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(57) ABSTRACT 
Vehicle with an occupant safety system includes an occupant 
safety system designed to reduce injury to an occupant during 
an accident involving the vehicle and a processor coupled to 
the safety system and that receives at least one inertial prop 
erty of the vehicle and information about a portion of a road 
ahead of the vehicle in its travel direction. If the processor 
determines, based on the at least one inertial property and the 
information, that the vehicle is unlikely to safely travel that 
portion of the road, the processor initiates action to ensure 
safe travel of the vehicle or safety of the occupant. The inertial 
property of the vehicle may be provided by an inertial mea 
surement unit (lMU) that measures acceleration in three 
orthogonal directions and angular velocity about three 
orthogonal axes, all at a substantially common location. The 
occupant safety system may include one or more in?atable 
airbags. 
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NEURAL NETWORK SINGLE POINT, PASSENGER COMPARTMENT MOUNTED SENSOR PERFORMANCE 

SCALED BARRIER SCALING FACTOR 
VELOCITY 

1 1.2 1.4 1.5 1.8 2 

8 MPH NT NT NT NT NT NT 

10 MPH NT 07/29 09/31 10/30 NT NT 

12 MPH 0.0/1.1 08/35 09/35 1.0/3.4 1.4/3.9 2.0/4.7 

14 MPH 0.0/1.2 0.9/4.1 1.0/3.8 1.2/4.0 1.3/4.0 1.7/4.5 

15 MPH 00/14 09/44 10/40 1.1/4.0 1.4/4.3 1.7/4.5 

18 MPH 00/15 08/42 07/35 1.2/4.5 1.5/4.8 1.8/4.9 

20 MPH 0.0/1.8 0.7/4.3 07/40 11/43 13/44 10/38 

22 MPH 0.0/1.9 0.5/3.9 07/40 09/41 1.2/4.5 1.1/4.2 

24 MPH 0.0/2.1 0.1/2.3 0.8/4.4 08/42 13/50 1.4/4.8 

25 MPH 00/23 01/25 05/40 09/45 10/44 1.2/4.5 

28 MPH 00/25 00/21 01/24 07/42 08/41 05/32 

30 MPH 00/27 00/23 0.1125 01/23 08/44 1.2/5.0 

32 MPH 00/28 00/24 01/28 01/25 09/47 11/49 

34 MPH 00/30 00/23 0.0120 00/18 05/42 1.2/5.3 

Fly. 3 

OPTIMIZED SINGLE POINT, PASSENGER COMPARTMENT MOUNTED SENSOR PERFORMANCE 

SCALED 
VELOCITY BARRIER SCALING FACTOR 

8MPH 

10 MPH 

12 MPH 

14 MPH 

16 MPH 

18 MPH 

20 MPH 

22 MPH 

24 MPH 

26 MPH 

28 MPH 

30 MPH 

32 MPH 

34 MPH 

1 

NT 

4.7/10.3* 

2.2/6.7 

22/72 

22/76 

22/80 

2.0/7.9 

1.0/5.3 

.5/4.2 

.4/4 

.4/4.1 

.4/4.2 

.3/4.2 

.3/4.0 

1.2 

NT 

NT 

5.8/121 

2.7/7.5 

2.7/7.9 

2.8/8.7 

3.1/9.3 

2.7/8.9 

1.6/6.5 

1.2/5.7 

.6/4.0 

.5/4.0 

.5/4.1 

.5/4.2 

1.4 

NT 

NT 

NT 

3.9/8.9 

3.4/8.5 

3.6/9.2 

3.7/9.7 
3.91104 
39110.8 
2.0/6.8 

1.8/6.6 

.8/4.2 

.7/7.2 

.7/4.3 

1.6 

NT 

NT 

NT 

NT 

4.2/9.3 

4.2/9.7 

4.3/11.2 

4.5/10.9 

4.8/11.6 
4.5/11.5 
2.7/7.8 

2.2/6.9 

2.1/7.0 

.9/4.5 

1.8 

NT 

NT 

NT 

NT 
NT 

50/105 

50/109 

5.2/11.5 

54/120 
5.8/13 
59/135 
64/145 

2.6/7.4 

26/75 

2 

NT 

NT 

NT 

NT 
NT 

17.8/275 

5.9/11.7 

5.9/122 

6.1/12.8 
6.4/135 
6.8/14.4 
7.1/15.1 

3.4/8.4 

4.0/9.6 



US. Patent Jul. 1, 2014 Sheet 3 0f 12 US 8,768,573 B2 

73 



US. Patent Jul. 1, 2014 Sheet 4 0f 12 US 8,768,573 B2 

7 56 

\73 

MEL B75 
,, \ 110 

7078109 
100 

§\ 103 
106 72\ \ 

\1 \1 

\\ \\112107 
\1 102 

\113 

104/ \\ IOTIOS 
Er] I: 
RUBBER TIN COATED BRASS PLASTIC 

Hg. 12 



US. Patent Jul. 1, 2014 Sheet 5 0f 12 US 8,768,573 B2 



US. Patent Jul. 1, 2014 Sheet 6 0f 12 US 8,768,573 B2 

SLDE IMPACT 
CRUSH ZONE 
/ ENSOR 

CRUSH ZONE ' 

/SENSOR 1‘61 

l 
160 

ELECTRONIC 
SENSOR 1 

ELECTRONIC 
/ SENSOR 

L_______ 
_______1 

W 

163 
NON-CRUSH 

_L_ ZONE-MOUNTED l 
__—|__ SENSOR = 

AIRBAG 
ODUL Hg. 21m 

ELECTRONIC 
SENSOR 1 

l 62 
NON-CRUSH 

=4?- ZONE-MOUNTED 

; SENSOR 

AIRBAG 
NIODULE 



US. Patent Jul. 1, 2014 

eqsure reacon - _ 

crash o1her Than crush 

Sheet 7 0f 12 

Deploy oocuponf 
resholnt device 

parome’rer based 

US 8,768,573 B2 

MOdIIY 
algomhm or 

on reuc?on In 
rush zon = 

?g. 214) 

in 



US. Patent Jul. 1, 2014 Sheet 8 0f 12 US 8,768,573 B2 

204 

202 
200 205 

206 

/ 199 210 /195— 
201 \_ / 208 $1924 



U.S. Patent Jul. 1, 2014 Sheet 9 0f 12 US 8,768,573 B2 

22 

22 

22 

?g. 2614 

Occupant Accelerometer Anticipatory 
Crash Sensor Crash Sensor Sensor 

V 
Control 
Module 

Fig. 28 

Gas Generator ‘ Airbag Atmosphere 

Atmosphere 

ZSO/i 

3% 25?; 265 g g 25 
2 25 52 

263 f ,L Q 258 f: Q i 
\Abrotion Sensor Component 

2% $19.29 
26M 8 $254 261 

25 264 50 560 
g D N266 lognostlc Voltage or 

mm W— 



US. Patent Jul. 1, 2014 Sheet 10 0f 12 US 8,768,573 B2 

Monilor operollon 
of componenl 

40 

52 
7 Cellular Phone 

Generole Signol Delerrnlne currenl 
é indiocling cbnormol locollon of vehlcle 0nd 

opera-ion locollon ofl rooowoy 

Dlrec' slgnol lo Delerrnine poln from 
[ guioonce sworn ounen- locolon lo 
8 v locollon oll rooowoy 

yum 44 Operole guldonoe 
syslern lo gulole Dlrecl vehicle 

6 vehicle off olong polh 
rocdwov 

l x 
Koo ls 60 //cornponenl YES 

abnormally / 

TI 32 Prevenl NO g. 
lie-envy 
ofvehiole 

onlo roodwoy 

TIQ'. 31 



US. Patent Jul. 1, 2014 Sheet 11 0f 12 US 8,768,573 B2 

762 K—64 #66 
Component Operational soielli’re- I 

operation bosed/ ground-based Gu'dqnce g, monitoring location determining Wei“ 
system system 

301 

1. Obtain data from staged crashes and other 
non-crash events plus occupant position 
weight, size, velocity etc. from sled tests 

ii 
2. Analytically derive additional crash and 

event data from staged crashes and 
analytically determine occupant motion. 

3. Design candidate neural network. 

V 
4. Train the candidate neural network. 

+ 

Fig. 36 

5. Test the neural network using different data. 

V 
I 6. Redesign the network if necessary. |_ 

7. Output neural network algorithm. 



US. Patent 

311 

Jul. 1, 2014 

31.1 

3 12 

GPS receiver 
l 

Sheet 12 0f 12 US 8,768,573 B2 

DGPS receiver 

Processor including 
Kolmon fil’rer 

?g. 35 

523 



US 8,768,573 B2 
1 

TECHNIQUE FOR ENSURING SAFE TRAVEL 
OF A VEHICLE OR SAFETY OF AN 

OCCUPANT THEREIN 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a divisional application of US. patent 
application Ser. No. 12/028,956 ?led Feb. 11, 2008, now 
abandoned, which is: 

1. a CIP of US. patent application Ser. No. 11/082,739 
?led Mar. 17, 2005, now US. Pat. No. 7,421,321, which is a 
CIP of US. patent application Ser. No. 10/701 ,361 ?led Nov. 
4, 2003, now US. Pat. No. 6,988,026, which is a CIP ofU.S. 
patent application Ser. No. 10/638,743 ?led Aug. 11, 2003, 
now US. Pat. No. 7,284,769; 

2. a CIP of US. patent application Ser. No. 11/131,623 
?led May 18, 2005, now US. Pat. No. 7,481,453, which is a 
CIP ofU.S. patent application Ser. No. 10/638,743 ?ledAug. 
11, 2003, now US. Pat. No. 7,284,769; 

3. a CIP of US. patent application Ser. No. 11/833,033 
?led Aug. 2, 2007, now abandoned, which is a CIP of US. 
patent application Ser. No. 10/638,743 ?led Aug. 11, 2003, 
now US. Pat. No. 7,284,769; and 

4. a CIP of US. patent application Ser. No. 11/833,052 
?led Aug. 2, 2007, now US. Pat. No. 8,060,282, which is a 
CIP ofU.S. patent application Ser. No. 10/638,743 ?ledAug. 
11, 2003, now US. Pat. No. 7,284,769. 

All of the above applications and patents, and any applica 
tions, publications and patents mentioned below, are incor 
porated by reference herein in their entirety and made a part 
hereof. 

FIELD OF THE INVENTION 

The present invention relates to ensuring safe travel of a 
vehicle or safety of an occupant of the vehicle. 

BACKGROUND OF THE INVENTION 

Background of the invention is set forth in the parent ’743 
application. The de?nitions in section 5 of the parent ’623 
application may be applicable herein. 

SUMMARY OF THE INVENTION 

Land vehicle including an occupant safety system that is 
designed to reduce injury to an occupant during an accident 
involving the vehicle, such as an airbag, and a processor 
coupled to the safety system and that receives at least one 
inertial property of the vehicle and information about a por 
tion of a road ahead of the vehicle in a travel direction of the 
vehicle. If the processor determines, based on the at least one 
inertial property and the information, that the vehicle is 
unlikely to safely travel that portion of the road, the processor 
is con?gured to initiate action to ensure safe travel of the 
vehicle or safety of the occupant. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The following drawings are illustrative of embodiments of 
the invention and are not meant to limit the scope of the 
invention as encompassed by the claims. 

FIG. 1 is a view of the front of the passenger compartment 
of a motor vehicle, with portions cut away and removed, 
having dual airbags and a single point crash sensor and crash 
severity forecaster including an accelerometer and using a 
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2 
pattern recognition technique. FIG. 1A is an enlarged view of 
the sensor and diagnostic module shown in FIG. 1. 

FIG. 2 is a diagram of a neural network used for a crash 
sensor and crash severity forecaster designed based on the 
teachings of invention and having more than one output node. 

FIG. 3 contains the results of a neural network algorithm on 
a crash matrix created using the techniques of velocity and 
crash scaling. 

FIG. 4 contains the results of a standard single point crash 
sensor on a crash matrix created using the techniques of 
velocity and crash scaling. 

FIG. 5 is a perspective view of a preferred embodiment of 
the sensor of this invention for use in frontal impacts shown 
removed from the vehicle. 

FIG. 6 is a perspective view taken along line 6-6 of the 
sensor shown in FIG. 5 with the interior parts pulled apart to 
illustrate the interior structure. 

FIG. 7 is a frontal view of another preferred embodiment of 
the sensor of shown mounted on a vehicle to sense frontal 

impacts with portions of the vehicle removed to permit view 
ing of the sensor. 

FIG. 7A is a view of a vertical segment of the sensor shown 
in FIG. 7 taken along line 7A-7A in a condition before being 
impacted by the vehicle bumper during a crash. 

FIG. 7B is the same view of the sensor shown in FIG. 7A 
after being impacted by the vehicle bumper during a crash. 

FIG. 8 is a partial view of an alternate con?guration of a 
vertical portion of the sensor of FIG. 7 showing it displaced 
rearward to reduce its sensitivity to impacts above the 
bumper. 

FIG. 9 is a view of a vehicle taken from the side, with 
certain portions removed, which is about to impact a low pole 
which misses the bumper, illustrating the ability of the sensor 
to respond to this type of crash. 

FIG. 10 is a side view of another preferred embodiment of 
the sensor in accordance with the invention shown mounted 
on a vehicle in a position to sense side impacts, with portions 
of the vehicle removed to permit viewing of the sensor. 

FIG. 11 is a rear view of another preferred embodiment of 
the sensor in accordance with the invention shown mounted 
on a vehicle in a position to sense rear impacts with portions 
of the vehicle removed to permit viewing of the sensor. 

FIG. 12 is a cutaway view of the header/connector assem 
bly of FIG. 5 taken along line 12-12 illustrating the construc 
tion details and in particular the method of sealing the sensor. 

FIG. 13 is a partial cutaway view of a portion of the sensor 
illustrating a bend in the sensor. 

FIG. 14 is a cutaway of the sensor end showing the welded 
seal. 

FIG. 15 is a view of the sensor of FIG. 5 taken along the line 
15-15 with part of the tube and rod cut away illustrating the 
positioning of spacers within the sensor and their use to 
change the sensitivity of the sensor to deformation. 

FIG. 16 is a view ofthe sensor ofFIG. 5 with portions ofthe 
tube and rod cut away illustrating the use of a grease to ?ll the 
cavity between the rod and tube to minimize the effects of 
vibration and to protect the surfaces of the conductors from 
corrosion. 

FIG. 17 is a side view of another preferred embodiment of 
a sensor in accordance with the invention shown mounted on 
a vehicle in a position to sense both frontal and side impacts, 
with portions of the vehicle removed to permit viewing of the 
sensor. 

FIG. 18 is a perspective view of an automobile, as viewed 
partially from above, of a side impact anticipatory sensor 
system using the same computer as the single point crash 
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sensor and also showing inputs from a front mounted crush 
zone sensor, an engine speed sensor, and an antilock braking 
system sensor. 

FIG. 19 is a frontal view of an automobile showing the 
location of an electromagnetic wave crash anticipatory or 
avoidance sensor which uses the same pattern recognition 
computer system as the crash sensor. 

FIG. 20 is a circuit schematic showing a side mounted 
velocity sensor used with a non-crush zone mounted sensor. 

FIG. 21 is a circuit schematic showing a forward mounted 
sensor used as an input to an electronic sensor. 

FIG. 21A is a circuit schematic showing a forward 
mounted ball-in-tube sensor used as an input to a crash sensor 
mounted outside of the crush zone. 

FIG. 21B is a circuit schematic showing a forward mounted 
electronic sensor used as an input to a crash sensor mounted 
outside of the crush zone. 

FIG. 21C is a schematic of an electronic crash sensor 
arrangement including a crush-zone mounted crash sensor 
and a non-crush-zone mounted crash sensor. 

FIG. 21D is a ?ow chart showing the manner in which an 
occupant restraint device may be deployed using the crash 
sensor arrangement of FIG. 21C. 

FIG. 22 is a perspective view of a side impact airbag system 
illustrating the placement of the airbag vents in the door panel 
and the exhausting of the in?ator gases into the vehicle door 
and also showing the use of a pusher plate to adjust for the 
mismatch between the point of impact of an intruding vehicle 
and the sensor of a self-contained side impact airbag system. 

FIG. 23 is a cross section view of a self-contained side 
impact airbag system using an electronic sensor. 

FIG. 24 is a schematic of the electric circuit of an electro 
mechanical or electronic self-contained side impact airbag 
system. 

FIG. 25 is a side view of a vehicle showing the preferred 
mounting of two self-contained airbag modules into the side 
of a coupe vehicle, one inside of the door for the driver and the 
other between the inner and outer side panels for the rear seat 
passenger. 

FIG. 26 is a perspective view of a vehicle with the vehicle 
shown in phantom illustrating one preferred location of the 
occupant transducers placed according to the methods taught 
in US. patent application Ser. No. 08/798,029. 

FIG. 26A is a view of the passenger compartment of a 
motor vehicle, with portions cut away and removed, illustrat 
ing an occupant out-of-position sensor and a rear facing child 
seat detector, both located on the A-pillar and both using the 
same computer as the pattern recognition based crash sensor. 

FIG. 27 is a perspective view of a vehicle seat and headrest 
containing ultrasonic head location sensors consisting of one 
transmitter and one receiver. 

FIG. 28 is a schematic diagram showing a Phase 4 Smart 
Airbag System. 

FIG. 29 is a schematic illustration of a generalized com 
ponent with several signals being emitted and transmitted 
along a variety of paths, sensed by a variety of sensors and 
analyzed by the diagnostic module in accordance with the 
invention and for use in a method in accordance with the 
invention. 

FIG. 30 is a schematic of a vehicle with several compo 
nents and several sensors and a total vehicle diagnostic sys 
tem in accordance with the invention utilizing a diagnostic 
module in accordance with the invention and which may be 
used in a method in accordance with the invention. 

FIG. 31 is a ?ow diagram of information ?owing from 
various sensors onto the vehicle data bus and thereby into the 
diagnostic module in accordance with the invention with 
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4 
outputs to a display for notifying the driver, and to the vehicle 
cellular phone for notifying another person, of a potential 
component failure. 

FIG. 32 is a ?ow chart of the methods for automatically 
monitoring a vehicular component in accordance with the 
invention. 

FIG. 33 is a schematic illustration of the components used 
in the methods for automatically monitoring a vehicular com 
ponent. 

FIG. 34 is a schematic of a vehicle with several accelerom 
eters and/or gyroscopes at preferred locations in the vehicle. 

FIG. 35 is a block diagram of an inertial measurement unit 
calibrated with a GPS and/or DGPS system using a Kalman 
?lter. 

FIG. 36 is a block diagram illustrating a method of obtain 
ing a sensor and prediction algorithm using a neural network. 

FIG. 37 is a schematic of a vehicle with several accelerom 
eters and/or gyroscopes at preferred locations in the vehicle. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

1. Crash Sensors 
1.1 Pattern Recognition Approach to Crash Sensing 
Throughout much of the discussion herein, the neural net 

work will be used as an example of a pattern recognition 
technique or algorithm since the neural network is one of the 
most developed of such techniques. However, it has limita 
tions that are now being addressed with the development of 
newer pattern recognition techniques as well as better neural 
network techniques such as combination or modular neural 
networks. These limitations involve the dif?culty in describ 
ing the process used in classifying patterns with the result that 
there is a fear that a pattern that was not part of the training set 
might be missed. Also, the training process of the neural 
network does not guarantee that convergence to the best solu 
tion will result. One such example is the local minimum 
problem wherein the training algorithm converges on a result 
that is not the best overall or global solution. These problems 
are being solved with the development of newer pattern rec 
ognition techniques such as disclosed in various US. patents 
and technical papers. One invention disclosed herein is the 
use of pattern recognition techniques including neural net 
works, regardless of the particular technique, to provide a 
superior smart airbag system. In particular, genetic algo 
rithms are being applied to aid in selecting the best of many 
possible choices for the neural network architecture. The use 
of genetic algorithms helps avoidthe local minimum situation 
mentioned above since several different architectures are 
tried and the best retained. 
The pattern recognition algorithm, which forms an integral 

part of the crash sensor described herein, can be implemented 
either as an algorithm using a conventional microprocessor, 
FPGA orASIC or through a neural computer. In the ?rst case, 
the training is accomplished using a neural pattern recogni 
tion program and the result is a computer algorithm fre 
quently written in the C computer language, although many 
other computer languages such as FORTRAN, assembly, 
Basic, etc. could be used. In the last case, the same neural 
computer can be used for the training as used on the vehicle. 
Neural network software for use on a conventional micro 
computer is available from several sources such as Intema 
tional Scienti?c Research, Panama City, Panama. An 
example of a neural network-based crash sensor algorithm 
produced by ISR software after being trained on a crash 
library created by using data supplied by an automobile 



US 8,768,573 B2 
5 

manufacturer for a particular model vehicle plus additional 
data created by using the techniques of crash and velocity 
scaling is: 

Neural net for crash sensor. 23 Aug. 94. 50 input nodes, 
6 hidden nodes (sigmoid transfer function), 1 output node 

(value 0 or 1). 
Network was trained using back propagation with Lo gicon 

Projection. 
Yin(1-50) are raw input values. Xin(1-50) are scaled input 

values. 
Yin(50) is the sum of the latest 25 accelerations, in tenths of 

a g, 

Yin(49) is the sum of the previous 25, etc. The time step is 
80 microsecond. 

logical function nnmtlpn3(Yin, ?resum, Yout) 
real*4 ?resum, Yin(50), Yout 
integer i, j 
real*4 biashid(6), biasout, ?re_criterion, hiddenout(6), 
NormV, NV(4), 

& offset_in(50), offset_out, 
wgthid(51,6), 

& wgtout(6), Xin(51), Xsum 
parameter(?re_criterion:0.0) 
data scale_in/ (omitted)/ 
data offset_in/ (omitted)/ 
data scale_out, offset_out/ 0.625, 05/ 
data NV/ 2.0, 7.0, 7.0711002, 50.000458/ 
data biashid/ —49.110764, —69.856407, —48.670643, 
& —48.36599, —52.745285, —49.013027/ 
data biasout/ 0.99345559/ 
data wgthid/ (omitted)/ 
data wgtout/ (omitted)/ 
NormV:0.0 
do i:1,50 
Xin(i):scale_in(i)*Yin(i)—offset_in(i) 
NormVINormV +Xin(i) *Xin(i) 
enddo 
NormVINV(1)*NV(2)*NV(3) / (NV(4)+NormV) 
do i:1,50 
Xin(i):NormV*Xin(i) 
enddo 

Xin(51):NV(2)—NV(3)*NormV 
do i:1,6 
XsumIbiashid(i) 
do j:1 , 5 1 
xsumqsum+wgthid(j,i)*Xin(j) 
enddo 
hiddenout(i):1.0/ (1 .0+exp(—Xsum)) 
enddo 
?resumIbiasout 
do i:1,6 
?resumI?resum+wgtout(i)*hiddenout(i) 
enddo 

YoutIoffset_out+scale_out*tanh(?resum) 
if(?resum .GE. ?re_criterion) then 
nnmtlpn3:.TRUE. 
else 
nnmtlpn3:.FALSE. 
endif 
return 
end 
Neural computers on a chip are now available from various 

chip suppliers. These chips make use of massively parallel 
architecture and allow all of the input data to be processed 
simultaneously. The result is that the computation time 
required for a pattern to be tested changes from the order of 
milliseconds for the case of the microprocessor-implemented 
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6 
system to the order of tens to hundreds of microseconds for 
the neural computer. With this computational speed, one neu 
ral computer can easily be used for several pattern recognition 
implementations simultaneously even during the crash event 
including dynamic out-of-position and crash sensing. A dis 
cussion of the structure of such a neural computer can be 
found on page 382 of Digital Neural Networks, by Kung, S. 
Y., PTR Prentice Hall, Englewood Cliffs, N.J., 1993. 
An example of an algorithm produced by such software 

after being trained on a crash library created by using data 
supplied by an automobile manufacturer for a particular 
model vehicle plus additional data created by using the tech 
niques of crash and velocity scaling is illustrated above. In 
this case, the network was trained to give a value of 1 for 
triggering the airbag and 0 for not triggering. In the instant 
case, this value would depend on the type of gas control 
module that is used and in general would vary continuously 
from 0 to 1 with the particular value indicative of the action to 
be taken by the gas control module, such as adding more gas 
to the airbag. 

Examples of neural networks in several forms will be dis 
cussed in more detail below in several sections of this appli 
cation. 

1.2 Electronic Crash Sensors 
An airbag electronic sensor and diagnostic module (SDM) 

is typically mounted at a convenient location in the passenger 
compartment such as the transmission tunnel or ?rewall. FIG. 
1 is a view of the front of a passenger compartment 50 of an 
automobile with portions cut away and removed, having dual 
airbags 51, 52 and an SDM 55 containing a non crush zone 
electronic crash sensor and crash forecasting algorithm, 
(hereinafter this combination will be referred to as a crash 
sensor) comprising one to three accelerometers and zero to 
three gyroscopes 56, one or more analog to digital converters 
(ADC) 57 and a pattern recognition algorithm contained 
within a microprocessor 59, all of which may be mounted on 
a single circuit board and electrically coupled to one another 
(see FIG. 1A). Alternately, the microprocessor 59 can be a 
neural computer. 
A tri-axial accelerometer is a device that includes three 

accelerometers and measures accelerations in three orthogo 
nal directions that are typically the longitudinal, lateral and 
vertical directions, although there are sometimes reasons to 
use a different orientation. Such a different orientation can be 
useful to remove some of the bias errors in the accelerometers 
by, for example, allowing each accelerometer to be partially 
in?uenced by gravity. Also, in some applications, the tri-axial 
accelerometer is intentionally rotated relative to the vehicle to 
expose different accelerometers to gravity again for accuracy 
calibration purposes. An alternate method is to electronically 
test the acceleration sensing elements by exposing them to an 
electric ?eld and measure their response. Such an accelerom 
eter is called a “testable” accelerometer. 
The circuit board of the SDM 55 also optionally contains a 

capacitor 61 as a backup power supply, other electronic com 
ponents 58 and various circuitry. The SDM is connected to the 
airbags 51, 52 with wires 53 and 54 (shown in dotted lines in 
FIG. 1), although a wireless electrical connection is also a 
possibility as wireless data transfer has become more reliable. 
In this embodiment, the pattern recognition technique used is 
a neural network that analyzes data from one, two or three 
accelerometers, and optionally up to three gyroscopes, to 
determine whether the vehicle is experiencing a crash from 
any direction. Alternately, an IMU may be used. If the neural 
network determines, e.g., by analysis of a pattern in the sig 
nals emanating from the accelerometer(s) 56 and gyro 
scope(s) 56, that the accident merits deployment of one or 
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more protection or restraint systems, such as a seatbelt retrac 
tor, frontal or side airbag, or a movable headrest, it initiates 
such deployment and thus constitutes in this regard airbag 
deployment initiation means. It also may determine the set 
tings for an airbag in?ation/de?ation control module which 
determines how much gas is to be generated, how fast it is to 
be generated, how much should be fed into the airbag, how 
much should be dumped to the atmosphere and/or how much 
should be permitted to exhaust from the airbag. The particular 
method and apparatus for controlling the ?ows of gas into 
and/ or out of the airbag will depend on the particular system 
design. The controller for any such system will hereinafter be 
referred to as the gas control module and is illustrated in FIG. 
1A schematically as 60. 

For frontal impacts, for example, a signal is sent through 
wires 53 and 54 to initiate deployment of airbags 51 and 52 
and to control the gas ?ow into and/or out of each airbag 51, 
52 through the gas control modules (not shown) for each 
airbag. TheADC 57 is connected to the acceleration sensor, in 
this case the tri-axial accelerometer 56, and converts an ana 
log signal generated by one or more of the accelerometers 56 
representative of the acceleration thereof, and thus the 
vehicle, into a digital signal. In one embodiment, the ADC 57 
may derive the digital signal from the integral of the analog 
signal. Naturally, many of the components of the printed 
circuit board can be incorporated into an ASIC as is obvious 
to those skilled in the art. 

The tri-axial accelerometer and/or gyroscopes 56 (or IMU) 
are mounted by suitable mounting structure to the vehicle and 
can be mounted in a variety of positions to sense, e. g., frontal 
impacts, side impacts, rear impacts and/ or rollovers. In 
another embodiment described below, the microprocessor 59 
may include a detection system for detecting when the occu 
pant to be protected by the deployable airbags 51, 52 is 
out-of-position and thereupon to suppress deployment 
thereof. Also, the detection system may be applied to detect 
the presence of a rear-facing child seat positioned on a pas 
senger seat and thereupon to suppress deployment of the 
airbag. In each case, the microprocessor or neural computer 
59 performs an analysis on signals received from appropriate 
sensors and corresponding ADCs. Recent advances in com 
putational theory suggest that a form of computation using 
analog data rather than digital data may become viable. One 
example is the use of optical correlators for object detection 
and identi?cation in the military where the optical signal from 
a video scene is converted to its Fourier transform using 
diffraction techniques. 

The pattern recognition crash sensor described and illus 
trated in FIGS. 1 and 1A is capable of using information from 
three accelerometers 56, for example, each measuring accel 
eration from an orthogonal direction. As will be described in 
more detail below, other information can also be considered 
by the pattern recognition algorithm such as the position of 
the occupants, noise, data from anticipatory acoustic, radar, 
infrared or other electromagnetic sensors, seat position sen 
sors, seatbelt sensors, speed sensors, gyroscopes or any other 
information present in the vehicle which is relevant. Since the 
pattern recognition algorithm is trained on data from real 
crashes and non-crash events, it can handle data from many 
different information sources and sort out what patterns cor 
respond to airbag-required events in a way that is nearly 
impossible for an engineer to do. For this reason, a crash 
sensor based on neural networks, for example, will invariably 
perform better than one devised by engineers. The theory of 
neural networks including many examples can be found in 
several books on the subject including: Techniques andAppli 
cation of Neural Networks, edited by Taylor, M. and Lisboa, 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
R, Ellis Horwood, West Sussex, England, 1993; Naturally 
Intelligent Systems, by Caudill, M. and Butler, C., MIT Press, 
Cambridge Mass., 1990; J. M. Zaruda, Introduction to Arti 
?cial Neural Systems, West Publishing Co., N.Y., 1992 and, 
Digital Neural Networks, by Kung, S. Y., PTR Prentice Hall, 
Englewood Cliffs, N.J., 1993, Eberhart, R., Simpson, P. and 
Dobbins, R., Computational Intelligence PC Tools, Aca 
demic Press, Inc., 1996, Orlando, Fla. The neural network 
pattern recognition technology is one of the most developed 
of pattern recognition technologies. Newer and more ef?cient 
systems are now being developed such as the neural network 
system which is being developed by Motorola and is 
described in US. Pat. Nos. 5,390,136 and 5,517,667. The 
neural network will be used here to illustrate one example of 
a pattern recognition technology but it is emphasized that this 
invention is not limited to neural networks. Rather, the inven 
tion may apply any known pattern recognition technology. A 
brief description of the neural network pattern recognition 
technology is set forth below. 
A diagram of one example of a neural network used for a 

crash sensor designed based on the teachings of this invention 
is shown in FIG. 2. The process can be programmed to begin 
when an event occurs which indicates an abnormal situation 

such as the acceleration in the longitudinal direction, for 
example, exceeding the acceleration of gravity, or it can take 
place continuously depending on the demands on the com 
puter system. The digital acceleration values from the ADC 
57 may be pre-processed, for example by ?ltering, and then 
entered successively into nodes 1, 2, 3, . . . , N (this entry 

represented by the arrows) and the neural network algorithm 
compares the pattern of values on nodes 1 through N with 
patterns for which it has been trained. Each of the input nodes 
is connected to each of the second layer nodes h-1, . . . h-n, 

called the hidden layer, either electrically as in the case of a 
neural computer, to be described below, or through math 
ematical functions containing multiplying coef?cients called 
weights, also described in more detail below. The weights are 
determined during the training phase while creating the neu 
ral network as described in detail in the above text references. 
At each hidden layer node, a summation occurs of the values 
from each of the input layer nodes, which have been operated 
on by functions containing the weights, to create a node value. 
Similarly, the hidden layer nodes are connected to the output 
layer nodes 0-1, 0-2, . . . , O-n, which can be only a single 
node representing the control parameter to be sent to the gas 
control module, for example. If this value exceeds a certain 
threshold, the gas control module initiates deployment of the 
airbag. 

During the training phase, an output node value is assigned 
for every setting of the gas control module corresponding to 
the desired gas ?ow for that particular crash as it has occurred 
at a particular point in time. As the crash progresses and more 
acceleration values appear on the input nodes, the value of the 
output node may change. In this manner, as long as the crash 
is approximately represented in the training set, the gas ?ow 
can be varied at each one or two milliseconds depending on 
the system design to optimally match the quantity of gas in the 
airbag to the crash as it is occurring. Similarly, if an occupant 
sensor and a weight sensor are present, that information can 
additionally be fed into a set of input nodes so that the gas 
module can optimize the quantity of gas in the airbag taking 
into account both the crash deceleration and also the position, 
velocity, size and/or weight of the occupant to optimally 
deploy the airbag to minimize airbag induced injuries and 
maximize the protection to the occupant. Details of the man 
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ner in which a neural network process operates and is trained 
are described in above-referenced texts and will not be pre 
sented in detail here. 
A time step, such as two milliseconds, is selected as the 

period in which the ADC pre-processes the output from the 
accelerometers and feeds data to input node 1. Thus, using 
this time step, at time equal to 2 milliseconds from the start of 
the process, node 1 contains a value obtained from the ADC 
and the remaining input nodes have a random value or a value 
of 0. At time equal 4 milliseconds, the value that was on node 
1 is transferred to node 2 (or the node numbering scheme is 
advanced) and a new value from the ADC is fed into node 1. 
In a similar manner, data continues to be fed from the ADC to 
node 1 and the data on node 1 is transferred to node 2 whose 
previous value was transferred to node 3 etc. The actual 
transfer of data to different memory locations need not take 
place but only a rede?nition of the location that the neural 
network should ?nd the data for node 1. For one preferred 
embodiment of this invention, a total of one hundred input 
nodes were used representing two hundred milliseconds of 
acceleration data At each step, the neural network is evaluated 
and if the value at the output node exceeds some value such as 
0.5, then the airbags are deployed by the remainder of the 
electronic circuit. In this manner, the system does not need to 
know when the crash begins, that is, there is no need for a 
separate sensor to determine the start of the crash or of a 
particular algorithm operating on the acceleration data to 
make that determination. 

In the example above, one hundred input nodes were used, 
along with twelve hidden layer nodes and one output layer 
node. Accelerations from only the longitudinal direction were 
considered. If other data such as accelerations from the ver 
tical or lateral directions or the output from a number of 
gyroscopes were also used, then the number of input layer 
nodes would increase. If the neural network is to be used for 
sensing rear impacts, or side impacts, 2 or 3 output nodes 
might be used, one for each gas control module, headrest 
control module etc. Alternately, combination, modular or 
even separate neural networks can be used. The theory for 
determining the complexity of a neural network for a particu 
lar application is the subject ofmany technical papers and will 
not be presented in detail here. Determining the requisite 
complexity for the example presented herein can be accom 
plished by those skilled in the art of neural network design 
and is discussed brie?y below. In another implementation, the 
integral of the acceleration data is used and it has been found 
that the number of input nodes can be signi?cantly reduced in 
this manner 

The neural network described above de?nes a method of 
sensing a crash and determining whether to begin in?ating a 
deployable occupant protection device, and at what rate, and 
comprises: 

(a) obtaining one or more acceleration signals from one or 
more accelerometers mounted on a vehicle; 

(b) converting the acceleration signal(s) into a digital time 
series which may include pre-processing of the data; 

(c) entering the digital time series data into the input nodes 
of a neural network; 

(d) performing a mathematical operation on the data from 
each of the input nodes and inputting the operated-on data 
into a second series of nodes wherein the operation performed 
on each of the input node data prior to inputting the operated 
on value to a second series node is different from that opera 
tion performed on some other input node data; 

(e) combining the operated-on data from all of the input 
nodes into each second series node to form a value at each 
second series node; 
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10 
(f) performing a mathematical operation on each of the 

values on the second series of nodes and inputting the oper 
ated-on data into an output series of nodes wherein the opera 
tion performed on each of the second series node data prior to 
inputting the operated on value to an output series node is 
different from that operation performed on some other second 
series node data; 

(g) combining the operated on data from all of the second 
series nodes into each output series node to form a value at 
each output series node; and, 

(h) initiating gas ?ow into an airbag if the value on one 
output series node is within a selected range signifying that a 
crash requiring the deployment of an airbag is underway; and 

(i) causing the amount of gas ?ow into or out of the airbag 
to depend on the value on that one output series node. 
The particular neural network described and illustrated 

above contains a single series of hidden layer nodes. In some 
network designs, more than one hidden layer is used although 
only rarely will more than two such layers appear. There are 
of course many other variations of the neural network archi 
tecture illustrated above which appear in the literature. 
The implementation of neural networks can have at least 

two forms, an algorithm programmed on a digital micropro 
cessor or in a neural computer. Neural computer chips are 
now available and neural computers can be incorporated into 
ASIC designs. As more advanced pattern recognition tech 
niques are developed, specially designed chips can be 
expected to be developed for these techniques as well. 

FIG. 3 provides the results of a neural network pattern 
recognition algorithm, as presented in Us. Pat. No. 5,684, 
701 referenced above, for use as a single point crash sensor. 
The results are presented for a matrix of crashes created 
according to the velocity and crash scaling techniques pre 
sented in the above-referenced papers (1-13). The table con 
tains the results for different impact velocities (vertical col 
umn) and different crash durations (horizontal row). The 
results presented for each combination of impact velocity and 
crash duration consist of the displacement of an unrestrained 
occupant at the time that airbag deployment is initiated and 30 
milliseconds later. This is presented here as an example of the 
superb results obtained from the use of a neural network crash 
sensor that forms a basis of the instant invention. In FIG. 3, the 
success of the sensor in predicting that the velocity change of 
the accident will exceed a threshold value is demonstrated. In 
the instant invention, this capability is extended to where the 
particular severity of the accident is (indirectly) determined 
and then used to set the ?ow of gas into and/or out of the 
airbag to optimize the airbag system for the occupant and the 
crash severity. 

Airbags have traditionally been designed based on the 
assumption that 30 milliseconds of deployment time is avail 
able before the occupant, as represented by an unbelted 
dummy corresponding to the average male, has moved ?ve 
inches. An occupant can be seriously injured or even killed by 
the deployment of the airbag if he or she is too close to the 
airbag when it deploys and in fact many people, particularly 
children and small adults, have now been killed in this manner 
It is known that this is particularly serious when the occupant 
is leaning against the airbag when it deploys which corre 
sponds to about 12 inches of motion for the average male 
occupant, and it is also known that he will be uninjured by the 
deploying airbag when he has moved less than 5 inches when 
the airbag is completely deployed. These dimensions are 
based on the dummy that represents the average male, the 
so-called 50% male dummy, sitting in the mid-seating posi 
tion. 
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The threshold for signi?cant injury is thus somewhere in 
between these two points and thus for the purposes of this 
table, two benchmarks have been selected as being approxi 
mations of the threshold of signi?cant injury. These bench 
marks are, based on the motion of an unrestrained occupant, 
(i) if the occupant has already moved 5 inches at the time that 
deployment is initiated, and (ii) if the occupant has moved 12 
inches by the time that the airbag is fully deployed. Both 
benchmarks really mean that the occupant will be signi? 
cantly interacting with the airbag as it is deploying. Other 
benchmarks could of course be used; however, it is believed 
that these two benchmarks are reasonable lacking a signi? 
cant number of test results to demonstrate otherwise, at least 
for the 50% male dummy. 

The tables shown in FIGS. 3 and 4, therefore, provide data 
as to the displacement of the occupant relative to the airbag at 
the time that deployment is initiated and 30 milliseconds later. 
If the ?rst number is greater than 5 inches or the second 
number greater than 12 inches, it is assumed that there is a risk 
of signi?cant injury and thus the sensor has failed to trigger 
the airbag in time. For these cases, the cell in the table has 
been shaded. As can be seen in FIG. 3, which represents the 
neural network crash sensor designed according to the teach 
ings of this invention, none of the cells are shaded so the 
performance of the sensor is considered excellent. 

The table shown in FIG. 4 represents a model of a single 
point crash sensor used on several production vehicle models 
in use today. In fact, it was designed to be optimized for the 
crashes shown in the table. As shown in FIG. 4, the sensor 
fails to provide timely airbag deployment in a signi?cant 
percentage of the crashes represented in the table. Since that 
sensor was developed, several manufacturers have developed 
crash sensor algorithms by trial and error that probably per 
form better than that which would provide the results shown 
in FIG. 4. It is not possible to ascertain the success of these 
improved sensors since the algorithms are considered propri 
etary. Note, the ?gures used including the 50% male, 30 
milliseconds and travel distances of 5 and 12 inches are 
assumptions and simpli?cations that are not necessary once 
occupant sensors are installed in vehicles. 
One additional feature, which results from the use of the 

neural network crash sensor of this invention, is that at the 
time the decision is made to deploy the airbag and even for as 
long afterward as the sensor is allowed to run, in the above 
example, 200 milliseconds of crash data is stored in the net 
work input nodes. This provides a sort of “black box” which 
can be used later to accurately determine the severity of the 
crash as well as the position of the occupant at the time of the 
crash. If some intermediate occupant positions are desired, 
they could be stored on a separate non-volatile memory. 

Above, the sensing of frontal impacts has been discussed 
using a neural network derived algorithm. A similar system 
can be derived for rear and side impacts especially if an 
anticipatory sensor is available as will be discussed below. An 
IMU located at a single location in a vehicle can do an excel 
lent job of monitoring the motions of the vehicle that could 
lead to accidents including pre-crash braking, excessive yaw 
or pitching or roll which could lead to a rollover event. If the 
vehicle also has a GPS system, then the differential motion of 
the vehicle over a period of one second as measured by the 
GPS can be used to calibrate the IMU eliminating all signi? 
cant errors. This is done using a Kalman ?lter. If a DGPS 
system is also available along with an accurate map, then the 
vehicle will also know its precise position within centimeters. 
This however is not necessary for calibrating and thereby 
signi?cantly improving the accuracy of the IMU and thus the 
vehicle motion can be known approximately 100 times better 
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12 
than systems that do not use such a GPS-calibrated IMU. This 
greatly enhances the ability of vehicle systems to avoid skid 
ding, rollover and other out-of-control situations that fre 
quently lead to accidents, injuries and death. This combina 
tion of an inexpensive perhaps MEMS-based IMU with GPS 
and a Kalman ?lter has previously not been applied to a 
vehicle for safety and vehicle control purposes although the 
concept has been used with a DGPS system for farm tractors 
for precision farming. 

With an accurate IMU, as mentioned above, the weight of 
a variably loaded vehicle can be determined and sent by 
telematics to a weigh station thereby eliminating the need for 
the vehicle to stop and be weighed. 

Such an accurate IMU can also be used to determine the 
inertial properties of a variably loaded vehicle such as a truck 
or trailer. In this case, the IMU output can be analyzed by 
appropriate equations of a neural network, and with assumed 
statistical road properties plus perhaps some calibration for a 
particular vehicle, to give the center of mass of the vehicle as 
well as its load and moments of inertia. With this knowledge 
plus even a crude digital map, a driver can be forewarned that 
he might wish to slow down due to an upcoming curve. If 
telematics are added, then the road properties can be auto 
matically accumulated at an appropriate off-vehicle location 
and the nature of the road under all weather conditions can be 
made available to trucks traveling the road to minimize the 
chance of accidents. This information plus the output of the 
IMU can signi?cantly reduce truck accidents. The informa 
tion can also be made available to passing automobiles to 
warn them of impending potential problems. Similarly, if a 
vehicle is not behaving appropriately based on the known 
road geometry, for example if the driver is wandering off the 
road, traveling at an excessive speed for conditions or gener 
ally driving in an unsafe manner, the off-vehicle site can be 
made aware of the fact and remedial action taken. 

There are many ways to utilize one or more IMUs to 

improve vehicle safety and in particular to prevent rollovers, 
out-of-control skidding, jack-kni?ng etc. In a simple imple 
mentation, a single IMU is placed at an appropriate location 
such as the roof of a truck or trailer and used to monitor the 
motion over time of the truck or trailer. Based on the assump 
tion that the road introduces certain statistically determinable 
disturbances into the vehicle, such monitoring over time can 
give a good idea of the mass of the vehicle, the load distribu 
tion and its moments of inertia. It can also give some idea as 
to the coef?cient of friction on the tires against the roadway. 
If there is also one or more IMUs located on the vehicle axle 
or other appropriate location that moves with the wheels, then 
a driving function of disturbances to the vehicle can also be 
known leading to a very accurate determination of the param 
eters listed above especially if both a front and rear axle are so 
equipped. This need not be prohibitively expensive as IMUs 
are expected to break the $100 per unit level in the next few 
years. 
As mentioned above, if accurate maps of information from 

other vehicles are available, the IMUs on the axles may not be 
necessary as the driving function would be available from 
such sources. Over the life of the vehicle, it would undoubt 
edly be driven empty and full to capacity so that if an adaptive 
neural network is available, the system can gradually be 
trained to quickly determine the vehicle’s inertial properties 
when the load or load distribution is changed. It can also be 
trained to recognize some potentially dangerous situations 
such as loads that have become lost resulting in cargo that 
shifts during travel. 

If GPS is not available, then a terrain map can also be used 
to provide some corrections to the IMU. By following the 
































































