US008832649B2

a2 United States Patent 10) Patent No.: US 8,832,649 B2
Bishop et al. 45) Date of Patent: Sep. 9, 2014
(54) SYSTEMS AND METHODS FOR 5,020,135 A 5/1991 Kasparian et al.
AUGMENTING THE FUNCTIONALITY OF A gggg‘%g : é; iggé gray ft 2111.
,250, ay et al.
MONITORING NODE WITHOUT 5,754,823 A * 5/1998 Mudryketal.cccceoe. 710/8
RECOMPILING 5881270 A 3/1999 Worthington et al.
5,884,077 A 3/1999 Suzuki
(75) Inventors: Doug Bishop, Phoenix, AZ (US); Tim 5941918 A 8/1999 Blosser
Felke, Glendale, AZ (US); Jeff 6,094,609 A 7/2000 Arjomand
Vanderzweep, Peoria, AZ (US); Doug (Continued)
Bell, Phoenix, AZ (US); Miroslav
Krupa, Brno (CZ) FOREIGN PATENT DOCUMENTS
(73) Assignee: Honeywell International Inc., Eg éi;g?gg ié ggg?g
Morristown, NJ (US) EP 2527977 A2 11/2012
WO 2005025194 Al 3/2005

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 179 days. OTHER PUBLICATIONS

EP Search Report dated Feb. 7, 2013 for EP 12 187 309.5.
EP Office Action dated Feb. 19, 2013 for EP 12 187 309.5.

(22) Filed: May 22, 2012 (Continued)

(21) Appl. No.: 13/477,735

(65) Prior Publication Data

US 2013/0318529 Al Nov. 28,2013 Primary Examiner — Lewis A Bullock, Jr.

Assistant Examiner — Francisco Aponte

(51) Int.CL (74) Attorney, Agent, or Firm — Ingrassia Fisher & Lorenz,
GOG6F 9/44 (2006.01) P.C.

(52) US.CL
USPC ..o 717/120; 717/107 (57) ABSTRACT

(58) Field of Classification Search
CPC ... GO6F 9/4843; GO6F 9/4856; GO6F 9/4881; Systems, methods are provided for augmenting functions of a
GOG6F 9/52; GOG6F 13/00; GO6F 13/1652; computing device by a controlling computing device. The
GOGF 13/1657; GO6F 13/14; GOG6F 15/163; method comprises receiving a command and a data matrix
GOG6F 15/17; GO6F 15/173; GO6F 15/17331; from the controlling computing device. The data matrix con-
GO6F 15/17337, GO6F 15/17362 tains data that when installed enables the subordinate com-
USPC .o 717/101-178; 718/100; 713/150 puting device to accomplish additional functions. The
See application file for complete search history. method further comprises calling a first SEAM by the com-
. puting device to receive the command and the data matrix,
(56) References Cited calling a second SEAM by the computing device to create a
U.S. PATENT DOCUMENTS SDS extensio.n in its Vqlatile memory, and populating the one
or more volatile extensions with the data from the data matrix.

4,047,162 A 9/1977 Dorey et al.
4,296,409 A 10/1981 Whitaker et al.

4,890,284 A 12/1989 Murphy et al. 12 Claims, 14 Drawing Sheets
2508 S
TATA STRCTRE
VARMBLES {DECODE SPEC) WPSSTﬂCSPEC
STATIC
) 5)
1000) 1002 10053
VARIABLE OFFSET
1004
UK
NG WHERE LK UK N
| s | oo
350 | 00§
VARIABLES] |[WORDS | [OATA STRUCTIRE SRSOT
10051 {DECORE SPEC) PEC

EXTENSION EXTENSION EXTENSION EXTENSION

WHERE 10N 1012 |VARIRBLE OFFSET| 1013
STORED EXTENSON 11
VAR\ABLES‘ |\<
STORAGE VARIABLE STORAGE

1021 emison 020

US 8,832,649 B2

Page 2
(56) References Cited 2006/0095394 A1 5/2006 Miller et al.
2006/0200738 Al 9/2006 Tarle et al.
U.S. PATENT DOCUMENTS 2007/0010923 Al 1/2007 Rouyre
2007/0022403 Al 1/2007 Brandt et al.
6,104,803 A * 82000 Weseretal. 379/230 2007/0050719 Al 3/2007 Lui et al.
6,128,560 A 10/2000 Ishii 2007/0100520 Al 5/2007 Shah et al.
6,185,613 Bl 2/2001 Lawson et al. 2007/0124189 Al 5/2007 Stoughton et al.
6,353,896 Bl 3/2002 Holzmann et al. 2007/0226540 Al 9/2007 Konieczny
6,401,098 Bl 6/2002 Moulin 2008/0059621 Al 3/2008 Raghavan et al.
6,434,455 Bl 8/2002 Snow et al. 2008/0098351 Al 4/2008 Weatherhead et al.
6,438,470 Bl 8/2002 Hiramatsu 2008/0119981 Al 5/2008 Chen
6,493,616 Bl 12/2002 Rossow et al. 2008/0125877 Al 5/2008 Miller et al.
6,615,090 Bl 9/2003 Blevins et al. 2008/0125933 Al 5/2008 Williams et al.
6,624,909 Bl 9/2003 Czyszczewski et al. 2008/0163172 Al 7/2008 Rossmann et al.
6,728,611 B2 4/2004 Kamiya 2008/0250118 Al 10/2008 Ray
6,757,897 Bl 6/2004 Shi et al. 2009/0113088 Al 4/2009 Illowsky et al.
6,766,230 Bl 7/2004 Rizzoni et al. 2009/0138139 Al 5/2009 Tsai et al.
6,789,007 B2 9/2004 Ellis et al. 2009/0138141 Al 5/2009 Nwadiogbu et al.
6,823,512 Bl 11/2004 Miller et al. 2009/0228519 Al 9/2009 Purcell et al.
6,832,141 B2 12/2004 Skeen et al. 2009/0249215 Al 10/2009 Paek
6,904,483 B2 6/2005 Koning et al. 2009/0265055 Al 10/2009 Gillies
6,910,156 B2 6/2005 Adam 2009/0289756 Al 11/2009 Raichle et al.
6,928,358 B2 8/2005 Brooks et al. 2009/0295559 Al 12/2009 Howell et al.
6,937,926 B2 8/2005 Lipscomb et al. 2009/0300472 Al 12/2009 Ambrosino et al.
6,950,782 B2 9/2005 Qiao et al. 2010/0005470 Al 1/2010 Simon et al.
7,065,050 Bl 6/2006 Herbst 2010/0010702 Al 1/2010 Gilbert
7,072,879 B2 7/2006 Soemo et al. 2010/0042283 Al 2/2010 Kell et al.
7,079,984 B2 7/2006 Eryurek et al. 2010/0043003 Al 2/2010 Valdez et al.
7,124,302 B2* 10/2006 Ginteretal.ccoo....... 713/189 2010/0131241 Al 5/2010 Dal Bello et al.
7,142,953 B2 11/2006 Marshall et al. 2010/0138515 Al 6/2010 Ruiz-Velasco et al.
7,188,207 B2 3/2007 Mitter 2010/0192005 Al 7/2010 Dasetal.
7,209,817 B2 4/2007 Abdel-Malek et al. 2010/0217479 Al 82010 Dahl et al.
7,222,800 B2 5/2007 Wruck 2010/0217638 Al 8/2010 Dickson et al.
7,237,223 B2 6/2007 Leu et al. 2010/0229044 Al 9/2010 Fountain et al.
7272475 B2 9/2007 Gawlik et al. 2010/0281119 Al 11/2010 Durai
7,295,903 B2 11/2007 Siebel et al. 2011/0010130 Al 1/2011 Hadden et al.
7,319,947 Bl 1/2008 Khaira et al. 2011/0023079 Al 1/2011 Schultz et al.
7,349,825 Bl 3/2008 Williams et al. 2011/0060946 Al 3/2011 Gupta et al.
7,363,420 B2 4/2008 Lin et al. 2011/0077817 Al 3/2011 Sunetal.
7,379,799 B2 5/2008 Cleary et al. 2011/0118905 Al 5/2011 Mylaraswamy et al.
7,379,845 B2 5/2008 Gorinevsky et al. 2011/0191099 Al 8/2011 Farmaner et al.
7,415,606 B2* 82008 Tuvelletal. ... 713/151 2012/0023499 Al ~ 1/2012 Biran et al.
7,444,216 B2 10/2008 Rogers et al. 2012/0079005 Al* 3/2012 Dentetal. 709/203
7,447,643 B1* 11/2008 Olson etal.ooccovrvveenan. 705/2 2012/0150474 Al 6/2012 Rentschler et al.
7,493,482 B2 2/2009 Ring et al. 2012/0151272 Al 6/2012 Behrendt et al.
7,522,979 B2 4/2009 Pillar 2012/0158783 Al 6/2012 Nice et al.
7,523,133 B2 4/2009 Mackie 2012/0198220 Al* 82012 Felkeetal. ... 713/2
7,593,403 B2 9/2009 Kalkunte et al. 2012/0254876 Al* 10/2012 Bishopetal. 718/102
7,596,785 B2 9/2009 Burkhardt et al. 2012/0272099 Al 10/2012 Keith, Jr.
7,606,843 B2 10/2009 Alexander et al. 2012/0304164 Al* 11/2012 vander Zweep etal. 717/174
7,617,029 B2 11/2009 Loda 2013/0023203 Al 1/2013 Kakaire
7,710,871 B2 5/2010 Lavian et al. 2013/0073698 Al 3/2013 Ling et al.
7,757,120 B2 7/2010 Ogle et al. 2013/0097414 Al* 4/2013 Bishopetal. 713/100
7,761,201 B2 7/2010 Avery et al. 2013/0097459 Al* 42013 Belletal.ccoovinnn. 714/37
7,779,039 B2 8/2010 Weissman et al.
7.920,562 B2 4/2011 Petrovykh OTHER PUBLICATIONS
7,950,017 Bl 5/2011 Cain et al.
7,990,857 B2 8/2011 Jain et al. USPTO Office Action for U.S. Appl. No. 13/077,276 dated Feb. 8,
8,054,208 B2 11/2011 Fletcher et al. 2013.
8,135,995 B2 3/2012 Ngai etal. USPTO Notice of Allowance for U.S. Appl. No. 13/077,276 dated
8,145,444 Bl 3/2012 Bickford et al. Apr. 12,2013,
g’}gé’égi gé ggg}%]SSti: I;)I}llztrtl etal. Bishop D.L., et al; Systems and Methods for Coordinating Comput-
8:2 14:3 17 B2 712012 Aguilar et al. ing Functions to Accomplish a Task, filed Jun. 14, 2013, U.S. Appl.
8,265,980 B2 9/2012 Ochs etal. No. 13/918,584.
8,468,601 Bl 6/2013 Bakhmutov USPTO Office Action for U.S. Appl. No. 13/273,984 dated Nov. 4,
8,533,536 B2 9/2013 Yan et al. 2013.
8,615,773 B2* 12/2013 Bishopetal. ..o 719/318 USPTO office action for U.S. Appl. No. 13/016,601 dated Nov. 8,
2002/0004694 Al 1/2002 Mcleod et al. 2013.
200200007237 AL 172002 Phung et al USPTO Notice of Allowance for U.S. Appl. No. 13/077,276 dated
2002/0095597 Al 7/2002 Norden et al. Oet. 17, 2013.
2002/0133651 A1* 9/2002 Wangetal.c............. 710/104 Fletcher, et al.; Re-Configurable Multipurpose Digital Interface, filed
2004/0030649 Al* 2/2004 Nelsonetal.ccccccc.... 705/44 Apr. 27,2010 and assigned U.S. Appl. No. 12/768,448.
2004/0117791 Al 6/2004 Prasad et al. Fletcher, et al.; Re-Configurable Multipurpose Analog Interface,
2005/0038581 Al 2/2005 Kapolka et al. filed Mar. 30, 2010 and assigned U.S. Appl. No. 12/750,341.
2005/0060396 Al 3/2005 Hirooka Goldstein, et al.; Vehicle System Monitoring and Communications
2005/0211072 Al 9/2005 Luetal. Architecture, filed Jun. 29, 2009 and assigned U.S. Appl. No.
2005/0246719 Al 11/2005 Oshins et al. 12/493,750.

US 8,832,649 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Felke, et al.; Methods and Reconfigurable Systems to Optimize the
Performance of a Condition Based Health Maintenance System, filed
Jan. 28, 2011 and assigned U.S. Appl. No. 13/016,601.

Bishop, et al.; Systems and Methods for Coordinating Computing
Functions to Accomplish a Task, filed Mar. 31, 2011 and assigned
U.S. Appl. No. 13/077,276.

Van Der Zweep, et al.; Systems and Methods to Configure Condition
Based Health Maintenance Systems, filed May 25, 2011 and assigned
U.S. Appl. No. 13/115,690.

Bell, et al.; Methods and Systems for Distributed Diagnostic Reason-
ing, filed Oct. 14, 2011, and assigned U.S. Appl. No. 13/273,984.
USPTO Office Action for U.S. Appl. No. 13/115,690 dated Jun. 7,
2013.

Coalition Solutions Integrated, Inc.—Products & Services; Program
Management / Information Technology (IT); URL: http://

coalitionsolutions.com/products2 html; retreived from the internet
on Dec. 7, 2010.

Bell, D. A, et al.: “Method for Performing Condition Based Data
Acquisition in a Hierarchically Distributed Condition Based Main-
tenance System” filed Sep. 28, 2012 and assigned U.S. Appl. No.
13/630,906.

NPL: Bishop, D. L.: Systems and Methods for Limiting User
Customization of Task Workflow in a Condition Based Health Main-
tenance System, filed Aug. 10, 2012 and assigned U.S. Appl. No.
13/572,518.

EP Search Report for Application No. EP 13 184 653.7 dated Feb. 25,
2014.

USPTO Notice of Allowance for U.S. Appl. No. 13/016,601 dated
Feb. 12, 2014.

USPTO Notice of Allowance, Notification Date May 13, 2014; U.S.
Appl. No. 13/572,518.

USPTO Office Action, Notification Date Jun. 13, 2014; U.S. Appl.
No. 13/115,690.

* cited by examiner

US 8,832,649 B2

Sheet 1 of 14

Sep. 9, 2014

U.S. Patent

(LY H01d)
| "Ol4
LOVAINI m 10Y m L3N m 19v41Y3 m JHSYIN
| | | |
_ I [ONICHO0I3 |
v1va
| | | | e
_ | | YLYQ INIDITTINI " ALIMEL
_ “ “ “
_ | | |
[Ss | Dl “
| ONIIINIONT “ Qs 200 : ! SNLYLS
| i i i TIAVIANSNOD
| m m m _ylva
_ I I I 39vSn
_ “ “ “
I I I I O/
_ SNV | | I SINIAT
L sowvanw " SOUSONYOH 1= ! Zﬂﬁo ONY SNLYLS
_ | | “
_ “ “ “ | SHOLYOINI
_ ! ! ! 174
| | | |
| | | |
_ HOLYNIGH000 _ _ ! SINVA
_ _ SolSONOVIa [_ LI
i JONYNILNIYW i -] i
_ i | NOILVANZ9 i
= i i NOLAAAS i
09 | oc i o i o i oz

US 8,832,649 B2

Sheet 2 of 14

Sep. 9, 2014

U.S. Patent

: 3
o 2 Ol Sjil —
0zl
v1va
NOILYANOIND M- v_._._ HY |
“ogl
06l
7001 > ol |
-
ONITIA0N ooe o
NBAIN] ¥ LY _ HINIY INIYY |
S w ~0G!
L) —| e |
-
2oz ST NOWAOD | [Zo2 SIS ONGE | 09l
[SOZ 399Ny VIvd G3VHS JWLN | [[202 ST0INES ONILHOJTY M0 _
—H TOZ SH0SSIDAY VLY MOMINYYA | | 0= HINAS MOTHIHOM |
TOZ STOIAYIS HHOMINvY
»oz) vG7, v_okmr LY 2 IS EICIITEN N
140434 ONIHOLINOW
@92 =5 LL oo v | [K &z
ALYNIGN00]] (97 . YT
oz c4e | ooo| [300040
TS ONROINON | rempema |
1G2Z Gz | NOLLANSNDD e
NOdS TN N0V
19¢ e ISTAEEE | vee
HoDad | 3oty N
LOVAINI T bz 1wz | Lovilx NSV
09z— 992 LN Nove “0gz Cozz
06z -1 1oV

US 8,832,649 B2

Sheet 3 of 14

Sep. 9, 2014

U.S. Patent

J
153114 NOLLYSNIINOD :
3~ m PRI e Ol VNI HLVH
J1dv1 m @ e SFOINGIS HHOMINYY WH3 _ I
TIOON 43) |1 |2G9) 2052 2022~ 2022~ § =
OREINT] ! - > !
1S T8YMIA | |1 T4 LV [Lovdla || 2nsvan _L/ Iz
== I
—_— | NOLARN == NOLLVOTaY M5 1507 | ol
— _ L
| <> PIOG | STONES WOMAWA] MY Tl
ONILEOA3Y | peal POSZ~ 1§ POVE~ § POSZNG POZ2~N g || =
| Sl v |[Ceea] [ToveDa | [Fesvan | | =~
_ I] I ol
NOLV4D3LN || NOLLYA9LND) [Pooe (skaLdvay GGmoLsm [~
v1¥d | T80T : 9NN HLVH
| <> [510 | SI0INS YROMINVE WEA _ M
ONILIG3 I | (oG8 2092~ }20G2~y§ 20¥2~ § 2092~{ 2022~ }
¥1¥d T .T Sl _u/|\m_ IIZENT | IET | REE) WEDER| EESET Awbmﬂ
o I] I
ONINIA 5m<m<9 m zo_uﬂw%%ou l_l_ 0G2e (S)3LdvaY GEZINOLSO |-
_ I
Q_Em% el | <> To% | STINGS YOMINvEd INA | svawm
| lagal 4092~ }4052~¢ 1} d0v2~ § 4022~t 4022~ } -7
S m S77,4 _V/%. [LovaaIn]| ,h_z | [L2udaIN] [10w]| u%w,ﬁ_\,_ [o4
%%H W_x zo_mr/m%%oo f TCoc SRaLdvaY GIMOLS) |~
| L
&= <> | BIOZ | SIOINES YoMy IN3 ||| 3k
001 | vSgl 2092~ {9052~y } 2OV~ } 202~ 2022~ § 7
ONINEY “ [LOVEIN] LOv || 134dd3IN || Lovdlxd || 3ensvaw | >
LY - _ . : 09l
; ° "0 o L[Tocc WLy GOl | | (SIS
OLL _ _ _ ALVDIONAS
F ﬂ
||||||||||||||||||||| 2121 002

US 8,832,649 B2

Sheet 4 of 14

Sep. 9, 2014

U.S. Patent

¥ Ol
L I]
m m m _ YNV LNIYW/NYIDINHOIL
m NGV m m _
| : A
ZopA
m Y14a N 9 m m _
“ . ddv gIM N 200 Lo) _
| [4 | | [4 | Q_\N
| e awesem ocvi 1OV bswosem O9v |
<29V

rr-—-rr———"—"—FF™"—F="—~F~="] ~~"~—F«~—F—/ ~HF"«&>F"—WF—F/fF~F—FFT—FFTYT\f~YF"7 "7 7Y+ =/ mF"f7 rr7mF”FfyTrrH"Tr"7T"7T7"7"7"— —
i i
| |
Vo Ly || L v |)
i e ¥ INOdS T LRI | e {_/6®N 022)
| |
“ 7 P . . _
i 0zt Ol lg¢ 092 |
“ (] [}
i > i
“r (SOLY/XINIT/NIM LN3N3A3ANI W04 1d) NOLLYOITddY LSOH |ommL_

AYYHAN (80) TONYNILNIYW Q3SYE-NOLLIANOD HLIM NOLLYOTTddY NIV INIVIW M

U.S. Patent Sep. 9, 2014 Sheet 5 of 14 US 8,832,649 B2
5o§
MNTNODE 150
POWER ON
510//4 I
PLATFORM
|, INTIALIZATION BY
5207 HOST
HOST MAIN
SDS/DDS
530— | LDl LOADED
HOST GETS
| SDS/DDS START
540~ POINTERS
HOST CALLS INIT API i_""_"SE_AI_/IS_ """""" “:
OF CA-CBMWITH | | .
|, SDS/DDS POINTERS f—r={INSTANTIATION SEAMS] :
550 PASSED AS | S |
PARAMETERS | 511 |
| |
HOST ENTERS I 580 I
NORMAL OPERATION | | \ :
| (THEREFORE CORE |-~ EXECUTION OF SEAMS }=— !
S70-1 | ENTERSNORMAL | | | |
OPERATIONAL) . |

U.S. Patent Sep. 9, 2014 Sheet 6 of 14 US 8,832,649 B2

©00

X

570

\
[.HOSTAPPLICATION ROUTINE EXECUTION |

620
\ 630

SEND DATA TO CACEM \
___________ | CACBMEXECUTION |

AP| FUNCTION CALL

©40

\
GET DATA FROM CACEM|

AP! FUNCTION CALL
©50
\
DEBUGGING SERVICES

API FUNCTION CALL

EXECUTION

570

5
| ..HOSTAPPLICATION ROUTINE EXECUTION |

FIG. ©

US 8,832,649 B2

Sheet 7 of 14

Sep. 9, 2014

L ol
0¥
o 2ge WY
0d ONIGOLINOW
Y mm G2~ |N0ILIANSNOD
0al ONIIOLINOW | ¢z -] 003
S 1 cadl N
ool =
OdH J0IA3S =
zae =
woge| | g R e — 7
Jels tad 0%g
ISNOJS T INIAT 77— N0y
voge] | oz s Lz LYo
L~ 0l%

U.S. Patent

US 8,832,649 B2

Sheet 8 of 14

Sep. 9, 2014

U.S. Patent

j
o)
= 03%
=gl 43440d 0o%
Y INOMID
cGeo ey
20y
2G¢ Ol ~
— 434409 ¥344n9 9SIW
9% LOHSAYNS 1NdNI 3MINODY
Q4003 40GE ~-50Q
OC BNOdSRY/INAA
N
77—
20GE
0zl

g Old
I0INES MOTANHOM
M -7 1
1 G52 M =
o~ —-—-——- ﬂ\l |||||||| -
_ olele -0l
r—— T 1
R
cog
B —
o= IJM |||||||| ~/
409% N cog
1 288 T Toxg url
- - IJM |||||||| -/
v cog lee
Gal Fr———————————— =l 1
| Loy TonyA3 €930 ‘Cay “Cody ‘Taly |
N J
Y
e
TATINY
mmu_%un_o Q4003 300030 Y
LYMIYAS
LRAMAINT N LOvELa N SV N
ove 0%2 0z2

U.S. Patent Sep. 9, 2014 Sheet 9 of 14 US 8,832,649 B2

2502 S0S
DATA STRUCTURE
VARIABLES (DECODE SPEC) SNAF;STZOTKCSPEC
STATIC
)))
1000 1002 1003
WORDS VARIABLE OFFSET
))
1001 1004
LINK
LINK ~ WHERE LINK LINK LINK
STCRED g
350b DDS
VARIABLES WORDS | [DATA STRUCTURE SNAPSHOT
1005 (DECODE SPEC) SPEC
EXTENSION| | | EXTENSION EXTENSION EXTENSION
[
WHERE 10/11 1072 VARIABLE OFFSET 1815
ST(%RED EXTENSION _ ~-1014
VARIABLES
STORAGE VARIABLE STORAGE g
1021 <" | exTenion 1020

FIG. 9

US 8,832,649 B2

Sheet 10 of 14

Sep. 9, 2014

U.S. Patent

Ol "9l

zlol
4

0zZ0l
-/ |
FNLINYLS V1va 1Ol
1NdNI 0L S1d /
THVH0LS 0L S1d
$30ISY MY jite)!
\OLLNIa EC T 30003 /
LOHSANS THYEVA OL 5L SUNERTS 2101
RIHM TI9Y.L 135440 T19vIdvA TIGYIYA 40 1817 /
SQI QYOM 40 1STT
SQHOM
(.
NLONULS Y1¥a OL LNdNI
0zZ0l
/
JNLONYLS Y1¥a e
¥ 1NdNI OL S1d /
$STUA0Y FYE0LS S0 0L S1d
j alYSYW ite]!
EC I 300030 0L S1d /
dvA 0L S1d Sql 135440 Z101
NOLLIN mﬁ 135440 T19vIdvA TIYINVA 40 LS /
LOHSJWNS SQI QUOM 0 1S
SQHOM
o

006

Y1YQ XI4LYW

1NdNIY1va

QIS 0L INIOd

J3dS LOHSAYNS

US 8,832,649 B2

Sheet 11 of 14

Sep. 9, 2014

U.S. Patent

.04l

-0l%

Vil Old
~
FIAAS MOTIMHOM
ﬁ r—-—"~"~"~""~""™"""~™"™"™"7™"7™"™= 1
0a2 eee 5
Y
oo, Y3444 ~ 9%
4y IN04I0 Moo~ 1
L ". ole .__AI
oce 06% \s - -
9%
— 7o - T
ZGC 00L& rr|||||||||jm |||||||| J
— 434 434408 N 405% 5 slele
|G LOHSAYNS LNdNI oo~ —————————- T
Q400 4082 ~-50 weee ol o0
Y
olos, 1S
> G2l romTTTTTT I hlwl
- I sy |
IOC 3NOAS3H/INIAS N
Y
Sas 29%
7 ~
e04g
FZI4YWIANS JZATUNY
(NOJS3Y JLYNIQH00D IWNSNOD 39¥SN 3SONDYIC Q4093 300030 v
NOW 39%SN 10I034d JLYNIVAT
LOVEIINE N\ N MNYY 3LYI0TIY RITTTER ENSELIRY
092 0sz 1IN N 0ge 0z2
ove

US 8,832,649 B2

Sheet 12 of 14

Sep. 9, 2014

U.S. Patent

OloI~l

.04l

-0l

dll ‘©l4
N
0% S OGS MOTIROM ___
L0l TERES | 99 =]
2 p— AU e Lx
- a% Y
S cog
020l | | = = O .
G% | | 2S% I ¥G |
— oot Y
g0l | | = = S
oz | |1eT | | 06 e
a r— -~~~ = a
—| [= =)
Hol ¥4 434408 9N 40G¢ - coe
—— LOHSdYNS 1NN TR TR TR 1
Hinen S e Ty 1€
SOOL|| oo 4082~ r_mmm--@-%-@.m.@ﬁ
cog I5¢
A Ivarall YDQ_‘ _|IIIIIIIIII_IIII_h|II,,II|l_
YOOI Yolo]) _ €330y Gy TP j00r) ‘CBo0g) 1
ISNOAS T/ INGAT N -
cool| |zoot | |ooor _ Y
. 192 S 29¢
7 ~/
Jeleie
TZNTHNY
3L¥NICH000 003y 300030 O
ILYNTYAS
YN IR WSV N
052 022 022

US 8,832,649 B2

Sheet 13 of 14

Sep. 9, 2014

U.S. Patent

ITEIIE
}/
o J0INGES MOTIROM _ _
GGz _ _ Vlsay Hung ‘ Valy Tl
0ae Teieiol ik et o
e B 20l TR
= e ~ e ~Olg
A IN0HID rooos——— S 1
I v4% b=—]
[elee] oTe rFIIII<| |||||||| 0
06 e
1
=G0 O[T r_rlmlm ||||||||||||||| WAI
Y
— ¥344nd 43448 S 40G% Cog
1G% LOHSdYNS 1NdNI Mo~~~ ——————~—3~—— 1
Q40034 4052~ NEEC
Y
__goe (|
>agl i (say * ¢Buing ‘ ¢Paiq ¢ |
“ “Cyuey “ C3oo)y * CPjeuy * 9200 |
ISNOdS3Y/ N3N Mr-lllxl-ﬂ ||||||||| 4y
\ 19 mawk 20Q
HSINIA WL S3NIY INIYIA
e04% J7I9VWANS
ANSNCD 30¥SN 3SONBYI TATINY
ONOAS3Y LYNIGH000 NOW 39¥Sn LDIa Q4003 300030 O
Wrd 3L¥00TIY LYNTYA
LOVHIINE N o N LN N [RITERNY SV N
092 0GZ ovZ 0gz 0z2

US 8,832,649 B2

Sheet 14 of 14

Sep. 9, 2014

U.S. Patent

S R | | [04003 35NOSS 3 ¢l Ol

| ¥SYL N Q398

| ENEETES ¥SYL W03

i D - oggl f S

| SE0 N, L TOHel L] 330 IN0SSHYN | “ o6al

! NOdS3Y 1 QU004 FSNOAS3H J0LS !

_ I -

| gog-zag A .) oLel |

I QY003 L] N0 ISNOdVY - | |

_rl IUNELS N 3ovndeay ALIHORE LSIHIH Qy3Y T 0ocl

| YLv0 Q34YHS e S s9¢ 2z

| n y oggl

| 0920/ ooel

|

|

| RN

| el omm_

|

] o loaddnamoe T | xoom

! r 1033 DN Y34 | /N3 | 10313 3180

| 1$% | \ | ocel

| vog |

_ - -|||QM_\|M|_ ||||||||||||||] fd LS

| e 1 (0:4])

| R | g oo 71751 VBLSAS OIN

| OLNI S ONY OA3 39¥SSIN HNd

L s e --|_OINI IN3AZ 907 f N1 /

09¢ e ol
S0 5% RS HORON =) {3140 CZHOLSI0
405¢ 20GE o)t Y9-12e G2

=

US 8,832,649 B2

1
SYSTEMS AND METHODS FOR
AUGMENTING THE FUNCTIONALITY OF A
MONITORING NODE WITHOUT
RECOMPILING

TECHNICAL FIELD

The present invention generally relates to architectures for
condition based health maintenance systems, and more par-
ticularly relates to systems and methods for instituting a
maintainer interface node within a condition based health
maintenance system for monitoring a complex system.

BACKGROUND

Increases in vehicle complexity and the accompanying
increase in maintenance costs have led to industry wide
investments into the area of condition based health mainte-
nance (CBM). These efforts have led to the development of
industry or equipment specific process solutions. However,
conventional CBM systems are generally rigidly configured,
which can result in cumbersome performance or users pay
significant modification costs.

FIG.1is a simplified block diagram of an exemplary multi-
level health maintenance process 10 that may be useful in
monitoring a complex system (not shown). A complex system
as discussed herein may be any type of vehicle, aircraft,
manufacturing process, or machine that may utilize sensors,
transducers or other data sources to monitor the various com-
ponents and parameters of the complex system. The sensors/
transducers are typically situated at the component or the
process measurement level 20 to measure, collect and com-
municate raw data through a variety of data driven input/
output (I/O) devices. This raw data may represent fault indi-
cators, parametric values, process status and events,
consumable usage and status, interactive data and the like.
Non-limiting examples of other data sources may include
serial data files, video data files, audio data files and built in
test equipment.

Once the parameters of the complex system are measured,
the measurement data is typically forwarded to more sophis-
ticated devices and systems at an extraction level 30 of pro-
cessing. At the extraction level 30, higher level data analysis
and recording may occur such as the determination or deri-
vation of trend and other symptom indicia.

Symptom indicia are further processed and communicated
to an interpretation level 40 where an appropriately pro-
grammed computing device may diagnose, prognosticate
default indications or track consumable usage and consump-
tion. Raw material and other usage data may also be deter-
mined and tracked.

Data synthesized at the interpretation level 40 may then be
compiled and organized by maintenance planning, analysis
and coordination software applications at an action level 50
for reporting and other interactions with a variety of users at
an interaction level 60.

Although processes required to implement a CBM system
are becoming more widely known, the level of complexity of
a CBM system remains high and the cost of developing these
solutions is commensurately high. Attempts to produce an
inexpensive common CBM solution that is independent from
the design of the complex system that is being monitored have
been less than satisfying. This is so because the combination
and permutations of the ways in which a complex system can
fail and the symptoms by which the failures are manifested
are highly dependent on the system design.

20

25

30

35

40

45

50

55

60

65

2

Accordingly, it is desirable to develop a health mainte-
nance system architecture that is sufficiently flexible to sup-
port a range of complex systems. In addition, it is desirable to
develop a health maintenance system that may be easily
reconfigured by a user in real time, thus dispensing with
prohibitive reprogramming costs and delays. Furthermore,
other desirable features and characteristics of the present
invention will become apparent from the subsequent detailed
description of the invention and the appended claims, taken in
conjunction with the accompanying drawings and this back-
ground of the invention.

BRIEF SUMMARY

A system is provided for extending the functionality of a
subordinate computing device without re-compiling code.
The system comprises a controlling computing device,
wherein the controlling computing device and the subordi-
nate computing device each comprise a first plurality of stan-
dardized executable application modules (SEAMs), each
SEAM configured to execute on a processor to provide a
unique function and to generate an event associated with the
unique function associated with each SEAM and a computer
readable storage medium having a configuration file recorded
thereon, the computer readable storage medium comprising:
a dynamic data store (DDS) and a static data store (SDS). The
DDS comprises an event queue, one or more response queues
and one or more unused storage locations, and the SDS com-
prises a persistent software object configured to map a spe-
cific event from the event queue to a pre-defined response
record, and to assign a response queue into which the pre-
defined response record is to be placed. The system further
comprises a workflow service module configured to direct
communication between the SDS, the DDS and each of the
first plurality of SEAMs. The controlling computing device is
configured to transmit a command and a data matrix contain-
ing data to the subordinate computing device, and the subor-
dinate computing device is configured to create a linked
extension of the SDS in an unused storage location of the
DDS in response to the command and to populate the exten-
sion of SDS with the data contained in the data matrix.

A method is provided for augmenting functions of a sub-
ordinate computing device by a controlling computing device
where the subordinate computing device and the controlling
computer device both include a workflow service, a dynamic
data store (DDS), a static data store (SDS), and are both
populated by at least a first set of standardized executable
application modules (SEAMs). The method comprises
receiving a command and a function augmentation data
matrix from the controlling computing device, wherein the
function augmentation data matrix contains data that when
installed in the DDS of the subordinate computing device
enables the subordinate computing device to accomplish
additional functions. The method also comprises calling a
first SEAM by the subordinate computing device, the first
SEAM being configured to receive the command and the
function augmentation data matrix, calling a second SEAM
by the subordinate computing device, the second SEAM
being configured to create one or more SDS extensions in its
DDS, and populating the one or more DDS extensions with
the data from the function augmentation data matrix.

A computer readable medium storage device is provided
for. The computer readable storage device contains instruc-
tions that when executed augments the functions of a subor-
dinate computing device by a controlling computing device
where the subordinate computing device and the controlling
computer device both include a workflow service, a dynamic

US 8,832,649 B2

3

data store (DDS), a static data store (SDS), and are both
populated by at least a first set of standardized executable
application modules (SEAMSs). The steps comprise receiving
acommand and a function augmentation data matrix from the
controlling computing device, wherein the function augmen-
tation data matrix contains data that when installed in the
DDS of the subordinate computing device enables the subor-
dinate computing device to accomplish additional functions.
The steps further comprise calling a first SEAM by the sub-
ordinate computing device, the first SEAM being configured
to receive the command and the function augmentation data
matrix, calling a second SEAM by the subordinate computing
device, the second SEAM being configured to create one or
more SDS extensions in its DDS, and populating the one or
more DDS extensions with the data from the function aug-
mentation data matrix.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be described in con-
junction with the following drawing figures, wherein like
numerals denote like elements, and

FIG. 1 is a simplified block diagram of a conventional
multi-level health maintenance process;

FIG. 2 is a simplified functional block diagram for embodi-
ments of a hierarchical condition based maintenance system
for monitoring a complex system;

FIG. 3 is a simplified schematic of an exemplary reconfig-
urable system to optimize run time performance of a hierar-
chical condition based maintenance system;

FIG. 4 is a block diagram of an exemplary web based
interface connecting the maintainer node to the host applica-
tion of a Maintainer node;

FIG. 5 is a simplified exemplary logic flow diagram of the
initialization process of a maintainer node host application;

FIG. 6 is an exemplary logic flow diagram for the execution
of'a SEAM in a host application;

FIG. 7 is asimplified exemplary block diagram of an exem-
plary computing node illustrating it components;

FIG. 8 is an simplified block diagram of an exemplary
lower level computing node SDS, DDS and workflow service
with an exemplary event flow stream;

FIG. 9 is a simplified block diagram of an exemplary com-
puting node SDS and its extension into an associated DDS;

FIG. 10 is an abstract relationship diagram between the
various SDS extensions;

FIG. 11a is simplified block diagrams of an exemplary
Maintainer computing node SDS, DDS and workflow service
with an exemplary event flow stream for sending a command
and a function augmentation data matrix to a lower level
computing node;

FIG. 115 is simplified block diagrams of an exemplary
lower level computing node SDS, DDS and workflow service
with an exemplary event flow stream for augmenting the
capabilities of the lower level computing node from the func-
tion augmentation data matrix;

FIG. 11c¢ is simplified block diagrams of an exemplary
Maintainer computing node SDS, DDS and workflow service
with an exemplary event flow stream for receiving and pro-
cessing data from a lower level computing node;

FIG. 12 is a simplified logic flow diagram of an exemplary
method for coordinating functions of a computing device to
accomplish a task.

DETAILED DESCRIPTION

The following detailed description is merely exemplary in
nature and is not intended to limit the invention or the appli-

20

25

30

35

40

45

50

55

60

65

4

cation and uses of the invention. As used herein, the word
“exemplary” means “serving as an example, instance, or
illustration.” Thus, any embodiment described herein as
“exemplary” is not necessarily to be construed as preferred or
advantageous over other embodiments. All of the embodi-
ments described herein are exemplary embodiments provided
to enable persons skilled in the art to make or use the inven-
tion and not to limit the scope of the invention which is
defined by the claims. Furthermore, there is no intention to be
bound by any expressed or implied theory presented in the
preceding technical field, background, brief summary, or the
following detailed description.

Those of skill in the art will appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
software executable by a computing device, or combinations
of both. Some of the embodiments and implementations are
described below in terms of functional and/or logical block
components (or modules) and various processing steps. How-
ever, it should be appreciated that such block components (or
modules) may be realized by any number of hardware and/or
firmware components configured to perform the specified
functions. To clearly illustrate this interchangeability of hard-
ware and software, various illustrative components, blocks,
modules, circuits, and steps are described herein generally in
terms of their functionality. However, it should be understood
that software cannot exist without hardware with which to
execute the software. Whether such functionality is imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. Skilled artisans may implement the described func-
tionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as
causing a departure from the scope of the present invention.
For example, an embodiment of a system or a component may
employ various integrated circuit components, €.g., memory
elements, digital signal processing elements, logic elements,
look-up tables, or the like, which may carry out a variety of
functions under the control of one or more microprocessors or
other control devices. In addition, those skilled in the art will
appreciate that embodiments described herein are merely
exemplary implementations.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a controller, a digital signal processor
(DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA) or other program-
mable logic device, discrete gate or transistor logic, discrete
hardware components, or any combination thereof designed
to perform the functions described herein. A general-purpose
processor may be a microprocessor, but in the alternative, the
processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more mMicroprocessors in conjunc-
tion with a DSP core, or any other such configuration. The
word “exemplary” is used exclusively herein to mean “serv-
ing as an example, instance, or illustration.” Any embodiment
described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other embodiments.

The steps of a method or algorithm described in connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module with instructions
executed by a processor, or in a combination of the two. A

US 8,832,649 B2

5

software module may reside in RAM memory, flash memory,
ROM memory, EPROM memory, EEPROM memory, regis-
ters, hard disk, a removable disk, a CD-ROM, or any other
form of computer readable storage medium known in the art.
An exemplary storage medium is coupled to the processor
such the processor can read information from, and write
information to, the storage medium. In the alternative, the
storage medium may be integral to the processor. The proces-
sor and the storage medium may reside in an ASIC. The ASIC
may reside in a user terminal. In the alternative, the processor
and the storage medium may reside as discrete components in
a user terminal.

In this document, relational terms such as first and second,
and the like may be used solely to distinguish one entity or
action from another entity or action without necessarily
requiring or implying any actual such relationship or order
between such entities or actions. Numerical ordinals such as
“first,” “second,” “third,” etc. simply denote different singles
of a plurality and do not imply any order or sequence unless
specifically defined by the claim language. The sequence of
the text in any of the claims does not imply that process steps
must be performed in a temporal or logical order according to
such sequence unless it is specifically defined by the language
of the claim. The process steps may be interchanged in any
order without departing from the scope of the invention as
long as such an interchange does not contradict the claim
language and is not logically nonsensical.

Furthermore, depending on the context, words such as
“connect” or “coupled to” used in describing a relationship
between different elements do not imply that a direct physical
connection must be made between these elements. For
example, two elements may be connected to each other physi-
cally, electronically, logically, or in any other manner,
through one or more additional elements.

While at least one exemplary embodiment will be pre-
sented in the following detailed description, it should be
appreciated that a vast number of variations exist. It should
also be appreciated that the exemplary embodiment or exem-
plary embodiments are only examples, and are not intended to
limit the scope, applicability, or configuration of the invention
in any way. Rather, the following detailed description will
provide those skilled in the art with a convenient road map for
implementing an exemplary embodiment of the invention. It
being understood that various changes may be made in the
function and arrangement of elements described in an exem-
plary embodiment without departing from the scope of the
invention as set forth in the appended claims.

FIG. 2 is a simplified functional block diagram for embodi-
ments of a hierarchical structure 200 that may be timely
reconfigured by a user. This may be accomplished by altering
a set of configuration data 180 via a data driven modeling tool
171, which also may be described as a model based configu-
ration means. The configuration data 180 may be stored in a
static data store (e.g. an EEPROM), a dynamic data store (e.g.
RAM), or both 190.

In light of the plethora of complex systems that may be
monitored by the embodiments being described herein below
and the wide range of functionality that may be desired at any
point in the complex system, the following description con-
tains non-limiting examples of the subject matter being dis-
closed herein. A specific non-limiting example of a complex
system that may complement the following exemplary
embodiments may be the vehicle as described in co-owned,
co-pending application Ser. No. 12/493,750, which is
assigned to the assignee of the instant application.

For the sake of brevity and simplicity, the present example
will be assumed to have only five different processing levels

20

25

30

35

40

45

50

55

60

65

6

or “application layers.” An Application Layer (120-160) is a
set of functions or services programmed into run-time soft-
ware resident in one or more computing nodes sharing a
particular hierarchical level and which is adapted to meet the
needs of a user concerning a particular health management
implementation. As non-limiting examples, an application
layer may be an Equipment Health Manager (EHM) Layer
120, an Area Health Manager (AHM) Layer 130, a Vehicle
Heath Manager (VHM) Layer 140, a Maintainer Layer 150,
or an Enterprise Layer 160.

However, in equivalent embodiments discussed herein, the
hierarchical structure 200 may have any number of levels of
application layers (120-160). Application layers (120-160)
may include any number of computing nodes, which are
computing devices. The number ofnodes is determined by the
complexity of the complex system and the sophistication of
the monitoring desired by the user. In some embodiments,
multiple nodes (120'-160") may be resident in one computing
device. The computing nodes of the equipment based layers
(EHM Layer 120, AHM Layer 130, VHM Layer 140, Main-
tainer layer 150 and Enterprise layer 160) may be also
referred to as an EHM node 120', an AHM node 130', a VHM
node 140', a maintainer node 150" and an enterprise node 160'.

In the exemplary embodiments disclosed herein, an EHM
node 120' is a computing device that provides an integrated
view of the status of a single component of the monitored
assets comprising the lowest level of the hierarchical struc-
ture 200. The EHM node 120' may have different nomencla-
ture favored by others. For example, in equivalent embodi-
ments the EHM node 120' also be known as a Component
Area Manager (CAM). A complex system may require a large
number of EHM nodes (120"), each of which may include
multiple times series generation sources such as sensors,
transducers, Built-In-Test-Equipment (BITE) and the like.
EHM nodes (120'") are preferably located in electronic prox-
imity to a time series data generation source in order to detect
symptomatic times series patterns when they occur.

An AHM node 130" is a computing device situated in the
next higher hierarchical level of the hierarchical structure 200
and may receive and process message, command and data
inputs received from a number of EHM nodes 120" and other
nodes 130'-160'. An AHM node 130" may report and receive
commands and data from higher level or lower level compo-
nents of the hierarchical structure 200. An AHM node 130'
processes data and provides an integrated view of the health
of a single sub-system of the complex system being moni-
tored. The AHM node 130" may have different nomenclature
favored by others. For example, in equivalent embodiments
the AHM node 130" also be known as a Sub-system Area
Manager (SAM).

A VHM node 140' is a computing device situated in the
next higher hierarchical level for the hierarchical structure
200 and may receive and process message, command and data
inputs received from a number of EHM nodes 120' and AHM
nodes 130'. A VHM node 140" may report and receive com-
mands and data from higher level components of the hierar-
chical structure 200 as well. A VHM node 140’ processes data
and provides an integrated view of the health of the entire
complex system being monitored. The VHM node 140" may
have different nomenclature favored by others. For example,
in equivalent embodiments the VHM node 140" also be
known as a system level control manager (SLCM).

A Maintainer Layer 150 contains one or more maintainer
computing nodes (150") that analyze data received from the
EHM nodes (120"), AHM nodes 130' and VHM nodes node
140" and supports local field maintenance activities. Non-
limiting examples of an Maintainer Level computing system

US 8,832,649 B2

7

is the Windows® PC ground based station (PC-GBS) soft-
ware produced by Intelligent Automation Corporation a sub-
sidiary of Honeywell International of Morristown, N.J.; or the
US Army’s Platform Soldier-Mission Readiness System (PS-
MRS). The Maintainer Layer system may have different
nomenclature favored by others. MNT nodes 150' also
receive data, commands and messages from higher level
nodes 160'.

A maintainer node 150' may be permanently or removably
inserted at a particular electronic and/or physical location
within the hierarchical structure 200. A maintainer node 150’
may also be any suitable portable computing device or a
stationary computing device that may be connected physi-
cally or electronically at any particular node (120'-160") or
other point of access with in the hierarchical system 200.
Thus, a maintenance technician is not bound to a particular
location in the hierarchical system from which to monitor the
complex system.

The maintainer node 150" may communicate information
to and from the maintenance technician using a user interface
over a hard wired connection 462, a wireless connection 462
and may be internet based, thus allowing the use of web pages
in common TCP/IP format (See, FIG. 4). In order to commu-
nicate between a technician and the hierarchical system 200,
the maintainer node 150' comprises a user interface web
application 461 that is responsible for data processing, ren-
dering web pages to the technician and receiving technician
requests. In equivalent embodiments, the maintainer node
150" may connect to the user interface web application 461 via
web browser executing on a web server (not shown).

An Enterprise Layer 160 contains one or more computing
nodes (160") that analyze data received from the EHM nodes
120", AHM nodes 130', VHM nodes 140' and the Maintainer
Layer 150. The Enterprise level supports the maintenance,
logistics and operation of a multitude or fleet of assets. Non-
limiting examples of an Enterprise Layer 160 computing
system is the ZING™ system and the Predictive Trend Moni-
toring and Diagnostics System from Honeywell Interna-
tional. The Enterprise layer 160 may have different nomen-
clature favored by others.

In accordance with the precepts of the subject matter dis-
closed herein, each computing node (120'-160") of each level
of the hierarchical structure 200 may be individually and
timely configured or reconfigured by the user by way of the
data driven modeling tool 171. The data driven modeling tool
171 allows a user to directly alter the configuration data 180,
which in turn provides specific direction and data to, and/or
initiates, one or more standardized executable application
modules (SEAMs) (221-264) resident in each computing
node (120'-160") of the hierarchical structure 200 via the
model driven GUI 170. In the following description the term
“configure” and “provide specific direction and data” may be
used synonymously.

The number of SEAMSs (221-264) is not limited and may be
expanded beyond the number discussed herein. Similarly, the
SEAMs (221-264) discussed herein may be combined into
fewer modules or broken down into component modules as
may be required without departing from the scope of the
disclosure herein. The SEAMs (221-264) are a set of run-time
software that are selectable from one or more re-use libraries
(220-260) and are subsequently directed to meet the health
management implementation needs of a user. Each SEAM
(221-264) contains executable code comprising a set of logic
steps defining standardized subroutines designed to carry out
a basic function that may be directed and redirected at a later
time to carry out a specific functionality.

20

25

30

35

40

45

50

55

60

65

8

There are 24 exemplary SEAMs (221-264) discussed
herein that are selected from five non-limiting, exemplary
libraries: a Measure Library 220, an Extract Library 230, an
Interpret Library 240, an Act Library 250 and an Interact
Library 260. The SEAMs (221-264) are basic un-modifiable
modular software objects that are directed to complete spe-
cific tasks via the configuration data 180 after the SEAMs
(221-264) are populated within the various nodes (120'-160")
of the hierarchical structure 200. The configuration data 180
is implemented in conjunction with a SEAM (221-264) via
the delivery to a node (120'-160') of a configuration file 185
containing the configuration data 180. Once configured, the
SEAMs (221-264) within the node may then cooperatively
perform a specific set of functions on data collected from the
complex system. A non-limiting example of a specific set of
functions may be a health monitoring algorithm.

As non-limiting examples, the Measure Library 220 may
include an Acquire SEAM 221, a Sense SEAM 223, and a
Decode SEAM 222. The Acquire SEAM 221 functionality
may provide a primary path for the input of data into a com-
puting node (120'-160") through a customized adapter 325
(See, FIG. 3) which embodies external callable interfaces.
The customized adapter 325 pushes blocks of data into an
Acquire SEAM 221, which then parses the data block and
queues it for subsequent processing by another executable
application (222-264).

The Sense SEAM 223 may provide a secondary path for
the input of data into a computing node (120'-160") through a
system initiated request to read data from a physical 1/O
device (i.e. Serial data ports, Sensor /O interfaces, etc.). The
Sense SEAM 223, then parses the data block, and queues it
for subsequent processing by another executable application
(222-264).

The Decode SEAM 222 may take the data queued by the
Acquire SEAM 221 or Sense SEAM 223 and translate the
data into a useable form (i.e. symptoms and/or variables) that
other executable applications can process. The Decode
SEAM 222 may also fill a circular buffer 380 (See, FIGS.
11a-c) with the data blocks queued by an Acquire SEAM 221
to enable snapshot or data logging functions.

The Extract Library 230 may include an Evaluate SEAM
231, a Record SEAM 234, an Analyze SEAM 232, a Trend
SEAM 233 and a record SEAM 234. The Evaluate SEAM
231 may perform a periodic assessment of state variables of
the complex system to trigger data collection, set inhibit
conditions and detect complex system events based on real-
time or near real-time data.

The Record SEAM 234 may evaluate decoded symptoms
and variables to determine when snapshot/data logger func-
tions are to be executed. If a snapshot/data log function has
been triggered, the Record SEAM 234 may create specific
snapshot/data logs and send them to a dynamic data store
(DDS) 3505. The DDS 3505 is a data storage location in a
configuration file 185. Snapshots may be triggered by another
executable application (221-264) or by an external system
(not shown).

The Analyze SEAM 232 may run one or more algorithms
using the variable values and trend data that may have been
assembled by the Trend SEAM 233 and subsequently stored
in a dynamic data store (DDS) 35056 to determine specific
symptom states and/or provide estimates of unmeasured
parameter values of interest.

The Interpret Library 240 may include an Allocate SEAM
241, a Diagnose SEAM 242, a Rank Seam 243, a Predict
SEAM 244, A Consumption Monitoring SEAM 245, a Usage
Monitoring SEAM 246, and a Summarize SEAM 247. The
Allocate SEAM 241 may perform inhibit processing, cascade

US 8,832,649 B2

9

effect removal and time delay processing on a set of symp-
toms, and then allocate the symptoms to the appropriate fault
condition(s) that is (are) specified for the monitored device or
subsystem. The Allocate SEAM 241 may also update the state
of each fault condition based on changes in the state of any
particular symptom associated with a fault condition.

The Diagnose SEAM 242 may orchestrate interaction
between a system user, monitored assets and diagnostic rea-
soning to reduce the number of ambiguous failure modes for
a given active fault condition until a maintenance procedure is
identified that will resolve the root cause of the fault condi-
tion.

The Rank SEAM 243 may rank order potential failure
modes after diagnostic reasoning has been completed. The
failure modes, related corrective actions (CA) and relevant
test procedures associated with a particular active fault con-
dition are ranked according to pre-defined criteria stored in a
Static Data Store (SDS) 350a. A SDS is a static data storage
location in a configuration file 185 containing a persistent
software object that relates an event to a pre-defined response.

The Predict SEAM 244 may run prognostic algorithms on
trending data stored in the DDS 3505 in order to determine
potential future failures that may occur and provide a predic-
tive time estimate. The Predict SEAM may also be known as
an FC State Evaluation SEAM.

The Consumption Monitoring SEAM 245 may monitor
consumption indicators and/or may run prognostic algo-
rithms on trending data stored in the DDS 3505 that are
configured to track the consumption of perishable/life-lim-
ited supply material in the complex system and then predict
when resupply will be needed. The consumption monitoring
functionality may be invoked by a workflow service module
310, which is a component functionality of an internal call-
able interface 300 and will be discussed further below.

The Usage Monitoring SEAM 246 may monitor trend data
stored in the DDS 3506 to track the usage of a monitored
device or subsystem in order to estimate the need for preven-
tative maintenance and other maintenance operations. The
usage monitoring functionality may be invoked by the work-
flow service module 310, which is a component 261 function-
ality of the internal callable interface 300.

The Summarize SEAM 247 may fuse health data received
from all subsystems monitored by an application layer and its
subordinate layers (120-160) into a hierarchical set of asset
status reports. Such reports may indicate physical or func-
tional availability for use. The asset status reports may be
displayed in a series of graphics or data trees on the GUI 170
that summarizes the hierarchical nature of the data in a man-
ner that allows the user to drill down into the CBM layer by
layer for more detail. The Summarize functionality may be
invoked by the Workflow service module 310. This invocation
may be triggered in response to an event that indicates that a
diagnostic conclusion has been updated by another module of
the plurality. The display of the asset status may be invoked by
the user through the user interface.

The Act Library 250 may include a Schedule SEAM 251, a
Coordinate SEAM 252, a Report SEAM 253, a Track SEAM
254, aForecast SEAM 255 and alLog SEAM 256. The Sched-
ule SEAM 251 schedules the optimal time in which required
or recommended maintenance actions (MA) should be per-
formed in accordance with predefined criteria. Data used to
evaluate the timing include specified priorities and the avail-
ability of required assets such as maintenance personnel,
parts, tools, specialized maintenance equipment and the
device/subsystem itself. Schedule functionality may be
invoked by the workflow service module 310.

20

25

30

35

40

45

50

55

60

65

10

The Coordinate SEAM 252 coordinates the execution of
actions and the reporting of the results of those actions
between application layers 120-160 and between layers and
their monitored devices/subsystems. Exemplary, non-limit-
ing actions include initiating a BIT or a snapshot function.
Actions may be pushed into and results may be pulled out of
the Coordinate SEAM 252 using a customized adapter
325a-¢ which embodies an external callable interface. The
customized adapter 325a-¢ may be symmetric such that the
same communications protocol may be used when commu-
nicating up the hierarchy as when communicating down the
hierarchy.

The Report SEAM 253 may generate a specified data block
to be sent to the next higher application in the hierarchy
and/or to an external user. Report data may be pulled from the
Report SEAM 253 by the customized adapter 325a-e. The
Report SEAM 253 may generate data that includes a health
status summary of the monitored asset.

The Track SEAM 254 may interact with the user to display
actions for which the user is assigned and to allow work to be
accomplished or reassigned.

The Forecast SEAM 255 may determine the need for mate-
rials, labor, facilities and other resources in order to support
the optimization of logistic services. Forecast functionality
may be invoked by the Workflow service module 310.

The Log SEAM 256 may maintain journals of selected data
items and how the data items had been determined over a
selected time period. Logging may be performed for any
desired data item. Non-limiting examples include mainte-
nance actions, reported faults, events and the like.

The Interact Library 260 may include a Render SEAM 262,
a Respond SEAM 261, a Graph SEAM 263, and an Invoke
SEAM 264. The Render SEAM 262 may construct reports,
tabularized data, structured data and HTML pages for display,
export or delivery to the user via a user interface 461 (See,
FIG. 4).

The Respond SEAM 261 may render data for display to the
user describing the overall health of the complex system and
to support detailed views to allow “drill down” for display of
summary evidence, recommended actions and dialogs. The
rendering of display data may be initiated by the Workflow
service module 310; but the data may be pulled from the
Render SEAM 262 via the callable interface 300. The
Respond SEAM 261 may also receive and process commands
from the user then route the commands to the appropriate
module in the appropriate node for execution and processing.
The commands may be pushed into the Respond Module via
the callable interface 300.

The Graph SEAM 263 may provide graphical data for use
by the Render SEAM 262 in the user displays on GUI 170.
The graphical data may include the static content of snapshot
and trend files or may dynamically update the content of the
data in the circular buffer.

The Invoke SEAM 264 may retrieve documents to be dis-
played to a user interface 461 via a maintainer node 150' or
interacts with an external document server system (not
shown) to cause externally managed documents to be
imported and displayed.

To reiterate, each of the SEAMs (221-264) discussed above
are never modified. The SEAMs (221-264) are loaded into
any computing node (120'-160") of the hierarchical structure
200 and any number of SEAMs may be loaded into a single
node. Once installed, each standard executable application
module (221-264) may be initialized, directed and redirected
by a user by changing the configuration data 180 resident in
the database 190 to perform specific tasks in regard to its host
computing device or platform.

US 8,832,649 B2

11

Communication between SEAMs (221-264) within a node
is facilitated by a callable interface 300. A callable interface
300 is resident in each computing node (120'-160") of the
hierarchical structure 200. The callable interface 300 may
have several sub-modules (302-310) that may be co-resident
in a single computing device of a computing node (120'-160").
Exemplary sub-modules of the callable interface 300 may
include a framework executive 301 as a component of the
callable interface 300, a workflow service module 310, an
error reporting server 302, a debugging server 303, a frame-
work data accessor, a run-time shared data manager 305 and
common utilities 306. Those of ordinary skill in the art will
recognize that in equivalent embodiments a “module,” “a
sub-module,” “a server,” or “a service” may comprise soft-
ware, hardware, firmware or a combination thereof.

The framework executive 301 of a computing node pro-
vides functions that integrate the nodes within the hierarchi-
cal structure 200. The framework executive 301 in conjunc-
tion with the configuration files 185 coordinate initialization
of each node including the SEAMs (221-264) and the other
service modules 301-310 allowing the execution of functions
that are not triggered by a customized adapter 325 (discussed
further below). In some embodiments, the computing nodes
in all application layers may have a framework executive 301.
In other embodiments, nodes in most application layers
except, for example, an EHM Layer 120 will have a frame-
work executive 301. In such embodiments, the computing
nodes 120'inthe EHM layer 120 may rely on its host platform
(i.e. computing device) operating software to perform the
functions of the framework executive.

Error reporting services 302 provide functions for report-
ing run-time errors in a node (120-160) within the hierarchi-
cal structure 200. The error reporting server 302 converts
application errors into symptoms that are then processed as
any other failure symptom, reports application errors to a
debugging server 303 and reports application errors to a per-
sistent data manager (not shown).

Debugging services 303 collects and reports debugging
status of an executable application module (221-264) during
testing, integration, certification, or advanced maintenance
services. This server may allow the user to set values for
variables in the DDS 3505 and to assert workflow events.

The framework data accessor 304 provides read access to
the SDS 350a and read/write access to the DDS 3505 (each
stored in a memory 190) by the SEAMs (221-264) in a com-
puting node (120'-160'). Write access to the SDS 350q is
accomplished via the data modeling tool 171, which includes
GUI 170.

The run-time shared data manager 305 manages all node
in-memory run-time perishable data structures that are shared
between SEAMs (221-264) that are not stored in the DDS
3505, but does not include cached static data. As non-limiting
examples of perishable data structures may include 1/O
queues and circular buffers.

Common utilities 306 may include common message
encoding/decoding, time-stamping and expression evalua-
tion functions for use by the SEAMs (221-264) installed in a
computing node.

The work flow service module 310 is a standard set of logic
instructions that enable a data-driven flow of tasks within a
computing node to be executed by the various SEAMs (221-
264) within the node. The workflow service module 310 acts
as a communication control point within the computing node
where all communications related to program execution to or
from one executable application module (221-264) are
directed through the node’s workflow service module 310.
Stated differently, the workflow service module 310 of a node

20

25

30

35

40

45

55

60

65

12

(120'-160") orchestrates the work flow sequence among the
various SEAMs (221-264) that happen to reside in the node.
In some embodiments the workflow service module 310 may
be a state machine.

FIG. 3 is a simplified, exemplary schematic of a configured
hierarchical structure 200 that may optimize the run time
performance of' the hierarchical structure 200. The exemplary
embodiment of FIG. 3 features a hierarchical structure 200
comprising five exemplary hierarchical layers (120-160),
although in other embodiments the number of hierarchical
layers may range from a single layer to any number of layers.
Each hierarchical layer (120-160) includes one or more nodes
(120'-160") containing SEAMs (221-264) that were copied
and loaded from one of'the reusable libraries (220-260) into a
computing node (120'-160") in the layer. Each SEAM (221-
264) may be configured by a user 210 by modifying its
respective loadable configuration file 185. The loadable con-
figuration file 185 is constructed using the data driven mod-
eling tool 171.

For the sake of simplicity, the SEAMs (221-264) may be
discussed below in terms of their respective libraries. The
number of combinations and permutations of executable
applications (221-264) is large and renders a discussion using
specific SEAMs unnecessarily cumbersome.

At an EHM layer 120, there may be a number of EHM
nodes 120", each being operated by a particular host comput-
ing device that is coupled to one or more sensors and/or
actuators (not shown) of a particular component of the com-
plex system. As a non-limiting example, the component of the
complex system may be a roller bearing that is monitored by
atemperature sensor, a vibration sensor, a built-in-test, sensor
and a tachometer, each sensor being communicatively
coupled to the computing device (i.e. a node). As a non-
limiting example, the host computing device of an EHM node
120" of the complex system may be a computer driven com-
ponent area manager (“CAM?”) (i.e. a node). For a non-lim-
iting example of'a CAM that may be suitable for use as EHM
nodes, see co-owned, co-pending U.S. patent application Ser.
No. 12/493,750.

Each host EHM computing device 120' in this example is
operated by a host software application 330. The host execu-
tive software 330 may be a proprietary program, a custom
designed program or an off-the-shelf program. In addition to
operating the host device, the host software application also
may support any and all of the SEAMs (221-264) via the
framework services 301 by acting as a communication inter-
face means between EHM nodes 120' and between EHM
nodes 120' and other nodes located in the higher levels.

The exemplary embodiment of FIG. 3 illustrates that the
host executive software 330 of an EHM node 120' may host
(i.e. cooperate) one or more SEAMs 220e from the Measure
Library 220, one or more SEAMs 230e from the Extract
Library 230 and one or more SEAMs 250¢ from the Act
Library 250. The SEAMs 220e, 230¢, and 250¢ are identical
to their counterpart application modules that may reside in
any another node in any other level in the hierarchical struc-
ture 200. Only when directed by the configuration file 185e,
will a SEAM(s) (221-264) differ in performance from its
counterpart module that has been configured for and is a
resident in another node in the hierarchical structure 200.
Once configured/directed, a standardized executable applica-
tion (221-264) becomes a special purpose executable appli-
cation module.

At an AHM layer 130, there may be a number of AHM
nodes 130". Each AHM node is associated with a particular
host computing device that may be coupled to one or more
sensors and/or actuators of a particular component(s) or a

US 8,832,649 B2

13

subsystem of the complex system and are in operable com-
munication with other AHM nodes 130", with various EHM
nodes 120' and with higher level nodes (e.g., see 501,502, 601
and 602 in FIGS. 5-6). As a non-limiting example, the host
computing device of an AHM of the complex system may be
a computer driven sub-system area manager (“SAM”) (i.e. a
node) operating under its own operating system (not shown).
For non-limiting examples of a SAM that may be suitable for
use as an AHM node, see co-owned, co-pending patent appli-
cation Ser. No. 12/493,750.

The exemplary AHM node 130' of FIG. 3 illustrates that the
AHM node 130" has an additional interpret functionality 2404
that in this example has not been configured into the EHM
node 120'". This is not to say that the EHM node 120' cannot
accept or execute a function from the Interpret library 240, but
that the system user 210 has chosen not to populate the EHM
node 120" with that general functionality. On the other hand,
the AHM node 130" software hosts one or more SEAMs 2204
from the Measure Library 220, one or more SEAMs 2304
from the Extract Library 230 and one or more SEAMs 2504
from the Act Library 250. In their unconfigured or undirected
state, the SEAMs 220d, 2304, and 2504 are identical to their
counterpart application modules that may reside in any
another node in any other level in the hierarchical structure
200.

Unlike the exemplary EHM node 120', the exemplary
AHM node 130' may include a different communication
interface means such as the customized adapter 3254. A cus-
tomized adapter 325 is a set of services, run-time software,
hardware and software tools that are not associated with any
of the SEAMs (221-264). The customized adapters 325 are
configured to bridge any communication or implementation
gap between the hierarchical CBM system software and the
computing device operating software, such as the host appli-
cation software 410 (See, FIG. 4). Each computing node
(120'-160") may be operated by its own operating system,
which is its host application software. For the sake of clarity,
FIG. 3 shows only the host executive software 330 for the
EHM node 120'. However, host application software exists in
all computing nodes (120'-160").

In particular the customized adapters 325 provide symmet-
ric communication interfaces (e.g., communication proto-
cols) between computing nodes and between computing
nodes of different levels. The customized adapter 325q-d
allow for the use of a common communication protocol
throughout the hierarchical structure 200 from the lowest
EHM layer 120 to the highest enterprise layer 160 as well as
with the memory 190.

AtaVHM layer 140, there may be anumber of VHM nodes
140", each VHM node is associated with a particular host
computing device that may be in operative communication
with one or more sensors and/or actuators of a particular
component(s) of the complex system via an EHM node 120"
or to subsystems of the complex system and that are in oper-
able communication via their respective AHM nodes 130'. As
a non-limiting example, the VHM node 140' may be a com-
puter driven system level control manager (“SLCM”) (i.e.
also a node). For non-limiting examples of a SLCM that may
be suitable for use as a VHM node, see co-owned, co-pending
patent application Ser. No. 12/493,750.

In the exemplary hierarchical structure 200 there may be
only one VHM node 140', which may be associated with any
number of AHM node 130' and EHM node 120' nodes moni-
toring a sub-systems of the complex system. In other embodi-
ments, there may more than one VHM node 140' resident
within the complex system. As a non-limiting example, the
complex system may be a fleet of trucks with one VHM node

20

25

30

35

40

45

50

55

60

65

14

140' in each truck that communicates with several EHMs 120’
and with several AHM nodes 130' in each truck. Each group
of EHM nodes 120" and AHM nodes 130" in a truck may also
be disposed in a hierarchical structure 200

FIG. 3 further illustrates that the exemplary VHM node
140" has an additional Interact functionality 260c that has not
been loaded into the EHM node 120' or into the AHM node
130'". This is not to say that these lower level nodes cannot
accept or execute an Interact function 260, but that the system
user 210 has chosen not to populate the lower level nodes with
that functionality. On the other hand, for example, the host
software of VHM node 140" hosts one or more SEAMs 220c¢
from the Measure Library 220, one or more SEAMs 230c¢
from the Extract Library 230, one or more SEAMs 240¢ from
the Interpret Library 240 and one or more SEAMs 250¢ from
the Act Library 250. The executable applications from the
Interact library allow the system user 210 to access the VHM
node 140" directly and to view the direction thereof via the
GUI 170. In their undirected state, the SEAMs 220c¢, 230c,
240¢ and 250c¢ are identical to their counterpart application
modules that may reside in any another node in any other level
in the hierarchical structure 200. The standardized executable
applications 220c¢-260c¢ are directed to carry out specific func-
tions via configuration files 185¢.

Like the exemplary AHM node 130', an exemplary VHM
node 140' includes a customized adapter 325¢. The custom-
ized adapter 325¢ is also configured to bridge any communi-
cation or implementation gap between the hierarchical sys-
tem software and the computing device operating software
operating within VHM node 140"

Atthe Maintainer (MNT) layer 150, there may be a number
of MNT nodes 150", each MNT node is associated with a
particular host computing device that may be in operative
communication with one or more sensors and/or actuators of
aparticular component(s) of the complex system via an EHM
node 120", in operative communication with one or more
subsystems of the complex system and that are in operable
communication via their respective AHM node 130", and to
the VHM nodes 140'. As a non-limiting example, the MNT
node 150" may be a laptop computer in wired or wireless
communication with the communication system 9 of the hier-
archical structure 200. Conversely, the MNT node 150" may
be a stand alone computing device in a fixed location within
the hierarchical structure 200.

FIG. 3 illustrates that the exemplary MNT node 150' may
have the functionality of some or all of the executable appli-
cations (221-264). This is not to say that these lower level
nodes cannot accept or execute any of the SEAMS (221-264),
but that the system user 210 has chosen not to populate the
lower level nodes with that functionality. Like the exemplary
VHM node 140" the SEAM 2605 from the Interact library
allow the system user 210 to access the Maintainer node 150"
directly and may view the direction thereof via the GUI 170.
In their undirected state, the SEAMSs 2205, 2305, 2405 and
2505 are identical to their standard counterpart application
modules that may reside in any another node in any other level
in the hierarchical structure 200. The SEAMs 2205-2605 are
directed to carry out specific functions via configuration files
1856b.

Like the exemplary AHM node 130' and VHM node 140',
the MNT node 150" includes a customized adapter 3255. The
customized adapter is configured to bridge any communica-
tion implementation gap between the hierarchical system
software and the computing device operating software oper-
ating within the various nodes of the hierarchical structure
200.

US 8,832,649 B2

15

At the Enterprise (ENT) layer 160, there may be a number
of ENT nodes 160", each ENT node is associated with a
particular host computing device that may be in operative
communication with one or more sensors and/or actuators of
aparticular component(s) of the complex system via an EHM
node 120", to subsystems of the complex system and that are
in operable communication via their respective AHM node
130" and the VHM nodes 140", as well the MNT nodes 150"
As a non-limiting example, the ENT node 160' may be a
general purpose computer that is in wired or wireless com-
munication with the communication system 9 of the hierar-
chical structure 200.

FIG. 3 also illustrates that the ENT node 160" may have the
functionality of some or all of the executable applications
(221-264) as selected and configured by the user. Like the
exemplary VHM node 140", the executable application(s)
260q from the Interact library allow the system user 210 to
access the ENT node 160' node directly via the GUI 170. In
their undirected state, the SEAMs 220a, 230a, 240q and 250a
are identical to their undirected counterpart application mod-
ules (221-264) that may reside in any another node in any
other level in the hierarchical structure 200. The executable
applications 220a-260a are configured/directed to carry out
specific functions via configuration files 185a.

Like the exemplary AHM node 130", VHM node 140" and
the MNT node 150", the ENT node 160" includes a customized
adapter 3254. The customized adapter 3254 is also configured
to bridge any communication or implementation gap between
the hierarchical system software and the host computing
device software operating within the ENT node.

In various embodiments, none of the computing nodes
(120'-160") are able to communicate directly with one
another. Hence, all computing nodes (120'-160') communi-
cate via the customized adapters 325. In other embodiments,
most computing nodes 120'-160' may communicate via the
customized adapters 325. For example, an exception may be
an EHM node 120, which may communicate via its host
executive software 330.

A customized adapter 325 is a component of the host
executive software 330 and is controlled by that host soft-
ware. The customized adapter 325 provides an interface
between the host executive software 330 and the SEAMs
(221-264). The workflow service module 310 will invoke one
ormore of the SEAMs (221-264) and services (302,303, 306)
to make data available to the customized adapter 325, which
places data from a node onto a data bus of the communication
system 9 and pulls data from the bus for use by one of the
SEAMs (221-264). For example, the Acquire SEAM 221 may
receive data from the customized adapter 325, or the Report
SEAM 253 may produce data to be placed on the bus by the
customized adapter.

The communication system 9 may be any suitable wired or
wireless communications means known in the art or that may
be developed in the future. Exemplary, non-limiting commu-
nications means includes a CANbus, an Ethernet bus, a
firewire bus, spacewire bus, an intranet, the Internet, a cellular
telephone network, a packet switched telephone network, and
the like.

The use of a universal input/output front end interface (not
shown) may be included in each computing node (120'-160")
as a customized adapter 325 or in addition to a customized
adapter 325. The use of a universal input/output (1/O) front
end interface makes each node behind the interface agnostic
to the communications system by which it is communicating.
Examples of universal I/O interfaces may be found in co-
owned application Ser. Nos. 12/750,341 and 12/768,448, and
are examples of communication interface means.

20

25

30

35

40

45

50

55

60

65

16

The various computing nodes (120'-160") of the hierarchi-
cal structure 200 may be populated using a number of meth-
ods known in the art, the discussion of which is outside the
scope of this disclosure. However, exemplary methods
include transferring and installing the pre-identified, pre-se-
lected SEAMSs to one or more data loaders of the complex
system viaa disk or other memory device such as a flash drive.
Other methods include downloading and installing the
SEAMs directly from a remote computer over a wired or
wireless network using the complex system model 181, the
table generator 183 and the GUI 170. In regard to MNT nodes
150", MNT nodes may be alternatively populated offline to the
extent that they are hosted in portable computing devices.

The data modeling tool 171, table generator 183 and the
GUI 170 may be driven by, or be a subsystem of any suitable
HMS computer system known in the art. A non-limiting
example of such an HMS system is the Knowledge Mainte-
nance System used by Honeywell International of Morris-
town N.J. and is a non-limiting example of a model based
configuration means. The data modeling tool 171 allows a
subject matter expert to model their hierarchical structure 200
as to inputs, outputs, interfaces, errors, etc. The table genera-
tor 283 then condenses the system model information into a
compact dataset that at runtime configures or directs the func-
tionality of the various SEAMs (221-264) of hierarchical
structure 200.

The GUI 170 renders a number of control screens to the
system user 210. The control screens are generated by the
HMS system or by a maintainer computing device 150" and
provide an interface for the system user 210 to configure each
SEAM (221-264) to perform specific monitoring, interpreta-
tion and reporting functions associated with the complex
system.

FIG. 4 is a simplified functional block diagram of a main-
tainer node 150'. As with all nodes (120'-160"), the various
components of the node software (e.g., SEAMs, SDS, DDS,
workflow service) exist co-operationally with the host oper-
ating system 330. Thus, the maintainer node 150" includes
configured SEAMS (e.g., Respond 261). Because a MNT
node 150" is high up in the hierarchical system such that it is
capable of providing user interface capability, MNT node
150" may include an entire SEAM library (220-260) that has
been configured. However, a MNT node 150" is differentiated
from a lower level node (120-140") because a MNT node 150"
is populated with the SEAMs from the Interpret Library 240
and the Interact library 260.

Whether permanently embedded in hierarchical system or
removably attached, a MNT node 150' provides user interface
capability that allows a user to retrieve relevant information
about the hierarchical system 200 and, by extension, the
complex system that is being monitored. For example the
Respond SEAM 261 is configured to handle requests and
responses invoked via a user interface 460. The user interface
460 may be a web page 461 rendered by a web browser 461.
The requests and responses are processed by a user interface
web application 431 executing on a web server 430. Normal
web functions such data processing and image rendering are
not included in the SEAM libraries (220-260) due to their
relative complexity and to prevent over burdening SEAM
functionality where such functionality may be more effi-
ciently housed elsewhere.

In cases with removable (i.e., non-embedded) MNT nodes
150", a relational database mat be used to host the configura-
tion file 185, which includes the SDS 350a and DDS 3505.
When embedded, the SDS 350a and DDS 3505 may be
hosted in a binary configured database due to relative through
put and memory space limitations.

US 8,832,649 B2

17

FIG. 5 is a flow diagram for a method 500 initializing an
MNT Node 150'. At process 510 the MNT Node 150' is
powered on. At process 520, the computing device (e.g., alap
top computer) hosting the MNT Node is initialized by the host
executive 330. At process 530, a configuration file 185 includ-
ing the workflow service 310 and the appropriate SDS 350a
and DDS 35056 are received and loaded at the host via either
the web server 430 (see, FIG. 4) or the communication system
9 (see, FIG. 2). At process 540, the host receives start data
pointers for the SDS 350a and the DDS 3505. At process 550,
the host calls an initialize application programming interface
(API) as may be known in the art and passes the SDS and DDS
pointers as parameters to the SEAMs (220-260) loaded and
resident in the MNT Node 150'. At process 570, the host
executive 330 enters normal operation as do the SEAMs
(220-260) and workflow service 310.

FIG. 6 is a simplified functional flow diagram for a method
600 for sending requests to the SEAMs (220-260) of the MNT
Node and receiving data back. Specific SEAMs used prima-
rily by the MNT Nodes 150' and ENT Nodes 160' include
those found in the Interact library 260 and the interpret library
240. SEAMs in the interact library 260 are only used for user
interface data exchange. Method 600 is a low priority set of
instructions as viewed by the host executive 330 such that the
host executive may interrupt the method to perform high level
requirements such as receiving data from sensors and external
busses (e.g., communication system 9), retrieving processed
data from other nodes in the hierarchical system 200, and
other functions such as debugging and trouble shooting.

In operation, the user connects to the user interface web
application 431 via the via a web browser 461 and requests
certain data from the hierarchical system. The user web appli-
cation 431, in turn, requests all data that is required to handle
the user request from the configured SEAMs (220-260) in the
MNT Node 150' using method 600 (See, FIG. 6)

In FIG. 6, the method begins at process 570 (See, FIG. 5)
where the host application 330 is undergoing routine appli-
cation. A process a message/command thread is begun. A
process 620 an API function call is made to the appropriate
SEAMS (220-260) resident in the tenant node (120-160)
along with whatever data (i.e. messages, events) need to be
sent. At process 630, the appropriate SEAMS resident in the
tenant node work on the data (See, e.g., Application Ser. Nos.
13/016,601 and 13/077,276 herein incorporated by reference
in their entirety). At process 640, the Host application 330
retrieves the expected result from the tenant node by making
another API function call. At process 650, the debugging
utility 303 (See, FIG. 2) services the function call execution
and the Host application 330 returns to normal operation 570.

The Respond SEAM 261 is particularly designed to facili-
tate such functionality. The user web application 431 receives
the requested data (e.g., XML format) from the hierarchical
system 200 via the SEAMs (220-260) of the MNT Node 150",
will add graphical information and return web pages popu-
lated with the requested data to the user via the browser 460.

FIGS. 7 and 8 are simplified block diagrams of an exem-
plary computing node (120'-160"). Each computing node
(120'-160") utilizes its own host executive software 330. The
host executive software 330 executes the normal operating
functions of the host MNT 150, but may also provide a
platform for hosting additional health maintenance functions
residing in any SEAM (221-264) populating the computing
node as described above. As described above, there are 24
SEAMs (221-264) disclosed herein. However, other SEAMs
with additional functionalities may be included. As such, any
discussion herein is intended to extend to any SEAMs that
may be created in the future.

20

25

30

35

40

45

50

55

60

65

18

In the interest of brevity and clarity of the following dis-
cussion, the number of SEAMs (221-264) in the following
example has been limited. The operation of a lower level
computing node such as an EHM node 120', an AHM node
130", and an VHM node 140' utilizes the same basic SEAMS
as an MNT node to accomplish basic data processing tasks
such as, but not limited to an Acquire SEAM 221, a Decode
SEAM 222, Evaluate SEAM 231, a Record SEAM 234 and
an Analyze SEAM 232 as these SEAMs may be viewed as
providing some basic functionality common to each SEAM
resident in each computing node (120'-160") of the hierarchy,
but will be extended to other SEAMs in regards to FIGS.
9a-9c.

In addition to the SEAMSs (221-264), each computing node
(120'-160") also includes a configuration file 185 and a work-
flow service module 310. The configuration file 185 com-
prises the DDS 3505 and the SDS 350a. Among other data
structures, the DDS 35056 may comprise an Event Queue
(EVQ) 351, a High Priority Queue (HPQ) 352, a Time
Delayed Queue (TDQ) 353, a Periodic Queue (PQ) 354 and
an Asynchronous Queue (AQ) 355. However, it will be appre-
ciated by those of ordinary skill in the art that the number of
queues, their categorization and their priority may be defined
and redefined to meet the requirements of a particular appli-
cation. For Example, the EVQ 351 may be divided into three
or more sub-queues such as an Acquire Event Queue, a Coor-
dinate Event Queue and a User Interface Event Queue. Pro-
viding separate sub-event queues resolves any concurrent
write issues that may arise.

Referring to FIG. 8, the DDS 3505 may also include at least
one message buffer 360 for each SEAM (221-264) that has
been populated into the MNT node 150'. However, in some
embodiments only SEAMs within the Measure Library may
have a message buffer. The DDS 3506 may also include a
number of record snapshot buffers 370 and circular buffers
380 that store particular dynamic data values obtained from
the complex system to be used by the various SEAMs (221-
264) for various computations as provided for by the configu-
ration file 185. The data stored in each of the message buffers
360, snapshot bufters 370 and circular buffers 380 is accessed
using a data accessor 304 which may be any suitable data
accessor software object known in the art. The particular data
structure and the location in the DDS 3505 for the message
buffers 360, circular buffers 380 and snapshot buffers 370, are
predetermined and are established in a memory device at run
time.

The SDS 350q is a persistent software object that may be
manifested or defined as one or more state machines 361 that
map a particular event 362 being read by the workflow service
module 310 from the Event Queue (EVQ) 351 to a particular
response record 363 (i.e., an event/response relationship).
The state machine 361 then assigns a response queue (352-
355) into which the response record 363 is to be placed by the
workflow service module 310 for eventual reading and execu-
tion by the workflow service module 310. The structure and
the location of the persistent data in the SDS 350« is prede-
termined and is established in a memory device at run time.

The exemplary events 362 may be received into the EVQ
351 in response to a message from an outside source that is
handled by the customized adapter 325 of the computing
node (120'-160"), as directed by the host executive software
330. Events 362 may also be received from any of the popu-
lated SEAMs (221-264) resident in the computing node
(120'-160") as they complete a task and produce an event 362.

In the more basic SEAMs such as Sense 223, Acquire 221,
Decode 222 and Evaluate 231, the event/response relation-
ships stored within the SDS 3504 do not tend to branch or

US 8,832,649 B2

19

otherwise contain significant conditional logic. As such, the
flow of events 362 and response records 363 is relatively
straight forward. However, more sophisticated SEAMs such
as Coordinate 252, Forecast 255 and Respond 261 may utilize
sophisticated algorithms that lead to complicated message/
response flows associated with an MNT node and an ENT
node.

As an operational example of a lower level node, the host
executive software 330 may push an input message into an
EHM node 120’ that is received from an outside source. The
host executive software 330 calls a customized adapter 325
which in turn calls the appropriate SEAM (221-264) resident
in the EHM node 120" based on data included in the message.
For Example, the called SEAM may be the Acquire SEAM
221. When called, the Acquire SEAM 221 places the input
message into a message buffer 360 (e.g., the Acquire input
message buffer), generates an event 362 and places the event
into the EVQ 351. The event 362 may contain data about the
complex system from another node or from a local sensor. In
the interest of simplicity and clarity of explanation, this first
event 362 will be assumed to be an “acquire data” message
and the event 362 generated from the input message will be
referred to herein as AQe;. In other embodiments the input
message AQ, may be generated by another SEAM (221-264)
and the event AQ,, pushed into the EVQ 351 by the SEAM.

Once the input message AQ), is placed in a message queue
360 and its corresponding event 362 is placed into the EVQ
351, then the Acquire SEAM 221 exits and returns control to
the workflow service module 310 via return message 364. In
this simple example, only a single processor processing a
single command thread is assumed. Thus, while the processor
is executing a particular SEAM (221-264), the worktlow ser-
vice module 310 and no other SEAMs are operating. Simi-
larly, while the workflow service module 310 is being oper-
ated by the processor, no SEAMS (221-264) are in operation.
This is because all steps in the operation are performed
sequentially. However, in other embodiments, multiple pro-
cessors may be used, thereby permitting multiple threads
(i.e., multiple workflow service modules 310) to be operated
in parallel using the same populated set of SEAMs (221-264)
and the same configuration file 185.

Upon receiving the return message 364 (See, FIG. 12), the
workflow service module 310 resumes operation and reads
event AQ,, firstin this example because event AQ,, is the first
event 362 in the EVQ 351. This is so because the EVQ 351 is
the highest priority queue and because the workflow service
module 310 may read events sequentially in a first-in-first-out
(FIFO) manner. Therefore those of ordinary skill in the art
will appreciate that any subsequent events stored in the EVQ
351 would be read in turn by the workflow server on FIFO
basis. However, reading events in a FIFO manner is merely
exemplary. In equivalent embodiments, the workflow service
module may be configured to read events in some other ordi-
nal or prioritized manner.

Once event AQ,, is read, the workflow service module 310
consults the persistent data structures in the SDS 350a to
determine the required response record 363 to the event AQ,; .
The response record 363 provided by the SDS 350a may, for
example, be a decode response record DEC,, that directs the
Decode SEAM 222 to process the data received from the
input message AQ,, which is now stored in a storage location
in the DDS 3505. The SDS 3504 also directs the workflow
service module 310 to place the response record DEC,, into
one of the response queues 352-355, such as HPQ 352, and
assigns the location in the response queue in which to place
the response based on an assigned priority. The SDS 350a
may determine the appropriate queue and its priority location

20

25

30

35

40

45

50

55

60

65

20

in the queue based on the input message type, the data in the
input message and on other data such as a priority data field.
The workflow service module 310 places the response record
DEC,, into the HPQ 352 at the proper prioritized location and
returns to read the next event in the EVQ 351.

Because the EVQ 351 is the highest priority event/response
queue, the workflow service module 310 continues reading
events 362 and posts responses records 363 until the EVQ is
empty. When the EVQ 351 is empty, the workflow service
module 310 begins working on response records 363 begin-
ning with the highest priority response queue (352-355),
which in this example is the HPQ 352.

The first prioritized response record in HPQ 352 in this
example is the DEC,, response (i.e., a Decode response).
When read, the workflow service module 310 calls (via call
365) a response handler interface of the Decode SEAM 222
for the Decode SEAM to operate on the data referenced in the
DEC,, response record 363.

After being called by the workflow service module 310, the
Decode SEAM 222 consults the SDS 3504 with the response
record DEC, | to determine what operation it should perform
on the data associated with DEC,, and performs it. As dis-
closed above, a SDS 350a maps the event DEC,, to a pre-
defined response record 363 based on the message type and
the data referenced within DEC,.,. Data associated with event
DEC,, may reside in any of the record snapshot bufters 370,
circular buffers 380, or the data may have to be queried for
from a source located outside the exemplary node.

The Decode SEAM 222 operates on the data and generates
an event 362 and places the event into the EVQ 351 and a
message into the message queue 360. For example, the
response record 363 generated by the Decode SEAM 222
may be EVAL,, indicating that the next process is to be
performed by the Evaluate SEAM 231. The Decode SEAM
222 then exits and sends a return message 364 back to the
workflow service module 310 to resume its operation. The
process begins anew with the workflow service module 310
reading the EVQ 351 because there are now new events
(including EVAL,,) that have been added to the queue.

In the normal course, the work flow service module 310
eventually reads event EVAL_, and consults the SDS 3504 to
determine the proper response record 363 and which response
queue to place it and in what priority within the response
queue. In this example the response EVAL,, is also place in
the HPQ 352 and is in first priority because the response
record DEC,;, would have already been operated on and
dropped out of the queue. The workflow service then reads the
next event from the EVQ 351, and the process continues.

FIG. 9 is a simplified functional depiction of a modified
SDS 350a and a DDS 3504 as may exist in a MNT note 150"
In the SDS 350qa there exists variables specification 1000,
word specification 1001, a decode specification 1002, and a
snapshot specification 1003, all of which are utilized to
instruct the workflow service 310 to process messages, events
and responses as discussed above.

Variable specification 1000 is static data located in the SDS
350aq that are used by the workflow service 310 to execute
various tasks required by SEAMs (221-264). Variable speci-
fication 1000 in the SDS 350a does not change and comprises
a global identification symbol, a start bit, a storage type, a
usage type, an engineering unit scale factor, an engineering
unit offset factor, an initial value, and index to the DDS 3505,
a bit size, a persistence indicator, a source assembly and a
sampling frequency. A variable offset factor 1004 contains a
start bit and a variable decode mask pointer and one or more
additional pointers that point to specific variables 1000
required to execute a task.

US 8,832,649 B2

21

Word specifications 1001 in the SDS 350a comprise static
32 bit memory locations that contain a list of 1D’s for vari-
ables 1000 contained within a word. Words also comprise a
unique word ID, a source message and decode masks in their
various forms as may be practiced in the art.

Decode Specifications (Decode Specs) 1002 are static data
structures that contain a list of ID’s for various words 1001.
The words are defined for each data element (field) in the
message. For each data element, the decode specification
contains information about the location (offset) within the
message, its size, its data type and similar information for use
by the runtime code. Decode specifications also comprise
Message type indicators to identify instances of a message(s).
Input/output message buffers 390, circular buffers 380, snap-
shot specifications, trend specifications and report specifica-
tions all have individual data structures and a corresponding
decode specification.

Snapshot specifications are static storage locations that
contain data records that define a times series or a “snapshot”
of data that is recorded (i.e., captured) in regard to some
component in a complex system. Snapshot specifications also
contain a snapshot type 1D, a trigger algorithm, data retention
rules, a trigger event, a collection interval, snapshot inhibits,
append interval times, persistence indicators, and pointer
which points to a decode specification data structure for the
snapshot specification. A snapshot type ID uniquely identifies
a snapshot specification. A snapshot Id is a unique identifier
for each instance of a snapshot type that is recorded. The
snapshot ID identifies a particular “batch” of data captured
according to the specification (A, B, C ... n) and has a unique
batch identifier (1,2,3 .. .n).

By utilizing a MNT node computing device, a system user
210 may access an EHM node 120', AHM node 130' or VHM
node 140" and add to its functionality by creating a SDS
extension 1010 within non-static DDS 3505. Each compo-
nent of the SDS extension is logically linked to its static
counterpart in the SDS 350a such that the SDS extension
1010 appears to the workflow service 310 to be the static SDS
350q. Thus, the SDS extension 1010 comprises a variables
extension 1005, a Words extension 1011, a decode specifica-
tion extension 1012, a snapshot specification extension 1013
and its variable storage extension 1021.

FIG. 10 presents a simplified illustration of the interrela-
tionships between the various data that make up the matrix
data 900, which includes snapshot specification extensions
1013, decode specification extensions, Data Structure (De-
code) specification extensions 1012, word specification
extensions 1011, variable offset extensions 1014, and vari-
able specification extensions 1005. Thus, the upper set of
boxes 1010-1014, along with variables 1020, comprises the
data snapshot definition.

Variable storage area 1020 (See also FIG. 9 is the normal
storage area of the DDS 3505 that is referenced by the SDS
350aq for variables. However, the variable storage extension
1021 is an extension to that variable storage area 1020 and is
referenced via the variable extension 1005 for variables intro-
duced from the matrix data received from the MNT node 150'.
The data matrix also contains information as to where the data
from the data matrix will be found in the DDS 3505. That
would include a similar set of data 1011'-1014' and variable
instances 1021.

FIGS. 11a-c are simplified block diagrams of an exemplary
MNT node 150" (11a and 11¢) and an exemplary lower level
node (115), each which includes SDS extension components
and additional SEAMs populated therein which will be dis-
cussed herein below separately in the interest of brevity and
clarity. However, it should be understood that various SEAMs

20

25

30

35

40

45

50

55

60

65

22

(221-264), events 362 and response records 363 may include
incremental additions to those described above in regard to
FIGS. 7 and 8 that differentiate an MNT node from an EHM,
AHM or a VHM node. This is particularly so because
uniquely to a MNT node, an MNT node may allow a user to
modify the functionality of a lower level node in real time,
thereby dispensing with the need to recompile and reload
operating code. By using a GUI 461 and a web browser 460,
auser creates a function augmentation data matrix 900 defin-
ing what data needs to be collected/analyzed by which node
(120-160) and includes specifics as to how and when such
tasks should be performed. The function augmentation data
matrix 900 (See FIG. 10) accompanies a user request message
362 (i.e. a user instruction UI) that is received from the
originating MNT node 150" at a lower level node (120'-140")
and is pushed in to EVQ 351 for processing by the workflow
service of the lower level node.

As may be discerned from inspection of FIG. 114, a node
configured as an MNT node 150" includes SEAMs from the
Interpret library 240, Act Library 250 and the Interact library
260. Specifically, the exemplary MNT node 150" includes an
exemplary compliment of additional SEAMs including an
Allocate Seam 241, a Rank Seam 243, a Predict SEAM 244,
a Summarize SEAM 247, a Usage Monitoring SEAM 246, a
Consumption Monitoring SEAM 245, a Coordinate Seam
252 and a Respond SEAM 261. This additional compliment
of SEAMs allows the MNT node 150' to communicate with a
user via the user interface 461 and to modify the functionality
of lower level nodes such as an EHM, and AHM and a VHM.

Some of the events generated by the Interpret, Act and
Interactlibraries (250-260) (e.g., UL, RES, AL, RK, SUM) are
associated with user interface and user reporting functions
that are much less time sensitive given the perception time of
ahuman being and because they are events that concern a final
product. Hence, events 362 generated by SEAMs from the
Interpret, Act and Interact libraries (240-260) are typically
assigned the lowest priority for execution by the workflow
server. As such, the response records 363 generated from
these events 362 are assigned to the Asynchronous queue 355
and are addressed by the workflow service 310 after all of the
response records 363 slotted into the higher priority queues
(351-354) have been completed. If response records 363 in
the AQ 355 are being executed by the workflow service 310
and a higher priority response record 363 is received, the
workflow service 310 ceases work on the AQ 355 until the
higher priority response records 363 are addressed and
resolved. As such, the response records 363 in the AQ 355 are
typically addressed last and in a serial like fashion.

As mentioned above, a MNT node 150" has the capability
of moditying the operation of a lower level node (i.e., EHM,
AHM or VHM) in essentially real time. This allows a system
user 210 to collect and or process data in an ad hoc manner to
investigate emergent health maintenance issues. For
example, a system user 210 may instruct an AHM node 130’
to gather data about a component being monitored by a par-
ticular EHM node 120" that may not be under its normal
supervision and to process the data with other stipulated data
in order to investigate a particular health anomaly. This is
done by directing the lower level node to create an SDS
extension 1010 (See FIG. 9) of the SDS 350a within the DDS
3505. This technique does not require taking down the system
to reconfigure, and reload the DDS 3505 and the SDS 350a. It
also allows the change to remain a temporary modification.

SDS extension 1010 may be persistent or may be volatile.
Typically the SDS extensions 1010 are volatile and erase
when powered off as is typical with data stored in volatile
memory such as RAM. The SDS extension 1010 may be

US 8,832,649 B2

23

made persistent if a flag is set by the system user 210 to
indicate that the data should be stored in persistent memory
such as a flash memory device prior to power down and
reloaded from the persistent memory into the DDS 3506 at
power up.

FIGS. 11a and 11c¢ are simplified block diagrams of an
MNT node 150' populated with exemplary messages and
events in queue that cause a lower level computing node
120-140 to alter its functionality. FIG. 11a illustrates exem-
plary event flow for sending a request for information and
FIG. 11¢ illustrates an exemplary event flow for receiving the
information. FIG. 115 illustrates an exemplary event flow for
the lower level node (i.e. an EHM node 120") that creates the
SDS extension 1010 into the DDS and executes the data
collection. Messages and events are processed according to
the method flow diagram of FIG. 12 that will be more fully
discussed below and is discussed in regard to FIG. 13 of
related application Ser. No. 13/077,276, which is incorpo-
rated herein in its entirety.

As an operational example (See FIG. 11a), the host execu-
tive software 330 pushes an input message US1 into the MNT
node 150' received from the user web browser 460 that
includes a function augmentation data matrix 900 extracted
from the user’s web page as is known in the art. The message
also includes a command from the user interface that requests
specific data from a lower level node (e.g., an EHM) that the
lower level node is not configured to provide. The user gen-
erated matrix includes a variety of data that identifies nodes,
complex system components, sensors and other data related
to the data requested. The content of the matrix is situation
specific. However, the matrix itself and its construction would
be well known to those of ordinary skill in the art as a normal
web function.

Once the MNT node receives the matrix and the message
from the web server 430 (FIG. 4), the host executive software
330 at the MNT node 150" calls a customized adapter 325
which in turn calls the appropriate SEAM (221-264) resident
in the MNT node 150" based on data included in the message.
In other embodiments the input message may be generated by
another SEAM (221-264) and the event RES, pushed into the
EVQ 351 by that SEAM.

The MNT customized adapter 325 calls the Respond
SEAM 261 which is based on the message type. The Respond
SEAM 261 places the US,; message into a message queue 390
and queries the SDS 350q for instructions for the disposition
of'the data matrix and the request for a snapshot. The Respond
SEAM 261 in this example receives its instructions from the
SDS 350a and when completed generates a Respond event
(RESe,) which is placed in the event queue 351 for further
processing. Once the input message US, is placed in a mes-
sage queue 390 and its corresponding event 362 RESe, is
placed into the EVQ 351, then the Respond SEAM 261 exits
and turns control to the workflow service module 310 via
return message 364 (See FIG. 12). In this simple example,
only a single processor processing a single command thread
is assumed, although multiple threads may operate in parallel
on the same queues.

The workflow service 310 of the MNT node then reads the
next highest priority event, which in this simple example is
the RESe, event. The workflow service then refers to the SDS
350aq for instructions for the disposition of the RESe, event,
which in this case produces a COORr, response that would
direct the MNT node to route the snapshot command and the
data matrix to a particular lower level node, such as an EHM
node 120", that was designated in the data matrix. The Work-
flow service 310 of the MNT node 150' then calls the special-

20

25

30

35

40

45

50

55

60

65

24

ized adapter 325 which sends the snapshot command and the
data matrix to the EHM via the communication system 9.

At the EHM node 120", the specialized adapter 325 of the
EHM receives the message from the MNT node 150' and
pushes the message into the event queue 351 of the EHM node
120'. Thus, the receipt of message is handled in the same
manner as the message in the Data acquisition example of
FIG. 8.

Based on the type of message received, the specialized
adapter 325 calls the Coordinate SEAM 252. The Coordinate
SEAM 252 consults the EHM SDS 3504 to determine the
appropriate response record 362. The proper response in this
example indicated by the SDS 350a is to direct EHM node
120" to receive the snapshot command and the data matrix
included in the message. When the workflow service has
finished with the message the Coordinate SEAM 252 gener-
ates an event COORe, and places event COORe, into the
EVQ 351.

The workflow service 310 of the EHM then processes the
next event record 362 in the EVQ 351, which in this example
happens to be COORe,. The workflow service 310 then con-
sults the SDS 350a to determine the proper response record
363, which in this example is COORr, which is placed in the
HP queue 352.

Because at this point there are no unprocessed events in the
EVQ 351, the Workflow service 310 moves to the HP queue
352 and takes up the first response record, which in this case
is COORr,;. The workflow service calls the Coordinate
SEAM 252, which directs the EHM node 120’ to process an
ad hoc data snapshot of a component and to set up the SDS
extensions 1010 into the DDS 35056 (See FIG. 9). The SDS
extensions 1010 hold the function augmentation data matrix
data 900 for the SEAMs (241-261) containing the variables
1020 directing how to process the snapshot data requested
based on the data matrix received in the user message. Once
the COORr; response record has been completed, an event
COORe, is generated in the EVQ 351 and the SDS extension
1010 is populated with the data from the coordinate message
implementing user message US,.

Because there is now an event in the EVQ 351, the work-
flow service takes the next event in queue (i.e. COORe,) and
consults the SDS 350qa for the proper response, which is a
RECr, and a COORr; response records. The RECr, and a
COORr; response records are placed into the HP Queue 352.

The EVQ 351 being empty, the workflow service 310
moves to the first response record in the HP queue 352, which
is the RECr, response record. The Record Seam 234 is called
by the workflow service 310, which queries the SDS Exten-
sion 1010 for the function augmentation matrix data 900 to
begin recording the data snapshot event based on that data.
Upon completing the initiation of the snapshot event, the
Record SEAM places an event RECe, into the EVQ 351.
Sequentially, the workflow service 310 also picks up the
COORr; response record and calls the Coordinate SEAM
252, to send a confirmation message to the MNT node 150"
that the data snapshot has been started based on those instruc-
tions.

At the MNT Node 150" (FIG. 11c¢) the specialized adapter
325 receives the confirmation message from the EHM node
120" that the snapshot has started places it in the message
queue 390 into the event queue 351. Based on the type of
message received, the MNT specialized adapter 325 calls the
Coordinate SEAM 252 which receives the message that the
data collection for the snapshot has begun.

Returning to the EHM Node 120" (FIG. 116), when the data
collection for the snapshot is completed, the Record SEAM
234 generates an event RECe; in the EVQ 351. The workflow

US 8,832,649 B2

25
service 310 then reads RECe; from the EVQ 351 and queries
the SDS 350qa for a proper response record. The workflow
service 310 then files a COORr, response record in the HP
queue 352 of the EHM node 120'. The COORr, response
record instructs the EHM to send a “snapshot completed”
message to the MNT node 150" with the results.

The Workflow Service 310 serially reads the COORr,
response record and calls the Coordinate SEAM 252, which
generates a snapshot complete message for the MNT node
150", which includes the collected snapshot data and delivers
it to the specialized adapter 325 for delivery to the MNT node
150" via communication system 9.

The MNT node 150' receives the snapshot complete mes-
sage and its specialized adapter 325 pushes the message on to
the message queue 390 and calls the MNT Coordinate SEAM
252. The Coordinate SEAM 252 consults the SDS 350a and
determines the proper response to the message, which in this
example is a Coor ¢ event record and places it in the EVQ 351
for further processing.

The Workflow service 310 of the MNT serially reads the
COOR 4 event record and consults the SDS 350a, which
returns an ANALr, response record instructing the node to
analyze the snapshot data received from the EHM node 120'.
The ANALLr, response is placed in the asynchronous queue
355, which is the lowest priority queue. This is so because
operations having to do with reports and other human inter-
action are not time sensitive because the human user cannot
perceive the slight time delays resulting form the lower pri-
ority. Placing these types of response records in the lowest
priority queue allows higher priority events and responses
required for real time performance to be addressed faster in
the higher priority queues.

The ANALLr, response record is serially read by the work-
flow service 310 which calls the Analyze SEAM 232 to ana-
lyze the snapshot data. The Analyze SEAM consults the SDS
350aq for the proper event response. When complete the Ana-
lyze SEAM places an ANALe, event into the EVQ 351. The
Workflow service 310 serially reads the ANALe, event and
consults the SDS 350a, which returns an ALLOCr, response
record, which is placed in the asynchronous queue 355,
instructing the node to perform allocation.

The process continues in a serial fashion according to the
procedure illustrated in FIG. 12 (and utilized above) as the
workflow service 310 serially moves through the asynchro-
nous queue 355. The ALLOCr,, RANKr,, DIAGr,, PREr,,
SUMr, and RESr, are all response records for execution by
their indicated SEAMS (Allocate 241, Rank 243, Diagnose
242, Predict 244, Summarize 247 and Respond 261). The
ANALe,, ALLOCe,, RANKe,, DIAGe,, PREe,, SUMe, and
RESe; events are all indications that the respective SEAMS
have completed the tasks indicated by the chain of response
records listed above. The final RESr, response record directs
the MNT node 150" to deliver the requested data to the system
user 210 via the specialized adapter 325 and the web server
430.

FIG. 12 is a simplified flow chart of a method 1300 for
coordinating the operation of various SEAMs (221-264)
within a computing node (120'-170"). However, those of ordi-
nary skill in the art will appreciate that the use of multiple
processors will allow for multiple threads to be processed in
parallel.

Atprocess 1310, an event 362 is pushed into the system by
the customized adapter 325 or, in the case of some EHM
nodes 120' by the host executive software 330. In some
embodiments, the host executive 330 may make a function
call 1311 to a SEAM (221-264) to accept the event message
such as the Acquire SEAM 221. At process 1330, the event

20

25

30

35

40

45

50

55

60

65

26
record 362 is placed into the EVQ 351 by the called Seam
(221-264) in the order in which it was received and the input
message is stored in a queue or a message buffer 390 resident
in the DDS 3505 by the SEAM (221-264). The SEAM (221-
264) then sends a return command 1312 to the customized
adapter 325 and exits.

It is assumed in this simple example, the workflow service
module 310 had no other events or response records to pro-
cess. Therefore the workflow service module 310 may restart
at process 1340, although it may restart at any point in its
routine. At process 1340, the workflow service module 310
attempts to read the next event record in FIFO order from the
EVQ 351. If it is determined that the EVQ 351 is not empty at
decision point 1341, then the workflow service module 310
reads the next event 362 from the EVQ and then consults the
persistent data (e.g., a state machine) in the SDS 350a with
the event 362.

Atprocess 1360, the SDS 350a receives the event 362 as an
input and produces a predefined response record 363. The
SDS 350q also indicates the response queue (352-355) into
which the response record 363 is to be placed, and indicates a
priority location for the response record in the response queue
as. Any data associated with an event/response record is
stored in a shared data structure in the DDS 3505, such as in
a circular buffer 380 or in a record snapshot buffer 370.

At process 1370, the workflow service module 310 stores
the response record 363 into the assigned response queue
(352-355) in its priority order and then returns to process
1340 to read the next event 362.

When the SDS 350q assigns response queues, the highest
priority response records 363 are placed in the HPQ 352 in
their order of assigned priority and not on a FIFO basis.
Response records 363 of lesser priority, such as responses
records requiring a time delay may be placed in the TDQ 535.
Responses records 363 of'still lesser priority may be placed in
the PQ 354. Such response records 363 in the PQ 354 may
need to be addressed only on a periodic basis, for example.
Response records 363 of the least priority are assigned to the
AQ 355 and may be addressed asynchronously as the higher
priority response queues permit. Further, response records
363 are placed into one of the response queues 353-355
according to a processing priority that is assigned by the SDS
350a and may or may not be placed on a FIFO basis. The
above described loop (1340, 1360, 1370) continues for as
long as there are events 362 in the EVQ 351.

Ifthe EVQ 351 is determined to be empty at determination
point 1341, then the workflow service module 310 proceeds
to the highest priority response queue (352-355) that contains
aresponse record 363 and reads the highest priority response
record (e.g. the first or the next response record), at process
1350. When a response record 363 is read, the workflow
service module 310 issues a function call 365 to the SEAM
(221-264) referenced in the response record 363 to perform
its function on the data indicated in the response record 363
and then exits.

At process 1380, the called SEAM (221-264) consults the
SDS 350a to determine the task to be performed by the
SEAM. Although not strictly required for simple SEAM
functions such as the Acquire SEAM 221, more complex
SEAMs such as the Forecast SEAM 255 or the Coordinate
SEAM 252, for example, may have various alternative algo-
rithms or conditional logic that may be performed. As such
the SDS 350a, may direct the SEAM as to which explicit
functionality or algorithm to execute.

At process 1390, the designated SEAM performs its func-
tion or task on the data associated with the response record
363. Once the SEAM 221-264 performs its function, the

US 8,832,649 B2

27

method 1300 proceeds to process 1320 where a new event
record is generated and placed into the EVQ 351 and the
method 1300 repeats.

While at least one exemplary embodiment has been pre-
sented in the foregoing detailed description of the invention,
it should be appreciated that a vast number of variations exist.
It should also be appreciated that the exemplary embodiment
or exemplary embodiments are only examples, and are not
intended to limit the scope, applicability, or configuration of
the invention in any way. Rather, the foregoing detailed
description will provide those skilled in the art with a conve-
nient road map for implementing an exemplary embodiment
of the invention. It being understood that various changes
may be made in the function and arrangement of elements
described in an exemplary embodiment without departing
from the scope of the invention as set forth in the appended
claims.

What is claimed is:

1. A system for extending the functionality of a subordinate
computing device without re-compiling code, comprising:

a controlling computing device, wherein the controlling
computing device and the subordinate computing device
each comprise:

a first plurality of standardized executable application
modules (SEAMs), each SEAM configured to
execute on a processor to provide a unique function
and to generate an event associated with the unique
function associated with each SEAM;

a computer readable storage medium having a configu-
ration file recorded thereon, the computer readable
storage medium comprising: a dynamic data store
(DDS) and a static data store (SDS),
wherein the DDS comprises an event queue, one or

more response queues and one or more unused
storage locations, and
wherein the SDS comprises variables, words, a
decode specification, a snapshot specification, a
variable offset specification, and a persistent soft-
ware object configured to map a specific event from
the event queue to a pre-defined response record,
and to assign a response queue into which the pre-
defined response record is to be placed; and
aworkflow service module configured to direct commu-
nication between the SDS, the DDS and each of the
first plurality of SEAMs;

wherein the controlling computing device is configured
to transmit a command and a data matrix containing
data to the subordinate computing device,

wherein the subordinate computing device is configured
to create a linked extension of the SDS in an unused
storage location of the DDS in response to the com-
mand and to populate the extension of the SDS with
the data contained in the data matrix, and

wherein the SDS snapshot specification points to a data
structure, the data structure points to a list of words,
each word in the list of words points to at least one
variable offset, the at least one variable offset speci-
fication points to a variable and to a preexisting
decode mask, the variable points to a storage address
within the DDS and to the function augmentation data
matrix.

2. The system of claim 1, wherein the input data matrix
points to a data structure extension ID, the data structure
extension 1D points to a extension list of word IDs, the exten-
sion list of word IDs points to at least one extension variable
offset, the at least one extension variable offset points to a

20

25

30

35

40

45

50

55

60

65

28

variable extension and a extension decode mask ID, the
extension variable points to a storage address of the DDS and
back to the data matrix.
3. The system of claim 1, wherein a SEAM of the first
plurality of SEAMs is instructed to create multiple extension
areas within the unused storage location of the DDS and
logically link each of the multiple extension areas to a related
memory location within the SDS.
4. The system of claim 3, wherein a third SEAM of the first
plurality of SEAMs populates each extension area of the
multiple extension areas from the data matrix.
5. The system of claim 4 wherein at least two of the first
SEAM, the Second SEAM and the third SEAM are the same
SEAM but with different instructions determined from the
SDS.
6. A method for augmenting functions of a subordinate
computing device by a controlling computing device where
the subordinate computing device and the controlling com-
puting device both include a workflow service, a dynamic
data store (DDS), a static data store (SDS), and are both
populated by at least a first set of standardized executable
application modules (SEAMs), the method comprising:
receiving a command and a function augmentation data
matrix from the controlling computing device, wherein
the function augmentation data matrix contains data that
when installed in the DDS of'the subordinate computing
device enables the subordinate computing device to
accomplish additional functions;
calling a first SEAM by the subordinate computing device,
the first SEAM being configured to receive the com-
mand and the function augmentation data matrix;

calling a second SEAM by the subordinate computing
device, the second SEAM being configured to create one
or more SDS extensions in its DDS; and

populating the one or more DDS extensions with the data

from the function augmentation data matrix,

wherein:

the SDS comprises variables, words, a decode specifi-
cation, a snapshot specification, and a variable offset
specification, and

the SDS snapshot specification points to a data structure,
the data structure points to a list of words, each word
in the list of words points to at least one variable offset
specification, the at least one variable offset specifi-
cation points to a variable and to a preexisting decode
mask, the variable points to a storage address within
the DDS and to the function augmentation data
matrix.

7. The method of claim 6, wherein the function augmenta-
tion data matrix points to a data structure, the data structure
points to a list of words, each word in the list of words points
to at least one variable offset specification, the at least one
variable offset specification points to a variable and to a
preexisting decode mask, the variable points to the function
augmentation data matrix.

8. The method of claim 6, wherein the input data matrix
points to a data structure extension ID, the data structure
extension ID points to a extension list of word IDs, the exten-
sion list of word IDs points to at least one extension variable
offset, the at least one extension variable offset points to a
variable extension and a extension decode mask ID, the
extension variable points to a storage address of the DDS and
back to the data matrix.

9. The method of claim 6, wherein a SEAM of the first
plurality of SEAMs is instructed to create multiple extension
areas within the unused storage location of the DDS and to

US 8,832,649 B2

29

logically link each of the multiple extension areas to a related
memory location within the SDS.

10. The method of claim 9, wherein a third SEAM of the
first plurality of SEAMs populates each extension area of the
multiple extension areas from the function augmentation data
matrix.

11. The method of claim 10, wherein at least two of the first
SEAM, the second SEAM and the third SEAM are the same
SEAM but with different instructions determined from the
SDS.

12. A non-transitory computer readable storage device
containing instructions that when executed augments the
functions of a subordinate computing device by a controlling
computing device where the subordinate computing device
and the controlling computing device both include a work-
flow service, a dynamic data store (DDS), a static data store
(SDS), and are both populated by at least a first set of stan-
dardized executable application modules (SEAMs), the steps
comprising:

receiving a command and a function augmentation data

matrix from the controlling computing device, wherein
the function augmentation data matrix contains data that
when installed in the DDS of the subordinate computing

10

15

20

30

device enables the subordinate computing device to
accomplish additional functions;
calling a first SEAM by the subordinate computing device,
the first SEAM being configured to receive the com-
mand and the function augmentation data matrix;
calling a second SEAM by the subordinate computing
device, the second SEAM being configured to create one
or more SDS extensions in its DDS; and
populating the one or more DDS extensions with the data
from the function augmentation data matrix,
wherein:
the SDS comprises variables, words, a decode specifi-
cation, a snapshot specification, and a variable offset
specification, and
the SDS snapshot specification points to a data structure,
the data structure points to a list of words, each word
in the list of words points to at least one variable offset
specification, the at least one variable offset specifi-
cation points to a variable and to a preexisting decode
mask, the variable points to a storage address within
the DDS and to the function augmentation data
matrix.

