
US007707553B2

(12) Ulllted States Patent (10) Patent N0.: US 7,707,553 B2
Roques et a]. (45) Date of Patent: Apr. 27, 2010

(54) COMPUTER METHOD AND SYSTEM FOR 7,299,382 B2 * 11/2007 Jorapur 714/38
AUTOMATICALLY CREATING TESTS FOR 7,421,680 B2 * 9/2008 DeLine etal. 717/126
CHECKING SOFTWARE 7,457,806 B2 * 11/2008 Alcorn et a1. 707/100

2003/0037314 A1 * 2/2003 ApuZZo et al. 717/125

75 _ . . , . 2004/0064806 A1 * 4/2004 Johnston-Watt et al. 717/124

() Inventors‘ ghglerttRlgques’ lTmgusesupR)’ Davld 2004/0143819 A1 * 7/2004 Cheng et al. 717/125
' °° ’ amue 2" (U) 2005/0210439 A1 * 9/2005 Dimpsey et al. .. 717/100

. . . _ 2005/0268285 A1* 12/2005 Bagley et al. 717/124
(73) Asslgn?’Z Internatlonal Busmess Machmes 2005/0283761 A1 * 12/2005 Haas 717/124

Corporation, Armonk, NY (US)
(Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS

U-S-C~ 15403) by 1174 days- DeMichiel, Linda, Sun Microsysmts, Enterprise JavaBeans Speci?
cation, Version 2.1, Nov. 12, 2003, p. 265-310, and p. 501-554.*

(21) Appl. No.: 11/299,306 _
(Cont1nued)

(22) Filed: Dec‘ 8’ 2005 Primary ExamineriWeiY Zhen
. . . Assistant Examiner4Charles Swift

(65) Pnor Pubhcatlon Data (74) Attorney, Agent, or FirmiHamilton, Brook, Smith &
US 2007/0240127 A1 Oct. 11, 2007 Reynolds, P.C.

nt. . 51 I C] 57 ABSTRACT
G06F 9/44 (2006.01)

(52) us. Cl. 717/124; 717/126; 717/134; Computer System and method automatically generates a test
714/34 source code for checking validity of an application Written in

(58) Field of Classi?cation Search 717/123 an Object on'emed language- The applicationincludes Objects
717/126 100 124 127 125’ accessible through an interface implementing programming

See application ?le for Complete Search history rules and object behavior rules. For each object, the invention
extracts object methods and attributes of the object interface

(56) References Cited Which are impacted by the object behavior rules and extracts

U.S. PATENT DOCUMENTS

5,708,774 A * 1/1998 Boden . 714/38

5,754,755 A * 5/1998 Smith, Jr. 714/38

5,978,582 A * 11/1999 McDonald et al. .. 717/104

6,154,876 A * 11/2000 Haley et a1. 717/133

6,633,888 B1* 10/2003 Kobayashi 707/103 R

6,754,659 B2* 6/2004 Sarkar et a1. 707/10

6,839,650 B2* 1/2005 Sutton et a1. 702/123
6,925,633 B1* 8/2005 Barnettet a1. 717/124
7,065,748 B2* 6/2006 Matsuo et a1. .. 717/126
7,237,231 B2* 6/2007 Lambert 717/127

the object identi?cation. The invention ?lls the variable ?elds
of a source code template With the extracted information. The
template non variable source code is in conformance With the
programming rules and implements a scenario for checking a
set of object behavior rules; thus the ?lled template forms a
generated test source code. For distributed applications, the
speci?cations may be E] B or CORBA and the Test Generator
uses templates for checking the life-cycle (creation, persis
tency, removal) of deployed objects.

20 Claims, 10 Drawing Sheets

All objects
have been
read ?

The computer generates a __2O5
persistence test for each
attribute of the selected

object

US 7,707,553 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0283763 A1* 12/2005 Fujikawa et a1. 717/124

2007/0168973 A1* 7/2007 Crih?eld . 717/124
2007/0180093 A1* 8/2007 Roth et al. 709/223
2007/0240127 A1* 10/2007 Roques et a1. 717/136

OTHER PUBLICATIONS

Kappel et al, “Modeling object behavior: To Use Methods or Rules or
Both”, Journal of Object-Oriented programming, 1994.*
Berner et al, “Observations and lessons learned from automated
testings”, ICSE’05, May 15-21, 2005, ACM Publishings.*
Bryce, “Automatica generation of high coverage usability tests”, CHI
2005, Apr. 2-7, 2005, ACM Publishings.*
Li et al, “Automatic functional test program generation for Micro
processor Veri?cation”, 2005, IEEE.*

Nakajima et al, “Behavioural analysis of the EJB Component archi
tecture”, M.B. DWyer, 2001.*
Saff et al, “Automatic test factoring for Java”, ASE’05, Nov. 2005,
ACM.*
Cavarra et al, “A method for the automatic generation of test suites
from Object models”, 2003, ACM.*
Rutherford et al, “A case for test-code generation in model driven
systems”, GPCE 2003.*
Sun Microsystems, Enterprise JavaBeansTM Speci?cation, Version
2.1, Nov. 12, 2003. Table of Contents pp. 8-10; Chapter 9, pp. 123
140; Chapter 10.5, pp. 184-209.
Sun Microsystems, Enterprise JavaBeansTM Speci?cation, Version
2.1, Nov. 12, 2003. Table of Contents; Chapters 1-4; Chapter 6;
Chapter 12; pp. 439-450; pp. 459-461.

* cited by examiner

US. Patent Apr. 27, 2010 Sheet 1 0f 10 US 7,707,553 B2

190 101
l)

_ Execution

Software Development Envlronment E—nvironment

102 107

)
Deployable Objects

-|.

Descrlptors Application
Server

i 106
1 J

\
N

TEST 108 Application
GENERATOR Executable

Test Results I

i 105
1 I

v 104 \\

\& Test Generated Tests ~ Executable

FIG. 1

US. Patent Apr. 27, 2010 Sheet 2 0f 10

l
The tester selects the
objects to be tested

201

All objects
have been
read ?

The computer reads one
selected object

-202

l
The computer builds an
object representation

-203

The computer generates
a creation test

~204

The computer generates a
persistence test for each
attribute of the selected

object

~205

The computer generates
a remove test

~206

FIG. 2

US 7,707,553 B2

US. Patent Apr. 27, 2010 Sheet 3 0f 10

Client side

Generated
Test

(A O

304

Server side

Server side
Container

Software 3

(.0 U1

US 7,707,553 B2

FIG. 4A

FIG. 48

FIG. 4

US. Patent Apr. 27, 2010 Sheet 5 0f 10 US 7,707,553 B2

mv .QE

5022 N 000200 dcEw H ._0_._>>0 .002 u 2 V 2020 :@
...<H A >0x§000<n >0¥¢0Ec0 V 3260200500: 1 @

E3000<~ A V 2020 I ®

AA000t2E 052. 002025 mEoIvv

20> n A mcEw H mEmzhoEso V mEmzhmEsOVow 1 @

mcEw H A V 006200550000 m @

20> H A 6022 H 200800223600 V 22000003250260 m @

6025 U A V 020082255000 1 @
20> H A 92 H 2 208 m w

92 H A V 2% m @

20> u A 6025 N 000200 V 00020900 1 ®

6025 U A V 00020900 1 @

E0000}; AA000t0E_ 022. 0000025 o?oEomvv

fl

mow

A » vow A

US. Patent Apr. 27, 2010 Sheet 6 0f 10 US 7,707,553 B2

301

ll Method used to create a Home instance from a JNDI name

private AccountHome getAccountHomeO
{
properties p = System.getProperties();

lnitialContext ctx = new lnitialContext(p);

Object obj = ctx.lookup("ejb/ejbs/AccountHome");
AccountHome oneAccountHome =

(Accounti-lome) PortableRemoteObject.narrow(obj,
Accountl-lome.class);

return oneAccountHorne;

1/ Method used to test the EJB object instance creation
public void testCreateAccount throws Throwab|e()

// Creation of the Home instance
AccountHome oneAccountHome = getAccountHome();

long id = getLongVaIue();
String owned = getStringVaiueO;
Integer balance = getlntegerValue()

FIG. 5A

US. Patent Apr. 27, 2010 Sheet 7 0f 10 US 7,707,553 B2

// Create Account EJB instance

Account oneAccount 301
= oneAccountl-lome.create(id, owned, balance);

tryl
ll Try to ?nd the instance we have created above

AccountKey key = (AccountKey)
oneAccount.getPrimarykeyO;
Account theSameAccount =

oneAccountHome?ndByPrimaryKey(key);

// Check test for the ?eld maxAIIowedDe?cit
assert(oneAccount.getMaxAIlowedDe?cit().eq uals(

theSameAccount.getMaxAllowedDe?cil()));

ll Check test for the ?eld Balance
assert(oneAccount.getBa/ance().equa|s(
theSameAccount.getBaIanceO»;

// Check test for the ?eld Id
assert(oneAccount.get/d() == theSameAccount.get/d());

// Check test for the ?eld Name
assert(oneAccount.getName().equals(
theSameAccount.getName()));

// Check duplication error
try{

ll Create another Account EJB instance

oneAccountl-lome.create(id, owned, balance);
assert (false);
}

catch (DuplicateKeyException){
assert(true)

}

} ?nally {
/I remove Account EJB instance

oneAccountremove();

US. Patent Apr. 27, 2010 Sheet 8 0f 10 US 7,707,553 B2

1/ Method used to test the EJB object instance persistence 301
public void testLoadStoreAccount throws Throwable() /
{
1/ Creation of the Home instance

AccountHome oneAccountHome = getAccountHomeO;

UserTransaction userTransaction = getUserTransactionO;

long id = getLongValue 0;
String owned = getStringValue ();
Integer balance = getlntegervalue ()

1/ Create Account EJB instance
Account oneAccount = oneAccountl-lome.create(id, owned, balance);

AccountKey key = (AccountKey)
oneAccount.getPrimarykeyQ;

Account theSameAccount = null;

try{
// Check persistence for the ?eld maxAIIowedDe?cit
//Start a transaction

userTransaction.begin();

// Set a value for the ?eld maxAIIowedDe?cit
Integer maxAllowedDe?cit = getlntegerValueO

oneAccount.setMaxAIIowedDe?cit(maxAI/owedDe?cit);

l/Close the transaction
userTransaction.commit();

// Try to ?nd the instance we have created above

theSameAccount =

oneAccountHome?ndByPrimaryKey(key);

// Check persistence for the ?eld maxA/IowedDe?cit
assert(maxAllowedDe?cit.equals(
theSameAccount.getMaxAllowedDe?cit()));

// And so on for each ?eld } ?nally {

ll remove Account EJB instance

A t. ; ime ccoun remove() 6

US. Patent Apr. 27, 2010 Sheet 9 0f 10 US 7,707,553 B2

301

// Method used to test the EJB object instance deletion /
public void testRemoveAccount throws Throwable()
{
ll Creation of the Home instance
AccountHome oneAccountHome = getAccountHomeO;

UserTransaction userTransaction = getUserTransaction();

long id = getLongValue 0;
String owned = getStringValue ();
Integer balance = getlntegerValue ()

// Create Account EJB instance

Account oneAccount = oneAccountt-lome.create(id, owned, balance);

// Get the primary key
AccountKey key = (AccountKey)
oneAccount.getPrimarykey();

// remove Account EJB instance

oneAccount.remove();

// Try that it's impossible to ?nd the object
try{

oneAccountHome.?ndByPrimaryKey(key);
assert (false);

} catch (FinderException e) {
assert(true);

// Try that it's impossible to remove the object again
try{

oneAccount.remove();
assert (false);

} catch (RemoveException e) {
assert(true);

FIG. 7

US. Patent Apr. 27, 2010 Sheet 10 0f 10 US 7,707,553 B2

w .@E

vm Ema .wlm E2005 wO % 032m 065

mm 9m 2663/

vm Ema % @5501 a boEmE

@@ oomtog {9202

ww :cD 63891 5:30

Mm 886:: $8.50 2

US 7,707,553 B2
1

COMPUTER METHOD AND SYSTEM FOR
AUTOMATICALLY CREATING TESTS FOR

CHECKING SOFTWARE

FIELD OF THE INVENTION

The present invention generally relates to automatic cre
ation of tests for software; more particularly the present
invention applies to creating tests for softWare Written in an
object oriented programming language such as Java or C++.

BACKGROUND OF THE INVENTION

To check a softWare Work (e.g., program, routine, proce
dure, application or the like) the developers have to decide
What needs to be tested and hoW. Traditionally, the developers
generate unit tests for checking all the functions of the soft
Ware. HoWever, it is not realistic to consider that all the
functions of the softWare Will be tested With all the possible
inputs. In the same Way, When a softWare is Written With an
object oriented language, it is impossible to test all the meth
ods of a class for all possible inputs. Thus, the developers try
to design tests that highlight bugs in their softWare.

To help developers to Write tests, softWare companies have
created tools to automate the generation of tests. There are
tWo interests in using these tools, they save time and induce
reliability. HoWever, in order to make these tests more e?i
cient, there is a need to improve the logic behind the genera
tion of test. The tests are automatically generated by these
tools according to a logic Which can be that the functions are
systematically tested one after one With simple values such as
0 or null pointer as parameters. Other logics test functions in
a random order or in the order they appear in the source code,
or according to a source coverage, or according to a record of
a previous execution of a function for a replay. So, one
example is to create calls of all the methods of a class in the
order they appear in the source code; calls to all the methods
in a random order; calls to setter ?elds methods then the
getters; etc. The input are taken either at random or in an set
of values that are expected to be critical: null pointer, null
integer value, negative or positive value, empty string,
etc

In the US. Pat. No. 5,708,774 the tests are automatically
created for detecting errors in the successive levels of calls of
functions in Which are given parameters. If the test is positive
(e. g. no exception throWn or no bad assertion risen), the result
of a ?rst test is used to create the next test: these tests are not
relevant because the scenario does not respect the business
logic of the application. If a test is done on accordance With
the semantic of the application, an execution error, for
instance could be a good behavior for a test.

Ideally, to be more e?icient, test generation should folloW
a scenario adapted to the business logic of the application
operating that softWare. The dif?culty to generate relevant
tests is that the nature of the test is closely related to the
semantic of the application under test. Unfortunately, it is
quite impossible to create test generators Which can adapt to
the semantic of the application. The test tools cannot discover
this semantic and the generated tests are far from the test that
Would be performed by the programmer Who has the knoWl
edge of the semantic of the application under test. For
example, in an application managing bank accounts, a class
Account is Written With methods deposit(. . .), With

DraW(. . .), getBalance() and getMaxDe?citAlloWed(), it
Would be particularly relevant to check that one cannot With
draW an amount X if X is greater than getBalance() unless this
amount is less than getMaxDe?citAlloWed()+getBalance().

20

25

30

35

40

45

50

55

60

65

2
HoWever to improve test e?iciency, there is a need for a

method to create test generators Which can be used to test an
application independently from its particular semantic but
With a test scenario Which is close to the logic of the program
ming of the application.

SUMMARY OF THE INVENTION

It is therefore an objective of the present invention to pro
vide a method Which creates a test generator testing a soft
Ware Written in an object oriented language according to the
logic of the programming of the application.

These objectives are achieved, as claimed in claims 1 to 13
With a method and a computer program for automatically
generating a test source code for checking validity of an
application Written in an object oriented language comprising
objects accessible through an interface implementing pro
gramming rules and object behavior rules, said method com
prising for each object of the application extracting the object
methods and attributes of the object interface Which are
impacted by the object behavior rules and extracting the
object identi?cation; ?lling the variable ?elds of a template of
source code With the extracted information, said template non
variable source code being in conformance With the pro gram
ming rules and implementing a scenario for checking a set of
obj ect behavior rules, said ?lled template being the generated
test source code. When the application to be tested is a dis
tributed application the speci?cations may be EJ B or CORBA
and the Test Generator can use templates for checking the
life-cycle (creation, persistency, removal) of the deployed
objects.
The solution of the preferred embodiment relies on the

programming standardiZation of ‘behavior’ of objects such as
the life cycle rules of objects for application in a distributed
environment. Checking of the object behavior rules can be
used as a basis for test scenario.

For instance, Java 2 Platform, Enterprise Edition (J2EE)
refers to standards for developing and deploying enterprise
applications, Enterprise Java Beans (EJB) or Common Object
Request Broker Architecture (CORBA) de?ning component
models in Which the business logic is encapsulated into busi
ness objects. In the EJB speci?cations, Chapter 12. (Entity
Bean Component Contract for Bean-managed Persistence)
contains programming rules describing the persistence of
objects. The tests generated by the method of the preferred
embodiment check that the behavior of the deployed objects
of the enterprise application is in conformance With the rec
ommendation of Chapter 12 (Entity Bean Component Con
tract For Bean Managed Persistence) of the EJB speci?ca
tions 2.1. The scenario of the tests generated comprises
checking a minimum of steps in the life-cycle implementa
tion of deployed objects of the application to be tested. This
has the advantage of testing the essential part of the logic of
the application.

Furthermore, these tests can be created With the use of a
template because the tests use the exported API of the soft
Ware to be tested and the naming rules are described in the
speci?cations that the softWare has implemented. Conse
quently, the tests can be automatically generated and are
particularly reliable (programming errors free). HoWever, the
generator can be Written in any language even not in object
oriented language.
One other advantage is that the tests automatically gener

ated Which are compliant With the speci?cations by the test
generator of the invention Will check that the deployed object
lifecycle implementation is also compliant With the speci?
cation.

US 7,707,553 B2
3

In the programming community, the use of the invention
has a bene?cial impact for the education of the programmers
as the generated tests follow the programming speci?cations
and will highlight common best practices in object deploy
ment testing to programmers not familiar with object deploy
ment implementation speci?cations.
One very signi?cant advantage is the fact that the test

generator of the preferred embodiment creates tests for
checking a minimum of steps in the lifecycle implementation
of each deployed object which could be combined by the
programmers knowing the semantic of the application to
create more complete test scenarios corresponding to more
concrete use cases. The tester can assemble the tests created
by the generator to create new tests more detailed and closer
to the business logic of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objectives, features and advan
tages of the invention will be apparent from the following
more particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not neces
sarily to scale, emphasis instead being placed upon illustrat
ing the principles of the invention.

FIG. 1 illustrates the environment for testing an application
with tests generated according to the preferred embodiment;

FIG. 2 is the general ?owchart of a method of generating
tests according to the preferred embodiment;

FIG. 3 illustrates the architecture used in the testing envi
ronment of the tests generated with the generator of the pre
ferred embodiment;

FIG. 4 illustrates an example of class diagram for one
deployed object of the application to be tested for which a test
is automatically generated according to the preferred embodi
ment;

FIGS. 5A and 5B illustrate an example of source code of
the test for checking the creation of an object generated
according to the preferred embodiment;

FIG. 6 illustrates an example of source code of the test for
checking persistence of the persistence of an object generated
according to the preferred embodiment;

FIG. 7 illustrates an example of source code of the test for
checking the removal of an object generated according to the
preferred embodiment.

FIG. 8 is a block diagram of a computer or digital process
ing environment in which embodiments of the present inven
tion are operated.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates the testing environment for testing a
software application with tests generated according to the
preferred embodiment. The test generator is created in the
“Software Development Environment” (190). The tests are
also generated in the “Software Development Environment”
(190) and are then executed in the “Execution Environment”

(101).
Not represented on FIG. 1, the Software Development

Environment (190) which may operate on a computer inde
pendent from the execution computer, comprises a develop
ment framework which is a set of tools, as editors, compilers,
linkers available in its workspace to build the application.
Also, part of the Software Development Environment (190),
syntactic and semantic programming rules are described in

20

25

30

35

40

45

50

55

60

65

4
speci?cations such as E] B or CORBA well known for devel
oping business applications written in an object-oriented lan
guage.
The developer creates an Application Executable (106) to

be tested. To create the Application Executable, the developer
de?nes in the Software Development Environment (190) the
object model with classes describing objects and methods (idl
?les for CORBA, java ?les and descriptor ?les for EJB) and
all the application artifacts (102) following development
speci?cations. The classes are then compiled and linked to
form the Application Executable (106).

In the preferred embodiment, the application to be tested is
a distributed application deployed in two parts which are the
client side component and the server side component. The
deployed application comprises two executables one on the
server side and one for the client side. The distributed appli
cations are implemented on servers and are accessed by client
applications which reach the objects of the server application
through their API. Usually, the server application is executed
on one server or more and each user accesses the server

application through a client application executed on his work
station. The Software Development Environment (190) com
prises a development framework including generators and
runtimes which allows developers to generate several pieces
of code which provide the communication between the server
part and the client part where the deployed objects are used.
The framework is used by the developer to manage the
deployed application and to produce a client proxy. The client
proxy is a component allowing a client application to call the
server application through a simple Application Program
ming Interface (API). All low level communications are hid
den to the developer who then concentrates his efforts on the
business aspects of the application.
The tester uses the same Software Development Environ

ment for creating a Test Generator (103) as described later in
reference to FIG. 2. The Test Generator (103) is developed in
any type of language.

To perform the tests testing the code of the Application
Executable (106), the tester ?rst invokes the Test Generator
(103) which produces the Generated Tests (104); then, still
using the development framework of the Software Develop
ment Environment (190), the tester creates the Test Execut
able (105) as a client application for the Generated tests (104).
The development framework helps the tester to create source
code ?les, deployment ?les and build ?les necessary to create
a Client Application. As with many client applications, the
Test Executable (105) is able to interface with the Application
Executable (106) (call for Test Executable to Application
Executable is represented in FIG. 1 with a dotted line) and can
be run in parallel of the Application Executable (106),
through the same server or not. The Application Executable
(106) must be run through one or many “Application Server”
(107, call for Application Executable to Application Server is
represented with a dotted line) on one or many machines
located in a network. The tester executes the client application
for testing the server application in the Execution Environ
ment (101). The Test Results (108) are sent to the Software
Development Environment and used by the tester to perfect
the Application Executable code. The test environment with
the client application based on the Generated Tests (104) and
the server application based on the Application executable
(106) is described later in reference to FIG. 3.

FIG. 2 is the general ?owchart of a method for generating
tests according to the preferred embodiment. The speci?ca
tions such as E] B or CORBA implemented by the developer
to develop deployed applications, make possible the auto
matic generation of tests. Firstly, the syntactic programming

US 7,707,553 B2
5

rules described in the speci?cations allows the invention sys
tem to create a template of source code of tests for automatic
generation of code. Secondly, the contract described in the
speci?cations imposes a semantic logic in the life-cycle of the
deployed objects. For instance, at the minimum, each object
is created once and only once, the created objects can be
retrieved and the deleted objects can no longer be retrieved.
Consequently, the Test Generator (103) of the preferred
embodiment generates tests having a scenario that checks the
life-cycle of the objects of the application.

First the tester must select (200) the deployed objects of the
application for Which he Wants to generate a test. For each
selected object (201), the test generator (103) reads (202) all
the artifacts describing this object as the java or C++ source
code ?les and possibly descriptors as CORBA IDL ?les or
E] B deployment ?les, the Deployable Object Classes and
Descriptors (102):

source code ?les Written in Java, C++ or in other program
ming language,

deployment descriptor ?les Which describe hoW the dis
tributed application must be deployed,

possible speci?cation ?le Which are used to generate
source code of deployed object as “idl” ?le in a CORBA
environment

other “make?le”, “build”, binary ?les necessary to create
the application

The tester creates the Test Generator (103) in any pro gram
ming language. The ?rst step of the Test Generator (103) is to
create (203) an internal representation (table, tree etc.) of the
selected objects With a pertinent and minimum set of infor
mation extracted from the Deployable Object Classes and
Descriptors (102). The internal representation of an object
comprises:

The pathname of the object (name+package hierarchy)
The type of the primary key
The method used to get the primary key
The ?nd method corresponding to the key type
The constructor method
The destructor method
For each attribute of the object
The name

The type of the attribute
The get method of the attribute
The set method of the attribute
Eventually an external reference of the object
After step 203, an optional step of checking, not illustrated

in FIG. 2 could be provided by the Test Generator (103) to be
sure that all these information are valid then, the test genera
tion is performed.

The Test Generator (103) reads in each object representa
tion the information relevant to be inserted in a test source
code template Written in the object oriented language of the
test to be generated. One test source code template is prepared
for each test.

Each template folloWs a scenario Which is in accordance
With the programming logic described in the programming
speci?cations. Furthermore, in the preferred embodiment a
basic set of test templates is provided in the Test Generator
corresponding to a set of tests covering the object life-cycle as
recommended in the speci?cations: the creation of objects,
the persistence of objects and the deletion of objects.

The ?rst test is the creation of a deployed object (204).
Included is creation of an instance, checking that this instance
can be reached by its primary key, and checking that a second
instance of the same object is impossible.

The folloWing test corresponds to each attribute persis
tence (save/load) (205). It comprises doing a creation of an

20

25

30

35

40

45

50

55

60

6
instance, and for each attribute of the object, to set a value for
this attribute, to commit the instance, to reach the instance by
its primary key, and to check that the corresponding attribute
has been set to the correct previous value.
The third test is for the deletion of the object (206). It

includes doing a creation of an instance, immediately after
doing the destruction of this instance, and then check that this
instance can’t be reached by its primary key, and check that
this instance can’t be removed tWice.
An example template for each of these tests is provided

later in reference to the description of FIG. 4. The Test Gen
erator (103) uses the template by inserting in each of the test
templates prepared by the tester, the information read in the
object structure in order to obtain the corresponding test
source code. Once all the test source codes are generated for
each deployed objects selected by the tester (ansWer Yes to
test 201), the test generation is completed. The tester com
piles and links the test source codes, creates the deployment
environment of the test as a client application and executes the
tests in the Execution Environment (101) Which generates
reports.

It is noted that once the code of the application is tested as
for the life-cycle of its deployed objects, the tester can e?i
ciently create neW tests more in relation With the business
logic of the application on a clean code basis. It is also noted
that the Generated Tests source code (104) based on the
standardized life-cycle of the objects can be reused, com
bined and repeated for testing other object behavior such as
the robustness of the objects (is not part of the standardized
life-cycle of the objects) by repeating the creation tests of
FIG. 2.

FIG. 3 illustrates the architecture used in the testing envi
ronment of the tests (104) generated With the generator 103 of
the preferred embodiment. It shoWs that the tests automati
cally generated With the method of the preferred embodiment
are tested as a client application Which accesses the server

application (308) by calling the objects to be tested through
their natural API (302, 307). The client application of the tests
is thus developed in respect With the same speci?cations for
deployed applications such as EJB or CORBA used for the
development of the application to be tested. The same devel
opment frameWork provided With the speci?cations is used
by the tester.
The client side application (300) comprises the Generated

Test source code (301; 104 of FIG. 1) With an API (302) for
access to its objects, the Client Proxy (303) being used to
interface the Server Side (305).
The Server Side (305) comprises the Server Side Container

(306) Which is generally a part of theApplication Server (107)
of FIG. 1. According to an API (307), this part of the Appli
cation Server (107, 305) calls the objects of the Application
SoftWare (308) for Which the executable is the Application
Executable (106) of FIG. 1 to be tested. The standardized
Application Programming Interfaces APl’s (3 02, 307) are
also described in the published speci?cations such as EJB or
CORBA as Well as the naming rules.
On the Client Side (300) the test (301) calls the application

proxy (3 03) through the standardized APl(3 02).
On the Server Side (305) the Deployed Application (308),

Which is developed in accordance With the standardized
API (307), is aWaken by the Server side layer (306).

Communications (304) betWeen the tWo sides (300, 305)
are performed by the technology of the tools provided in
the development frameWork.

FIG. 4 illustrates an example of class diagram for one
deployed object of the application to be tested for Which a test
is automatically generated according to the preferred embodi

US 7,707,553 B2
7

ment. FIG. 4 gives a diagram representation of the “Account”
object 402 Which is an example of EJB object of a banking
distributed application for Which We Want to generate a test
according to the preferred embodiment. The application and
the test are implemented in Java language.
As any Enterprise Java Bean the Account object (402) is

made ofa set of Java classes 400, 401:
the “bean” (401) Which contains the implementation;
the “home” (remote or local) interfaces (404); objects

noted oH in FIG. 4 are created through the Home inter
face.

and the (remote or local) business interfaces (403) that are
called by the client; a remote interface on a remote server
in FIG. 4 is noted oR and a local interface used locally on
the same server is noted oL

The Account object (402) is also made of a deployment
descriptor (405): “ejb-jar.xml”.
By analyZing thesejava classes (at 203, FIG. 2), it is pos

sible to extract pertinent data forming the object representa
tion:

The name of the object
Account is the name of the EJB
The signature of the methods used to create the object

create()
create(long, String, long)
The signature of the method used to remove the object
Void remove()
The type of the key used to ?nd the object
AccountKey
The signature of the method used to ?nd the object 402
Account ?ndByPrimaryKey(AcountKey)
The object getter and setter methods
long getId
void setId(long)
Integer getMaxAlloWedDe?cit()
Integer setMaxAlloWedDe?cit(Integer)
Integer getBalance
Integer setBalance (Integer)
String getOWnerName()
void setOWnerName(String)
void setOWnerName(String)
The JN DI name (external name of the object) that the EJB

is bound to is also extracted from the descriptor ?le (102).
One can take as example, the test automatically generated on
a EJ B BMP namedAccount Whose home interface is bound to
the JNDI name “ejb/ejbs/AccountHome”.

Hereafter is provided a sample of source code templates
created according to the preferred embodiment and used by
the Test Generator 103 for creating test source codes 105,
301. The sample of templates correspond to three tests for
Which the scenario is in line With the deployed object life
cycle EJ B 2.1 Chapter 12 speci?cations. The three tests form
in the preferred embodiment a set of tests Which are also in
conformance With the programming rules of the same speci
?cations.

The folloWing ?gures (FIGS. 5, 6 and 7) provide samples
of source code of tests generated according to the preferred
embodiment for checking the behavior of deployed objects of
a distributed application. In FIGS. 5, 6 and 7, the template
?xed Words used by the Test Generator (1 03) embedded in the
source code are underlined. The variable ?elds ?lled by the
Test Generator 103 in the template are Written in Italic in
FIGS. 5, 6 and 7. Some comments Which can also be gener
ated automatically by the Test Generator 103 are indicated in
generic font in FIGS. 5, 6 and 7.

5

20

25

30

35

40

45

50

55

60

65

8
The code of the Test Generator (103) is Written in any type

of language but the language for the test source codes (301,
104) is an object-oriented language, preferably the object
oriented language used for the development of the application
to be tested. This is the case if the tester, as suggested in the
preferred embodiment, uses the same Software Development
Environment than the developer of the application to be
tested. The source code examples provided in the folloWing
?gures are Written for testing an EJ B (object) Written in Java
language. The test frameWork used may be the Well knoWn
Junit test frameWork but any other environment may be con
sidered. More generally, the generated code (301, 104) and
the Test Generator (103) depends on the chosen test frame
Work. Last point, the examples provided hereafter are tests
created for checking the behavior of the same sample object
(Account) 402 provided in FIG. 4. To summariZe the conven
tion in the source code illustrated in the folloWing ?gures:
The generic code is underlined in the ?gures: it is a variable

template of the test code created by the generator (103)
in the preferred embodiment.

The variable code depending on the object information is in
italic: this variable information is read by the Test Gen
erator from the object representation previously built.

FIGS. 5A and 5B illustrate an example of source code
(301) of the test (104) for checking the creation of an object
generated according to the preferred embodiment. This test
source code (301) is created by the Test Generator (103),
When executing step 204 in FIG. 2, using a source code
template corresponding to a scenario for checking the cre
ation of an object in conformance With the EJB deployed
application development speci?cations.

In the source code (301), the Test Generator (103) auto
matically generates a method named “getAccountHome”
used to produce a “Home” intermediate object. This interme
diate object, created With the “JNDI” name, is used to create
“remote” or “local” instances of tested EJB object. In the
example “remote” instances are created, the method Would
have been slightly different for “local” instances.

Then, the test generator (103) generates a method, named
“testCreateAccount”, to test the creation of the EJB. The goal
is mainly to test the callbacks methods called by the EJB
container and implemented by the programmer:
ejbCreate(. . .), ejbFindByPrimaryKey(. . .).

The scenario of the object creation test in the preferred
embodiment comprises the folloWing tasks:

Create an Account;
Try to ?nd it With its primary key;
Check that We get the same Account by checking it’s per

sisted ?elds;
Try to create another account With the same value.
Check that a duplicate error (in java a “DuplicateKeyEx

ception”) is throWn;
Remove the Account to let the testing environment data

base unchanged.

The corresponding code for generating the creation test is
illustrated by the source code (301) of FIGS. 5A and 5B.

It is noted that the inputs of the methods called by the
generated tests (104, 301) (such as id, oWned and balance of
the method create), are generated automatically With a default
or a random value Which can be changed With the help of a
user interface by the tester.

FIG. 6 illustrates an example of source code (301) of the
test for checking of the persistence of an object generated
according to the preferred embodiment. This test source code
is created by the Test Generator (103), When executing step
205 in FIG. 2, using a source code (301) template correspond

US 7,707,553 B2

ing to a scenario for checking the persistence of an object in
conformance With the EJ B deployed application develop
ment speci?cations.

In order to test that the ?elds of the EJ B are Well stored in
the underlying database of the testing environment and Well
loaded from the database into the memory (by the callbacks
ejbCreate(), ejbLoad() and ejbStore() that the developer has
to Write and that are indirectly called by the EJ B container),
the test generator (103) generates a method, named
“testLoadStoreAccount”.

The principle is to modify a ?eld of the EJB and to perform
a commit, in order to make the underlying persistent support
(in general a database) updated. Then one reads the value of
the ?eld, expecting that it Will be the same than the value set
previously. To ensure that ejbStore(. . .) and ejbLoad(. . .)

are called one might con?gure the application server (107) so
that it doesn’t use some cache mechanisms. If it is not pos
sible, one can stop and restart the application server (107)
(time is not really a constraint at the test running step).
The scenario of the test of the object persistence, according

to the preferred embodiment, comprises the folloWing tasks:
Create an Account;
For all attribute of the EJB:
Start a transaction,
Set a value for the attribute,
Commit the transaction,
Try to ?nd the object With its primary key,
Check that We get the same value;
Remove the Account to let the testing environment.
The corresponding code for generating the persistence test

is illustrated by the source code (301) of FIG. 6.
As in the previous test, the method “getAccountHome” is

used.
FIG. 7 illustrates an example of source code (301) of the

test for checking the removal of an object generated accord
ing to the preferred embodiment. This test source code is
created by the Test Generator (103), When executing step 206
in FIG. 2, using a source code template corresponding to a
scenario for checking the removal of an object in conform
ance With the EJ B deployed application development speci
?cations.

In order to test the removal of an object, the Test Generator
103 generates a method, named “testRemoveAccount”.
The scenario for testing the removal of an object, according

to the preferred embodiment, comprises the folloWing tasks:
Create an Account;
Get the corresponding primary key
Remove the object
Try to ?nd the object With its primary key,
An error must occur: for example a j ava “FinderException”
Try again to remove the object
An error must occur: for example a java “RemoveExcep

tion”.
The corresponding code for generating the remove test is

illustrated by the source code (301) of FIG. 7.
As in the previous test, the method “getAccountHome” is

used.
The three test scenario samples described above are par

ticularly poWerful for the test of “Entity Bean” Which are
“Bean Managed Persistence” (BMP) and for CORBA appli
cation.

For this type of object it is recommended to create a Test
Generator (103) according to the preferred embodiment for
generation of tests checking adequacy of the life-cycle of the
BMP objects of the subject application (creation, deletion,
persistence of the objects in a data base) With the recommen
dations of the EJB speci?cations.

20

25

30

35

40

45

50

55

60

65

10
CORBA is a speci?cation used by a lot of market tools to

provide facilities to build distributed application. Generally,
communication libraries are delivered With a code generator.
From an abstract interface de?nition ?le, Written in the IDL
standardized language (Interface De?nition Language) the
generator produces:

a set of interfaces in C++ or Java programming language
associated to a set of client proxy used by a client part

a set of skeletons in C++ or java programming language
corresponding to the server part Which must be imple
mented by the ?nal user.

All the naming rules are de?ned in the CORBA speci?cation
(in particular Chapter 7, Dynamic Invocation Interface) and
could be implemented by the tool in C++ or Java.
The ?rst point is that according to the sub-chapter 4.4 of the

EJB speci?cations, the invocation of EJB must be possible
through CORBA, i.e. the generated C++ or Java interface.
Consequently other embodiments of the present invention
adapt the test generator (103) and the templates to be able to
generate, from the IDL de?nition, a test using these naming
rules to invoke the CORBA client interfaces.
The second point is that even When the server side (305) is

not implemented according EJ B speci?cation, it’s alWays
possible to test the life cycle of server side object implemen
tation using the same techniques. In this case the test is
essential, because, as for Bean Managed EJ B, the implemen
tation is provided by the user.

In the case Where the “Entity Bean” are “Container Man
aged Persistence” (CMP), the life-cycle is managed by the
runtime of the chosen technology. This test could be useful to
prove that the technology is safe and correctly used in the
actual application environment.
More generally, as a skilled person can understand, a same

kind of creation or remove tests may be generated for “Ses
sion Bean” and if the subject objects contain attributes With
getters and setters (usual naming conventions), With some
adaptation in the test template, similar persistence tests can be
created as Well.

Once the tests have passed, the tester can focus on testing
the business logic of the application, being con?dent that
potential bugs that could arise are not due to the use of the
distributed object technology.

Turning to FIG. 8, the invention can take the form of an
entirely hardWare embodiment, an entirely softWare embodi
ment or an embodiment containing both hardWare and soft
Ware elements. In a preferred embodiment, the invention is
implemented in softWare, Which includes but is not limited to
?rmWare, resident softWare, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection With a computer or any instruction execution
system. For the purposes of this description, a computer
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection With the instruction
execution system, apparatus, or device.
The computer-readable medium may comprise both com

puter-readable storage medium and communication medium.
Communication medium can be an optical, electromagnetic,
infrared, or a propagation medium. Computer-readable stor
age medium can be electronic, magnetic or semiconductor
system (or apparatus or device). Examples of a computer
readable storage medium include a semiconductor or solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory

US 7,707,553 B2
11

(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/Write (CD-R/W)
and DVD.
A data processing system (50) suitable for storing and/or

executing program code (92) and supporting data (94) Will
include at least one processor (84) coupled directly or indi
rectly to memory elements through a system bus (79). The
memory elements can include local memory (90) employed
during actual execution of the program code (92), bulk stor
age (95), and cache memories Which provide temporary stor
age of at least some program code (92, 94) in order to reduce
the number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system (50) either directly or through intervening l/O
controllers and interfaces (82).
NetWork adapters and interfaces (86) may also be coupled

to the system to enable the data processing system (50) to
become coupled to other data processing systems or remote
printers or storage devices through intervening private or
public netWorks. Modems, cable modem and Ethernet cards
are just a feW of the currently available types of netWork
adapters (86).

While this invention has been particularly shoWn and
described With references to preferred embodiments thereof,
it Will be understood by those skilled in the art that various
changes in form and details may be made therein Without
departing from the scope of the invention encompassed by the
appended claims.

What is claimed is:
1. A method of automatic testing a subject application

Written in an object oriented language, the subject application
having objects accessible through an interface implementing
programming rules and object behavior rules, said method
comprising the steps of:

aiselecting one of the objects of the subject application
and reading information de?ning the one object;

biusing computer automation, extracting information
from the selected object, the extracted information
including a de?nition, object methods and attributes of
the object interface Which are impacted by the object
behavior rules and object identi?cation;

ciusing computer automation, providing a template of
source code, the template having variable ?elds and
?xed portions of source code; and

diusing computer automation, ?lling the variable ?elds
of the template With the extracted information, said tem
plate ?xed portions of source code being in conformance
With the programming rules and implementing a sce
nario for checking a set of object behavior rules, said
?lling resulting in an automatically generated test source
code and in an automatic testing of the subject applica
tion by the generated test source code checking logic
validity of the subject application independently of test
ing semantics.

2. The method of claim 1 Wherein
the step of extracting information from the selected object

includes extracting from interfaces and descriptors
de?ning the object: a creation method, a ?nd method, a
remove method, a setter method, a getter method, the
object name and object external name; and,

the step of ?lling the variable ?elds includes use of the
template ?xed portions of source code being in conform
ance With the programming rules for development of a

12
distributed application and implementing a scenario for
checking a set of object behavior rules of a distributed
application.

3. The method of claim 2 Wherein the step of ?lling the
5 variable ?elds includes using the template ?xed portions of

source code implementing a scenario for checking object
life-cycle rules.

4. The method of claim 2 Wherein the step of ?lling the
variable ?elds includes using the template ?xed portions of

10 source code implementing a scenario for checking object
life-cycle rules of EJB or CORBA speci?cations.

5. The method of claim 4 Wherein the step of ?lling the
variable ?elds includes using the template ?xed portions of
source code Which implements a scenario for checking cre
ation of the selected object.

6. The method of claim 5 further comprising the computer
implemented steps of:

creating a deployable object representing the selected
object;

?nding an object With a same key as the created deployable
object;

checking that the found object is the same as the created
deployable object by checking that both objects have the
same persisted ?elds;

trying to create another object With the same key;
checking that an error or an exception is raised in response

to trying to create said another object; and
removing the created deployable object.
7. The method of claim 4 Wherein the step of ?lling the

variable ?elds includes using the template ?xed portions of
source code Which implements a scenario for checking per
sistency of the selected object.

8. The method of claim 7 further comprising computer
implemented steps of:

creating a neW deployable object representing the selected
object;

for each object ?eld of the created object:
starting a transaction;
setting the ?eld to a random value;
committing the transaction;
trying to ?nd an object With a same given key as the

created object;
getting from the found object a ?eld value;
checking that the ?eld value of the found object is the

same as the ?eld value set for the created object; and
removing the created object.

9. The method of claim 4 Wherein the step of ?lling the
50 variable ?elds includes using the template ?xed portions of

source code Which implements a scenario for checking
removal of the selected object.

10. The method of claim 9 comprising the computer imple
mented steps of:

creating a neW deployable object representing the selected
object;

removing the created object;
trying to ?nd an object With a same key as the created

object;
checking that an error or an exception is raised;
trying to remove the created object tWice; and
checking that an error or an exception is raised.

11. The method of claim 4 Wherein the step of ?lling the
variable ?elds includes using the template ?xed portions of
source code Which implements a scenario for checking
robustness of the selected object.

30

35

40

45

55

60

US 7,707,553 B2
13

12. The method of claim 2 further comprising the computer
implemented steps of:

developing a client application;
compiling and linking the client application and the gen

erated tests;
executing the tests as a client application interfacing a

server side of the distributed application; and
collecting test results.
13. A computer program product for automatic testing of a

subject application, the computer program product compris
ing a computer usable storage medium having a computer
readable program Wherein the computer readable program
When executed on a computer causes the computer to:

(a) select one object of the subject application and read
information de?ning the object, Wherein the subject
application is Written in an object oriented language and
has objects accessible through an interface implement
ing programming rules and object behavior rules;

(b) extract information from the selected object, the
extracted information including a de?nition, object
methods and attributes of the object interface Which are
impacted by the object behavior rules and object identi
?cation;

(c) ?ll ?elds of a template With the extracted information,
the template being a template of source code and the
template having variable ?elds and ?xed portions of
source code, said template ?xed portions of source code
being in conformance With the programming rules and
implementing a scenario for checking a set of object
behavior rules, said ?lled template resulting in an auto
matically generated test source code and in an automatic
testing of the subject application by the generated test
source code checking logic validity of the subject appli
cation independently of testing semantics.

14. A computer program product as claimed in claim 13
Wherein the computer

extracts information from the selected object including
extracting from interfaces and descriptors de?ning the
object a creation method, a ?nd method, a remove
method, a setter method, a getter method, the object
name and object external name; and,

?lls ?elds including using template ?xedportions of source
code being in conformance With the programming rules
for development of a distributed application and imple
menting a scenario for checking a set of obj ect behavior
rules of a distributed application.

15. A computer program product as claimed in claim 13
Wherein the template implements any combination of:

a scenario for checking object life-cycle rules,
a scenario for checking the life-cycle rules of E] B or
CORBA speci?cations;

a scenario for checking creation of the selected object,
a scenario for checking persistency of the selected object,

5

20

25

30

40

45

50

14
a scenario for checking removal of the selected object, and
a scenario for checking robustness of the selected object.
16. A computer program product as claimed in claim 14

Wherein the computer readable program When executed fur
ther causes the computer to:

develop a client application;
compile and link the client application and the generated

tests;
execute the tests as a client application interfacing a server

side of the distributed application; and
collect test results.
17. Computer apparatus for automatic testing of a subject

application comprising:
means for selecting an object of the subject application and

reading information de?ning the object, Wherein the
subject application is Written in an object oriented lan
guage and has objects accessible through an interface
implementing programming rules and object behavior
rules;

means for automatically extracting information from the
selected object including extracting a de?nition, object
methods and attributes of the object interface Which are
impacted by the object behavior rules and object identi
?cation; and

means for automatically ?lling ?elds of a template of
source code With the extracted information, said tem
plate having ?xed portions of source code being in con
formance With the programming rules and implement
ing a scenario for checking a set of obj ect behavior rules,
said ?lled template resulting in an automatically gener
ated test source code and in an automatic testing of the
subject application by the generated test source code
checking logic validity of the subject application inde
pendent of testing semantics.

18. Computer apparatus as claimed in claim 17 Wherein the
extraction means further extracts from interfaces and descrip
tors de?ning the object: a creation method, a ?nd method, a
remove method, a setter method, a getter method, the object
name and object external name.

19. Computer apparatus as claimed in claim 18 Wherein the
?lling means utiliZes the template ?xed portion of source
code in conformance With programming rules for develop
ment of a distributed application, and the template imple
ments a scenario for checking a set of object behavior rules of
a distributed application.

20. Computer apparatus as claimed in claim 17 Wherein the
template implements any combination of:

a scenario for checking object life-cycle rules,
a scenario for checking the life-cycle rules of E] B or
CORBA speci?cations;

a scenario for checking creation of the selected object,
a scenario for checking persistency of the selected object,
a scenario for checking removal of the selected object, and
a scenario for checking robustness of the selected object.

* * * * *

