exception
handler (EXCEPT.EXE) releases its window focus and the application can take back
the window focus. The application receives DocComplete Events for all exception
10  items being reprocessed before the ExceptionComplete Event is fired. Ec*
Properties Exception are available after this event.
DP 30 and DP 250/500--If the feed mode is altered, the ecManualDropSwitch
Property is TRUE. A ResumeFeeding Method returns the track to flowing from the
application entry station.
15 Related Properties, Events, and Methods
ecManualDropSwitch Property, ExceptioninProgress Event, ResumeFeeding
Method

ExceptioninProgress Event

20  This event occurs when the on handler receives an exception. (The application will
have received DocComplete Events for all good items prior to the excepton.) The
window focus is shifted from the application to the exception handler. The
application must allow the exception handler to have the window focus. The
exception handler instructs the operator to refeed items that were not processed by

25  the sorter devices. It allows items to be hand-pocketed, or to be deleted if the
application allows it in the pXcoDeleteAllowed for that document. This event may
occur in any state except Powered Off. Ep* Properties--Exception in Progress are
available after this event.
Related Properties, Events, and Methods

30 Ep* Properties-Exception in Progress, ExceptionComplete Event,
pXcpDeleteAllowed Property

FlowStopped Event

35  This event indicates the transition from Entering state to Ready state. This occurs
during the entry mode when a single document operation (single feed or single drop)
is completed or a FlowStop Method is issued by the application. There are three
other types of events that cause document flow to stop: the BlackBand event, the
Hopper Empty event, and the MFilmSkip event.

40  Related Properties, Events, and Methods
BlackBand Event, FlowStart Method, FlowStop Method, HopperEmply Event,
MFilmSkip Event

HopperEmpty Event

93




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 88 of 94 PgID 185

10

15

20

25

30

35

40

45

US 6,546,396 B1
133 134

This event indicates the transition from Entering state to Ready state. This occurs
during the Entering state when there are no more documents in the primary or
secondary feeder hopper.

Idle Event
This event occurs after the application issues the Goldle Method and all outstanding
device commands and DocComplete Events are completed. [t indicates that the
track is in Idie state. From Idle state, the following are allowed:

s PowerDown Method

» GoReadyToProcess Method

» Application termination, leaving the track power on
Related Properties, Events, and Methods
DocComplete Event, Goldle Method, GoReadyToProcess Method, PowerDown
Method

MachineDead Event
This event indicates that a nonrecoverable error occurred. Files should be closed,
and the application must terminate. If the error persists, repair the machine.

MakeReadyToFlowComplete Event

The MakeReadyToFlowComplete event is given to the application when the

MakeReadyToFlow method has completed or as an immediate response to a

MakeReadyToFlowTerminate method. The MakeReadyToFlowComplete event will

be given to the application under the following circumstances:

¢ When the sorter is in a condition where flow can begin immediately upon
reception of the StartFlow Method. All operator interaction with the machine that
is required to start document flow has been completed.

e After the MakeReadyToFlowTerminate Method is issued. This ends the
operation begun by the MakeReadyToFlow Method.

Related Propeties, Events, and Methods

MakeReadyToFlow Method, MakeReadyToFiowTerminate Method

MFilmGetFilmLengthComplete Event

This event occurs after a MFilmGetLength Method is completed.

Related Properties, Events, and Methods

tMfilmLength Property, tMfilmLengthDP1X00Spool Property, MFilmGetLength
Method

MFilmSkip Event

DP 1XXX only--This event occurs only on a DP 1XXX reader sorter that is equipped
with a large spool of film. This large spool is four times the size of a standard spool
and is cut into four smaller standard-sized spools during film development. This
event indicates that a length of microfilm has passed that equals the length of a
standard spool. The film slews automatically to separate the standard spools on the
large spool. The application can place a human-readable horizontal annotation on
the film at this time. Start flow must be issued by the application to resume flow. If

94



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 89 of 94 PgID 186

10

15

20

25

30

35

40

45

US 6,546,396 B1
135 136

the operator presses the film slew button on the DP 1XXX control panel while the
sorter is idle, no event is sent to the application. In order to detect an operator-
induced film slew, the application should determine the available amount of film via
the MFilmGetLength method prior to starting flow.

Related Properties, Events, and Methods

MFilmGetLength Method, tMfilmLengthDP1X00Spool Property

MFilmSlewComplete Event

This event occurs after a MFilmSlew Method is completed.
Related Properties, Events, and Methods
tMfilmSlewLength Property, MFilmSlew Method

PoweredDown Event

This event indicates completion of the PowerDown Method. The track is in the
Power Off state.

Related Properties, Events, and Methods

PowerDown Method

PoweredUp Event

This event indicates completion of the PowerUp Method. Once the PoweredUp
Event is fired, the track is in Idle state and the Cfg*Properties--Configuration are
available. After the PoweredUp event is fired, the configuration INI file is available.
Related Properties, Events, and Methods

Cfg* Properties--Configuration, PoweringUp Event, PowerUp Method

PoweringUp Event

This event occurs during the Power Up state. It is repeated at one second intervals
while the track is powering up. It provides an indication that a track operation is in
progress.

Related Properties, Events, and Methods

PowerUp Method

Readying Event

This event occurs during the GetReady state. It is repeated at one second intervals
while the readers, image devices, and run time parameters are being initialized. It
indicates that a track operation is in progress.

Related Properties, Events, and Methods

GoReadyToProcess Method

ReadyToProcess Event

This event indicates that the track is ready to process documents and is in the Ready
state. In Ready state, document flow can be started or track device commands can
be issued.

Related Properties, Events, and Methods

I*Properties--Initialization, GoReadyToProcess Method

95



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 90 of 94 PgID 187

10

15

20

25

30

35

40

US 6,546,396 B1
137 138

RecoveryComplete Event

DP 250/500 only--This event indicates completion of the recovery process. Once
the RecoveryComplete event is fired, the track is in Idle state. The application can
use the recDoclndex Property and recDocCount Property to examine the C*
Properties--Document Completion for the documents processed previous to the
abnormal termination.

Related Properties, Events, and Methods

C* Properties--Document Completion, recDocCount Property, recDoclndex Property,
Recover Method

RepassVerify Event

RepassVerify enables the application to override the default exception handler

(EXCEPT,EXE) algorithm for handling repass documents. This event occurs during

exception reprocessing. At the entry to the event handler, the following properties

are available to the application:

rRdr1Codeline, rRdr2CodeLine, rRdr3CodeLine Properties

rRdrDocStatus Property

rRdr1CantReadCount, rRdr2CantReadCount, rRdr3CantReadCount Properties

rRdrDocLength Property

repassAppDocDIN Property

repassRdr1CantReadCount, repassRdr2CantReadCount,

repassRdr3CantReadCount Properties

¢ repassRdr1Codeline, repassRdr2Codeline, repassRdr3Codeline Properties

* repassRdrDocLength Property

+ repassRdrDocStatus Program

The rRdr properties contain the original reader code lines and status. The repass

properties contain the repass reader code lines. Based on the document code lines,

the application sets the repassControl property to control the system' s handling of
the repass document. For the DP 1XXX only, the application must set the

repassControl property and complete the repassVerify event handler in less than 20

msec.

Note: It is possible to get more than one E_REPASSVERIFY event for a single
document, since the document could be refed again if another exception
occurs with the document.

Related Properties, Events, and Methods

rRdr1CantReadCount, rRdr2CantReadCount, rRdr3CantReadCount Properties,

rRdr1CodelLine, rRdr2CodelLine, rRdr3CodeLine Properties, rRdrDocLength

Property, rRdrDocStatus Property, repassAppDocDIN Property, repassControl

Program, repassRdr1CantReadCount, repassRdr2CantReadCount,

repassRdr3CantReadCount Properties, repassRdr1Codeline, repassRdr2CodeLine,

repassRdr3CodeLine Properties

repassRdrDocLength Property, repassRdrDocStatus Property

StackerButtonPressed Event

96



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 91 0of 94 PgID 188

10

US 6,546,396 B1
139 140

DP 250/500 only--This event indicates that a button on the stacker was pressed.
The application can treat this as a keyboard stroke. Typically, this is used to start
and stop the track.

Warning Event
This event fires once every 1.5 seconds. Warning events rotate through a queue of
active warnings. For example, if logical stacker 1 is full and the microfilm cover is
open, the warning event aiternates from stacker 1 full to microfilm cover open. The
application should display the warning to the operator.
Related Properties, Events, and Methods

wAlert Property, wAlertEnglishText Property, wAlertPktsFull Property

97




5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 92 of 94 PgID 189

US 6,546,396 B1

141

What is claimed is:
1. A document processing system with a generalized
programming interface for application programs, wherein
other instances of the generalized programming interface are
functionable with application programs of other document
processing systems that include document processors having
different capabilities and interfaces, comprising:
a first document processor having a first set of capabilities
that are accessible via a first set of command codes;

an object interface having properties, methods, and events
for the first document processor, and having properties,
methods, and events for a second document processor
having a second set of capabilities; and

a track driver coupled to the first document processor and

to the object interface, configured and arranged to
interface with the first document processor and provide
selected ones of the first set of command codes to the
first document processor in response to methods initi-
ated via the object interface, and in response to status
codes returned from the first document processor,
report events to an application program via the object
interface.

2. The system of claim 1, wherein the properties have
associated values and the track driver is configured to update
values of predetermined ones of the properties in response to
the status codes from the first document processor.

3. The system of claim 2, wherein the first document
processor is configured and arranged to send a code indica-
tive of a type of document processor, the type indicative of
the first set of capabilities, and the track driver is configured
and arranged to set a value for a property indicative of the
type of document processor.

4. The system of claim 2, wherein the object interface is
configured and arranged to include a first method to initiate
processing documents by the first document processor.

5. The-system of claim 4, wherein the object interface is
configured and arranged to include a property having a value
to select whether to encode data on a document.

6. The system of claim 4, wherein the object interface is
configured and arranged to include a property having a value
to select whether to automatically recognize a courtesy
amount on a document.

7. The system of claim 4, wherein the object interface is
configured and arranged to include a property having a value
to select whether to microfilm a document.

8. The system of claim 4, wherein the object interface is
configured and arranged to include a property having a value
to select whether to stamp a document.

9. The system of claim 4, wherein the object interface is
configured and arranged to include a property having a value
for selecting whether to encode data on a document.

10. The system of claim 9, wherein the object interface is
configured and arranged to include a property having a value
to specify the data to encode on the document.

11. The system of claim 4, wherein the object interface is
configured and arranged to include properties having values
to select whether to encode data on a document, automati-
cally recognize a courtesy amount on a document, microfilm
a document, stamp a document, and encode data on a
document.

12. The system of claim 4, wherein the object interface is
configured and arranged to include a first event to report
when the first document processor has completed processing
all documents, and the track driver is configured and
arranged to report the first event in response to a predeter-
mined status code from the first document processor.

13. The system of claim 4, wherein the object interface is
configured and arranged to include a second method to

10

15

20

25

30

35

40

45

50

55

60

65

142

initiate feeding of documents in the first document processor
and a third method to stop the first document processor from
feeding documents.

14. A document processing system with a generalized
programming interface for application programs, wherein
other instances of the generalized programming interface are
functionable with application programs of other document
processing systems that include document processors having
different capabilities and interfaces, comprising:

a first document processor having a first set of capabilities

that are accessible via a first set of command codes;

a data processing system having an input/output port and

including

an object interface having properties, methods, and
events for the first document processor, and having
properties, methods, and events for a second docu-
ment processor having a second set of capabilities;
and

a track driver coupled to the first document processor
via the input/output port and to the object interface,
configured and arranged to interface with the first
document processor and provide selected ones of the
first set of command codes to the first document
processor in response to methods initiated via the
object interface, and in response to status codes
returned from the first document processor, report
events to an application program via the object
interface.

15. The system of claim 14, wherein the first document
processor includes an image subsystem.

16. The system of claim 14, wherein the data processing
system includes a system bus and an interface board coupled
to the system bus, and the track driver and the first document
processor are coupled to the interface board.

17. The system of claim 14, wherein the properties have
associated values and the track driver is configured to update
values of predetermined ones of the properties in response to
the status codes from the first document processor.

18. The system of claim 17, wherein the first document
processor is configured and arranged to send a code indica-
tive of a type of document processor, the type indicative of
the first set of capabilities, and the track driver is configured
and arranged to set a value for a property indicative of the
type of document processor.

19. The system of claim 17, wherein the object interface
is configured and arranged to include a first method to
initiate processing documents by the first document proces-
Sor.

20. The system of claim 19, wherein the object interface
is configured and arranged to include a property having a
value to select whether to encode data on a document.

21. The system of claim 19, wherein the object interface
is configured and arranged to include a property having a
value to select whether to automatically recognize a courtesy
amount on a document.

22. The system of claim 19, wherein the object interface
is configured and arranged to include a property having a
value to select whether to microfilm a document.

23. The system of claim 19, wherein the object interface
is configured and arranged to include a property having a
value to select whether to stamp a document.

24. The system of claim 19, wherein the object interface
is configured and arranged to include a property having a
value to select whether to encode data on a document.

25. The system of claim 24, wherein the object interface
is configured and arranged to include a property having a
value to specify the data to encode on the document.



5:12-cv-14804-JCO-MAR Doc #5 Filed 01/30/13 Pg 93 0of 94 PgID 190

US 6,546,396 B1

143

26. The system of claim 19, wherein the object interface
is configured and arranged to include properties having
values to select whether to encode data on a document,
automatically recognize a courtesy amount on a document,
microfilm a document, stamp a document, and encode data
on a document.

27. The system of claim 19, wherein the object interface
is configured and arranged to include a first event to report
when the first document processor has completed processing
all documents, and the track driver is configured and
arranged to report the first event in response to a predeter-
mined status code from the first document processor.

28. The system of claim 19, wherein the object interface
is configured and arranged to include a second method to
initiate feeding of documents in the first document processor
and a third method to stop the first document processor from
feeding documents.

29. A method for operating a document processing
system, comprising the steps of:

setting in an object interface values of properties that are

associated with the document processing system, the
object interface additionally having properties of
another different document processing system;

invoking methods for controlling operations of the docu-
ment processing system, wherein the methods are
defined in the object interface, and the object interface
additionally includes methods for controlling different
operations of the different document processing sys-
tem; and

processing events generated by the document processing
system and reported via the object interface, the object
interface additionally having event definitions for the
different document processing system.

30. The method of claim 29, further comprising the step
of updating values of predetermined ones of the properties
in response to status codes from the document processing
system.

31. The method of claim 30, further comprising the step
of setting a value for a property that is indicative of a type
of document processor.

32. The method of claim 30, further comprising the step
of invoking a first method to initiate processing documents
by the document processing system.

33. The method of claim 32, further comprising the step
of setting a value for a property for selecting whether to
encode data on a document.

34. The method of claim 32, further comprising the step
of setting a value for a property for selecting whether to
automatically recognize a courtesy amount on a document.

35. The method of claim 32, further comprising the step
of setting a value for a property for selecting whether to
microfilm a document.

36. The method of claim 32, further comprising the step
of setting a value for a property for selecting whether to
stamp a document.

37. The method of claim 32, further comprising the step
of setting a value for a property for selecting whether to
encode data on a document.

10

15

20

25

30

35

40

45

50

55

144

38. The method of claim 37, further comprising the step
of setting a value for a property for specifying the data to
encode on the document.

39. The method of claim 32, further comprising the steps
of setting a value for a property for selecting whether to
encode data on a document, setting a value for a property for
selecting whether to automatically recognize a courtesy
amount on a document, setting a value for a property for
selecting whether to microfilm a document, setting a value
for a property for selecting whether to stamp a document,
and setting a value for a property for selecting whether to
encode data on a document.

40. The method of claim 32, further comprising the step
of reporting an event when the document processing system
has completed processing all documents.

41. The method of claim 32, further comprising the steps
of:

invoking a method in the object interface to initiate

feeding of documents; and

invoking a method in the object interface to stop feeding

documents.
42. An apparatus for operating a document processing
system, comprising:
means for setting in an object interface values of proper-
ties that are associated with the document processing
system, the object interface additionally having prop-
erties of another different document processing system;

means for invoking methods for controlling operations of
the document processing system, wherein the methods
are defined in the object interface, and the object
interface additionally includes methods for controlling
different operations of the different document process-
ing system; and

means for processing events generated by the document

processing system and reported via the object interface,
the object interface additionally having event defini-
tions for the different document processing system.
43. A method for establishing a programming environ-
ment for a plurality of document processing systems, each
document processing system having a document processor
with different capabilities that are accessible via a different
set of command codes, comprising the steps of:
defining an object interface having properties, methods,
and events that are descriptive of the document pro-
Cessors;

establishing a plurality of respective instances of the
object interface for the plurality of document process-
ing systems, the instances of the object interface having
a common programming interface for implementing
application programs;

coupling a plurality of respective track drivers to the

instances of the object interface, each track driver
responsive to methods initiated from the respective
instance of the object interface, and configured and
arranged to provide predetermined command codes to
the document processor and report events back to the
object interface.



5:12-cv-14804-JCO-MAR _Doc #5 Filed 01/30/13 Pg940f94 PgID 191

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,546,396 B1 Page 1 of 1
DATED : April 8, 2003
INVENTOR(S) : Joseph D. Borkowski et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item [75], should read:

-- Inventors Joseph D. Borkowski
Stephen M. Russell
Thomas L. Bondy
Weston J. Morris
Craig I. Lapan --

Item [22], should read:
-- Filed: December 18, 1997 --

Signed and Sealed this

Nineteenth Day of August, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office




