US 20160034206A1
a9y United States

a12) Patent Application Publication o) Pub. No.: US 2016/0034206 A1

Ryan et al. 43) Pub. Date: Feb. 4, 2016
(54) ADAPTIVE FLASH TUNING (52) U.S. CL
CPC GO6I 3/0616 (2013.01); GO6F 3/0653
(71) Applicant: Conor Maurice Ryan, (US) (2013.01); GO6F 3/0688 (2013.01)
(72) Inventors: Conor Maurice Ryan, Limerick (IE); (57) . o ABSTRACT .

Joseph Sullivan, Shannon (IE) The present invention includes embodlmegts of systems and
methods for increasing the operational efficiency and extend-
ing the estimated operational lifetime of a flash memo

(21) Appl. No.: 14/816,986 st(%rage device (and itI; component flash memory chips, LUI\rI};

and blocks of flash memory) by monitoring the health of the

(22) Filed: Aug. 3, 2015 device and its components and, in response, adaptively tuning

the operating parameters of flash memory chips during their

Related U.S. Application Data operational lifetime, as well as employing other less extreme

o o preventive measures in the interim, via an interface that

(60) Provisional apphcaﬂon N()’ 6,2/ 033,077, filed on Aug. avoilds the need for direct access to the test modes of the flash

4, 2014, provisional application No. 62/119,413, filed memory chips. In an offline characterization phase, “test

on Feb. 23, 2015. chips” from a batch of recently manufactured flash memory

chips are used to simulate various usage scenarios and mea-

Publication Classification sure the performance effects of writing and attempting to

recover (read) test patterns written with different sets of oper-

(51) Int.CL ating parameters over time (simulating desired retention peri-
GO6l’ 3/06 (2006.01) ods).

310

Receive Health Metrics upon

Threshold Viol

315
Consult History

320
Generate

“state” of LUN, Blocks, etc

322
Analyze
determine a

325

ation (TV) Interrupt

Conditions re

Conditions to
ppropriate action

330

Generate and Output

340
Pertorm Health Stage

TRANSITION “Housekeeping”

-

"l UPDATE History |~

‘Raise“Soft Error” Threshold

| Move DATA and Recycle BLOCK

| Reduce BLOCK Usage

| Rest BLOCK until End of Health Stage

-Add BLOCK to permanent Bad Block List

| Change Waypoint (if not handled by STD CTLR Firmware)
I Change Operating Parameters

I (TRANSITION to New Health Stage)

Command(s) to S5D

J eTC

335
END of
Health Stage?

''

| “UnREST” all RESTed Blocks
| Reset Critical and Soft Thresholds

| Reset LUN Counts

Determine “Suspicious” Bits for All Blocks

| eTC

"

YES
Issue oo 350
Command(s)? Estimate Remaining Life
and Return from Interrupt

300

001 IO

Alowd|Al yse| 1T

4315139y SUIYJEN
Jo3oweled SunesadQ 9171 o}elS STT

US 2016/0034206 Al

Spuewwo)
AJowa|A J49]|0J1U0D

diy)y Atows\ yseld OTT diyd Aiowsap ysel4 OTT

v
- . - | s
-
A
~
>
=
7> _ S99UBY) I9iaweled Sujeladg | @JeId3u] [duuey)
313 ‘S|020104d/Spuewwo] 1S GZT
6
Yo
N (019 ‘D3 ‘Suidde|n eieq 114
< ‘BUIBAST JEDIM/UONIRIIOD DBLOULD) i P SRS SEHSIAL FLLTVEH SCn
9JEMWLI{ J3[[0J3U0) Use|4 2 slolaweled sunelsadQ aseue|p)
e ! 2318 ‘SOlIIBIAl HLTV3IH ‘spuewwio) paie|sy-HL1vIH
M als rad) J2Y310 pue se3uey) Jolaweled sugeladQ SOLVSIAVN i
AYOWIN |
8TT J3]|o41u0) yse|d 1”74}

.....................

-

9Je}Jalu] WalsAS |SOH

ass T

} spuewwo)
§ Alows |y walsAs
GET

(2192 ‘@12d ‘VLVS)
walsAg ISOH o1

Patent Application Publication

Feb. 4,2016 Sheet2of8 US 2016/0034206 Al

Patent Application Publication

00¢

dd
Jajaweled

sunesado

¢ ‘Ol

dd
AJO1SIH

$934] UO0ISII9(19zAjeuy 2113IAl Y3|edH
04T

1039NJ3SU0) puBWIWO)

08¢

D OO
ir

aJemuuli4 13]|03U0) yseld als
03} Spuewwo) JojesSineN

09¢

vvvvv
-

ANIONZT FON3A434NI

JOLVDIAVN

3lemuig ._w__o..;:ou yseld als
o4} SIIIIBIAl Y1|e3H pue suone|oIp ploysaayl

v
«
\&
—
< 00¢ € 'O
4
e
—
—
S~
m s —————
— 1 ON
" {
79 1dnJlaiu] wodl uinisy pue
......................... anss,
8 “
= o N oo L AJOISIHILvadn |,
er) che
o ; uonoe a1enidolsdde sulwialsp
.M D17 01 SUOLIPUO)) SZA|RUY
£ [.BuideddsnoH, NOILISNVYL Cle
- s320]g || 404 SHg ,,Snoididsns,, sulwiiaq | 2315 U1[eaH WI0LR
- SJUN0D NN 1953Y ‘
N Sp|oysaly] Yos pue [eanll) 1953y Ove
- $320[9 pa1S3y |8 ,1S34un,, . “ “ 012 “s)20|d ‘NN o ,°1els,
= SdA I 2J SUOLIPUOY) 31LJI2UDD)
b l
o 0cCE
ON éadels Yy eoaH

ss

JO dN4

GEE AJO1SIH 3nsuo)

Sle

y -~
>

v

-

B O
-

-

N O

-

.

(95e1S YijeaH maN 01 NOILISNYY 1) |

sialpweled suneladQ asueyd §

(24eMmwiil] Y110 ALS Aq pajpuey jou 1) JuiodAep a5uey) §
1517 Y00|g peg juauewuad 01 Y0019 PPY

958B1S U3|eaH 4O pul |Bun D019 159 §

23esn MDo1g 22npay

MD074 2[pA29Y pue v1va aroN §

ploysaay] 10447 YOS, 951EY §

dss 01 (S)puewwo) ydnuuau| (AL) uone|oIA ploysaJyl
indinQ pue ajeJausn | uodn SJISN Yl|eoH 2AI900Y

3z I 0TE

Patent Application Publication

S159] MH

v—
<«
=
o 007 :
e ¥ ‘Old
—
<
> SpeaH 159 speaH 1521 || speaH 1531
= diyd ysers |® @ @f dwyd yses || diyd ysey
2 17474 147 S
-
$13]|0J1U0) 1S3] yse|d 0Y
| ad ad
(012 ‘suonedoT ‘sislawel m&m 15 FuitL ‘1 |edauan Smn__mco_z 13d0OIN

.....
v -

(9ses3 ‘1M ‘peay)
13|NP3YIS

19zA|euy 23e1s Yi|eaH
617

(MOpPUIAA IA ‘Bulll] “YI4)

Feb. 4, 2016 Sheet4 of 8

Jolelauan juiodAeppn 101eI2UDD) djepipue) LI¥

!!!

-

10}I2U3D MOPUIM IA 19p|ing [BPOIN STV

uoLo3||0) eleq

AI3N02SIQ

!!

019 ‘Wl Uuonualay

l0j}eiauarn) uianed ‘S159] # ‘sy13ua a3e1s uonezijeniu| 48

‘(s1@1aWeled suneladQ JO)
d4dNIJH1lVd d41101d

519§ 41VAIANVO

Patent Application Publication

00§

US 2016/0034206 Al

¢3131dINOD
sodels yiesH 1V
S¢S

qqqqqqqqqqqqqqq
- - -

......................................

-

¥31107d 03 SIHOIS MH FLVYAIANYD uJnidy pue
S}INs2Y 1591 MH UO paseq SILYAIANYD 400§
6ES

(STIHOIS MH JLVAIANYD uo paseq Alessadau Ji)
S13A0W @ALDIpald (p|ingay/auyay J0) p|ing
02S

95e1S Yi|eaH 1xau 01 NOI|LISNVYL pue
sjulodAepn pue sialaweled guneladQ

JO 185 JewndQ (s3e1s YijesH us4dnd Jo}) JHOLS

(3/d) 3L31dINOD a3kel1s YijeaH 1uadin) 4|
8TS

SdLVAIdNVO 10§

S)Nsay 1591 MH
azA|euy pue uielqo

LES

Feb. 4, 2016 SheetSof 8

SIH0IS MH ILVAIANVYD uo paseq Alessadsu Jl)
sadels yi|eaH Jo # Jo/pue
ade1s YijeaH uadind jo (3/d) yisua isnlpy

A

91§

SA1VAIANVYO UQ
S159] MH WJ0lIad
GES

d31dNIdH1Vd 4d11101d

0€S

S13A0IN =4EMUOS 2ALDIP2.1d UO pase(
.......) ‘ A e e s O [T DU o m_.,—_l.—.mml—u BI -—O&. mu-—udc_QZ<U wﬂmhm:mw

QIS D (1

Patent Application Publication

Feb. 4, 2016 Sheet60of 8 US 2016/0034206 Al

Patent Application Publication

009

(915 daas)
dANILNOD

(s152]1 Jopuyyied Jouud woJ)j
Sa1eplpue) |nissaddng sulpnjout)

Jlapuyyled o1 selepipued) qOOD puss

059

s Japuyyied 01 puas 0l
Selepipue) qooOs
JUBIDLYNS
SO

vvv

9 "DId

jon

sSunysiap (4onag JI 30v1d3Y)
I9POA 3snlpy]| JISVIA 38Y1 40} 3Y0OIS ILVAIANVD ,AS8g,, Jua4in)
€9 | . Isulese ()SYIA Jod) 21eplpue) |enualod aJedw o)
0€9

(. .SSouly,) Alljlen @1en|eA] 01 S|2POoA Sulsn
2)}epipuel) |enua1od yaea 1o}
(anjea 2|3UIS) IYODS F1VAIANVYD 21eJaua5)

.......................................

0¢9

NSYIA Yoed Joy wamc_c.c_mu |Ie1lUD10d 218J3Ud0D)
019

gunSa | MH J0J sa1epipue) [eljua1od
JO UlBWOQ MOIIEN 01 ,S)SVIA, 31EJ3U3D

109

...........................
lllllllllllll

00L

NOILN3IL3Y 3re|nuiis 03
UsAQ ul Alowaw ysel4 ,egq,

(9% SS820NS/MOPUIAA IA PUe Fuiwi] “Y3g) i

S3400S MH J1VAIdNVD =1elaush

d41101d O}
S3H0IS MH J1VAIANVO

uin1ay

064 094

US 2016/0034206 Al

(sa1epipue) Qvg AYIA 0 I3y y)
S}|nsaJ Y3g uonuaiay-24d Ulelrqo 0}

e W { AJOWRIA YsSe|4 Wwouy
(Uonualay-aid) ulaned 1sel dvy3Iy

$159] |NJSS200NS JO % pue s1S31 MH TV 404
18U MOPUIAA 1A 1S21I0YS 318|ND|ED)

dd11071d ©1
SINIOdAVM PUE
SAHOIS MH J1VAIANVO

€9

(21eplpued Yyied Jo) s)o0o|g sholiea)

«3 [EUld,, UINloy AJowalA Use|4 01Ul ulaned 1S3 a1l

08L

0tL
(SUON 1 T1V4)

¥ || s®ded 11v 4o} mopuim A Sulddepsag Ajnuspl |
JLVAIONVD ,8UlUUIA,, zsL | (98e1S 1Uadin) Jo}) AowaAl yse|d 9|2A)
JO UonI3|aS 3|geuUs 0) 5 _ &

1591 MH |euld uny

¢l

Feb. 4, 2016 Sheet 7 0of 8

QLL (3|0L12A003Y S1044T ||V 249Um a8uey
“ a8e)|oA peay aulwialap 01 doams peay,,) }
pesY JO IOV UDed JO) MOPUIAA IA S1BIBUSD 0cL
152 | %

(98e16 Jualdin) 01 dn) Alows N Yse|d 2|2AD-244

sa1epipue) |eul
10} S1INIOdAVM =1El=2U3h)
0LL

(218 ‘SY20|Ig ‘SNNT ‘sdiyD sholJeA ssodoe)

J1VAIANYD yde3z uo sise] MH =|np=yds
saAl si@laweled peay suniels Ajpuapi 0T/

S91EPIPUED (S152] ||V 40} 1eadal — saiepipue) ||V J0)

1V NI
S92

SS220.4 peay UoLUI12Y-1S0d a1enlu|
044

e1eq 31VAIANYD 9zAjeuy pue aAIadaYy

L0L

bbbbbbbbbbbbb

..
QQQ
lllllll

Patent Application Publication

Feb. 4, 2016 Sheet8 of 8 US 2016/0034206 Al

Patent Application Publication

008

8 "Old

(3jnejaq Jo a|dy|nin se)

$3|oAD 3/d

018

sialaweled sunelad o |
dUTERT0 s os
aixid
AINOuno3apAd 3/dag & *
slaizweled sunelad
] d sulj O m 0v8

ONIAYYA

............

(s1030e4 2jdnINA) HLTV3IH Ag 5=

slalaweled sunelado “
ONIAYYA . 058

..

0¢

oM

(3Inejaq Jo % se)

05 $S3YLS
0Z3

08

US 2016/0034206 Al

ADAPTIVE FLASH TUNING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit, pursuant to 35
U.S.C. §119(e), of U.S. Provisional Patent Application No.

62/033,077, filed Aug. 4, 2014, entitled “Adaptive Parameter
Tuning,” and U.S. Provisional Patent Application No. 62/119,
413, filed Feb. 23, 2015, entitled “Abstract Flash Trimming,”
cach of which 1s hereby incorporated by reference in 1ts
entirety.

BACKGROUND
[0002] 1. Field of Art
[0003] Thepresentinvention relates generally to increasing

the operational efficiency and extending the estimated opera-
tional lifetime of flash memory devices, and in particular to
doing so by adaptively tuning operating parameters of tlash
memory chips and employing other less extreme preventive
measures 1n the interim, via an interface that avoids the need
for direct access to the test modes of the chips.

[0004] 2. Description of Related Art

[0005] Computer systems have increasingly come to rely
upon solid-state drives (SSDs) to replace or at least supple-
ment hard-disk drives (HDDs) as key storage system compo-
nents. Despite their higher cost (which continues to drop) and
lower storage capacity (which continues to increase), SSDs
currently offer a variety of advantages over HDDs, including
lower power requirements, faster access times and greater
shock resistance, among others.

[0006] Most SSDs rely upon persistent (non-volatile)
NAND-based flash memory, which employs floating-gate
MOSFET (FGMOS) transistors to represent binary “0” and
“1” values. Newer flash memory technologies (e.g., “MLC”
or multi-level cell, and “TLC” or triple-level cell) enable
storage of more than one bit per transistor cell. Alternative
flash-based technologies, such as NOR-based flash memory,
are also employed on occasion for specific applications, such
as code execution, due to 1ts faster read speeds.

[0007] Inany event, aflash memory device, such as an SSD,
typically includes a flash memory controller (or flash control-
ler) and one or more flash memory chips. A “host” system
(e.g., a laptop or desktop PC, or an enterprise server) may
employ one or more 1nternal and/or external SSDs for persis-
tent storage. To access that storage, a host system sends “sys-
tem memory commands” to an SSD, requesting that the con-
tents of a particular file be read, written or “deleted” (1.e.,
“freeing up” the area of memory 1t occupied for future use by
other files). SSDs implement those system memory com-
mands via their flash controller, which associates a file with
the particular flash memory chips and areas of flash memory
in which that file 1s or will be stored, and ultimately sends
many lower-level “controller memory commands™ to one or
more flash memory chips in the SSD.

[0008] Itshouldbe noted that certain characteristics of flash
memory affect the nature of these controller memory com-
mands. For example, NAND-based flash memory can effec-
tively change a “1” value to a “0” value, but not vice-versa.
Thus, while even a single byte or word of data could be read
from flash memory, a write operation could not overwrite
currently stored data, because the new data might require that
a “0” b1t be changed to a “1” bit. Instead, flash controllers
employ what 1s known as a “program/erase cycle” or “P/E

Feb. 4, 2016

cycle,” which erases an entire “block™ of memory (setting all
bit values 1n that block to “17°), effectively “freeing up” that
block of memory to be written in the future—i.e., by writing
only the desired “0” values while leaving the “1” values
unchanged.

[0009] But, performing one or more P/E cycles every time
a host system 1ssues a write command would be an 1nefficient
use of time, leaving the host system waiting a relatively long
time for the write to complete. Flash controllers therefore
attempt to “free up” or “recycle” large numbers of blocks of
flash memory as part of a “background” process (1.e., as part
of their standard “garbage collection™ process that reclaims
unused areas of flash memory) so that a write command
1ssued by a host system rarely directly necessitates a P/E
cycle. The initial write operation to a “free’ block 1s generally
considered to be the “program™ step (P) of a P/E cycle, while
the subsequent “erase” (E) of that block may not occur until
much later—e.g., during the flash controller’s garbage col-
lection process.

[0010] When a host system erases a file, the flash controller
merely “marks” those portions of blocks containing the data
as “unused.” But when a host system overwrites a file (e.g.,
when a user modifies and saves the file), the flash controller
must actually “move” the contents of that file by writing 1t to
free blocks of flash memory, causing the prior blocks to be
marked as unused and later reclaimed as part of the back-
ground garbage collection process. While all blocks are 1ni-
tially “free” to be written, write commands 1ssued by a host
system over time will indirectly cause a flash controller to
perform multiple P/E cycles on various blocks of flash
memory (a phenomenon referred to as “write amplification™).
Eventually, once “almost all” (e.g., 90%) blocks have been
written once, the flash controller, during its background gar-
bage collection process, will accumulate enough “valid” (as
opposed to unused) data from multiple blocks to fill an entire
block, “move” that data by writing the data into a free block,
and then erase the multiple blocks, thereby creating addi-
tional free blocks ready to be written as a result of subsequent
host system write operations.

[0011] Flash memory chips are typically organized into
multiple “logical units” or LUNS, each of which physically
includes multiple “blocks” of memory, where each block 1s
elfectively the smallest erasable unit of memory on the flash
chip. Each block 1n turn 1s organized into multiple “pages™ of
bytes. For example, a 1 TB (terabyte) tflash memory drive
(e.g., an SSD or other flash memory storage device) might
include 8 flash chips, each of which has a capacity of 128
megabytes (1 gigabit). Each 128MB flash chip might be orga-
nized into 4 LUNs (32MB each), where each LUN includes
128 blocks (256 KB each), each block includes 64 pages (4K

each), and each page includes 8 sectors (512 bytes each).

[0012] An SSD’s flash controller serves as an iterface
between the individual flash memory chips in the SSD and the
host computer system. As will be discussed 1n greater detail
below, P/E cycles take a toll on the flash memory, effectively
reducing the “operational lifetime” of individual flash
memory chips, and thus of the entire SSD (often measured
“after the fact” as the total number of P/E cycles performed on
the flash memory before 1t ““wears out”). For example, blocks
of flash memory “wear” or “degrade” (used interchangeably
herein) each time they are written and become less capable of
being written reliably over time (a problem known as “endur-
ance”), and, depending upon their use (e.g., in a USB thumb
drive), may not be able to retain data reliably for long periods

US 2016/0034206 Al

of time between writes (a problem known as “retention”™). In
addition, read operations on a cell of flash memory often
corrupt or “disturb” the contents of neighboring cells (a prob-
lem known as “read disturb”). As will also be discussed
below, flash controllers employ various techniques to manage
an SSD’s flash memory chips and address these endurance,
retention, read disturb and other problems, so as to improve

operational efficiency and extend the operational lifetime of
the SSD.

[0013] It should be noted that flash memory chips also
include, 1n addition to the physical flash memory itself, a
“state machine” that implements the controller memory com-
mands received from the flash controller. Although one could
implement this state machine as a microcontroller, 1t 1s 1mpor-
tant to distinguish the functionality performed by this state
machine (1.e., interpreting controller memory commands—
e.g., to read and write particular areas of flash memory, and
erase particular blocks) from the higher-level and more exten-
stve functionality performed by an SSD’s flash controller—
such as formatting the flash memory, performing garbage
collection and addressing endurance, retention, read disturb
and other problems, as well as implementing system memory
commands by effectively “translating” them into many
lower-level controller memory commands targeted to the par-
ticular areas of flash memory 1n which a file’s contents are or
will be stored.

[0014] In addition to its state machine, flash memory chips
also 1include control registers to store “operating parameters™
(where each particular LUN on the chip has an associated set
of operating parameters) that are employed by the state
machine to implement controller memory commands. In
order to implement any controller memory command (e.g.,
read, write, or erase), the state machine applies an “electrical
stimulus™ to the flash memory 1tself. Such electrical stimuli
include voltage levels, for example, which are applied for a
particular period of time. These levels not only depend upon
the type of operation being performed (e.g., read, write or
erase), but may also vary over time (e.g., increasing voltage
upon a retry after a failed read operation).

[0015] The state machine applies these varying levels of
electrical stimulus 1n accordance with the values of the oper-
ating parameters (associated with the designated LUN) stored
in the control registers of the flash memory chip. For example,
typical operating parameters include threshold voltage levels
that differ for read, write and erase operations. They also may
include start and end voltage values for each operation, as
well as a duration or incremental rate/amount of change in
value over time, e.g., instructing the state machine to increase
a particular voltage level gradually over time (but not 1n
excess of threshold amounts). Voltages might range, for
example, from O to 35 volts. Other operating parameters may
include, for example, a maximum number of retries (e.g., 15)
before a read operation 1s deemed to have failed, and pass
voltage values for unselected word lines, among others.
Essentially any constraint on the electrical stimulus applied
by the state machine can be implemented 1n accordance with
operating parameter values stored in the control registers of
the flash memory chip.

[0016] It 1s important, however, to distinguish variations 1n
electrical stimulus applied by the state machine from modi-
fications to one or more of the operating parameters during
the chip’s operational lifetime. For example, a state machine
typically employs a “retry” mechanism to verily write opera-
tions—by retrying the write operation until all memory cells

Feb. 4, 2016

have been verified or until a specified threshold number of
retries 1s reached, 1n which case the write operation will be
deemed to have failed. Over time, write attempts may occur
more Irequently, and more retries may be necessary to
achieve successtul verification. The number of retries may
jump from 3 to 5 to 7 over some period of time. But, the
operating parameter specilying the maximum number of
retries (e.g., 15) may remain fixed. Similarly, one operating
parameter may specily an incremental increase (e.g., 2 volts)
in the voltage level for each retry, while another operating
parameter specifies the maximum voltage for write retries
(e.g., 20 volts). Even though these operating parameters are
designed to remain fixed, the electrical stimulus applied by
the state machine (e.g., the voltage level applied during a

write) will vary over time during each subsequent retry—e.g.,
increasing from 5V to 7V to 9V, etc.—but not exceeding 20V.

[0017] As a general rule, the operating parameters of tlash
memory chips are determined (with respect to each LUN)
when each batch of flash memory chips 1s manufactured, and
they typically remain fixed thereafter during the operational
lifetime of the flash memory chips. A flash memory chip’s
operational lifetime can be said to begin after 1t 1s manufac-
tured and incorporated 1nto a flash memory device, such as an
SSD (though 1t will not likely “age” or degrade significantly
until 1t 1s powered up and used in the field). As a practical
matter, an SSD’s operational lifetime can be said to be coex-
tensive with (and equivalent to) the operational lifetime of the
flash memory chips contained therein, as the SSD cannot
typically function without all of 1ts flash memory chips (un-
less overprovisioned).

[0018] When a batch of flash memory chips 1s manufac-
tured, the manufacturer typically performs diagnostic tests on
one or more “test chips™ 1n an effort to determine an “optimal”
set of operating parameters (with respect to each LUN) that
meet desired specifications—e.g., reliable read and write
operations for 10,000 P/E cycles with a retention time of 6
months. This 1s typically accomplished by placing each chip
into a “test mode” to enable the 1ssuance of diagnostic com-
mands that access and modity the chip’s operating param-
eters. Once this “offline characterization” process 1s com-
pleted and an optimal set of operating parameters 1s
determined for each LUN, these same optimal operating
parameters are stored in the control registers of each flash
memory chip in that batch.

[0019] These operating parameters are typically not
expected to be modified in the field, and test mode access 1s
generally intended to be limited to use by the manufacturer
and service technicians. However, 11 knowledge of the diag-
nostic commands and the mechanism for entering and exiting
the test mode can be obtained (with or without the permission
of the manufacturer), then modification of these operating
parameters may be possible during the chip’s operational
lifetime. But flash manufacturers are not always willing to
provide test mode access information to third parties, as 1t can
reveal proprietary information such as the names, values and
precise functionality of the chip’s operating parameters.

[0020] Once flash memory chips are manufactured and
incorporated into flash memory devices, such as an SSD, their
usage 1n the field may vary widely during their operational
lifetime. For example, a USB thumb drive may be written
infrequently and powered down for long periods of time until
its contents are read again (requiring relatively high reten-

US 2016/0034206 Al

tion). Enterprise SSDs, on the other hand, may be read and
written frequently over time (requiring relatively high endur-
ance).

[0021] As noted above, flash memory degrades over time,
depending greatly on the nature of 1ts use. What makes a set
of operating parameters “optimal” for usage 1n a USB thumb
drive may not be optimal for use 1n an enterprise SSD. More-
over, no single set of operating parameters (for a given LUN)
1s likely to be optimal during each “stage™ of a flash memory
chip’s operational lifetime. As flash memory degrades, for
example, higher voltages may be necessary to reliably write
its contents. Conversely, lower voltages may be suificient
earlier 1n 1ts operational lifetime, provided that they yield
suificient levels of retention. Finally, due to manufacturing
variations, flash memory chips from the same batch (and even
individual blocks of flash memory) may exhibit different
levels of wear 1n the same application.

[0022] All of this suggests that no single set of operating
parameters 1s likely to be optimal indefinitely, and that oper-
ating parameters therefore should be varied during a flash
memory chip’s operational lifetime. But, without an under-
standing of how flash memory degrades, 1t 1s difficult to
determine how and when to modify the operating parameters
within each LUN of a flash memory chip, and whether other
less extreme preventive measures can be employed 1n the
interim.

[0023] Asnoted above, “endurance’ 1s one of the key prob-
lems exhibited by flash memory. The application of electrical
stimulus (e.g., quantity and duration of voltage levels applied
cumulatively over time) gradually degrades flash memory
until 1t eventually “wears out” and can no longer be written
reliably. In other words, flash memory degrades as a result of
cumulative programming (P/E cycles) that apply varying
degrees of electrical stimulus (referred to herein as “stress™)
over time. Cumulative write and erase operations result 1n
more frequent read errors and retries over time. Eventually,
the number of retries may exceed a predetermined threshold
number of retries.

[0024] The cumulative number of P/E cycles a flash
memory chip (or component LUN or block of flash memory)
has endured at any given time can be roughly analogized to
the “age” of that chip. But the “cumulative wear” of a chip
over time also depends upon the level of stress it endures
during those P/E cycles. For example, higher voltages applied
during a write operation will result 1n greater wear. One can
thus estimate cumulative wear of flash memory over time
(from P/E cycles) as a product of the cumulative number of
P/E cycles and the level of stress applied to that flash memory.

[0025] As ageneral matter, the rate of wear (1.e., cumulative
wear per P/E cycle) at any given time 1s proportional to both
the number of P/E cycles and the amount of stress applied
during those P/E cycles. However, this rate 1s not linear—due
to variations 1 manufacturing and the fact that electrical
stimulus varies over time based on the actual usage of a flash
memory chip in accordance with 1ts operating parameters. In
short, no single factor can be said to determine or reflect the
“health” of flash memory at any given time—1i.e., 1ts actual
cumulative wear or how much life remains.

[0026] Forexample, two flash memory chips exposed to the
same number of P/E cycles, but with different levels of stress
over time, may exhibit very different levels of cumulative
wear. In other words, they may be the same “age” but have
very different levels of “health.” If their operational lifetime 1s
measured (after the fact) as a cumulative number of P/E

Feb. 4, 2016

cycles before they “wear out,” then one may effectively live
longer than the other (e.g., 50,000 P/E cycles as compared to
10,000 P/E cycles).

[0027] Moreover, variations 1n manufacturing may cause
one flash memory chip to “wear out” faster than another, even
though both were exposed to the same number of P/E cycles
at the same stress levels (1.e., the same estimated cumulative
wear). As will be discussed 1n greater detail below, certain
“outlier” blocks of flash memory may wear at a faster rate
than other similarly situated blocks—i.e., at a faster rate than
expected based upon their estimated cumulative wear.

[0028] Although a cumulative number of P/E cycles 1s
often used as a specification of a flash memory chip’s esti-
mated operational lifetime (just as a person’s estimated life-
time may be said to be 70 years), this specification typically
presumes fixed operating parameters and an assumed (typi-
cally “worst case”) usage scenario. Just as a person’s “lif-
estyle” can affect his or her health, a chip’s actual usage and
exposure to electrical stimulus can affect its health. While a
chip’s “age” can be measured 1n cumulative P/E cycles, this
factor alone 1s not necessarily the best indicator of the current
“elapsed life” or health of that chip. Just as an old person may
be more healthy than a younger person (taking into account
various health factors, such as weight, heart rate, blood pres-
sure, cholesterol and glucose levels, etc.), the health of a chip
can be assessed more effectively by monitoring various 1ndi-
cators of wear or degradation.

[0029] Moreover, just as a person’s health can improve
(and lifetime be extended) by monitoring and treating these
various health factors, so too can the health of a flash memory
chip improve (and 1ts operational lifetime be extended) by
monitoring various indicators of wear over time (such as bit
error rates, number of read retries and program and erase
timing, as well as a current cumulative number of P/E cycles),
and “treating’” such wear by “prescribing” certain preventive
measures to reduce the rate of wear, including identifying and
resting outlier blocks of flash memory and varying the chip’s
operating parameters over time (as discussed 1n greater detail

below).

[0030] In other words, while P/E cycles cause wear, they
are far from the only indicator of the health of a flash memory
chip (or of individual blocks of flash memory). Moreover,
while the cumulative number of P/E cycles (*age”) always
increases over time, the actual rate of wear may increase or
decrease during any particular time period or “stage” of a
chip’s operational lifetime. In other words, while a flash
memory chip’s health may generally deteriorate proportion-
ally with the cumulative number of elapsed P/E cycles, it may
do so at a faster or slower rate (depending, for example, on
when stress levels are increased and when certain preventive
measures are employed).

[0031] It 1s thus apparent that the operational lifetime of a
flash memory chip can be extended beyond the chip’s speci-
fied estimated number of P/E cycles by adaptively varying
operating parameters and taking other less extreme preven-
tive measures in accordance with monitored indicators of
health (and not just age) over time 1n an effort to slow the rate
of (1nevitable) wear.

[0032] Apart from the problem of endurance, another prob-
lem exhibited by flash memory 1s a limited retention time—
1.€., the duration of time after flash memory 1s written until 1ts
contents can no longer be successiully read. This retention
problem results from a leakage of charge that naturally occurs

US 2016/0034206 Al

over time. Typical retention periods might range from 3
months to 10 years, depending upon the application.

[0033] But, the retention problem 1s somewhat 1nversely
correlated with endurance. For example, the application of a
higher voltage when writing tflash memory results 1n a longer
period of retention, but causes greater wear and thus a lower
level of endurance. Moreover, frequent P/E cycles also limut
endurance, but effectively minimize the retention problem
because the relevant block of flash memory has relatively
recently been rewritten.

[0034] Thus, one must balance the goals of maximizing
endurance and retention when 1dentifying “optimal” operat-
ing parameters and determining when to vary them, as well as
when to employ less extreme preventive measures in the
interim to slow the rate of wear. Prior attempts to address
these problems have included “wear leveling” and “bad block
management.” For example, wear leveling endeavors to dis-
tribute wear evenly to blocks of tflash memory by tracking
writes among blocks and moving data to different blocks inan
elfort to distribute wear more evenly. While this techmique 1s
generally effective in allocating wear evenly among blocks of
flash memory and minimizing the number of “worn out”
blocks, 1t does not reduce the overall level of wear, nor does 1t
address the problems posed by outlier blocks. Bad block
management (1.€., avoiding usage of blocks that are “dead on
arrival” or wear out early) helps to address the problem of
prematurely ending the operational lifetime of a flash
memory chip—e.g., by reallocating the contents of “bad
blocks™ to unused portions of “good blocks™ of flash memory.
But it also fails to reduce the overall level of wear.

[0035] While others have attempted to increase the opera-
tional lifetime of flash memory chips by varying operating
parameters over time (see, e.g., U.S. patent application Ser.
Nos. 12/769,208 and 12/388,366), all of these approaches
have relied solely on a cumulative number of P/E cycles to
assess the level of wear of the flash memory (1.e., the “age” of
the flash memory, as opposed to its “health™). Moreover,
some have incorporated certain functionality into the flash
memory chips themselves, 1n a manner that creates an 1nher-
ent interoperability contlict with third-party flash controllers
and flash storage devices.

[0036] What i1s needed 1s a system and a set of techniques
that can assess a current level of health of a flash memory chip
(or component LUNs, blocks, etc.) during its operational
lifetime, and can modity its operating parameters accordingly
(1.e., transition to a new “health stage”), as well as employ
certain less extreme preventive measures in the iterim, so as
to increase the chip’s operational efficiency and effectively
extend 1ts operational lifetime, and thus extend the opera-
tional lifetime of the SSD or other flash storage device into
which 1t 1s integrated. One must also somehow procure test
mode access to the chip, directly or indirectly, in order to
ensure the ability to modify its operating parameters.

SUMMARY

[0037] The present invention includes embodiments of sys-
tems and methods for increasing the operational etficiency
and extending the estimated operational lifetime of a flash
memory storage device (and 1ts component flash memory
chips, LUNs and blocks of flash memory) by monitoring the
health of the device and 1ts components over time and, in
response, adaptively tuning the operating parameters of tlash
memory chips during their operational lifetime, as well as
employing other less extreme preventive measures in the

Feb. 4, 2016

interim, via an interface that avoids the need for direct access
to the test modes of the tlash memory chips.

[0038] In an offline characterization phase, “test chips”
from a batch of recently manufactured flash memory chips are
used to simulate any of various usage scenarios and measure
the performance efiects of writing and attempting to recover
(read) test patterns written with different sets of operating
parameters over time (simulating desired retention periods).
Software models are employed (e.g., using neural networks
and other “machine learning” techniques) to generate “can-
didate” sets of operating parameters, which are tested on
actual hardware (the test chips) to extract performance char-
acteristics, such as “bit error rate” (BER), program and erase
timing, and “voltage threshold” (Vt) windows. Candidates
are “scored” 1n order to iteratively update the software models
and generate better candidates until an “optimal” set of oper-
ating parameters 1s determined for each health stage of a
chip’s estimated operational lifetime. For each optimal set of
operating parameters, alternative sets of read parameters
(“waypoints”) are determined based upon their ability to
recover (read) data during a particular health stage.

[0039] To enable modification of the operating parameters
of these test chips, an encrypted Abstract Flash Trimming
(“AFT”) interface to the chip’s test mode 1s employed 1n one
embodiment. For example, 1n this embodiment, flash manu-
facturers need only provide abstract identifiers for the read,
write and erase registers (€.2.,), Iy . .. I, Wi, Wo, ... W, €,
e, . . . €,) In which the operating parameters are stored, and
need not disclose proprietary information, such as the names,
values and precise functionality of the operating parameters.
In other embodiments, the registers are completely abstract,
without even distinguishing among read, write and erase reg-
isters (e.g., reg, . . . reg). In any event, an encrypted API
(easily implemented by flash chip manufacturers) permaits
higher-level operations (e.g., “Set Reg n to 112” or “Modily
Reg n by x %) that do not reveal any of the manufacturer’s
proprietary information. In one embodiment, “test mode” 1s
enabled only temporarily to permit the operation to be per-
formed, thereby minimizing the risk of a third-party “attack™
to obtain such proprietary information. In another embodi-
ment, the values of the operating parameters can only be
modified via these higher-level operations, but cannot be
read. In some embodiments, a range of values for each reg-
1ster can be provided by the manufacturer, and precise values
can then be written via the AFT interface, or incremental
values can be added to or subtracted from existing values. In
any event, by avoiding direct test mode access, operating
parameters can be modified without revealing the flash manu-
facturer’s proprietary information.

[0040] As a result of this offline characterization process,
multiple optimal sets of operating parameters are generated
with respect to each LUN of a flash memory chip, each set
corresponding to a different health stage or estimated level of
wear of that LUN (or, in another embodiment, of individual
blocks of flash memory). In addition, for each health stage, an
ordered set of multiple waypoints 1s generated—each way-
point representing one or more read-specific operating
parameters that recovered data successfully within a pre-
defined retention period (and thus will likely do so during the
device’s operational lifetime).

[0041] In one embodiment, the optimal sets of operating
parameters and waypoints generated during the offline char-
acterization process are stored in the flash controller of an
SSD, while the operating parameters (with respect to each

US 2016/0034206 Al

LUN) corresponding to the initial health stage are stored 1n
the control registers of each flash memory chip of the SSD
device. In another embodiment, the values of these various
operating parameters are stored not as absolute values, but as
relative values to the optimal operating parameter values hid-
den via the AFT mterface (e.g., 18% lower than the unknown
value determined by the flash manufacturer).

[0042] In essence, this offline characterization phase
defines the duration or “maximum potential” of each health
stage. Once “online” during the operational lifetime of the
SSD, various measures are employed 1n an endeavor to extend
each health stage to 1ts maximum potential. For example, over
time throughout the operational lifetime of the SSD, the flash
controller monitors, computes and maintains the level of
health of individual blocks (and, in some cases, even pages
and sectors) of flash memory and of the LUNs containing
those blocks. In one embodiment, the flash controller
employs various thresholds to identify indicators of wear of
particular LUNs, blocks, pages and sectors of flash memory
over time (e.g., P/E count, BER, timing of program and erase
operations, etc.). Upon encountering a “threshold violation™
(e.g., an erase operation that exceeds a current threshold time,
or a read operation that generates a number of errors 1n a
sector that exceeds a current threshold, or perhaps completely
fails to recover data), the flash controller assesses the nature
of that threshold violation, 1n the context of the history of
prior threshold violations, and determines whether to employ
particular techniques to slow the rate of wear within a par-
ticular LUN during a current health stage, including the rest-
ing of outlier blocks for the rest of that health stage.

[0043] For example, the flash controller might simply store
the information relating to that threshold violation for future
use. Or 1t might also increase one or more “soit” thresholds,
reflecting, for example, the fact that errors will likely increase
during each health stage. Or 1t might also determine that a
particular block 1s wearing unusually quickly, and tempo-
rarily “rest” that block for the remainder of the current health
stage, or eventually add 1t to a permanent “bad block list.”

[0044] In more extreme cases, it might transition a LUN to
a new health stage and replace the contents of the flash
memory chip registers containing the operating parameters
currently associated with that LUN with the predetermined
optimal set of operating parameters corresponding to that
LUN’s new health stage. That new optimal set of operating
parameters will therefore be employed by the flash memory
chip when subsequent read, write, and erase operations are
performed within that particular LUN.

[0045] Another potentially serious threshold wviolation
(though not one that necessarily will result 1n a transition to a
new health stage) mvolves “read failures”™—a potentially
catastrophic error that could lead to the loss of data. Despite
the use of an optimal set of operating parameters associated
with a LUN’s current health stage, a read operation 1n a
particular block within that LUN could still result in unrecov-
erable errors. To minimize this possibility, the present inven-
tion employs an alternative approach to the standard “read
retry” mechanism (which typically mvolves incrementing or
changing the electrical stimulus levels on each successive
retry, subject to the maximum number of retries specified 1n a
current operating parameter). Instead, in one embodiment,
cach retry employs a different one of the predetermined way-
points (or relative values generated via the AFT interface)
until all sectors have been successtully read (or all waypoints
have been exhausted). Once a particular waypoint results in a

Feb. 4, 2016

successiul read of all remaining sectors, the flash controller
utilizes that waypoint for subsequent reads from that block
until the block 1s erased and rewritten, or until a new health
stage 1s reached. As will be described 1n greater detail below,
waypoints are “pre-tested” and potentially applicable to a
particular LUN or block based on current or historical health
metrics, making read failures and even read retries less likely.

[0046] While addressing various threshold violations, the
flash controller continues to monitor the level of health within
all of the flash memory chips 1n the SSD. In one embodiment,
the operating parameters are modified via the same AFT
interface as was employed during oftline characterization.

[0047] In one embodiment, the flash controller artificially
generates wear of a hypothetical “oldest” flash memory chip,
LUN or block of flash memory. In this manner, it predicts
when a flash memory chip, LUN or block of flash memory
will be ready to move to the next health stage, thereby
enabling the flash controller to replace the relevant operating
parameters (associated with that flash memory chip, LUN or
block of flash memory) betfore 1t actually exhibits that level of
wear (e.g., a few hundred P/E cycles “early” 1n one embodi-
ment). Moreover, “challenge data™ (e.g., neighboring cells
with opposite bit values, or other data more likely to generate
read errors) can be written to such blocks to obtain a “worst
case” prediction of wear.

[0048] Various wear-prediction and other techniques can
also be employed, including optimizing for factors other than
maximum P/E cycles (e.g., lower ECC, faster write times,
etc.), utilizing a real-time clock (RTC) as a “predictive” reten-
tion clock, providing real-time flash controller firmware
updates (e.g., to change predetermined sets ol operating
parameter values based on subsequent offline testing during
an SSD’s operational lifetime), and employing temperature
and other indicators of wear.

BRIEF DESCRIPTION OF DRAWINGS

[0049] FIG. 1 1s an architectural block diagram of the key
components of a Solid State Drive (“SSD”) 1n one embodi-
ment of the present invention.

[0050] FIG. 2 1s an architectural block diagram of one
embodiment of the Navigator component of the present
invention that modifies operating parameters and other oper-
ating characteristics of an SSD based upon an analysis of the

health of the flash memory in the SSD.

[0051] FIG. 3 1s aflowchart i1llustrating one embodiment of
the dynamic operation of the Navigator component of the
present 1nvention.

[0052] FIG. 4 1s a block diagram of one embodiment of the
Plotter and Pathfinder components of the present invention
that work together to generate (in an offline characterization
phase prior to the start of an SSD’s operational lifetime),
optimal sets of operating parameters for use by Navigator at
different health stages of the SSD’s operational lifetime.

[0053] FIG. 5 1s a high-level flowchart illustrating one
embodiment of the dynamic operation of, and interaction
between, the Plotter and Pathfinder components of the present
invention.

[0054] FIG. 6 1s a more detailed flowchart illustrating one
embodiment of the dynamic operation of the candidate-gen-
eration process performed by the Plotter component of the
present invention in which candidate sets of operating param-
eters are generated for flash memory hardware testing on the
Pathfinder component of the present invention.

US 2016/0034206 Al

[0055] FIG. 7 1s a more detailed flowchart illustrating one
embodiment of the dynamic operation of the Pathfinder com-
ponent of the present invention 1n which candidate sets of
operating parameters are iteratively tested and scored on flash
memory hardware for evaluation by the Plotter component of
the present invention.

[0056] FIG. 8 1s a graph illustrating how one embodiment
ol the present invention extends the operational lifetime of an
SSD, as compared with systems that maintain fixed operating
parameters during the SSD’s operational lifetime, or vary
operating parameters based solely on a cumulative number of
elapsed P/E cycles.

DETAILED DESCRIPTION

[0057] Detailed embodiments of the systems and methods
of the present invention are illustrated 1n the accompanying
Figures and described below. It should be noted at the outset
that the present invention 1s not limited to the particular
embodiments discussed below with reference to the Figures.
For example, the present invention could be integrated not
only 1into an SSD, but into virtually any other flash memory
storage device, or component thereot, as well as into compo-
nents of a host computer system or other computing device
that accesses flash memory directly or indirectly, including a
smartphone or other mobile device. Moreover, the choice of
implementing aspects of the present invention partially or
wholly 1n software or firmware, as opposed to partially or
wholly 1n hardware, or in separate physical or conceptual
components rather than an integrated component (or vice
versa) 1s a design decision that 1s not essential to the nature of
the present invention, except where explicitly otherwise 1ndi-
cated. Additional embodiments of the systems and methods
of the present invention are also noted below where relevant
to the discussion of particular aspects of the present invention.

I. Key Objectives

[0058] As alluded to above, one key goal of the present
invention 1s to extend the operational lifetime of an SSD or
other flash storage device. It will become apparent that the
systems and methods of the present invention could be
employed in other embodiments to optimize for different
goals (e.g., mimmimizing the timing of write operations or the
number of ECC bits employed for error correction, enabling
cheaper hardware, as well as various other desired goals,
alone or 1n combination) without departing from the spirit of
the present imnvention. Nevertheless, the following detailed
descriptions of the Figures will focus on the goal of increasing
the operational lifetime of an SSD, while satisiying its design
constraints (e.g., a minimum retention period, maximum
write and erase times, etc.).

[0059] As also noted above, the operational lifetime of an
SSD can be measured (after the fact) by the total number of
cumulative P/E cycles performed by the SSD—just as a per-
son’s life can be measured (after the fact) by that person’s age
at death. But cumulative P/E cycles also serve to reduce the
“life expectancy” of an SSD during 1ts operational lifetime
(e.g., due to flash memory wear }—just as cumulative aging of
a person tends to reduce that person’s life expectancy. One
can therefore characterize a key goal of the present invention
as maximizing the life expectancy of an SSD, as measured 1n
total P/E cycles (1.e., “living to a ripe old age”), while recog-
nizing that each P/E cycle occurring along the way (aging)
serves to reduce its life expectancy.

Feb. 4, 2016

[0060] As flash memory endures write and erase operations
(1.e., P/E cycles) over time, 1t begins to wear—the “endur-
ance” problem referenced above. And that wear gradually
causes an increase in the frequency and severity of “read
errors” when attempts are made to recover (1.e., read) data
previously written to the flash memory. Moreover, read errors
also appear when too much time elapses between the writing
and reading of data—the “retention” problem referenced
above. But read errors can, to some extent, be corrected by the
use of ECC error correction techniques and read retries (in-
cluding using “waypoints,” as discussed below). Eventually,
however, the read errors may become too frequent and too
significant to correct, resulting 1n “read failures” or an 1nabil-
ity to recover the data.

[0061] In the interim, however, one can modily operating
parameters to apply more stress (e.g., higher write voltages)
in an effort to address the retention problem and avoid, or at
least delay, read failures. But, as noted above, the efforts to
address retention by applying more stress to the flash memory
also have the inverse effect of limiting endurance, as the
added stress accelerates wear of the flash memory.

[0062] Onemusttherefore balance endurance and retention
when determining the appropriate amount of stress to apply to
flash memory. Flash manufacturers do this by identifying an
“optimal” set of operating parameters (per LUN) based on
“worst case” scenarios that will ensure desired retention
times. The result 1s higher stress than necessary, particularly
early 1n the operational lifetime of the flash memory. But flash
manufacturers generally do not intend for operating param-
eters to be modified 1n the field.

[0063] It 1s therefore important to recognize that varying
the operating parameters stored in each LUN of a flash
memory chip during its operational lifetime can extend its
life—e.g., by increasing stress over time. As a general matter,
lower stress, particularly early in life when cumulative wear 1s
relatively low, will limit the rate of wear over time, though
sufficient stress must still be employed to ensure desired
retention.

[0064] Inother words, 1t 1s desirable to remain 1n this early
“health stage” of life as long as possible—i.e., for as many
P/E cycles as possible until retention can no longer be
ensured. As will be discussed in greater detail below, by
monitoring multiple indicators of wear 1n a LUN (e.g., read
errors or BER, timing of read, write and erase operations,
etc.), and maintaining and analyzing such historical data over
time, one can determine when retention 1s at risk and the
probability of read failures 1s too high, and therefore make the
decision to move to the next “health stage” by modifying the
LLUN’s operating parameters in order to apply a greater level
of stress going forward. Note that such historical data might
also indicate that less extreme preventive measures can be
employed to delay that decision and extend the current health
stage, and thus continue to slow the cumulative rate of wear
by applying a relatively lower level of stress.

[0065] Asnotedabove, one can extend the life of an SSD to
some extent by monitoring the cumulative number of P/E
cycles (age) of a LUN, and modifying the LUN’s operating
parameters to increase stress as the cumulative number of P/E
cycles increases. In effect, by increasing stress gradually over
time, as opposed to applying a constant “worst case” scenario
of high stress levels, one can slow the rate of cumulative wear
and thus extend life to some extent.

[0066] However, P/E cycles alone are an insufficient indi-
cator of actual cumulative wear—just as a person’s age 1s an

US 2016/0034206 Al

insufficient indicator of their current health. As noted above,
P/E cycles themselves (aging) are a primary cause of wear—
not just an estimated measure of wear. Even monitoring P/E
cycles and stress levels over time would yield only an esti-
mated level of cumulative wear. Actual cumulative wear,
however, might differ significantly due to certain factors that
cannot be detected merely by monitoring P/E cycles (and
even stress levels) over time.

[0067] Forexample, as noted above, variations in manufac-
turing may cause certain “outlier” blocks of flash memory to
“wear out” faster than others, even 1t all are exposed to the
same number of P/E cycles at the same stress levels (1.e., the
same estimated cumulative wear). As will be explained
below, the present invention can detect such outlier blocks by
monitoring BER, timing and other indicators of relative wear
among different blocks of flash memory over time.

[0068] But outlier blocks cannot be detected merely by
monitoring P/E cycles and stress levels over time. These
outlier blocks are analogous to an “illness™ that can result 1n
premature death. As a result of being unable to detect outlier
blocks and distinguish them from other healthier blocks (e.g.,
during an oifline characterization phase), stages will be
shorter, resulting in an accelerated rate of cumulative wear, as
discussed below with reference to FI1G. 8. Moreover, failure to
detect such outlier blocks during the operational lifetime of a
flash storage device can result 1n read failures, and possibly
even write failures, that will end the device’s life earlier than
necessary.

[0069] Thus, to achieve the goal of maximizing the opera-
tional lifetime of a flash memory storage device, 1t 1s impor-
tant to monitor and detect actual cumulative wear (1.e., health)
over time 1n order to remain 1n earlier health stages as long as
possible (1.e., for as many P/E cycles as possible until reten-
tion can no longer be ensured), which etfiectively reduces the
rate of (inevitable) wear, and only transition to subsequent
“more stressful” health stages when necessary to ensure
future retention.

[0070] As will be discussed in greater detail below, extend-
ing a current health stage 1s akin to “managing symptoms” to
delay the need for a “major treatment.” For example, outlier
blocks can be “rested” for the remainder of a current health
stage, eflectively slowing their rate of wear by not using them,
and avoiding continued generation of errors that otherwise
could eventually result 1n read failures. Their data can be
moved to other “healthier” blocks. Other errors may be rec-
ognized as resulting not from wear 1ssues, but from retention
1ssues (1.e., “bad data’ as opposed to a “bad block™), 1n which
case their data can be moved to another “free” block, leaving
the original block available to be recycled and reused (since it
1s not showing signs of undue wear).

[0071] Eventually, however, LUN-wide wear 1s 1nevitable
and symptoms can no longer be managed. Major treatment 1s
required—e.g., transitioning to the next health stage by modi-
fying operating parameters to increase stress levels. This
“strong medicine” brings some relatively immediate relief.
Writing data with higher stress levels reduces BER and reten-
tion concerns, but has the “side effect” of increasing the rate
of wear (due to the higher stress).

[0072] As will be discussed in greater detail below, the
present invention achieves the goal of maximizing the opera-
tional lifetime of a flash memory storage device by balancing
endurance and retention in pursuit of the following objec-
tives: (1) Determine Appropriate Stress Levels per Health
Stage; (2) Extend Health Stages for as many P/E cycles as

Feb. 4, 2016

possible by Slowing the Rate of Wear; (3) Manage Retention
to enable Extension of Current Health Stage; and (4) Deter-
mine appropriate Conditions for Health Stage Transition.

[0073] Thefirstobjective 1s achieved during an offline char-
acterization phase, prior to the beginming of the operational
lifetime of an SSD, which determines the number and maxi-
mum duration of health stages, and the operating parameters
(1including “waypoints™) associated with each health stage, as
explained below with reference to FIGS. 4-7. The remaining
objectives are achieved by continuously momnitoring the
health of the flash memory 1n a LUN, and identitying and
analyzing certain conditions to determine the appropriate
action to take, as explained below with reference to FIGS.
1-3. In particular, the second objective 1s achieved by 1denti-
tying conditions reflecting certain block-specific endurance
1ssues, and performing appropriate preventive measures such
as resting and reducing the workload of outlier blocks. The
third objective 1s achieved by identifying conditions retlect-
ing certain block-specific retention issues, and performing
appropriate preventive measures such as moving data to
another block. Finally, the fourth objective 1s achieved by
identifying conditions reflecting certain LUN-wide health
1ssues, and performing appropriate actions such as transition-
ing to the next health stage by replacing the LUN’s operating
parameters with those determined during the offline charac-
terization phase.

I1. SSD Architecture

[0074] Turning to FIG. 1, an embodiment of the present
invention 1s illustrated in a flash storage device, SSD 100,
which 1s accessed from a host system (such as an enterprise
server, PC, laptop, smartphone or other device capable of
accessing flash memory) via HOST System Interface 130 (in
accordance with well-known standard bus interface proto-
cols, such as SATA, PCle, etc.). As noted above, the host
system sends System Memory Commands 135 to SSD 100
via HOST System Interface 130, in order to read, write and

erase files from the Flash Memory Chips 110 embodied 1n
SSD 100.

[0075] SSD 100 also includes a Flash Controller 120
which, among other functions, implements the System
Memory Commands 135 by translating them into numerous
Controller Memory Commands 145, each of which 1s 1in turn
implemented by the Flash Memory Chips 110. Each Flash
Memory Chip 110 implements Controller Memory Com-
mands 145 by employing a State Machine 115, which oper-
ates 1n accordance with a set of operating parameters stored 1n

Operating Parameter Registers 116, to read, write and erase
the contents of its Flash Memory 112.

[0076] From the perspective of a host system, System
Memory Commands 135 instruct SSD 100 to write a file into
its flash memory, read a file from its flash memory, or erase a
file that 1s no longer required by the host system (e.g., when a
user deletes a file). In one embodiment, these files correspond
to entire files maintained by the host operating system (e.g., a
user’s word processing document or spreadsheet, or a “sys-
tem file” used internally by the host operating system). In
other embodiments, they correspond to smaller subsets of
these files, such as one or more “allocation units” maintained
by the operating system’s file system (e.g., FAT, NTFS, etc.).
In either case, SSD 100 must interpret these System Memory
Commands 135, typically by relying upon a standard “flash
translation layer” (F'TL) to map a file into particular locations

US 2016/0034206 Al

within the Flash Memory Chips 110, e.g., designating those
locations by their chip, LUN, block, page and sector identi-
fiers.

[0077] Flash Controller 120 will generally write a file into
flash memory “page by page” (though operations are typi-
cally performed in parallel for enhanced performance),
requiring multiple Controller Memory Commands 145 to
implement the low-level write protocol and instruct the Flash
Memory Chips 110 to write the contents of the file 1nto 1ts
various designated locations (perhaps across multiple blocks,
LUNs and even flash memory chips). Flash Controller 120
also generally reads files “page by page,” though Flash
Memory Chips 110 typically return data at a sector level to
enable Flash Controller 120 to perform ECC error correction
on each sector (and correct the data or retry the read operation
for sectors that contain more errors than can be corrected by
the ECC process). As noted above, when a host system i1ssues
a System Memory Command 135 to erase a file, Flash Con-
troller 120 will merely “mark™ those portions of blocks con-
taining the data as “unused,” to be reclaimed at a later time as
part of the background garbage collection process (e.g., by
writing the remaining “valid” data from various blocks into a
“free” block, and recycling those previously written blocks
into “tfree” blocks to be written 1n the future).

[0078] Note that Flash Controller 120 also performs other
functions, discussed in greater detail below, such as wear
leveling, garbage collection and ECC error correction. These
other functions also require Flash Controller 120 to 1ssue
Controller Memory Commands 145 to the Flash Memory
Chips 110 to implement these functions.

[0079] While the Flash Memory Chips 110 are discussed
herein with reference to the characteristics exhibited by
NAND flash, other types of flash memory (e.g., NOR flash,
with different endurance, retention and other characteristics)
can be employed without departing from the spirit of the
present invention. Moreover, the number of bits per transistor
cell 1n the Flash Memory Chips 110 (e.g., SLC with 1 bit per
cell, MLC with 2 bits per cell and TLC with 3 bits per cell)
will also not materially affect the nature and spirit of the
present invention, though each technology may require dif-
terent sets of Controller Memory Commands 145 to imple-
ment read, write and erase operations, as well as different
operating parameters, and may present different tradeoifs
regarding the monitoring, assessment and treatment of the
health of the flash memory embodied 1n the Flash Memory

Chips 110.

[0080] Flash Controller 120 utilizes a standard HOST Sys-
tem Interface 130 to communicate with a host system (e.g., to
receive System Memory Commands 135), and a standard
Channel Interface 125 to communicate with the Flash
Memory Chips 110 (e.g., to 1ssue Controller Memory Com-
mands 145). Channel Interface 125 1s often implemented as a
distinct hardware device (typically including firmware as
well) for each separate Flash Memory Chip 110, though it
could also be integrated with other components of Flash
Controller 120. Channel Interface 125 operates ata “channel”
level, where a channel generally corresponds to a Flash
Memory Chip 110 (or to a group of Flash Memory Chips 110
or LUNSs connected to the same physical bus).

[0081] Asnoted above, one of the advantages of the present
invention 1s that none of 1ts functionality requires a particular
manufacturer’s flash memory chips, as this would limit the
interoperability of the present invention with flash memory
chips from other manufacturers, which 1n turn would violate

Feb. 4, 2016

a primary goal of the “Open NAND Flash Interface” (ONFI)
Specification which, since 1ts inception, has been to promote
interoperability of flash memory chips so as to avoid changes
to flash controllers when flash memory chips are replaced
(see, e.g., Section 1.1 of version 1.0, as well as current version
4.0, ofthe ONFI Specification). Nevertheless, a flash memory
chip manufacturer might elect to incorporate some or all of
the functionality of the present invention into its flash
memory chips without departing from the spirit of the present
invention. For example, a vertically integrated flash memory
chip manufacturer might also control the design of the asso-
ciated flash controller (and perhaps even the design of an SSD
or other tlash storage device 1tself), 1n which case interoper-
ability might be of little concern.

[0082] Flash Controller 120 incorporates standard (“STD”)
Flash Controller Firmwar 122 to perform many of the func-
tions of typical flash controllers, including, for example, (1)
translating System Memory Commands 135 into Controller
Memory Commands 145 (via standard FTL mapping tech-
niques); (11) wear leveling, designed to evenly distribute P/E
cycles among the various blocks of flash memory; (111) gar-
bage collection, to recycle previously written blocks of flash
memory so that they are “ifree” to be written; and (1v) ECC
error correction, employed to detect and correct read errors 1n
particular sectors of flash memory during a read operation.

[0083] STD Flash Controller Firmware 122 utilizes
Memory 128 to perform 1ts various functions. Memory 128
typically consists of DRAM and SRAM or other cache
memory, as well as non-volatile storage, such as dedicated
flash memory separate and distinct from the flash memory on
Flash Memory Chips 110. In another embodiment, the non-
volatile portion of Memory 128 could be integrated into one
or more of the Flash Memory Chips 110. Moreover, Memory
128 1tself could be physically located outside of Flash Con-
troller 120, or even outside of SSD 100, though 1t 1s typically
located within Flash Controller 120 to enhance performance
by minimizing access time.

[0084] Inone embodiment, the functionality of the present
invention 1s distributed between STD Flash Controller Firm-
ware 122 and the Navigator module 124. In this embodiment,
one of the design goals was to minimize the revisions to STD
Flash Controller Firmware 122 (1.e., to leverage existing
functionality and maximize interoperability with third-party
flash controllers) while retaining the functionality of the
present invention, much of which 1s incorporated within
Navigator module 124. Moreover, Memory 128 1s shared
between STD Flash Controller Firmware 122 and Navigator
module 124, though each may also carve out its own dedi-
cated (and potentially encrypted) areas of memory.

[0085] Itshould be emphasized, however, that the function-
ality of the present invention and of standard flash controllers
could be distributed differently, divided among additional
physical or conceptual modules, or combined into a single
integrated module, without departing from the spirit of the
present invention. Moreover, while standard flash controllers
are often implemented as ASIC devices, the distribution of
functionality within Flash Controller 120 among software,
firmware and hardware 1s a result of engineering design
tradeolls that are independent from the nature and spirit of the
present invention. Finally, it should be noted that some or all
of the functionality of the present invention could be external
to Flash Controller 120, integrated within a Flash Memory

Chip 110, and even located physically outside of SSD 100.

US 2016/0034206 Al

[0086] While notshown in FIG. 1, an encrypted AFT 1nter-
face to the test mode of each Flash Memory Chip 110 can also
be employed, as noted above, to enable Flash Controller 120
to modify the values of the operating parameters stored within
Operating Parameter Registers 116, without revealing the
flash chip manufacturer’s proprietary information, such as the
names, values and precise functionality of the operating
parameters. This AFT interface could be embodied anywhere
within (or potentially even external to) Flash Controller 120.
A similar AFT mterface can also be employed to access test
chips during an offline characterization phase, as described
below 1n greater detail with reference to FIG. 4.

[0087] The interaction between Navigator module 124 and
STD Flash Controller Firmware 122, which will be explained
in greater detail below with reference to FIGS. 2 and 3, relates
to the monitoring and assessment of the health of the flash
memory within Flash Memory Chips 110 during the opera-
tional lifetime of SSD 100, based upon historical as well as
current “health metrics,” and to the actions taken in response
(e.g., to modily current operating parameters upon a transi-
tion to a new health stage, and to employ less extreme pre-
ventive measures in the interim to extend the duration of the
current health stage).

I1I. Navigator

[0088] A. Navigator Architecture and Interaction with
Standard Flash Controller Firmware

[0089] Turning to FIG. 2, Navigator module 200, 1n one
embodiment, receives various “health metrics” from STD
Flash Controller Firmware 122, which Navigator module 200
analyzes to determine whether to generate “Navigator Com-
mands” which, upon being constructed into the approprnate
format by Command Constructor 280, are 1ssued to STD
Flash Controller Firmware 122. For example, one Navigator
Command 1nstructs STD Flash Controller Firmware 122 to
modily current operating parameters (for one or more LUNSs
in Flash Memory Chips 110) upon a transition to a new health
stage (1.e., by replacing them with the predetermined set of
operating parameters stored 1n Operating Parameter DB 275
corresponding to that new health stage), while others employ
less extreme preventive measures in the imnterim to extend the
duration of the current health stage.

[0090] These Navigator Commands, discussed 1n greater
detail below, are selected by Inference Engine 250, based
upon an analysis of the health metrics, by Health Metric
Analyzer 260, and a decision-making process implemented
by Decision Trees module 270. Inference Engine 250 relies
not only upon the current health metrics received from STD
Flash Controller Firmware 122, but also upon historical
health metric data maintained in History DB 225. In one
embodiment, Operating Parameter DB 275 and History DB
225 are implemented within non-volatile (and potentially
encrypted) areas of Memory 128, and shared with STD Flash
Controller Firmware 122 (e.g., so 1t can generate the appro-
priate Controller Memory Commands 1435 to modify a par-
ticular LUN’s operating parameters). Standard performance/
security tradeotifs may dictate whether information 1s passed
“by reference” or “by value.”

[0091] As noted above, 1t 1s desirable to minimize the revi-
sions to STD Flash Controller Firmware 122 1n order to
leverage existing functionality and maximize interoperability
with third-party flash controllers. For example, STD Flash
Controller Firmware 122 1s typically responsible for 1ssuing
all Controller Memory Commands 145 to the Flash Memory

Feb. 4, 2016

Chips 110 (via Channel Interface 125), which enables 1t to
monitor and maintain a great deal of data relevant to the health
of the flash memory. For example, it knows the total number
of P/E cycles performed on each block of each LUN (which 1t
uses, for example, to implement 1ts wear-leveling process). It
also maintains a “bad block list” including blocks that were
designated as “bad” by the manufacturer of Flash Memory
Chips 110, as well as blocks that “wear out” during the
operational lifetime of SSD 100 (e.g., blocks that can no
longer be written successiully). In addition, 1t knows the
timing of read, write and erase operations, as well as how
many read errors were detected 1n any given sector (which 1t
uses, for example, to implement 1ts ECC error correction
Process).

[0092] In one embodiment, an interrupt mechanism 1s
employed, and Navigator module 200 provides certain
thresholds (discussed in greater detail below) to STD Flash
Controller Firmware 122. Upon detecting a “threshold viola-
tion” (e.g., detecting more than 10 errors 1n a sector while
reading a page of data from the Flash Memory Chips 110),
STD Flash Controller Firmware 122 issues an interrupt to
notily Navigator module 200 of the threshold violation, and
provides relevant health metrics pertaining to that threshold
violation. Over time, Navigator module 200 analyzes and
makes certain inferences from this information, and main-
tains an historical record of health metric data 1n History DB
225. In one embodiment, each time Navigator module 200 1s
notified by STD Flash Controller Firmware 122 of a threshold
violation, it analyzes the health metrics pertaining to that
threshold violation, as well as historical health metrics stored
in History DB 225, to determine whether to issue one or more

Navigator Commands to STD Flash Controller Firmware
122.

[0093] In one embodiment, discussed in greater detail
below with reference to FIG. 3, Inference Engine 2350
employs deterministic algorithms by generating particular
“conditions” based upon available health metrics, and utiliz-
ing Decision Trees module 270 to determine which, 1f any,
Navigator Commands to select based upon those conditions.
In other embodiments, standard neural network or other
machine-learning techniques are employed in real time to
continually modify (or even regenerate) models that predict
which Navigator Commands are most appropriate in light of
the available current and historical health metric data. Infer-
ence Engine 250 utilizes such predictive models to 1n effect
“train” 1tself over time to make better predictions that are
designed to achieve one or more weighted goals (e.g., maxi-
mum P/E cycles per health stage, minimal write timing, etc.).
Over time, Inference Engine 250 analyzes actual health met-
ric data obtained from the Flash Memory Chips 110, which 1t
uses to modily the weighting of these goals 1n order to
improve its predictive ability.

[0094] B. Threshold Violations and Health Metrics

[0095] When SSD 100 begins its operational lifetime,
Navigator module 200 has at 1ts disposal (obtained from an
offline characterization phase described below with reference
to FIGS. 4-7) multiple sets of operating parameters, each set
corresponding to a particular health stage (and including one
or more waypoints—i.e., alternate sets of read parameters).
These sets of operating parameters are stored 1n

[0096] Operating Parameter DB 275, and the set corre-
sponding to the imitial health stage 1s used by STD Flash
Controller Firmware 122 to replace the contents of Operating
Parameter Registers 116 in each LUN of each Flash Memory

US 2016/0034206 Al

Chip 110. Over time, when the health of a particular LUN
dictates a change 1n health stage, the contents of Operating
Parameter Registers 116 associated with that LUN are
replaced with the set of operating parameters corresponding
to that next health stage. Thus, at any given time, each LUN
may be 1n a different health stage from that of other LUNSs,
whether 1n the same or in different Flash Memory Chips 110.

[0097] In one embodiment, Navigator module 200 moni-
tors the health of each LUN (and, to some extent, 1ts compo-
nent blocks, sectors, pages, etc.), and provides STD Flash
Controller Firmware 122 with “soft” and “critical” thresholds
(associated with the current health stage of a particular LUN)
for use 1n detecting threshold violations. These thresholds are
updated upon that LUN’s transition to a next health stage. The
purpose of these thresholds 1s to filter out insignificant data
that need not be reported to Navigator module 200, but still
provide Navigator module 200 with advance warnings so that
it can determine whether 1t can employ any preventive mea-
sures before the situation deteriorates to the point that a tran-
sition to the next health stage 1s warranted.

[0098] For example, a “critical” threshold of 36 might be
employed for bit errors detected 1n a sector during read opera-
tions on data written with 40-bit ECC. If STD Flash Control-
ler Firmware 122 detects more than 40 bit errors 1n one or
more sectors during a page read, the data in those sectors are
“unrecoverable” and require “read retries” in an etfort to
recover the data in all such sectors. If the maximum number of
retries has been attempted without successtully recovering
the data 1n all such sectors, a “read failure” has occurred. But
STD Flash Controller Firmware 122 can warn Navigator
module 200 1n advance that a sector 1s getting close to the
point of an unrecoverable error—e.g., once 1t exceeds 36 bit
errors—to enable Navigator module 200 to determine, for
example, whether 1t should transition the LUN to the next
health stage, or perhaps employ less severe preventive mea-
sures.

[0099] As noted above, the bit error rate (BER) 1n a par-
ticular LUN or block tends to increase over time as a health
stage progresses—e.g., as a result of cumulative wear. So,
other “soft” thresholds (e.g., 10, 15 and 20) are also employed
to provide additional advance warning to Navigator module
200 as the current health stage progresses. In one embodiment
(discussed below), Navigator module 200 employs a set of
soit thresholds that “increase” (in severity) in recognition of
the fact that BER will likely increase throughout the current
health stage. Navigator module 200 modifies the current
“soft” threshold used by STD Flash Controller Firmware 122
upon detecting, for example, a cumulative number of LUN-
wide soft threshold violations that exceeds an internal thresh-
old. In this embodiment, these thresholds are updated once
the LUN transitions to the next health stage (e.g., to reflect
certain competing factors—such as the “less healthy” dete-
riorating status of the LUN, which can result in more errors,
as contrasted with the higher level of stress associated with
the next stage, which may 1nitially result in fewer errors).

[0100] In one embodiment, threshold violations (TVs) are
categorized into three ditferent types: (1) soft TVs, (2) critical
TVs and (3) read failure TVs (1.e., the failure to recover data
in all sectors of a page read after exceeding a maximum
number of read retries). Soft and critical thresholds can be
defined not only for read errors (BER), but also for timing
violations, such as the total elapsed time required to complete
a write, erase or read operation. For example, a flash chip
manufacturer may specily a maximum time constraint of 2 ms

Feb. 4, 2016

to erase a block of flash memory. To warn Navigator module
200 1n advance of a potential problem, a critical threshold of
1.8 ms, and a series of soft thresholds (e.g., at 1.2 ms, 1.4 ms
and 1.6 ms) may be employed.

[0101] Similar timing thresholds may be employed for read
and write operations. Note, however, that timing for write
operations might actually decrease as cumulative P/E cycles
cause a block to degrade (e.g., due to “trapped charge™ or
residual voltage—say 3V—that actually makes 1t quicker to
ramp up to a desired 5V). Nevertheless, the principle remains
the same, even if the thresholds decrease in value as they
increase in severity. An additional timing-related read thresh-
old 1s also employed 1n another embodiment with respect to
the percentage of waypoints utilized to complete a successiul
read operation (e.g., a critical threshold of 9 out of atotal of 12
waypoints, and additional lower soft thresholds).

[0102] In one embodiment, Navigator module 200 main-
tains 1n Operating Parameter DB 275 a “MAX P/E Count”
associated with each health stage, so that STD Flash Control-
ler Firmware 122 can automatically transition to the next
health stage when this MAX P/E Count 1s exceeded for any
particular LUN. In this embodiment, STD Flash Controller
Firmware 122 will 1ssue a MAX P/E Count critical TV, so that
Navigator module 200 can perform certain “housekeeping”™
tasks 1n between health stages, as discussed 1n greater detail
below. In other embodiments, 1n light of the fact that STD
Flash Controller Firmware 122 already tracks every P/E cycle
(per block, as well as per LUN, for wear-leveling purposes),
a TV could be 1ssued for every P/E cycle. However, this level
of granularity may not be worth the “performance tradeoil” of
processing every P/E cycle, since Navigator module 200 will
receive other indicators of wear, such as BER and timing TV's
which also 1nclude a current cumulative P/E cycle count for
the relevant block 1n which the TV occurred.

[0103] In one embodiment, Navigator module 200 main-
tains a RAM bultter for the TVs and their associated health
metric data obtained from STD Flash Controller Firmware
122. As Navigator module 200 analyzes each TV, 1t also stores
information relating to that current TV 1n non-volatile
memory 1n History DB 225 which, 1n this embodiment, main-
tains only the most recently processed TV and its associated
health metric data. In other embodiments, data relating to all
or some subset of prior TVs may also be maintained, and data
relating to “unimportant” TVs may be discarded.

[0104] The following tables illustrate one embodiment of
(1) the various types of health metric data that may be pro-
vided to Navigator module 200 by STD Flash Controller
Firmware 122 with respect to a current TV (Table 1), (11) the
various types of health metric data that Navigator module 200
generates and stores 1n History DB 225 (‘Table 2), and (111) a
representative set of Navigator Commands that Inference
Engine 250 selects for submission to STD Flash Controller
Firmware 122 (Table 3). These Navigator Commands, and
the “conditions” that determine when they will be employed,

will be discussed 1n greater detail below with reference to
FIG. 3.

[0105] Turning to Table 1, each TV includes the precise
address or location of the TV, which enables Navigator mod-
ule 200 to determine, for example, whether prior health met-
ric data (e.g., stored 1n History DB 225) applied to that same
block, as well as the same LUN (e.g., to aid in detecting an
“outlier” block). In other cases, a particular page (even across
different blocks) may be the cause of repeated errors.

US 2016/0034206 Al

[0106] As noted above, the type of TV may be significant.
For example, most TVs will be soft TVs, and may not neces-
sitate a Navigator Command, at least until they recur with
greater frequency and 1n combination with other historical
“conditions,” as will be explained below with reference to
FIG. 3. Critical TVs are, of course, more likely to result in
Navigator Commands, though here too the historical context
will ultimately determine the appropriate action. Read Failure
TVs are, 1n ellect, a special type of very critical TV (analo-
gous to a “disaster scenar1io” 1in that it resulted in lost data) that
may indicate a “worn out” block that needs to be placed
permanently on a bad block list (particularly in light of the
exhaustion of all waypoints, which offer significant advan-
tages over the standard “read retry” process).

[0107] It should also be noted that Table 1 1illustrates a
simple scenario in which the soft and critical TVs are
assumed to be BER-related TVs. In other embodiments, the
TV type also distinguishes BER -related TVs from write tim-
ing TVs, erase timing TVs, etc.

[0108] In one embodiment, the “timestamp” 1s imple-
mented via a “real-time clock™ (RTC) found 1n certain tlash
controllers. If a RTC i1s not available, other indirect means of
approximating the time that a TV occurred can be employed.
For example, the cumulative P/E count across SSD 100 can
provide a rough approximation. Alternatively, a cumulative
count of the number of read, write and erase commands (or
individual read, write or erase counts) can provide a basis for
inferring the actual time of the current TV.

[0109] Finally, the cumulative P/E cycle count for the block
from which the TV was generated, along with a count of the
number of read operations since the last write of that block,
can be used for a variety of purposes. For example, 1t can aid
in the detection of outlier blocks (e.g., when compared to the
P/E cycle count of other blocks 1n the LUN), as well as
distinguishing endurance 1ssues (“bad block™) from retention
1ssues (“bad data”)—e.g., where many reads have occurred
since a block was last written, potentially pointing to a reten-
tion error that may be resolved simply by moving the data to
another block. It errors 1n that same block occur 1n the near
future, however, the block 1tself may become suspect.

TABLE 1

Health Metrics from Current TV

CATEGORY DESCRIPTION
Address Chip, LUN, Block, Page, Sector
Type Soft
Critical
Read Failure
[Could also distinguish various Timing TVs, etc.)
Timestamp Actual Time of occurrence of TV
Block state Cumulative P/E cycle count of Block and
Reads since last Write
[0110] Turning to Table 2, Navigator module 200, upon

processing a current TV, stores all of the health metrics asso-
ciated with that current TV 1n History DB 225 (overwriting
the prior “most recent TV” health metrics, in one embodi-
ment). For example, if repeated BER TVs are generated
within the same block, but the P/E cycle count remains
unchanged, this may indicate a retention 1ssue warranting the
moving of the data to another block (as opposed to an endur-
ance 1ssue reflecting wear of that block).

Feb. 4, 2016

[0111] Soft and critical block counts of TVs (since the
block was last erased) facilitate the identification of outlier
blocks over time, as well as the need for raising soft thresh-
olds (e.g., to prevent Navigator module 200 from being over-
whelmed with soft TVs as read errors increase as expected
throughout a current health stage). LUN-wide soft and critical
TV counts also facilitate the detection of LUN-wide patterns.
For example, cumulative critical TVs within the same LUN
may well indicate a LUN-wide problem that warrants transi-
tioning to the next health stage.

[0112] In one embodiment, STD Flash Controller Firm-
ware 122 maintains block and LUN counts, as 1t 1s aware of
every TV that 1t 1ssued. In another embodiment, Navigator
module 200 1s responsible for maintaining these block and
LUN counts. Moreover, total TV counts (soft and critical,
across a block or LUN) could be maintained instead of, or 1n
addition to, separate soit and critical TV counts. As will be
discussed below, internal thresholds are maintained by Navi-
gator module 200 to determine when block and LUN counts
are excessive, potentially requiring a Navigator Command. In
one embodiment (not 1llustrated in Table 2), a timestamp of
the last TV 1n each block could be maintained 1n History DB
225——¢.g., to facilitate detection of outlier blocks, as well as
distinguishing endurance (bad block) from retention (bad
data) 1ssues.

[0113] Finally, upon atransition to the next health stage, the
relative number of soit and critical TVs among the blocks 1n
a LUN 1s examined to determine whether a particular block 1s
“suspicious’” 1n that 1t 1s suspected of being an outlier block.
By setting 1ts “suspicious bit,” future errors in that block
across multiple health stages may in fact confirm that the
block 1s an outhier, and perhaps should be placed on the bad
block list permanently. In one embodiment, the relative block
TV counts are compared, and the “worst” 10% (1.e., those
with the highest TV counts) are marked as “suspicious.” In
other embodiments, an internal threshold of TV counts may
be employed (e.g., to avoid unnecessarily marking a “good”
block as suspicious). In yet another embodiment, that internal
threshold 1s not an absolute TV count, but 1s instead a pre-
defined number of standard deviations from the average TV
count of other blocks.

[0114] Block and LUN counts may, in other embodiments,
represent total soft and critical TVs without regard to whether
the TV 1s a BER-related TV, a write timing TV, erase timing
TV, etc. If separate counts are maintained, different internal
thresholds, as well as different soft and critical thresholds, are
maintained by Navigator module 200.

TABLE 2

Historical Health Metrics

CATEGORY DESCRIPTION

Current TV Health Overwrites Health Metrics from Most Recent TV
Metrics as each TV 1s processed

Block Counts Total # Soft TVs issued for Each Block and

of TVs Total # Critical TVs 1ssued for Each Block

[BOTH since Block last Erased - in one
embodiment]
LUN Counts of TVs Total # Soft TVs issued for Each LUN and
Total # Critical TVs 1ssued for Each LUN
[Reset upon Transition to next Health Stage -
in one embodiment]
Block “Suspicious Set for Each Block if Block deemed “suspicious™
Bit” [Determined upon Transitions to next Health Stage]

US 2016/0034206 Al

[0115] It should be noted that, upon analyzing the health
metrics from both the current TV and historical health metric
data stored and maintained 1n History DB 223 over time,
Navigator module 200 may elect to simply update History DB
225, or also generate one or more Navigator Commands. One
embodiment of a representative set of these Navigator Com-
mands 1s 1llustrated in Table 3.

[0116] Even 1f no Navigator Command 1s warranted (first
row of Table 3), Navigator module 200 will update History
DB 2285, as described above with respect to Table 2. As noted
above, soft TV errors tend to increase as a current health stage
progresses, particularly after early health stages. When this
trend 1s detected, Navigator module 200 instructs STD Flash
Controller Firmware 122 to replace its current soit error
threshold (e.g., relating to BER) with a next higher threshold
(second row of Table 3). This may occur multiple times
throughout a current health stage until a “top” (most severe)
soit threshold 1s utilized (at which point a critical TV may be
on the horizon).

[0117] As noted above, certain historical health metric data
may 1dentily a potential (“bad data”) retention error (e.g.,
when repeated read errors are detected despite the P/E cycle
count remaining unchanged), in which case the problem may
be resolved by moving the data to a “free” block, and recy-
cling the existing block (third row of Table 3). Should that
recycled block exhibit problems in the future, 1t may be
deemed a “suspicious” block (e.g., at the end of a current
health stage), and perhaps eventually be placed on the per-
manent bad block list.

[0118] As noted above, when a particular block becomes
suspected of being an outlier block that 1s wearing faster than
other blocks in the LUN, there are a number of preventive
measures that Navigator module 200 can employ before
“condemning the entire LUN” by transitioning to the next
health stage and moditying the LUN’s operating parameters.
In some cases, STD Flash Controller Firmware 122 may
support the concept of “priority data”—based upon knowl-
edge of different categories of data that require different
levels of usage (e.g., image databases that are relatively rarely
modified). In that scenario, Navigator module 200 may
reduce the priority level associated with the suspected outlier
block, causing STD Flash Controller Firmware 122 to utilize
that block for lower priority (less used) data, at least for the
remainder of the current health stage (after which it may be
marked “suspicious” and await further errors before taking
more drastic action (fourth row of Table 3). In another
embodiment, one or more priority levels may even be capable
of withstanding uncorrectable errors (e.g., a movie, 1n which
a small glitch might not even be noticed).

[0119] When the level of suspicion regarding a potential
outlier block increases, a possible next step may be to prevent
that block from being used temporarily—e.g., 1n one embodi-
ment, for the remainder of the current health stage (fifth row
of Table 3). While most flash controllers maintain only a
permanent bad block list (and thus cannot remove bad blocks
from the list), Navigator module 200 can, in one embodiment,
“rest” a potential outlier block by artificially adding a pre-
defined number to the P/E cycle count associated with that
block and used by STD Flash Controller Firmware 122 for

wear leveling purposes. As a result, the block will not be used
because STD Flash Controller Firmware 122 will assume that

it has already incurred an unusually large number of P/E
cycles relative to other blocks 1n the LUN. But, by subtracting

Feb. 4, 2016

that large number (e.g., at the end of the current health stage),
Navigator module 200 can effectively “unrest” the block so
that 1t will be used 1n subsequent health stages or later 1n the
current health stage. In efiect, the outlier block was wearing
faster than average, but that rate of wear was eflectively
slowed down, at least temporarily. At some point, 1t may
exhibit outlier behavior 1n a future health stage, and may
warrant being placed on the bad block list permanently (the
next most serious Navigator Command 1n this embodiment,
illustrated in the sixth row of Table 3).

[0120] Finally, when the effects of wear become so signifi-
cant that they indicate a LUN-wide problem (e.g., across
many blocks 1in the LUN, as opposed to a few outlier blocks),
then Navigator module 200 will transition to the next health
stage and instruct STD Flash Controller Firmware 122 to
replace the contents of Operating Parameter Registers 116
(associated with that LUN) with the set of operating param-
eters corresponding to that next health stage (seventh and
final row of Table 3). In one embodiment, this transition
occurs automatically when a predefined MAX P/E Count (for
a particular LUN) 1s reached. As will be discussed in greater
detail below with reference to FIGS. 4-7, an automatic tran-
sition 1s warranted because retention was tested successiully
in the offline characterization phase only for that maximum
number of P/E cycles (at which point 1t was determined that a
new health stage with higher stress levels was warranted). In
another embodiment, the MAX P/E Count may be treated as
merely one of many wear indicators, and not necessarily
warrant a health stage transition.

[0121] Itshould be noted that, in this embodiment, no Navi-
gator Commands relating to “read retries” are included 1n

Table 3—i.e., because STD Flash Controller Firmware 122 1s

responsible for managing the “read retry” process, and only
informs Navigator module 200 (apart from BER and read
timing TVs that may occur along the way) if the read opera-
tion proves unsuccessiul (1.e., a read failure TV) after
exhausting all waypoints. In this scenario, the maximum
number of retries 1s equal to the total number of available
waypoints.

[0122] These waypoints have been tested and ordered
(based upon their likelihood of recovering data during a par-
ticular health stage) during an ofiline characterization phase,
and are accessible to STD Flash Controller Firmware 122 via
Operating Parameter DB 275. They are more likely to recover
data than via the conventional approach of simply repeatedly
varying read thresholds. In other words, before each read
retry, a next waypoint 1s used (1.e., by replacing the current
read parameters with that waypoint). This process of cycling
through the waypoints 1n order continues until the data from
all sectors of a page read have been recovered, or all way-
points have been exhausted.

[0123] In an alternative embodiment, Navigator module
200 could be notified of a special critical BER TV, which
indicates that a sector had unrecoverable data (e.g., 41 bit
errors that could not be corrected with 40-bit ECC). In that
scenar10, Navigator module 200 would control the process of
cycling through the waypoints, and might reorder them based
upon real-time health metrics or other factors that suggest a
different ordering than was indicated during the offline char-
acterization phase.

US 2016/0034206 Al

TABLE 3

Navigator Commands

NAVIGATOR

COMMAND DESCRIPTION

NONE No action - just Update History

Raise Soft Error Switch to next higher Soft Error Threshold
Threshold (1f not already at Top one)

MOVE Block Data Move Data to another “free” Block

REDUCE Block Usage Drop Priority Level for Block so it will be used

for data types that receive less usage
(IF feature available on flash controller)

REST Block (Stage) + Artificially cause Block not to be used for the

Move Data remainder of the current Health Stage

BAD BLOCK List Cause Block to be placed on Bad Block List
(Permanent) + permanently

Move Data

TRANSITION to Next Replace Operating Parameters with those

Health Stage associated with Next Health Stage

[0124] C. Dynamic Operation of Navigator

[0125] Turnming to FIG. 3, flowchart 300 illustrates one
embodiment of the dynamic operation of Inference Engine
250, which receives and processes TVs, and, based upon the
health metric data pertaining to the current TV, as well as
historical health metric data from History DB 225, generates
and analyzes “conditions” that determine which, 1f any, Navi-
gator Commands 1t will 1ssue to STD Flash Controller Firm-
ware 122 via Command Constructor 280.

[0126] When STD Flash Controller Firmware 122 1nitiates
a TV mterrupt, Inference Engine 250 1s notified of the TV and
receives, 1n step 310, the health metrics associated with that
TV, as explained above with reference to Table 1. For
example, i1f the Flash Memory Chips 110 were performing a
read operation, and STD Flash Controller Firmware 122
determined that the data revealed one or more sectors having
more bit errors than the current soft threshold, 1t would 1ssue
a TV for each such sector. The health metrics would include
the “location” or address of the TV (e.g., its Chip, LUN,
Block, Page and Sector ID), 1ts type (soft TV, and perhaps soft
BER TV), a timestamp indicating as precisely as possible
when the TV occurred and the state of the block 1n which the
TV occurred (e.g., the cumulative number of P/E cycles
endured by that block, as well as the number of read opera-
tions performed on that block since 1t was last written).
[0127] Inference Engine 250 also consults History DB 225,
in step 315, to retrieve historical health metrics 1n addition to
those relating specifically to the current TV, as explained
above with reference to Table 2. For example, those historical
health metrics include, 1n this embodiment, separate counts of
soit and critical TVs 1n the block in which this current TV
occurred (since the block was last written), as well as separate
counts of soft and critical TVs 1n the LUN 1n which this
current TV occurred (e.g., since the beginning of the current
health stage). In addition, Inference Engine 250 can deter-
mine whether the “suspicious™ bit was set for the block in
which this current TV occurred (e.g., after the previous health
stage).

[0128] Inference Engine 250 then utilizes this current and
historical health metric data to generate, 1n step 320, a set of
“conditions” that will enable 1t to determine whether to 1ssue
one or more Navigator Commands (to STD Flash Controller
Firmware 122) in response to the current TV. As noted above,
this division of labor between Navigator module 200 and
STD Flash Controller Firmware 122 1s a result of engineering
design tradeoils. In other embodiments, Flash Controller 120

Feb. 4, 2016

could implement all of this functionality as a single physical
or conceptual unit, or utilize other units within or external to
SSD 100. As also noted above, the decision to implement
Inference Engine 250 by utilizing deterministic algorithms
(e.g., by generating particular conditions based upon avail-
able health metrics, and utilizing Decision Trees module 270
to determine which, 1f any, Navigator Commands to generate
based upon those conditions.) 1s another engineering design
tradeoff. In other embodiments, standard neural network or
other machine-learning techniques are employed in real time
to continually modify (or even regenerate) models that pre-
dict which Navigator Commands are most appropriate in light
of the available current and historical health metric data.

[0129] Before discussing the analysis of the conditions and
the determination of whether to 1ssue one or more Navigator
Commands (in steps 320, 322 and 325), the remainder of the
steps 1n flowchart 300 will be explained. Regardless of
whether a Navigator Command 1s warranted, Inference
Engine 250 updates History DB 225 1n step 342 (e.g., to
increment the soft or critical TV counts due to the current TV,
as well as to replace the health metrics relating to the most
recent TV with those of the current TV).

[0130] If one or more Navigator Commands 1s warranted,
those commands will, in step 330, be generated via Command
Constructor 280 and 1ssued to STD Flash Controller Firm-
ware 122. If the end of the current health stage for a LUN has
been reached (tested 1n step 335), then Inference Engine 250
will, 1n step 340, perform various “housekeeping’ tasks dur-
ing this transition, such as “unresting” any blocks that had
been rested during the health stage, and resetting soft and
critical thresholds as well as (in one embodiment) LUN
counts. In addition, as discussed above, the total TV counts
for the blocks 1n the LUN will be compared to determine
whether to set the “suspicious” bit of one or more blocks (1.e.,
because they have generated more TVs than the “average”

block).

[0131] Once this housekeeping step 340 1s completed (or 1f
not at the end of the current health stage per step 335), History
DB 225 1s then updated in step 342 as noted above, and
Navigator module 200 returns from the current TV interrupt
in step 350. In one embodiment, before returning from the

interrupt, Inference Engine 250 determines an “estimated
remaining life” of SSD 100.

[0132] In this embodiment, the estimated remaining life
reflects the estimated cumulative wear—e.g., by summing,
for all prior health stages, the product (for each health stage)
of the P/E cycle count generated during that health stage and
the level of stress applied during that health stage (e.g., as a
percentage of the stress level specified by the manufacturer of
Flash Memory Chips 110). This percentage of the manufac-
turer’s specified stress level 1s determined, in one embodi-
ment, by comparing the relative values of the operating
parameters employed by Flash Controller 120 during each
health stage with the fixed set of operating parameters speci-
fied by the manufacturer. For example, 1t the relative values
for a given health stage average 90% of the average manufac-
turer values, then the P/E cycle count for that health stage
would be multiplied by 0.9.

[0133] This “estimated remaining life” 1s then used by
Navigator module 200 during subsequent health stages (e.g.,
as a “condition” affecting future decisions regarding Naviga-
tor Commands). In one embodiment, the estimated cumula-
tive wear 1s compared to the “expected” cumulative wear (1.¢€.,
the same formula but using the expected maximum number of

US 2016/0034206 Al

P/E cycles per stage, rather than the actual number of P/E
cycles). In that embodiment, 11 the estimated cumulative wear
exceeds the expected cumulative wear, a health stage transi-
tion 1s automatically warranted (1.e., indicating that the flash
memory 1s wearing faster than expected, requiring an early
health stage transition). In another embodiment, once a
threshold amount of remaining life 1s reached (e.g., less than
10% remaining), an LED on SSD 100 1s turned on to notify
the user to replace Flash Memory Chips 110, 1f such func-
tionality 1s available, or otherwise to replace entire SSD 100.
In yet another embodiment, an “imminent failure” notifica-
tion 1s provided (e.g., to the host) so that various other actions
may be taken in response.

[0134] Returning to the analysis of the conditions and the
determination of whether to 1ssue one or more Navigator
Commands, one embodiment of the set of conditions gener-
ated by Inference Engine 250 in step 320 1s 1llustrated in Table
4 below. Fach column represents a condition, and each row
represents a particular Navigator Command that 1s generated
as a result of a particular combination of conditions being
satisfied. The cells in each row of Table 4 indicate a particular
combination of conditions that are either satisfied (“Y”’), not
satisfied (“N”’) or 1gnored (“#’—i.e., “don’t care”) by Deci-
sion Trees module 270 1n determining whether the Navigator
Command corresponding to that row should be 1ssued.

[0135] It should be noted that Table 4 1s not intended to be
a comprehensive list of conditions or decision-making algo-
rithms, but 1s instead meant to 1llustrate how certain combi-
nations of conditions atfect the decision-making process. It
will be evident to one skilled in the art that a myriad of other
conditions, and algorithms for making “Navigator Command
decisions” based upon those conditions, could be employed
without departing from the spirit of the present invention.
Note also that certain Navigator Commands appear in more
than one row, 1n an effort to illustrate how different scenarios
(combinations of conditions) might result 1n 1ssuance of the
same Navigator Command. Finally, 1t should be noted that, in
other embodiments, multiple Navigator Commands are gen-
erated 1n response to a single TV.

[0136] Looking at the columns of Table 4 (order not being
relevant 1n this embodiment), the condition in the leftmost
column indicates whether the current TV 1s a critical one,
while the next column indicates whether the current soit error
threshold 1s at the “top” limit. As noted above, in some
embodiments, separate soit and critical thresholds may be
employed to distinguish BER-related TVs from write timing
TVs, erase timing TVs, etc. In that scenario, the precise TV
type 1s employed to distinguish whether the current soft error
threshold 1s at the top limit for that particular TV type.

[0137] As noted above, Navigator module 200 provides
multiple levels of soit error thresholds to STD Flash Control-
ler Firmware 122. For example, it may 1nitially provide a soft
BER threshold of 10 bit errors, and as 1t sees more errors
accumulate during the current health stage, raise that thresh-
old to 135, then 20 and finally to 25. But, it will not continue to
raise that threshold indefinitely 1n this embodiment because
the number of errors 1s approaching the critical threshold—
e.g., 36 with 40-b1t ECC. So, in this scenario, once itraises the
soit threshold to 25, that 1s considered the “top” limit. In other
embodiments, analogous sets of thresholds are employed for

non-BER types of TVs.

[0138] The condition 1n the next column relates to a total
(soft and critical) TV count for the particular block in which
the current TV occurred. In one embodiment, that total

Feb. 4, 2016

reflects all types of TVs (BER, timing, etc.), while 1n other
embodiments, separate counts are maintained for the differ-
ent types of TVs, and separate counts for soft v. critical TVs
as well. In any case, the central purpose of this condition is to
distinguish TVs accumulating 1n this block from those 1n
other blocks, so that Inference Engine 250 can detect a trend
indicating that this block 1s an outlier block.

[0139] Inone embodiment, the blocks 1n the relevant LUN
(in which the current TV occurred) are compared to one
another to determine whether the relevant TVs 1n this block
differ by one or more standard deviations from the average of
those 1n other blocks. In this embodiment, the required num-
ber of “threshold” deviations 1s mitially relatively high (in
recognition of the fact that errors tend to increase over the
course of a health stage), and 1s lowered over time as the
health stage progresses.

[0140] The conditions 1 the next two columns relate to
LUN-wide counts. For example, in one embodiment, two
separate LUN-wide counts are maintained—one for a total
number of soft TVs (of all types—BER, timing, etc.), and one
for a total number of critical TVs (also of all types). An
internal threshold 1s defined for each of these two LUN-wide
counts. In other embodiments, separate LUN-wide counts
could be maintained for different types of TVs (BER, timing,
etc.), or a single total LUN-wide TV count be maintained for
all TV (soft, critical, BER, timing, etc.). As will be discussed
below, the accumulation of soft TVs (exceeding a predefined
internal threshold) may represent a distinctly different sce-
nario (e.g., indicating that a soit TV threshold should be
increased, as more TVs accumulate while the current health
stage progresses) than does an accumulation of critical TVs
(e.g., mndicating that many blocks 1n the LUN are exhibiting
undue wear, and that perhaps a transition to a next health stage
1s warranted).

[0141] The condition 1n the next column reflects whether
the block 1n which the current TV occurred 1s already “sus-
picious” (e.g., based on an unusually high TV count during
the previous health stage). If so, the current TV may, for
example, be more likely to result (when considered in com-
bination with other conditions) in the block being placed
permanently on the bad block list.

[0142] The condition 1n the next column indicates whether
the cumulative P/E cycle count for the block in which the
current TV occurred has changed since the most recent TV
(e.g., potentially indicating that the problem may be one of
retention, rather than block wear). The condition 1n the final
column 1ndicates whether the TV 1s a read failure TV, a very
serious condition indicating that data loss has occurred (po-
tentially implicating the relevant block, which may well
result in that block being placed permanently on the bad block
list).

[0143] The individual rows 1 Table 4 will now be dis-
cussed, to illustrate how particular combinations of condi-
tions are analyzed 1n step 322, which may (as retlected in
decision step 325) result in the 1ssuance of particular Navi-
gator Commands 1n step 330. The first row illustrates a sce-
nario 1 which no “key” condition 1s met, and thus no Navi-
gator Command 1s warranted per decision step 325, and
control returns to step 342 to update History DB 225.

[0144] For example, one of the most common scenarios
(particularly early 1n a health stage) 1s a soft TV 1n a block
which 1s neither “suspicious” nor deviating from other blocks
due to this current TV (1.e., not an outlier block), and which

does not cause the LUN-wide soft TV threshold to be

US 2016/0034206 Al

exceeded. In this common scenario, no Navigator Command
1s warranted, and Inference Engine 250 will effectively wait
until more TVs occur to take any action. Other conditions are
not relevant in this case (e.g., whether the “top” soft TV limit
has been reached or whether the P/E cycle count 1n this block
has changed since the most recent TV) because no troubling
wear 1ndicators have yet emerged.

[0145] As the health stage progresses and soft TVs begin to
accumulate, these early warmings eventually indicate a
slightly more serious situation, as illustrated in the second
row of Table 4. For example, once the current soft TV causes
the LUN-wide soit TV count to be exceeded (but not the
LUN-wide critical TV count), and the top soit error threshold
has not yet been employed, then these wear indicators suggest
that the soft error threshold should be increased. In other
words, the large number of soft TVs has not yet resulted 1n a
suificiently serious LUN-wide condition (even if the block
was deemed “suspicious” and may be an outlier). Before any
significant block-wide or LUN-wide conclusions are drawn,
increasing the soft error limit will provide additional “early
warnings” before more serious action 1s warranted (such as
resting a block, permanently placing 1t on a bad block list, or
even transitioning to the next health stage). In another
embodiment, multiple Navigator Commands might be war-
ranted 1n this scenario. For example, 1n addition to raising the
soit error limit, a suspicious outlier block might also be rested
as a preventive measure.

[0146] The third row of Table 4 illustrates a slightly differ-
ent scenario, 1n which a critical TV occurs 1n a block in which
the P/E cycle count has not changed since the mostrecent TV,
Yet, the block 1s neither suspicious nor appears to be deviating
from the norm, and no LUN-wide soft or critical TV count
threshold has been exceeded. This scenario therefore sug-
gests “bad data™ (1.e., a retention error or read disturb error)
rather than a “bad block™ (endurance error due to wear). To
address this “critical” error before a read failure occurs, the
“move data” Navigator Command 1s 1ssued to move the data
to another (“free”) block, which should alleviate the retention
1ssue. The original block can also be recycled and used again
(though the historical data from History DB 225 could even-
tually reveal a separate wear problem with this block). It
should be noted that, merely monitoring cumulative P/E
cycles would not reveal this distinction between “bad data™
and a “bad block,” and the failure to detect this distinction
could ultimately result 1n retention-related read failures.

[0147] As soft TV errors continue to increase during the
current health stage, repeated soft TV errors 1n a particular
block may eventually reveal an outlier block (as 1llustrated in
the fourth row of Table 4), despite the lack of any LUN-wide
implications (in soit or critical TV counts). Even 1f the block
has not previously been deemed “suspicious,” 1t may be
advisable to reduce the usage of this block (e.g., before 1t
incurs a more severe critical TV). It different “priority data™
levels are supported 1n STD Flash Controller Firmware 122,
then a “reduce usage” Navigator Command 1s 1ssued to
reduce the priority level of the data to be written into this
block (at least until the block can be reassessed at the end of
the current health stage). It this feature 1s not available, then
the block may need to be “rested,” as discussed below.

[0148] Eventually, a critical TV may cause a block to be
revealed as an outlier block, as illustrated 1n the fifth row of
Table 4, despite the lack of any LUN-wide implications. In
that case, the block warrants being “rested” (and the data
moved to another “free” block). As discussed above, although

Feb. 4, 2016

the concept of temporarily “resting” a block 1s not typically
available 1n flash controllers, an indirect approach 1is
employed 1n one embodiment to achieve the same result. For
example, the P/E cycle count for the block 1s increased arti-
ficially by adding a predefined number to the block’s current
P/E cycle count, causing the wear-leveling algorithm 1n STD
Flash Controller Firmware 122 to prevent this block from
being used (1.e., because it assumes the block has already
incurred an unusually large number of P/E cycles relative to
other blocks in the LUN). As noted above, this amount can be
subtracted at the end of the current health stage or later in the
current health stage, effectively “unresting” the block. Even-
tually, 1n future health stages, the block may exhibit enough
wear to warrant being placed permanently on the bad block
list. In any event, the rate of wear (from the perspective of the
entire LUN, as well as this block) has been reduced, thereby
extending the length of the current health stage and reducing
cumulative wear due to the relatively lower stress levels being
applied during the current health stage.

[0149] Another scenario warranting the resting of a block 1s
1llustrated in the sixth row of Table 4. Even a soft TV may
cause the block to be revealed to be an outlier (even though the
block was not designated as a “suspicious” block 1n a prior
health stage). Given the lack of any LUN-wide implications,
resting the block 1s an appropriate preventive measure. In
another embodiment, after resting the block 1n either of the
scenarios 1llustrated 1n the fifth and sixth rows of Table 4, the
block could be “unrested” during the current health stage
(e.g., based on other health metrics indicating that the health
of this block has improved), rather than waiting until the
transition to the next health stage.

[0150] The seventh row of Table 4 1llustrates an even more
serious scenario 1 which a critical TV occurs 1n a block
previously marked as “suspicious.” In that scenario, assuming
no LUN-wide implications, the Navigator Command will
instruct STD Flash Controller Firmware 122 to permanently
place the block on the bad block list (to avoid possible future
read failures). Similarly, 1f a read failure TV occurs in such a
block (as illustrated in the eighth row of Table 4), the same
Navigator Command 1s warranted (though such read failures
are generally avoided as a result of reacting to earlier warmn-
ngs).

[0151] Finally, the last two rows of Table 4 illustrate the
most serious scenarios, which warrant a transition to the next
health stage and a replacement of operating parameters. The
second-to-last row of Table 4 illustrates the scenario in which
a critical TV causes the LUN-wide critical TV count to
exceed 1ts predefined threshold, whereas the last row 1llus-
trates the scenario 1n which a soft TV causes the LUN-wide
soit TV count to exceed its predefined threshold, and the soft
error threshold 1s already at its top limit. In both of those
cases, a transition to the next health stage (with higher stress
levels) 1s warranted due to the accumulation of LUN-wide
TVs whose “symptoms” cannot be addressed, as they are not
1solated to particular outhier blocks. By transitioning to the
next health stage before read failures begin to occur, the
operational lifetime of SSD 100 1s effectively extended.

[0152] As noted above, though not illustrated in Table 4,
STD Flash Controller Firmware 122 will automatically tran-
sition to the next health stage (and notily Inference Engine
250) 1n the event 1t detects that the MAX P/E Count (associ-
ated with the current health stage) has been exceeded. In this
case, a transition to the next health stage 1s warranted because

US 2016/0034206 Al
16

retention has only been tested up to this MAX P/E Count (as
will be explained below with reference to FIGS. 4-7).

[0153] Additional alternative embodiments of Navigator
module 200 will be discussed below, after discussing the
offline characterization phase (1n FIGS. 4-7) in which optimal
sets of operating parameters associated with each health stage

are determined—yprior to the beginning of the operational
lifetime of SSD 100.

TABLE 4

Feb. 4, 2016

I'V. Offline Characterization Phase
[0156] A. Key Objectives
[0157] Turning to FIG. 4, block diagram 400 1llustrates one

embodiment of key components of the present invention that
implement the offline characterization phase of the present
invention. Before examining these components, 1t 1S 1mpor-
tant to recognize that a general overall objective of this offline

Navigator TV Processing

CONDITION
P/E
LUN LUN Unchanged
TOP BLOCK Soft TV Critical BLOCK from
Critical Soft Error TV Count> Count> TV Count> already Most Read
COMMAND TV Limuit Deviation MAX MAX Suspicious Recent TV ~ Failure
NONE N # N N N N i N
Raise Soft Error N N f Y N i # N
Threshold
MOVE Y # N N N N Y N
Block Data
REDUCE N N Y N N = i N
Block Usage
REST Y i Y N N N i N
Block (Stage) +
Move Data
REST N Y Y N N N # N
Block (Stage) +
Move Data
BAD BLOCK List Y # i N N Y i N
(Permanent) +
Move Data
BAD BLOCK List N i N N N Y # Y
(Permanent) +
Move Data
TRANSITION to Y # i # Y # i N
NEXT
Health Stage
TRANSITION to N Y i Y N i i N
NEXT

Health Stage

[0154] It should be emphasized that, by monitoring not just
cumulative P/E cycles (age), but also various indicators of
wear (including those illustrated 1n Tables 1 and 2 and
described above), Navigator module 200 1s able to satisiy the
key objectives set forth above. By distinguishing retention
issues (“bad data”) from endurance issues (“bad blocks™),
data can be moved to extend health stages while minimizing
read failures and repeated read retry attempts. Health stages
are also extended by detecting and resting or reducing the
usage of outlier blocks, effectively delaying inevitable LUN-
wide ramifications (as well as unnecessary read retry attempts
and read failures), until health stage transitions (and modifi-
cation ol operating parameters to increase stress levels) are
eventually required 1n order to continue to ensure data reten-
tion.

[0155] In one embodiment, the appropriate stress levels to
be applied during each health stage (1.e., the appropnate
corresponding sets of operating parameters, including way-
points), as well as the expected number and maximum length
of health stages (reflected, for example, 1n a cumulative or
per-stage MAX P/E Count) are determined prior to the begin-
ning of the operational lifetime of SSD 100. In this embodi-
ment, such determinations are made during an oftline char-

acterization phase described below with reference to FIGS.
4-7.

characterization phase 1s to 1dentily sets of operating param-
eters that apply the least amount of stress to the flash memory
for the most number of P/E cycles, while yielding the longest
retention times. In other embodiments, principles of the
present invention may be employed to consider and optimize
for other factors, such as minimal read, write and/or erase
times, lowest ECC, etc.

[0158] But, as noted above, these key factors (stress, P/E
cycles and retention) are in conflict with one another. Lower
stress facilitates longer endurance, but may be insuificient to
ensure desired retention. Higher stress facilitates longer
retention times, but limits endurance, particularly as more
P/E cycles accumulate. Thus, it 1s apparent that these com-
peting goals must be balanced throughout the offline charac-
terization phase.

[0159] It 1s also important to recognize that certain design
and performance constraints must be taken into account. For
example, the manufacturer of Flash Memory Chips 110
specifies certain guaranteed or expected performance charac-
teristics, including retention time (e.g., 1 year), expected
cumulative P/E cycles (e.g., 5000 P/E cycles), ECC capability
(e.g., 60 bits) and various timing constraints (e.g., maximum
erase times of 2 ms).

US 2016/0034206 Al

[0160] While these general-purpose manufacturer specifi-
cations enable a variety of different applications, companies
who make flash storage devices, such as SSD 100, may have
different design constraints reflecting their particular appli-
cation. For example, they may want to maximize P/E cycles
(e.g.,30,000 P/E cycles, rather than just 5000), while limiting
guaranteed retention times (e.g., to only 3 months) and ECC
requirements (e.g., 40-bit ECC). In other words, 1f they do not
expect the Flash Memory Chips 110 1n SSD 100 to be written
as infrequently as they would 1n a USB thumb drive, for
example, then a 3-month retention time may be suilicient,
particular 1n light of the greater expected frequency of P/E
cycles. And while performance concerns might dictate that
the chip manufacturer’s timing constraints not be relaxed, the
company making SSD 100 might conclude that, since decod-
ing more bits of ECC impacts performance, a 40-bit ECC
specification 1s an appropriate security/performance tradeoftt.
In another embodiment, SSD 100 could be reconfigured in the
field to support a desired application—e.g., via a firmware
update that replaced some or all of the optimal sets of oper-
ating parameters.

[0161] These various design constraints are considered at
the outset of the offline characterization phase by Initializa-
tion module 412, which imtializes variables representing
these constraints, as well as each operating parameter regis-
ter. For example, 1n this embodiment, we can assume an 1nitial
offline characterization goal of at least 30,000 P/E cycles and
a required 3-month minimum retention time with 40-bit ECC
(as well as various flash chip manufacturer-driven timing
constraints). Moreover, in this embodiment, the number of
health stages and maximum number of P/E cycles (cumula-
tive or per-stage) 1s not determined at the outset. It therefore
remains a goal to extend each health stage for as many P/E
cycles as possible, provided that retention can be ensured
(1.e., so that data can be recovered successiully without incur-
ring read failures).

[0162] As will be illustrated below, sacrificing “unneces-
sary’’ retention (e.g., between 3 months and 1 year) provides
a number of opportunities to increase the expected opera-
tional lifetime of SSD 100 (e.g., 30,000 P/E cycles), even
apart from the various techniques subsequently employed by
Navigator module 200 1n the field. As a general matter, lower
stress levels (relative to the stress levels of the fixed operating
parameters specified by the manufacturer of Flash Memory
Chips 110) will be employed at earlier health stages before
SSD 100 endures significant wear. Later health stages, on the
other hand, may require even higher stress levels than those
specified by the manufacturer (e.g., reflecting the cumulative
wear that inevitably occurs over time, despite interim efforts
by Navigator module 200 to slow down the rate of wear and
extend earlier health stages).

[0163] 'Two key components illustrated in FIG. 4 are Plotter
410 (which relies on software models to generate “candidate™
operating parameters for hardware testing, from among a
massive domain of possible candidates) and Pathfinder 430
(which tests the candidates provided by Plotter 410 on actual
flash memory chips). Plotter 410 and Pathfinder 430 work
together 1n an 1terative fashion to determine an appropriate
number of health stages, each health stage having a cumula-
tive or per-stage MAX P/E Count, and an optimal set of
operating parameters (including one or more waypoints)
associated with that health stage for subsequent use by Navi-
gator module 200 during the operational lifetime of SSD 100.

Feb. 4, 2016

[0164] Note that, 1n the context of this offline characteriza-
tion phase, the term “health stage™ refers to the same basic

concept as employed by Navigator 200 during the operational
lifetime of SSD 100, but with a slight difference. Plotter 410
and Pathfinder 430 not only determine the number of health
stages and maximum length (MAX P/E Count) of each health
stage during this oftline characterization phase, but they also
elfectively “simulate” each health stage (e.g., pre-cycling
blocks of flash memory to 1ts MAX P/E Count) for the pur-
pose of comparing candidates based upon their relative ability
to satisiy retention, timing and other constraints as cumula-
tive wear alfects the flash memory over time.

[0165] In other words, 1t 1s the goal of Plotter 410 and
Pathfinder 430 to test and compare candidates for “worst
case” (MAX P/E Count) health stages—in order to optimize
cach health stage for maximal endurance with sufficient
retention (effectively defining the maximum potential of each
health stage). Plotter 410 and Pathfinder 430 therefore do not
(in this embodiment) generate or maintain an historical
record of threshold violations, or employ preventive mea-
sures during a health stage (e.g., resting a block) to extend a
health stage to 1ts maximum potential—because such preven-
tive measures are unnecessary prior to the beginning of the
operational lifetime of a flash memory device. Navigator
module 200, on the other hand, monitors and addresses 1ndi-
cators of wear and employs these preventive measures
throughout a flash memory device’s operational lifetime 1n an
elfort to prolong each health stage up to 1ts maximum poten-
tial—i.e., by addressing indicators of unexpected wear that
might otherwise prevent each health stage from achieving its
maximum potential.

[0166] Once the offline characterization phase 1s complete,
Pathfinder 130 has, for each health stage, successtully tested
the optimal set of operating parameters associated with that
health stage on actual flash memory chips. Passing these tests
required the successiul recovery of data, following a standard
simulation of the specified minimum retention period (3
months 1n this embodiment), from actual flash memory chips
that had endured the maximum number of P/E cycles (MAX
P/E Count) associated with that health stage.

[0167] Thus, at any point in time during the operational
lifetime of SSD 100, Navigator module 200 can be assured
that the operating parameters being employed during the
current health stage have been pre-tested, and successtully
recovered data after an elapsed 3-month retention period on
actual flash memory chips that endured at least as many
cumulative P/E cycles as have occurred on SSD 100 at that
point 1n time.

[0168] As will be illustrated 1n greater detail below, a core
attribute of the offline characterization phase 1s this concept
of associating with each health stage a MAX P/E Count that
has been “pre-tested” for successiul retention. This provides
Navigator module 200 with health stages that are already
optimized for maximal endurance (1.e., as many cumulative
P/E cycles as possible) with suflficient retention, and enables
Navigator module 200 to endeavor to extend each of those
health stages to 1ts maximum potential (1.e., for as long as
possible up to that MAX P/E Count) by monitoring, detecting
and addressing (with interim preventive measures) 1ndica-
tions of actual cumulative wear, despite the occurrence of
unexpected wear resulting, for example, from outlier blocks
and unanticipated actual usage patterns.

US 2016/0034206 Al

[0169] B. Plotter and Pathfinder Architecture

[0170] Returning to FIG. 4, Plotter 410 includes a number
of key conceptual component modules that enable 1t to gen-
erate the “best” candidate operating parameter sets for hard-
ware testing on Pathfinder 430—1.¢., the ones most likely to
satisty the key objective of applying the least amount of stress
to the flash memory for the most number of P/E cycles, while
yielding the longest retention times. It should be noted at the
outset that Plotter 410 faces a significant obstacle 1n this
regard, 1n that the number of permutations of possible oper-
ating parameter values 1s enormous.

[0171] For example, while the number of operating param-
eter registers 1n a typical flash memory chip varies (e.g., from
a few dozen to hundreds), we can assume 1n this embodiment
that Flash Memory Chips 110 each contain 30 Operating
Parameter Registers 116, and that they are evenly distributed
(10 registers each) among read, write and erase registers.
(Given typical 8-bit registers, the number of possible permu-
tations is therefore 256 to the 30” power. To put that in
perspective, 256 to the 57 power (i.e., 5 registers) yields about
1 trillion combinations.

[0172] In this embodiment, Plotter 410 generates only the
write and erase parameters of each candidate, while Path-
finder 430 eventually generates corresponding read param-
eters. Nevertheless, exhaustively testing a number of permu-
tations equal to 256 to the 20” power is still computationally
prohibitive. So, Plotter 410 employs various techniques, via
Candidate Generator 417 (discussed 1n greater detail below
with reference to FIG. 6), to reduce substantially the number

of potential candidates it generates before analyzing them to
identify the “best” ones to submit to Pathfinder 430.

[0173] While Plotter 410 generates candidate sets of write
and erase parameters for hardware testing, Pathfinder 430
generates “HW Scores” for each candidate 1t tests, reflecting
the results of testing the candidate on actual tlash chips. These
HW Scores (including BER, timing and Vt window compo-
nents described in greater detail below with reference to FIG.
7), are used by Plotter 410 to improve its predictive ability to
generate the “best” candidates for hardware testing by Path-
finder 430 on subsequent 1terations, as explained below with
reference to FIG. §.

[0174] As noted above, Plotter 410 relies on software mod-
els to generate candidates for hardware testing on Pathfinder
430. Model Builder 415, 1in one embodiment described in
greater detail below with reference to step 520 of FIG. 5,
employs neural networks and various machine-learning tech-
niques to predict the results (1.e., the HW Scores) that any
potential candidate will generate when tested by Pathfinder
430 on actual flash memory chips.

[0175] Inthis embodiment, Model Builder 415 generates 3
soltware models—one to predict “program time,” one to pre-
dict “erase time” and a third to predict “success” of a read
operation. These models reflect 3 key constraints on SSD 100
(1.e., to complete program and erase operations within a par-
ticular time specified by the flash chip manufacturer and the
company making SSD 100, and to successfully recover data
written to a block that had endured a predefined maximum
number of P/E cycles, and read after a predefined retention
period). In other embodiments, various other combinations of
different constraints can be modeled, utilizing a variety of
different machine-learning techniques.

[0176] Toenable Model Builder 415 to generate each of the
3 models, the models are first “seeded” with a reasonable

amount of “training data”—i.e., actual HW Scores generated

Feb. 4, 2016

by Pathfinder 430 from candidate write and erase operating
parameters provided by Plotter 410. Training data and other
model-related information are stored and maintained in
Model DB 420, while candidate operating parameter values
and other miscellaneous data are stored 1n General DB 425.
Discovery module 414 1s employed to produce this “seed”
training data by generating a large number of candidates
(though not necessarily the “best” candidates) to submit to
Pathfinder 430 for initial hardware testing. In one embodi-
ment, the objective of Discovery module 414 1s to generate
approximately 100,000 candidates for testing on Pathfinder
430 over multiple runs (which may take a few days 1n one
embodiment of Pathfinder 430, which requires multiple hours
to test approximately 4000 candidates).

[0177] To generate a large number of candidates (e.g., for
10 write parameters and 10 erase parameters), fairly basic
rules are employed from which simple inferences can be
drawn. For example, extreme values are generated for indi-
vidual write and erase parameters (1nitially disregarding the
elfects of combinations of parameter values on one another).
Given the goal of starting with relatively “low stress” write
and erase parameters during early health stages, lower limits
of the domain of operating parameters are iitially consid-
ered. As noted above, however, program operations take less
time to complete as blocks wear (e.g., due to “trapped
charge”). So, the values of write parameters are selected to
reflect the fact that they may actually decrease 1n value over
time.

[0178] As imitial runs are generated and submitted to Path-
finder 430 (e.g., 4000 candidates at a time), the results (HW
Scores) typically indicate that specific combinations of val-
ues vield particularly poor results, while other combinations
are more promising. Note that this “seed” training data 1s not
intended to yield optimal candidates, but instead just candi-
dates that generate realistic HW Scores that can be used to
improve the predictive models. Nevertheless, to obtain mean-
ingiul HW Scores, 1t 1s useful to identily combinations of
values that yield more promising candidates, and avoid com-
binations that yield completely unrealistic HW Scores.

[0179] For example, certain general inferences can be
drawn from these 1mitial results, and from prior experience 1in
testing flash memory chips with a vast range of different
operating parameter values. For example, high BER rates
may result from particular combinations of low parameter
values, while high values at the other extreme may yield lower
BER rates. In any event, though far from perfect, these 100,
000 candidates provide useful training data to enable 1nitial
generation of the 3 models, as explained 1n greater detail
below with reference to step 520 of FIG. 5.

[0180] Furtherrefinement of the models, by Model Builder
415, will occur following iterations of hardware testing in
Pathfinder 430 of the “good” candidates generated by Candi-
date Generator 417. The candidate-generation process, dis-
cussed 1n greater detail below with reference to FIG. 6, 1s
based on the concept that significant limitations must be
imposed to reduce the immense domain of possible values of
10 write and 10 erase operating parameters to a manageable
number. In one embodiment, “masks” are employed to limit
the range of values of any single operating parameter. Instead
of a relatively large range 01 0-255, a “ligh” (H) or “low” (L)
mask 1s employed to limit that range to a low (L) value (e.g.,
a random number from 0-127) or a high (H) value (e.g.,
128-255). For example, for 2 registers, instead of “255
squared” permutations, only 4 mask permutations would be

US 2016/0034206 Al

generated (1.e., H-H, H-L, L-H and L-L). The process by
which potential candidates are generated from these masks,
and then compared with one another to yield a set of “good”
candidates for Pathfinder 430 to test in hardware, 1s explained

in greater detail below with reference to the flowchart in FIG.
6.

[0181] Health Stage Analyzer 419 manages the interaction
and 1iterations with Pathfinder 430. In one embodiment,
Health Stage Analyzer 419 manages the process for determin-
ing the number of health stages, as well as the cumulative
MAX P/E Count (or, 1n another embodiment, the per-stage
MAX P/E Count) associated with each health stage. For
example, assuming an expected lifetime 01 30,000 P/E cycles,
Health Stage Analyzer 419 imitially predicts 6 health stages of
5000 P/E cycles each. However, as noted above, a key objec-
tive for each health stage 1s to complete the largest possible
number of P/E cycles while still ensuring retention 1s satis-
fied. So, as will be explained 1n greater detail below with
reference to step 520 of FIG. 5, multiple iterations with Path-
finder 430 are performed, at different P/E-cycle durations,
until the highest-duration health stage that still satisfies reten-
tion 1s 1dentified.

[0182] Upon determining the maximum length of the first
health stage (e.g., 5500 P/E cycles), and a set of candidates for
hardware testing (e.g., 4000 sets of 10 write and 10 erase
parameters, each set to be tested once), this information 1s
passed to Pathfinder 430 to run these hardware tests and
generate HW Scores for each of the 4000 candidates. In one
embodiment, Health Stage Analyzer 419 instructs Candidate
Generator 417, 1n subsequent 1terations, to generate and sub-
mit fewer candidates for more extensive hardware testing as
Plotter 410 refines its selection of “good” candidates. Note
that repeating a hardware test may not yield identical
results—for a variety of different reasons including, for
example, manufacturing variations among different blocks of
flash memory.

[0183] In a subsequent iteration, 1000 candidates are each
tested 4 times, then 400 candidates are each tested 10 times,
and so forth until an optimal candidate for each health stage 1s
determined. As will be explained 1n greater detail below with
reference to FIG. 6, Candidate Generator 417 (in one embodi-
ment), 1n addition to generating and selecting new “good”
candidates for subsequent iterations of hardware testing by
Pathfinder 430, also retains “very good” candidates from
prior iterations—e.g., those with HW Scores exceeding pre-

defined thresholds.

[0184] This iterative process continues, as illustrated in
greater detail with respect to FIG. 5 below, until 1t yields the
number of health stages, the maximum length (MAX P/E
Count) of each health stage, and an optimal set of operating
parameters (and corresponding waypoints) associated with
cach health stage.

[0185] While Pathfinder 430 1s 1llustrated as a collection of
key conceptual software components (in this embodiment), it
communicates with actual flash memory hardware to manage
the testing process. For example, standard Flash Chip Test
Heads 445 (e.g., 10 BGA or TSOP sockets, each used to
surface-mount an actual flash memory chip) are employed in
connection with limited-purpose Flash Test Controllers 440
to facilitate testing involving read, write and erase operations

on the flash memory chips. In one embodiment, one Flash
Test Controller 440 1s provided for each Flash Chip Test Head

445. Each Flash Test Controller 440 includes basic function-

Feb. 4, 2016

ality similar to Channel Interface 125, but with software
enabling special-purpose communications with Pathfinder

430 as described below.

[0186] Though not shown in FIG. 4, an AFT interface (as
noted above) 1s optionally included between each Flash Test
Controller 440 and each Flash Chip Test Head 445 (e.g., 1
required by the manufacturer of the flash memory chips). In
another embodiment, a single AFT interface 1s employed for
use by all of the Flash Test Controllers 440 and Flash Chip
Test Heads 44S. In any event, this AFT interface enables
modification of the operating parameter registers of each
flash memory chip without revealing or requiring knowledge
of the flash manufacturer’s proprietary information.

[0187] Pathfinder 430 generates HW Tests (including, for

example, candidate sets of operating parameters and loca-
tions for various read, write and/or erase operations), which 1t
submits to each Flash Test Controller 440 (implemented 1n
this embodiment on a standard single-board computer). As
will be discussed 1n greater detail with reference to FIG. 7,
Pattern Generator 432 1s employed to generate various “test
patterns” to be written into the flash memory and retrieved
after a predefined retention period, as well as various “cycling
patterns” used to pre-cycle the flash memory (e.g., to artifi-
cially create cumulative wear by performing 8000 P/E cycles
on one or more blocks of flash memory, as might occur in the
field during one or more health stages). Scheduler 439 1is
employed to schedule these tests, determining for example
which blocks of flash memory are utilized by which candidate
sets of operating parameters.

[0188] As noted above, the performance capabilities of
Pathfinder 430 are limited by the number of flash memory
chips employed, and the speed of the Flash Test Controllers
440 1n implementing a particular test. In this embodiment,
running a single test for 4000 candidates requires many hours
to complete (as, for example, would 100 tests for 40 candi-
dates). Each test 1s run in parallel, requiring many hours of
iterations of scheduled writes (and then pre-retention and
post-retention reads) across each of the 4 LUNs in the 10 flash
memory chips to complete a single test on 4000 candidates—
not to mention the simulated retention time, which 1tself may
require multiple days.

[0189] Flash Test Controllers 440 submit each test to their
respective flash memory chips installed on corresponding
Flash Chip Test Heads 445, and receive and process the raw
data to extract, for example, BER and timing information
resulting from the read, write and erase operations performed
on the flash memory chips. These results are returned to
Pathfinder 430 for analysis. Note that, while ECC data 1s
employed 1n writing data into the flash memory, no error
correction 1s performed by Flash Test Controllers 440, as the
“test patterns™ are employed solely to enable Pathfinder 430
to compute HW Scores that Plotter 410 can use to compare
candidates based upon their performance on actual flash
memory chips.

[0190] These results are collected by Data Collection mod-
ule 434, which processes them for use by Vt Window Gen-
erator 435 and, ultimately, for delivery back to Plotter 410 1n
the form of HW Scores. For example, while all raw BER and
timing information (e.g., program time and erase time) 1s
delivered directly back to Plotter 410 (in one embodiment),
the program time and erase time components of the HW
Scores also reflect the results of multiple hardware tests that
may have been performed. In one embodiment, two values
cach are returned for program time and erase time—one

US 2016/0034206 Al

reflecting the average program time or erase time among
multiple tests, and the second reflecting the percentage of
tests “passed” (1.e., satistying the manufacturer’s program
time or erase time constraint). In another embodiment, peak
program times and erase times are also returned, retlecting
“worst case” scenarios.

[0191] As will be discussed 1n greater detail below with
reference to FIG. 7, Vt Window Generator 435 utilizes raw
BER data to generate the “Vt window” component of the HW
Score for each candidate. In essence, the VT window com-
ponent reflects a range of voltages (corresponding to read
parameters) 1n which a read operation successtully recovered
data (1.e., all sectors had no more than 40 bit errors for data
written with 40-bit ECC). In this embodiment, multiple read
operations are performed (across all pages within a block of
flash memory) with different sets of read parameters in order
to generate this range. In general, a wide range 1s preferable,
in that 1t indicates that multiple different sets of read param-
eters will successtully recover data. In one embodiment, two
values are returned for the Vt window component of the HW
Score for each candidate—one reflecting the size of the
smallest successiul range, and the other retlecting the per-
centage of hardware tests that successtully recovered data.

[0192] Finally, Waypoint Generator 437 1s employed by
Pathfinder 430 (for a given health stage) only after a sufficient
number of 1terations with Plotter 410 have occurred to narrow
down the domain of potentially “optimal” candidates (for that
health stage) to a small number—e.g., 5 1n one embodiment.
In other words, only after Plotter 410 submits 5 remaining
candidates to Pathfinder 430 for “final” hardware testing
(each to be tested 800 times 1n this embodiment) will Path-
finder 430 rely upon Waypoint Generator 437 to generate
waypoints (multiple sets of alternative read parameters) for
each of these 5 candidates, and conduct one final hardware
test to enable Plotter 410 to compare them and select the
single “optimal” candidate (with 1ts set of waypoints) for a
particular health stage.

[0193] C. High-Level Dynamic Interaction between Plotter
and Pathfinder
[0194] Turnming to FIG. S, flowchart 500 illustrates the high-

level interaction between Plotter 510 and Pathfinder 530 that
facilitates the determination of the number and maximum
length (MAX P/E Count) of health stages, as well as optimal
sets of operating parameters (including waypoints) associ-
ated with each health stage. In key step 515 (discussed 1n
greater detail below with reference to FIG. 6), Plotter 510
generates candidates (sets of write and erase parameters) for
hardware testing on Pathfinder 530.

[0195] As will be explained below, step 515 generates can-
didates using the 3 models after those models have been
refined based upon HW Scores from Pathfinder’s prior 1tera-
tion (see step 520 below for an explanation of the initial
generation and 1terative refinement of these 3 models). As
noted above, 1n addition to regenerating new candidates, step
515 retains (in one embodiment) certain “very good” candi-

dates from prior iterations for continued hardware testing by
Pathfinder 530.

[0196] Imtially, as noted above, Plotter 510 relies on Ini-
tialization module 412 and Discovery module 414 to generate
a large number of candidates for hardware testing on Path-
finder 530 for the purpose of generating “seed” data to facili-
tate the building of 3 predictive software models by Model
Builder 415. But once the mitial models are built (and rebuilt
upon each iteration with Pathfinder $30), Candidate Genera-

Feb. 4, 2016

tor 417 relies on those “up-to-date” models, to generate a new
set of candidates for further hardware testing.

[0197] While step 515 encompasses both the iitial genera-
tion of “seed” candidates and the subsequent generation of
candidates (for ultimate selection of an “optimal” candidate
per health stage), FIG. 6 1s focused on the latter. In any event,
upon recerving a set of candidates, along with a MAX P/E
count, designated retention time and number of tests to per-
form, Pathfinder 530 performs the specified number of tests
on each candidate in step 535, obtains and analyzes the results
of those tests 1n step 537, and generates HW Scores for each
candidate 1n step 539, which are then returned to Plotter 510.
Each of these steps 1s discussed 1n greater detail below with
reference to FIG. 7.

[0198] As noted above, at the beginning of each health
stage, Plotter 510 determines, 1n step 516, the appropriate
maximum length (1.e., MAX P/E Count) of that health stage.
In one embodiment, that MAX P/E Count 1s a cumulative P/E
count encompassing all prior health stages. In another
embodiment, 1t 1s a per-stage P/E count applicable only to the
current health stage (and independent of the cumulative P/E
count from all prior health stages). In either case, as alluded to
above, the MAX P/E Count ultimately represents the total
number of P/E cycles for which the “optimal” candidate wall
be “pre-tested” in hardware (by Pathfinder 530) for retention,
as well as timing and other design constraints.

[0199] Plotter 510 mitially relies upon Health Stage Ana-
lyzer 419 to predict the number and maximum length of
health stages 1n light of the constraints specified by the tlash
chip manufacturer and the company making SSD 100. For
example, assuming an expected lifetime 01 30,000 P/E cycles,
Health Stage Analyzer 419 imitially predicts 6 health stages of
5000 P/E cycles each. But, at this point, Plotter 510 does not
yet know the appropriate MAX P/E Count to associate with
this health stage—e.g., the largest number of P/E cycles that
will still ensure retention 1s satisfied.

[0200] So, 1t generates multiple iterations through Path-
finder 530 (see path 516a) using the current set of candidates,
increasing the number of P/E cycles on each iteration until
retention can no longer be satisfied. For example, 1t may begin
with 2500 P/E cycles, which might yield HW Scores indicat-
ing that a high percentage of candidates satisfied retention (as
well as timing and other relevant constraints) on a high per-
centage of tests (based on internal thresholds). The same may
be true, but to a lesser extent, for iterations o1 3500 P/E cycles
and 4000 P/E cycles. But, eventually (e.g., 6000 P/E cycles),
the HW Scores will indicate that an insuificient percentage of
candidates satisfies these constraints (based on those internal
thresholds). The MAX P/E Count will then be deemed equal
to the number of P/E cycles tested on the most recent suc-
cessiul 1teration (e.g., 5500 P/E cycles).

[0201] This process in step 516 1s repeated at the beginning
of each subsequent health stage in order to determine the
appropriate MAX P/E Count (cumulative or per-stage) to
associate with that health stage. Eventually, during later
health stages, Health Stage Analyzer 419 determines that no
additional health stages are warranted. For example, in one
embodiment, a next health stage 1s tested, but cannot yield a
sufficient percentage of candidates that satisfy the relevant
constraints, even for a small number of additional P/E cycles
(e.g., an iternal threshold of 500). In other words, due to the
cumulative wear from prior health stages, the inevitable end
of the operational lifetime of the flash memory 1s approach-
ing, rendering that next health stage pointless.

US 2016/0034206 Al

[0202] For example, assume the cumulative MAX P/E
Count 1s at 35,000 P/E cycles after seven health stages. Note
that the MAX P/E Count and current number of health stages
may exceed, or fall short of, the initial specified “goals”™—.
g.. 30,000 P/E cycles and six health stages. But, in one
embodiment, the MAX P/E Count 1s unlikely to exceed its
initial goal because the frequency of testing P/E cycles 1n
Pathfinder 530 (as discussed below with reference to FIG. 7)
1s determined based upon that initial goal and expected usage.
In any event, at the beginning of the eighth health stage,
Health Stage Analyzer 419 initiates an iteration through Path-
finder 530 for an additional 500 P/E cycles, and the HW
Scores are msuificient. In that case, Health Stage Analyzer
419 may conclude that no additional health stages are war-
ranted, and that the “final” expected cumulative P/E count 1s
35,000 P/E cycles over seven health stages (ultimately ending

flowchart 500 1n step 5235).

[0203] Oncethe MAX P/E Count 1s determined 1n step 516
for the current health stage, Health Stage Analyzer 419 deter-
mines whether the current health stage has been completed in
step 518. Imitially, of course, that will not be the case. But, as
noted above, 1n one embodiment, Health Stage Analyzer 419
instructs Candidate Generator 417 mitially to generate 4000
“000d” candidates for a single hardware test by Pathfinder
530. In subsequent iterations, 1t will refine that number to
1000 candidates each tested 4 times, then 400 candidates each
tested 10 times, etc. Eventually, in this embodiment, that
number will be refined to 5 candidates each tested 800 times.

[0204] As will be explained in greater detail below with
reference to FIG. 7, Pathfinder 530 will then generate way-
points for all 5 candidates and perform one final test. The HW
Scores from that final test will enable Health Stage Analyzer
419 to determine the “optimal” candidate for the current
health stage. In that event, step 518 stores the optimal candi-
date (with waypoints) in General DB 425 and transitions to
the next health stage.

[0205] In step 520, the most recent HW Scores are utilized
to refine and (in one embodiment) rebuild the 3 models. When
the models have been refined and/or rebuilt, the offline char-
acterization phase will terminate 1f all health stages have been
completed (per step 525), as noted above. Otherwise, control
will return to Candidate Generator 417 to generate, in step
515, the next set of candidates for hardware testing by Path-
finder 530 (whether at the beginning of a next health stage or
in the middle of the current health stage).

[0206] Turning to step 520, the 3 predictive models are
either generated for the first time (based upon the “seed” HW
Scores generated by Pathfinder 530 via Discovery module
414 as discussed above) or refined and/or rebuilt based upon
additional “traiming data” (also HW Scores) from the prior
iteration with Pathfinder 530. In either scenario, it 1s 1mpor-
tant to understand how standard neural network and other
machine-learning techniques are employed to enable these 3
models to predict, with increasing accuracy, the results (1.e.,
the HW Scores) that any potential candidate will generate
when tested by Pathfinder 530 on actual flash memory chips.
It 1s this predictive ability that enables Plotter 510 to generate
“better and better” candidates (in step 515) for hardware
testing by Pathfinder 530 until 1t eventually (typically after
multiple 1terations) determines an “optimal” candidate for
cach health stage.

[0207] As1s well known in the art, a non-linear system that
generates “predictable” actual sets of outputs from a domain
of mput sets can be modeled 1n software by creating and

Feb. 4, 2016

refining a non-linear function that approximates an output set
given any input set within the domain. By refining this func-
tion automatically over time, based upon “training data™ (ac-
tual sample input and output sets from the non-linear system)
received during each iteration, the function effectively
“learns” to predict with increasing accuracy the actual output
set that the non-linear system will produce given any 1input set
within the domain.

[0208] In particular, as the model receives more training
data, adaptive weights applied to each input parameter of an
input set are adjusted, and the weighted parameters are com-
bined 1n different ways, to yield a refined function that 1s
gradually “trained” (or “learns over time”’) to better predict
actual output sets. In other words, generating this refined
function (1.e., rebuilding the model) involves an iterative
teedback loop. During each iteration, the model’s results are
compared against the actual training data results, and the
function 1s then refined for the next iteration. Eventually, an
equilibrium 1s reached in which the results are no longer
improving suiliciently, and this refinement process termi-
nates (until more training data arrives). As will be apparent to
one skilled 1n the art, numerous well-known “function-fitting
algorithms™ can be employed to determine automatically how
to adjust the adaptive weights, as well as how to combine the
weighted parameters, to better predict actual output sets.
Moreover, various combinations of these and other machine-
learning techniques can be employed 1n the context of virtu-
ally any design constraints or performance characteristics of
flash memory without departing from the spirit of the present
invention.

[0209] In one embodiment, these concepts are applied to 3
key design constraints imposed by SSD 100 and its Flash
Memory Chips 110 (to develop and refine/rebuild 3 corre-
sponding software models)—i.e., (1) “program time”
(completion of a write operation within “x” ms), (2) “erase
time” (completion of an erase operation within “y” ms) and
(3) “success” of aread operation. As noted above, a “success-
ful” read operation 1n this embodiment requires that no sec-
tors have more than 40 bit errors (given 40-bit ECC) when
reading data written to a block that had endured a predefined
maximum number of P/E cycles, and was read after a pre-

defined retention period.

[0210] In another embodiment, rather than simply reflect-
Ing success as a binary (yes or no) result of a single successtul
read, 1t instead reflects a percentage of successiul reads over
multiple Pathfinder 530 hardware tests (e.g., 0.9 retlecting
that 9 of 10 hardware tests passed successiully). In yet
another embodiment, a Vt window component 1s employed.
As will be explained 1n greater detail below with reference to
FIG. 7, Pathfinder 530 generates for each candidate a Vit
window component that not only reflects the percentage of
successiul tests, but defines a successtul test by the existence
of a window or range of read parameter values (representing
read voltages) that resulted in successiul read operations
across all of the pages within each tested block of flash
memory. As discussed below, in one embodiment, each can-
didate 1s tested on multiple blocks across multiple LUNs and
chips (both pre-retention and post-retention), thereby facili-
tating a comparison of candidates that takes into account
manufacturing variations and other variables likely to be
encountered 1n the field.

[0211] Inany event, these 3 software models are generated
(and refined/rebuilt upon receiving each subsequent iteration
of “traiming data” from Pathfinder 530) in step 520. For

US 2016/0034206 Al

example, 1n the context of a flash memory chip, writing a
particular test pattern to its flash memory 1n accordance with
1ts operating parameters (in this case, write parameters) takes
a certain amount of time to complete—"“program time™ (also
referred to as “write time”). In this context, the training data
consists of candidate sets of operating parameters (e.g., input
sets of 10 write parameter values) and a single program time
(output) resulting from the write operation. The “program
time” software model weights each of the 10 write parameters
and combines the weighted parameters to generate a non-
linear function that predicts a program time given any input
set of 10 write parameter values (e.g., each value from 0-2355
representing the domain of values stored 1n an 8-bit register).

[0212] The “erase time” software model follows a similar
methodology, but employing the 10 erase parameters. The
“success” software model 1s slightly more complex, in one
embodiment, 1n that both the write and erase parameters are
employed as inputs to the function that predicts the success of
the read operation (whether defined by Pathfinder 530 as a
single binary value, a percentage or a Vt window component
as discussed above). As noted above, Pathfinder 530 itera-
tively generates HW Scores for each candidate it tests, which
are used as “traiming data” to refine each of these 3 models 1n

step 520.

[0213] Inoneembodiment, each ofthese 3 software models
1s completely regenerated “from scratch” during each itera-
tion (1.e., using the cumulative training data generated by
Pathfinder 530 over all previous iterations), while 1n another
embodiment the existing software models are merely
“refined” to reflect the new traiming data received during the
current iteration. As noted above, once the software models
are “up to date’ for a given iteration, and all health stages have
not been completed (per step 525), control continues to step
515 where Plotter 510 generates candidates for the next itera-
tion with Pathfinder $30. This candidate-generation step 515
will now be discussed 1n detail with reference to FIG. 6.

[0214] D. Candidate Generation by Plotter

[0215] As noted above, 1n one embodiment, Plotter 510
retains certain “very good” candidates from prior iterations
with Pathfinder 530 to be used for subsequent iterations of
refined hardware testing. In this embodiment, an internal
threshold HW Score 1s employed to 1dentify and provide such
candidates to Pathfinder (as part of step 650 below). In other
embodiments, a threshold percentage (e.g., highest 10% of
HW Scores) 1s employed. Apart from these candidates, an
entirely new set of candidates 1s generated by Candidate

(Generator 417, as shown 1n flowchart 600 of FIG. 6.

[0216] As also noted above, the key constraint on this can-
didate-generation process 1s the sheer number of permuta-
tions of write and erase parameter values (256 to the 207
power 1n this embodiment, assuming 8-bit register values and
10 write and 10 erase parameters), which renders any exhaus-
tive approach computationally prohibitive. Note also that
read parameters (and waypoints) are determined by Path-
finder 530, but not until the final iteration when the number of
candidates has been substantially reduced (e.g., to 5 candi-
dates 1n this embodiment).

[0217] As brietly discussed above, the primary approach to
substantially reducing the number of permutations 1involves
the use of “masks” 1n step 601. In one embodiment, “high”
(H) and “low” (L) masks are employed to limit the range of
cach write and erase operating parameter value to either a low
value (0-127) or a high value (128-255), as opposed to arange
of 256 values. In other words, 1nstead of a massive number of

Feb. 4, 2016

permutations of 255 to the 20th power, the number of “mask™
permutations is reduced to 2 to the 20” power or approxi-
mately 1 million masks in this embodiment. For example, one
mask consists of all 20 high values (“H-H-H . . . H”), while

another mask consists of all 20 low values (“L-L-L ... L”),
and so forth.

[0218] The process continues 1n step 610 1n which Candi-
date Generator 417 generates one “potential candidate” for
cach mask—i.e., by generating a random number within the
range of each low or high mask component 1n each mask. In
other words, each distinct “L”” component will be replaced by
a random number between 0-127, while each distinct “H”
component will be replaced by a random number between
128-255. Thus, as a result of step 610, Candidate Generator
417 generates approximately one million potential candi-
dates, each having a distinct random value associated with
cach of the 10 write and 10 erase parameters represented by
its associated mask.

[0219] Note that, 1n the first iteration with Pathfinder 530 1n
this embodiment, the goal 1s to generate 4000 “good™ candi-
dates, where a “good” candidate, as will be explained below,
1s one having a “Candidate Score” exceeding an internal
threshold. None of these approximately one million “poten-
tial candidates™ has yet been selected for submission to Path-
finder 530. In the embodiment 1llustrated in FIG. 6, the 4000
will be relatively evenly distributed among the masks, 1n that
a “winner” for each mask will be selected, and then the top
4000 Candidate Scores of those approximately one million
winners will be submitted to Pathfinder 530. In another
embodiment, the top 4000 candidates with the highest Can-
didate Scores will be selected, without regard to their distri-
bution among the approximately one million masks.

[0220] In any event, i1t should be noted that, at this point,
cach mask has only one associated potential candidate. Turn-
ing to step 620, each potential candidate 1s “scored” to enable
potential candidates to be compared to one another on a
qualitative basis—i.e., to determine which potential candi-
date 1s most likely to satisty the 3 constraints (program time,
erase time and success) when tested on hardware by Path-
finder 530. In other words, at the end of step 620, each of the
approximately one million potential candidates will have an
associated score, which will be the current highest score
associated with its mask (because each mask has only one
associated potential candidate at this point).

[0221] In one embodiment, this scoring involves the gen-
eration of a single “Candidate Score” value. Initially, 3 “Raw
Model Scores” are generated for each potential candidate by
substituting 1ts 20 parameter values 1nto the function for each
model. For example, the “program time” model function will
have a single weighted parameter associated with each write
parameter. If the weighted parameter 1n the function 1s
“2xwl” and a potential candidate’s wl write parameter
equals 135, then the weighted parameter in the function will
equal 270. Note, however, that each model function 1is
intended (per step 520 in FIG. §) to predict (1.e., yield output
values that are as close as possible to) the actual HW Score
that Pathfinder 530 would generate for that potential candi-
date (e.g., an actual “program time™).

[0222] Once Candidate Generator 417 generates 3 Raw
Model Scores for each potential candidate (one from each
model function), then it translates each of these 3 Raw Model
Scores (by employing a well-known “fitness function™) into a
corresponding “Fitness Score” that reflects the extent to
which that potential candidate has satisfied the constraint

US 2016/0034206 Al

associated with 1ts model. For example, given a “program
time” constraint of less than 2 ms, 1f a first potential candi-
date’s “program time” function yields a Raw Model Score of
1.9, and a second potential candidate’s “program time” func-
tion yields a Raw Model Score of 1.8, the first potential
candidate may receive a Fitness Score (for this model) 01 0.7,
while the second candidate may receive a Fitness Score of
0.8, reflecting the fact that, while both candidates are pre-
dicted to satisiy the “program time” constraint, the second
candidate 1s more likely to do so, and thus receives a higher
Fitness Score. In another embodiment, any Raw Model Score
that satisfies the constraint will yield a Fitness Score of 1, with
lower values reserved for Raw Model Scores that do not
satisty the constraint, reflecting lower probabilities that a
potential candidate will satisty the constraint. As will be
apparent to one skilled 1n the art, various different “fitness
functions” may be employed without departing from the

spirit of the present invention.

[0223] Having now generated 3 Fitness Scores for each
potential candidate, Candidate Generator 417 employs a
“selection function™ to generate a single Candidate Score
from these 3 Fitness Scores. In one embodiment, the selection
function involves weighting each of the 3 Fitness Scores (1.¢.,
cach of the 3 constraints) by its relative importance and then
combining them together (e.g., summing the weighted scores
in one embodiment). For example, consider a scenario 1n
which many potential candidates satisty the “program time”
and “erase time” constraints, but few 1f any satisty the “suc-
cess” constraint. Such a scenario may suggest that the “suc-
cess” Fitness Score 1s not weighted sufficiently high. As will
be discussed below with reference to step 635, these “model
weights” (corresponding to the relative importance of each of
the 3 models) may be adjusted automatically over time.

[0224] As a result of employing this selection function,
Candidate Generator 417 has now generated a single qualita-
tive Candidate Score for each potential candidate, retlecting
the relative ability of each potential candidate to satisty all 3
constraints. It should be noted that, at this point, each mask
still has only one associated potential candidate (and corre-
sponding Candidate Score).

[0225] Turning to step 630, Candidate Generator 417 com-
pares, for each mask, the current Candidate Score (generated
in Step 620) with the current highest Candidate Score asso-
ciated with that mask thus far (*‘current mask leader”). If the
current Candidate Score 1s higher than the current mask
leader, then that Candidate Score (and its corresponding
potential candidate) replaces (and becomes) the current mask
leader. During the first iteration, the current potential candi-
date will automatically be the current mask leader. But, as will
be illustrated below, subsequent potential candidates will be
generated and scored for each mask, and may replace the
current mask leader.

[0226] In one embodiment, steps 610, 620 and 630 are
performed in parallel for each mask. In other words, assuming,
approximately one million masks, a potential candidate 1s
generated 1n parallel for each of those approximately one
million masks 1n step 610, and then approximately one mil-
lion Candidate Scores are generated 1n parallel (one for each
mask) 1n step 620, and finally, 1n step 630, approximately one
million comparisons are performed in parallel (one for each
mask)—i.e., between the Candidate Score (of the current
potential candidate) generated 1n step 620, and the current
mask leader.

Feb. 4, 2016

[0227] In one embodiment, after each per-mask compari-
son 1n step 630, Candidate Generator 417 determines 1n step
635 whether the model weights should be adjusted. In another
embodiment, this determination 1s performed periodically
(e.g., after every 50 per-mask comparisons). In yet another
embodiment, step 635 1s only performed once after an 1nitial
threshold number (e.g., 100) of per-mask comparisons have
been performed. Regardless of how this accuracy/perfor-
mance tradeott 1s resolved 1n any given implementation, the
goal remains the same—i.e., to generate a suificient number
of “good” candidates for submission to Pathfinder 530. As a
general matter, 1f the “quality” (1.e., Candidate Scores of the
mask leaders) 1s not improving as more iterations are per-
formed, then the model weights may need to be adjusted.

[0228] Forexample, in one embodiment, an internal thresh-
old function 1s employed to indicate an expected number of
“000d” candidates relative to the elapsed number of 1terations
(through steps 610, 620 and 630). While the iitial expected
number may be quite low, 1t will increase over time as more
iterations occur, and then perhaps level out after a large num-
ber of iterations. In another embodiment, the current health
stage will be a parameter of the threshold tunction. In other
words, as the health stages progress, the effective threshold of
“000d” candidates will increase, reflecting the fact that the
cumulative wear of the flash memory over time requires a
higher standard for a “good” candidate.

[0229] In any event, if a model weight adjustment 1is
deemed necessary 1n step 635, then Candidate Generator 417
repeats step 620 by adjusting the model weights and recalcu-
lating the Candidate Scores, at which point new comparisons
are performed 1n step 630. Otherwise, Candidate Generator
417 continues to step 645 to determine whether a sufficient
number of “good” candidates has been generated. In one
embodiment, an internal Candidate Score threshold 1s
employed to make that determination.

[0230] For example, after the 1nitial 1teration, 1t may be the
case that none of the approximately one million current mask
leaders satisfies this internal threshold. Eventually, however,
when at least 4000 “good” candidates are 1dentified (among
the approximately one million current mask leaders), Candi-
date Generator 417 proceeds to step 650 and submits the top
4000 of those “good” candidates to Pathfinder 530 for hard-
ware testing, along with any “very good” candidates from
prior Pathfinder 530 1iterations. As noted above, Pathfinder
530 will receive, 1n addition to the candidates (write and erase
parameters) themselves, the number of tests to be performed,
the MAX P/E Count for the current health stage and the
relevant retention, timing and other constraints. As also noted
above, the goal 1n subsequent iterations with Pathfinder 530
may be a fewer number of “good” candidates (e.g., 1000)

submitted for more extensive hardware testing (e.g., 4 tests
each).

[0231] If, however, Candidate Generator 417 determines 1n
step 645 that a suflicient number of “good” candidates has not
yet been generated, then 1t returns to step 610 to generate
another set of approximately one million potential candidates
per mask. In other words, 1t generates another random number
within the range of each low or high mask component 1n each
mask, and then repeats steps 620 and 630 as discussed above
with respect to the “new” potential candidate corresponding
to each mask.

[0232] It should be noted, as alluded to above, that the
failure to generate a suificient number of “good” candidates
may simply be due to the fact that more 1iterations (through

US 2016/0034206 Al

steps 610, 620 and 630) are required. At some point, however,
Candidate Generator 417 may determine, 1n step 635 as dis-
cussed above, that the problem rests with the model weights,
and that they require adjustment. In other embodiments, the
number of masks 1s reduced, for example, by removing the
worst 1% of masks (1.e., those that are generating the fewest
“000d” candidates).

[0233] Once step 650 has been completed, and Pathfinder
530 completes the next iteration of hardware testing and

returns the Hardware Scores for each tested candidate to
Plotter 510, control returns to step 516 as discussed above.

[0234] E. Hardware Testing of Plotter Candidates by Path-
finder
[0235] Turning to FIG. 7, flowchart 700 illustrates one

embodiment of the dynamic process by which Pathfinder 530
performs iterative hardware tests on the candidates (each
having 10 write and 10 erase parameters in this embodiment)
provided by Plotter 510. As discussed above, Pathfinder 530
generates HW Scores for each candidate reflecting 1ts perfor-
mance on those hardware tests, which Plotter 510 uses to
update and improve its predictive software models and gen-
erate a new set of candidates for hardware testing. This itera-
tive process continues, as explained above with reference to
FIGS. 4-6, until an optimal set of candidates 1s selected for
cach health stage (including waypoints determined by Path-
finder 530 toward the end of the iterative process for each
health stage).

[0236] During each iteration across multiple health stages,
Pathfinder 530 receives from Plotter 510, in step 701, the set
of candidates to be tested in hardware (each having 10 write
and 10 erase parameters), along with the number of tests to
perform, the MAX P/E Count for the current health stage, and
the relevant retention, timing and other constraints.

[0237] Scheduler 439 determines, 1n step 710 (for each
test), the particular locations within the flash memory chips
that will be utilized for each candidate, and schedules when
particular test patterns are written to or read from those loca-
tions (as well as when particular blocks of memory are erased
or “cycled” to “simulate” a P/E cycle). For example, different
blocks will be utilized across multiple iterations within and
across health stages, as well as for different tests. Over the
course ol multiple tests for a given candidate (and for each
test, 1n one embodiment), data will be written into multiple
different blocks of flash memory across multiple LUNs and
even multiple flash memory chips (e.g., to avoid undue 1nflu-
ence of outlier blocks).

[0238] Moreover, 1t1s well known that certain areas of flash
memory chips (e.g., the last page of each block) are known to
be “weak”—i.e., more likely to generate read errors. Simi-
larly, certain test patterns in particular locations (“challenge
data”) are also known to be more difficult to recover. In any
event, as will be apparent from the following steps of tlow-
chart 700, Scheduler 439 1s responsible for ensuring that the
various read, write and erase operations are performed on the
appropriate locations and at the appropriate times to facilitate
the testing of 4000 candidates across 10 flash memory chips.

[0239] It should be noted that, 1n one embodiment, Path-
finder 530 simulates a particular use case (e.g., usage patterns
for a USB thumb drive, Enterprise SSD, etc.) during this
offline characterization phase by correlating the frequency of
P/E cycles 1t performs (e.g., during steps 720 and 725 dis-
cussed below) to the expected frequency of P/E cycles for that
use case (1n some cases employing standard accelerated tem-
perature-testing techniques, similar to those used for reten-

Feb. 4, 2016

tion testing discussed below with reference to step 740).
Moreover, because different operating parameters are
employed for different candidates, Scheduler 439 manages
the timing of the updating of the 40 LUNS (with the operating
parameters associated with the relevant candidates) so as to
perform as many operations 1n parallel as possible to maxi-

mize performance while maintaining the desired frequency of
P/E cycles.

[0240] In step 720, Pathfinder 530 produces cumulative
wear for the prior health stages (if any) by pre-cycling the
relevant blocks (determined in step 710 above) for the number
of cycles corresponding to each prior health stage. For
example, during the first health stage, no pre-cycling 1s nec-
essary. During the second health stage, the write and erase
parameters of the optimal candidate from the first health stage
are employed to pre-cycle the relevant blocks for a number of
P/E cycles equal to the MAX P/E Count from the first health
stage. During the third health stage, the same pre-cycling as
was done for the second health stage 1s performed, and addi-
tional pre-cycling 1s done using the write and erase param-
eters of the optimal candidate from the second health stage for
anumber of P/E cycles equal to the MAX P/E Count from the
second health stage. And so on for each additional health
stage.

[0241] In step 725, Pathfinder 530 now produces cumula-
tive wear for the current health stage by cycling the relevant
blocks for the number of cycles corresponding to the current
health stage (1.e., to the maximum potential of this current
health stage). As explained above with reference to step 516
of FIG. 5, this step 1s also performed while Health Stage
Analyzer 419 1s attempting to determine the MAX P/E Count
for the current health stage. In either event , a number of P/E
cycles 1s specified 1n step 701 and used for this cycling pro-
cess. The write and erase parameters of each candidate are
employed (with respect to their relevant blocks) for this
cycling process.

[0242] Pattern Generator 432 employs various different
standard “cycling patterns” to be written during steps 720 and
725. These cycling patterns are typically supplied by the
manufacturer of the tlash memory chips for testing purposes.
In one embodiment, a different cycling pattern 1s used for
cach P/E cycle. In other words, Pathfinder 530 writes one
cycling pattern to the relevant blocks, erases the blocks, and
then repeats that P/E cycle with a different cycling pattern for
cach one of the specified number of P/E cycles.

[0243] Once the relevant blocks have been cycled 1n steps
720 and 725 to generate the specified cumulative wear, they
are erased once more, 1n step 730, using the relevant candi-
date’s erase parameters, after which they are written with a
standard “test pattern” (also generated by Pattern Generator
432)using the relevant candidate’s write parameters. This test
pattern, also typically supplied by the manufacturer of the
flash memory chips for testing purposes, 1s designed to test bit
states equally, taking adjacent cells into account. ECC data 1s
also written with the test pattern, though Pathfinder 530 will
make no attempt to recover the data. It 1s sufficient, in this
embodiment, to detect the number of bit errors when reading
the data, so as to determine whether each sector would have
been recoverable with ECC error correction (e.g., no more
than 40 bit errors 1n a sector written with 40-bit ECC).

[0244] For each candidate, an “erase time” (1.e., the amount
of time required to erase the block) and a “program time” (1.¢.,
the amount of time required to write the test pattern into the
block) 1s extracted and stored by Data Collection module 434

US 2016/0034206 Al

for future use 1n generating candidate HW Scores (discussed
below with reference to step 760). In one embodiment, mul-
tiple blocks are erased and written for a particular candidate,
and the average erase time and program time 1s stored, while
in other embodiments, all of the erase times and program
times are stored for each candidate.

[0245] In step 735, Pathfinder 530 performs a “pre-reten-
tion read” (1 page at a time 1n this embodiment) of the test
pattern from the relevant blocks corresponding to each tested
candidate. In this embodiment, read parameter values pro-
vided by the manufacturer of the flash memory chips are
utilized for this pre-retention read, as its purpose 1s to identify
and filter out “very bad” candidates that are unable to recover
data immediately after a write. No read retries are attempted
in this embodiment.

[0246] ECC decoding 1s employed to identify the number
of bit errors per sector. In one embodiment, 1f any sectors are
unrecoverable, the candidate 1s deemed a *“very bad” candi-
date and 1s excluded from further testing. In other embodi-
ments, any candidate with an average number of errors per
sector exceeding a predefined threshold 1s deemed a “bad
candidate” and 1s excluded from further testing.

[0247] BER and read timing results are extracted and stored
by Data Collection module 434 for subsequent use 1n gener-
ating candidate HW Scores (discussed below with reference
to step 760). In one embodiment, BER information includes
all raw data (e.g., the number of bit errors 1n each sector from
each page read), while in other embodiments only summary
information 1s stored (e.g., the number of sectors that were
unrecoverable). Similarly, stored read timing results may in
some embodiments include all raw data (such as the time
required to complete the read of each sector, page, block,
etc.), while 1n other embodiments only summary information
1s stored (e.g., the overall time to complete the read of the test
pattern). In yet another embodiment, multiple identical reads
are performed on the same page to take into account the
elfects of read disturb.

[0248] At this point, retention 1s stmulated 1n step 740 using
standard accelerated temperature-testing techniques—i.e.,
baking the flash memory 1n a temperature-controlled oven.
For example, simulating 3 months of retention might require
214 days at 160 degrees Fahrenheit. In any event, as noted
above, the desired retention period 1s specified by Plotter 510
along with the candidates, and 1s determined by the company
making SSD 100 (taking into consideration the retention
period specified by the manufacturer of the Flash Memory
Chips 110).

[0249] After the simulated retention period has elapsed, a
post-retention read process 1s performed, 1n steps 750-753.
Note that only write and erase parameters have been deter-
mined for each candidate up to this point, and that the pre-
retention read performed for each candidate 1n step 735 was
performed with read parameters provided by the manufac-
turer of the flash memory chips. The purpose of this post-
retention read process, while not yet seeking to identify pre-
cise read parameter values for each candidate, 1s to determine
the relative ability of each candidate to successtully recover
data written to a block that endured the maximum number of
P/E cycles (for the current health stage), and read after a
predefined retention period.

[0250] In this embodiment, Pathfinder 530 initiates a “read

sweep”” process 1n step 750, in which Vt Window Generator
435 performs multiple reads (one page at a time) for each
candidate (1.e., from the relevant blocks in which each can-

Feb. 4, 2016

didate’s test pattern was written, prior to the simulated reten-
tion period). Moreover, for each candidate, each read of a
page will be performed multiple times using different read
parameters. But note that each candidate will use the same
read parameters for any given read of a page.

[0251] The purpose of this “read sweep” process 1s to 1den-
tify, for each candidate, a voltage window (Vt window)—1.¢.,
a range of voltages—in which the test pattern can be success-
fully recovered (1.e., no sectors having more than 40 bit
errors). This range will likely differ for each candidate,
because the test pattern was written with different write and
erase parameters, despite the fact that each candidate will use
the same read parameters for any givenread. But, as discussed
below, determining the appropriate read parameters to best
distinguish candidates 1s complicated by the fact that the
voltage boundaries distinguishing a “1” bit from a “0” bit tend
to drift after a retention period (e.g., due to electrons leaking
out of the floating gate).

[0252] It should be noted that each flash memory chip has
multiple read parameters (10 in this embodiment), although
we are only focused on a subset of these read parameters for
this “read sweep” process—1.e., those read parameters relat-
ing to an “expected” threshold voltage (e.g., a voltage distin-
guishing a “1” bit from a “0”” bit). Other read parameters (e.g.,
relating to read retries—*‘step voltage,” “max retries,” etc.)
are not relevant to this process.

[0253] Moreover, for simplicity, this discussion will focus
on SLC flash memory, which contains only 1 bit per transistor
cell, and thus only one expected threshold voltage to distin-
guish the two states (e.g., 4.5V—where any voltage detected
ator above 4.5V 1s deemed a “1” and any voltage below 4.5V

1s deemed a “07).

[0254] It 1s important to note, however, that odd and even
pages of a block have different expected threshold voltages
(doubling the number of these parameters), and that MLC (2
bits per cell) and TLC (3 bits per cell) technologies have
multiples of these expected threshold voltages (e.g., MLC
requires 3 expected threshold voltages to distinguish 4 states,
while TLC requires 7 expected threshold voltages to distin-
guish 8 states), even apart from the odd/even page issue.
Nevertheless, upon understanding how the read sweep pro-
cess applies to a simple SLC scenario, it will be apparent to
one skilled in the art how to apply this same process to these
more complex scenarios 1 which multiple read parameters
represent multiple different expected threshold voltages (1.¢e.,
generating more permutations for the read sweep process).

[0255] So, for simplicity, assume that a flash chip manufac-
turer specifies a single expected threshold voltage (e.g., 4.5V,
represented as an operating parameter value between
0-255—say 130). This value of 130 would be used as a

starting read parameter in step 750.

[0256] But, as noted above, retention may affect these
boundaries. In other words, after retention, 4.7V (say a value
of 135) may be the appropriate boundary distinguishing a “1”
from a “0.” Attempts to use an operating parameter value of
130 may therefore yield many bit errors, possibly resulting 1in
an unrecoverable sector. So, this read sweep process 1is
designed to identify the range of expected threshold voltages
(or corresponding read parameter values) 1n which a candi-
date can successfully read a page of the test pattern (and,
ultimately, all pages within a block).

[0257] For example, after retention, a candidate using a
read parameter value of 130 to read a page of the test pattern
might successiully recover all sectors of that page. But, trying

US 2016/0034206 Al

values above 130 (e.g., 131, 132, etc.) might eventually (say
at 135) yield one or more unrecoverable sectors. Similarly,
trying values below 130 might eventually (say at 127) yield
one or more unrecoverable sectors. In that case, the candi-
date’s Vt window (for this 1 page) would be 128-134 (or a
range of 7). This 1s the result of the read sweep process in step
751—but only for 1 page of that candidate. Of course, this
same read sweep process 1s applied to all candidates 1n par-

allel.

[0258] Now, still in step 751, this same read sweep process
1s applied to all pages of each relevant block (e.g., 128 read
sweeps 1f there are 128 pages 1n a block). At this point, each
candidate has 128 associated “Vtpage windows.” In step 752,
these 128 Vt page windows for each candidate are “over-
lapped” to determine the smallest contiguous Vt window (1f
any) 1n which all values intersect at least one of the Vt page
windows. If this 1s not the case, then that candidate has failed
the Vt window process (for this current test) and 1s given a V't
window score of 0. Otherwise, 1t 1s given a Vt window score
equal to the size of 1ts range (e.g., 4 1f 1ts Vt window ranges

from 130-133).

[0259] If multiple tests are performed by Pathfinder 530,
then the smallest (“worst”) Vt window score 1s determined, in
step 753, along with a percentage of tests for which a suc-
cessiul Vt window was 1dentified (e.g., 4, 0.9—retlecting the
smallest Vt window score of 4, and the fact that a successtul
Vt window was 1dentified 1n 9 of 10 tests).

[0260] In step 760, the final HW Scores for each candidate
are determined. Note that, 1 multiple tests are performed,
these HW Scores will be determined after each test. In this
embodiment, the HW Score for each candidate includes 3
components. The first two components are the “program
time” and “erase time” determined 1n step 730, along with an
indication of whether these times satisfied the given con-
straints (e.g., 1.8, 1) for a passing program time given a 2 ms
max constraint, and (2.2, 0) for a failing program time. If
multiple tests are performed, multiple program and erase time
components are included in the HW Score. The third compo-
nent 1s the Vt window score, which itself consists of two
components—the first being the smallest Vt window score (at
the block level, across all pages), and the second being the
percentage of tests for which a successtul Vt window was
identified. In another embodiment, the Vt window score for
all tests 1s included 1n the HW Score.

[0261] Note that Plotter 510, 1n this embodiment, does not
utilize the raw data for BER (errors/sector) or for Vt window
(actual V range per test or per page), instead relying solely on
the program and erase times for each test (each with a pass/
fail bit), and the Vt window summary score (1.e., size of
smallest voltage range which was able to successtully recover
data, along with the percentage of tests passed). This infor-
mation 1s sufficient for Plotter 510 to update/rebuild 1ts 3
models, whereas the precise read parameters (1.e., waypoints)
are not determined for any given health stage until the number
of candidates 1s narrowed to a small number (e.g., 5 1n one
embodiment). Nevertheless, in one embodiment, summary
BER data (a single number) 1s returned for each candidate,
reflecting a total BER averaged across the relevant blocks and
across all tests performed.

[0262] Pathfinder 530 determines, 1n step 765, whether the
current health stage 1s down to the “final 5 candidates. If not,

the HW Scores are returned to Plotter 510 in step 790, and this

Feb. 4, 2016

iteration of the process ends. As noted above, 1 multiple tests
are to be performed, this post-retention process 1s repeated
starting with step 750.

[0263] But, 1t down to the “final 5 candidates, then way-
points are generated for all 5 final candidates 1n step 770. In
this embodiment, no additional reads are necessary, as Path-
finder 530 still has all of the data generated from the post-
retention read process 1n steps 750-753. In other words, for
cach candidate, 1t has Vt windows for every test performed
(e.g., hundreds of tests 1n this final stage).

[0264] In early health stages, it 1s not unusual for an over-
lapping Vt window to be 1dentified across all tests. If one
exists, the midpoint of that Vt window 1s deemed the first
waypoint, and the remaining waypoints, 1in order, alternate
around either side of that waypoint. For example, 11 the final
Vt window (overlapping for all tests) 1s 138-158, then the
waypoints would be (148, 149, 1477, 150, 146, etc.).

[0265] If no single overlapping Vt window exists (as 1s
often the case 1n later health stages), then the Vt window that
captures the largest percentage of the pages 1s identified (e.g.,
90% of all pages, but with gaps that miss the other 10%). The
midpoint of that Vt window 1s deemed the first waypoint.
However, the process 1s then repeated for the missing pages
that were not captured by the first Vt window. The midpoint of
the Vt window that captures the largest percentage of those
missing pages 1s deemed the second waypoint (and so on,
until all pages have been accounted for). In other embodi-
ments, a myriad of techniques can be employed to determine
and order additional waypoints, based on the raw Vt window
data and the central objective—i.e., to 1dentify and order the
waypoints based upon the extent to which they successtully
recover the test pattern data. In one embodiment, waypoints
are determined for different retention periods, enabling Navi-
gator 200, to employ knowledge of current retention times to
select waypoints based upon their “pre-tested” success for
that (or the closest) corresponding retention period.

[0266] In any event, now that each of the 5 final candidates
also has a set of waypoints (e.g., 8 waypoints 1n the current
embodiment), a final hardware test 1s performed 1n step 770
on these 5 candidates to determine the “optimal” candidate
for the current health stage. In one embodiment, the way-
points are used (1n order) during this final test to recover the
test pattern (1.e., a read retry). The candidate 1s scored based
upon 1its use of the fewest waypoints. If any sectors are unre-
coverable after using all of 1ts waypoints, 1t 1s disqualified 1n
this embodiment.

[0267] Inany event, the HW Scores (and waypoints) for all
S5 final candidates are returned to Plotter 510 in step 790, and
the process ends. As noted above, Health Stage Analyzer 419
will compare these HW Scores and determine the “optimal”
candidate for the current health stage, and then proceed to the
next health stage (1f one 1s warranted). In the highly unlikely

event that all candidates are disqualified, another 1teration
with Pathfinder 530 1s performed.

V. Extending Operational Lifetime of SSD

[0268] As discussed above, the principles of the present
invention provide significant advantages over systems that
employ a single fixed set of operating parameters, as well as
those that modify operating parameters based solely upon the
cumulative number of elapsed P/E cycles (age). These advan-
tages are illustrated 1n graph 800 of FIG. 8.

[0269] For example, x-axis 810 of graph 800 measures P/E
cycles 1n units that are multiples of the default total expected

US 2016/0034206 Al

lifetime specified by the manufacturer of the Flash Memory
Chips 110 1n SSD 100, while y-axis 820 measures stress as a
percentage of the fixed operating parameters employed by the
manufacturer of the Flash Memory Chips 110 1n SSD 100.
Thus, horizontal line 835 represents the result of strategy
830—i.e., employing fixed operating parameters. The stress
levels remain constant for the lifetime of SSD 100, which

correlates to the expected number of P/E cycles specified by
the manufacturer of the Flash Memory Chips 110.

[0270] Turning to strategy 840 (varying operating param-
eters solely based on a cumulative P/E cycle count), stairstep
lines 843 represent an extension of the operational lifetime of
SSD 100 (e.g., almost 3x compared to the manufacturer’s
expected lifetime) due to the fact that stress levels begin lower
during earlier stages, and gradually rise toward the manufac-
turer’s “worst-case” scenario as cumulative P/E cycles
increase. But, note, however, that stages are relatively short in
duration, primarily due to the fact that strategy 840 is inca-
pable of distinguishing outlier blocks (“bad blocks™) from
retention problems (“bad data™), and therefore cannot extend
stages to their tullest potential. Moreover, the stages are rela-
tively short to begin with because this same defect exists
during offline characterization, 1n which errors must be pre-
sumed to be due to cumulative wear, when they may 1n fact be
due to outlier blocks, retention issues and other factors
beyond mere P/E cycles. As a result, a “worst-case” scenario
must be presumed during offline characterization. For
example, 11 offline testing revealed an unacceptable number
of errors after 1500-2000 P/E cycles, the stage must be lim-
ited to 1500 P/E cycles in order to ensure “pre-tested” reten-
tion.

[0271] Finally, by employing strategy 850—i.¢., the con-
cepts of the present invention, in which health (not merely
cumulative P/E cycles) of the flash memory 1s monitored both
during the offline characterization phase, and during the
operational lifetime of SSD 100, stairstep lines 855 1llustrate
a significantly extended operational lifetime (e.g., almost 10x
compared to the manufacturer’s expected lifetime). As a
result of this strategy 8350, more health stages are possible,
starting at lower levels of stress and extending much longer
than for the other strategies (i.e., for more P/E cycles).

[0272] As discussed above, there are many reasons for this
dramatic improvement. By accurately recognizing the actual
health of the flash memory during early health stages of life
(and not being misled by outlier blocks and unexpected usage
of SSD 100), relatively lower stress can be employed during
these early health stages, which slows the rate of inevitable
wear. Moreover, even as cumulative wear begins to occur,
health stages can be extended for additional P/E cycles
because outlier blocks and unexpected usage can be detected
and addressed by taking preventive measures, such as reduc-
ing the usage of such blocks, or resting them temporarily, as
well as moving data to manage retention issues and avoid
unnecessary read retries and read failures.

[0273] Finally, 1t should be noted that stress levels 1n later
health stages can be extended even beyond the “worst-case”™
scenarios contemplated by the manufacturer of Flash
Memory Chips 110, because actual cumulative wear has been
abated over time, enabling the flash memory to reach 1ts full
potential, as determined and *“pre-tested” during an offline
characterization phase. Moreover, by avoiding unnecessarily
stringent retention requirements (e.g., 1-year, as opposed to 3
months), strategy 850 can extend this potential even further.

Feb. 4, 2016

V1. Miscellaneous Alternative Embodiments

[0274] A.Timing Signatures

[0275] As noted above, due to manufacturing variations,
certain areas of flash memory (e.g., outlier blocks) wear faster
than others. In one embodiment, offline machine-learning
techniques are employed to determine “timing signatures”™ of
various different categories of blocks, reflecting how quickly
those blocks wear over time (ultimately reflecting how many
total P/E cycles they will last).

[0276] These timing signatures are determined offline by
monitoring write and erase timing and BER data at various
different points 1n the life of the flash memory being tested on
actual flash memory chips. Machine-learning techniques are
employed to feed this traiming data into software models
designed to predict a “rate of change” for numerous different
categories of blocks (e.g., 50 different categories of blocks,
cach exhibiting different “timing signatures” reflecting their
expected lifetime 1n total P/E cycles).

[0277] During the operational lifetime of SSD 100, Navi-
gator 200 1ssues artificial write and erase commands to vari-
ous blocks of flash memory to capture (e.g., via soit and
critical thresholds) a rate of change 1n those write and erase
times that matches the timing signature of 1ts predefined 50
categories of blocks. Upon correlating particular blocks with
one of these categories, Navigator 200 can infer 1ts expected
lifetime (1.e., how many P/E cycles 1t has left before 1t wears
out), and adjust 1ts usage accordingly. For example, blocks
exhibiting the “shortest lifespan™ timing signatures are rested
or relegated to low-priority usage, and eventually placed on a
permanent bad block list. Blocks exhibiting the “longest
lifespan” timing signatures are used more frequently—e.g.,
by artificially decreasing their P/E cycle counts so that STD
Flash Controller Firmware 122 will be more likely to utilize
them. In one embodiment, different sets of operating param-
eters could be employed for different categories of blocks.
[0278] B. Host-side Monitoring

[0279] In one embodiment, a host system 1s aware of par-
ticular types of files (e.g., bitmapped 1mages, movies, etc.)
that can tolerate more errors from a user’s perspective. By
identifying those file categories to SSD 100 (e.g., during write
operations), Flash Controller 120 can store those files 1n
“weaker” areas of flash memory. For example, it 1s well
known that the last page of a block 1s more prone to read
errors. Moreover, upon detecting errors during read opera-
tions on those blocks, Flash Controller 120 can perform fewer
(or no) read retries, given that performance may be deemed
more 1mportant than accuracy in light of the fact that such
files can tolerate more errors.

[0280] C. Adaptive ECC

[0281] Asnoted above, 1t 1s well known that pages closer to
the end of a block are gradually more prone to read errors. In
one embodiment, Flash Controller 120 maintains an “KC
page table” correlating each page 1n a block to an ECC level,
with those pages toward the end of a block having a relatively
higher ECC level (e.g., 40-bit ECC) than those toward the
beginnming of the block (e.g., 10-bit ECC). Because Flash
Controller 120 1s aware of the page 1t 1s writing, 1t can apply
that particular corresponding ECC level to that page—pad-
ding the write with additional *“1” bits, for example, to main-
tain a fixed data length, whether applying 10-bit ECC or
40-bit ECC, or a level in between. The same ECC page table
1s employed when reading the data to ensure the appropriate
ECC decoding level 1s employed. In another embodiment,
ECC levels can be varied based on a block’s predetermined

US 2016/0034206 Al

timing signature—e.g., assigning fewer ECC bits to blocks
having “better” timing signatures.

[0282] Because ECC decoding 1s faster with lower ECC
levels, performance will be improved overall, enabling the
use of simpler ECC decoding schemes (e.g., BCH, as
opposed to more time-consuming LDPC and other variable-
speed decoding schemes). And, by limiting lower-level ECC
to those pages that are less susceptible to errors, the tradeoif
of nisking more read failures 1s mitigated.

[0283] Moreover, 1n one embodiment, each block has an
associated ECC page table, and Navigator 200 modifies the
relative ECC values based upon 1ts monitoring of the health of
the flash memory (leaving the relative values intact—i.e.,
pages toward the end of the block still having relatively higher
ECC levels). When ECC page table entries are changed for a
particular block, Flash Controller 120 will wait until the block
1s written again before employing the new entry.

[0284] In one embodiment, 1f blocks are relatively more
healthy, the ECC levels for those blocks are decreased, while
the ECC levels for less healthy blocks are increased. More-
over, ECC levels may be combined with other factors as
well—e.g., permitting less aggressive write parameters. It
will be apparent to one skilled in the art that various other
actions can be implemented based upon the knowledge of the
relative health of a block and the differing ECC levels cur-
rently applied to particular pages within that block.

1. A flash memory drive comprising:

(a) one or more flash memory chips, each chip including
one or more L UNs, and each LUN including one or flash
memory blocks and one or more control registers storing
operating parameters associated with that LUN; and

(b) a flash controller, external to the one or more flash
memory chips, that 1ssues read, write and erase control-
ler memory commands to the flash memory chips during
the operational lifetime of the flash memory drive,
wherein

(1) each of the flash memory chips implements the con-
troller memory commands by applying varying levels
of electrical stimuli to the flash memory blocks 1n a
LUN 1n accordance with current values of the operat-
ing parameters associated with that LUN; and

(11) the flash controller, over time during the operational
lifetime of the flash memory drive,

(1) monitors health metrics, including a cumulative
number of program/erase cycles and one or more

other indicators of wear of the flash memory blocks
in that LUN; and

(2) modifies, 1n response to the monitored health met-
rics, the values of one or more of the operating
parameters associated with that LUN.

2. The flash memory drive of claim 1, wherein the health
metrics include BER data resulting from reading the contents
of one or more flash memory blocks in that LUN.

3. The flash memory drive of claim 1, wherein the health
metrics include timing information relating to one or more
controller memory commands performed on the flash
memory blocks 1n that LUN.

4. The flash memory drive of claim 1, wherein the health
metrics include previously stored historical health metric data
relating to the flash memory blocks 1n that LUN.

5. A flash memory drive comprising:

(a) one or more flash memory chips, each chip including
one or more L UNs, and each LUN including one or flash

Feb. 4, 2016

memory blocks and one or more control registers storing
operating parameters associated with that LUN; and

(b) a flash controller, external to the one or more flash
memory chips, that 1ssues read, write and erase control-
ler memory commands to the flash memory chips during
the operational lifetime of the flash memory drive,
wherein

(1) each of the flash memory chips implements the con-
troller memory commands by applying varying levels
of electrical stimuli to the flash memory blocks 1n a
LUN in accordance with current values of the operat-
ing parameters associated with that LUN; and

(11) the flash controller, over time during the operational
lifetime of the flash memory drive,

(1) monitors health metrics, including a cumulative
number of program/erase cycles and one or more

other indicators of wear of the flash memory blocks
in that LUN; and

(2) employs one or more preventive measures, 1n
response to the monitored health metrics, to reduce
the rate of wear of one or more flash memory blocks

in that LUN.

6. The tflash memory drive of claim 4, wherein the health
metrics include BER data resulting from reading the contents
of one or more flash memory blocks 1n that LUN.

7. The flash memory drive of claim 4, wherein the health
metrics include timing information relating to one or more

controller memory commands performed on the flash
memory blocks 1n that LUN.

8. The flash memory drive of claim 4, wherein the health
metrics include previously stored historical health metric data
relating to the flash memory blocks 1n that LUN.

9. The flash memory drive of claim 4, wherein the preven-

tive measures include resting one or more flash memory
blocks 1n that LUN.

10. The flash memory drive of claim 4, wherein the pre-
ventive measures include reducing the usage of one or more
flash memory blocks in that LUN.

11. A method for increasing the operational lifetime of a
flash memory drive, wherein the flash memory drive includes
one or more flash memory chips, each chip includes one or
more LUNSs, and each LUN includes one or flash memory
blocks and one or more control registers storing operating
parameters associated with that LUN, the method comprising
the following steps:

(a) 1ssuing, from a flash controller, external to the one or
more flash memory chips, read, write and erase control-
ler memory commands to the flash memory chips during
the operational lifetime of the flash memory drive;

(b) implementing the controller memory commands by
applying varying levels of electrical stimuli to the flash
memory blocks 1n a LUN in accordance with current
values of the operating parameters associated with that
LUN;

(¢) monitoring health metrics over time during the opera-
tional lifetime of the flash memory drive, wherein the
health metrics include a cumulative number of program/

erase cycles and one or more other indicators of wear of
the flash memory blocks 1n that LUN; and

(d) moditying, 1n response to the monitored health metrics,
the values of one or more of the operating parameters
associated with that LUN.

US 2016/0034206 Al

12. The method of claim 11, wherein the health metrics
include BER data resulting from reading the contents of one
or more flash memory blocks in that LUN.

13. The method of claim 11, wherein the health metrics
include timing information relating to one or more controller
memory commands performed on the flash memory blocks in
that LUN.

14. The method of claim 11, wherein the health metrics
include previously stored historical health metric data relat-
ing to the flash memory blocks in that LUN.

15. A method for increasing the operational lifetime of a
flash memory drive, wherein the flash memory drive includes
one or more flash memory chips, each chip includes one or
more LUNSs, and each LUN includes one or flash memory
blocks and one or more control registers storing operating,
parameters associated with that LUN, the method comprising
the following steps:

(a) 1ssuing, from a flash controller, external to the one or
more flash memory chips, read, write and erase control-
ler memory commands to the flash memory chips during
the operational lifetime of the flash memory drive;

(b) implementing the controller memory commands by
applying varying levels of electrical stimuli to the flash
memory blocks 1n a LUN 1n accordance with current
values of the operating parameters associated with that

LUN;

Feb. 4, 2016

(¢) monitoring health metrics over time during the opera-
tional lifetime of the flash memory drive, wherein the
health metrics include a cumulative number of program/
erase cycles and one or more other indicators of wear of
the flash memory blocks 1n that LUN; and

(d) employing one or more preventive measures, 1n
response to the monitored health metrics, to reduce the
rate of wear of one or more flash memory blocks in that
LUN.

16. The method of claim 15, wherein the health metrics
include BER data resulting from reading the contents of one
or more flash memory blocks in that LUN.

17. The method of claim 15, wherein the health metrics
include timing information relating to one or more controller
memory commands performed on the flash memory blocks in
that LUN.

18. The method of claim 15, wherein the health metrics
include previously stored historical health metric data relat-
ing to the tlash memory blocks in that LUN.

19. The method of claim 15, wherein the preventive mea-
sures 1nclude resting one or more flash memory blocks 1n that
LUN.

20. The method of claim 15, wherein the preventive mea-

sures include reducing the usage of one or more flash memory
blocks 1n that LUN.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description
	Page 31 - Description
	Page 32 - Description
	Page 33 - Description
	Page 34 - Description
	Page 35 - Description
	Page 36 - Description
	Page 37 - Description/Claims
	Page 38 - Claims

