US 20160364231A1
a9y United States

a12) Patent Application Publication o) Pub. No.: US 2016/0364231 Al
TATI et al. 43) Pub. Date: Dec. 15, 2016

(54) METHOD FOR MINIMAL SERVICE IMPACT (52) U.S. CL
DURING SOFTWARE UPGRADE IN CPC e, GO6F 8/67 (2013.01)

NETWORK ELEMENTS (NES)
(57) ABSTRACT

(71) Applicant: Telefonaktiebolaget L. M Ericsson

(publ), Stockholm (SE) Exemplary methods include in response to receiving an

indication to perform an 1n-service software upgrade

(72) Inventors: Srikar TATL San Jose, CA (US); (ISSU),. an 1nit process executing on a current root file
Vijayaraghavan BHARATHI, San system 1s configured to perform operations comprising: 1)
Jose. CA (US): Peter J. OWENS, San releasing the current root file system by setting an indication
Jose, CA (US) that the ISSU 1s 1n progress, and terminating processes
’ executing on the current root file system, and 2) switching
(21) Appl. No.: 14/735,483 from the current root file system to a new root file system by
moving a root from the current root file system to the new
(22) Filed: Jun. 10, 2015 root file system, moving critical system files from the current
root file system to the new root file system, unmounting the
Publication Classification current root file system, and executing an 1nit process on the
new root file system. The 1nit process executing on the new
(51) Int. CL root file system 1s configured to perform operations com-
GoOol’ 9/445 (2006.01) prising starting processes on the new root file system.
100

Halt Script 114 f._ | L §
#‘ 4 Init Process §... i Other Processes !

Init Script 113 [s fp 16

Other Processes | ...| Init Process
112 111

..

User Space 110 o
Kernel Space 120 X Brovid
i rovider
Subscriber Loadable Kernel Modules
S T Kernel 121 LKM P
Station(s) emel el (; 225) Station(s)
102 —== 103

Root File System | Root File System |
; : Resources
131 : 141 '
150
Storage Device 130 Storage Device 140

Network Device 101

US 2016/0364231 Al

Dec. 15,2016 Sheet 1 of 9

Patent Application Publication

col
(S)uonels

pug
13PIN0I-

1]}
$99JN0S8Y

911

“
|
“
[4

'
'
.
¥
¥
.
.
'
'
.
¥
'
&
LI
¥
¥
[
"
[
’
.
.
’

1 801ne(] 9bei0)S

W3ISAS 9|14 JOOY

)
(SINMT)

1 Ol

L0} @91A9(] HJOMION

OFT 221A9(] 9bRI0)]

T€T
W3JSAS 3|14 JOOY

SOINNON [UIDY 9|qepPEOT

A
580014 JU]|

0c | 92edg |auiey

0l | 82edg Jas

chl

§858820.d 1ay10

201
(s)uones

pug
18qLoSgNS

Patent Application Publication Dec. 15,2016 Sheet 2 of 9 US 2016/0364231 Al

Invoke an init script — 210 // normal initialization process
Invoke a halt script ~—29 [/ normal halting process

If (ISSU trigger detected) ~— 201

begin
Set ISSU in progress indication — 211
Invoke a halt script —— 212

Move the init process from the current root to a new root (e.g., chroot) ~—213

Start init process in the new root ——214

end
Init Process
111

FIG. 2

Patent Application Publication Dec. 15,2016 Sheet 3 of 9 US 2016/0364231 Al

[f (ISSU in progress indication detected) ~~ 302
begin
Unmount the current root file system ——314

end

[f (ISSU in progress indication not detected)~— 301
begin

Mount critical system files ~~311

Load the LKMs —— 312

Reset hardware devices ——313
end

Start other processes —— 310

Init Script
113

FIG. 3

Patent Application Publication Dec. 15,2016 Sheet 4 of 9 US 2016/0364231 Al

Kill all processes except the init process ——410
De-allocate resources of the killed processes ~—411

If (ISSU In progress indication not detected)~"401
begin
Unmount the critical system files —412
Unload the LKMs ——413
end

If (ISSU in progress indication detected) ~—402
begin

Move the root from current root file system to a new root file system —~414

Move critical system files from current root file system to the new root file system
N

enc | 415
Halt Script

114

FIG. 4

Patent Application Publication

Other

| Init Process
Processes ISSU

11 Trigger
112 501

Resources
150

Root File

System
131

Storage Device Storage Device
130 140

Network Device 101

FIG. 5A

Indication
502

Init Process Init Process
115 111

Root File
System
141

Storage Device

130 140

Storage Device

Network Device 101

FIG. 5C

Dec. 15,2016 Sheet 5 of 9

e
th ndication

Processes e

112 Init Process
11

Root File

System
131

Storage Device Storage Device
130 140

Network Device 101

FIG. 5B

—u | C645-660

Indication Other
2
. Processes

Init Process 116
115

LKMs 122

Resources
= 191

Root File
System
141

Storage Device Storage Device

130 140

Network Device 101

FIG. 3D

US 2016/0364231 Al

Patent Application Publication Dec. 15,2016 Sheet 6 of 9 US 2016/0364231 Al

@)
-

Set global variable indicating ISSU is in progress
610

Receive tnigger to perform ISSU oWV
009

erminate all processes except for the init process and de-allocate resources
615

Release

In response fo determining ISSU is in progress, prevent unmounting of critical Current Root

system files to avoid rebooting of the kernel File System
620 Operations

601

In response to determining ISSU is in progress, prevent unloading of LKMs to
avold resetting peripheral devices, and allow them to operate in a headless

mode
625

Move the root from current root file system to a new root file system, and move
the critical system files from the current root file system to the new root file
system

Switch Root
File Systems

00
Move the init process from the current root file system to the new root file system Operations
639 602

Start the init process in the new root file system
640

Unmount the current root file system and start processes in the new root file

system
645
In response to determining ISSU is in progress, prevent mounting of critical nitialize New
system files on the new root file system Root File
630 Systems
Operations
603

In response to determining ISSU is in progress, prevent loading of LKMs
659

In response to determining ISSU Is in progress, prevent resetting of hardware

devices

660 FIG. 6

Patent Application Publication Dec. 15,2016 Sheet 7 of 9 US 2016/0364231 Al
ND
ol P L ND Physical Devices And
_ 7008 700D -thhysical Connectivity
Fig. 7A — | N — ND
ND ,,,x”"'// _TOQH | 700E
7008 | ND
—— 1 __ | ND 700F
700G
Special Purpose IR STl Network Function
Hardware pd e 7 e--_ Virtulization (NFV)
» e - R
Special Purpose Network Device 702 General Purpose (COTS) Network Hybrid
ND Device 704 Network
Virtual Network Element(s) Control Virtual Network Element(s) Device
| 730A 730R_ Plane 760A .+ 760R 706
T~ . -~ . . 1r---° 724 ' | ’ |
Networking | Control Communication 732R — |_ —
Software and Config. Mod. 732A | 762A | _76—25 |
Instance(s) o e Software | || App(s) H App(s)]\
722 r64n || || 764R |
Processes || Sript Instance(s)| || =4 ‘ Sl
| Init Script | 752/\} [“
| - . 4+ L ‘ — — _
Forwarding Table(s) 734A| | 734R | — - - = — — =
Processes. Ilirtualization Layer 754 |
- Halt Script,, —mmm— ————————
Compute Resource(s) 712 — Init Script Processor(s) 742
Forwarding Resource(s) 714 NIG(s) 744
Networking — Physical NIs 746
Hardware | | Physical NlIs 716 _ .
710 Non-Transitory Machine
. . ND | Readable Storage Media
Non-TranS|to.ry Machine Readable |Forwarding| | y.rqware | 748
Storage Media 718 Plane 726 740
, Software 750
Networking Software 720 ,
Init Process || Halt
Init Process || Init Script | Executables | | Seript
Executables || Halt Script | | Init Script |
Fig. 7B " Cards 738

N %
p— —

\Backplane 736

Patent Application Publication Dec. 15,2016 Sheet 8 of 9 US 2016/0364231 Al

Network Device 700A ND 700H
VNE VNE
{70A.1 7/70H.1
Fig. 7C VNE
77082 [
VNE | -
770A.3
VNE |7 VNE .. WNE T
| LAY I
{70A.P L?_?QA_Q_J !_7_70A.R J'
Distributed Approach Centralized Approach
772 (SDN) 774
i r— —
: T i Application
Fig. 7D ;i | |Application(s)7_8 | Layerl
1. | | 786 |
A Vo Bond erce 764 T T
S = — = —— C_t raTizeaJcH rol_I
L r- — - - — - - - — — en
: VitielNetwors) 72 1 pgne 7rg
J i | Network Controller 778 ||
. w ||
L r————————— ——— . —
o | Centralized Reachability and | Init Init Script | l:
- || Forwarding Info. Mod. 779 1 | Processes |[Halt Script | |
| o |
o o 1]
o e
o o South Bound Interface 782
[.. : .f; ‘v\ . |
o : ata
| S 7';'5 - Plane 780 |
| ;j e NE |~ NE o \‘-,& |
I A 770D |~ |
- | 7[;[|)EH xxxxxxx . NE ¢ |
/
' 7 , | 770E
| om | | & l
=1 [770F |
| 770G |
idl. Fia. 7F Single
Flg fc g VNE 770T
NE
A LB ND 700A ND 700H
770l /| ZI0E VNE VNE
NE 770A.1 770H.1
770F = -

Patent Application Publication Dec. 15,2016 Sheet 9 of 9 US 2016/0364231 Al

Fig. 8
General Purpose (COTS) Control Plane Device 804
862A || R |
CCP Instance 876A | |
| |
Network Controller Instance 878 | |
CCP Application Layer 880 | |
| |
| |
| |
Init | Init Script | | |
Processes | [Halt Script | | |
| |
| |
| |
| |
Centralized Reachability and Forwarding Info. Mod. Instance | |
879 | |
Software | |
Instance(s) | |
857 | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Virtualization Layer 854 |
Processor(s) 842
NIG(s) 844 Physical Nls 846
Non-Transitory Machine Readable Storage Media 848
Hagd:gare Init Process Init Script_|
Executables Halt Script | CCP Software 850

US 2016/0364231 Al

METHOD FOR MINIMAL SERVICE IMPACT
DURING SOFTWARE UPGRADE IN
NETWORK ELEMENTS (NES)

FIELD

[0001] Embodiments of the mvention relate to the field of
packet networks, and more specifically, to i-service soft-
ware upgrade (ISSU) of a network device with minimal
service impact.

BACKGROUND

[0002] A network device in a network (e.g., a service
provider or core network) typically handles high volumes of
data traffic from users (e.g., subscribers) accessing several
different services and/or communicating with other users.
For example, a network device can handle services for up to
thousands of users. An interruption in the operation of such
a network device can cause a disruption of service to these
thousands of users. It should be further noted that an
interruption in the operation of the network device also
imposes stress on its adjacent network devices and the
network as a whole.

[0003] In the course of handling the data for this large
number of users, a network device builds up a state that
controls the handling of the data. This state 1s typically
run-time information that does not survive a reboot of the
network device. Periodically, a network device receives a
solftware upgrade to 1ts services. Typically, a software
upgrade requires a reboot of the network device 1n order for
the software upgrade can take efiect. A reboot, however,
disrupts the service and clears out the built up state, because
the state does not survive a reboot. Even though a reboot of
a network device can occur quickly, the rebuilding of the
state typically takes longer, because rebuilding of the state
involves reconnecting subscribers, rebuilding subscriber
session information, establishing the communication chan-
nel between the peer network devices, rebuilding the for-
warding tables from the exchanged information and from the
local configuration, synchronizing the forwarding tables
across network devices, etc. Thus, a reboot can result 1n a
disruption of services for a substantial period of time.

[0004] An improved software upgrade method, termed an
in-service soltware upgrade (ISSU), 1s used 1n order to
mimmize disrupting the service. During an ISSU, the soft-
ware modules are upgraded 1n parts (1.e., not all software
modules are upgraded at the same time). If ISSU 1s achueved
without disrupting any network trathic, then 1t 1s said to have
achieved a condition of Zero Packet Loss (ZPL). Otherwise,
if there 1s a minimal disruption of traflic without discon-
necting the network device from the neighbor nodes, then
ISSU 1s said to have achieved the condition of Zero Topol-
ogy Loss (ZTL). Network devices that have redundancy for
all the modules can usually realize the ZPL state; otherwise
they can only accomplish ZTL.

[0005] Some conventional implementations of ISSU pro-
vide solutions that require redundant components of the
modules, resulting in high cost solutions. Other conven-
tional implementations of ISSU require hardware resets in
network device, resulting 1n an extended period of service
interruption. Some conventional implementations of ISSU
require a restart of the kernel of the network device, which
also results 1n an extended period of service disruption. In
yet other conventional implementations of ISSU, the for-

Dec. 15, 2016

warding tratlic 1s not interrupted at all. However, this 1s
possible because of the microkernel nature of the operating
system, and does not work when the network device
employs a modular kernel system.

SUMMARY

[0006] Exemplary methods performed by a first network
device for performing a software upgrade, include receiving,
by a first 1nit process executing on a first root file system, an
indication to perform an 1n-service software upgrade
(ISSU). The methods further include releasing, by the first
init process 1n response to receiving the indication to per-
form the ISSU, the first root file system by setting an
indication that the ISSU 1s in progress and terminating
processes executing on the first root file system. The meth-
ods further include switching, by the first 1nit process 1n
response to receiving the indication to perform the ISSU,
from the first root file system to a second root file system by
moving a root from the first root file system to the second
root file system, wherein the second root file system includes
an upgraded software, moving critical system files from the
first root file system to the second root file system, unmount-
ing the first root file system, and executing a second 1nit
process on the second root file system. The methods further
include initializing, by the second 1nit process executing on
the second root file system, the second root file system by
starting processes on the second root file system.

[0007] According to one embodiment, releasing the first
root file system further comprises preventing, in response
detecting the indication that the ISSU 1s in progress,
unmounting of critical system files residing on the first root
file system, thereby avoiding rebooting of a kernel.

[0008] According to one embodiment, releasing the first
root file system further comprises preventing, 1in response
detecting the indication that the ISSU 1is in progress, unload-
ing of loadable kernel modules (LKMs), thereby avoiding
resetting of peripheral devices connected to the first network
device.

[0009] According to one embodiment, initializing the sec-
ond root file system further comprises preventing, 1in
response detecting the indication that the ISSU 1s 1n prog-
ress, mounting of critical system files on the second root file
system.

[0010] According to one embodiment, initializing the sec-
ond root file system further comprises preventing, 1in
response detecting the indication that the ISSU 1s 1n prog-

ress, loading of loadable kernel modules (LKMs).

[0011] According to one embodiment, initializing the sec-
ond root file system further comprises preventing, 1in
response detecting the indication that the ISSU 1s 1n prog-
ress, resetting of hardware devices connected to the first
network device.

[0012] According to one embodiment, releasing the first
root file system further comprises executing a halt script, and
wherein the halt script 1s configured to, 1n response detecting
the indication that the ISSU 1s 1n progress, prevent unmount-
ing of critical system files residing on the first root file
system.

[0013] According to one embodiment, releasing the first
root file system further comprises executing a halt script, and
wherein the halt script 1s configured to, 1n response detecting
the indication that the ISSU 1s 1n progress, prevent unloading

ol loadable kernel modules (LKMs).

US 2016/0364231 Al

[0014] According to one embodiment, initializing the sec-
ond root file system further comprises executing an 1nit
script, and wherein the it script 1s configured to, in
response detecting the indication that the ISSU 1s 1n prog-
ress, prevent mounting of critical system files on the second
root file system.

[0015] According to one embodiment, initializing the sec-
ond root file system further comprises executing an 1nit
script, and wherein the it script 1s configured to, in
response detecting the indication that the ISSU 1s 1n prog-
ress, prevent loading of loadable kernel modules (LKMs).
[0016] According to one embodiment, initializing the sec-
ond root file system further comprises executing an 1nit
script, and wherein the it script 1s configured to, in
response detecting the indication that the ISSU 1s 1n prog-
ress, prevent resetting of hardware devices connected to the
first network device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The invention may best be understood by referring
to the following description and accompanying drawings
that are used to illustrate embodiments of the invention. In
the drawings:

[0018] FIG. 1 1s a block diagram illustrating a network
according to one embodiment.

[0019] FIG. 21s a block diagram 1llustrating a pseudo code
for an 1nit process according to one embodiment.

[0020] FIG. 3 1s a block diagram illustrating a pseudo code
for an 1nit script according to one embodiment.

[0021] FIG. 41s a block diagram illustrating a pseudo code
for a halt script according to one embodiment.

[0022] FIG. 5A 1s a block diagram 1llustrating a network
device for performing ISSU according to one embodiment.
[0023] FIG. 5B 1s a block diagram 1llustrating a network
device for performing ISSU according to one embodiment.
[0024] FIG. 5C 1s a block diagram 1llustrating a network
device for performing ISSU according to one embodiment.
[0025] FIG. 5D 1s a block diagram illustrating a network
device for performing ISSU according to one embodiment.

[0026] FIG. 6 1s a flow diagram 1illustrating a method for
performing ISSU according to one embodiment.

[0027] FIG. 7A illustrates connectivity between network
devices (NDs) within an exemplary network, as well as three
exemplary implementations of the NDs, according to some
embodiments of the invention.

[0028] FIG. 7B illustrates an exemplary way to implement
a special-purpose network device according to some
embodiments of the invention.

[0029] FIG. 7C illustrates various exemplary ways 1n
which virtual network elements (VNEs) may be coupled
according to some embodiments of the invention.

[0030] FIG. 7D illustrates a network with a single network
clement (NE) on each of the NDs, and within this straight
forward approach contrasts a ftraditional distributed
approach (commonly used by traditional routers) with a
centralized approach for maintaining reachability and for-
warding information (also called network control), accord-
ing to some embodiments of the invention.

[0031] FIG. 7E illustrates the simple case of where each of
the NDs implements a single NE, but a centralized control
plane has abstracted multiple of the NEs 1n different NDs
into (to represent) a single NE 1n one of the virtual network
(s), according to some embodiments of the invention.

Dec. 15, 2016

[0032] FIG. 7F illustrates a case where multiple VNEs are
implemented on different NDs and are coupled to each other,
and where a centralized control plane has abstracted these
multiple VNEs such that they appear as a single VNE within
one of the virtual networks, according to some embodiments
of the invention.

[0033] FIG. 8 illustrates a general purpose control plane
device with centralized control plane (CCP) software,
according to some embodiments of the invention.

DESCRIPTION OF EMBODIMENTS

[0034] The following description describes methods and
apparatus for performing 1in-service solftware upgrade
(ISSU). In the following description, numerous specific
details such as logic implementations, opcodes, means to
specily operands, resource partitioning/sharing/duplication
implementations, types and interrelationships of system
components, and logic partitioning/integration choices are
set forth 1n order to provide a more thorough understanding
of the present invention. It will be appreciated, however, by
one skilled in the art that the mnvention may be practiced
without such specific details. In other instances, control
structures, gate level circuits and full software instruction
sequences have not been shown in detail in order not to
obscure the invention. Those of ordinary skill 1n the art, with
the included descriptions, will be able to implement appro-
priate functionality without undue experimentation.

[0035] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic 1s
described in connection with an embodiment, 1t 1s submaitted
that 1t 1s within the knowledge of one skilled 1n the art to
affect such feature, structure, or characteristic 1n connection
with other embodiments whether or not explicitly described.
[0036] Bracketed text and blocks with dashed borders
(e.g., large dashes, small dashes, dot-dash, and dots) may be
used herein to illustrate optional operations that add addi-
tional features to embodiments of the invention. However,
such notation should not be taken to mean that these are the
only options or optional operations, and/or that blocks with
solid borders are not optional 1n certain embodiments of the
invention.

[0037] In the following description and claims, the terms
“coupled” and “‘connected,” along with their derivatives,
may be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” 1s used to
indicate that two or more elements, which may or may not
be 1n direct physical or electrical contact with each other,
co-operate or interact with each other. “Connected” 1s used
to indicate the establishment of communication between two
or more elements that are coupled with each other.

[0038] An electronic device stores and transmits (inter-
nally and/or with other electronic devices over a network)
code (which 1s composed of software instructions and which
1s sometimes referred to as computer program code or a
computer program) and/or data using machine-readable
media (also called computer-readable media), such as
machine-readable storage media (e.g., magnetic disks, opti-
cal disks, read only memory (ROM), flash memory devices,

US 2016/0364231 Al

phase change memory) and machine-readable transmission
media (also called a carrier) (e.g., electrical, optical, radio,
acoustical or other form of propagated signals—such as
carrier waves, infrared signals). Thus, an electronic device
(e.g., a computer) includes hardware and software, such as
a set of one or more processors coupled to one or more
machine-readable storage media to store code for execution
on the set of processors and/or to store data. For instance, an
electronic device may include non-volatile memory contain-
ing the code since the non-volatile memory can persist
code/data even when the electronic device 1s turned off
(when power 1s removed), and while the electronic device 1s
turned on that part of the code that 1s to be executed by the
processor(s) of that electronic device 1s typically copied
from the slower non-volatile memory into volatile memory
(e.g., dynamic random access memory (DRAM), static
random access memory (SRAM)) of that electronic device.
Typical electronic devices also include a set or one or more
physical network interface(s) to establish network connec-
tions (to transmit and/or receive code and/or data using
propagating signals) with other electronic devices. One or
more parts of an embodiment of the invention may be
implemented using different combinations of software, firm-
ware, and/or hardware.

[0039] A network device (ND) 1s an electronic device that
communicatively interconnects other electronic devices on
the network (e.g., other network devices, end-user devices).
Some network devices are “multiple services network
devices” that provide support for multiple networking func-
tions (e.g., routing, bridging, switching, Layer 2 aggrega-
tion, session border control, Quality of Service, and/or
subscriber management), and/or provide support for mul-
tiple application services (e.g., data, voice, and video).

[0040] Techniques for performing ISSU at a network
device with a modular kernel system 1s described herein.
According to one embodiment, 1n response to receiving an
indication (e.g., a request, trigger, etc.) to perform ISSU, the
init process executing on a current root file system (herein
referred to as the current 1nit process) of the network device
sets a global variable/indication to indicate that ISSU 1s 1n
progress. The current init process then performs a set of
tasks as part of a halting process to release the current root
file system. Conventionally, when a system shuts down,
reboots, etc., 1t performs a series of tasks as part of a halting
process, ncluding for example, terminating processes that
are running on the current root file system, unmounting
critical system files residing on the current root file system,
unloading loadable kernel modules (LKMs), etc. Unmount-
ing the critical system files, however, results 1n the rebooting
of the kernel. Further, unloading the LKMs results 1n reset-
ting of peripheral devices. Rebooting the kernel and reset-
ting the peripheral devices result 1n the system requiring a
longer time to boot up. In the context of networking, such a
longer boot up time results in a longer service interruption.
In one embodiment, the current 1nit process overcomes such
limitations by invoking a halt script that i1s configured/
adapted to, 1n response to determining ISSU 1s 1n progress,
prevent the unmounting of the critical system files and
further prevent the unloading of the LKMSs. That 1s to say,
the present halt script 1s adapted to intelligently distinguish
between a normal bring down (e.g., shutdown, reboot, etc.)
of the network device (1n which case all conventional tasks
associated with a system bring down are executed) and an
ISSU (in which case conventional tasks associated with a

Dec. 15, 2016

system bring down are executed, with the exception of those
related to the unmounting of the critical system files and

unloading of the LKMs).

[0041] According to one embodiment, the current init
process then moves the root from the current root file system
to a new root file system, and further moves the critical
system files from the current root file system to the new root
file system. The current 1nit process then moves itself to the
new root file system, and starts an init process on the new
root file system (herein referred to as the new 1nmit process).
Throughout the description, references are made to a “root”
and “root file system”. A “root”, as used herein, 1s the top
most directory of the operating system (typically represented
as “/”’). A “root file system™, as used herein, 1s the base file
system of the root, on which other file systems/devices, etc.,
are mounted.

[0042] According to one embodiment, the new 1nit process
initializes the new root file system. Conventionally, when a
system boots up, i1t performs a series of tasks as part of an
initialization process, icluding for example, starting pro-
cesses on the new root file system, mounting critical system
files, loading the LKMs, resetting the hardware devices, etc.
This poses a problem for ISSU because the critical system
files have already been moved from the current root file
system to the new root file system, and mounting these
critical system files are unnecessary and would only unnec-
essarilly increase the service interruption time. Further,
unlike a normal bootup process, the LKMs are already
loaded (because the halt script intelligently prevented them
from being unloaded), and reloading the LKMs 1s unneces-
sary and would only unnecessarily increase the service
interruption. It should be further noted that reloading the
LKMs also causes the resetting of the hardware devices, thus
further increasing the service interruption. Moreover, reset-
ting the hardware devices also increases the duration of
service interruption. In one embodiment, the new 1nit pro-
cess overcomes such limitations by invoking an init script
that 1s configured/adapted to, 1n response to determining the
ISSU 1s 1n progress, prevent the mounting of the critical
system files, prevent the loading of the LKMSs, and further
prevent the resetting of hardware devices. That 1s to say, the
present 1nit script 1s adapted to intelligently distinguish
between a normal bootup of the network device (in which
case all conventional tasks associated with a system bootup
are executed) and an ISSU (1n which case conventional tasks
associated with a system bootup are executed, with the
exception of those related to the mounting of the critical
system files, loading of the LKMSs, and resetting the hard-
ware devices).

[0043] Throughout the description, references are made to
the current root file system and the new root file system. As
used herein, the “current” root file system refers to the
system that the network device 1s currently using prior to the
ISSU, and the “new” root file system refers to the root file
system that the network device migrates to as part of the
ISSU. Thus, as part of the ISSU, the network device
migrates/switches from the current root file system to the
new root file system.

[0044] FIG. 1 1s a block diagram illustrating a network
according to one embodiment. In the illustrated example,
network 100 includes, but 1s not limited to, one or more
subscriber end stations 102. Examples of suitable subscriber
end stations include, but are not limited to, servers, work-
stations, laptops, netbooks, palm tops, mobile phones,

US 2016/0364231 Al

smartphones, multimedia phones, tablets, phablets, Voice
Over Internet Protocol (VOIP) phones, user equipment,
terminals, portable media players, GPS units, gaming sys-
tems, set-top boxes, and combinations thereof. Subscriber
end stations 102 access content/services provided over the
Internet and/or content/services provided on virtual private
networks (VPNs) overlaid on (e.g., tunneled through) the
Internet. The content and/or services are typically provided
by one or more provider end stations 103 (e.g., server end
stations) belonging to a service or content provider.
Examples of such content and/or services include, but are
not limited to, public webpages (e.g., free content, store
fronts, search services), private webpages (e.g., username/
password accessed webpages providing email services),
and/or corporate networks over VPNs, efc.

[0045] As illustrated, subscriber end stations 102 and
provider end station(s) 103 are communicatively coupled to
network device 101, which can be implemented as part of a
provider edge network, a core network, or any other net-
work. In some cases, network device 101 may host on the
order of thousands to millions of wire line type and/or
wireless subscriber end stations, although the scope of the
invention 1s not limited to any known number. Subscriber
end stations 102 may transmit upstream packets toward
provider end stations 103. Provider end stations 103 may
transmit downstream packets toward subscriber end stations
102. Such upstream packets and/or downstream packets may
traverse network device 101.

[0046] Network device 101 includes user space 110 and
kernel space 120. An operating system typically segregates
virtual memory into kernel space and user space. Primarily,
the separation of the virtual memory into kernel space and
user space serves to protect data and functionality from
taults (by improving fault tolerance) and malicious behavior
(by providing computer security). The kernel space 1s
strictly reserved for running a privileged operating system
kernel, kernel extensions, and most device drivers. In con-
trast, the user space 1s the memory area where application
software and some drivers execute.

[0047] In the illustrated embodiment, kernel space 120
includes kernel 121. A kernel 1s a computer program that
manages input/output (I/O) requests from software, and
translates them into data processing instructions for the
central processing unit (CPU) and other hardware devices on
the system. The critical code of the kernel 1s usually loaded
into a protected area of memory, which prevents 1t from
being overwritten by other, less frequently used parts of the
operating system or by applications. The kernel performs 1ts
tasks, such as executing user space processes (e.g., init
process 111 and other processes 112) and handling inter-
rupts, 1n the kernel space, whereas everything a user nor-
mally does, such as writing text in a text editor or running
programs 1n a graphical user interface (GUI), 1s done 1n the
user space. This separation 1s made 1n order to prevent user
data and kernel data from interfering with each other and
thereby diminishing performance or causing the system to
become unstable (and possibly crashing).

[0048] According to one embodiment, kernel 121 1s a
modular kernel system. In a modular kernel system, some
part of the system core will be located 1n independent files
called loadable kernel modules (LKMs) that can be added to
the system at run time. In the 1llustrated embodiment, kernel
121 comprises LKMs 122. A LKM, 1n other words, 1s an

object file that contains code to extend the runming kernel

Dec. 15, 2016

(e.g., kernel 121) of an operating system. LKMs are typi-
cally used to add support for new hardware and/or file
systems, and/or for adding system calls. When the function-
ality provided by a LKM 1s no longer required, the LKM can
be unloaded 1n order to free (1.e., de-allocate) resources that
are assigned to i1t. For example, a LKM can be a device
driver. In such a case, when the device driver 1s no longer
needed, the LKM can be unloaded in order to reclaim its
resources. Unloading LKMs, however, causes the peripheral
devices associated with the LKMs to be reset. This 1s
problematic for ISSU because it extends the service inter-
ruption time. Embodiments of the present imnvention over-
come such limitations by preventing the unloading of LKMs

during ISSU.

[0049] User space 110 includes 1nit process 111, which 1s
the first process to be started when network device 101 boots
up. Init process 111 1s a daemon process that continues
running while network device 101 1s operational. Init pro-
cess 111 1s configured to invoke 1nit script 113 to perform the
initialization process, including for example, starting other
processes 112, which may cause resources 150 to be allo-
cated. Depending on the type of processes that are started,
resources 150 can be software, hardware, or any combina-
tion thereof. For example, resources 150 can be System V
interprocess communication (IPC) resources (e.g., shared
memories, semaphores, messages, sockets, etc.). Init process
111 1s also configured to invoke halt script 114 to perform
the halting process, including for example, terminating other
processes 112 and de-allocating resources 150.

[0050] According to one embodiment, 1nit process 111 1s
to mnvoke halt script 114 as part of a normal halting process.
As used herein, a “normal halting process” refers to the
halting process that 1s performed during a system restart/
shutdown. In one embodiment, it process 111 1s further
configured to invoke halt script 114 as part of an ISSU
halting process. As used herein, an “ISSU halting process™
refers the halting process that 1s performed by network
device 101 during ISSU. The normal halting process 1s not
optimized for ISSU, for example, because it imnvolves: 1)
unmounting of the critical system files (which causes the
rebooting of kernel 121) and 2) unloading of LKMs 122
(which causes the resetting of peripheral devices associated
with the LKMs). Rebooting kernel 121 and resetting the
peripheral devices result 1n a longer service interruption.

[0051] Embodiments of the present invention overcome
such limitations by providing an intelligent halting process
that 1s able to distinguish between a normal halting process
and an ISSU halting process. More specifically, in response
to determining the halting process 1s performed as part of an
ISSU, embodiments of the present invention: 1) prevent the
unmounting of the critical system files, 2) prevent the
unloading of the LKMs, 3) move the root from the current
root file system to a new root file system, and 4) move
critical system files from the current root file system to the
new root file system, thereby minimizing the service inter-
ruption. In one such embodiment, network device 114 i1s to
invoke an intelligent halt script, such as halt script 114, that
1s able to distinguish between a normal halting process and
an ISSU halting process, and in response to determining the
halting process 1s being performed as part of an ISSU, the
intelligent halt script 1s adapted to perform the operations
that are specific to ISSU described above.

[0052] According to one embodiment, 1nit process 111 1s
to imvoke 1nit script 113 as part of a normal 1nitialization

US 2016/0364231 Al

process. As used herein, a “normal mnitialization process”™
refers to the imitialization process that 1s performed by
network device 101 during a restart/startup process. In one
embodiment, 1nit process 111 1s further configured to invoke
it script 113 as part of an ISSU 1mitialization process. As
used herein, an “ISSU imtialization process” refers the
initialization process that 1s performed by network device
101 during ISSU. The normal initialization process is not
optimized for ISSU, for example, because 1t involves: 1) the
unnecessary mounting of the critical system files (because
unlike a normal halting process, the ISSU halting process of
the present invention includes moving the critical system
files to the new root file system), 2) the unnecessary loading
of the LKMs (because unlike a normal halting process, the
ISSU halting process of the present invention prevents the
unloading of the LKMs), and 3) the resetting of hardware
devices (e.g., CPUs, memories, etc.). Performing the unnec-
essary mounting of the critical system files and the unnec-
essary loading of the LKMSs result in a longer service
interruption. Resetting of the hardware devices also attribute
to the longer service interruption.

[0053] Embodiments of the present invention overcome
such limitations by providing an intelligent imitialization
process that 1s able to distinguish between a normal 1nitial-
1ization process and an ISSU mnitialization process. More
specifically, 1n response to determining the initialization
process 1s performed as part of an ISSU, embodiments of the
present invention: 1) prevent the unnecessary mounting of
the critical system files, 2) prevent the unnecessary loading
of the LKMs, 3) prevent the resetting of the hardware
devices, and 4) unmount the current root file system after the
root has been moved to the new root file system, thereby
reducing the service interruption time. In one such embodi-
ment, network device 114 1s to invoke an intelligent imit
script, such as 1mt script 113, that 1s able to distinguish
between a normal 1mitialization process and an ISSU 1nitial-
1zation process, and 1n response to determining the initial-
1zation process 1s being performed as part of an ISSU, the
intelligent 1nit script 1s adapted to perform the operations
that are specific to ISSU as described above.

[0054] FIG. 2 1s a block diagram 1llustrating a pseudo code
for an 1nit process according to one embodiment. For
example, the pseudo code may represent the code of an
executable binary of it process 111. In the illustrated
pseudo code, it process 111 1s adapted to invoke an it
script (e.g., it script 113) as part of operation 210 during
a normal 1nitialization process. Init process 111 1s further
adapted to invoke a halt script (e.g., halt script 113) as part
of operation 209 during a normal halting process. Unlike a
conventional normal 1nit process, however, 1nit process 111
1s further adapted to perform specific operations during an
ISSU in order to minimize the service interruption. Accord-
ing to one embodiment, in response to detecting an ISSU
trigger (1.e., a request to perform ISSU) at operation 201, 1nit
process 111 1s adapted to perform operations 211-214.

[0055] At operation 211, it process 111 sets an ISSU 1n
progress indication. For example, this indication can be a
global variable that 1s accessible by all processes and/or
scripts that are executed by 1nit process 111. At operation
212, i1t process 111 invokes/executes a halt script (e.g., halt
script 114). At operation 213, 1nit process 111 moves the 1nit
process from the current root (e.g., a root directory of root
file system 131) to a new root (e.g., a root directory of root
file system 141). For example, as part of operation 213 1nit

Dec. 15, 2016

process 111 may perform an operation similar to the Unix-
based “chroot” operation, which changes the apparent root
directory of the current running process and 1ts children. At
operation 214, 1nit process 111 starts a new 1nit process in the
new root, for example, by executing the 1nit process execut-
able 1n the new root.

[0056] FIG. 3 1s a block diagram 1llustrating a pseudo code
for an 1nit script according to one embodiment. In one
embodiment, 1n response to determining ISSU 1s 1n progress
at operation 302, it script 113 1s adapted to unmount the
current root file system at operation 314. According to one
embodiment, in response to determining that ISSU 1s not 1n
progress at operation 301, init script 113 performs opera-
tions 311-313 as part of a normal initialization process. At
operation 311, 1t script 113 mounts critical system files
(e.g., /dev, /sys, /proc, etc.) on the root file system. At
operation 312, mit script 113 loads the LKMs (e.g, LKMs
122). At operation 313, it script 113 performs hardware
resets (e.g., by resetting memories, CPU(s), etc.).

[0057] Imtscript 113 is further adapted to perform specific
operations during an ISSU 1n order to minimize the service
interruption. Returning now back to operation 301. Accord-
ing to one embodiment, in response to determining ISSU 1s
in progress, it script 113 1s adapted to prevent operations
311-313 from being performed. For example, in response to
detecting the indication that ISSU i1s 1n progress at operation
301, 1mt script 113 prevents: 1) the mounting of the critical
system files, 2) the loading of the LKMs, and 3) the resetting
of hardware devices. By preventing operations 311-313
from being performed, 1nit script 113 helps to minimize the
service interruption.

[0058] As part of the normal initialization process, 1nit
script 113 1s adapted to start other processes (e.g., other
processes 112) at operation 310. According to one embodi-
ment, it script 113 1s to start other processes after the
current root file system (1.e., the root file system from which
the network device 1s migrating away from as part of the
ISSU) has been unmounted 1n order to ensure that there are
no dependencies on the kernel (e.g., kernel 121) before
starting the new processes on the new root file system.

[0059] FIG. 4 1s a block diagram 1llustrating a pseudo code
for a halt script according to one embodiment. As part of the
normal halting process, halt script 114 1s adapted to kill (1.e.,
terminate) all processes (e.g., other processes 112) except for
the 1nit process (e.g., init process 111) at operation 410. For
example, as part of operation 410, halt script 114 may
perform operations similar to the Unix-based operations
“sigterm” and ““sigkiall”. Halt script 114 1s turther configured
to de-allocate resources (e.g., resources 150) of terminated
user space processes at operation 411. For example, as part
of operation 411, halt script 114 de-allocates System V
interprocess communication (IPC) resources (e.g., shared
memories, semaphores, messages, sockets, etc.) associated
with the terminated user space processes. According to one
embodiment, 1n response to determining that ISSU 1s not 1n
progress at operation 401, halt script 114 performs opera-
tions 412-413 as part of the normal halting process. For
example, halt script 114 unmounts the critical system files at
operation 412 and unloads the LKMs at operation 413.

[0060] Halt script 114 1s further adapted to perform spe-
cific operations during an ISSU 1n order to minimize the
service interruption. Returning now back to operation 401,
according to one embodiment, 1n response to determining
ISSU 1s 1n progress, halt script 114 1s adapted to prevent

US 2016/0364231 Al

operations 412-413 from being performed. For example, 1n
response to detecting the indication that ISSU 1s in progress
at operation 401, halt script 114 prevents: 1) the unmounting
of the critical system files, and 2) the unloading of the
[LKMs. Preventing the unmounting of the critical system
files prevents the rebooting of the kernel (e.g., kernel 121)
and minimizes the service interruption. Preventing the
unloading of the LKMs prevents the resetting of peripheral
devices (e.g., monitor, keyboard, mouse, network interfaces,
etc.) and allows them to continue operating in a headless
mode, and further minimizes the service interruption.
According to one embodiment, 1n response to determining
ISSU 1s 1n progress at operation 402, halt script 114 1s
adapted to: 1) move the root from the current root file system
to a new root file system at operation 414 (e.g., by using an
operation similar to the Unix-based “pivot_root” operation,
and 2) move the critical system files from the current root
file system to the new root file system at operation 415 (e.g.,
by using an operation similar to the Unix-based “mount—
move” operation. It should be noted that by performing
operation 415 to move the critical system files to the new
root file system device instead of performing operation 412
to unmount the critical system files at operation, halt script
114 1s able to prevent the rebooting of the kernel, and thus
mimmize the service interruption.

[0061] Each of init script 113 and halt script 114 1s
illustrated as one file. One having ordinary skill in the art
would recognize that 1nit script 113 and/or halt script 114 can
cach be implemented as multiple files. Further, 1t should be
understood that 1mit script 113 and/or halt script 114 can
include more or less operations than those illustrated without
departing from the broader scope and spirit of the present
invention. Further, 1t should be understood that init script
113 and halt script 114 can be implemented as one file. In
one embodiment, some or all of the operations of 1nit script
113 and/or halt script 114 can also be implemented as part
of 1nit process 111. In yet another embodiment, some of the
operations performed by init process 111 can be imple-
mented as part of it script 113 and/or halt script 114.

[0062] In order to better illustrate the intelligent halting
and 1nitialization processes of the present invention, the
normal halting process and the normal 1mitialization process
shall now be described by way of example. Referring now
to FIG. 2, in response to detecting a trigger to shutdown/
restart, at operation 29 it process 111 invokes halt script
114 as part of the normal halting process. Referring now to
FIG. 4, at operation 410 halt script 114 terminates other
processes 112 without terminating init process 111. At
operation 411, halt script 114 de-allocates some or all of
resources 150 associated with the terminated processes. At
operation 401, 1n response to determining that ISSU 1s not
in progress, halt script 114 unmounts the critical system files
at operation 412 and unloads LKMs 122 at operation 413.

[0063] Returning now back to FIG. 2, at operation 210,
during a normal bootup (e.g., from a restart/shutdown pro-
cess), it process 111 invokes 1nit script 113 as part of the
normal 1nitialization process. Referring now to FIG. 3, at
operation 301, in response to determining ISSU 1s not 1n
progress, 11t script 113 mounts critical system files at
operation 311, loads LKMs 122 at operation 112, and resets
hardware devices at operation 313. Init script 113 then starts
other processes 112 at operation 310, causing resources 150
to be allocated.

Dec. 15, 2016

[0064] The ISSU halting process and the ISSU 1nitializa-
tion process according to one embodiment shall now be
described. Assume that the root of network device 101 1is
currently mapped to root file system 131 stored as part of
storage device 130. Assume further that a new software
version has been 1nstalled on root file system 141 stored as
part of storage device 140. As will be described below, after
the ISSU 1s completed, new processes will started 1n root file
system 141 which are spawned off of the new software.
Referring now to FIG. 2, at operation 201 it process 111
detects an indication to perform an ISSU (e.g., from an
administrator via a command line interface (CLI), from a
remote host, etc.). In response, 1nit process 111 sets a global
variable to indicate that ISSU 1s 1n progress at operation 211,
and invokes halt script 114 at operation 212.

[0065] Referring now to FIG. 4, at operation 410 halt
script 114 terminates other processes 112 without terminat-
ing 1mt process 111. At operation 411, halt script 114
de-allocates some or all of resources 150 of the terminated
processes. At operation 401, 1n response to determining that
ISSU 1s 1n progress, halt script 114 prevents the unmounting
of the crtical system files (operation 412) and further
prevents the unloading of LKMs 122 (operation 413). At
operation 402, halt script 114 determines that ISSU 1s 1n
progress. In response to determining ISSU 1s in progress,
halt script 114 moves the root from the current root file
system (1.e., root file system 131) to the new root file system
(1.e., root file system 141) at operation 414, and further
moves the critical system files from the current root file
system to the new root file system at operation 415.

[0066] Referring now back to FIG. 2, at operation 213 1nit
process 111 then moves the current init process (1.e., 1t
process 111) from root file system 131 to root file system
141, and starts new 1nit process 115 in the new root. New 1nit
process 115 performs operations similar to those described
in FIG. 2. For example, 1nit process 215 mvokes 1nit script
113 at operation 210 to perform the imitialization process.
Referring now to FIG. 3, at operation 302 1nit script 113
determines that ISSU 1s in progress and unmounts the
current root file system (1.e., root file system 131) at opera-

tion 314.

[0067] At operation 301, in response to determining that
ISSU 1s 1n progress, 1nit script 113 prevents the unnecessary:
1) mounting of the critical system files (operation 311), 2)
loading of LKMs 122 (operation 312), and 3) resetting of
hardware devices (operation 313). At operation 310, it
script 113 starts other processes 116. In one embodiment,
init script 113 starts other processes after the current root file
system (1.e., root file system 131) has been unmounted 1n
order to ensure that there are no dependencies on kernel 121
before starting the new other processes 116.

[0068] It should be noted that although root file systems
131 and 141 are illustrated as being stored in separate
storage devices, one having ordinary skill in the art would
recognize that root file systems 131 and 141 can also be
stored as part of logical partitions of a single storage device.
It should be further noted that storage devices 130 and 140
need not be physically included as part of network device
101. For example, storage devices 130 and 140 can be
remote devices that are commumnicatively coupled to net-
work device 101. Various embodiments of the present
mechanisms for performing ISSU shall now be described in
greater details through the discussion of various other fig-
ures below.

US 2016/0364231 Al

[0069] FIGS. 5A-5D are block diagrams illustrating a
network device for performing ISSU according to one
embodiment. Network device 101 of FIGS. SA-5D 1s similar
to network device 101 of FIG. 1. For the sake of brevity, the
various components of network device 101 shall not be
described herein. Further, certain details of network device
101 have been omitted 1n FIGS. 5A-5D 1n order to avoid
obscuring the invention. FIGS. SA-5D illustrate an example
of ISSU as performed by embodiments of the present

invention. FIGS. SA-5D shall be described in conjunction
with FIG. 6.

[0070] FIG. 6 1s a flow diagram 1illustrating a method for
performing ISSU according to one embodiment. For
example, method 600 can be performed by one or more 1nit
processes, such as init processes 111 and 115 of network
device 101. Method 600 can be implemented in software,
firmware, hardware, or any combination thereof. Method
600 comprises of release current root file system operations
601, switch root file systems operations 602, and 1mitialize
new root file systems operations 603. In one embodiment,
release current root file system operations 601 and switch
root file systems 602 can be performed by a current it
process (e.g., imit process 111) executing on a current root
file system (e.g., root file system 131), and 1mitialize new
root file systems operations 603 can be performed by a new
init process (e.g., it process 115) executing on a new root
file system (e.g., root file system 141).

[0071] The operations in this and other flow diagrams will
be described with reference to the exemplary embodiments
of the other figures. However, it should be understood that
the operations of the flow diagrams can be performed by
embodiments of the invention other than those discussed
with reference to the other figures, and the embodiments of
the invention discussed with reference to these other figures
can perform operations different than those discussed with
reference to the flow diagrams.

[0072] Referring now to FIG. 6, at block 605, a current 1nit
process receives a trigger to perform ISSU. At block 610 the
current 1nit process sets a global variable indicating ISSU 1s
in progress. At block 615, the current 1nit process terminates
all processes (except for the init process itself) running on
the current root. The current 1nit process further de-allocates
resources that were allocated to the terminated processes. At
block 620, the current 1mit process, in response to determin-
ing ISSU 1s 1n progress, prevents the unmounting of critical
system files to avoid rebooting of the kernel. At block 625,
the current 1nit process, 1n response to determining ISSU 1s
in progress, prevents the unloading of LKMs to avoid
resetting the peripheral devices, and allow them to operate
in a headless mode.

[0073] Forexample, referring now to FIG. SA, 1nit process
111 receives ISSU trigger 501 to perform ISSU. Referring
now to FIG. 5B, 1t process 111 sets ISSU indication 502
(e.g., as part of 1ts operation 211), and executes halt script
114 (e.g., as part of its operation 212). Halt script 114
terminates other processes 112 without terminating init
process 111 at its operation 410. Halt script 114 further
de-allocates resources 150 at operation 411. Halt script 114
determines that ISSU 1s 1n progress at operation 401 (e.g., by
detecting ISSU 1indication 502). In response to determining
ISSU 1s 1n progress, halt script 114 prevents the unmounting
of the critical system files (operation 412), and prevents the
unloading of LKMs 122 (operation 413). Thus, 1n contrast to
a normal halting process, halt script 114 prevents the kernel

Dec. 15, 2016

from being rebooted, and the peripheral devices from being
reset, by preventing the unmounting of the critical system
files and the unloading of the LKM, respectively.

[0074] Referring now back to FIG. 6, at block 630, the

current 1nit process moves the root from the current root file
system to a new root file system, and further moves the
critical system files from the current root file system to the
new root file system. At block 635, the current 1nit process
moves the 1nit process (1.€., itsell) from the current root file
system to the new root file system. At block 640, the current
init process starts a new 1nit process in the new root file
system.

[0075] For example, referring now to FIG. SC, halt script
114 moves the root from root file system 131 to root file
system 141 at operation 414 (see FIG. 4). Further, halt script
114 moves the critical system files from root file system 131
to root file system 141 at operation 4135. After halt script 114
1s completed, 1mit process 111 proceeds to its operation 213
(see FIG. 2) and moves the 1nit process (1.e., itsell) from root
file system 131 to root file system 141. At operation 214, 1nit
process 111 starts a new 1nit process 115 1n the new root file
system 141.

[0076] Referring now back to FIG. 6, at block 645 the new
init process unmounts the current root file system and starts
other processes 1n the new root file system, causing
resources to be allocated. At block 650, the new 1nit process,
in response to determining ISSU 1s 1in progress, prevents the
mounting of critical system files on the new root file system.
At block 655, 1n response to determining ISSU 1s 1n prog-
ress, the new 1mt process prevents the loading of LKMs. At
block 660, 1n response to determining ISSU 1s 1n progress,
the new 1nit process prevents the resetting of hardware
devices.

[0077] For example, referring now to FIG. 5D, init process
115 mvokes 1nit script 113. Init script determines that ISSU
1s 1n progress at operation 302 (see FIG. 3) and unmounts the
current root file system (1.e., root file system 131) at opera-
tion 314. At operation 301, 1mt script 113 determines that
ISSU 1s 1n progress. At operation 301, it script 113
determines that ISSU 1s 1n progress and prevents: 1) the
mounting of critical system files (operation 311), 2) the
loading of LKMs 122 (operation 312), and 3) the resetting
of hardware devices (operation 313). At operation 310, 1nit
script 113 starts other processes 116, causing resources 151
to be allocated. It should be noted that 1mit process 111 and
other processes 116 which are started 1n root file system 141
are spawned off the upgraded software. Thus, at the end of
the ISSU process, network device 101 1s operating under the
new software.

[0078] FIG. 7A illustrates connectivity between network
devices (NDs) within an exemplary network, as well as three
exemplary implementations of the NDs, according to some
embodiments of the invention. FIG. 7A shows NDs 700A-H,
and their connectivity by way of lines between A-B, B-C,
C-D, D-E, E-F, F-G, and A-G, as well as between H and each
of A, C, D, and G. These NDs are physical devices, and the
connectivity between these NDs can be wireless or wired
(often referred to as a link). An additional line extending
from NDs 700A, E, and F illustrates that these NDs act as
ingress and egress points for the network (and thus, these

NDs are sometimes referred to as edge NDs; while the other
NDs may be called core NDs).

[0079] Two of the exemplary ND implementations 1n FIG.
7A are: 1) a special-purpose network device 702 that uses

US 2016/0364231 Al

custom application—specific integrated—circuits (ASICs)
and a proprietary operating system (OS); and 2) a general
purpose network device 704 that uses common off-the-shelf
(COTS) processors and a standard OS.

[0080] The special-purpose network device 702 includes
networking hardware 710 comprising compute resource(s)
712 (which typically include a set of one or more proces-
sors), forwarding resource(s) 714 (which typically include
one or more ASICs and/or network processors), and physical
network interfaces (NIs) 716 (sometimes called physical
ports), as well as non-transitory machine readable storage
media 718 having stored therein networking software 720. A
physical NI 1s hardware 1n a ND through which a network
connection (e.g., wirelessly through a wireless network
interface controller (WNIC) or through plugging 1n a cable
to a physical port connected to a network interface controller
(NIC)) 1s made, such as those shown by the connectivity
between NDs 700A-H. During operation, the networking
software 720 may be executed by the networking hardware
710 to 1nstantiate a set of one or more networking software
instance(s) 722. Each of the networking software instance(s)
722, and that part of the networking hardware 710 that
executes that network software instance (be 1t hardware
dedicated to that networking software instance and/or time
slices of hardware temporally shared by that networking
software instance with others of the networking software
instance(s) 722), form a separate virtual network element
730A-R. Each of the virtual network element(s) (VNEs)
730A-R 1ncludes a control communication and configura-
tion module 732A-R (sometimes referred to as a local
control module or control communication module) and
forwarding table(s) 734A-R, such that a given virtual net-
work element (e.g., 730A) includes the control communi-
cation and configuration module (e.g., 732A), a set of one or
more forwarding table(s) (e.g., 734A), and that portion of
the networking hardware 710 that executes the virtual net-
work element (e.g., 730A).

[0081] Software 720 can 1include code which when
executed by networking hardware 710, causes networking
hardware 710 to perform operations of one or more embodi-
ments of the present invention as part networking software
instances 722.

[0082] The special-purpose network device 702 1s often
physically and/or logically considered to include: 1) a ND
control plane 724 (sometimes referred to as a control plane)
comprising the compute resource(s) 712 that execute the
control communication and configuration module(s) 732A-
R; and 2) a ND forwarding plane 726 (sometimes referred to
as a forwarding plane, a data plane, or a media plane)
comprising the forwarding resource(s) 714 that utilize the
forwarding table(s) 734A-R and the physical NIs 716. By
way of example, where the ND 1s a router (or 1s implement-
ing routing functionality), the ND control plane 724 (the
compute resource(s) 712 executing the control communica-
tion and configuration module(s) 732A-R) 1s typically
responsible for participating in controlling how data (e.g.,
packets) 1s to be routed (e.g., the next hop for the data and
the outgoing physical NI for that data) and storing that
routing information in the forwarding table(s) 734A-R, and
the ND forwarding plane 726 1s responsible for receiving
that data on the physical NIs 716 and forwarding that data
out the appropriate ones of the physical NIs 716 based on the
forwarding table(s) 734A-R.

Dec. 15, 2016

[0083] FIG. 7B illustrates an exemplary way to implement
the special-purpose network device 702 according to some
embodiments of the invention. FIG. 7B shows a special-
purpose network device including cards 738 (typically hot
pluggable). While 1n some embodiments the cards 738 are of
two types (one or more that operate as the ND forwarding
plane 726 (sometimes called line cards), and one or more
that operate to implement the ND control plane 724 (some-
times called control cards)), alternative embodiments may
combine functionality onto a single card and/or include
additional card types (e.g., one additional type of card 1s
called a service card, resource card, or multi-application
card). A service card can provide specialized processing
(e.g., Layer 4 to Layer 7 services (e.g., firewall, Internet
Protocol Security (IPsec), Secure Sockets Layer (SSL)/
Transport Layer Security (TLS), Intrusion Detection System
(IDS), peer-to-peer (P2P), Voice over IP (VoIP) Session
Border Controller, Mobile Wireless Gateways (Gateway
General Packet Radio Service (GPRS) Support Node
(GGSN), Evolved Packet Core (EPC) Gateway)). By way of
example, a service card may be used to terminate IPsec
tunnels and execute the attendant authentication and encryp-
tion algorithms. These cards are coupled together through
one or more interconnect mechanisms illustrated as back-
plane 736 (e.g., a first full mesh coupling the line cards and
a second full mesh coupling all of the cards).

[0084] Returning to FIG. 7A, the general purpose network
device 704 includes hardware 740 comprising a set of one or
more processor(s) 742 (which are often COTS processors)
and network interface controller(s) 744 (NICs; also known
as network interface cards) (which include physical NIs
746), as well as non-transitory machine readable storage
media 748 having stored therein software 750. During
operation, the processor(s) 742 execute the software 750 to
instantiate one or more sets of one or more applications
764 A-R. While one embodiment does not implement virtu-
alization, alternative embodiments may use different forms
of virtualization—represented by a virtualization layer 754
and software containers 762A-R. For example, one such
alternative embodiment implements operating system-level
virtualization, 1n which case the virtualization layer 754
represents the kernel of an operating system (or a shim
executing on a base operating system) that allows for the
creation of multiple software containers 762A-R that may
cach be used to execute one of the sets of applications
764 A-R. In this embodiment, the multiple software contain-
ers 762A-R (also called virtualization engines, virtual pri-
vate servers, or jails) are each a user space i1nstance (typi-
cally a virtual memory space); these user space instances are
separate from each other and separate from the kernel space
in which the operating system 1s run; the set of applications
running i1n a given user space, unless explicitly allowed,
cannot access the memory of the other processes. Another
such alternative embodiment implements full virtualization,
in which case: 1) the virtualization layer 754 represents a
hypervisor (sometimes referred to as a virtual machine
monitor (VMM)) or a hypervisor executing on top of a host
operating system; and 2) the software containers 762A-R
cach represent a tightly 1solated form of software container
called a virtual machine that 1s run by the hypervisor and
may include a guest operating system. A virtual machine 1s
a soltware implementation of a physical machine that runs
programs as 1f they were executing on a physical, non-
virtualized machine; and applications generally do not know

US 2016/0364231 Al

they are running on a virtual machine as opposed to running,
on a “bare metal” host electronic device, though some
systems provide para-virtualization which allows an oper-
ating system or application to be aware of the presence of
virtualization for optimization purposes.

[0085] The mstantiation of the one or more sets of one or
more applications 764 A-R, as well as the virtualization layer
754 and software containers 762A-R 1f implemented, are
collectively referred to as software 1mnstance(s) 752. Each set
of applications 764A-R, corresponding software container
762A-R 11 implemented, and that part of the hardware 740
that executes them (be 1t hardware dedicated to that execu-
tion and/or time slices of hardware temporally shared by
software containers 762A-R), forms a separate virtual net-

work element(s) 760A-R.

[0086] The virtual network element(s) 760A-R perform
similar functionality to the virtual network element(s) 730A-
R—e.g., similar to the control communication and configu-
ration module(s) 732A and forwarding table(s) 734 A (this
virtualization of the hardware 740 1s sometimes referred to
as network function virtualization (NFV)). Thus, NFV may
be used to consolidate many network equipment types onto
industry standard high volume server hardware, physical
switches, and physical storage, which could be located 1n
Data centers, NDs, and customer premise equipment (CPE).
However, different embodiments of the invention may
implement one or more of the software container(s) 762A-R
differently. For example, while embodiments of the inven-
tion are 1illustrated with each software container 762A-R
corresponding to one VNE 760A-R, alternative embodi-
ments may implement this correspondence at a finer level
granularity (e.g., line card virtual machines virtualize line
cards, control card virtual machine virtualize control cards,
etc.); 1t should be understood that the techniques described
herein with reference to a correspondence of software con-
tainers 762A-R to VNEs also apply to embodiments where
such a finer level of granularity 1s used.

[0087] In certain embodiments, the virtualization layer
754 includes a virtual switch that provides similar forward-
ing services as a physical Ethernet switch. Specifically, this
virtual switch forwards traflic between software containers
762A-R and the NIC(s) 744, as well as optionally between
the software containers 762A-R; in addition, this virtual
switch may enforce network isolation between the VNEs
760A-R that by policy are not permitted to communicate
with each other (e.g., by honoring virtual local area networks

(VLANGS)).

[0088] Software 750 can include code which when
executed by processor(s) 742, cause processor(s) 742 to
perform operations of one or more embodiments of the
present invention as part software containers 762A-R.

[0089] The third exemplary ND implementation 1n FIG.
7A 1s a hybrid network device 706, which includes both
custom ASICs/proprietary OS and COTS processors/stan-
dard OS 1n a single ND or a single card within an ND. In
certain embodiments of such a hybrid network device, a
platform VM (1.e., a VM that that implements the function-
ality of the special-purpose network device 702) could
provide for para-virtualization to the networking hardware
present 1n the hybrid network device 706.

[0090] Regardless of the above exemplary implementa-
tions of an ND, when a single one of multiple VINEs
implemented by an ND 1s being considered (e.g., only one
of the VNEs 1s part of a given virtual network) or where only

Dec. 15, 2016

a single VNE 1s currently being implemented by an ND, the
shortened term network element (NE) 1s sometimes used to

refer to that VNE. Also 1n all of the above exemplary
implementations, each of the VNEs (e.g., VNE(s) 730A-R,

VNEs 760A-R, and those 1n the hybrid network device 706)
receives data on the physical NIs (e.g., 716, 746) and
forwards that data out the appropriate ones of the physical
NIs (e.g., 716, 746). For example, a VNE implementing IP
router functionality forwards IP packets on the basis of some
of the IP header information in the IP packet; where IP
header information includes source IP address, destination
IP address, source port, destination port (where “source
port” and “destination port” refer herein to protocol ports, as
opposed to physical ports of a ND), transport protocol (e.g.,

user datagram protocol (UDP), Transmission Control Pro-
tocol (TCP), and differentiated services (DSCP) values.

[0091] FIG. 7C illustrates various exemplary ways 1n

which VNEs may be coupled according to some embodi-
ments of the invention. FIG. 7C shows VNEs 770A.1-

7TT0AP (and optionally VNEs 770A.Q-770A.R) 1mple-
mented 1n ND 700A and VNE 770H.1 in ND 700H. In FIG.
7C, VNEs 770A.1-P are separate from each other in the
sense that they can receive packets from outside ND 700A
and forward packets outside of ND 700A; VNE 770A.1 1s
coupled with VNE 770H.1, and thus they communicate
packets between their respective NDs; VNE 770A.2-770A.3
may optionally forward packets between themselves without
forwarding them outside of the ND 700A; and VNE 770A.P
may optionally be the first in a chain of VNESs that includes
VNE 770A.Q followed by VNE 770A R (this 1s sometimes
referred to as dynamic service chaining, where each of the
VNEs 1n the series of VNEs provides a diflerent service—
¢.g., one or more layer 4-7 network services). While FIG. 7C
illustrates various exemplary relationships between the
VNEs, alternative embodiments may support other relation-
ships (e.g., more/fewer VNEs, more/fewer dynamic service

chains, multiple different dynamic service chains with some
common VNEs and some different VNEs).

[0092] The NDs of FIG. 7A, for example, may form part

of the Internet or a private network; and other electronic
devices (not shown; such as end user devices including
workstations, laptops, netbooks, tablets, palm tops, mobile
phones, smartphones, phablets, multimedia phones, Voice
Over Internet Protocol (VOIP) phones, terminals, portable
media players, GPS units, wearable devices, gaming sys-
tems, set-top boxes, Internet enabled household appliances)
may be coupled to the network (directly or through other
networks such as access networks) to communicate over the
network (e.g., the Internet or virtual private networks
(VPNs) overlaid on (e.g., tunneled through) the Internet)
with each other (directly or through servers) and/or access
content and/or services. Such content and/or services are
typically provided by one or more servers (not shown)
belonging to a service/content provider or one or more end
user devices (not shown) participating in a peer-to-peer
(P2P) service, and may include, for example, public web-
pages (e.g., ifree content, store fronts, search services),
private webpages (e.g., username/password accessed web-
pages providing email services), and/or corporate networks
over VPNSs. For instance, end user devices may be coupled
(e.g., through customer premise equipment coupled to an
access network (wired or wirelessly)) to edge NDs, which
are coupled (e.g., through one or more core NDs) to other
edge NDs, which are coupled to electronic devices acting as

US 2016/0364231 Al

servers. However, through compute and storage virtualiza-
tion, one or more of the electronic devices operating as the
NDs 1n FIG. 7A may also host one or more such servers
(e.g., 1n the case of the general purpose network device 704,
one or more of the software containers 762A-R may operate
as servers; the same would be true for the hybrid network
device 706; 1in the case of the special-purpose network
device 702, one or more such servers could also be run on
a virtualization layer executed by the compute resource(s)

712); 1n which case the servers are said to be co-located with
the VNEs of that ND.

[0093] A virtual network 1s a logical abstraction of a
physical network (such as that in FIG. 7A) that provides
network services (e.g., L2 and/or L3 services). A virtual
network can be implemented as an overlay network (some-
times referred to as a network virtualization overlay) that
provides network services (e.g., layer 2 (L2, data link layer)
and/or layer 3 (L3, network layer) services) over an underlay
network (e.g., an L3 network, such as an Internet Protocol
(IP) network that uses tunnels (e.g., generic routing encap-
sulation (GRE), layer 2 tunneling protocol (L2TP), IPSec) to
create the overlay network).

[0094] A network virtualization edge (NVE) sits at the
edge of the underlay network and participates in implement-
ing the network virtualization; the network-facing side of the
NVE uses the underlay network to tunnel frames to and from
other NVEs; the outward-facing side of the NVE sends and
receives data to and from systems outside the network. A
virtual network instance (VNI) 1s a specific instance of a
virtual network on a NVE (e.g., a NE/VNE on an ND, a part
of a NE/VNE on a ND where that NE/VNE 1s divided mto
multiple VNEs through emulation); one or more VNIs can
be instantiated on an NVE (e.g., as different VINEs on an
ND). A virtual access point (VAP) 1s a logical connection
point on the NVE for connecting external systems to a
virtual network; a VAP can be physical or virtual ports
identified through logical interface identifiers (e.g., a VLAN
ID).

[0095] Examples of network services include: 1) an Eth-
ernet LAN emulation service (an Ethernet-based multipoint
service similar to an Internet Engineering Task Force (IETF)
Multiprotocol Label Switching (MPLS) or Ethernet VPN
(EVPN) service) in which external systems are intercon-
nected across the network by a LAN environment over the
underlay network (e.g., an NVE provides separate .2 VINIs
(virtual switching instances) for different such virtual net-
works, and L3 (e.g., IP/MPLS) tunneling encapsulation
across the underlay network); and 2) a virtualized IP {for-
warding service (similar to IETF IP VPN (e.g., Border
Gateway Protocol (BGP)MPLS IPVPN) from a service
definition perspective) in which external systems are inter-
connected across the network by an L3 environment over the
underlay network (e.g., an NVE provides separate L3 VINIs
(forwarding and routing instances) for different such virtual
networks, and L3 (e.g., IP/MPLS) tunneling encapsulation
across the underlay network)). Network services may also
include quality of service capabilities (e.g., traflic classifi-
cation marking, tratflic conditioning and scheduling), secu-
rity capabilities (e.g., filters to protect customer premises
from network—originated attacks, to avoid malformed route
announcements), and management capabilities (e.g., full
detection and processing).

[0096] FIG. 7D illustrates a network with a single network
element on each of the NDs of FIG. 7A, and within this

Dec. 15, 2016

straight forward approach contrasts a traditional distributed
approach (commonly used by traditional routers) with a
centralized approach for maintaining reachability and for-
warding imnformation (also called network control), accord-

ing to some embodiments of the invention. Specifically, FIG.
7D 1llustrates network elements (NEs) 770A-H with the

same connectivity as the NDs 700A-H of FIG. 7A.

[0097] FIG. 7D 1illustrates that the distributed approach
772 distributes responsibility for generating the reachabaility
and forwarding information across the NEs 770A-H; 1n
other words, the process of neighbor discovery and topology
discovery 1s distributed.

[0098] For example, where the special-purpose network
device 702 1s used, the control communication and configu-
ration module(s) 732A-R of the ND control plane 724
typically include a reachability and forwarding information
module to implement one or more routing protocols (e.g., an
exterior gateway protocol such as Border Gateway Protocol
(BGP), Interior Gateway Protocol(s) (IGP) (e.g., Open
Shortest Path First (OSPF), Intermediate System to Inter-
mediate System (IS-IS), Routing Information Protocol
(RIP)), Label Distribution Protocol (LDP), Resource Res-
ervation Protocol (RSVP), as well as RSVP-Traflic Engi-
neering (TE): Extensions to RSVP for LSP Tunnels, Gen-
eralized Multi-Protocol Label Switching (GMPLS)
Signaling RSVP-TE that communicate with other NEs to
exchange routes, and then selects those routes based on one
or more routing metrics. Thus, the NEs 770A-H (e.g., the
compute resource(s) 712 executing the control communica-
tion and configuration module(s) 732A-R) perform their
responsibility for participating in controlling how data (e.g.,
packets) 1s to be routed (e.g., the next hop for the data and
the outgoing physical NI for that data) by distributively
determining the reachability within the network and calcu-
lating their respective forwarding information. Routes and
adjacencies are stored 1n one or more routing structures (e.g.,
Routing Information Base (RIB), Label Information Base
(LIB), one or more adjacency structures) on the ND control
plane 724. The ND control plane 724 programs the ND
forwarding plane 726 with information (e.g., adjacency and
route information) based on the routing structure(s). For
example, the ND control plane 724 programs the adjacency
and route information into one or more forwarding table(s)
734A-R (e.g., Forwarding Information Base (FIB), Label
Forwarding Information Base (LFIB), and one or more
adjacency structures) on the ND forwarding plane 726. For
layer 2 forwarding, the ND can store one or more bridging
tables that are used to forward data based on the layer 2
information in that data. While the above example uses the
special-purpose network device 702, the same distributed
approach 772 can be implemented on the general purpose
network device 704 and the hybrid network device 706.

[0099] FIG. 7D illustrates that a centralized approach 774
(also known as software defined networking (SDN)) that
decouples the system that makes decisions about where
traflic 1s sent from the underlying systems that forwards
traflic to the selected destination. The 1llustrated centralized
approach 774 has the responsibility for the generation of
reachability and forwarding information in a centralized
control plane 776 (sometimes referred to as a SDN control
module, controller, network controller, OpenFlow control-
ler, SDN controller, control plane node, network virtualiza-
tion authority, or management control entity), and thus the
process ol neighbor discovery and topology discovery 1s

US 2016/0364231 Al

centralized. The centralized control plane 776 has a south
bound interface 782 with a data plane 780 (sometime
referred to the infrastructure layer, network forwarding
plane, or forwarding plane (which should not be confused
with a ND forwarding plane)) that includes the NEs 770A-H
(sometimes referred to as switches, forwarding elements,
data plane elements, or nodes). The centralized control plane
776 includes a network controller 778, which includes a
centralized reachability and forwarding information module
779 that determines the reachability within the network and
distributes the forwarding information to the NEs 770 A-H of
the data plane 780 over the south bound interface 782 (which
may use the OpenFlow protocol). Thus, the network 1ntel-
ligence 1s centralized in the centralized control plane 776

executing on electronic devices that are typically separate
from the NDs.

[0100] For example, where the special-purpose network
device 702 1s used 1n the data plane 780, each of the control
communication and configuration module(s) 732A-R of the
ND control plane 724 typically include a control agent that
provides the VNE side of the south bound interface 782. In
this case, the ND control plane 724 (the compute resource(s)
712 executing the control communication and configuration
module(s) 732A-R) performs its responsibility for partici-
pating in controlling how data (e.g., packets) 1s to be routed
(e.g., the next hop for the data and the outgoing physical NI
for that data) through the control agent communicating with
the centralized control plane 776 to receive the forwarding
information (and i1n some cases, the reachability informa-
tion) from the centralized reachability and forwarding infor-
mation module 779 (1t should be understood that in some
embodiments of the invention, the control communication
and configuration module(s) 732A-R, 1n addition to com-
municating with the centralized control plane 776, may also
play some role 1n determining reachability and/or calculat-
ing forwarding information—albeit less so than in the case
of a distributed approach; such embodiments are generally
considered to fall under the centralized approach 774, but
may also be considered a hybrid approach).

[0101] Whle the above example uses the special-purpose
network device 702, the same centralized approach 774 can
be implemented with the general purpose network device
704 (e.g., each of the VNE 760A-R performs 1ts responsi-
bility for controlling how data (e.g., packets) 1s to be routed
(e.g., the next hop for the data and the outgoing physical NI
for that data) by communicating with the centralized control
plane 776 to receive the forwarding information (and in
some cases, the reachability information) from the central-
1zed reachability and forwarding information module 779; 1t
should be understood that 1n some embodiments of the
invention, the VNEs 760A-R, in addition to communicating
with the centralized control plane 776, may also play some
role 1n determiming reachability and/or calculating forward-
ing information—albeit less so than 1n the case of a distrib-
uted approach) and the hybrid network device 706. In fact,
the use of SDN techmiques can enhance the NFV techniques
typically used 1n the general purpose network device 704 or
hybrid network device 706 implementations as NFV 1s able
to support SDN by providing an infrastructure upon which
the SDN software can be run, and NFV and SDN both aim
to make use of commodity server hardware and physical
switches.

[0102] FIG. 7D also shows that the centralized control
plane 776 has a north bound interface 784 to an application

Dec. 15, 2016

layer 786, 1n which resides application(s) 788. The central-
1zed control plane 776 has the ability to form virtual net-
works 792 (sometimes referred to as a logical forwarding
plane, network services, or overlay networks (with the NEs
770A-H of the data plane 780 being the underlay network))
for the application(s) 788. Thus, the centralized control
plane 776 maintains a global view of all NDs and configured
NEs/VNEs, and 1t maps the virtual networks to the under-
lying NDs efliciently (including maintaining these mappings
as the physical network changes either through hardware
(ND, link, or ND component) failure, addition, or removal).

[0103] While FIG. 7D shows the distributed approach 772
separate from the centralized approach 774, the etiort of
network control may be distributed differently or the two
combined in certain embodiments of the invention. For
example: 1) embodiments may generally use the centralized
approach (SDN) 774, but have certain functions delegated to
the NEs (e.g., the distributed approach may be used to
implement one or more of fault monitoring, performance
monitoring, protection switching, and primitives for neigh-
bor and/or topology discovery); or 2) embodiments of the
invention may perform neighbor discovery and topology
discovery via both the centralized control plane and the
distributed protocols, and the results compared to raise
exceptions where they do not agree. Such embodiments are
generally considered to fall under the centralized approach
774, but may also be considered a hybrid approach.

[0104] While FIG. 7D illustrates the simple case where
cach of the NDs 700A-H implements a single NE 770A-H,
it should be understood that the network control approaches
described with reference to FIG. 7D also work for networks
where one or more of the NDs 700A-H implement multiple
VNEs (e.g., VNEs 730A-R, VNEs 760A-R, those in the
hybrid network device 706). Alternatively or 1n addition, the
network controller 778 may also emulate the implementa-
tion of multiple VNEs 1n a single ND. Specifically, instead
of (or 1n addition to) implementing multiple VNEs 1n a
single ND, the network controller 778 may present the
implementation of a VNE/NE 1n a single ND as multiple
VNEs 1n the virtual networks 792 (all in the same one of the
virtual network(s) 792, each in different ones of the virtual
network(s) 792, or some combination). For example, the
network controller 778 may cause an ND to implement a
single VNE (a NE) in the underlay network, and then
logically divide up the resources of that NE within the
centralized control plane 776 to present different VNEs 1n
the virtual network(s) 792 (where these different VNEs 1n
the overlay networks are sharing the resources of the single
VNE/NE mmplementation on the ND in the underlay net-
work).

[0105] On the other hand, FIGS. 7E and 7F respectively
illustrate exemplary abstractions of NEs and VNEs that the
network controller 778 may present as part of different ones
of the virtual networks 792. FIG. 7E illustrates the simple
case of where each of the NDs 700A-H implements a single
NE 770A-H (see FIG. 7D), but the centralized control plane
776 has abstracted multiple of the NEs in different NDs (the
NEs 770A-C and G-H) into (to represent) a single NE 7701
in one of the virtual network(s) 792 of FIG. 7D, according
to some embodiments of the invention. FIG. 7E shows that
in this virtual network, the NE 7701 1s coupled to NE 770D
and 770F, which are both still coupled to NE 770E.

[0106] FIG. 7F illustrates a case where multiple VNEs
(VNE 770A.1 and VNE 770H.1) are implemented on dif-

US 2016/0364231 Al

ferent NDs (ND 700A and ND 700H) and are coupled to
each other, and where the centralized control plane 776 has
abstracted these multiple VNEs such that they appear as a
single VNE 77071 within one of the virtual networks 792 of
FIG. 7D, according to some embodiments of the invention.

Thus, the abstraction of a NE or VNE can span multiple
NDs.

[0107] While some embodiments of the invention imple-
ment the centralized control plane 776 as a single entity
(e.g., a single instance of software running on a single
electronic device), alternative embodiments may spread the
functionality across multiple entities for redundancy and/or
scalability purposes (e.g., multiple instances of software
running on different electronic devices).

[0108] Similar to the network device implementations, the
electronic device(s) running the centralized control plane
776, and thus the network controller 778 including the
centralized reachability and forwarding information module
779, may be implemented a variety of ways (e.g., a special
purpose device, a general-purpose (e.g., COTS) device, or
hybrid device). These electronic device(s) would similarly
include compute resource(s), a set or one or more physical
NICs, and a non-transitory machine-readable storage
medium having stored thereon the centralized control plane
software. For instance, FIG. 8 1llustrates, a general purpose
control plane device 804 including hardware 840 comprising
a set of one or more processor(s) 842 (which are often COTS
processors) and network interface controller(s) 844 (NICs;
also known as network interface cards) (which include
physical NIs 846), as well as non-transitory machine read-

able storage media 848 having stored therein centralized
control plane (CCP) software 850.

[0109] In embodiments that use compute virtualization,
the processor(s) 842 typically execute software to instantiate
a virtualization layer 854 and software container(s) 862A-R
(e.g., with operating system-level virtualization, the virtu-
alization layer 854 represents the kernel of an operating
system (or a shim executing on a base operating system) that
allows for the creation of multiple software containers
862A-R (representing separate user space instances and also
called virtualization engines, virtual private servers, or jails)
that may each be used to execute a set of one or more
applications; with full virtualization, the virtualization layer
854 represents a hypervisor (sometimes referred to as a
virtual machine monitor (VMM)) or a hypervisor executing
on top of a host operating system, and the software con-
tainers 862A-R each represent a tightly isolated form of
soltware container called a virtual machine that 1s run by the
hypervisor and may include a guest operating system; with
para-virtualization, an operating system or application run-
ning with a virtual machine may be aware of the presence of
virtualization for optimization purposes). Again, 1n embodi-
ments where compute virtualization 1s used, during opera-
tion an mstance of the CCP software 8350 (1llustrated as CCP
instance 876A) 1s executed within the software container
862A on the virtualization layer 854. In embodiments where
compute virtualization 1s not used, the CCP instance 876A
on top of a host operating system 1s executed on the “bare
metal” general purpose control plane device 804. The instan-
tiation of the CCP instance 876 A, as well as the virtualiza-
tion layer 854 and software containers 862A-R 1f imple-
mented, are collectively referred to as software 1nstance(s)

332.

Dec. 15, 2016

[0110] In some embodiments, the CCP instance 876A
includes a network controller instance 878. The network
controller instance 878 includes a centralized reachability
and forwarding information module instance 879 (which 1s
a middleware layer providing the context of the network
controller 778 to the operating system and communicating
with the various NEs), and an CCP application layer 880
(sometimes referred to as an application layer) over the
middleware layer (providing the itelligence required for
various network operations such as protocols, network situ-
ational awareness, and user—interfaces). At a more abstract
level, this CCP application layer 880 within the centralized
control plane 776 works with virtual network view(s) (logi-
cal view(s) of the network) and the middleware layer pro-
vides the conversion from the virtual networks to the physi-
cal view.

[0111] The centralized control plane 776 transmits rel-
evant messages to the data plane 780 based on CCP appli-
cation layer 880 calculations and middleware layer mapping
for each tlow. A flow may be defined as a set of packets
whose headers match a given pattern of bits; 1n this sense,
traditional IP forwarding 1s also tlow—based forwarding
where the flows are defined by the destination IP address for
example; however, 1n other implementations, the given
pattern of bits used for a flow definition may include more
fields (e.g., 10 or more) 1n the packet headers. Diflerent
NDs/NEs/VNEs of the data plane 780 may receive different
messages, and thus different forwarding information. The
data plane 780 processes these messages and programs the
appropriate flow information and corresponding actions in
the forwarding tables (sometime referred to as flow tables)
of the appropriate NE/VNEs, and then the NEs/VNEs map
incoming packets to tlows represented 1n the forwarding
tables and forward packets based on the matches 1n the
forwarding tables.

[0112] Standards such as OpenFlow define the protocols
used for the messages, as well as a model for processing the
packets. The model for processing packets includes header
parsing, packet classification, and making forwarding deci-
sions. Header parsing describes how to interpret a packet
based upon a well-known set of protocols. Some protocol
fields are used to build a match structure (or key) that will
be used 1n packet classification (e.g., a first key field could

be a source media access control (MAC) address, and a
second key field could be a destination MAC address).

[0113] Packet classification involves executing a lookup 1n
memory to classily the packet by determining which entry
(also referred to as a forwarding table entry or tlow entry) in
the forwarding tables best matches the packet based upon
the match structure, or key, of the forwarding table entries.
It 1s possible that many flows represented 1n the forwarding
table entries can correspond/match to a packet; in this case
the system 1s typically configured to determine one forward-
ing table entry from the many according to a defined scheme
(e.g., selecting a first forwarding table entry that 1s matched).
Forwarding table entries include both a specific set of match
criteria (a set of values or wildcards, or an indication of what
portions of a packet should be compared to a particular
value/values/wildcards, as defined by the matching capabili-
ties—tor specific fields in the packet header, or for some
other packet content), and a set of one or more actions for
the data plane to take on receiving a matching packet. For
example, an action may be to push a header onto the packet,
for the packet using a particular port, tlood the packet, or

US 2016/0364231 Al

simply drop the packet. Thus, a forwarding table entry for
IPv4/IPv6 packets with a particular transmission control
protocol (TCP) destination port could contain an action
specilying that these packets should be dropped.

[0114] Making {forwarding decisions and performing
actions occurs, based upon the forwarding table entry 1den-
tified during packet classification, by executing the set of
actions 1dentified 1n the matched forwarding table entry on
the packet.

[0115] However, when an unknown packet (for example,
a “missed packet” or a “match-miss” as used in OpenFlow
parlance) arrives at the data plane 780, the packet (or a
subset of the packet header and content) 1s typically for-
warded to the centralized control plane 776. The centralized
control plane 776 will then program forwarding table entries
into the data plane 780 to accommodate packets belonging
to the flow of the unknown packet. Once a specific forward-
ing table entry has been programmed 1nto the data plane 780
by the centralized control plane 776, the next packet with
matching credentials will match that forwarding table entry
and take the set of actions associated with that matched
entry.

[0116] A network interface (NI) may be physical or vir-
tual; and 1n the context of IP, an interface address 1s an IP
address assigned to a NI, be 1t a physical NI or virtual NI.
A virtual NI may be associated with a physical NI, with
another virtual interface, or stand on 1ts own (e.g., a loop-
back interface, a point-to-point protocol interface). A NI
(physical or virtual) may be numbered (a NI with an IP
address) or unnumbered (a NI without an IP address). A
loopback interface (and 1ts loopback address) 1s a specific
type of virtual NI (and IP address) of a NE/VNE (physical
or virtual) often used for management purposes; where such
an IP address 1s referred to as the nodal loopback address.
The IP address(es) assigned to the NI(s) of a ND are referred
to as IP addresses of that ND; at a more granular level, the
[P address(es) assigned to NI(s) assigned to a NE/VNE

implemented on a ND can be referred to as IP addresses of
that NE/VNE.

[0117] Some portions of the preceding detailed descrip-
tions have been presented 1n terms of algorithms and sym-
bolic representations of transactions on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled i1n the data
processing arts to most eflectively convey the substance of
their work to others skilled 1n the art. An algorithm 1s here,
and generally, conceived to be a self-consistent sequence of
transactions leading to a desired result. The transactions are
those requiring physical manipulations of physical quanti-
ties. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally
for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

[0118] It should be borne 1n mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convement labels
applied to these quantities. Unless specifically stated other-
wise as apparent from the above discussion, 1t 1s appreciated
that throughout the description, discussions utilizing terms
such as “processing” or “computing” or “calculating” or
“determining” or “displaying” or the like, refer to the action

Dec. 15, 2016

and processes of a computer system, or similar electronic
computing device, that mampulates and transforms data
represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

[0119] The algornithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may be used
with programs in accordance with the teachings herein, or 1t
may prove convenient to construct more specialized appa-
ratus to perform the required method transactions. The
required structure for a variety of these systems will appear
from the description above. In addition, embodiments of the
present invention are not described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple-
ment the teachings of embodiments of the invention as
described herein.

[0120] In the foregoing specification, embodiments of the
invention have been described with reference to specific
exemplary embodiments thereof. It will be evident that
various modifications may be made thereto without depart-
ing from the broader spirit and scope of the invention as set
forth 1n the following claims. The specification and drawings
are, accordingly, to be regarded 1n an 1llustrative sense rather
than a restrictive sense.

[0121] Throughout the description, embodiments of the
present invention have been presented through flow dia-
grams. It will be appreciated that the order of transactions
and transactions described in these flow diagrams are only
intended for illustrative purposes and not mntended as a
limitation of the present invention. One having ordinary skill
in the art would recognize that variations can be made to the

flow diagrams without departing from the broader spirit and
scope of the mvention as set forth in the following claims.
What 1s claimed 1s:

1. A method in a first network device for performing a
software upgrade, the method comprising:

recerving, by a first 1nit process executing on a first root
file system, an indication to perform an in-service
software upgrade (ISSU);

releasing, by the first 1nit process in response to receiving
the idication to perform the ISSU, the first root file
system by:
setting an indication that the ISSU 1s 1n progress, and
terminating processes executing on the first root file
system;
switching, by the first 1nit process in response to receiving

the 1indication to perform the ISSU, from the first root
file system to a second root file system by:

moving a root from the first root file system to the
second root file system, wherein the second root file
system includes an upgraded software,

moving critical system files from the first root file
system to the second root file system,

unmounting the first root file system, and
executing a second 1mt process on the second root file
system; and
imitializing, by the second 1nit process executing on the
second root file system, the second root file system by:

starting processes on the second root file system.

US 2016/0364231 Al

2. The method of claim 1, wherein releasing the first root
file system further comprises:

preventing, in response detecting the indication that the

ISSU 1s 1n progress, unmounting of critical system files
residing on the first root file system, thereby avoiding
rebooting of a kernel.

3. The method of claim 1, wherein releasing the first root
file system further comprises:

preventing, in response detecting the indication that the

ISSU 1s 1n progress, unloading of loadable kernel
modules (LKMs), thereby avoiding resetting of periph-
eral devices connected to the first network device.

4. The method of claim 1, wherein mitializing the second
root file system further comprises:

preventing, in response detecting the indication that the

ISSU 1s 1n progress, mounting of critical system files on
the second root file system.

5. The method of claim 1, wherein mitializing the second
root file system further comprises:

preventing, in response detecting the indication that the

ISSU 1s 1n progress, loading of loadable kernel modules
(LKMs).

6. The method of claim 1, wherein initializing the second
root file system further comprises:

preventing, in response detecting the indication that the

ISSU 1s 1n progress, resetting of hardware devices
connected to the first network device.

7. The method of claim 1, wherein releasing the first root
file system further comprises executing a halt script, and
wherein the halt script 1s configured to, 1n response detecting
the indication that the ISSU 1s 1n progress, prevent unmount-
ing of critical system files residing on the first root file
system.

8. The method of claim 1, wherein releasing the first root
file system further comprises executing a halt script, and
wherein the halt script 1s configured to, 1n response detecting,
the indication that the ISSU is in progress, prevent unloading
of loadable kernel modules (LKMs).

9. The method of claim 1, wherein initializing the second
root file system further comprises executing an init script,
and wherein the 1t script 1s configured to, 1n response
detecting the indication that the ISSU 1s 1n progress, prevent
mounting of critical system files on the second root file
system.

10. The method of claim 1, wherein initializing the second
root file system further comprises executing an init script,
and wherein the 1t script 1s configured to, 1n response
detecting the indication that the ISSU 1s 1n progress, prevent
loading of loadable kernel modules (LKMs).

11. The method of claim 1, wherein 1nitializing the second
root file system further comprises executing an init script,
and wherein the 1t script 1s configured to, 1n response
detecting the indication that the ISSU 1s 1n progress, prevent
resetting of hardware devices connected to the first network
device.

12. A first network device for performing a software
upgrade, the first network device comprising:

a set of one or more processors; and

a non-transitory machine-readable storage medium con-
taining code, which when executed by the set of one or
more processors, causes the first network device to:

receive, by a first 11t process executing on a first root
file system, an indication to perform an in-service

software upgrade (ISSU);

Dec. 15, 2016

release, by the first 1nit process 1n response to receiving,
the indication to perform the ISSU, the first root file
system by:
setting an indication that the ISSU 1s 1n progress, and
terminating processes executing on the first root file

system;

switch, by the first init process in response to receiving
the indication to perform the ISSU, from the first root
file system to a second root file system by:

moving a root from the first root file system to the
second root file system, wherein the second root
file system 1ncludes an upgraded software,

moving critical system files from the first root file
system to the second root file system,

unmounting the first root file system, and

executing a second 1nit process on the second root
file system; and

initialize, by the second 1nit process executing on the
second root file system, the second root file system
by:
starting processes on the second root file system.
13. The first network device of claim 12, wherein releas-

ing the first root file system further comprises the first 1nit
process to:

prevent, 1n response detecting the indication that the ISSU
1S 1n progress, unmounting of critical system files
residing on the first root file system, thereby avoiding
rebooting of a kernel.

14. The first network device of claim 12, wherein releas-
ing the first root file system further comprises the first 1nit
process to:

prevent, in response detecting the indication that the ISSU
1s 1n progress, unloading of loadable kernel modules
(LKMs), thereby avoiding resetting of peripheral
devices connected to the first network device.

15. The first network device of claim 12, wherein 1nitial-
1zing the second root file system further comprises the
second 1nit process to:

prevent, 1n response detecting the indication that the ISSU
1s 1n progress, mounting of critical system files on the
second root file system.

16. The first network device of claim 12, wherein 1nitial-
1zing the second root file system further comprises the
second 1nit process to:

prevent, 1n response detecting the indication that the ISSU
1s 1n progress, loading of loadable kernel modules
(LKMs).

17. The first network device of claim 12, wherein 1nitial-

1zing the second root file system further comprises the
second 1nmit process to:

prevent, in response detecting the indication that the ISSU

1s 1n progress, resetting of hardware devices connected
to the first network device.

18. The first network device of claim 12, wherein releas-
ing the first root file system further comprises the first 1nit
process to execute a halt script, and wherein the halt script
1s configured to, 1n response detecting the indication that the
ISSU 1s 1n progress, prevent unmounting of critical system
files residing on the first root file system.

19. The first network device of claim 12, wherein releas-
ing the first root file system further comprises the first 1nit
process to execute a halt script, and wherein the halt script

US 2016/0364231 Al

1s configured to, 1n response detecting the indication that the
ISSU 1s 1n progress, prevent unloading of loadable kernel
modules (LKMs).

20. The first network device of claim 12, wherein 1nitial-
1zing the second root file system further comprises the
second 1nit process to execute an 1nit script, and wherein the
init script 1s configured to, 1n response detecting the indi-
cation that the ISSU 1s i progress, prevent mounting of
critical system files on the second root file system.

21. The first network device of claim 12, wherein initial-
1zing the second root file system further comprises the
second 11t process to execute an 1nit script, and wherein the
it script 1s configured to, 1n response detecting the indi-
cation that the ISSU 1s 1n progress, prevent loading of
loadable kernel modules (LKMs).

22. The first network device of claim 12, wherein initial-
1zing the second root file system further comprises the
second 1nit process to execute an 1t script, and wherein the
init script 1s configured to, 1n response detecting the indi-
cation that the ISSU 1s 1n progress, prevent resetting of
hardware devices connected to the first network device.

23. A non-transitory machine-readable storage medium
having computer code stored therein, which when executed
by a set of one or more processors of a first network device
for performing a software upgrade, causes the first network
device to perform operations comprising:

receiving, by a first 1init process executing on a first root

file system, an indication to perform an in-service
software upgrade (ISSU);

releasing, by the first init process in response to receiving

the indication to perform the ISSU, the first root file

system by:

setting an indication that the ISSU 1s 1n progress, and

terminating processes executing on the first root file
system;

switching, by the first init process 1n response to receiving

the indication to perform the ISSU, from the first root

file system to a second root file system by:

moving a root from the first root file system to the
second root file system, wherein the second root file
system includes an upgraded software,

moving critical system files from the first root file
system to the second root file system,

unmounting the first root file system, and

executing a second 1nit process on the second root file
system; and

initializing, by the second init process executing on the

second root file system, the second root file system by:
starting processes on the second root file system.

24. The non-transitory machine-readable storage medium
of claam 23, wherein releasing the first root file system
further comprises:

preventing, in response detecting the indication that the

ISSU 1s 1n progress, unmounting of critical system files
residing on the first root file system, thereby avoiding
rebooting of a kernel.

Dec. 15, 2016

25. The non-transitory machine-readable storage medium
of claam 23, wherein releasing the first root file system
further comprises:

preventing, 1n response detecting the indication that the

ISSU 1s 1n progress, unloading of loadable kernel
modules (LKMs), thereby avoiding resetting of periph-
eral devices connected to the first network device.

26. The non-transitory machine-readable storage medium
of claim 23, wherein 1nitializing the second root file system
further comprises:

preventing, 1n response detecting the indication that the

ISSU 1s 1n progress, mounting of critical system files on
the second root file system.

277. The non-transitory machine-readable storage medium
of claim 23, wherein iitializing the second root file system
further comprises:

preventing, in response detecting the indication that the

ISSU 1s in progress, loading of loadable kernel modules
(LKMs).

28. The non-transitory machine-readable storage medium
of claim 23, wherein 1nitializing the second root file system
further comprises:

preventing, 1n response detecting the indication that the

ISSU 1s 1n progress, resetting of hardware devices
connected to the first network device.

29. The non-transitory machine-readable storage medium
of claam 23, wherein releasing the first root file system
further comprises executing a halt script, and wherein the
halt script 1s configured to, 1n response detecting the indi-
cation that the ISSU 1s 1 progress, prevent unmounting of
critical system files residing on the first root file system.

30. The non-transitory machine-readable storage medium
of claam 23, wherein releasing the first root file system
further comprises executing a halt script, and wherein the
halt script 1s configured to, 1n response detecting the indi-
cation that the ISSU 1s 1n progress, prevent unloading of
loadable kernel modules (LKMs).

31. The non-transitory machine-readable storage medium
of claim 23, wherein 1nitializing the second root file system
further comprises executing an 1nit script, and wherein the
init script 1s configured to, 1n response detecting the 1ndi-
cation that the ISSU 1s in progress, prevent mounting of
critical system files on the second root file system.

32. The non-transitory machine-readable storage medium
of claim 23, wherein iitializing the second root file system
further comprises executing an 1nit script, and wherein the
init script 1s configured to, 1n response detecting the indi-
cation that the ISSU 1s 1n progress, prevent loading of
loadable kernel modules (LKMs).

33. The non-transitory machine-readable storage medium
of claim 23, wherein 1nitializing the second root file system
further comprises executing an 1nit script, and wherein the
init script 1s configured to, 1n response detecting the 1ndi-
cation that the ISSU 1s 1n progress, prevent resetting of
hardware devices connected to the first network device.

e e e e e

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description/Claims
	Page 24 - Claims
	Page 25 - Claims

