US 20150254113A1
a9y United States

a12) Patent Application Publication o) Pub. No.: US 2015/0254113 Al

Chiang et al. 43) Pub. Date: Sep. 10, 2015
(54) LOCK SPIN WAIT OPERATION FOR (52) U.S. CL
MULTI-THREADED APPLICATIONS IN A CPC e, GO6I 9/526 (2013.01)
MULTI-CORE COMPUTING ENVIRONMENT (57) ABSTRACT
(71) Applicant: INTERNATIONAL BUSNESS A method, system and computer-usable medium are dis-
MACHINES CORPORATION, closed for a lock-spin-wait operation for managing multi-
Armonk, NY (US) threaded applications 1n a multi-core computing environ-
ment. A target processor core, referred to as a “spin-wait
(72) Inventors: Men-Chow Chiang, Austin, TX (US); core” (SAC), 1s assigned (or reserved) for primarily running
Ken V. Vu, Cary, NC (US) spin-waiting threads. Threads operating in the multi-core
computing environment that are identified as spin-waiting are
then moved to a run queue associated with the SAC to acquire
21) Appl. No.: 14/197,581 . %
(1) Appl-No a lock. The spin-waiting threads are then allocated a lock
- response time that 1s less than the default lock response time
(22) Filed: Mar. 5, 2014 of the operating system (OS) associated with the SAC. If a
spin-waiting fails to acquire a lock within the allocated lock
Publication Classification response time, the SAC 1s relinquished, ceding its availability
for other spin-waiting threads 1n the run queue to acquire a
(51) Int.CL lock. Once a spin-waiting thread acquires a lock, 1t 1s
GOo6l’ 9/52 (2006.01) migrated to 1ts original, or an available, processor core.
| | -
| Multiprocessor System 200
| Processor Unit ‘A’ 204
|
| SWC
Core ‘A Core B Core C'| o o | COren
| 220 222 230 238
|
I) f 226\ | f r__t__ r__I__
| Thread |, . Thread : Thread : Thread :
B’ I B L O no
| 224 _K_): 224 | 232 | 240 J' Processor Processor
- Unit ‘B’ Unit "X’
| T 208 | *°%°%] 2100
| Thread |
| 2 F
/'< 232
l 236 ®
|| swc .
| Run °
| Queue | | Thread <
o
| 240 |
|
|
| System 218
Bus
| System .
L3 Cache Peripherals
Memory
: 212 214 216
[

US 2015/0254113 Al

Sep. 10, 2015 Sheet 1 of 4

Patent Application Publication

Gl
JETNET

JBPINOIH 92IAIBS

8cl
NIOMION

0ct
a0Ba)U|

SHOMJBN

cOl

[H4/XOIA

]
| 92T iz) 4
_ Aloway SALQ %510 SAL(mwoﬂw_z E%uwwmv_ >%n__.w__0
oAQ USEl Addo4 NOY-AD . !
] STT
0elBU| O/
sng VL1 2V |suIay
o 0¥l lIBYS
cll 30T —
abpug 1a1depy Tl woalsAg bunesasd(
>Ng OBPIA
WaISAS
~_ Juswsebeuelp
sng 901 0Gl Jepp-uldS-3o07
Wa)SAQ — —
cel 01
aoeaju| Nun
aAlI] pieH JOSS8001 3T WslD lews

[

aAllq pJeH

vEL

o[Jasmolg

771l swelbold 2Jemijos

oF 1 Aowap walsAg

US 2015/0254113 Al

Sep. 10, 2015 Sheet 2 of 4

Patent Application Publication

¢ H4NDIA

9l¢
s|eJaydiusd

01¢

X, Un
108S820.1d

vIe
AlOWB

WolsAg

80¢

g, JIun
108882014

gl walsAg

sng

cle
ayoeD €1

_.
_
_
_
_

peaiy|

!

Q€T
u, 8109

0vc
u

PeESIUL anany)

A%4

O
peal

Ul

| VZz
_ 4,
_ |
Iﬂulmmhm | | pesIy | _ K peaiy | y
k 9¢c 4_‘
05z 222 022
), 9100 g, 9l0)) Y/, 2100
IMS

702 V. Jun Jossesoid

0z WBS)SAS Josssaooidniniy

Patent Application Publication Sep. 10, 2015 Sheet 3 of 4 US 2015/0254113 Al

Start Lock-Spin-Wait
Management Operations
302

\ 4

Select A Target
Processor Core Of A
Multiprocessor System

304

Assign Selected Processor Set Number Of Attempts
Core (SWC) To Primarily Allowed For A Thread To
Run Spinning Threads » Acquire An Available Lock
306 308
Y

Monitor Threads To
ldentify Threads That
Are Spin-Waiting
310

Are

Use SWC To Run
Any Threads
Other Zﬁcesses Spin-Waiting?

312

Yes

Y

Move Identified
Spin-Waiting Thread(s)

Set Lock-Response
Time Slice Duration To Be

€ o SWC Run Queue To
Allocated TgEach Thread Wait For A Lock
318 316

FIGURE 34

Patent Application Publication

Sep. 10, 2015 Sheet 4 of 4

Q

Y

Select Next
Spin-Waiting Thread

Is A

Corresponding No

In SWC Run Queue
320

A

Lock Avallable?
322

Yes

Release SWC For Next
Spin-Waiting Thread

324

h 4

Current Spin-Waiting
Thread Acquires Lock
326

A 4

Move Thread To lts
Original Processaor Core
For Execution

328

No

SWC

Run Queue Yes

Empty?
330

FIGURE 3B

US 2015/0254113 Al

NoO

End
Lock-Spin-Walit
Management
Operations?

332

Yes

h 4

End Lock-Spin-Walit
Management Operations
334

US 2015/0254113 Al

LOCK SPIN WAIT OPERATION FOR
MULTI-THREADED APPLICATIONS IN A
MULTI-CORE COMPUTING ENVIRONMENT

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates 1n general to the field
of computers and similar technologies, and 1n particular to
software utilized 1n this field. Still more particularly, 1t relates
to a method, system and computer-usable medium for a lock-
spin-wait operation for managing multi-threaded applica-
tions 1n a multi-core computing environment.

[0003] 2. Description of the Related Art

[0004] Computing environments which include a multi-
core processor system are becoming increasingly common
and so have multi-threaded applications which exploit this
hardware opportunity. An important performance consider-
ation with a multi-threaded application is the salability of the
application. Salability of the application relates to achieving
a performance gain which linearly approximates the number
of cores and number of threads used in the parallel execution
of the application. To improve the salability of the application
it 1s desirable to provide the processor system with an efficient
locking mechanism. Often the locking mechanism 1s pro-
vided by a system library, usually supported by hardware in
the form of atomic update primitives. A spin-wait mecha-
nism, such as where software threads spin-wait to acquire a
lock before entering a critical section for exclusive access to
shared data, 1s a common option for implementing this impor-
tant function due of its simplicity and the relatively short
response time of lock acquisition.

[0005] However, spin-wait mechanisms may present cer-
tain challenges. For example, processor cycles may be wasted
by threads spin-waiting for their turns to acquire the lock.
Certain techniques have been developed to address some of
the 1ssues associated with spin-wait mechanisms. For
example, some spin-wait mechanisms provide a non-block-
ing lock access option. With this type of mechanism, an
application can be re-structured such that, a thread checks the
status of 1ts associated lock first upon arriving at a predeter-
mined section, which may be critical to the operation. The
thread acquires the lock and enters the predetermined section
if the lock 1s available. ITthe lock 1s not available (1.e., the lock
1s already taken by some other thread), the thread retreats to
do other productive work and then checks back later. How-
ever, one potential 1ssue with this method 1s that the opportu-
nity for such re-structuring 1s usually very limited. For
example, the predetermined section may be the only place to
get the next work i1tem. Furthermore, commonly-accepted
software design practice may be contrary to this approach as
software 1s usually structured 1n such a way that threads are
respectively assigned individual, specialized tasks. As a
result, one thread dedicated to one task 1s not allowed to
switch to a different task. Such software design methodology
has the virtue of simplicity and thus more reliable, easier to
maintain, expandable and most of the time has higher perfor-
mance.

[0006] As another example, threads waiting for a lock may
be suspended, thus preventing them from running on a pro-
cessor. A thread can also choose to relinquish the processor
that 1t 1s running on after spinning for a short period of time
without acquiring the lock. The operating system (OS) then
puts these threads 1n a block queue. Threads 1n a block queue
are not scheduled to run on a processor. Instead, they are

Sep. 10, 2015

waiting to be unblocked by a certain hardware event, which in
this case would be a lock release. In turn, the OS monitors
lock release events and wakes up (1.e., makes a thread run-
able) the thread associated with the lock being released in the
block queue. The advantage of this approach 1s that a thread
waiting for a lock will not consume any processor cycles.
Theretore, the saved cycles can be used by other threads.

[0007] Unfortunately, suspending and subsequently
unlocking a thread are Operating System (OS) kernel func-
tions. The overhead of these functions, plus the context
switching, imposes a high cost 1n getting a lock. In the worst
case, which 1s not uncommon, a high percentage of processor
cycles are consumed by OS activity in managing these block-
waiting threads. A more serious drawback of this block-wait-
ing strategy 1s that the lock latency becomes significantly
higher when passing a lock to a suspended thread. In other
words, the lock throughput 1s low. Accordingly, 1t would be
desirable to preserve the high performance lock response
time of a spin-wait mechanism while providing an efficient
mechanism to minimize processor cycles lost due to spinning
within the spin-wait mechanism.

SUMMARY OF THE INVENTION

[0008] A method, system and computer-usable medium are
disclosed for a lock-spin-wait operation for managing multi-
threaded applications 1n a multi-core computing environ-
ment. In various embodiments, a target processor core,
referred to as a “spin-wait core” (SAC), 1s assigned (or poten-
tially reserved) for primarily running spin-waiting threads in
a multi-core computing environment. In these embodiments,
wasted processor cycles typically associated with spin-wait
operations 1s limited to a single processor core, thereby
imposing a ceiling on the total amount of processor cycles
that are wasted.

[0009] In various embodiments, threads operating in the
multi-core computing environment are monitored to identify
those threads that are spin-waiting. Those threads that are
identified as spin-waiting are then moved to the SAC to
acquire a lock. In certain embodiments, the spin-waiting
threads are moved to a run queue associated with the SAC. In
various embodiments, a processor core time management
system 1s implemented to preserve the low lock response time
beneflt of spin-wait that 1s typically realized by not suspend-
ing spin-waiting threads. In these embodiments, the lock
response time allocated to the spinning thread by the SAC 1s
less than the default lock response time of the operating
system (OS) associated with the SAC.

[0010] In various embodiments, an OS call 1s 1ssued by a
spin-waiting thread to indicate a failed lock attempt. In these
embodiments, the SAC 1s relinquished after the failed lock
attempt, ceding 1ts availability for other spin-waiting threads
in the run queue to acquire a lock. In various embodiments,
the spin-waiting thread 1s migrated to its original, or an avail-

able, processor core subsequent to 1ts acquiring a lock from
the SAC.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Thepresentinvention may be better understood, and
1ts numerous objects, features and advantages made apparent
to those skilled 1n the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several figures designates a like or similar element.

US 2015/0254113 Al

[0012] FIG. 1 depicts an exemplary client computer in
which the present invention may be implemented;

[0013] FIG. 2 1s a simplified block diagram of a lock-spin-
wait operation for managing multi-threaded applications in a
multi-core computing environment; and

[0014] FIGS. 3A and 3B are a generalized flowchart of a
lock-spin-wait management operation for managing multi-
threaded applications 1in a multi-core computing environ-
ment.

DETAILED DESCRIPTION

[0015] A method, system and computer-usable medium are
disclosed for a lock-spin-wait operation for managing multi-
threaded applications 1in a multi-core computing environ-
ment. As will be appreciated by one skilled in the art, the
present invention may be embodied as a method, system, or
computer program product. Accordingly, embodiments of the
invention may be implemented entirely 1n hardware, entirely
in software (including firmware, resident software, micro-
code, etc.) Or 1n an embodiment combining software and
hardware. These various embodiments may all generally be
referred to herein as a “circuit,” “module,” or “system.” Fur-
thermore, the present invention may take the form of a com-
puter program product on a computer-usable storage medium
having computer-usable program code embodied i1n the
medium.

[0016] Any suitable computer usable or computer readable
medium may be utilized. The computer-usable or computer-
readable medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device. More specific
examples (a non-exhaustive list) of the computer-readable
medium would include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EEPROM or Flash memory), a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, or a magnetic storage device. In the context of this
document, a computer-usable or computer-readable medium
may be any medium that can contain, store, communicate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device. Computer
program code for carrying out operations of the present
invention may be written in an object oriented programming
language such as Java, Small talk, C++ or the like. However,
the computer program code for carrying out operations of the
present imnvention may also be written 1n conventional proce-
dural programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package, partly
on the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nari1o, the remote computer may be connected to the user’s
computer through a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

[0017] Embodiments of the invention are described below
with reference to flowchart illustrations and/or block dia-
grams ol methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the tlowchart illustra-
tions and/or block diagrams, and combinations of blocks in

Sep. 10, 2015

the tflowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram

block or blocks.

[0018] These computer program instructions may also be
stored 1n a computer-readable memory that can direct a com-
puter or other programmable data processing apparatus to
function 1n a particular manner, such that the instructions
stored 1n the computer-readable memory produce an article of
manufacture including instruction means which implement
the function/act specified in the flowchart and/or block dia-
gram block or blocks.

[0019] The computer program instructions may also be
loaded onto a computer or other programmable data process-
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the flowchart and/or block diagram

block or blocks.

[0020] FIG. 1 1s a block diagram of an exemplary client
computer 102 1n which the present invention may be utilized.
Client computer 102 includes a processor unit 104 that 1s
coupled to a system bus 106. A video adapter 108, which
controls a display 110, 1s also coupled to system bus 106.
System bus 106 1s coupled via a bus bridge 112 to an Input/
Output (I/0) bus 114. An I/O iterface 116 1s coupled to I/O
bus 114. The I/O intertace 116 affords communication with
various 1I/O devices, including a keyboard 118, a mouse 120,
a Compact Disk-Read Only Memory (CD-ROM) drive 122, a
floppy disk drive 124, and a flash drive memory 126. The
format of the ports connected to I/O interface 116 may be any
known to those skilled 1n the art of computer architecture,
including but not limited to Universal Serial Bus (USB) ports.

[0021] Client computer 102 1s able to communicate with a
service provider server 152 via anetwork 128 using a network
interface 130, which 1s coupled to system bus 106. Network
128 may be an external network such as the Internet, or an
internal network such as an Ethernet Network or a Virtual
Private Network (VAN). Using network 128, client computer
102 1s able to use the present invention to access service
provider server 152.

[0022] A hard drive interface 132 1s also coupled to system
bus 106. Hard drive interface 132 interfaces with a hard drive
134. In a preferred embodiment, hard drive 134 populates a
system memory 136, which 1s also coupled to system bus 106.
Data that populates system memory 136 includes the client
computer’s 102 operating system (OS) 138 and software
programs 144.

[0023] OS 138 includes a shell 140 for providing transpar-
ent user access to resources such as software programs 144.
Generally, shell 140 1s a program that provides an interpreter
and an 1nterface between the user and the operating system.
More specifically, shell 140 executes commands that are
entered into a command line user interface or from a file.
Thus, shell 140 (as 1t 1s called 1n UNIX®), also called a

command processor 1n Windows®, 1s generally the highest

US 2015/0254113 Al

level of the operating system software hierarchy and serves as
a command interpreter. The shell provides a system prompt,
interprets commands entered by keyboard, mouse, or other
user input media, and sends the interpreted command(s) to the
appropriate lower levels of the operating system (e.g., a ker-
nel 142) for processing. While shell 140 generally 1s a text-
based, line-oriented user interface, the present invention can
also support other user interface modes, such as graphical,
voice, gesture, etc.

[0024] As depicted, OS 138 also includes kernel 142,
which includes lower levels of functionality for OS 138,
including essential services required by other parts of OS 138
and software programs 144, including memory management,
process and task management, disk management, and mouse
and keyboard management. Software programs 144 may
include a browser 146 and email client 148. Browser 146
includes program modules and instructions enabling a World
Wide Web (WOW) client (1.e., client computer 102) to send
and receive network messages to the Internet using Hypertext
Transter Protocol (HTTP) messaging, thus enabling commu-
nication with service provider server 152. In various embodi-
ments, software programs 144 may also include a Lock-Spin-
Wait Management System 150. In these and other
embodiments, the Lock-Spin-Wait Management System 150
includes code for implementing the processes described here-
inbelow. In one embodiment, client computer 102 i1s able to
download the Lock-Spin-Wait Management System 150
from a service provider server 152.

[0025] The hardware elements depicted in client computer
102 are not intended to be exhaustive, but rather are repre-
sentative to highlight components used by the present inven-
tion. For instance, client computer 102 may include alternate
memory storage devices such as magnetic cassettes, Digital
Versatile Disks (DVDs), Beryllium cartridges, and the like.
These and other variations are intended to be within the spirit,
scope and 1ntent of the present invention.

[0026] FIG. 2 1s a simplified block diagram of a lock-spin-
wait operation implemented 1n accordance with an embodi-
ment of the mnvention for managing multi-threaded applica-
tions i a multi-core computing environment. In this
embodiment, an exemplary multi processor computer system
200 includes processor units ‘A’ 204, and ‘B’ 208 through ‘x’
210, that are coupled to a system bus 218. A Level 3 (L3)
cache 212, system memory 214, and peripherals 216 are
likewise coupled to system bus 218. In these and other
embodiments, processor units ‘A’ 204, and ‘B’ 208 through
‘x’ 210, communicate with each other, the Level 3 (LL3) cache
212, the system memory 214, and peripherals 216 via system

bus 218.

[0027] The system memory 214, which includes random
access memory (RAM), stores program instructions and
operand data used by the processor units ‘A’ 204, and ‘B” 208
through ‘x’ 210, 1n a volatile, or temporary, state. The periph-
erals 216 may be connected to the system bus 218 via a bus,
such as a peripheral component interconnect (PHI) local bus,
using a PHI host bridge. A PHI bridge provides a low latency
path through which processor units ‘A’ 204, and ‘B’ through
‘x> 210, may access PHI devices mapped anywhere within
bus memory or input/output (I/0) address spaces. The PHI
host bridge interconnecting the peripherals 216 also provides
a high bandwidth path to allow the PHI devices to access the
system memory 214. Such PHI devices may include a net-
work adapter, a small computer system interface (SCC)
adapter providing interconnection to a permanent storage

Sep. 10, 2015

device (e.g., a hard disk), and an expansion bus bridge such as
an industry standard architecture (IS) expansion bus for con-
nection to I/O devices including a keyboard, a graphics
adapter connected to a display device, and a graphical point-
ing device (mouse) for use with the display device.

[0028] In the multi-processor system 200, the processor
units ‘A’ 204, and ‘B’ 208 through ‘x’ 210, are generally
identical. That 1s, they all use a common set or subset of
instructions and protocols to operate, and generally have the
same architecture. As shown with processor unit ‘A’ 204, each
processor unit may include one or more processor cores ‘A’
220, ‘B’ 222, and ‘C’ 230 through ‘n’ 238, which carry out
program 1nstructions in order to operate the computer. An
exemplary processor unit includes the POWERSS5™, Proces-
sor marketed by International Business Machines Corpora-
tion (IBM™), of Armor, N.Y., which includes a single inte-
grated circuit super scalar microprocessor having various
execution units, registers, buifers, memories, and other func-
tional units, which are all formed by integrated circuitry. The
processor cores ‘A’ 220, ‘B’ 222, and ‘C’” 230 through ‘n’ 238
may operate according to reduced 1nstruction set computing
(RISE) techniques, and may employ both pipe lining and
out-of-order execution of 1nstructions to further improve the
performance of the super scalar architecture.

[0029] FEach oftheprocessorcores ‘A’118, ‘B”222, and ‘C’
230 through ‘n’ 238 typically includes an on-board, Level 1
(L1) cache (not shown), which typically comprise separate
instruction and data caches implemented using high speed
memory devices. Caches are commonly used to temporarily
store values that might be repeatedly accessed by a processor
in order to speed up processing by avoiding the longer step of
loading the values from the system memory 214. The proces-
sor cores ‘A’ 220, ‘B’ 222, and ‘C’ 230 through ‘n’ 238 may
also include another cache such as a second level (IL2) cache
(not shown), which along with a memory controller 134,
supports the L1 caches that are respectively part of processor
cores ‘A’ 220, ‘B’ 222, and ‘C’ 230 through ‘n’ 238. Addi-
tional cache levels may also be provided, such as the L3 cache
212, which 1s accessible via the system bus 218. Each cache
level, from highest (LL1) to lowest (IL3) can successively store
more 1information, but at a longer access penalty. For
example, the on-board L1 caches 1n the processor cores ‘A’
220,°B’222, and ‘C’ 230 through ‘n’ 238 might have a storage
capacity of 128 kilobytes of memory, the .2 cache might have
a storage capacity of 4 megabytes, and the L3 cache 212
might have a storage capacity of 32 megabytes. To facilitate
repair or replacement of defective processor unit compo-
nents, each processing unit ‘A’ 204, and ‘B’ 208 through ‘x’
210 may be constructed in the form of a replaceable circuit
board, plug gable module, or similar field replaceable unit
(FUR), which can be easily swapped, installed 1n, or swapped
out of the multi processor system 102 1n a modular fashion.

[0030] In various embodiments, a target processor core,
such as processor core ‘A’ 220, 1s assigned (or 1n certain
embodiments reserved) for primarily running spin-waiting
threads in the mult1 processor system 200. This approach
allows wasted processor cycles typically associated with
spin-wait operations to a single processor core, thereby
imposing a ceiling on the total amount of processor cycles
that are wasted within the mult1 processor system 200. In
these and other embodiments, a processor core time manage-
ment system 1s also implemented to preserve the low lock
response time benefit of spin-wait that 1s typically realized by
not suspending spin-waiting threads. As used herein, a spin-

US 2015/0254113 Al

wait state refers to a technique where a process repeatedly
checks to see 11 a condition 1s true, such as whether a lock 1s
available. As likewise used herein, a lock refers to a synchro-
nization mechanism for enforcing limits on access to a
resource 1n an environment where there are many threads of
execution. As such, a lock 1s intended to enforce a mutual
exclusion concurrence control policy.

[0031] Referring now to FIG. 2, lock-spin-wait manage-
ment operations are mitiated by first select a target processor
core (e.g., core ‘A’ 220) of the mult1 processor system 200.
The selected processor core 220, also referred to herein as the
“spin-wait core” (SAC) 220, 1s then assigned to primarily run
spinning threads. Then the number of attempts allowed for a
thread to acquire a lock before 1t 1s determined to be spin-
waiting 1s set. In one embodiment, the number of attempts 1s
user-selectable. In another embodiment, the default number
of attempts 1s set to one attempt.

[0032] Various threads, such as threads ‘B’224, and ‘C’232
through ‘n’ 240, respectively associated with ‘B” 222, and ‘C’
230 through ‘n” 238 are then monitored to identify those
threads that are spin-waiting. If none of the threads ‘B’ 224,
and ‘C’ 232 through ‘n’ 240, are determined to be spin-
waiting, then the SAC 220 1s used to run other, non-spinning,
threads and the thread monitoring process 1s continued. Oth-
erwise, the identified spin-waiting threads, such as threads
‘B’ 224, and ‘C’ 232 through ‘n’ 240, are respectively moved
226, 234, 242 moved to a run queue 236 associated with the
SAC 220 to wait for an available lock. As used herein, a run
queue 236 1s a queue that 1s used for all threads waiting their
turn to run on a target processor, such as the SAC 220.

[0033] Skilled practitioners of the art will recognize that the
SAC 220 can thus potentially be time-shared by many spin-
ning threads, such as spinning threads ‘B’ 224, and ‘C’ 232
through ‘n’ 240, from a few to perhaps hundreds, or even
thousands, at the same time. As aresult, this potentiality could
create a lock response time problem. For example, in a Unix-
based system such as AIX™, available from International
Business Machines (IBM™) of Armor, N.Y., the default time
slice allocated for each spinning thread 1s typically 10 ms.
Accordingly, it will take at least a few milliseconds (e.g., ~10)
to effect a lock transter 1f a spinning thread running on the
SAC at the time of lock release 1s waiting for a different lock.
However, the wait for a lock transfer will be longer 11 multiple
threads at the front of the SAC run queue are waiting locks
other than one just released. As aresult, the low response time

advantage of the commonly-used spin-wait approaches can
be lost.

[0034] In various embodiments, this potentially long lock-
response time 1ssue 1s addressed through the implementation
of a predetermined operating environment for the SAC 220.
In these embodiments, i1t 1s not necessary to wait for the entire
duration of the default time slice (e.g., ~10ms, etc.) Allocated
for the spin-wait thread to determine whether or not a lock has
become available. Accordingly, each spin-wait thread (e.g.,
thread ‘B” 224, ‘C’ 232 through ‘n’ 240) in the run queue 236
can voluntarily release the SAC 220 for the next thread to run
as soon as 1t determines the lock status, regardless of whether
the lock status 1s held or free. In these embodiments, the
spin-wait thread (e.g., thread ‘B’ 224, ‘C” 232 through ‘n’
240) will run for a short time (e.g., a few tens-of-nanosec-
onds) 1f the lock 1s still held, which 1s long enough to access
the local cache copy of the lock varniable. Likewise, if the lock

Sep. 10, 2015

1s free, then the thread will acquire the lock, typically after a
memory access to load the line with the lock 1nto 1ts local
cache.

[0035] Inthese embodiments, it will typically take about a
proportionate amount of time (e.g., ~100 nanoseconds) to
elfect the lock transter. As a result, the processor tenure of a
thread (e.g., thread ‘B’ 224, ‘C’ 232 through ‘n’ 240) 1s much
shorter than the default time duration (e.g., ~10 ms) typically
allocated for a time slice. In various embodiments, spinning
threads (e.g., ‘B’ 224 and ‘C’ 232 through ‘n’ 240) are given
higher priority to run on the SAC 220 than other threads that
are not 1n spin-wait activity to further realize the benefit of
shorter response times. In certain embodiments, a non-spin-
waiting thread 1s only allowed a turn to a time slice on the
SAC 220, which 1s the same default time duration as in any
other processor core, when there 1s no spin-wait thread (e.g.,
thread ‘B” 224, ‘C” 232 through ‘n’ 240) 1n the SAC 220 run
queue. Accordingly, the operating system (OS) should thus
avold scheduling and dispatching a non-spin-wait thread to
the SAC 220 11 1t 1s currently runming a spin-wait thread (e.g.,
thread ‘B’ 224, ‘C’ 232 through ‘n’ 240).

[0036] Accordingly, in various embodiments, a lock-re-
sponse time duration to be allocated to each thread (e.g.,
thread ‘B’ 224, ‘C” 232 through ‘n’ 240) in the SAC run queue
236 1s set. In certain embodiments, the lock-response time
duration 1s user-selectable and the next spin-waiting thread
(e.g., thread ‘B’ 224, ‘C’ 232 through ‘n’ 240) in the SAC run
queue 236 1s selected. Thereafter, a determination 1s made
whether a lock corresponding to the spin-waiting thread (e.g.,
thread ‘B’ 224, ‘C’ 232 through ‘n’ 240) 1s available. If not,
then the SAC 220 1s released for the next spin-waiting thread
(e.g., thread ‘B*224, ‘C* 232 through ‘n’ 240). Otherwise, the
current spin-waiting thread (e.g., thread ‘B’ 224, ‘C* 232
through ‘n’ 240) acquires the available lock, and the spin-
waiting thread (thread ‘B’ 224, ‘C’ 232 through ‘n’ 240) 1s
then respectively moved 228, 236, 244 to its original destina-
tion processor core ‘B’ 222, and ‘C’ 230 through ‘n’ 238, for
execution.

[0037] From the foregoing, those of skill in the art will
recognize that there 1s an upper bound to the number of
processor cycles lost to spin-waiting threads (e.g., thread ‘B’
224, ‘C’ 232 through ‘n’ 240) as spin-waiting can only occur
to one processor, such as the SAC 220., instead of a poten-
tially larger number of processors, which are only bounded by
the number of active spin-wait threads. Furthermore, perfor-
mance context 1s preserved, as the only data footprint (i.e., the
data accessed by the thread, or the working set) a thread
carries when 1t 1s migrated to the SAC 220 1s the lock variable.
Since multiple spin-wait threads (e.g., thread ‘B 224, *C” 232
through ‘n’ 240) for the same lock share the same copy, this
movement of data (e.g., a cache line containing the lock) only
occurs once, when the first spin-wait thread for the lock
migrates to the SAC 220. As a result, such thread migration
will often imncur no memory activity. Once a spin-waiting
thread (e.g., thread ‘B’ 224, ‘C’ 232 through ‘n’ 240) acquires
a lock, 1t migrates 228, 236, 244 back to its original core (e.g.,
cores ‘B’ 224, and ‘C’ 230 through ‘n’ 238), where 1t can find
its associated instruction and data context (e.g., the working
set) 1n 1ts local caches or local memory for execution. This
context-preserving quality avoids the cache miss ratio
increases typically associated with thread migration in gen-
eral situations.

[0038] Moreover, lock response time 1s short. As used
herein, lock response time refers to the time needed to acquire

US 2015/0254113 Al

a free lock, or the time between a lock release and 1ts next
acquisition by a spin-waiting thread (e.g., thread ‘B’ 224, *C’
232 through ‘n’ 240). For a spin-waiting thread, each tenure
of execution at the SAC 220 typically takes a few tens to
approximately one hundred nanoseconds as described herein,
plus a thread switching time, in various embodiments. The
longer tenure of one hundred nanoseconds 1s relatively much
less frequent because 1t occurs only once for each lock
release.

[0039] Skilled practitioners of the art will recognize that
such short processor tenures can be achieved because thread
switching will be initiated by the spinning thread (e.g., thread
‘B’ 224, ‘C’ 232 through ‘n’ 240), not by OS when the time
slice 1s up. As such, a thread voluntarily exits from the current
time slice by making a system or hypervisor call such as
“cede_processor” as available from IBM™ AIX™ Unix OS.
Since the lock access code, including the spin-wait portion, 1s
usually provided as system library, this voluntary ceding of
processor can easily be implemented and become a system
wide locking protocol.

[0040] It will likewise be appreciated that a lower level of
cache coherence traific 1s generated during lock transfer. In
the absence of the invention described in greater detail herein,
such cache coherence traific generated during a lock transfer
can increase super-linearly to the number of shared cache
copies of the lock variable 1n a system, such as the multi
processor system 200. These shared copies are created by
individual spinning threads (e.g., thread ‘B’ 224, ‘C’ 232
through ‘n’ 240) at their respective resident cores (e.g., cores
‘B> 222, °C” 230 through ‘n’ 238), and they proliferate with
increasing lock contention. Such high cache coherence traffic
1s generated from the need to invalidate, often repeatedly, a
large number of shared copies of the lock variable. This short
but 1intense burst of memory accesses to the lock variable at
high lock contention 1s the main cause of much lower than
expected lock throughput currently observed in some proces-
sors. In various embodiments, the amount of cache coherence
traflic 1s reduced as there are at most two cache copies for

each lock 1n the system, one in the original processor core
where a thread holds the lock and the other at the SAC 220 for

all the spin-wait threads (e.g., thread ‘B’ 224, ‘C’ 232 through
‘n’ 240) of the lock. Said another way, lock contention
becomes so mimmized that typically only one thread 1s
attempting to acquire a lock as it 1s released.

[0041] Likewise, those of skill in the art will recognize that
the various embodiments of the invention will retain compat-
ibility with existing applications that do not implement the
invention in their operation. Furthermore, such applications
will behave the same way as before, except that the OS will
not dispatch the application’s threads to the SAC 220. It will
be appreciated that while these applications may still waste
processor resources during their spin-wait operations, the
system still preserves the benefit from those applications 1n
various embodiments of the invention. Furthermore, applica-
tions implementing the various embodiments of the invention
will coexist well with applications using conventional spin-
wait locking protocols.

[0042] In various embodiments, a thread (e.g., thread ‘B’
224, and *C’ 232 through ‘n’ 240) will make a system call such
as “‘cede_processor” to relinquish 1ts associated processor
core (e.g., core ‘B’ 222, and ‘C’” 230 through ‘n’ 238) when 1t
starts spin-waiting. In certain embodiments, the call registers
the status of spin-wait through a thread-specific status bit in

the hardware, to be checked by OS after the call. Once the OS

Sep. 10, 2015

detects that the thread i1s 1n spin-waiting mode, 1t migrates
226, 234, 242 the thread (e.g., thread ‘B’ 224, and ‘C’ 232

through ‘n’ 240) to the SAC 220.

[0043] Once a spin-waiting thread (e.g., thread ‘B’ 224, ‘C’
232 through ‘n’ 240) acquires its time slice to run at the SAC
220, 1t runs for a short, predetermined time, as described 1n
greater detail herein, 1t 1t does not acquire the lock. For
example, the spin-waiting thread (e.g., thread ‘B’ 224, ‘C’232
through ‘n’ 240) may spend perhaps only a few tens of nano-
seconds to make a single futile attempt to acquire the lock
betore relinquishing the SAC 220. If the spin-waiting thread
(e.g., thread ‘B’ 224, ‘C’ 232 through ‘n’ 240) acquires the
lock, 1t then immediately makes a “cede_processor” call to
relinquish the SAC 220 voluntarnly.

[0044] The spin-waiting thread (e.g., thread ‘B’ 224, ‘C’
232 through ‘n’ 240) then communicates to the OS that it just
acquired the lock using the same thread-specific status bit,
signaling that its current spin-wait phase 1s finished. The OS
then migrates 228, 236, 244 the thread to 1ts original proces-
sor core (e.g., core ‘B’ 222, °C’ 230 through ‘n’ 238), or to a
free processor core to continue its execution. In these embodi-
ments, the OS keeps track of the “resident” processor (e.g., by
using the processor ID) for each spin-wait thread, so that
when the thread eventually acquires the lock, the OS knows
which processor the thread originally came from.

[0045] In these various embodiments, the only modifica-
tion to the spin wait instruction sequence 1s that, after each
spin-wait iteration, and if failing to acquire the lock, the
spin-waiting thread makes a “cede_processor” system call or
the like, voluntarily giving up the SAC 220. If this 1s the first
attempt for the spin-waiting thread (e.g., thread ‘B’ 224, *C’
232 through ‘n’ 240) to get the lock (i.e., when the spin-
waiting thread has just arrived at the locking code), the spin-
waiting thread (e.g., thread ‘B’ 224, ‘C’ 232 through ‘n’ 240)
also updates a thread-specific status bit to indicate that the
thread 1s 1n spin-wait mode now. If the spin-waiting thread
(e.g.,thread ‘B’224, ‘C’ 232 through ‘n’ 240) instead acquires
the lock, then 1t still makes a “cede_processor” system call,
and changes the thread specific status bit to non-spin-wait
value, indicating to the OS that 1ts spin-wait phase just ends.
In both cases, when the status bit 1s changed, the OS will
migrate 228, 236, 244 the thread (e.g., thread ‘B’ 224, ‘C’ 232
through ‘n’ 240) to the proper processor core as described in
greater detail herein.

[0046] FIGS.3A and 3B are a flowchart of a lock-spin-wait
operation implemented 1n accordance with an embodiment of
the invention for managing multi-threaded applications 1n a
multi-core computing environment. In this lock-spin-wait
management operations are begun 1n step 302, followed by
the selection of a target processor core of a multi processor
system 1n step 304. The selected processor core, also referred
to herein as the “spin-wait core” (SAC), 1s then assigned to
primarily run spinning threads in step 306. Then, 1n step 308,
the number of attempts allowed for a thread to acquire a lock
before 1t 1s determined to be spin-waiting 1s set. In one
embodiment, the number of attempts 1s user-selectable. In
another embodiment, the default number of attempts 1s set to
one attempt.

[0047] Various threads are then monitored 1n step 308 to
identify threads that are spin-waiting, followed by a determi-
nation being made 1n step 312 whether any of the monitored
threads have been determined to be spin-waiting. If not, then
the SAC 1s used to run other, non-spinning threads 1n step 314
and the process 1s continued, proceeding with step 310. Oth-

US 2015/0254113 Al

erwise, the identified spin-waiting threads are moved to a run
queue associated with the SAC 1n step 316 to wait for an
available lock.

[0048] Accordingly, a lock-response time duration to be
allocated to each thread in the SAC run queue 1s set in step
318. In various embodiments, the lock-response time dura-
tion 1s user-selectable. Then, 1n step 320, the next spin-wait-
ing thread in the SAC run queue 1s selected, followed by a
determination being made 1n step 322 whether a lock corre-
sponding to the spin-waiting thread 1s available. If not, then
the SAC 1s released 1n step 324 for the next spin-waiting
thread. Otherwise, the current spin-waiting thread acquires
the available lock 1n step 326, and the spin-waiting thread 1s
then moved to 1its original destination processor core for
execution in step 328.

[0049] Thereatter, or after the SAC 1s released 1n step 324,
a determination 1s made in step 330 whether the SAC run
queue 1s empty. If not, then the process 1s continued, proceed-
ing with step 320. Otherwise, a determination 1s made 1n step
332 whether to end lock-spin-wait management operations. If
not, then the process 1s continued, proceeding with step 310.
Otherwise, lock-spin-wait management operations are ended
in step 332.

[0050] Although the present invention has been described
in detail, 1t should be understood that various changes, sub-
stitutions and alterations can be made hereto without depart-
ing from the spirit and scope of the invention as defined by the
appended claims.

What 1s claimed 1s:

1. A computer-implemented method for managing multi-
threaded applications 1n a multi-core computing system,
comprising:

assigning a first processor core to manage spin waits in a

multi-core system,;

detecting a failure of a thread to acquire a lock on a second

processor core, the failure to acquire a lock indicating
that the thread 1s a first spin-waiting thread;

transferring the first spin-waiting thread to the first proces-
sor core to acquire a lock; and

allocating a lock response time for the first spin-waiting
thread to acquire a lock from the first processor.

2. The method of claim 1, wherein the transferring com-
prises placing the first spin-waiting thread in a run queue
associated with the first processor core, the run queue con-
taining a second spin-waiting thread.

3. The method of claim 2, wherein the allocated lock-
response time 1s less than the default lock response time of an
operating system (OS) associated with the first processor
core.

4. The method of claim 3, further comprising;

1ssuing an OS call to set a lock state, the OS call 1ssued by
the first spin-waiting thread and the lock state providing
an indication of a lock acquisition failure by the first
spin-waiting thread.

5. The method of claim 4, further comprising

relinquishing the first processor core to allow the second
spin-waiting thread in the run queue to acquire a lock,

the relinquishing of the first processor core performed
after the OS call has been 1ssued.

6. The method of claim 1, further comprising:

migrating the first spin-waiting thread to the second pro-
cessor core subsequent to the first spin-waiting thread
acquiring a lock from the first processor core.

Sep. 10, 2015

7. A system comprising:

a Processor;

a data bus coupled to the processor; and

a computer-usable medium embodying computer program

code, the computer-usable medium being coupled to the

data bus, the computer program code used for managing

multi-threaded applications in a multi-core computing

system and comprising instructions executable by the

processor and configured for:

assigning a first processor core to manage spin waits 1n
a multi-core system;

detecting a failure of a thread to acquire a lock on a
second processor core, the failure to acquire a lock
indicating that the thread 1s a first spin-waiting thread;

transierring the first spin-waiting thread to the first pro-
cessor core to acquire a lock; and

allocating a lock response time for the first spin-waiting
thread to acquire a lock from the first processor.

8. The system of claim 7, wherein the transferring com-
prises placing the first spin-waiting thread in a run queue
associated with the first processor core, the run queue con-
taining a second spin-waiting thread.

9. The system of claim 8, wherein the allocated lock-
response time 1s less than the default lock response time of an
operating system (OS) associated with the first processor
core.

10. The system of claim 9, further comprising:

1ssuing an OS call to set a lock state, the OS call 1ssued by

the first spin-waiting thread and the lock state providing
an indication of a lock acquisition failure by the first
spin-waiting thread.

11. The system of claim 10, further comprising:

relinquishing the first processor core to allow the second

spin-waiting thread 1n the run queue to acquire a lock,
the relinquishing of the first processor core performed
after the OS call has been 1ssued.

12. The system of claim 7, further comprising:

migrating the first spin-waiting thread to the second pro-

cessor core subsequent to the first spin-waiting thread
acquiring a lock from the first processor core.

13. A non-transitory, computer-readable storage medium
embodying computer program code, the computer program
code comprising computer executable instructions config-
ured for:

assigning a first processor core to manage spin waits 1n a

multi-core system,;
detecting a failure of a thread to acquire a lock on a second
processor core, the failure to acquire a lock indicating
that the thread 1s a first spin-waiting thread;

transferring the first spin-waiting thread to the first proces-
sor core to acquire a lock; and

allocating a lock response time for the first spin-waiting

thread to acquire a lock from the first processor.

14. The non-transitory, computer-readable storage
medium of claim 13, wherein the transferring comprises plac-
ing the first spin-waiting thread in a run queue associated with
the first processor core, the run queue containing a second
spin-waiting thread.

15. The non-transitory, computer-readable storage
medium of claim 14, wherein the allocated lock-response
time 1s less than the default lock response time of an operating
system (OS) associated with the first processor core.

16. The non-transitory, computer-readable
medium of claim 15, further comprising:

storage

US 2015/0254113 Al

1ssuing an OS call to set a lock state, the OS call 1ssued by
the first spin-waiting thread and the lock state providing
an indication of a lock acquisition failure by the first
spin-waiting thread.

17. The non-transitory, computer-readable storage
medium of claim 16, further comprising;:

relinquishing the first processor core to allow the second

spin-waiting thread 1n the run queue to acquire a lock,
the relinquishing of the first processor core performed
after the OS call has been 1ssued.

18. The non-transitory, computer-readable storage
medium of claim 13, further comprising;:

migrating the first spin-waiting thread to the second pro-

cessor core subsequent to the first spin-waiting thread
acquiring a lock from the first processor core.

19. The non-transitory, computer-readable storage
medium of claim 13, wherein the computer executable
instructions are deployable to a client system from a server
system at a remote location.

20. The non-transitory, computer-readable storage
medium of claim 13, wherein the computer executable

instructions are provided by a service provider to a user on an
on-demand basis.

Sep. 10, 2015

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Description
	Page 7 - Description
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description/Claims
	Page 12 - Claims

