FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Case 2:12-cv-10340-GW-FFM Document 30 Filed 03/18/13 Page 1 of 35 Page ID #:194

FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT

McRo, Inc., d.b.a. Planet Blue ("Planet Blue"), brings this First Amended Complaint for patent infringement against Insomniac Games, Inc. ("Insomniac" or "Defendant"), and hereby states as follows:

NATURE OF THE ACTION

This is an action for patent infringement of United States Patent No. 6,307,576 (the "'576 Patent") and United States Patent No. 6,611,278 (the "'278 Patent") (collectively, the "Patents-in-Suit") under the Patent Laws of the United States, 35 U.S.C. § 1, et seq., and seeking damages and injunctive and other relief under 35 U.S.C. § 281, et seq.

PARTIES

- 1. Planet Blue is a corporation existing under the laws of Delaware, with its principal place of business at Santa Monica, California. Planet Blue is actively involved in the advertising industry as a computer graphic, visual effects, and animation services company, which services utilize methods covered by the Patents-in-Suit.
- 2. Upon information and belief, Defendant Insomniac is a corporation operating and existing under the laws of California, with its principal place of business at 2255 North Ontario St., Suite 550, Burbank, California 91504. Upon further information and belief, Insomniac is engaged in the business of developing computer and/or video games.

JURISDICTION AND VENUE

- 3. This is a complaint for patent infringement under 35 U.S.C. § 271. This Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and 1338(a).
- 4. Upon information and belief, this Court has personal jurisdiction over Defendant because Defendant is located in California, has regularly done or solicited business, or engaged in a persistent course of conduct in California, has

maintained continuous and systematic contacts with California, and has purposefully availed itself of the privileges of doing business in California.

5. Venue is proper in this judicial district as to Defendant pursuant to 28 U.S.C. §§ 1391 and 1400(b), because the Defendant is subject to personal jurisdiction in this judicial district and has committed acts of infringement in this judicial district.

FACTUAL BACKGROUND

- 6. Planet Blue is a small visual effects company that creates computer graphics and animations. Planet Blue was founded in 1988 by Maury Rosenfeld, who has been the sole owner of Planet Blue since 1993.
- 7. Mr. Rosenfeld has worked as a successful computer graphics/visual effects designer and animator for over twenty years. During the late 1980s, Mr. Rosenfeld won an Emmy award for his work on the show "Secrets and Mysteries." Mr. Rosenfeld received a Monitor Award for his work on Pee Wee's Playhouse and he received an award from the National Computer Graphics Association for his work in the International Animation Competition for "Hidden Heroes." Mr. Rosenfeld worked with the teams that created the special effects for "Star Trek: The Next Generation" and "Max Headroom."
- 8. Mr. Rosenfeld filed patent application no. 08/942,987 (the "'987 Application"), what would eventually issue as the '576 Patent, relating to a method for performing and animating lip synchronization and facial expressions on three-dimensional animated characters on October 2, 1997.
- 9. On October 23, 2001, the United States Patent and Trademark Office ("USPTO") duly and lawfully issued the '576 Patent, titled "Method for Automatically Animating Lip Synchronization and Facial Expression of Animated Characters." The '576 Patent is attached hereto as **Exhibit A**.
- 10. On August 26, 2003, the USPTO duly and lawfully issued the '278 Patent, titled "Method for Automatically Animating Lip Synchronization and

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Facial Expression of Animated Characters." The '278 Patent is attached hereto as Exhibit B.

- 11. Each of the Patents-in-Suit is valid and enforceable.
- Planet Blue is the assignee of all rights, title, and interest in and to the 12. Patents-in-Suit. Planet Blue holds the right to sue and recover damages for infringement thereof, including past infringement.
- 13. Unlike the traditional method of manually animating lipsynchronization, or a method using facial/video capture, the Patents-in-Suit cover a method and system for automating the lip-synchronization animation process and automating the animation of facial expression of three-dimensional animated characters, as used in computer and/or video games.
- Upon information and belief, Defendant, directly or through 14. intermediaries (including distributers, retailers, and others), has acted and is acting to develop, publish, manufacture, import, ship, distribute, offer for sale, sell, and/or advertise (including the provision of an interactive web page) the following computer and/or video games: Ratchet & Clank, Ratchet & Clank Collection, Ratchet & Clank Future: A Crack in Time, Ratchet & Clank Future: Quest for Booty, Ratchet & Clank Future: Tools of Destruction, Ratchet & Clank: All 4 One, Ratchet & Clank: Full Frontal Assault, Ratchet & Clank: Going Commando, Ratchet & Clank: Going Commando HD, Ratchet & Clank: Up Your Arsenal, Ratchet & Clank: Up Your Arsenal HD, Ratchet: Deadlocked, Resistance 2, Resistance 2 (Collector's Edition), Resistance 3, Resistance 3 (Doomsday Edition), Resistance Collection, Resistance Greatest Hits Dual Pack, Resistance: Fall of Man, Spyro 2: Ripto's Rage, Spyro the Dragon, and Spyro: Year of the Dragon. These computer and/or video games have been and continue to be purchased by consumers in the United States, the State of California, and the Central District of California.

15. Upon information and belief, the Defendant employs software methods and processes to automate the animation of lip synchronization and facial expression for its three-dimensional characters during the creation and development of the computer and/or video games identified in paragraph 14. Upon further information and belief, the Defendant's uses of those lip synchronization and facial expression animation methods and processes to create the aforementioned computer and/or video games infringe, either literally or by equivalents, one or more claims of the Patents-in-Suit in violation of 35 U.S.C. § 271.

COUNT I: INFRINGEMENT OF THE '576 PATENT

- 16. Planet Blue realleges and incorporates by reference paragraphs 1-15.
- 17. Upon information and belief, Insomniac, as part of the creation and development of the computer and/or video games identified in paragraph 14, has used and continues to use software processes in the United States for automatically performing and animating character lip synchronization using the phonetic structure of the words to be spoken by the characters and has made, used, offered to sell, sold, and/or imported, and continues to make, use, offer to sell, sell, and/or import, computer and/or video games created using those processes in the United States, including this judicial district. By using the aforementioned software processes, Insomniac has directly infringed the '576 Patent under 35 U.S.C. § 271(a), either literally or under the doctrine of equivalents. By using, offering to sell, selling, and/or importing computer and/or video games created using the aforementioned software processes, Insomniac has been and is now infringing the '576 Patent under 35 U.S.C. § 271(g), either literally or under the doctrine of equivalents.
- 18. The Defendant, by way of its infringing activities, has caused and continues to cause Planet Blue to suffer damages in an amount to be determined at trial. Planet Blue has no adequate remedy at law against Defendant's acts of

infringement and, unless the Defendant is enjoined from its infringement of the '576 Patent, Planet Blue will suffer irreparable harm.

- 19. Insomniac has had knowledge of the '576 Patent since at least as early as December 4, 2012, when Planet Blue filed its original complaint in this action, and Insomniac's actions constitute knowing and willful infringement of the '576 Patent.
- 20. Planet Blue is in compliance with the requirements of 35 U.S.C. § 287.

COUNT II: INFRINGEMENT OF THE '278 PATENT

- 21. Planet Blue realleges and incorporates by reference paragraphs 1-20.
- 22. Upon information and belief, Insomniac, as part of the creation and development of the computer and/or video games identified in paragraph 14, has used and continues to use software processes in the United States for automatically performing and animating character lip synchronization using the phonetic structure of the words to be spoken by the characters and has made, used, offered to sell, sold, and/or imported, and continues to make, use, offer to sell, sell, and/or import, computer and/or video games created using those processes in the United States, including this judicial district. By using the aforementioned software processes, Insomniac has directly infringed the '278 Patent under 35 U.S.C. § 271(a), either literally or under the doctrine of equivalents. By using, offering to sell, selling, and/or importing computer and/or video games created using the aforementioned software processes, Insomniac has been and is now infringing the '278 Patent under 35 U.S.C. § 271(g), either literally or under the doctrine of equivalents.
- 23. The Defendant, by way of its infringing activities, has caused and continues to cause Planet Blue to suffer damages in an amount to be determined at trial. Planet Blue has no adequate remedy at law against Defendant's acts of infringement and, unless the Defendant is enjoined from its infringement of the

'278 Patent, Planet Blue will suffer irreparable harm.

- 24. Insomniac has had knowledge of the '576 Patent since at least as early as December 4, 2012, when Planet Blue filed its original complaint in this action, and Insomniac's actions constitute knowing and willful infringement of the '278 Patent.
- 25. Planet Blue is in compliance with the requirements of 35 U.S.C. § 287.

PRAYER FOR RELIEF

WHEREFORE, Planet Blue respectfully requests that this Court enter judgment in its favor as follows:

- A. Holding that the Defendant has willfully infringed the '576 Patent, either literally or under the doctrine of equivalents, under 35 U.S.C. § 271(a);
- B. Holding that the Defendant has willfully infringed the '576 Patent, either literally or under the doctrine of equivalents, under 35 U.S.C. § 271(g);
- C. Holding that the Defendant has willfully infringed the '278 Patent, either literally or under the doctrine of equivalents, under 35 U.S.C. § 271(a);
- D. Holding that the Defendant has willfully infringed the '278 Patent, either literally or under the doctrine of equivalents, under 35 U.S.C. § 271(g);
- E. Permanently enjoining the Defendant and its officers, directors, agents, servants, employees, affiliates, divisions, branches, subsidiaries, parents and all others acting in concert or privity with any of them from infringing, inducing the infringement of, or contributing to the infringement of the '576 Patent;
- F. Permanently enjoining the Defendant and its officers, directors, agents, servants, employees, affiliates, divisions, branches, subsidiaries, parents and all others acting in concert or privity with any of them from infringing, inducing the infringement of, or contributing to the infringement of the '278 Patent;

28

- G. Permanently enjoining the sale of the computer and/or video games created using the patented methods of the Patents-in-Suit;
- H. Awarding to Planet Blue the damages to which it is entitled under 35 U.S.C. § 284 for the Defendant's past infringement and any continuing or future infringement up until the date the Defendant is finally and permanently enjoined from further infringement, including both compensatory damages and treble damages for willful infringement;
- I. Declaring this to be an exceptional case and awarding Planet Blue attorneys' fees under 35 U.S.C. § 285;
 - J. Awarding Planet Blue costs and expenses in this action;
- K. Awarding Planet Blue pre- and post-judgment interest on its damages; and
- L. Awarding Planet Blue such other and further relief in law or in equity as this Court deems just and proper.

DEMAND FOR JURY TRIAL

Planet Blue, under Rule 38 of the Federal Rules of Civil Procedure, requests a trial by jury of any issues so triable by right.

Dated: March 18, 2013

Respectfully submitted,

RUSS AUGUST & KABAT

Marc A. Fenster

Irene Y. Lee

MISHCON DE REYA NEW YORK LLP James J. McGuire Mark S. Raskin,

Attorneys for Plaintiff McRo, Inc., d.b.a. Planet Blue

CERTIFICATE OF SERVICE

Pursuant to Local Rule 5-3, I hereby certify that the counsel of record who are deemed to have consented to electronic service are being served on March 18, 2013 with a copy of FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT via electronic mail and OverNite Delivery Service on this same date as noted below.

Dated: March 18, 2013

Jan Flor

9 || ,

1

2

3

4

5

6

7

8

10

11

12

Benjamin L Singer

Email: bls@hsrslaw.com

HOPENFELD SINGER RICE & SAITO LLP

235 Montgomery Street Suite 907

San Francisco, CA 94104

13

15

Stephen Rubin

14 | Email: sr@stephenrubin.com

STEPHEN RUBIN LAW OFFICES

553 12th Street

Santa Monica, CA 90402-2907

17

16

18

19

20

21

22

23

24

25

26

27

EXHIBIT A

(12) United States Patent

Rosenfeld

(10) Patent No.: US 6,307,576 B1

(45) Date of Patent: *Oct. 23, 2001

(54) METHOD FOR AUTOMATICALLY ANIMATING LIP SYNCHRONIZATION AND FACIAL EXPRESSION OF ANIMATED CHARACTERS

(76) Inventor: Maury Rosenfeld, 1040 N. Las Palmas Ave. No. 25, Los Angeles, CA (US)

90038

(*) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C.

154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: **08/942,987**

(22)	Tillad.	Oat	2	100

(51)	Int. Cl.7		G06T 15/70
(** 0 01	2471076 24710	

(56) References Cited

U.S. PATENT DOCUMENTS

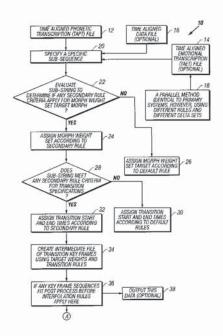
*	7/1986	Stern	345/473
*	12/1989	Gasper et al	345/473
*	5/1992	Gasper et al	345/302
*	5/1995	Poggio et al	345/475
*	3/1997	Gasper et al	345/473
*	8/1997	Waters et al	704/276
*	9/1997	Oppenheim	. 84/649
	* * * *	* 12/1989 * 5/1992 * 5/1995 * 3/1997 * 8/1997	* 3/1997 Gasper et al * 8/1997 Waters et al

5,684,942	*	11/1997	Kimura	345/473
5,692,117	*	11/1997	Berrend et al	345/475
5,717,848	*	2/1998	Watanabe et al	345/474
5,818,461	*	3/1999	Rouet et al	345/473
5,880,788	*	3/1999	Bregler	348/515
5,907,351	*	5/1999	Chen et al	
6,097,381		8/2000	Scott et al	345/302
6,108,011	*	8/2000		345/441
6,147,692	*	11/2000	Shaw et al	345/433
6,232,965	*	5/2001	Scott et al	707/500

OTHER PUBLICATIONS

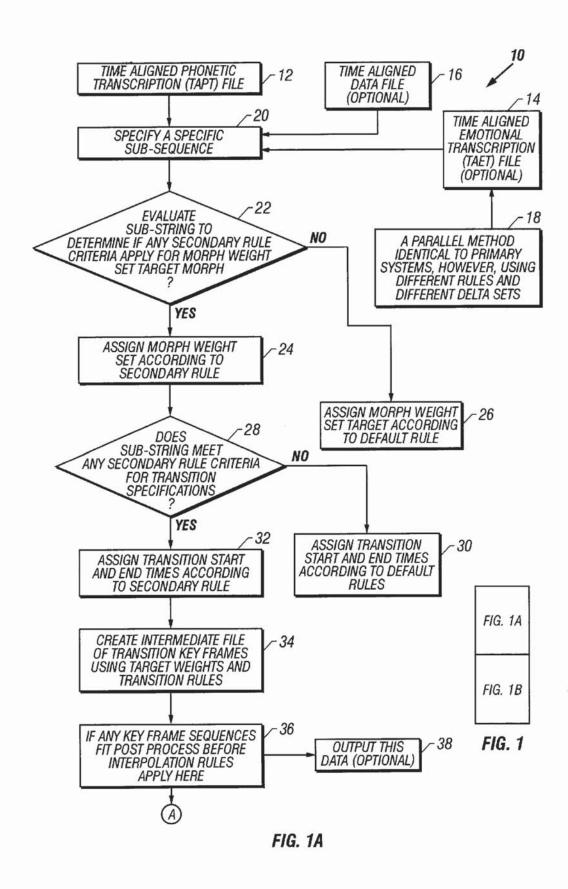
Beier et al; Feature-Based Image Metamorphosis; Computer Graphics, 26, 2, Jul. 1992.*

Brooke et al; Computer graphics animations of talking faces based on stochastic models; Proceedings; ISSIPNN 1994 International Symposium; p. 73–76 vol. 1, Apr. 1994.*


* cited by examiner

Primary Examiner—Matthew Luu Assistant Examiner—Ryan Yang (74) Attorney, Agent, or Firm—The Hecker Law Group

(57) ABSTRACT


A method for controlling and automatically animating lip synchronization and facial expressions of three dimensional animated characters using weighted morph targets and time aligned phonetic transcriptions of recorded text. The method utilizes a set of rules that determine the systems output comprising a stream of morph weight sets when a sequence of timed phonemes and/or other timed data is encountered. Other data, such as timed emotional state data or emotemes such as "surprise, "disgust, "embarrassment", "timid smile", or the like, may be inputted to affect the output stream of morph weight sets, or create additional streams.

26 Claims, 4 Drawing Sheets

Oct. 23, 2001

Sheet 1 of 4

Oct. 23, 2001

Sheet 2 of 4

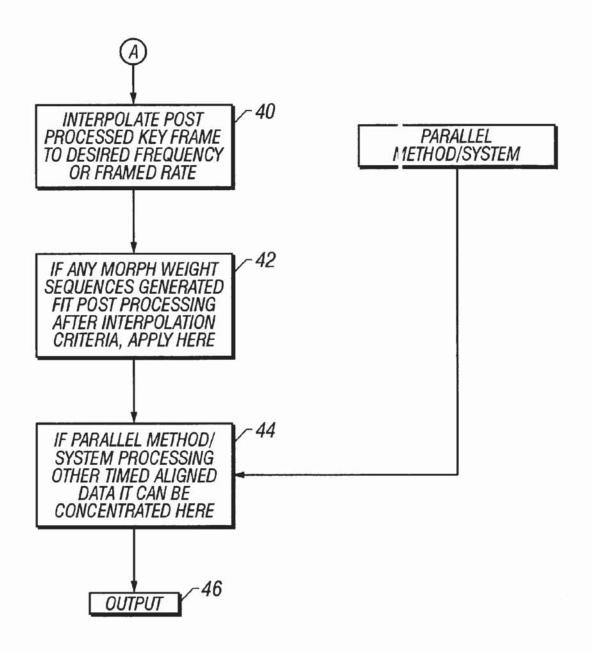


FIG. 1B

Oct. 23, 2001

Sheet 3 of 4

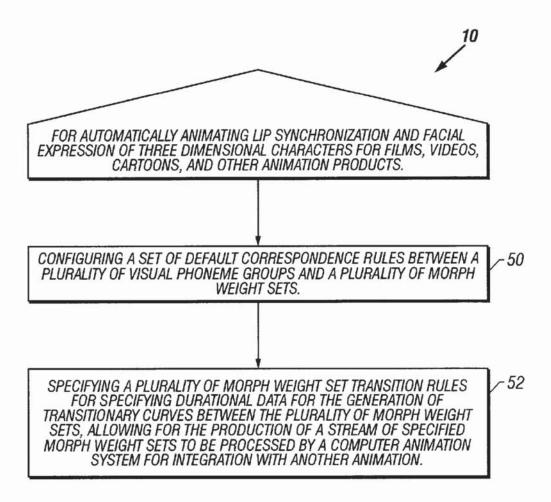


FIG. 2

Oct. 23, 2001

Sheet 4 of 4

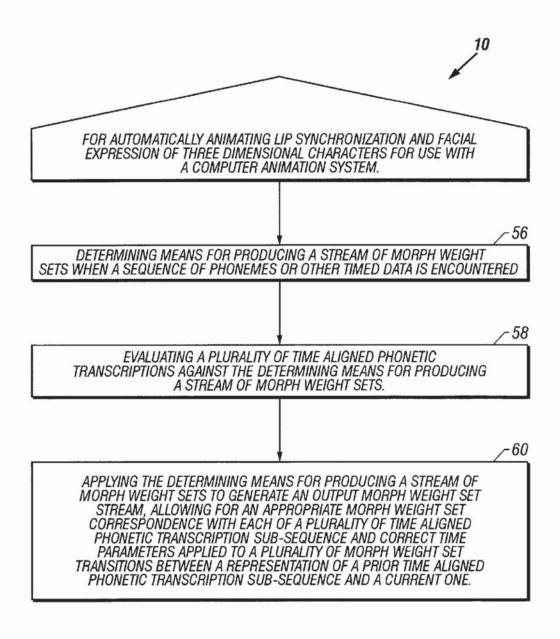


FIG. 3

US 6,307,576 B1

1

METHOD FOR AUTOMATICALLY ANIMATING LIP SYNCHRONIZATION AND FACIAL EXPRESSION OF ANIMATED **CHARACTERS**

BACKGROUND OF THE INVENTION

1. Field of Invention

This invention relates generally to animation producing methods and apparatuses, and more particularly is directed 10 to a method for automatically animating lip synchronization and facial expression for three dimensional characters.

2. Description of the Related Art

Various methods have been proposed for animating lip synchronization and facial expressions of animated characters in animated products such as movies, videos, cartoons, CD's, and the like. Prior methods in this area have long suffered from the need of providing an economical means of animating lip synchronization and character expression in the production of animated products due to the extremely 20 laborious and lengthy protocols of such prior traditional and computer animation techniques. These shortcomings have significantly limited all prior lip synchronization and facial expression methods and apparatuses used for the production of animated products. Indeed, the limitations of cost, time 25 required to produce an adequate lip synchronization or facial expression in an animated product, and the inherent limitations of prior methods and apparatuses to satisfactorily provide lip synchronization or express character feelings and emotion, leave a significant gap in the potential of animated 30 methods and apparatuses in the current state of the art.

Time aligned phonetic transcriptions (TAPTS) are a phonetic transcription of a recorded text or soundtrack, where the occurrence in time of each phoneme is also recorded. A "phonemes" is defined as the smallest unit of speech, and corresponds to a single sound. There are several standard phonetic "alphabets" such as the International Phonetic Alphabet, and TIMIT created by Texas Instruments, Inc. and MIT. Such transcriptions can be created by hand, as they currently are in the traditional animation industry and are called "x" sheets, or "gray sheets" in the trade. Alternatively such transcriptions can be created by automatic speech recognition programs, or the like.

The current practice for three dimensional computer generated speech animation is by manual techniques commonly using a "morph target" approach. In this practice a reference model of a neutral mouth position, and several other mouth positions, each corresponding to a different phoneme or set of phonemes is used. These models are called "morph targets". Each morph target has the same topology as the neutral model, the same number of vertices, and each vertex on each model logically corresponds to a vertex on each other model. For example, vertex #n on all models represents the left corner of the mouth, and although this is the 55 typical case, such rigid correspondence may not be neces-

The deltas of each vertex on each morph target relative to the neutral are computed as a vector from each vertex n on the reference to each vertex n on each morph target. These are called the delta sets. There is one delta set for each morph

In producing animation products, a value usually from 0 to 1 is assigned to each delta set by the animator and the weights, the neutral's geometry is modified as follows: Each vertex N on the neutral has the corresponding delta set's 2

vertex multiplied by the scalar morph weight added to it. This is repeated for each morph target, and the result summed. For each vertex v in the neutral model:

$$|\text{result}| = |\text{neutral}| + \sum_{x=1}^{n} |\text{delta set}_x| * \text{morph weight}_x$$

delta setx *morph weightx

where the symbol |xxx| is used to indicate the corresponding vector in each referenced set. For example, Iresult is the corresponding resultant vertex to vertex v in the neutral model |neutral| and |delta setx| is the corresponding vector for delta set x.

If the morph weight of the delta set corresponding to the morph target of the character saying, for example, the "oh" sound is set to 1, and all others are set to 0, the neutral would be modified to look like the "oh target. If the situation was the same, except that the "oh" morph weight was 0.5, the neutral's geometry is modified half way between neutral and the "oh" morph target.

Similarly, if the situation was as described above, except "oh" weight was 0.3 and the "ee" morph weight was at 0.7, the neutral geometry is modified to have some of the "oh" model characteristics and more of the "ee" model characteristics. There also are prior blending methods including averaging the delta sets according to their weights.

Accordingly, to animate speech, the artist needs to set all of these weights at each frame to an appropriate value. Usually this is assisted by using a "keyframe" approach, where the artist sets the appropriate weights at certain important times ("keyframes") and a program interpolates each of the channels at each frame. Such keyframe approach 35 is very tedious and time consuming, as well as inaccurate due to the large number of keyframes necessary to depict

The present invention overcomes many of the deficiencies of the prior art and obtains its objectives by providing an integrated method embodied in computer software for use with a computer for the rapid, efficient lip synchronization and manipulation of character facial expressions, thereby allowing for rapid, creative, and expressive animation products to be produced in a very cost effective manner.

Accordingly, it is the primary object of this invention to provide a method for automatically animating lip synchronization and facial expression of three dimensional characters, which is integrated with computer means for producing accurate and realistic lip synchronization and facial expressions in animated characters. The method of the present invention further provides an extremely rapid and cost effective means to automatically create lip synchronization and facial expression in three dimensional animated characters.

Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

SUMMARY OF THE INVENTION

To achieve the foregoing objects, and in accordance with value is called the "morph weight". From these morph 65 the purpose of the invention as embodied and broadly described herein, a method is provided for controlling and automatically animating lip synchronization and facial

expressions of three dimensional animated characters using weighted morph targets and time aligned phonetic transcriptions of recorded text, and other time aligned data. The method utilizes a set of rules that determine the systems output comprising a stream or streams of morph weight sets when a sequence of timed phonemes or other timed data is encountered. Other timed data, such as pitch, amplitued, noise amounts, or emotional state data or emotemes such as "surprise, "disgust, "embarrassment", "timid smile", or the like, may be inputted to affect the output stream of morph 10

The methodology herein described allows for automatically animating lip synchronization and facial expression of three dimensional characters in the creation of a wide variety of animation products, including but not limited to movies, videos, cartoons, CD's, software, and the like. The method and apparatuses herein described are operably integrated with computer software and hardware.

In accordance with the present invention there also is provided a method for automatically animating lip synchronization and facial expression of three dimensional characters for films, videos, cartoons, and other animation products, comprising configuring a set of default correspondence rules between a plurality of visual phoneme groups and a plurality of morph weight sets; and specifying a plurality of morph weight set transition rules for specifying durational data for the generation of transitionary curves between the plurality of morph weight sets, allowing for the production of a stream of specified morph weight sets to be processed by a computer animation system for integration with other animation, whereby animated lip synchronization and facial expression of animated characters may be automatically controlled and produced.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate a preferred embodiment of the invention and, together with a general description given above and the detailed description 40 of the preferred embodiment given below, serve to explain the principles of the invention.

FIG. 1 is a flow chart showing the method of the invention with an optional time aligned emotional transcription file, and another parallel timed data file, according to the inven- 45

FIG. 2 is a flow chart illustrating the principal steps of the present method, according to the invention.

FIG. 3 is another representational flow chart illustrating $_{50}$ the present method, according to the invention.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

preferred embodiments of the invention as illustrated in the accompanying drawings.

In accordance with the present invention, there is provided as illustrated in FIGS. 1-3, a method for controlling and automatically animating lip synchronization and facial 60 expressions of three dimensional animated characters using weighted morph targets and time aligned phonetic transcriptions of recorded text. The method utilizes a set of rules that determine the systems output comprising a stream of morph weight sets when a sequence of timed phonemes is encountered. Other timed data, such as timed emotional state data or emotemes such as "surprise, "disgust, "embarrassment",

"timid smilen", pitch, amplitued, noise amounts or the like, may be inputted to affect the output stream of morph weight

The method comprises, in one embodiment, configuring a set of default correspondence rules between a plurality of visual phoneme groups and a plurality of morph weight sets; and specifying a plurality of morph weight set transition rules for specifying durational data for the generation of transitionary curves between the plurality of morph weight sets, allowing for the production of a stream of specified morph weight sets to be processed by a computer animation system for integration with other animation, whereby animated lip synchronization and facial expression of animated characters may be automatically produced.

There is also provided, according to the invention a method for automatically animating lip synchronization and facial expression of three dimensional characters for use with a computer animation system, comprising the steps of: determining means for producing a stream of morph weight sets when a sequence of phonemes is encountered; evaluating a plurality of time aligned phonetic transcriptions or other timed data such as pitch, amplitude, noise amounts and the like, against the determining means for producing a stream of morph weight sets; applying said determining means for producing a stream of morph weight sets to generate an output morph weight set stream, allowing for an appropriate morph weight set correspondence with each of a plurality of time aligned phonetic transcription subsequences and correct time parameters applied to a plurality of morph weight set transitions between a representation of a prior time aligned phonetic transcription sub-sequence and a current one, whereby lip synchronization and facial expressions of animated characters is automatically controlled and produced.

The method preferably comprises a set of rules that determine what the output morph weight set steam will be when any sequence of phonemes and their associated times is encountered. As used herein, a "morph weight set" is a set of values, one for each delta set, that, when applied as described, transform the neutral model to some desired state, such as speaking the "oo" sound or the "th" sound. Preferably, one model id designated as the anchor model, which the deltas are computed in reference to. If for example, the is a morph target that represents all possible occurrences of an "e" sound perfectly, it's morph weight set would be all zeros for all delta sets except for the delta set corresponding to the "ee" morph target, which would set to

Preferably, each rule comprises two parts, the rule's criteria and the rule's function. Each sub-sequence of time aligned phonetic transcription (TAPT) or other timed data such as pitch, amplitude, noise amount or the like, is checked against a rule's criteria to see if that rule is Reference will now be made in detail to the present 55 applicable. If so, the rule's function is applied to generate the output. The primary function of the rules is to determined 1) the appropriate morph weight set correspondence with each TAPT sub-sequence; and 2) the time parameters of the morph weight set transitions between the representation of the prior TAPT sub-sequence or other timed data, and the current one. Conditions 1) and 2) must be completely specified for any sequence of phonemes and times encountered. Together, such rules are used to create a continuous stream of morph weight sets.

> In the present method, it is allowable for more than one phoneme to be represented by the same morph target, for example, "sss" and "zzz". Visually, these phonemes appear

similar. Through the use of such rules, the user can group phonemes together that have a similar visual appearance into visual phonemes"that function the same as one another. It is also acceptable, through the rules, to ignore certain phoneme sequences. For example, a rule could specify: "If in the 5 TAPT, there are two or more adjacent phonemes that are in the same "visual phoneme" group, all but the first are ignored".

The rules of the present method may be categorized in three main groupings; default rules, auxiliary rules and post 10 processing rules. The default rules must be complete enough to create valid output for any TAPT encountered at any point in the TAPT. The secondary rules are used in special cases; for example, to substitute alternative morph weight set correspondences and/or transition rules if the identified 15 criteria are met. The post processing rules are used to further manipulate the morph weight set stream after the default or secondary rules are applied, and can further modify the members of the morph weight sets determined by the default and secondary rules and interpolation.

If for example, a specific TAPT sub-sequence does not fit the criteria for any secondary rules, then the default rules take effect. If, on the other hand, the TAPT sub-sequence does fit the criteria for a secondary rule(s) they take precedence over the default rules. A TAPT sub-sequence take into 25 account the current phoneme and duration, and a number of the preceding and following phonemes and duration's as well may be specified.

Preferably, the secondary rules effect morph target correspondence and weights, or transition times, or both. Secondary rules can create transitions and correspondences even where no phoneme transitions exist. The secondary rules can use as their criteria the phoneme, the duration or the phoneme's context in the output stream, that is what phonemes are adjacent or in the neighborhood to the current phoneme, what the adjacent durations are, and the like.

The post processing rules are preferably applied after a preliminary output morph weight set is calculated so as to interpolation and/or after interpolation, as described later in this document. Both the secondary and post processing rules are optional, however, they may in certain applications be very complex, and in particular circumstances contribute more to the output than the default rules.

In FIG. 1, a flow chart illustrates the preferred steps of the methodology 10 for automatically animating lip synchronization and facial expression of three dimensional animated characters of the present invention. A specific sub-sequence determine if any secondary rule criteria for morph weight set target apply. Time aligned emotional transcription file 14 data may be inputted or data from an optional time aligned data file 16 may be used. Also shown is a parallel method 18 which may be configured identical to the primary method 55 described, however, using different timed data rules and different delta sets. Sub-sequence 20 is evaluated 22 to determine if any secondary rule criteria apply. If yes, then a morph weight set is assigned 24 according to the secondary rules, if no, then a morph weight set is assigned 26 according 60 to the default rules. If the sub-string meets any secondary rule criteria for transition specification 28 then a transition start and end time are assigned according to the secondary rules 32, if no, then assign transition start and end times 30 transition keyframes using target weights and transition rules as generated are created 34, and if any keyframe

sequences fit post process before interpolation rules they are applied here 36. This data may be output 38 here if desired. If not, then interpolate using any method post processed keyframes to a desired frequency or frame rate 40 and if any morph weight sequences generated fit post processing after interpolation criteria, they are applied 42 at this point. If parallel methods or systems are used to process other timed aligned data, they may be concatenated here 44, and the data output 46.

In FIG. 2, the method for automatically animating lip synchronization and facial expression of three dimensional characters for films, videos, cartoons, and other animation products 10 is shown according to the invention, where box 50 show the step of configuring a set of default correspondence rules between a plurality of visual phoneme groups or other timed input data and a plurality of morph weight sets. Box 52 shows the steps of specifying a plurality of morph weight set transition rules for specifying durational data for the generation of transitionary curves between the plurality of morph weight sets, allowing for the production of a stream of specified morph weight sets to be processed by a computer animation system for integration with other animation, whereby animated lip synchronization and facial expression of animated characters may be automatically produced.

With reference now to FIG. 3, method 10 for automatically animating lip synchronization and facial expression of three dimensional characters for use with a computer animation system is shown including box 56 showing the step of determining means for producing a stream of morph weight sets when a sequence of phonemes is encountered. Box 58, showing the step of evaluating a plurality of time aligned phonetic transcriptions or other timed at such as pitch, amplitude, noise amounts, and the like, against said determining means for producing a stream of morph weight 35 sets. In box 60 the steps of applying said determining means for producing a stream of morph weight sets to generate an output morph weight set stream, allowing for an appropriate morph weight set correspondence with each of a plurality of time aligned phonetic transcription sub-sequences and cormodify it. Post processing rules can be applied before 40 rect time parameters applied to a plurality of morph weight set transitions between a representation of a prior time aligned phonetic transcription sub-sequence and a current one, whereby lip synchronization and facial expressions of animated characters is automatically controlled and pro-45 duced are shown according to the invention.

In operation and use, the user must manually set up default correspondence rules between all visual phoneme groups and morph weight sets. To do this, the user preferably specifies the morph weight sets which correspond to the 20 is selected form the TAPT file 12 and is evaluated 22 to 50 model speaking, for example the "oo" sound, the "th" sound, and the like. Next, default rules must be specified. These rules specify the durational information needed to generate appropriate transitionary curves between morph weight sets, such as transition start and end times. A "transition" between two morph weigh sets is defined as each member of the morph weight set transitions from it's current state to it's target state, starting at the transition start time and ending at the transition end time. The target state is the morph weight set determined by a correspondence rule.

The default correspondence rules and the default morph weight set transition rules define the default system behavior. If all possible visual phoneme groups or all members of alternative data domains have morph weight set correspondence, any phoneme sequence can be handled with according to default rules. Then an intermediate file of 65 this rule set alone. However, additional rules are desirable for effects, exceptions, and uniqueness of character, as further described below.

US 6,307,576 B1

7

According to the method of the invention, other rules involving phoneme's duration and/or context can be specified. Also, any other rules that do not fit easily into the above mentioned categories can be specified. Examples of such rules are described in greater detail below and are termed the 5 "secondary rules". If a timed phoneme or sub-sequence of timed phonemes do not fit the criteria for any of the secondary rules, the default rules are applied as seen in FIG.

It is seen that through the use of these rules, an appropriate 10 Criteria: Encounter any phoneme morph weight stream is produced. The uninterpolated morph weight stream has entries only at transition start and end time, however. These act as keyframes. A morph weight set may be evaluated at any time by interpolating between these keyframes, using conventional methods. This is how the 15 output stream is calculated each desired time frame. For example, for television productions, the necessary resolution is 30 evaluations per second.

The post processing rules may be applied either before or after the above described interpolation step, or both. Some rules may apply only to keyframes before interpolation, some to interpolated data. If applied before the interpolation step, this affects the keyframes. if applied after, it effects the interpolated data. Post processing can use the morph weight sets calculated by the default and secondary rules. Post processing rules can use the morph weigh sets or sequences as in box 44 of FIG. 1, calculated by the default and secondary rules. Post processing rules can modify the individual members of the morph weight sets previously generated. Post processing rules may be applied in addition to other rules, including other post processing rules. Once the rule set up is completed as described, the method of the present invention can take any number and length TAPT's as input, and automatically output the corresponding morph weight set stream as seen in FIGS. 1-3.

For example, a modeled neutral geometric representation of a character for an animated production such as a movies, video, cartoon, CD or the like, with six morph targets, and example, are as follows:

		8	
Function: Use target.	morph weigh	t set (0,0,1,0,0,0)	as transition

Criteria: Encounter an "oh" as in "old"

Function: Use morph weight set (0,0,0,1,0,0) as transition

Criteria: encounter a "silence"

Function: use morph weight set (0,0,0,0,0,0) as transition target.

Default Transition Rule:

Function: Transition start time=(the outgoing phoneme's end time)-0.1*(the outgoing phoneme's duration);

transition end time=(the incoming phoneme's start time)+ 0.1* (the incoming phoneme's duration)

Secondary Rules

Criteria: Encounter an "oh" with a duration greater than 1.2

20 Function: Use morph weigh set (0,0,0,0,1,0)

Criteria: Encounter an "eh" followed by an "oh" and preceded by an "h".

Function: Use morph weigh set (0,0,0,0,0,1) as transition target.

Criteria: Encounter any phoneme preceded by silence Function: Transition start time=(the silence's end time)-0.1*(the incoming phoneme's duration):Transition end time=the incoming phoneme's start time

Criteria: Encounter silence preceded by any phoneme.

Function: Transition start time=the silence's start time +0.1* (the outgoing phoneme's duration)

Post Processing Rules

Criteria: Encounter a phoneme duration under 0.22 seconds. Function: Scale the transition target determined by the default and secondary rules by 0.8 before interpolation.

Accordingly, using this example, if the user were to use these rules for the spoken word "Hello", at least four morph targets and a neutral target would be required, that is, one each for the sound of "h", "e", "1", "oh" and their associated their delta sets determined. Their representations, for 40 delta sets. For example, a TAPT representing the spoken word "hello" could be configured as,

	Delta Set	Visual Representation	
-	1	"h"	8.3
	2	"eh"	
	3	"1"	
	4	"oh"	
	5	exaggerated "oh"	
	6	special case "eh" used during a "snide laugh" sequences	63

In this example, the neutral model is used to represent silence. The following is an example of a set of rules, according to the present method, of course this is only an example of a set of rules which could be use for illustrative 55 purposes, and many other rules could be specified according to the method of the invention.

Default Rules

Default Correspondence Rules;

Criteria: Encounter a "h" as in "house" Function: Use morph weight set (1,0,0,0,0,0) as transition

Criteria: Encounter an "eh" as in "bet"

Function: Use morph weight set (0,1,0,0,0,0) as transition 65

Criteria: Encounter a "1" as in "old"

45	Time	Phoneme	
	0.0	silence begins	
	0.8	silence ends, "h" begins	
	1.0	"h" ends, "eh" begins	
	1.37	"eh" ends, "1" begins	
	1.6	"1" ends, "oh" begins	
50	2.1	"oh" ends, silence begins.	

The method, for example embodied in computer software for operation with a computer or computer animation system would create an output morph weight set stream as follows:

Time	D.S.1 ("h")	D.S.2 ("eh")	D.S.3 ("1")	D.S.4 ("oh")	D.S.5 (aux"oh")	D.S.6
0.0	0	0	0	0	0	0
0.78	0	0	0	0	0	0
0.8	1	0	0	0	0	0
0.98	1	0	0	0	0	0
1.037	0	1	0	0	0	0
1.333	0	1	0	0	0	0
1.403	0	0	1	0	0	0
1.667	0	0	1	0	0	0

US 6,307,576 B1

9

-continued

Time	D.S.1 ("h")	D.S.2 ("eh")	D.S.3 ("1")	D.S.4 ("oh")	D.S.5 (aux"oh")	D.S.
1.74	0	0	0	1	0	0
2.1	0	0	0	1	0	0
2.14	0	0	0	0	0	0

Such morph weight sets act as keyframes, marking the 10 a "r". transitionary points. A morph weight set can be obtained for any time within the duration of the TAPT by interpolating between the morph weight sets using conventional methods well known in the art. Accordingly, a morph weight set can be evaluated at every frame. However, the post processing rules can be applied to the keyframes before interpolation as in box 36 of FIG. 1, or to the interpolated data as in box 40 of FIG. 1. From such stream of morph weight sets, the neutral model is deformed as described above, and then sent to a conventional computer animation system for integration with other animation. Alternatively, the morph weight set stream can be used directly by an animation program or package, wither interpolated or not.

The rules of the present invention are extensible and freeform in the sense that they may be created as desired and and products. As each rule comprise a criteria and function, as in an "if . . . then . . . else" construct. The following are illustrative examples of other rules which may be used with the present methodology.

For example, use $\{0,0,0,0...0\}$ as the morph weight set 30 of a secondary rule when a "m" is encountered. This is a type of default rule,

Criteria: Encounter a "m" phoneme of any duration.

Function: Use a morph weight set $\{0,0,0,0,\ldots,0\}$ as a transition target.

Another example would be creating several slightly different morph targets for each phoneme group, and using them randomly each time that phoneme is spoken. This would give a more random, or possibly comical or interesting look to the animation's. This is a secondary rule.

An example of post processing rule, before interpolation would be to add a small amount of random noise to all morph weight channels are all keyframes. This would slightly alter the look of each phoneme to create a more natural look

Criteria: Encounter any keyframe

Function: Add a small random value to each member of the morph weight set prior to interpolation.

An example of a post processing rule, after interpolation would be to add a component of an auxiliary morph target 50 (one which does not correspond directly to a phoneme) to the output stream in a cyclical manner over time, after interpolation. If the auxiliary morph target had the character's mouth moved to the left, for example, the output animation would have the character's mouth cycling 55 between center to left as he spoke.

Criteria: Encounter any morph weight set generated by interpolation

Function: Add a value calculated through a mathematical expression to the morph weigh set's member that corre- 60 sponds to the auxiliary morph target's delta set weight. The expression might be, for example: 0.2*sin (0.2*time*2*pi)+0.2. This rule would result in an oscillation of the animated character's mouth every five sec-

Another example of a secondary rule is to use alternative weight sets(or morph weight set sequences) for certain 10

contexts of phonemes, for example, if an "oh" is both preceded and followed by an "ee" then use an alternate "oh". This type of rule can make speech idiosyncrasies, as well as special sequences for specific words (which are a combination of certain phonemes in a certain context). This type of rule can take into consideration the differences in mouth positions for similar phonemes based on context. For example, the "1" in "hello" is shaped more widely than the "1" in "burly" due to it's proximity to an "eh" as opposed tp

Criteria: Encounter an "1" preceded by an "r".

Function: Use a specified morph weight set as transition target.

Another secondary rule could be, by way of illustration, that if a phoneme is longer than a certain duration, substitute a different morph target, this can add expressiveness to extended vowel sounds, for instance, if a character says "HELLOOOOOO!" a more exaggerated "oh" model would be used.

Criteria: Encounter an "oh" longer than 0.5 seconds and less than 1 second.

Function: Use a specified morph weight set as a transition

If a phoneme is longer than another phoneme of even adapted to a wide variety of animation characters, situations, 25 longer duration, a secondary rule may be applied to create new transitions between alternate morph targets at certain intervals, which may be randomized, during the phoneme's duration. This will add some animation to extremely long held sounds, avoiding a rigid look. This is another example

Criteria: Encounter an "oh" longer than 1 second long.

Function: Insert transitions between a defined group of morph weight sets at 0.5 second intervals, with transition duration's of 0.2 seconds until the next "normal" transition start time is encountered.

If a phoneme is shorter than a certain duration, its corresponding morph weight may be scaled by a factor smaller than 1. This would create very short phonemes not appear over articulated. Such a post processing rule, applied before interpolation would comprise:

Criteria: Encounter a phoneme duration shorter than 0.1

Function: Multiply all members of the transition target (already determined by default and secondary rules by duration/0.1.

As is readily apparent a wide variety of other rules can be created to add individuality to the different characters.

A further extension of the present method is to make a parallel method or system, as depicted in box 14 of FIG. 1, that uses time aligned emotional transcriptions (TAET) that correspond to facial models of those emotions. Using the same techniques as previously described additional morph weight set streams can be created that control other aspects of the character that reflect facial display of emotional state. Such morph weight set streams can be concatenated with the lip synchronization stream. In addition, the TAET data can be used in conjunction with the lip synchronization secondary rules to alter the lip synchronization output stream. For

Criteria: An "L" is encountered in the TAPT and the nearest 'emoteme" in the TAET is a "smile'

Function: Use a specified morph weight set as transition target.

As is evident from the above description, the automatic 65 animation lip synchronization and facial expression method described may be used on a wide variety of animation products. The method described herein provides an

extremely rapid, efficient, and cost effective means to provide automatic lip synchronization and facial expression in three dimensional animated characters. The method described herein provides, for the first time, a rapid, effective, expressive, and inexpensive means to automatically create animated lip synchronization and facial expression in animated characters. The method described herein can create the necessary morph weight set streams to create speech animation when given a time aligned phonetic transcription of spoken text and a set of user defined rules for determining appropriate morph weight sets for a given TAPT sequence. This method also defines rules describing a method of transitioning between these sets through time. The present method is extensible by adding new rules, and other timed data may be supplied, such as time "emotemes" that will effect the output data according to additional rules 15 that take this data into account. In this manner, several parallel systems may be used on different types of timed data and the results concatenated, or used independently. Accordingly, additional advantages and modification will readily occur to those skilled in the art. The invention in its 20 broader aspects is, therefore, not limited to the specific methodological details, representative apparatus and illustrative examples shown and described. Accordingly, departures from such details may be made without departing from the spirit or scope of the applicant's inventive concept.

What is claimed is:

- A method for automatically animating lip synchronization and facial expression of three-dimensional characters comprising:
 - obtaining a first set of rules that define output morph weight set stream as a function of phoneme sequence and time of said phoneme sequence;
 - obtaining a timed data file of phonemes having a plurality of sub-sequences;
 - generating an intermediate stream of output morph weight sets and a plurality of transition parameters between two adjacent morph weight sets by evaluating said plurality of sub-sequences against said first set of rules;
 - generating a final stream of output morph weight sets at a desired frame rate from said intermediate stream of output morph weight sets and said plurality of transition parameters; and
 - applying said final stream of output morph weight sets to a sequence of animated characters to produce lip synchronization and facial expression control of said animated characters.
- 2. The method of claim 1 wherein each of said first set of rules comprises a rule's criteria and a rule's function.
- The method of claim 2 wherein said evaluating comprises:
 - checking each sub-sequence of said plurality of subsequences for compliance with said rule's criteria; and applying said rule's function upon said compliance.
- 4. The method of claim 1 wherein said first set of rules 55 comprises a default set of rules and an optional secondary set of rules, said secondary set of rules having priority over said default set of rules.
- 5. The method of claim 4 wherein said default set of rules is adequate to create said intermediate stream of output 60 morph weight sets and said plurality of transition parameters between two adjacent morph weight sets for all subsequences of phonemes in said timed data file.
- 6. The method of claim 4 wherein said secondary set of rules are used in special cases to substitute alternate output 65 morph weight sets and/or transition parameters between two adjacent morph weight sets.

12

- 7. The method of claim 1 wherein said timed data is a timed aligned phonetic transcriptions data.
- The method of claim 7 wherein said timed data further comprises time aligned data.
- The method of claim 7 wherein said timed data further comprises time aligned emotional transcription data.
- 10. The method of claim 1 wherein each of said plurality of transition parameters comprises a transition start time and a transition end time; and said intermediate stream of output morph weight sets having entries at said transition start time and said transition end time.
 - 11. The method of claim 10 wherein said generating a final stream of output morph weight sets comprises:
 - obtaining the output morph weight set at a desired time by interpolating between said intermediate stream of morph weight sets at said transition start time and said transition end time, said desired time representing a frame of said final stream of output.
 - 12. The method of claim 11, further comprising:
 - applying a second set of rules to said output morph weight set for post processing.
 - 13. The method of claim 1 wherein said first set of rules comprises:
 - correspondence rules between a plurality of visual phoneme groups and a plurality of morph weight sets; and morph weight set transition rules specifying durational data for generating transitionary curves between morph weight sets.
 - 14. An apparatus for automatically animating lip synchronization and facial expression of three-dimensional characters comprising:
 - a computer system;
 - a first set of rules in said computer system, said first set of rules defining output morph weight set stream as a function of phoneme sequence and time of said phoneme sequence;
 - a timed data file readable by said computer system, said timed data file having phonemes with a plurality of sub-sequences;
 - means, in said computer system, for generating an intermediate stream of output morph weight sets and a plurality of transition parameters between two adjacent morph weight sets by evaluating said plurality of sub-sequences against said first set of rules;
 - means, in said computer system, for generating a final stream of output morph weight sets at a desired frame rate from said intermediate stream of output morph weight sets and said plurality of transition parameters; and
 - means, in said computer system, for applying said final stream of output morph weight sets to a sequence of animated characters to produce lip synchronization and facial expression control of said animated characters.
 - 15. The apparatus of claim 14 wherein each of said first set of rules comprises a rule's criteria and a rule's function.
 - 16. The apparatus of claim 15 wherein said evaluating comprises:
 - checking each sub-sequence of said plurality of subsequences for compliance with said rule's criteria; and applying said rule's function upon said compliance.
 - 17. The apparatus of claim 14 wherein said first set of rules comprises a default set of rules and an optional secondary set of rules, said secondary set of rules having priority over said default set of rules.
 - 18. The apparatus of claim 17 wherein said default set of rules is adequate to create said intermediate stream of output

US 6,307,576 B1

13

morph weight sets and said plurality of transition parameters between two adjacent morph weight sets for all subsequences of phonemes in said timed data file.

- 19. The apparatus of claim 17 wherein said secondary set of rules are used in special cases to substitute alternate 5 output morph weight sets and/or transition parameters between two adjacent morph weight sets.
- 20. The apparatus of claim 14 wherein said timed data is a timed aligned phonetic transcriptions data.
- 21. The apparatus of claim 20 wherein said timed data 10 further comprises time aligned data.
- 22. The apparatus of claim 20 wherein said timed data further comprises time aligned emotional transcription data.
- 23. The apparatus of claim 14 wherein each of said plurality of transition parameters comprises a transition start 15 time and a transition end time; and said intermediate stream of output morph weight sets having entries at said transition start time and said transition end time.
- 24. The apparatus of claim 23 wherein said generating a final stream of output morph weight sets comprises:

14

- obtaining the output morph weight set at a desired time by interpolating between said intermediate stream of morph weight sets at said transition start time and said transition end time, said desired time representing a frame of said final stream of output.
- 25. The apparatus of claim 24, further comprising:
- means for applying a second set of rules to said output morph weight set for post processing.
- 26. The apparatus of claim 14 wherein said first set of rules comprises:
 - correspondence rules between a plurality of visual phoneme groups and a plurality of morph weight sets; and
 - morph weight set transition rules specifying durational data for generating transitionary curves between morph weight sets.

* * * * *

EXHIBIT B

US006611278B2

(12) United States Patent

Rosenfeld

(10) Patent No.: US 6,611,278 B2

(45) Date of Patent: *Aug. 26, 2003

(54) METHOD FOR AUTOMATICALLY ANIMATING LIP SYNCHRONIZATION AND FACIAL EXPRESSION OF ANIMATED CHARACTERS

(76) Inventor: Maury Rosenfeld, 4941 Ambrose Ave,

Los Angeles, CA (US) 90027

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 09/960,831

(22) Filed: Sep. 21, 2001

(65) Prior Publication Data

US 2002/0101422 A1 Aug. 1, 2002

Related U.S. Application Data

(63)	Continuation of application No. 08/942,987, filed on Oct. 2,
	1997, now Pat. No. 6 307 576

(51) Int. Cl. ⁷	G06T	13/00:	G09G	5/00
----------------------------	------	--------	------	------

⁽⁵²⁾ U.S. Cl. 345/956; 345/473; 345/646

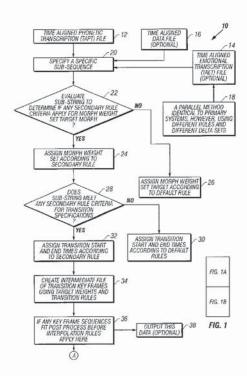
(56) References Cited

U.S. PATENT DOCUMENTS

4,600,919 A * 7/1986 Stern 345/473

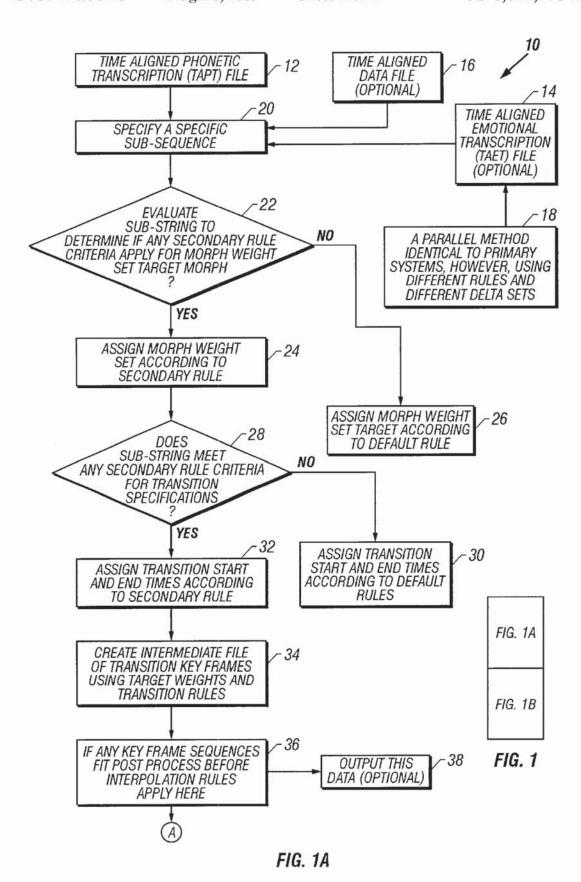
5,416,899	Α	*	5/1995	Poggio et al 345/475
5,630,017	A	*	5/1997	Gasper et al 704/276
5,684,942	A	*	11/1997	Kimura 345/473
5,717,848	A	*	2/1998	Watanabe et al 345/474
5,741,136	A	*	4/1998	Kirksey et al 434/169
5,818,461	A	*	10/1998	Rouet et al 345/473
5,880,788	A	*	3/1999	Bregler 348/515
5,907,351	A	*	5/1999	Chen et al 348/14.12
6,097,381	A		8/2000	Scott et al 707/500.1
6,108,011	A	*	8/2000	Fowler 345/441
6,147,692	A	*	11/2000	Shaw et al 345/433
6,232,965	B1	*	5/2001	Scott et al 707/505
6,307,576	B 1	*	10/2001	Rosenfeld 345/700

^{*} cited by examiner


Primary Examiner—Jeffery Brier Assistant Examiner—Ryan Yang

(74) Attorney, Agent, or Firm-The Hecker Law Group

(57) ABSTRACT


A method for controlling and automatically animating lip synchronization and facial expressions of three dimensional animated characters using weighted morph targets and time aligned phonetic transcriptions of recorded text. The method utilizes a set of rules that determine the systems output comprising a stream of morph weight sets when a sequence of timed phonemes and/or other timed data is encountered. Other data, such as timed emotional state data or emotemes such as "surprise, "disgust, "embarrassment", "timid smile", or the like, may be inputted to affect the output stream of morph weight sets, or create additional streams.

36 Claims, 4 Drawing Sheets

Aug. 26, 2003

Sheet 1 of 4

Aug. 26, 2003

Sheet 2 of 4

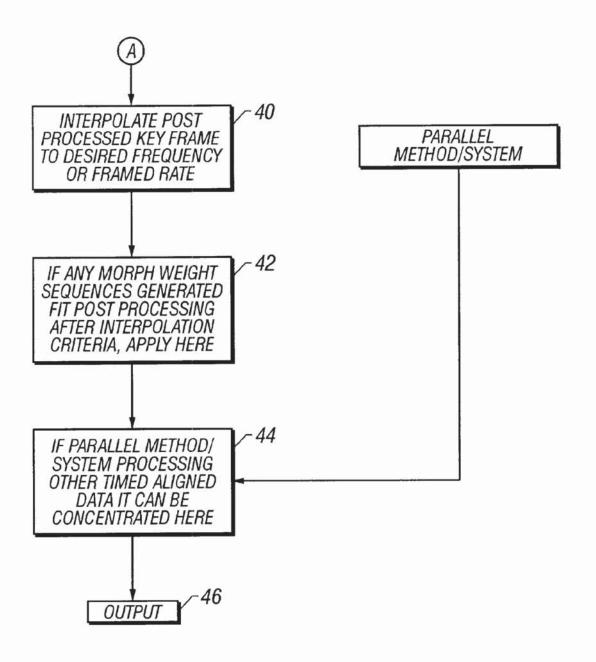


FIG. 1B

Aug. 26, 2003

Sheet 3 of 4

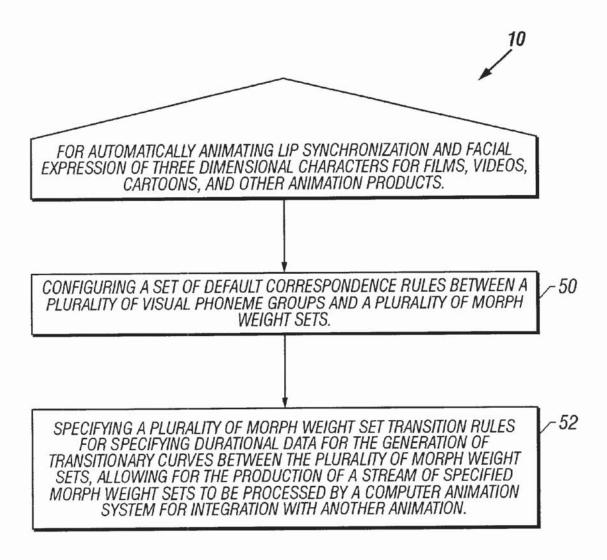


FIG. 2

Aug. 26, 2003

Sheet 4 of 4

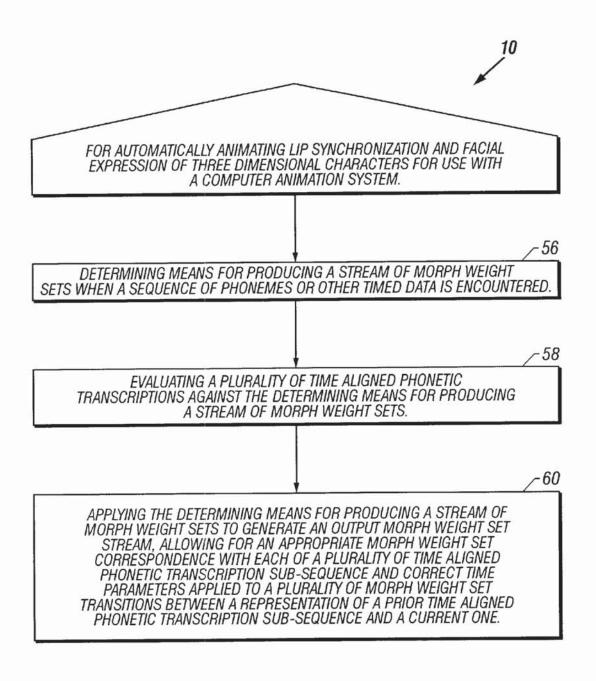


FIG. 3

US 6,611,278 B2

1

METHOD FOR AUTOMATICALLY ANIMATING LIP SYNCHRONIZATION AND FACIAL EXPRESSION OF ANIMATED CHARACTERS

This is a continuation of application Ser. No. 08/942,987 filed Oct. 2, 1997, now U.S. Pat. No. 6,307,576.

BACKGROUND OF THE INVENTION

1. Field of Invention

This invention relates generally to animation producing methods and apparatuses, and more particularly is directed to a method for automatically animating lip synchronization and facial expression for three dimensional characters.

2. Description of the Related Art

Various methods have been proposed for animating lip synchronization and facial expressions of animated characters in animated products such as movies, videos, cartoons, CD's, and the like. Prior methods in this area have long suffered from the need of providing an economical means of animating lip synchronization and character expression in the production of animated products due to the extremely laborious and lengthy protocols of such prior traditional and computer animation techniques. These shortcomings have 25 significantly limited all prior lip synchronization and facial expression methods and apparatuses used for the production of animated products. Indeed, the limitations of cost, time required to produce an adequate lip synchronization or facial expression in an animated product, and the inherent imita-30 tions of prior methods and apparatuses to satisfactorily provide lip synchronization or express character feelings and emotion, leave a significant gap in the potential of animated methods and apparatuses in the current state of the art.

Time aligned phonetic transcriptions (TAPTS) are a phonetic transcription of a recorded text or soundtrack, where the occurrence in time of each phoneme is also recorded. A "phoneme" is defined as the smallest unit of speech, and corresponds to a single sound. There are several standard phonetic "alphabets" such as the International Phonetic Alphabet, and TIMIT created by Texas instruments, Inc. and MIT. Such transcriptions can be created by hand, as they currently are in the traditional animation industry and are called "x" sheets, or "gray sheets" in the trade. Alternatively such transcriptions can be created by automatic speech recognition programs, or the like.

The current practice for three dimensional computer generated speech animation is by manual techniques commonly using a "morph target" approach. In this practice a reference model of a neutral mouth position, and several other mouth positions, each corresponding to a different phoneme or set of phonemes is used. These models are called "morph targets". Each morph target has the same topology as the neutral model, the same number of vertices, and each vertex 55 obvious from the description, or may be learned by practice on each model logically corresponds to a vertex on each other model, or example, vertex #n on all models represents the left corner of the mouth, and although this is the typical case, such rigid correspondence may not be necessary.

The deltas of each vertex on each morph target relative to 60 the neutral are computed as a vector from each vertex n on the reference to each vertex n on each morph target. These are called the delta sets. There is one delta set for each morph target.

to 1 is assigned to each delta set by the animator and the value is called the "morph weight". From these morph 2

weights, the neutral's geometry is modified as follows: Each vertex N on the neutral has the corresponding delta set's vertex multiplied by the scalar morph weight added to it. This is repeated for each morph target, and the result summed. For each vertex v in the neutral model:

 $|result|=|neutral|+\sum_{x=1}^{n}|delta|$ setx|morph| weigh

where the symbol |xxx| is used to indicate the corresponding vector in each referenced set. For example, result is the corresponding resultant vertex to vertex v in the neutral model |neutral| and |delta setx| is the corresponding vector for delta set x.

If the morph weight of the delta set corresponding to the morph target of the character saying, for example, the "oh" sound is set to 1, and all others are set to 0, the neutral would be modified to look like the "oh target. If the situation was the same, except that the "oh" morph weight was 0.5, the neutral's geometry is modified half way between neutral and the "oh" morph target.

Similarly, if the situation was as described above, except "oh" weight was 0.3 and the "ee" morph weight was at 0.7, the neutral geometry is modified to have some of the "oh" model characteristics and more of the "ee" model characteristics. There also are prior blending methods including averaging the delta sets according to their weights.

Accordingly, to animate speech, the artist needs to set all of these weights at each frame to an appropriate value. Usually this is assisted by using a "keyframe" approach, where the artist sets the appropriate weights at certain important times ("keyframes") and a program interpolates each of the channels at each frame. Such keyframe approach is very tedious and time consuming, as well as inaccurate due to the large number of keyframes necessary to depict speech.

The present invention overcomes many of the deficiencies of the prior art and obtains its objectives by providing an integrated method embodied in computer software for use with a computer for the rapid, efficient lip synchronization and manipulation of character facial expressions, thereby allowing for rapid, creative, and expressive animation products to be produced in a very cost effective manner.

Accordingly, it is the primary object of this invention to provide a method for automatically animating lip synchronization and facial expression of three dimensional characters, which is integrated with computer means for producing accurate and realistic lip synchronization and facial expressions in animated characters. The method of the present invention further provides an extremely rapid and cost effective means to automatically create lip synchronization and facial expression in three dimensional animated

Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

SUMMARY OF THE INVENTION

To achieve the foregoing objects, and in accordance with the purpose of the invention as embodied and broadly described herein, a method is provided for controlling and In producing animation products, a value usually from 0 65 automatically animating lip synchronization and facial expressions of three dimensional animated characters using weighted morph targets and time aligned phonetic transcrip-

US 6,611,278 B2

3

tions of recorded text, and other time aligned data. The method utilizes a set of rules that determine the systems output comprising a stream or streams of morph weight sets when a sequence of timed phonemes or other timed data is encountered. Other timed data, such as pitch, amplitued, 5 noise amounts, or emotional state data or emotemes such as "surprise, "disgust, "embarrassment", "timid smile", or the like, may be inputted to affect the output stream of morph weight sets.

The methodology herein described allows for automati- 10 cally animating lip synchronization and facial expression of three dimensional characters in the creation of a wide variety of animation products, including but not limited to movies, videos, cartoons, CD's, software, and the like. The method and apparatuses herein described are operably integrated 15 with computer software and hardware.

In accordance with the present invention there also is provided a method for automatically animating lip synchronization and facial expression of three dimensional characters for films, videos, cartoons, and other animation 20 products, comprising configuring a set of default correspondence rules between a plurality of visual phoneme groups and a plurality of morph weight sets; and specifying a plurality of morph weight set transition rules for specifying durational data for the generation of transitionary curves between the plurality of morph weight sets, allowing for the production of a stream of specified morph weigh sets to be processed by a computer animation system for integration with other animation, whereby animated lip synchronization and facial expression of animated characters may be automatically controlled and produced.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate a preferred embodiment of the invention and, together with a general description given above and the detailed description of the preferred embodiment given below, serve to explain the principles of the invention.

FIG. 1 is a flow chart showing the method of the invention with an optional time aligned emotional transcription file, and another parallel timed data file, according to the inven-

FIG. 2 is a flow chart illustrating the principal steps of the 45 1 present method, according to the invention.

FIG. 3 is another representational flow chart illustrating the present method, according to the invention.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

Reference will now be made in detail to the present preferred embodiments of the invention as illustrated in the accompanying drawings.

vided as illustrated in FIGS. 1-3, a method for controlling and automatically animating lip synchronization and facial expressions of three dimensional animated characters using weighted morph targets and time aligned phonetic transcriptions of recorded text. The method utilizes a set of rules that 60 stream of morph weight sets. determine the systems output comprising a stream of morph weight sets when a sequence of timed phonemes is encountered. Other timed data, such as timed emotional state data or emotemes such as "surprise, "disgust, "embarrassment", "timid smile", pitch, amplitued, noise amounts or the like, 65 may be inputted to affect the output stream of morph weight

The method comprises, in one embodiment, configuring a set of default correspondence rules between a plurality of visual phoneme groups and a plurality of morph weight sets; and specifying a plurality of morph weight set transition rules for specifying durational data for the generation of transitionary curses between the plurality of morph weight sets, allowing for the production of a stream of specified morph weight sets to be processed by a computer animation system for integration with other animation, whereby animated lip synchronization and facial expression of animated characters may be automatically produced.

There is also provided, according to the invention a method for automatically animating lip synchronization and facial expression of three dimensional characters for use with a computer animation system, comprising the steps of: determining means for producing a stream of morph weight sets when a sequence of phonemes is encountered; evaluating a plurality of time aligned phonetic transcriptions or other timed data such as pitch, amplitude, noise amounts and the like, against the determining means for producing a stream of morph weight sets; applying said determining means for producing a stream of morph weight sets to generate an output morph weight set stream, allowing for an appropriate morph weight set correspondence with each of a plurality of time aligned phonetic transcription subsequences and correct time parameters applied to a plurality of morph weight set transitions between a representation of a prior time aligned phonetic transcription subsequence and a current one, whereby lip synchronization and facial expressions of animated characters is automatically controlled and produced.

The method preferably comprises a set of rules that determine what the output morph weight set stream will be when any sequence or phonemes and their associated times 35 is encountered. As used herein, a "morph weight set" is a set of values, one for each delta set, that, when applied as described, transform the neutral mode to some desired state, such as speaking the "oo" sound or the "th" sound. Preferably, one model id designated as the anchor model, which the deltas are computed in reference to. If for example, the is a morph target that represents all possible occurrences of an "e" sound perfectly, it's morph weight set would be all zeros for all delta sets except for the delta set corresponding to the "ee" morph target, which would set to

Preferably, each rule comprises two parts, the rule's criteria and the rule's function. Each sub-sequence of time aligned phonetic transcription (TAPT) or other timed data such as pitch, amplitude, noise amount or the like, is 50 checked against a rule's criteria to see if that rule is applicable. If so, the rule's function is applied to generate the output. The primary function of the rules is to determined 1) the appropriate morph weight set correspondence with each TAPT sub-sequence; and 2) the time parameters of the In accordance with the present invention, there is pro- 55 morph weight set transitions between the representation of the prior TAPT sub-sequence or other timed data and the current one. Conditions 1) and 2) must be completely specified for any sequence of phonemes and times encountered. Together, such rules are used to create a continuous

> In the present method, it is allowable for more than one phoneme to be represented by the same morph target, for example, "sss" and "zzz". Visually, these phonemes appear similar. Through the use of such rules, the user can group phonemes together that have a similar visual appearance into visual phonemes" that function the same as one another. It is also acceptable, through the rules, to ignore certain

phoneme sequences. For example, a rule could specify: "If in the TAPT, there are two or more adjacent phonemes that are in the same "visual phoneme" group, all but the first are ignored".

The rules of the present method may be categorized in three main groupings; default rules, auxiliary rules and post processing rules. The default rules must be complete enough to create valid output for any TAPT encountered at any point in the TAPT. The secondary rules are used in special cases; for example, to substitute alternative morph weight set correspondences and/or transition rules if the identified criteria are met. The post processing rules are used to further manipulate the morph weight set stream after the default or secondary rules are applied, and can further modify the members of the morph weight sets determined by the default and secondary rules and interpolation.

If for example, specific TAPT subsequence does not fit the criteria for any secondary rules, then the default rules take effect. If, on the other hand, the TAPT sub-sequence does fit the criteria for a secondary rule(s) they take precedence over the default rules. A TAPT sub-sequence take into account the current phoneme and duration, and a number of the preceding and following phonemes and duration's as well may be specified.

Preferably, the secondary rules effect morph target correspondence and weights, or transition times, or both. Secondary rules can create transitions and correspondences even where no phoneme transitions exist. The secondary rules can use as their criteria the phoneme, the duration or the phoneme's context in the output stream, that is what phonemes are adjacent or in the neighborhood to the current phoneme, what the adjacent duration's are, and the like.

The post processing rules are preferably applied after a preliminary output morph weight set is calculated so as to modify it. Post processing rules can be applied before interpolation and/or after interpolation, as described later in this document. Both the secondary and post processing rules are optional, however, they may in certain applications be very complex, and in particular circumstances contribute 40 more to the output than the default rules.

In FIG. 1, a flow chart illustrates the preferred steps of the methodology 10 or automatically animating lip synchronization and facial expression of three dimensional animated characters of the present invention. A specific sub-sequence 45 20 is selected from the TAPT file 12 and is evaluated 22 to determine if any secondary rule criteria for morph weight set target apply. Time aligned emotional transcription file 14 data may be inputted or data from an optional time aligned data file 16 may be used. Also shown is a parallel method 18 which may be configured identical to the primary method described, however, using different timed data rules and different delta sets. Sub-sequence 20 is evaluated 22 to determine if any secondary rule criteria apply. If yes, then a morph weight set is assigned 24 according to the secondary 55 rules, if no, then a morph weight set is assigned 26 according to the default rules. If the sub-string meets any secondary rule criteria for transition specification 28 then a transition start and end time are assigned according to the secondary rules 32, if no, then assign transition start and end times 30 60 according to default rules. Then an intermediate file of transition keyframes using target weights and transition rules as generated are created 34, and if any keyframe sequences fit post process before interpolation rules they are applied here 36. This data may be output 38 here if desired. 65 further described below. If not, then interpolate using any method post processed keyframes to a desired frequency or frame rate 40 and if any

6

morph weight sequences generated fit post processing after interpolation criteria, they are applied 42 at this point. If parallel methods or systems are used to process other timed aligned data, they may be concatenated here 44, and the data output 46.

In FIG. 2, the method for automatically animating lip synchronization and facial expression of three dimensional characters for films, videos, cartoons, and other animation products 10 is shown according to the invention, where box 50 show the step of configuring a set of default correspondence rules between a plurality of visual phoneme groups or other timed input data and a plurality of morph weight sets. Box 52 shows the steps of specifying a plurality of morph weight set transition rules for specifying durational data for the generation of transitionary curves between the plurality of morph weight sets, allowing for the production of a stream of specified morph weight sets to be processed by a computer animation system for integration with other animation, whereby animated lip synchronization and facial expression of animated characters may be automatically produced.

With reference now to FIG. 3, method 10 for automatically animating lip synchronization and facial expression of three dimensional characters for use with a computer animation system is shown including box 56 showing the step of determining means for producing a stream of morph weight sets when a sequence of phonemes is encountered. Box 53, showing the step of evaluating a plurality of time aligned phonetic transcriptions or other timed ata such as pitch, amplitude, noise amounts, and the like, against said determining means for producing a stream of morph weight sets. In box 60 the steps of applying said determining means for producing a stream of morph weight sets to generate an output morph weight set stream, allowing for an appropriate morph weight set correspondence with each of a plurality of time aligned phonetic transcription sub-sequences and correct time parameters applied to a plurality of morph weight set transitions between a representation of a prior time aligned phonetic transcription sub-sequence and a current one, whereby lip synchronization and facial expressions of animated characters is automatically controlled and produced are shown according to the invention.

In operation and use, the user must manually set up default correspondence rules between all visual phoneme groups and morph weight sets. To do this, the user preferably specifies the morph weight sets which correspond to the model speaking, for example the "oo" sound, the "th" sound, and the like. Next, default rules must be specified. These rules specify the durational information needed to generate appropriate transitionary curves between morph weight sets, such as transition start and end times. "transition" between two morph weigh sets is defined as each member of the morph weight set transitions from it's current state to it's target state, starting at the transition start time and ending at the transition end time. The target state is the morph weight set determined by a correspondence rule.

The default correspondence rules and the default morph weight set transition rules define the default system behavior. If all possible visual phoneme groups or all members of alternative data domains have morph weight set correspondence, any phoneme sequence can be handled with this rule set alone. However, additional rules are desirable for effects, exceptions, and uniqueness of character, as further described below.

According to the method of the invention, other rules involving phoneme's duration and/or context can be speci-

US 6,611,278 B2

7

fied. Also, any other rules that do not fit easily into the above mentioned categories can be specified. Examples of such rules are described in greater detail below and are termed the "secondary rules". If a timed phoneme or sub-sequence of timed phonemes do not fit the criteria for any of the secondary rules, the default rules are applied as seen in FIG.

It is seen that through the use or these rules, an appropriate morph weight stream is produced. The uninterpolated morph weight stream has entries only at transition start and end time, however. These act as keyframes. A morph weight set may be evaluated at any time by interpolating between these keyframes, using conventional methods. This is how the output stream is calculated each desired time frame. For example, for television productions, the necessary resolution is 30 evaluations per second.

The post processing rules may be applied either before or after the above described interpolation step, or both. Some rules may apply only to keyframes before interpolation, some to interpolated data. If applied before the interpolation step, this affects the keyframes. if applied after, it effects the 20 interpolated data. Post processing can use the morph weight sets calculated by the default and secondary rules. Post processing rules can use the morph weigh sets or sequences as in box 44 of FIG. 1, calculated by the default and secondary rules. Post processing rules can modify the indi- 25 Criteria: Encounter and "eh" followed by an "h" and previdual members of the morph weight sets previously generated. Post processing rules may be applied in addition to other rules, including other post processing rules. Once the rule set up is completed as described, the method of the present invention can take any number and length TAPT's as 30 Function: Transition start time=(the silence's end time)input, and automatically output the corresponding morph weight set stream as seen in FIGS. 1-3.

For example, a modeled neutral geometric representation of a character for an animated production such as a movies, video, cartoon, CD or the like, with six morph targets, and 35 their delta sets determined. Their representations, for example, are as follows:

Delta Set	Visual Representation		
1	"h"		
2	"eh"		
3	"1"		
4	"oh"		
5	exaggerated "oh"		
6	special case "eh" used during a "snide laugh" sequences		

In this example, the neutral model is used to represent silence. The following is an example of a set of rules, 5 according to the present method, of course this is only an example of a set of rules which could be use for illustrative purposes, and many other rules could be specified according to the method of the invention.

Default Rules:

Default Correspondence Rules

Criteria: Encounter a "h" as in "house"

Function: Use morph weight set (1,0,0,0,0,0) as transition

8

Criteria: Encounter an "eh" as in "bet"

Function: Use morph weight set (0,1,0,0,0,0) as transition

Criteria: Encounter a "l" as in "old"

Function: Use morph weight set (0,0,1,0,0,0) as transition

Criteria: Encounter an "oh" as in "old"

Function: Use morph weight set (0,0,0,1,0,0) as transition

Criteria: encounter a "silence"

Function: use morph weight set (0,0,0,0,0,0) as transition target.

Default Transition Rule

15 Criteria: Encounter any phoneme

Function: Transition start time=(the outgoing phoneme's end time)-0.1*(the outgoing phoneme's duration);

transition end time=(the incoming phoneme's start time)+ 0.1* (the incoming phoneme's duration)

Secondary Rules

Criteria: Encounter an "oh" with a duration greater than 1.2 seconds.

Function: Use morph weigh set (0,0,0,0,1,0)

ceded by an "h".

Function: Use morph weigh set (0,0,0,0,0,1) as transition target.

Criteria: Encounter any phoneme preceded by silence

0.1*(the incoming phoneme's duration) Transition end time=the incoming phoneme's start time

Criteria: Encounter silence preceded by any phoneme.

Function: Transition start time=the silence's start time-0.1* (the outgoing phoneme's duration)

Post Processing Rules

Criteria: Encounter a phoneme duration under 0.22 seconds. Function: Scale the transition target determined by the default and secondary rules by 0.8 before interpolation.

Accordingly, using this example, if the user were to use these rules for the spoken word "Hello", at least four morph targets and a neutral target would be required, that is, one each for the sound of "h", "e", "l", "oh " and their associated delta sets. For example, a TAPT representing the spoken 45 word "hello" could be configured as,

	Time	Phoneme	
50	0.0	silence begins	
	0.8	silence ends, "h" begins	
	1.0	"h" ends, "eh" begins	
	1.37	"eh" ends, "1" begins	
	1.6	"1" ends, "oh" begins	
5	2.1	"oh" ends, silence begins.	

The method, for example embodied in computer software for operation with a computer or computer animation system would create an output morph weight set stream as follows:

Time	D.S.1("h")	D.S.2("eh")	D.S.3("1")	D.S.4("oh")	D.S.5(aux"oh")	D.S.6
0.0	0	0	0	0	0	0
0.78	0	0	0	0	0	0

US 6,611,278 B2

9 10

-continued

Time	D.S.1("h")	D.S.2("eh")	D.S.3("l")	D.S.4("oh")	D.S.5(aux"oh")	D.S.6
0.8	1	0	0	0	0	0
0.98	1	0	0	0	0	0
1.037	0	1	0	0	0	0
1.333	0	1	0	0	0	0
1.403	0	0	1	0	0	0
1.667	0	0	1	0	0	0
1.74	0	0	0	1	0	0
2.1	0	0	0	1	0	0
2.14	0	0	0	0	0	0

Such morph weight sets act as keyframes, marking the 15 transitionary points. A morph weight set can be obtained for any time within the duration of the TAPT by interpolating between the morph weight sets using conventional methods well known in the art. Accordingly, a morph weight set can be evaluated at every frame. However, the post processing rules can be applied to the keyframes before interpolation as in box 36 of FIG. 1, or to the interpolated data as in box 40 of FIG. 1. From such stream of morph weight sets, the neutral model is deformed as described above, and then sent to a conventional computer animation system for integration with other animation. Alternatively, the morph weight set 25 stream can be used directly by an animation program or package, wither interpolated or not.

The rules of the present invention are extensible and freeform in the sense that they may be created as desired and adapted to a wide variety of animation characters, situations, 30 and products. As each rule comprise a criteria and function, as in an "if . . . then . . . else" construct. The following are illustrative examples of other rules which may be used with the present methodology.

For example, use {0,0,0,0 . . . } as the morph weighs, set 35 Criteria: Encounter an "oh" longer than 0.5 seconds and less when a "m" is encountered. This is a type of default rule, where: Criteria: Encounter a "m" phoneme of any duration. Function: Use a morph weight set {0,0,0,0 . . . 0} as a transition target.

Another example would be creating several slightly different morph targets for each phoneme group, and using them randomly each time that phoneme is spoken. This would give a more random, or possibly comical or interesting look to the animation's. This is a secondary rule.

An example of post processing rule, before interpolation would be to add a small amount of random noise to all morph weight channels are all keyframes. This would slightly alter the look of each phoneme to create a more natural look.

Criteria: Encounter any keyframe

Function: Add a small random value to each member of the 50 morph weight set prior to interpolation.

An example of a post processing rule, after interpolation would be to add a component of an auxiliary morph target (one which does not correspond directly to a phoneme) to the output stream in a cyclical manner over time, after 55 interpolation. If the auxiliary morph target had the character's mouth moved to the left, for example, the output animation would have the character's mouth cycling between center to left as he spoke.

Criteria: Encounter any morph weight set generated by interpolation

Function: Add a value calculated through a mathematical expression to the morph weigh set's member that corresponds to the auxiliary morph target's delta set weight. The expression might be, for example: 0.2*sin (0.2*time*2*pi)+0.2. This rule would result in an oscillation of the animated character's mouth every five sec-

Another example of a secondary rule is to use alternative weight sets (or morph weight set sequences) for certain contexts of phonemes, for example, in an "oh" is both preceded and followed by an "ee" then use an alternate "oh". This type of rule can make speech idiosyncrasies, as well as special sequences for specific words (which are a combination of certain phonemes in a certain context). This type of rule can take into consideration the differences in mouth positions for similar phonemes based on context. For example, the "l" in "hello" is shaped more widely than the "I" in "burly" due to it's proximity to an "eh" as opposed to

Criteria: Encounter an "l" preceded by an "r".

Function: Use a specified morph weight set as transition

Another secondary rule could be, by way of illustration, that if a phoneme is longer than a certain duration, substitute a different morph target, this can add expressiveness to extended vowel sounds, for instance, if a character says "HELLOOOOOO!" a more exaggerated "oh" model would be used.

than 1 second.

Function: Use a specified morph weight set as a transition

If a phoneme is longer than another phoneme of even 40 longer duration, a secondary rule may be applied to create new transitions between alternate morph targets at certain intervals, which may be randomized, during the phoneme's duration. This will add some animation to extremely long held sounds, avoiding a rigid look. This is another example 45 of a secondary rule

Criteria: Encounter an "oh" longer than 1 second long.

Function: Insert transitions between a defined group of morph weight sets at 0.5 second intervals, with transition duration's of 0.2 seconds until the next "normal" transition start time is encountered.

If a phoneme is shorter than a certain duration, its corresponding morph weight may be scaled by a factor smaller than 1. This would create very short phonemes not appear over articulated. Such a post processing rule, applied before interpolation would comprise:

Criteria: Encounter a phoneme duration shorter than 0.1

Function: Multiply all members of the transition target (already determined by default and secondary rules by duration/0.1.

As is readily apparent a wide variety of other rules can be created to add individuality to the different characters.

A further extension of the present method is to make a parallel method or system, as depicted in box 14 of FIG. 1, 65 that uses time aligned emotional transcriptions (TAET) that correspond to facial models of those emotions. Using the same techniques as previously described additional morph

weight set streams can be created that control other aspects of the character that reflect facial display of emotional state. Such morph weight set streams can be concatenated with the lip synchronization stream. In addition, the TAET data can be used in conjunction with the lip synchronization secondary rules to alter the lip synchronization output stream. For example:

Criteria: An "L" is encountered in the TAPT and the nearest "emoteme" in the TAET is a "smile".

Function: Use a specified morph weight set as transition 10 target.

As is evident from the above description, the automatic animation lip synchronization and facial expression method described may be used on a wide variety of animation products. The method described herein provides an 15 extremely rapid, efficient, and cost effective means to provide automatic lip synchronization and facial expression in three dimensional animated characters. The method described herein provides, for the first time, a rapid, effective, expressive, and inexpensive means to automati- 20 cally create animated lip synchronization and facial expression in animated characters. The method described herein can create the necessary morph weight set streams to create speech animation when given a time aligned phonetic transcription of spoken text and a set of user defined rules for 25 determining appropriate morph weight sets for a given TAPT sequence. This method also defines rules describing a method of transitioning between these sets through time. The present method is extensible by adding new rules, and other timed data may be supplied, such as time "emotemes" 30 that will effect the output data according to additional rules that take this data into account. In this manner, several parallel systems may be used on different types of timed data and the results concatenated, or used independently. Accordingly, additional advantages and modification will 35 readily occur to those skilled in the art. The invention in its broader aspects is, therefore, not limited to the specific methodological details, representative apparatus and illustrative examples shown and described. Accordingly, departures from such details may be made without departing from 40 the spirit or scope of the applicant's inventive concept.

What is claimed is:

- A method for automatically animating lip synchronization and facial expression of three-dimensional characters comprising:
 - obtaining a first set of rules that defines a morph weight set stream as a function of phoneme sequence and times associated with said phoneme sequence;
 - obtaining a plurality of sub-sequences of timed phonemes corresponding to a desired audio sequence for said ⁵⁰ three-dimensional characters;
 - generating an output morph weight set stream by applying said first set of rules to each sub-sequence of said plurality of sub-sequences of timed phonemes; and
 - applying said output morph weight set stream to an input sequence of animated characters to generate an output sequence of animated characters with lip and facial expression synchronized to said audio sequence.
- 2. The method of claim 1, wherein said first set of rules 60 ters comprising:
 - correspondence rules between all visual phoneme groups and morph weight sets; and
 - morph weight set transition rules specifying durational data between morph weight sets.
- 3. The method of claim 2, wherein said durational data comprises transition start and transition end times.

12

- 4. The method of claim 1, wherein said desired audio sequence is from a pre-recorded live performance.
- 5. The method of claim 1, wherein said desired audio sequence is synthetically generated by a computer.
- 6. The method of claim 1, wherein said plurality of subsequences of timed phonemes is obtained from a file.
- 7. The method of claim 1, wherein said plurality of subsequences of timed phonemes is generated during animation.
- 8. The method of claim 1, wherein said output sequence of animated characters is transmitted over a computer network
- 9. The method of claim 1, wherein said generating said output morph weight stream comprises:
 - generating an appropriate morph weight set corresponding to each subsequence of said timed phonemes; and generating time parameters for transition of said appropriate morph weight set from a morph weight set of a prior sub-sequence of said timed data.

10. The method of claim 1, wherein each of said first set of rules comprises a rule's criteria and a rule's function.

- 11. The method of claim 10, wherein said generating an output morph weight set stream comprises:
 - checking each sub-sequence of said plurality of subsequences of timed data for compliance with said rule's criteria; and
 - generating an output morph weight set and transition parameters by applying said rule's function upon said compliance with said criteria.
- 12. The method of claim 1, wherein said first set of rules comprises a default set of rules and an optional secondary set of rules, said secondary set of rules having priority over said default set of rules.
- 13. The method of claim 1, wherein said plurality of subsequences of timed phonemes comprises a timed aligned phonetic transcriptions sequence.
- 14. The method of claim 1, wherein said plurality of subsequences of timed phonemes comprises time aligned data.
- 15. The method of claim 13, wherein said plurality of subsequences of timed phonemes further comprises time aligned emotional transcription data.
- 16. The method of claim 9, wherein said transition parameters comprises:

transition start time; and

transition end time.

- 17. The method of claim 16, further comprising:
- generating said output morph weight set stream by interpolating between morph weight sets at said transition start time and said transition end time according to a desired frame rate of said output sequence of animated
- 18. The method of claim 1, further comprising:
- applying a second set of rules to said output morph weight set prior to said generating of said output sequence of animated characters.
- 19. An apparatus for automatically animating lip synchronization and facial expression of three-dimensional characters comprising:
 - a computer system;
- computer code in said computer system, said computer code comprising:
 - a method for obtaining a first set of rules that defines a morph weight set stream as a function of phoneme sequence and times associated with said phoneme sequence;

US 6,611,278 B2

13

- a method for obtaining a plurality of sub-sequences of timed phonemes corresponding to a desired audio sequence for said three-dimensional characters;
- a method for generating an output morph weight set stream by applying said first set of rules to each 5 sub-sequence of said plurality of subsequences of timed phonemes;
- a method for applying said output morph weight set stream to an input sequence of animated characters to generate an output sequence of animated charac- 10 ters with lip and facial expression synchronized to said audio sequence.
- 20. The apparatus of claim 19, wherein said first set of rules comprises:
 - correspondence rules between all visual phoneme groups 15 and morph weight sets; and
 - morph weight set transition rules specifying durational data between morph weight sets.
- 21. The apparatus of claim 20, wherein said durational data comprises transition start and transition end times.
- 22. The apparatus of claim 19, wherein said desired audio sequence is from a pre-recorded live performance.
- 23. The apparatus of claim 19, wherein said desired audio sequence is synthetically generated by a computer.
- 24. The apparatus of claim 19, said plurality of subsequences of timed phonemes is obtained from a file.
- 25. The apparatus of claim 19, wherein said plurality of subsequences of timed phonemes is generated during animation.
- 26. The apparatus of claim 19, wherein said output 30 sequence of animated characters is transmitted over a computer network.
- 27. The apparatus of claim 19, wherein said generating said output morph weight stream comprises:
 - generating an appropriate morph weight set corresponding to each subsequence of said timed phonemes; and
 - generating time parameters for transition of said appropriate morph weight set from a morph weight set of a prior sub-sequence of said timed data.
- 28. The apparatus of claim 19, wherein each of said first set of rules comprises a rule's criteria and a rule's function.

14

- 29. The apparatus of claim 28, wherein said generating an output morph weight set stream comprises:
 - checking each sub-sequence of said plurality of subsequences of timed data for compliance with said rule's criteria; and
 - generating an output morph weight set and transition parameters by applying said rule's function upon said compliance with said criteria.
- 30. The apparatus of claim 19, wherein said first set of rules comprises a default set of rules and an optional secondary set of rules, said secondary set of rules having priority over said default set of rules.
- 31. The apparatus of claim 19, wherein said plurality of subsequences of timed phonemes comprises a timed aligned phonetic transcriptions sequence.
- 32. The apparatus of claim 19, wherein said plurality of subsequences of timed phonemes comprises time aligned data.
- 33. The apparatus of claim 31, wherein said plurality of subsequences of timed phonemes further comprises time aligned emotional transcription data.
- 34. The apparatus of claim 27, wherein said transition

transition start time; and

transition end time.

- 35. The apparatus of claim 34, wherein said computer code further comprises:
- a method for generating said output morph weight set stream by interpolating between morph weight sets at said transition start time and said transition end time according to a desired frame rate of said output sequence of animated characters.
- 36. The apparatus of claim 19, wherein said computer code further comprises:
 - a method for applying a second set of rules to said output morph weight set prior to said generating of said output sequence of animated characters.