
US 20140181803A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0181803 A1

COOPER et al. (43) Pub. Date: Jun. 26, 2014

(54) APPLICATION WRAPPING SYSTEM AND Publication Classi?cation
METHOD

(51) Int. Cl.
(71) Applicant: BMC Software Acquisition, L.L.C., G06F 9/445 (2006.01)

Houston, TX (US) (52) vs. C].
CPC G06F 8/60 (2013.01)

(72) InventorSI Adam Charles COOPER, Vancouver USPC 717/178
(CA); George THUCYDIDES, North
Vancouver (CA); Geoff Ross MAIR,
Vancouver (CA); Caleb Peter (57) ABSTRACT
BUXTON, Vancouver (CA)

(73) Assignee; BMC software Acquisition, L_L_C_s The method administers an enterprise computing system that
Houston, TX (Us) includes a plurality of user mobile computing devices. The

method includes selecting a pre-written application for inclu
(21) Appl. No.: 14/136,879 sion in a menu of enterprise applications downloadable to a

_ user computing device, allowing the user computing device to
(22) Flled3 Dec- 20’ 2013 download the pre-written application, and interposing an

. . a lication wra er on the re-written a lication before
Related U'S'Apphcatlon Data allgwing the usgi) computingpdevice to dggvnload the pre

(60) Provisional application No. 61/745,511, ?led on Dec. written application, the application wrapper being con?gured
21, 2012.

Wmma Pam

Mahatma mew v '

to control an operation of the pre-written application.

Home?wa

_ 235331235?
W

Asoka:th PW

US 2014/0181803 A1 Jun. 26, 2014 Sheet 1 0f 15 Patent Application Publication

“Emagm .6 gin

M @E $833? mamméaumm thw. mghsmvwwb
mama xmmi

mawmmxumm “Em gmwmmagu

US 2014/0181803 A1 Jun. 26, 2014 Sheet 2 0f 15 Patent Application Publication

5%?“ i.

M

953% cm Eva?

magi ESQ?
gig

g3;
ggg

Patent Application Publication Jun. 26, 2014 Sheet 3 0f 15 US 2014/0181803 A1

US 2014/0181803 A1

\

Jun. 26, 2014 Sheet 4 0f 15 Patent Application Publication

Patent Application Publication Jun. 26, 2014 Sheet 5 0f 15 US 2014/0181803 A1

US 2014/0181803 A1 Jun. 26, 2014 Sheet 6 0f 15 Patent Application Publication

Patent Application Publication Jun. 26, 2014 Sheet 7 0f 15 US 2014/0181803 A1

US 2014/0181803 A1 Jun. 26, 2014 Sheet 8 0f 15 Patent Application Publication

m

g “Ema gm

me swim 3 g gang

EN i mg» ~83

w

.&.. aaa?g 383% SE. Egg Em

mm?“ swim §§§§

US 2014/0181803 A1 Jun. 26, 2014 Sheet 9 0f 15 Patent Application Publication

mm .wmm

,

muéam
éiiiiisié

Ema.“ 93%»? & a?

m3

mmwxamnm msmmumaam

US 2014/0181803 A1 Jun. 26, 2014 Sheet 10 0f 15 Patent Application Publication

US 2014/0181803 A1 Jun. 26, 2014 Sheet 11 0f 15 Patent Application Publication

mam
W

sow

m 61

Emmi; 9: 3 gm 3 3% ?gwm £938 5ch mi :30 639$ 93 SE m3

US 2014/0181803 A1 Jun. 26, 2014 Sheet 12 0f 15 Patent Application Publication

A

0mm % % “ 23:3
.v EEnw :30 h

US 2014/0181803 A1 Jun. 26, 2014 Sheet 13 0f 15 Patent Application Publication

QM @E

scum 3m 2.6.6 mr :> 2%? LE cowwuign Mummww

HMOM

2.3% 3% 25$

W W

M 53m? m5 S 52555 macaw. 5:3:an EEG @.

W

0:23

US 2014/0181803 A1 Jun. 26, 2014 Sheet 14 0f 15 Patent Application Publication

SE IEQHVEHESE RES @555. EQQSP; at?
m i EEEE wages

03a

Eggs;
m 5:5 E.“ ngUQE mum

33533 £25“

5.3

aww EEtwnm kw

US 2014/0181803 A1 Jun. 26, 2014 Sheet 15 0f 15 Patent Application Publication

n

E

1.2.

.mmmi DHU
mgr.wa wring EQU Em)

\

me: 32.5

52: 355 £6. Em End EEG

US 2014/0181803 A1

APPLICATION WRAPPING SYSTEM AND
METHOD

[0001] This application claims the bene?t of Us. Provi
sional Patent Application 61/745,511 ?led on Dec. 21, 2012
entitledApplication Wrapping System and Method, the entire
contents of which are incorporated herein by reference.

FIELD

[0002] Embodiments relate to software and mobile com
puting devices. More speci?cally, it relates to the distribution
and control of pre-built or commercially available applica
tions, and the implementation of rules and policies associated
with those applications.

BACKGROUND

[0003] Applications developed for mobile devices are dis
tributed in a package containing the necessary elements to run
the application such as the program code, resources, assets,
certi?cates and manifest. Typically, an application is com
piled from the source code and then packaged with the
required elements. An application package is then signed and
distributed to a device or emulator.

[0004] FIG. 1 shows an example packaging ?ow for an
application developed using the Android operating system
and distributed in an Android Package File (APK). An
Android application, such as the one shown in FIG. 1, is
typically written using the Android Software Development
Kit (SDK) and in the Java language. During compilation and
packaging, the Java code is ?rst compiled into class ?les in the
Java bytecode format. Next the “dx” tool converts the class
?les containing bytecode into “.dex” ?les in the Dalvik byte
code, where the Dalvik bytecode is the native format of the
Android operating system. If desired, the “.dex” ?les can be
converted into “smali” ?les using a ?le format converter
called “apktool”.
[0005] FIG. 1 shows an example application package (in
this case a “.apk” Android Package) comprising the program
code in “.dex” ?les, resources in a resources.arsc ?le, plus
uncompiled resources and a manifest ?le (AndroidManifest.
xml). A command line tool such as Android Debug Bridge
(indicated as ADB in FIG. 1) allows the code to communicate
with an emulator or anAndroid device. This may be bene?cial
during application development as a way to test and debug the
application.
[0006] Application wrapping is a method of adding a layer
to an existing mobile application binary ?le to add features or
modify behavior, without requiring changes to the underlying
existing application. For example, native iOS or Android
applications can be wrapped to add a management layer to the
existing application. In this way, a system administrator can
exert control over an application and can set speci?c rules and
policies to be applied to an application or group of applica
tions. Example policies include whether or not user authen
tication is required for a speci?c application, whether or not
data associated with the application can be stored on the
device, and whether or not speci?c Application Program
Interfaces (APls) such as copy/paste or ?le sharing are
allowed. Other example policies can include when the appli
cation can run (such as, for example, day and time of day) and
the location from which it can run.

[0007] In an enterprise environment, application wrapping
increases the level of control and the ease with which control
can be applied to speci?c end users and applications. Appli

Jun. 26, 2014

cation wrapping reduces the risk to the enterprise of unautho
rized or improper use of mobile applications. For example, an
administrator can take an application, add extra security and
management features to it, and then deploy it in the enterprise
as a single application package via an enterprise app store.
[0008] Typically application wrapping methods are part of
the application compilation work?ow process. There is a
need, however, for technique to wrap pre-built or commercial
applications without the involvement of the developer.
[0009] Existing technique focuses on application security
for non-commercial applications, namely, applications devel
oped in-house. Nonetheless the majority of mobile applica
tions are commercially developed and available via app
stores. There is a need for technique to support new license
management models where the identity of an enterprise cus
tomer can be associated with an application for the purposes
of license management, and also application authorization
and security policy enforcement.
[0010] Existing Mobile Device Management (MDM) tech
nique, for example, relates to securing and managing devices
deployed across an enterprise, and does not provide the func
tional bene?ts enabled by the present application wrapping
technique.
[0011] Other existing approaches include (a) the use of
virtual machines, (b) a developer writing the added function
ality from scratch or using a library, and (c) having the device
itself provide the functionality.

SUMMARY

[0012] One embodiment includes a method that adminis
ters an enterprise computing system that includes a plurality
of user mobile computing devices. The method includes
selecting a pre-written application for inclusion in a menu of
enterprise applications downloadable to a user computing
device, allowing the user computing device to download the
pre-written application, and interposing an application wrap
per on the pre-written application before allowing the user
computing device to download the pre-written application,
the application wrapper being con?gured to control an opera
tion of the pre-written application.
[0013] Implementations can include one or more of the
following features. For example, the pre-written application
can be downloaded from the menu of enterprise applications.
The downloading can be performed indirectly via an inter
mediate server. For example, the application wrapper can be
con?gured to control distribution and use of the pre-written
application. The application wrapper can be con?gured to
verify that the user is authorized to download the pre-written
application.
[0014] For example, the application wrapper can be con
?gured to control storage of data associated with the pre
written application in the user computing device. The data can
be fetched by the pre-written application. The data can be
generated by the pre-written application. For example, the
controlling of the storage of data can include prohibiting
storage of data associated with the pre-written application in
the user computing device.
[0015] For example, the application wrapper can be con
?gured to control access to an application program interface
(API). The API can be con?gured to at least one of cut, copy
and paste data between or within applications, and the appli
cation wrapper can be con?gured to interact with the API in
order to control one of the cut, copy and paste data between or
within applications. The API can be con?gured to control ?le

US 2014/0181803 A1

sharing between or within applications, and the application
wrapper can be con?gured to interact with the API in order to
control ?le sharing between or within applications. For
example, the application wrapper can be con?gured to
impose at least one of day and time-of-day restrictions and/or
location-of-use restrictions on operating the pre-written
application.
[0016] Another embodiment includes an enterprise com
puting system including a plurality of user computing
devices. The system includes a menu of enterprise applica
tions downloadable to a user computing device, code seg
ments, that when executed by a processor, enable the user
computing device to download a pre-written application, and
code segments, that when executed by a processor, administer
an application wrapper con?gured to control operation of the
pre-written application.
[0017] Implementations can include one or more of the
following features. For example, the pre-written application
can be downloaded from the menu of enterprise applications.
The downloading can be performed indirectly via an inter
mediate server. For example, the code segments that admin
ister the application wrapper can be con?gured to verify that
the user computing device is authorized to download the
pre-written application.
[0018] For example, the code segments that administer the
application wrapper can be con?gured to control storage of
data associated with the pre-written application in the user
computing device. The data can be fetched by the pre-written
application. The data can be generated by the pre-written
application. The code segments that administer the applica
tion wrapper can be con?gured to prohibit storage of data
associated with the pre-written application in the user com
puting device.
[0019] For example, the code segments that administer the
application wrapper can be con?gured to control access to an
application program interface (API). The API can be con?g
ured to at least one of cut, copy and paste data between or
within applications, and the application wrapper can be con
?gured to interact with the API in order to control one of the
cut, copy and paste data between or within applications. The
API can be con?gured to control ?le sharing between or
within applications, and the application wrapper can be con
?gured to interact with the API in order to control ?le sharing
between or within applications. For example, the code seg
ments that administer the application wrapper can be con?g
ured to impose at least one of day and time-of-day restrictions
and/ or location-of-use restrictions on operating the pre-writ
ten application.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Example embodiments will become more fully
understood from the detailed description given herein below
and the accompanying drawings, wherein like elements are
represented by like reference numerals, which are given by
way of illustration only and thus are not limiting of the
example embodiments and wherein:

[0021] FIG. 1 illustrates a representative packaging ?ow
diagram for an application that is developed using existing
techniques.
[0022] FIGS. 2A and 2B illustrate block diagrams showing
principal components of application wrapping according to at
least one example embodiment.

Jun. 26, 2014

[0023] FIG. 3 illustrates an interception of system calls by
the application wrapper according to at least one example
embodiment.
[0024] FIG. 4 illustrates an application lifecycle according
to at least one example embodiment.
[0025] FIG. 5A illustrate a processing of system calls for
normal operation according to conventional art.
[0026] FIGS. 5B-5D illustrate a processing of system calls
for interception, blocking and simulation, respectively
according to at least one example embodiment.
[0027] FIG. 6 illustrates an example application wrapping
work?ow according to at least one example embodiment.
[0028] FIG. 7A-7D illustrate functional block diagrams
showing where the application wrapper logic can reside in
different example embodiments.
[0029] FIGS. 8-11 illustrate ?ow charts of example work
?ows according to at least one example embodiment.
[0030] FIG. 12 illustrates a block diagram showing an
example system architecture.
[0031] It should be noted that these Figures are intended to
illustrate the general characteristics of methods, structure
and/or materials utilized in certain example embodiments and
to supplement the written description provided below. These
drawings are not, however, to scale and may not precisely
re?ect the precise structural or performance characteristics of
any given embodiment, and should not be interpreted as
de?ning or limiting the range of values or properties encom
passed by example embodiments. For example, the relative
thicknesses and positioning of molecules, layers, regions and/
or structural elements may be reduced or exaggerated for
clarity. The use of similar or identical reference numbers in
the various drawings is intended to indicate the presence of a
similar or identical element or feature.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0032] De?nition of Terms
[0033] Application (also known as an app): Application
software written for computing devices.
[0034] Mobile application (also known as a mobile app or
an app): Application software written for mobile computing
devices.
[0035] Application wrapping: A method of adding a layer
to an existing application (e.g., mobile application) binary
code to add features or modify functionality, without requir
ing changes to the underlying existing application.
[0036] Application (or app) wrapper: A layer of code added
to existing application (e.g., mobile application) binary code
for the purposes of adding features or modifying behavior of
the underlying application.
[0037] API: Application Programming Interface.
[0038] Application Package: Software including an appli
cation and the necessary elements to run the application such
as the program code, resources, assets, runtime, certi?cates
and/or manifest.

[0039] Description
[0040] While example embodiments may include various
modi?cations and alternative forms, embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that
there is no intent to limit example embodiments to the par
ticular forms disclosed, but on the contrary, example embodi
ments are to cover all modi?cations, equivalents, and alter

US 2014/0181803 A1

natives falling within the scope of the claims. Like numbers
refer to like elements throughout the description of the ?g
ures.

[0041] FIGS. 2A and 2B are block diagrams showing prin
cipal components of application wrapping, with added func
tionality inside and outside the application package, respec
tively. FIGS. 2A and 2B illustrate that the components can be
combined in an application package using an application (or
app) wrapping process.
[0042] FIGS. 2A and 2B show an application package,
before app wrapping, which includes the original application
code. In this example implementation, an app wrapper and
optionally some additional functionality may be inserted into
the application package. FIG. 2A then shows an application
package after app wrapping. The modi?ed application pack
age includes the original application code along with the app
wrapper and added functionality. In one or more example
implementations, the app wrapper and added functionality
may be inserted into a pre-built or commercial application
without the involvement of the original application developer.
[0043] FIG. 2B shows an application package, after app
wrapping, which includes the original application code along
with the app wrapper, and the added functionality residing
outside the application package. The added functionality may
communicate with the application via the app wrapper.
Accordingly, in some example implementations, the added
functionality can be updated or otherwise modi?ed without
requiring re-wrapping.
[0044] As a result, example app wrapping techniques may
be applicable to (a) app wrapping where functionality is
added to the application package and resides inside the appli
cation package, and (b) app wrapping where some or all or the
added functionality resides outside the application package
and can be updated without re-wrapping.
[0045] Interception of Events and API Calls
[0046] FIG. 3 illustrates the interception of system calls by
the app wrapper. As shown in FIG. 3, intercepted system calls
can be either (a) system events or (b) system API calls. The
app wrapper can broker system events and system API calls.
System events are generated in the operating system and
called into the application. System API calls originate in the
application and call into the operating system. In at least on
example implementation, app wrapping techniques enable
intercepting system events and API calls without the involve
ment of the developer. Typically, system events and API calls
are done under the control of the developer via the original
application code. Using the technique described herein, pre
built or commercial applications can be app-wrapped, and the
app wrapper can intercept or broker system events and API
calls without using or modifying the original application
code.

[0047] FIG. 4 shows an example application lifecycle. The
lifecycle shown in FIG. 4 is typical of an Android application
lifecycle, for example.
[0048] FIG. 4 shows some example types of system events
and when they occur in the lifecycle of the application. In the
example shown in FIG. 4, the types of system events are
“onStart”, “onResume”, “onPause” and “onTerminate”. In
the same example, the application can be in one of two
statesi“stopped” or “active”. System events “onStart” and
“onResume” occur after a user has started or re-started a

stopped application. Once started (or resumed), the applica
tion is active. When a user leaves the application, there is an

Jun. 26, 2014

“onPause” system event. When the system shuts down the
application, there is an “onTerminate” system event, and the
application is stopped.
[0049] The app wrapper from FIG. 3 can intercept a system
event (such as the ones shown in FIG. 4), and perform a
different type of interception based on the application state,
time or other factor. System events may be exposed to com
ponents of example app wrapping techniques by implement
ing a method callback, for example.
[0050] The app wrapper can, for example, intercept an
“onResume” system event and perform checking to verify a
user is permitted to run the application. At an “onPause”
system event, the app wrapper can intercept the event and
write secure data before the application is terminated, for
example. Secure data can be written, for example, on a disk or
in cloud storage.
[0051] FIGS. 5A through 5D illustrate the processing of
system calls for normal operation, interception, blocking and
simulation, respectively. In general, interception of system
events and API calls involves capturing the event (or call),
performing a function, and then delegating the event (or call)
to its original destination.
[0052] FIG. 5A illustrates conventional interaction
between system and application during normal operation.
System events and API calls are passed between the system
and the application as shown.
[0053] FIG. 5B illustrates the interception of system events
and API calls by the app wrapper. In FIG. 5B, the system
generates a system event in response to a user event or another
system event. For example, the system may generate a
“launch app” event in response to the user tapping on an app
in the user interface on the device. The event is intercepted (or
captured) by the app wrapper. The app wrapper may perform
a function before delegating the system event to its original
destination in the application. Also in FIG. 5B, the application
generates a system API call. The call is intercepted by the app
wrapper. The app wrapper may perform a function before
delegating the API call to its original destination in the sys
tem.

[0054] FIG. 5C illustrates the interception and blocking of
system events and API calls by the app wrapper. Blocking
prevents propagation of the event or call beyond the app
wrapper. Blocking can be based on business logic in the app
wrapper, for example. Consider an example scenario in which
the system generates an “onResume” event and the event is
intercepted by the app wrapper. If the logic in the app wrapper
determines that the application is not authorized to resume,
then the app wrapper blocks the event and refuses to delegate
it to a forward destination such as, for example, its original
destination in the application.
[0055] FIG. 5D illustrates the interception and modi?ca
tion/simulation of system events and API calls by the app
wrapper. In this scenario, an app wrapper can send one or
more simulated or modi?ed events to an application, or one or

more simulated or modi?ed API calls to the system. The
scenario canbe triggered by the interception of a system event
or API call, or can be initiated by the app wrapper. Simulated
events and API calls may not necessarily be related to actual
events generated by the system or API calls made by the
application.
[0056] Application Wrapping Work?ow and Con?guration
[0057] FIG. 6 shows an example application wrapping
work?ow. The present application wrapping technique has an
app wrapping approach that allows different types of func

US 2014/0181803 A1

tionality to be injected into a pre-built or commercial mobile
application without the involvement of the developer.
Examples of different types of functionality include, but are
not limited to, license checking and veri?cation, security
sandboxing, and data encryption. Other examples of added
functionality can include usage tracking, reporting, and ana
lytics.
[0058] The present app wrapping technique can bind the
identity of a company to a commercial application, thereby
licensing the application for use by the company, and issuing,
retracting, and re-issuing application licenses. The system, or
system administrator, can perform and enforce these actions.
[0059] The injection process follows a similar work?ow for
each type of functionality added to the application. Details of
the steps may vary depending on the functionality. FIG. 6
shows a work?ow for injecting additional functionality into a
third party application.
[0060] Before step 1 in the work?ow shown in FIG. 6, code
containing the additional functionality is converted to a low
level (e.g., assembly) language format. For example, the code
containing the additional functionality may be converted
from “.dex” format to “smali” via a tool such as the apktool.
At step 1 in FIG. 6, the third party application package is
decompiled using a suitable tool. In the example embodiment
shown in FIG. 6, the third party application is anAndroid .apk
package, and can be decompiled using the apktool to produce
“smali” ?les. At step 2 in FIG. 6, the decompiled ?les can be
modi?ed to facilitate the third party application calling into
the additional functionality being provided by the app wrap
per. This step may vary depending on the type of functionality
being added by the app wrapper.
[0061] At step 3, the app wrapper ?les are merged with the
decompiled (and modi?ed) third party application ?les. At
step 4, the wrapped application is re-compiled into an
unsigned application package. For example, in the case of an
Android application, the wrapped application is re-compiled
into an .apk ?le.
[0062] At step 5 in FIG. 6, the app package is signed using
the app wrapper developer’s key.
[0063] FIGS. 7A through 7D are functional block diagrams
showing where the app wrapper logic can reside in different
example embodiments. The upgrade path for the app wrapper
logic may vary depending on where the logic resides.
[0064] FIG. 7A illustrates a case where the app wrapper
logic is contained in the application package. FIG. 7A shows
the application package comprising an application, an app
wrapper framework and app wrapper logic.
[0065] FIG. 7B illustrates a case where the app wrapper
logic is provided by a service. FIG. 7B shows a service
residing on the user computing device (e.g., mobile device)
and including app wrapper logic. FIG. 7B also shows two
different application packages each including an application
and an app wrapper framework. The app wrapper logic is
shared by the two applications. In general, the logic can be
associated with one application, or can be shared by two or
more different applications. The bene?t of this con?guration
is that the app wrapper logic can be upgraded without requir
ing the application(s) to be re-wrapped.
[0066] FIG. 7C illustrates a case where the app wrapper
logic is part of an application residing on a mobile device.
FIG. 7C shows an example in which the app wrapper logic is
shared between two different applications, each including an
application and an app wrapper framework. FIG. 7C shows an
application package including an application and app wrap

Jun. 26, 2014

per logic. Like the case shown in FIG. 7B, the bene?ts of the
con?guration shown in FIG. 7C are that the app wrapper logic
can be upgraded without requiring the application(s) to be
re-wrapped.
[0067] FIG. 7D illustrates a case where the app wrapper
logic is split between two systemsia device and a remote
system. This approach can be used in the 3 cases illustrated in
FIG. 7A through 7C. FIG. 7D illustrates an approach for the
“embedded logic” scenario shown in FIG. 7A.
[0068] FIG. 7D shows an application package residing on a
user computing device (e. g., mobile device) and including an
application, an app wrapper framework and app wrapper
logic. The app wrapper logic on the device can communicate
with app wrapper logic residing on a remote system, as shown
in FIG. 7D. The app wrapper logic on the remote system can
be upgraded without requiring re-wrapping of the application
on the user computing device.

[0069] Use Cases/Example Work?ows
[0070] FIGS. 8-11 are ?ow charts of methods according to
example embodiments. The steps described with regard to
FIGS. 8-11 may be performed due to the execution of soft
ware code stored in a memory (e.g., one or more of the
memories shown in FIG. 12) associated with an apparatus
(e.g., as shown in FIG. 12) and executed by at least one
processor (e.g., one or more of the CPU’s shown in FIG. 12)
associated with the apparatus. However, alternative embodi
ments are contemplated such as a system embodied as a

special purpose processor. Although the steps described
below are described as being executed by a processor, the
steps are not necessarily executed by a same processor. In
other words, at least one processor may execute the steps
described below with regard to FIGS. 8-11.
[0071] FIG. 8 is a ?ow chart describing an example work
?ow method according to an example embodiment. In the
example described with regard to method 800, the method
may apply to a development computing device (e.g., as used
by a developer of an application) when an application is
uploaded and published for distribution to one or more user
computing devices. Using the development computing device
a developer can publish an app as an application package with
compiled code and other resources as required or desired.
After that, the development computing device (and as a result
the developer) is not involved in the app wrapping process
related to the described app wrapping techniques.
[0072] Method 800 begins at step 810, where a develop
ment computing device logs in to the system. For example, a
user (e.g., an application developer) using the development
computing device 1210 logs into the platform provider sys
tem 1250. The method proceeds to step 812 where an admin
console is opened. After the admin console is open, the
method proceeds to step 814 where apps are selected to add to
the system. The method proceeds to step 816 where the
selected apps are uploaded to the system. For example, admin
console 1258 is opened and applications stored on develop
ment computing device 1210 are selected for addition to
application datastore 1260. In step 818 the apps are scanned
for malicious code and viruses. Once the scanning is com
plete, the method proceeds to step 820 where the apps are
published in the system and made available to system admin
istrators.
[0073] FIG. 9 is a ?ow chart describing an example work
?ow method according to an example embodiment. In the
example described with regard to method 900, the method
may apply to a platform provider system (e.g., as managed by

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description/Claims
	Page 25 - Claims

