
IlSOO8832646B1

O

(12) United States Patent (10) Patent N0.: US 8,832,646 B1
Wendling (45) Date of Patent: Sep. 9, 2014

(54) OBFUSCATION OF AUTOMATICALLY 2002/0016954 A1 2/2002 Charisius et al.
GENERATED CODE 2003/0023859 A1 1/2003 Kiddy

2003/0071845 A1* 4/2003 King et al. 345/764
_ . . 2003/0076355 A1 4/2003 Kodosky

(75) Inventor. B111 Wendling, Palo Alto, CA (US) 2003/0172369 A1 900% Kodosky et al‘
_ _ 2003/0196187 A1 10/2003 Kodosky et al.

(73) A551gnee: The MathWorks, Inc., Natlck, MA 2004/0034846 A1 2/2004 Ortal et al.
(US) 2006/0259871 A1 11/2006 Washington et al.

2006/0265446 A1* 11/2006 Elgressy et al. 709/200
* ~ . ~ ~ ~ - 2006/0271921 A1 11/2006 Cronce et al.

() Notlce. Subject to any dlsclalmer, the term ofthls 2006/0272023 A1 11/2006 Schmeidler et al‘
patent IS extended or adjusted under 35
U.S.C. 154(b) by 941 days. OTHER PUBLICATIONS

(21) APPL NO; 12/732 551 Linn, Cullen et al., “Obfuscation 0f Executable Code to Improve
’ Resistance to Static Disassembly,” Proceedings of the 10th ACM

(22) Filed: Man 26 2010 Conference on Computer and Communications Security, pp. 290
’ 299 (2003).

Schneier, Bruce, “Opinion: Cryptanalysis 0f MD5 adn SHA: Time
Related US. Application Data for aNeW Standard,” retreived online at: http://WWW.c0mputerW0rld.

_ _ _ _ c0m/s/article/95343/Opini0niCryptanalysisi0f MDSiandi

(63) Contmuatlon of apphcatlon No. 11/038,608, ?led on SHAiTimeiforiaineWistandard (2004),
Jan~ 18, 2005, HOW Pat NO~ 7,689,969- Sosonkin, Mikhail et al., “Obfuscation of Design Intent in Object

Oriented Applications,” Proceedings of the 3rd ACM Workshop on
(51) Int. Cl. Digital Rights Management, pp. 142-153 (2003).

G06F 9/44 (200601) The MathWorks, “Simulink Model-Based and System-Based
(52) U_s_ CL Design, Writing S-Functions, Version 5,” The MathWorks, Inc.,

. (2002).
USPC 717/113, 717/105 Wang, Xiaoyun et 31‘, “Collisions for Has Functions, MD4, MD5,

(58) Fleld 0f ClaSSI?catlon SearCh HAVAL-128 and RIPEMD,” retrieved online at: http://eprint.iacr.
USPC' 717/105, 109, 110, 111, 113 org/2004/199 (2004)
See appllcatlon ?le for complete search hlstory.

* cited by examiner
(56) References Cited

U S PATENT DOCUMENTS Primary Examiner * Anna Deng
' ' (74) Attorney, Agent, or Firm *Nelson Mullins Riley &

4,831,525 A 5/1989 $3110 etal. Scarborough LLP
5,269,014 A * 12/1993 Ogino 703/22

6,212,672 B1 4/2001 Keller et al. (57) ABSTRACT
6 226 692 B1 5/2001 M'l h t l. . . .
6’507’ 166 B2 100% M25525; it 21‘ A method IS prOV1ded for obfuscatmg code generated from a
6,663,325 B 1 * 12/2003 Collberg et 31, ,,,,,,,,,,,, ,, 713/194 block diagram model in a graphical programming environ
6,961,686 B2 11/2005 Kodosky et al. ment. The obfuscation may be removed through the use of a
6,971,065 B2 11/2005 Ausnn _ password. Incorporating the obfuscated code in a block dia
7,051,200 B1* 5/2006 Manferdelli et al. 713/153 11 f d b df h M k d
7a124,445 B2 10/2006 Cronce et al‘ grama ovvs or co eto e generate romt e 00 1agram
7,155,702 B2 12/2006 Krishna et al‘ 1ncorporat1ng the obfuscated code.
7,216,334 B2 5/2007 Kodosky et al.

2002/0007483 A1 1/2002 Lopez 24 Claims, 13 Drawing Sheets

QQQ
Providing Block Diagram

£12

Generating Obfuscated
Code
229

i' inbbigoiatirigDbiusbafe-d—éode '5
: in Block Diagram :
I 229 i
L _ _ _ _ _ _ _ _ _ _ _1 _ _ _ _ _ _ _ _ _ _ __1

f _ _ _ 69113151159 éééé irbin‘ _ _ _ ‘5

: Block Diagram :
I I

US. Patent Sep. 9, 2014 Sheet 1 or 13

ga

E; \‘1 ,i ’<‘

User \7 2
8 \ rsb K

l/O Device Mouse Processor f 7

Display K 4
\ Keyboard Memory / 6
\8a L~86 Diagramming application

Block Diagram 5'2ng
Editor, Q —

Graphical Execution
entities Engine
Q 6_d

Fig. 1A

Create Block Diagram

1
Compile Block Diagram

1 1
Link Block Diagram f 6

Fig. JB

1 18
Simulate J
1 20

Generate Code J

US 8,832,646 B1

9

“
Storage

US. Patent Sep. 9, 2014 Sheet 2 0f 13 US 8,832,646 B1

demoOa EEIEE
file Edit yiew §imu|ati0n Fgrmat Ioo\s ?ak)

@|@|X%I%ln ~|> I Q“ Emm

l[\/200
220\ 212 210W 214

221 & K; 211 230
Image G h'
Source \ : £50le

7| Ready |100% || || ||FixedStepDiscrete |

Fig. 2A

US. Patent Sep. 9, 2014 Sheet 3 0f 13 US 8,832,646 B1

Stateflow chart misraviolations_sflChart

L

l

E

GENE!
Ready

Fig. ZB

US. Patent Sep. 9, 2014 Sheet 4 0f 13 US 8,832,646 B1

Embedded MATLAB Editor - Block:misraviolations_sf; Embedded MAT...
file Edit §imu|ati0n yiew Iools Add ?elp

lee?l?lt?elx eels m >-| e la

1 function output = fcn(inputl, input2)|

2 % Embedded MATLAB function in Simulink.

3
4— if inputl == input2

5— output = inputl;

6 else

7— output = input2;

8 end

IReady | Col 38

Fig. 2C

US. Patent Sep. 9, 2014 Sheet 5 0f 13 US 8,832,646 B1

Providing Block Diagram
m

V

Generating Obfuscated
Code
?)

i Incorporating Obfuscated Code i
l in Block Diagram :

: Generating Code from i
: Block Diagram :

US. Patent Sep. 9, 2014 Sheet 6 0f 13 US 8,832,646 B1

414
r/

Out1

404
|"2 927
2
- Gain1 (408 416

412

a = 1/s >(2 |ntegrator1 OUtZ

Fig. 4

US. Patent Sep. 9, 2014 Sheet 8 of 13 US 8,832,646 B1

Configuration Parameters: ObfuscationExample/Configuration

Select: _ .. Son/er |ZI Create New Model 620

DatalmPOFt/EXPOFt [I Use ValueforTunable?gmeters [610
/ t' ' f i OP Imlza.lon ObfuscatorPassword|Foo [—j Diagnostics

§----Sample Time I] Output Symbol Table for Obfuscated Code
Data Integrity
Conversion
Connectivity
Compatibility
Model Referencing

Fig. 6

US. Patent Sep. 9, 2014 Sheet 9 0f 13 US 8,832,646 B1

Gathering Libraries
in Non-obfuscated Code

Directory
7_10

V

Generating Code
in Non-obfuscated Code

Directory
7_20

V

Generating Code
in Obfuscated Code

Directory
7_30

Fig. 7

US. Patent Sep. 9, 2014 Sheet 10 0f 13

Removing Comments and
Formatting
m

Converting Strings to Different
Numbering System

M?

V

Renaming Non-system Header
Files
m

V

Replacing Numeric Constants
with Obfuscated Names

Applying One-way Hash
Funo?on
m

Fig. 8

US 8,832,646 B1

US. Patent Sep. 9, 2014 Sheet 11 0113 US 8,832,646 B1

ThirdPartyModel
File Edit View Simulation Format Tools Help

910 r

S-Function

Fig. 9

US. Patent Sep. 9, 2014 Sheet 12 0f 13 US 8,832,646 B1

Providing Obfuscated Code
M7

Incorporating Obfuscated Code
in Block Diagram

: Generating Code from I
| Block Diagram :

|

US. Patent Sep. 9, 2014 Sheet 13 0f 13 US 8,832,646 B1

Client Device Server

Fig. 1]

US 8,832,646 B1
1

OBFUSCATION OF AUTOMATICALLY
GENERATED CODE

RELATED APPLICATIONS

The present application is a continuation of US. applica
tion Ser. No. l 1/038,608, entitled “Obfuscation of Automati
cally Generated Code,” ?led Jan. 18, 2005, the contents of
which are herein incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to a graphical modeling envi
ronment for modeling a dynamic system. More particularly,
generating and obfuscating code from a model of a dynamic
system

BACKGROUND OF THE INVENTION

Many organizations are embracing the paradigm of Model
Based Development in their production processes. “Model
Based Development” refers to the practice of specifying,
analyzing, and implementing systems using a common
“model” consisting of a set of block diagrams and associated
objects. System implementation typically consists of auto
matically generating code for portions of the model, particu
larly portions corresponding to the system’s control algo
rithm.

Graphical modeling environments are programs that
enable a user to construct and analyze a model of a process or
system. Examples of graphical modeling tools include time
based block diagrams, such as Simulink from The Math
Works Inc., discrete event diagrams and reactive state
machine diagrams, such as those found within State?ow®
also available from The MathWorks, Inc., data-?ow dia
grams, such as LabVIEW, available from National Instru
ments Corporation, and software diagrams and other graphi
cal programming environments, such as Uni?ed Modeling
Language (U ML) diagrams.
Some graphical modeling environments also enable simu

lation and analysis of models. Simulating a dynamic system
in a graphical modeling environment is typically a two-step
process. First, a user creates a graphical model, such as a
block diagram, of the system to be simulated. A graphical
model may be created using a graphical user interface, such as
a graphical model editor. The graphical model depicts rela
tionships between the systems inputs, states, parameters and
outputs. After creation of the graphical model, the behavior of
the dynamic system is simulated using the information
entered into the graphical model. In this step, the graphical
model is used to compute and trace the temporal evolution of
the dynamic systems’ outputs (“execute the graphical
model”), and automatically produce either deployable soft
ware systems or descriptions of hardware systems that mimic
the behavior of either the entire model or portions of the
model (code generation).

Block diagrams are graphical entities having an “execut
able meaning” that are created within graphical modeling
environments for modeling a dynamic system, and generally
comprise one or more graphical objects. For example, a block
diagram model of a dynamic system is represented schemati
cally as a ?rst collection of graphical objects, such as nodes,
that are interconnected by another set of graphical objects,
generally illustrated as lines, which represent logical connec
tions between the ?rst collection of graphical objects. In most
block diagramming paradigms, the nodes are referred to as
“blocks” and drawn using some form of geometric object

20

25

30

35

40

45

50

55

60

65

2
(e.g., circle, rectangle, etc.). The line segments are often
referred to as “signals”. Signals correspond to the time-vary
ing quantities represented by each line connection and are
assumed to have values at each time instant when connected
to an enabled node. Each node may represent an elemental
dynamic system, and the relationships between signals and
state variables are de?ned by sets of equations represented by
the nodes. Inherent in the de?nition of the relationship
between the signals and the state variables is the notion of
parameters, which are the coef?cients of the equations. These
equations de?ne a relationship between the input signals,
output signals, state, and time, so that each line represents the
input and/ or output of an associated elemental dynamic sys
tem. A line emanating at one node and terminating at another
signi?es that in terms of computational causality, the output
of the ?rst node is an input to the second node. Each distinct
input or output on a node is referred to as a port. The source
node of a signal writes to the signal at a given time instant
when its system equations are solved. The destination node of
this signal read from the signal when their system equations
are being solved. Those skilled in the art will recognize that
the term “nodes” does not refer exclusively to elemental
dynamic systems but may also include other modeling ele
ments that aid in readability and modularity of block dia
grams.

It is worth noting that block diagrams are not exclusively
used for representing time-based dynamic systems but also
for other models of computation. For example, in State?ow®,
?ow charts are block diagrams used to capture behavior of
reactive systems and the ?ow of discrete state changes. Data
?ow blocks are block diagrams that describe a graphical
programming paradigm where the availability of data is used
to initiate the execution of blocks, where a block represents an
operation and a line represents execution dependency
describing the direction of data ?owing between blocks.
From the block diagrams, source code can be generated

using a tool such as the Real-Time Workshop® tool for Sim
ulink models. In this mode, the engine (upon the behest of the
user) translates a selected portion of the block diagram (or the
entire block diagram itself) into code. Such code could be in
a number of possible forms. The code may be instructions in
a high-level software language such as C, C++, Ada, etc.,
hardware descriptions of the block diagram portions in a
language such as HDL, or custom code formats suitable for
interpretation in some third-party software. Alternatively, the
code may be instructions suitable for a hardware platform
such as a microprocessor, microcontroller, or digital signal
processor, etc., a platform independent assembly that can be
re-targeted to other environments, or just-in-time code (in
structions) that corresponds to sections of the block diagram
for accelerated performance. Provided with the Simulink
product family is the Target Language Compiler (TLC). This
technology enables the creation of “active scripts” that con
trol how the generated code is produced for a block diagram.
Using TLC, one can tailor the generated code to suite their
speci?c needs.

In some instances, a user may wish to share source code
generated from a model with a third party. While the third
party may need the source code for compilation, the user may
not wish for the third party to be able to read or understand the
source code. Thus what is needed is a method for providing
generated code that is unintelligible to a human but is still
intelligible to a compiler.

SUMMARY OF THE INVENTION

The present invention provides a method of obfuscating
code for a block diagram such that it is unintelligible to a

US 8,832,646 B1
3

human but is intelligible to a compiler and still retains the
original code’s behavior. Thus the obfuscated code may be
used in the context of another block diagram.

In accordance with a ?rst aspect, in a graphical program
ming environment, a method comprises providing a block
diagram model of a dynamic system and generating obfus
cated code from the block diagram and incorporating obfus
cated code into a block diagram model.

In accordance with another aspect, a medium for use with
a computational device holding instructions executable by the
computational device for performing a method. The method
comprises the steps of providing a block diagram model of a
dynamic system; and generating obfuscated code from the
block diagram.

In accordance with another aspect, a medium for use with
a computational device holding instructions executable by the
computational device for performing a method. The method
comprises the steps of providing obfuscated code for a model,
and incorporating obfuscated code into a block diagram
model.

In accordance with another aspect, a system for generating
and displaying a graphical modeling application, comprises
user-operable input means for inputting data to the graphical
modeling application; a display device for displaying a
graphical model; and a computational device including
memory for storing computer program instructions and data,
and a processor for executing the stored computer program
instructions, the computer program instructions including
instructions for providing a block diagram model of a
dynamic system and generating obfuscated code from the
block diagram.

In accordance with another aspect, a system for generating
and displaying a graphical modeling application, comprises a
distribution server for providing to a client device, obfuscated
code generated from a block diagram, and a client device in
communication with the distribution server.

In accordance with another aspect, in a network having a
server, executing a graphical modeling environment, and a
client device in communication with the server, a method
comprising the steps of providing, at the server, a block dia
gram model of a dynamic system; and receiving, at the server
from the client device, a request to generate code from the
block diagram; and receiving, at the client device from the
server, obfuscated code

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A illustrates an environment suitable for practicing
an illustrative embodiment of the present invention.

FIG. 1B is a ?ow chart illustrating the steps involved in
simulating a dynamic system using the environment shown in
FIG. 1A.

FIG. 2A is an example of a block diagram of a dynamic
system in a graphical modeling environment.

FIG. 2B is an example of a State?ow® state chart in a
graphical modeling environment.

FIG. 2C is an example of MATLAB® embedded block for
use in a graphical modeling environment.

FIG. 3 is a ?ow chart illustrating an exemplary embodi
ment of the method of the present invention.

FIG. 4 is an example of a block diagram as set forth in the
method of FIG. 3.

FIG. 5 is an example of a graphical interface for initiating
code generation as set forth in the method of FIG. 3.

FIG. 6 is an example of a graphical interface for providing
a password for obfuscation.

20

25

30

35

40

45

50

55

60

65

4
FIG. 7 is an exemplary ?ow diagram of a method of gen

erating obfuscated code as set forth in FIG. 3.
FIG. 8 is an exemplary ?ow diagram of a method of con

verting non-obfuscated code to obfuscated code as set forth in
FIG. 7.

FIG. 9 is an example of a block diagram model resulting
from using the obfuscated code.

FIG. 10 is an exemplary ?ow diagram of a method using
obfuscated code to in a block diagram to generate additional
code.

FIG. 11 illustrates an exemplary client-server environment
suitable for practicing an illustrative embodiment of the
present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

An illustrative embodiment of the present invention relates
to generating and using obfuscated code. The present inven
tion will be described relative to illustrative embodiments.
Those skilled in the art will appreciate that the present inven
tion may be implemented in a number of different applica
tions and embodiments and is not speci?cally limited in its
application to the particular embodiments depicted herein.

FIG. 1A depicts an environment suitable for practicing an
illustrative embodiment of the present invention. An elec
tronic device 2 includes memory 4, on which software
according to one embodiment of the present invention is
stored, a processor (CPU) 7 for executing software stored in
the memory, and other programs for controlling system hard
ware. Typically, the interaction of a human user 10 with the
electronic device 2 occurs through an input/output (I/O)
device 8, such as a user interface. The I/O device 8 may
include a display device 811 (such as a monitor) and an input
device (such as a mouse 8b and a keyboard 80 and other
suitable conventional I/O peripherals).

For example, the memory 4 holds a diagramming applica
tion 6 capable of creating and simulating electronic versions
of system diagrams, such as time-based block diagrams, state
diagrams, signal diagrams, ?ow chart diagrams, sequence
diagrams, UML diagrams, data?ow diagrams, circuit dia
grams, ladder logic diagrams, kinematic element diagrams,
or other models, which may be displayed to a user 10 via the
display device 8a. In the illustrative embodiment, the dia
gramming application 6 comprises a block diagram environ
ment, such as Simulink® or another suitable graphical mod
eling environment. As used herein, the terms “block diagram
environment” and “graphical modeling environment” refer to
a graphical application where a model is translated into
executable instructions. Examples of suitable diagramming
applications include, but are not limited to, MATLAB with
Simulink, from the MathWorks, LabVIEW, DasyLab and
DiaDem from National Instruments Corporation, VEE from
Agilent, SoftWIRE from Measurement Computing, VisSim
from Visual Solutions, SystemVIEW from Elanix, WiT from
Coreco, Vision Program Manager from PPT Vision, Khoros
from Khoral Research, Halcon from MVTec Software, and
numerous others. The memory 4 may comprise any suitable
installation medium, e.g., a CD-ROM, ?oppy disks, or tape
device; a computer system memory or random access
memory such as DRAM, SRAM, EDO RAM, Rambus RAM,
etc.; or a non-volatile memory such as a magnetic media, e. g.,
a hard drive, or optical storage. The memory may comprise
other types of memory as well, or combinations thereof.

In an alternative embodiment, the electronic device 2 is
also interfaced with a network, such as the Internet. Those
skilled in the art will recognize that the diagrams used by the

US 8,832,646 B1
5

diagramming application 6 may be stored either locally on the
electronic device 2 or at a remote location 9 interfaced with
the electronic device over a network. Similarly, the diagram
ming application 6 may be stored on a networked server or a
remote peer.

The diagramming application 6 of an illustrative embodi
ment of the invention includes a number of generic compo
nents. Although the discussion contained herein focuses on
Simulink, from The MathWorks, Inc. of, Natick MA, those
skilled in the art will recognize that the invention is applicable
to other software applications. The generic components of the
illustrative diagramming program 6 include a block diagram
editor 611 for graphically specifying models of dynamic sys
tems. The block diagram editor 611 allows users to perform
such actions as construct, edit, display, annotate, save, and
print out a graphical model, such as a block diagram, that
visually and pictorially represents a dynamic system. The
illustrative diagramming application 6 also includes graphi
cal entities 6b, such as signal lines and buses that represent
how data is communicated between functional and non-func
tional units, and blocks 60. As noted above, blocks are the
fundamental mathematical elements of a classic block dia
gram model. A block diagram execution engine 6d, also
implemented in the application, is used to process a graphical
model to produce simulation results or to convert the graphi
cal model to executable code. For a block diagram graphical
model, the execution engine 6d translates a block diagram to
executable entities following the layout of the block diagram
as provided by the user. The executable entities are compiled
and executed on a computational device, such as a computer,
to implement the functionality speci?ed by the model. Typi
cally, the code generation preserves a model hierarchy in a
call graph of the generated code. For instance, each sub
system of a model in a block diagram environment can map to
a user speci?ed function and the generated code. Real-Time
Workshop from the MathWorks, Inc. of Natick, Massachu
setts is an example of a suitable execution engine 6d for
generating code.

In the illustrative embodiment, the diagramming program
6 is implemented as a companion program to a technical
computing program, such as MATLAB, also available from
the MathWorks, Inc.

FIG. 1B is a ?ow chart diagramming the steps involved in
simulating a dynamic system according to an illustrative
embodiment of the invention. In step 12, a user creates a block
diagram model representing a dynamic system. Once a block
diagram model, or other graphical model, has been con
structedusing the editor 6a in step 12, the execution engine 6d
simulates the model by solving equations de?ned by the
model to trace the system outputs as a function of time, in
steps 14-18. The solution of the model, which may be referred
to as model execution, is carried out over a user- speci?ed time
span for a set of user- speci?ed inputs . After creating the block
diagram model in step 12, the execution engine 6d compiles
the block diagram in step 14. Then, in step 16, the execution
engine links the block diagram in to produce an “in-memory
executable” version of the model. In step 18, the execution
engine uses the “in-memory executable” version of the model
to generate code and/or simulate a block diagram model by
executing the model in step 18 or 20.

The block diagram editor 6a is the user interface compo
nent that allows a user to create and modify a block diagram
model representing a dynamic system, in step 12. The blocks
in the electronic block diagram may model the behavior of
specialized mechanical, circuit or software components, such
as motors, servo-valves, power plants, blocks, tires, modems,
receivers, and other dynamic components. The block diagram

20

25

30

35

40

45

50

55

60

65

6
editor 611 also allows a user to create and store data relating to
graphical entities 6b. In Simulink®, a textual interface with a
set of commands allows interaction with the graphical editor.
Using this textual interface, users may write special scripts
that perform automatic editing operations on the block dia
gram. A user generally interacts with a set of windows that act
as canvases for the model. There is generally more than one
window for a model because models may be partitioned into
multiple hierarchical levels through the use of subsystems.
A suite of user interface tools within the block diagram

editor 611 allows users to draft a block diagram model on the
corresponding windows. For example, in Simulink® the user
interface tools include a block palette, a wiring line connec
tion tool, an annotation tool, a formatting tool, an attribute
editing tool, a save/load tool and a publishing tool. The block
palette is a library of all the pre-de?ned blocks available to the
user for building the block diagram. Individual users may be
able to customize this palette to: (a) reorganize blocks in some
custom format, (b) delete blocks they do not use, and (c) add
custom blocks they have designed. The palette allows blocks
to be dragged through some human-machine interface (such
as a mouse or keyboard) from the palette on to the window
(i.e., model canvas). The graphical version of the block that is
rendered on the canvas is called the icon for the block. There
may be different embodiments for the block palette including
a tree-based browser view of all of the blocks.
A block diagram model of a dynamic system, created dur

ing step 12, is generally represented schematically as a col
lection of interconnected graphical objects, such as blocks,
ports and lines, which represent signals. FIG. 2A illustrates an
example of a block diagram 200 created using the diagram
ming application 6. Each block in the block diagram 200
represents an elemental dynamic system. Each signal,
denoted by lines connecting the blocks, represents the input
and/or output of an elemental dynamic system. The illustra
tive block diagram 200 includes a subsystem block 210, a
source block 220 and a destination block 230. A line emanat
ing at one block and terminating at another signi?es that the
output of the ?rst block is an input to the second block. Ports,
such as input port 212 and output port 214 of the subsystem
block 210, refer to a distinct inputs or outputs on a block.
Signals correspond to the time-varying quantities represented
by each line connection and are assumed to have values at
each time instant when their connected blocks are enabled.
The source block 220 for a signal 221 writes to the signal at a
given time instant when its system equations are solved. As
shown, the signal 221 from the source block passes to the
subsystem 210. The signal 211 outputted from the subsystem
210 passes to the destination block 230. The destination block
230 for a signal 211 reads from the signal 211 when the
system equation is being solved. As shown, the signal 211
represents the output of the subsystem 210. One skilled in the
art will recognize that the block diagram 200 is merely illus
trative of a typical application and is not intended to limit the
present invention in any way.

FIG. 2B illustrates an example of a Simulink® diagram
240 containing State?ow® blocks 250 and 260 created using
the diagramming application 6. Each block in the block dia
gram 240 represents an elemental dynamic system. The shar
ing of data, denoted by lines connecting the blocks, represents
the input and/ or output of the system. A line emanating at one
block and terminating at another signi?es that the output of
the ?rst block is an input to the second block. Ports, such as
input port 252 and output port 254 of the State?ow® block
250, refer to distinct inputs or outputs on a block. One skilled
in the art will recognize that the block diagram 240 is merely

US 8,832,646 B1
7

illustrative of a typical application and is not intended to limit
the present invention in any way.

FIG. 2C illustrates an example of an Embedded MATLAB
block 270 created using the diagramming application 6. This
blockuses MATLAB code to describe its functionality. It may
be used as any other type of block as part of a block diagram
model.

Once a block diagram model, or other graphical model, has
been constructed using the editor 6a in step 12, the execution
engine 6d simulates the model by solving equations de?ned
by the model to trace the system outputs as a function of time,
in steps 14-18. The solution of the model, which may be
referred to as model execution, is carried out over a user

speci?ed time span for a set of user-speci?ed inputs.
The compile stage in step 14 marks the start of model

execution and involves preparing data structures and evalu
ating parameters, con?guring and propagating block charac
teristics, determining block connectivity, and performing
block reduction and block insertion. The compile stage
involves checking the integrity and validity of the block inter
connections in the block diagram. In this stage, the engine 6d
also sorts the blocks in the block diagram into hierarchical
lists that are used when creating the block method execution
lists. The preparation of data structures and the evaluation of
parameters create and initialize basic data-structures needed
in the compile stage. For each of the blocks, a method forces
the block to evaluate all of its parameters. This method is
called for all blocks in the block diagram. If there are any
unresolved parameters, execution errors are thrown at this
point.

The compilation step also determines actual block connec
tivity. Virtual blocks play no semantic role in the execution of
a block diagram. During compilation, the virtual blocks and
signals, such as virtual bus signals, in the block diagram are
optimized away (removed) and the remaining non-virtual
blocks are reconnected to each other appropriately. This com
piled version of the block diagram with actual block connec
tions is used from this point forward in the execution process.

In the link stage, in step 16, the execution engine 6d uses
the result of the compilation stage to allocate memory needed
for the execution of the various components of the block
diagram. The linking stage also produces block method
execution lists, which are used by the simulation or lineariza
tion of the block diagram. Included within the link stage is the
initialization of the model, which consists of evaluating
“setup” methods (e. g. block start, initialize, enable, and con
stant output methods). The block method execution lists are
generated because the simulation and/or linearization of a
model must execute block methods by type (not by block)
when they have a sample hit.

The compiled and linked version of the block diagram may
be directly utilized to execute the model over the desired
time-span, in step 18. In step 20, the execution engine may
choose to translate the block diagram model (or portions of it)
into either software modules or hardware descriptions
(broadly termed “code”). The code may be instructions in a
high-level software language such as C, C++, Ada, etc., hard
ware descriptions of the block diagram portions in a language
such as HDL, or custom code formats suitable for interpreta
tion in some third-party software. Alternatively, the code may
be instructions suitable for a hardware platform such as a
microprocessor, microcontroller, or digital signal processor,
etc., a platform independent assembly that can be re-targeted
to other environments, or just-in-time code (instructions) that
corresponds to sections of the block diagram for accelerated
performance.

20

25

30

35

40

45

50

55

60

65

8
FIG. 3 depicts a ?owchart 300 of one exemplary embodi

ment of a method of the present invention. Here the method
involves providing a block diagram model of a dynamic sys
tem 310 and generating obfuscated code from the block dia
gram 320. In some embodiments the method may also include
incorporating the obfuscated code into a block diagram 330
from which code may be generated 340.

Source code for a model can be generated using a tool such
as the Real-Time Workshop® tool for Simulink models.
Using such a tool, the engine (upon the behest of the user)
translates a selected portion of the block diagram (or the
entire block diagram itself) into code. Such code could be in
a number of possible forms. Provided with the Simulink
product family is the Target Language Compiler (TLC). This
technology enables the creation of “active scripts” that con
trol how the generated code is produced for a block diagram.
Using TLC, one can tailor the generated code to suite one’s
speci?c needs.
An example of a block diagram model 400 of a dynamic

system can be seen in FIG. 4. Here the block diagram model
400 is an algorithm designed by the user using gain blocks
402, 404 and integrator blocks 406, 408 that receives two
inputs 410, 412 and provides two outputs 414, 416. It will be
understood that this is but one example of any number of
possible block diagrams. Other systems will be apparent to
one skilled in the art given the bene?t of this disclosure.

After designing the algorithm of FIG. 4, a user may wish to
share the model with a third party without letting the third
party know anything about the algorithm. The third party will
need the source code to be able to compile the model for use.
Thus, obfuscated code is generated 320.

In certain embodiments the obfuscated code is generated
by selecting a target that generates obfuscated code. This may
be performed using a graphical interface. An example of this
can be seen in FIG. 5. Here the graphical user interface is a
system target ?le browser 500 provided with the Target Lan
guage Compiler (TLC) which is used to select a system target
?le 510 which in this case is an S-function target with code
obfuscation. The browser also provides the user with the path
name of the target 520, the Template make ?le 530 and the
Make command 540.

Using the S-function target, you can build an S-function
component and use it as an S-Function block in another
model. The S-function code format used by the S-function
target generates code that conforms to the Simulink C MEX
S-function application programming interface (API). S-func
tions use a special calling syntax that enables interaction with
Simulink equation solvers. This interaction is very similar to
the interaction that takes place between the solvers and built
in Simulink blocks. The form of an S-function is very general
and can accommodate continuous, discrete, and hybrid sys
tems.

Traditionally, an S-function target can be used to protect
designs and algorithms. By generating an S-function from a
proprietary model or algorithm and compiling it into a binary
form, one can share the model’s functionality without pro
viding the source code. While this may be a satisfactory
solution for a typical simulation scenario, it is wholly unsat
isfactory if you need to generate code and cross-compile a
model on an independent platform. In such a case, the source
code for the S-Function is required. But, by appropriately
obfuscating the generated S-Function target code, the source
code for an S-function can be provided to a third-party for
purposes of simulation and code generation.

It will be understood that this is but one example of any
number of possible ways of initiating the generation of code.

US 8,832,646 B1
9

Other implementations and methodologies will be apparent
to one skilled in the art given the bene?t of this disclosure.

In certain embodiments the obfuscation is performed in a
deterministic method. This means a symbol will always be
obfuscated in the same obfuscated string. In certain embodi
ments the user provides a password that breaks the determin
ism of the obfuscation. This may be done using a graphical
interface 600 such as that provided by the Target Language
Compiler (TLC) for setting con?guration parameters, an
example of which is shown in FIG. 6. Here an Obfuscator
Password ?eld 61 0 is provided for the user to enter a password
620. Using this password 620 allows a user to break the
determinism of the obfuscation.

In certain embodiments, when the obfuscated code is gen
erated, the related ?les necessary for compiling the code, such
as the library and header ?les, are also obfuscated. FIG. 7
depicts a ?ow chart 700 of one exemplary method of gener
ating obfuscated code as shown in FIG. 3. The ?rst step in the
method involves gathering all the required libraries in a ?rst
directory, step 710. In this case, for example, the ?rst direc
tory may be a designated non-obfuscated code directory. The
next step is generating non-obfuscated code in the ?rst direc
tory, step 720. As in the ?rst step, the code may be placed in
the designated non-obfuscated code directory. Finally, the
non-obfuscated code in the ?rst directory is converted to
obfuscated code in a second directory, step 730. In this case,
for example, this involves converting the C text ?les of the
non-obfuscated code as well as non-system header ?les
required by the C text ?les. The second directory where the
obfuscated code is placed may be a designated obfuscated
code directory. It will be understood that this is but one
possible method of generating obfuscated code. For example,
a user may be only provided with obfuscated code and not the
non-obfuscated code. Other embodiments and implementa
tions will be apparent to one skilled in the art given the bene?t
of this disclosure.

FIG. 8 depicts a ?ow chart 800 of one exemplary method of
converting non-obfuscated code to obfuscated code. The
method involves the following processes. Comments and for
matting are removed from the non-obfuscated code, 810.
Strings are converted to a different numbering system, 820.
Non-system header ?les are renamed, 830. Numeric con
stants are replaced with obfuscated names, 840. In some
embodiments, loops may be removed from the code, 850.
Then a one-way hash function is applied to the code, 860.

The process of removing comments and formatting from
the code (process 810) serves to eliminate features from the
code that increase readability and possibly indicated structure
for a human reader but are not necessary for compiling.

The process of converting the strings into different num
bering system (process 820) serves to decrease the readability
for a human but does not effect the compiling of the code. In
certain embodiments the strings may be converted to a base 8
numbering system (octal). In other embodiments, the strings
may be converted to a base 16 numbering system (hex). Other
possible numbering systems will be apparent to one skilled in
the art given the bene?t of this disclosure.

The process of converting remaining non-system header
?les (process 830) also serves to decrease readability. By
giving non-system header ?les meaningless names the like
lihood of discerning functionality is reduced because possi
bly descriptive names that could indicate functionality have
been removed. Again this only decreases readability for a
human it does not affect compiling.

The process of replacing numeric constants with obfus
cated names (process 840) is another measure to reduce read
ability by humans. To do this the numeric constants are placed

20

25

30

35

40

45

50

55

60

65

10
in a header ?le and are assigned a “macro name. For example,
the constant 2.0 may be placed in a header ?le as follows:

#de?ne_XHBOIUDFASKDJHFLAJHDFLJ 2.0
Then _XHBOIUDFASKDJHFLAJHDFLJ is used every
where that 2.0 is used in the code. When the code is compiled
the compiler replaces all uses of
_XHBOIUDFASKDJHFLAJHDFLJ with 2.0 during compi
lation.
The optional process of removing loops (process 850) is

again another way to eliminate features from the code that
could possibly indicate structure for a human reader but are
not necessary for compiling. This technique may also be
performed with other types of ?ow control such as if-then
statements and switches.

It will be understood that the ?ow chart 800 shown here
represents just one of several possible orderings of processes.
One skilled in the art would recognize that listed processes
810-850 can be performed in any number of combinations
before the hash function is applied. It is also understood that
other processes may be performed. Other possible processes
will be apparent to one skilled in the art given the bene?t of
this disclosure.
The process of applying a one-way hash function (process

860) is the ?nal step in obfuscating the code. Preferably the
applied hash function is MD5. Hash functions are well known
in the art and other suitable hash functions will be apparent
given the bene?t of this disclosure.

After the non-obfuscated code has been converted to
obfuscated code, the resulting designated obfuscated code
directory contains all the necessary ?les needed by a third
party to compile a version of the model that will work on there
system. The resulting model 910 from the obfuscated code
generated from the model depicted in FIG. 4 can be seen in
FIG. 9. Here is the model 910 is used as an S-Function. The
third party may make calls to the resulting model just as they
would to non-obfuscated S-Function. This S-function can
thus be used in block diagrams from which source code, both
obfuscated and non-obfuscated, can be generated.

FIG. 10 depicts a ?ow chart of one exemplary method 1000
of using the obfuscated source code for further code genera
tion. Having been provided with obfuscated code 1010, the
obfuscated code may be incorporated into a block diagram
model 1020. Code may then be generated from the block
diagram 1030. The block diagram incorporating the obfus
cated code may be one such as shown in FIG. 9. Generation of
code may be performed as known in the art or in the manner
disclosed herein in the case of obfuscated code.

To better understand the process of obfuscation it may be
helpful to look at examples of generated non-obfuscated code
and the corresponding obfuscated code. Below is a snippet of
non-obfuscated code that is generated in the method of FIG.
7 from the model depicted in FIG. 4. /*Sum: ‘<Root>/ Sum’
incorporates: Inport: ‘<Root>/Inl ’Gain: ‘<Root>/Gain’ *
Regarding ‘<Root>/ Gain’ : Gain value: Child_PQGain_Gain
/ Child_BQSum:(((const real_T**) ssGetInputPortSig
nalPtrs (S, 0)) [0])+(rtb_Integratorl *Child_PQGain_Gain);
/*Sum: ‘<Root>/Suml ’ incorporates: Inport: ‘<Root>/
In2’Gain: ‘<Root>/Gainl ’ * Regarding ‘<Root>/Gainl ’:

Gain value: Child_PQGainl_Gain */ Child_BQSuml:*
(((const real_T**) ssGetInputPortSignalPtrs(S, 1)) [0])+
(rtb_Integrator*Child_PQGainl_Gain);
Converting this code using the methods of FIG. 7 and FIG. 8
would yield the following snippet of obfuscated code:
bSq0beoIECPcW5PSpKMSO—>i6Uwl66Qg15Aki

2Bkki2Bk_:*(((const
_Qg15chaPeOV05NVG4KJGO**)

US 8,832,646 B1
11

jwmAj go HAhoXAisXMRl4M

05 eeeee 1 :* (((const_le5chaPeOV05NVG4KJGO* *)
meAjgoHAhoXAisXMRl4M_(

As the obfuscation is deterministic in some embodiments,
in certain embodiments, for the purpose of debugging, the
user may be provided with an option of generating a symbol
table that lists the original symbols and their obfuscated
names.

It should also be understood that in some embodiments only
portions of the generated code may be obfuscated while other
portions are not obfuscated. The portion of the generated code
that is obfuscated can be automatically selected based on
functional criteria of the block diagram model, the functional
criteria of the generated code, or selected by the user. The
criteria may be any of the semantic and syntactic notions that
affect the execution and editing of the model or generation of
code. Examples include components that contain look-up
tables or exported global variables.

In other embodiments portions of code may be obfuscated
separately and require a different pas sword to break the
obfuscation for each portion. Further more layers of obfus
cation may be employed. For example the entire code may be
obfuscated using one password while portions of code within
the entire code may be independently obfuscated using sepa
rate passwords.

The examples to this point have focused primarily on the
system where the graphical modeling environment was on a
local computational device, in one embodiment an electronic
device. The graphical modeling environment may of course
also be implemented on a network 1100, as illustrated in FIG.
11, having a server 1110 and a client device 1120. Other
devices, such as a storage device 1130, may also be connected
to the network.

In one such embodiment a system for generating and dis
playing a graphical modeling application, comprises a distri
bution server for providing to a client device, obfuscated code
generated from a block diagram; and a client device in com
munication with the distribution server. Here the distribution
server provides a client device, such as an electronic device
discussed above, with obfuscated code. The client may then
use the obfuscated code to compile a model for use at the
client device. In some embodiments, the obfuscated code may
be used as part of block diagram model. In such cases, code
may also be generated from this block diagram.

In another embodiment, a user may then interact with a
graphical modeling interface on the server through the client
device. In one example of such a system a server and client
device are provided. The server is capable of executing a
graphical modeling environment. The client device is in com
munication with the server over a network. The server

receives from the client device, a request to generate code
from the block diagram. The server generates obfuscated
code from the block diagram. The client device then receives
from the server the obfuscated code.

20

25

40

45

50

55

60

65

12
It will be understood by one skilled in the art that these

network embodiments are exemplary and that the function
ality may be divided up in any number of ways over a net
work.
The present invention has been described relative to illus

trative embodiments. Since certain changes may be made in
the above constructions without departing from the scope of
the invention, it is intended that all matter contained in the
above description or shown in the accompanying drawings be
interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are to
cover all generic and speci?c features of the invention
described herein, and all statements of the scope of the inven
tion which, as a matter of language, might be said to fall
therebetween.

What is claimed is:
1. A computing device-implemented method comprising:
receiving a ?rst graphical model;
generating, by a processor of the computing device, textual

code for the ?rst graphical model, the generating includ
ing:
generating a plurality of related ?les required for com

piling the generated textual code;
converting the generated textual code for the ?rst graphical

model into obfuscated textual code, the converting
including:
converting the plurality of related ?les to plurality of

obfuscated related ?les;
receiving a second graphical model, where:

the second graphical model includes the ?rst graphical
model, and

the second graphical model is executable;
incorporating the obfuscated textual code into the second

graphical model using a graphical element, where:
the incorporating associates the plurality of obfuscated

related ?les with the second graphical model, and
the obfuscated textual code interacts with a portion of

the second graphical model, the interacting compris
1ng:
receiving output from the portion of the second

graphical model, or
providing input to the portion of the second graphical

model; and
generating code for the second graphical model, the

generating comprising:
incorporating the obfuscated textual code into the

generated code.
2. The computing device-implemented method of claim 1,

wherein converting the generated textual code for the ?rst
graphical model into obfuscated textual code comprises:

selecting one or more obfuscation techniques based on
functional criteria of the ?rst graphical model and/or
functional criteria of the generated textual code.

3. The computing device-implemented method of claim 2,
wherein the one or more obfuscation techniques comprise at
least one of: altering or removing comments from the gener
ated textual code.

4. The computing device-implemented method of claim 2,
wherein the one or more obfuscation techniques comprises:

altering a representation of one or more strings in the
generated textual code.

5. The computing device-implemented method of claim 2,
wherein the one or more obfuscation techniques comprises:

applying a one-way hash function to the generated textual
code.

