a9y United States
a2y Patent Application Publication (o) Pub. No.: US 2016/0119349 Al

US 20160119349A1

WANG et al. 43) Pub. Date: Apr. 28, 2016
(54) ACCESS CONTROL FOR DATA BLOCKS IN A (52) U.S. CL
DISTRIBUTED FILESYSTEM CPC HO4L 63/10 (2013.01); GO6F 17/30194
(2013.01); HO4L 9/0816 (2013.01); HO4L
(71) Applicant: Vormetric, Inc., San Jose, CA (US) 2209/24 (2013.01)
(72) Inventors: I-Ching WANG, San Jose, CA (US): (57) ABSTRACT
Feng Xu, San Jose, CA (US); Sri A method for access control of data in a filesystem 1s pro-
Sudarsan, San Jose, CA (US) vided. The method includes storing a map 1n a server, the map
coupled to an agent, the map associating access control rules,
, filenames 1n a namespace 1n a first filesystem, and owners of
(21) Appl. No.: 14/522,365 files. The method includes determining a block filename in a
, namespace 1n a second filesystem, based on an I/O request
(22) Tiled: Oct. 23, 2014 from a data node to the second filesystem regarding a data
block. The method includes determining a username of the
Publication Classification I/O request and determining a filename 1n the namespace 1n
the first filesystem, based on the block filename in the
(51) Int.CL namespace 1n the second filesystem. The method includes
HO04L 29/06 (2006.01) applying to the data block and the username an access control
HO04L 9/08 (2006.01) rule that the map associates with an owner of a file having the
Goo6l’ 17/30 (2006.01) filename 1n the namespace in the first filesystem.
902

Block file 10 in second filesystem kernel

9006

904

?

First
filesystem filename
cached

No

Yes

Request user mode component of transparent encryption

agent to get first filesystem filename based on block filename

903

Get username from thread context of current thread

O
—
-

Apply access control rule based on first filesystem filename
and current thread username

Patent Application Publication Apr. 28, 2016 Sheet 1 of 8 US 2016/0119349 Al

~106» 1022
Data Security Manager
(DSM)
104
>| /O Request |«
102b~
108 110 102
Name Node Data Node
| First OS Second OS
112~ 112
Agent Agent
124
Access Mapping e
Control Module
116
First Map
118
. Second Map
120b~_|
124
Access
~——~ Control
126

120a \Q/ 122

N

FIG. 1

Patent Application Publication Apr. 28, 2016 Sheet 2 of 8 US 2016/0119349 Al

110
First Name Node| ;| 902
System 210~ Djr |+ « «| Dir 210
204
— - - - 208
208 200
199 Second File System
199 Block File
Block File |
122 X
Block File |
FIG. 2
108~ 108~
Name Node 1 \ f Name Node N
0000008500 Name Space N
""""""""""" Block Pools\ [PooIN }-304)

T T T S S T S S - S S S e -, - T T T T - - T - .. --—--—---—------J

Common Storage

=
Data Node 1 Data Node K
110 110
120 120

FIG. 3

Patent Application Publication Apr. 28, 2016 Sheet 3 of 8 US 2016/0119349 Al

108

Name Node

First File System
204

Second File System

206 Block Files: Pool D eessee Bloc';k 1D

/ / /
122 402 404
FIG. 4
____________ 910
508~ -1 Pool Id and Block ID |
l RPC Protocol L--. 108 1 402 404

Name Node

‘ FSNamesystem
504~

ﬁ;] BlockManager

DistributedFileSystem
502

First Filesystem
Fllename

Patent Application Publication Apr. 28, 2016 Sheet 4 of 8 US 2016/0119349 Al

602~

Input second filesystem block filename
604~
Parse pool ID and block 1D from second filesystem block filename
606~
Map pool ID to name node host name
608~
| Call libhdfs API to connect to name node with the host name |
610~

Call hdfsGetFileName(pool ID, block ID) to get first filesysyem file name

612
Output first filesystem filename
N 7

—
512

FIG. 6
702
Block file 10 to second filesystem kernel

704
Encryption Yes
key cached
?
No
706

First
filesystem Filename

cached
’,

/08

Request user mode component of transparent encryption agent to get
first filesytem filename based on second file system block filename

710
Get encryption key based on first filesystem filename
712

Encrypt/decrypt block file 10 with the encryption key

FIG. 7

Patent Application Publication Apr. 28, 2016 Sheet 5 of 8 US 2016/0119349 Al

110

Data Node Transparent Encryption Agent

|O Thread Kernel Mode
Portion

|O Thread User Mode Portion
802~ \-808

FIG. 8

902
Block file 1O in second filesystem kernel

904

First
filesystem filename

cached
?

9006

Request user mode component of transparent encryption
agent to get first filesystem filename based on block filename

908
Get username from thread context of current thread

910~
Apply access control rule based on first filesystem filename
and current thread username

FIG. 9

Patent Application Publication Apr. 28, 2016 Sheet 6 of 8 US 2016/0119349 Al

106~ 110 ~ 108
Data Securty | | 802~\Data Node Mo
Manager |0 Thread User Mode AITIE INGUG

112 @ @
User Mode Component

@ @ Of Transparent

Encryption Agent

112~ | Kernel Mode

Transparent Encryption Agent
\ 4
808 |O Thread Kernel Mode
116~ Portion
1002~

Based On User and
First Filesystem
Filename

Access Control Rule

First Filesystem
Filename

Map Between Key and @

—>| Encryption Engine

——— Access Control Engine

™N~1004

@ ~124

|

FIG. 10

Patent Application Publication Apr. 28, 2016 Sheet 7 of 8 US 2016/0119349 Al

1102
/O requeste for data block in second filesystem
1104~

Determine block filename in second filesystem based an 1/O request
1106~

Generate,store first map associating access control
rules, owners of files, and filenames of files In first filesystem

1108
Generate,store first map associating filenames of files in first

filesystem and filenames of data block files in second filesystem
1110~

Determine username of |/O request
1112~

Determine filename In first filesystem, based on block filename
In second filesystem per second map

1114

Determine access control rule based on filename In first filesystem
per first map

1116~
Apply access control rule to username and data block of 1/O request

1118
AcCcess

granted by rule No
?

1120~ Yes

Determine encryption key based on filename In first filesystem per
first map
1122

Apply encryption key to data block of /O request

FIG. 11

Patent Application Publication Apr. 28, 2016 Sheet 8 of 8 US 2016/0119349 Al

1201\ 1203\
CPU Memory
1205 1209
Input/output
BUS | pDuevil(dzlepu \
1207

| Mass Storage |

1211

Display

G, 14

US 2016/0119349 Al

ACCESS CONTROL FOR DATA BLOCKS IN A
DISTRIBUTED FILESYSTEM

BACKGROUND

[0001] In this era of Big Data, large-scale processing of
large amounts of data can be performed on distributed hard-
ware 1 a distributed filesystem. In a multitenant environ-
ment, there 1s a need for access control of data blocks, so that
data belonging to each tenant 1s secure. Yet, the distributed
nature of such a system poses data security challenges. Some
operating systems do not interact well with other operating
systems 1n terms of data security. For example, Hadoop can
be used as a framework for large-scale processing, in which
Hadoop 1s used as a first operating system for one or more
name nodes, and a local operating system 1s used as a second
operating system for one or more data nodes, under which
data blocks are stored. One problem 1n such a distributed
filesystem 1s that often the first operating system 1s not aware
of the owner of the data. This renders access control for data
blocks difficult 1 not impossible. One workaround i1s to
define and apply an encryption key in a local filesystem
namespace, but this imposes a burden on the system and the
users, and 1s not transparent to the users. Furthermore, such an
encryption key cannot be defined and applied selectively on a
basis of individual files at the level of the first filesystem (e.g.
HDFS, the Hadoop distributed file system). Administrators in
the first filesystem have unrestricted access to unencrypted
data, since the super-user has the same identity as the name
node process itself. Therefore, there 1s a need 1n the art for a
solution which overcomes the drawbacks described above.

SUMMARY

[0002] In some embodiments, a method for access control
of data 1n a filesystem 1s provided. The method includes
storing a map in a server, the map coupled to an agent execut-
ing in the server, the map associating access control rules,
filenames 1n a namespace 1n a first filesystem, and owners of
files. The method includes determinming a block filename 1n a
namespace 1 a second filesystem, based on an I/O (input/
output) request from a data node to the second filesystem
regarding a data block. The method 1ncludes determining a
username of the I/O request and determining a filename 1n the
namespace 1n the first filesystem, based on the block filename
in the namespace in the second filesystem. The method
includes applying to the data block and the username an
access control rule that the map associates with an owner of a
file having the filename 1n the namespace 1n the first filesys-
tem, wherein at least one action of the method 1s performed by
a processor 1n the server.

[0003] In some embodiments, a tangible, non-transitory,
computer-readable media having instructions thereupon
which, when executed by a processor, cause the processor to
perform a method 1s provided. The method includes estab-
lishing 1n a data node an I/O (anput/output) thread associated
with a username and regarding a data block, responsive to an
I/0 request, the data block having a block filename 1n a
namespace 1n a local filesystem relative to the data node, the
block filename having a pool ID (1dentifier) and a block 1D,
which i1dentity the data block. The method includes mapping
the block filename 1n the namespace 1n the local filesystem to
a filename 1n a further namespace relative to a name node and
having a directory structure in a further filesystem. The
method includes associating an encryption key and an access

Apr. 28, 2016

control rule to the filename 1n the further namespace and
passing the username from the data node to an agent. The
method includes applying, through the agent, the access con-
trol rule and the encryption key to the data block and the
username.

[0004] In some embodiments, a method for access control
of data blocks 1n a filesystem 1s provided. The method
includes pushing a first map from a data security manager to
an agent, 1n a server. The first map having a plurality of access
control rules based on users and filenames 1n a first filesystem.
The first map further having one or more encryption keys and
associating the one or more encryption keys to the users and
the filenames 1n the first filesystem. The method includes in
an I/0O (input/output) thread in a data node, sending a user-
name to the agent through an I/O control (IOCTL) call and in
the I/O thread, calling to a second filesystem regarding one or
more blocks, the second filesystem having a namespace that
references blocks by block filenames. The method includes in
the agent, intercepting the calling to the second filesystem and
obtaining a block filename and determining, through the
agent, a filename of a file 1n the first filesystem corresponding
to the block filename in the second filesystem. The method
includes applying, through the agent, one of the plurality of
access control rules, corresponding to the filename of the file
in the first filesystem, against the username from the I/O
control call.

[0005] Other aspects and advantages of the embodiments
will become apparent from the following detailed description
taken 1n conjunction with the accompanying drawings which
illustrate, by way of example, the principles of the described
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The described embodiments and the advantages
thereof may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings. These drawings 1n no way limit any changes 1n
form and detail that may be made to the described embodi-
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments.

[0007] FIG. 1 1s asystem block diagram of a server with a
data security manager, one or more name nodes, one or more
data nodes, and a transparent encryption agent in accordance
with some embodiments.

[0008] FIG. 2 depicts a name node, with a first filesystem,
and a data node, with a second filesystem 1n accordance with
some embodiments.

[0009] FIG. 3 shows the relationship of data block pools to
namespaces 1n name nodes 1 accordance with some embodi-
ments.

[0010] FIG. 4 shows the relationship of a data block file,
with a pool ID and a block ID 1n the second filesystem, to a
filename 1n the first filesystem in accordance with some
embodiments.

[0011] FIG. 5 shows a name node obtaining a filename
relative to the first filesystem, from a pool ID and block ID
relative to the second filesystem in accordance with some
embodiments.

[0012] FIG. 6 1s a flow diagram showing a worktlow of a
mapping module 1n the transparent encryption agent of FIG.
1 in accordance with some embodiments.

[0013] FIG. 7 1s a flow diagram showing a worktlow of the
transparent encryption agent of FIG. 1, obtaining and apply-
ing an encryption key in accordance with some embodiments.

US 2016/0119349 Al

[0014] FIG. 81saflowdiagram of a datanode issuing an I/O
control call, from which a username 1s obtained 1n accordance
with some embodiments.

[0015] FIG.91s a flow diagram showing a workflow of the
transparent encryption agent of FIG. 1, obtaining a username
and applying access control in accordance with some
embodiments.

[0016] FIG. 10 1s an architecture diagram depicting opera-
tion of the transparent encryption agent of FIG. 1, 1n interac-
tions with the data security manager, a data node and a name
node 1n accordance with some embodiments.

[0017] FIG. 11 1s a flow diagram showing a method of
controlling data access 1n a distributed filesystem 1n accor-
dance with some embodiments.

[0018] FIG. 12 1s an illustration showing an exemplary
computing device which may implement the embodiments
described herein.

DETAILED DESCRIPTION

[0019] A transparent encryption agent disclosed herein
operates 1n a distributed filesystem. The agent can operate 1n
conjunction with one or more name nodes under a {irst oper-
ating system, which could be Hadoop or other operating
system suitable for a distributed filesystem, and one or more
data nodes under a second operating system, which could be
alocal filesystem (1.e., a filesystem local to each datanode). In
one embodiment, the agent 1s implemented as the Vormetric
Transparent Encryption Agent™, which 1s part of a secure
filesystem, secfs, that operates with the Data Security Man-
ager™ of the assignee of the present application. In various
embodiments, the agent 1s installed above, alongside, or
below a filesystem on a server or a virtual machine, to enforce
security policies. It should be appreciated that secfs 1s a
loadable kernel module and may be embodied as the agent 1n
some embodiments. The sects module 1s a file system layer
that enforces an access and encryption policy upon selected
data on end-user systems 1n some embodiments. The policy
specifies a key to be used when writing data to disk and while
reading data from disk. Further details on the secure file
system secis of the assignee may be found 1n application Ser.
No. 14/015,954, which 1s icorporated by reference for all
purposes.

[0020] The embodiments provide that when an I/O (input/
output) request 1s made for a data block, identified by a block
filename 1n the second operating system, the agent determines
the corresponding filename 1n the first operating system, and
a username for the I/O request. The agent then determines an
access control rule applicable to the file having that filename
in the first operating system. The agent applies the access
control rule to the data block, which confirms or denies access
to the data block specified in the I/O request, based on
whether the username 1s allowed access according to the
access control rule. ITaccess 1s allowed, encryption or decryp-
tion 1s applied to the data block by the agent. It should be
appreciated that these processes are transparent to the user
and the I/O request 1n some embodiments.

[0021] Examples of terminology for one filesystem in one
embodiment are provided below. It should be appreciated that
further embodiments are applicable to further filesystems and
operating systems as the terminology i1s not meant to be
limiting. An HDFS namespace may refer to a hierarchy of
files and directories 1n HDFS. Files and directories are rep-
resented on the name node by 1nodes 1n some embodiments.

A HDFS Client may refer to the client end of HDFS that

Apr. 28, 2016

interacts with an HDFS name node and data node through
class DistributedFileSystem. A HDFS administrator may
refer to a super-user with the same 1dentity as the name node
process 1tself; the super-user can do anything in that permis-
sions checks never fail for the super-user. By default the
super-user identity 1s hdis. A HDFS block refers to the content
of an HDFS file split into large blocks. Typically each block
1s up to 128 megabytes, although other sizes could be used. A
HDFS block file refers to the underlying local filesystem file
that stores a single HDFS Block. Each HDFS block has an
associated name 1n the local file system. A HDFS pool ID
refers to an identifier that umiquely 1dentifies the block pool
that belongs to a single HDFS namespace. A HDFS block ID
refers to an identifier that uniquely identifies a block that
belongs to a block pool.

[0022] Examples of Data Security Transparent Encryption
Terminology relating to the assignee includes the Transparent
Encryption Agent, which refers to a kernel mode component
installed above the file system to apply encryption key and
security rules to filesystem 1/0s. A user mode component of
the transparent encryption refers to a user mode component to
handle a request from the Transparent Encryption Agent. The
Data Security Manager refers to a repository that centralizes
policy control and key management for transparent encryp-
tion.

[0023] FIG. 1 1s a system block diagram of servers 102a-c
in a distributed environment. Server 102a includes data secu-
rity manager 106. Server 1025 includes one or more name
nodes 108 having data storage 1205. Server 102¢ includes one
or more data nodes 110 and a transparent encryption agent
112 in accordance with some embodiments. The agent 112
has a mapping module 114, a first map 116, a second map 118,
an access control engine 124 and an encryption engine 126.
The first map 116 1s relative to the first filesystem, and asso-
ciates filenames 1n one or more namespaces 1n the first file-
system with owners of the files, access control rules, and
encryption keys. The second map 118 i1s relative to both the
first filesystem and the second filesystem, and associates file-
names 1n the one or more namespaces 1n the first filesystem
with block filenames of data blocks in one or more
namespaces 1n the second filesystem. In some embodiments,
the second map 118 maps a pool ID, of a block filename 1n the
second filesystem, to a name node or a hostname of a name
node, as explained further below.

[0024] Data blocks 122 are written to and read from data
storages 120a, which are coupled to the server 102c¢. It should
be appreciated that the data storages 120a need not be physi-
cally proximate to the server 102¢, and could be distributed
storage, local storage, virtual storage, cloud storage, direct
attached storage, and so on. When an I/O request 104 1s
received by the server 102¢, the agent 112 determines the
block filename 1n the second filesystem. The agent 112 then
determines the filename 1n the first filesystem, the owner of
that file, and the applicable access control rule. Meanwhile,
the username associated with the I/O request 104 1s obtained
by the agent 112. With this information, the agent 112 applies
the access control rule. The agent 112 uses the access control
engine 124, and confirms or denies access to the data block
referenced by the I/O request 104, with encryption or decryp-
tion, using the encryption engine 126, as appropriate. For
example, 1f the user that made the I/0 request 104 1s the same
as the owner, the access control rule would allow access, with
encryption for a data write or decryption for a dataread. Rules
and policies for individual ownership and access and/or group

US 2016/0119349 Al

ownerships and access, and combinations thereof, are readily
devised and applied in accordance with the teachings herein.

[0025] FIG. 2 depicts a name node 108, with a first filesys-
tem 204, and a data node 110, with a second filesystem 206 in
accordance with some embodiments. The relationship of data
across the two filesystems 204, 206, 1n a distributed filesys-
tem, explains how a block filename 1n a namespace 1n the
second filesystem 206 1s mapped to a filename 1n anamespace
in the first filesystem 204. A distributed filesystem, such as
HDFS, has name nodes 108 and data nodes 110. A name node
108 keeps a directory tree 202 of all the files 208 in the
namespace 1n the first filesystem 204. A data node 110 stores
the data of these files 208 1n a local filesystem, the second
filesystem 206, which 1s local to the data node 110. The
content of a file 1n a distributed filesystem 1s split into one or
more large blocks 1n some embodiments. Typically, each
block 1s up to 128 MB (megabytes), although other sizes can
be used. Each data block 1s stored as a block file 122 1n the
local filesystem, 1.¢., the second filesystem 206. Thus, one or

more block files 122 1n the second filesystem 206 may corre-
spond to one file 208 1n the first filesystem 204.

[0026] FIG. 3 shows the relationship of data block pools
304 to namespaces 302 in name nodes 108 in some embodi-
ments. A block pool 304 1s aset of blocks 122 (1.e., data blocks
122) that belong to a single name node 108 and namespace
302. Each name node 108 has a namespace 302, and each
namespace 302 corresponds to a name node 108. Data nodes
110 store the data blocks 122, as block 122 files, for all the
block pools 304 1n a cluster in some embodiments. A
namespace 302 generates block IDs (identifiers) for new
blocks 122 without need for coordination with other
namespaces 302.

[0027] FIG. 4 shows the relationship of a data block 122
file, with a pool ID 402 and a block ID 404 in the second
filesystem 206, to a filename 1n the first filesystem 204 1n
some embodiments. Each block 122 filename contains a pool
ID 402 and a block ID 404. The pool ID 1s uniquely related to
the name node 108 and corresponding namespace 302. The
block ID 404 1s uniquely related to a filename within a name
node 108 and corresponding namespace 302. The combina-
tion of a pool ID 402 and a block ID 404 1s globally unique, so
there 1s a one-to-one relationship between the block 122
filename 1n the second filesystem 206 and the filename 1n the
first filesystem 204, when the file 1s smaller than one block. In
other words, a single block 122, with a filename and the
second filesystem 206, maps to a single file with a filename 1n
the first filesystem 204. When the file 1s larger than one block,
there 1s a many-to-one relationship between the filenames of
the blocks 122 1n the second filesystem 206 that are split out
from the file, and the filename 1n the first filesystem 204. In
other words, multiple blocks 122, with filenames 1n the sec-

ond filesystem 206, map to a single file with a filename 1n the
first filesystem 204.

[0028] FIG. 5 shows a name node 108 obtaining a filename
relative to the first filesystem 204, from a pool ID 402 and
block ID 404 relative to the second filesystem 206. Prior to
development of embodiments for the present disclosure,
HDEFS did not have an API (application programming inter-
face) to obtain an HDF'S file name based on the HDFS pool ID
402 and block ID 404. A new method public String getFile-
Name(String poolld, long blocklId) 1s added into the HDFS
Java client API class DistributedFileSystem. This method
enhances the HDFS client, communication and name node
components (e.g., FSNamesystem) 504 to get the HDFS file-

Apr. 28, 2016

name (e.g., the first filesystem filename 512) from the name
node 108 blockManager 506, based on the pool ID 402 and

the block ID 404. For example, the distributed filesystem 502
follows the remote procedure call (RPC) protocol 508 1n
communicating with the name node 108. The first filesystem
204 client, communication and name node components are
collectively shown 1n FIG. § as the filesystem name system
504. These send the pool ID 402 and block ID 404 as param-
eters 510 to the block manager 506, and receive back the first
filesystem filename 512. With reference back to FIG. 1, this
can be accomplished with the use of the second map 118.

[0029] FIG. 6 1s a tlow diagram showing a workflow of the
mapping module 114 1n the transparent encryption agent 112
of FIG. 1. In the embodiment shown, 1n order for a C module
to call the mapping service, a INI based C wrapper function
char®* hdfsGetFileName(hdisFS {1s, char® poolld, int64_t
blockld) 1s added on top of getFileName into the HDES C
library libhdfs. The functions getFileName and hdisGetFile-
Name do not map the HDFS pool ID 402 to the HDFS name
node 108. The pool ID 402 parameter for those two functions
1s only used for the HDFS name node 108 to validate the call.
The HDFS pool 1D 402 to HDFS name node 108 mapping 1s
done 1n a user mode component of the transparent encryption
agent 112, as will be turther explained with reference to FIG.
10. In some embodiments, the user mode component of the
transparent encryption agent 112 has a mapping module 114

to serve the request of getting the HDFS filename from the
HDEFS block 122 filename.

[0030] Although the flow diagram of FIG. 6 provides an
example with HDFS and specific function names, the method
depicted 1n FIG. 6 1s applicable to other filesystems and
operating systems and 1s not limited to HDFS. In an action
602, the block filename 1s input to the mapping module 114.
The mapping module 114 parses a pool ID and a block ID
from the block filename, 1n an action 604. The pool ID 1is
mapped to the hostname of the name node, 1n an action 606.
An API function, e.g., libhdfs, 1s called to connect to the name
node that has the hostname, 1n an action 608. A function, e.g.,
hdfsGetFileName (pool ID, block ID), 1s called to get the
filename 1n the first filesystem, from the pool ID and the block
ID, 1n an action 610. This function applies the first map 116,
as depicted 1n FIG. 1. The filename 1n the first filesystem 1s
output, 1n an action 612.

[0031] FIG. 7 1s a flow diagram showing a worktlow of the
transparent encryption agent 112 of FIG. 1, obtaining and
applying an encryption key. Applying this method, the agent
112 defines an encryption key for the file that has the filename
in the namespace in the first filesystem, and applies the
encryption key to encrypt or decrypt the related block file 1n
the local filesystem kernel, 1.e., 1n the second filesystem. The
owner of the file, 1.e., the user or process that originally writes
the file or which has otherwise been designated the owner,
defines the encryption key for the file 1n the namespace in the
first filesystem 204. In some embodiments, this 1s performed
through a data security manager 106 policy or policies. A map
that associates the filename in the first namespace and the
encryption key 1s pushed from the data security manager 106
to the transparent encryption agent 112. In some embodi-
ments, this 1s the first map 116. In some embodiments, the
agent 112 forms the first map 116 based on input from the data
security manager 106. The agent 112 may run in the datanode
110 in some embodiments. The agent 112 intercepts local
filesystem calls, for example an I/O read and write operations,
obtains the filename 1n the first filesystem 204 from the block

US 2016/0119349 Al

filename 1n the second filesystem 206, maps the filename 1n
the first filesystem 204 to the encryption key, and applies the
encryption key to the block file.

[0032] Continuing with FIG. 7, the block file I/O request 1s

sent to the kernel of the second filesystem, 1n an action 702.
For example, this could be read and write operations from an
I/O thread 1n the data node 1n some embodiments. In a deci-
sion action 704, 1t 1s determined whether the encryption key 1s
cached. If the encryption key 1s cached, flow branches to the
action 712. If the encryption key 1s not cached, flow continues
to the decision action 706. In the decision action 706, 1t 1s
determined whether the filename 1n the first filesystem 1s
cached. If the filename 1n the first filesystem 1s cached, flow
branches to the action 710. If the filename 1n the first filesys-
tem 1s not cached, flow continues to the action 708. The
decision actions 704, 706 could be performed 1n the reverse
order, 1n variations.

[0033] In action 708, a user mode component of the trans-
parent encryption agent 1s requested to get the filename 1n the
first filesystem, based on the block filename in the second
filesystem. This action can be fulfilled using the second map.
In action 710, the agent obtains the encryption key, based on
the filename 1n the first filesystem. This action can be fulfilled
using the first map. In an action 712, the agent encrypts or
decrypts the block file I/O with the encryption key, 1.e.
encrypts or decrypts the data block referenced in the block file
[/0 request.

[0034] FIG. 8 1s a flow diagram of a data node 110 1ssuing
an I/0O control call that has a thread context structure 804,
from which a username 806 1s obtained. The username 806,
which 1s used to i1ssue the I/O request (1.e., referencing the
block file) from the data node 110, 1s passed from the data
node 110 to the local filesystem kernel, 1.¢., to the kernel of the
second filesystem 206. Username 806 1s used for access con-
trol. For example, username 806 1s compared to the access
rule, 1n order to determine whether access 1s granted or
denied, and whether encryption 1s applied.

[0035] Without modification, the I/O thread on the data
node 110 does not use the credentials of the user requested the
services, 1.e., the data block I/O request. For example, 1n
Hadoop, the HDFS data node 110 process credential is
always hdfs. In order to propagate the username, code 1is
added to the I/0 thread that calls into the local filesystem, e.g.,
the second filesystem 206. This code obtains the username
806. In one embodiment, the code gets the username from the
data member userld of the HDF'S Java class BlockTokenlden-
tifier, and passes the username 806 to the transparent encryp-
tion agent 112 runming 1n the local filesystem kernel, 1.e.,
running 1n the second filesystem 206. The agent 112 parses
the thread context structure 804 and saves the username 806.
This modification 1s shown 1n FIG. 8 as the I/0O thread user
mode portion 802, in the data node 110, sending the thread
context structure 804, containing the username 806, to the I/O
thread kernel mode portion 808 1n the transparent encryption
agent 112.

[0036] FIG.91s aflow diagram showing a workflow of the
transparent encryption agent of FIG. 1, obtaining a username
and applying access control. Access control rules for files 1n
the namespace 1n the first filesystem are defined and applied
to related block files 1n the second filesystem, 1.e., the local
filesystem. The user defines the access control rule for the file
in the namespace 1n the first filesystem, relative to the name
node. In some embodiments, this 1s done through the data
security manager 106 of FIG. 1. The access control rule 1s

Apr. 28, 2016

pushed from the data security manager to the transparent
encryption agent. The agent intercepts the local filesystem
call, e.g., read and write operations. This can be performed
using the second map. The agent obtains the username from
the thread context structure of the current thread, and applies
the access control rule against the filename 1n the first filesys-
tem and the username. The agent can perform these functions
by following the method depicted 1n FIG. 9, as described
below.

[0037] The block file I/O 1s recerved 1n the second filesys-
tem kernel, in an action 902. For example, the data node
makes read and write calls, referencing the data block. In a
decision action 904, 1t 1s determined whether the filename in
the first filesystem 1s cached. If the filename 1n the first file-
system 1s cached, flow proceeds to the action 908. If the
filename 1n the first filesystem 1s not cached, flow proceeds to
the action 906.

[0038] In the action 906, the user mode component of the
transparent encryption agent 1s requested to get the filename
in the first filesystem, based on the block filename in the
second filesystem. This can be performed using the second
map. In an action 908, the username 1s obtained from the
thread context of the current thread. This can be performed
using the mechanism depicted 1n FIG. 8, 1n which the data
node sends the thread context structure to the agent. In the
action 910, the access control rule 1s applied, based on the
filename 1n the first filesystem and the username in the current
thread. For example, the username can be compared to the
access control rule, and access can be confirmed or denied,
with encryption, as appropriate.

[0039] FIG. 10 1s an architecture diagram depicting opera-
tion of the transparent encryption agent 112 of FIG. 1, in
interactions with the data security manager 106, a data node
110 and a name node 108. With reference back to FIGS. 1-9,
and corresponding descriptions, FIG. 10 combines various
mechanisms and process tflows into the overall architecture of
the system. Numbered actions are depicted in numbered octa-
gons 1n FIG. 10, and described below with the associated
numbers 1n parentheses.

[0040] (1) The data security manager 106 pushes the first
map 116 to the agent 112. The first map 116 maps between
one or more encryption keys, one or more filenames 1n the
first filesystem, and one or more access control rules, which 1s
illustrated in FIG. 10 as two portions 1002, 1004 of the first
map 116. The first map includes a map portion 1002 having at
least one access control rule based on the user and the file-
name 1n the first filesystem, and a further map portion 1004
having a map between at least one key and a filename 1n the
first filesystem. In some embodiments, the transparent
encryption agent 112 runs in a local filesystem kernel, 1.e., 1n
the second filesystem, which 1s under a data node 110.

[0041] (2) In the data node 110 I/O thread user mode por-
tion 802 that will call into the second filesystem, 1.e., the local
filesystem, the added specific code obtains the username and
sends the username to the agent 112 through an I/O control

call. In some embodiments, the user name 1s obtained from
BlockTokenlIdentifier:userld.

[0042] (3) The data node 110 I/O thread calls 1nto the sec-

ond filesystem, 1.e., the local filesystem. The agent 112 inter-
cepts the call and obtains the block filename in the second
filesystem.

[0043] (4) The agent 112 sends the block filename, 1n the
second filesystem, to the user mode component of the trans-

US 2016/0119349 Al

parent encryption agent 112. In some embodiments, this user
mode component of the transparent encryption agent 112 has
the mapping module.

[0044] (5) The user mode component of the transparent
encryption agent 112 parses the pool ID and the block ID
from the block filename 1n the second filesystem. The agent
112, more specifically the user mode component of the
encryption engine 126 in some embodiments, maps the pool
ID to the name node 108 hostname, and connects to the name
node 108 host. In one embodiment, this connection 1s made
through the HDFS C library libhdis. The agent then sends the
pool ID and the block ID to the name node 108. In some
embodiments, this 1s performed through the function getFile-
Name.

[0045] (6) The name node 108 serves the request. The name
node 108 obtains the filename 1n the first filesystem based on
the pool ID and the block ID. This action 1s depicted in FIGS.
5 and 6, and can be performed with the assistance of the agent
112, the mapping module and the second map as depicted 1n

FIG. 1.

[0046] (7) The user mode component of the transparent
encryption agent 112 returns the filename 1n the first filesys-
tem back to the remainder of the transparent encryption agent
112 operating 1n the kernel.

[0047] (8) The transparent encryption agent 112 applies the
access control rule against the username and the filename 1n
the first filesystem. This can be performed by referencing the
first map 116 and determining an access control rule associ-
ated with the filename 1n the first filesystem. Then, the agent
112 compares the username to the requirements in the access
control rule, and grants or denies access to the data block
accordingly.

[0048] (9) The transparent encryption agent 112 gets the
encryption key, based on the filename 1n the first filesystem.
For example, this can be performed with the use of the first
map 116, which indicates an appropriate encryption key asso-
ciated with the filename 1n the first filesystem. The encryption
key 1s then applied to the data block referenced in the 1/O
request, with encryption for a write or decryption for a read.
That 1s, if the data block 1s being written, encryption 1s
applied, and 1f the data block 1s being read, decryption 1s
applied.

[0049] FIG. 11 1s a flow diagram showing a method of
controlling data access in a distributed filesystem. The
method can be practiced on or by a processor, for example a
processor 1n a server 1n a distributed filesystem environment.
In an action 1102, an I/O request 1s made for a data block in a
second filesystem. For example, the I/O request could be or
include a read or write operation made from a data node, as
illustrated 1n FIGS. 1 and 10. An appropriate environment for
the I/0 request 1s data processing of large amounts of data in
a multitenant data processing system, which could include
physical computing resources and/or virtual machines imple-
mented with physical computing resources. The I/0O request
could be relative to physical storage devices, or virtual stor-
age as implemented with physical storage devices.

[0050] In an action 1104, a block filename in the second
filesystem 1s determined, based on the I/O request. This 1s
depicted 1n (3) in FIG. 10, in which a data node 1/0O thread
calls into alocal or second filesystem, and the agent intercepts
the call and gets the block filename. In an action 1106 a first
map 1s generated and stored. The first map associates access
control rules, owners of files, and filenames of files 1n a first
filesystem. For example, the first filesystem could be HDFS

Apr. 28, 2016

and relative to a name node, and the first map could be pushed
from a data security manager to a transparent encryption
agent, or developed by the transparent encryption agent based
on information from the data security manager, as depicted in
FIGS. 1-4 and 10. In an action 1108, a second map 1s gener-
ated and stored. The second map associates filenames of files
in the first filesystem and filenames of data block files in the
second filesystem. For example, the second filesystem could
be alocal filesystem 1n a data node. The second map could be
developed by the agent.

[0051] Inanaction 1110, the username of the I/O request 1s
determined. This 1s depicted in (2) 1n FIG. 10, in which the
data node uses specific code to get the username and send the
username to the agent. In an action 1112, the filename 1n the
first filesystem 1s determined, based on the block filename 1n
the second filesystem, which may be based on the second
map. FIG. 10, (5) and (6) depict such an action, 1n which the
agent parses the pool ID and the block ID, and the name node
gets the filename 1n the first filesystem namespace. The name
node sends this to the agent.

[0052] In an action 1114, an access control rule 1s deter-
mined, based on the filename 1n the first filesystem, per the
first map. The first map 1s depicted 1n FIGS. 1 and 10, and the
access control rule 1s depicted 1n FIG. 10, in the map portion
1002. The first map associates access control rules and file-
names 1n the first filesystem, and the agent can consult this
first map to determine an appropriate access control rule. In
an action 1116, the access control rule 1s applied to the user-
name and the data block of the I/O request. For example, the
agent can determine from the access control rule whether the
username 1s allowed access to the data block. The agent then
grants or denies access to the data block accordingly.

[0053] Inadecisionaction 1118, 1s determined whether the
rule grants access. If access 1s demed, tlow branches back to
the action 1102, for anew I/O request. In variations, 1f the first
map or the second map does not need updating, actions 1104
and/or 1106 could be skipped. If access 1s granted by the rule,
flow proceeds to the action 1120. In the action 1120, encryp-
tion key 1s determined based on the filename 1n the first
filesystem, per the first map. The first map associates encryp-
tion keys and filenames 1n the first filesystem, according to the
access rules. If access 1s granted, the agent can then determine
an appropriate encryption key by consulting the first map. In
an action 1122, the encryption key 1s applied to the data block
of the I/0O request. For example, i the I/0O request specifies
reading the data block, the agent applies the encryption key to
decrypt the data block. If the I/O request specifies writing/
reading the data block, the agent applies the encryption key to
encrypt/decrypt the data block. The reading or the writing of
the data block proceeds via the data storage 120 depicted in
FIG. 1, which 1s coupled to the server 102, e.g., by a network
or as direct attached storage. Upon completion of the appli-
cation of the encryption key, flow proceeds back to the action
1102 for anew I/Orequest. In vanations, further actions could
be inserted, or flow could branch elsewhere.

[0054] Embodiments described above develop a hybnd
data at rest encryption solution for HDFS and other distrib-
uted operating systems. The solution defines encryption key
and access control rules for files 1n a namespace 1n a first
operating system, and applies encryption key and access con-
trol rules to corresponding data blocks 1n a second filesystem
against the user who 1ssued the I/O request. Data atrest 1s data
residing 1n a storage under encryption and decryption, as
compared to data 1n transit. Hybrid, as applied herein, refers

US 2016/0119349 Al

to a solution crosses the user and kernel boundaries and
spaces. The hybrid solution described herein can rotate keys
with reencryption on existing files, 1n some embodiments,
and offers security and data control as a result of encryption
and access control engines residing 1n the operating system
kernel. This hybrid solution supports encryption selectively
on a per file level and can prevent administrators from access-
ing clear content. One embodiment includes a method to map
a block filename, 1n a namespace 1n a local or second filesys-
tem to the related filename 1n a namespace 1n a first filesystem
based on a pool ID and a block ID. This 1s done by enhancing
first filesystem client, communication and name node com-
ponents to get the filename in the namespace 1n the first
filesystem from the related block filename 1n the local or
second filesystem namespace, based on the pool ID and the
block ID in the second filesystem namespace. In another
embodiment a method 1s provided to define an encryption key
for a file 1n a namespace 1n a first filesystem, and apply the
encryption key to encrypt and decrypt a related block file 1n a
namespace 1n a second or local filesystem kernel. This 1s
based on a mapping between the block filename in the second
filesystem, and the filename 1n the first filesystem. In another
embodiment a method 1s provided to define an access control
rule for a file in anamespace in a first filesystem, and apply the
access control rule to the related block file 1n a local or second
filesystem kernel, based on the mapping between the block
filename 1n the second filesystem and the filename in the first
filesystem. In yet another embodiment a method 1s provided
to apply access control against a user who issues an 1/O
request. This 1s done by enhancing a data node to 1ssue an I/O
control call from an I/O thread to a transparent encryption
agent that runs 1n a local or second filesystem kernel. The I/O
control call gives the transparent encryption agent the user-
name.

[0055] It should be appreciated that the methods described
herein may be performed with a digital processing system,
such as a conventional, general-purpose computer system.
Special purpose computers, which are designed or pro-
grammed to perform only one function may be used in the
alternative. FIG. 12 1s an 1llustration showing an exemplary
computing device which may implement the embodiments
described herein. The computing device of FIG. 12 may be
used to perform embodiments of the functionality for access
control for data blocks 1n accordance with some embodi-
ments. The computing device includes a central processing
unit (CPU) 1201, which 1s coupled through a bus 1205 to a
memory 1203, and mass storage device 1207. Mass storage
device 1207 represents a persistent data storage device such
as a floppy disc drive or a fixed disc drive, which may be local
or remote in some embodiments. The mass storage device
1207 could implement a backup storage, in some embodi-
ments. Memory 1203 may include read only memory, ran-
dom access memory, etc. Applications resident on the com-
puting device may be stored on or accessed via a computer
readable medium such as memory 1203 or mass storage
device 1207 1n some embodiments. Applications may also be
in the form of modulated electronic signals modulated
accessed via a network modem or other network interface of
the computing device. It should be appreciated that CPU 1201
may be embodied 1n a general-purpose processor, a special
purpose processor, or a specially programmed logic device in
some embodiments.

[0056] Display 1211 1s in communication with CPU 1201,
memory 1203, and mass storage device 1207, through bus

Apr. 28, 2016

1205. Display 1211 1s configured to display any visualization
tools or reports associated with the system described herein.
Input/output device 1209 1s coupled to bus 1205 1n order to
communicate information 1n command selections to CPU
1201. It should be appreciated that data to and from external
devices may be communicated through the input/output
device 1209. CPU 1201 can be defined to execute the func-
tionality described herein to enable the functionality
described with reference to FIGS. 1-11. The code embodying
this functionality may be stored within memory 1203 or mass
storage device 1207 for execution by a processor such as CPU
1201 1n some embodiments. The operating system on the
computing device may be, MS-WINDOWS™_ UNIX™,
LINUX™ or other known operating systems. It should be
appreciated that the embodiments described herein may be
integrated with virtualized computing system also.

[0057] Detailed illustrative embodiments are disclosed
herein. However, specific functional details disclosed herein
are merely representative for purposes of describing embodi-
ments. Embodiments may, however, be embodied 1in many
alternate forms and should not be construed as limited to only
the embodiments set forth herein.

[0058] It should be understood that although the terms first,
second, etc. may be used herein to describe various steps or
calculations, these steps or calculations should not be limited
by these terms. These terms are only used to distinguish one
step or calculation from another. For example, a first calcu-
lation could be termed a second calculation, and, similarly, a
second step could be termed a first step, without departing
from the scope of this disclosure. As used herein, the term
“and/or” and the */” symbol includes any and all combina-
tions of one or more of the associated listed 1tems.

[0059] As used herein, the singular forms “a”, “an” and
“the” are intended to 1include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises”, ‘“comprising’,
“includes”, and/or “including”, when used herein, specity the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
Theretore, the terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended to
be limiting.

[0060] It should also be noted that in some alternative
implementations, the functions/acts noted may occur out of
the order noted 1n the figures. For example, two figures shown
in succession may 1n fact be executed substantially concur-
rently or may sometimes be executed in the reverse order,
depending upon the functionality/acts mvolved.

[0061] With the above embodiments 1n mind, 1t should be
understood that the embodiments might employ various com-
puter-implemented operations imnvolving data stored 1n com-
puter systems. These operations are those requiring physical
manipulation of physical quantities. Usually, though not nec-
essarily, these quantities take the form of electrical or mag-
netic signals capable of being stored, transterred, combined,
compared, and otherwise manipulated. Further, the manipu-
lations performed are often referred to i1n terms, such as
producing, identifying, determining, or comparing. Any of
the operations described herein that form part of the embodi-
ments are useful machine operations. The embodiments also
relate to a device or an apparatus for performing these opera-
tions. The apparatus can be specially constructed for the

US 2016/0119349 Al

required purpose, or the apparatus can be a general-purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various gen-
eral-purpose machines can be used with computer programs
written 1n accordance with the teachings herein, or 1t may be
more convenient to construct a more specialized apparatus to
perform the required operations.

[0062] A module, an application, a layer, an agent or other
method-operable entity could be implemented as hardware,
firmware, or a processor executing software, or combinations
thereof. It should be appreciated that, where a software-based
embodiment 1s disclosed herein, the software can be embod-
ied 1n a physical machine such as a controller. For example, a
controller could include a first module and a second module.
A controller could be configured to perform various actions,
e.g., of a method, an application, a layer or an agent.

[0063] The embodiments can also be embodied as com-
puter readable code on a tangible non-transitory computer
readable medium. The computer readable medium 1s any data
storage device that can store data, which can be thereafter
read by a computer system. Examples of the computer read-
able medium 1include hard drives, network attached storage
(NAS), read-only memory, random-access memory,
CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other opti-
cal and non-optical data storage devices. The computer read-
able medium can also be distributed over a network coupled
computer system so that the computer readable code 1s stored
and executed i1n a distributed fashion. Embodiments
described herein may be practiced with various computer
system configurations including hand-held devices, tablets,
microprocessor systems, microprocessor-based or program-
mable consumer electronics, minicomputers, mainirame
computers and the like. The embodiments can also be prac-
ticed 1n distributed computing environments where tasks are
performed by remote processing devices that are linked
through a wire-based or wireless network.

[0064] Although the method operations were described in a
specific order, 1t should be understood that other operations
may be performed 1n between described operations,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed 1n a system which allows the occurrence of the
processing operations at various intervals associated with the
processing.

[0065] Invarious embodiments, one or more portions of the
methods and mechanisms described herein may form part of
a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS). In IaaS, com-
puter infrastructure 1s delivered as a service. In such a case,
the computing equipment 1s generally owned and operated by
the service provider. In the PaaS model, software tools and
underlying equipment used by developers to develop soft-
ware solutions may be provided as a service and hosted by the
service provider. SaaS typically includes a service provider
licensing software as a service on demand. The service pro-
vider may host the software, or may deploy the software to a
customer for a given period of time. Numerous combinations
of the above models are possible and are contemplated.

[0066] Various units, circuits, or other components may be
described or claimed as “configured to” perform a task or
tasks. In such contexts, the phrase “configured to™ 1s used to

Apr. 28, 2016

connote structure by indicating that the units/circuits/compo-
nents include structure (e.g., circuitry) that performs the task
or tasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when the
specified unit/circuit/component 1s not currently operational
(e.g., 1s not on). The units/circuits/components used with the
“configured to” language include hardware—for example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component 1s “configured to” perform one or more tasks 1s
expressly intended not to invoke 35 U.S.C. 112, sixth para-
graph, for that unit/circuit/component. Additionally, “config-
ured to” can include generic structure (e.g., generic circuitry)
that 1s manipulated by software and/or firmware (e.g., an
FPGA or a general-purpose processor executing software) to
operate 1n manner that 1s capable of performing the task(s) at
1ssue. “Configured to” may also include adapting a manufac-
turing process (e.g., a semiconductor fabrication facility) to
fabricate devices (e.g., integrated circuits) that are adapted to
implement or perform one or more tasks.

[0067] The foregoing description, for the purpose of expla-
nation, has been described with reference to specific embodi-
ments. However, the 1llustrative discussions above are not
intended to be exhaustive or to limit the ivention to the
precise forms disclosed. Many modifications and variations
are possible 1n view of the above teachings. The embodiments
were chosen and described in order to best explain the prin-
ciples of the embodiments and 1ts practical applications, to
thereby enable others skilled in the art to best utilize the
embodiments and various modifications as may be suited to
the particular use contemplated. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention 1s not to be limited to the details
given herein, but may be modified within the scope and
equivalents of the appended claims.

What 1s claimed 1s:
1. A method for access control of data 1n a filesystem,
comprising;

storing a map 1n a server, the map coupled to an agent
executing in the server, the map associating access con-
trol rules, filenames 1n a namespace 1n a first filesystem,
and owners of files;

determining a block filename 1n a namespace 1n a second

filesystem, based on an I/O (input/output) request from a
data node to the second filesystem regarding a data

block;

determining a username of the I/O request;
determining a filename 1n the namespace in the first file-
system, based on the block filename 1n the namespace 1n
the second filesystem; and
applying to the data block and the username an access
control rule that the map associates with an owner of a
file having the filename 1n the namespace in the first
filesystem, wherein at least one action of the method 1s
performed by a processor 1n the server.
2. The method of claim 1, wherein the map further associ-
ates encryption keys with the access control rules, the filena-
mes 1n the namespace 1n the first filesystem and the owners of

the files.

3. The method of claim 1, wherein applying the access
control rule to the data block includes allowing or denying
access to the data block based on a comparison of the user-
name of the I/O request and the owner of the file having the
filename 1n the namespace in the first filesystem.

US 2016/0119349 Al

4. The method of claim 1, wherein the I/O request spawns
an I/0 thread 1n the data node, and wherein the username 1s
determined from the 1I/O thread.

5. The method of claim 1, wherein applying the access
control rule includes applying an encryption key to the data
block, for encryption or decryption, the encryption key speci-
fied by the access control rule for use on the file having the
owner and the filename 1n the namespace 1n the first filesys-
tem.

6. The method of claim 1, wherein determinming the file-
name 1n the namespace 1n the first filesystem includes the
agent applying a mapping module that maps block filenames,
including pool IDs and block IDs, 1n the namespace 1n the
second filesystem to filenames in the namespace 1n the first
filesystem.

7. A tangible, non-transitory, computer-readable media
having instructions thereupon which, when executed by a
processor, cause the processor to perform a method compris-
ng:

establishing 1n a data node an I/O (input/output) thread

associated with a username and regarding a data block,
responsive to an I/0 request, the data block having a
block filename 1n a namespace 1n a local filesystem
relative to the data node, the block filename having a

pool ID (1dentifier) and a block ID, which identify the
data block;

mapping the block filename 1n the namespace 1n the local
(second) filesystem to a filename 1n a further namespace
relative to a name node and having a directory structure
in a further (first) filesystem;

associating an encryption key and an access control rule to
the filename 1n the further namespace;

passing the username from the data node to an agent; and

applying, through the agent, the access control rule and the
encryption key to the data block and the username

8. The computer-readable media of claim 7, wherein the
method further comprises:

determining that the access control rule 1s applicable to the
data block by the association of the access control rule to
the filename 1n the further namespace and the mapping
the block filename 1n the namespace 1n the local filesys-
tem to the filename 1n the further namespace.

9. The computer-readable media of claim 7, wherein apply-
ing the access control rule includes:

determining, in accordance with the access control rule,
whether access to the data block 1s allowed for the user-
name; and

applying the encryption key to the data block, for encryp-

tion or decryption, responsive to determining that access
to the data block 1s allowed for the username.

10. The computer-readable media of claim 7, wherein the
mapping further comprises:

receiving, at the agent, the block filename from the data
node;

parsing the pool ID and the block ID from the block file-
name;
mapping the pool ID to a hostname of the name node;

connecting to the name node having the hostname;

calling a function, with the pool ID and the block ID as
input parameters to the function, to obtain the filename
in the further namespace relative to the name node; and

outputting the filename 1n the further namespace, from the
name node to the agent.

Apr. 28, 2016

11. The computer-readable media of claim 7, wherein
applying the access control rule and the encryption key fur-
ther comprises:

recerving a call for I/0 of the data block having the block

filename from the data node;

determining whether the encryption key 1s cached,;

determining whether the filename 1n the further namespace

1s cached;
requesting to obtain the filename 1n the further namespace,
based on the block filename 1n the namespace in the local
filesystem, responsive to a determination that the file-
name in the further namespace 1s not cached;

obtaining an encryption key based on the filename 1n the
further namespace, responsive to a determination that
the encryption key 1s not cached; and

encrypting or decrypting the data block with the encryption

key.

12. The computer-readable media of claim 7, wherein the
method further comprises:

pushing the access control rule from a data security man-

ager to the agent;

intercepting, at the agent, a call by the I/O thread to the

local filesystem from the data node, regarding the data

block;

determining whether the filename in the further namespace
1s cached as associated to the block filename in the
namespace 1n the local filesystem;

requesting the filename 1n the further namespace, based on
the block filename 1n the namespace 1n the local filesys-
tem, responsive to determining that the filename 1n the
further namespace 1s not cached; and

obtaining the username from a thread context of the I/O
thread.

13. The computer-readable media of claim 7, wherein the

method further comprises:

establishing a first map, i or coupled to the agent, that
associates a plurality of filenames in the further
namespace, a plurality of owners of files, and a plurality
of access control rules relative to the plurality of owners
and the plurality of filenames 1n the further namespace;
and

establishing a second map, in or coupled to the agent, that
associates the plurality of filenames in the further
namespace to a plurality of block filenames i1n the
namespace 1n the local filesystem, wherein the first map
and the second map support a secure filesystem having
multitenancy in one or more name nodes and one or
more data nodes.

14. A method for access control of data blocks 1n a filesys-

tem, comprising:

pushing a first map from a data security manager to an
agent, the first map having a plurality of access control
rules based on users and filenames 1n a first filesystem,
the first map further having one or more encryption keys
and associating the one or more encryption keys to the
users and the filenames 1n the first filesystem:;

in an I/O (input/output) thread in a data node, sending a
username to the agent through an I/O control (IOCTL)
call;

in the 1I/O thread, calling to a second filesystem regarding
one or more blocks, the second filesystem having a
namespace that references blocks by block filenames;

in the agent, intercepting the calling to the second filesys-
tem and obtaining a block filename;

US 2016/0119349 Al

determining, through the agent, a filename of a file 1n the
first filesystem corresponding to the block filenames 1n
the second filesystem; and

applying, through the agent, one of the plurality of access

control rules, corresponding to the filename of the file 1n
the first filesystem, against the username from the I/O
control call.

15. The method of claim 14, further comprising:

obtaining, through the agent, an encryption key based on

the filename of the file 1n the first filesystem; and
applying the encryption key to a data block having the
block filename 1n the second filesystem.

16. The method of claim 14, wherein determiming, at the
agent, a filename of a file 1n the first filesystem corresponding
to the block filename 1n the second filesystem further com-
prises:

sending the block filename from kernel space to user space;

parsing a pool ID (identifier) and a block ID from the block
filename;

mapping the pool ID to a hostname of a name node;

connecting from the agent to a host having the hostname of
the name node;

sending from the agent the pool ID and the block ID to the
host having the hostname of the name node, to request a
filename of a file 1n the first filesystem, wherein the file

Apr. 28, 2016

in the first filesystem corresponds to the one or more
blocks 1n the second filesystem; and
returning from the host having the hostname of the name
node to the agent the filename of the file 1n the first
filesystem, responsive to the request for the filename of
the file 1n the first filesystem.
17. The method of claim 14, further comprising:
adding to a client application programming interface (API)
or to a library of the first filesystem, a function defined to
get a filename from the filenames 1n the first filesystem
based on the pool ID and the block ID relative to the
second filesystem.
18. The method of claim 14, wherein the first filesystem 1s
a Hadoop filesystem, the first filesystem 1s relative to the
name node, and the second filesystem 1s local to the data node.
19. The method of claim 14, wherein the method 1s imple-
mented 1n software executing on one or more servers, and
wherein the one or more servers comprises the agent, the first
filesystem, the second filesystem, a plurality of name nodes,
including the name node, and a plurality of data nodes,
including the data node.
20. The method of claim 14, wherein a second map 1s
applied to the mapping, 1n the agent, the pool ID to a host-
name of a name node.

s o e e 3

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description/Claims
	Page 17 - Claims
	Page 18 - Claims

