US 20140181803A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0181803 A1

COOPER et al. 43) Pub. Date: Jun. 26, 2014
(54) APPLICATION WRAPPING SYSTEM AND Publication Classification
METHOD
(51) Imt.CL
(71) Applicant: BMC Software Acquisition, L.L.C., GO6F 9/445 (2006.01)
Houston, TX (US) (52) US.CL
CPC oottt GO6F 8/60 (2013.01)
(72) Tnventors: Adam Charles COOPER, Vancouver USPC o 7171178
(CA); George THUCYDIDES, North
Vancouver (CA); Geoff Ross MAIR,
Vancouver (CA); Caleb Peter (57) ABSTRACT
BUXTON, Vancouver (CA)
(73) Assignee: BMC Software Acquisition, L.L.C., The method administers an enterprise computing system that
Houston, TX (US) includes a plurality of user mobile computing devices. The
method includes selecting a pre-written application for inclu-
(21) Appl. No.: 14/136,879 sion in a menu of enterprise applications downloadable to a
) user computing device, allowing the user computing device to
(22) Filed: Dec. 20, 2013 download the pre-written application, and interposing an
o application wrapper on the pre-written application before
Related U.S. Application Data aﬁgwing the usgf) computingpdevice to dg\r:vnload the pre-
(60) Provisional application No. 61/745,511, filed on Dec. written application, the application wrapper being configured

21, 2012.

App Viepp % Adzed
Funcsonaity
A P 5 Aaiied
Skl T Functionality
1~ N i
e
isoation Pakagn
Appirton Packes Appcaton

to control an operation of the pre-written application.

US 2014/0181803 A1

Jun. 26,2014 Sheet 1 of 15

Patent Application Publication

SO
IO SHARE

18V TYNOILLNIANOD

1 'O

X IBSHUBNDICIIY

SBOINOSRS
papduiooun

e $8
saoinesss [xep

{ude'} sboong ploipuy

{ Bubesoeg pe

uonapthuion

1080044
DICIpUY

US 2014/0181803 A1

Jun. 26,2014 Sheet 2 of 15

Patent Application Publication

aflrsng UoIEaeaY

mdo

Apmunaound ¢

ww serichang, iy

d¢ Ol

SRRt o B COY

TP
wonamdy
b

l

Auang e a pssi diy

A?%g usledty |

VD

eSO gAY

s ddy

Aar&aﬁ& VIR m

BRNnR 4 URIEREy

papmy (4 stisgdiy

Patent Application Publication Jun. 26, 2014 Sheet 3 of 15 US 2014/0181803 A1

S
Roed

NRRRR

US 2014/0181803 A1

Jun. 26,2014 Sheet 4 of 15

Patent Application Publication

b
§

7
{
f
|
|
.,

it o COPIANNNNAPASRNIBBRS L,

REVERRy

RSIORISTIIYSY e

\%\s\\\\\\\\\!\!\\ﬁs\i. =
%

Patent Application Publication Jun. 26, 2014 Sheet 5 of 15 US 2014/0181803 A1

Aavans

S MRAREARAAARAMKRA AN
e 2 N

el

Dttt 20 S 10 bGP0 05 0SS 05T I

{1 £
L ¥

ARSI AR N N AR R N N e
— * _—
g ¢
[N §

A‘F"“
sff: o ey N N
o :
y e
Pard L.

RNRERAARASARRARN LA SRS

GO R PR PO Py,
OO OCOL O OOy

TIPS B R0 8PP PPy

ARAIRRRR SRR AT

US 2014/0181803 A1

Jun. 26,2014 Sheet 6 of 15

2% '9id
wopendty| Tz > | e wesfs
ﬁﬁgmmm@{ hmwmmg A WAz WaIshs ! wsshe

Patent Application Publication

Bunooig

Patent Application Publication Jun. 26, 2014 Sheet 7 of 15 US 2014/0181803 A1

R b b A 000

Dbt t0s 1000000002008 00 0000800008000 5:

e o
1
Sbins

] ‘BpOoEAG
P e HEwG HIAED 30 X80 OF AR
wopKie ,, 8 el Ll Aquesse

‘Bhos sAgeanl URy 188 B G4 SOl |BWS

LONSTASIVI BIBEP B S 3 | ap0 . — .

US 2014/0181803 A1

‘SO oigt 0y BuLD) | P)
BPOIBIALT & B SOl XS] m

| smposso
e t

=
— FOIVTE BARS
=]
5 g 'Dl4
~N—
& nuabe
=
77)
-
Yo
(=]
S '
= | Saddaim A mmm“wm,m e QIUIDIDD 1OTATE comnd oty Apsy i
.m Yol (1S PRVES heio UBROIRREISIR] d PR NV B
poufiun
g +
] WHBIEOW PES
= DRSS HOTER
> ¥ m
= —
=
A _ s
- BRE} ARG forerenensccnmt R R
.m 19 el DOYTON | g s Bl AU0D BBl HBG Yl
5 £] ewem sedduipg,
=
ADn.. 85T §O PBBRUS 51000
= SSEM04 Uonselu) seddaips
&
«
A

US 2014/0181803 A1

Jun. 26,2014 Sheet 9 of 15

o
Jetdeiaa

afimoe g uonennddy

1 uomBIBIg

g4 'Oi4
abimioed zewm&ﬁ@@ aolAIRS e ,\,wmﬁmmm uopesyddy
S . ; HIOMBLUTLY Qmﬁ WIOMBLIBLY
: ﬁmw@mwamﬁ | seddmip day [T %MMN% * Nhgmﬁg iy
aoinies g ul oiBoT
Vi 5id

Patent Application Publication

ddy | ieddeipy, doy m@%ﬁm@

01807 peppequil

US 2014/0181803 A1

Jun. 26,2014 Sheet 10 of 15

as "oild
BB
WOISAT BIOIUSY afimoey uoheoyddy
sifon B0 ” iR
WIOASAIE e
BuLEIDDY 4 Bl imddEips ynpEit
soddeis ddy sedduipgs ddy | peoptdy
WBsAG sowsy e U afo jpuonipDY
DYARIIE
slimyoeg
uchesgddy
unpesyddy
abeyoe uoneoyddy e abfevoed uoneaddy
e ;,m;w,,f.ﬂ ﬂmgnm ; E B
e b OMIDMBIITIE B :
| vomeaidy | | e o By sodie 8 ® seddeiy ddy| | uoREOpdy.

Patent Application Publication

uoneoyddy ug u :1Bo

US 2014/0181803 A1

078

218

Jun. 26,2014 Sheet 11 of 15

w
i
o0

z

002

Patent Application Publication

2gepers
IpRW pUR WDI5AS DY
u paysijgnd aue sddy

ST
DUR 3pOT $NOIMIRUW
10} patiueds e sddyy

wIa3shs
343 03 papeoidn
sie sdde pasiss

vie

UISISAS 8y
o1 ppe o1 sdde 109495

18

Sjo5U0D
ujpe ayl uado

018

UID15AS 3L} O 80T

US 2014/0181803 A1

Jun. 26,2014 Sheet 12 of 15

Patent Application Publication

SIosn pue

m wmum o,w,ﬁ_. yawgudisse

de waishAs

056 [

.K\ ula3sAs o driold anes

¥

[93%9) & [
dnca o3 Jasn pud ppy A4 dna:§ oy dde udissy
wmm“\ b6
B, &
Asoysolip ;
e e dde o3 paydde
DAL Jo wayshs %
“ . o \W, 54 01 FuISs PSS
WL SRS PUB 1318
€6 776
3 4
dnosd WaIEAS
B 32EOU 30 33ERID “ wioly dde wofay
\mu\ az6

F-y

0ce % w.

1

W a5sUoD
e uiuipe usdo
fyn
r
O
Q06 \m\ wizlshis o1 1 go7
016

01 "Dl

z

917011

US 2014/0181803 A1

WaIsAS O3 SMIELS ¥
15U| spuas

F-N

uojteaijdde yuayn 150
\W pia 03 suciiedidde

RECT * oot

o]

ERIETTS

(3

8101

WRISAS M

WG uoesidde

e wsaudisse
SOABIAIDS dnosd w Blepelsil
v\ vopenydde yusyd “ Busn 51y dde
207 & 4TOT SRURIIRIBP 1HBISAS
g1

Jun. 26,2014 Sheet 13 of 15

1

UDLIR|[eISUL IO} BIRIsAS B4}

m\ ganesdde 18135 \um O} E1BPEIBLL SPURS

uopesidde sy

TEOY Yy #1101
VRIsAS
N\ speisp dde mata BU3 01 STIBULOD
mmoh\w \“ uonendde e
LU
7701

I

anaep

ay) vo uonesydde
&
< =z

o3 Ut 3oy
oot
QO0T

Patent Application Publication

US 2014/0181803 A1

Jun. 26,2014 Sheet 14 of 15

Patent Application Publication

74N

17T

A

uopeaddy paddeias
palduod ysygng

1addesnn yum
dY psiipon apdwio]

Jaddesan
LHM 4V PRIHPOIA G35
papdossg AP

saddein
uapeaiddy aapley

fARAN

¥ 8y ajiwiodag

'y

AN

N

{dy} 28ejuey
uojesddy Ue AEI8Y

US 2014/0181803 A1

ST ;.f/.f }é\ﬁr

Jun. 26,2014 Sheet 15 of 15

Patent Application Publication

1ol

ST T 1 B ISAL

SR

Wi W

Lo e iy

FErt)

140

L,

LOECT)
e Suindwoy Jesn

mi\\\\\\\\\\\\\\\\\\\\\\\\\\\\\h\«\\\\\\\\\\\\\\\\\\\\\w

A EERD EEy

FTeT

o
Sk

A ERTE
Bunnds

A

LOTET) anae]
WD B WD |EAR]

US 2014/0181803 Al

APPLICATION WRAPPING SYSTEM AND
METHOD

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application 61/745,511 filed on Dec. 21, 2012
entitled Application Wrapping System and Method, the entire
contents of which are incorporated herein by reference.

FIELD

[0002] Embodiments relate to software and mobile com-
puting devices. More specifically, it relates to the distribution
and control of pre-built or commercially available applica-
tions, and the implementation of rules and policies associated
with those applications.

BACKGROUND

[0003] Applications developed for mobile devices are dis-
tributed in a package containing the necessary elements to run
the application such as the program code, resources, assets,
certificates and manifest. Typically, an application is com-
piled from the source code and then packaged with the
required elements. An application package is then signed and
distributed to a device or emulator.

[0004] FIG. 1 shows an example packaging flow for an
application developed using the Android operating system
and distributed in an Android Package File (APK). An
Android application, such as the one shown in FIG. 1, is
typically written using the Android Software Development
Kit (SDK) and in the Java language. During compilation and
packaging, the Java code is first compiled into class files in the
Java bytecode format. Next the “dx” tool converts the class
files containing bytecode into “.dex” files in the Dalvik byte-
code, where the Dalvik bytecode is the native format of the
Android operating system. If desired, the “.dex” files can be
converted into “smali” files using a file format converter
called “apktool”.

[0005] FIG. 1 shows an example application package (in
this case a “.apk” Android Package) comprising the program
code in “.dex” files, resources in a resources.arsc file, plus
uncompiled resources and a manifest file (AndroidManifest.
xml). A command line tool such as Android Debug Bridge
(indicated as ADB in FIG. 1) allows the code to communicate
with an emulator or an Android device. This may be beneficial
during application development as a way to test and debug the
application.

[0006] Application wrapping is a method of adding a layer
to an existing mobile application binary file to add features or
modify behavior, without requiring changes to the underlying
existing application. For example, native iOS or Android
applications can be wrapped to add a management layer to the
existing application. In this way, a system administrator can
exert control over an application and can set specific rules and
policies to be applied to an application or group of applica-
tions. Example policies include whether or not user authen-
tication is required for a specific application, whether or not
data associated with the application can be stored on the
device, and whether or not specific Application Program
Interfaces (APIs) such as copy/paste or file sharing are
allowed. Other example policies can include when the appli-
cation can run (such as, forexample, day and time of day) and
the location from which it can run.

[0007] In an enterprise environment, application wrapping
increases the level of control and the ease with which control
can be applied to specific end users and applications. Appli-

Jun. 26, 2014

cation wrapping reduces the risk to the enterprise of unautho-
rized or improper use of mobile applications. For example, an
administrator can take an application, add extra security and
management features to it, and then deploy it in the enterprise
as a single application package via an enterprise app store.
[0008] Typically application wrapping methods are part of
the application compilation workflow process. There is a
need, however, for technique to wrap pre-built or commercial
applications without the involvement of the developer.
[0009] Existing technique focuses on application security
for non-commercial applications, namely, applications devel-
oped in-house. Nonetheless the majority of mobile applica-
tions are commercially developed and available via app
stores. There is a need for technique to support new license
management models where the identity of an enterprise cus-
tomer can be associated with an application for the purposes
of license management, and also application authorization
and security policy enforcement.

[0010] Existing Mobile Device Management (MDM) tech-
nique, for example, relates to securing and managing devices
deployed across an enterprise, and does not provide the func-
tional benefits enabled by the present application wrapping
technique.

[0011] Other existing approaches include (a) the use of
virtual machines, (b) a developer writing the added function-
ality from scratch or using a library, and (c) having the device
itself provide the functionality.

SUMMARY

[0012] One embodiment includes a method that adminis-
ters an enterprise computing system that includes a plurality
of user mobile computing devices. The method includes
selecting a pre-written application for inclusion in a menu of
enterprise applications downloadable to a user computing
device, allowing the user computing device to download the
pre-written application, and interposing an application wrap-
per on the pre-written application before allowing the user
computing device to download the pre-written application,
the application wrapper being configured to control an opera-
tion of the pre-written application.

[0013] Implementations can include one or more of the
following features. For example, the pre-written application
can be downloaded from the menu of enterprise applications.
The downloading can be performed indirectly via an inter-
mediate server. For example, the application wrapper can be
configured to control distribution and use of the pre-written
application. The application wrapper can be configured to
verify that the user is authorized to download the pre-written
application.

[0014] For example, the application wrapper can be con-
figured to control storage of data associated with the pre-
written application in the user computing device. The data can
be fetched by the pre-written application. The data can be
generated by the pre-written application. For example, the
controlling of the storage of data can include prohibiting
storage of data associated with the pre-written application in
the user computing device.

[0015] For example, the application wrapper can be con-
figured to control access to an application program interface
(API). The API can be configured to at least one of cut, copy
and paste data between or within applications, and the appli-
cation wrapper can be configured to interact with the API in
order to control one of the cut, copy and paste data between or
within applications. The API can be configured to control file

US 2014/0181803 Al

sharing between or within applications, and the application
wrapper can be configured to interact with the API in order to
control file sharing between or within applications. For
example, the application wrapper can be configured to
impose at least one of day and time-of-day restrictions and/or
location-of-use restrictions on operating the pre-written
application.

[0016] Another embodiment includes an enterprise com-
puting system including a plurality of user computing
devices. The system includes a menu of enterprise applica-
tions downloadable to a user computing device, code seg-
ments, that when executed by a processor, enable the user
computing device to download a pre-written application, and
code segments, that when executed by a processor, administer
an application wrapper configured to control operation of the
pre-written application.

[0017] Implementations can include one or more of the
following features. For example, the pre-written application
can be downloaded from the menu of enterprise applications.
The downloading can be performed indirectly via an inter-
mediate server. For example, the code segments that admin-
ister the application wrapper can be configured to verify that
the user computing device is authorized to download the
pre-written application.

[0018] For example, the code segments that administer the
application wrapper can be configured to control storage of
data associated with the pre-written application in the user
computing device. The data can be fetched by the pre-written
application. The data can be generated by the pre-written
application. The code segments that administer the applica-
tion wrapper can be configured to prohibit storage of data
associated with the pre-written application in the user com-
puting device.

[0019] For example, the code segments that administer the
application wrapper can be configured to control access to an
application program interface (API). The API can be config-
ured to at least one of cut, copy and paste data between or
within applications, and the application wrapper can be con-
figured to interact with the API in order to control one of the
cut, copy and paste data between or within applications. The
API can be configured to control file sharing between or
within applications, and the application wrapper can be con-
figured to interact with the API in order to control file sharing
between or within applications. For example, the code seg-
ments that administer the application wrapper can be config-
ured to impose at least one of day and time-of-day restrictions
and/or location-of-use restrictions on operating the pre-writ-
ten application.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Example embodiments will become more fully
understood from the detailed description given herein below
and the accompanying drawings, wherein like elements are
represented by like reference numerals, which are given by
way of illustration only and thus are not limiting of the
example embodiments and wherein:

[0021] FIG. 1 illustrates a representative packaging flow
diagram for an application that is developed using existing
techniques.

[0022] FIGS. 2A and 2B illustrate block diagrams showing
principal components of application wrapping according to at
least one example embodiment.

Jun. 26, 2014

[0023] FIG. 3 illustrates an interception of system calls by
the application wrapper according to at least one example
embodiment.

[0024] FIG. 4 illustrates an application lifecycle according
to at least one example embodiment.

[0025] FIG. 5A illustrate a processing of system calls for
normal operation according to conventional art.

[0026] FIGS. 5B-5D illustrate a processing of system calls
for interception, blocking and simulation, respectively
according to at least one example embodiment.

[0027] FIG. 6 illustrates an example application wrapping
workflow according to at least one example embodiment.
[0028] FIG. 7A-7D illustrate functional block diagrams
showing where the application wrapper logic can reside in
different example embodiments.

[0029] FIGS. 8-11 illustrate flow charts of example work-
flows according to at least one example embodiment.

[0030] FIG. 12 illustrates a block diagram showing an
example system architecture.

[0031] It should be noted that these Figures are intended to
illustrate the general characteristics of methods, structure
and/or materials utilized in certain example embodiments and
to supplement the written description provided below. These
drawings are not, however, to scale and may not precisely
reflect the precise structural or performance characteristics of
any given embodiment, and should not be interpreted as
defining or limiting the range of values or properties encom-
passed by example embodiments. For example, the relative
thicknesses and positioning of molecules, layers, regions and/
or structural elements may be reduced or exaggerated for
clarity. The use of similar or identical reference numbers in
the various drawings is intended to indicate the presence of a
similar or identical element or feature.

DETAILED DESCRIPTION OF THE

EMBODIMENTS
[0032] Definition of Terms
[0033] Application (also known as an app): Application

software written for computing devices.

[0034] Mobile application (also known as a mobile app or
an app): Application software written for mobile computing
devices.

[0035] Application wrapping: A method of adding a layer
to an existing application (e.g., mobile application) binary
code to add features or modify functionality, without requir-
ing changes to the underlying existing application.

[0036] Application (or app) wrapper: A layer of code added
to existing application (e.g., mobile application) binary code
for the purposes of adding features or modifying behavior of
the underlying application.

[0037] API: Application Programming Interface.

[0038] Application Package: Software including an appli-
cation and the necessary elements to run the application such
as the program code, resources, assets, runtime, certificates
and/or manifest.

[0039] Description

[0040] While example embodiments may include various
modifications and alternative forms, embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that
there is no intent to limit example embodiments to the par-
ticular forms disclosed, but on the contrary, example embodi-
ments are to cover all modifications, equivalents, and alter-

US 2014/0181803 Al

natives falling within the scope of the claims. Like numbers
refer to like elements throughout the description of the fig-
ures.

[0041] FIGS. 2A and 2B are block diagrams showing prin-
cipal components of application wrapping, with added func-
tionality inside and outside the application package, respec-
tively. FIGS. 2A and 2B illustrate that the components can be
combined in an application package using an application (or
app) wrapping process.

[0042] FIGS. 2A and 2B show an application package,
before app wrapping, which includes the original application
code. In this example implementation, an app wrapper and
optionally some additional functionality may be inserted into
the application package. FIG. 2A then shows an application
package after app wrapping. The modified application pack-
age includes the original application code along with the app
wrapper and added functionality. In one or more example
implementations, the app wrapper and added functionality
may be inserted into a pre-built or commercial application
without the involvement of the original application developer.

[0043] FIG. 2B shows an application package, after app
wrapping, which includes the original application code along
with the app wrapper, and the added functionality residing
outside the application package. The added functionality may
communicate with the application via the app wrapper.
Accordingly, in some example implementations, the added
functionality can be updated or otherwise modified without
requiring re-wrapping.

[0044] As a result, example app wrapping techniques may
be applicable to (a) app wrapping where functionality is
added to the application package and resides inside the appli-
cation package, and (b) app wrapping where some or all or the
added functionality resides outside the application package
and can be updated without re-wrapping.

[0045]

[0046] FIG. 3 illustrates the interception of system calls by
the app wrapper. As shown in FIG. 3, intercepted system calls
can be either (a) system events or (b) system API calls. The
app wrapper can broker system events and system API calls.
System events are generated in the operating system and
called into the application. System API calls originate in the
application and call into the operating system. In at least on
example implementation, app wrapping techniques enable
intercepting system events and API calls without the involve-
ment of the developer. Typically, system events and API calls
are done under the control of the developer via the original
application code. Using the technique described herein, pre-
built or commercial applications can be app-wrapped, and the
app wrapper can intercept or broker system events and API
calls without using or modifying the original application
code.

[0047] FIG. 4 shows an example application lifecycle. The
lifecycle shown in FIG. 4 is typical of an Android application
lifecycle, for example.

[0048] FIG. 4 shows some example types of system events
and when they occur in the lifecycle of the application. In the
example shown in FIG. 4, the types of system events are
“onStart”, “onResume”, “onPause” and “onTerminate”. In
the same example, the application can be in one of two
states— “stopped” or “active”. System events “onStart” and
“onResume” occur after a user has started or re-started a
stopped application. Once started (or resumed), the applica-

tion is active. When a user leaves the application, there is an

Interception of Events and API Calls

Jun. 26, 2014

“onPause” system event. When the system shuts down the
application, there is an “onTerminate” system event, and the
application is stopped.

[0049] The app wrapper from FIG. 3 can intercept a system
event (such as the ones shown in FIG. 4), and perform a
different type of interception based on the application state,
time or other factor. System events may be exposed to com-
ponents of example app wrapping techniques by implement-
ing a method callback, for example.

[0050] The app wrapper can, for example, intercept an
“onResume” system event and perform checking to verify a
user is permitted to run the application. At an “onPause”
system event, the app wrapper can intercept the event and
write secure data before the application is terminated, for
example. Secure data can be written, for example, on a disk or
in cloud storage.

[0051] FIGS. 5A through 5D illustrate the processing of
system calls for normal operation, interception, blocking and
simulation, respectively. In general, interception of system
events and API calls involves capturing the event (or call),
performing a function, and then delegating the event (or call)
to its original destination.

[0052] FIG. 5A illustrates conventional interaction
between system and application during normal operation.
System events and API calls are passed between the system
and the application as shown.

[0053] FIG. 5B illustrates the interception of system events
and API calls by the app wrapper. In FIG. 5B, the system
generates a system event in response to a user event or another
system event. For example, the system may generate a
“launch app” event in response to the user tapping on an app
in the user interface on the device. The event is intercepted (or
captured) by the app wrapper. The app wrapper may perform
a function before delegating the system event to its original
destination in the application. Also in FIG. 5B, the application
generates a system API call. The call is intercepted by the app
wrapper. The app wrapper may perform a function before
delegating the API call to its original destination in the sys-
tem.

[0054] FIG. 5C illustrates the interception and blocking of
system events and API calls by the app wrapper. Blocking
prevents propagation of the event or call beyond the app
wrapper. Blocking can be based on business logic in the app
wrapper, for example. Consider an example scenario in which
the system generates an “onResume” event and the event is
intercepted by the app wrapper. If the logic in the app wrapper
determines that the application is not authorized to resume,
then the app wrapper blocks the event and refuses to delegate
it to a forward destination such as, for example, its original
destination in the application.

[0055] FIG. 5D illustrates the interception and modifica-
tion/simulation of system events and API calls by the app
wrapper. In this scenario, an app wrapper can send one or
more simulated or modified events to an application, or one or
more simulated or modified API calls to the system. The
scenario can be triggered by the interception of a system event
or API call, or can be initiated by the app wrapper. Simulated
events and API calls may not necessarily be related to actual
events generated by the system or API calls made by the
application.

[0056] Application Wrapping Workflow and Configuration
[0057] FIG. 6 shows an example application wrapping
workflow. The present application wrapping technique has an
app wrapping approach that allows different types of func-

US 2014/0181803 Al

tionality to be injected into a pre-built or commercial mobile
application without the involvement of the developer.
Examples of different types of functionality include, but are
not limited to, license checking and verification, security
sandboxing, and data encryption. Other examples of added
functionality can include usage tracking, reporting, and ana-
Iytics.

[0058] The present app wrapping technique can bind the
identity of a company to a commercial application, thereby
licensing the application for use by the company, and issuing,
retracting, and re-issuing application licenses. The system, or
system administrator, can perform and enforce these actions.
[0059] Theinjection process follows a similar workflow for
each type of functionality added to the application. Details of
the steps may vary depending on the functionality. FIG. 6
shows a workflow for injecting additional functionality into a
third party application.

[0060] Before step 1 in the workflow shown in FIG. 6, code
containing the additional functionality is converted to a low
level (e.g., assembly) language format. For example, the code
containing the additional functionality may be converted
from “.dex” format to “smali” via a tool such as the apktool.
At step 1 in FIG. 6, the third party application package is
decompiled using a suitable tool. In the example embodiment
shown in FIG. 6, the third party application is an Android .apk
package, and can be decompiled using the apktool to produce
“smali” files. At step 2 in FIG. 6, the decompiled files can be
modified to facilitate the third party application calling into
the additional functionality being provided by the app wrap-
per. This step may vary depending on the type of functionality
being added by the app wrapper.

[0061] At step 3, the app wrapper files are merged with the
decompiled (and modified) third party application files. At
step 4, the wrapped application is re-compiled into an
unsigned application package. For example, in the case of an
Android application, the wrapped application is re-compiled
into an .apk file.

[0062] Atstep 5 in FIG. 6, the app package is signed using
the app wrapper developer’s key.

[0063] FIGS. 7A through 7D are functional block diagrams
showing where the app wrapper logic can reside in different
example embodiments. The upgrade path for the app wrapper
logic may vary depending on where the logic resides.
[0064] FIG. 7A illustrates a case where the app wrapper
logic is contained in the application package. FIG. 7A shows
the application package comprising an application, an app
wrapper framework and app wrapper logic.

[0065] FIG. 7B illustrates a case where the app wrapper
logic is provided by a service. FIG. 7B shows a service
residing on the user computing device (e.g., mobile device)
and including app wrapper logic. FIG. 7B also shows two
different application packages each including an application
and an app wrapper framework. The app wrapper logic is
shared by the two applications. In general, the logic can be
associated with one application, or can be shared by two or
more different applications. The benefit of this configuration
is that the app wrapper logic can be upgraded without requir-
ing the application(s) to be re-wrapped.

[0066] FIG. 7C illustrates a case where the app wrapper
logic is part of an application residing on a mobile device.
FIG. 7C shows an example in which the app wrapper logic is
shared between two different applications, each including an
application and an app wrapper framework. FIG. 7C shows an
application package including an application and app wrap-

Jun. 26, 2014

per logic. Like the case shown in FIG. 7B, the benefits of the
configuration shown in FIG. 7C are that the app wrapper logic
can be upgraded without requiring the application(s) to be
re-wrapped.

[0067] FIG. 7D illustrates a case where the app wrapper
logic is split between two systems—a device and a remote
system. This approach can be used in the 3 cases illustrated in
FIG. 7A through 7C. FIG. 7D illustrates an approach for the
“embedded logic” scenario shown in FIG. 7A.

[0068] FIG. 7D shows an application package residingon a
user computing device (e.g., mobile device) and including an
application, an app wrapper framework and app wrapper
logic. The app wrapper logic on the device can communicate
with app wrapper logic residing on a remote system, as shown
in FIG. 7D. The app wrapper logic on the remote system can
be upgraded without requiring re-wrapping of the application
on the user computing device.

[0069] Use Cases/Example Workflows

[0070] FIGS. 8-11 are flow charts of methods according to
example embodiments. The steps described with regard to
FIGS. 8-11 may be performed due to the execution of soft-
ware code stored in a memory (e.g., one or more of the
memories shown in FIG. 12) associated with an apparatus
(e.g., as shown in FIG. 12) and executed by at least one
processor (e.g., one or more of the CPU’s shown in FIG. 12)
associated with the apparatus. However, alternative embodi-
ments are contemplated such as a system embodied as a
special purpose processor. Although the steps described
below are described as being executed by a processor, the
steps are not necessarily executed by a same processor. In
other words, at least one processor may execute the steps
described below with regard to FIGS. 8-11.

[0071] FIG. 8 is a flow chart describing an example work-
flow method according to an example embodiment. In the
example described with regard to method 800, the method
may apply to a development computing device (e.g., as used
by a developer of an application) when an application is
uploaded and published for distribution to one or more user
computing devices. Using the development computing device
adeveloper can publish an app as an application package with
compiled code and other resources as required or desired.
After that, the development computing device (and as a result
the developer) is not involved in the app wrapping process
related to the described app wrapping techniques.

[0072] Method 800 begins at step 810, where a develop-
ment computing device logs in to the system. For example, a
user (e.g., an application developer) using the development
computing device 1210 logs into the platform provider sys-
tem 1250. The method proceeds to step 812 where an admin
console is opened. After the admin console is open, the
method proceeds to step 814 where apps are selected to add to
the system. The method proceeds to step 816 where the
selected apps are uploaded to the system. For example, admin
console 1258 is opened and applications stored on develop-
ment computing device 1210 are selected for addition to
application datastore 1260. In step 818 the apps are scanned
for malicious code and viruses. Once the scanning is com-
plete, the method proceeds to step 820 where the apps are
published in the system and made available to system admin-
istrators.

[0073] FIG. 9 is a flow chart describing an example work-
flow method according to an example embodiment. In the
example described with regard to method 900, the method
may apply to a platform provider system (e.g., as managed by

US 2014/0181803 Al

a system administrator) when used for managing and config-
uring the apps that have been uploaded to the system by, for
example, a development computing device . This can include
creating and modifying groups of end users, and assigning
apps to groups. The app wrapping technique described herein
enables the platform provider system to implement rules and
policies related to the published apps. Rules and policies can
be implemented in an automatic fashion by the system with-
out the direct involvement of a system administrator. Alter-
natively, and/or in addition to, the system administrator may
set rules and policies using, for example, a set of menus
provided by the platform provider system.

[0074] Method 900 is for a platform provider system (e.g.,
platform provider system 1250)to make changes to groups
and to assign apps to end users. The steps described with
regard to method 900 may be performed by a system admin-
istrator and/or automatically when, for example, an applica-
tion is added to the system. Method 900 starts at step 910
where the administrator logs into the system and proceeds to
step 912 where the administrator opens an admin console. If
the system administrator would like to assign apps to a group,
then the method proceeds to step 914 where the administrator
selects apps from the system. The method then proceeds to
step 916 where the administrator selects the settings to be
applied to each of the apps selected in step 914. The method
proceeds to step 918 where the administrator assigns the
selected apps to a group, and then proceeds to step 940.
[0075] If the system administrator would like to make
changes to groups, then the method proceeds directly from
step 912 to step 930 where the administrator creates or modi-
fies a group. The method then proceeds first to step 932 where
the administrator selects an end user from the active directory
and then to step 934 where the administrator adds the selected
user to the group. Steps 932 and 934 are repeated until the
desired end users have been added to the group. The method
then proceeds to step 940.

[0076] At step 940, the administrator saves the group (in-
cluding end users, apps and app settings) to the system. The
method proceeds to step 950 where the system applies the
assignments to the end users.

[0077] FIG.10is a flow chart describing an example work-
flow from the perspective of a user computing device (e.g.,
user computing device 1230). The app wrapping technique is
transparent to a user the user computing device. The user can
be presented (e.g., on a display of the user computing device)
with a list of applications available to the user, and can select
which ones to install. The present app wrapping technique
described herein allows a platform provider system (e.g.,
platform provider system 1250) to control and manage the
distribution and use of the available apps through app wrap-
ping logic.

[0078] The workflow is described by a method shown in
FIG. 10. The method begins at step 1010 where the user logs
in to the client application on the user computing device (e.g.,
user computing device 1230), and the method proceeds to
step 1012. At step 1012, the client application (e.g., an appli-
cation configured to select and install other application, for
example, an app store) connects to the platform provider
system and the method proceeds to step 1014. At step 1014,
the client application sends metadata to the platform provider
system and the method proceeds to step 1016 where the
platform provider system determines the list of applications
using metadata and knowledge of the assignment of the end
user to a group. The method proceeds to step 1018 where the

Jun. 26, 2014

platform provider system returns the application list to the
client application. The method then proceeds to step 1020
where the client application displays a list of applications on
a display of the user computing device.

[0079] At this point, the end user can take one of two
actions—either tap on an application (as displayed on a dis-
play of the user computing device) to view details, in which
case the method proceeds to step 1030, or exit the client
application, in which case the method proceeds to 1040, the
end user exits the client application and the method com-
pletes. If the method proceeds to step 1030, then tapping on
the application will cause the method to proceed to step 1032
where the end user can select the application for installation
(e.g., tap the install button). The method proceeds to steps
1034, 1036 and 1038 in sequence at which the client appli-
cation retrieves the selected application from the platform
provider system, installs the application on the device and
sends an install status to the platform provider system.

[0080] Steps 1030 through 1038 can be repeated for mul-
tiple applications selected by the end user.

[0081] FIG. 11 is a flow chart describing an example work-
flow method according to an example embodiment. In the
example application wrapping workflow of FIG. 11, an appli-
cation wrapper is interposed on a pre-written application
before allowing a user computing device to download the
pre-written application. As discussed in more detail above,
the application wrapper may be configured to control an
operation of the pre-written application.

[0082] Instep 1110 an application package is received. For
example, platform provider system 1250 may receive an
application package (e.g., an .apk file for an Android appli-
cation package). The application package may be received
from a development computing device 1210. The application
package may include the application’s code (e.g., .dex files),
resources, assets, and manifest file. The application package
may be stored in the application datastore 1258.

[0083] In step 1112 the application is decompiled. For
example, wrapper module 1262 may decompile the applica-
tion using a suitable tool. For example, wrapper module 1262
may read the .apx file (of an Android application) from the
application datastore 1258 and decompile the using the apk-
tool to produce “smali” files.

[0084] Instep 1114 astream editor (SED) is used to modify
the decompiled application package. For example, the SED
may beused to search for string patterns and replace the string
patterns with another string pattern in preparation for inter-
posing the application wrapper. The SED may perform a line
by line search and replace. The SED may modify the decom-
piled application package to facilitate calling the additional
functionality being provided by the app wrapper. This step
may vary depending on the type of functionality being added
by the app wrapper.

[0085] Instep 1116 an application wrapper is received. For
example, platform provider system 1250 may receive an
application wrapper. The application wrapper may be
received from development computing device 1210 and/or an
aggregator computing device 1220. The application wrapper
may include the application wrapper code including code
implementing additional functionality. The application wrap-
per code, containing the additional functionality, may be con-
verted to a low level (e.g., assembly) language format. For
example, the code containing the additional functionality

US 2014/0181803 Al

may be converted from “.dex” format to “smali” via a tool
such as the apktool. The application wrapper may be stored in
the wrapper datastore 1260.

[0086] In step 1118 the decompiled modified application
package is modified (e.g., merged) with the application wrap-
per code. For example, the app wrapper files are merged with
the decompiled (and modified) application files.

[0087] In step 1120 application package and the wrapper
code are compiled. For example, the wrapped application
may be re-compiled into an unsigned application package.
For example, in the case of an Android application, the
wrapped application is re-compiled into an .apk file.

[0088] In step 1122 the compiled wrapped application is
published. For example, the unsigned wrapped application
package is signed using the app wrapper developer’s key and
exposed for download by user computing devices (e.g., user
computing device 1230).

[0089] Other Embodiments

[0090] Inanother embodiment of the present app wrapping
technique, an app wrapper class can be made part of an
activity in the application lifecycle. This may mean the class
can modify an original activity. For example, in an i0S appli-
cation, the class can be at the operating system level and can
manage the hand-off to the original activity.

[0091] Yet another embodiment of the present app wrap-
ping technique is to modify the class directly, namely, to
change the existing application code or add new code. This
approach can involve modifying code in more than place and
may be less scalable than other approaches described here.
[0092] In yet another embodiment, a customer (e.g. an
enterprise) can add its own code to a pre-built or commercial
application, and then app wrap it using the present app wrap-
ping technique described here.

[0093] In other embodiments, the client may be running a
user interface only, the application not residing on the device.

[0094] Example Architecture

[0095] FIG. 12 is a block diagram showing an example
system architecture. The example system 1200 architecture
includes a development computing device 1210, an aggrega-
tor computing device 1220, a user computing device 1230, a
platform provider system 1250, an (optional) enterprise
server 1240, and a network 1202. As will be appreciated the
system 1200 may include one or more of each of these
devices.

[0096] The development computing device 1210 includes
at least one processor 1212, an operating system 1214, an
application developer module 1216, and at least one memory
1218. The at least one processor 1210 and the at least one
memory 1218 are communicatively coupled via a bus (not
shown). The at least one processor 1210 and the at least one
memory 1218 may be hardware (e.g., silicon based) physical
devices. According to example implementations, the operat-
ing system 1214 manages hardware resources associated with
development computing device 1210 and provides common
services for computer programs executing on development
computing device 1210. According to example implementa-
tions, the application developer module 1216 may be an inte-
grated development environment (IDE) supporting any num-
ber of programming languages and configured to develop
(e.g., code and compile) applications. The development com-
puting device 1210 may be, for example, an element of any
computing device (e.g., personal computer, a laptop com-
puter and the like).

Jun. 26, 2014

[0097] The aggregator computing device 1220 includes at
least one processor 1222, an operating system 1224, an aggre-
gator module 1226, and at least one memory 1228. The at
least one processor 1220 and the at least one memory 1228 are
communicatively coupled via a bus (not shown). The at least
one processor 1220 and the at least one memory 1228 may be
hardware (e.g., silicon based) physical devices. According to
example implementations, the operating system 1224 man-
ages hardware resources associated with aggregator comput-
ing device 1220 and provides common services for computer
programs executing on aggregator computing device 1220.
According to example implementations, the aggregator mod-
ule 1226 may include a datastore of a plurality of applications
and a mechanism to make the plurality of web applications
available to other computing devices. The aggregator com-
puting device 1220 may be, for example, an element of any
computing device (e.g., a server, a cloud computing device, a
personal computer, and the like).

[0098] The user computing device 1230 includes at least
one processor 1232, an operating system 1234, an application
module 1236, and at least one memory 1238. The at least one
processor 1230 and the at least one memory 1238 are com-
municatively coupled via a bus (not shown). The at least one
processor 1230 and the at least one memory 1238 may be
hardware (e.g., silicon based) physical devices. According to
example implementations, the operating system 1234 man-
ages hardware resources associated with user computing
device 1230 and provides common services for computer
programs executing on user computing device 1230. Accord-
ing to example implementations, the application module
1216 may include a datastore including at least one applica-
tion the tools to execute applications (e.g., a runtime) and a
mechanism used to acquire/update applications. The user
computing device 1230 may be, for example, an element of
any computing device (e.g., personal computer, a laptop com-
puter and the like).

[0099] The (optional) enterprise server 1240 includes at
least one processor 1242, an operating system 1244, an appli-
cation server 1246, and at least one memory 1418. The at least
one processor 1240 and the at least one memory 1248 are
communicatively coupled via a bus (not shown). The at least
one processor 1240 and the at least one memory 1248 may be
hardware (e.g., silicon based) physical devices. According to
example implementations, the operating system 1244 man-
ages hardware resources associated with enterprise server
1240 and provides common services for computer programs
executing on enterprise server 1240. According to example
implementations, the application server 1246 may be config-
ured to enable a user device to indirectly download the appli-
cations associated with the platform provider. The enterprise
server 1240 may be, for example, an element of any comput-
ing device (e.g., anetworked computer, a cloud computer, and
the like).

[0100] The platform provider system 1250 includes at least
one processor 1252, an operating system 1254, an application
server 1256, an application datastore 1258, a wrapper datas-
tore 1260, a wrapper module 1262 and at least one memory
1258. The at least one processor 1250 and the at least one
memory 1258 are communicatively coupled via a bus (not
shown). The at least one processor 1250 and the at least one
memory 1258 may be hardware (e.g., silicon based) physical
devices. According to example implementations, the operat-
ing system 1254 manages hardware resources associated with
platform provider system 1250 and provides common ser-

US 2014/0181803 Al

vices for computer programs executing on platform provider
system 1250. The platform provider system 1250 may be, for
example, an element of any computing device (e.g., a net-
worked computer, a cloud computer, and the like).

[0101] According to example implementations, the appli-
cation server 1256 may be configured to enable a user device
to download the applications associated with the platform
provider. The application datastore 1258 and the wrapper
datastore 1260 may be configured to store application pack-
ages and application wrappers, respectively. The wrapper
module 1262 may be configured to interpose an application
wrapper on a pre-written application before allowing a user
computing device to download the pre-written application as
discussed throughout this disclosure.

[0102] An administrator as a platform provider using the
platform provider system 1250 may select pre-written appli-
cations supplied by developers via the development comput-
ing device 1210 and aggregators via the aggregator comput-
ing device 1220, and may present the applications in a
marketplace hosted by the platform provider system 1250. An
IT administrator can purchase applications and assign them to
end-users operating the user computing device 1230. The
platform provider system 1250 can use the system and meth-
ods described herein to wrap the purchased applications and
then make them available for download to the user computing
device 1230. In some embodiments, the user computing
device 1230 can download the applications directly from the
platform provider system 1250. In other embodiments, the
user computing device 1230 can download the applications
from a separate server, for example an enterprise server 1240
maintained by the I'T administrator.

[0103] For example, a company with a mobile workforce
may wish to provide its mobile employees with an app that
enables remote access to their personal computer (PC) desk-
tops from a mobile device. In this example, let’s assume an
Information Technology (IT) administrator wishes to pur-
chase multiple licenses of the remote desktop application for
use by the company’s employees. Using the system and
method described herein, the IT administrator can view avail-
able applications and purchase a quantity of licenses using a
credit card or purchase order. Once the application is pur-
chased and made available to the IT administrator, along with
the specified number of licenses, the IT administrator can
assign the application to the employees.

[0104] The systems and methods described herein can
automatically wrap the purchased application as part of the
purchase process. The IT administrator can assign the pur-
chased application to a group of employees and/or to indi-
vidual employees. The application can be presented to the
employee via the native i0S/Android device client and can
allow the employee to install the application onto their mobile
device. Once the application is assigned to the employees, via
a group assignment or directly, the system can track and
display the number of licenses that have been assigned to the
employees. As each employee installs the application onto
their mobile device and/or another device, the system can
track and display the number of consumed licenses. If the
employee leaves the company or decommissions their device,
the system can disable the application so that it can no longer
be used. The system can then recoup the license, and add it
back to the number of available licenses for the application.
[0105] Some of the above example embodiments are
described as processes or methods depicted as flowcharts.
Although the flowcharts describe the operations as sequential

Jun. 26, 2014

processes, many of the operations may be performed in par-
allel, concurrently or simultaneously. In addition, the order of
operations may be re-arranged. The processes may be termi-
nated when their operations are completed, but may also have
additional steps not included in the figure. The processes may
correspond to methods, functions, procedures, subroutines,
subprograms, etc.

[0106] Methods discussed above, some of which are illus-
trated by the flow charts, may be implemented by hardware,
software, firmware, middleware, microcode, hardware
description languages, or any combination thereof When
implemented in software, firmware, middleware or micro-
code, the program code or code segments to perform the
necessary tasks may be stored in a machine or computer
readable medium such as a storage medium. A processor(s)
may perform the necessary tasks.

[0107] Specific structural and functional details disclosed
herein are merely representative for purposes of describing
example embodiments. Example embodiments, however, be
embodied in many alternate forms and should not be con-
strued as limited to only the embodiments set forth herein.
[0108] It will be understood that, although the terms first,
second, etc. may be used herein to describe various elements,
these elements should not be limited by these terms. These
terms are only used to distinguish one element from another.
For example, a first element could be termed a second ele-
ment, and, similarly, a second element could be termed a first
element, without departing from the scope of example
embodiments. As used herein, the term “and/or” includes any
and all combinations of one or more of the associated listed
items.

[0109] It will be understood that when an element is
referred to as being “connected” or “coupled” to another
element, it can be directly connected or coupled to the other
element or intervening elements may be present. In contrast,
when an element is referred to as being “directly connected”
or “directly coupled” to another element, there are no inter-
vening elements present. Other words used to describe the
relationship between elements should be interpreted in a like
fashion (e.g., “between” versus “directly between,” “adja-
cent” versus “directly adjacent,” etc.).

[0110] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of example embodiments. As used herein, the
singular forms “a,” “an” and “the” are intended to include the
plural forms as well, unless the context clearly indicates oth-
erwise. It will be further understood that the terms “com-
prises,” “comprising,” “includes” and/or “including,” when
used herein, specify the presence of stated features, integers,
steps, operations, elements and/or components, but do not
preclude the presence or addition of one or more other fea-
tures, integers, steps, operations, elements, components and/
or groups thereof.

[0111] It should also be noted that in some alternative
implementations, the functions/acts noted may occur out of
the order noted in the figures. For example, two figures shown
in succession may in fact be executed concurrently or may
sometimes be executed in the reverse order, depending upon
the functionality/acts involved.

[0112] Unless otherwise defined, all terms (including tech-
nical and scientific terms) used herein have the same meaning
as commonly understood by one of ordinary skill in the art to
which example embodiments belong. It will be further under-
stood that terms, e.g., those defined in commonly used dic-

US 2014/0181803 Al

tionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art
and will not be interpreted in an idealized or overly formal
sense unless expressly so defined herein.

[0113] Portions of the above example embodiments and
corresponding detailed description are presented in terms of
software, or algorithms and symbolic representations of
operation on data bits within a computer memory. These
descriptions and representations are the ones by which those
of ordinary skill in the art effectively convey the substance of
their work to others of ordinary skill in the art. An algorithm,
as the term is used here, and as it is used generally, is con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of optical, electrical, or mag-
netic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven conve-
nient at times, principally for reasons of common usage, to
refer to these signals as bits, values, elements, symbols, char-
acters, terms, numbers, or the like.

[0114] In the above illustrative embodiments, reference to
acts and symbolic representations of operations (e.g., in the
form of flowcharts) that may be implemented as program
modules or functional processes include routines, programs,
objects, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types and
may be described and/or implemented using existing hard-
ware at existing structural elements. Such existing hardware
may include one or more Central Processing Units (CPUs),
digital signal processors (DSPs), application-specific-inte-
grated-circuits, field programmable gate arrays (FPGAs)
computers or the like.

[0115] Itshould be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, or as
is apparent from the discussion, terms such as “processing” or
“computing” or “calculating” or “determining” of “display-
ing” or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical, electronic
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

[0116] Note also that the software implemented aspects of
the example embodiments are typically encoded on some
form of non-transitory program storage medium or imple-
mented over some type of transmission medium. The pro-
gram storage medium may be magnetic (e.g., a floppy disk or
a hard drive) or optical (e.g., a compact disk read only
memory, or “CD ROM”), and may be read only or random
access. Similarly, the transmission medium may be twisted
wire pairs, coaxial cable, optical fiber, or some other suitable
transmission medium known to the art. The example embodi-
ments not limited by these aspects of any given implementa-
tion.

[0117] Lastly, itshould also be noted that whilst the accom-
panying claims set out particular combinations of features
described herein, the scope of the present disclosure is not
limited to the particular combinations hereafter claimed, but
instead extends to encompass any combination of features or

Jun. 26, 2014

embodiments herein disclosed irrespective of whether or not
that particular combination has been specifically enumerated
in the accompanying claims at this time.

What is claimed is:

1. A method of administering an enterprise computing
system including a plurality of user computing devices, the
method comprising:

selecting a pre-written application for inclusion in a menu

of enterprise applications downloadable to a user com-
puting device;

allowing the user computing device to download the pre-

written application; and

interposing an application wrapper on the pre-written

application before allowing the user computing device
to download the pre-written application, the application
wrapper being configured to control an operation of the
pre-written application.

2. The method of claim 1, wherein the pre-written applica-
tion is downloaded from the menu of enterprise applications.

3. The method of claim 2, wherein the downloading is
performed indirectly via an intermediate server.

4. The method of claim 1, wherein the application wrapper
is configured to control distribution and use of the pre-written
application.

5. The method of claim 1, wherein the application wrapper
is configured to verify that the user computing device is
authorized to download the pre-written application.

6. The method of claim 1, wherein the application wrapper
is configured to control storage of data associated with the
pre-written application in the user computing device.

7. The method of claim 6, wherein the data is fetched by the
pre-written application.

8. The method of claim 6, wherein the data is generated by
the pre-written application.

9. The method of claim 6, wherein the controlling of the
storage of data includes prohibiting storage of data associated
with the pre-written application in the user computing device.

10. The method of claim 1, wherein the application wrap-
per is configured to control access to an application program
interface (API).

11. The method of claim 10, wherein

the API is configured to at least one of cut, copy and paste

data between or within applications, and

the application wrapper is configured to interact with the

APTin order to control one of the cut, copy and paste data
between or within applications.

12. The method of claim 10, wherein

the API is configured to control file sharing between or

within applications, and

the application wrapper is configured to interact with the

API in order to control file sharing between or within
applications.

13. The method of claim 1, wherein the application wrap-
peris configured to impose at least one of day and time-of-day
restrictions on operating the pre-written application.

14. The method of claim 1, wherein the application wrap-
per is configured to impose location-of-use restrictions on
operating the pre-written application.

15. An enterprise computing system including a plurality
of' user computing devices, the system comprising:

a menu of enterprise applications downloadable to a user

computing device;

US 2014/0181803 Al

code segments, that when executed by a processor, enable
the user computing device to download a pre-written
application; and

code segments, that when executed by a processor, admin-
ister an application wrapper configured to control opera-
tion of the pre-written application.

16. The system of claim 15, wherein the pre-written appli-
cation is downloaded from the menu of enterprise applica-
tions.

17. The method of claim 16, wherein the downloading is
performed indirectly via an intermediate server.

18. The system of claim 15, wherein the code segments that
administer the application wrapper are configured to verify
that the user computing device is authorized to download the
pre-written application.

19. The system of claim 15, wherein the code segments that
administer the application wrapper are configured to control
storage of data associated with the pre-written application in
the user computing device.

20. The system of claim 19, wherein the data is fetched by
the pre-written application.

21. The system of claim 19, wherein the data is generated
by the pre-written application.

Jun. 26, 2014

22. The system of claim 19, wherein the code segments that
administer the application wrapper are configured to prohibit
storage of data associated with the pre-written application in
the user computing device.

23. The system of claim 15, wherein the code segments that
administer the application wrapper are configured to control
access to an application program interface (API).

24. The system of claim 23, wherein

the API is configured to at least one of cut, copy and paste

data between or within applications, and

the application wrapper is configured to interact with the

APTin order to control one of the cut, copy and paste data
between or within applications.

25. The system of claim 23, wherein the API is configured
to control file sharing between or within applications, and the
application wrapper is configured to interact with the API in
order to control file sharing between or within applications.

26. The system of claim 15, wherein the code segments that
administer the application wrapper are configured to impose
at least one of day and time-of-day restrictions on operating
the pre-written application.

27. The system of claim 15, wherein the code segments that
administer the application wrapper are configured to impose
location-of-use restrictions on operating the pre-written
application.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description/Claims
	Page 25 - Claims

